
WILEY
UNVR MU

II

Robert Bur

Samsung Exhibit 1031 Page 00001

B8

Page 00002

CD—ROM

SEm1..CW

UNIVERSITY LIBRARIES GMU

3277 011672792

Page 00003

Essential

WindowsR CE

Application

Programming

Robert Burdick

Wiley Computer Publishing

John Wiley Sons Inc

NEW YORK CHICHESTER WEINHEIM BRISBANE SINGAPORE TORONTO

Page 00004

Publisher Robert Ipsen

Editor Marjorie Spencer

Assistant Editor Margaret Hendrey

Managing Editor Brian Snapp

Electronic Products Associate Editor Mike Sosa

Text Design Composition NK Graphics

Designations used by companies to distinguish their products are often claimed as trade

marks In all instances where John Wiley Sons Inc is aware of claim the product names

appear in initial capital or ALL CAPITAL LETTERS Readers however should contact the appro

priate companies for more complete information regarding trademarks and registration

This book is printed on acid-free paper

Copyright 1999 by Robert Burdick All rights reserved

Published by John Wiley Sons Inc

Published simultaneously in Canada

No part of this publication may be reproduced stored in retrieval system or transmitted in

any form or by any means electronic mechanical photocopying recording scanning or

otherwise except as pennitted under Sections 107 or 108 of the 1976 United States Copyright

Act without either the prior written permission of the Publisher or authorization through

payment of the appropriate per-copy fee to the Copyright Clearance Center 222 Rosewood

Drive Danvers MA 01923 978 750-8400 fax 978 750-4744 Requests to the Publisher for

permission should be addressed to the Permissions Department John Wiley Sons Inc 605

Third Avenue New York NY 10158-0012 212 850-6011 fax 212 850-6008 E-Mail

PERMREQ WILEY.COM

This publication is designed to provide accurate and authoritative information in regard to

the subject matter covered It is sold with the understanding that the publisher is not

engaged in professional services If professional advice or other expert assistance is

required the services of competent professional person should be sought

Library of Congress Cataloging-in-Publication Data

Burdick Robert 1965

Essential Windows CE application programming Robert Burdick

cm
ISBN 0-471-32747-6 pbk alk paper

Microsoft Windows computer ifie Operating systems

Computers Title

QA76.76.063B856 1999

005.4469dc2l 98-50484

CIP

Printed in the United States of America

10

Page 00005

LR7
.7 r71

r13

To my wife Katy for urging me ever onward

Page 00006

Page 00007Page 00007

Acknowledgments xi

Introduction xiii

Part Windows CE Application Programming
Fundamentals

Chapter Getting Started with Windows CE

What Is Windows CE
Windows CE Programming Tools

Before We Move On 13

Now Lets Get to Work 17

Chapter Windows CE Application Template 19

What Is Window Anyway 20

Creating Windows 27

The Windows CE Application Entry Point 31

The Message Loop 34

The Template Application 37

Concluding Remarks 40

Chapter Controls and Dialog Boxes 41

Programming Child Controls 41

Programming Common Controls 45

DialogBoxes 48

The Windows CE Common Dialogs 59

Common Dialog Programming 61

Concluding Remarks 68

Chapter Menus and the Windows CE Command Bar 69

Repeat Myself When under Stress 70

The Command Bar Control 71

Windows CE Menu Basics 74

Page 00008

Creating Command Bar 77

Inserting Menu into Command Bar 78

Adding Controls to Command Bar 79

Adding Tool Tips to Command Bar Buttons 86

Other Command Bar Functions 87

Using Accelerators in Windows CE Applications 88

Using the Window Menu 91

The Complete Wmdows CE Menu API 93

The Complete CMDBAR Sample Application 103

Concluding Remarks 103

Chapter Windows CE Common Controls 105

The Month Calendar Control 107

The Date Time Picker Control 123

Rebar Controls 134

Command Bands 140

Concluding Remarks 143

Part II Windows CE Persistent Storage 145

Objct Identifiers 146

The CeOidGetlnfo Fimction 146

Viewing the Windows CE Object Store 149

Chapter Working with the Windows CE File System 153

The File System Explorer Application 154

File Handles 159

File Attributes 160

Searching for Files 162

Creating and Opening Files and Directories 165

Reading and Writing File Data 171

Copying and Renaming Files and Directories 178

Deleting Files and Directories 180

Flash Cards and Persistent Storage 180

Concluding Remarks 183

Chapter Windows CE Databases 185

The Phone List Application 186

Programming Wmdows CE Databases 191

Page 00009

Internal Representation of Record Properties 195

Creating the Database 197

Sorting and the SORTORDERSPEC 198

Opening and Closing the Database 201

Writing and Reading Database Records 203

Searching for Records 208

Database Enumeration 211

Database Notifications 213

The Contacts Database 213

Concluding Remarks 218

Chapter Using The Windows CE Registry 221

Registry Basics 222

Creating And Opening Registry Keys 229

Reading and Writing Registry Values 231

Enumerating Registry Keys and VaJues 236

Deleting Registry Keys and Values 239

The Registry Sample Application 240

Concluding Remarks 241

Part Ill Windows CE User Interface Programming 243

What We Will Learn 245

Chapter Owner Draw Controls and Custom Window Classes 247

Why Focus on Owner Draw Buttons 247

The Example Application 249

The Anatomy of Windows CE Control 250

How Owner Draw Buttons Are Different 251

The Kiosk Application 258

Concluding Remarks 273

Chapter 10 The Windows CE Custom Draw Service 275

Custom Draw Notification 277

Responding to Custom Draw Notifications 281

Other NMCUSTOMDRAW Info Structures 284

Real Example 285

Concluding Remarks 288

Page 00010

Chapter 11 Designing Windows CE Custom Controls 289

The Example Custom Control 290

Packaging Custom Control as Dynamic Link Library 291

Initializing the DLL in the Client Application 298

Implementing the Custom Button Control 300

The Complete Sample Application 310

Concluding Remarks 311

Chapter 12 The HTML Viewer Control 313

Overview of the HTML Viewer Control 314

The Sample Application 317

Preparing to Use the HTML Viewer Control 318

Creating HTML Viewer Controls 318

Displaying HTML Formatted Text 319

Handling Hyperlinks 321

Displaying Inline Images 325

HTML Viewer Control Messages and Notifications 327

Chapter 13 Palm-size PC Input Techniques 329

The Rich Ink Control 330

Programming the Rich Ink Control 332

Programming the Palm-size PC Navigation Buttons 341

Adding Voice Input to Palm-size PC Applications 348

Real Example 352

Concluding Remarks 354

Part IV Desktop Connectivity and Memory Issues 357

Chapter 14 Windows CE Data Synchronization 359

The Sample Code 360

ActiveSync Technology Overview 361

The Synchronization Process from the 50000 Foot Level 366

Registering ActiveSync Service Providers 369

Desktop Service Provider Data Model 374

Initializing Desktop Service Provider 376

Reconstructing Folders and Items 377

Enumerating Objects 380

Page 00011

Reporting Desktop Data Store Changes 386

Transferring the Data 388

Notifying the Service Manager 392

Programming Device Service Providers 394

Conflict Resolution 399

Concluding Remarks 402

Chapter 15 Other Desktop Connectivity Topics 403

The Remote API 404

RAPI Sample Application 405

Using Remote API Functions 405

Windows CE File Filters 409

The Sample File Filters 411

Registering File Filters 417

Concluding Remarks 419

Chapter 16 Memory and Power Management 421

The Sample Application 422

Windows CE Memory Basics 422

Allocating Memory 426

Wmdows CE Memory Mapped Files 433

Handling Low Memory Conditions 442

The GetSystemPowerStatusEx Function 443

Concluding Remarks 445

Whats on the CD-ROM 447

Index 451

Page 00012

Page 00013

started working on this book back in April of 1998 when wrote the

original proposal Since that time number of people have contributed

in various ways to its successful completion

Great thanks go to Marjorie Spencer and Margaret Hendrey and Brian

Snapp at John Wiley and Sons Their thoughtful and professional assis

tance in every aspect of preparing the manuscript of this book are deeply

appreciated Pam Masara of John Wiley and Sons also deserves many
heartfelt thanks for encouraging me to contact Marjorie about the idea

for this book Thanks also go to Rob Vermeulen and Peter van der Lin

den both accomplished writers in their own right for their advice and

encouragement

On the technical front special thanks go to Martin Heller for his thor

ough critique of the manuscript Thanks also to John Ruley for his

review of my original proposal and his suggestions for how to improve

the focus of the book must also thank everyone at TJpperCase Soft

ware for their patience and understanding during my writing of this

book would particularly like to thank Frank Halasz and Kim McCall for

the opportunity to work for them part time while spending the majority

of my time writing and Tom Zurkan for helping me sort out various

ActiveSync issues would also like to thank Tor Ainundson of Navitel

Communications for his help with various hardware issues Former

Navitel compatriot Dianna Tai also deserves thanks for her input on data

synchronization

Thanks also go to several people at Philips Mobile Computing Group
David Hargis and James Beninghaus provided me with some great oppor
tunities to write Palm-size PC applications for the Philips NINO Also

Michael Croot Benjamin Beasley and Sathish Damodaran have been

instrumental in helping me meet my deadlines

must of course add special thanks to Mom and Dad for all of their love

and moral support over the years also want to thank my mother-in-law

xi

Page 00014

Olga Disney for making the best polenta cannot forget John and Kat

rina Staten for giving me the key to their house in Cannel that week in

April where the outline for this book was conceived

Thanks also go to my two cats Boots and Luigi for their company on

many late nights while working on this book Jumping up on the key
board aside thanks for the support Any last minute typos are entirely

their fault

Finally and most importantly owe debt of gratitude to my wife Katy

for all of her support and encouragement There is no way could have

done this without you Thanks for enduring with me all of the stress

occasional depression and of course the jubilation that went along with

getting this done

Page 00015

he Windows CE operating system has been available to application pro-

grammers for over two years Independent software vendors have been

writing applications for platforms such as the Hanciheld PC ever since

Windows CE was born At the same time original equipment manufac

turers have been designing and implementing all kinds of new devices

based on the operating system But despite the growth of the operating

system and the number of software developers writing appilcations for

it there are still only handful of books on the subject of Windows CE

programming

My interest in writing this book comes from over two years of Windows

CE programming experience during which have been involved in

number of Windows CE development efforts am writing this book out

of desire to share with readers the insights have gained from these

experiences

As the market for mobile and handlield computing devices continues to

grow Windows CE will continue to change The features present in

Windows CE today may not be there tomorrow Windows CE features

will be shaped by the demands of the users of the devices powered by

the operating system

But certain core technologies will always be part of Windows CE This

book is guide to the essential features of Windows CE programming

How This Book Is Organized

book is organized into four parts which focus on the following Win

dows CE application programming topics

Windows CE programming fundamentals

Windows CE persistent storage

XIII

Page 00016

xiv

User interface programming techniques

Desktop connectivity memory and power management

Part

Part of the book covers Windows CE prograLmrnirig fundamentals and

contains five chapters Chapter describes the architecture of the Win
dows CE operating system The various Windows CE subsystems are

described In addition Chapter takes look at how to use some of the

development tools available for writing Windows CE applications The

chapter takes you through sample session in which you learn how to

build Windows CE application for emulation as well as for real hard

ware platform

Chapter covers the main ingredients of Windows CE application

Through the example of generic template application the chapter

introduces the concepts of the Windows CE entry point registering win

dow classes writing window procedures and creating windows It also

points out some of the fundamental differences between Windows CE
windows and windows created for desktop W1n32 platforms

Next Chapter discusses the fundamentals of programming Windows

CE controls and dialog boxes The chapter introduces the basic con

cepts you need to use Windows CE child and common controls It also

covers how to program modal and modeless dialogs arid how to write

and use dialog procedures Chapter fmishes with discussion of pro
gramming the Windows CE common dialogs

Chapter covers Windows CE menus The majority of the chapter is

devoted to discussion of Windows CE command bars The command
bar control is sri essential part of using menus in Windows CE applica

tions

Part concludes with more detailed discussion of programming the

Windows CE common controls In particular Chapter covers the

month calendar control the date timepicker control rebar controls and

command bands

Part II

Part II of this book is dedicated to Windows CE persistent storage The

three chapters in this part are your resource for learning how to program

the various features of the Windows CE object store

Page 00017

Chapter covers using the Windows CE file system and how to program
the file system API You will learn about using files and directories as

well as how to access storage cards attached to Windows CE devices

The concepts of this chapter are made clear with the Windows CE File

System Explorer sample application

Chapter discusses Windows CE database techno1ogy You will learn how
to create custom databases for your applications and how to read and

write database records You will also learn how to search for database

records and how to sort databases In addition Chapter introduces the

Windows CE contacts database

The last chapter of Part II covers the Windows CE registry Chapter

shows you how to use the registry for persistent storage of small

amounts of information when complete database or directory struc

ture is not necessaiy

Part III

Part III concentrates on various Windows CE user interface program
ming techniques An entire book could easily be devoted to this subject

The five chapters in this section cover some of the more important and

common user interface programming subjects

Chapter begins the discussion by introducing the concept of owner
draw controls With specific examples of progranuning owner draw but

tons the chapter provides an overview of how Windows CE owner draw
controls can be used to customize the appearance of your applications

This chapter also covers the use of offscreen bitmaps Chapter 10

expands on the owner draw concept with its treatment of the Windows
CE custom draw service

Chapter 11 shows you how to take complete control of the appearance

and behavior of your controls by describing how to create Windows CE
custom controls This chapter also provides valuable review of how to

program and use dynamic llnk libraries

Chapter 12 is about using the Windows CE HTML viewer control It

shows you how to use this control to add HTML viewing capabilities to

your Windows CE applications

Finally Chapter 13 introduces various nontraditional Windows CE input

techniques In the context of progranmîing applications for the Palm-size

PC this chapter shows you how to program the rich ink control and how

Page 00018

to add voice recording capability to applications using the voice recorder

control Chapter 13 also describes how to take advantage of the Palm-size

PC navigation buttons

Part IV

The last part of this book discusses programming some of the desktop

connectivity features provided by the Windows CE operating system

This section is invaluable if you are interested in writing Windows CE

applications that can share data with desktop PCs

Chapter 14 covers the ActiveSync technology for data synchronization

You will learn how to program ActiveSync service providers for both

desktop PC and Windows CE device

Chapter 15 shows you how to use the remote application programming

interface or RAPI in order to allow your desktop applications to access

Windows CE devices This chapter also covers file filter programming

The last chapter of the book introduces Windows CE memory manage
ment concepts Chapter 16 also discusses Windows CE power consider

ations

Who Should Read This Book

This book is intended primarily for readers with some Windows pro
gramming experience It assumes that you are familiar with the basic

components of desktop Windows application It assumes that you have

written applications for Windows Windows 95 or Windows 98 It

also assumes that you already have some experience with Windows

graphics programming topics such as the Graphics Device Interface

GDI functions

However you do not need to be Windows expert to use this book for

your Windows CE programming needs In fact the emphasis in this book

is on programming Windows CE at the application programming inter

face API level This book is perfectly suited therefore for program
merwith experience using the Microsoft Foundation Classes MFC but

whose understanding of how the underlying API works is bit rusty

This is why for example cover topics such as window procedures

message loops and dialog box programming early in the book Many

Page 00019

XVII

Windows programmers successfully write applications with MFC but

do not really understand how that class library works And since Win
dows CE is for many reasons not particularly well suited to MFC this

book will provide many intermediate level Windows programmers with

thorough understanding of the internal workings of Windows CE

Experienced Windows programmers will also fmd this book valuable

because it discusses features specific to Windows CE application pro
gramming Many of the advanced topics in this book such as data syn
chronization or programming the remote API may be unfamiliar to the

most experienced Windows NT or Windows 98 programmer

This book is intended then for intermediate level and advanced Win
dows programmers interested in writing Windows CE applications

Advanced readers may fmd that they want to skip the chapters that

cover subjects they are familiar with from programming desktop Win
dows applications For example chapters covering Windows CE dialog

box programming custom controls or the Windows CE file system can

safely be skipped by advanced readers However it is worth pointing out

that although many Windows CE concepts are similar to their Windows

NT or Windows 98 counterparts there are often subtle differences spe
cific to Windows CE programming More experienced programmers will

therefore fmd all of the chapters of this book useful

With few exceptions all of the examples in this book and all of the code

samples on the companion CD-ROM are written in is only used

for some of the code required for the ActiveSync service providers in

Chapter 14 and for the file filter examples of Chapter 15

Tools You Will Need

To use this book it is assumed that you have desktop PC running Win
dows NT version 4.0 or later with Microsoft Developer Studio Visual

version 5.0 or later It also assumes that you have installed the Windows

CE Toolkit for Visual version 2.0 or later

The companion CD provides number of sample applications illustrat

ing the programming concepts discussed in this book Read the appen

dix Whats on the CD-ROM to fmd out more about it if you are

interested in running any of these on Windows CE device such as

Handheld PC or Palm-size PC it is assumed that you have installed Win-

Page 00020

dows CE Services on your desktop PC This book also assumes that you

are familiar with concepts such as connecting the device to the PC and

copying files to the device

DEVELOPMENT MUST BE DONE ON WINDOWS NT

Your Windows CE applications must be developed on Windows NT The emulation

environment only works under Windows NT and the Windows CE Toolkits and SDKs

are only supported for Windows NT

Before We Begin

This book covers lot of material However no single book can possible

discuss all aspects of subject as vast as Windows CE programming It

is my hope that this book will become your primary reference for under

standing the most essential features of Windows CE programming

As such this book concentrates on those subjects that are most funda

mental to Windows CE As with any software product Windows CE will

see features come and go But the fundamental building blocks on which

Windows CE applications are based are sure to be around for long time

to come It is the goal of this book to introduce you to these core Win

dows CE programming concepts

Page 00021

ONE

Windows CE Application

Programming Fundamentals

thorough understanding Windows CE programming requires firm

grasp the fundamentals We therefore begin our exploration of Win
lows CE application programming with discussion of the core Win

dows CE topics

\Ve start with brief look at the overall architecture of the Windows

CF operating system We continue with the anatomy of typical Win
dows CE application Next programming application building blocks

such as Windows CE controls and dialog boxes are covered

Part contJnlLes with look at how menus are included in Windows

CE applications We will see that this is very different from how

menus are added to Windows 98 or Windows NT applications The

Windows CE command bar control is presented in this discussion

Part closes with description of programming Windows CE common

After completing the chapters in Part you will have solid under

standing of the basic principles required to write more complex Win
dows application programming

Page 00022

Page 00023

.1
Getting Started

with Windows CE

this chapter we take brief look at the architecture of the Windows

CE operating system We also discuss some of the software develop
ment tools available to help you write Windows CE applications

What Is Windows CE

Windows CE is compact modular 32-bit operating system designed

for use on devices with small memory requirements Windows CE is

very similar in design to its larger desktop cousin Windows NT Win
dows CE is multitasking multithreaded operating system like Win
dows NT It includes most of the user interface features of Windows NT
so that software developers can take advantage of most users familiar

ity with Windows applications

Storage on Windows CE devices is combination of random access

memory RAM and read-only memory ROM Devices can also

include expansion flash memory storage cards for additional storage

space PCMCIA cards can be added to many devices and Windows

CE provides full support for such cards

Since storage is all memory based the contents of the Windows CE file

system is stored in RAM The operating system and all applications

Page 00024

which ship with Windows CE devices are in ROM The ROM software

components are run in place instead of being paged into RAM so that

they run faster

Windows CE application programmers get huge productivity boost

because Windows CE is based on the Win32 API This means that pro
grammers who are familiar with programming for traditional Win
dows platforms like Windows NT can begin programming Windows

CE applications with very little additional training Certainly there are

features that are unique to Windows CE But understanding tradi

tional Windows programming is big advantage when moving to the

Windows CE operating system

Architectural Considerations

Windows CE consists of seven subsystems Each of these subsystems is

further broken down into smaller components The GWE subsystem
for example consists of smaller components including the window

manager and the dialog manager The seven Windows CE subsystems

are

kernel

The Graphics Windowing and Event Subsystem GWES
The object store including the file system

The OEM Adaptation Layer OAL
The device driver layer

The communication APIs

Custom shells and the Internet Explorer

The Kernel

The Windows CE kernel is similar to the kernel in Windows NT It uses

the same thread and process model as Windows NT It supports the

same file formats as Windows NT Additionally Windows CE uses

virtual memory model similar to Windows NT You can write Windows

CE applications that share memory across multiple processes using

memory mapped files

The Windows CE kernel also implements the object manager As is the

case with Windows NT windows GDI objects such as brushes and

Page 00025

bitmaps files and all other such objects are manipulated by applica
lions through object handles The handles as well as the underlying

objects they correspond to are managed by the object manager

The Graphics Windowing and Event Subsystem

Windows CE has combined the user and GDI components into one

subsystem This subsystem the Graphics Windowing and Event Sub

system is sometimes abbreviated as GWES or even GWE

Windows CE behavior such as creating window painting window
or loading string resource is handled somewhere within the code of

this subsystem All of the Windows CE child controls such as buttons

list boxes and the like are implemented in GWES

GWES also contains the event manager This is where the Windows CE

messaging capabilities are implemented

The Object Store

Random access memory in Windows CE device is divided into two

sections The first is program memory The other part contains the Win
dows CE object store The object store contains the Windows CE file

system and the registry The object store also contains Windows CE
databases such as the Contacts database and custom databases created

by applications

The OEM Adaptation Layer

The OEM adaptation layer or OAL consists of all of the pieces of soft

ware that an original equipment manufacturer OEM must implement

to port Windows CE to new hardware

If you are interested in creating new class of Windows CE products

such as point-of-sale terminal for ordering parts at the local auto

repair shop you need to get Windows CE to run on your custom hard

ware The OAL is where you customize the interrupt service routines

and hardware interfaces that allow hardware to communicate with

Windows CE

Programming the OEM adaptation layer is one of the many aspects of

Windows CE embedded systems programming As this subject

Page 00026

deserves an entire book of its own it is not covered in this book which

is devoted to application programming

The Device Driver Layer

This layer of the Windows CE operating system contains all of the driv

ers for peripherals that are included with particular device These

might include flash memory card drivers video drivers and keyboard

drivers Detailed coverage of this subject like the OAL belongs in an

embedded systems programming book

The Communication APIs

Windows CE includes many of the commi.mication APIs that you might

be familiar with from Windows NT For example sockets serial corn

mimication TAPI and the WinliNet APIs are all supported under Win
dows CE

One of the most important features of many Windows CE devices is

their ability to share data with desktop PC Windows CE therefore

supports ActiveSync technology ActiveSync allows application pro

grammers to write service providers for synchronizing application-

specific data between Windows CE devices and desktop computers

Additionally there is file filter support for transferring files between

platforms

Custom Shells and the Internet Explorer

OEMs can use the Windows CE shell component to write their own cus
tom shells for their devices For example if you do not want the stan

dard Handheld PC shell you can write your own

Windows CE also supports version of the Internet Explorer

Windows CE Modularity

One of the nicest features of Windows CE from the OEM point of view

is the modularity of the operating system Each of the various subsys
tem components can be added or removed as needed If you are design

ing product that does not need any of the Windows CE child controls

for example you can remove them from the ROM operating system

image that runs on your hardware This allows OEMs to shrink the

Page 00027

memory footprint of the operating system by removing any compo
nents that are not needed for particular product

The SYSGEN tool that ships with the Windows CE Platform Builder

makes this possible When OEMs license Windows CE they get all of

the operating system component libraries They must however build

their own operating system image

Part of this process involves writing file called CESYSGEN.BAT that

specifies which component libraries to include in the image The SYS
GEN tool then links those pre-compiled libraries into the operating

system image

Windows CE Programming Tools

Microsoft designed Windows CE with existing Windows programmers
in mind We have already discussed how Windows CE is based on the

Win32 API Programmers can also use many of the same programming
tools that they are already familiar with

This is because Microsoft Developer Studio can be used for writing

and debugging Windows CE applications Emulators for the various

Windows CE platforms allow developers to write and debug applica

tions on desktop PC The Windows CE Toolkit includes utilities for

allowing the Microsoft Developer Studio debuggers to remotely debug

applications rumiing on Windows CE hardware Developers can there

fore begin writing and debugging Windows CE applications without

learning new set of development tools

Sample Session

To demonstrate the Windows CE programming tools lets see how to

build sample Windows CE application We will build the TEM
PLATE.EXE application for the Handheld PC emulation environment

Then we will see how to build the same application for real Hand
heldPC hardware and download it to device The project files for this

application can be found on the companion CD under \Samples\

template

Building for Emulation

The first step in building Windows CE application for any target is to

open the workspace file for that application Choose the Open Work-

Page 00028

II II II

Controls

oys Controls

Boxes

Boxes

ombo Boxes

ombo Box St

Figure 1.1 The Open Workspace menu option

space option from the Microsoft Developer Studio File menu Figure

1.1 From the Open Workspace dialog find and open the file TEM
PLATE.DSW Figure 1.2

Ii-

template

template dsw

Workspaces .ds mdp

Figure 1.2 Opening the Workspace file

Page 00029

J2WCi86em Debug

Win32 Release

NV1n32 Debug

yVin32 WOE MIPS Release

V/in32 WOE MIPS Debug

Win32 WOE SH Release

Win32 WOE SHDebug

Figure 1.3 Selecting target build configuration

You must now specify which configuration to build the application for

This is done by making selection from the combo box shown in Fig
ure 1.3 You can specify whether to build TEMPLATE.EXE for the

debug emulation environment Or you can build the release or debug
versions of the application for any of the processors for which you
have installed compilers As we want to build for debug emulation

select the Win32 WCE x86em Debug option

If you have installed more than one Windows CE Platform SDK sec

ond combo box will be included in the Developer Studio toolbar

which lets you select the product to build for For this example make

sure you pick Handheld PC version

WHAT IF DONT SEE THE CONFIGURATION COMBO Box

If the configuration combo box does not appear somewhere in the Developer Studio

toolbar you may need to add it manually Select the Customize.. option from the

Tools menu Then click on the Commands tab From the Category combo box select

Build The Buttons group will include the configuration combo box Simply drag it to

your toolbar and drop it where you want it

Now that you have specified the configuration to build build the

application by choosing the Rebuild All option from the Build menu
The application will compile and link During the link phase the

Handheld PC emulation environment will start up Figure 1.4 This

simulates real Handheld PC shell

Page 00030

iñh1k1LE
Development Tools

figure 1.4 The Handheld PC emulation environment

Now you can run and debug the application just as you would any

other Windows application When you run the TEMPLATE.EXE appli

cation in the emulator you should see something like Figure 1.5

Building for Real Device

Building an application for real Windows CE device configuration is

similar to building for the emulator The differences come in when its

Figure 1.5 Running an application in the emulation environment

Page 00031

time to transfer the executable image from the desktop PC to the hard

ware

Lets say you want to build the release version of TEMPLATE.EXE for

Handheld PC running on an SH3 processor You simply select

Win32 WCE SH Release from the configuration combo box and

rebuild the application see Figure 1.3

Now you have to get the application to the Handheld PC Assuming
that you have already connected your Handheld PC to the desktop

computer open the Mobile Devices folder on the desktop PC You will

see window that looks something like the one in Figure 1.6 The

name of the Handheld PC icon will be whatever name you gave your
device when you configured it

