
Samsung Exhibit 1030 Page 00001

Page 00002

r

Page 00002

Page 00003

Windows ({ Developer's "and book
~ . .,

~
·,

.. . : :;. : ,:
..

Page 00004Page 00004

Page 00005

Windows® ({ Developer's Uandbook!M

Terence A. ~oggin
with

David L. Heskett and
Jason M. Maclean

~ w
SYBEX"

San Francisco • Paris • Dusseldorf • Soest • London

Page 00006

Associate Publisher: Gary Masters
Contracts and Licensjng Mani:tK"er: Krbtine O'Callaghrm
Acquisitions & Developmental Editor: Brenda Frink
Editor: Sally Engel fried
Project Editor: 13ronwyn Shone Erickson
Technical Editor: John Pstdk
Book Designer: Kris Warr~nburg
Graphic Illustrator: Tony Janick
Electronic Publishing Specialist: Robin Kibby
Proofreade1•: judy Weiss
Project Team Leader: Sh;mnon Murphy
Indexer: Meg Fortune McDonnell
Companion CD: Ginger Warner
Cover Designer: Design Site
Cover Photographer: The Image Bank

Developer's Handbook is a trademark ofSYI3EX Inc.

The HP Jornada is a trademark or registered trademark of
Hewlett-Packard Company, copyright ([)1')99.

The Casio E-11 is a trademark or registered trademark of Casio,
Incorporated, copyright (\)1lJ9Y.

The Casio PA-2400 and Casio PA-2500 are trademarks or regis
tered trademarks of Casio Business Solutions Group, copyright
0 199'1.

TRADEMARKS: SYI3EX has a ttempted throughout this book to
distinguish proprietary trademarks from descriptive terms by fol
lowing the capitalization style used by the manufacturer.

The author and publisher haw made their best efforts to prepare
this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based
upon pre-release versions supplied by software manufacturer(s).
The author and the publisher make no representation or war
ranties of any kind with regard to the completeness or accuracy
of the contents herein and accept no liability of any kind includ
ing but not limited to performance, merchantability, fitness for
any particular pmpose, or any losses or damages of any kind
caused or alleged to be caused directly or indirectly from this book.

Copyright 11)1999 SYBEX Inc., 1151 Marina Village Parkway,
Alameda, CA 94501. World rights reserved. No part of this publi
cation may be stored in a retrieval system, transmitted, or repro
duced in any way, including but not limited to photocopy,
photograph, magnetic or other record, without the prior agree
ment and written permission of the publisher.

Library of Congress Card Number: 99-61299
LSt:lN : 0-7R2 L-2414-3

Manuf<1ctured in the United States of America
10987654321

Page 00007

Software License Agreement: Terms and
Conditions

The media and/or any online materials accompanying this book
that are available now or in the future contain programs and/or
text files (the "Software") to be used in connection with the book.
SYBEX hereby grants to you a license to use the Software, subject
to the terms that follow. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless other
wise indicated and is protected by copyright to SYBEX or other
copyright owner(s) as indicated in the media files (the "Owner(s)").
You are hereby granted a single-user license to use the Software
for your personal, noncommercial use only. You may not repro
duce, sell, distribute, publish, circulate, or commercially exploit
the Software, or any portion thereof, without the written consent
of SYI:lEX ilntl the specific copyright owner(s) of any component
software included on this media.

In the event that the Software or components include specific
license requirements or end-user agreements, statements of condi
tion, disclaimers, limitations or warranties ("End-User License"),
those End-User Licenses supersede the terms and conditions
herein as to that particular Software component. Your purchase,
acceptance, or use of the Software will constitute your acceptance
of such End-User Licenses.

l:ly purchase, use or acceptance of the Software you further agree
to comply with all export laws and regulations of the United States
as such laws and regulations may exist from time to time.

Software Support

Components of the supplemental Software and any offers associ
ated with them may be supported by the specific Owner(s) of that
material but they are not supported by SYBEX. Information regard
ing any available support may be obtained from the Owner(s)
using the information provided in the appropt·iate read.me files or
listed elsewhere on the media.

Should the manufacturer(s) or other Owner(s) cease to offer sup
port or decline to honor any offer, SYBEX bears no responsibility.
This notice concerning support for the Software is provided for
your information only. SYBEX is not the agent or principal of the
Owner(s), and SYBEX is in no way responsible for providing any
support for the Software, nor is it liable or responsible for any sup
port provided, or not provided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical defects
for a period of ninety (90) days after purchase. The Software is not
available from SYBEX in any other form or media than that enclosed
herein or posted to www.sybcx.co111. If you discover a defect in the
media during this warranty period, you may obtain a replacement

of identical form<lt at no charge by sending the defective media,
postage prepaid, with proof of purchase to:

SYBEX Inc.
Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501
(51 0) 523-8233
Fax: (510) 523-2373
e-mail: info@sybex.com
WEB: HTTP:/ / WWW.SYBEX.COM

After the 9ll-day period, you can obtain replacement media of
identical format by sending us the defective disk, proof of pur
chase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed or
implied, with respect to the Software or its contents, quality, per
formance, merchan tability, or fitness for a particular purpose. In
no event will SYBEX, its d istributors, or dealers be liable to you or
any other party for direct, indirect, special, incidental, consequen
tial, or other damages arising out of the use of or inability to use
the Software or its contents even if advised of the possibility of
such damage. In the event that the Software includes an online
update feature, SYBEX further disclaims any obligation to provide
this feature for any specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some
states. Therefore, the above exclusion may not apply to you. This
warranty provides you with specific lega l rights; there may be
other rights that you may have that vary from state to state. The
pricing of the book with the Software by SYBEX reflects the alloca
tion of risk and limitations on liability contained in this agreement
of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are d istributed
as shareware. Copyright laws apply to both shareware and ordi
nary commercial software, and the copyright Owner(s) retains all
r ights. If you try a shareware program and continue using it, y ou
are expected to register it. Individual programs differ on details of
ti·ial periods, registration, and payment. Please observe the require
ments stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-pro
tected or encrypted, However, in all cases, reselling or redistribut
ing these files without authorization is expressly forbidden except
as specifically provided for by the Owner(s) therein.

Page 00008Page 00008

Page 00009

I dedicate this book to Tim, my brother, my editor,
and my best friend. I could not have written this

book without you. Your hard work means more to
me than I could ever put into words.

Thank you.

Page 00010

ACKNOWL{DGM£NTS

There are a great many people who made this book possible, and I would like
to thank them all.

First, thanks to Ann Goldmann, Brooke Richardson, and Suzanne Lamberton of
Waggoner-Eddstrom for helping me on a project that was a little outside of the
norm. You really helped me to get started and I want you to know that I appreci
ate it very much.

To Barry Raymond, Eric Drew, and Norman Hills of Casio's Vertical Markets
Division: Thank you for sharing with me some of the unique and exciting projects
you've created with Windows CE. Your real-world perspective was extremely
helpful and got me started off on the right track.

To Bob Smith, Pat Carrasco, and Cheryl Balbach of Casio New Jersey. It was a
pleasure working with you, and I hope you're pleased with the result.

To Scott Crossen, thank you for creating the excellent RAPI source code for Del
phi, and thank you for graciously allowing me to reprint it here in this book.

To Helen Chan and Chris Yien of Hewlett-Packard, thank you for your help in
completing this book and making sure it contained the very latest information
about the newest CE devices.

To everyone at Microsoft who made time to help out: to David Streams, thank
you for the initial interview and your insight and advice on what to cover; to
Amy Stuhlberg, thank you for stepping in and helping me get in touch with the
right people; to Scott Horn and Cyra Richardson, thank you for your advice on
what developers want to learn about; to Doug Yip, thank you for putting me in
touch with the right people; to Brian Sherrell, thank you for answering all of m y
questions and helping me sort through the issues; to Scott Henson, thank you for
working with me on the promotion of the book before it was even finished; and
to Prashant Sridharan, thank you for making sure I had the latest versions of the
toolkit. I am indebted to all of you.

Page 00011

To Shirley Macbeth and Liam Cavanagh of Sybase; Neil Shepherd, Jay Botelho,
and Etienne Viellard of Oracle; and Larry Lundgren and John Deurbrouck (who
wrote the Raima section of Chapter 12) of Raima Corporation, thank you all for
providing samples of your products and write-ups of their capabilities.

To Andy Mallinger and Michael Snyders of InstallShield; to Yuko Tanaka, Mike
Nydam, Mike Krautkramer, and Dan Spalding of Proxim, Inc.; to Peter Phillips
of Socket Communications; and to Tom Carpenter and Mark Gentile of Odyssey
Software, thank you for all of your hard work and for making sure that I was able
to include your products in the book. I think- and I hope you do, too-that the
book is much better for it.

To everyone at Sybex-to Peter Kuhns, who got this whole thing started, thank
you for believing in me and in the book. To Brenda Frink and Gary Masters,
thank you for taking over and for being so patient. To Bronwyn Erickson, thank
you for keeping me organized and focused. Thanks also to Shannon Murphy,
Project Team Leader; Robin Kibby, Electronic Publishing Specialist; Kristine
O'Callaghan, Contracts and Licensing Manager; and Liz Paulus, Production
Technician.

To Sally Engelfried, thank you for doing a great job editing my work. Thank
you for being flexible and really working with me on some of the early issues.
What more can I say but thank you?

To David Heskett and Jason MacLean, thank you for helping me to complete
this book. You guys really pulled through for me, and I appreciate that. You both
created some great code, and I hope when it's all done you're as proud of it as I
am. But more important than that for me, I wanted to let you know that it was
great to work this closely with you both after such a long absence. It's just not the
same without you around.

To John Psuik, my technical editor, I've said it before, and I'll say it again:
Thank you. Your knowledge, your attention to detail, and your generosity were
invaluable. I look forward to working with you on future projects.

Thanks also to Fred Wilf, for your excellent advice.

Last but most, thanks to my dad, who first suggested that I write.

Page 00012

CONT{NTS AT A GLANC{

Introduction xix

PART I Inside the Core O~erating S~stem 1

Chapter 1: What Does CE Do for Me? 3

Chapter 2: The Three Commandments of Writing for CE 41

Chapter 3: To C or Not to C? 75

Chapter 4: CE' s Structured Storage 113

PART II Mastering the Develo~er's Tools 142

Chapter 5: CE Toolkit for Visual C++ 145

Chapter 6: Yes, It's Possible-MFC onCE! 173

Chapter 7: Real MFC Applications Ported to CE 197

Chapter 8: Visual Basic Toolkit for CE 225

Chapter 9: A Real VB Application Converted to CE 243

PART Ill Advanced To~ics 278

Chapter 10: RAPI: How the Outside World Talks to CE 281

Chapter 11: How CE Talks to the Outside World 305

Chapter 12: Third-Party Database Engines 335

Chapter 13: Windows CE Case Studies and Cost Analysis 361

Page 00013

PART IV

PARTV

Finishing Touches

Chapter 14: Distributing Your CE Application

Chapter 15: Microsoft's Logo Requirements

Appendices

373

375

405

432

Appendix A: The C Runtime Library Functions of Windows CE 436

Appendix B: The CE 2.0 API 472

Index 585

Page 00014Page 00014

Page 00015

TABL(0~ CONT£NTS

Introduction

1 What Does CE Do for Me?
What Is CE, Anyway?

Why CE Isn't Windows 98/NT
What Is Unique to CE?

CE Devices
Palm-Size PC Devices
Handheld PC Devices
Handheld PC I Pro Devices
Other Devices

Accessories for CE
Ethernet/Networking Solutions
Bar Code Readers

Summary

2 The Three Commandments of Writing for CE
The First Commandment: Your Application Must Use the Unicode

X1X

1

3
4
5

10
12
12
25
27
34
36
36
38
38

41

Character Set 42
Declaring Strings Using Unicode Types Rather Than Char Types 43
Using Unicode Strings for All Text Literals 46
Choosing the Correct RTL Functions for Unicode Strings 47
Equipping Your Program to Handle Two Types of Text Files 48

The Second Commandment: Your Application Must Be
Low-Memory Aware 55

Keeping the Size and Number of Static Variables to a Minimum 56
Keeping the EXE File Size Low 56
Checking the Return Result of Memory Allocation 57
Mass-Allocating Your Application's Memory 58
Handling the WM_HIBERNATE Message 60

Page 00016

xiv Table of Contents

The Third Commandment: Know Your Form Factor! 61
The UI of the Application Should Be Tailored to the Device 62
Maintaining a Single Codebase Is Nearly Impossible 67
Creating Your Own Conditional Defines 69
Creating a H.untime Platform Detector 70

Summary 73

3 To C or Not to C? 75
Finding Substitute Functions 77

calloc() 77
MoveToEx() I LineTo() 77
WM_RBUTTONDOWN 78

Changing the Program's Logic: try .. catch and Exceptions 79
Writing Your Own Functions 80

FILE* 81
fop en() 83
fclose() 88
fgetc() 89
fputc() 90
£gets() 92
fputs() 94
fread() 95
£write() 96
fprintf() 97
fscanf() 99
fseek() 108

Summary 110

4 CE's Structured Storage 113
The Regis try 115

Proper Uses of the CE Registry 116
Improper Uses of the CE Registry 116

The Windows CE Database Engine 119
Differences between CE's Database Engine and Familiar

Database Engines 119
Similarities between CE' s Database Engine and Familiar

Database Engines 122
The CE Database Engine API 135
Summary 141

Page 00017

Table of Contents xv

PART II Mastering the Developer's Tools 142

5 CE Toolkit for Visual C++ 145
Using VC++ to Develop for Windows CE 146

The Windows CE Toolkit for VC++ 146
The Platform SDKs 158

MFC vs. SDK-Style Coding 160
Storage Space 161
Ease of Development 161

A Sample SDK-Style Application 162
Displaying a List of Running Tasks 163
Switching to One of the Tasks 166
Closing an Application 166
One Last Snag: Keeping the List of Tasks Current 168

Summary 170

6 Yes, It's Possible-MFC onCE! 173
New Classes for CE 174

CCeSocket 175
CCeDBEnum 176
CCeDBProp 176
CCeDBRecord 179
CCeDBDatabase 179

Modified Classes 191
Classes That Lost Functionality 192
Classes That Gained Functionality 192

