
155

rtiL

bandexe

bufton exe

crndbar.exe

custdraw .exe

datetirne.exe

dbase.exe

dbview.exe

files .exe

generlc.exe

5tart Windows CE File 13 1854 A1

Figure 61 The File System Explorer application

The FILESYS.EXE application allows users to create delete and

rename files and directories It also provides very primitive file edit

ing File properties such as file attributes and file size can also be

determined using the application

Most of these features are accessed through the Options menu shown

in Figure 6.2

t7Is
Edit File

DeIet

Properties.

hles.exe

generic cxc

5tart Windows CE File S. 1240 PM

Figure 6.2 The File System Explorer Options menu

Page 00176

156

Creating and Deleting Files and Directories

To create new directory with the FILESYS.EXE application first se

lect the parent directory under which the new directory is to be located

The term parent directory is used to define the directory under which

some specific directory or file is located To select file or directory

tap the name or icon of that file or directory in the tree view display

After selecting the directory that is to contain the new directory select

the New Directory option from the Options menu see Figure 6.2 For

example to create new directory under the root directory select the

root directory icon and select the New Directory menu option This

operation results in the creation of new directory called Empty
Folder as shown in Figure 6.3 Note the Empty Folder icon

New files are created in much the same way To create file under

particular directory select the directory and then choose the New File

option under the Options menu file called Empty File will appear

Deleting files and directories is straightforward Simply select the file

or directory you wish to delete and then select the Delete option from

the Options menu

Renaming Files and Directories

Another common file system operation is renaming files or directories

The names Empty Folder and Empty File are not very useful for real

LUJL.....iJLU WULiLLULHLIL..UJLrn
EU

bands.exe

button .exe

cmdbar.exe

EJ custdra.exe

datetirneexe

dbase.exe

dbview.exe

Empty Folder

II files.exe

tart Windows CEQe 5. 950 AM

Figure 6.3 Creating new directory

Page 00177

157

world directories and files To rename file or directory in the File Sys
tem Explorer application double-tap on the file or directory to be

renamed small text entry field appears containing the name of the

selected file or directory You can then type the new file or directory

name in this field Press the Enter key to make the name change take

effect If the application is running on Windows CE device that does

not have keyboard simply tap different part of the screen and your

change will take effect

As an example lets say that you want to change the name of the

Empty Folder directory in Figure 6.3 to Acme Corp Simply double-tap

on the name Empty Folder and type Acme Corp in the edit field The

File System Explorer display should then look as shown in Figure 6.4

Files are renamed the same way Double-tap the file you wish to

rename and type the new name in the edit field that appears

For example lets create file called Expenses under the Acme Corp

directory Tap the Acme Corp directory to select it and then choose

New File from the Options menu new file called Empty File

appears under the Acme Corp directory as shown in Figure 6.5

Rename this file by tapping it twice and then typing the name

Expenses into the edit field that appears The contents of the Acme

Corp directory will then appear as shown in Figure 6.6

bands.exe

button.exe

cmdbar exe

custdraw.exe

dateirne.exe

dbase.exe

dbvie.exe

IAcrne Corp

files.exe

5tar Windows CE Fite 939 AM

Figure 6.4 Renaming directory

Page 00178

158 DIJS1IISI1JaIIIIII11INt$UIuIIaIuI1IaNItIS1I

bandsexe

button exe

cmdbar .exe

custdraw cxc

datetime .exe

dbase cxc

dbvie.exe

Acme Corp

1I Empty File

T1 files.exe

15tart Windows CE File 5. 943 AM

Figure 6.5 Creating new file

Editing Files

Another important set of file system functions we will cover in this

chapter lets your applications write data to and read data from files

To demonstrate these features the File System Explorer application

provides very rudimentary file editing capabilities You will not be

tempted to delete your current word processing software from your

Handheld PC when you see this feature However after finishing this

i_jilt ii

OptIons

button.exe

cmdbar.exe

banclsexe

custdraw.exe

datetime .exe

dbase.exe

dbview.exe

Acme Corp

Experies

f1 files.exe

5tartj Windows CE File 5. 955 AM

Figure 6.6 Renaming file

Page 00179

chapter you will know how to use the file system API to read and
write files

To edit file in the FILESYS.EXE application select the file you wish to

edit by tapping it once Then press the Enter key on your keyboard

For devices that do not include keyboard you can use the Edit File

menu option in the Options menu to invoke this feature The dialog

box shown in Figure 6.7 appears

Text entered in the edit field of this dialog is written to the file if the

user presses the Save button Pressing Cancel aborts file editing

Examining File Properties

The final notable feature of the File System Explorer application is in-

yoked by the Properties option of the Option menu Choosing this

menu option retrieves and displays various features of the currently

selected file The dialog box shown in Figure 6.8 appears showing

which file attributes are set for the selected file as well as the size of

the file in bytes

File Handles

The Windows CE file system API functions access files and directories

by means of file handle Like any other Windows CE handle typekb1
Mfe spent too much money this quarter

Save tancel

Start WndosCEFile5J 959 AM

Figure 6.1 Editing file with the file system explorer

Page 00180

160

Attributes

flReadOnly

fl Hidden

Archive

fl System

Size 76

5trt B23 PM

Figure 6.8 Displaying the properties of file

such as window handle file handle is an identifier for referencing

an object managed by the Windows CE kernel In this case the object is

file or directory

As we will see the function used for opening and creating files returns

handle to the specified file Functions for reading and writing files

require file handle in order to access the right file In short any oper
ation that Windows CE application may perform on file or direc

tory requires valid file handle

file Attributes

Every file in the Windows CE file system has one or more attributes

These attributes are used to distinguish files in terms of characteristics

such as how they can be used and by whom Under Windows CE files

may have one or more of the attributes listed in Table 6.1

FILE ATTRIBUTES

Under Windows CE the FILE_ATTRIBUTE_OFFLINE and FILE_ATTRIBUTE_TEMPORARY

file attributes are not supported

An application typically sets the attributes of file when the file is cre

ated However it maybe necessary to change or determine the attrib

Page 00181

Table 6.1 Windows CE File Attributes

ii1IIIII

FILE_ATTRIBUTE_ARCHIVE Used by applications to mark file that has not

been backed up

FILE ATTRIBUTE COMPRESSED File or directory is compressed For files this

means that all of the data in the file is com
pressed For directories this means that by

default all files or subdirectories created in this

directory are created with the compressed

attribute

FILE_ATTRIBUTE_HIDDEN The file is marked as hidden

FILE_ATTRIBUTE_NORMAL This attribute cannot be used with any other

attribute Hence if set it means that no other

attribute is set

FILE_ATTRIBUTE_READONLY Applications can only read this file They cannot

write to or delete it

FILE_ATTRIBUTE_DIRECTORY Indicates that the particular file is directory

Note This attribute cannot be set It can be

returned by GetFileAttributes

FILE_ATTRIBUTE_SYSTEM Indicates the file is system file i.e it is

intended to be used only by the operating

system

FILE_ATTRIBUTE_INROM Indicates the file is read-only operating

system file stored in ROM

FILE_ATTRIBUTE_ROMMODULE Indicates the file is an in-ROM DLL or EXE

utes of file after it has been created Applications might even need to

determine the attributes of files they did not create

The Windows CE file system API provides two functions to read and

modify the attributes of file GetFileAttributes and SetFileAttributes

The first of these functions has the following form

GetFileAttributes lpFileName

This function takes the Unicode string name of the file of interest in

the parameter lpFileName If successful it returns DWORD contain

ing the file attributes that are set for the file The return value is the bit

wise OR of one or more of the file attribute values specified in Table

6.1 Tn addition Windows CE provides for two additional return val

ues for this function FILE_ATTRTBUTE_INROM and FILE_AT

TifiBUTE_ROMMODULE The first of these indicates that the file in

Page 00182

162

question is read-only operating system file stored in ROM The sec

ond indicates that the file is DLL or executable .EXE file stored in

ROM and intended to execute in place This means that files with the

FILE_ATTRIBUTE_ROMMODULE attribute do not need to be copied

into RAM in order to rim Files of this type are typically libraries and

applications that ship with the Windows CE operating system

The attributes of file can be set using the SetFileAttributes function

SetFileAttributes lpFileNaxne dwFileAttributes

This function returns TRUE if the attributes are successfully set and

FALSE if the function is unsuccessful

As an example lets assume that we want to mark as hidden all files

that are read-only The piece of code responsible for testing if file is

read-only and then setting the hidden file attribute would look some

thing like this

//File name is in lpFileName

DEORD dwAttributes

dwAttributes CetFileAttributeslpFileName

if dwAttributes FILE_ATTRIBUTE_READONLY

dwAttributes FILE_ATTRIBUTE_HIDDEN

SetFileAttributes lpFileNarne dwAttributes

Note that as in Windows NT and Windows 98 SetFileAttributes cannot

be used to set the FILE_ATTmBUTE_COMPRESSED attribute of file

If this attribute is not set when the file is created you must use the

DeviceloControl ftmction to set it

Searching for Files

It may seem little strange to discuss searching for files in the Win
dows CE file system this early in the chapter Certainly operations

such as creating and deleting files must be more fundamental than file

searching

While this may be true in some sense it is also the case that many file

operations are iterative For example deleting directory requires

recursively deleting all files and subdirectories contained by the direc

Page 00183

fl

tory to be deleted Such an iterative process entails file searching oper
ations to look for files to delete

As another example consider how an application might determine if

particular directory is empty There is no Windows CE API function

IsDirectoryEinpty Writing such an operation from scratch involves

searching the directory in question to see if it contains any files

In fact file searching is so fundamental to many file system operations

that understanding how these features are implemented requires that

we first understand file searching under Windows CE

Windows CE provides three functions for such operations FindFirst

File FindNextFile and FindClose

The first two of these functions return data structure containing

information about the files that they retrieve Before discussing the

find functions in detail lets first look at this structure

FINDFIRSTFILEEX

The function FindFirstFileEx is not supported under Windows CE

The W1N32_FIND_DATA Structure

The W1N32_FIND_DATA structure is used by Windows CE to provide
information about file located by one of the find functions

typedef struct _W1N32_FIND_DATA

DWORD dwFileAttributes

FILETIME ftcreationTime

FILETIME ftLastAccessTime

FILETIME ftLastwriteTime

DWORD nFileSizeHigh

DWORD nFileSjzeLow

DWORD dwOID

TCHAR cFileName MAX_PATH

W1N3 2_FIND_DATA

The members of this structure provide all descriptive information

about the file either directly or by providing means for extracting

more information such as through the dwOID member

Page 00184

dwFileAttributes contains the attributes of the file as described previ

ously in Table 6.1 ftCreationTimeftLastAccessTime and fiLast WriteTiine

represent the times the file was created last accessed and last written

to respectively nFileSizeHigh and nFileSizeLow are the high-order and

low-order words of the total size of the file The dwOID member con
tains the object identifier of the file This means that whenever an

application can get W1N32_FIND_DATA about file it can also get

any of the CEFILEINFO data about the file with simple call to

CeOidGetlnfo Finally cFileName is null-terminated string containing

the name of the file

We will primarilybe interested in how to use the FindFirstFile and

FindNextFile functions to get W1N32_FIND_DATA information It

should be noted that Windows CE provides some additional functions

for quickly accessing some of the data provided by this structure In

particular GetFileTime retrieves the same information as provided by
the FILETIME members of the W1N32_FIND_DATA structure

GetFileSize returns the size of specified file

In addition there is SetFileTime function to allow applications to

modify the creation time last access time and last write time of file

Because of its similarity to the W1N32_FIND_DATA structure some
what parenthetically mention the BY_HANDLE_FILE_INFORMA
TION structure This is another data structure that contains much the

same information about file as W1N32_FIND_DATA Given handle

to an open file an application can get BY_HANDLE_FILE_INFOR
MATION structure by calling GetFilelnformationByHandle

The FindFirstFile and FindNextFile Functions

The FindFirstFile function is used to locate specific file or directory It

can also be used to find the first file in specified directory

FindFirstFilelpFileName lpFindFileData

The lpFileName parameter contains path and file name or directory

name lpFindFileData is used as return value by the function It is

pointer to W1N32_FIND_DATA structure containing information

about the located file

If successful FindFirstFile returns search handle This handle refer

ences an internal structure that is responsible for keeping track of the

Page 00185

progress of file search We will see the utility of this search handle

bit later when we discuss the FindNextFile function If FindFirstFile

fails it returns INVALID_HANDLE_VALUE

The lpFileName parameter accepts wildcards This is how you can tell

FindFirstFile to differentiate between finding the first file in specified

directory and finding the directory itself

For example this line of code will try and find directory called

\MyFiles

HANDLE hFile

WIN3 2_FIND_DATA fd
memsetfd sizeoffdfl
hFile FindFirstFileTEXT\\MyFiles fd

On the other hand one subtle change to the FindFirstFile call will find

the first file in the \MyFiles directory

hFile FindFirstFileTEXT\\MyFiles\\ fd

FindNextFile is used to continue search started by FindFirstFile For

example if FindFirstFile finds the first file in specified directory Find

NextFile will attempt to find the next file in that directory Each succes

sive call to FindNextFile uses the search handle that is updated with

each find operation to keep track of the search progress The syntax of

FindNextFile is

FindNextFilehFindFile lpFindFileData

The first parameter is the search handle returned by previous call to

FindFirstFile The second parameter is the W1N32_FIND_DATA return

value just as in FindFirstFile

FindNextFile returns TRUE if successful and FALSE if it fails As with

all of the file system functions call to GetLastError can be used to get

additional information about why the function call failed if the return

value is FALSE

Creating and Opening Files and Directories

As under Windows NT creating files and directories under Windows

CE is done using the CreateFile and CreateDirectory functions Under

Windows CE files are also opened using the CreateFile function as we
will soon see

Page 00186

i6

Creating and Opening Files

To create file your application calls the CreateFile function

CreateFile lpFileName dwDesiredAccess dwShareMode

lpSecurityAttributes dwCreatioriDistribution

dwFlagsAndAttributes hTemplateFile

lpFileName is the null-terminated Unicode string file name of the file to

be created Long file names are supported

dwDesiredAccess is used to indicate the access or read-write mode of

the file It can be any combination of the following values

Specifies device query access This allows an application to query
device attributes

GENERIC_READ Specifies that the file is created/opened with read

access

GENERIC_WRITE Specifies that the file is created/opened with write

access

For example to open file called myfile.txt with read-write access

an application would do the following

CreateFileTEXTmyfile.txt
GENERIC_READ GENERIC_WRITE..

The third parameter to CreateFile dwShareMode is used to specify if

and how the file can be shared It can be combination of one or more
of the following values

Indicates that the file cannot be shared

FILESHARED_READ Subsequent open operations on the file will

only succeed if read access is requested via the dwDesiredAccess

parameter

FILE_SHARED_WRITE Subsequent open operations on the file will

only succeed if write access is requested

Under Windows CE file security attributes are ignored The ipSecurity

Attributes parameter should therefore be set to NULL

The dwCreationDistribution parameter controls how the CreateFile func

tion behaves when attempting to create existing files as well as what

to do when the function tries to open nonexistent file This parame
ter can be one of the following

Page 00187

CREATE_NEW The function creates new file If the specified file

already exists the CreateFile function fails

CREATEALWAYS The function creates new file If the specified file

already exists it is overwritten by the CreateFile operation

OPEN_EXISTING The function opens an existing file If the specified

file does not exist CreateFile fails

OPEN_ALWAYS The function opens an existing file If the specified

file does not already exist it is created

TRUNCATE_EXISTING The function opens the file but truncates it

to zero length The file must be opened with GENERIC_WifiTE
access CreateFile fails if the specified file does not exist

By taking look at the allowed dwCreationDistribution values we can

see how CreateFile can be used to both create new files and open exist

ing files For example it is cominon to want to open file or have the

operating system create file of that name if it does not exist as fol

lows

CreateFile TEXT myfile .txt
GENERIC_READ GENERIC_WRITE

NULL OPEN_ALWAYS..

dwFlagsAndAttributes determines the file attributes and several operat

ing modes We have already discussed file attributes The flags portion

can be any combination of the following values

FILE_FLAG_WRITE_THROUGH Instructs Windows CE to write di

rectly to the object store when writing to the specified file as op
posed to writing through any intermediate cache

FILE_FLAG_RANDOM_ACCESS The file supports random access

Most of the flags that are supported under Windows NT are not sup
ported under Windows CE Also note that the SECURITY_SQOS_
PRESENT flag or any of the other values that can be used with it

under Windows NT are not supported under Windows CE

Finally the hTemplateFile parameter is ignored under Windows CE and

should be set to NULL

If CreateFile is successful handle to the open file is returned If it fails

the return value is INVALID_HANDLE_VALUE

Open files are closed using the CloseHandle function

Page 00188

CloseHandlehObject

where hObject is the handle of the file to close

Creating Directories

Creating directory is accomplished with the CreateDirectory function

The CreateDirectoryEx function available under Windows NT is not

supported in Windows CE The CreateDirectory function syntax is

CreateDirectorylpPatbName lpSecurityAttributes

lpPathName is null-terminated Unicode string specifying the path of

the directory to be created The maximum allowed length of this name

is the operating system-defined value MAX_PATH The second pa
rameter to this function is ignored as Windows CE does not support

file security attributes lpSecurityAttributes therefore should be set to

NULL

If CreateDirectory is successful it returns TRUE If unsuccessful it

returns FALSE An application can get more detailed information

about why the function failed by calling GetLastError

An Example

As an example lets take look at how the File System Explorer appli

cation creates new files and directories These features are triggered by
the New Directory arid New File menu options so the first code to

look at is the command handlers in the main window procedure for

these two menu options see Figure 6.2

The pertinent sections of the window procedure are shown below

Note that tviCurSel contains the currently selected tree view item

TV_ITEM structure The iParam member of this structure always con
tains the CEOID object identifier of the file or directory corresponding

to the currently selected tree view item

LRESULT CALLBACK WndProc

HWNJ hwnd
UINT message

WPARAM wParam

LPARAN iParam

CEOID oid
CEOIDINFO oidlnfo

Page 00189

TCHAR pszFi1eNe pszDjrectoryNjj1e
switch message

case WM_COMMAND

DINT nID
nID LOWORDwPararn

switch nID

case IDCNEWDIRECTORY

I/Create new directory

old CEOIDtviCurSel.lParam

CeOidGetlnfo old oidlnfo
if OBJTYPE_DIRECTORYoidlnf .wObjType

pszFileName NULL
pszDirectoryName TEXTEmpty Folder

else

MessageBoxNULL TEXTFiles cannot have children
TEXT New Folder Error MB_OKIMB_ICONEXCLANATION

return

OnNew pszFileName pCzDirectoryNaxue tviCurSel .hltem

oidlnf TRUE
break

case IDCNEWFILE
/Create new file

old CEOIDtviCursel.lparam

CeOidGetlnfo old oidlnfo
if OEJTYPE_DIRECTORYoidlnfo .wObj Type

pszDirectoryName oidlnfo inf Directory szDirName

pszFileName TEXTEmpty File

else

MessageBoxNULL TEXTFiles cannot have children
TEXTNew Folder Error MB_OKIMB_ICONEXCLAMATION

return

OnNewpszFileName pszDirectoryName

tviCurSel.hltem oidlnfo FALSE
break

In both the case of creating new file and creating new directory the

application first extracts the CEOIDINFO for the currently selected file

or directory request to create new file or directory will force the

application to try and create the file or directory with the currently

selected item as its parent

Page 00190

Obviously this only makes sense if the currently selected object is

directory Files cannot contain other files Only directories can contain

other files or directories For this reason both the IDC_NEWDIREC
TORY and IDC_NEWFILE case statement code blocks check the

wObj Type member of the object information structure In either of

these cases if the currently selected file system object is not directory

warning message is displayed and the operation is aborted

If the user is trying to create new file or directory under an existing

directory however the appropriate default name is assigned to

pszFileName or pszDirectoryName and the application defined OnNew

function is called In the case of request to create new directory the

value Empty Folder is assigned to pszDirectory In the case of new
file creation request the name Empty File is assigned to pszFileName

The OnNew function contains lot of code for adding new items to the

tree view control in response to new file and directory creations This

code is left out so that we can concentrate on the parts of the function

that relate directly to the file system API Also only the part of this

function which creates new files is shown Since the section that cre

ates new directories is very similar it was left out for the sake of

brevity

BOOL OnNewTCHAR pszFileName

TCHAR pszDirectoryName

HTREEITEM hParent

CEOIDINFO oidlrif

BOOL blsDirectory

TCHAR pszFullName

HANDLE hFile

wsprintfpszFullName TEXT%s\\%s
pszDirectoryNarne pszFileNaxne

hFile FindFirstFilepszFullNeine fd
if INVALID_HANDLE_VALUEIhFile

/File is new

FindClose hFile
hFile CreateFilepszFullNaxne

GENERIC_READIGENERIC_WRITE NULL

CREATE_NEW FiLE_ATTRiBUTE_ARCHIVE NULL

else

/File already exists

MessageBox NULL
TEXTFile \Empty File\ Already Exists

Page 00191

TEXTCreate New File Error
MB_ICONEXCLAMATION NB OK

return FALSE

return TRUE

The arguments pszFileName and pszDirectoryName are the name of the

file to be created and the parent directory name respectively hParent is

the tree view item corresponding to the parent directory in the user

interface oidlnfo is the CEOIDINFO structure containing information

about the parent directory bisDirectory indicates whether new file or

new directory is to be created by the function

To create directory or file CreateFile must be passed the complete

path name of the directory or file to be created OnNew therefore first

constructs the full path name in the variable pszFullName To do this

OnNew only needs to concatenate the directory name contained in

pszDirectoryNaine with the file name in pszFileName This is the pur
pose of the wsprintf call at the beginning of the function charac

ter is inserted between the parent directory name and the file name

After the complete new file path name has been constructed OnNew

checks to see if the specified file already exists It does so by calling

FindFirstFile

hFile FindFirstFilepszFullName fd

pszFullName contains the full path name of the file to be created If this

file does not exist FindFirstFile will return INVALID_HANDLE_
VALUE Otherwise it returns the handle of the existing file

If the file does not exist i.e if hFile equals INVALID_HANDLE_

VALUE OnNew closes the search handle hFile and creates the new
file If the file already exists message to this effect is displayed for

the user and the function OnNew returns without creating new file

Ieading and Writing File Data

File read and write operations are closely linked to the concept of the

file pointer file pointer marks the current position in given file

Read operations read data from the files current position Write opera
tions write data to the file at the position indicated by the file pointer

Page 00192

Files also have an end offile marker This marker indicates the last byte

of data in the file As such the end of file marker also determines the

size of the file As file write operations increase the size of file they

move this end of file marker Hence there is no such thing as writing

past the end of file files grow to accommodate the data being writ

ten to them

Files access can be either sequential or random Sequential access means
that data is read from the file in order Random access means that data

can be read from the file in any order as determined by the application

reading the file For random access to be possible there must be way
for applications to manually set the file pointer without requiring read

or write operations to occur We will introduce such functions later in

this chapter

ASYNCHRONOUS FILE ACCESS

Under Windows NT file access operations can be synchronous or asynchronous

Windows CE however does not support asynchronous access

The ReadFiIe Function

Data is read from file using the ReadFile function

ReaciFile hFile 1puffer nNwnberOfBytesToRead

lpNumberOfBytesRead ipOverlapped

hFile is the handle of the open file from which the data is to be read

lpBuffer is pointer to the data buffer which receives the data nNum
berOfBytesToRead specifies the number of bytes of data to read from the

file lpNumberOfBytesRead is pointer to DWORD used by ReadFile to

return the actual number of bytes of data read As Windows CE does

not allow files to be created with the FiLE_FLAG_OVERLAPPED flag

ipOverlapped is not used ipOverlapped should be set to NULL

ReadFile returns TRUE if the operation is successful and FALSE if the

operation fails An application can get additional error information in

this case by calling GetLastError

ReadFile returns once the number of bytes specified in nNumberOfBytes
ToRead have been read or when an error occurs If an application spec
ifies that more bytes be read than the file actually contains ReadFile

Page 00193

will simply read as many as it can and return the actual number of

bytes read in lpNumberOfBytesRead

Random Access Files

The ReadFile function advances the file pointer lpNumberOfBytesRead
This accounts for the default sequential nature of file access To imple
ment random file access your applications must be able to control the

position of the file pointer manually This can be done using the Set

FilePointer ftmction SetFilePointer can be used to move file pointer by

specifying 64-bit number representing the number of bytes the

pointer is to be moved

The syntax of SetFilePointer is

SetFilepointer hFile 1DistanceToIove

lpDistanceToMoveHigh dwMoveMethod

hFile is the handle of the open file whose pointer is to be moved lDis

tanceToMove specifies the low order word of the number of bytes to

move the file pointer This value can be negative in which case the file

pointer is moved backward lpDistanceToMoveHigh is pointer to the

high order word of the number of bytes to move the file pointer This

parameter is also used by SetFilePointer to return the high order word

of the new file pointer position

The dwMoveMethod parameter indicates the starting point of the move

operation It can be one of the following three values

FILE_BEGIN The starting point is the beginning of the file In this case

the distance to move is interpreted as the unsigned pointer location

FILE_CURRENT The starting point is the current file pointer position

FILE_END The starting point is the end of file position

If the function succeeds it returns the low order word of the new file

pointer position If lpDistanceToMoveHigh was not NULL this parame
ter will return the high order word of the new position If SetFilePointer

fails the return value is and lpDistanceToMoveHigh is NULL

Random access of Windows CE files can therefore be accomplished by
first specifying FILE_FLAG_RANDOM_ACCESS as one of the

dwFlagsAndAttributes values when creating or opening the file with

CreateFile SetFilePointer is then called to manually position the file

pointer for read and write operations

Page 00194

An application may also want to change the position of the end of file

marker of particular file This is done using the SetEndOfFile ftmc

lion

SetEndOfFilehFile

This ftmctions moves the end of file marker of the file specified by the

file handle hFile to the current file pointer position of that file If suc

cessful this function returns TRUE Otherwise it returns FALSE

For example to move the end of file marker to the beginning of file

an application could do this

I/Set file pointer to beginning of file

SetFilePointerhNyFile FILE_BEGIN
I/Now set end of file marker

SetEndOfFile bNyFile

The WriteFile Function

Writing data to file in Windows CE is done with the WriteFile func

tion The syntax and use of this function is very similar to ReadFile

WriteFile hFile lpBuffer niSuxnierOfBytesToWrite

lpNuinberOfBytesWritten lpOverlapped

The WriteFile parameters have the same meanings as the correspond

ing ReadFile parameters except for nNumberOfBytesTo Write and

lpNumberOfBytesWritten It isnt much of stretch to realize that

nNumberOfBytes To Write specifies the number of bytes of data to write

to the file indicated by hFile Similarly WriteFile returns the actual

number of bytes written through the lpNuin berOfBytes Written parame
ter As with ReadFile the ipOverlapped parameter is ignored and should

be set to NULL

To write data to file the file must have been opened with

GENERIC WRITE access

Data can be written to any position in random access file much as

data can be randomly read from random access file The file must be

created or opened with the FILE_FLAG_RANDOM_ACCESS flag set

Then SetFilePointer can be used to specify the file location to which

data is written

The File System Explorer example application of this chapter demon
strates ReadFile and WriteFile and SetFilePointer operations by means
of its very rudimentary file editing feature