Double-click on the icon corresponding to your Windows CE device

and window similar to that in Figure 1.7 will appear This window
shows the contents of your Handheld PC desktop

To copy the TEMPLATE.EXE image to your Handheld PC open Win
dows NT Explorer and drag the executable you just built to the

desired location on the Handheld PC To place it on the desktop drop

the file in the desktop window shown in Figure 1.7 To copy the file to

the Windows directory double-click the My Handheld PC icon in the

Mobile Devices window displaying your Handheld PC desktop Sev

II

Figure 1.6 The Mobile Devices folder

Page 00032

JMyHandheidPD Microsoft Pocket Word

bsquare Fax Professional Microsoft Voice Recorder

bsquare View My Documents

Calendar Pocket BizCalc

Contacts Pocket Finance

files.exe Tasks

Inbox The Internet

Microsoft Pocket Excel

Microsoft Pocket PowerPoint

Figure 1.7 Handheld PC desktop displayed by mobile devices

eral folders including the Windows folder will appear Drag and drop

TEMPLATE.EXE to the Windows folder

Debugging on the Windows CE Device

Now that you have successfully built Windows CE application and
downloaded it to your Handheld PC lets take quick look at how to

remotely debug the application using the Visual debugger

Using the debugger is the same for remote applications as it is for tra

ditional desktop applications or Windows CE applications rmming
under emulation But you must first perform few preliminary steps

The first step is to build the application in question for the debug
instead of the release configuration for the target processor Next this

debug version of the application must be downloaded to the device

To do this select the Update Remote Output File option from the

Developer Studio Build menu

After that you can set break points and debug the application just as

you would Windows NT or Windows 98 application

Page 00033

13

AUTOMATIC DOWNLOADING

It is possible to have Microsoft Developer Studio automatically download release

and debug application images If you select the Always Download option from the

Build menu compiled executables are downloaded to the appropriate target auto

matically This also includes downloading applications to the emulation object

store

Other Tools

There are many other development tools that can be used for Windows

CE programming For example the Windows CE Toolkits include Spy

process viewer and heap walker to name few These tools are not

covered in this book Readers are referred to the on-line documentation

for details on using the other Windows CE development tools

BeforeWeMoveOn

Companies that hire my Windows CE consulting services quickly learn

one very important thing about me Like it or not tell it like it is Being

in the business of helping companies succeed in their development

efforts requires nothing less

The hard part of this is that it often means telling people what they
least want to hear Pointing out serious problems with development

plans or software designs can mean lot of reengineering and taking

large steps backward on project On the positive side however will

ingness to rethink products realistically is key ingredient to getting

successful product to market

So before we turn our attention to the primary purpose of this book

writing Windows CE applications want to take few pages to

describe in general terms some of the biggest mistakes that are made
which prevent successful Windows CEbased products from getting to

market

The State of the Art

As this book goes to press Windows CE finds itself in somewhat

precarious situation The number of shipping Windows CEbased

Page 00034

14

product categories is small The currently available ones include PC

companion devices such as Handheld and Palm-size PCs The Auto

PC platform hopes to make it into all of our cars Windows CE Jupiter

class products fall somewhere between the Handheld PC and laptop

computer in features and complexity And none of these are selling in

droves

About two years ago had the opportunity to discuss Windows CE at

the Windows Hardware Engineering Conference WinHEC in Taipei

with Frank Fite director of the Windows CE Product Unit at

Microsoft Frank discussed the interest customers were expressing in

Windows CE for products as diverse as slot machines golf carts and

refrigerators Today Microsoft still discusses the queries it is receiving

from companies interested in some day putting Windows CE in slot

machines golf carts and refrigerators

do not make these statements to be glib make them to point out

that to date no one has come up with product based on Windows

CE that has generated huge compulsion to buy in consumers

What Happened to the Customer

Each new version of the Windows operating system has been released

to try and capture new segment of the computer market Windows 98

is intended to be the consumer desktop operating system of choice

Windows NT targets the business and software development com
munities

Windows CE was intended to take Microsoft into the brave new world

of consumer electronics Furthermore many of the products based on

Windows CE were meant to target consumers with very little experi

ence with or interest in using computers

This presents an enormous challenge for Microsoft The majority of the

products the company sells are software packages And despite the

fact that consumers use products like Microsoft Office for personal

business the majority of users of Microsoft software are paid between

eight and twelve hours day to use computers in their daily jobs

Moving the Windows model to products aimed at the less computer
literate segment of the population has thus proved very daunting

task And in my opinion based on experience with numerous
Windows CE software and hardware vendors the reason for this

Page 00035

fI1ff iLLW2i 15

difficulty is simple Windows CE products today are far too compli
cated to use

Build Benefits Not Features

Many years ago while working for Integrated System Corporation

ironically real-time operating system vendor and embedded systems

integrator the team worked with was treated to an off-site meeting at

our managers beach house As part of the work portion of the trip he

invited speaker to discuss various topics with us including how to

sell product

This speaker made simple yet for many companies elusive point

which has been forever indelibly imprinted in my brain He said that

no customer will care how high-tech product is how state-of-the-art

the software behind it is or how sexy the user interface is if that cus

tomer does not get some benefit from using the product In short we
wont care about the space-age metal used in new line of ballpoint

pen if it leaks ink all over our clothes

Most Windows CE products suffer from such feature distraction And

nowhere is the problem more pronounced than in the area of Win
dows CE application user interface design trend is evolving where

companies place more power and decision-making authority in the

hands of user interface design teams than in the hands of the very

engineering teams that must make products reality Time and again

features are insisted upon which given the current limitations of Win
dows CE draw out development schedules and cause deadlines to

slip And worse such features are sometimes added to product

requirements without single potential customer expressing desire

for the feature

The result is late products that are user interfaceintensive and far too

difficult to use by the inexperienced customers to whom they are sup
posed to appeal

Ironically the most successful PC companion product to date the

PalmPilot is not based on Windows CE It has very boring text

based user interface But users love it The reason is that the PaimPilot

only tries to do few things for the user And the tasks it does do are

very easy to perform My wife used my PalmPilot for the first time to

Page 00036

look up the phone number of our doctor In ten seconds she found the

phone number she needed Thats product benefit

While writing and testing the applications in this book on Handheld

and Palm-size PCs occasionally handed the devices over to my
wife so she could see what was distracting me from spending more
time with her Just figuring out how to launch these applications

required the assistance of the author of an entire book about

Windows CE

So Why Use Windows CE

The foregoing discussion might prompt readers to wonder why am

writing Windows CE book at all The reason is that Windows CE is

great platform for building small easy-to-use devices that do few

things well for their users

hope to encourage you to constantly think about the customer for

whom you are developing your Windows CEbased products Desk

top software users have for better or worse become used to occasion

ally rebooting PC when their software crashes But the user of

consumer electronics product heads straight back to the store for

refund if something goes wrong

The best advice can give to companies considering entering the Win
dows CE market is to keep product designs simple The success of

Windows CE as consumer product operating system depends on the

introduction of products that consumers feel compelled to buy Have

your potential customers define the minimumset of features they
would need iii order to buy your product Then incorporate those fea

tures into the product with simple user interfaces

Next add new features only when enough customers will pay for

them Browsing the Internet on four-inch screen sounds like good
idea to whom If the idea originated in the marketing or engineering

department beware If large numbers of focus group members said it

would be nice start drawing up new requirements document In

other words let the customer drive the design

Page 00037

NW Lets Get To Work

Ill get off my soapbox now and turn my attention to the real objective

of this book In the chapters that follow we will explore how to pro

gram the various features of the Windows CE operating system It is my
belief that after mastering the concepts presented in this book you will

have good grasp of the essential elements of writing Windows CE

applications

Page 00038

Page 00039Page 00039

AWindowsCE
Application Template

is bit difficult to know how much to say about the fundamentals of

Windows CE programming It is true that the Windows CE application

programming interface API is subset of the traditional Win32 API
It is also true that majority of application programmers who are

interested in developing software for Windows CEbased devices

come to this new platform with some level of Windows programming

experience

detailed introduction to Windows CE programming concepts such

as window classes and window procedures would therefore be wasted

on programmers with lot of Win32 experience On the other hand
not covering these topics at all might alienate those developers whose

primaryWindows experience is with class libraries such as the

Microsoft Foundation Classes MFC All of the code samples in this

book use the Windows CE API directly in order to promote solid

understanding of Windows CE programming from the most funda

mental level Some coverage of basic concepts is therefore necessary

In order to strike compromise this chapter presents
basic Windows

CE template application This application can be used as the boiler

plate for any other application that you may wish to write It does

nothing but display main application window and implement the

19

Page 00040

cn
most rudimentary window procedure promise that nowhere in this

application will you find words even remotely reminiscent of Hello

World

In fact the template application presented in this chapter is the foun

dation of all the other sample applications presented in this book Each

of the applications was written by taking the template source code and

adding functionality specific to the topics and techniques under dis

cussion

This chapter serves dual purpose In addition to describing the basic

framework of all the applications to follow in this book it also intro

duces the basic ingredients of complete Windows CE application

Experienced Win32 API programmers and MFC programmers alike

will get something out of the presentation of this template application

For example the Win32 programmer will benefit from seeing the dif

ferences in window styles and window messages between Windows

CE and desktop Windows platforms At the same time MFC program
mers will get refresher on the underlying mechanics of the Windows

programming model

IIE9ITTYi ffiPT1

Register window class

Write window procedure

Create instances of window class

Write message loop

Is Window Anyway

To users of Windows CEbased devices and applications window is

one of those things on the screen that contains buttons scroll bars and

all of the other components that are used as the interface to the func

tionality of the device To Windows programmers however windows

have multiple levels of meaning

One of these levels is that which the user ends up seeing the user

interface aspect of windows The look and feel of an application is

Page 00041

jfl21
defined primarily by the appearance of the applications windows As

application developers and user interface designers we must con

stantly think about windows in these graphical terms

Then there are the behavioral aspects of windows Users interact with

windows by pressing buttons selecting menu items and so forth and

the windows in our applications respond by performing actions

But as programmers we also think of windows at the more mechani

cal level This level which the users of our software probably never

contemplate is concerned with the way in which Windows CE repre
sents windows

The Window Class

To Windows CE all windows are described in terms of window class

The window class describes all of the attributes of the window from

the background color and the window title text to the way in which

the window responds to user input Every Windows CE window
from the most exalted main application window to the lowliest button

or edit box has window class lurking somewhere behind it More

than one window can be based on the same window class

window based on particular window class is called an instance of

that window class Windows CE applications reference individual

windows i.e window class instances via their window handle Win
dow handles are defined by the type HWND
Instances of window class are created with the Windows CE func

tions CreateWindow or CreateWindowEx We will see Create Window in

action bit later in the template application

Windows CE application programmers work with window classes in

the form of the WNDCLASS structure defined as follows

typedef struct _WNDCLASS

UINT style

WNDPROC lpfnWndProc

mt cbClsExtra

mt cbwndExtra

HANDLE hlnstance

HICON hlcon

HCURSOR hCursor

HBRUS3 IthrBackground

LPCTSTR ips zMenuName

Page 00042

LPCTSTR lpszClassName

WNDCLASS

The members of the WNDCLASS structure define the attributes of any

instance of this class

lpszClassName points to null-terminated Unicode string which con
tains the name of the window class Applications create instances of

particular window class using this name

style contains all of the class styles The styles supported under Win
dows CE are described in Table 2.1 The style parameter is one or more

of the values shown in that table bitwise-ORed together

lpfnWndProc is pointer to the window procedure for this window class

The subject of window procedures is discussed later

cbClsExtra specifies the number of extra bytes that Windows CE is to

allocate for the WNDCLASS structure These bytes can be used to

define additional class attributes over and above those provided for in

the WNDCLASS structure If used this value must be multiple of

four This means that any value stored as an extra class word must be

32-bit integer

Extra class words are accessed and set using the Windows CE func

tions GetClassLong and SetCiassLong value assigned to particular

extra class word is the same for all instances of the class

For example lets say that every window based on particular win
dow class needs to have the same caption This window caption is an

Table 2.1 Windows CE Window Class Styles

IIl
CS_DBLCLKS Window receives double-click messages corresponding to dou

We-tapping on the device touch screen

CSGLO8ALCLASS Instances of the window class can be created by applications that

are not in the same module .EXE or .DLL as the window class

CSHREDRAW Redraws the entire window if movement or size adjustment

changes the width of the client area

CS..NOCLOSE Close command on the system menu is disabled

CS_PARENTDC Sets the clipping region to that of the parent window This lets

instances of this class draw on their parent

CS_VERDRAW Redraws the entire window if movement or size adjustment

changes the height of the client area

Page 00043

attribute that is constant across all instances of the window class

pointer to the window caption string could therefore be stored as an

extra window class word

Similarly cbWndExtra can be used to specify extra bytes to be allocated

for each instance of window class In this way applications can

assign unique attributes to each window using the Get WindowLong
and SetWindowLong functions Each instance of window class can

thus have different values for particular extra window word

cbWndExtra like cbClsExtra must be multiple of four

hlnstance identifies the HINSTANCE of the Windows CE module that

contains the window procedure of the class

hlcon and hCursor are the icon and mouse cursor to use with instances

of the class respectively These members can be NULL

hbrBackground is used to represent the background color of windows
based on the particular window class

The lpszMenuName member of WNDCLASS is not supported under

Windows CE and therefore must be NULL This does not exactly mean
that Windows CE windows cannot have menus But menus are added

to windows quite differently under Windows CE than under other

Windows platforms Menus in Windows CE are included in command
bar controls Command bars are the subject of Chapter

ALL WINDOW CLASSES ARE GLOBAL

Under Windows CE all window classes are global by default The CS_GLOBALCLASS

style is included for compatibility with other Windows platforms

Registering Window Class

Simply defining window class with WNDCLASS structure does

not mean that the class can be used to make instances of that class

Before Windows CE application can create window of particular

window class the window class must be registered

Window class registration is the mechanism by which the class is

made available to the Windows CE operating system Create Window

Page 00044

requires the window class description in order to successfully create

window instance

The function used to register window class is RegisterCiass

RegisterCiass const WNDCLASS lpwndClass

RegisterCiass takes one argument pointer to the WNDCLASS struc

ture representing the window class to be registered If the function

succeeds it returns an atom representing the registered class Other

wise it returns zero An atom is an integer that uniquely identifies

string In this case the string identified is the name of the window

class specified in the lpszClassName member of the lpWndClass

parameter

REGISTERCLASSEX Is NOT SUPPORTED

The function RegisterClassEx is not supported under Windows CE

The Window Procedure

Windows CE uses the same message-based architecture that the desk

top Windows platforms such as Windows NT use This means that the

Windows CE operating system interacts with the windows in the vari

ous applications it is running by sending Windows CE messages

The window procedure for given window class is the function that

implements the response of each instance of that class to every Win
dows CE message that it receives Every window class has window

procedure It can be implemented by the application programmer in

the case of application-defined window classes In other cases the win
dow procedure is part of Windows CE For example all of the child

control window classes such as buttons and list boxes have window

procedures that are implemented in the Graphics Windowing and

Events Subsystem of Windows CE

Window procedures have the following function signature

LRESULT CALLBACK WndProchwnd uNsg wParam iParam

The first parameter is the I-TWND of the window to which specific

Windows CE message is sent uMsg is UINT containing the message
identifier of the message wParam and iParam are 32-bit parameters

whose values depend on the message being sent

Page 00045

window procedure is callback function as indicated by the CALL
BACK specifier in the function prototype This means that the func
tion is called by Windows CE instead of being called directly by an

application

For example if an application wants to get the font being used by

particular window it does so by sending the WM_GETFONT message
to the window in question Windows CE then calls the window proce
dure of the window class from which the window is derived

HFONT hFont

hFont HFONT SendNes sage hwndSomeWindow WM_GETFONT

OL

Window procedures return an LRESULT which is simply LONG
integer This return value allows window procedure to return mes
sage-specific information for any message posted or sent to it If the

message is sent via PostMessage or SendMessage this result is passed

back to the sender through the return value of these functions The

SendMessage and PostMessage functions are discussed in detail later in

this chapter

Window procedure return values can indicate success or failure of

message or return requested information In the WM_GETFONT
example above the value returned from the window procedure of

hwndSome Window is the current window font

As an application programmer you will be implementing window

procedures of your own These will often be for application main win
dows but you will also implement them for custom controls and other

Windows CE window classes that you design It would seem that it

would be quite challenge to implement responses for all of the hun
dreds of Windows CE messages that might be sent to your windows

Luckily Windows CE takes care of lot of the default message han

dling for you The function DefWindowProc is used to call Windows CE
and have the operating system provide default behavior for any speci

fled message

DefWindowProc hwnd ilMsg wParaxn iParain

DefWindowProc has the same arguments as any window procedure

You pass it the corresponding parameters from your window proce
dure and Windows CE performs the default processing for the given

message This greatly simplifies the implementation of window

Page 00046

Lfl

behavior It allows you to concentrate on the messages that have

unique or specific meaning to your particular window classes and not

think about the rest

For example in the template application the only message that we
handle ourselves is WM_LBUTTONDOWN We want the template

application to shut down whenever the user taps in the client area of

the main window The window procedure for the main application

window class therefore look like this

LRESULT CALLBACK WndProc

HWND hwnd
UINT message

WPARAM wParam

LPARAM iParam

switch message

case WM_LBTJTTONDOWN

Des troyWindow hwnd
PostQuitMessage

return

default

return DefWindowProc hwnd message wParam lParamfl

All of the several hundred Windows CE messages that can possibly be

sent or posted to this window are handled by these few lines of code

All but one are handled by DefWindowProc

NOIE
EACH MESSAGE RETURNS VALUE

For every message handled by window procedure some appropriate value must be

returned The Windows CE on-line documentation specifies the values to return for

each message under various circumstances

Windows implement their specific behavior by responding to the vari

ous Windows CE messages There are literally hundreds of messages
in Windows CE representing user input window painting and

updating and all of the other interactions that go on in Windows CE

applications In some sense the essence of Windows CE programming
is mastering these messages and their meanings and implementing

the responses to them to enable your applications to behave in the

Page 00047

ways that make them unique and interesting This book is full of sam
ple applications that will help you get started

Creating Windows

So much for the window theory How does an application actually cre

ate windows

Windows CE provides two functions CreateWindow and CreateWin

dowEx for this purpose These functions are used extensively in Win
dows CE applications to create everything from main application

windows to child and common controls

CreateWindow has the following form

CreatewindowlpClassNaxne lpWindowName dwStyle

nwidth nHeight hWndParent hMenu hlnstance ipParam

CreateWindow creates an instance of particular window class lpClass

Name specifies the window class to use This parameter is the Unicode

string name of the class that was used to register the window class

i.e the lpszClassName member of the WNDCLASS structure

lpWindowName points to null-terminated Unicode string that con
tains the window text For example in window with caption this

string is used as the caption text For button the string is the button

text

dwStyle is set of one or more window styles See Table 2.3 later for

complete list of window styles supported under Windows CE
nWidth and ni-leight specify the position and dimensions of the

window and are the and coordinates of the upper left corner of

the window in screen coordinates nWidth and nHeight are the width

and height in screen coordinates

hWndParent is the parent window of the window being created

hMenu should be NULL for top-level windows For child windows
such as Windows CE controls this parameter specifies the child win

dow identifier This is the value used for example to identify the con
trol sending WMCOMMAND message

hinstance is the HINSTANCE of the module in which the window is

created

Page 00048

Finally ipParam is the value sent as the lpCreateParams member of the

CREATESTRUCT sent with the WM_CREATE message that is trig

gered by the CreateWindow call This parameter can be NULL We take

closer look at the WM_CREATE message in the next section

should point out here that all text in Windows CE is Unicode not

ANSI Therefore any string function parameter will be Unicode for

Windows CE All text rendered in any application is Unicode In short

if its text its Unicode

ft
1k4

CREATEWINDOW AND CREATEWINDOWEX ARE NOT REALLY FUNCTIONS

CreateWindow and CreateWindowEx are macros that call the CreateWindowExW

function the Unicode-based window creation function Applications should never

call CreateWindowExW directly since porting this code to other versions of Windows

may be problematic For example as Windows NT applications can be built with LJni

code support disabled CreateWindowExW may not be defined The CreateWindow

and Create WindowEx macros however are guaranteed to resolve to the correct sup

ported API

Create WindowEx is the same as Create Window except that it allows you
to specify various extended window styles in the first parameter The rest

of the parameters are the same The extended window styles sup
ported under Windows CE are listed in Table 2.4 shown later

The WMCREATE Message

The CreateWindow and CreateWindowEx functions both send

WM_CREATE message to the window procedure of the window being
created This message is sent after the window has been created but

before it becomes visible Furthermore the WM_CREATE message is

sent before the CreateWindow and Create WindowEx functions return

As Table 2.2 shows the WM_CREATE message passes pointer to

CREATESTRUCT structure containing information about the window

being created Here is the definition of the CREATESTRUCT structure

typedef struct tagCREATESTRtJCT

LPVOID lpCreateParams

HINSTANCE hlnstance

HMENU hMenu

HWND hwndParent

Page 00049

Table 2.2 The WM_CREATE Message Parameters

AIl1III

wParam used

LPCREATESTRUCflIParam Pointer to the CREATESTRUCT structure containing

information about the window being created

mt Cy
lilt CX
lilt

mt
LONG style

LPCTSTR lpszName

LPCTSTR lpszClass

DWORD dwExStyle

CREATESTRUCT LpCREATEsTRUCT

The lpCreateParams member of CREATESTRUCT contains the ipParam

passed to the CreateWindow or CreateWindowEx call that generated

the WM_CREATE message If you use the ipParam parameter of

Create Window or Create WindowEx to pass some application-specific

value for use during window creation your application extracts it

from this member

hlnstance identifies the module application or dynamic link library

that owns the window that was just created

hMenu identifies the window menu As well see later in Chapter

windows do not support menu bars under Windows CE The hMenu

member will therefore be NULL unless the window created is child

window In that case this member will contain the child window

identifier

hwndParent contains the HWND of the parent of the newly created

window

cx cy and are the width height position and position of the

window respectively For top-level windows such as overlapped or

pop-up windows these values are given in screen coordinates For

child windows these coordinates are relative to the upper left corner

of the windows parent

The style and dwExStyle members are DWORD values containing the

style and extended style bits defined for the newly created window In

other words these members are exactly the same as the dwStyle and

dwExStyle values passed to CreateWindow or Create WindowEx

Page 00050

30

Adding or Removing Styles after Window Has Been Created

It is common to want to add or remove window styles or extended styles from

windows after they have been created You can do this using the Get WindowL ong

and Set WindowL ong functions

For example lets say you want to disable scrolling in window programmati

cally An application would do this

IlhwndNoScroll is the window of interest

DWORD dwstyle

I/Get the current set of window style bits

dwStyle GetWindowLonghwndNoScroll GWL STYLE
//Disable WS_VSCROLL WS_HSCROLL

SetWindowLong hwndNoScroll GWL_STYLE

dwstyle WS_VSCROLL WS_HSCROLL

Finally lpszName and lpszClass contain the window caption and win
dow class name respectively of the newly created window

The value that an application returns in response to the WM_CREATE
message controls the value returned by the CreateWindow and Cre

ateWindowEx functions that triggered the WM_CREATE message If an

application returns zero in response to this message CreateWindow

and CreateWindowEx continue with their normal execution When the

functions finish they return the l-IWND of the window that was cre

ated

On the other hand if the application returns in response to

WM_CREATE the new window is destroyed and Create Window and

CreateWindowEx return NULL

Applications respond to the WM_CREATE message to implement cus

tom window creation behavior or to take more control of the window

creation process

As very contrived example lets say that we are writing an applica

tion that includes registered window class with window procedure

named WideWndProc Our application wants to refuse to create any
instance of this class that is not at least 300 pixels wide