Missing Classes 194
Summary 194

7 Real MFC Applications Ported to CE 197
The Shopping List Application 198
Mechanical Issues of Porting 201

Toolbars and Status Bars 201
Printing Support 206
The Grid 207

Optimizing for CE 217
One Final Surprise 220
Summary 222

Page 00018

xvi Table of Contents

PART Ill

8 Visual Basic Toolkit for CE
The Windows CE Toolkit for VB

The Application Templates
The Debugger
The Runtime Files
The Control Manager
The ActiveX Control Pack
The Standard VBCE Controls
The Setup Wizard

Changes in the Visual Basic Language
A Sample Application
Summary

9 A Real VB Application Converted to CE
The Application: International ATM

Porting the ATM Application: Not As Simple As It Looks
Mechanical Issues of Porting
The Optional Features

Re-Adding the WAY Files
The Country and Flag Bitmaps

Optimizing for CE
Eliminating a Form
Eliminating Optional Controls and DLLs
Optimizing the Code Itself

Summary

Advanced Topics

10 RAP I: How the Outside World Talks to CE
What Is RAPI, Anyway?

General RAPT Management Functions
System Information Functions
Registry Access Functions
File Access Functions
Database Access Functions
Miscellaneous Shell and System Functions

A Sample RAPI Application
Using Other Languages
Summary

225
226
226
228
229
230
231
235
236
237
238
240

243
244
246
249
262
262
266
270
270
274
274
276

278

281
282
283
285
287
288
292
292
293
298
302

Page 00019

Table of Contents xvii

11 How CE Talks to the Outside World 305
What's in the Box? 306

The Hardware Aspect 306
The Software Aspect 308

Summary 333

12 Third-Party Database Engines 335
Raima's RDM/ CE for Data Storage 337

Network and Relational Data Models 337
Introducing HpcLadr 338
Putting RDM to Work 341

Sybase's Adaptive Server Anywhere 341
Sybase's Adaptive Server Anywhere Sample Application 342

Oracle Lite Introduction 347
Oracle Lite for Windows CE 348

Comparison of Features 356
Summary 358

13 Windows CE Case Studies and Cost Analysis 361
Study 1: Inventory Management System 362

The Technical Issues 362
Cost 365
Conclusion of Study 1 366

Study 2: Insurance Agents in the Field 366
Solution 367
The Technical Issues 367
Cost 368
Conclusion of Study 2 370

Study 3: Choosing Your Development Machine 370
Solution 370
Cost 372
Conclusion of Study 3 372

Summary 372

PART IV Finishing Touches 373

14 Distributing Your CE Application 375
Creating Help for Windows CE 376

The Two Types of CE Help Files 377

Page 00020

xviii Table of Contents

PARTV

The Single-File Help System
The Multiple-File Help System: The HTC File
The Multiple-File Help System: The HTP File

Getting the Application to the User 's Device
The Cab Wizard Option
InstallShield for Windows CE

Summary

15 Microsoft's Logo Requirements
What Is the Logo Program and Why Should You Care?

So What?
The Logo Requirements

Ins tall a tion
UI Requirements
Functionality Requirements
File-Handling Requirements

Summary

Appendices
------- --

378
383
386
389
390
400
403

405
406
407
408
409
413
425

429

431

432

A The C Runtime Library Functions of Windows CE 436

B The CE 2.0 API 472

Index 585

Page 00021

INTRODUCTION

The war on the desktop is over.

Well, okay ... maybe it isn't truly over, but the focus has definitely shifted a bit.

Suddenly, as if out of nowhere, there appeared a whole new class of Windows-
based machines, unlike anything we'd ever seen before. These were the very first
Handheld PC (HPC) devices. Soon after, there was a version 2.0 release of Win
dows CE, and with it, a greater sophistication of devices, as well as a greater vari
ety of form factors and features.

But unlike other flavors of Windows, CE is a brand new Windows operating
system, built entirely from scratch. There is no old DOS core- but then again,
there's also no backwards compatibility. Instead, CE is a wild mixture of new and
old elements. On the one hand, developers can write programs for it using a good
portion of the Win32 API. On the other hand, it's amazingly compact and has
some very tight memory requirements. Likewise, it's a version of Windows that
runs on several different CPUs, yet it has a look and feel that's very close to that
of desktop-based Windows.

Developing CE applications is also a strange mix of elements. One moment
you're reminded that you're writing applications for a tiny device with a small
grayscale screen, and the next moment you think it's just like Windows 98 or NT.

Yes, CE does have some limitations. But in this book, we'll be treating these lim
itations simply as challenges to be dealt with. Here we'll develop all kinds of
applications designed to show off everything that you need to know in order to
be a successful CE developer. We'll cover everything from new common controls
to memory limitations to dealing with the Unicode character set.

Who Should Read This Book
This book was written with the experienced developer in mind. Perhaps you've
been hearing or seeing a lot about Windows CE, and you've decided that you'd
like the inside scoop with as little hassle as possible. Or perhaps you've already

Page 00022

xx Introduction

decided CE is the way to go and you just need a way to dive right in. Or maybe
you're interested in CE for some other reason completely.

In any event, this book assumes that you are an experienced Windows devel
oper, with at least the ability to read C/C-H-, Visual Basic, or Delphi source code.
This book assumes that you know the basics of Windows programming tasks
such as creating a window, adding items to a list box, etc.

Instead of re-emphasizing the basics, this book concentrates on the differences
between Windows 98 I NT and Windows CE. It spells out exactly what you need
to know to navigate the ins and outs of Windows CE.

What This Book Contains
This book uses numerous examples in C/C++, Visual Basic, and even Delphi to
demonstrate Windows CE programming techniques. There is a sample program
for each technique discussed in the book, and the source code for each of these
programs can be found on the CD.

The book is organized into five major sections:

Part I: Inside the Core Operating System

Part II: Mastering the Developer 's Tools

Part III: Getting the Most Out of Windows CE

Part IV: Finishing Touches

Part V: Appendices

Part 1: Inside the Core Operating System
The main purpose of this section is to lay out exactly what Windows CE offers
developers, both in terms of hardware and software. You'll jump right into code
in Chapter 1, learning about the different hardware platforms and how to work
with what each one offers. For example, how do you use a CE device to output
graphics to a VGA monitor?

Page 00023

Introduction xxi

Chapter 2 details some of the main differences between Windows 98/NT pro
gramming and Windows CE programming. Some of the topics covered here
include getting your application to look good on all of the CE form factors, work
ing with the Unicode character set, and memory allocation issues.

Chapter 3 highlights some of the functions and features missing from Win
dows CE and demonstrates solid techniques for replacing or working around the
missing functionality. For instance, when you're developing for certain CE plat
forms, you don't have a stdi o. h available. Of course, this makes it very difficult
to port existing code ... unless, of course, you recreate the missing file-access func
tions of stdi o. h as we do in this chapter!

In the last chapter of this section, Chapter 4, the book introduces a feature of
CE not available on any other operating system: a built-in database engine. Win
dows CE is one of the few-if not the only-operating systems to offer a database
engine as part of the operating system itself, and this chapter shows you how to
make the best use of it.

Part II: Mastering the Developer's Tools
In this section, we look at how to best utilize the tools Microsoft makes available
for us. Specifically, Chapter 5 discusses the Windows CE toolkit for Visual C++.
You'lllearn how to deal with common problems encountered with the toolkit. In
addition, the chapter analyzes the tradeoffs between SDK-style C programming
and MFC programming for CE.

In Chapter 6, we'll look at the differences between MFC on Windows 98/ NT
and MFC on Windows CE. Specifically, we'll look at some new classes to deal
with CE's Database Engine and its communications model. And, as you may
have guessed, there are also a few classes that don't exist under CE, and some
that have undergone changes.

In Chapter 7, we'll see exactly what it takes to port a real Windows 98/ NT MFC
application to Windows CE-based MFC. We'll cover issues ranging from the
basic port to printing support.

In Chapter 8, we explore the Windows CE toolkit for Visual Basic. There are
some areas where the toolkit for Visual Basic can present some real surprises for
anyone who's used to working with Visual Basic for Windows 98/NT, and this
chapter looks at both the surprises and features.

Page 00024

xxii Introduction

In Chapter 9, just a w clid in Chapter 7, we'll port a real Windows 98/NT
Visual Basic applicati n to Windows CE. We'll explore all aspects of what has to
happen before we can take a working desktop VB application and produce a
solid VB application.

Part Ill: Getting the Most Out of Windows CE
In this section, we take full advantage of the more advanced features of the CE
operating system. Specifically, in Chapter 10, we look at how desktop machines
and desktop applications can communicate with Windows CE devices. Using the
Remote API (or RAPI), desktop applications can access a surprisingly rich set of
features on the CE device. What's more, we'll even see how RAPI programs can
be written in any desktop application development language-even a non
Microsoft product like Borland's Delphi can talk to CE devices, thanks to RAPI!

In Chapter 11, we'll explore all forms of Windows CE communications. CE
devices have a multitude of possible ways to communicate with the outside
world, and this chapter looks at all of them: the serial port, theIR port, modems,
PCMCIA devices, and Winsock connections!

In Chapter 12, we look at ways to extend the usefulness of Windows CE devices
by examining the features of some third-party CE Data bas Engines. Oracle, Sybase,
and Raima Corporation offer the three leading third-pa1·ty database engines avail
able for Windows CE. Each of these vendor l1as created a sample application and
a brief article describing the application and/ or the features of their engine.

Chapter 13 offers something few programming books do: pseudo case studies.
Based on real case studies but modified to be general enough to apply to anyone,
these case studies present a view of what it takes to put together a full Windows CE
based solution for your clients, whether you're a consultant or a part of a corpora
tion's IS department.

Part IV: Finishing Touches
In this section, we look at some additional touches you might want to put on
your application. In Chapter 14, we look at what it takes to create a help system
whether it's one simple file or multiple files-for your CE application. Al o, we'U
look at what it takes to create a simple setup program for yom application, either
by hand or using a third-party tool.

Page 00025

Introduction xxiii

Then, in Chapter 15, we'll explore what the Windows CE Logo Program is all
about and how it can help you. We'll see how, in addition to ensuring that your
application has a standard consistent look and feel, the Logo Program can help
you market your CE application much more effectively.

Part V: Appendices
To round out the book, we've included two of the most useful appendices possi
ble. Appendix A details all of the C runtime library functions guaranteed to be
available for all CE versions/ platforms. Using this appendix as a guide, you can
safely pick and choose which runtime functions to use if you're compiling an
application for more than one CE version/platform. As an added benefit, the
header file and a simple example are provided for each and every function.

Appendix B takes a similar approach to the Windows CE API. In this appendix,
we detail every single API call that is unique to Windows CE 2. For every func
tion, we list the header file, a description of the function's purpose, and a sample
demonstrating the use of the function.

Perhaps the best feature of this section is that both of these appendices are pro
vided on the CD in PDF form, so that you can easily load each appendix, browse
to the function you want, and copy /paste the function's example right into your
own code.

About the Examples
The majority of the examples in this book were written in Microsoft Visual C++ 6
with the Windows CE Toolkit for VC++ 6. There are also examples that were cre
ated in Visual Basic 5 I 6, with the appropriate version of the Windows CE toolkit
for Visual Basic. Also, in Chapters 10 and 14, there are two samples developed
using Borland's Delphi product.

As of this writing, Microsoft has the only C/ C++ based compiler that builds
applications for the Windows CE operating system. Although there is talk on the
newsgroups about a possible GNU compiler port, no such product has yet been
released.

Page 00026Page 00026

Page 00027

Inside the Core

Operating System

I CHAPTER 1: What Does CE Do for Me?

I CHAPTER 2: The Three Commandmewts of Writing for CE

I CHAPTER 3: To C or Not to C

I CHAPTER 4: CE'5 Structured Storage

Page 00027

Page 00028Page 00028

Page 00029

CHAPT[R
0 N {

What Does CE Do for Me?

• What is CE, Anyway?

• Why CE isn't Windows 98/NT

• Features Unique to CE

• CE Devices: Shapes, Sizes, and What You Need to Know
About Each One

• CE Accessories

Page 00030

4 Chapter 1 • What Does CE Do for Me?

In a promotional video sent out by Mlnosoft late last year, Harel Kodesh of
Micr oft's Consumer Appliances Group was quoted as sayil1g, "CE was built
with on thirlg in mind, and that is powering information appli.ances." These infor
mation appliances give pe ple such a degr -e of fre dam and power in their per
sonal and bLISin s lives that they've created an instant market for new software.

A larg part of what makes these devic s so powerful is that they're not just
organjzers or wizards. Yes, every CE devi e comes with pocket versions of Out
look, but you can run real applications on the devices, too.

In many ways, Windows CE puts a virtual desktop computer in the palm of
your hand or in your pocket. It's that capability that makes Windows CE a
"shrunken head" version of Windows 98/NT, as we'll see in this chapter. We call
CE a shrunken head version of Windows because you have to work with far less
memory than you are used to, smaller screens, fewer colors, etc.

The questions we'll be answering in this chapter are, "What doe CE do for
m ?'' and, "How can I get my programs port d to CE?" To answer them, we'll
look at the different types of CE devices and what each one offers in terms of
functionality. In many cas s, you'll be surprised t find out just how powerful a
CE d vice can be. De pite their smaU sizes, their CPUs r.ival thos we have in our
desktop computers.

We'll also be 1 oking at some of the CE-compatible hardware you can add to your
application to make it a more complet CE solution. For instance, what if you need
to add some kh1d of sec ndary storage to your device because 8MB just isn't
enough? That said, let's get right into it with a look at the different device types.

What Is CE, Anyway?
Windows CE is a stripped-down version of Windows 98/ NT that's been engi
neered specifically for small, low-resource, portable devices such as:

• The Palm-size PC

• The Handheld PC

• The Handheld PC/Pro

Page 00031

NOTE

What Is CE, Anyway? 5

From an end user's point of view, it is a miniature Windows, complete with a
pocket version of Outlook, Start button, and Taskbar. However, there are a few
significant differences between CE and 98 / NT. After all, if you're going to take
the world's most popular desktop operating system and make an embedded, tiny
version of it, you end up sacrificing some features.