Page 00195

An Example

To gain further insight into how to use the ReadFile and WriteFile func

tions lets look at how the File System Explorer application imple
ments its rudimentary file editing capabilities See Figure 6.7 for look

at the basic file editor

The two user operations which invoke the editor are selecting the Edit

File menu option and pressing the enter key after selecting file Both

of these operations cause the following application-defined OnEdit

function to be called

void OnEditHWND hwnd OIDINFO oidlnfo

if OBJTYPE_FILEoidlnf .wObjType

DialogBoxghlnst MAKEINTRESOURCEIDD_EDITFILE

hwnd DLGPROCEditfllgProc

else

MessageBoxNULL TEXTYou May Only Edit Files
TEXTDirectories May Not Be Edited

MB_OK MB_ICONEXCLAATION

The parameter hwnd is the parent of the dialog box which acts as the

file editor oidlnfo is the CEOIDINFO structure containing information

about the currently selected file or directory

OnEdit checks the type of the currently selected object and displays an

error message if the object is directory It doesnt make sense to edit

directory

On the other hand if the object is file the editor is invoked by the

DialogBox call All of the rudimentary file editing functionality is

coded in this dialog procedure EditDlgProc The dialog procedure

looks like this

BOOL CALLBACK EditDlgProc

HWND hwndolg

DINT message

WPARAM wParam

LPARAN iParam

TCHAR pszText

HWND hwndEdit

DWORD dwBytes

Page 00196

CEOID old
CEOIDINFO oidlnfo

switch message

case WMINITDIALOG
oid CEOIDtviCurSel.lParam

CeOidGetlnfo old oidlnfo
pszText
hFile CreateFileoidlnfo.infFile.szFileNaine

GENERIC_READ GENERIC_WRITE

NULL OPEN_EXISTING FILE_ATTRIBUTE_NORMAL

NULL
if INVALID_HAXDLE_VALUE hFile

dwBytes

ReadFilehFile pszText

oidlnf infFile dwLength

dwBytes NULL
hwndEdit GetOlgltemhwndDlg IDC_FILETEXT
SetWindowTexthwndEdit pszText

wsprintfpszText TEXTEdit File %s
oidlnfo.infFile.szFileNarae

SetWindowpext hwndDlg pszText

return TRUE
case WM_COIYB4AND

DINT nIJ
nID LOWOROwParam
switch nID

case IDOK

I/Save text to file

DWORD nBytesTowrite

hwndEdit GetolgltemhwndDlg IDC_FILETEXT

GetWindowText hwndEdit pszText

MAX_FILE_LENGTH

SetFilePointerhFile FILE_BEGIN

nBytesToWrite lstrlenpszTextsizeofTCHAR
WriteFile hFile pszText nBytesToWrite

dwEytes NULL
I/Deliberate fall-through

case IDCANCEL

CloseHandle hFile
EndDialoghwndfllg nID
break

default

break

I/End of switchnID statement

return FALSE
default

Page 00197

177

return FALSE
I/End of switchmessage statement

When the dialog box is opened the WM_INITDIALOG message han

dler is executed This code gets the CEOIDINFO about the currently

selected file via the global variable tviCurSel As we mentioned above

this always contains the TVJTEM of the currently selected file or

directory in the tree view user interface The file name is extracted

from this CEOIDINFO data and the application attempts to open the

specified file with CreateFile call

If the file exists CreateFile returns the handle of the file This handle is

stored in the global variable hFile so that the rest of the dialog proce
dure has access to it The contents of the file are read with the ReadFile

call

ReadFile hFile pszText oldlnfo infFile.dwLength

dwBytes NULL

The number of bytes that ReadFile attempts to read is equal to the

length of the file This is specified by oidlnfo.infFile.dwLength The file

data is read into the string pszText

Next the contents of the file are placed in the dialog box edit control

by the first SetWindowText call

SetwindowTexthwridEdit pszText

Finally the dialog box caption is changed to show the name of the file

being edited

The FILESYS.EXE user is now free to edit the file by typing text into

the edit control

To save the new text into the file the user presses the Save button This

action invokes the IDOK command handler in the EditDlgProc dialog

procedure This handler code does exactly the opposite of the

WM_INITDIALOG code The contents of the editor are copied into

pszText by the Get WindowText call Next the file pointer is set back to

the beginning of the file and the text is written to the file via WriteFile

Execution then falls through to the IDCANCEL handler which closes

the file and the dialog box This is the same code that is executed when

the user presses the Cancel button

Page 00198

Copying and Renaming Files and Directories

Files and directories on Windows CEbased devices much like their

counterparts on Windows NT are often used by users of the devices to

organize data and documents Lets say that you are writing specifi

cation on your Handheld PC of course for new suite of Windows

CE applications This specification might consist of several files such

as functional and design specifications for each application in the

suite

If you are like most of us the organization of this specification will

change as your understanding of the required behavior of the applica
tions you are designing evolves Therefore the locations and names of

the files that make up your application suite specification are unlikely

to be the same when the specification is complete as they were when
the files were created

Copying files and directories renaming them and moving them
around in directory tree are all very common file operations Win
dows CE supports these operations with the CopyFile and MoveFile

functions The MoveFileEx function found in Windows NT is not sup
ported under Windows CE

The CopyFile Function

Copying file in Windows CE simply requires that an application

know the name of the file to be copied and the name of the file to

which it is to be copied

CopyFilelpExistingFileName lpNewFileMaxne bFailIfExist

The lpExistingFileName parameter contains the null-terminated string

name of the file to be copied lpNewFileName is the name of the file to

which CopyFile copies the original file

bFaillfExist tells CopyFile what to do if file named lpNewFileName

already exists If this parameter is TRUE and the new file already

exists CopyFile fails and returns FALSE If bFaillfExist is FALSE in this

same scenario CopyFile does not fail In this case it overwrites the

existing file named lpNewFileNczme

Another effect of copying file is that all of the attributes

FILE_ATTRIBUTE_HIDDEN etc of the file are copied to the new
file

Page 00199

The MoveFile Function

At first glance the MoveFile function seems to have been inappropri

ately named MoveFile actually renames files and directories in the Win
dows CE file system It might seem that RenameFile would be more
accurate name for this function

In the case of renaming files that might be correct But consider the

case of renaming directory Lets take the example of Windows CE

directory called MyFiles When an application renames this directory

to MyOldFiles for example all of the children of this directory are

renamed accordingly as well More specifically all files and subdirec

tories that MyFiles contains have their path names changed to reflect

the fact that MyFiles has changed to MyOldFiles Figure 6.9 From

this point of view its as if the MoveFile operation physically moved all

the children of MyFiles to new directory called MyOldFiles

The syntax of the MoveFile function is

MoveFilelpExistingFileName lpNewFileName

The lpExistingFileName and lpNewFilename parameters are the same as

in the CopyFile function lpExistingFileName is the name of the file or

directory to be renamed and lpNewFileName is the name to which the

file or directory is renamed

If MoveFile is successful it returns TRUE If the function fails it returns

FALSE In that case an application can call GetLastError to get more

Directory structure before MoveFile showing full path names for each

file arid directory

\MyFiles \MyFiles\filal.txt

\MyFiles\file2 .txt

\MyFiles\SavedFiles \MyFiles\SavedFiles\work txt

\MyFiles\SavedFiles\picture .bmp

Directory structure after MoveFile showing full path names for each

file and directory

\MyOldliles \MyOld.Files\filel.txt

\MyoldFiles\file2 .txt

MyOldFiles\SavedFiles \MyOldFilesSavedFiles\work.txt

\MyOldFiles\SavadFiles\picture .bmp

Figure 6.9 Effect of renaming directory on its children

Page 00200

information about what went wrong For example if an application

attempts to rename file to the name of file that already exists Get

LastError would return ERROR_ALREADY_EXISTS

Dileting Files and Directories

Deleting file in Windows CE is simple matter of calling DeleteFile

DeleteFile lpFileName

Your application calls this function by passing the full path name of

the file to be deleted in the lpFileName parameter

If the file is deleted DeleteFile returns TRUE Otherwise it will return

FALSE in which case you can call GetLastError for more information

Similarly directories are deleted using RemoveDirectory

RemoveDirectory lppathNeme

lpPathName is the full path name of the directory to be removed Re

moveDirectory has the same return values as DeleteFile

RemoveDirectory will fail if an application attempts to delete directory

that is not empty There is no parameter to force deletion of an empty

directory or to do recursive deletion of an entire directory tree Such

functionality if required by an application must be implemented by
the application developer The File System Explorer sample applica

tion shows how this is done with its implementation of the OnDelete

function

Flash Cards and Persistent Storage

Flash memory cards provide means for Windows CEbased devices

to expand the amount of RAM available flash card is type of

mountable file system Both Handheld PCs and Palm-size PCs are

equipped to use flash cards Flash cards can be used to store files just

like regular RAM

Flash cards are assigned object identifiers just like files or directories

We will see some examples of how these identifiers are used in the

next section

Page 00201

181

Flash cards should include \My Documents folder Many of the

mountable file system API functions will default to such folder to

perform searches and the like

To the Windows CE device flash card looks like part of the file sys
tem flash card installed on Palm-size PC or Handheld PC is

assigned the folder name Storage Card by the operating system Files

and directories are created and accessed just as they are in standard

RAM using the file system API The only difference is that the path

names of flash card files and directories begin with Storage Card

For example to create directory called FlashDocs on Palm-size

PC storage card an application would simply call CreateDirectory

CreateDirectoryTEXT\\Storage Card\\FlashDocs NULL

Flash Card APIs

There are some additional functions provided by Windows CE for

enumerating flash cards and files on flash cards Use of these functions

is very similar to their file system API counterparts

Enumerating Flash Cards

The first set of flash card API functions is used to enumerate flash

cards or other mountable file systems attached to device

The first of these functions is FindFirstFlashCard This function is used

to find the first flash card or other mountable file system on device

FindFirstFlashcard lpFindFlashflata

The only parameter to this function is pointer to W1N32_FIND_
DATA structure This function is analogous to FindFirstFile The differ

ence is that instead of returning WIN32FIND_DATA information

about the first specified file or directory it returns information about

the first flash card it finds

The most important piece of information FindFirstFlashCard returns is

the object identifier of the flash card This value is returned in the

dwOID member of the lpFindFlashData parameter

Also like FindFirstFile FindFirstFlashCard returns search handle that

can be used to perform searches for additional flash cards Additional

flash cards can be found with subsequent calls to FindNextFlashCàrd

Page 00202

FindNextFlashCard hFlashCard lpFindFlashData

hFlashCard is the search handle returned by FindFirstFlczshCard lpFind

FlashData is W1N32_FINDJIATA structure pointer containing infor

mation about the next flash card

Note that it is not common for Windows CEbased device to contain

more than one flash card

Flash card search handles like file search handles are closed with the

FindClose function

Searching for Flash Card Files

The second set of flash card API functions is used to enumerate files

and directories stored on flash cards

FindFirstProjectFile is the same as FindFirstFile except that it can be

made to look for files on specified mountable file system

FindFirstProjectFile lpFileName lpFindFileflata

dwOidFlash lpszProj

The first two parameters of this function are the same as in FindFirst

File They contain the file or directory name to search for and the re
turned W1N32_FIND_DATA respectively

dwOidFlash identifies the storage card to search on This value is

obtained by previous call to FindFirstFlashCard or FindNextFlashCard

This parameter can be set to zero in which case the main device file

system is searched instead of mountable file system FindFirstProject

File can thus be used just like FindFirstFile on devices that include

mountable file systems In fact it is recommended that on devices

such as the Palm-size PC FindFirstProjectFile be used exclusively

The final parameter lpszProj indicates the folder to start the search in

If NULL the search starts with the \My Documents folder

FindFirstProjectFile returns search handle just like FindFirstFile This

search handle is used to perform subsequent searches with the Find

NextProjectFile function

FindNextProjectFilehHandle lpFindProjflata

The parameters and behavior of this function are the same as Find
NextFile

Page 00203

183

concluding Remarks

Thats it for the Windows CE file system You should now be able to

add file support to your Windows CE applications in order to store

and retrieve data But more often you will want to store and organize

information in more structured format than simple flat data file

For this purpose Windows CE provides simple database technology

Windows CE databases are the subject of the next chapter

Page 00204

Page 00205Page 00205

Windows CE Databases

ong before Microsoft commanded the world of personal computing
another large multinational corporation in northwestern state far

colder and wetter than Washington had its own monopoly on the mar
ket for personal information management products Every time the

need arose to record new phone number address or name or when

ever quick reminder or note had to be jotted down for future refer

ence millions of people across the country grabbed pen and wrote

this information in at least in my case marginally legible handwriting

on one-and-a-half-by-one-inch yellow square piece of sticky paper

Over time again in my case at least these little pieces of paper were

stuck up all over computer monitors to the inside covers of reference

books kitchen counters the home office desk particularly important

contacts were even stuck to the back of credit cards in wallets for easy

later retrieval This data storage model naturally led to frequent frantic

searches through sock drawers and the front of the refrigerator door

for meeting times or important phone numbers It was somewhat inef

ficient but business and our lives managed to move on with few

mishaps

Fortunately Microsoft and other companies notably 3Com Corpora

tion with its line of PalmPilot organizers have made all of our lives

185

Page 00206

easier with the introduction of personal information management
devices to help keep track of phone numbers appointments to-do

lists and the like in one convenient place At the tap of stylus on

touch screen we can now retrieve the phone numbers of friends and

coworkers With few simple key or stylus strokes we can tell these

devices to alert us days in advance of impending birthdays and

anniversaries The persistent storage capabilities of WindowsCE data

bases make many of these advances possible

Design databases

Create and delete databases

Open and close databases

Add records to and remove them from databases

Read and write database records

Sort databases

Perform database searches

Enumerate databases

Use database notifications

Use the contacts database API

1hé Phone List Application

To illustrate the features of Windows CE databases and the Windows

CE database application programming interface functions we will

look at the example of phone list database application This applica

tion maintains database of employee names phone numbers and

department numbers It displays the database contents in user inter

face based on simple list view control where each list view column

represents particular database record property The main application

window is shown in Figure 7.1

This application will give you feel for how to write applications that

can add and delete database records sort database and perform

Page 00207

187

File

Jones 8111 888-8888 56

Smith Joe 222-2222 13

Wilson Will 777-7777 65

5earch P.esults

5tart I-5 1037 AM

Figure 7.1 The phone list application

database searches It can also very easily be expanded into full-

fledged contacts or address book application by adding the appropri

ate properties to the database records And you can customize the user

interface to suit different needs

The complete source code for the phone list application can be found

on the companion CD in the directory \Samples\dbase The applica

tion that is built by the project files is called DBASE.EXE

Adding and Removing Phone List Database Records

Database entries are added or removed by choosing the appropriate

option from the Record menu Figure 7.2 This menu contains the

Add Delete and Clear Database options

For example to add new record to the phone list database user

selects the Add option from the Record menu When this menu item is

Smith Joe 222-2222 13

Wilsanr7JJei Will 777-7777 65

Figure 7.2 The phone list application Record menu

Page 00208

Enter Last Name

Enter Firt Name

Enter Phone Number

Enter Department ID

Rgure 7.3 The Add New Record dialog box

selected the dialog box shown in Figure 7.3 is displayed This dialog

box allows the user to enter the details of the record to be added to the

database Each text entry field in this dialog corresponds to one of the

phone list database record properties

After all of the properties have been entered pressing the OK button

adds the new record to the phone list database and refreshes the main

application window display so that the new record is shown

To delete phone list database record user simply needs to select the

record to be deleted in the main window and select the Delete option

from the Record menu To delete all database records at once simply

select the Clear Database option from the Record menu

Sorting Phone List Database Records

The phone list application allows users to sort the database by any of

the database record properties Sorting the database by particular

property is done by tapping the column header of the corresponding

record property For example to sort the database by phone number

the user only needs to tap the phone number column header Figure

7.4

Page 00209

189

aecord

La me

Smith Joe 222-2222 13

Wilson Will 777-7777 65

Jones Bill 888-B888 56

Figure 7.4 Sorting the phone list database by phone number

Searching for Records in the Phone List Database

Database applications such as phone lists or other personal contacts

are primarily used to look up information pertaining to one or more

of the records in the corresponding application database Users of

phone list application for example will often want to look up the

phone number of specific person in the database

The phone list application provides basic record search capabilities

search is invoked by selecting the Seek option from the Options

menu in the main application window The Options menu is shown in

Figure 7.5 Selecting the Seek option displays the dialog box shown in

Figure 7.6

This dialog lets the user enter record property value in the text entry

field The record property that this corresponds to e.g first name last

name etc depends on the property by which the database is cur

rently sorted For example if the phone list database is sorted by last

name the seek record dialog box assumes that the user will enter last

name This is emphasized by the wording of the caption above the edit

field Entering last name and pressing the OK button in this case

makes the application search the phone list database for record con

taining the specified last name

iIIL

Wilson Will 777 7777 65

Figure 7.5 The phone list application Options menu

Page 00210

iii ii ii ii

dwSeekType

CEDB.$EEPçyALUESt4ALLER
Erter Lt Name To Seek

CEOG_SEEK_VALUEFIRSTEQUAL

CEDB_SEEKALUE1EXTEQUAL

CEDB SEEK VALUEGREATER

Figure 7.6 The Seek Record dialog box

The set of radio buttons on the left side of the dialog with the very

confusing labels indicate the type of search to perform As you read

the rest of this chapter you will see that these button labels correspond

to one of the parameters of the Windows CE database search function

After reading about this function you will see that this dialog box is

useful for allowing you to see the effect of passing different parameter

values to the search function

For now from the point of view of highlighting the basic database fea

tures provided by Windows CE it is sufficient to say that these radio

buttons control how the search value entered by the user is compared
to the corresponding record property for each record in the database

For example lets say that user wants to search the phone list data

base for the first record with last name of Smith The user must first

make sure that the database is sorted by last name As described

above this is done by tapping the Last Name column header

Next the user chooses the Seek menu option from the Options menu
In the dialog box that appears the user types Smith in the edit field

The CEDB_SEEKVALUEFIRSTEQUAL radio button is selected to tell

the application to search for the first record containing last name of

Smith see Figure 7.6 When the user presses the OK button the phone
list application searches for the requested record If the record is found
the results of the search are displayed in the Search Results field at the

bottom of the main application screen as shown in Figure 7.7

Page 00211

191

Jones Bill 838-8886 56

Smith Joe 222-2222 13

Wilson Will 777-7777 65

Search Results

Last Name First Name Phone Number Department

Smith Joe 222-2222 13

Start 1035AM

Figure 7.7 The result of successful record search

Determining the Size of the Phone List Database

The final interesting feature of the phone list application is that it al

lows the user to determine how much object store memory is being

used by the phone list database This feature is invoked by selecting

the Database Memory option from the Options menu

Selecting the Database Memory menu item displays the dialog box

shown in Figure 7.8 This dialog simply reports the total number of

bytes consumed by the phone list database and the records it contains

Programming Windows CE Databases

If you are familiar with writing database applications for relational

databases you will find the Windows CE database model very differ

ent Databases under Windows CE do not support any form of struc

tured query language and provide none of the relational data

manipulation techniques such as table joins Windows CE databases

are simply non-hierarchical collections of an arbitrary number of

records each of which contains one or more data properties Properties

can be the integer Unicode string FILETIME or blob byte array
data

As with any object stored in the Windows CE object store every data

base and database record is assigned unique object identifier of type

Page 00212

Jones Bill 808-8888 56

Smith Joe 222-2222 13

Wilson _____________________________________

6288 bytes in use

Search Results

1047AM

Figure 7.8 The phone list Database Memory Consumption dialog

CEOID by the Windows CE operating system This object identifier

can be used for example when searching for database records or to

identify records to delete from database

Another important part of Windows CE database is the current record

pointer This is also sometimes called the seek pointer This pointer indi

cates the record to be read by the next database read operation The
current record is therefore defined to mean the record currently

pointed to by the seek pointer As an application reads records in

database the current record pointer or seek pointer can be thought of

as marking the current record position Seeking and reading records in

the database can move the seek pointer position These operations are

discussed in detail later

Windows CE provides database application programming interface

for creating and managing databases on Windows CE devices This

API provides fimctionality for the following database operations

Creating and deleting databases

Adding and deleting database records

Sorting records in database

Searching for records in database

Enumerating the databases on Windows CE device

Page 00213

193

Whats All This SQLing Hear

The database technology provided with the Windows CE operating system is

significantly simpler than the full relational or object-oriented databases that you

might be used to programming with in the Windows NT or Windows 98 environ

ments The Windows CE database technology was originally designed to support

basic personal information management PIM applications

The Windows CE database technology is not relation or object-oriented data

base It also does not support Structured Query Language SQL the lingua franca

of database programmers all over the world As such the Windows CE database

model is perfectly adequate for relatively simple databases such as contact lists

and collections of e-mail messages But application developers who need database

schema more complex than the simple record-based model of the default Win
dows CE database have until recently been disappointed And performing complex

searches and queries has been practically impossible due to the lack of SQL

As Windows CE has matured from its first incarnation over two years ago so

has the level of complexity of software being written for the operating system

Various companies are designing new Windows CEbased consumer and busi

ness products many with database requirements that exceed the capabilities of

the basic Windows CE database technology

Fortunately for these applications database vendors have recently begun port

ing their database technologies to Windows CE Relational as well as object-

oriented database solutions are now available from number of database

companies Oracle Sybase and Neoworks Corporations to name few have all

begun supporting Windows CE versions of their database software It is therefore

now possible to take advantage of traditional database technologc including the

power of SQL when writing software for Windows CE

Additionally the Microsoft Foundation Classes library for Windows CE supports

Data Access Objects DAO providing SQL-based interface to the Windows CE

database technology

This book however will only cover programming for the Windows CE data

base Complete coverage of SQL programming and relation and objected-oriented

databases is left to the vast number of database programming books on the mar
ket today

For each of the functions in the database API there is corresponding

function in the Remote Application Programming Interface or RAPI

RAPT is part of Windows CE that allows applications on desktop

PC called the RAPT client to make function calls on Windows CE

device the RAPT server RAPT is covered later in Chapter 15

Page 00214

194

Square PEGS Ifl Round Holes

From time to time as you read the Windows CE on-line documentation you

will see references to things like PEGOID when you would expect CEOID or func

tion names like PegOpenoatabase when you would swear weve been talking

endlessly about CeopenDatabase What is this all about

In Windows CE versions 1.0 and earlier all of the database types and functions

started with Peg instead of Ce This is leftover from the code name for Win

dows CE which was Pegasus As Windows CE matured Microsoft realized that

function names like CeOpenDatabase made infinitely more sense to most soft

ware developers than PegOpenDatabase They therefore made the decision usu
ally considered anathema in most circles to change the names of the database

types and APIs

This of course left backward compatibility issue So in order to make

everyones Windows CE 1.0 database applications compatible with later versions

of the operating system the old Pegasus names are defined to the new names in

the public header file WNDBASE.H

tdefine PEGPROPTD CEROPID

deflne PegOpenDatabase CeOpenDatabasa

eta

In this way applications written for older versions of Windows CE can be

ported to new versions Any references to the Peg-prefixed symbols get replaced

with the Ce-prefixed versions and the applications will compile and link without

complaints

The Database Design

When designing any database it is always good idea to first design

the database schema The database schema is the description of the

database and the kinds of intormation it contains In our example this

simply means describing what properties each of the phone list

records will contain including the data type of each of the properties

If applicable you would also define the acceptable range of values

that each record property can be assigned In traditional relational

database design the schema would be more complex including de

scriptions of the various relational tables that make up the database

Page 00215

195

Taking the time up front to do this design step can save you from

rewriting the database definition and management code in your appli

cations because you overlooked an important piece of information re

quired by your application

The phone list database consists of records that contain these four

properties employee last name first name phone number and

department number Table 7.1 We will allow users of the phone list

application to sort the records in the phone list on any of these four

properties

Internal Representation of Record Properties

It is one thing to understand the format of Windows CE database

record in the abstract It is quite another to understand how Windows

CE itself think of records and the properties that they contain

Windows CE treats each database record as collection of one or more

properties each of which is of type CEPROPVAL The definition of the

CEPROPVAL structure is

typedef struct _CEPROPVAL

CEPROPID propid

WORD wLenData

WORD wFlags

CEVALUNION val
CEPROPVAL

The propid member is of type CEPROPID which is defined as

LONG The low word of propid identifies the data type of the property

The high word is an application-defined index Typically this index is

Table 7.1 Phone List Database Record Definition

Last Name LPWSTR

First Name LPWSTR

Phone Number LPWSTR

Department Number short

Page 00216

Table 7.2 CEPROPID Data Type Specifiers

_TI III

CEVT_BLOB CEBLOB structure

CEVT_FILETIME FILETIME structure

CEVT_12 16-bit signed integer

CEVT_14 32-bit signed integer

CEVT_LPWSTR null-terminated Unicode string

CEVTJJI2 16-bit unsigned integer

CEVLUI4 32-bit unsigned integer

used to represent the zero-based index of the property in the record

The low word must be one of the values listed in Table 7.2

As an example the phone list application defines the property identi

fiers of the phone list database record properties in this way
I/First define the indices of the properties within the record

define PL_LASTNANE_INDEX

define PLFIRSTNAME_INDEX

define PL_PHONENUMBER_INDEX

define PL_DEPT_INDEX

I/Next define the CEPROPID values of the record properties

define PLLASTNANE

XELONG CEVT_LPWSTR PL_LASTNA11E_INDEX

define PL FIRSTNANE

MAKELONG CEVT_LPWSTR PLFIRSTN1NE_INDEX
define PL_PHONENTJNBER

MAKELONG CEVT_LPWSTR PL_PHONENUMBER_INDEX

define PL_DEPT

MAKELONG CEVT_12 PL_DEPT_INDEX

The second member of the CEPROPVAL structure wLenData is not

used The wFlags member is used to define set of special property

flags This member is typically set to We will discuss the other val

ues of this member and their meanings later when discussing reading

and writing database records

The most interesting of the CEPROPVAL members is the val member

As the name indicates this member contains the actual data asso

ciated with the particular record property This member is of type

CEVALUNION union defined as follows

Page 00217

typedef union _CEVALUNION

short iVal

USHORT uiVal

long iVal

ULONG ulVal

FILETIME filetime

LPWSTR lpwstr

CEBLOB blob
CEVALUNION

Each of the members of this union corresponds to one of the data type
identifiers of the propid member of the CEPROPVAL structure see
Table 7.2 The member of this union that you would use when setting

the value of particular record property would thus depend on the

data type specified in that propertys property identifier For example
to set the first name property of phone list database record the

phone list application would do the following

CEPROPVAL cepvFirstName

cepvFirstName .propid PL_FIRSTNANE

cepvFirstName.val lpwstr TEXTSome Name

Or to set the department number property

CEPROPVAL cepvDeptNum

cepvfleptNum.propid PL_DEPT

cepvfleptNum.val.iVal 12 I/i.e the appropriate dept number

These examples are meant only to demonstrate the use of the

CEPROPVAL val member As well see later applications typically

define an array of CEPROPVAL structures to represent the entire

record to be read or written

treating the Database

Windows CE databases are created using the CeCreateDatabase func

tion The syntax of CeCreateDatabase is

CeCreateflatabase lpszName dwDbaseType wNumSortOrder

rgSortSpecs

The first parameter is the Unicode string name of the database to be

created This name can be up to 32 characters long including the null

terminator Database names that exceed this limit are truncated The

next parameter is the database type identifier This value is defined by

Page 00218

the application to distinguish one type of database from another For

example lets say that an application needs to manage the phone list

databases for three different companies as well as the payroll data

bases for those same companies This application could define the fol

lowing database types

define DBTYPE_PHONE_LIST

define DB_TYPE_PAYROLL

Each of the phone list databases could be created with database type
identifier DB_TYPE_PHONE_LIST and the payroll databases could be

created with type identifier DB_TYPE_PAYROLL The application

could then use the database type identifier to distinguish between the

different types of databases for example when enumerating all data

bases on Windows CE device

The wNumSortOrder indicates the number of sort orders allowed for

the database This is fancy way of saying how many record proper
ties the database can use as sort keys The final parameter is an array

of SORTORDERSPEC structures defined in more detail below

The CeCreateDatabase function returns the object identifier of the data
base if the creation is successful If unsuccessful CeCreateDatabase

returns zero

If we can create database we must also be able to delete it To delete

database simply call CeDeleteDatabase This function takes one

parameter the object identifier of the database to be deleted

Sorting and the SORTORDERSPEC

Applications sort databases by specifying up to four sort orders sort

order specifies which property in each database record is to be used as

the sorting key and the order ascending descending etc in which
the database records are to be sorted when the corresponding property
is used as the sorting key This information can be provided to the

database in one of two ways The first is to pass this sort order infor

mation to the database when it is created via the last argument to the

CeCreateDatabase function rgSortSpecs The second is to use the CeSet

Databaselnfo function and specify the sort orders in CEDBASEINFO
structure To use either of these techniques we must first understand

how sort order is represented in Windows CE

Page 00219

sort order is defined using the SORTORDERSPEC structure which
is defined as

typedef struct _SORTORDERSPEC

CEPROPID propid

DWORD dwFlags

SORTORDERSPEC

The first member of this structure is the property identifier of partic
ular record property The second member contains sort order flags

These flags define for example whether records are sorted in ascend

ing or descending order

As an example lets assume that we want to be able to sort the phone
list database by last name in ascending order and at other times to sort

by department number in descending order We would therefore need

to define two SORTORDERSPEC structures to convey this information

SORTORDERSPEC sos

sos .propid PL_LASTNANE I/Specify the last name

I/property idsos //O indicates ascending order

sos .propid PL_DEPT 7/Specify the deparment number

I/property idsos CEDB_SORT_DESCENDING I/Descending Sort order

Note the value of for the dwFlags member of sos to indicate as

cending sort order point this out to save you the same amount of

time wasted searching in vain for definition of CEDB_SORT_AS
CENDING in the Windows CE header files

Now that we understand how to specify sort order we are ready to

discuss the two techniques for supplying the database with our sort

order information The first is to pass the array of SORTORDERSPEC
structures that you create as the rgSortSpecs parameter of the CeCreate