To implement this feature the WM_CREATE message handler of

WideWndProc would look like this

LRESULT CALLBACK WideWndProc

HND hwnd

Page 00051

Li
tJINT message

WPARAM wParaln

LPARAN iParain

switch message

case WM_CREATE

LPCREATESTRtJCT lpcs

lpcs LPCREATESTRtJCTlParaxn

if lpcscx 300

return -1

return

For future reference Table 2.3 lists all of the window style values that

can be specified in calls to CreateWindow Similarly the extended style

values that can be used in CreateWindowEx calls are shown in Table 2.4

MDI WiNDows ARE GONE

Windows CE currently does not support Multiple Document Interface MDI win

dows

NOTE
MAxIMIzED/MINIMIzED WINDowS

Windows CE does not support the Windows NT/Windows 98 concepts of maximizing

or minimizing windows This is why you see none of the window styles for including

maximize or minimize box in the style tables in this chapter

Thi Windows CE Application Entry Point

As you might rememberback in the days of programming in non-

Windows environments programs started with line that looked

something like this

void mainint argc char argv

This function main was called the program entry point To make long

story short this was the function that the operating system called to

start the program execution

Page 00052

32

Table 2.3 Windows CE Window Styles

_11I
WSBORDER Window has thin border

WSCAPTION Window has title bar This style also includes the WS_BOR
DER style

WS_CHILD Window is child window Cannot be used with WS_popup

style

WS CLIPCHILDREN Excludes the area occupied by child windows when drawing

occurs within window

WS_CLIPSIBUNGS Clips child windows relative to each other

WSDISABLED Window is initially disabled when created

WSDLGFRAME Window has dialog box style border Windows with this style

cannot have title bars i.e cannot have WS_CAPTION style

WS_GROUP Identifies the window as the first in group of controls

WS_HSCROLL Window has horizontal scroll bar

WS_OVERLAPPED Window has title bar and border

WS_POPI.JP Creates popup window

WSSYSMENU Window has system menu in its title bar Such windows

must also have the WS_CAPTION style

WS_TABSTOP Specifies
control that can receive the keyboard focus when

the user presses the Tab key Pressing the Tab key changes the

keyboard focus to the next control with the WS_TABSTOP style

WS_VISIBLE Window is initially
visible when created

WS_VSCROLL Window has vertical scroll bar

THE WINAPI SPECIFIER

The WINAPI specifier is an alias for the _stdcall calling convention

The various Win32-baed operating systems also need an entry point
For the Win32 operating systems including Windows CE the entry

point is called WinMain The prototype of WinMain is

mt WINAPI WinMainhlnstance hPrevInstaIlCe

lpCmdLine nCmdShow

Under Windows CE multiple copies or instances of an application

may be launched at time The hlnstance and hPrevlnstance parameters

Page 00053

.- 33

Table 2.4 Windows CE Extended Window Styles

hI Id I.1I

WS_EX_NOACTIVATE top-level window created with this style cannot be acti

vated If child window has this style tapping it will not

cause its top-level parent to be activated window that

has this style will receive stylus events but neither it nor

its child windows can get the focus

WS_EX_NOANIMATION window created with this style does not show ani

mated exploding and imploding rectangles when created

closed or deleted and does not have button on the

taskbar

WS_EX_CUENTEDGE Specifies that window has border with sunken edge

WS_EX_CONTEXTHELP Includes question mark in the title bar of the window

When the user clicks the question mark the cursor

changes to question mark with pointer If the user

then clicks child window the child receives WM_HELP

message The child window should pass the message to

the parent window procedure which should call the Win-

Help function using the HELP_WM_HELP command The

Help application displays pop-up window that typically

contains help for the child window

WS_EX_CONTROLPARENT Allows the user to navigate among the child windows of

the window by using the Tab key

WS_EX_DLGMODALFRAME Creates window that has double border the window

can optionally be created with title bar by specifying

the WS_CAPTION style in the dwStyle parameter

WS_EX_NODRAG Creates window that cannot be dragged

WS_EX_STATICEDGE Creates window with three-dimensional border style

intended to be used for items that do not accept user

input

WS_EX_TOPMOST Specifies that window created with this style should be

placed above all non-topmost windows and should stay

above them even when the window is deactivated To

add or remove this style use the SetWindowPos function

WS_EX_WINOOWEDGE Specifies that window has border with raised edge

are both HINSTANCE values hlnstance is the handle of the current

application instance hPrevlnstance is always NULL.1

1n older versions of Windows if multiple instances of an application were running

hPrevlnstance specified the instance of an application that was launched prior to the

current one Under Windows CE you can determine if another instance is running by

calling the CreateMutex API function and then calling GetLastError If GetLastError

returns the error code ERROR_ALREADY_EXISTS there is another instance of the

application running

Page 00054

434

Windows CE Non-Client Messages

Unlike other W1n32-based platforms Windows CE does not expose any of the

non-client area window messages to the application programmer Non-client area

operations such as painting the non-client area and non-client area stylus tap hit

testing are all performed exclusively by the operating system

This means that your Windows CE applications cannot include handling for any

non-client messages For example the following code in the window procedure

of main application window would result in compilation error

switchmessage

case WM_NCPAXNT

1/Custom window border drawing code

return

Specifically the compiler will issue an error 2065 undeclared identifier when

it tries to compile the line that contains WM_NCPAINT Not only are the non-client

messages not forwarded to the window procedure they are actually excluded

from the WINUSER.H public header file

lpCmdLine is null-terminated Unicode string containing the com
mand line with which the application was launched if any

nCmdShow specifies how the main application window is to be shown

jii
WINMAIN SIGNATURE Is BIT DIFFERENT IN WINDOWS CE

Please note this subtle difference between the Windows CE WinMain signature and

that for other Win32 platforms The IpCmdLine parameter under Windows CE is

LPTSTR whereas on Windows NT and Windows 98 it is an LPSTR

The Message Loop

How do Windows CE messages end up getting to your window proce
dure if you never call your window procedure directly

Page 00055

Messages can get to windows in couple of different ways One com
mon way is for an application or Windows CE to send messages

directly to window using the SendMessage function

SendNessagehwmd uNsg wParaxn iparain

Does this look familiar The parameters of SendMessage are the same

as the parameters of any Windows CE window procedure This is

because SendMessage immediately turns around and calls the window

procedure of the window class of which hwnd is an instance

For example if wish to change the text in button in one of my
applications can do something like this

SendMessage hwndButton WM_SETTEXT

LPARN LPCTSTRTEXTNew Text

SendMessage has the same function signature as window procedure
In fact SendMessage calls the window procedure for the specified win
dow It does not return until the message specified in the second

parameter is processed by the window procedure of the window to

which the message is sent

SendMessage processes messages synchronously That is the message is

processed by the window it is sent to immediately The other way that

Windows CE handles messages is asynchronously Many messages
such as requests to update or repaint window or notifications that

the user has tapped the touch screen are often sent by the operating

system to an application faster than the application can process them

For this reason when an application starts running Windows CE cre

ates message queue for that application.2 The message queue is place

where messages can be put by the operating system or an application

to be processed asynchronously that is when the application gets

around to it

To process asynchronous messages an application implements mes

sage ioop This is simple piece of code that continuously looks for

messages in the applications message queue When the message loop

finds message it gets processed Otherwise the message loop just

keeps on looping

2Actually Windows CE creates message queue for every thread created by an appli

cation But for the sake of this discussion well think of each application as havmg

only its main thread The meaning of the applications message queue is therefore

unambiguous

Page 00056

36

typical message loop looks like this

while GetMessagemsg NULL TRUE

TranslateMessage msg
DispatchMessage msg

Thats pretty short while loop for processing whole lot of messages
The GetMessage function gets message from the message queue This

message is contained in message structure of type MSG This struc

ture includes information such as which message was sent and which

window it was intended for Once message is retrieved DispatchMes

sage calls the window procedure corresponding to the window class of

the window specified in the message structure

GetMessage returns TRUE until it receives WM_QUIT message from

the message queue The GetMessage function has the following syntax

GetMessage lpMsg hwnd wMsgFilterMin wMsgFilterMax

The lpMsg parameter to GetMessage is pointer to message structure

that receives the information about the message retrieved from the

message queue hwnd specifies the window for which messages are to

be retrieved In other words only messages sent to the specified win

dow are removed from the message queue If this parameter is NULL
messages for any window created by the calling thread are retrieved

zvMsgFilterMin and wMsgFilterMax specify range of window mes
sage identifiers to look for Setting these both to zero tells GetMessage

to look for all messages

We skipped over the TranslateMessage step This function converts vir

tual key messages into regular key messages before they are dis

patched by DispatchMessage We glossed over this because the main

point of the discussion is how messages get pulled from the message

queue and sent off to the proper window procedure Once translated

virtual key messages get handled just like any other messages The use

of the TranslateMessage function is discussed when we introduce the

concept of accelerator tables in Chapter

Adding an asynchronous message to the message queue is called post

ing the message As was mentioned above Windows CE posts many
messages to an application However applications can also post mes

sages to an application or thread using the PostMessage ftmction

Page 00057

The MSG Strudure

The MSG structure used by functions like GetMessage contains all of the infor

mation about message that was posted to an applications message queue The

structure is defined as

typedef stuct tagMSG II meg

HWND hwnd
UINT message

WPAAN wParam

LPZtRAN iParam

DWORD time
POINT pt

MSG

The first four members of this structure are the same parameters that ulti

mately get sent to the window procedure time specifies the time at which the

message was posted pt takes on meaning under Windows CE that is somewhat

different from its meaning under other Win32 platforms Since Windows CE

devices dont use mouse there is no concept of current point Therefore

rather than indicating the current cursor position pt indicates the last point

touched by the user on the touch screen before the message was posted

PostMessage has the same argument list as SendMessage The message

posted is added to the message queue of the thread that created the

window specified by the hwnd parameter

The Template Application

Now that we have basic understanding of how windows are repre
sented in Windows CE and how they respond to messages we can

present the template application shown in Figure 2.1

This application creates main application window and nothing more

Pressing the left mouse button when the cursor is anywhere inside the

window while running the application in emulation or tapping on it

with the stylus if its running on real device terminates the applica

tion Terminating the application is accomplished with call to the

Windows CE API Post QuitMessage

You can use this application as the foundation for other real Windows

CE applications that you write It contains all of the boilerplate needed

Page 00058

38

Figure 2.1 The Windows CE Template application

for any Windows CE application WinMain function message ioop
and main window procedure Of course you will probably replace

the WM_LBUTTONDOWN handler with code of your own

The project files for this application can be found in the \Samples\

template directory of the companion CD The application that

results from building the project is called TEMPLATE.EXE The

complete source code for the template application is shown in

Figure 2.2

template.h

fnde TEMPLATE_H_
def me TEMPLATE_H_
TCHAR zAppEame II TEXT TEMPLATE
TCHAR szTitle TEXTWindows CE Application Template

Define the global application HINSTANCE

HINSTPNCE ghlnst

Define the HWNDs used by this application

hwndMain Main application window

MEND hwndNain

Define the main application window procedure

LRESULT CALLBACK WndProcHWND hwnd

CINT message

Page 00059

cj
WPARAN wParam
LPARM iParam

endif

main.cpp

include windows

include template.h
mt WINAPI WinNainHINSThCE hlnstance

HINSTANCE hPrevlnstance

LPTSTR lpCmdLine
mt nCmdShow

MSG msg
WNDCLASS wndClass

Save application instance in ghlnst for

possible use by other functions such as
the main windows window procedure

ghlnst hlnstance

Register the main window class

wndClass.style

wndClass.lpfnWndproc WndProc

wndClass.cbclsExtra

wndClass.cbWndExtra

wndClass.hlrjstance hlnstance

wndClass.hlcon MILL
wndClass.hCursor NULL
wndClass.hbrBackground HBRUSH COLOR_WINDOWl
wndClass.lpszMenuName NULL
wndClass.lpszclassName szAppName
RegisterCiass wndClass

Create the applications main window
hwndNain CreatewindowszAppName

szTitle

WS_VISIBLE WS_OVERLAPPED

00
GetSystemMetrjcs SM_CXSCREEN
GetSystemNetrics SM_CYSCREEN
NULL
NULL
hlnstance

NULL
while GetMessagemsg NULL TRUE

Trans lateMessage msg
DispatchNessage xnsg

Return the wParain associated with the MM QUIT message
that got us out of the while loop above This wParam

Page 00060

contains the exit code passed to PostQuitMessage

return msg.wParaxn

LRESULT CALLBACK WndProcHWND hwnd
UINT message

WPARAM wParam

LPARA iParam

switch message

case WM_LBtJTTONDOWN

Des troywindow hwnd
PostQuitMessage

return

default

return DefWindowProc hwnd message

wParam iParam

Figure 2.2 TEMPLATE.EXE source code

concluding Remarks

In this chapter we have covered the basic window and message han

dling concepts you need to understand in order to write Windows CE

applications To make your applications more useful you will want to

use Windows CE controls and dialog boxes to allow users to interact

with your applications The next chapter describes how to program
Windows CE controls and various kinds of dialog boxes

Page 00061

Controls and Dialog Boxes

this chapter we look at how to program some of the most funda

mental ingredients of Windows CE applications Specifically this

chapter introduces Windows CE child and common control program

ming After that it describes how to include dialog boxes in your

applications It finishes with an introduction to the Windows CE

common dialog library

Program child controls

Program common controls

Use modal and modeless dialogs

Use the Windows CE common dialogs

Programming Child Controls

crucial part of almost every Windows CE user interface is the set of

child controls with which users interact Windows CE child controls

41

Page 00062

include push buttons list boxes and edit controls as well as all of the

other control types listed in Table 3.1

Child controls are created by calling CreateWindow or CreateWindowEx

just as top-level application windows are created The window class

name to use for given control type is given in Table 3.1

Child controls communicate with their parent window by sending

WM_COMMAND messages These messages include the control iden

tfier associated with the control and not ifi
cation code that indicates

what sort of action the user performed with the control AU of this

information is sent to the parent window in the WM_COMMAND
message parameters as shown in Table 3.2

The command identifier is an integer specified in the hMenu parame
ter of the Create Window call For example to create push-button con
trol with command identifier IDC_BUTTON and the string Exit
inside you could write

define IDO_BUTTON 1028

HWND hwndButton

hwndButtori Createwindow

TEXTBTJTTON I/Control class name

TEXTExit I/Button text

WS_CHILD lBS_VISIBLE lBS_PUSHBUTTON I/Button styles

007535 //x width height

hwndParent I/Parent window

HMENIJ IDC_BIJTTON I/Command identifier

hlnstance I/Application HINSTANCE

NULL

Note that both the control window class name and the button text

specified are Unicode strings

Table 3.1 Windows CE Child Control Classes

il La

Button control BUTFON

Edit control EDIT

Combo box control COMBOBOX

List box control LISTBOX

Scroll bar control SCROLLBAR

Static control STATIC

Page 00063

Table 3.2 WM_COMMAND Message

HIWORDwParam Notification code If the message is from menu item this

valueis

LOWORDwParam Specifies the command identifier of the control or menu

item sending the WM_COMMAND message

IIWNDIParam The HWND of the control sending the message If the

WM_COMMAND message is not sent by control this value

is NULL For example this is the case if the message is sent

by menu item

Responding to WM_COMMAND Messages

As noted earlier controls send WM_COMMAND messages to their

parent windows to tell them that some action has taken place

For example when button is pushed the button sends WM_
COMMAND message with notification code BN_CLICKED

The window procedure of the parent window of the button IDC_
BUTTON we created in the previous section might include the follow

ing code This code implements the windows response to the button

being pressed

LRESULT CALLBACK WndProc

HWND hwnd

UINT message

WPARAM wParam

LPARPN iParam

switch message

I/Other window messages

//..

case M_COMMAND
tJINT nIB
nIB LOWORDwParam
switch nIB

case IDC_BtJTTON

DestroyWindow hwnd
PostQuitMessage

break

default

break

I/End of switchnID statement

Page 00064

return

default

return DefWindowProchwnd message wParam lparamfl

I/End of switchmessage statement

The identifier of the control sending the WM_COMMAND message is

assigned to nID The switch statement that follows then tests for the

identity of the control and performs whatever action that control

specifies In this case the Exit button terminates the application

From the example above you can see that applications should return

zero if they handle the WM_COMMAND message

Notice that we ignored the notification code Although not perfectly

legitimate this is usually the only button control notification of inter

est to applications It is therefore common practice to ignore the notifi

cation code in the case of button WM_COMMAND messages

At other times the notification code is important For example assume

that you want to know when an edit control receives input focus

Assuming the edit control command identifier is specified by
IDC_EDIT your application could test for this in the parent window

procedure as follows

LREStJLT CALLBACK WndProc

HWND hwnd
UINT message

WPARA1 wParaxn

LPARM iParam

switch message

1/Other window messages

II..

case WM_COMMPND

UINT nID nNotify

nID LOWORDwParaxn

switch nID

case IDC_EDIT

oNotify HIWORDwParam
if nNotify EN_SETFOCUS

//Do something

break

default

break

Page 00065

//End of switchnID statement

return

default

return DefwindowProc hwnd message wParam iParam
I/End of switchmessage statement

For complete list of the notification codes sent by the various Win
dows CE child controls refer to the Microsoft Developer Studio Win
dows CE on-line documentation

The complete sample application from which the examples in this sec
tion come can be found on the companion CD in the directory \Sam
ples\controls

Programming Common Controls

Back in the days before there were 32-bit versions of Windows the

Windows user interface was limited to the child controls Custom con
trols could be implemented by ambitious programmers But the core

control set was the child controls

When Windows 95 and Windows NT came out however brand new
set of controls was included with the operating systems The common
control library contains the controls that were added to Windows for

Windows 95 and NT Today this library is still around and there is

version of it for Windows CE The library includes controls like list

view controls and tree view controls Table 3.3 lists the Windows CE

Table 3.3 The Windows CE Common Control Classes

AYJ P1I1AZ 1I

Date Time Picker DATETIMEPICK_CLASS

Header control WC_HEADER

Month calendar control MONTHCAL_CLASS

Progress bar PROGRESS_CLASS

Rebar control REBARCLASSNAME

Tab control WC_TABCONTROL

Trackbar control TRACKBAR_CLASS

Tree view control WC_TREEVIEW

Page 00066

common control classes Note that Table 3.3 does not include those

controls that have their own unique API Such controls are not created

using CreateWindow and hence the window class names of these con
trols are not included

Programming these controls is very similar to using the child controls

However you must link with the common control library and initial

ize this library from your application Also the common controls do

not communicate with their parent windows via WM_COMMAND
messages These controls send notifications by means of the

WM_NOTIFY message

WiNDows CE COMMON CONTROLS PROGRAMMING DErAILS

This section is only intended as an introduction to the mechanism by which common

controls communicate with applications Refer to Chapter for more detailed de

scription of programming the Windows CE common controls

Using the Common Controls Library

To use any of the Windows CE common controls an application must

link with the library COMMCTRL.LIB It must then initialize the

library by calling the function InitCommonControls

Calling InitCommonControls further requires the application to include

the header file COMMCTRL.H InitCommonControls is typically called

in an applications WinMain function

Responding to Common Control Notifications

Common control notifications are bit more complex than notifica

tions sent by child controls Notifications are sent in the form of the

WM_NOTIFY message This message includes pointer to an

NMHDR structure which contains information about the notification

being sent

typedef struct tagNMHDR

HWND hwridFrom

UINT idFrom

UINT code
NMHDR

hwndFrom is the window handle of the common control sending the

notification idFrom is the identifier of the control

Page 00067

code indicates the notification code identifying the particular notifica

tion being sent This value is used like the notification code sent by
child control

Lets look at typical example of how an application responds to com
mon control notifications Assume that main window wants to know

when the selected tab of tab control in that window is changed The

main window procedure would respond to the WM_NOTIFY message

as follows

LRESULT CALLBACK WndProc

HWND hwnd
UINT message

WPARAN wParam

LPARAN iParam

switch message

I/Other window messages

II..

case WM_NOTIFY

LPNMHDR lprmthdr

lpnmhdr LPNMHDRlParam

switch lpriinhdr-idFrom

case IDC_TAB

switch lpnxnhdrcode

case TCN_SELCiANGE

I/Perform some action

break

default

break

I/End of switchlpnnthdr-code statement

break

default

break

I/End of switchlprnthdr-idFrom statement

return

default

return DefWindowProchwnd message wParam iParam
I/End of switchmessage statement

The window procedure determines which control is sending the notifi

cation by looking at the command identifier in lpnmhdr-idFrom It

then checks the notification code and responds accordingly to the tab

control notification it is interested in

Page 00068

The complete sample application from which this code sample comes
is found on the companion CD in the directory \Samples\tab

Dialog Boxes

Many operations in Windows CE applications require user input to

perform properly Opening or saving files generally requires that the

user specify file name To search file for specific string user

enters text that the application uses to perform the search dialog box

is window through which users enter information required by an

application to perform some task

Dialog boxes can be either modal or modeless modal dialog box is

displayed temporarily to accept user input Figure 3.1 An important

characteristic of modal dialog box is that its owner window is dis

abled while the dialog box is present Thus modal dialog gives the

effect of suspending an application until the user dismisses it

modeless dialog box on the other hand does not prevent users from

interacting with the owner window Figure 3.2 Modeless dialog

boxes are often used in cases where the application may require fre

quent user input Reopening the dialog box in such cases would be

needlessly inconvenient The dialogs that many applications use to

provide text searching capability are often implemented as modeless

dialog boxes

Enter our Full Name

rout
Name Here

Cancel OK

Start Windows CE Dialo. 1U43 AM

Figure 3.1 modal dialog box example

Page 00069

49

uII

iou can interact with other windows in this

application while Im open

111I1 fl

Figure 3.2 modeless dialog box example

Despite their differences adding modal or modeless dialog boxes to

your Windows CE applications involves the same basic steps In the

case of modeless dialogs there are some additional programming

requirements but the basic idea is the same Adding dialog boxes to

an application involves these basic steps

Designing the dialog box and adding its dialog resource definition

to the applications .rc file

Programming the dialog procedure that handles Windows CE mes

sages sent to the dialog box

Invoking the dialog box at the appropriate times from the application

This chapter includes sample application on the companion CD that

demonstrates many of the concepts covered in this chapter The appli

cation is called DIALOGS.EXE and can be found in the directory

\Samples\dialogs This application includes the implementations of

the dialog boxes shown in Figures 3.1 and 3.2

Dialog Box Resources

The appearance of the dialog boxes in Figures 3.1 and 3.2 was defined

in dialog box resource The dialog box resource definition deter

mines where the various controls appear It also specifies the dialog

box caption text the dialog box size and the font used when render

ing text in the dialog box

Page 00070

Dialog box resource definitions appear in the resource file .RC file of

an application Dialog box resources can be created manually or by
means of the Microsoft Developer Studio Dialog Editor The resource

definition of the modal dialog box in Figure 3.1 is

100_MODAL DIALOG 170 66

STYLE DS_MODALFRI\NE WS_POPtJP WS_CAPTION WS_SYSMENU
CAPTION Modal Dialog Example

FONT MS Sans Serif

BEGIN

DEFPUSHBtJTTON OK lOOK 112435014
PUSHBUTTON CancelIDCPNCEL84350l4
LTEXT Enter Your Full NameIDC_STATIC77708
EDITTEXT IDCNNE 72213214 ES_AUTOHSCROLL

END

The first line of this definition contains the resource identifier of the

dialog IDDMODAL and the dimensions of the dialog box in dialog

units Dialog units are defined in terms of the system font used by the

particular Windows CE device These units are interpreted by the sys
tem such that the dimensions of dialog box are the same regardless

of the resolution of the display

Dialog box and dialog box child control identifiers are typically

defined in the applications RESOURCE.H file Some standard com
mand identifier definitions such as IDOK and IDCANCEL are

defined in the Windows CE header file WJNTJSER.H

The next line defines the styles assigned to the dialog Line specifies

the dialog box caption text and line specifies the font to be used by
the dialog box

The most interesting part of the dialog box resource definition lies

between the BEGIN and END statements The lines that appear
between these statements specify the Windows CE controls that will

appear in the dialog box

The most general way to define dialog box control is with the CON
TROL statement

CONTROL textcontrol identifierclass name
Style width height

As an example push-button control with control identifier

IDC_EXIT might be defined as follows

Page 00071

51

CONTROL Exit IDC_EXIT BUTTON
ES CHILD ES_VISIBLE BS_PUSHBUTTON

006535

Windows CE also defines number of aliases for many of the child

controls commonly used in dialog boxes For example in the case of

the resource definition of the dialog in Figure 3.1 DEFPUSHBUTTON

specifies push button control that is the default button The

PUSHBUTTON control specifies button control with style BS_

PUSHBUTTON The on-line documentation defines the full set of

resource definition keywords

The Dialog Box Procedure

To Windows CE dialog box is like any other window Whenever an

application creates dialog box deep in the implementation of Win
dows CE call to Create WindowExW is made Similarly dialog boxes

respond to Windows CE messages This implies that dialog boxes have

function for responding to messages similar to the window proce
dure discussed in the previous chapter

dialog procedure is an application-defined function that is assigned to

dialog box for responding to Windows CE messages Programming

dialog procedure is very similar to coding the window procedure of

standard window There are however few subtle and very impor
tant differences

When you use dialog boxes in your applications you generally do not

define window class for the dialogs as you do for other windows
The dialog box window class for most types of dialog boxes available

in Windows CE is defined by the operating system This means that

the true window procedure used by dialog box is defined and pro
vided by Windows CE

The dialog procedure that you define as an application programmer
and assign to dialog box is simply hook into the real dialog box

window procedure The dialog box window procedure defined in

Windows CE receives all dialog box messages The operating system

then passes the messages to the application-defined dialog procedure

giving the application the first opportunity to handle them If the

application does not handle particular message it is handled by

Windows CE

Page 00072

dialog procedure has the following prototype

BOOL CALLBACK DlgProcHWND hwndDlg UINT message

WPARAM wPararn LPARAM iParam

This is almost exactly the same as the standard window procedure defi

nition The only difference is the return type Dialog procedures return

BOOL instead of an LRESULT This return value tells Windows CE

whether or not to pass handling of particular message on to the

default dialog box message handler Returning FALSE means that your

dialog procedure did not handle message TRUE means it did

This brings us to another important difference between dialog proce
dures and regular window procedures regular window procedure

typically calls DefWindowProc to make Windows CE perform default

processing for any unhandled Windows CE messages dialog proce
dure should return FALSE for any unhandled messages The Windows

CE API does include the function DefDlgProc for performing default

message processing This function should only be used in conjunction

with private dialog classes

Private Dialog Classes

The window classes associated with the majority of the dialog boxes you will

use in your applications are defined by Windows CE Invoking modal dialog by

calling DialogBox or displaying message dialog with call to MessageBox cre

ates an instance of an operating systemdefined window class

This is generally adequate for most applications Programmers create cus

tomized dialog boxes by specifying the contents and appearance of dialog via

resource template Custom behavior is provided by the dialog procedure imple

mentation

it is possible to completely define the dialog box window class within an appli

cation however Private dialog class is the term used to describe any such dialog

class private dialog class is similar to regular window class The application

defines the dialog procedure and specifies how all messages are handled The

Windows CEdefined dialog procedure plays no part in processing private dialog

class messages

Using private dialog classes in your applications is the only time you should

ever call DefDlgProc This function is the dialog box equivalent of DefWindow-

Proc It performs default processing for unhandled dialog messages Calling this

function from any other dialog procedure will cause your application to misbe

have in very unexpected ways

Page 00073

53

Table 3.4 The WMJNITDIALOG Message

itIMiYIi1 I1III

HWNDwParam Window handle of the control to which Windows CE will assign

default focus Focus is assigned only if the dialog procedure

returns TRUE in response to this message

IParam Initialization parameter passed by DialogBoxParam or Dialog

BoxlndirectParam

The WM_INITDIALOG Message

dialog box procedure typically implements custom responses to

fewer messages than standard window procedure Most message

processing for typical dialog box is performed by Windows CE

Since most dialog boxes are used for collecting user input they gener
ally respond to WM_COMMAND messages sent by their child con
trols They also typically handle message that is only sent to dialog

boxes called WM_INITDIALOG This message is used to initialize the

contents of dialog box and is sent by Windows CE after the dialog

box window is created but right before the dialog box is displayed

WM_INITDIALOG can be thought of as the dialog box equivalent of

WM_CREATE Table 3.4 lists the WM_INITDIALOG parameters and
their meanings

Returning FALSE after processing WMJNITDIALOG tells Windows
CE not to set the default focus iParam can contain an application-

specific parameter used to initialize the dialog box We will discuss this

in greater detail later when we talk about how to invoke dialog box

An Example

Lets take look at an example modal dialog procedure This example

comes from the sample application DIALOGS.EXE The dialog box

that corresponds to this code is shown in Figure 3.1 IDC_NAME is the

command identifier of the edit control

define MAX_STRING_LENGTH 129

TCHAR pszuserTexttMAX_STRING_LENGTH

BOOL CALLBACK ModalDlgProcHWND hwndDlg

UINT message

WPARAbI wParam

LPARAM lParara

Page 00074

TI

UINT nID
HWND hwndEdit

switch message

case WM_INITDIALOG

hwndEdit GetDlgltemhwndDlg IDC_NANE
SetwindowText hwndEdit TEXTYour Name Here
return FALSE

case WM_COMMAND

flU LOWORDwParam
switch flU

case 150K
hwndEdit GetDlgltemhwndDlg IDC_NAME
GetWindowText

hwndEdi

pszUserText

MAX_STRINC_LENGTH

case IDCPNCEL

EndflialoghwndlJlg mID
break

default

break

I/End of switchnID block

return TRUE
default

return FALSE
I/End of switchmessage block

This dialog procedure is pretty simple The WIIVLINITDIALOG han
dler sets the edit control text to default string It uses the GetDlgltem

function

GetDlgltemhDlg nlDUlgltem

This function returns the window handle of the control with control

identifier niDDigitem contained by the dialog box specified by the

window handle hDlg

The WM_COMMAND handler responds to the OK button by reading

the edit control text into the string pszuserText by calling Get Window-

Text Both the OK and Cancel buttons end up closing the dialog box by

calling EndDialog More on this function in the next section

The WM_COMMAND handler returns TRUE to tell Windows CE that

this particular message has been handled You will often see dialog

box procedures return FALSE at the end of their WM_COMMAND
handlers instead of TRUE Many programmers prefer this since