According to Microsoft, CE doesn't officially stand for anything at all; however, it's
generally assumed that CE means consumer edition or compact edition.

Why CE Isn't Windows 98/NT
CE and Windows 98 differ in five major ways:

• CE won't run your existing programs

• CE has serious memory constraints

• CE has a reduced runtime library and API

• CE devices usually don't have a mouse

• CE hardware is not very standardized

Of course, there are ways to deal with each of these differences, and we'll be
looking at them in more detail in later chapters. For now, here's what all this
means.

CE Won't Run Your Existing Programs

Perhaps the biggest difference between the two operating systems is the fact that
CE will not run any existing Windows applications. This means that all programs
must be recompiled especially for the Windows CE operating system. This is a
striking departure from the backwards compatibility goals of Windows 98 and NT.

CE Has Serious Memory Constraints

In recent years, the amount of memory in any given PC has gone up astronomi
cally. That's why, under Windows 98, there is usually plenty of memory to go
around. Under Windows CE, however, that' s not always the case. And, since this

Page 00032

6 Chapter 1 • What Does CE Do for Me?

NOTE

is one of the main reasons you can lose your way, we'll pay a lot of attention to it.
When it comes to CE's memory constraints, there are three key issues:

• Reduced amounts of physical memory

• User control over memory availability

• Operating system requests to your program

Reduced Amounts of Physical Memory Most CE devices ship with com
paratively little physical memory to begin with. The Palm-size PC devices, for
example, usually have just 4 or 8MB. For a Windows 98 machine, such a small
amount of memory would be ridiculous.

However, the amount of physical memory in CE devices is set by the manufacturer,
and there rea lly isn't a whole lot you, as a developer, can do about it. Most of the

makers of Palm-size PC devices seem to feel that 4MB is an adequate amount of
RAM for their devices, and, truth be told, they're correct. The operating system

and most CE applications will run quite comfortably under these conditions. While

it is possible to upgrade the amount of RAM in many of these devices, asking your
users to upgrade is not a preferred option . Before doing that, try eliminating some

noncritical features to reduce the requirements of your application.

User Control over Memory Availability When Microsoft and the various
CE device makers collaborated on the designs and standards forCE devices, they
decided that CE devices would not come with hard drives. This was probably so
they could hit a lower price point.

To compensate for the l<1ck of true "secondary storage," Microsoft chose to make
the physical memory (RAM) serve two purposes: our more traditional under
standing of RAM (program memory) and a sort of RAM-disk (storage memory).

The result of this is that you do not have complete control over how much mem
ory is available for your program. Unfortunately, the user of the device largely
controls the allocation of memory into program memory and storage memory.
And, although the user can't adjust the settings so that no programs will run,
they can adjust it so fewer programs will run. Or, they can adjust it so programs
with greater memory needs don't run properly.

With Windows 98, of course, the user has no such control. The amount of physi
cal memory is the amount of RAM, and the size of the disk is the size of the disk.

Page 00033

NOTE

What Is CE, Anyway? 'l

On the other hand, if enough memory is available on your CE device, your pro
gram will continue to steam right along, with the advantage that all the memory
it needs is already reserved for its use.

Operating System Requests to Your Program All CE programs must be
able to handle low-memory situations. Specifically, they should try to relinquish
some of the memory they're using whenever the operating system requests it.
This is a complete departure from what you're used to doing in Windows 98.

For this reason and others, you are going to have to pay infinitely more atten
tion to memory when writing your Windows CE programs. In fact, it may not be
going too far to say that memory is, perhaps, the most important CE issue you
have to understand before tackling your program. We'll deal with these memory
issues in more detail in Chapter 2.

CE Has a Reduced Runtime Library and API

A big difference between Windows CE and the Windows 98/NT platforms is the
scaled-down C/C++ runtime library (RTL) and API of Windows CE. Many of the
more common ANSI functions have been substituted with Windows API functions
or removed entirely. In other words, your existing Windows programs probably
won't compile forCE the first time out, and you'll have to make a few modifica
tions. In Chapter 3, we'll look at some of the functions that are missing from the
RTL and API, and what we can do to fix this situation.

CE Devices Usually Don't Have a Mouse

Under Windows 98, the mouse is used to control an application and its appear
ance-that is, select objects, resize windows, drag things around the screen, and
navigate menu items. Very few Windows 98 programs can be reasonably oper
ated without a mouse.

However, most Windows CE devices do not have a mouse. Instead, CE devices
have a penlike tool called a stylus. Unlike a mouse, a stylus has no constant visual
representation on the screen. In other words, there's no cursor.

There is only one CE device that has a mouse: the Hewlett-Packard Jornada HPC/Pro

device, which we'll be looking at later in this chapter.

Page 00034

8 Chapter 1 • What Does CE Do for Me?

NOTE

What You Need to Know about the Stylus Unlike the illways-present
mouse of Windows 98/ NT, CE's stylus only interacts with the operating system
and the applications when the user taps (or taps and holds) it to the screen. CE
users can still efficiently select objects, navigate mem1 items, etc. However, there
are some areas where the stylus-as-Cl-mouse substitute just doesn't cut it; for
instance, resizing windows and right-clicking. In fact, resizing windows is so dif
ficult with a stylus, Microsoft removed that functionality completely! This means
that no CE windows can be resized at all. Under CE, windows are either maxi
mized or fixed at whatever size they're created.

Right-clicking is available, but it can be a chore for a user. When the user wants
to right-click on something, they must hold down the Alt key and tap the screen
with the stylus at the same time-a very awkward procedure. It's so inconvenient,
in fact, that you probably won't Wilnt to use pop-up/right-click menus at all.

If you still want to include right-cl ick functionality in your application, see Chapter 3
for a demor1stration of how to trap the Alt-click combination.

The upshot fall this is that it's n t a good idea t hav your pr gram rely to
heavily n right-click operati ns. Similarly, unless your application is a dialog
based app that doesn't r quire the full screen, you'll pr bably want to !aund1 most
of your programs in a maximized wind w, sine ther 's no way forth user to
resize the window with the stylus.

WARNING Using the Alt-click combination for right-click functionality only applies to the HPC
and HPC/Pro devices-Palm-size PCs don't have any mechanism for right-clicking
at alii

CE's Hardware Is Not Very Standardized

With Windows 98, your programs are likely to run on fairly s tandardized hard
ware. Everybody's running an Intel (or compatible) chip, some reasonable amount
of memory, a 16- or 256-color display, and at least 640 x 480 resolution. With very
few limitations, it's expected that everything's going to work the same on any
Windows 98 machine.

That's not the case under CE, though . Each manufilcturer designs their devices
differently, and CE devices don't have a single standard configuration as PCs do.
For instance, some CE devices nm on a Hitachi microprocessor, while others run

Page 00035

NOTE

What Is CE, Anyway? 9

on a chip from NEC. Some devices have a color display, while others have only
grayscale. And some devices run 640 x 240 display, while others run a 240 x 320
display.

With the exception of the non-lntel platforms of Windows NT, Windows CE is one
of the few Microsoft products not designed exclusively for the x86 Intel platform.

The key differences between manufacturers' CE devices are:

• Chip type

• Display type

• Display size

Chip Type When using Microsoft's CE development tools, you are required to
compile your program once for each of the chip types supported by CE. It's then
up to you to test your program on each of the chip types, and it's up to your install
program to copy the correct executable file when it uploads the file to the user's
device. Of course, this also means that unless you want to tie your application to
a specific processor or device, you probably want to stay away from any assembler.

Display Type Some of the Handheld PC models have a color display; others
have only grayscale. So, unless you are targeting a specific device, model, and
manufacturer (e.g., Casio PA-2500), you probably don't want your program to
rely too heavily on any color-related operations. Clearly, you wouldn't want your
program to tell a user with a grayscale device to "click the red button."

Display Size If you design your application for the Handheld PC devices, they
will probably look fine on all of those devices. However, if you merely recompile
for the Palm-size PC devices, the application probably won't even be useable.
This is because Handheld PCs generally have a display of about 640 x 240,
whereas most Palm-size devices have a display of only 240 x 320. This makes it
challenging to design one application for multiple devices.

While it might be possible to simply recompile an HPC application for the PPC
platform, it probably wouldn't be a good idea. If you did, half of your program's
main window would likely be outside the visible area of the display! In the next
chapter, we will examine how to change a few simple elements of your program
in order to make this recompilation possible.

Now that you know how CE isn't Windows 98/NT, let's take a look at some of
the features that make CE unique and special.

Page 00036

10 Chapter 1 • What Does CE Do for Me?

What Is Unique to CE?
Although there are a lot of things CE doesn't do-from a Windows 98/NT devel
oper's perspective, that is-there are also a lot of things that it does do. And,
given the small size of CE, some of these items are quite impressive.

Core OS Features

First, there are the core operating system features. Windows CE is a 32-bit, multi
tasking, multithreaded operating system. It will address memory using the flat
memory model, run multiple programs at once, and support multiple threads in
a program. In other words, its architecture is based on 98/NT's architecture.

Networking-/Internet-Related Features

CE supports Winsock 1.1 for writing custom Internet applications and supports
portions of the Yyininet library so that your CE application can retrieve documents
via HTTP operations. CE also supports network shares accessing on Desktop /
server-based Windows machines. Later in this chapte1~ we'll see how it's possible
to get your CE device onto your network using some third-party hardware.

Communications

Windows CE devices support communication over a serial port or an Infrared
(IR) port. Because the serial port is a standard serial port just like the one(s) on
your PC, you can connect standard modems and other serial devices to a CE
device's serial port. This can be a big cost saving to your users, who might other
wise believe that only expensive cellular modems will work with CE, when a
standard external modem will do the trick.

TheIR port is especially efficient if your application needs to transfer data
between two CE devices. While it's possible to transfer data between serial ports,
theIR port is much faster and much more convenient to the end user. After all,
there are no cables to connect-you just point the two devices at each other and
click OK.

Databases

When doing database development for Desktop-based Windows platforms, you
must select and purchase some kind of third-party database engine, or you must
choose a development tool that includes a database engine. One of the qualities

Page 00037

What Is CE, Anyway? 11

that makes CE unique, however, is that the operating system itself has support
and functionality for creating and accessing databases from within your programs.
CE is the only operating system with database functionality built right into the OS
itself. Granted, it's not a very sophisticated database engine, but it should meet
most simple needs. This will save you the time and money associated with choos
ing and purchasing a third-party engine.

Just How Powerful Is a CE Device, Anyway?
Most developers are surprised to learn just how powerful aCE device really is. In fact.

many of the CE devices sport CPUs that, while impressive by themselves, are even more

impressive when compared to a Desktop system's CPU.

For instance, the Casio E-11 features an NEC VR4111, which is a 64-bit ch1p that runs at

80MHzl The dhrystone rating on this chip is 105 (Dhrystone is a benchmarking test used

to rate how fast a chip can do integer-based operations. The score indicates millions of

instructions per second, so a higher number IS better.)

Similarly, the Hewlett-Packard Jornada HPC/Pro device uses a strongARM processor, which

is a 32-bit chip that has a dhrystone ratmg of 220 Cons1dering that a typlcai133MHz Pen

tium has a dhrystone rating of about 240, these are very 1mpressive numbers!

Here's a pract1cal example, however, that's even more telling than these ratmgs. When the

Palrr-size PCs were first released, CE development newsgroups debated whether or not

the PPC devices would be powerful enough to play MP3 music files. As you probably

know, MP3s are very tightly compressed, very high quality sound recordings. Because they

are so tightly compressed, their playback is an mcred1bly CPU-intens1ve task-so much so
that it's generally assumed that you need a Pent ium running at 1 OOMHz just to get

decent, uninterrupted listening. Many people argued that the CPUs of the Palm-size

devices simply could not process the decompression fast enough to be practical for the

playback of MP3s.

After several months, the debate was finally settled when XAudio of Mountain View, Cal

ifornia (http: 1 /www. xaudi o. com) released their XAudio MP3 player for Windows CE

Although the product is still in beta form as of this wnting, it does, 1n fact, play MP3 files

on any Palm-size PC device. And it does it very well!

If a Palm-s1ze PC can handle the complex operations required to play an MP3 file without

skipping and dropping sections of the recording, 1t ought to be powerful enough to do

just about anything (within the limits outlined in this and the next several chapters)!

Page 00038

12 Chapter 1 • What Does CE Do for Me?

CE Devices
There are currently four distinct types of CE devices, each with its own purpose:

• Palm-size PC devices

• Handheld PC devices

• Handheld PC/Pro devices

• Devices that don't fall into the above categories

Palm-Size PC Devices
Palm-size PCs (or PPCs) are usually the smallest of the Windows CE devices,
with approximately the same dimensions as a package of 3 x 5-inch index cards.
They have a long, narrow, portrait-oriented display; no true keyboard; a touch
screen; and integrated voice recording features. In addition, all PPC devices have
a Compact Flash slot, which can be used to add additional memory or peripheral
devices to the PPC.

The shape and portability of PPC devices make them ideal for applications that
allow the user instant, "on the road" access to some specific kind of data, with a
minimum of data entry. Figure 1.1 shows an example of a Palm-size PC device,
the Casio E-11.

There are several features that make PPCs different from other CE devices:

• Display

• Lack of a true keyboard

• The Ink control

• The CapEdit control

• Voice recording and playback services

Page 00039

FIGURE 1.1:

The Casio E-11

Display

" 8:00 AM Planning Meeting
10:00 AM starr Meetln(J
12:00 PM Lunch with Bob

1:00 PM Contererce call with Crandell
3:00 PM Crandell project rev1ew
6:30 PM Workout at Club

! 5end Mom's bi'lhday oift
! Submit expense reports

Prepare rutlne
i Pk:l< up package

Copyright Casio © 1999

CE Devices 13

The first thing that makes the display on a PPC so unique is that it is portrait
oriented, as illustrated in Figure 1.2. As you probably realize, this is a sharp con
trast to the Desktop world, where everything is more landscape-oriented than
anything else.