Database function This would seem to imply that once database is

created an application has no control over redefining the sort order

information associated with that database This is not the case how
ever The second technique for specifying sort orders is with the CeSet

Databaselnfo function The syntax of this function is

CeSetDatabaselnfooidDbase pNewlnfo

The first parameter of CeSetDatabaselnfo is the object identifier of an

open database The second parameter is pointer to CEDBASEINFO

structure This structure is defined as

Page 00220

200

typedef struct _CEDBASEINFO

DWORD dwFlags

WCEAP szDbaseName

DWORD dwDbaseType

WORD wNumRecords

WORD wNumSortOrder

DWORD dwSlze

FILETIRE ftLastModif led
SORTORDERSPEC rgSortSpecs ICEDB_MAXSORTORDER

CEDBASEINFO

szDbaseName and dwDbaseType are the name and application-defined

database type identifier respectively dwSize is used by CeSetDatabase

Info to return the number of bytes of data stored in the database ftLast

Modified is used to update the time the database was last modified

The wNumRecords field is not used

That leaves dwFlags wNumSortOrder and rgSortSpecs wNumSortOrder

specifies the new total number of sort orders associated with the data

base Remember Windows CE databases only support up to four sort

orders rgSortSpecs is our trusty array of SORTORDERSPEC structures

If you originally created the database with one set of sort orders you
can specify totally different sort orders here

Finally the dwFlctgs member is used to indicate to CeSetDatabaselnfo

which of the other CEDBASEINFO structure members are valid that is

which characteristics of the database are to be changed by the CeSetData

baselnfo call dwFlags can be one of the four values given in Table 7.3

It should be noted here that using CeSetDatabaselnfo to change the sort

order of database can be very slow operation for Windows CE to

perform especially if the database being modified contains large

number of records It is therefore not generally recommended that this

be done The sort order requirements for particular database should

Table 7.3 CEDBASEINFO dwFags Member Values

yIIIj III
CEDB_VAUDMODTIME ftlastModified member is valid

CEDB_VAUDNAME szDbaseName member is valid

CEDB_VALIDTYPE dwDbaselype member is valid

CEDB_VALIDSORTSPEC rgSortSpecs member is valid

Page 00221

instead be carefully considered and defined during the application

design phase The sort orders can then be set once and for all when the

database is created

Careful readers who have suffered through this laborious account of

how and when to define database sort orders will have noticed that

huge piece of the sorting story is still missing We have yet to discuss

how Windows CE database is told on which of the properties associ

ated with the various sort orders the database is to be sorted This is

done mercifully simply by simply opening the database

Opening and Closing the Database

Not surprisingly the function that is used to open Windows CE
database is called CeOpenDatabase

CeOpenDatabasepoid lpszNaine propid dwFlags hwndNotify

The poid argument is the object identifier of the database to open Al
ternatively and more commonly you will open database by name
This is done by setting the poid argument to zero and supplying the

name of the database to open in the lpszNaine argument If database

is opened in this way Windows CE will return the object identifier of

the database via the poid argument

The propid argument is CEPROPVAL that specifies which sort order

to use when sorting the database dwFlags can be set to CEDB_
AUTOINCREMENT or to zero If set to CEDB_AUTOINCREMENT
the database record pointer is incremented each time record is read

from the database If zero the record pointer is not incremented

The hwndNotify parameter can be used to specify the window to which
database notifications are sent It can be NULL if you are not inter

ested in receiving such notifications Database notifications are dis

cussed later in the chapter

CeOpenDatabase returns handle to the opened database if successful

Otherwise it returns the error code INVALiD_HANDLE_VALUE

To close database use the function CloseHandle passing the handle to

the open database as the hObject parameter

From the point of view of database sorting the propid argument to

CeO penDatabase gets all the glory An application specifies how the

Page 00222

202

database is sorted simply by calling CeO penDatabase with the desired

sorting property specified in the pro pid parameter For example to sort

the records in the phone list database by first name our application

simply needs to open the database as follows

CEOID ceoidflBaseO I/O because we will open the database

I/by name

CeOpenDatabase ceoidDBase TEXT PhoneList PL_FIRSTNAME

CEDB_AUTOINCRNMENT NULL

If the application already has the database open when it wants to

resort it on new key it must first close the database with CloseHandle

before reopening it

Writing an OpenDatabase Function

You may often find it convenient to combine the processes of creating

and opening database into one function Consider the following

OpenDatabase function

HANDLE OpenDatabase

LPWSTR lpszName Database name

CEPROPID cepropidSort Sort property

DWORD dwFlags /CEDB_AUTOINCREMENT etc
HEND hwndNotify

CEOID pceoid /CEOID of opened database/

HANDLE hdb
pceoid
hdb CeOpenDatabasepceoid lpszNaxne

cepropidSort dwFlags hwndNotify
if INVALID_HANDLE_VALUEhdD

SORTORDERSPEC sossos PL_LASTNAMEsos
sos .propid PL_FIRSTNANE

sos .dwFlagssos PL_PHONENTJMBERsossos PL_DEPT

sos3.dwFlags
ceoidDBase CeCreateDatabaseszDaseNameO sos
hdb CeOpenflatabasepceoid NEJLLcepropidSort

CEDB_AUTOINCREMENT hwndNotify

return hd1

Page 00223

One advantage of such function is that once the function is written

the application programmer can think of creating and opening the

database as the same operation Instead of having to consider whether

or not the database exists the programmer can simply call this Open-

Database function If it happens to be the first time that the database is

being accessed and it doesnt yet exist this function will create the

database

Writing and Reading Database Records

We have seen how to create open close and sort the records in data

base But how do the records get into the database to begin with And
how are the records retrieved by an application that needs to use the

information that these records contain

Writing records to database requires our old friend the CEPROPVAL
structure and the CeWriteRecordProps function Basically an applica

tion fills an array of CEPROPVALs with the property information for

the record and then calls CeWriteRecordProps to actually write the

record to the database For example to write hypothetical record to

the phone list database the phone list application might do something

like this

CEPROPVAL cePropVal

//Set the last name

cePropVal propid PL_LASTNAME

cePropVal .val lpwstr TEXT Rubble
//Set the first name

cePropVal .propid PL_FIRSTNAME

cePropVal .val lpwstr TEXT Barney
I/Set the phone number

cePropVal .propid PL_PHONENUNBER

cePropVal .val lpwstr TEXT888-8888
//Set the department id

cePropVal .propid PL_DEPT

cePropVal .val.iVal 12
CeWriteRecordPropshtBase cePropVal

The first argument of the CeWriteRecordProps function is the handle of

the open database to be written to The second argument is of type

CEOID and can contain the object identifier of an existing record to be

written over or zero to indicate that new record with the given prop
erties is to be added to the database database record can thus be

modified by calling CeWriteRecordProps and passing the object identi

Page 00224

2O4

fier of this record in the second parameter The third parameter indi

cates the number of properties contained in the fourth parameter

which is the array of CEPROPVALs containing the data to be written

to the database CeWriteRecordProps returns the object identifier of the

record that was written

The wFlags member of any of the CEPROPVAL structures can ejther be

zero or CEDB_PROPDELETE If CEDB_PROPDELETE the write oper
ation deletes the property from the record In this way CeWriteRecord

Props can remove selected properties from existing database records

Reading record from the database requires CeReadRecordProps This

function reads and returns the record as one big block of bytes that

actually contains set of CEPROPVAL structures one per record prop
erty Once the record data is read it is the responsibility of your appli

cation to unpack the data array breaking it down into the constituent

properties

The CeReadRecordProps function has the following definition

CeReadRecordProps hDBase dwFlags lpcProplfl rgProplD

lplpBuffer lpcbBufler

The first argument is the handle to the open database dwFlags can ei

ther be zero or CEDBALLOWREALLOC Applications will usually

use this value indicating that CeReadRecordProps has permission to re

allocate the data buffer lplpBuffer if it doesnt contain enough space to

hold all of the record data lpcProplD is an LPWORD indicating the

number of properties to be retrieved rgProplD is an array of CE
PROPID values that tells the function which record properties to read

CeReadRecordProps can thus be used to read any or all of the properties

in given database record To read all properties set lpcProplD to zero

and rgProplD to NULL If these two parameters are used in this way
lpcProplD contains the number of properties read once the function

returns

After the function executes lplpBuffer contains the record property

data and lpcbBuffer contains the total number of bytes in the buffer If

CeReadRecordProps succeeds it return the object identifier of the record

that was read If it fails it will return zero in which case you can call

GetLastError to get more detailed information about what went wrong

It is possible that property specified in the rgProplD array does not

exist in the record retrieved by CeReadRecordProps For example an

Page 00225

application might accidentally specify an invalid property identifier

or specify property that has been previously deleted from the record

In these cases the wFlags parameter of the CEPROPVAL structure

extracted from lplpBuffer for that property will be set to CEDB_PROP
NOTFOUND

At this point all that is left to do is to convert the data array returned

by CeReadRecordProps into the property data Since lpcProplD contains

the number of properties contained by the record data buffer the sim

plest way to do this is to cast the data buffer into an array of CEPROP
VAL structures and iterate on each property as follows

WORD cProps

LPBYTE pBufNULL
DWORD cbByte

PCEPROPVAL pVals

CEOID oid
mt
//hDBase is handle to the previously opened database

oid CeReadRecordPropshDBase CEDB.LLOWREALLOC cProps

NULL pEuf cbByte
I/Unpack all of the record properties

pVals PCEPROPVALpBuf
for ir0 icProps

switch HIWORD pVals .propid

case PLLASTNA1iE_INDEXpVals contains the last name property

value The application needs to do something with it

break

case PLFIRSTNAME_INDEXpVals contains the first name property

break
case PLPHONENUNBER_INDEX

pVals .val.lpwstr contains the phone number

property

break

case PLJJEPT_INDEX

pVals .val.iVal contains the dept number property

break

default

break

I/End of switch statement

7/End of for i0 icProps loop

LocalFreepBuf

Page 00226

The LPBYTE array of raw record data is cast to an array of CEPROP
VAL structures the pVals variable The for ioop that follows then exe

cutes once for each property that was read from the current record by
the CeReadRecordProps call The switch statement checks the applica

tion-defined index of the current property in the pVals array and ex
tracts the value of that record accordingly recall that the high word of

each propid member of CEPROPVAL contains the application-

defined index of particular property The val members of the indi

vidual CEPROPVALs can be assigned to other variables as needed or

as we will show later used to construct database record structure

that is used by the application to more clearly represent the data No
tice that we free using LocalFree the data buffer returned by CeRead

RecordProps after using it This needs to be done whether or not the

read operation was successful as CeReadRecordProps might allocate

memory in any attempt to read database record

Deleting Database Records

Finally we need to describe how to delete database records Deleting

records from Windows CE database is done with the CeDeleteRecord

function

CeDeleteRecordhflatabase oidRecord

hDatabase is the handle of the open database from which the record is

to be removed oidRecord is the CEOID identifying the record to delete

CeDeleteRecord returns TRUE if the specified record is successfully

deleted from the database Otherwise the function returns FALSE In

this case an application can call GetLastError for more information

about why the delete operation failed

Managing Records More Cleanly

The preceding examples of how to write and read database records

leave something to be desired In both cases you might have been left

with the impression that Windows CE database applications only

work with record data in raw binary form While it is true that the

CeReadRecordProps always return an LPBYTE array of data and

CeWriteRecordProps always writes record information as collection of

somewhat cumbersome CEPROPVAL structures it is possible to write

your applications in such way that the rest of your application can

treat database records in more natural form Specifically your appli

Page 00227

cation can define structure that is used to represent the more abstract

notion of records in your database

For example in the case of the phone list application it seems natural

to represent an entry in the phone list with structure like this

typedef struct _PhoneRecord

TCHAR lpszLastNaxne

TCHAR lpszFlrstName
TCHAR lpszPhoneNwnber

mt nDept

PHONERECORD LPPHONERECORD

No CEPROPVALSs CEOIDs or other abstract database concepts here

phone record is just collection of values of data types that we
know and love When users enter new records through the applica

tions user interface the application code can assign the values entered

into the appropriate fields of an instance of this clear-cut data type

The mechanics of turning the elements of this structure into the form

required in order to write the record to the database can be left to the

inner workings of one simple ReadRecord function

CEOID ReadRecord LPPHONERECORD lppr

WORD cProps

LPBYTE pEufNULL
DWORD cbByte

PCEPROPVAL pvals

CEOID old
mt
oid CeReadRecordPropshDBase CEDB_ALLOWREALLOC

cProps NULLpBuf cbByte
pVals PCEPROPVALpBuf
for 10 icProps

switchHIWORDpValsi .propid

case PL_LASTNANE_INDEX

lstrcpy lppr-lpszLastNanie

pvals .val.lpwstr

break

case PL_FIRSTNANE_INDEX

lstrcpy lppr-lpszFirstName

pVals .val.lpwstr

break

case PL_PHONENUNBER_INDEX

lstrcpylppr-lpszPhoneNumber

pVals .val.lpwstr

Page 00228

break

case PL_DEPT_INDEX

lppr-nDept pVals
break

default

break

//End of switch statement

//End of for 10 icProps loop

LocalFreepBuf
return old

Writing phone list records can be abstracted in much the same way
with WriteRecord

CEOID WriteRecord LPPHONERECORD lppr

CEPROPVAL cePropVal

CEOID ceold

HANDLE hDBase

WORD wCurrent

hDBase OpenPhoneoatabaseszDDaseName

CEDB_AUTOINCREMENT NULL ceoidoBase
memset cePropVal sizeof CEPROPVAL PROPERTY COUNT
cePropVal .propid PL_LASTNAME

cePropVal twCurrent-l-I val lpwstr lppr-lpszLastName

cePropValwCurrent .propid PL_FIRSTNANE

cePropval vallpwstr lppr-lpszFirstName

cePropVal .propid PL_PHOWENUNBER

cePropVal wCurrent .val lpwstr lppr-lpszPhoneNuinber

cePropvai .propid PL_DEPT

cePropvai .vaLiVal lpprnDept
ceold CeWriteRecordPropshDBase wCurrent

cePropVal
CloseHandlehDBase /Close the database

return ceold

The rest of the application can now treat phone list data in the way
that you would normally model the concept of record as standard

structure

earching for Records

The function used for searching for records is CeSeekDatabase

CeSeekDatabasehDatabase dwSeekType dwValue lpdwlndex

Page 00229

209

hDatabczse is handle to the open database dwSeekType is DWORD
that indicates to the function what kind of database search to perform
It also defines where the database current record pointer is positioned

at the end of the seek operation lpdwlndex the last parameter is

pointer to DWORD that CeSeekDatabase uses to return the 0-based

index of the record that was found by the seek operation dwValue has

different meanings depending on the value of dwSeekType

Before looking at the dwSeekType parameter more closely it is impor
tant to point out some characteristics of the seek operation First

CeSeekDatabase searches database in the order specified by the cur

rent sort order Second seek can only be performed on sorted prop
erty value This means that if you are calling CeSeekDatabase to search

for some record by value the value specified in the dwValue parameter

will only be compared to the database property values that correspond

to the current sort order property Recall these points when tracking

down bugs in your database searching code Programmers just start

ing to use Windows CE databases make the common mistake of

searching for record containing particular property when the data

base is sorted on different property

dwSeekType can be one of the following values

CEDB_SEEK_CEOID

CEDB_SEEK_VALUESMALIER

CEDB_SEEK_VALUEFIRSTEQUAL

CEDB_SEEK_VALIJENEXTEQUAL

CEDB_SEEK_VALUEGREATER

CEDB_SEEK_BEGINNING

CEDB_SEEK_CURRENT

CEDB_SEEK_END

CEDB_SEEK_CEOID implies that dwValue is the object identifier of the

record to seek in the database At first glance this case might not ap
pear to be particularly useful If an application already knows the ob

ject identifier of the record it is seeking why would seek even need

to be done It is important to keep in mind that CeSeekDatabase reposi

tions the current record pointer which indicates which record will be

read from the database by the next read operation So if the phone list

application wanted to read the properties of the record with an object

Page 00230

identifier defined as ceoid the application would first have to seek to

that record and then read the record from the database

WORD cProps

LPNYTE pBuf NULL
DWORD cbByte

if CeSeekDatabase hDBase CEDB_SEEKCEOID DWORD ceoid

nlndex

CeReadRecordProps hBase CEDN_ALLOWREALLOC cPrOpS NULL
pBuf cbByte

Calling CeSeekDatabase alone will simply point the current record

pointer at the record of interest

The next four dwSeekType values indicate that dwValue is pointer to

CEPROPVAL structure that contains the property value for which to

seek CEDBSEEK_VALUESMALLER says to search the database for

the largest value that is smaller than the given value CEDB_SEEK_

VALUEFIRSTEQUAL tells CeSeekDatabase to search until it finds the

first value equal to that indicated by dwValue CEDB_SEEK_

VALUENEXTEQUAL seeks one record forward from the current

record position and checks if the property value of that record equals

that of dwValue CEDB_SEEK_VALUEGREATER seeks until record

with current sort order property equal to or greater than that of

dwValue is found If CeSeekDatabase fails with any of these four dwSeek

Type values the function returns zero and leaves the current record

pointer at the end of the database

If you know the index of the record you are seeking in the database

the CEDB_SEEK_BEGINNING option is the one to use For example
the user interface of the phone list application displays the phone
database sorted by the current sort order in list view control It is

convenient to locate the database record corresponding to the current

list view selection by 0-based index Specifying CEDBSEEKBEGIN
NING for dwSeekType implies that dwValue is the number of records to

seek that is the zero-based index of the database record in the current

sort order to be retrieved

CEDB_SEEKCURRENT moves the current record pointer forward or

backward from the current record position the number of records

specified by dwValue If dwValue is positive CeSeekDcztabase seeks for

ward The search is backward if dwValue is negative CEDBSEEK

Page 00231

JI 211

END is similar except that it always seeks backward from the end of

the database It moves the current record pointer backward the num
ber of records specified in dwValue

In any of the above cases if CeSeekDatabase is successful it returns the

object identifier of the record pointed to by the current record pointer

The phone list applications Seek menu option brings up dialog box

that allows you to experiment with the CeSeekDatabase function It

allows you to specify various dwSeekType parameter values as well as

property values for which to search The application then displays the

record found in the application window in the Search Results field In

the interest of keeping the phone list application to reasonable size

this feature only allows you to specify dwSeekType values that perform

database seeks by value

Database Enumeration

Suppose you wanted to create list of all the databases currently con
tained in the object store of Windows CE device Or perhaps you
need to determine how much object store memory is being used by all

the phone list databases available to phone list management applica

tion In this section we introduce the concept of database enumeration

Database enumeration allows applications to find all databases in the

object store or to find subset of those databases as defined by par
ticular database type identifier

Back when we discussed creating Windows CE databases we intro

duced the concept of database type identifier This was the applica

tion-defined index that was passed as the dwDbaseType parameter of

CeCreateDatabase This index is used to identify all databases of par
ticular type This type index is very important to database enumera

tion operations

Database enumeration is done with two functions CeFindFirstDatabase

and CeFindNextDatabase The enumeration process starts with call to

CeFindFirstDatabase to open an enumeration context for the type of data

base to be enumerated The enumeration context is handle through

which the operating system can reference all databases with particu

lar database type identifier CeFindNextDatabase is then called repeat

edly to get the object identifier of each database of that type These

Page 00232

functions are analogous to the file system functions FindFirstFile and

FindNextFile

The ftmction CeFindFirstDatabase takes the form

CeFindFirstDatabase dwDbaseType

The dwDbaseType parameter is the database type identifier of interest

This can be any application-defined database type Note however
that if you specify zero for dwDbaseType an enumeration context for all

databases in the object store is returned If successful CeFindFirstData

base returns an enumeration context for this database type If the func

tion fails it returns INVALID_HANDLE_VALUE

CeFindNextDatabase looks like this

CeFindNextDatabase hExium

hEnum is the enumeration context returned by the CeFindFirstDatabase

call This function returns the object identifier of the next enumerated

database or zero if the function fails

Database enumeration can be used to perform number of operations

in your applications For example if you wanted to delete all data

bases of particular type CeFindNextDatabase could be used to get the

object identifier of each database of that type and CeDeleteDatabase

would then delete each of the databases

At other times you may wish to determine particular set of attrib

utes for each database of some type An example might be getting the

name of every database in the object store Such features would be

implemented using the CeOidGetlnfo function As an example lets

take look at how you might get the total amount of memory in bytes

in use by databases on Windows CE device

CEOID oidTemp

CEOIDINFO oidlnfo

HANDLE hEnum

DWORD dwBytes

TCHAR pszText
hEnuin CeFindFjrstDatabaseO
if INVALID_HANDLE_VALUE hEnum

dwByteS

while oidTemp CeFindNextDatabasehEnunj

COidGetInfo oidTenp oidlnfo
dwBytes oidlnfo infDatabase dwSize

Page 00233

CloseHandle hEnum
wsprintfpszText TEXT%ld bytes in use dwBytes
MessageBox NULL pszText

TEXT Database Memory Consumption MB_OK

else

MessageBoxNULL TEXTInvalid Enumeration Context
TEXTEnumeration Error MB_OKIMB_ICONEXCLA14ATION

This sample opens an enumeration context into all of the databases in

the object store of the device on which the code is executed by calling

CeFindFirstDatabase with dwDbaseType argument of zero CeOidGetlnfo

is then called for each database running byte count is updated using

the size of each enumerated database The database size is found in

the dwSize member of the CEDBASEINFO structure returned as part of

oidlnfo The total byte count is then displayed in message dialog box

Database Notifications

The last Windows CE database topic that needs to be covered is data

base notifications In all of our examples we have passed NULL to the

hwndNotfy argument of CeOpenDatabase However this parameter can

be used to specify window that receives notifications whenever an
other thread of execution modifies the particular database before the

thread that opened the database closes it If the hwndNotfy parameter
is NULL the thread opening the database is indicating it is not inter

ested in receiving any such notifications

There are three notifications that can be sent to the hwndNotify win
dow Although called notifications they are actually Windows CE

messages that are posted to the hwndNotzfy window To respond to

them then your application needs to include handlers for the ones

you are interested in hwndNotifys window procedure The descrip

tions of the three notifications messages are given in Table 7.4

The Contacts Database

Perhaps you will recognize this scenario from your college years It

comes directly from mine Its the next to last week of one of your

Page 00234

214

Table 7.4 Database Notifications

WI Ji 1a Ii

DB_CEOID_CHANGED Object modified CEOID of CEOID of modified object

modified objects parent

DBCEOID_CREATED Object created CEOID of new CEOD of new

object objects parent

DB_CEOIDRECORD_ Record deleted CEOID of CEOID of Object

DELETED deleted deleted objects parent

more grueling calculus courses Youve spent the entire time learning

how to manually integrate impossibly complex functions that you are

convinced you will never encounter in the real world using tech

niques such as the Laplace Transform and integration by parts Then
almost as an afterthought your calculus professor makes brief foray

into the subject of how to use an integral table The chorus of grief is as

varied as the students in the classroom but can be paraphrased some

thing like this You mean to tell me weve suffered through this inte

gration business and could have used cookbook all along Prepare

for trip down memory lane am about to pull the same thing on you
now

Windows CE provides predefined database of its own for storing

phone number and other personal and business contact information

number of the applications that are traditionally supplied with

Windows CEbased devices use this database It therefore lives in the

Windows CE operating system for all application developers to use
The contacts database stores many more useful properties than our

phone list database example above And it provides complete appli

cation programming interface for performing such operations as

adding removing and modifying information in the database Given

that this rich functionality exists in the operating system for free why
did just painstakingly guide you through all of the mechanics of pro
gramming generic Windows CE databases

The contacts database is just one example of the type of database that

typical Windows CE application may need to use Much as an integral

table cannot contain all of the cases an engineer might encounter in

practice the built-in features of an operating system like Windows CE
cannot anticipate every application that it will be asked to support It

Page 00235

is therefore crucial to have well-established understanding of the

fundamental capabilities of Windows CE in order to confidently

approach any new programming challenge

Applying the experience of our generic phone list application makes

understanding the design and features of the contacts database

straightforward task Since we have successfully explored the mechan
ics of generic Windows CE databases the next sections will only

briefly cover the highlights of the contacts database To extend the

classroom metaphor the full details of using the contacts database are

left to the student as an exercise

LINK WITH ADDRSTOLLIB

To use the contacts database your applications must link with ADDRSTOR.LIB and in

clude the file ADDRSTOR.H

Address Cards

Windows CE models the concept of contact as address cards This

name is supposedly meant to conjure up the image of cards in

Rolodex The address card is implemented as structure with the fol

lowing definition

typedef struct _AddressCard

SYSTEMTIME stirthday
SYSTEMTThIE stAnniversary

TCHAR pszEusinessFax

TCHAR pszcompany
TCHAR pszflepartment

TCHAR pszEmail
TCHAR pszMobilePhone

TCHAR pszOfficeLocation

TCHAR pszPager
TCHAR pszWorkPhone

TCHAR pszTitle
Other properties such as name address fax nuriber etc

AddressCard

This structure is the contacts database analog of the PHONERECORD
structure in our phone list database example Each member of the Ad
dressCard structure represents one of the properties in particular

contacts database record

Page 00236

216

The properties of address card records are identified by property tags

The concept of property tags comes from the Microsoft Messaging

Application Progranuning Interface MAPI In reality though prop
erty tag is nothing more than property identifier like PL_LAST
NAME PLFIRSTNAME PL_PHONENUMBER and PL_DEPT in the

phone list application The property tags for the contacts database all

have names of the form HHPR For example the birthday property

has property identifier HHPR_BIRTHDAY These identifiers are used

to specify the properties that are to be read from or written to records

in the contacts database as we will see bit later

Contacts Database Functions

The ReadRecord and WriteRecord functions in the phone list application

were written as function wrappers that hide the internal details of the

record data stored in the phone list database In the same way the con
tacts database functions work with AddressCards to allow the applica

tion programmer to think of contact information in more natural way

For example to add new record to the contacts database an applica

tion calls AddAddressCard

AddAcldressCardpac poidCard pindex

pac is pointer to the AddressCard structure that contains the contact

information to be added to the contacts database poidCard is pointer

to CEOID that is used by AddAddressCard to return the object identi

fier of the new record if it is successfully added to the contacts data

base pindex is also return value indicating the position index of the

new record in the database

In the phone list application example WriteRecord always added

new phone list record that contained data for every property in the

record AddAddressCard is more generic in that it allows applications to

add records with any subset of AddressCard properties For this to

work an application must specify which properties are valid for the

AddressCard to be added This is done using the SetMask function

SetMaskpac hhProp

pac is again pointer to an AddressCard structure hhProp is any of the

property tags defined for the contacts database For example to add

Page 00237

an address card in which only the company and department fields are

valid an application would do the following

AddressCard ac
CEOID ceoid

mt nlndex

memsetac sizeofAddressCardfl

ac.pszCompany TEXTAcine Widgets
ac.pszDepartment TEXTBean Counting
SetMaskac HHPR_COMPANY_NANE

SetMaskac HHPR_DEPARTMENT_NAME

/Now we can add the card

AddAddres$Cardac ceoid nlndex

If all AddressCard properties are valid and are to be written to the

database record your application does not have to call SetMask for

every property Simply passing zero in the hhProp argument tells Set-

Mask that all AddressCard properties are valid

From our understanding of Windows CE databases we can figure out

what is going on inside AddAddressCard AddAddressCard uses the

mask prepared by the SetMask calls to know which values to extract

from the AddressCard structure and which property identifiers to use

to build up CEPROPVAL array As with any Windows CE database

all data read and write transactions ultimately boil down to reading

and writing collections of CEPROPVAL structures

Reading AddressCards is done with the OpenAddressCard function

OpenAddressCardoidCard pac uFlags

oidCard is the object identifier of the record to be read pac is pointer

to an AddressCard structure into which OpenAddressCard places the

contacts properties read from the specified record uFlags can be either

OAC_ALLOCATE or zero OAC_ALLOCATE says that separate mem
ory is allocated for each string property and the strings are copied

from the object store into the particular AddressCard fields If an

application needs to modify the properties in record this value must

be set

If uFlags is zero memory is not allocated for the string properties

and the TCHAR members of the AddressCard record returned by

OpenAddressCard simply point to the string data in the database This

is the technique to use when the particular AddressCard record is

not going to be modified by the application but simply displayed

Page 00238

in the applications user interface Applications can also use the

GetAddressCardProperties function to read records from the contacts

database

The Complete Contacts Database API

The contacts database API provides functions for opening and closing

the contacts database as well as reading writing and modifying Ad
dressCards In addition you can use the API to sort the database on
the various AddressCard properties and enumerate AddressCards