Page 00075

returning FALSE is consistent with returning zero from standard

window procedure And since the default WM_COMMAND process

ing is to do nothing returning FALSE instead of TRUE produces no ill

effects

Invoking and Destroying Modal Dialogs

We have yet to discuss how an application displays modal dialog

box Windows CE provides four functions for invoking modal dialog

boxes We will discuss the two most common of these functions.1

The first of these functions is aptly named DialogBox

DialogBoxhlnstance ipTemplate hWndParent lpDialogFunc

This function displays the modal dialog specified by the resource tem

plate ipTemplate hlnstance is an HINSTANCE identifying the module

that contains the dialog resource definition hWndParent is the dialog

box parent window lpDialogFunc is pointer to the dialog procedure
to use with the modal dialog

The second function is DialogBoxParam This functions works just like

DialogBox except that it includes an extra parameter

DialogaoxParam hlnstance ipTemplate hWndParent

lpDialogFunc lplnitParam

The additional parameter lplnitParam is passed to the dialog procedure

lpDialogFunc as the IParam of the WM_INITDIALOG message This

parameter can be used to pass application-specific initialization infor

mation to the modal dialog box

modal dialog is destroyed by calling EndDialog

EndDialoghDlg nResult

hDlg is the window handle of the dialog box nResult specifies the

value to be returned to the application by the function that invoked

the dialog such as DialogBox or DialogBoxParam In other words what

ever value is passed to nResult is the value returned by DicilogBox or

DialogBoxParam

1The other two functions are DialogBoxlndirect and DialogBoxlndirectParnm These

functions are used to display modal dialog boxes defined by dialog templates con
tained in program memory instead of in resource file This technique is uncommon

enough to leave out of our discussion with no disservice to the reader

Page 00076

This return value is typically used to tell the application which dialog

box button was pressed For example here is how DTALOGS.EXE calls

DialogBox to invoke the modal dialog whose resource identifier is

IDD_MODAL The return value is used to determine what action to

perform after the dialog box is closed

if IDOKDia1ogox ghlnst MAKEINTRESOtJRCE IDD_MODAL
hwnd DLGPROCModallJlgProc

I/Do something

Modeless Dialog Boxes

Modal dialogs are designed to collect user input and to not go away
until the user dismisses them in some way This behavior is no acci

dent When an application calls DialogBox or any of the other func

tions that invoke modal dialog box Windows CE creates new

message ioop specifically for the dialog box This ioop does not exit

until the EndDialog is called for the dialog box Hence the DialogBox

call does not return until the dialog box is closed

The fundamental difference between modeless dialogs and modal

dialogs is that modeless dialog messages are put on the message queue
of the thread that creates them Therefore modeless dialog box messages

get dispatched by the message ioop of the same thread that creates the

dialog In most cases this means that the message loop in your appli

cations WinMain function processes modeless dialog box messages

The IsDialogMessage Function

Windows CE does not create separate message loop for modeless

dialogs or take care of the details of dispatching messages intended for

modeless dialogs So to use modeless dialogs your application will

clearly have to do more work that it does for modal dialogs

This is where the IsDialogMessage function comes in This function

determines if particular message is intended for the specified dialog

If so IsDialogMessage processes the message

IsDialogMessagehDig lpMsg

hDlg is the HWND of modeless dialog and lpMsg is pointer to

MSG structure If IsDialogMessage processes the message it returns

TRUE Otherwise it returns FALSE

Page 00077

iJ

This leads us to the time-tested technique for handling modeless dialog

messages in message loops Lets assume that Windows CE applica
tion has created modeless dialog with window handle hwndModeless

Well get to how to create modeless dialogs in the next section So that

the application and the modeless dialog can share the same message

loop the message ioop is rewritten as shown in Figure 3.3

while GetMessagemsg NULL TRUE

if hwndModele jj

IsDialogMessagehwndNodelass nisg

Translate2dessage snsg
DispatchEessage msg

Figure 3.3 Modifying the message loop to accommodate modeless dialog box

We have given IsDialogMessage the first chance to handle each and

every message on the applications message queue If the modeless

dialog is not NULL and the message was indeed meant for the dialog

IsDialogMessage will
process it and return TRUE

IsDialogMessage evaluating to TRUE means that the code inside the if

statement is skipped If it returns FALSE the message is processed in

the normal way by TranslateMessage and DispatchMessage

Creating and Destroying Modeless Dialog Boxes

The message loop modification discussed above is the most important

thing to grasp about programming modeless dialog boxes But we still

have to see how to invoke and dismiss them

There are four functions available for creating modeless dialogs as

there were for creating modal dialogs Wewil1 discuss CreateDialog

and CreateDialogParain CreateDialoglndirect and CreateDialoglndirect

Param are analogous to DialogBoxlndirect and DialogBoxlndirectParam

These functions are not covered here See the footnote in the section

Invoking and Destroying Modal Dialogs for the reason

CreateDialog creates modeless dialog and returns the I-PNND of the

dialog if successful

Page 00078

CreateDialoghlnstance ipTemplate hWndParent lpDialogFunc

The arguments have exactly the same meaning as they do in the func

lion DialogBox

Similarly CreateDialogParam is used just like DialogBoxParam

CreateoialogParam hlnstance ipTemplate hWndParent

lpDialogFunc lplnitParam

Again the difference is the return value If successful CreateDialog

Parain returns the I-IWND of the dialog it creates Both CreateDialog

and CreateDialogParam return NULL if they fail

Dismissing modeless dialogs is done by calling Dest roy Window An

application should never use EndDialog to destroy modeless dialog

We can now see how to get the window handle of the modeless dialog

required for the message ioop When using modeless dialog an

application typically maintains global HWND variable that is set to

NULL as long as the modeless dialog does not exist Once the dialog is

created the global variable is assigned the dialogs window handle

The application DIALOGS.EXE provides an example The application

initializes hwndModeless to NULL The if statement in the message

loop of Figure 3.3 therefore never gets to call IsDialogMessage All mes
sages posted to the applications message queue therefore get handled

the usual way

But once the modeless dialog is created hwndModeless is no longer

NTJLL The modeless dialog IDD_MODELESS is displayed when
user presses the Modeless button in the main application window The

portion of the main window procedure that responds to the corre

sponding WM_COMMAND message is

HWND hwndNodeless /Modeless dialog window handle

I/Inside the main window WM_COMMUD handler

case IDC_MODELES S_BUTTON

hwndModeless Createoialog

ghlnst

MAKEINTRESOURCE IDD_MODELESS
hwnd

DLGPROCModelesslJlgProc

Messages intended for the dialog box are now processed by

IsDialogMessage

To dismiss the modeless dialog the user taps the Close button Here is

how the modeless dialog procedure responds

Page 00079

I/Inside the dialog procedure WM_COMMAND handler

case IDCANCEL

DestroyWindowhwndfllg

hwndModeless MJLL
break

After destroying the actual dialog window the global variable hwnd
Modeless is set back to NULL Thus the applications message ioop
doesnt send messages to IsDialogMessage until user again creates the

modeless dialog box

The Windows CE Common Dialogs

If you have been using applications written for the various versions of

Windows for awhile you have no doubt noticed that certain features

such as opening and saving files are often the same from one applica

tion to another

In fact software users have come to expect that the user interfaces for

performing such operations will look the same The widespread accep
tance of computers is in part due to the fact that most users can figure

out how to use new software quickly because the user interfaces for

such fundamental features are often the same

The common dialogs provide way for Windows CE applications to

quickly include standard user interface for various operations com
mon to many applications Specifically the standard dialog boxes for

opening and saving files and choosing colors can be easily included in

Windows CE applications

Each of these dialogs has come to be known by unique name For

example the dialog for opening files is called the File Open dialog

Table 3.5 lists the common names for the dialogs in the Windows CE

common dialog library

Figure 3.4 shows an example of the File Open dialog in use

Table 3.5 The Windows CE Common Dialogs

File Open dialog Dialog used for opening files

Save As dialog Dialog used to save file under new name

Color dialog Dialog providing user interface for selecting color

Page 00080

60

ExiI

Open Text File çj 1J
Windows

Destdop .J Recent

Favorites .J StartUp

Fonts

Prorarns

Name ample.txt lype IText
Files .txt

Start Windows Dialo PM

Figure 3.4 The File Open common dialog

COMMDLG.DLL

The Windows CE common dialog library is implemented in COMMDLG.DLL To use

the dialogs an application must include the header file COMMDLG.H and link with

COMM DLG.LIB Under Windows CE emulation the DLL is called COMMDLGM.DLL
and the import library to link with is COMMDLGM.LIB

These dialogs are implemented in library called the common dialog

library which is part of the Graphics Windowing and Event Sub

system

Each of the common dialogs is invoked by single function call Fur
thermore each common dialog has an associated data structure that

an application fills with parameters specifying various attributes

about the dialog to be displayed

For example an application invokes the File Open dialog by filling an

OPENFILENAME structure and then calling GetOpenFileName

ii1i
COMPATIBILITY FINDTEXT AND CH00sEF0NT ARE Nm SUPPORTED

The functions FindText and ChooseFont are not currently supported under Windows

CE This means that the corresponding Find Replace and Font Chooser common di

alogs are not available

Page 00081

COMMON DiALOGS ARE MODAL

AU of the common dialogs supported under Windows CE are modal dialogs The

functions that invoke them therefore do not return until the user dismisses them by

pressing the OK or Cancel button

ommon Dialog Programming

The following sections give the details of how to program each of the

common dialogs supported under Windows CE

The File Open and Save As Dialogs

The File Open and Save As common dialogs under Windows CE look

very similar The difference between them is how your applications

use the information that they provide

The File Open common dialog is invoked by calling the function

GetOpenFileName

GetOpenFileName lpofn

The Save As dialog is invoked with GetSaveFileName

GetSaveFfleNanie lpofn

Each of these functions displays the respective dialog box The func

tions do not return until the user dismisses the dialog by pressing the

OK or Cancel button

The single argument to each of these functions is pointer to an

OPENFILENAME structure This structure contains information used

by GetOpenFileName or GetSaveFileName to control the appearance and

behavior of the resulting dialog box

The OPENFILENAME structure is defined as follows

typedef struct tagOFN

DWORD lStructSize

HWND hwndOwner

HINSTANCE hlnstance

LPCSTR lpstrFilter

LPSTR lpstrCustomFilter

Page 00082

DWORD n1IaxCustF liter

DWORD nFiiterlndex

LPSTR ipstrFiie

DWORD nNaxFile

LPSTR lpstrFileTitie

DWORD nMaxFiieTitle

LPSTR lpstrlnitialDir

LPCSTR lpstrTitle

OWORD Flags

WORD nFileOffset

WORD nFileExtension

LPCSTR lpstrflefExt

DWORD iCustData II

LPOFNHOOKPROC ipfnHook

LPCSTR lpTemplateNaxne

OPENFILEN1E

This structure looks pretty complicated but in reality you generally do

not use all of the members In fact four of them lCustData lpfnHook
and ipTemplateName and hlnstance are never used by Windows CE
These members appear in the Windows CE definition of the OPEN-
FILENAME structure because the definition was taken from the Win
dows NT implementation

While reading the description below keep in mind that this structure

is used for both the File Open and File Save dialogs

lStructSize must contain the size in bytes of the OPENFILENAME
structure

hwndOwner specifies the owner of the dialog box This can be NULL if

the dialog box has no owner

lpstrFilter is used to specify the filter strings to be used when displaying

the dialog box These strings determine the contents of the Type
combo box see Figure 3.4 They also tell the dialog box to display

only those files with the specified extensions This member can be

NULL You specify lpstrFilter as pairs of NULL-terminated strings The

first string in each pair is the descriptive text such as the text Text

Files .txt that appears in the Type field in Figure 3.4 The second

string is the filter pattern such as

lpstrCustomFilter is used by GetOpenFileName or GetSaveFileName to

return the filter chosen by the user This can be NULL If not NULL
you must specify the length of the buffer that you are passing in the

lpstrCustomFilter member in the nMaxCustFilter member

Page 00083

nFilterlndex specifies the 1-based index of the pair of lpstrFilter strings

with which to initialize the Type combo box

lpstrFile is used to specify the file name to initially display in the Name
field It also returns the name of the file specified by the user if the

user presses the OK button

nMaxFile specifies the size of the buffer passed in lpstrFile

Similarly lpstrFileTitle defines buffer that receives the name of the

selected file without the full path name nMaxFileTitle is passed to

specify the size of the buffer pointed to by IpstrFileTitle lpstrFileTitle

can be NULL in which case nMaxFileTitle is ignored

The lpstrlnitialDir member is string that specifies the directory whose

contents are displayed by the File Open or Save As dialog when it first

appears This member can be NULL

lpstrTitle is the string used as the dialog box caption text This member
can be NULL

nFileOffset specifies zero-based offset from the beginning of the

path to the file name in the string pointed to by lpstrFile Similarly

nFileExtension is the zero-based offset to the file extension

lpstrDefExt is string containing the default file extension This is the

extension that is appended to the selected file name if for example
user types file name into the Name field but does not supply an

extension This member can be NULL

We left out the Flags member This member is used to specify set of

bit flags that determine various attributes of the File Open dialog box

This member is also used as return value GetOpenFileName returns

one or more flags to report information about the users input

There are many flags that can be specified in the Flags member of an

OPENFILENAME structure The most common flags and their mean
ings are given in Table 3.6

An Example

All of the foregoing has no doubt caused your eyes to glaze over Lets

take look at how the DIALOGS.EXE application creates File Open

dialog to make it all more clear

Page 00084

64

Table 3.6 OPEN FILENAME Flag Values

OFN_CREATEPROMPT If the user specifies file that does not exist this flag

causes the dialog box to prompt the user for permis
sion to create the file If the user chooses to create the

file the dialog box closes and the function returns the

specified name Otherwise the dialog box remains

open This flag is only used with GetSaveFileName

OFN_EXTENSIONDIFFERENT Specifies that the user typed file-name extension that

differs from the extension specified by lpstrDefExt The

function does not use this flag if lpstrDefExt is NULL

OFNFILEMUSTEXIST Specifies that the user can type only names of existing

files in the File Name entry field If this flag is specified

and the user enters an invalid name the dialog box

procedure displays warning in message box If this

flag is specified the OFN_PATHMUSTEXIST flag is also

used

OFN_HIDEREADONLY Hides the File Open dialogs read-only check box

OFN_NOCHANGEDIR Restores the current directory to its original value if the

user changed the directory while searching for fifes

OFNNODEREFERENCELINKS Directs the dialog box to return the path and file name
of the selected shortcut .LNK file If this value is not

given the dialog box returns the path and file name of

the file referenced by the shortcut

OFN_NONETWORKBUTrON Hides and disables the Network button

OFN_OVERWRITEPROMPT Causes the Save As dialog box to generate message
box if the selected file already exists The user must

confirm whether to overwrite the file

OFNJATHMUSTEXIST Specifies that the user can type only valid paths and

file names If this flag is used and the user types an

invalid path and file name in the File Name entry field

the dialog box function displays warning in mes
sage box

OFN_SI-IOWHELP Causes the dialog box to display the Help button

The most important part of creating the File Open dialog is filling an

OPENFILENAME structure with the right values To render the dialog

in Figure 3.4 DIALOGS.EXE executes the following code in the func

tion OnFileOpen

void OnFileOpenHWND hwnd

OPENFILENE ofn

Page 00085

TCHAR pszName
DWORD dwSize

dwSize sizeofofn

lstrcpypszName TEXTsample.txt
memsetofn dwSize
ofn.hwndOwner hwnd
ofn.lStructSize dwsize

ofn.lpstrFilter TEXTText Files .txt\O.txt\0
ofn.nFilterlndex

ofn.lpstrFile pszName

ofn.nMaxFile 256
ofn.lpstrTitle TEXTOpen Text File
ofn.lpstrlnitialflir TEXT\\Windows
ofn.lpstrDefExt TEXTtxt
GetOpenFileame ofn

The hwnd parameter of OnFileOpen is the main application window
This value is the owner of the File Open dialog Hence the hwndOwner

member of ofn is set to this window

The filter strings are assigned to ofn.lpstrFilter The first null-termi

nated string is used as the contents of the dialog Type field The sec

ond specifies that the File Open dialog should only display files with

the .txt extension

nFilterlndex specifies the -based index of the filter string pair to ini

tially use with the dialog Setting nFilterlndex to tells the dialog box

to use the first filter string pair the string Text Files .txt\O.txt\O

Assigning string to ofn.lpstrFile means that the File Open dialog will

be initialized with that string in the Name field of the dialog box In

this case the file name sample.txt will initialize this field

Finally the string Open Text File will be the File Open dialog box

title and txt will be used as the default file name extension If user

types file name in the name field without an extension .txt will be

automatically appended

This is all the hard work To display the dialog box the application

simply calls GetOpenFileName When GetOpenFileName returns the

lpstrFile member of ofn contains the fully qualified file name of the

selected file

OnFileOpen doesnt do anything once user selects file It just shows

you how to use the File Open dialog real application would proceed

by for example reading the file and displaying the contents in the

main application window

Page 00086

.I

Programming the Save As common dialog is very similarAn OPEN-
FILENAME structure is filled as in this example The application then

simply calls GetSaveFileName to display the dialog

The Color Dialog

Now we take very brief look at using the Color dialog Figure 3.5

shows an example of the Color dialog Applications use this dialog as

user interface for making color selections Pressing the Define button

causes the dialog to expand into the form shown in Figure 3.6

This dialog box is created with one function call just like all the

other common dialogs In the case of the Color dialog you call the

ChooseColor function

ChooseColorlpcc

The single argument in this case is pointer to CHOOSECOLOR
structure The various members of this structure are initialized to con
trol the appearance of the Color dialog

To create the Color dialog in Figure 3.5 an application only needs six

lines of code

CHOOSECOLOR cc
COLORREF cr
memsetcc sizeotcc
cc.lStructSize sizeofcc

ModI Mo Basic colors

r-r
rrrr
rr- ra

at-aaaa
rat-

Custom Qefine

aaarama
Strt Windows CE Dialo.. 648 PM

Figure 3.5 The Color common dialog

Page 00087

67

Ex Basic colors
Hue 160

Lum

Colorlscdidr
Custom _________

Greenp

Blue dd to custom cotorsj

5tart Windows CE Dialo 649 FM

Figure 3.6 fully expanded Color dialog

cc.lpCustColors Cr
ChooseColorCC

The lpCustColors member of the CHOOSECOLOR structure can be

used to specify the 16 colors displayed in the custom colors fields at

the bottom of the dialog box in Figure 3.5 This allows the application

to specify colors of its own for users to choose from other than the

basic colors at the top

Note that lpCustColors cannot be NULL Since this member is used to

return any custom colors specified by the user it must be initialized

with valid COLORREF array

These custom colors can also be changed by the user If the Define but

ton is pressed the user sees the fully expanded Color dialog like the

one in Figure 3.6 Colors can be entered in the Red Green and Blue

edit boxes Or the user can tap points on the large field above the Add

To Custom Colors button to select colors The hue saturation and

luminance of the colors in this field can also be changed via the corre

sponding edit boxes

The point of all of this is that if the user taps the Add To Custom Col

ors button the color currently selected in the right half of the dialog is

added to the lpCustColors array This provides mechanism for the

application to store the users custom color selections and put them in

the custom color fields the next time the dialog is created

Page 00088

When the user presses the OK button to close the Color dialog the

color selected by the user is returned to the application in the rgbResult

member of the CHOOSECOLOR structure This member can also be

assigned before calling ChooseColor to specify which color is initially

selected in the dialog

OncIuding Remarks

The two chapters you have just finished reading have presented an

introduction to programming some the most basic building blocks of

any Windows CE application We have seen how to write the funda

mental message processing infrastructure of an application We know
how to add child and common controls as well as various types of

dialog boxes

In the rest of Part we add to this knowledge by investigating how

menus are added to Windows CE applications And we look at how to

program some of the common controls that are of particular interest to

Windows CE applications

Page 00089

.4
Menus and the Windows CE
Command Bar

ne of the biggest challenges that Windows application programmers
have traditionally faced is designing user interface that is intuitive

and easy to use Keeping the computer screen organized and free of

the clutter of lots of buttons and other controls gets more difficult as

Windows programs become more complex and feature-rich

If this is challenge on desktop Windows platforms it is even more

problematic when designing applications for Windows CE-based

devices With screen sizes that are typically mere fraction of their

desktop computer siblings Windows CE devices are much more sus

ceptible to problems of screen clutter and confusing user interfaces

Fortunately Windows CE provides extensive support for including

menus and menu accelerators in your applications Menus provide the

application programmer and user interface designer with convenient

way to include large number of user command options in small

amount of screen real estate Accelerators allow applications to trans

late simple keyboard actions into menu item equivalents Of course

Windows CE devices are not required to have keyboard Palm-size

PCs have no use for menu accelerators But the support for accelera

tors is provided by Windows CE for use by those devices that do

include keyboard

69

Page 00090

Central to the discussion of Windows CE menus is the command bar

control In this chapter we wifi introduce this control which is used for

holding menus as well as other child controls Command bars give

Windows CE application programmers way to include menus and

other controls in an application without using large amounts of screen

space

tpeat Myself When under Stress

It cannot be stressed enough here that menus under Windows CE are

fundamentally different from menus under Wirt32 Menus in Win
dows CE applications can still be defined in terms of menu resources

just as they can on desktop Windows platforms However there is

no concept of menu bar and Windows CE menus are not part of

the non-client area of window Menus under Windows CE must

be embedded within control most commonly command bar

Menus can also be inserted into command bands control discussed

in the next chapter The controls that contain Windows CE menus

are child controls and therefore reside in their parent windows
client area

Another implication of the absence of menu bar support under Win
dows CE is that the hMenu parameter of CreateWindow and CreateWin

dowEx has no meaning for top-level window Therefore code like the

following will fail

HWND hwrid1Iain

HMENU bNenu

Assume that IDR_MNU identifies legitimate menu

resource contained by the module hlnstance

hNenu LoadMenuhlnstance MAKEINTRESOURCE IDR_MENU
hwndMain Createwindow

TEXTMYNDCLASS
NULL

MS_VISIBLE MS_OVERLAPPED

00100100
NULL
h1Ienu

hlnstance

NULL

CreateWindow in this case will most assuredly return NULL Menus for

top-level windows are not supported

Page 00091

For the same reason creating instances of window class registered

with non-NULL lpszMenuName WNDCLASS member works but the

lpszMenuName attribute has no effect

Of course you can still use non-NULL values for the hMenu parameter
of CreateWindow and CreateWindowEx to specify the identifier of child

windows For example as we saw in the previous chapter whenever

you create Windows CE control you use the hMenu parameter to

specify that controls identifier

iTJ

Create command bar control and insert it into window

Add menu to command bar

Add controls like buttons and combo boxes to command bar

Add adornments to command bar

Add tool tips to command bar

Add menu accelerators to command bar menu

Add window menu system menu to window

The Command Bar Control

On desktop Windows platforms menus are contained in menu bar

Windows CE does not support the concept of menu bar Menus are

instead contained by Windows CE control called the command bar

control

One exception to this is pop-up menus Pop-up menus in Windows CE

are implemented just as they are on desktop Windows platforms We
will see an example using pop-up menus later in this chapter

Command bars are one of the common controls Their implementation

lives in the COMMCTRL.DLL dynamic link library To use them an

application must therefore initialize the common control library with

call to InitCoinmonControls or InitCommonControlsEx Furthermore

Page 00092

L72

II Ii
Selection

Paint Window Dark Gray

Figure 4.1 command bar with menu controls and adornments

applications must include the file COMMCTRL.H This header file

contains the definitions of the InitCommonControls and InitCommon

ControlsEx functions It also defines all of the command bar API func

lions that we will use in this chapter

Since command bars often contain menus it is very easy to think of

them as menu bars But it is important to keep in mind that command

bars just like buttons or list boxes are child controls This means that

command bar is part of the client area of the window that owns it

Your application needs to account for the space used up by any com
mand bars in the client area The sidebar that follows points out

good way to do this

Command bar controls are actually type of toolbar control As such

you can use any of the toolbar messages styles and the like with com
mand bars Toolbar messages can be sent directly using SendMessage
Toolbar styles can be added with SetWindowLong

The details of creating and working with command bars will be intro

duced later We first describe some menu basics Because Windows CE

menu concepts are similar to their desktop Windows counterparts this

discussion will be brief

The sample application in this chapter shown in Figure 4.1 wins The
Worlds Most Useless Windows CE Application award It implements

command bar with menu combo box and two buttons that change

Page 00093

73

What Happened to the Button

Command bars are part of the client area of the windows that contain them

This point can be driven home by the following code example

IDCB_MAIN is the command ID of the command bar

IDC_BUT1ON is the command ID of button

hwndMain is the main application window

hinstance is the application instance

HWND hwndCB I/Command bar HWND

HWND hwndButton I/Button HWND

// .other WinMain application code

hwndCB ConimandBar_Creata hlnstanee hwndNain IDCB_MAIN
hwndButton CreataWindowTEXTBUTTON

TEXTButtOfl
WS_VISIBLE jWS_CHILD

BS_PUSHBUTTON

006535
hwndMain

UNU IDC_BUTTON

hlnstance

NULL

The button will be obscured by the command bar because the command bar

takes up client area just like any other control

Windows CE applications must account for the space used up by command

bars This is done using the CommandBar_Height function This function returns

the height of the specified command bar This value can be used to offset any

dimension in the client area

More generically you can define the following macro

define MAKEY hwndCB yCoinmandBax_Reight hwndCB

The button could then be created like this

hwudButton CreatewindowTEXTBUTTON

TEXPButton
WSVISIBLE IWS_CHILD

BS_PUSHBUTON
0MAXEY0 hwndCB6535

The button control will be positioned just below the command bar control

Page 00094

the color of the main window client area The buttons also include tool

tips which are little pop-up windows containing strings that describe

the button functionality At least this application is useful in introduc

ing command bar concepts The application is in the directory

\Samples\cmdbar on the companion CD and generates an applica

tion named CMDBAR.EXE

Windows CE Menu Basics

Windows CE applications can include four types of menus

drop-down menus

cascading menus

scrolling menus

pop-up menus

Drop-down menus are the standard pull-down menus as shown in

Figure 4.1 Cascading menus are menus that contain items that open
menus of their own An example is shown in Figure 4.2