In addition to its unusual orientation, the display on a PPC is very small, typi
cally ar und 240 x 320 pixels. This, too, contrasts to the Desktop world where we
can expect at least 640 X 480. Obv.io·usly, thi. means that a lot more thought must
go into the design of dialogs and wind ws to get them to look decent in such a
tight space.

The final element of the display that makes it unusual when compared with
our Desktop programming is that it is only a four-color grayscale LCD. In the
Desktop world, we can count on 16 colors at the bare minimum.

Page 00040

14 Chapter 1 • What Does CE Do for Me?

FIGURE 1.2:

Portrait vs. landscape
orientation

NOTE

FIGURE 1.3:

A dialog designed for
Windows 98/NT

As this book was going to press, HP announced a color PPC device.

Together, thes elements mean that you'r going to have to pay much more
attention to your v isual design. In. many cases, you will end up having to redu e
the width of any contr 1 on yom windows or dialogs simply because y u've got
to fit ev rything into such a smal l spac . Figures 1.3 and 1.4 show sample dialogs
d s'igned f r Windows 98/NT and a Palm-size PC, resp ctively.

I . '

My Locations J

I am Qtblw,g from

Where I am

The phone ·~stem at ths location Utes (0 I one mallng (' ft.rl•e dialing

Page 00041

CE Devices 15

FIGURE 1.4:

A dialog designed for a PPC
device

Local settrngs ------
Area code: j8i8l

Country code: r
D Disable call waiting; t-li"l: I
Dialing patterns -----
Local/ Long Dist.ance I International:
G
lFG
Oll,EFG

As you can see, making this dialog work on a PPC involved stacking the vari
ous controls a little more closely and making each control just a little bit narrower.
If we wanted to, we could also have used a tabsheet control to help break up the
various controls into two distinct sections.

Lack of a True Keyboard

Palm-size PCs do not have a physical keyboard. Instead, they have a "virtual key
board," a pop-up panel, called the System Input Panel, that displays letters and
numbers in a QWERTY arrangement. The user taps out the keys on this panel
with the stylus. The System Input Panel can be raised and lowered as needed, as
shown in Figures 1.5 and 1.6, respectively.

As you can imagine, this can create havoc for your program. When the Input
Panel is raised, it occupies roughly one-third of the display area. To accommodate
it and to give your program some control over how it interacts with the Input
Panel, there are two modifications you need to make to any PPC application:

• Programmatically raise and lower the Input Panel

• Detect when the user pops up the Input Panel

Page 00042

16 Chapter 1 • What Does CE Do for Me?

FIGURE 1.5:

The Input Panel raised

FIGURE 1.6:

The Input Panel lowered

Programmatically Raise and Lower the Input Panel You n · d to be able
to rai e and lower the Input Panel pr grammatically because not aJl of your pr -
grams will use the Input Panel in the same way, or to the same extent. For example,
if you designed a blackjack game forCE, you would probably want t hide the

Page 00043

P'

NOTE

CE Devices 17

Input Panel when the game started because the user probably won't need the
keyboard in a blackjack game.

Similarly, if you designed some kind of data entry application, it would make
your program friendlier if you showed the keyboard when the program started.
For these reasons, you need to be able to control the Input Panel's state. In Chap
ter 15, we'll explore exactly how to do this.

Microsoft already provides code to lower the Input Panel, so you only have to
write the code to raise the Input Panel. The original lowering code, as provided
by Microsoft, looks like this:

BOOL LowerSip(void)
{

BOOL fRes = FALSE;
SIPINFO si ;
memset(&si, 0, sizeof(si));
si .cbSize = sizeof(si);
if(SHSiplnfo(SPI_GETSIPINFO, 0, &si, 0))

{

si.fdwFlags &= ~SIPF_ON;
fRes = SHSipinfo(SPI_SETSIPINFO, 0, &si, 0);

return fRes;

What's happening here is that you're firstfilling a structure (si) of type SIPINFO.
For our purposes here, though, you're only interested in one member of the struc
ture, fdwFl ags, which you'll use to set the state of the panel. There are three pos
sible values for the fdwFl ags member:

• SIPF _ON The panel is visible.

• SIPF _DOCKED The panel is attached to the Taskbar.

• SIPF _ LOCKE The panel is locked in place, and its state cannot be changed
by the user.

These values can then be combined by using the AND (&&)and OR (II) operators.
Although the second two fdwFl ags values are not of interest to us here, they do
have meaning for other programs. For instance, w ith regard to the second value
SIPF _DOCKED, some Input Panels allow themselves to be detached from the tool
bar and dragged around the screen much like a dockable toolbar.

I

Page 00044

18 Chapter 1 • What Does CE Do for Me?

To lower the panel, all you have to do is remove the SIPF _ON value from the
fdwFl ags member. Do this by using AND on the current value of fdwFl ags with
the logically negated SIPF _ON code. Then, write your si structure back to the
Input Panel, and it low rs itself. Return the result of your work, and you're done.
The following d is an example of this procedure:

si. fdwFl ags &r= - srPF _ON;

Then, write your s i structure back to the Input Panel, wllich then lowers itself:

fRes = SHSipinfo(SPI_SETSIPINFO, 0, &si, 0);

Return the result of your work, and you're done:

return fRes;

Using this piece of code as a model, you can see that to get a routine that miscs
the Input· Panel, all you need to change is the line that sets the value of fdwFl ags.
ln other words, instead of removing the SIPF _ON flag, use OR on fdwFl ags, as in
the following:

si .fdwFlags i= SIPF_ON;

Or, when put into the full routine:

BOOL RaiseSip(void)
{

BOOL fRes = FALSE;
SIPINFO si ;
memset(&si , 0, si zeof(si)) ;
si .cbSize = sizeof(s i);
if(SHSipinfo(SPI_GETSIPINFO, 0, &si, 0))
{

si .fdwFlags != SIPF_ON;
fRes = SHSipin'fo(SPI_SETSIPINFO, 0, &si, 0);

return fRes;

But raising and lowering the Input Panel is only one of the two requirements
you need to take care of to manage the Input Panel's interaction with your pro
grams. The second requirement is much more involved.

Detecting When the User Pops Up the Input Panel You've got to be able
to detect when the user pops up the Input Panel because the Input Panel occupies
so much of the screen area when it's visible. Your application will be much more

Page 00045

FIGURE 1.7:

CE Devices 19

user-friendly if it resizes itself and allows the user to scroll the window whenever
the Input Panel is shown.

You can observe this behavior in the Owner control panel applet. With the
Input Panel lowered, all of the controls are visible and the window does not have
a scroll bar, as shown in Figure 1.7. When you show or raise the Input Panel, the
Owner window actually resizes itself and adds a scrollbar on its right side, as
shown in Figure 1.8. The user can then scroll to that portion of the window that
would otherwise be obscured by the Input Panel.

Ownor Properties tll3 13
The Owner applet with the
Input Panel lowered

Identification rr\J(;"iB~- ~
Name:
jrerence Goggin

Company:

FIGURE 1.8:

The Owner applet with the
Input Panel raised

ji'AJI!sllBII Software

Address :

ltErenceg<IJl~t:shellsottwarl!.com

Work pl1one: II
r-------.

Herne pt1one: I
At power-on

RJ Display owner identification

Company:

jNutshell Software

Address:

Page 00046

20 Chapter 1 • What Does CE Do ·for Me?

As you can probably guess, CE provides a way to detect the state change in the
Input Panel, and Microsoft even provides a sample of how to do this. However,
their sample is incomplete in that it doesn't show how to add the scroll bar to the
application based on the state of the Input Panel. To get your application working
as smoothly as possible, you'll need to take their sample and make it complete.

This can get a bit confusing, so let's start by looking at some simplistic pseudo
code for the logic at work here:

WARNING

If we're showing our scroll bar
and If the input panel is not visible

Then let's hide our scroll bar.
Otherwise (we're not showing our scroll bar)

and If the input panel is visible
Then let's show our scroll bar.

This logic assumes t hat your application doesn't normally need a scroll bar and

that it only displays one when the user pops up the Input Panel.

Start by adding a handler for the Windows CE message that tells you one of the
system settings has cbanged. When the Input Panel's :;tate changes, CE will send
you a WM_SETIINGCHANGE message with the wParam value set to SPI_SETSIPINFO:

case WM_SETTINGCHANGE:
switch(wParam)

case SPI_SETSIPINFO:

Then, just as you did when you wanted to show or hide the Input Panel, fill
your si variable (of type SIPINFO) with information about the Input Panel:

memset(&si, 0, sizeof(si));
si . cbSize = sizeof(si);
H(SHSipinfo(SPI_GETSIPINFO, 0, &si, 0))
{

Your next task is to check whether or not your application already has a scroll bar
visible. Do this by retrieving the current window style by calling GetWi ndowlong()

Page 00047

CE Devices 21

and passing GWL_STYLE as the second parameter. GetWi ndowlong () returns a Long
integer; store it into a variable called l WndSty l e:

lWndStyle = GetWindowlong(hWnd, GWL_STYLE);

Then check to see if you're already displaying a scroll bar by comparing lWnd
Styl e against WS_VSCROLL style:

if (lWndStyle & WS_VSCROLL)
{

If you are already showing a scroll bar, then you've got to decide whether or
not to hide it based on whether or not the Input Panel is hidden. You must then
check the fdwFl ags value of your si (SIPINFO) variable to see if the Input Panel
is still visible:

if (!(si.fdwFlags & SIPF_ON))
{

If the Input Panel is hidden, use AND on l WndStyl e and the logical negation of
WS_VSCROLL together in order to remove the WS_VSCROLL style and, therefore, the
scroll bar itself:

lWndStyle &= ~WS_VSCROLL;

Finally, make your changes take hold by calling SetWi ndowlong(), passing in
the newly modified style:

SetWindowlong(hWnd, GWL_STYLE, lWnd-
Style);

If, however, you're not showing your scroll bar and the Input Panel is visible,
show your scroll bar by using OR on theWS_ VSCROLL style with your l WndSty l e:

else

if (si .fdwFlags & SIPF_ON)

lWndStyle i= WS_VSCROLL;

Page 00048

22 Chapter 1 • What Does CE Do for Me?

NOTE

Then-just as you did above-make your window take on the new style by
calling SetWi ndowlong(), passing in the new lWndStyl e:

SetWindowlong(hWnd, GWL_STYLE, lWnd-
Style);

Next-and this is the core piece from the Microsoft sample code-resize your
window to whatever the visible screen area is. The SIPINFO structure, which has
as one of its members a RECT representing the visible desktop area, allows you to
do this. In code, the entire operation can be done in one call to MoveWi ndow():

MoveWindow(

si .rcVisibleDesktop.left,

break;

hWnd,
si.rcVisibleDesktop.left,
si.rcVisibleDesktop.top,
si.rcVisibleDesktop.right -

si .rcVisibleDesktop.bottom
si .rcVisibleDesktop.top,
TRUE) ;

Finally, to ensure that your application can detect the state of the Input Panel
when it starts, you must manually send your program a WM_SETTINGCHANGE mes
sage in the WM_CREATE message handler:

SendMessage(hWnd, WM_SETTINGCHANGE, SPI_SETSIPINFO, 0);

You're finished. Now your applications will behave correctly and interact as
efficiently as possible with the Input Panel.

You'll also need a message handler for the WM_ VSCROLL message to handle any
requests that the user might make while the scro ll bar is visib le. This code is
included on the CD in the samples for this chapter.

The Ink Control

Because most of the input to the system is done via a touch screen, it seems only
natural that the PPCs have a control that accepts handwriting input. It's called the

Page 00049

CE Devices 23

Ink control, and it will record any mixture of handwritten and typewritten data.
This control is especially useful in applications where a signature is needed.

WARNING The Ink control does not do any handwriting recognit ion; any handwritten data

that it stores is stored as graphical, rather t han textual, data.

Working with the Ink control is a bit trickier than you might imagine. In fact,
there are three steps required just to create an individual Ink control within your
own application.

1. Initialize the common control library:

InitCommonControls();

2. Specifically initialize the Ink (or InkX as it is alternately called) control:

InitinkX();

3. Call CreateWi ndow(), specifying WC_INKX as the window class:

WARNING

hlnk = CreateWindow(WC_INKX, TEXT(" "),

WS_VISIBLE I WS_CHILD I WS_BORDER,

5, 90, 200, 160, hWnd,

NULL, hlnst, NULL);

Note that WC_INKX is not an l pCl ass Name st ring, but rather a defined constant to

be passed in place of the l pCl ass Name string .

The CapEdit Control

To allow for easier data entry, Microsoft added a special kind of edit control called
the Cap Edit control. The CapEdit control looks and behaves like a standard Edit
control, with one exception: the first letter typed in the control is automatically
capitalized. This allows users to enter data much faster because they do not have
to press the Shift key before entering the first letter.

There are a number of situations where this is important, such as when a user
enters an address where, typically, the first letter of every piece of data is capital
ized. If the user doesn't have to worry about capitalization, it's easier to enter
addresses.

Page 00050

24 Chapter 1 • What Does CE Do for Me?

Using the Cap Edit control is very easy-all you have to do is call SHini tExtra
Controls() to initialize the control, then call CreateWi ndow() , specifying

11 CAP EDIT II instead of 11 EDIT 11 as the class name, as in this example:

#include <aygshell . h> //for SHinitExtraControls

I I . ..

SHinitExtraControls();
hEdit = CreateWindow(TEXT(11 CAPEDlT 11

), TEXT("") ,
WS_VISIBLE I WS_BORDER I WS_CHILD,
5, 5, 150 , 21, hWnd,
NULL, hlns t , NU LL);

Voice Recording and Playback Services

Although all of the CE devices offer some kind of voice recording software, the
PPC platform is the only CE platform that exposes this functionality to develop
ers in the form of a control. The "control" in this case is a dialog box that can be
launched from within a p rogram. The dialog will then send notification messages
to the calling program , indicating the user 's actions.