The complete contacts database API is given in Table 7.5

Iccflcluding Remarks

In this chapter we introduced the various aspects of programming
Windows CE databases You should now be comfortable creating

databases and managing database records from your Windows CE

applications We specifically covered the topics of reading and

writing database records sorting databases and searching for specific

records in database The subjects of database notifications and data

base enumeration were also discussed

The chapter also provided brief introduction to the Windows CE
contacts database and the contacts database API This database

which is provided as part of the Windows CE operating system may
often come in handy when you write applications such as address

books

We continue our coverage of Windows CE persistent storage in

Chapter with look at the Windows CE registry

Page 00239

219

Table 7.5 The Contacts Database API

IIlL.1.1

AddAddressCard Adds an address card to the contacts database

CloseAddressBook Closes the contacts database

CreateAddressBook Creates the contacts database if it does not already

exist

DeleteAddressCard Deletes the specified address card from the contacts

database

FreeAddressCard Frees memory associated with an address card

GetAddressCardlndex Returns the position index of the specified address

card in the contacts database

GetAddressCardOid Retrieves the object identifier of the address card as

specified by its position index

GetAddressCardProperties Gets the properties of an address card

GetColumnProperties Retrieves the property tags corresponding to the

columns by which the contacts database can be

sorted

GetMatchingEntry Searches the contacts database for an address card

with name property containing the specified search

string

GetNumberOfAddressCards Returns the number of address cards in the contacts

database

GetPropertyDataStruct Retrieves PropertyDataStruct for specified contacts

database property

GetSortOrder Returns the current contacts database sort order

ModifyAddressCard Changes the contents of an address card

OpenAddressBook Opens the contacts database if it exists

RecountCards Counts the number of address cards This is necessary

if another application modifies the contacts database

while your application has it open

SetColumnProperties Specifies the properties on which the contacts data

base can be sorted

SetMask Specifies which properties are assigned in an address

card

SetSortOrder Sets the contacts database sort order

Page 00240

Page 00241Page 00241

Using the Windows CE Registry

hus far in our investigation of Windows CE persistent storage we
have considered two mechanisms typically used for storing large

amounts of data The Windows CE file system is useful way to store

large amounts of data such as documents in hierarchical directory

structure Windows CE databases are useful for storing and managing

large numbers of data records such as phone list or contact informa

lion

But what if your application has the need for small amounts of persis

tent storage It would be overkill to create an entire database or direc

tory structure just to keep track of few numbers or strings

Additionally particular database or file format is generally intended

for use by the application that creates it Applications generally are not

prevented from accessing data in files or databases created by other

applications But to do so requires knowledge of specific file format

or database record design

The Windows CE registry provides generic mechanism for storing

persistent information that is intended to be available on system
wide basis The registry has simple hierarchical structure and pro
vides an application programming interface that makes it easy for any

221

Page 00242

application on Windows CE device to find information available to

the entire system

One of the most familiar examples is the use of the registryby
Microsofts Component Object Model COM technology COM uses

the registry as way to among other things make information about

COM objects available to all interested parties

Program the Windows CE registry

Use the Remote Registry Editor

Registry Basics

Although it is part of the Windows CE object store the registry is dif

ferent from the Windows CE file system and databases The registry

does not store data as objects with unique object identifiers The reg
istry functions do not access data in the registry via particular

CEOID associated with registry entry The only similarity between

the registry and these other two object store entities is that they are all

used to store persistent data in object store RAM

The Windows CE registry is organized as hierarchical set of keys sub-

keys and values Keys and subkeys are the registry analog of directo

ries in the Windows CE file system Keys can contain one or more

subkeys Keys and subkeys can contain one or more values which are

used to store the actual data contained in the registry

Much as Windows CE databases can be assigned an application-

specific database type registry keys can be given class name Such

class name can be used to provide further distinction between registry

keys

At the root of the Windows CE registry hierarchy are three primary

keys HKEY_LOCAL_MACHINE HKEY_CLASSES_ROOT and

HKEY_CURRENT_USER Every registry subkey and value falls under

one of these three primarykeys

Page 00243

Just as Windows CE represents files and databases as handles there is

also handle data type for registry keys called HKEY Many of the

registry functions identify the key or subkey on which they are to

operate by means of an HKEY handle

The Windows CE registry can be used to store data of the following

types binary DWORD null-terminated Unicode string Unicode sym-

bolic link or resource The various registry functions refer to these

data types by the symbols shown in Table 8.1 Well see these data type

values in the context of the various registry functions later

Viewing the Windows CE Registry

The Remote Object Viewer allows you to view files and databases on

Windows CE device or in the emulation environment similarly the

Windows CE Toolkit provides Remote Registry Editor which allows

you to explore the registry in the emulation environment or on an ac

tual Windows CE device It also allows you to create delete and mod
ify registry subkeys and values

Table 8.1 Registry API Data Type Symbols

REG_BINARY Binary data

REG_DWORD 32-bit number

REG_DWORD_LIULE_.ENDIAN 32-bit number in little endian format i.e the

most significant byte of each word is the high-

order byte

REG_DWORD_BIG_ENDIAN 32-bit number in big endian format i.e the

most significant byte of each word is the low-

order byte

REG_EXPAND_SZ null-terminated Unicode string that contains

unexpanded references to environment variables

such as O/DPATH%

REG_SZ null-terminated Unicode string

REG_MULTLSZ An array
of null-terminated tinicode strings The

array itself is terminated by two null characters

REG_LINK Unicode symbolic link

REG_RESOURCE_LIST device driver resource list

REG_NONE No defined data type

Page 00244

224

si El 17 f7I.11Ti

File Edit view Insert Project Build lools Window Help

Source Browser.. AltF12

Register Control

Remote Sp
Workspace reistry lproiecUslj

.i fegitfjJ hies
Remote Heap Walker

MAIN.CPP
Remote Process Viewer

External Dependencies

registr.h Rernoteoomin

Remote Oblect Viewer

Remote connection Server

ustornize.

Options..

M8cro..

Figure 8.1 Opening the Remote Registry Editor

You access the remote Registry Editor by choosing the Remote Reg
istry Editor menu option from the Tools menu in the Microsoft Devel

oper Studio development environment Figure 8.1

The Remote Registry Editor looks and works much like the Windows
NT Registry Editor called regedit In fact the remote Registry Editor

has all of the functionality of regedit and more

When the Remote Registry Editor first appears it contains two tree

view nodes in the left-hand pane labeled My Computer and My Emu
lation Figure 8.2 The My Computer item is the root of all of the reg

istry keys on the Windows NT machine on which you are running
Microsoft Developer Studio You can browse these keys and delete

add or modify subkeys and values just as you would with regedit

Any changes that you make to the registry keys under My Computer
are made in the registry of your Windows NT host machine

The My Emulation tree view node is the root of all the registry keys

contained by your Windows CE emulation object store You can there

fore make any modifications you like to your emulation registry by

editing the subkeys and values under My Emulation

Page 00245

225

istty

My Computer IPj%
HKEY_LOCAL_MACHINE DelauItI value not .et

.J HKEY_CLASSES..ROOT

JJ 1-IKEY_CUARENT_USER

HKEYUSEAS

ti HKEY_C1JRRENT_CONFI1

_J HKEY_DYN_DATA

My

_J nl

1FHt

_j Drivers

..J EtModem

Figure 8.2 The Remote Registry Editor

The Remote Registry Editor makes it easy for you to modify the Win
dows CE emulation registry manually You will very often find your
self wanting to modify the registry in this way particularly when

debugging applications that use the registry It would be bit tedious

if you could only edit the registry programmatically

Adding and Removing Subkeys

You add and remove registry subkeys via the Remote Registry Editor

just as you would with regedit on Windows NT

For example lets say you want to add subkey called Applications

under the My Emulation\HKEY_LOCAL_MACHINE key that is

shown in Figure 8.2 To do this expand the My Emulation node and

then expand the HKEY_LOCAL_MACHINE node To add the Appli
cations subkey tap the HKEY_LOCAL_MACHINE key icon so that it

is selected and then select the New Key menu option from the Edit

menu as shown in Figure 8.3

As result of this operation the New Key dialog box shown in Figure

8.4 appears Type Applications the name of the new subkey in the

edit field in this dialog box and press OK The new subkey is then ce
ated under the HKEY_LOCAL_MACHINE key as shown in Figure 8.5

Page 00246

226

Ivalue riot sej

CopyfeyName

l-i

Ernd CtrIF

_J nit

Drivers

Er.tModerns

Figure 8.3 The New Key menu option

To delete subkey simply tap on the subkey icon and choose the

Delete option from the Remote Registry Editor Edit menu Alterna

tively pressing the Delete key will also delete the selected subkey

dik ew elp

ab

My ErnuJation

HKEYLOC4L_MACHWIE

Drivers

-f tJ EitModerns

Figure 84 The New Key dialog box

Page 00247

227

ffi4JW1T

HKEY_LOCALMACHINE

nis DeFauIt value not set fl

nit

Drivers

ExtModems

Comm

Printers

oftare

Explorer

dent

HARDWARE

LJSnd
SYSTEM

PMatt

HKEY_CLASSES_AOOT

HKEY_CLIRRENT_USER

Figure 8.5 The newly created Applications subkey

Adding and Removing Subkey Values

Registry values are added to the registry for either Windows NT or

CE emulation in much the same way as subkeys are added Instead of

selecting the New Key menu option you choose one of the other four

New menu options see Figure 8.3 Each of these options specifies that

you want to create value under the currently selected registry sub-

key The data type of the new value is the type specified by the

selected menu option

For example if you want to add DWORD value called AppCount to

the Applications subkey we created in the previous section select the

Applications and then select the New DWORD Value menu option

from the Edit menu The dialog box shown in Figure 8.6 will appear

Type the name of the new value and the initial value it contains in the

corresponding text fields as shown Press the OK button and the new
value appears in the right-hand pane of the Remote Registry Editor as

shown in Figure 8.7

Page 00248

228

HKEY LOCAL MACHINE

notset

AppCourt

111

HKEY_CLASSES_ROOT

HKEY_CURFIENT_USEA

Figure 8.6 The new DWORD value dialog box

Like registry subkeys registry values are deleted by selecting the par
ticular value and then choosing the Delete menu option from the Edit

menu Alternatively pressing the Delete key will also delete the

selected value

The Remote Registry Editor also contains menu options for copying

and renaming subkeys and values as well as for generating registry

files from the contents of the registry

Note on Registry Function Return Values

The various Windows CE registry API functions return ERROR_SUC
CESS if they succeed If particular function fails you might expect to

call GetLastError in order to get additional clues as to why your func

tion call failed

Unfortunately the registry functions do not set the current error code

on failure with call to SetLastError Therefore calling GetLastError

tells you nothing in these cases

Page 00249

229

LJ HKEY_LDCAL_MACHINE

nis
De.IaultJ value not set

_j
mit

________ 10

.J Drivers

_J ExtModems

41 JJ Eomm

Printers

Fi Software

LJ Esplorer

.j dent

tLJ HARDWARE

.j Snd

_J SYSTEM

_J PMail

Applications

_J HKEY_CLASSES_ROOT

_J HKEY_CUPIAENT_USER

NIJM

Figure 8.7 The newly created AppCount value

The possible error return values are those defined in WINERROR.H
You can use the FormatMessage function with the FORMAT_MES
SAGE_FROM_SYSTEM flag set in the dwFlags parameter to get the

message text of the error

Alternatively you can use my preferred and quicker method Keep
WINERROR.H open in your editor while debugging your registry

calls and search for the error codes manually

Creating and Opening Registry Keys

The Windows CE registry API provides functions for both creating

new registry keys and opening existing keys

An application creates registry key with RegCreateKeyEx This func

tion will create new key in the registry if the specified key does not

exist If the key already exists RegCreateKeyEx opens the key

RegCreateKeyEx hKey lpszSubKey Reserved lpszClass

dwOptions samDesired lpSecurityAttributes

phkResult lpdwDisposition

Page 00250

It is easiest to discuss this function if we start by describing the

phkResult parameter This is pointer to an HKEY which is returned by

RegCreateKeyEx It is the key of the newly created or opened registry

key

The hKey parameter is one of the primarykeys such as HKEY_
LOCAL_MACHINE or the HKEY of some other registry key that the

application has opened lpszSubKey is the null-terminate string name
of the subkey to create or open This parameter cannot be NULL
implying that the result of RegCreateKeyEx phkResult is always sub-

key of hKey

The result of RegCreateKeyEx call can be used to create subkeys of the

key created in the first call For example assume we wish to create the

two subkeys named HKEY_LOCAL_MACHINE\MyKeys and

HKEY_LOCAL_MACHINE\MyKeys\Data The following code

would do the trick

HKEY hNyKeys hData

/Create HKEY_LOCAL_$ACINE\NyKeys

RegCreateKeyEx

HKY_LOCAL_MACHINE //Primary key

TEXTMyKeys //Subkey Nan-ie

I/Parameters weve

I/yet to discuss

hNyKeys I/i.e phkResult

I/Using previous result create the key

IHKEY_LOCAL_MACHINE\MyKeys \Data

RegCreateKeyEx

hNyKeys /HKEY_LOCALMACHINE\MyKeys

TEXTData I/Data subbkey

hData //Handle to Data subkey

The Reserved parameter of RegCreateKeyEx is just that reserved for fu

ture use by Windows CE This parameter must be set to zero

lpszClassName is null-terminated string containing the class of the

key to be opened or created If you are not interested in assigning

class name this parameter can be NULL

The parameters dwOptions samDesired and lpSecurityAttributes are

ignored dwOptions and samDesired should be zero and ipSecurityAt

tributes.should be NULL

Page 00251

The final parameter lpdwDis position is DWORD pointer used as

return value which specifies whether the function created new key

or simply opened an existing key The possible values returned are

REG_CREATED_NEW_KEY and REG OPENED EXISTING KEY

Existing registry keys can alternatively be opened using

RegOpenKeyEx

RegOpenKeyEx hKey lpszSubKey ulOptions saniDesired

phkResuit

As with RegCreateKeyEx hKey and lpszSubKey are the key and subkey
of the key to open In the case of RegOpenKeyEx however lpszSubKey

can be NULL ulOptions and samDesired are reserved and must be zero

phkResult is the same as in RegCreateKeyEx It returns handle to the

opened key if RegOpenKeyEx is successful

Reading and Writing Registry Values

The real data stored by the Windows CE registry is kept in the various

values contained in each registry key As described above registry val

ues can store data of variety of types making registry storage very
flexible

registry key value is like data slot Each key can have one or more

values for storing information An application can read and write data

from existing registry values or it can create new values for its pur
poses In either case the application uses RegSet ValueEx This function

assigns data to specified registry value If the value does not exist it

is created The syntax of RegSet ValueEx is

RegSetvaiueExhKey lpszValueNanie Reserved dwType

lpData cbData

hKey is the key that contains the value to which data is assigned lpsz

ValueName is the null-terminated Unicode string name of the value to

set Reserved again is reserved for later versions of Windows CE and

as such must be set to zero dwType is one of the data type specifiers

It tells RegSet ValueEx what type of data is being placed in the registry

value lpData is constant BYTE pointer containing the data to be

assigned to the value cbData contains the size or length in bytes of

the data in lpData

Page 00252

232 1ZIXIIt$ItIIS1IUIIIIfLIUIIIISIIISIII1II1IiIIi

As an example lets say that we wish to create registry key under the

HKEY_LOCAL_MACHINE primary key called Test We then wish

to create 20 values in that key named ValueO Valuel and so on up to

Valuel9 Additionally we want to assign each of these values the

DWORD integer corresponding to the number in the value name For

example the number in ValueO will be and the number in Valuel

will be

To accomplish this our application would do the following

HKEY hKeyTest

CHORD dwflisp dwSize

TCHAR pszValue STRING LENGTH
mt
if ERROR_SUCCESS RegCreateKeyEx HKEY_LOCAL_MACHINE

TEXTTest NULL NULL
NULL hKeyTest dwDisp

XessageBoxNULL TEXTCould Not Create Key
TEXT Registry Error MB_ICONEXCLAMATIONME_OK

else

for i0 i20

dwSize sizeof CHORD
wsprintf pszValue TEXTValue%d
if ERROR_SUCCESS RegSetValueExhKeyTest

pszValue NULL REG_DWORD CONST BYTEi
dwSize

MessageBoxNULL TEXTCould Not Set Value
pszValue MB_ICONEXCLANATION ME_OK

//End of for loop

The first thing we do is attempt to create the HKEY_LOCAL_
MACHINE\Test regisfty key If this RegCreateKeyEx call fails we dis

play message box to that effect If the create was successful we pro
ceed to the for loop which sets the 20 registry values RegSetValueEx
creates each of the registry values if they dont already exist the

registry The RegSetValueEx call passes REG_DWORD as the dwType

parameter indicating that the value to be written is DWORD The

name of each registry value is constructed with the wsprintf call

Reading registry value is done with the function RegQueryValueEx

Page 00253

233

RegQueryValueEx hKey lpszValueNaine ipReserved

ipType lpData lpcbData

hKey and lpszValueName have the same meaning as in RegSetValueEx

ipReserved is reserved DWORD pointer and must be NULL ipType is

DWORD pointer that contains the registry values data type lpData

is BYTE pointer in which the function returns the value data lpcb
Data is DWORD pointer that contains the length in bytes of the data

to be read from the registry value

The IpcbData parameter deserves some illumination Otherwise it will

haunt your every registiy query You must assign the number of bytes

to be read from the particular registry value to the DWORD pointed to

by the lpcbData parameter So far so good But RegQueryValueEx uses

this parameter as return value as well It returns the actual number

of bytes read from the registry key which may indeed be different

from the number you said to read For example you may expect

string you are querying to be 50 bytes long If the string is really 15

bytes long RegQueryValueEx will return 15 in lpcbData

This still sounds OK Well maybe until you try using RegQueryVal
ueEx to read multiple registry keys in loop and do not reassign lpcs

Data to the number of bytes you want to read for each query

Lets look at the following example

mt
DWORD dwSize

DWORD dwType

TCHAR pszText
dwsize 128
dwType REG_SZ

for i0 i5

wsprintfpszText TEKTValue%ld
RegQueryValueEx

hKeyTest

pszValue

NULL
dwType
LPBYTE pszText

dwSize
I/Do something with dwValue

You expect this code to read five Unicode strings of length 128 bytes

from five registry values named ValueO through Value4

Page 00254

But what if any of the actual strings is less than 128 bytes long Reg
Query ValueEx will return the real length of that string in dwSize The

next RegQueryValueEx call will then say to read only as many bytes as

were in the last string At this point you can count on all the rest of the

values read to be completely unreliable Believe me the bugs that

result from such an oversight are very difficult to track down

The moral of this story is Set the lpcbData value properly for each and

every call to RegQueryValueEx

The RegQueiylnfoKey Function

There is one more registry function related to reading information

about registry keys Whereas RegQueryValueEx reads the actual value

data from specified registry key value RegQuerylnfoKey allows your

application to determine the number of subkeys and values that par
ticular registry key contains This becomes important when you need

to iterate over set of subkeys or values which is the subject of the

next section

RegQuerylnfoKey also does other work for you such as determining
the class name of the particular key and the length of that class name
as well as the maximum subkey class and value name lengths of all

subkeys and values associated with the queried key

The syntax of RegQuerylnfoKey is

RegQuerylnfoKeyhKey lpClass lpcbClass ipReserved

lpcSubkeys lpcbMaxSubKeyLen lpcbNaxClassLen lpcValues

lpcbMaxValueNameLen lpcbMaxValueData

lpcbSecurityDescriptor lpftLastwriteTime

hKey is the HKEY of the key to be queried lpClass is Unicode string

buffer used by the function to return the class of hKey This parameter
can be NULL if your application is not interested in class name infor

mation lpcbClass is DWORD pointer used to return the length of the

string returned in lpClass lpcbClass should be NTJLL if lpClass is NULL
pReserved is reserved and should be NULL

The next parameter is lpcSubkeys This is DWORD pointer in which

RegQuerylnfoKey returns the number of subkeys contained by hKey
This parameter can be NULL if this information is not of interest lpcb

MaxSubKeyLen returns the length in characters of the longest subkey

name For some mysterious reason this count does not include the

Page 00255

null-terminating character Compare this with the lpcbData parameter
of RegQueryValueEx which does include the null-terminator in cases

where it is used to read string values from the registry

lpcbMaxClassLen returns the length of the longest class name of any of

the subkeys contained by hKey No null-terminator here either Both

lpcbMaxSubKeyLen and lpcbMaxClassLen can be NULL

lpc Values returns the number of values contained by the queried key
This can be NULL if you are not interested in this information lpcb

Max ValueNameLen returns the length of the longest value name string

This parameter can be NULL and again does not include the null-ter

minator in its string character length count

lpcbMaxValueData and lpcbSecurityDescriptor are not used They should

therefore be set to NULL

Finally lpftlastWriteTime is not used and can be NULL Under Win
dows NT this parameter could be used to determine the last time

key or any of its values were changed Windows CE however does

not provide this feature

typical use of RegQuerylnfoKey is to determine the number of sub-

keys and values contained by particular registry key To continue our

example of the HKEY_LOCAL_MACHINE\Test key lets write the

code necessary to find the number of subkeys and values in this key

HKEY hKeyTest

DWORD dwSubKeys dwValues

RegOpenKeyEx HKEY_LOCAL_MACHINE TEXT Test
hKeyTest

RegQuerylnfoKeyhKeyTest NULL NULL NULL
dwSubKeys NULL NULL dwValues NULL
NULL NULL NULL

We first open the HKEY_LOCAL_MACHINE\Test registry key The

RegQuerylnfoKey call then gets the number of subkeys in dwSubKeys
and the number of values in dwValues

Notice all of the NULL parameter values In this example we are not

interested in the class names class name lengths value name lengths

and the other sundry things that this function can return Therefore

the parameters corresponding to these pieces of information are all

NULL

Now that our applications can get subkey and value counts they have

all the information they need to iterate over subkeys and values read-

Page 00256

2363flSJJ$$f$
ing or writing data as needed All we need to do is introduce the reg
istry enumeration functions

Enumerating Registry Keys and Values

Enumeration is the process of iterating over set of registry keys or val

ues and extracting information about each one as it is iterated

The RegEnum Value Function

The first registry enumeration function is RegEnum Value This function

is useful for example inside of ioops where your application wants to

read the data from every value in subkey Given the handle to an

open key an application can use this function to iterate over all values

of that key reading their data values without knowing the names of

the values being read In fact RegEnum Value reads both the value data

and value name for you

The syntax of RegEnum Value is

RegEnuinValue hKey dwlndex lpValueNaxne

lpcbValueName ipReserverd ipType

lpflata lpcbData

hKey is the handle of the open key whose values are being read

dwlndex is the index of the value to retrieve The name of the value

corresponding to dwlndex is returned in the lpValueName parameter

lpcbValueName is pointer to DWORD that contains the size of the

lpValueName buffer This parameter requires all of the caveats pointed
out with the lpcbData parameter of RegQueryValueEx Specifically you
specify the number of bytes you think the lpValueName string will be
and RegEnum Value returns the actual length through the same pa
rameter Hence you need to reset this value appropriately for every

RegEnum Value call To further complicate matters when you specify

value in lpcbValueName you must take into account the null-

terminating character of the lpValueName string that will be returned

But the value of lpcbValueName returned by RegEnum Value does not

contain the null-terminating character

The pReserved parameter should again be NULL ipType returns the

type of data in the registry value being enumerated

Page 00257

lpData points to the data read from the registry value Finally lpcbData

is used both to pass in the expected number of bytes to be read and to

return the actual number of bytes returned in lpData The same caveats

apply here as with the lpcbData parameter of RegQueryValueEx

You use RegEnum Value by initially setting dwlndex to zero for the first

call of the function and then incrementing it for each successive

RegEnum Value call Lets extend our previous example The code

below shows how to read the number of values associated with the

key HKEY_LOCAL_MACHINE\Test as before It then iterates over all

of the registry values and reads their contents

define MAX_STRING_LENGTH 129

HKEY hKeyTest

DWORD dwlndex I/Loop index

DWORD dwValuelndex I/Index of value to read

DWORD dwValues dwSubKeys 7/Number of values subkeys

DWORD dwSize //Size of data returned by

//RegEnurnValue i.e the

//lpcbData parameter

DWORD dwSizeValue I/Size of the value name string

7/read i.e the RegEnurnValue

/lpcbValueNarne parameter

RegOpenKeyExHKEY_LOCAL_MACHINE TEXTTest
hKeyText

if ERROR_SUCCESS RegQuerylnfoKeyhKeyTestNtJLL

NULL NULL dwSubKeys NULL NULL dwValues
NULL NULL NULL NULL

dwValuelndex 7/mit to zero to read first value

for dwlndex0 dwlndexdwValues dwlndex

dwSizeValue MAX_STRING_LENGTH

dwSize sizeofDWORD
if ERROR_SUCCESSRegEnumValue

hKeyTest dwKeylndex pszValue

dwSizeValue NULL dwType
LPBYTEdwValue dwSize

7/Do something with the data

7/read in dwValue

7/End of for dwlndex loop

7/End of if ERROR_StJCCESSRegQuerylnfoKey

/statement

RegCloseKeyhKeyTest 7/Close the key

The first part of this example is essentially the same as in the previous

example After opening the registry key HKEY_LOCAL_MACHINE\

Page 00258

Test we call RegQuerylnfoKey to determine the number of values in

the key

The code then reads each of the registry values with call to RegEnum
Value The for loop iterates over dwValues the number of registry

values as determined by the RegQuerylnfoKey call Notice that

dwValuelndex is initialized to zero and then incremented with every
RegEnum Value call This ensures that each registry key value is read in

order

Also dwSize Value and dwSize are reset after every RegEnum Value call

Recall that the lpcbValueName and lpcbData parameters of RegEnum
Value are used by the function as return values and therefore the val

ues you initially set may be gone

At the end we close the key with RegCloseKey

RegCloseKeyhKey

The RegCloseKey function simply closes the open registry key indicated

by the hKey parameter

The RegEnumKeyEx Function

The second registry enumeration function is RegEnumKeyEx You can

think of it as the subkey analog of RegEnum Value Whereas RegEnum
Value is used to extract data and other properties from values associ

ated with registry subkeys RegEnumKeyEx extracts information about

the subkeys of specified registry key The parameters of this function

are also analogous to those for RegEnum Value

RegEmiinKeyExhKey dwlndex lpNaxne lpcbNaine ipReserved

lpClass lpcbclass lpftLastwriteTime

hKey is the key whose subkeys are being enumerated dwlndex repre
sents the index of the subkey to enumerate lpName is Unicode string

buffer that will return the name of the subkey enumerated lpcbName
works just as it does in all the other registry functions where weve
seen it The expected size of lpName goes in the real size comes out
Its up to your application to make sure it is always initialized prop
erly lpReserved is reserved and must be NULL

RegEnumKeyEx can return registry subkey class information The

lpClass and lpcbClass parameters are used for this purpose lpClass is

Unicode string pointer that contains the class name of the enumerated

key when the function returns lpcbClass is pointer to DWORD con-

Page 00259

239

taming the length of lpClass The same caveats about lpcbNatne apply
to lpcbClass It is used as both an input and return parameter If your

application does not use class information simply set lpClass and lpcb
Class to NULL

The final parameter pftLast WriteTime is not used under Windows CE
You can therefore set it to NULL

RegEnumKeyEx is typically used to read through hierarchy of registry

keys and subkeys RegQuerylnfoKey gets the number of subkeys Each

of these subkeys is then enumerated with RegEnumKeijEx and

RegEnum Value

BE CAREFUL DURING KEY ENUMERATION

Your applications should not perform any operation that changes the number of sub-

keys or values of registry key while it is being enumerated Both RegEn urn Value

and RegEnumKeyEx use the index of the key or value being enumerated Changing

the number of subkeys or values will throw any iterative enumeration off and lead to

unexpected results

Deleting Registry Keys and Values

The last thing to know about the registry is how to delete keys and

values The registry API provides two functions RegDeleteKey and

RegDeleteValue for these purposes

RegDeleteKey deletes specified registry and all of its values It will not

delete all of the subkeys contained in the specified subkey As with

directories in the file system your applications must iterate through

the entire subkey hierarchy of particular key in order to delete all of

its subkeys and their values

The syntax of RegDeleteKey is

RegDeleteKeyhKey lpSubKey

hKey is the handle of an open key or one of the three primarykeys Ip

SubKey is the Unicode string name of the subkey to delete This pa
rameter cannot be NULL As described above RegDeleteKey will not

delete keys that contain subkeys

So in order to delete our HKEY_LOCAL_MACHINE\Test subkey we
would could write the following