Windows CE introduces scrolling menus scrolling menu is simply

menu that can scroll vertically If an application creates menu that

contains more items than fit in the vertical screen space Windows CE
makes the menu scrollable Users can then scroll the menu to expose

menu items that do not fit in the screen area

Pop-up menus are similar to their desktop Windows counterparts

They can be used to implement menus that do not live on the com
mand bar but that temporarily appear as the result of some user

action An example of pop-up menu is given later in this chapter

Figure 4.2 cascading menu

Page 00095

Menus can be defined in your applications by means of menu defini

tions in resource files They can also be defined programmatically

using the menu API The examples in this chapter will all use the

resource file approach The complete set of Windows CEsupported
menu functions is shown at the end of the chapter

Windows CE also supports owner draw menus We will not cover

owner draw menus in this book except to discuss the basic concepts
of owner draw control programming in Chapter

Menu Resource Refresher

Just in case your memory is bit rusty heres quick refresher course

on how menu resources are described in resource files

The general syntax of menu resource is shown below Items in

uppercase are required keywords Items in italics are supplied by the

application programmer Items in square brackets are optional values

MenuNarne MENU tDISCARDABLE

BEGIN

POPUP SubMenulNaine options

BEGIN

MENUITEM MenultemNaine id options

7/More MENUITEMs

END

POPUP SubMenu2Narne options

BEGIN

MENUITEM MenulternNarne id options

END

END

MenuName is the name of the menu Generally this is resource identi

fier but it can be string menu name

The optional DISCARDABLE keyword tells Windows CE that the

menu resource can be discarded from memory automatically when no

longer needed

The POPUP keyword indicates that new submenu is being defined

These POPUP definitions define the individual submenus Sub

MenulName SubMenu2Naine etc are the names of the submenus In

the example in Figure 4.1 these would be File and Options

Cascading menus can be defined by nesting submenus within other

submenus

Page 00096

The MENUITEM keyword inserts new item in the submenu The

MenultemName values represent the individual pull-down menu
choices

id is the command identifier for the particular menu item The use of this

identifier is described in the next section where we describe how

applications respond to menu item selections

The menu resource identifier and menu item command identifiers are

typically defined in the applications RESOURCE.H file

Various options can be specified for submenus and for menu items

More than one of these options can be specified by bitwise-ORing

them together For submenus these option include

GRAYED The text is grayed the menu is inactive and does not gener
ate WM_COMMAND messages

INACTIVE The text is displayed normally but the menu is still inac

tive No WM_COMMAND messages are generated

MENUBREAK This option is supported but has no effect in the con
text of menus in command bars

HELP This option is supported but has no effect in the context of

menus in command bars

Menu item options include the following

CHECKED Places check mark to the left of the menu item text

GRAYED Same meaning as for submenus see the list above

INACTIVE Same meaning as for submenus see the list above

MENUBREAK The menu item and all items that follow appear in

new column in the menu

MENUBARBREAK Same as MENUBREAK except that vertical line

separates the menu columns

As an example here is the menu resource definition for the cascading

menu shown in Figure 4.2

IDR_MENEJ MENU DISCARDABLE

BEGIN

POPUP File
BEGIN

NENUITEM Exit IDC_EXIT

END

POPUP Optiofls

Page 00097

BEGIN

MENUITEM Empty Combo Box IDC_EMPTY

MENUITEM Fi11 Combo Box INC_FILL

POPUP Cascade
BEGIN

MENUITEM Cascade Menu Item IDC_SUBITEM1

MENUITEM SEPARATOR

MENUITEM Cascade Menu Item IDC_SUBITEM2

END

END

END

Responding to Menu Items

The usefulness of menus comes from the ability to map the various

menu items in menu to actions This is done by assigning com
mand identifier to each of the menu items that an application is meant

to respond to The previous section described how command identi

fier is assigned to menu item

This command identifier performs the same role as control identifiers

for Windows CE controls Specifically whenever menu item is

selected Windows CE sends WM_COMMAND message to the par
ent of the command bar control The low word of the wParam parame
ter contains the menu item identifier The WM_COMMAND message
notification code is zero indicating that the message is sent as result

of menu item selection

Creating Command Bar

Creating command bar control is little different from creating

other Windows CE controls Instead of using CreateWindow or

CreateWindowEx as when creating child and common controls

Windows CE provides separate API for creating and working with

command bar controls

To create command bar control an application calls

CoinmandBar_Create

CommandBar_Createhlnst hwndParent idCmdbar

This function is wrapper for the CreateWindow call that ultimately

creates the actual command bar window hlnst is the application

instance of the application in which the control is being created

Page 00098

78

hwndParent is the command bars parent window idCmdBar is the con
trol identifier of the command bar

If CommandBar_Create is successful it returns the HWND of the newly
created command bar control Otherwise the function returns NULL
Thus creating command bar is semantically similar to creating any
other Windows CE window or control

Creating the command bar control is only the beginning The com
mand bar in Figure 4.1 contains menu and various child controls

After calling CommandBar_Create your application is left with nothing

more than the HWND of an empty command bar control

Adding useful things like menus and buttons to command bar con
trol requires using the various CommandBar_Insert functions

Inserting Menu into Command Bar

An application adds menu to command bar with the function Corn

rnandBar_InsertMenubar After all the caveats about how Windows CE
does not support menu bars the command bar API still thinks it is

inserting menu bar In any of its incarnations consistency in function

naming has never been strong point with Windows

CornrnandBarjnsertMenubar takes four parameters

CommandBar_InsertMenubar hwndCB hlnst idNenu iButton

hwndCB is the HWND of the command bar into which the menu is

inserted hlnst is the application instance idMenu is the resource iden
tifier of the menu to insert

iButton identifies where in the command bar the menu is to be

inserted command bar can contain buttons and command bars as

well as menu iButton is the zero-based index of the control to the left

of which the menu is inserted Since controls are typically inserted into

command bars after the menu iButton for menus is typically zero

putting the menu at the very left of the command bar

MAKING SENSE OF IBUTroN

iSutton is best thought of as the position index of control command bar In the

example shown in Figure 4.1 the menu has index the combo box index and so forth

Page 00099

CommandBarjnsertMenubar internally loads the menu resource corre

sponding to idMenu from the module identified by hlnstance

CommandBar_InsertMenubar returns TRUE if successful Otherwise

it returns FALSE

An alternative way to insert menu into command bar is with

CommandBar_InsertMenubarEx This function is exactly the same as

CommandBar_InsertMenubar except that the third parameter is not

menu resource identifier Instead this parameter can be passed the

menu resource name or menu handle

Heres an example of how you might insert menu into command
bar In this example IDR_MENU is the resource identifier of menu

resource defined in the file RESOURCE.H

define IDCB_MAIN //Corrand bar control command ID

mt WINAPI WinIain

HINSTPNCE hlnstance

HINSTANCE hPrevlnstance

LPTSTR lpCmdLine

mt nCmdShow

HWND hwndCB //Command bar window

HWND hwndNain I/Main application window

Register main window class and create main window here

Create the command bar control

hwndCB CommandBar_Createhlnstance hwndNain IDCB_MAIN
Insert the menu into the command bar

if hwndCB

ComnandBar_InsertKenubar hwndCg hlnstance IDR_MENU

The rest of the HioNain code here

Adding Controls to Command Bar

The example in Figure 4.1 shows command bar with menu as well

as combo box and set of buttons Also at the right of the command

bar you can see small Close button and Help button How did the

Windows CE child controls get there

This section presents the command bar API functions that are used to

insert controls into the command bar It also describes how to add

Page 00100

Table 4.1 Command Bar Functions for Adding Controls and Adornments

pIIrglr1

CommandBar_AddAdornments Used to add OK Close and/or Help buttons to

command bar

CommandBar_AddBitmap Adds images to command bar to use with com
mand bar buttons

CommandBar_AddButtons Inserts one or more buttons not adornments to

command bar

CommandBarAddTooItips Inserts tool tip strings into command bar for

use with command bar buttons

CommandBar_lnsertButton Inserts single button into command bar

CommandBar_lnsertComboBox Inserts combo box into command bar

adornments the Close Help and OK buttons that often appear in

command bars Adding tool tips to command bar buttons is also

described

As quick reference Table 4.1 lists these functions and their use

Inserting Buttons

Buttons can be inserted into command bar with two different func

tions CommandBar AddButtons inserts one or more buttons into the

specified command bar CornmandBarinsertButton is the same except

that it inserts only one button at time

The buttons that you insert into command bar control send

WM_COMMAND messages just like standard Windows CE child con
trol buttons The only difference is that instead of sending the message

to their parent which would be the command bar control the message

is sent to the command bar controls parent In this way your window

procedure can handle WMCOMMAND messages from command bar

buttons just as it responds to such messages from other buttons

In order to add any buttons to command bar an application must

define an appropriate button structure for each button to be added

The button structure used for this purpose is TBBUTTON This is the

same structure used in toolbar controls to describe toolbar buttons

typedef struct TBBtJTTON

Page 00101

mt iBitmap

mt idcoinxnand

BYTE fsState

BYTE fsStyle

DWORD dwData

mt iString

TBBUTTON NEAR PTBBUTTON FAR LPTBBUTTON

iBitmap is the zero-based index of the bitmap to use with the button

idCommand is the button control identifier This value is the value of

the control identifier that Windows CE sends with WM_COMMAND
messages whenever this particular button is pressed

fsState defines the button state This can be one or more of the values

defined in Table 4.2 Some of these states refer to toolbar button styles

which are described in Table 4.3

The fsStyle member of TBBUTTON specifies the various styles of

command bar button This member can be one or more of the values in

Table 4.3

dwData is used to store application-defined data with the button This

member can be zero

Finally iString is the zero-based index of the string to use as the but

tons text As command bar buttons do not use text this member is

ignored

Lets see how to use the TBBUTTON structure to insert buttons into

command bar The sample application for this chapter has command

bar with two buttons see Figure 4.1 They are placed to the right of

the command bar menu One has black square bitmap the other

Table 4.2 Command Bar/Toolbar Button States

.1fIl

TBSTATE CHECKED The button is checked Button must have the

TBSTVLE_CHECK style to support this state

TBSTATE_ENABLED The button accepts user input i.e is not disabled

TBSTATE_HIDDEN The button is not visible

TBSTATEJNDETERMINATE The button is grayed out

TBSTATE_PRESSEO The button is pressed

TBSTATE_WRAP line break follows the button The button must also

have the TBSTATE_ENABLED state

Page 00102

82
Table 4.3 Command Bar/Toolbar Button Styles

TBSTYLE_BUTTON Specifies standard push-buttonstyle button

TBSTYLE_CHECK Specifies button that looks like push button but

that behaves like check button That is it toggles

between the pressed and unpressed states each time

it is tapped by the userS

TBSTYLE_GROUP Specifies group of TBSTYLEBUUON buttons

TBSTYLE_CI-IECKGROUP Specifies group of TBSTY1ECHECK buttons If but

ton in the group is pressed it stays pressed until

another button in the group is tapped Unlike standard

controls all buttons in toolbar button group or check

group must have the TBSTYLE_GROUP or

TBSTYLECHECKGROUP style

dark gray square bitmap Pressing either of these buttons changes the

background color of the main windows client area to the color shown

in the button The WM COMMAND handler code for the buttons is

not shown

Define the command bar button command IDs

define IDC_CMDBAR_BUTTON1 1028

define IDC_CMDBAR_BUTTON2 1029

Define the button bitmap image indices

define IDI_BUTTON1

4define IDI_BUTTON2

HWND hwndCB I/The command bar HWND

Define the button structures associated with the

command bar buttons

TBBUTTON tb IDI_BUTTON1IDC_CMDBAR_BtJTTON1

TBSTATE ENABLED TBSTYLE_BUTTON

IDI_BUTTON2 IDC_CMDBAR_BUTTON2

TBSTATE ENABLED TESTYLE_BUTTON

I/Create the comnand bar control

hwndCB ComnandEar Create -.
if hwndCB

//Other command bar code

//..

CommandBar_AddBitmap hwndCB hlnstance 1DB BUTTONS

CommandBarAddButtonshwndCB tb
7/..

Page 00103

The pertinent pieces of the previous sample are the definition of the

TBBUTTON array tb and the ConimandBar_AddBitmap and

CommandBar_AddButtons calls

The
array tb contains two TBBUTTON structures one describing each

of the buttons to be inserted into the command bar The buttons are

both enabled push-buttonstyle command bar buttons The control

identifiers are ID_CMDBAR_BUTTON1 and ID_CMDBAR_
BUTTON2 respectively

The only part that still might need some clarification is the iBitmap

value of the elements of the array

Each command bar control maintains its own internal image list This

image list is what the control uses to figure out what bitmap to display

on particular command bar button The iBitmap member of the

TBBUTTON structure used to describe particular button is the index

into the image list

An application sets the bitmap of images in this image list by calling

CommandBar_AddBitmap

ComlnandBar_AddBitmaphwndCB hlnst idEitmap iNumlinages

iReserved iReserved

hwndCB and hlnst have the usual meanings idBitmap is the resource

identifier of the bitmap to add iNumlmages contains the number of 16-

by-16-pixel button bitmap images contained in the bitmap referred to

by idBitmap

The last two parameters of the function are reserved and should be

zero

The bitmap referred to by the resource identifier 1DB_BUTTONS is

shown in Figure 4.3

After the bitmap has been added to the command bar the Command
Bar_AddButtons call adds the buttons to the command bar

ComlnandBar_AddButtonshwndCB uNuinButtons lpButtons

The second parameter specifies the number of buttons to be added

lpButtons is pointer to the array of TBBUTTON structures that define

the command bar buttons

Note that no matter how many buttons are added to command bar

control only one bitmap resource is specified in the call to Command-

Page 00104

Figure 4.3 The CMDBAR application button bitmap

Bar_AddBitmap Each command bar button bitmap is expected to be 16

by 16 pixels and iNumimages specifies the number of such images The

iBitmap value in given TI3BUTTON description can then reliably

identify which 16-by-16 bitmap to associate with the particular button

When button is added with CommandBarAddButtons or Command

Bar_InsertButton the command bar looks at the iBitmap member of the

buttons TBBUTTON definition If this value is for example the

command bar uses the second 16-by-16 section of bits from the bitmap

resource added to the control by the CommandBar_AddBitmap call as

the button image

Insertrng Combo Boxes

Combo boxes can be inserted into command bar controls using the

function CommandBarlnsertComboBox

CoinmandBar_InsertComboBox hwndcB hlnst iWidth dwStyle

idComboBox iutton

hwndCB and hlnst are the same as with the other command bar func

tions weve seen Width specifies the width in pixels of the combo

box control to be inserted dwStyle defines the style of the combo box
This value can be one or more of the styles used for other combo box

controls idComboBox is the control identifier of the combo box and

iButton specifies where to put the control

If CommandBar_InsertComboBox is successful it returns the HWND of

the combo box that is created If the function fails the return value is

NULL

Applications interact with combo boxes in command bars just as they

do with other combo box controls All messages and notifications that

Page 00105

85

are generated by command bar combo box are sent to the command
bar controls parent window The applications main window proce
dure therefore handles these events in its WM_COMMAND handler

Inserting Adornments

Adornments are the Help OK and Close buttons that are often found

in command bars The Help button is used as standard way to

invoke help features in an application The Close button closes the

window that contains the command bar The OK button sends

WM_COMMAND message to the parent of the command bar The

control identifier sent with this message i.e the LOWORD of

wParam in this case is IDOK

command bar can include one or more adornment buttons Any
command bar that has adornments must have Close button You

have no choice in this and Windows CE will add it for you automati

cally The Help and OK buttons can be specified optionally

The function for doing all of this is CommandBar_AddAdornments

CommandBar_AddAdorrimentshwndCB dwFlags dwReserved

hwndCB identifies the command bar and dwReserved is reserved and

must be set to zero

That leaves the dwFlags parameter This parameter is used to specify

which optional adornment buttons to add to the command bar This

parameter can be CMDBAR_HELP CMDBAR_OK or both CMD
BAR_HELP adds the Help button and CMDBAR_OK adds the OK
button

As an example heres how an application would add the Help and

OK buttons to command bar with an HWND identified by hwnd

MyCB
CommandBar_AddAdornments hwndMyCB CMDBAR_HELP CMDBAR_OK

If the function is successful it returns TRUE Otherwise it returns

FALSE

COMMANDBAR_ADDADORNMENTS Musi BE LAST

Any call to CommandBar_AddAdornments must come after all other functions that

insert menus or controls into particular command bar

Page 00106

Table 4.4 summarizes the Windows CE messages generated when the

various adornment buttons are pressed These messages are sent to the

command bar controls parent window

Adding Tool Tips to Command Bar Buttons

Windows CE supports tool tips in command bar buttons see Figure

4.4 tool tip is little pop-up window that is displayed when

user presses
command bar button and holds it down for more than

half of second The tool tip contains an application-specified

Unicode string that is used as description of the command bar

button Tool tips are good way to provide users of your Windows

CE applications with description of what action is performed by
command bar buttons without taking up lot of valuable screen

space

Tool tips are inserted with the function CommandBarAddToolTips

CommandBar_AddToolTips hwndCB uNuraToolTips lpToclTips

uNumToolTips specifies the number of tool tip strings in ipTool Tips

ipToolTips is an array of null-terminated Unicode strings One of these

strings is displayed for each command bar button

This sounds pretty simple but there is catch Windows CE does not

allow tool tips for menus or combo boxes in command bars However
it does assume that ipToolTips contains string pointer for each item in

the command bar This is strange indeed In order to add tool tips to

two command bar buttons that come after menu and combo box

uNumToolTips would have to be and ipTool Tips would have to con
tain two NULL pointers for the menu and combo box

Table 4.4 Adornment Button Messages

Help WM_HELP

OK WM_COMMAND with IDOK as the command identifier

Close WMCLOSE

Page 00107

87

LJf Iii ii r.i i-.i

jOtj
Figure 4.4 command bar with Help OK and Close button adornments

To be more specific heres how the sample application for this chapter

shown in Figure 4.1 defines the tool tips it uses

TCHAR pszTips NULL
NULL
TEXTPaint Window Black
TEXTPaint Window Dark Gray

The first two string pointers are NULL These correspond to the menu
and combo box The next two strings are the command bar button tool

tip strings If not defined this way CommandBar_AddToolTips will pro
duce unexpected results

With this definition for pszTips the application adds the tool tips with

this function call

CommandBar_AddToolTipshwTldCB pszTips

The basic rule of thumb for adding tool tips is that you must specify as

many strings as components in your command bar menus combo

boxes and command bar buttons Additionally these strings must be

specified in ipToolTips in the same order as the command bar compo
nents

The CommandBar_AddToolTips function returns TRUE if successful

Otherwise it returns FALSE

flier Command Bar Functions

There are some other command bar functions we have not yet cov
ered These remaining functions provide functionality for such things

as showing or hiding command bars determining if command bar is

visible and so on

The remaining functions are pretty self-explanatory They are listed in

Table 4.5

Page 00108

Table 4.5 Miscellaneous Command Bar Control Functions

CommandBar_Destroy Destroys the specified command bar without

destroying the parent window

CommandBar_DrawMenuBar Used to redraw or reposition the menu in the

specified command bar

CommandBar_GetMenu Retrieves the menu handle HMENU of the

specified command bar menu

CommandBar_Height Gets the height of the specified command bar

CommandBar_lsVisible Determines if the specified command bar is visible

or not

CommandBar_Show Shows or hides the specified command bar

Using Accelerators in Windows CE Applications

Desktop computers have relied heavily on keyboard accelerators for

years keyboard accelerator is keystroke combination that duplicates

the behavior of menu item or control

Keyboard accelerators are useful feature of many popular Windows

applications After becoming familiar with the keyboard equivalents

of common menu selections users can greatly increase the speed at

which they use applications

Windows CE provides the same keyboard accelerator support as desk

top versions of Windows Since Windows CE devices are not required

to have keyboard accelerators dont make sense for all devices But

many devices do have keyboards so briefly covering the subject of

keyboard accelerators is worthwhile And you never know when the

Palm-size PC application that you write today will need to be ported

to run on Handheld PCs

Accelerator tables are pretty small so the memory they consume is

minimal And compiling out the application code that enables them

with preprocessor symbols is easy As we will see once the accelera

tors are defined enabling them can be done with exactly five lines of

code

Page 00109

Accelerator Resources

Like menus keyboard accelerators are type of Windows CE resource

They are defined in resource file as an accelerator table An accelerator

table has the following general syntax

TableName ACCELERATORS

BEGIN

definitions

END

TableName is either the resource identifier or string name identifying

the resource The accelerator table for this CMDBAR.EXE is defined as

follows

IDRACCELERATOR ACCELERATORS DISCARDABLE

BEGIN

bC_EMPTY VIRTKEY CONTROL NOINVERT

IDC FILL VIRTKEY CONTROL NOINVERT

InC_EXIT VIRTKEY CONTROL NOINVERT

END

Each of the accelerator definitions identifies the keyboard key that

must be pressed to invoke the accelerator

The second item in each definition is the control or menu item identi

fier to which the accelerator corresponds This is the command identi

fier that Windows CE sends with the WM_COMMAND message to

the window that owns the accelerators

The VIRTUAL keyword indicates that Windows CE is to use the vir

tual key code not the ASCII key code for the key specified in the

accelerator definition

CONTROL indicates that the Control key must also be pressed to

invoke the accelerator So the first definition means that the key com
bination Ctrli-E must be pressed Other keywords of this type are

SHIFT and ALT indicating that the Shift or Alt key must be pressed

For example to define an accelerator for the key combination

AltShiftX the accelerator table would include this line

SomeID VIRTKEY SHIFT ALT NOINVERT

The NOINVERT keyword says that the menu containing the menu
item corresponding to the accelerators control identifier is not inverted

i.e not highlighted when the accelerator key combination is pressed

Leaving out this keyword forces Windows CE to try to invert the menu

Page 00110

r1
The identifiers such as IDR ACCELERATOR and IDC_EMPTY are

typically defined in the applications RESOURCE.H file

Loading and Translating Accelerators

To use keyboard accelerators an application must load the accelerator

table resource Windows CE represents keyboard accelerators using an

accelerator handle of type HACCEL

Accelerators are loaded using the LoadAccelerators function

LoadAccelerators hlnstance ipTableName

hlnstance specifies the application instance or dynamic link library

instance that contains the accelerator table resource ipTableName is the

name of the accelerator table resource If the accelerator table was

given string name when it was defined in the resource file this is the

string that you pass to ipTableName

If on the other hand the table is identified by resource identifier

you can use the Windows CE macro MAKEINTRESOURCE to convert

the identifier into the suitable string value For example
CMDBAR.EXE loads its accelerators as follows

define IDR_ACCELERATOR 102

HACCEL hAccel

hAccel LoadAccelerators hlnstance

MAKEINTRESOURCEIDR_ACCELERATOR

If LoadAccelerators is able to load the accelerator table it returns han

dle to the table Otherwise the function returns NULL

Once an accelerator table is loaded an application needs to know how

to respond to accelerator keystrokes This is done by the function

TranslateAccelerator

TranslateAcceleratorhWnd hAccelTable lpMsg

The parameters passed to TranslateAccelerator are an HWND an accel

erator table HACCEL and pointer to message structure The

function first determines if the message specified by lpMsg is

WM_KEYDOWN or WM_SYSKEYDOWN message If it is it looks in

the accelerator table specified by hAccelTable to see if the virtual key

code sent with the message corresponds to any of the accelerator keys
If so the message is converted into WM_COMMAND message and

sent to the window procedure of the window specified by the hWnd

Page 00111

parameter and then returns TRUE Otherwise TranslateAccelerator

returns FALSE

So how does an application use this function to continually monitor

the keyboard for accelerator keystrokes

Handling accelerators is generally done by modifying an applications

message loop Consider what happens when the standard message

loop code is changed by first checking for accelerators

while GetMessagemsg NULL TRIJE

if TranslateAcceleratorhwndNain bAccel rnsg

TranslateMessage msg
DispatchNessage msg

As described above TranslateAccelerator turns any WM_KEYDOWN or

WM_SYSKEYDOWN message that corresponds to an accelerator into

the equivalent WM_COMMAND message and sends it off to the

appropriate window procedure For every message that gets into the

applications message queue this new message loop code first gives

TranslateAccelerator chance to process
the message If the message

does not correspond to an accelerator keystroke i.e if TranslateAccel

erator returns FALSE the message is processed in the usual way by

TranslateMessage and DispatchMessage

COMPATIBILITY WM_SYScOMMAND MESSAGES

Unlike on desktop versions of Windows under Windows CE TranslateAccelerator

does not generate WM_SYSCOMMAND messages only WM_COMMAND messages

USirig the Window Menu

The window menu or system menu as it used to be called is the little

menu that appears in some windows when you tap the window icon

in the upper left corner of the title bar window with window

menu is shown in Figure 4.5

You include window menu in window by specifying the WS_SYS
MENU style when the window is created

Page 00112

92JJI
Move

L5tart
WindovscE Wind.. 303 PM

Figure 4.5 Windows CE window system menu

HWND hwndSysMenu //Handle of window with window menu

hwndSysMenu CreateWindow

TEXT MyWndclass
TEXT My Window
WSVISIBLE WS_OVERLAPPED WS_SYSMENIJ

The window menu notifies its parent window that an item has been

selected from the window menu by sending WM_SYSCOMMAND
messages to the window This is analogous to the command bar menu
behavior of sending WM_COMMAND messages when items are

selected Table 4.6 details the WM_SYSCOMMAND message para
meters

Table 4.6 WMSYSCOMMAND Message Parameters

III
wParam Specifies the system command Value can be SCCLOSE or

SC_KEYMENU

LOWORDlParam Specifies the component of the point where the stylus

tapped the screen if the menu item was selected with the

stylus

HIWORDlParam Specifies the component of the point where the stylus

tapped the screen if the menu item was selected with the

stylus

Page 00113

tt 93

The SC_CLOSE system command indicates that the Close item was

selected from the window menu SC_KEYMENU means that the menu
has been activated by keystroke

Notice in Figure 4.5 that including system menu in window also

includes Close button in the upper right corner of the title bar

window procedure should return zero for any WM_SYSCOM
MAND message that is handled All other WM_SYSCOMMAND mes
sages should be passed on to DefWindowProc

SYSTEM COMMANDS

Under Windows NT and Windows 98 there are many more possible system com
mand values that can be sent with WM_SYSCOMMAND messages Under Windows

CE only the SC_CLOSE and SC_KEYMENU values are supported

The Complete Windows CE Menu API

So far we have been describing menus that are created in Windows CE

resource files The typical use of menus has been to create the desired

menu in menu resource and then insert it into command bar with

CommandBar_InsertMenubar The application then responds to menu
item selections with the appropriate WM_COMMAND message
handler