The PPC Taskbar
Although the PPC does follow the Windows 98/NT user interface very closely, there is one
subtle difference that can take some getting used to. PPC devices have a Taskbar, but run
ning applications don't show up there as they do under desktop versions of Windows The

reason for this is that the Taskbar is already so narrow because of the form factor of the

device itself that there isn't enough room to maintain a button for each application that
the user starts

Instead, it's Microsoft's intent that a PPC program shouldn't really be closed or exited in
the normal fashion. As you can seem any of the Microsoft Pocket Outlook applications,

it's preferred that a program not have a File> Exit menu, or a system close (X) button

Instead, as we'll be exploring very shortly, applications are supposed to stay running indef
initely, hidden in the background. It is the responsibility of the developer to ensure that

the user cannot start two copies of the same program When the user tries to start a pro
gram, the program should first check if there's already a copy of itself running If it finds
another copy, it should bring that to the front rather than opening a new copy of itself
Likewise, when the system is runn ing low on memory, it will ask the running programs to

close down.

Continued on next page

Page 00051

-
CE Devices 25

Of course, it's worth pointing out that many developers have ignored the PPC style of pro
gram management and have exposed all of the standard means of closing an application.
That's probably because they believe that users are more comfortable with a program that

can be closed. The examples in this book generally include at least the system close (X)
button, as this seems more comfortable to use while debugging and testing.

Handheld PC Devices
Handheld PCs (or HPCs) are usually the midrange models, being moderately
larger than the PPCs (about 4 x 71/2 x 1 inches), yet possessing less-than-full-size
keyboards. Designing programs for HPCs has a more familiar feel to it since the
displays are landscape-oriented and applications are represented on the Taskbar
when running. In addition, most HPC devices have both a Compact Flash slot
and a PCMCIA (Type II) slot, either of which can be used to add additional mem
ory or peripheral devices to the HPC. However, like the PPCs, HPC devices have
a touch screen instead of a mouse.

The shape and portability of HPC devices make them ideal for pocket or mini
versions of some Desktop applications, with reduced sets of features and not as
much data entry as, say, a Desktop application might require. Figure 1.9 shows an
example of a Handheld PC device, the Casio PA-2500.

There are several noteworthy features that make HPCs different from other CE
devices:

• Display

• A true keyboard

• The HTML Viewer control

Page 00052

26 Chapter 1 • What Does CE Do for Me?

FIGURE 1.9:

The Casio PA-2500

Copyright Casio Business Solutions Group © 1999

Display

The first thing that makes the display on an HPC different from other CE devices
is that it is landscape-oriented, just like Desktop machines. In addition, the dis
plays on HPCs typically measure about 640 x 240. That's twice as large as the
screens on the PPC devices. Of course, that's still qwte smaU wh n compared to
resolutions available on Desktop machine , but this increas · in size do s help
especially when you're designing an application that displays lots of information
and you really need the extra room.

The final characteristic of HPC displays that makes them unique is that there
are some color HPCs. However, not all HPCs have color displays, so it's still a
good idea to play it safe and not make any assumptions about your user's ability
to see colors.

A True Keyboard

Handheld PCs have an actual physical keyboard. From a development stand
point, this means that you can design the HPC version of your program to require
some data entry. Of course, because the keyboard is not really a full-size key
board, you won't want to insist on intensive data entry.

Page 00053

NOTE

CE Devices 27

The HTML Viewer Control

Because HPCs have a larger display and are therefore better for viewing data,
they have a special control called the HTML Viewer control. As you can guess,
it's a control that you can use in your own programs to display HTML pages.
The tricky part about this control is that it notifies your application of any HTML
based event. For example, when an HTML page contains a request for an image,
the HTML Viewer control notifies your application, passing in the URL of the
image, so that you can then download and display the image. Similarly, when a
user clicks on a link, the HTML Viewer control notifies your application, passing
in the text of the link, so that you can then choose to retrieve and display the
requested page.

The HTML Viewer control does not actually manage the retrieval of documents
over the Internet. Rather, it is a means of displaying HTML data. Your application is

still responsible for actually fetching the document from a server and then sending
it to the HTML control.

WARNING Be aware that if you're developing for both the PPC and the HPC that the HPC

does not support the CapEdit control! The Ink control is supported, although it is

undocumented as of this writing.

Handheld PC/Pro Devices
Handheld PC/Pro devices (or HPC/Pros) are the top-of-the-line models. They
are typically the size of a small laptop, about 10 x 7 x 11/z inches. HPC/Pros have
a laptop-size keyboard, which is more than adequate for any amount of data
entry by the user. Their screen is landscape-oriented and huge compared to the
other CE devices, a full640 x 480.

Further, at least one HPC/Pro model has a mouse pointer instead of a touch
screen. In addition, most HPC/Pro devices have both a Compact Flash slot and a
PCMCIA (Type II) slot, either of which can be used to add additional memory or
peripheral devices to the HPC/Pro. Of all the CE platforms, the HPC/Pro is the
most powerful and the most familiar-looking device. Figure 1.10 shows an example
of an HPC/Pro, the Hewlett-Packard Jornada.

Page 00054

28 Chapter 1 • What Does CE Do for Me?

FIGURE 1.10:

The Hewlet-Packard
Jornada

)

Copyright Hewlett-Packard © 1999

The form and design of the HPC/ Pro devices make them an ideal platform for
doing just about anything short of compiling code. As noted earlie1~ the keyboard
is easy to type with, and the battery on an HPC/Pro device lasts up to 10 hours.

There are several features that make HPC/Pros unique from other CE devices:

• Display

• VGA-out port

• A laptop-size keyboard

• The HTML Viewer control

Page 00055

CE Devices 29

Display

The displays on HPCs typically measure about 640 x 480. That's twice as large as
the screens on the HPC devices, and four times the size of the PPC screens. And
it's not too far out of line with the resolutions available on Desktop machines.

The final characteristic of HPC/Pro displays that makes them unique is that all
of the HPC/Pros have color displays capable of displaying 256 colors.

VGA-Out Port

Some HPC/Pros, such as the Hewlett-Packard Jornada, offer a VGA-out port, so
that your application can send data to a standard VGA monitor in a number of
resolutions not supported directly by the CE device's own display. While it does
take some additional battery power to drive the VGA-out port, this is still an excel
lent feature for any application that needs to display presentation-oriented data.

As a demonstration of this feature, let's borrow some simple graphics code that
paints simple shapes from one of the MSDN samples and modify it to display its
output on the VGA-out port.

In order to activate the VGA-out port, we'll set up a simple window with a
large button marked "VGA!!!". When the user clicks the button, we'll change the
caption of the button (to "End VGA"), activate the VGA-out port by calling Cre
ateD(() with a special parameter, and launch a separate thread (which we'll also
write) to do the drawing. When the user clicks the button a second time, we'll
change its caption back to the original"VGA!!!", set a flag to stop the drawing,
and do any necessary cleanup.

Your first task is to create the handler for the button click event by adding a
block of code to your WM_COMMAND message handler. First, test to make sure that
the WM_COMMAND message refers to your button:

case WM_COMMAND:
if ((HWND)lParam == hButton)
{

If it does, next check a Boolean flag, bVGA, to see if you're already d isplaying
something on the VGA-out port:

if (bVGA)
{

Page 00056

30 Chapter 1 • What Does CE Do for Me?

TIP

If bVGA is set to TRUE, that means you're currently using the VGA-out port. If
you arrive at this point, it means that the user would like to end the VGA graph
ics show. Your first job then is to reset the bVGA flag so that your graphics thread
can terminate:

bVGA = FALSE;

Then delete the special VGA-out HOC you created with a call to CreateDC(),
which we'll look at in just a moment. Next, reset the caption of your button so
that it now reads "VGA!!!" again:

DeleteDC(hVGA);
SetWindowText(hButton, TEXT("VGA!! !"));

Then exit the procedure:

return TRUE;

If, however, the bVGA flag was not set, you'll know that you need to initialize
the VGA-out port and begin drawing to it. In order to open the VGA-out port,
call CreateD(() but pass as the first parameter the name of the DLL that serves
as the VGA-out port driver. On the Hewlett-Packard Jornada, there are three such
DLLs to choose from, as illustrated in this table:

Driver DLL Name

SkvoutO.dll

Skvoutl.dll

Skvout2.dll

VGA display resolution

640 X 480

800 X 600

1024 X 768

This information can be found at runtime by querying the registry under HKEY _
CLASSES_ROOT\Dri vers\Di sp l ay\Acti ve\ . Any keys under this key represent
the different available output devices .

For the purposes of this demonstration, use the 1024 x 768 driver. Your call to
CreateD(() will then look like this:

hVGA = CreateOC(TEXT("skvout2.dll "), NULL, NULL, &Init-
Data);

Page 00057

-
CE Devices 31

Next, test to make sure your call to CreateDC() worked, and, if it didn't, handle
the error with a simple message:

if (!hVGA)

MessageBox(hWnd, TEXT("Unable to initialize VGA
output device. 11

), TEXT(11 ERROR: 11
), MB_OK);

return TRUE;

If you were successful, set the bVGA flag to true, indicating to other parts of our
program both that the VGA-out port is in use and that it's now safe to paint to the
hVGA display context.

Set the bVGA flag to true and start your drawing I graphics thread:

bVGA = TRUE;
StartVal = 0;
hVGAThread = CreateThread(NULL, 0, &VGAThreadProc,

&StartVal, 0, &dwVGAThreadiD);

Then, set the button's text to "End VGA" and exit the procedure:

SetWindowText(hButton, TEXT(11 End VGA 11
));

return TRUE;

break;

Now, take a quick look at your drawing/ graphics thread. It's fairly standard
code, so it will probably look familiar. The first thing to do in this routine after
declaring your variables is to initialize a RECT structure to the full dimensions of
the VGA resolution you're using:

DWORD WINAPI VGAThreadProc(LPVOID lpParameter)
{

int xl,yl,x2,y2,x3,y3,x4,y4,r,g,b,n0bject;
RECT rect, textrect;
HBRUSH hBrush;
LPTSTR DebugMsg;

rect.top = 0;
rect. left = 0;
rect.right = 1024;
rect.bottom = 768;

Page 00058

32 Chapter 1 • What Does CE Do for Me?

TIP

We'll be using the RECTa little later, but first, paint a black rectangle on the hVGA
HOC to clear it out, and start with a clean background:

if(hBrush = SelectObject(hVGA,CreateSolidBrush(RGB(O,O,O))))
(

Rectangle(hVGA, -2, -2, 1026, 770);
DeleteObject(SelectObject(hVGA,hBrush));

Paint the rectangle just a little bit larger than needed to make sure it covers the

whole area.

Now, enter a while loop based on the value of bVGA:

while (bVGA)

At this point, begin your drawing code. Fjrst, obtain some random color values
to draw with by calling the C 1·untime function, rand(), applying modulus 25 to
the result, and then multiplying that value by 10:

r = (rand() % 25) * 10;
g (rand() % 25) * 10;
b (rand() % 25) *10;

Next, create an HBRUSH to paint with and, if that operation is successful, choose
some random coordinates at which to do your drawing:

if(hBrush = SelectObject(hVGA,CreateSolidBrush(RGB(r,g,b))))
{

x1 = rand() % rect.right;
y1 = rand() % rect .bottorn;
x2 rand() % rect.right;
y2 rand() % rect.bottom;
x3 rand() % rect.right;
y3 rand() % rect .bottom;
x4 rand() % rect.right;
y4 rand() % rect.bottom;

Page 00059

CE Devices 33

Next, make a random choice as to which of three possible shapes you should
draw, and via a switch .. case block, draw the randomly chosen shape:

nObject = rand() % 3;

switch(nObject)
{

default:
case OBJ_RECTANGLE:

Rectangle(hVGA,xl,yl,x2,y2);
break;

case OBJ_ELLIPSE:
Ellipse(hVGA,xl,yl,x2,y2);
break;

case OBJ_ROUNDRECT:
RoundRect(hVGA,xl,yl,x2,y2,x3,y3);
break;

Next, clean up by deleting the HBRUSH you created earlier:

DeleteObject(SelectObject(hVGA,hBrush));

And, because you don't want this thread to lock the rest of the program, put it
to sleep for one second at a time:

Sleep(lOOO);

When your whi 1 e loop exits, it means that the user has clicked on the button a
second time, and you've now closed the VGA-out port. Exit the thread and the
actual function:

ExitThread(OxOOOO);
return TRUE;

You're done. Although this demonstration only paints ellipses and rectangles,
the VGA-out port is a great way to display charts, graphs, or any kind of graphi
cal data. The J ornada even comes with an application that displays the entire CE
desktop on the VGA monitor!

Page 00060

34 Chapter 1 • What Does CE Do for Me?

A Laptop-Size Keyboard

HPC/ Pros' keyboards are very easy to use. This means th.at y u can develop an
applica tion for an HPC/Pro device with the expectati n that the us r can and
w ill be doing a lot of typing. Th refore, it's both possible and reasonable to
request some serious data entry from users f an I-IPC/Pro.

The HTML Viewer Control

Just as HPCs do, the HPC/Pro devices offer the HTML Viewer control. For infor
mation on how to use the HTML Viewer control, see the section on HPC devices
above.

WARNING Be aware that if you're developing for both the PPC and the HPC/Pro that the Pro
supports the Ink control but not the CapEdit control!

Version Numbering of the CE Operating System
With !he release of the HPC/Pro devices, Microsoft announced a new version numpering
sd1eme to help keep track ofthe different features offered by each version 0f Windows CE.

The HPC version of CE ts known as v2.00 because it was the first second~generatton CE
operating system The PPC version of CE is known as v2 01, <lnd the HPC/Pr0 version Is
V2.11 It's worth noting tha t, just as some manufacturers allowed users to upgrade thetr
CE 1.0 devices lo CE 2.0 devices, some HPCS can be upgraded to CE v2 11 . HoWever, lhe
software upgrade alone does not give them the additional HPC/Pro features, such as
longer battery life, etc.

Other Devices
Because Windows CE is also available as an embedded operating system, and
because each OEM can customize the operating system, there are any number of
devices that offer some unique configuration or sets of features that might be just
what you're looking for in your CE-based solution.