Page 00260

RegDeleteKeyHKEYLOCAL_MACHINE TEXT Test
But note that the following cannot be done assume the hKeyTest is the

open HKEY of the HKEY_LOCAL_MACHINE\Test subkey

RegDeleteKeyhKeyTest NULL

Deleting value is done with RegDeleteValue

RegDeleteValuehKey lpValueNaiue

As with RegDeleteKey hKey is one of the primarykeys or handle to

an open subkey lpValueName is the Unicode string name of the value

to be deleted from this subkey

Registry Sample Application

The sample application for this chapter is nothing to write home
about It simply packages all of the examples we discussed in this

chapter into Windows CE application All of the registry functional

ity it includes is done in WinMain before the application even hits its

message ioop

The sample creates our favorite HKEY_LOCALMACHINE\Test sub-

key and twenty values It then queries the subkey for the number of

values it contains and then enumerates each of these values adding

the registry name and value to list box

The application also shows how to create and enumerate nested sub-

keys and values It also creates the HKEY_LOCAL_MACHINE\
Test\SubKeyO and HKEY_LOCAL_ MACHINE\Test\SubKeyl
subkeys It then adds two Unicode string values to each of these

subkeys Finally the application shows you how to read hierarchy

of nested subkey values using RegEnumKeyEx and RegEnum Value

The user interface of this application is very basic Figure 8.8 It has

an Exit button in the main application window for terminating the

application It also includes list box for displaying the values read by
the application from the Windows CE registry

All of the source code and the project files for building this application

can be found on the companion CD in the directory \Samples\

registry

Page 00261

241

Exit

TestWaluel9 19

TestVaIue18 18

Test\VaIuel7 17

TestVaIue16 16

Tes\VaIue15 15

TestVaIue14 14

Test\VaIuel3 13

start Windows CE
ReQistryl

Figure 8.8 The Registry sample application

Concluding Remarks

In Part II we have covered how to program the various persistent

storage features available under Windows CE You can now write ap
plications capable of taking advantage of the Windows CE file system

and the registry For more complex data storage needs your applica

lions can create their own custom databases

If you stopped reading at this point you would be well equipped to

solve most Windows CE application programming problems You

know all about persistent storage now and Part presented the most

common application user interface components You could therefore

begin writing applications capable of storing user information and

interacting with users

But most companies building Windows CEbased software and hard

ware hope to attract customers with features such as nontraditional

user interfaces and desktop connectivity So up to this point you

really only have half of the Windows CE story In the next sections we
discuss more advanced user interface programming techniques as

well as the area of desktop connectivity

Page 00262

• Page 00263Page 00263

THREE

Windows CE User Interface

Programming
icrosoft has big plans for Windovs CE The company hopes to make

Windows CE become for consumer electronics what Windows 98 and

Windows NT have become for personal computers The Microsoft

vision puts Windows CE on everything from handheld computing

devices to In ternetena bled telephones Al though you shouldnt

exactly count on let alone want Windows CE to toast our bread in

the morning von can expect growing number of consumer electron

ics companies to market devices driven 1w the Windows CE operating

svs tern

Many have compared this phase of the technology revolution to the

introduction of the first personal computers To their way of thinking

the growth of hand held and mobile computing devices and the intro

duction of new sophisticated consumer devices is the next paradigm
shift the computer industry has been waiting for

Along with this wave of innovation in product and software design

has come the usual arms of designers These arc the folks that are

tasked companies to design the user interfaces for next generation

products

Using such nontechnical personnel who are dedicated exclusively to

designing the look and feel of Windows CE applications is usually jus

tifiable Someone needs to constantly be interacting with products

potential user community to try and figure out what consumers want

from particular Windows CE device or application

second argument usually given for hiring user interface designers

goes something like this Since many companies arc designing devices

intended for consumer audience polite way of saving non
PC-savvy users this new breed of Windows CE-based devices must

first and foremost not look like PC

Page 00264

244

This is generally woefully interpreted to mean make the user inter

face look as different from the traditional Windows user interface as

possible Unfortunately this often leads companies to release prod
ucts with user interfaces that make their products more difficult to use

than the PC

While many visual improvements on the standard Windows CE inter

face components are indeed useful in order to more clearly convey the

meaning of various user interface elements many Windows CE user

interfaces end up just as cluttered busy and confusing as the desktop

applications they were meant to improve upon

Furthermore those improvements often come at enormous software

development cost One of the largest mistakes being made today by

companies pursuing their fortunes through Windows CE is to

adamantly insist that the wishes and visions of interface design teams

be realized at any cost

Windows CE is nothing more than big piece of software Like any
piece of software there are things Windows CE can do and things it

cant There are things it can do easily and things it can be made to do

with lots and lots of ugly application code Of all the people in your

organization no one understands the strengths and limitations of Win
dows CE better than your software engineering staff

Part III of this book focuses on the vast subject of implementing Win
dows CE user interfaces and controls that look different from the stan

dard Windows CE model The focus will be on features provided by
Windows CE that allow application programmers to customize the

look and feel of the various parts of user interface Like all the other

chapters in this book the chapters in this section are primarily

intended for Windows CE software developers

However if there is one part of this book that recommend be read by

project management application developers and user interface

designers alike it is this one If your entire organization understands

the limits and abilities of Windows CE more realistic user interface

designs and more realistic development schedules will result This

ultimately means that you will do what so few companies so far have

done release Windows CEbased product into the marketplace

final word and then its off the soapbox and back into program
ming If you are in charge of Windows CE development project

Page 00265

245

involve your software engineers in the user interface design process

from day one And heed their words if they say certain things cant be

done what they generally mean is that they cant be done before your

competition begins shipping

What We Will Learn

In the following chapters we will cover the following Windows CE
features for implementing custom user interface The order in which

they are presented follows the progression of simplest feature to most

complex The features covered are

Owner draw controls

Customizing the applications main window class

The Windows CE custom draw service

Implementing custom controls

Window subclassing

This section also includes chapters on programming the Windows CE
HTML Viewer control and some of the Palm-size PC input techniques

such as the rich ink control and the voice API

We begin in the next chapter with discussion of owner draw control

techniques This discussion will focus on applying these techniques to

owner draw buttons

Page 00266

Page 00267

Owner Draw Controls

and Custom Window Classes

he easiest way to change the appearance of Windows CE control is to

make the control owner draw An owner draw control is control

whose parent window not the control itself takes responsibility for

creating the physical appearance of the control

number of Windows CE controls support the owner draw feature

The techniques for programming owner draw controls is the same for

any supported control This chapter therefore presents these tech

niques in the context of owner draw buttons

Why Focus on Owner Draw Buttons

Of all of the controls that can be used in Windows CE applications

push buttons are probably the most common Buttons appear every
where They fill dialog boxes letting users choose between various ap
plication feature options Buttons are universal in providing the

OK-Cancel choices for committing user input Buttons send our e-mail

and help us navigate around Web pages in Web browser software

Given how common this control is in applications it is no wonder that

most Windows CE software vendors are interested in changing the

247

Page 00268

248

Other Windows CE Owner Draw Controls

The concepts presented in this chapter can be applied to more than just owner

draw buttons Several other controls in Windows CE such as the list view control

and the tab control to mention few support the owner draw functionality

For example tab control created with the TCS OWNERDRAWFJXED style

sends WM_DRAWITEM messages to its parent just like owner draw buttons do
The DRAWITEMSTRUCT structure passed with each message contains information

about the individual tab control items The owner window can use this informa

tion to draw the tab items any way it pleases

The Windows CE controls that support owner draw functionality are the header

control list view control status bar control tab bar control and of course the

button control

basic appearance of the button control to differentiate their user inter

faces from those of their competitors

Fortunately modifying the appearance of button controls is relatively

simple Windows CE like its Win32 desktop relatives provides this

feature with programming technique called owner draw buttons With

an owner draw button as with regular push buttons all of the mes
saging behavior such as detecting stylus taps and generating

WM_COMMAND messages is taken care of for you by Windows CE
But all aspects of the appearance of an owner draw button must be

implemented by the owner of the button Hence the name owner draw

button

The basic concept of owner draw buttons is one that will already be

familiar to the more experienced Windows programmers who read

this book But it is presented here nonetheless for variety of reasons

First organizations that are developing Windows CEbased products

are almost universally consumed with passion for making their user

interfaces look like anything but desktop PC Therefore it is useful

to review even the most basic techniques for customizing an applica

tions look and feel

Second the details of owner draw buttons may be unfamiliar to appli
cation programmers who come to Windows CE with lots of experience

programming with the Microsoft Foundation Classes This chapter

like Chapters and is partly motivated by desire to familiarize

such programmers with key Windows CE features at the API level

Page 00269

249

And third not everyone is familiar with every traditional Windows

programming technique Many Windows CE software developers

come from embedded systems backgrounds They often need to

understand Windows CE programming from both systems and an

applications level Such readers can benefit from description of the

basics

Use owner draw buttons in your applications

Use Windows CE timers

Draw graphics using offscreen bitmaps

Design custom window classes

The Example Application

The example application demonstrating the concepts presented in this

chapter is found in \Samples\kiosk on the companion CD The exe
cutable is called KJOSK.EXE

This application attempts to demonstrate what the front end of

kiosk-style Windows CE device might look like common example

of kiosk familiar to most people is the bank automatic teller machine

kiosk can be described as dedicated single-purpose device that

performs one service for user Other examples include the computer
ized video catalogs that are common in many movie rental chains or

those do-it-yourself photo enlargers that are making their way into

photo finishing shops

KIOSK.EXE is an example bank ATM user interface The users choices

are represented on the screen as owner draw buttons The main appli

cation window and the secondary window that contains the owner
draw buttons are made to look different from standard Windows CE

windows This is done by customizing certain aspects of the window
classes that govern these windows

In addition to providing insight into owner draw buttons and custom

window classes this example will also provide review of some

Page 00270

250

important graphics functions of the Windows CE Graphics Window

ing and Event Subsystem

THIS CHAPTER CONTAINS Two SAMPLE APPLICATIONS

This chapter actually contains two sample applications KIOSK.EXE is the main one

demonstrating the entire kiosk user interface \Samples\button contains the source

code for the short owner draw button example BU1TON.EXE shown in Figures 9.1

and 9.2

The Anatomy of Windows CE Control

Understanding owner draw buttons and how to use them will be eas
ier if we first look at how Windows CE controls such as buttons are

implemented

In each of the sample applications that we have encountered in this

book we have created and registered window class This window

class has described some of the visual aspects of the main application

window as well as the behavior of the main window by means of the

window procedure assigned to the window class In each of the sam
ple applications we have created just one instance of this window

class But there is nothing stopping us from using this main windows
window class to create multiple instances of the window class each

with different set of window styles dimensions window caption

text and the like

Windows CE controls are used in exactly this way Each control in

Windows CE application is just special type of window Windows

CE controls have their own window classes and hence their own win

dow procedures controlling their behavior and appearance

Lets look at the button control class in closer detail Deep in the

implementation of the Windows CE Graphics Windowing and Events

Subsystem GWES lives the implementation of the Windows CE but

ton control class Somewhere in the GWES code the button class is

defined and registered with call to RegisterCiass just as you register

your own window classes in your applications The button class that

gets registered includes window procedure that implements all of

the behavior of every button that appears in any Windows CE applica

tion

Page 00271

The default appearance of buttons gray rectangle with text is imple
mented by the button class window procedures WM_PAINT message
handler What happens when you press or release button is dictated

by the WM_LBUTTONDOWN and WM_LBUTTONUP handling
code

When you create button control you specify the button class name in

the CreateWindow or Create WindowEx call

HWND hwndButton

hwndButton CreatewindowTEXT BUTTON ..j

This tells Windows CE to create an instance of the window class iden

tified by the Unicode string BUTTON All messages sent to hwnd
Button are thus handled by the window procedure identified by that

window class Hence hwndButton knows how to walk and talk like

button control

When button needs to be repainted the button class window proce
dure does all of the work This is how Windows CE provides the

default appearance and behavior of buttons and all other child or com
mon controls

How Owner Draw Buttons Are Different

Owner draw buttons work almost exactly like other Windows CE con
trols just described The only difference is that the button controls par
ent window not the button is responsible for defining the appearance
of the button

An owner draw button behaves in all other ways like nonowner
draw button For example it still sends WM_COMMAND messages to

its parent when pressed The difference is that in the case of an owner
draw button the button skips its default WM_PAINT processing and

instead sends its parent WM_DRAWITEM message The window

procedure of the buttons parent responds to this message by drawing
the button

The BS_OWNERDRAW Style

An application tells Windows CE that particular button is an owner
draw button by specifying the BS_OWNERDRAW style when the but
ton is created

Page 00272

define IDC_BUTTON

HWND hwndButton

hwndButton

TEXTSoiue Caption
WS_VISIBLE WS_CHILD

BS_ONERDRAW

The WM_DRAWITEM Message

To Windows CE the button hwndButton is like any other button except

that it has the BS_OWNERDRAW style bit set The button class win

dow procedure checks for this style when button is about to be

painted If this style bit is set the default painting is skipped and the

button sends WM_DRAWITEM message to its parent

The WM_DRAWITEM message is sent when an owner draw button

must be repainted for any reason This includes when the button is

pressed released or receives focus How window responds to the

WMDRAWITEM message completely defines how owner draw but

tons appear to the user

window may contain more than one owner draw button Each of

these buttons may have completely different appearance The

WM_DRAWITEM message contains information about which button

is sending the message so that the parent window can execute the

appropriate drawing code Table 9.1 gives the WM_DRAWITEM mes

sage parameter details

The wParam value tells the parent window which of the owner draw

buttons that it contains needs to be redrawn The DRAWITEM
STRUCT pointed to by the iParam contains all of the information about

the control and why it must be redrawn

Applications should return TRUE when they finish processing the

WMJJRAWITEM message

Table 9.1 The WM_DRAWITEM Message

UIN1wParam Command identifier of the button sending the

message

LPDRAWTEMSTRUCTJParam Pointer to DRAWITEMSTRUCT structure contain

ing information about the control to be drawn

Page 00273

The DRAWITEMSTRUCT structure is defined as

typedef struct tagDRAWITMSTRUCT

tJINT CtlType

UINT Ct1ID

tJINT iternlD

UINT itemAction

UINT itemState

HWND hwndltem

HDC hDC
RECT rcltem

DWORD itenData

DRAWITEMSTRUCT PDPJWITEMSTRUCT LpDJWITEMSTRUCT

The first two members define the type of the control and its identifier

The hwndltem member contains the window handle of the button that

sent the WIvI_DRAWITEM message Similarly hDC is the buttons

device context Any drawing operations performed to render the

appearance of the button should be done in this device context

rcltem contains the rectangular dimensions of the button in client coor
dinates

The iteinData member only has meaning with owner draw list boxes

and combo boxes It therefore has no meaning under Windows CE
which does not support owner draw list boxes or combo boxes

The two most important members of the DRAWITEMSTRUCT are

itemAction and itemState These members describe the drawing action

that must be performed and the state of the button respectively An

application uses these values to determine how to draw the owner
draw button itemAction can be one or more of the following values

combined by bitwise OR
ODA_DRAWENTIRE The entire button must be redrawn

ODA_FOCUS The button has lost or gained keyboard focus as indi

cated by the itemState value

ODA_SELECT The button selection status has changed as indicated

by the itemState value

itemState can be one or more of the following

ODS_CHECKED Only used for owner draw menus indicates the item

is checked

Page 00274

254

ODS_SELECTED The button is selected/pressed

ODS_GRAYED Only used for owner draw menus indicates the item

is to be grayed

ODS_DISABLED The button is to be drawn as disabled

ODS_FOCUS The button has the keyboard focus

Application programmers typically just use the itemState value to de

termine how to draw their own draw buttons Since itemAction only

indicates which of the itemState values to be on the lookout for it is

easiest to just test itemState

An Example

How does all of this get used in practice Lets take simple example

and demonstrate how parent window would respond to the

WM_DRAWITEM message Assume that the parent window wants to

create an owner draw button with control identifier defined as

IDC_BUTTON and the string Press Here as the button text When
the button is unpressed it appears as shown in Figure 9.1 Figure 9.2

shows the button in the pressed state

The button is created by the code shown below hwndMain and hln

stance are the application main window and application instance

respectively

Press Here

Figure 9.1 Sample owner draw button in the unpressed state

Page 00275

255

Figure 9.2 Sample owner draw button in the pressed state

define IDC BUTTON 1028

HWND hwndButton

hwridButton CreateWindowTEXTBUTTON
TEXT Press Here
WS_VISIBLE WSCHILD BS_OWNERDRAW

175 50 100 100hwndMain

KMENU IDC_BUTTON

hlristance NULL

The WM_DRAWITEM code to implement the button appearance
which appears in the button parent windows window procedure is

shown below Only the part of the window procedure relevant to

drawing the owner draw buttons is included here

LRESULT CALLBACK WndProcHWND hwnd
UINT message

WPARAM wParam

LPARJJ4 iParam

UINT nID
switch message

Other message handlers here
case WMDRAWITEM

UINT nID
LPDRAVJITKMSTRUCT lpdis

nID UINTwParain

switch nID

case IDC BUTTON

Page 00276

HOC hdc
RECT rc
HBRUSH hBrushOld

HPEN hPeriOld

mt nNodeOld

TCHAR pszText
lpdis LPDRAWITEMSTRUCTlParam

rc lpdis-rcltem

hdc lpdis-hDC
if lpdisitemState 005_SELECTED

I/Invert the button when selected

PatBlthdc rc.leftrc.top

rc.rightrc.bottom DSTINVERT

else

I/Draw the button in its unpressed state

hPenOld HPENSelectObjecthdc

GetStockObject BLACK_PEN
hDrushOld HBRUSHSelectObjecthdc

GetStockObjectWHITE_BRUSHH

nNodeOld SetBkModehdc TRANSPARENT

Rectanglehdc rc.leftrc.top

rc.rightrc.bottom
GetwindowText lpdis-hwndltem
pszText 129

DrawTexthdc pszText -1 rc
DT_CENTER DT_VCENTER

SetBkModehdc oNodeOld
SelectObjecthdc hBrushOld
SelectObjecthdc hPenOld

break

default

break

7/End of switchnID block

return TRUE
Other message handlers here

I/End of switchmessage block

The WM_DRAWTTEM handler contains switch statement for

determining which owner draw button is responsible for sending

the WM_DRAWITEM message Although this example only contains

one owner draw button it is good practice to put such switch

statement in your handler in case you add more owner draw buttons

later

Page 00277

257

We need to draw the IDC_BUTTON button in the pressed and

impressed states We check to see if the button is pressed with the fol

lowing test

if lpdis-itemState ODSSELECTED

In other words if the ODS_SELECTED flag is set in the DRAWITEM
STRUCT itemState member the button is being pressed Note that the

test is not

if 1pdisitemState ODS_SELECTED

Since pressed button also has focus the second test is too limiting

because the ODS_FOCUS flag will also be set The itemState member of

lpdis therefore is equal to ODS_SELECTED ODS_FOCUS when the

button is pressed

If the button is pressed we simply invert the control rectangle with

call to PatBit Whatever was drawn in the button in the unpressed

state is inverted because PatBlt is called with the DSTINVERT

Much more happens in the unpressed state black pen and white

brush are selected into the buttons device context and the back

ground mode is set to transparent so that the button surface shows

through the background of any text that is drawn The Rectangle call

results in the white rectangle with the black outline that you see in Fig
ure 9.1 The Rectangle function fills the specified rectangle with the cur

rent brush white in our case and draws the rectangle outline with

the current pen in our case black

Next the code obtains the button text by calling Get WindowText and

draws it centered in the button rectangle with DrawText

After the button is drawn the original brush and pen are selected back

into the device context and the old background mode is restored

This example gives us high-level understanding of how to handle

WM_DRAWITEM The handler checks the command identifier of the

control sending the message It next looks at the itemState of the con
trol to determine which state of the control needs to be drawn and

then performs the necessary drawing operations

This example is bit simplistic Real owner draw buttons typically

have much fancier graphics that are rendered by drawing custom

bitmaps The KIOSK.EXE example uses bitmaps for richer graphics in

Page 00278

its owner draw buttons Of course richer is very subjective term

make absolutely no claims to artistic ability

The Kiosk Application

At this point we are ready to present the KIOSK.EXE application Bear

in mind that it is only really mock-up of front-end user interface for

kiosk-style Windows CE device It only demonstrates some owner

draw buttons and other user interface customization techniques There

is no real functionality behind this application

The idea behind the kiosk model is that user perceives it as dedi

cated single-use device such as an automatic teller machine It does

not provide real-time stock quotes or send e-mail as well

kiosk user interface is supposed to be one hundred percent obvious

to user No on-line help is required and the user is not faced with

myriad confusing user interface components to figure out

To meet these objectives the main application window of KIOSK.EXE

is entirely blank except for the string Tap Anywhere To Begin

scrolling continuously across the screen Figure 9.3 What could be

simpler than this No menus no buttons just black screen and very
obvious instructions about how to use the application The window
doesnt even have border or caption bar

Figure 9.3 The Kiosk application main window

Page 00279

25

Creating the Main Application Window

The implementation of this main window is straightforward Here is

how the window class that was used to create the main window is de

fined and registered WndProc is the main application windows win

dow procedure hlnstance is the application HINSTANCE and

pszAppName is the window class name

WNDCLASS wndClass

wndC1asssty1e

wndClass.lpfnwndProc WndProc

wndClass.cbClsExtra

wndClasscbWridExtra

wndclass.hlnstance hlnstance

wridC1asshIcon NULL
wndClass.hCursor NULL
wndClass hbrBackground

HRUSH GetStockObj ect NLACK_BRUSH
wndClass.lpszMenuName NULL
wndclass.lpszClassName pszAppName

RegisterCiass wndClass

This is not much different from most of the other window class decla

rations that we have seen The hbrBackground member of the WND
CLASS structure is set to the stock black brush Hence the black

background of any instance of this window class

The main window then gets created

HWND hwndMain

hwndNain CreateWindowpszAppNaine

NULL
WSVISIBLE ..j

The only window style that we set is WS_VISIBLE Therefore the main

window has no border and no caption bar This is why the main appli

cation window appears as the plain black background we see in Fig
ure9.3

Adding the Scrolling Text

The scrolling banner text in the main application window is imple
mented using bitmap and Windows CE timer

Windows CE Timers

timer is device that applications can use to have Windows CE no

tify them that specified interval of time has elapsed In our case the

Page 00280

260

timer fires every 0.5 seconds In response to this timer the main win

dow produces the effect of scrolling the text by repainting the bitmap

in new position

Timers are used extensively in wide variety of Windows CE applica

tions For example calendar applications use timers to trigger the

alarms that users set to remind them of scheduled appointments.

Each timer that an application creates is associated with particular

window Windows CE notifies window that timer associated with

it has elapsed by sending WM_TIMER message to that windows

window procedure Alternatively an application-defined callback

function can be specified for each timer In this case the callback func

tion assigned to the timer is called

To create the timer KIOSK.EXE calls the Set Timer Windows CE function

SetTimerhwnd ulDEvent uElapse ipTirnerFunc

SetTimer returns the identifier of the new timer i.e ulDEvent if the

function succeeds Otherwise the return value is zero

hwnd is the window that owns the timer Since window can own

more than one timer Windows CE needs way to distinguish between

timers Callers therefore specify the ulDEvent parameter ulDEvent is

UINT identifying the timer uElapse defines the timer interval the num
ber of milliseconds that elapse between WM_TIMER messages

ipTimerFunc is pointer to timer callback function This is the func

tion that gets called by Windows CE whenever the timer interval iden

tified by ulDEvent elapses timer callback function has the following

signature

VOID CALLBACK TimerProchwnd uMsg idEvent dwTime

hwnd and idEvent identify the window that owns the timer and the

timer identifier respectively idEvent is the same as the ulDEvent value

that is in the Set Timer call

The uMsg parameter is always WM_TIMER for timer callback Given

that timer callback is always called because timer interval has

elapsed it is anyones guess .why this parameter was added to the

function definition

dwTime gives the number of milliseconds since Windows CE was

launched on the device hosting the application

Page 00281

Table 9.2 The WM_TIMER Message

UINTwParam Identifier of the timer whose interval elapsed causing

the WM_TIMER message to be sent

TIMERPROClParam Pointer to the timer callback function

If you are like me you might prefer to set ipTimerFunc to NULL In this

case Windows CE sends WM_TIMER message to the window that

owns timer whose uElapse interval has elapsed Table 9.2 All of the

information that you would get from timer callback is available to

any window procedure that handles this message Perhaps this is why
most people dont bother using timer calibacks

If the ipTimerFunc parameter of SetTimer is NULL iParam will be

NULL for the corresponding WM_TIMER messages

KIOSK.EXE creates one timer identified as IDT_SCROLL and assigns

it to the main application window The IDT_SCROLL timer fires every
0.5 seconds

The main window responds to IDT_TIMER by scrolling the banner

text The WM_TIMER handler of the main windows window proce
dure looks like this

case WM_TIMER

if IDT_SCROLLwParam

//Perform scrolling

return

WM_TIMER handler typically checks the identity of the timer

whose interval has elapsed and performs whatever action that timer

was meant to trigger

An application can destroy timer by calling KiliTimer

KiliTimer hwnd ulflEvent

hwnd identifies the window that owns the timer to be destroyed and

ulDEvent is the timer identifier If the timer specified by ulDEvent is

successfully destroyed KiliTinier returns TRUE Otherwise it returns

FALSE

Page 00282

262

Creating the Text Offscreen Bitmaps

The text that scrolls across the kiosk applications main window is im

plemented as bitmap But you will search in vain if you try to find

bitmap resource somewhere in the project files on the companion CD
that has the text Tap Anywhere To Begin in it

This is because the bitmap that is used to draw the scrolling text is cre

ated programmatically It is done using common Windows CE

graphics programming technique known as drawing an offscreen

bitmap

An offscreen bitmap is bitmap like any other The only difference as

the name implies is that the bits that constitute the bitmap reside in

some portion of program memory that is not owned by the display

device The basic idea is that an application generates the bitmap off

screen and then renders it in some device context when needed

Note that the actual string Tap Anywhere To Begin is stored in

Unicode string variable called pszText defined in the project file

KIOSK.H The offscreen bitmap is generated using this string So when

we say that the text scrolls across the screen what we really mean is

that the offscreen bitmap representing the string is being scrolled

There are two primary ingredients required to create an off screen

bitmap The first is memory device context The second is the bitmap

itself

STORING THE BANNER TExT IN THE REGISTRY

Chapter discussed the Windows CE registry as one form of persistent storage In

complete commercial kiosk application the scrolling banner text string would most

likely be stored in the registry This would allow the banner text to be changed with

out requiring the application to be recompiled

The Memory Device Context

memory device context is similar to window device context The

difference is that memory device context represents virtual display

surface It is display surface in memory only Other than this impor
tant distinction memory device context is like any other device con
text

Page 00283

memory device context becomes really useful when it has bitmap
selected into it Then any graphics function call that operates on the

memory device context has the effect of producing the result of the

function call on the selected bitmap

Thus if an application selects bitmap into memory device context

and then draws rectangle on that device context the bitmap will

contain that rectangle

memory device context is created with the function CreateCompati
bleDC

CreateCompatibleDC hdc

This function returns memory device context with the same attrib

utes as that specified by the parameter hdc

Creating the Bitmap

The second ingredient we need in order to produce an offscreen

bitmap is the bitmap object itself For this purpose an application calls

CreateCompatibleBitmap

CreateCompatibleEitmaphdc nWidth nHeight

This function returns handle to BITMAP object HBITMAP nWidth

pixels wide and nHeight pixels tall The number of bits per pixel and

the number of color planes of the bitmap are the same as those of the

device context specified in hdc bitmap created in this way is called

an offscreen bitmap

Once bitmap has been created in this way it can be selected into

memory device context with call to SelectObject Any subsequent

graphics operations involving that memory device context are ren
dered on the offscreen bitmap

In the case of the KIOSK.EXE application the offscreen bitmap con

taining the banner text is produced with the following code hdc is the

main application window device context nRight and nBottom are the

width and height of the main application window

define KCOLOR RGBOOO I/Black text background

define TEXT_COLOR RGB255255O //Yellow text

HDC hdcMem

HBITMP hBmp
RECT rc

Page 00284

MT
TCHAR pszBanner TEXTTap Anywhere To Begin
hdcMem CreateCompatibleDChdc

hBmp CreateCornpatibleBitmap

hdc nRight nBottom
SelectObjecthdcMem hOmp
SetBkColorhdcNem BK_COLOR
SetTextColorhdcNem TEXT_COLOR
DrawTexhdcMem pszBanner -1 rc DT_LBFT