Windows CE also provides rich set of functions for working with

menus more directly This API is very similar to the traditional Win32

menu API Since there are already numerous resources that describe

these functions in detail this section will simply summarize the Win
dows CE menu API and point out where particular functions differ

from their Win32 siblings We also demonstrate some of the functions

by showing how to add context-specific pop-up menu to the CMD
BAR.EXE sample application

Adding Pop-up Menus

Menus in Windows CE applications do not have to reside on com
mand bar menu Applications often implement pop-u menus that are

temporarily displayed when the user performs some specified action

Page 00114

like tapping the screen while pressing the Alt key on the keyboard
Some devices such as Palm-size PCs have hardware navigation but
tons that can be used in various combinations to invoke pop-up
menus For the

example in this section it is assumed that keyboard
is present

Pop-up menus are extremely useful in Windows CE applications to

present users with lists of options that depend on the context in which
the menu is invoked For example in word processing application

pop-up menu might contain one set of choices when document is

open in the application completely different set of menu items when
the application has no documents open

Pop-up menus behave pretty much like regular command bar menus
Once displayed the user can select menu items as in any other menu
Pop-up menus

notify their parent that an item has been selected via

the WM_COMMAND message When displayed pop-up menu gen
erally stays open untii the user makes menu item selection or taps

outside the menu

In this section we add context-specific pop-up menus to

CMDBAR.EXE One of these menus is shown in Figure 4.6 The menus
are invoked by tapping the client area of the main application window
while

pressing the Alt key If the client area is black the menu offers

the choice of
painting the client area gray or reverting to white If the

II

5art 1L17

Figure 4.6 Windows CE Pop-up menu

Page 00115

95

client area is gray the menu allows the user to paint it black or revert

to white If the client area is white the pop-up menu offers the choice

of painting black or gray and the revert-to-white option is disabled

We define the basic pop-up menus in this menu resource

IDR_POPUPS MENU DISCARDABLE

BEGIN

POPUP Popupi
BEGIN

MENUITEM Paint Window Gray IDC_SETCOLOR_GRAY

MENUITEM SEPARATOR

MENUITEM Revert To White IDC_CLEAR

END

POPUP Popup2
BEGIN

MENUITEM Paint Window Black IDC_SET_COLOR_BLACK

MENUITEM SEPARATOR

NENIJITEM Revert To White IDC_CLEAR

END

END

Each of the individual pop-ups in this menu definition will be used as

the pop-up menu that is displayed for particular application context

i.e current client area color Each pop-up statement in the resource

definition above defines submenu

MENUS CAN BE CREATED PROGRAMMATICALLY

The examples in this chapter all use menu resources to define the menus that they

use The Windows CE menu API also provides functions that allow applications to

create menus programmatically See Table 4.9 for complete list of menu functions

Programmatically the process of creating and displaying pop-up
menu and then detecting users menu item selection can be summa
rized with these three steps

Loading the menu resource that contains the pop-up menu to be

displayed

Obtaining menu handle to the appropriate submenu

Tracking the users menu item selection

The menu resource is loaded using the LoadMenu function

LoadNenuhlnstance lpMenuName

Page 00116

LoadMenu returns menu handle HMENU to the specified menu If

it fails LoadMenu returns NULL

hinstance is the HINSTANCE of the application or DLL that contains

the specified menu resource lpMenuName is the name of the menu
resource to be loaded As with all of the resource loading functions

this parameter can be obtained by passing the menu resource identi

fier to the macro MAKEINTRESOURCE Refer to the section Loading
and Translating Accelerators for details

The next step in the process obtaining submenu harLdle is done by

calling GetSubMenu

GetSubMenuhNenu nPos

Like LoadMenu GetSubMenu returns menu handle to the specified

submenu if it succeeds Failure results in NULL return value

hMenu specifies the menu containing the submenu of interest This

value generally comes from previous LoadMenu call nPos is the zero-

based index of the submenu to be extracted from hMenu

For example to get menu handle to the Popup2 submenu defined in

the resource definition above an application would do this

define IDR_NYMENU 1028 I/Resource ID of the menu
//typically defined in

/resource

1-INENU h11enu hSubMenu /Define the menu handles

hMenu LoadNenu hApplnstance MAKEINTRESOTJRCEIDR_MYMENUfl
if hllenu

hSubMenu GetSubMenu hNenu

After the application has handle to the submenu it wants to use as

pop-up all that is left to do is display that submenu and track user

selections Menu tracking is the menu behavior that includes display

ing and hiding the menu and highlighting menu items that are

pressed Menu tracking is implemented by the operating system All

that an application needs to do to display pop-up menu and track

selections is to call TrackPopupMenu

TrackPopupMenubNenu uFlags nReserved hWnd prcRect

hMenu is the menu handle of the submenu to track and determine

where the menu is displayed specifying the and coordinates of the

top left corner of the menu These coordinates are assumed to be given

Page 00117

in screen coordinates not in client coordinates nReserved must be set

to zero

hWnd specified the HWND of the menus parent window prcRect

points to RECT that specifies the area of the screen which the user

can tap without closing the pop-up menu If this parameter is NULL
the pop-up menu is always closed if the user taps anywhere outside

the open menu

uFlags is UINT that specifies various flags controlling the position

and behavior of the pop-up menu uFlags can be one or more of the

values in Table 4.7 The uFlags parameter of TrackPopupMenu can

include only one of the values TPM_CENTERALIGN TPM_LEFT
ALIGN and TPM_R These values are used to specify

the horizontal alignment of the pop-up menu Likewise only one

of the values TPM_BOTTOMALIGN TPMTOPALIGN and TPM_
VCENTERALIGN may be specified for vertical alignment

TrczckPopupMenu does not return until menu item is selected or the

menu is closed by tapping point on the screen not contained by the

RECT in prcRect If the TPMRETURNCMD flag is set the return

value is the command identifier of the selected menu item If this style

is not set the return value of TrackPopupMenu is treated like BOOL

Table 4.7 TrackPopupMeriu Flags

III
TPM_CENTERALIGN Centers the menu horizontally with respect to the

parameter

TPM_LEFTAUGN Positions the menu so that the left side is aligned with

the parameter of TrackPopupMenu

TPMRIGHTAUGN Positions the menu so that the right side is aligned with

the parameter of TrackPopupMenu

TPM_BOTTOMALIGN Positions the menu so that the bottom edge is aligned

with the parameter of TrackPopupMenu

TPM_TOPAUGN Positions the menu so that the top edge is aligned with

the parameter of TrackPopupMenu

TPM_VCENTERALIGN Centers the menu vertically with respect to the parame
ter of TrackPopupMenu

TPM_RETURNCMD If this style is set TrackPopupMenu returns the identifier

of the selected menu item

Page 00118

That is it returns TRUE if the function completes successfully and

FALSE otherwise

TRACKPOPLJPMENU FLAGS

Windows CE does not support the TPM_NO NOTIFY flag Also as Windows CE devices

do not support mouse the TPM_LEFTBUITON and TPM_RIGHTBUTION flags are

not supported

The pop-up menus in CMDBAR.EXE are displayed by holding the Alt

key and tapping the screen All of the pop-up menu code is therefore

implemented in the WM_LBUTTONDOWN message handler in the

main window procedure In the code below bWhite and bBlack are

BOOL global variables that indicate if the window is painted white or

black respectively

case WN_LBUTTONDOWN

POINT pt
SHORT nState

mt nSubMenulndex

HMENU hPopupMenu hSubMenu

pt.x LOWORDlParam

pt.y HIWORDlParam
ClientToScreenhwnd pt
nState GetKeyState VK_MENU
if nState0x80

hPopupMenu LoadMenughlnst

M7XEINTRESOURCEIDR_POPUPSfl

if hPopupMenu

nSubMenulndex bBlack

hSubMenu GetSubMenu hPopupMenu nSubMenulndex

Insert the menu item for painting the window

gray Also disable the revert to white

menu item if the client area is already

painted white

if bWhite

InsertMenu hSubMenu MFBYPOSITION

InC_SET_COLOR_GRAY TEXTPaint Window Gray
EnableMenultem hSubMenu IDC_CLEAR

EF_BYCOMMAND NF_GRAYED

TrackPopupMenu hSubMenu TPM_TOALIGN TPM_LEFTALIGN

pt.x pt.y hwnd NULL

Page 00119

//End of if hMenuPopup block

7/End of if nState 0x8000 block

return

The WM_LBUTTONDOWN message is sent with the client coordi

nates of the point where the screen was tapped in the window that

receives the message These coordinates are immediately converted to

screen coordinates with call to ClientToScreen This is because the

TrackPopupMenu call that comes later expects its and parameters in

screen coordinates

The next interesting part of this piece of code tells us if the Alt key is

being pressed The call to GetKeyState does this for us This function

takes virtual key code as its only parameter If the corresponding key
is pressed GetKeyState returns SHORT whose high-order bit is

If the Alt key is pressed the code proceeds to load the pop-up menu
resource and get handle to the proper submenu and the menu is dis

played and tracked with TrackPopupMenu

Two other interesting menu functions are demonstrated in the piece of

code above In the case that the window was already painted white
menu item for painting the window gray is added to the pop-up menu
with call to InsertMenu Otherwise the only choices will be for paint

ing it black and reverting to white Also if the window is white the

application disables the Revert To White option by calling Enable

Menultem The next two sections discuss how these features are

implemented

Inserting New Menu Items

New menu items can be inserted into existing menus at run-time with

the function InsertMenu

InsertMenubNenu uPosition uFlags ulDNewltemlpNewltem

The hMenu parameter specifies the HMEN1J of the menu into which
the new menu item is inserted uPosition specifies the menu item

which the new menu item is to be inserted before This value is inter

preted depending on the uFlags parameter

uFlags must be either MF_BYCOMMAND or MF_BYPOSITION com
bined with at least one of the values in Table 4.8 MFBYCOMMAND
means that uPosition gives the identifier of the menu item to be

Page 00120

Table 4.8 InsertMenu Flags

_wt
MF_CHECKED Draws check mark to the left of the menu item text

MF_ENABLED Enabled the menu item Item can be selected and the item

text is not grayed

MF_GRAYED Disables the menu item and grays the item text

MFMENUBREAK Places the item in new column

MF_MENUBARBREAK Same as MF_MENIJBREAK except columns are separated

by vertical line

MF_OWNERDRAW Specifies the menu item as owner draw

MF_POPUP Indicates that the menu item is submenu

MF_SEPARATOR The item inserted is horizontal menu item separator

MF_STRING Indicates that the lpNewltem parameter is string

MFjJNCHECKED Opposite of MF_CHECKED i.e check mark is not drawn

next to the item text This flag is set by default

inserted MF_BYPOSITION says that uPosition is the zero-based index

of the new item MF_BYCOMMAND is the default

ulDNewltem indicates the command identifier of the new menu item

If uFlags includes the MF_POPUP flag ulDNewltem is the menu han
dle of the menu or submenu to be inserted

lpNewltem specifies the contents of the new menu item Generally

lpNewltem points to null-terminated Unicode string used as the

menu item text This parameter can also contain information for draw

ing owner draw menu items But as we are not covering owner draw

menus in this book we dont discuss this

4L
INSERTMENLJITEM

The function InsertMenultem is not supported under Windows CE

Enabling and Disabling Menu Items

We have described the pop-up menus that were added to the CMD
BAR application as context-specific That means that the particular

Page 00121

pop-up menu that is displayed depends on the state of the application

at the time the menu is displayed

Individual menu items can also be displayed differently depending on

the state of an application For example word processor typically

grays out the Cut and Copy menu items in the Edit menu if no text is

selected in document But when text is selected those menu items

become enabled

The CMDBAR.EXE application pop-up menus have Revert To White

menu item that is only enabled when the main window background is

not already painted white Menu items are enabled or disabled with

the EnableMenultem function

Enab1eJtenuItemhMenu ulDEnableltem uEnable

hMenu is the menu handle of the menu or submenu that contains the

item to disable or enable

uEnable is similar to the uFlags parameter of the InsertMenu function It

is combination of one of the flags MF_COMMAND or MF_BYPOSI

TION and one of the flags MF_GRAYED or MF_ENABLED These

flags have the same meanings as in the InsertMenu function

ulDEnableltem indicates which menu item to enable or disable As

with the uFlags parameter of InsertMenu ulDEnableltem specifies

the command identifier of the menu item if uEnable includes the

MF_COMMAND flag If uEnable instead contains MF_BYPOSITION
ulDEnableltem is the zero-based index of the menu item to enable or

disable

MF_DISABLED NOT SUPPORTED

Under Windows CE the menu flag MFDISABLED is not supported To disable menu

items using functions like lnsertMenu and EnableMenultem applications must use

the MF_GRAYED flag

The Complete Windows CE Menu API

The Windows CE menu API includes many more functions than those

few detailed above However their usage is generally similar to those

functions which we have discussed in detail

Page 00122

102

Table 49 The Windows CE Menu Functions

AppendMenu Inserts new menu item at the end of the specified

menu

CheckMenultem Used to add or remove check mark from menu
item

CheckMenuRadioltem Draws bullet next to the specified menu item and

removes any previously drawn bullets from all other

items in the menu item group

CreateMenu Creates an empty menu

CreatePopupMenu Creates an empty pop-up menu

DeleteMenu Deletes an item from the specified menu

DestroyMenu Destroys the specified menu and frees any memory
used by the menu resource The menu analogue of

DestroyWindow

DrawMenu Bar Redraws the menu in the specified window The win
dow is command bar window

EnableMenultem Enables or disables the specified menu item

GetMenultemlnfo Gets information about the specified menu item in

the form of MENUITEMINFO structure

GetSubMenu Gets handle to the specified submenu

GetSystemMenu Gets handle to the window menu system menu in

the specified window

lnsertMenu Inserts new menu item into the specified menu

LoadMenu Loads the specified menu resource

RemoveMenu Deletes menu item from the specified menu

SetMenulteminfo Changes menu item information

TrackPopupMenu Displays pop-up menu and tracks user selections

TrackPopupMenuEx Similar to TrackPopupMenu but passes the exclusion

RECT in TPMPARAMS structure instead of as an

individual LPRECT

Table 4.9 can be used as quick reference for the menu operations pro
vided by the operating system Now that you have good under

standing of Windows CE menu basics understanding how to use

these functions when needed should be straightforward with the help

of the Windows CE on-line documentation

Page 00123

1T1

The Complete CMDBAR Sample Application

All of the concepts presented in this chapter are pulled together in the

sample application CMDBAR.EXE Complete source code for this

application is included on the companion CD under the directory

\Samples\cmdbar The command bar button bitmap file and all of the

project files needed to build the application are included there as well

Concluding Remarks

In this chapter we discussed how to add menus and accelerators to

Windows CE applications We introduced the Windows CE command

bar control and showed how menus controls and tool tips can be

added to command bars This chapter also presented the Windows CE

menu API

At this point you should be able to write some fairly complex applica

tions that include menus modal and modeless dialogs and the stan

dard Windows CE child controls In the next chapter we will explore

programming the Windows CE common control library in greater

detail You will then be able to add even more rich features such as

calendar functionality to your applications very easily

Page 00124

Page 00125

Windows CE Common Controls

his chapter discusses programming Window CE common controls It

concentrates on the month calendar control the date time picker control

rebar controls and command bands Table 5.1 But the basic common
control programming concepts covered here such as how to respond

to common control notifications can be applied to programming all

Windows CE common controls

Like the other common controls each of the controls listed in Table 5.1

resides in COMMCTRL.DLL To use one or more of them in an appli

cation the COMMCTRL.DLL must be loaded The application then

creates the controls using CreateWindow or CreateWindowEx calls with

the appropriate control class name in the lpClassName parameter Care

must be taken to load COMMCTRL.DLL properly See the section

called Why Are My HWNDs Always NULL in this chapter for

details

For any Windows CE common control there are number of mes

sages that an application can send to the control to take advantage of

various features and control functionality In addition there are many
notifications that common control can send to its parent window via

the WM_NOTIFY message

105

Page 00126

Table 5.1 Windows CE Common Controls Covered in This Chapter

11.1

Month Calendar complete month view calendar control User interface

allows for easy selection of one or more dates

Date lime Picker Displays dates and times and provides convenient

user interface for changing the date and time information

displayed

Rebars Resizable child control container

Command Bands special rebar containing close help and OK buttons

The programming model of all common controls is basically the same

Applications create controls with various control styles to enable vari

ous control features Then parent windows send the controls messages

to program their behavior Controls also send notifications to their par
ent window to alert the parent that some action has been performed or

some other occurrence of interest has taken place It is therefore more
economical to present sample application for each control that high

lights some of the more interesting features of the particular control

After understanding the sample application you can delve into other

messages notifications or styles that might be of interest to you for

your specific application programming needs Using the samples as

model you should find that taking advantage of the other Windows

CE common controls not covered in this chapter will not present any
serious challenges

At the end of each section covering control brief description of all

messages and notifications for the particular control is given

Program month calendar controls

Program date time picker controls

Program rebar controls

Program command band controls

Page 00127

107

Why Are My HWND5 Always NULL

There is serious discrepancy between the on-line documentation and the real

ity of creating any of the Windows CE common controls covered in this chapter

The documentation states that applications can create these controls by load

ing COMMCTRLDLL with InitCommonControls and then calling Create Window or

Create WindowEx with the appropriate control window class name Alternatively

the documentation states an application can load just the control classes it

needs with nitCommonControlsEx and then proceed with Create Window or

Create WIndowEx

It turns out that you must use the latter method with either Create Window or

Create WindowEx

For example tried the following

include ccommctrl .h
IWND hwndionth

InitCommonControls

I/Code to create main application window etc removed

liwndNonth CreatewindowEx MONTHCM CLASS ..
To my surprise hwndMonth was NULL after the Create WindowEx call executed

To try and figure out what was going on put call to GetLastError right after

creating the control and got back error code 1407 which stands for ERROR_

CANNOT_FIND_WND_CLASS

This can only mean that InitCommonControls in fact does not register the win

dow class for the month calendar control This error also occurred for other com

mon control classes covered in this chapter

When doing the following however everything worked as expected

include comnctrl .h
RWND h.mdMonth

INITC0IIONC0NrROLSEZ icex
icex.dwSize sizeoficex
icex.dwICC ICC_DATE_CLASSES

InitcommonControlsEx icax
hwndNonth CreateWindowZx MONTECAI_CLASS ..

The Month Calendar Control

The month calendar control provides quick way to include full-

featured calendar functionality in your applications It can display dates

over any specified range of dates and automatically accounts for the

Page 00128

108

Today 57 1011

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

To1ayI6/98

5tart Windows CE Mont. li 618 PM

Figure 5.1 The month calendar control

day of week variations for dates in different years as well as for leap

years An example of the month calendar control is shown in Figure 5.1

The control allows users to move backward or forward through the

months of the year by clicking the left or right arrow button in the con
trol title If the device on which the application is running has key
board users can also move through the months using the Page Up to

advance and Page Down to go back keys

As an alternative if the user taps the name of the month in the control

title pop-up menu appears listing all of the months in the year

Selecting month from this menu tells the control to display the

selected month

The current year can also be changed Tapping on the year in the title

of the control forces an up-down control to appear that can be used to

change the year On devices with keyboard CTRLPage Up and

CTRLPage Down also move the year forward or back

number of features of the month calendar control are programma
ble such as whether the control indicates the current date and various

control color options

Writing personal information management applications such as an

appointment book or meeting scheduler is made much easier given

the functionality of the month calendar control

Page 00129

The control class for the month calendar control which you need to

pass to CreateWindow or Create WindowEx when creating an instance of

this control is MONTHCAL_CLASS

Month Calendar Control Styles

There are five control styles that can be used with the month calendar

control

MCS_DAYSTATE Indicates that the control is capable of drawing spe
cific dates in bold text

MCS_MULTISELECT Indicates that the control can select range of

dates The default is that month calendar controls can only select one

date at time

MCS_NOTODAY Control does not display Today is text at the

bottom

MCS_NOTODAYCIRCLE Control does not box the current date

MCSWEEKNUMBERS Control displays the number of each week

152 to the left of each week

Day States

Month calendar controls can be made to display dates of interest in

bold text For example you may want an appointment calendar appli

cation to display holidays in bold to make them easier to identify

Highlighting dates in bold in month calendar control is done using

the day state mechanism day state is data type called MONTH
DAYSTATE which is simply DWORD Each of the 32 bits of

MONTHDAYSTATE is used to represent the state of the correspond

ing day in particular month If for example bit is set to day in

the corresponding month is displayed in bold on the month calendar

control Zero values in MONTHDAYSTATEs mean the corresponding

dates are not bold

Applications typically tell month calendar controls which dates to dis

play in bold in response to the MCNGETDAYSTATE notification We
will look at the specifics of responding to this and other month calen

dar control notifications little later

Page 00130

An Example

In this example we create month calendar control that highlights

limited set of holidays For the sake of simplicity the holidays it high

lights are among those that always fall on the same date every year
This prevents me from having to implement an algorithm that can do

things such as determine what date the third Sunday in June is in any

given year sorry Dad

Our application uses month calendar control that only allows users

to select single date at time It displays the currently selected date

in the main application window title bar Also the application has

button labeled Today which sets the current selection to todays date

To pick the holidays sat down with my wifes Cat Lover calendar

and chose seven holidays at random wouldnt have picked January

22 Answer Your Cats Question Day any other way Heres what

came up with

January New Years Day

January 22 see above

February 14 Valentines Day

March 17 St Patricks Day

July Independence Day

October 31 Halloween

December 25 Christmas

Our month calendar control will display each of these holidays in

bold Therefore our application needs to use day states Lets look first

at how to do this

Recall that for any given month month calendar control uses

MONTHDAYSTATE 32-bit integer to represent the dates to display in

bold The least significant bit represents the first of the month the next

bit represents the second and so on Since the control keeps track of

the number of days in given month for particular year the last day

of the month may be bit 28 29 30 or 31 Defining day state for

Christmas for example could be done like this

MONTHDAYSTATE mdsXMas

mdsXMa IyIONTHDAYSTATE OxOl 24

Page 00131

Since bit zero of MONTHDAYSTATE represents the first of the

month bit 24 corresponds to the 25th Shifting the number OxOl 24 bits

to the left sets that bit

The application defines an array of MONTHDAYSTATE values to rep
resent all of the holidays picked Notice that the first entry of this

array representing the month of January has two holidays

define ONE OxOl

MONTHDAYSTATE mdsHoliday ONE ONE21 7/January

ONEl3 7/February

ONE16 7/March

7/April

I/May

I/June

ONE3 //July

I/August

I/September

ONE30 I/October

//November

ONE24 //Decenther

The next interesting thing that the application does is to create the

month calendar control and set some of its visual properties hwnd

Main and hlnstance are the main application window and the applica

tion HINSTANCE respectively

define IDC_MONTH 1026

HWND hwndNonth

hwndMonth CreateWindowEx

MONTHCAL_CLASS NULL

WSVISIBLE WS_BORDNR MS_CHILD MCS_DAYSTATE

0000
hwndNain

SIENUIDCMONTHhInstance NULL
OnlnitMonthCalendarhwndlYlonth 70

The MCS_DAYSTATE creates month calendar control that can use

day states which we need in order to highlight our holidays

The only funny thing here is that all of the window position parame
ters passed to Create WindowEx are zero The reason for this is that

month calendar control can be made to display more than one month

at time The control therefore leaves it to the application to set the

size of the control to accommodate the number of months to display

This is made easier by the MCM_GETMINREQRECT message This

message is sent to month calendar control to determine the mini-

Page 00132

112

mum height and width required to display one calendar month When
an application sends this message to month calendar control the

control returns RECT through the iParam parameter of SendMessage
The right and bottom members of this RECT contain the minimum
width and height required respectively

Lets look at the OnlnitMonthCalendar function to see how to use the

MCM_GETMINREQRECT message

void OnlnitMonthCalendarHWND hwndCal mt nLeft mt nTop

RNCT

SendJIessage hwridCal NCR GETMINREQRECT

LPARAM LPRECTr
Resize the month calendar control window

to accommodate one full calendar month

SetWindowPos hwndCal NULL
nLeft nTop
r.right /cx new width

r.bottom Icy new height

SWPNOZORDER

If an application wanted to display more than one month at time it

could pass integer multiples of r.right and
r.left as the cx and

cy para
meters of Set WindowPos

The next interesting part of the application is in the main windows
window procedure where we handle the control notifications we are

interested in Figure 5.2 In our example we respond to the

MCN_SELCHANGE and MCN GETDAYSTATE notifications The

pertinent part of the window procedure is shown in Figure 5.2

The MCN_SELCHANGE notification is sent by the month calendar

control to its parent window whenever the date selection in the month
calendar control is changed by some user interaction with the control

Furthermore as the name implies this notification is only sent when
the selected date or dates change For example tapping date in the

control and then tapping the same date again results in an

MCN_SELCHANGE notification only for the first tap

There is related notification called MCN_SIELECT This notification is

sent by the month calendar control only when the user explicitly taps

date or selects date range It is not sent any other time for example

Page 00133

case WMNOTT
LPNMHDR lpnmhdr

ntD TJINTwParam

switcb nID

case IDC_MOftH

lpnmhdr LPNZIEDRlPara
switch lpnznhdr-coda

case MCN_SELCBANGE

I.PNMSELCHPNGE ipsel

ipsel LPNMSELCIiNGElParam

Onselect lpnmhdr-hwndFrom hwzidNain ipsel
break

case MCN_GETDAY8LZ4TE

LPNMDAYSTATE lpds
lpds LPNMDAYSTATElparam
OnGetDaystatalpds
break

default

break
I/End of switchlprimhdr-code block

return

default

return

//End of switchnXD block

Figure 5i Handling month calendar control notifications

when the date changes by selecting month from the pop-up menu or

tapping the month scroll buttons In the example described above

where user taps the same date multiple times an MCNSELECT
notification would be sent for each of the taps

Since the MCNSELCHANGE notification is sent upon any user inter

action that changes the date selection in the control we only need to

respond to MCN_SELCHANGE

When either the MCN_SELCHANGE or MCN_SELECT notification is

sent the iParain of the parent windows window procedure is an

NMSELCHANGE structure This structure is defined as

typedef struct tagNMSELCHANGE

NMHDR rnnhdr

SYSTEMTU4E stSelStart

SYSTEMTIME stSelEnd

NMSELCHNGE FAR LPNMSELCHANG

Page 00134

ii

The two notification-specific members of this structure stSel Start and

stSelEnd are SYSTEMTIME structures containing date information

about the first and last dates in the new date selection range If the

control does not have the MCS_MULTISELECT style stSelStart and
stSelEnd will be the same