Page 00061

CE Devices 35

Casio's Vertical Markets division puts out one such device, known as the PA-
2400. Casio has taken the larger screen of the HPCs and combined it with the soft
ware-based keyboards of the PPC devices to create a Handheld PC that doesn't
have a keyboard. The result, shown in Figure 1.11, is a tablet-like device, ade
quate for displaying moderate amounts of data and ideal for bar code/ inventory
type applications. From a developer's standpoint, the PA-2400 is just like any
other HPC with its 480 x 240 screen, grayscale, and all of the standard controls
available on an HPC.

Of course, the PA-2400 is only one example of the variety of Windows CE
devices that exist. By the time you read this, there will also be an Auto-PC device.
To accommodate this variety, developers must write code as generically as possible,
so that it will run on as many CE platforms as possible with as little modification
as possible. Another option is to target a specific device from a specific manufac
turer as part of your CE solution.

FIGURE 1 . 11:

The Casio PA·2400 "tablet"
device

Copyright Casio Business Solutions Group © 1999

Page 00062

36 Chapter 1 • What Does CE Do for Me?

Accessories for CE
In this section, we'll be looking at Ethernet/ networking solutions and a bar code
solution, some of the accessories that you can add to a CE device to make your
CE solution that much more complete.

Ethernet/Networking Solutions
Adding a network connection to a CE device is one of the most important things
you can do to enhance the functionality of aCE solution. Once aCE device is on
the network, it can browse files, access data, and (in the case of the HPC/ Pro)
even print to a network printer.

Furthermore, from a developer's point of view, a network connection can be
your best friend thanks to the Ethernet debugging features of VC++. As the name
suggests, Ethernet debugging lets you execute and debug your application over a
network. Debugging your applications this way is considerably faster and easier
than the standard serial connection.

When it comes to networking and CE, there are two solutions to consider:

• A traditional wired connection

• A wireless connection

The tradeoff between a wired connection and a wireless cmmection can be sum
marized in one sentence: Can your device be tethered to a network hub, or do
you require absolute freedom to go anywhere with your device?

Of course, that question itself is really answered by the application. If you are
developing an application that's going to be used, say, all over a warehouse, then
you'll definitely need a wireless connection. On the other hand, if your applica
tion is more oriented toward a sales rep in the field who only needs to get onto
the corporate network once a day, then a wired connection would be the way to go.

Page 00063

L

Accessories for CE 37

Wired Connections

Socket Communications of Newark, California (http: I lwww. socket com. com) is
the leader in the field of wired network accessories for CE. They offer two differ
ent kinds of Ethernet cards for Windows CE:

• PCMCIA-based "Low Power" Ethernet card

• Compact Flash (CF) Ethernet card

PCMCIA-Based Low-Power Ethernet Card This version of Socket Commu
nications' Ethernet card is ideal for HPCs and HPC/Pros that have a PCMCIA
slot available. The biggest feature of this card is that it uses extremely low power,
which, of course, is good for the battery life of the user's device. The standard
version of the card supports only lOBaseT Ethernet, but the "plus" version sup
ports both lOBaseT and 10Base2 Ethernet.

Compact Flash Ethernet Card The fact that there's a Compact Flash version
of this Ethernet card available is no small feat! What this means is that you don't
have to use your device's PCMCIA slot to get on your network. Instead, you can
get the Compact Flash Ethernet card to use the Compact Flash slot, which you're
probably not using anyway! Furthermore, the CF slot is the only way to get a PPC
device on the network, as they do not have PCMCIA slots.

A Wireless Connection

With a wireless connection, your CE device can be anywhere-literally-and still
have access to every resource on your network. Proxim, Inc. of Mountain View,
California (http: I lwww. p roxi m. com) is the leader in the field of wireless Local
Area Network solutions forCE. Proxim offers a wireless bridge (a kind of net
work hub) that has a radius of 500 feet indoors and well over 1000 feet outdoors.

The way the Proxim RangeLAN2 system works is that you have one or more
wireless bridges (hubs) which hook up to your existing network. Then, for each CE
device that needs to be on the network, you have a PCMCIA-based Ethernet card.

One of the advantages of the Proxim system is that their PCMCIA cards are also
designed to use smart power management. For instance, if there is no network
traffic after a certain amount of time-and you can set this value yourself-the card
will enter a sleep mode, merely signaling the minimum amount to remain con
nected to the network. This of course, uses less power and improves battery life.

Page 00064

38 Chapter 1 • What Does CE Do for Me?

Bar Code Readers
Bar code readers and CE seem to go hand in hand. Many developers are already
implementing bar code-based solutions with Windows CE. As far as bar code read
ers and CE are concerned, Socket Communications is the leader here, too. They
have a variety of bar code readers that come in all shapes and sizes, depending on
the nature of the application. And, just as with their Ethernet cards, Socket Com
munications' bar code readers are available in both PCMCIA form as well as CF
form.

The great thing about Socket's CE solutions is that when a user scans in a bar
code, their drivers make it appear to the application that the user has typed in the
information using the keyboard. This means that integrating one of their bar code
readers into your CE solution requires no extra coding on your part!

Summary
This chapter gave a general overview of some of the more important CE topics. In
the next several chapters and throughout the book, we'll be exploring each of
these topics in depth, finding solutions to problems and using whatever new fea
tures we find along the way.

Page 00065Page 00065

Page 00066Page 00066

Page 00067

(H A P T (R
T W 0

The Three Commandments of
Writing for CE

• The First Commandment: Your Application Must Use
the Unicode Character Set

• The Second Commandment: Your Application Must Be
Low-Memory Aware

• The Third Commandment: Know Your Form
Factor!

Page 00068

42 Chapter 2 • The Three Commandments of Writing forCE

The purpose of this chapter is to provide you with a general"heads up" on
the unique r -quirements and considerations you should be aware of when writ
ing for Windows CE. Not all of the items in this chapter will apply specifically to
you and your programs, but most of them wilL As you already know, writing for
CE is definitel.y not the same as wri.ting for Win32. There are a number of new
d1a llenges, and it is tho e challeng s that we'll focus on now.

Th Three Commandments that you must follow when programming forCE
are as follows:

1. Your application must use the Unicode character set.

2. Your application must be low-memory aware.

3. Know your form factor!

Because these are the three rules that will affect almost every single CE pro
gram you will write, we will take a serious, detailed look at each one.

The First Commandment: Your Application
Must Use the Unicode Character Set

The First Commandment is that your application must use the Unicode Character
Set. Unicode is a worldwide character standard, which theoretically makes it
much easier to internationalize your applications.

Windows CE is a Unicode-based operating system. That means that all of the
text displayed to the user by the operating system is actually Unicode text. It also
means that all of the Edit boxes, List boxes, Combo boxes, etc., display Unicode
character string only. From the practical standpoint of working with text strings
under Windows CE, however, Unicode is just something that makes your life
more difficult.

Unicode will create the following changes in the way your programs work
with text:

1. All strings must be declared using Unicode types rather than char types.

Page 00069

TIP

The First Commandment: Your Application Must Use the Unicode Character Set 43

2. All text literals in your programs must be Unicode strings.

3. You must choose the correct C runtime library (RTL) functions for Unicode
strings.

4. Your program must now handle two types of text files.

Unicode forces you to make these changes because it is a two-byte (16-bit) char
acter set. That means that a single Unicode character is actually two bytes wide
twice as wide as each character in the ANSI character set of Windows 98.

The Unicode strings are often cal led wide strings, and Unicode characters are wide
characters . You might see Windows NT source code relying on a variety of func

tions with the letter W prominently in the function names or type declarations.
TheW is what indicates a wide or Unicode string . For example,LPWSTR is a long
pointer to a w ide string.

Even if you decide that your program(s) will only read and write ANSI-based
data files, you'll have to deal with the fact that all of the Windows CE API and
standard Windows controls work with only Unicode text. This means that you'll
still have to convert that data to Unicode to display it, and then you'll have to
convert it from Unicode to read it!

In other words, there's no way to completely avoid Unicode. Your program will
be either 100 percent Unicode-based or some mix of Unicode- and ANSI-based.

Let's take a look at each of the five Unicode-related changes and how, exactly,
they will affect your code.

Declaring Strings Using Unicode Types Rather Than
Char Types

Previously, under Windows 98, you probably declared your strings using char,

char ,., , or LPSTR, as in either of the following examples:

char * lpszMessage;
LPSTR lpszMessage;

Under CE, however, neither of these string types will display properly, if at all.
That's because both char ,., and LPSTR are ANSI, 8-bit character strings. Therefore,

Page 00070

44 Chapter 2 • The Three Commandments of Writing forCE

NOTE

to get your strings to behave correctly under Windows CE, you must declare
them using either

• Unicode-specific string types

or

• Ge11eric string types

Unicode-Specific String Types

Unicode-specific string types are just that-strings in which each character is
explicitly set to be two bytes wide. They are 100 percent compatible with all of the
Unicode-based CE API and RTL functions. Table 2.1 shows the Unicode-specific
type to ANSI-specific type mappings.

T A B L E 2 • 1 : Unicode-Specific to ANSI-Specific Type Mappings

Type Description What It Replaces

WCHAR 2-byte Unicode character char

WCHAR* pointer to a string of Unicode characters char*

LPWSTR long pointer to a Unicode string LPSTR

LPCWSTR long pointer to a Unicode string constant LPCSTR

The code in th is book employs both the Unicode-specific string types and the
generic string types.

So, when using Unicode-specific strings, your declarations will look like either
of the following examples:

WCHAR * lpwszMessage;

LPWSTR lpwszMessage;

Generic String Types

Generic string types are macros that are mapped at compile time to the correct
character set (ANSI or Unicode), depending on Lhe target operating system. In
other words, if you are targeting Windows 98-an ANSI -based OS- TCHAR is

Page 00071

TIP

NOTE

The First Commandment: Your Application Must Use the Unicode Character Set 45

defined as a 1-byte char. If you are targeting Windows CE, TCHAR is defined as a
WCHAR or 2-byte Unicode character. Therefore, if you use generic string types to
declare your strings and characters, your program will be Unicode-aware as soon
as you compile. Table 2.2 shows the generic string type to ANSI-specific string
type mappings.

Because generic string types change their definitions based on the target platform,
you can write string-handling code that will compile for a variety of platforms.

T A B l E 2 . 2 : Generic String Type to ANSI-Specific String Type Mappings

Type Description What It Replaces

TCHAR generic character type char

TCHAR* pointer to generic character string char*

LPTSTR long pointer to generic string LPSTR

LPCTSTR long pointer to generic string constant LPCSTR

If you're using these generic strings type, your declarations will look like either
of the following examples:

TCHAR * lptszMessage;

LPTSTR lptszMessage;

Of the two methods for declaring strings under CE, the generic method is usu
ally preferred because of the cross-compilation advantage. However, there are
times when you may want to use the explicit Unicode types. For instance, you
may want to distinguish between functions that require a Unicode string and
functions that will require an ANSI string type.

The Unicode-specif ic string types are defined in WCHAR.H. The generic string
types are defined in TCHAR.H.

Page 00072

46 Chapter 2 • The Three Commandments of Writing forCE

Using Unicode Strings for All Text Literals
Text literals are any hard-coded character strings that exist in your program. They
can be strings that are explicitly declared, or they can be embedded in some other
command and never declared at all, as in the following respective examples:

char lpszMessage[] = "Good Morning!";
MessageBox(hwnd, (LPSTR)"Cats and mice do not have fun.", (LPSTR)"Oh

no! " , MB_OK);

When you compile the above lines forCE, though, you will get warnings, and
your program probably won't run at all.

There's a simple solution to this problem, but it can be time-consuming, espe
cially if you're porting code that contains a fair number of text literals.

To mark your text literals as Unicode, you must enclose them in the TEXT macro,
as in the following examples:

TCHAR lpszMessage[] = TEXT("Good Morning!");
MessageBox(hwnd, TEXT("Cats and mice do not have fun."), TEXT("Oh

no!"), MB_OK);

The TEXT macro takes care of converting your text literals at compile time
and that's all you need to do to ensure that your text literals will show up prop
erly under CE.

Alternatives to the Text Macro
There are two additional macros that do exactly the same thing as the TEXT macro.

The L macro, which looks like this:

TCHAR lpszMessage[] = L"Good Morning!";

The only difference between the L macro and the TEXT macro is the lack of parentheses.

The_ T macro, which looks like this:

TCHAR lpszMessage[] = _T("Good Morning!");

The only difference here is that using the _T macro instead of the TEXT macro saves you

from typing two characters

The TEXT, L, and _ T macros are all functionally equivalent and choosing between them is
strictly a matter of preference. There is no penalty for choosing one over the other.

Page 00073

The First Commandment: Your Application Must Use the Unicode Character Set 47

Choosing the Correct RTL Functions for Unicode
Strings

TIP

One of the consequences of changing all of your strings over to Unicode-aware
string types is that some of the RTL (runtime library) functions are ANSI-based
and will not work with Unicode strings. Of course, there is a set of Unicode-based
functions that replaces the ANSI-based one, and there are also some generic string
type routines that you can use. The trick is finding and choosing the right ones.

The generic string type routines will work just fine with Unicode-specific
strings, and-when you compile forCE, at least-the Unicode-specific functions
will work with the generic string types.

As a rule, though, you don't want to mix and match the string types and their
related functions. Mixing generic string types with Unicode-specific functions
defeats the cross-platform purpose of generic string types and means that your
code will be much more difficult to port or reuse later. Furthermore, mixing string
types and functions can cause your code to be more difficult to read and debug.

Table 2.3lists some of the more common ANSI-based RTL functions and their
Unicode and generic string equivalents.

TAB L E 2 . 3 : ANSI, Unicode, and Generic String Function Equivalents

ANSI Unicode
Function Function

strlen() wcslen()

atoi () _wtoi ()

strcmp() _wcscmp()

atof() wcstod()

Generic String Description
Function

_tcsl en() Returns number of bytes in a string.

_ ttoi () Converts a string to an integer.

_tcscmp() Compares two strings.