The last three statements in the example above operate on the memory
device context hdcMem The operations they represent are therefore

rendered on the offscreen bitmap currently selected into that device

context

Making the Text Scroll

At this point the application has the complete offscreen bitmap for

displaying the kiosk banner text Making this text scroll is now very

simple

The main application window simply draws the offscreen bitmap

whenever the window gets painted The scrolling effect is achieved by

updating the location at which the bitmap is drawn This position is

updated in response to the IDT_SCROLL timer firing

Inside the window procedure for the main window we find this code

case NM_TIMER

if IDTSCROLLwParam

nScrollX 50
if nScrollX nRight

nScrollX -nStringWidth

InvalidateRecthwnd NULL TRUE

return

nStringWidth is the width of the banner text string in pixels It is calcu

lated at the beginning of the application with DrawText call that uses

DT_CALCRECT as text drawing option

nScrolIX is an integer initialized to zero in WinMain It represents the

current position in pixels of the offscreen bitmap On every

IDT_SCROLL timer tick this value gets incremented by 50 pixels

Page 00285

265

Once nScrollX exceeds nRight the right edge of the main window
nScrolIX is set to the value -nStringWidth This effectively moves the

offscreen bitmap off the left edge of the main window

The InvcilidateRect call tells Windows CE that the entire client area of

the main application window must be redrawn So the entire window
is redrawn after every IDT_SCROLL timer interval

The main window is drawn with the WM_PAINT handler code

case WM_PAINT

PAINTSTRUCT pS
hdc BeginPainthwnd ps
BitBlthdc nScrollX nRight nBottom

hdcNem 00 SRCCOPY
EndPainthwnd ps
return

The BitBit call redraws the offscreen bitmap containing the text at the

new nScrollX location

Implementing the Options Window

The window that appears when user taps the kiosk applications

main window is called the options window It is the window that the

user interacts with to make various banking choices Figure 9.4

The options window is another example of Windows CE user inter

face designed to look very little like traditional windows The options

Why Not Just Use ScrollWindo wEx

Experienced Windows programmers might question my method of implement

ing scrolling text with an offscreen bitmap Why not just draw the text once Using

DrawText and then call Scroll Win dowEx in response to the WM_TIMER message

In addition to giving me an excuse to introduce the offscreen bitmap concept

to programmers who may not be familiar with it my method also makes it easier

to produce the scrolling text effect

Scroll WindowEx only scrolls pixels that appear on the window specified by the

hWnd parameter of Scroll WindowEx After the text scrolls off the right side of the

main window it re-enters the screen from the left Producing this effect without

bitmap which has fixed set of bits would require clever DrowText calls to draw

incomplete portions of the text to make it appear to scroll back on the screen

Page 00286

Choose One Of The Foffowing Options

aIance Deposit Withdraw

Figure 9.4 The Kiosk application options window

window allows users to check their bank account balance make

deposit or withdraw cash Of course none of this banking functional

ity is actually implemented by KIOSK.EXE The point of the options

window and the entire kiosk sample application is to give you insight

into the Windows CE options available for implementing non
standard user interfaces

The options window consists of three owner draw buttons custom

window border and some descriptive text Like the main window it

has no title bar or window caption

The options window class is defined and registered as follows

TCHAR pszEntryC1ass TEXTENTRYWINDOW
WNDCLASS wndClassOptions

wndClassOptionsstyle

wndClassOptions lpfnWndproc OptionswndProc

wndClassOptions.cbclsExtra

wndClassOptions.cbWndExtra

wndClassOptions hlristance hlnstance

wndClassOptions.hlcon NULL
wndClassOptions.hCursor NULL
wndClassOptions hbr3ackground

HBRUSH GetStockObj ect WHITE_BRUSH
wndClassOptions.lpszMenuName NULL
wndClassOptions lpszClassName pazEntryClass

RegisterCiass wndClassOptions

Page 00287

OptionsWndProc is the window procedure for the options window

Also notice the WHITE_BRUSH background instead of the

BLACK_BRUSH background defined for the main window class

When user taps the main application screen an instance of this win
dow class is created Since the options window appears as result of

tapping the main application window the options window CreateWin

dow call must appear in the WM_LBUTTONDOWN message handler

of the main windows window procedure as shown below Only the

part of the window procedure relevant to options window creation is

included here

HWND 1lwndOptions

mt nOptionswidth nOptionsHeight

LREStJLT CALLBACK HndProc

HWNJJ hwnd
IJINT message

WPARAM wParam

LPARAM lParam

switch message

Other message handlers here

case NM_LBUTTONDON

nOptionsWidth nRight-50
nOptionsHeight- nBottom-50
KillTimerhwndNain IDT_SCROLL
hwndOptions Createwindow pezEntryClass

NULL WS_VISIBLE

20 20 nOptionsWidth nOptionsHeight

hwnd NULL ghlnst NULL
return

Other message handlers

default

return DefWindowProchwnd message wParaxn lParam
7/End of switchmessage statement

nRight and nBottom are the horizontal and vertical dimensions of the

main windows bounding rectangle ghlnst is the globally defined ap
plication instance

The first thing to notice in this code is the KiliTimer call When the

options window is displayed the text on the main application win
dow stops scrolling This is done by simply turning the scrolling timer

IDT_SCROLL off

Page 00288

268

The CreateWindow call makes an instance of the options window class

that contains only the WS_VISIBLE style Thus the window does not

include the standard Windows CE border or caption bar The window

does appear to have border though This is rendered by the applica

tion in response to the WM_ERASEBKGND messages that are sent to

the options window

Dra wing the Options Window Border

The WM_ERASEBKGND message is similar to its more well known

cousin WM_PAINT WM_PAINT message is sent to window

whenever part or all of the windows client area needs to be repainted

SimilarlyWII\I_ERASEBKGND is sent when part or all of windows

client area needs to be erased

For example weve probably all seen applications that have windows

with interesting bitmaps as their background These backgrounds are

drawn in response to WM_ERASEBKGND messages Table 9.3

Including the WM_ERASEBKGND message in the operating system

allows applications to break the process of drawing windows into two

steps The WMERASEBKGND step can be used to draw the fixed

parts of windows client area display such as custom backgrounds
WMPAINT is then used to paint the parts of the display that change
such as the text that appears on page in word processing applica

tion

The value returned by window procedure that handles the

WM_ERASEBKGND is very important Returning the wrong value

can lead to very subtle bugs in an application which appear as win
dow backgrounds being drawn incorrectly An application should

return non-zero value if it handles the WM_ERASEBKGND mes

Table 9.3 The WM_ERASEBKGND Message Parameters

Ji1Ull1 iI1III

HDCwParam Device context of the window whose background is to be erased

Iparam Not used

Page 00289

269

sage This tells Windows CE not to perform the default WM_ERASE
BKGND processing Returning zero tells Windows CE that the default

processing should be performed

This is how the hbrBackground member of the window class definition

gets used by Windows CE If an application leaves the processing of

WM_ERASEBKGND messages to Windows CE either by returning

zero in response to the message or by calling DefWindowProc for

WM_ERASEBKGND messages Windows CE erases the window

background itself It does so by filling the windows client area with

the brush specified in the hbrBackground member of the window class

definition for the particular window This is how for example the

background of the kiosk applications main window is painted black

You can see how telling Windows CE that you erased your window

background when you really didnt can cause problems Incorrectly

returning non-zero value in response to WMERASEBKGND can

prevent the proper background from being painted

In the case of the options window in the kiosk application

WM_ERASEBKGND is used to draw the window border The relevant

portion of the Options WndProc window procedure is shown below

LRESULT CALLBACK OptionsWndProc

HWBD hwnd
UINT message

WPARAN wParam

LPARAM iParam

HDC hdc
UINT nID
RECT rc
switch message

I/Other message handlers

II
case WM_ERASEBKGND

HBRUSH hBrushOld

hdc HDCwParam
GetClientRecthwnd rc
hErushOld HBRUSHSelectObjecthdc
GetStockObject WHITE BRUSH

Rectanglehdc rc.left rc.top

rc.right rc.bottom
InflateRectrc -3 -3
Rectanglehdc rc.left rc.top

Page 00290

rc.right rc.bottom
SelectObject hdc hBrushOld

return TRUE
default

return DefwindowProchwnd message wParain lparamfl

I/End of switchmessage statement

The WM_ERASEBKGND handler first extracts the HDC of the options

window from the wParam parameter of the window procedure Next it

gets the coordinates of the options window client rectangle by calling

GetClientRect It then selects the stock object WHITE_BRUSH into this

device context Any subsequent graphics function calls that fill rect

angle or region will thus use white as the fill color

The two Rectangle function calls result in the border being drawn The

first Rectangle call fills the entire client area of the options window

with white The effect of the second Rectangle call is to draw the black

inset border This happens for two reasons First the InflateRect call

decreases the dimensions of the rectangle to be drawn Second the

outline of rectangle drawn by Rectangle is the color of the pen cur

rently selected into the device context specified by the hdc parameter

Since this pen is black by default the rectangle border is black

Note that we have to make the first Rectangle call to fill the entire client

area before drawing the inset border Since the message handler code

returns TRUE when its done the default WM_ERASEBKGND pro
cessing is skipped If the first Rectangle call is not made only the inset

rectangle would ever get drawn by our WM_ERASEBKGND message
handler

Creating and Drawing the Options Buttons

Weve seen how the options window is created But what about the

three owner draw buttons that the window contains

The three owner draw buttons in the options window are created in

response to the WMCREATE message sent to Options WndProc

Global variables and child control

identifiers defined in kiosk.h

define IDC_BALANCE 1028

define IDC_DEPOSIT 1029

define IDC_WITHDRAW 1030

HDC -hdcButtons

Page 00291

HBITMAP hBmpBut tons

HWND hwndBalance

HWND hwnd.Deposit

HHND hwndwithdraw

LRESULT CALLBACK OptionsWndProc

HWND hwnd
UINT message

WPARAM wParam

LPARAM iParani

HOC hdc
UINT nID
RECT rc
switch message

case WH_CREATE

hdc GetDChwnd
hdcButtons CreateCompatibleDC hdc
hBmpButtons LoadBitmapghlnst

MAKEINTRESOURCEIDB_BALANCEH

SelectObjecthdcButtons hBmpButtons
ReleaseDChwnd hdc
hwndBalance CreateWindowTEXTBUTTON NULL

WS_VISIBLE WS_CHILD BS_OWNERDRAW

HMENIJIDCBALPNCE..j

hwndfleposit CreateWindowTEXT BUTTON NULL

WS_VISIBLE WSCHILD BS_ONERDRAW

HMENUIDC_DEPOSIT..
hwndWithdraw CreateWindowTEXTBtJTTON NULL

WS_VISIBLE WSCRILD BS_OWNERDRAW

EMENU IDC WITHDRAW ..j
return

I/Other message handlers

//

default

return DefWindowProchwnd message wParam lParam
I/End of switchmessage statement

The WM_CREATE handler does more than just create the three owner

draw buttons It also loads the bitmap containing the button images

and selects that bitmap into global memory device context called

hdcButtons

The button images are stored in one bitmap as shown in Figure 9.5

Each button has pair of 48-pixel-wide images The first image in the

Page 00292

272

Figure 9.5 Options window button image bitmap

pair is used to draw the buttons impressed state The second is used

to draw its pressed state

When the options window draws the buttons in response to the vari

ous WM_DRAWITEM messages it is sent it uses the control identifier

of the button sending the WM_DRAWITEM message to determine

which set of images to use from the button image bitmap

define BMP_WIDTN 48

LREStJLT CALLBACK Optionswndproc

HWND hwnd
UINT message

WPARAM wParam

LPARAM iParam

HDC hdc
UINT mID
RECT rc
switch message

//Other message handlers

II..

case WM_DRAWITEM

LPDRAWITEMSTRUCT lpdis

mt xBmp xBmpPressed

nID tJINTwParam

lpdis LPDRAWITEMSTRUCTlParam

rc lpdis-rcltem

hdc lpdis-hDC
xBmp

xBmpPressed BMP_IDTH
switch nID

case IDC_DEPOSIT

xSmp 2BMP_WIDTJI

xBmpPressed 2BMP_WIDTH
break

case IDC WITHDRAW

xBmp 4BNP WIDTH

.xBmpPressed 4BMP WIDTHS

break

default

Page 00293

break

7/End of switchnID block

The WM_DRAWITEM handler first extracts the information it needs

to draw the button bitmaps such as the device context of the button

and the buttons bounding rectangle Next it initializes the two offset

variables xBmp and xBmpPressed to the pixel offsets of the first un
pressed and pressed button images

The nID switch statement then adjusts these values to correspond to

the left edge of the appropriate button bitmaps depending on which

button sent the WM_DRAWITEM message

For example if the WM_DRAWITEM message was sent by the

IDC_DEPOSIT button xBmp and xBmpPressed are set to the values 96

and 120 respectively These values correspond to the leftmost pixels of

the images to be used to draw the pressed and unpressed states of the

IDC_DEPOSIT button

Finally the WM_DRAWITEM handler checks the itemState of the but

ton and displays the proper image with call to BitBit

If the button is pressed

if lpdis-iteinState aDS_SELECTED

BitBlthdc rc.leftrc.top

rc.right-rc.left
rc.bottom-rc.top
hdcBut tons

xBmpPressed SRCCOPY

If the button is not pressed

else

BitBlt hdc rc left rc top

rc.right-rc.left
rc.bottom-rc.top
hdcButtons

xBmp0SRCCOPY

return TRUE

Concluding Remarks

In this chapter you have been introduced to some of the more com
mon techniques for programming custom Windows CE user inter-

Page 00294

faces But owner draw controls and offscreen bitmaps are but few of

the many ways that you can create user interfaces for your applica

tions that are different from the Windows CE standard

The next chapter expands on the owner draw concept with the more

general subject of the Windows CE custom draw service The custom

draw service like owner draw controls allows you to dramatically

influence the look and feel of various Windows CE controlsbut with

much more flexibility

Page 00295

.10
The Windows CE Custom

Draw Service

have seen how owner draw techniques allow applications to define

the appearance of various Windows CE control types For example by

simply adding the BS_OWNERDRAW style to button and respond

ing appropriately to the WM_DRAWITEM message in the parent win
dow procedure an application can completely redefine the look and

feel of the button

Another programming option that provides even more flexibility for

modifying the appearance of Windows CE controls is the custom draw

service

In some ways the custom draw service functionality is very similar to

the way that owner draw controls work With owner draw buttons

the WM_PAINT message handler in the button window procedure

sends WM_DRAWITEM message to the buttons parent and skips

doing the default button painting operations Similarly controls that

support the custom draw service send WM_NOTIFY messages to their

parents at various times throughout their painting process The cus

tom draw service is more flexible because it provides more hooks for

the parent window to influence the look of the control

275

Page 00296

The custom draw service is supported by the following Windows CE

common controls which live in COMMCTRL.DLL It is not supported

by any of the child controls

command bands

header controls

list view controls

toolbars

trackbar controls

tree view controls

In this chapter we describe how to use the custom draw service

through the example of custom trackbar control The control that

results is shown in Figure 10.1 did not originally set out to try and

make this control look like thermometer Compare this to the stan

dard trackbar control shown in Figure 10.2 The custom drawn version

of the control demonstrates quite bit of customization The trackbar

border appears rounded with nice drop shadowing The thumb
which is little black dot looks totally different from the standard

trackbar thumb And the channel the area that the thumb gets

dragged around in is different

The application source code that implements this example is found in

\Samples\custdraw on the companion CD The resulting executable is

2_J

Figure 10.1 trackbar control drawn using the custom draw service

Page 00297

277

jStart Windows CE Cust. pM

Figure 10.2 standard trackbar control

called CUSTDRAW.EXE To exit the application tap any part of the

main windows client area not covered by the trackbar

Use the custom draw service to customize the appearance of

Windows CE common controls

Custom Draw Notification

Windows CE controls that support the custom draw service give their

parents the opportunity to customize the control drawing process at

various times during the controls paint cycle

The paint cycle is defined as all processing that control or any win

dow for that matter performs in response to the WM_ERASEBKGND
and WM_PAINT messages WMERASEBKGND is sent to window

when the window background needs to be erased in preparation for

painting WM_PAINT is sent when window is asked to repaint itself

Controls using the custom draw service give their parent wthdovs the

opportunity to handle parts of the drawing process by sending the

Page 00298

Table 10.1 Custom Draw Service WM_NOTIFY Message Parameters

wParam Integer containing the command identifier of the control send

ing the WM_NOTIFY message

IParam Pointer to an NMCUSTOMDRAW structure If tree view control

sends the message this parameter is an NMTVCUSTOMDRAW

pointer If the control is list view control this parameter is an

NMLVCUSTOMDRAW pointer

NM_CUSTOMDRAW notification This notification is sent in the form

of WM_NOTIFY message The parameters sent with the

WM_NOTIFY message are described in Table 10.1

For list view and tree view controls the first member of the structure

pointed to by iParam is an NMCUSTOMDRAW structure

The NMCUSTOMDRAW structure contains information about the

control and where the control is in its paint cycle

typedef struct tagNMCUSTOMDRAWINFO

NHDI hdr
DWORD dwDrawStage

HDC hdc
RECT rc
DWORD dwltemSpec

UINT ultemState

LPARN llterniParam

NMCUSTOMDRAW FAR LPNMCUSTOMDRAW

The hdr member of this structure is an NMHDR notify message header

structure that always accompanies common control notifications hdc

is the device context of the control and rc is supposed to contain the

controls bounding rectangle See the tip Bogus NMCUSTOMDRAW
rc Member later in this chapter

dwDrawStage tells your application what stage of the drawing process

the custom draw control is in This member can be one of eight values

The first four specify the state that the paint cycle of the control is in

These are referred to as global draw stages

CDDSPREPAINT Sent before the controls WM_PAINT handler

begins

Page 00299

279

CDDS_POSTPAINT Sent after the controls WM_PAINT processing is

complete

CDDS_PREERASE Sent before the controls WM_ERASEBKGND
handler begins Not currently supported

CDDS_POSTERASE Sent after the controls WM_ERASEBKGND
processing is complete Not currently supported

Note that CDDS_PREERASE and CDDS_POSTERASE are not cur

rently supported

dwDrawStage can also inform the parent window where the control is

in the process of drawing individual items within the control For

example list view control keeps its parent apprised of the drawing

progress for each list view item that is drawn Trackbar controls tell

their parents about trackbar thumb channel and tic mark drawing

progress The four possible values of dwDrawStage that convey this

information are

CDDS_ITEMPREPAINT Sent before control item is painted

CDDS_ITEMPOSTPAINT Sent after control item is painted

CDDS_ITEMPREERASE Sent before control item is erased Not cur

rently supported

CDDS_ITEMPOSTERASE Sent after control item is erased Not cur

rently supported

Note that CDDS ITEMPREERASE and CDDS ITEMPOSTERASE are

not currently supported

CUSTOM Dw NOTIFIcATIoNs

All custom draw service information comes to controls parent window via the

WM_NOTIFY message This is the way that all common control notifications get to

parent windows But common controls can specify variety of notification codes

when they send WMNOTIFY messages This has led to the convention of referring to

common control notifications where the specific code identifies the notification

Similarly we will refer to custom draw notifications Each dwDrawStage value speci

fies particular custom draw notification So when we say for example the item

pre-paint notification what is specifically meant is WMNOTIFY message with noti

fication code NM_CUSTOMDRAW and an NMCIJSTOMDRAW dwDrawStage member

of CDDSITEMPREPAINT

Page 00300

280

An applications response to the NM_CUSTOMDRAW notification

under each of these conditions determines how the custom draw con
trol proceeds with the paint cycle

The dwltemSpec member of NMCUSTOMDRAW specifies the item

number to which the notification corresponds For example this value

would indicate the zero-based index of the particular list view control

item being drawn

For trackbar controls three unique values are defined for the dwltem

Spec member These values specify what part of the trackbar control

the parent window is being notified about

TBCD_CHANNEL Identifies the trackbar channel

TBCD THUMB Identifies the trackbar thumb

TBCD_TICS Identifies the trackbar tic marks

separate NM_CUSTOMDRAW notification is sent by control for

each item in that control This gives the parent window the chance to

customize every part of the controls appearance

For example assume an NM_CUSTOMDRAW notification sent by
trackbar control with dwDrawStage value of CDDS_ITEMPREPAINT
and dwltemSpec value of TBCD_TICS This means that the trackbar

control is notifying its parent that the trackbar is about to draw its tic

marks

The ultemState member of the NMCUSTOMDRAW structure specifies

the current state of the item indicated by dwltemSpec The following
state identifiers can appear in this member Not all values necessarily

have meaning for all custom draw controls For example
CDIS_CHECKED has no meaning for trackbar but does for list

view control that includes the LVS EX CHECKBOXES style

CDIS_CHECKED The item is checked

CDIS DEFAULT The item is in its default state

CDIS_DISABLED The item is disabled

CDIS_FOCUS The item has focus

CDIS_GRAYED The item is grayed

CDIS_HOT The item is under the stylus/pointing device

CDIS_SELECTED The item is selected

Page 00301

281

The final NMCUSTOMDRAW member litemiParam contains any ap
plication-defined data that may have been previously assigned to the

control item by the application

For example list view control items are described by LV_ITEM struc

tures One of the LV_ITEM members is iParam which can be used by

applications to associate data with items List view items participating

in an NM_CUSTOMDRAW notification would send their iParam data

in the NMCUSTOMDRAW iltemiParam member

BOGUS NMCUSTOMDRAW RC MEMBER

have never seen case where an NM_CUSTOMDRAW notification is sent by con

trol and the NMCUSTOMDRAW rc member had anything but garbage data in it When

implementing responses to custom draw notifications it is more reliable to get the

controls bounding rectangle yourself with call to Get ClientRect

should point out here that the Windows CE common controls that

support the custom draw service do not need to be told by an applica

tion to enable their custom draw support An application programmer
might assume that some new control style must be added at creation

time so that the control knows that its parent is interested in receiving

custom draw notifications But this is not the case Controls send cus

tom draw notifications by default Applications decide to use the cus
tom draw features by responding to these notifications If the

notifications are ignored by the parent window procedure the service

is effectively not used

ERASE NOTIFICATIoNs CURRENTLY NOT SUPPORTED

None of the global or item-specific pre- or post-erase notifications are currently sup

ported in Windows CE

Responding to Custom Draw Notifications

An applications response to the various custom draw notifications

controls the custom draw service behavior Return values can specify

how Windows CE completes particular draw stage They also can in-

Page 00302

282

dicate whether or not further custom draw notifications are sent by the

control

We first list all of the defined custom draw notification return values

and then discuss some examples of their use The values that an applica
tion can return in response to an NM_CUSTOMDRAW notification are

CDRF_DODEFAULT Tells the control to perform default processing

for the particular draw stage

CDRF_SKIPDEFAULT Tells the control not to perform default pro
cessing for the particular draw stage

CDRF_NEWFONT Tells the control that new font has been selected

into the HDC indicated by the hdc member of the NMCUSTOM
DRAW structure sent with the custom draw notification

CDRF_NOTIFYPOSTPAINT Tells the control to send CDDS_ITEM
POSTPAINT notification after painting an item This is returned in

response to the CDDS_ITEMPREPAINT notification

CDRF_NOTIFYITEMDRAW Tells the control to send all item-specific

custom draw notifications NM_CUSTOMDRAW notifications will

be sent before and after items are drawn i.e CDDS_ITEMPREPAINT
and CDDS_ITEMPOSTPAINT notifications will be sent

CDDS_NOTIFYPOSTERASE In theory tells the control to send the

parent window post-erase notifications In reality this is currently not

supported

The CDDS_NOTIFYITEMDRAW return value is in many ways the

most important An application returns this value in response to the

CDDS_PREPAINT notification to request that the control send subse

quent notifications for the rest of the current paint cycle

If on the other hand the parent window returns CDRF_DODEFAULT
in response to the CDDS_PREPAINT notification the control will not

send any more custom draw notifications for the rest of the current

paint cycle

If your application wants to use different font to draw control

select the desired font into the hdc member of the NMCUSTOMDRAW
structure You must return CDRF_NEWFONT in that case so that the

control knows new font was selected

typical NM_CUSTOMDRAW notification handler looks something
like this

Page 00303

283

How Are Custom Draw Notifications Ignored by Default

If you dig through COMMCTRL.H youll find the definitions for the various cus

tom draw notification return values One of these is

define CDBP_DODEFAI3LT OxD0000000

In the typical window procedure messages that are not handled are passed to

DefWindowProc to let Windows CE perform default processing in response to

those messages If parent window does not respond to custom draw notifica

tions DefWindowProc is called For WM_NOTIFY messages containing the

NM_CUSTOMDRAW notification code DefwindowProc returns

So by default control that sends CDDS_PREPAINT notification at the begin

ning of its paint cycle will get back if the notification is handled by Def Window-

Proc Therefore no more custom draw notifications get sent

case WM_NOTIFY

LPNMFDR lpnithdr

lpnxnhdr LPNMHDRlParam
switch lpnmhdr-code

case NM_CUSTOMDRAW

LPNMCUSTOMDRAW lprimcd

lpnmcd LPNMCUSTOMDRAW lParaxn

switch lpnmcd-dwDrawStage

case CDDS_PREPAINT

return CDRF_NOTIFYITEMDRAW

case CDDS_ITEMPRPAINT

Do item-specific painting and

return CDRF_ value depending

on how you want the item painting

to proceed

default

return CDDS_DODEFAULT
I/End of switchdwDrawstage block

default

return

I/End of switchcode block

This short code sample is the parent windows WM_NOTIFY message

handler It tells the custom draw controls to send all custom draw noti

fications by returning CDRF_NOTIFYITEMDRAW in response to the

CDDS_PREPAINT notification The CDDS ITEMPREPAINT handler

then performs the custom drawing The value returned when this is

Page 00304

done depends on whether the application wants the control to con
tinue with default item drawing or not

parent window can of course respond to custom draw notifications

from various controls in different ways In that case the WM_NOTIFY
handler would have to look at the hwndFrom or idFrom member of the

NMHDR passed with the NMCUSTOMDRAW structure to determine

which control is sending particular notification

itOther NMCUSTOMDRAW Info Structures

Earlier we said that list view and tree view custom draw controls con

veyed information about themselves in custom draw notifications

with structures other than NMCUSTOMDRAW This section describes

those control-specific structures

When list view controls and tree view controls send custom draw noti

fications the iParam of the corresponding WM_NOTIFY message is

pointer to an NMLVCUSTOMDRAW or NMTVCUSTOMDRAW struc

ture These structures are identical so we will discuss just the first The

NMLVCUSTOMDRAW structure is defined as

typedef struct tagNMLVCUSTOMDRAW

NMCUSTOMDRAW nmccl

COLORREF clrText

COLORREF cirTextEk

NMLVCUSTOMDRAW LpLVCUSTOMDREW

This structure is very similar to the NMCUSTOMDRAW structure that

is sent by other custom draw controls with their custom draw notifica

tions In fact the first member of the NMLVCUSTOMDRAW structure

nmcd is an NMCUSTOMDRAW structure

The NMLVCUSTOMDRAW structure contains two additional mem
bers clrText is the color to be used as the foreground color when the

particular list view or tree view items text is drawn clrTextBk is the

items text background color

These values are useful if an application wants to change the text or

background colors that are used when list view or tree view items are

drawn An application can assign new colors to these members and

return CDRF_DODEFAULT in response to CDDSJTEMPREPAINT
notifications The control will then paint its items with the new colors