In our sample application we change title bar text to display the cur

rently selected date in response to these notifications The application

code for handling this notification is the OnSelect function

define IsMultiSelecthwnd

GetwindowLong hwnd GWL STYLE MCS_MtJLTISELECT

void OnSelectHWND hwndCalHND hwndParent

LPNNSELCHNGE ipsel

TCHAR pszText64J
I/Set caption text only if control is single select

if IsNultiSeleethwndcai

wsprintfpszText TEXTSelected Date %d\\%d\\%d
lpsel-stSelStart .wMonth

lpsel-stSelStart .WDay

lpsel-stSelStart .wYear
SetWindowTexthwndParent pszText

The IsMultiSelect macro just tests if the month calendar control speci
fied has the MCS_MULTISELECT style OnSelect says if the control

only allows single selection set the current selected date in the appli
cations main window caption The selected date in this case is either

of the SYSTEMTIME members of the NMSLECHANGE structure sent

by the control with the MCN_SELCHANGE notification

The second notification we respond to is MCN_GETDAYSTATE This

notification is sent by the month calendar control to request the day
state information which it uses to determine which dates to display in

bold text

Along with the MCN_GETDAYSTATE notification the control sends

an NMDAYSTATE structure in the iParam of the parent windows win
dow procedure This structure is defined as

typedef struct tagNMDAYSTATE

Page 00135

NMHDR rmthdr

SYSTEMTIME stStart

mt cDayState

LPMONTHDAYSTATE prgDayState

NMDAYSTATE FAR LPNMDAYSTATE

The month calendar control requires that applications supply day state

information for more than just the current month For example if the

current month as determined by the date that the control is currently

using as todays date is June the control will want day state informa

lion for May June and July The cDayState member of this structure

tells the application exactly how many months worth of day state

information is needed The stStart member indicates the first month

for which the control wants day state information This month is

found in the wMonth member of the stStart SYSTEMTIME structure

prgDayState is an array of MONTHDAYSTATE values that the applica

lion fills in with the application specific day state information

Looking at our sample applications OnGetDatState function will make

this much clearer As the code in Figure 5.2 previously showed this

function is called in response to the MCN_GETDAYSTATE notifica

tion

void OnGetflayState LPNMDAYSTATE lpds

mt nStart

nStart lpds-stStart.wMonth-l

for 10 ilpds-cDayState

7/Account for month roll over i.e nStart 11
if nStartll

nStart

lpds-prgDayState Ii mdsHoliday

nStart is the index into our mdsHoliday array It is initialized to the

starting month indicated by the NMDAYSTATE structure minus

The minus accounts for the fact that in mdsHoliday January corre

sponds to index but SYSTEMTIME month values are 1-based Then

for each of the months for which the month calendar control is re

questing day state information we assign the holiday day state infor

Page 00136

mation for that month to the corresponding MONTHDAYSTATE value

in the prgDayState member of the NMDAYSTATE structure

When the window procedure returns after processing this MCN_GET
DAYSTATE notification the month calendar control uses the day state

information in the NMDAYSTATE structure to display the appropriate

dates inbold

Finally the sample application allows the user to return to todays

date by tapping the Today button This is done in the OnGotoToday

function

void OnGotoTodayHWND hwndCal

SYSTEMTThIE stToday

SendNessagehwiidCal MCM_GETTODAY LPARATI stToday
SendMessage hwndCal NCM_SETCURSEL LPARAMstToday

This function simply determines the date that the control currently

uses as todays date with the MCM_GETTODAY message and then

sets the current month calendar control selection by sending

MCM_SETCURSEL MCM_GETTODAY returns SYSTEMTIME
structure representing todays date MCM_SETCURSEL takes SYS
TEMTIME telling the control what day to set the current selection to

The Today Button Doesnt Work Right

Click on the Today button in the sample application The month calendar con

trol switches to todays date but the application caption text doesnt change This

bug was left in the sample application to highlight subtle undesirable feature

of the month calendar control

It turns out that programmatic changes to the current selection in month cal

endar control do not trigger MCN_SELECT or MCN_SELCHANGE notifications

Therefore the MCM_SETCURSEL message sent in the OnGoto Today function does

not cause the MCN_SELECT or MCN_SELCHANGE notifications to be sent Hence

the main application caption text does not change when the Today button is

pressed

This is serious oversight in the design of the month calendar control The

application developer must manually trigger the notification handlers for each of

these notifications

One method for fixing this bug is presented in the next section

Page 00137

117

Before We Move On Lets Fix the Bug

In the previous section we pointed out small bug with the Today
button in the month calendar control sample application This section

describes one way to fix this bug

The caption text in the main window of the application is changed by
the OnSelect function Pressing the Today button results in call to

the OnGotoToday function Fixing the bug is as simple as making

OnGotoToday appropriately call OnSelect

OnSelect requires handles to the month calendar control and the parent
window These are global variables available to any function in the

application Additionally OnSelect needs pointer to an

NMSELCHANGE structure Actually it only needs the wMonth wDay
and wYear components of the stSelStart member of such structure

OnGotoToday already obtains this information by sending an

MCM_GETTODAY message The bug can thus be fixed by replacing

the original OnGotoToday function with the following

void OnGotoTodayHWND hwndCal

SYSTEMTIME tToday

NMSELCH1NGE nrnsei

memsetninsel sizeofnxnsel
SendMessagehwndCal MCM_GETTODAY LPARPNstToday
SendMessage hwndCal MCMSETCURSL LPARPN stToday
nrnsel.stSelStart stToday

OnSe1ecthwndI1onth hwndNain rimsel

There are very few changes to the OnGotoToday function here We de
clare an NMSELCHANGE structure nmsel and initialize its contents

to zero After sending the MCM_SETCURSEL message to the month

calendar control we assign the stSel Start member of nmsel to the

DATETIME structure retrieved by the MCM_GETTODAY message

hwndMonth and hwndMain are the global variables containing the win

dow handles of the month calendar control and the main application

window respectively The OnSelect call therefore has all the informa

tion it needs to update the main window caption correctly

Month Calendar Control Messages and Notifications

The complete list of the control messages and notifications associated

with the month calendar control are described in Tables 5.2 and 5.3

Page 00138

118

Table 5.2 Month Calendar Control Messages

MCM.GETCOLOR Retrieves the color of the specified part of the control

MCM_GEFCURSEL Gets the SVSTEMTIME structure corresponding to the

currently selected date

MCM_GETFIRSTDAYOFWEEK Returns the first day of the week displayed for each

week in the control

MCM_GETMAXSELCOUNT Returns the maximum number of days that can be

selected at one time in the control

MCM_GETMAXTODAYWIDTH Returns the maximum width of the Today string dis

played at the bottom of month calendar controls

MCM_GETMINREQRECT Returns the minimum width and height required to

display one full calendar month

MCM_GETMONTHDELTA Returns the number of months that the control

advances or retreats when the user taps the right or

left month scroll button

MCM_GETMONTI-IRANGE Returns SYSTEMTIME structures representing the

maximum and minimum dates that can be displayed

by the control

MCM_GETRANGE Retrieves the maximum and minimum allowable

dates set for the control

MCM_GETSELRANGE Gets the range of dates currently selected in control

with the MCS_MULTISELECT style

MCMGETTODAY Retrieves the date currently set as todays date in the

control

MCM_I-IITTEST Determines which part of the control contains the

specified point

MCM_SETCOLOR Sets the color of the specified part of the control

MCM_SETCURSEL Sets the current date selection in the control Cannot

be used with controls with the MCS_MULTISELECT

style

MCM_SETDAYSTATE Sets the day state information for days that are cur

rently visible in the control

MCM_SETFIRSTDAYOFWEEK Sets the day Monday Tuesday etc to use as the

first day of each week displayed in the control

MCM_SETMAXSELCOUNT Sets the maximum number of days that can be

selected in control

MCM_SETMONTI-IDELTA Sets the number of months the control advances or

retreats when user taps the right or left month scroll

button

Continues

Page 00139

Table 5.2 Month Calendar Control Messages Continued

l4.11t1 II
MCM_SETRANGE Sets the maximum and minimum dates for

control

MCM_SETSELRANGE Sets the range of currently selected dates for con
trol Message only applies to controls with the

MCS_.MuLTI5ELECr style

MCM_SETTODAY Sets the date that the control specifies as todays

date

The Complete Sample Application

The complete source code for the month calendar control sample ap
plication is shown below

month.h

ifndef _MONTH_H
define MONTH_H_
4define MAXSTRINQLENGTH 129

4define IsNultiSelecthwnd

GetwindowLonghwnd GWL_STYLE MCS_MIJLTISELECT

/Child control IDs

define IDC_EXIT 1024

4tdetine IDC_TODAY 1025

define IDCJ4ONTH 1026

define ONE OxOl

TCHAR pszAppNaine TEXT MONTHSPNPLE
TCHAR pszTitle TEXTWindows CE Month Calendar Control
HINSTANCE ghlnst

mt nwidth

mt nHeight

Define the various windows used in this application

hwndhain The main application window

Table 53 Month Calendar Control Notifications

l1III

MCN_GErDAYSTATE Sent by control to request day state information used

to determine which dates to display in bold

MCN_SELCHANGE Sent by control anytime the currently selected date

or range of dates changes

MCN_SELECT Sent by control whenever the user explicitly selects

new current date or range of dates i.e the user taps

specific date in the calendar

Page 00140

hmdExit Exit button

hwndToday Goto Today button

hwndMonth Month calendar control

MEND hwndNain

HEND hwndExit

HEND hwndToday

MEND hwndNonth

//MONTHDAYSTATES for holidays

MONTHDAYSTATE mdsHoliday ONE ONE2l I/January

ONE13 I/February

ONEl6 i/March

I/April

I/May

//June

ONE3 i/July

I/August

f/September

ONE30 //October

//November

ONE24 I/December

void OnlnitMonthCalendarMEND hwndCal mt nLeft mt nTop
void OnSelect MEND hwndCal

MEND hwndParent

LPNMSELCHANGE lpsel
void OnGetDayStateLPNNDAYSTATE lpds
void OnGotoTodayHWND hwndCal

LRESULT CALLBACK WndProcHWND hwnd UINT message

WPARAM wParam LPARPN iParam

endif

main.cpp

include windows .h

include commctrl.h
include month
mt WINAPI WinNainHINSThNCE hlnstance

HINSTANCE hPrevlnstance

LPTSTR lpCmdLine

mt nCmdShow

MSG msg
RECT rc
INITCOMMONCONTROLSEX icex

WNDCLASS wc
ghlnst hlnstance

wc.style

wc.lpfnWndProc WndProc

wc.cbClsExtra

wc.cbEndExtra

Page 00141

iii

wc.hlnstance hlnstance

wc.hlcon NULL
wc.hCursor NULL
wc .hbrBackground HBRUSHGetStockObject WHITE_BRUSH

wc.lpszMenuName NULL

wc.lpszClassName szAppNaxne

RegisterClass wc
icex.dwSize sizeoficex
icex.dwICC ICC_DATE_CLASSES

InitConznoriControlsEx icex
SystexnParameterslnfo SPI_GETWORKAREA NULL
rc NULL

nwidth rc.right

riHeight rc.bottoxn

hwndNain CreateWindowszAppNaxne szTitle

WS_VISIBLE WE_BORDER WS_CAPTION

00 nWidth nHeight

NULL NULL hlnstarice NULL
hwridExit CreateWindowTEXT BUTTON TEXT Exit

WSVISIBLE WS_CHILD BS_PUSHBUTTON

006535 hwndNain

HMENUIDC_EXIT hlnstance NULL
hwndToday CreateWindowTEXTBUTTON

TEXT Today
WS_VISIBLE WE_CHILD ES_PUSHBUTTON

0376535
hwndMain HMENtI bC_TODAY
hlristanceNIJLL

hwndNonth CreateWindowEx NONTHCAL_CLASS

NULL

WS_VISIBLE WS_EORIDER INS_CHILD MCS_DAYSTATE

0000
hwndlylain HMENU IDC_MONTH

hlnstance NULL
OnlnitMonthCalendarhwndMonth 70
while GetMessagemsg NULL

TranslateMessage msg
DispatchNessage msg

return msg .wParam

LRESULT CALLBACK WndProcHWND hwnd
UINT message

WPARAM wParam

LPARAM iParain

UINT mID
switch message

Page 00142

case WM_NOTIFY

LPNMHDR lpnnthdr

nID UINTwParam
switch nID

case IDC_MONTH

lpnmhdr LPNT1BDR iParam

switch lpninhdr-code

case MCN_SELCHANGE

LPNIISELCHZNGE ipsel

lpsel LPN1YISELCHPNGElParam

OnSelectlpnnthdr-hwndFrom hwndMain lpsel
break

case MCN_CETDAYSTATE

LPNNDAYSTATE lpds

lpds LPNNDAYSTATElParam

OnGetDayState lpds
break

default

break

I/End of switchlpnishdr-code block

return

default

return

I/End of switchnID block

case W_CO1MAND
nID LOWORDwParam
switch nID

case IDC_TODAY

OnGotoToday hwndMonth
break

case IDC_EXIT

DestroyWindow hwnd
PostQuitMessage0
break

default

break

I/End of switchnID statement

return

default

return DefWindowProc hwndrnessagewParam lParamfl

I/End of switchmessage statement

void OnlnitMonthCalendarHWND hwndCal mt nLeft mt nTop

RECT

SendMessage hwndCal MCM_SETCOLOR MCSC_MONTHBK

LPARAJRGBl92l92l92
SendWessage hwndCal MCMSETCOLOR MCSC_TITLEBK

Page 00143

LPARAM RGB

SendMessage hwndCal MCM_SKTCOLOR NCSC BACKGROUND

LPARN RGB 128 128 128

SendNessage hwndCal MCM_GETMINREQRECT

LPAR1N LPRECTr
SetWindowpos hwndCal NULL nLeftnTop
r.right r.bottom SWP_NOZORDER

void OnSelectHNND hwndCal

HWND hwndParent

LPNMSELCHANGE lpsel

TCHAR pszText
I/Set caption text only if control is single select

if IsMultiSelecthwndCal

wsprintfpszText TEXTSelected Date %d\\%d\\%d

lpsel-stSelStart .wMoflth

lpsel-stSelStart .wDay

lpsel-stSelStart .wYear
SetwindowTexthwndParent pszText

void OnGetDayState LPNNDAYSTATE lpds

mt nStart

nStart lpds-stStart.wMonth-l

for 10 ilpds-cDayState

//Account for month roll over i.e nStart 11
if nStart11

nStart

lpds-prgoayState mdsHoliday

void OnGotoTodayHWND hwndCal

SYSTENTIME stToday

SeodNessage hwndCal MCM_GETTODAY LPAR7N stToday
SendNessage hwndCal MCM_SETCURSEL LPARAM stToday

Date Time Picker Control

The date time picker control is closely related to the month calendar

control Since we spent so much time and effort describing the month

Page 00144

124

calendar control we will not spend as much time on the date time

picker control

The window class for this control is DATETIMEPICK_CLASS

date time picker control is an editable text field that can display date

and time information in variety of formats Figure 5.3 Predefined

formats include the long and short formatsfor example Thursday

July 04 1776 and 7/4/76 respectively beware Year 2000-aware

folks

The control also supports time format This means that the control just

displays time in hhmmss format

Application-specific display formats can be defined in number of

ways Applications set the format using the DTM_SETFORMAT mes
sage With this message the application specifies format string that

the control uses to format its display This format string can include

callback fields In this case the control sends notifications to which the

parent window responds by telling the control what text to display in

particular callback field

By default date time picker controls include an arrow button similar

to that found in combo boxes When this button is pressed month

calendar control appears from which users can then select the current

The Date Wednesday Jul 01 1998Et

Start Windcws CE Date. 622 PM

flgure 5.3 The date time picker control

Page 00145

125

date Alternatively date time pickers can include an up-down control

for picking the current date

The date time picker control also allows the user to type into the edit

field of the control

DROP-DOWN MONTH CALENDAR CONTROL VERSION OF THE DATE TIME PICKER

The drop-down month calendar control version of the date time picker control is

good choice for Windows CE applications running on devices with limited touch

screen sizes Applications that require the ability to display dates and times can do

so with minimum of screen real estate using this control style by creating small

date time picker controls

When the control is dosed the date and time information takes up very little space

The more detailed month calendar control only appears temporarily when dropped

down by the user

Date Time Picker Control Styles

The six styles that can be specified for date time picker control are

shown below Only one of DTS_LONGDATEFORMAT DTS_SHORT
DATEFORMAT and DTS_TIMEFORMAT can be used with particu

lar control

DTS_APPCANPARSE Indicates that the control can parse strings

entered into the control by users After the user edits the contents of

the control DTN_USERSTRING notification is sent to which the

parent window can respond by interpreting the string in some way

DTS...LONGDATEFORMAT Specifies that the control is to display

dates in the long date format

DTS_SHOWNONE Allows the control to display no date Used with

the DTM_SETSYSTEMTIME and DTM_GETSYSTEMTIME mes

sages

DTSSHORTDATEFORMAT Specifies that the control is to display

dates in the short date format

DTS_TIMEFORMAT Specifies that the control displays the time

instead of dates If this style is specified the control does not include

Page 00146

126

Note on Date lime Picker Controls That Include Month
Calendar Controls

Date time picker controls do not keep static month calendar control So for

example if you wrote the following code you should not expect hwndCal to be

valid window

HWND hwndCal hwndflateTime

I/mit coon controls etc
I/Create the data time picker control..

hwndDateTime CreateWindow DATETImPICK_CLA8S
NULL

WS_CHILD WS_VISIBLE

DTSSHORTDATEFORMAT

II. .axd extract the month calendar control associated with it

hwndCal HWND SeridMessage hwndDataTime

DTM_GEIMONTHCAL

OL

hwndCal will be NULL The reason is that the month calendar control associ

ated with the date time picker is only around between the times that the date

time picker sends the DTN_DROPDOWN and DTNCLOSEUP notifications

Therefore your applications must initialize the month calendar control in

response to the DTN_DROPDOWN notification the indication that the month

calendar control is being displayed And yes this initialization must include

proper positioning of the month calendar control window using the MCM_
GETMINREQRECT technique we saw in the application in the previous section

month calendar control but only an up-down control for time selec

tion

DTS_UPDOWN Specifies that the control include an up-down control

for date selection instead of month calendar control This style

is always included for date time picker controls with the DTS_

TIMEFORMAT style

An Example

In this section we present very simple example of how to use the

date time picker control All the example does is create control that

displays dates in the long date format and that responds to some basic

text editing user input Specifically if the user types Today in the

Page 00147

display area of the control the control sets its current selection to

todays date

The date time picker control in this example uses an up-down control

for moving through dates Since the month calendar control was

described in detail in the previous section including an example of

date time picker using month calendar control would be redundant

The control is created with the following CreateWindow call hwndMain

and hlnstance are the main application window and the application

HINSTANCE respectively

define IDC_DATETIME 1025

HWND hwndDateTime

hwndDateTime CreateWindow DATETIMEPICK_CLASS

TEXT DateTime
MS_VISIBLE WS_BORDER MS_CHILD DTS_LONGDATEFOPNAT

DTS_APPCNPARSE DTS_UPDONN

70030035
hwndMain

EMEND IDC_DATETIME

hlnstance

NULL

The DTS_APPCANPARSE style is set to allow the controls parent to

respond to user text input

The most interesting feature of our application is that if the user types

Today into the contents of the date time picker the date time picker

sets its date to todays date The ability of the application to respond to

user text input was enabled by the DTS_APPCANPARSE style The

control informs its parent that the user has entered text by sending the

DTN_USERSTRING notification The applications main window pro
cedure is responsible for responding to this notification Here is the

portion of the window procedure that handles WM_NOTIFY mes
sages

case NM_NOTIFY

nID UINTwParam
switch nID

case IDCDATETIME

lpnmhdr LPNMHDRlParam
switch lpnmhdr-code

case DTN_USERSTRING

LPNXDATETIMESTRING lpstr

Page 00148

128

lpstr LPNNDATETIMESTRINGlParam

if lstrcmplpstr-pszuserStringTEXTToday

GetLocalTime lpstrst
lpstr-dwFlags GDT_VALID

break

default

break

//End of switchlpnrrthdr-code block

return

default

return

I/End of switchnID block

The DTN_USERSTRING notification is accompanied by an

NMDATETIMESTRING structure

typedef struct tagNNDATETIMESTRING

NMHDR nxrthdr

LPCTSTR pszuserString

SYSTEMTIT1E st
DWORD dwFlags

ENDATETIMESTRING FAR LPN1DATETIMESTRING

pszuserString is the string entered by the user st is SYSTEMTIME

structure that is filled in by the parent of the date time picker control

The date specified will be the date displayed by the control after

the main window procedure returns from processing the

DTN_USERSTfflNG notification

dwFlags can be set to GDT_VALID indicating that the st member of

the NMDATETIMESTRING structure is valid and that the control

should display this date in the controls current date format Alterna

tively dwFlags can be CDT_NONE to tell the control to show no date

which is valid only if the DTS_SHOWNONE style is used

Our sample application responds to DTN_USERSTRINC by compar
ing the user input string to Today If the user typed Today the

application calls GetLocalTime to determine todays date and sets the st

member of the NMDATETIMESTRTNC to this value Thus the date

time picker knows to display todays date

Specifying Custom Date Time Formats

Date time picker controls are capable of displaying dates and times in

formats other than the predefined short long and time formats Speci

Page 00149

129

fying such formats however requires some extra work on the part of

the application programmer

The simplest way to specify different format is to use the DTM_SET
FORMAT message This message allows the application to specify

format string to be used by particular date time picker control For

mat strings can include any of set of predefined format codes For

example MMM tells the control to display the three-character

abbreviation for the month and dddd tells it to display the full

weekday name full list of these codes is contained in the on-line

documentation for the DTM_SETFORMAT message To embed literal

strings inside format string enclose the desired text in single quotes

For example if the date was Thursday July 1998 and we wanted

our date time picker to display this date as The Date Thursday July

02 1998 our application could set the format string as follows

Sendl4essagehwndDateTime DTM_SETFOEM1T

LPARAMTEXT The Date dddcT4MMdd yyy
Another way that applications can customize date time picker display

formats is by means of callback fields The application adds char

acters to the format string specified with the DTM_SETFORMAT mes
sage Then whenever the control needs to display the date time

information it sends its parent DTN.FORMAT and DTN_FORMAT
QUERY notifications The application responds to these notifications

by specifying the text to use in place of the callback fields and to indi

cate the physical size of the text to be displayed

The application must allow users to enter text in the regions of the

string displayed by the date time picker that corresponds to the call

back fields The application handles the DTN_WMKEYDOWN notifi

cation to respond to user input in callback fields

Date Time Picker Control Messages and Notifications

Tables 5.4 and 5.5 give complete list of date time picker control mes

sages and notifications along with their meanings

The Complete Sample Application

Ill be the first to admit that this application wont be making any

headlines but it will help make you more familiar with how to use

date time picker controls

Page 00150

130

Table 5.4 Date lime Picker Control Messages

_u11.itI1

DTM_GETMCCOLOR Retrieves the color of the specified part of the month

calendar child control contained by the date time

picker Message is only supported for date time pickers

that do not have the DTS_UPDOWN style bit set i.e

that have month calendar controls Compare to

MCM_GErC0LOR

DTM_GETMCFONT Retrieves the font currently in use by the month calen

dar child control contained by the date time picker

Message is only supported for date time pickers that

do not have the DTS_UPDOWN style bit set

DIM GETMONTHCAL Retrieves the HWND of the month calendar child con

trol contained by the date time picker Only supported

for date time pickers that do not have the

DTSUPDOflJN style bit set

DTM_GETRANGE Message gets the range of date time values that the

date time picker can display

DTMGETSYSTEMTIME Retrieves the time currently displayed in the date time

picker Time is returned as SYSTEMTIME

DTM_SETFORMAT Message sets the date time picker controls display for

mat string

DTM_SETMCCOLOR Message sets the color of the specified part of the

month calendar child control contained by the date

time picker Message is only supported for date time

pickers that do not have the DTS_UPDOWN style bit

set Compare to MCM_SETCOLOR

DTM_SETMCFONT Message sets the font used by the month calendar

child control contained by the date time picker Mes

sage is only supported for date time pickers that do

not have the DTS_UPDOWN style bit set

DTM_SETRANGE Message sets the range of date time values that the

date time picker can display

DTM_SETSYSTEMTIME Message sets the date and time to be displayed by the

date time picker

datetime.h

ifndef _DATETIME_H_

def me DATETIE_H_

I/Child control IDs

deflne IDC_EXIT 1024

define IDC_DATETIME 1025

Page 00151

ni

Table 5.5 Date Time Picker Control Notifications

DTN_CLOSEUP Sent by the control when the user closes the drop-

down month calendar child control contained by the

date time picker Only applicable to date time pickers

that do not have the DTS_UPDOWN style bit set

DrN_DATETIMECHANGE Sent by the control whenever the date time display

changes

DTN_DROPDOWN Sent by the control when the user opens the drop-

down month calendar child control contained by the

date time picker Only applicable to date time pickers

that do not have the DTS_UPDOWN style bit set

DTN_FORMAT Sent by the control for each callback field in format

string The application responds by providing the text

to display in the callback fields

DTN_FORMATQUERY Sent by the control for each callback field in format

string The application responds by specifying the maxi

mum pixel width of the text that can be displayed in

the corresponding callback field

DTN_USERSTRING Sent by the control after the user edits text in the date

time pickers date time display

DTN_WMKEYDOWN Sent by the control whenever the user types in call

back field Responding to this notification allows the

control owner to implement custom behavior for key

strokes such as arrow keys

TCHAR pszAppName TEXT DATETIMESAMPLE
TCHAR pszTitleH TEXTWindows CE Date Time Control
HINSTANCE ghlnst

mt nWidth I/Main window width

mt nHeight I/Main window height

Define the various windows used in this application

hwndNain The main application window

hwridExit Exit button

hwndDateTime Date time picker control

HWND hwmdMain

HWND hwndExit

HWND hwndDateTime

LRESTJLT CALLBACK WndProcHWND hwnd
DINT message

WPAR.M wParam

LPARAM lParam
endif

Page 00152

main.cpp

include windows

include commctrl.h

include datetime

mt WINAPI WinNainHINSTNCE hlnstance

HINSTPNCE hPrevlnstance

LPTSTR lpCmdLine

mt nCindShow

MSG msg
RECT rc
INITCOMMONCONTROLSEX icex

WNDCLASS wc
ghlnst hlnstance

wc.style

wc.lpfnWndProc WndProc

wc.cbClsExtra

wc.cbWndExtra

wc.hlnstance hlnstance

wc.hlcon NULL
we.hCursor NULL

wc.hbrBackground HBRUSH COLOR_WINDOW1

wc.lpszMenuNaxne NULL

wc.lpszClassName pszAppName

RegisterCiass wc
icex.dwSize sizeoficex
icex.dwICC ICC_DATE_CLASSES

InitCommonControlsEx icex
SystemParameterslnfo SPI_GETWORKAREA NULL

rc NULL
nWidth rc.right

nHeight rc.bottom

hwndMain CreateWindowpszAppNaxne

pszTitle

WS_VISIBLE WS_BORDER WS_CAPTION

00 nWidth nHeight

NULL NULL hlnstance NULL
hwndExit CreateWindowTEXTBtJTTON
TEXTExit
WS_VISIBLE INS_CHILD BS_PUSHBUTTON