_tcstod() Converts a string to a f loating point value. (There
is no direct mapping from atof() to a Unicode
or generic string function. Instead, you must use
the string to double-precision functions)

It's still possible to increment Unicode string pointers as if they were ANSI string
pointers, like this: '~str++;

Page 00074

48 Chapter 2 • The Three Commandments of Writing forCE

Equipping Your Program to Handle Two Types of
Text Files

Unicode isn't universal-just because it might be easier forCE programs to store
their data using Unicode doesn't mean that other operating systems can read
Unicode, nor will they necessarily be providing data in Unicode form. If your
program is going to be receiving data in the form of text files, it's a good idea to
ensure that you can handle both Unicode data and ANSI data.

The good news is that it's not very difficult to do this. Mostly, you just have to
be able to determine whether a given file is Unicode or ANSI. Although ANSI text
files do not have any kind of identifying header or signature, Unicode files do.
The Unicode signature consists of two bytes (one Unicode character) that appear
as the very first data in the file: in hex, FEFF. To determine whether or not a file
you're working with is Unicode, simply open it up and read the first two bytes. If
those bytes are FEFF, you know the file is a Unicode file. Otherwise, you can
safely assume that it's an ANSI file .

WARNING The FEFF signature is a generally agreed upon standard for working with Unicode
files on a PC. It's entirely possible that the data you receive from some other
source may completely ignore this standard. Also, the order of the two bytes may

depend on the "endian-ness" of the machine producing the file . In other words,
in most cases, you can count on the FEFF signature, but it is not always 100 per
cent guaranteed to be there.

Converting between Unicode and ANSI Character Sets
A Sample Application

One example of an application that would need to properly accommodate files in
both ANSI and Unicode formats is a notepadlike application. (After all, NT's
notepad handles both Unicode and ANSI files transparently.)

For a demonstration of the techniques and functions required to convert
smoothly between one character set and the other, let's build aCE version of the
familiar notepad text editor. The finished CE-based notepad is shown in the
graphic below.

Page 00075

The First Commandment: Your Application Must Use the Unicode Character Set 49

FIGURE 2.1: I file t!elp I
The finished CE notepad

application

CHAPTER 1 - WHAT DOES CE DO FOR f\1E?

In a promotional video sent out by Microsoft late last year, Hare I Kodesh of Mlaoso
A large part of wt1at makes these devices so powerfU I is that t11ey're not just ol gan lze
In many ways, Windows CE puts a virbJal desktop computer in tile palm of your hanc
It's that capabilitv t11at makes Windows CE is a sort of "shrunken head" version of W r
So tile questions we'll be answer ing in til is cllapter· are "What does CE do for me?" ar
To do that, we'll be looking at the different types of CE devices and what eacll one o
We'll also be looking at some of tile CE-compatible hardware vou can add bJ your ap
Wllat is CE, Anyway?
Windows CE is a stripped down version of Windows 98/f'.IT that's been engineered sr
"' Tile Palrn-sized PC
*The Handheld PC

Under Windows 98/NT, creating a notepad application is so simple, it's usu
ally only used as a teaching exercise. However, writing a notepad application
for CE requires you to support the two character sets, which makes the project a
bit more complicated. There are two tricks that you'll have to employ in order
to pull this off:

1. Account for the user opening Unicode- and ANSI-based text files .

2. Save the user's text files in both character sets for maximum compatibility.

Opening Both Unicode- and ANSI-Based Text Files To be able to open
both Unicode- and ANSI-based text files, you must be able to auto-detect the
character set of the text file you're opening and then read the data correctly. As
you know, ANSI text files do not have any kind of header or signature bytes that
uniquely identify them as ANSI text files. However, Unicode text files do. The
Unicode signature bytes can be defined inC code as

#define UNICODE_HEADER OxFEFF

Header bytes enable you to open the file, read the first two bytes, and compare
those bytes against the UNICODE_HEADER value.

To check whether a file is Unicode-based, open it and read the first two bytes:

if(ReadFile(*fp, buf, 2, &num, NULL))
{

Page 00076

50 Chapter 2 • The Three Commandments of Writing forCE

Then, so that the calling routine can still treat the file as though it's just been
opened, set the file pointer back to the beginning of the file:

fseek(fp, 0, SEEK_SET);

Next, make the actual comparison of the two bytes you read against the defini
tion of a Unicode header and return the appropriate value:

if((buf[O] == UNICODE_HEADER))
{

else

//it's Unicode!
return(TRUE);

II it's ANSI!
return(FALSE);

Finally, you need to handle the condition of not being able to read from the file in
the first place:

else

return(-1); // indicates error

When your code is assembled into final form, it will look something like the
following:

int fisunicode(FILE *fp)

unsigned short buf[4];
DWORD num = 0;

//initialize buffer
buf[O] = OxOOOO;
buf[l] = OxOOOO;
buf[2] = OxOOOO;

if(ReadFile(*fp, buf, 2, &num, NULL))
{

fseek(fp, 0, SEEK_SET);
if((buf[O] == UNICODE_HEADER))

Page 00077

The First Commandment: Your Application Must Use the Unicode Character Set 51

FIGURE 2.2:

The Save As ANSI menu

else

else

//it's Unicode!
return(TRUE);

II it's ANSI!
return(FALSE);

return(-1); // indicates error

Using this code, your applications can now branch on the file type (Unicode or
ANSI) and handle the reading of the file in whatever manner is appropriate. In
the case of your notepad application, of course, the appropriate action is to read
the text from the file and put it into an edit control.

Saving Unicode- and ANSI-Based Text Files Merely opening both types
of files would be pointless if you couldn't save in both formats, however. In order
to account for both text formats, when saving data, you can simply provide an
extra Save As menu for the ANSI format, as shown in Figure 2.2.

X

Qpen

Save 8.s

Page 00078

52 Chapter 2 • The Three Commandments of Writing forCE

NOTE

Of course, ANSI is an arbitrary choice here, and it could just as easily have been
a Save As Unicode menu. However, since it's easier to save a file as a Unicode
based document, it's a good idea to make that the default.

Once you've chosen one character set as the default, implementing the different
saving functions becomes quite simple. Before we can take a look at the Unicode
based file-saving code, though, you need a function that can write the Unicode
signature bytes out to the file. WriteUni codeTag() does just that:

void WriteUnicodeTag(FILE *fp)
{

unsigned short buf[4];
DWORD num = 0;

buf[O] UNICODE_HEADER;
buf[l] OxOOOO;
buf[2] OxOOOO;

//now write the bytes to the file
WriteFile(*fp, buf, 2, &num, NULL);

In these examples, we're using stdi o. h file access functions. For more informa

tion on using the stdi o. h functions on Windows CE, see Chapter 3.

Now you can proceed with the main task of writing the contents of the edit
control out to a file. First, open the file for writing and write the Unicode header
bytes. The next step is to determine the number of characters you'll be writing to
the file, dynamically allocate memory for a string (szChunk), and store the con
tents of the edit control into that string. Notice that, because GetWi ndow
Textlength() reports the number of characters and not the number of bytes, you
must allocate twice the result of GetWi ndowText().

fp = fopen(ofn.lpstrFile, TEXT("w"));
if (fp != NULL)

WriteUnicodeTag(fp);

The next thing you need to do is determine the number of characters you'll
be writing to the file, dynamically allocate memory for a string (szChunk), and
then store the contents of the edit control into that string. Note that because

Page 00079

The First Commandment: Your Application Must Use the Unicode Character Set 53

GetWi ndowTextlength() reports the number of characters-not the number of
bytes-you have to allocate the result of GetWi ndowText() twice:

filesize = GetWindowTextLength(hEdt) + 1;
szChunk = LocalAlloc(LMEM_ZEROINIT, filesize ,., sizeof(WCHAR) +

sizeof(WCHAR));
GetWindowText(hEdt, szChunk, filesize);

Next, write that string out to the file, making sure to remove the trailing NULL
(which, in the case of Unicode-based strings, is actually two NULL characters):

if (fwrite(szChunk, sizeof(byte), filesize ,., sizeof(WCHAR) -
sizeof(WCHAR), fp) == 0)

break; //didn't write anything, so nothing to do

Finally, free the memory you allocated and close the file:

LocalFree(szChunk);
fclose(fp);

To save text in ANSI format, you follow roughly the same procedure, with the
exception that the text of the edit control-which is in the Unicode character set
must be converted to ANSI before it can be written out to the file. This requires
that you create a routine called Uni codetoANSI (),which, as you may have guessed,
will take a Unicode-based string and return an ANSI-based string. The work of
the conversion itself is done through the API function Wi deCharToMul ti Byte(),
which takes eight parameters that specify a number of conversion options. For
our purposes here, we'll use the simplest settings and specify an ANSI conver
sion with no options. Your Uni codetoANSI() function, then, looks like this:

LPSTR UnicodetoANSI(LPWSTR str)
{

LPSTR buf;
int len = 0;
II return string length - add one for NULL and halve it.
len = (wstrlen(str) + 1) I 2;
buf = (LPSTR) LocalAlloc(LMEM_ZEROINIT, len);
II caller's responsibility to free this!
//CP_ACP ==ANSI code page conversion
WideCharToMultiByte(CP_ACP, 0, str, wcslen(str), buf, len, NULL,

NULL);
return (buf);

Page 00080

54 Chapter 2 • The Three Commandments of Writing forCE

Now that we've got that out of the way, let's take a look at how the overall
ANSI-based file-saving code works. Just as with the Unicode-based file-saving
routine, the first thing to do is open the file for writing:

fp = fopen(ofn.lpstrFile,TEXT("w"));
if (fp != NULL)
{

Next, as with the Unicode-based file-saving routine, you need to allocate memory
for a string (szChunk) and store the edit control's text in that string:

filesize = GetWindowTextLength(hEdt) + 1;
szChunk = LocalAlloc(LMEM_ZEROINIT,

filesize * sizeof(WCHAR) +

sizeof(WCHAR));
GetWindowText(hEdt, szChunk, filesize);

Normally, you'd just save the text to the file at this point, but because you're writ
ing out the ANSI-based version of your text, first call your conversion function,
storing the resulting ANSI-based string into a variable (szChunkA), and then write
the data to the file:

szChunkA = UnicodetoANSI(szChunk);
if (fwrite(szChunkA, sizeof(byte),

filesize-1, fp) == 0)
break;

//didn't read anything, so nothing to do

Then, as you did before, free the memory you allocated for the strings and close
the file:

LocalFree(szChunkA);
LocalFree(szChunk);
fclose(fp);

When assembled, the full routine looks like this:

fp = fopen(ofn.lpstrFile,TEXT("w"));
LocalFree(szChunkA);
if (fp != NULL)

filesize = GetWindowTextLength(hEdt) + 1;
filesize = filesize;
szChunk = LocalAlloc(LMEM_ZEROINIT,

filesize);

Page 00081

NOTE

The Second Commandment: Your Application Must Be Low-Memory Aware 55

GetWindowText(hEdt, szChunk, filesize);
szChunkA = UnicodetoANSI(szChunk);
if (fwrite(szChunkA, sizeof(byte),

filesize-1, fp) == 0)
break;

//didn ' t write anything, so nothing to do
LocalFree(szChunkA);
LocalFree(szChunk);
fclose(fp);

You have now successfully saved the Unicode data in the ANSI character set.
Typically, a few helper functions, such as ffi lei suni code(), Wri teUni code Tag(),
and Uni codetoANSI() are all that you'll need in order to get your applications to
work with both Unicode- and ANSI-based text files.

The code for the full CE notepad application can be found on the CD-ROM in the
subdirectory for this chapter.

The Second Commandment: Your
Application Must Be Low-Memory Aware

As you know, CE devices typically have nowhere near as much memory as a
desktop PC. The Second Commandment, therefore, involves tailoring your pro
gram for the low-memory environment of a CD device.

In addition to having less memory than a desktop PC, the CE user can adjust
both how much of the physical memory is to be used as storage (i.e., simulated
hard-disk space) and how much is to be used as program memory (i.e., RAM). As
if that isn't enough, the operating system itself can also request that your pro
gram free some of its memory whenever the amount of available memory gets
below a certain level.

In order to correctly navigate this maze of memory-related requirements, you
must make sure your program is doing the following:

1. Keeping the size and number of static variables to a minimum

2. Keeping the EXE file size low

Page 00082

56 Chapter 2 • The Three Commandments of Writing forCE

3. Checking the return result of memory allocation

4. Mass-allocating your application's memory

5. Handling the WM_HIBERNATE message

Keeping the Size and Number of Static Variables to a
Minimum

When you're coding for Windows CE, everything related to memory allocation
becomes an issue. Even something like local variables and stack space could be a
problem down the road if it's not handled properly from the beginning.

While it's unlikely that you'll actually run out of stack space, it is possible. Win
dows CE allocates approximately 60K per stack per thread, so you do have quite
a bit of room. However, all it takes is some careless static allocation of large
strings to quickly push that limit, as in the following code:

WARNING

char LargeString[1024];

Recursive functions also require special attention, as those that may work fine on
a desktop machine might "blow the stack" on aCE device.

Even without the issue of using up the stack space, the general rule is that you
don't want to allocate memory you're not using. As Rule 5 in the list above sug
gests, this could cause trouble for other applications that are running but are not
active when your program attempts to grab its memory because, if there's not
enough memory for your program, CE will ask the other applications to free up
some memory.

Keeping the EXE File Size Low
Keeping the EXE file sizes low is a big issue because programs on CE are exe
cuted just as they are in Windows 98/NT; namely, the executable is loaded into
RAM and then executed. The very act of launching an executable is, in effect, a
memory allocation.

Under Windows 98/NT, you can pretty much use as much disk space as you
need, and it's the user's responsibility to ensure that they have enough space to
install your application. Under Windows CE, however, there is a fixed amount of

Page 00083

TIP

The Second Commandment: Your Application Must Be Low-Memory Aware 57

memory available. Most users won't be able or willing to upgrade that memory
just for one program. And, even if they have the memory to support such a pro
gram, they probably won't appreciate the fact that it will keep them from
installing other programs down the line. Therefore, you want to ensure that your
executable is as small and as tight as it can be.