Page 00305

AReal Example

Lets look at the real CUSTDRAW.EXE example and see how the cus

tom trackbar of Figure 10.1 is implemented

The trackbar parent window draws the channel and thumb itself It also

responds to the TBCD_TICS item spec to draw the rounded trackbar

outline The NM CUSTOMDRAW notification handler looks like this

4c1efine IDCTRACKBAR 1028

case EM_NOTIFY

LPNMHDR lpnnthdr

lpnnthdr LPNMHDRlParam
switch lpnmhdr-code

case NMCUSTOMDRAW
LPNMCUSTOMDRAW lpnmcd

lprimcd LPNMCtJSTOMDRAW lParam

Respond to notification if it comes

from the trackbar control

if lpnmcdhdr idFromIDC_TRACKBAR

BOOL bSel
bSel lpnmcd-ultemStateCDIS SELECTED
switch lpnmcd-dwDrawStage

case CDDS_PREPAINT

return CDRF_NOTIFYITEMDRAW

case CDDS_ITEMPREPAINT

return OnDrawTrackbar

lpnmcd-hdr hwndFrom

lpnmcd-hdc
lpnmcd-dwltemSpec

bSel
default

return CDRF_DODEFAULT
I/End of switchdworawStage block

//End of if hwndTB block

default

return

I/End of switchlpnmhdr-code block

The trackbar controls parent window tests to see if the NM_CUS
TOMDRAW notification is sent by the trackbar This is done by com

paring the trackbar command identifier IDC_TRACKBAR to the

NMHDR idFrom value

if lpnxncd-hdr idFromIDC_TRACKBAR

Page 00306

286

The next thing the code does is obtain the current item state If you run

the CUSTDRAW.EXE application and press the trackbar thumb the

black dot changes to gray In order to do this the application needs to

know if the thumb is selected

After that the code proceeds as in the general NM_CUSTOMDRAW
notification handler presented earlier It returns CDRF_NOTIFYITEM
DRAW in response to the CDDS_PREPAINT notification This ensures

that the trackbar control sends further paint cycle notifications In

response to the individual CDDS_ITEMPREPAINT notifications the

code performs the custom trackbar drawing operations as imple
mented by the application function OnDrawTrackbar

hit OnDrawTrackbarHWND hwnd
HDC hdc
DWORD dwltemSpec

BOOL bSelected

HBRtJSH hBrushOld

RECT rc rcChannel

mt nRes
mt nheight nCenter

Calculate the custom channel RECT

GetClientRecthwnd rc
nHeight rc.bottomrc.top
nCenter rc.topnHeight/2

SendNessage hwnd TBM_GETCEPNNELRECT

LPARAN rcChannel

rcChannel.top nCenter-12

rcChannel bottom rcChannel topl2
switch dwltemSpec

case TBCD_THUMB

SendMessage hwnd TBM_GETTHUMBRECT LPARAr4 rc
rc.top rcChannel.topl

rc.bottom rcChannel.bottom-l

if bSelected

hErushOld HBRUSH SelectObject hdc
GetStockObjectBLACK_BRUSH

else

hBrushOld EBRUSH SelectObject hdc
GetStockObject LTGRAY_BRTJSHfl

RoundRecthdc rc.left rc.top

rc.hght rc.bottom 20 20
nRes CDRF_SKIPDEFAULT

Page 00307

287

break

case TBCD_CHANNEL

hBrushOld HBRtJSH SelectObject hdc
GetStockObjectWHITB_BRt.JSHfl

Rectangle hdc rcChannel .left rcChannel top
rcChanriel .right rcChannel .bottom

nRes CDRFSKIPDEFAtJLT

break

case TBCD_TICS

Tic marks get drawn first Therefore draw the

entire control outline here so that it doesnt

wipe out any subsequent painting

GetClientRecthwnd rc
//First draw black filled round rectangle

hBrushOld HBRUSH SelectObject hdc
GetStockObject BLACK_BRUSH

RoundRecthdc rc.left rc.top

rc.right rc.bottom 20 20
Next inset the rectangle slightly and fill

it with white to leave behind the black

drop shadow outline

SelectObjecthdcGetStockObjectWHITEBRUSHfl

rc .bottom
rc right
RoundRecthdc rc.left rc.top

rc.right rc.bottom 20 20
nRes CDRF_DODEFAULT

break

//End of switchdwltemSpec statement

SelectObjecthdc hBrushOld

return nRes

This function is responsible for drawing all of the trackbar control

components As parameters it takes the control HWND and HDC It

also takes the NMCUSTOMDRAW dwltemSpec value to specify which

part of the control is to be drawn Finally it takes BOOL indicating if

the part of the control specified in the dwltemSpec parameter is se
lected

The first six lines of this function determine the vertical center of the

controls bounding rectangle and calculate new charmel rectangle

24 pixels high and centered around that vertical center point

The real fun begins with the dwltemSpec switch statement For each of

the three trackbar components thumb channel and tic marks drew

ing code is implemented to customize the appearance of the control

Page 00308

288

The thumb is drawn as small circle inside the trackbar channel The
color of the thumb depends on whether or not the thumb is pressed
After the thumb is drawn OnDrawTrackbar and hence the NMCUS
TOMDRAW notification returns CDRF_SKIPDEFAULT Since the

application has customized the appearance of the thumb it needs to

prevent the control from drawing the default thumb

The channel is drawn as white rectangle of dimensions determined

at the beginning of the function This also returns CDRF_SKIPDE
FAULT

The most interesting case is the TBCD_TICS case We wanted the

trackbar to have rounded border with thin black outline OnDraw
Trackbar draws this outline here because trackbar tic marks are drawn
before the thumb and channel Since drawing the rounded outlines is

done with calls to the Windows CE function RoundRect anything
inside the specified rectangle dimensions will be drawn over There

fore drawing the outline during the tic mark pre-paint notification

doesnt erase the custom thumb or channel

Notice how the application returns CDRF_DODEFAULT after the

TBCD_TICS draw processing The application only drew the control

outline here not the tic marks To force the control to draw the stan

dard tic marks CDRF_DODEFAULT is returned

Concluding Remarks

In this and the previous chapter we have looked at how to take ad
vantage of the features that Windows CE provides for customizing the

appearance of various control classes But owner draw and custom

draw controls only allow your applications to modify the appearance
of certain controls What if you want to design and implement com
pletely new Windows CE control from scratch You may not want to

be limited to the customization hooks provided by owner draw and

custom draw controls

The next chapter shows you how to implement custom controls in

Windows CE Custom control programming techniques allow you to

define completely new controls from scratch With custom controls

you take complete control of the appearance and even the behavior of

the conlrols you design As you will see custom controls provide for

great flexibility in Windows CE user interface design

Page 00309

11..
Designing Windows CE

Custom Controls

Wmdows
CE provides lot of flexibility in designing user interfaces for

applications The child controls and common controls give program
mers and designers wide selection of user input and data presenta

tion options When the standard controls are not sufficient Windows

CE features such as owner draw buttons and the custom draw service

provide ways to customize many of the more commonly used controls

But sometimes even these options are not flexible enough to imple
ment applications whose user interfaces deviate significantly from the

standard Windows CE look and feel In such cases application pro

grammers may be compelled to write user interface components from

scratch custom control is any control used in an application that is

not part of the Window CE operating system.1

custom control is in many ways like any of the standard Windows

CE child or common controls Like the controls supplied with the Win
dows CE operating system custom controls are child windows used in

1This definition would imply that other types of controls completely defined by an

application programmer such as ActiveX controls are custom controls While techni

cally this is true this chapter only describes custom controls as they are traditionally

defined Specifically this means any custom HWND-based control whose interface to

client application is the Win32 API

289

Page 00310

290

applications to perform functions like displaying data editing text or

responding to stylus taps in various ways Your applications create

custom controls by calling CreateWindow or CreateWindowEx and

respond to WM_COMMAND or WM_NOTIFY messages generated

by the controls

The big difference between the standard Windows CE controls and

custom controls is that as the applications programmer you design
and implement the control All aspects of the appearance of the control

and its behavior are implemented by you to satisfy some special user

interface needs not satisfied by any of the standard controls that come
with Windows CE

This points out the biggest benefit of using custom controls As the

control programmer you have complete control over every aspect of

the controls appearance and behavior

In this chapter we will look at how to implement custom controls by

implementing simple custom control in Windows CE dynamic link

library

Statically or dynamically link with dynamic link library

Implement dynamic link library

Design and implement custom control as dynamic link library

Jie Example Custom Control

Rather than focus on writing fancy control features and graphical ap
pearance this chapter concentrates on the framework required to im
plement custom control Therefore the custom control implemented
in this chapter will look very familiar We implement the standard but
ton from scratch and add some new custom control styles in the

process

Yes this is pretty boring from the point of view of learning how to cre

ate user interface components that look nothing like Windows CE But

Page 00311

291

the aspects of implementing custom controls requiring the most atten

tion are issues such as supporting control-specific styles and respond

ing to window messages Also more worth our time is how to package

custom controls for the most convenient use by applications

The custom button defines three styles that are specific to this custom

control These styles are detailed in Table 11.1 Some examples of cus

tom buttons with the various styles are shown in Figures 11.1 and 11.2

The complete source code for the custom control and the client ap
plication that uses the control can be found under \Samples\custom
on the companion CD The workspace .dsw file is under the

\Samples\custom\control subdirectory and is called control.dsw

This workspace contains the project for the custom control

CONTROL.DLL as well as the client application CUSTOM.EXE

Packaging Custom Control as Dynamic Link Library

The first thing to think about when implementing Windows CE cus
tom control is not how to make the control green Programming the

various appearance and behavioral aspects of the control comes second

Your first concern as custom control developer should be how to

package the control Your decision to implement custom control was

probably motivated by the specific requirements of one Windows CE

application But if designed properly your control may find use in

number of different applications You may even be able to sell it to

other software developers

Table 11.1 Custom Button Control Styles

11i

CBTN_PUSH Creates custom button that acts like standard Windows

CE push-button control

CBTN JOGGLE Creates custom button that toggles much like check box

The button stays pressed when tapped It must be tapped

again to unpress it

CBTN_LARGEFONT Tells the control to draw button text with 18 point Times New

Roman font Without this style the font used is 12 point

Times New Roman

Page 00312

292 gv3a1$pJ1JI4II$IjtILae$I11II1a$1$1N$a$II$$t$1

Figure 11.1 custom button with the CBTN_PUSH style

If custom control is implemented inside an application that uses it it

is very hard for another application to use Therefore it is highly rec

ommended that any custom control be implemented fri dynamic link

library or DLL The control is thus packaged as stand-alone module

that can be used by any number of applications

Figure 11.2 custom button control with the CBTN_LARGEFONT and CBTN JOGGLE

styles in the pressed state

Page 00313

293

DLI Basics

There are numerous resources that explore the details of dynamic link

libraries in far more depth than can be covered here This chapter will

however highlight the main points of DLL programming and point

out some of the benefits of using DLLs

dynamic link library is very similar to an executable application

DLL can contain data resources and executable code just like an .EXE

file But DLL is not program It is not run like an application

Applications load DLLs and use the data and resources they contain

or call functions implemented inside the DLL Dynamic link libraries

are often called application extensions because they only become useful

within the context of running application

Another important feature of dynamic link libraries relates to how

functions in the DLL are linked to an application that uses them

Applications can link either statically or dynamically with the functions

in DLL

When DLL is loaded by an application it technically means that

copy of the DLL is placed in the program memory of the application

The DLL and the application share the same address space This is

why more than one application can use the same DLL at the same

time For example more than one Windows CE application written

using MFC can run at the same time because each application has its

own copy of the MFC DLL

Static Linking

When you compile and link dynamic link library the DLL gets cre

ated as file with the extension .DLL Another file called the import li

brary is also created with the extension .LIB This file contains one or

more import records one for each function exported by the dynamic

link library Each import record contains the name of the DLL that con
tains the code implementing the function It also contains either the

name of the function or its ordinal number or both The ordinal number

is simply number that uniquely identifies function in DLL

When an application statically links with DLL it means that the

application links with the corresponding import library at link time

The information from the import records corresponding to any DLL

Page 00314

294

functions referenced by the application get copied into the applica

tions .EXE file

When the application runs Windows CE looks for any dynamic links

in the .EXE file Windows CE loads any DLLs referenced in these links

that are not already loaded and resolves the import record function

reference to the actual address of the function in the DLL Hence
whenever the application calls function in DLL with which it was

linked it can call into the proper function code at run-time

Dynamic Linking

One disadvantage of static linking is that when an application that sta

tically links with DLL starts executing the DLL is loaded as well
even if the application only calls one function in that DLL and that

very rarely So the DLL takes up room in the applications address

space even when it is not in use This can become problematic if an ap
plication uses many DLLs especially in Windows CE environments

where memory is often in short supply

Dynamic linking offers an alternative With dynamic linking an appli
cation does not link with the DLLs import library No import records

are copied into the executable and no dynamic links are established

And if there are no dynamic links in the executable file no DLLs get

loaded when the application begins execution

Instead with dynamic linking the application is responsible for load

ing any DLLs that it uses Furthermore the application must deter

mine the address of any function it needs to call get pointer to the

function and call the function by de-referencing the pointer Finally

the application must unload the DLL when it is done using it in the

same way that it frees up resources like fonts or bitmaps

The benefit of using dynamic linking is that an application can control

when particular DLL is loaded The application can also better man
age its memory resources by deleting DLLs from memory when they

are not in use

Dynamic linking obviously means more work for the application pro
grammer With static linking as long as you include the appropriate

DLL header files and link with the import library you can make calls

to DLL functions as you would call any other function Dynamic link

ing forces the application programmer to load DLLs get function

pointers and free DLLs

Page 00315

295

Lets look at the dynamic linking steps in more detail An application

loads dynamic link library by calling the Windows CE function Load-

Library

LoadLibrary lpLibFileName

lpLibFileNarne is the null-terminated Unicode string name of the DLL
to load search path to the DLL name cannot be specified You must
therefore either give the full path name of the DLL to be loaded or de
pend on Windows CE to find the DLL If you choose the latter alterna

tive Windows CE will first look in the root directory of the storage

card attached to the device if any If there is no such card or the DLL
is not found in the cards root directory Windows CE proceeds by
looking in the \Windows directory Finally if that fails it searches the

devices root directory

If the DLL is found LoadLibrary returns handle to the DLL as an

HINSTANCE If it fails the function returns NULL

Note that LoadLibrary can be used to load any Windows CE module

.EXE or .DLL It is most commonly used for DLLs though

When an application is done with DLL it calls FreeLibrary

FreeLibrary hLibNodule

hLibModule is the DLL instance handle returned by the previous Load-

Library call

Note that calling FreeLibrary does not necessarily mean that the speci
fied module is removed from the process memory In multithreaded

applications LoadLibrary can be called by one or more threads in

process incrementing the modules reference count FreeLibrary decre

ments this reference count for the specified module and only removes

it from memory once its usage count goes to zero

Finally to get pointer to an exported DLL function an application

uses GetProcAddress

GetProcAddresshNodule lpProcName

hModule is the instance handle of the DLL containing the function of

interest lpProcNarne is the Unicode string name of the function

GetProcAddress returns pointer to the requested function

We will see an example of how to dynamically link with DLL little

later in this chapter

Page 00316

Exporting DLL Functions

The discussion above made references to exported DLL functions

function must be exported by DLL in order for it to be available to

applications or other DLLs

dynamic link library can export function using any one of the fol

lowing techniques

Using the /EXPORT linker option

Defining functions to be exported with the declspecdllexport
modifier

Specifying the functions to be exported in module definition file

module definition file name uses the .DEF extension

Lets look at an example of DLL module definition file The custom

button control DLL of this chapter exports the function initCustomBut

ton via this module definition file

LThRARY CONTROL DLL

EXPORTS

InitCustomutton @1

The first line of the file assigns the name CONTROL.DLL to the

DLL The EXPORTS keyword says that the functions that follow are to

be exported Specifically these are the functions for which import
records are included in the import library that is generated when the

DLL is linked The sign specifies the ordinal number to assign to the

corresponding function in the import record If an ordinal number is

not specified in the .DEF file one is assigned by the linker

Any application that appropriately links with CONTROL.DLL either

statically or dynamically can now call the function InitCustomButton

The DLL Entty Point

When Windows CE application starts running little piece of start

up code added to the beginning of the .EXE file by the linker calls

function known as the application entry point This function is called

WinMain It is the function that application programmers think of as

the starting point of their applications

Page 00317

Dynamic link libraries also have an entry point At various times such

as when DLL is initially loaded by Windows CE the operating sys
tem calls the function DilMain The signature of DilMain is

BOOL WINAPI DllMainhinstDLL

fdwReason lpvReserved

The WINAPI modifier is simply defined as _stdcall in the Windows

CE header files

hinstDLL contains the instance handle of the DLL for which DilMain is

being called.fdwReason and lpvReserved can take on various values

depending on why DilMain is being called These values and when

they are passed to DilMain are described in Tables 11.2 and 11.3

CHANGING THE DLL ENTRY POINT FUNCIION NAME

You can freely change the entry point function name on DLL-by-DLL basis Simply

use the /entry linker flag when linking the particular DLI For example many pro

grammers like to use the name DilEntryPoint for their DLLs To do so add the follow

ing to the Project Options under the Link tab of the corresponding Microsoft

Developer Studio project settings

entzy Dl lEntryPoint

Of course this new name must then be used in the entry point function implementa

tion

The value returned by DilMain is ignored except when the fdwReason

parameter is DLL_PROCESS_ATTACH In this case DilMain should

return TRUE if the DLL initialization succeeds and FALSE if it fails

Table 11.2 DllMain fdwReason Parameter Values

TI1IIJ I1II
DLL_PROCESS_ATrACH DLI is being loaded for the first time by an application

DLL PROCESS_DETACH DLL is being detached from the process that uses it

This happens when the process terminates or Free-

Library call has forced the DLI usage count to

DLL_THREAD_ATTACH new thread has been created in the calling process

DIL_THREAD_DETACH thread has been terminated in the calling process

Page 00318

F19

Table 11.3 DilMain lpvReserved Parameter Values

flhII iIlII
NULL If fdwReason is DLLYROCESS_ATTACH this means that DI/Main

was called as result of dynamic LoodLibrary call

If fdwReason is DLLPROCESS_DETACI-i this means that DilMain

was called as result of dynamic FreeLibrcuy cafi that r.educed

the DLI reference count to

Non-NULL If fdwReason is DLLPROCESS_A1TACH this means that DilMain

was called as result of static DLI load when the process started

If fdwReason is DLLJROCESS_DETACH this means that DilMain

was called as result of process termination

DLL Benefits

There are numerous reasons for using dynamic link libraries The most

important reasons include

Maintainabi1ity Applications are broken down into number of com
ponents each of which is easier to maintain than larger monolithic

application

Reusability Functions and resources exported by DLL are more eas

ily used by multiple applications

Memory management Applications have more direct control over

memory usage if they choose when to load and free DLLs

initializing the DLI in the Client Application

Before we explore the details of programming our custom control

DLL lets look at how the client application initializes the DLL This

provides real example of how to dynamically link an application

with aDLL

To use our custom button control an application must do two things
It must first link with the dynamic link library that implements the

control As discussed above this can be done either statically or

dynamically Next the application must call the appropriate function

to register the custom control window class

The client application CUSTOM.EXE dynamically links with the cus
tom control library CONTROL.DLL The code below comes from the

__

Page 00319

WinMain function found on the companion CD in the file

\Samples\custom\main.cpp hInstDLL is an HINSTANCE defined in

the file \Samples\custom\custom.h

The DLL initialization function called InitCustomButton is described in

detail in the next section

include control .h

typedef void LPINITCUsT0MBJJTT0N

LPINITCUSTOMBUTTOB lpicb

HINSTJCE bIns tDLL
HWND hwndExit

jOt WINAPI WinNainHINSTANCE hlnstance

HINST1CE hPrevlns tance

LPTSTR lpCmdLine

mt nCmdShow

MSG msg
WNDCLASS wndClass

Save application instance in ghlnst for

possible use by other functions such as

the main windows window procedure

ghlnst hlnstance

We are dynamically linking with control.dll

The application must therefore load the DLL

and get the address of all exported functions

that it wishes to call

hInstDLL LoadLibraryTEXTcontrol .dll
if hInstDLL

lpicb LPINITCUSTOMBUTTON GetProcAddress

hInstDLL TEXT InitCustomButton
Call the custom control initialization function

by dereferencing the function pointer extracted by

the previous line of code

lpicb

else

MessageBoxNtJLL TEXTCould not load OLL
TEXTCustom Control Sample Error
MB_ICONEXCLAMATION MB_OK

Application code which registers the application

main window class creates the main window etc
not shown

Page 00320

hwndExit Createwindow

CUSTOI1BUTTON

TEXTExit
WSVISIBLE WSCH1LD CBTNLARGEFONT

00100100
hwndNain

HMENU IDC_EXIT

hlnstance

NULL
Etc etc

The first interesting thing in this code sample is the LoadLibrczry call

This function loads the dynamic link library CONTROL.DLL into the

client applications address space hInstDLL contains an instance han
dle of this DLL

Next the client application gets the address of the exported DLL func

tion InitCustomButton It does this by calling GetProcAddress

lpicb LPINITCTJSTOMBUTTON GetProcAddress

hInstDLL TEXT InitCustomButton

lpicb is declared as type LPINITC1JSTOMBUTTON This type is de
fined by the client application as an alias for pointers to functions with

the same signature as InitCustomButton Therefore after the GetProcAd

dress call lpicb contains pointer to the InitCustomButton function The

application then initializes the custom button control by calling this

function by simply de-referencing this function pointer

After that the application is free to create instances of the custom but

ton control by calling CreateWindow with the CUSTOMBUTTON win
dow class name The CUSTOMBUTTON symbol is defined in the

header file CONTROL.H We will see this definition little later

From the point of view of the client application thats it The applica

tion can now send window messages or any custom messages defined

by the control to hwndExit The application can also respond to notifi

cations or messages such as WMCOMMAND that the button may
send it

Implementing the Custom Button Control

We now focus our attention on the details of the custom control DLL

implementation

Page 00321

The InitCustomButton Function

The first part of the custom button control implementation we will

look at is the InitCustomButton function This is the exported fanction

that client applications call to register the control window class This

function also initializes the two fonts used by the control but this part

of the function is left out for brevity

void InitCustornEutton

WNDCLASS wndClass

wndClass.style

wndClass lpfnWndProc ControlwndProc

wndC1asscbClsExtra

wndClass.cbWndExtra

wndClass.hlnstance NULL
wndClasshIcon NULL
wndClass.hCursor NULL
wndClass AibrBackground HBRUSH COLOR_WINDOWl
wndClass.lpszNenuName NULL
wndClass lpszClassName CUSTOMBUTTON

RegisterCiass wndClass
This function also goes on to create the

two fonts used by the DLL

ControlWndProc is the window procedure of the custom button control

We will discuss this function later Also notice that the cbWndExtra

member of the WNDCLASS structure is This means that every cus

tom button HWND carries around extra bytes We will see how these

bytes are used later as well

The header file associated with the custom control DLL CONTROL.H
includes the following definition

define CUSTOMBUTTON TEXT CtJSTOMBUTTON

This defines the window class name for the control This name gets

assigned to the lpszClassName member of the WNDCLASS
structure

Note that since all window classes are global under Windows CE
the hinstance member of the window class structure can be set to

NULL

Page 00322

302

CUSTOM CONTROL CLASS CAN BE REGISTERED IN DLLMAIN

Your custom control implementations can do all of the control window class regis

tration in DilMain in response to the DLL_PROCESS_AflACH event This would elimi

nate the need for implementing an initialization function Applications would have

one less function to call as well This chapter chooses to implement the initialization

function to more fully demonstrate dynamic linking and the way GetProcAddress is

used to obtain pointers to exported functions

Custom Button Control Styles

The custom button control supports three control styles CBTN_PUSH
CBTN_TOGGLE and CBTN_LARGEFONT Refer to Table 11.1 at the

beginning of the chapter for description of these styles

In Windows CE control styles generally occupy the low word of the

32-bit integer that defines the control window styles The high word is

used for the window styles such as WS_CHILD or WS_VISIBLE

The custom control header file CONTROL.H thus defines the three

control styles as the following 16-bit integers

define CBTN_PUSH Ox0000

%define CBTN_TOGGLE Ox000l

define CBTN_LARGEFONT 0x0002

Assigning CBTN_PUSH value of zero means that this style is the de
fault custom button control style Each of the other styles is assigned

unique bit of 16-bit integer

An instance of the custom button control class often needs to test one

or more of these style bits to see if it is set Determining if particular

button is toggle style for instance requires that the custom control

code check for the CBTN TOGGLE bit

window can check its styles by calling the Windows CE GetWindow

Long function The function extracts particular 32-bit integer value

that is stored with the window

GetWindowLong hWnd nlndex

hWnd specifies the window and nlndex is value specifying which 32-

bit value to retrieve This parameter can be any one of the values

shown in Table 11.4

Page 00323

As an example an application can check to see if an instance of the

custom button control class has the CBTN_LARGEFONT style with

the following code

HWND hwndButton //The custom button control HWND

DWORD dwStyle

dwStyle GetwindowLong

hwndButton

GWL_STYLE
if dwStyle CBTN_LARGEFONT

I/Do something

Get WindowLong has counterpart et WindowLong which can be used

to set any of the values described in Table 11.4

SetwindowLong hWnd nlndex dwNewLong

This function sets the window value indicated by nlndex to the value

specified by dwNewLong The previous value that the window stored

for that index is returned by the function

UNSUPPORTED INDICES

Under Windows CE GetWindowLong and Set WindowL ong do not support the

GWL_HINSTANCE GWL_HWNDPARENT or GWL_USERDATA indices

Table 11.4 GetWindowLong and SetWindowLong Index Values

GWLEXSTYLE Retrieves/sets the window extended style

GWL_STYLE Retrieves/sets the window style

GWLWNDPROC Retrieves/sets the window procedure

GWLJD Retrieves/sets the window identifier

DWL_DLGPROC Retrieves/sets the dialog procedure for specified dialog box

DWLJASGRESULT Retrieves/sets the return value of message processed in the

dialog box procedure

DWLUSER Retrieves/sets an application-specific 32-bit value associated

with the specified dialog box

Page 00324

304

Performing Window Brain lianspiant Window Subclassing

The Windows CE functions Get WindowL ong and SetWindowL ong provide some

very powerful possibilities when used with the GWL_WNDPROC index With these

functions an application can subdass any Windows CE window

Window subclassing in this sense means replacing the window procedure of

window with different window procedure With this technique an application

can give custom behavior to window on the fly

This becomes most significant when subclassing Windows CE controls Sub-

classing control lets you take full advantage of the default functionality of the

control while adding custom behavior only where needed

To subclass control or any other window you write window procedure for

that control which contains your custom responses to the various Windows CE

messages you wish to override You then make the control use this window pro
cedure by calling Set WindowL ong

LESUL CLLBACK myWndPoc EWND llwnd

UINT message

WPARX.1 wParam

LPB.1 iParam
HWND hwndControl

WNDPROC wndProcO1d

wndprocOld WNDPROCSetWi.ndowLoug

hwndControl GWL_WNDPROC LONGmyWndProc

In one step Set WindowL ong changes the window procedure to be used by the

control hwndControl and stores the original control window procedure in wad
ProcOld

Using Extra Window Words to Maintain the State of the

Control

So far we have ignored the significance of the following line of code

that is executed when initializing the custom button controls window
class

wndClass.cbWndExtra

As discussed back in Chapter this statement means that every in

stance of the window class will contain eight extra bytes or two 32-bit

values An application can use these values to store information about

an instance of the window class

Page 00325

305

Saving the old window procedure makes it easy for your custom window pro
cedure to implement the original default behavior for messages you do not want

to override This is done by calling Call WindowP roc

CallwindowProcwndprcPrev hwnd uMsg wParam Lparam

This function passes handling of the message uMsg to the window procedure

specified by wndprcPrev In other words CallWindowProc allows an application

to directly call into specified window procedure

As an example lets say that you only wish to customize the stylus tap logic for

list box control You could write the custom list box window procedure as fol

lows List WndProcOld is the original list box window procedure extracted by

call to Set WindowL ong like the one shown above

LREStJLT CAI.LBACK myWndproc

HWND hwnd
DINT massage

WPARAM wParain

LPARAN lparam

switch message

case WN_LBUTTONDOWN

I/Custom logic here

return

default

return CallWindowProc LitWndProcOld
hwnd message wparam iparam

These extra words are accessed using Get WindozvLong and Set Window-

Long Instead of using one of the predefined indices in Table 11.4 the

application references particular 32-bit value by its zero-based offset

Since the number of bytes defined by cbWndExtra must be multiple

of four and each extra word is bytes the index of the first word is

the second is and so on

For example to access the second of these extra window words an

application would do this

DWORD dwVal

dwVal GetWindowLonghwndControl

Page 00326

306

The custom button control implementation uses the two extra words it

defines to keep information about the state of each instance of the con
trol class CONTROL.H defines the following two indices

define GWL_BUTTONINVERT

define GTNLBUTTONFONT

These are the indices used to access the first and second extra window

words respectively defined by the custom button controls window

class

The first extra window word keeps track of whether the particular

button is currently painted in the inverted state This information is

used by the controls window procedure for example to determine

which state to repaint toggle-style control in when user taps it

The second word stores the font handle of the font used to draw the

button text

As an example of how this state information is used lets look at the

processing that occurs when custom button control is created The

following code comes from the control window procedures

WM_CREATE handler hwnd is the HWND of the control and lpcs is

pointer to the CREATESTRUCT hFontTI2Pt and hFontTI8Pt are the han
dles to the two fonts available to the control

lpes-style CBTN_LARGEFONT

Set WindowLong

hwnd

GWLBUTTONFONT

LONG hFontl8Pt

else

SetWindowLong

hwnd

GWLBUTTONFONT

LONG hFontl2Pt

return TRUE

When an instance of the control is created the appropriate font is as

signed depending on whether the CBTN_LARGEFONT style bit is set

Page 00327

The control then uses this font when painting itself The WM_PAINT
handler code contains the following line for selecting the font into the

controls device context hwnd is the window handle of the control

hFontOld HFONTSelectObject hdc
HFONT GetwindowLong hwnd GWL_BUTTONFONT

Any text drawn inside the control is thus in the correct font

Handling Button Presses

Probably the most interesting code in the custom button control imple
mentation is the stylus handling logic The custom button control class

supports the CBTI.LPUSH and CBTN_TOGGLE styles and the stylus

code must implement the appropriate behavior for both

To make it easier for the control source code to determine which of

these styles is assigned to particular button the CONTROL.H header

file defines the following macro

define IsToggleStylehwnd

GetwindowLong hwnd GWL_STYLE CBTN_TOGGLE

TRUE

The control also uses the first extra window word indexed by
GWL_BUTTONINVERT to keep track of whether button instance is

in the pressed or unpressed state

CBTN_PUSH Style Custom Button Controls

Buttons with the CBTN_PUSH style act like regular Windows CE but

ton controls When pressed they are painted in the pressed state Once

released they are repainted in the unpressed state Also if user

presses the button and drags the stylus on and off the button without

releasing the button the button changes between the pressed and Un-

pressed states

When user presses CBTN_PUSH-style button the following

WM_LBUTTONDOWN handler code is invoked

SetCapture hwnd
SetWindowLong hwnd GWL_BUTTONINVERT LONG TRUE

The stylus capture is assigned to the button control window This

forces all subsequent stylus input to be passed to the control Next the

Page 00328

GWLBUTTONINVERT extra window word is set to TRUE This state

information will be used during WM_PAINT handling to determine

which state to paint the button in Specifically the WM_PAINT han
dler includes the following code hwnd is the HWND of the control

and hdc is the controls device context

RECT rc
BOOL blnvert

GetClientRecthwnd rc
blnvert BOOL GetwindowLong hwnd GWLB
if blnvert

DrawEdgehdc rc EDGE_SUNKEN

BF_SOFT BF_RECT

else

DrawEdgehdc rc EDGE_RAISED

BR SOFT BF_RECT

In the pressed state the control is drawn with sunken edge In the

unpressed state it is drawn in the raised state

When the user releases the button the WM_LBUTTONUP code shown
in Figure 11.3 is invoked