65 35
hwndNain HNENUIDC_EXIT
hlnstanceNULL

hwndDateTime CreateWindow DATETIMEPICK_CLASS

TEXTDateTime
WS_VISIBLE WS_BORDER WS_CHILD

DTS_LONGDATEFORMAT DTS_APPCANPARSE DTS_UPDOWN

70030035
hwndNain HENU IDC_DATETIME

Page 00153

133

hlnstanceNULL
SendNessage hwndDateTime DTM_SETFORMAT

LPARAMTKXTThe Date ddddMdd yyyfl
while GetMessagemsg NULL

TranslateMeSsage msg
DispatchNes sage msg

return msg .wParam

LRKSULT CALLBACK WndProcHWND hwnd

IJINT message

WPARAM wParam

LPARPN lParam

UINT nID
LPNMHDR lpnnthdr

switch message

case NM_NOTIFY

nID UINTwParam
switch mID

case IDC_DATETIME

lpnmhdr LPNKHDRlParam
switchlprixrihdr-code

case DTN_USERSTRING

LPNMDATETIMESTRING lpstr

lpstr LPNMDATETIMFSTRINGlparam

if lstrcmplpstr-PsZtJSerStrJ-flg TEXTToday

GetLocalTime lpstr-st
lpstr-dwFlags GDT_NONE

break

default

break

7/End of switchlprimhdr-code block

return

default

return

I/End of switchnID block

case NM_COMMAND

nID LOWORDwParam
switch nID

case InC_EXIT

DestroyWindow bend
PostQuitMessage0

Page 00154

iij

break

default

break

7/End of switchnID statement

return

default

return DefWindowProchwnd message wParam lareinfl

7/End of switchmessage statement

Rebar Controls

Rebar controls are those nice little draggable strips with buttons or

other controls that appear all over applications like Microsoft Devel

oper Studio and Microsoft Word Applications use rebar controls as an

attractive and flexible way to group and arrange related sets of child

controls Figure 5.4 shows this sections sample application using

rebar control

Rebar controls act as containers for other Windows CE child controls

rebar control can contain one or more bands each of which in turn

can contain one child control The control contained by rebar band

can be toolbar giving the impression of multiple controls in single

11111111
JJBJN5ERTBAND

Exit

Inserts new band into rebar control

startj Windows CE Rebaj 557 PM

Figure 5.4 Rebar control with two bands

Page 00155

135

band Rebar controls can also include image lists Bands in rebar con
trol can display particular image list bitmap

Each band in rebar control can also include gripper bar gripper

bar appears as two vertical lines that can be used to drag the band

Rebar Control Styles

There are seven styles that can be used to specify various rebar control

characteristics

CCS_VERT Causes the control and the bands it contains to display ver

tically instead of horizontally

RBS_AUTOSIZE Rebar band layout automatically updates when
child control size or position changes

RBS_BANDBORDERS Draws borders around rebar bands

RBS_FIXEDORDER Bands can be moved to different rows but band

order is fixed

RBS_SMARTLABELS If band has an icon the icon is only displayed

when the band is minimized If band has text label the label is

only displayed when the band is either in its restored or maximized

state

RBSVARHEIGHT Displays bands at the minimumrequired height if

possible If this style is not set the height of all bands in the control is

set to the height of the tallest band

RBS_VERTICALGGRIIPER Displays the gripper bar vertically in

stead of horizontally Style is ignored if the rebar does not also have

the CCS_VERT style

Applications interact with the controls contained by rebar bands in the

same way as with any other child control The application cart send

the same child control messages to rebar band child controls The child

controls in rebar bands send WM_COMMAND messages to the parent

of the rebar control As this is normally the main application window

applications can respond to user interaction with the child controls as

they would if the controls were not contained by rebar control band

As with most Windows CE controls there are number of messages

and notifications used by rebar controls These include functionality

for inserting and deleting bands getting the number of bands in

Page 00156

rebar control resizing the rebar control and the like Text and back

ground bitmaps can also be added to rebar control bands to further

customize their appearance

Its safe bet that on the majority of occasions that you choose to use

rebar controls you will use them to group the child controls that drive

the functionality of your Windows CE applications relying on the

default behavior of rebar controls to provide other functionality such

as moving them with the gripper bar It is therefore most useful to dis

cuss the procedure for creating rebar controls and inserting bands with

child controls into them This will be the focus of this section

The sample application for this section demonstrates rebar control

with two bands see Figure 5.4 The first band contains the omnipo
tent Exit button The second band contains combo box This

combo box provides us some relief from the monotony of listing the

messages and notifications supported by rebar controls at the end of

chapter Instead the combo box lists all of the rebar control messages
and notifications Selecting an item in the combo box causes the appli

cation to display description of the corresponding message or notifi

cation

All of the new functionality presented in the sample application is

related to creating rebar controls and inserting bands Since this is

described in detail in the pages that follow listing the entire sample

application at the end of the chapter is unnecessary

Creating Rebar Controls

rebar control is created using the REBARCLASSNAME control class

The control is created with the following Create Window call hwndMain

and hlnstance are the main application window and the application

HINSTANCE respectively

deflne IDC_REBAR 1024

HWND hwndRebar

hwndRebar CreatewindowREBARCLASSNAME NULL
WS_CHILD WS_VISIBLE WSBORDER

EBS_VARHEIGHT RBS_BANDBORDERS

0000
hwndNan RHENIJ IDC_REBAR

hlnstanceNULL

Page 00157

As was the case with the month calendar control the nWidth and

nHeight parameters can be set to zero The dimensions of the bands are

what really matter and these are inserted after the rebar control is cre

ated

Rebar Control Bands

Bands are the real nucleus of rebar control The bands are what con
tain the child controls and define the appearance of the rebar control

To fully understand bands we must first look at how Windows CE rep
resents bands We can then explore how to add bands to rebar controls

The REBARBANDINFO Structure

All information describing band is specified in terms of REBAR
BANDINFO structure REBARBANDINFO information is supplied by

applications when inserting bands into rebar controls It can also be

queried by an application to get information about existing rebar con
trol bands The structure is defined as

typedef struct tagREBARBANDINFO

UINT cbSize

DINT fNask

DINT tStyle

COLORREF cirFore

COLORREF cirEack

LPTSTR lpText

DINT cch
mt ilmage

HWND hwndChild

DINT cxMinChild

DINT cyMinChild

tJINT cx
HBITMAP hbmNack

DINT wID
UINT cyChild

DINT cyNaxChild

DINT cylntegral

DINT cxldeal

LPARAM iParam

RRBARBANDINFO FAR LPREBARBANDINFO

cbSize just indicates the size of the REBARBANDINFO structure

Applications set this value using the sizeof function

Page 00158

138

The rest of the members of this structure are used to describe various

characteristics of particular rebar band Not all of the members are

necessarily used The fMask member defines which members are valid

for given instance of the structure fMask can be one or more of the

following values the RBBIM prefix stands for rebar band info mask

RBBIM_BACKGROUND Indicates that the hbmBack member is valid

RBBIM_CHILD The hwndChild member is valid

RBBIM_CHILDSIZE The cxMinChild and cyMinChild members are

valid

RBBIM_COLORS The cirFore and cirBack members are valid

RBBIM_IDEALSIZE The cxldeal member is valid

RBBIM_ID The wID member is valid

RBBIM_IMAGE The ilmage member is valid

RBBIM_LPARAM The IParam member is valid

RBBIM_SIZE The cx member is valid

RBBIM_STYLE The fstyle member is valid

RBBIM_TEXT The lpText member is valid

The fStyle member is used to specify various styles for the band in

question Just as the parent rebar control has set of styles associated

with it each band in rebar control can have its own style attributes

The fStyle member can be one or more of the following the RBBS pre
fix stands for rebar band style

RBBS_BREAK Indicates that the band is on new line i.e in new
row

RBBS_CHILDEDGE The band has an edge at the top and bottom

RBBS_FIXEDBMP If the band has background bitmap the bitmap
does not move when the band is resized

RBBS_FIXEDSIZE The band cannot be moved/sized and no gripper

bar is displayed

RBBS_GRIPPERALWAYS The band always displays gripper bar

even if the RBBS_FIXEDSIZE style is set

RBBS_HIDDEN Makes the band invisible

RBBS_NOVERT The band will not be displayed if the parent rebar

control uses the CCS_VERT style

Page 00159

139

RBBS_VARIABLEHEIGHT The band can be resized by the rebar con
trol The cylntegrczl and cyMaxChild members of the corresponding

REBARBANDINFO structure control the resizing

The cirFore and cirBack members specify the bands foreground and

background colors respectively These colors are ignored if the hbm
Back member is valid

lpText contains the text label used with the band cch specifies the size

of lpText in bytes

ilmage is the zero-based index of the image to display with the band
The rebar control must be using an image list in this case

The hwndChild member specifies the HWND of the child control con
tained by the band cxMinChild and cyMinChild specify the minimum
width and height of the control The band cannot be smaller than these

values Similarly cyMaxChild specifies the maximum child control

height and hence the maximum band height This value is ignored if

the band does not have the RBBS_VAfflABLEHEIGHT style cx speci

fies the width of the band cyChild specifies the initial height of the

band It is also ignored if RBBS_VARIABLEHEIGHT is not set

The hbmBack member specifies bitmap to use as the band background

wID is used to identify the band in Custom Draw notifications

The cylntegral member defines the smallest number of pixels that the

band grows or shrinks when resized This member is ignored if the

band does not have the RBBS_VARIABLEHEIGHT style

cxldeal specifies the ideal band width If the band is maximized to its

ideal width via the RB_MAXIMIZEBAND message the rebar control

tries to make the band this size

Finally iParam is 32-bit value which the application can use to store

any other application-defined information with the corresponding

rebar control band

Inserting Bands into Rebar Controls

Now that we understand how Windows CE represents bands adding

bands to rebar control is straightforward

Bands are inserted by sending the message RB_INSERTBAND to the

rebar control The wParam of this message is UINT specifying the

zero-based index of the band The IParam is pointer to REBAR

Page 00160

BANDINFO structure which contains all the characteristics of the

band to be inserted

For example to create the band containing the Exit button shown in

Figure 5.4 the application includes the following code hwndRebar is

the HWND of the rebar control created previously

HWND hwndExit

REBARBANDINFO rbbi
hwiidExit CreateWindowTEXTBUTTON

TEXTExit ..j
memsetrbbi sizeotrbbifl
rbbi.cbSize sizeofrbbi
rbbi fMask RBBIM_CHILD RBBIM_CHILDSIZE

RBBIM_STYLE REBIM_SIZE
rbbi.fStyle RBBS_GRIPPERALWAYS

rbbi.hwndchilc3 hwndExit

rbbi.cxMinChild 30 I/Band button mm width

rbbi.cyMinChild 65 I/Band button mm height

rbbi.cx 100 7/Band width

SendMessage hwndRebar RB_INSERTBAND LPARPN rbbi

The JMask member of rbbi indicates that the band will have child con
trol RBBIM_CHILD and that the cxMinChild and cyMinChild members
of rbbi are valid RBBIM_CHILDSIZE rbbi.fStyle is also valid as indi

cated by the RBBIM_STYLE mask bit RBBIM_SIZE indicates that the cx

member of rbbi is used to specify the width of the band

The fStyle member of rbbi specifies that the band to be inserted will

always display gripper bar

The band will contain the Exit button because rbbi.hwndChild is set

to the HWND of that button The code goes on to specify that this but

ton and therefore the band cannot be smaller than 30 pixels high and

65 pixels wide and that the band will be 100 pixels wide

Thats all there is to it With this brief introduction and quick look at

the sample application to familiarize yourself with rebar control mes

sages and notifications you are well on your way to enhancing your
Windows CE applications with rebar controls

command Bands

command band control is fancy rebar control that can contain OK
Close and Help buttons called adornments which rebar controls alone

do not support Figure 5.5 Like command bars command bands can

Page 00161

141

Start Wridows CE Corn 549 PM

Figure 55 Command band with adornments

contain child controls Figure 5.6 In addition each band in com
mand band control contains command bar control by default This

means that programmer can use command bands to construct win
dows containing multiple menus Figure 5.6 In the Windows CE con
trol hierarchy we can think of command band controls as superset of

command bar controls

All of the operations you might want to perform with command band

controls have been wrapped into command band API functions

kYttTFTi iiir.iiiil

jJ

Some Operation Exit 9j

Start Windows CE Corn. 552 PM

Figure 5.6 Command band with adornments and child control bands

Page 00162

Instead of sending messages to the control explicitly your application

calls these functions in order to use command bands

Many of these functions will remind you of the command bands sib

ling the command bar In fact the application programming interface

for creating and using command bands is almost identical to that for

command bars

Since we have already looked at how rebar controls work and using

the command band API will be nothing new because of our familiarity

with command bars this section will quickly introduce command
band concepts and then move on

Command Band Functions

The command band API is very similarto the command bar API in

both form and usage For example usage of CommandBands_

AddAdornments is the same as CominandBar_AddAdornments

In all of the functions that follow the hinst parameter if present is the

application HINSTANCE

CornmandBands_AddAdornxnents hwnclCmdBandshinst dwFlags prbbi

CommandBands_AddAdornments inserts the Close button into the com
mand band control specified by the hwndCmdBands parameter Addi

tionally Help or OK button or both can be inserted by specifying

the appropriate values in dwFlags CMDBAR_HELP adds the Help

button and CMDBAR_OK adds the OK button prbbi points to RE
BARBANDINFO structure This structure can be used to customize

the properties of the band that contains the adornment buttons prbbi

can also be NULL
Coxnmandands_Adc1BandshwndCmdBands hinst cBands prbbi

CominandBands_AddBands inserts bands into the command band con
trol specified by hwndCmdBands The number of bands to be inserted is

in cBands prbbi is an array of REBARBANDINFO structures defining

the bands to be inserted Both CommandBands_AddAdornments and

CommandBands_AddBands return TRUE if successful and FALSE if they

fail

CoinmandBands_Createhinst hwndparent wID dwStyles himi

CommandBands_Create creates new command band control hwndPar
ent is the parent of the control wID is the command band control iden

Page 00163

tifier dwStyes contains the command band control styles Command
bands use the same style specifiers as rebar controls him is the handle

of an image list containing the images to be used with the bands This

parameter can be NULL

If successful CommandBands_Create returns the HWND of the newly
created command band control Otherwise it returns NULL

CommandBands_GetCommandBar hwndCmdBands uBand

CommandBands_GetCommandBar is the poorly named function that re

trieves the HWND of the band specified by the zero-based index

uBand If unsuccessful this function returns NULL

CoitunandBands_Height hwndCmdBands

CommandBands_Height returns the height in pixels of the specified

command band control

CommandBands_IsVisible hwndCmdBands

CommandBands_IsVisibe determines whether the specified control is

visible The function returns TRUE if the control is visible and FALSE

if not

CoinmandBandsGetRestorelnformationhwndCxndBands uBand pcbr

CommandBands_GetRestorelnformation gets COMMANDBANDSRE
STOREINFO structure for the band specified by uBand This structure

returned in the pcbr parameter contains size maximized/n-iinimized

state information and the like for the band This information is usu

ally obtained by an application before it closes This information can

then be held in persistent storage so that the next time the application

starts command bands can be restored to their previous states The

function returns TRUE if successful and FALSE if it fails

CommandBands_Show hwndCmdBarids Show

CommandBands_S how is used to show or hide the specified command
band control fShow is TRUE to make the control visible FALSE to hide

it The previous state of the control is returned

Concluding Remarks

The discussion of command band controls concludes our introduction

of Windows CE application building blocks At this point you have

Page 00164

enough background to build the framework for huge number of use
ful Windows CE programs

Part II of this book shows you how to take advantage of the various

persistent storage options available in Windows CE We will look at

the Windows CE file system and registry as well as how to use Win
dows CE database technology These components give you wide

variety of options for storing retrieving and organizing the informa
tion used by your Windows CE applications

Page 00165

TWO

Windows CE Persistent

Storage

emory in Vmdows CE devices consists of some amount of readonly

memory or ROM and some amount of random access iiiemor also

known 1w il-s acronym RANl ROM is where the Windows CE operat

ing system and applications that ship with Windows CE devices are

stored

RAvl on Windowc CE device is divided into two sections The first

section is used as /roçraill meniori This memory is used for example

heaps and stacks For example whenever our Windows CE appli-

cations call Loca/Ahloc to reserve memory on the applications default

heap the memory that is reserved is in program mernor applica

tions that you write and download to devices also reside in program

memory

The other SCCtKfl of Windows CE RAM is devoted to the object store

The object store is used for persistent storage Persistent storage in

Windows CE consists of files and directories databases and database

records and the Windows CF registry All of these types of storage

objects are called persistent because powering off the Windows CE

device on which the are stored does not cause the data they contain

to he lost

in the following chapters we will discuss Windows CE persistent stor

age in detail Each chapter is dedicated to one of the persistent storage

classes such as databases or the registry and to programming tech

niques and the various APIs for using them in you.r applications But

before exploring each of these specific items in detail we must first

discuss the general features of the Windows CE object store

Page 00166

ect Identifiers

Any object that resides in the Windows CE object store is assigned

unique object identfier by the operating system This identifier is used

for example to specify database to be opened or database record to

delete This object identifier is of type CEOID one of the basic Win
dows CE data types

Given the unique identifier of any object in the object store an applica

tion can extract all of the other information about the object For

instance given the object identifier of particular file the application

can determine such information as the name of the file or the directory

that contains the file From database identifier an application can

determine the number of records stored in the database or the total

number of bytes of object store memory used by the database

The CeOidGetlnfo Function

Information about particular object in the object store is retrieved

using the function CeOidGetlnfo Because it can be used to get informa

tion about so many types of objects this function is of paramount im
portance when working with the Windows CE object store

It is important to keep in mind that this function does not retrieve the

contents of an object store object For example it cannot be used to

directly read the data contained in particular Windows CE database

record useful analogy is to think of the information obtained by

CeOidGetlnfo as similar to the kind of information you get from the

Windows NT Explorer on desktop PC CeOidGetlnfo can give you
information about an objects relationship to other objects in the object

store as well as information such as file length database size or object

names Other Windows CE API functions must be used to access or

modify the data represented by an object identifier

The syntax of CeOidGetlnfo is

CeOidGetlnfo oid poidlnfo

oid is the object identifier of the object of interest poidlnfo is pointer

to CEOIDINFO structure through which the function returns all the

information about the object identified by oid The CEOIDINFO struc

ture is defined as

Page 00167

typedef struct _CWOIDINFO

WORD wObjType

WORD wPad
union

CEFILEINFO infFile

CEDIRINFO infDirectory

CEDBASEINFO infDatabase

CERECORDINFO infRecord

I/End of union

CEOIDINFO

wObj Type identifies the type of object represented by the object identifier

passed to CeOidGetlnfo wObj Type can be one of the following values

OBJTYPEJNVALID Specified object identifier not found in the object store

OBJTYPEFILE Object specified by object identifier is file

OBJTYPEDIRECTORY Object specified by object identifier is directory

OBJTYPE_DATABASE Object specified by object identifier is database

OBJTYPE_RECORD Object specified by object identifier is database record

The wPad member is WORD that is in the structure only to align the

structure on double-word boundary It therefore contains no infor

mation about the object queried with CeoidGetlnfo

The last member of the CEOIDINFO structure is union containing an

object information structure with the attributes of the object being

queried Which member of this union is valid depends on the value of

wObj Type For example if the object queried is database as indicated

by wObjType value of OBJTYPE_DATABASE the member you
would use is infDatabase

In all there are four such object information structures CEFILEINFO
CEDIRINFO CERECORDINFO and CEDBASEINFO In the next

three chapters the use of these structures will be covered in greater

detail The definition of each is given in the following sections

The CEFILEINFO Structure

CEFILEINFO structures are used to describe files in the object store

typedef struct _CEFILEINFO

DWORD dwAttributes

CEOID oidParent

WCHAR szFileName

Page 00168

FILETIME ftLastchanged

DWORD dwLength

CEFILEINFO

dwAttributes contains the attributes of the file oidParent is the object

identifier of the files parent directory If NULL the file is at the top

level of the file system oidParent can be passed to subsequent call of

CeOidGetlnfo to get information about files parent directory szFile

Name is null-terminated tinicode string containing the full path and

file name of the file flLastChanged indicates when the file was last

modified and dwLength gives the length of the file in bytes

The CEDIRINFO Structure

Directories are described with CEDIRINFO

typedef struct _CEDIRINFO

DWORD dwAttributes

CEOID oidparent

WCHAR szDirName

CEDIRINFO

dwAttributes contains the attributes of the directory oidParent is the ob
ject identifier of this directorys parent If NULL the directory is in the

root directory of the file system szDirName contains the full path name
of the directory

The CERECORDINFO and CEDBASEINFO Structures

The CERECORDINFO structure contains information about particu
lar Windows CE database record

typedef struct _CERECORDINFO

CEOID oidParent

CERECORDINFO

This structure contains only one member oidParent oidParent contains

the object identifier of the Windows CE database to which this record

belongs

CEDBASEINFO structure contains details of Windows CE data

base object This structure will be defined and discussed in detail in

the Chapter

Page 00169

Figure 11.1 Connecting to the Remove Object Viewer

Viewing the Windows CE Object Store

The Windows CE Toolkit provides tool for visually examining the

object store on either Windows CE device or the Windows CE emula

tor To invoke it select the Remote Object Viewer options from the

Tools menu in Microsoft Developer Studio The dialog box shown in

Figure 11.1 will appear

If you have Window CE device connected to your PC the Remote

Object Viewer will connect to it and display the object store on the

device Otherwise to view the emulators object store press the abort

button

The Remote Object Viewer works much like the Windows NT

Explorer It contains tree view user interface that allows you to

browse the hierarchy of files on the drives attached to the Windows

NT machine on which you are running the Remote Object Viewer

For example in Figure 11.2 you can see root item in the tree labeled

CDrive Expanding this node would display all of the directories on

my drive

More interesting however is that the Remote Object Viewer allows

you to browse both the Windows CE file system and all of the data

bases contained in the object store This tool is very useful for quickly

creating folders moving and deleting files or viewing database

records

Page 00170

150

_TiI

Ee eIp

CDrive

Emulator Database LI Program Files Directors

.J \Cateuories Database My Documents Director3

\DesktopFositions
...J Temp Directors

\EventNotifications
LI Windoms Director3

\UserNotilicationis
button cxc 14336 Applicati

Appointments Database
cxc 34816 Applicati

contacts Database
cuctdraw cxc 13312 Applicati

Expenses

-J PhoneList
cmdbar.exe 343U4 Applicatr

Tasks Database
bands cxc 13824 pplicati

Enriulator Files
rebar cxc 37376 Applicati

My Documents template exe 11776 Applicati

Program Files
month cxc 30720 Applicati

LI Temp datetime cxc 13312 Applicati

jJ Windos registry.exe 15360 Applicatj

Figure 112 The Remote Object Viewer

In Figure 11.2 the Emulator Database tree view item contains all of the

databases currently stored by the Windows CE emulation object store

Similarly the Emulator Files item contains the hierarchy of directories

and files in the emulation file system If the host Windows NT PC

were connected to Windows CE device such as handheld PC or

palm-size PC the Remote Object Viewer would instead show the data

bases and file system on that device

Using the Remote Object Viewer is very much like using the Windows

NT Explorer You can view the contents of directories by expanding
the corresponding folder icon Menu options allow you to rename and

delete files or folders You can also create new folders You can change

the way the contents are displayed with the various View menu

options

The Remote Object Viewer also allows you to transfer files between

your desktop computer and the Windows CE emulation environment

If your computer is connected to an actual Windows CE device you

Page 00171

151

JLL4___JL
Drive

Emulator Database Record

\Categones Database 35000786 Record

\DesktopPositions 08000801 Record

\EventNotilications

\UserNotilications

-J Appointments Database

Contacts Database

Expenses

PhoneList

Tasks Database

Emulator Files

jJ My Documents

Program Files

_j Temp

Windovs

Figure 11.3 Browsing the contents of the phone list database with the Remote Object

Viewer

can also transfer files between the computer and the device As with

the Windows NT Explorer simply drag the icon representing the file

to be transferred to the folder where you wish the file to reside

For databases the Remote Object Viewer allows you to look at all of

the records in particular database For example Figure 11.3 shows the

contents of the phone list database associated with an application we
will see in Chapter Each item in the right-hand pane of the Remote

Object Viewer is database record labeled with its unique CEOID

object identifier

If you select an individual database record in the right-hand pane and

then select the Properties option from the File menu the window in

Figure 11.4 is displayed This window details the contents of the

selected database record It displays the record property data types

and values The subjects of Windows CE database records record

properties and the like are covered in detail in Chapter

Page 00172

152

0001 001 PT_LFWSTR Bill

0002001 PT_LFWSTH 888-8888

00030002 PTJ2 58

Figure 11.4 look at the properties of phone list database record

Page 00173

Working with the Windows
CE File System

he concepts of files and directories under Windows CE are the same as

on other Windows platforms Afile is defined as named collection of

information Files can contain data as do the document files created

by word processor or notepad application Files can also be exe

cutable programs or dynamic link libraries The essential point is that

the file is the most basic unit of storage that allows Windows CE to

distinguish one set of data or information from another directory is

named group of files or other directories

Files and directories on traditional Windows NT or Windows 98

desktop computer have always been closely linked to the presence of

permanent storage in the form of floppy disks or hard disks Com
puter users are used to using utilities such as Windows Explorer to

browse the contents of physical disk on their own PC or on PC to

which they have access via computer network

Devices running under Windows CE do not use floppy or hard disks

as storage media Under Windows CE files and directories are one of

the object types supported by the object store Files and directories are

therefore stored persistently in device RAM along with databases and

database records and the Windows CE registry

153

Page 00174

Despite this difference working with files under Windows CE is very
much like working with files under Windows NT or Windows 98 on

desktop PC Although some file system features are not supported the

file system application programming interface and its semantics are

much the same Hence your understanding of working with the file

system API on Windows NT or Windows 98 will go long way in

helping you learn how to work with the Windows CE file system

W7it

Create and delete files and directories

Open and close files and directories

Read and write files

Copy files and directories

Rename files and directories

Search for files and directories

Access persistent storage on flash cards

Th File System Explorer Application

The file system programming concepts covered in this chapter will be

illustrated with the example of simple File System Explorer applica
tion The application files are found in the \Samples\filesys directory

of the companion CD The application that is generated by the project

is called FILESYS.EXE

You can certainly already use the Remote Object Viewer to browse the

file system on your Windows CE device or on the Windows CE emula
tor But developing an explorer application from scratch is good way
to learn how to use the file system API

The application interface is tree view control that displays the con
tents of the Windows CE file system hierarchically as shown in Figure

6.1 The folder at the top of the tree view display represents the root

directory of the ifie system All other directories and files reside some
where under the root directory

Page 00175