Capture is released from the control HWND The GWLBUTTONIN
VERT window word is set to FALSE so that the button is drawn in the

unpressed state during the next paint cycle

The rest of the WM_LBUTTONUP code determines whether the stylus

was in the button when it was released If so the button sends

WMCOMMAND message to its parent window WM_COMMAND
messages are not sent if user presses button and then drags the sty
lus off of it without releasing the button

The PtlnRect call determines if the stylus point is in the controls

bounding rectangle Also note the use of the GWLJD index in the call

to Get WindowLong This extracts the control identifier of the custom

button which must be sent with the WMCOMMAND message

Finally the control must handle stylus move messages The

WMMOUSEMOVE handler implementation is

RECT rc
BOOJ blrivert

if GetCapture hwnd

Page 00329

GetClientRecthwnd rc
blnvert PtlnRectrc pt TRUE FALSE

if IsToggleStylehwnd

SetwindowLong hwTld GWL_BUTTONINVERT LONG blnvert

If the control does not have stylus capture the WM_MOUSEMOVE
handler does nothing This means that if the stylus moves when but
ton is not pressed nothing needs to be done

Otherwise the code simply toggles the GWL_BUTTONINVERT state

depending on whether the stylus is dragged into or out of the pressed

button When the button is repainted its appearance will alternate

between the pressed and unpressed states

CBTN_TOGGLE Style Custom Button Controls

There are only minor differences in the stylus handling for

CBTN_TOGGLE-style buttons The basic difference is determining

when to change the GWL_BUTTONINVERT state so that the button

remains pressed until tapped again

HWND hwndParent

RECT rc
GetClientRect hwnd rc
ReleaseCapture

if IsToggleStyle hwnd

SetwindowLong hwnd GWL_BUTTONINVERT LONG FALSE

Send EN_COMMAND to the parent if

stylus went up in the control

if PtlnRectrc pt

InvalidateRecthwnd NULL TRUE
hwndParent GetParenthwnd
SendMessage

hwndParent

EM_COMMAND

MAKEWPARAM WORDGetwindowLonghwnd GEL_ID
LPARPNhwnd

Figure 11.3 Custom button control WM_LBUTTONUP message handling code

Page 00330

3i

The WM_LBUTTONDOWN code for CBTN_TOGGLE-style controls

looks like this

BOOL blnvert

SetCapturehwrid

blnvert BOOL GetWindowLong hwnd GWL_BUTTONINVERT

SetWindowLong hwnd
GWL_BLJTTONINVERT LONG blnvertfl

Whereas the CBTN_PUSH style controls always set the GWLBUT
TONINVERT state to TRUE on stylus tap the CBTN_TOGGLE but

tons toggle this state

If you refer to the WM_LBUTTONUP code in Figure 11.3 you will see

only one difference between CBTN_TOGGLE and CBTN_PUSH con
trols The difference is these lines which force toggle-style buttons to

set the invert state extra window word to FALSE

if IsToggleStyle hwnd

SetWindowLong hwnd GEL_BUTTONINVERT LONG FALSE

In other words when the user releases CBTN_TOGGLE-style button

the toggle state does not change In this way pressed button stays

pressed and an unpressed button stays unpressed The toggle state

does not change until the button is pressed again as shown by the

WM_LBUTTONDOWN code above

SimilarlyCBTN_TOGGLE-style buttons do not change state when the

stylus moves across them These lines in the WM_MOUSEMOVE code

ensure this

if IsTogglestyle hwnd

SetWindowLong hwnd GWL_BUTTONINVERT LONG blnvert

1flji Complete Sample Application

The complete source code for the custom button control DLL and the

client application are included on the companion CD The directory

\Samples\custom contains the client application source code The di

rectory \Samples\control contains the source code for the custom con
trol DLL as well as the Microsoft Developer Studio workspace file for

both of these components

Page 00331

31i

GoiscIuding Remarks

In Chapters 10 and 11 we have discussed some of the features pro
vided by Windows CE for designing custom application user inter

faces Owner draw controls let you take over the control painting

process in your application code The custom draw service is similar

but provides more flexibility by giving your application the opportu

nity to intercede at specific limes in the controls paint cycle

There may be occasions when even more customization is required

For these jobs you can implement complete new controls from scratch

using the custom control programming techniques you have just read

about

As you gain experience using these programming techniques you will

come to appreciate the flexibility that Windows CE offers for design

ing custom user interfaces for your applications

The next two chapters discuss some additional Windows CE user

interface features Chapter 12 introduces the HTML Viewer control

Chapter 13 describes how to program some of the user interface fea

tures specific to the Palm-size PC platform

Page 00332

Page 00333Page 00333

12
The HTML Viewer Control

he advent of the Internet and the World Wide Web have led to dra

matic changes in the basic functionality of computer operating sys
tems Microsofts Win32-based operating systems are no exception

Windows NT Windows 98 and Windows CE are all very comfortable

with providing users with the ability to browse the Internet and dis

play data in all of the various new formats that this medium has gen
erated

Applications such as Pocket Internet Explorer the Microsoft Windows

CE Web browser can display hypertext markup language HTML
documents containing formatted text and images just like their desk

top Web browser counterparts

HyperText Markup Language or HTML has always been an impor
tant part of the Internet One of the simplest ways to display HTML in

Windows CE applications is with the HTML viewer control provided

with Windows CE This control is in fact used by Pocket Internet

Explorer for viewing HTML pages As we will see adding HTML ren

dering capabilities to your Windows CE applications can be easily

done with the HTML viewer control

313

Page 00334

k3FvJ
Use the HTML viewer control to display HTML documents

ójrview of the HTML Viewer Control

The Windows CE HTML viewer control is not child control There

fore it is not part of the Graphics Windowing and Event Subsystem
Nor is it part of COMMCTRL.DLL That means it does not get loaded

along with the tree view and trackbar controls when you call

InitCommonControts

The HTML viewer control resides in its very own dynamic link library

called HTMLVIEW.DLL To use the control applications must either

explicitly link with the DLLs import library HTMLVIEW.LIB or

dynamically link with HTMLVIEW.DLL by loading the DLL at run-

time

Next before using the HTML viewer control applications must initial

ize it by calling InitHTMLControl This is function exported by
HTMLVIEW.DLL that is responsible for registering the controls win
dow class After calling InitHTMLCont rot applications are free to

create instances of the control In these respects the design of this

control closely resembles the custom control we designed in the

previous chapter

Control Features

The HTML viewer control provides very basic and mean very basic

functionality for viewing HTML documents As we will soon see the

control leaves many of the details of navigating between HTML links

displaying images and playing sounds to the application that contains

the control

First and foremost it is important to keep in mind that the control is

only an HTML viewer It does not provide HTML editing capabilities

Next the HTML viewer control interprets HTML and displays data in

the correct format The control understands all the standard HTML

Page 00335

315

The HTML Viewer Control
Welcome to the Windows CE

control for displaying HTML

Figure 12.1 The HTML viewer control at work

tags and displays text in the correct sizes and styles based on those

tags

As an example Figure 12.1 shows the HTML viewer controls render

ing of the following HTML file

hlThe HTML Viewer Control/hl
h4Welcome to the href\Windows\wince.htmWindows

CE/a/h4
h4contro for displaying HTML/h4

The only work the application had to do was send the HTML text to

the control The HTML viewer control takes care of the rest

The situation is not quite so pleasant in the case of images or sound

references in an HTML document For example the HTML viewer

control does not automatically render GIF files referenced in docu
ment Nor does it automatically play sound files

If we add line to the top of the sample HTML file referencing an

inline GIF image the HTML viewer control displays the file as shown

inFigure 12.2

1MG SRC\Windows\home.gif
hlThe HTML Viewer Control/hl
h4Welcoiae to the href\Windows\winee.htmWindows CEf /h4
h4control for displaying HTML/h4

The HTML viewer control only sends notification to its parent yin
dow when it reads reference to an image from an HTML file It is the

Page 00336

316

The HTML Viewer Control
Welcome to the Windows CE

control for displaying HTML

_____-J
Windo5 CE HIM AM

Figure 12.2 The HTML Viewer Control displaying an image

responsibility of the application to then convert the image file to

Windows CE bitmap The application must then send the appropriate

message to the control telling it to display the bitmap representation of

the original image file

The HTML viewer control will also notify its parent when user has

tapped on hypertext link It is again however the applications

responsibility to follow the link That is the application must respond
to this notification by loading the referenced file and telling the HTML
viewer control to display it

At first this seems like major limitation of the control But it does

make sense for the application not the control to do this work par
ticular instance of the HTML viewer control has no idea if the HTML
documents it is being asked to render are stored locally on the Win
dows CE device or are coming from live Internet connection The

application has all of this context information and should therefore be

responsible for supplying the data to the control in the correct form

THE NAMES SHOULD HAVE BEEN CHANGED TO PROTECT THE INNOCENT

You will notice that all of the HTML viewer control message names begin with DTM_
This is somewhat confusing because the message names for the date time picker

control start with DTM_ as well

Page 00337

The Sample Application

Our discussion of the HTML viewer control is motivated by the sam
ple application HTML.EXE This application which can be found in

\Samples\html on the companion CD illustrates many of the features

provided by the HTML viewer control

HTML.EXE implements basic HTML file viewer It allows user to

view any HTML file on the file system of Windows CE device or the

emulation file system if run in the emulator Two simple HTML files

sample.htm and wince.htm are provided These files must be placed

in the device or emulator file system under the \Windows directory

See the section on Viewing the Windows CE Object Store in the

introduction to Part II for description of how to transfer files using

the Remote Object Viewer

The main application window was shown in Figure 12.1 When the

application first starts there is no HTML displayed however Users

can display files by opening them with the Open option of the File

menu Choosing this option presents the user with standard File

Open dialog shown in Figure 12.3 Using this interface the user can

search the file system for particular HTML file Selecting the file and

pressing the OK button causes the application to display the contents

of the selected file

te Open an HTML File jjj jj RjJJ ii
-J Windows

Deslop Recent sample

Favorites ..J StartUp wince

Fonts blank

Programs default

Name mple.htm lype HTML Files .htm

____-J
Start Windows CE HTML.. 852 PM

Figure 12.3 The File Open dialog for selecting HTML files

Page 00338

Pparing to Use the HTML Viewer Control

As mentioned earlier an application must initialize the HTMLVIEW
DLL module before instances of the HTML viewer control can be cre

ated and used Applications can link with HTMLVIEW.DLL dynami
cally or they can link with HTMLVIEW.LIB to avoid loading the DLL

at run-time

To make the application little less complicated HTML.EXE links with

the import library It can therefore call InitHTMLControl directly The

only thing that must be done that we have not yet mentioned is that the

application must include the file HTMLCTRL.H This is the header file

that defines all of the messages and notifications which the HTML
viewer control can send as well as the function InitHTMLControl

InitHTMLControl must be called hi order to register the window class

that defines the HTML viewer control This step is analogous to calling

InitCommonControls before using COMMCTRL.DLL

HTML.EXE calls InitHTMLControl in WinMain

include htmlctrl.h
mt WINAPI Win.MainHINSTANCE hlnstance

HINSTANCE hPrevlnstance

LPTSTR lpCmdLine

mt nCmdShow

Other application code

InitHTNLControl hlnstance

InitHTMLControl takes only one argument the HINSTANCE of the ap
plication that is using the control It returns TRUE if the window class

is registered properly Otherwise it returns FALSE

éating HTML Viewer Controls

You are now ready to create instances of the HTML viewer control

This step is done with CreateWindow or CreateWindowEx just as when

creating any other Windows CE control The only thing left to know is

the name of the window class to use

Page 00339

The HTML viewer control window class is called DISPLAYCLASS
Thats an obvious one isnt it To create control with control identi

fier defined as IDCHTML and whose parent is hwndParent an appli

cation would do this

HWND hwndHTML

hwndHTML CreateWindow

TEXTDISPLAYCLASS NULL
WS_CHILD WS_VISILE WSBORDER
00100100 I/i.e some dimensions

hwndParent HMENU IDCiTML
hlmstance NULL

The control referred to by hwndHTML is now ready to display HTML
data

HTML VIEWER CONTROL STYLES

Unlike most of the other Windows CE controls the HTML viewer control defines no

control-specific styles or extended styles to allow programmers to customize the

controls appearance or behavior

Displaying HTML Formatted Text

As an HTML viewer the HTML viewer control must provide way
for applications to give it HTML text to display

Text is inserted into the control by sending either the message

DTM_ADDTEXT or DTM ADDTEXTW DTMADDTEXT is for

adding non-Unicode text DTMADDTEXTW is the Unicode version

HTML.EXE uses DTM ADDTEXT because it assumes that the files it

reads are saved as ANSI text not Unicode

As the name of these two messages implies they add text to the speci

fied control So if there is already text in an HTML viewer control

before an application sends one of these messages the text is added to

the bottom of the controls client area The message does not cause the

control to clear its contents before the new text is displayed

In order to display text by itself you must first remove the current

contents of the control The easiest way to do this is to send

WMSETTEXT message to the control with NULL text string

Page 00340

SendMessagehwndHTML WMSETTEXT NULL

Closely related to these ADDTEXT messages is the message

DTM_ENDOFSOURCE An application sends this message to an

HTML viewer control to tell it that the application is done sending

text Both parameters to this message wParam and iParam are zero

Do You REALLY NEED DTM_ENDOFSOURCE

ft appears that not sending DTM_ENDOFSOURCE has no negative side effects

An Example

The sample application HTML.EXE allows users to pick the HTML file

to display using File Open dialog Once file is specified the appli

cation must read the HTML text from the file and send it to the HTML
viewer control using the DTM_ADDTEXT message

The function that HTML.EXE uses to load an HTML file is called Link

ToFile This name will make more sense bit later when we see that

the application uses the same function for following hyperlinks

void LinkToFileTCHAR pszFilename

DEORD dwSize dwBytes

LPSTR lpszBuf

WIN3 2_FIND_DATA fd
CEOIDINFO oidlnfo

f/Clear the control

SendNessagehwndHTML WM_SETTEXT NULL
hFile FindFirstFilepszFilename fd
if INVALID_HANDLE_VALUE hFile

CeOidGetlnfcfd.dwOID oidlnfo
dwSize oidlnfo inFile.dwLengthl
FindClose hFile

hFile CreateFilepszFilename

GENERIC_READ

NULL OPEN_EXISTING

FILE_ATTRIBUTE_NORNAL NULL
lpszBuf LPSTRLocalAllocLPTR dwSizel
lpszEuf f/Add NULL terminator

ReadFilehFile lpszNuf dwSize dwBytes NULL
SenáNessage hwndHTML DTM_ADDTEXT

WPARANFALSE LPARPJ4 lpszBuf

Page 00341

t3i

SexldMessagehwndHTML DTN_ENDOFSOURCE

CloseHandlehFile

hwndHTML is the window handle of the HTML viewer control It is

defined as global variable so that the entire application can reference

it LinkToFile looks formidable but it is actually quite straightforward

First it searches the file system for the file specified by the parameter

pszFilename The application already knows the name of the file to dis

play because the user selected file from the File Open dialog But the

application calls FindFirstFile in order to get the object identifier of the

selected file It can then get the size of the file with the CeOidGetlnfo

call which it needs to allocate space for the file contents The function

then opens the file with the appropriate call to CreateFile

Next LinkToFile allocates enough space in the buffer lpszBuf to hold the

contents of the entire file by calling LocalAlloc It knows the size it

needs to allocate because previously the function determined the byte

size of the file Once the lpszBufis allocated ReadFile fills the buffer

with the contents of the file pszFilename

Finally LinkToFile sends DTM_ADDTEXT message to display the

HTML text it just read in the HTML viewer control

SendMessage hwndHTML DTM_ADDTEXT

1JPARANFALSE LPARAM lpszBuf

As noted in Table 12.1 the FALSE wParam parameter tells the control

to treat the contents of IpszBuf as HTML formatted text

Handling Hyperlinks

The Windows CE HTML viewer control provides some built-in sup
port for hyperlinks in HTML formatted text The control knows how

Table 12.1 The DTM_ADDTEXT/DTM_ADDTEXTW Messages

BOOLwParam Indicates the type of text to add If TRUE the control

treats the text as plain text If FALSE the control treats

the text as HTML formatted text

LPSTRlParam Pointer to the string to be added String is ANSI for

or DIM ADDTEX1 Unicode for DTMADDTEXflN

LPWSTRlParam

Page 00342

to recognize anchor tags The text corresponding to an anchor is auto

matically formatted when the HTML viewer control displays the text

Specifically the text color is changed to blue and the text is under

lined

The HTML viewer control also notifies its parent window whenever

user taps on such link on the display screen All of the logic for

determining where the stylus taps the screen and decides if that point

corresponds to link is implemented in the viewer controls window

procedure

On the other hand an application that uses an HTML viewer control is

responsible for responding to the fact that user tapped on hyper
link If the link points to another file the application must load and

display it

The HTML viewer control sends notifications to its parent window
when events such as hyperlink tap occur These notifications are sent

in the form of WM_NOTIFY messages This is exactly the same notifi

cation mechanism used by the Windows CE common controls

The notification that is sent when hyperlink is tapped is

NM_HOTSPOT This notification is also sent in response to the user

submitting form subject we will not be covering here The iParam

sent with this notification is pointer to an NM_HTMLVIEW struc

ture In fact many of the notifications sent by the HTML viewer con
trol pass such structure

NM_HTMLVIEW is defined as

typedef struct tagI4_HTMLVIEW

NBDR hdr
LPSTR szTarget

LPSTR szData

IJWORD dwcookie

NM_HTMLVIEW

The first member as with any control notification is an NMHDR
structure

szTarget contains NULL-terminated string whose meaning depends

on the notification being sent For example in the case of the

NM_HOTSPOT notification szTarget contains the string that follows

the HREF field in the line of HTML text defining the link

Page 00343

For example consider again the situation illustrated in Figure 12.1 and
the sample HTML file that produced that display If user taps the

Windows CE link in that case the HTML viewer control that con
tains the text sends an N1VI_HOTSPOT notification The szTarget mem
ber of the NM_HTMLVIEW structure that is sent with this notification

will contains the string \Windows\wince.htm

szData and dwCookie contain data specific to the particular notification

being sent For example in the case of an NM_HOTSPOT szData con
tains the query data sent with form POST submission The dwCookie

value is not used by NM_HOTSPOT

An Example How HTML.EXE Follows Links

Now lets see how to respond to the NM_HOTSPOT notification in

real example

If you run the HTML.EXE sample application you will see that it

properly follows hyperlinks As long as the links refer to HTML files

that are in the emulator file system or the file system of the Windows

CE device running the application everything works fine

This behavior is implemented by responding to the NM_HOTSPOT
notification described above The relevant part of main application

windows window procedure is given below

LRESULT CALLBACK WndProc

HWND hwnd
UINT message
WPARAN wParaxn

LPARAM iParam

LJINT nID
mt nLen
TCHAR pszFilenaine

switch message

case WN_NOTIFY

NM_HTMLVIEW lpnm

iprim NN_HTMLVIEWlParam
switchlpnm-hdr code

case NM_HOTSPOT

nLen strlenlpnm-szTarget
pszFilename TCARLocalAlloc LPTR

Page 00344

sizeof TCHAR nLen
ArisiToWidelprun-szTarget pszFilename
LinkToFilepszFilenaine

LocaiFree pszFilename
break

default

break

//Fnd of switchlpnm-hdr.code block

return

Other message handler code

default

return DefWindowProchwnd message wParam lParam
I/End of switchmessage block

The NM_HOTSPOT notification handler first extracts the string con

taining the HREF hyperlink text from the szTarget member of the

NM_HTMLVIEW structure HTML.EXE assumes that this contains the

file name of an HTML document LocalAlloc is called to allocate

enough space in the buffer pszFüename to hold the file name

Then all that is left to do is open read and display the contents of the

file This is exactly what the LinkToFile function does so the

NM_HOTSPOT notification handler simply needs to call this function

The HTML viewer control responds by displaying the new HTML file

An important step of the
process was skipped however The purpose

of these two lines of code is not obvious

pszFilename TCHAR LocalAlloc LPTR
sizeof TCHAR nLen

ArisiTowidelpnni-szTarget pszFilename

The HTML files read by HTML.EXE are assumed to be ANSI text But

the file system API functions called by LinkToFile require Unicode file

names Therefore the ANSI string contained by lpnm-szTarget the
link file name must be converted to Unicode

Each Unicode character requires two bytes the size of TCHAR and
there are nLen characters in the file name string So LocalAlloc allocates

enough bytes to accommodate the Unicode representation of the string

lpnm-szTaget

AnsiTo Wide is an application-defined function that converts ANSI

strings to Unicode

void PnsiToWideLPSTR lpStr TCHAR lpTChar

Page 00345

325

whilelpTChar lpStr

This is variation of the classic one-line string copy function.1 As long

as the two string arguments are NULL-terminated this function

copies the ANSI string in lpStr to the Unicode string lpTChar Since the

operator increments pointer variable by the size of the type it

points to incrementing lpTChar leaves two bytes per character

Displaying Inline Images

The HTML viewer control provides limited support to displaying im
ages referenced in HTML formatted text The control sends notifica

tion to its parent window when it encounters an 1MG reference in

HTML text but makes no attempt to render the image As with mov
ing among hyperlinks this is the responsibility of the application

An example of including an inline image in an HTML file is

1MG SRCimag.gif

When an HTML viewer control encounters such tag for example

while responding to DTM_ADDTEXT message it alerts its parent

that an image needs to be loaded by sending an NM_INLINE_IMAGE
notification

As with the NM_HOTSPOT notification the control sends an

NM_HTMLVIEW structure in the iParam of the WM_NOTIFY message

The szTarget member of this structure contains the text following the

SRC parameter in the HTML text In the example above szTarget

would contain the string image.gif

In the case of NMJNLINE_IMAGE notifications the szData member

of the NM_HTMLVIEW structure is not used But the dwCookie value

is It contains value that must be passed to the DTM_SETIMAGE

message described little later

The basic idea to take away from this discussion is that the HTML
viewer control only notifies its parent window that reference to an

image has been detected It is up to the application to load and display

For more complete explanation of how this fui-iction works see Stroustrup The

Programming Language 2nd Ed Addison-Wesley 1991 pp 92-93

Page 00346

the image But the application gets little help in this from the

DTM_SETIMAGE message

The DTM_SETIMAGE Message

An application tells an HTML viewer control how to display an inline

image by sending the control DTM_SETIMAGE message This mes
sage associates an inline image with bitmap sent with the message
In other words after responding to this message the HTML viewer

control displays the specified bitmap in place of the inline image The

parameters for DTM_SETIMAGE are described in Table 12.2

The application must specify the various attributes of the bitmap to be

used for the inline image This information is specified in an

INLINEIMAGEINFO structure

typedef struct tagINLINEIMAGEINFO

DWORD dwCookie

mt lOrigHeight

mt iOrigwidth

HBITMAP hbm
BOOL bOwnBitniap

INLINEIMAGEINFO LPINLINEIMAGEINFO

The dwCookie member of this structure is the same value sent by the

control in its NM_INLINE_IMAGE notification iOrigHeight and iOrig
Width specify the height and width of the bitmap The bitmap itself is

contained in the hbm member

Finally bOwnBitmap specifies who is responsible for destroying the

bitmap resource once it has been displayed If this member is TRUE
the HTML viewer control must free the resource If bOwnBitmap is

FALSE the application is telling the control that the application will

handle destroying the bitmap

Related to the DTMSETIMAGE message is DTM_IMAGEFAIL An

application sends this message to an HTML viewer control to indicate

1abe 12.2 The DTM_SErIMAGE Message

wParam Not used

LPINUNEIMAGEINFOlPararn Pointer to an NLINEIMAGEINFO structure that

defines the bitmap to use

Page 00347

ii7

that the image specified in an NM_INLINE_IMAGE notification could

not be loaded The control responds by displaying the default broken

image bitmap for that inline image

All of this means of course that an application that wishes to properly

display inline images in an HTML viewer control must have way of

converting the image data in particular image file into Windows
CE bitmap resource The NMJNLINEJMAGE notification tells the

application that an inline image has been detected It does not convert

the referenced image file into the required Windows CE bitmap

resource

HTML Viewer Control Messages and Notifications

The HTML viewer control supports many more messages and notifica

tions than those we have detailed The examples in this chapter should

provide enough insight into the use of the HTML viewer to make

using the rest of the control features easy

complete list of messages and notifications associated with the

HTML viewer control are given in Tables 12.3 and 12.4

Table 12.3 HTML Viewer Control Messages

4.jr 11 LVJ

DTMADDTEXT Adds the specified ANSI text to the control The wParnm

indicates if the text is plain or HTML formatted text

DTMADDTEXTW Unicode version of DTMADDTEXT

DTM_ANCHOR Tells the control to jump to the specified anchor

DTM_ANCHORW Unicode version of DTM..ANCHOR

DTMENABLESHR1NK Toggles the control image shrink mode The control shrinks

images to make the HTML document fit the control window

DTMENDOFSOURCE Tells the control that the application is done adding text to

the control

DTM_IMAGEFAIL Used to inform the control that the specified image could

not be loaded

DTMSETIMAGE Associates the specified bitmap with an inline image

DTMSELEALL Selects highlights all text displayed in the control

Page 00348

328

Table 12.4 HTML Viewer Control Notifications

iiir
NM_BASE Sent by the control when it encounters BASE tag in HTML

text

NM_CONTEXTMENU Sent by the control when the user taps the client area of the

control while pressing the Alt key

NMJ-IOTSPOT Sent by the control when user taps hyperlink or submits

form

NMJNLINEJMAGE Sent by the control to tell the application that an image

needs to be loaded

NMJNLINE_SOUND Sent by the control to tell the application that sound file

needs to be loaded

NM_META Sent by the control when it encounters META tag in HTML

text Notification includes the HTTP-EQUIV and CONTENT

parameters of this tag

NM_TITLE Sent by the control when it encounters TITLE tag in HTML

text Notification includes the document title

Page 00349

Palm-size PC Input

Techniques

raditional computing devices such as personal computers get large

amount of their user input from keyboard Composing e-mailwrit-

ing documents in word processor or even simply entering pass
word typically requires keyboard input

But Windows CE-based devices are not required to have keyboard
For example users of Palm-size PCs are very comfortable using these

devices without keyboard Despite the presence of software key
board that can be invoked at any time the majority of user input gets

to Palm-size PC via the stylus navigation buttons or even voice

Use the rich ink control

Program Palm-size PC navigation buttons

Use the voice recorder control

This chapter also introduces the Palm-size PC emulation environtnent

for the first time If you have installed the Palm-size PC SDK you are

Page 00350