This involves taking a close look at the resource file that's compiled into your
EXE. Have you converted the bitmaps to a lower-quality (i.e., smaller-memory)
format? Windows CE supports a number of lower-quality, space-saving bitmap
types that can greatly reduce the size of an executable.

If you ported the application from a desktop program, are there resources
you're not using in the CE version, such as WAV files or other such resources?
Although the WAV file format supported by CE is a low-quality, compressed
form, these files can still take up quite a bit of storage space on the device.

For more information on converting resources, see Chapter 9.

Checking the Return Result of Memory Allocation
This rule is common sense that applies to all types of programming, not just for
CE. But because it matters forCE, too, we'll mention it briefly.

As you know, just because you request memory doesn't mean the operating
system will be able to allocate it. Here's a simple block of code that demonstrates
how easy it is to handle an allocation error:

lpStr = LocalAlloc(LMEM_FIXED, 50,., sizeof(TCHAR));
if (1 pStr)

II ...

else

//handle error here

Using this simple code can save you a lot of trouble later on.

Page 00084

58 Chapter 2 • The Three Commandments of Writing forCE

Mass-Allocating Your Application's Memory
Typically, in a Windows application, memory is allocated as needed. The flow of
a program, then, might look something like this:

//beginning of program
var1 = LocalAlloc(LMEM_ZEROINIT, 124);
//some additional operations
I I ...
var2 = LocalAlloc(LMEM_ZEROINIT, 512);
// ...
LocalFree(var1);
var3 = LocalAlloc(LMEM_ZEROINIT, sizeof(SOMESTRUCT));
//etc.
//end of program

And so on. The problem with this style of program design is that memory is not
always going to be available onCE. An application could be in the middle of a
complex operation, only to fail at a critical moment because memory could not be
allocated. That would mean that all of the work done up to that point would
likely be lost, and the user would have to close some additional applications just
to retry the operation.

Casio' s Vertical Markets division has developed one technique designed to deal
with this. This technique is to allocate all (or nearly all) of the memory needed by
the application at once. While this might seem a bit unorthodox, it actually solves
this problem in a very creative manner. If you were to redesign the above pseudo
code using this technique, it would look something like this:

//beginning of program
var1 = LocalAlloc(LMEM_ZEROINIT, 124);
var2 = LocalAlloc(LMEM_ZEROINIT, 512);
var3 = LocalAlloc(LMEM_ZEROINIT, sizeof(SOMESTRUCT));
//now do your work
II ...
Loca1Free(var1);
//etc.
//end of program

Another way to accomplish this is to create a private heap as soon as your
application starts, as in the following example:

//beginning of program
hHeap = HeapCreate(O, 1024, 1024);

Page 00085

The Second Commandment: Your Application Must Be Low-Memory Aware 59

// ...
//anytime later, allocate "off the heap "
var1 = HeapAlloc(hHeap, 0, 124);
var2 = HeapAlloc(hHeap, 0, 512);
var2 = HeapAlloc(hHeap, 0, sizeof(SOMESTRUCT);
//now to your work

I I ...
HeapFree(hHeap, 0, varl);

//etc.
II ...
//just before end of program
HeapDestroy(hHeap);

//end of program

The advantage of this kind of coding is twofold:

• If a low-mem.ory condition exists when your program starts up, you'll be
able to detect it right away. You can then alert the user as to this condition
and take the appropriate action.

• You avoid the possible scenario described above, in that your program will
not crash in the middle of an operation due to lack of available memory.
This, of course, is the main reason to organize your memory allocation in
this manner.

It won't always be possible to organize your memory allocation this way, and
there are times when you may find it more efficient to allocate as needed, but
whenever possible, this is a technique that's worth using.

Different Types of Memory Allocation
In the examples above, you used two different types of memory allocation

Local All oc() is the default memory allocation function under CE, much as mall oc() IS

in the C runtime library. It gets the memory it allocates from the process heap, which is a
general-purpose space for your program's use The pmblem w ith Local All oc() s that
when you free memory reserved with Local A 11 oc() (by calling Local Free()), the mem
ory is not freed nght away Instead, it is freed after some time, 1n an almost lazy manner

Continued on next page

Page 00086

60 Chapter 2 • The Three Commandments of Writing for CE

HeapA 11 oc() works somewhat differently, however. With HeapA 11 oc(). it is possible to
reserve memory from either the process heap or a private heap, that you can create your
self by calling CreateHeap(). The advantage to using the HeapA ll oc()-related functions
is that HeapFree(), the de-allocation function, frees memory immediately.

Vi rtua 1 A 11 oc() is a third type of memory allocation that involves reserving one page
(either 1024 or 4096 bytes, as set by the device manufacturer) at a time.

For most uses, LocalA1loc() will do an adequate job In cases where you're concerned
about memory being freed immediately, HeapA 11 oc() is the way to go. And, if you need
to grab really large blocks of memory at once, Vi rtua lA ll oc() is something to look into
Whichever function you choose, you'll still want to follow the advice above and allocate as
much memory as possible when your program starts up.

Handling the WM_HIBERNATE Message
Under Windows NT, when the system is nearing the upper limit of its available
memory, a dialog box pops up warning the user that the "system is running low
on virtual memory." It's then up to the user to start closing some applications so
that memory can be freed and the remaining programs can go about their business.

Similarly, under Windows CE, when memory gets tight, the operating system
takes action. Instead of notifying the user right away, however, CE asks inactive
programs to release some of the memory they're using. It does this by sending a
special message called WM_HIBERNATE to these programs. This message is unique
to Windows CE.

The WM_HIBERNATE message is sent to all visible application windows, starting
with the window that has been inactive for the longest time. When an application
receives the WM_HIBERNATE message, it must free up as much memory as it can
and, at the same time, save the state of any unfinished work. Freeing memory
might include destroying unused window handles, closing noncritical dialog
boxes, and so on. For some applications, merely exiting is appropriate.

When the application is reactivated, it can restore the unfinished work to its
previous state, and the user will never know the difference. For example, an
application might save the text from any of its edit boxes and then destroy those
edit boxes to free some memory. Then, when the application is reactivated, it will
re-create the edit boxes and populate them with the saved text.

Page 00087

The Third Commandment: Know Your Form Factor! 61

The most important thing to remember about the WM_HIBERNATE message is
that your application must respond to it in some way. Even simply closing down
and letting the user restart the application later is better than no response at all.

Reactivating Your Application
There is no unique-to-CE message that parallels WM_HIBERNATE to signal your application
that it has been reactivated. Instead, CE uses WM_ACTIVATE. The problem with this is that

your application will receive WM_ACTIVATE messages in the normal course of business,
regardless of whether or not it's currently in a hibernating state. Therefore, you can't
expect to restore from hibernation every time you get a WM_ACTIVATE message.

The solution to this is to set a global variable to indicate that the application has gone into

hibernation whenever you receive a WM_HIBERNATE message:

case WM_HIBERNATE:
//set hibernation flag
bHibernating = TRUE;

//finish with hibernation processing

// ...
case WM_ACTIVATE:

if (bHibernating)

//restore from hibernation

// ...
This way, you can be assured of proper handling for both the hibernation and the re

awakening actions.

The Third Commandment: Know Your
Form Factor!

Form factor is a term used to describe the shape, look, and feel of a given device.
The Palm-size PC, for example, is one form factor; the Handheld PC is another
form factor.

Page 00088

62 Chapter 2 • The Three Commandments of Writing for CE

The tricky part is that each form factor has different design requirements. For
instance, the screen of a Palm-size PC is long and narrow, about 240 x 320. The
screen of a Handheld PC, however, is closer to a desktop size, about 640 x 320.
Similarly, programs running on Palm-size devices may want to resize themselves
whenever the user pops up the input panel (software-based virtual keyboard).

The difficulty with all of these different form factors and their unique display
types is that tailoring your code to each of these machines can create two problems:

1. The UI of the application should be tailored to the device.

2. Maintaining a single codebase is nearly impossible.

Each of these presents a different set of challenges, which we'll now examine.

The Ul of the Application Should Be Tailored
to the Device

FIGURE 2.3:

You will probably find that you can compile your applications for both the HPC
and PPC platforms without changing a line of code. However, it's not so likely
that your application will look good on both platforms.

If you design your application first for the HPC, your dialogs will almost cer
tainly be too big for the PPC, assuming they'll even fit into the screen at all. Simi
larly, if you design your application first for the PPC, the dialogs will look cramped
and small on an HPC. Here again, you probably won't even be able to see the bot
tom one-eighth or so of the dialog, as it)Vill be hidden by the Taskbar. An exam
ple of this is shown in Figure 2.3.

Hello Dialog rn!l £I
A PPC application running
on an HPC device Hello World Calendar Microsoft

Pocket Word

My Hardhat ...

~ ~
Tasks Microsoft

Pocket Excel

~
~

Microsoft
Pocket

_ PowerPolnt ,_.m 8:08 PM

Page 00089

FIGURE 2.4:

The Third Commandment: Know Your Form Factor! 63

Clearly, even the simplest of programs will require some changes to the UI.
The good news is that, in most cases, the changes needed are small and easy to
implement.

In the case of the notepad application developed earlier in this chapter, for
example, one way you can ensure that the user interface looks good on both
device types is to automatically size the window to the screen size. You can do
this simply by creating the application's main window with the default size and
positioning options set:

hwndMain = CreateWindow(szAppName, szTitle,
WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL, NULL, hlnstance, NULL);

Windows CE sets the default size to be the full screen area. Then, by creating
any child window controls-in the case of the notepad application, the edit con
trol-based on the client area of the main window, you can ensure that the
notepad application will look good on both the PPC and HPC device types.

Sometimes, however, just ensuring that windows and controls are the right size
isn't enough. The DBView sample that Microsoft provides is a perfect example of
this. Figures 2.4 and 2.5 show DBView running on an HPC and PPC device,
respectively.

DB View running on an HPC
device

d \Smarlfill
.d \SyncCache
· _jJ \ URL Cache
::..J \UserNotifications
...:J .li.CDB
J:d Appointments Database
..::.J areacode
.:J Contacts Database

· .:..:11 hardly _1EST
.. .:J ICQ Contacts List

Page 00090

64 Chapter 2 • The Three Commandments of Writing for CE

FIGURE 2.5:

DBView running on a PPC
device

FIGURE 2.6:

As you can see, DBView will compile and run on a PPC or HPC device without
any modifications. However, a Tree View control with a width of about 60 pixels,
as shown in Figure 2.5, is not exactly user-friendly. Most of the items in the Tree
View cannot be read without using the scrollbar. Modifying the UI would clearly
help. Figure 2.6 shows a possible modification that will definitely make the pro
gram easier to use.

DBView modified for the
PPC platform &J .o-1 \SmartFIII

r~ f:~;;i~
,..J Ox43070002
AatDCache

\User Notn'rcat10ns

:Ox?
Name: \UserNotifications
Type: 2184

llrtF>f'nri'K: 3
•1

Page 00091

The Third Commandment: Know Your Form Factor! 65

The TreeView and edit controls were originally created so that they'd be along-
side each othe1~ as illustrated by this code:

GetClientRect(hwnd, &rcClient);
// ...
nCommandHeight = CommandBar_Height(hwndCB);
// ...
hwndTV = CreateWindowEx(O, WC_TREEVIEW, TEXT("DB View Control "),

WS_VISIBLE I WS_CHILD I TVS_HASLINES I

TVS_LINESATROOT I TVS_HASBUTTONS, 0, nCommandHeight,
rcClient.right/2, rcClient.bottom-nCommandHeight, hwnd,
(HMENU) IDC_TREEVIEW, g_hinstance, NULL);

hEdit CreateWindow(TEXT(''EDIT"), TEXT("Property Information "),
WS_VISIBLE I WS_CHILD I ES_MULTILINE I ES_READONLY
WS_VSCROLL,
rcClient.right/2, nCommandHeight,
rcClient.right/2, rcClient.bottom-nCommandHeight, hwnd,
(HMENU) IDC_EDITCONTROL, g_hinstance, NULL);

In the modified version, the Tree View control is positioned above the edit con-
trol, as shown here:

GetClientRect(hwnd, &rcClient);
// ...
nCommandHeight = CommandBar_Height(hwndCB);
// ...
hwndTV = CreateWindowEx(O, W(_TREEVIEW, TEXT("DB View Control "),

WS_VISIBLE I WS_CHILD I TVS_HASLINES I

TVS_LINESATROOT I TVS_HASBUTTONS, 0, nCommandHeight,
rcClient.right, rcClient.bottom/2-nCommandHeight, hwnd,
(HMENU) IDC_TREEVIEW, g_h!nstance, NULL);

hEdit CreateWindow(TEXT("EDIT"), TEXT("Property Information"),
WS_VISIBLE I WS_CHILD I ES_MULTILINE I ES_READONLY
WS_VSCROLL,
0, rcClient.bottom/2,
rcClient.right, rcClient.bottom/2, hwnd,
(HMENU) IDC_EDITCONTROL, g_h!nstance, NULL);

In many cases, of course, the changes required will be more involved than those
required by DBView's main window, and it might be necessary to maintain device
or platform-specific copies of each important dialog used in your application.

Page 00092

66 Chapter 2 • The Three Commandments of Writing forCE

FIGURE 2.7:

For example, if you look again at DBView, you will find that it has a dialog box
it uses to allow the user to set which fields in a given table are indexed, and which
are not. You'll also find that this dialog box will definitely not work on a PPC device,
because it's over 290 pixels wide. Figures 2.7 and 2.8 show the original Modify
Indexes dialog box1 running on both HPC and PPC devices, respectively.

The original Modify Indexes
dialog box running on
an HPC

Clearly, the original dialog box is not appropriate for both platforms. This is a
perfect example of needing two copies of the same dialog box. Just as you did
with the Tree View and edit controls of the main window, you'll need to reorga
nize the controls on the Modify Indexes dialog box. However, don't actually
modify the original dialog. Instead, follow this simple three-step procedure for
creating a copy of the original dialog:

1. Create a new dialog and name it something related to the original.

2. Mark and copy all of the controls from the original dialog into the new one.
(This ensures that all of the control identifiers will remain the same. You can
then essentially swap one dialog for another with a minimum of work.)

3. Resize and rearrange the controls until they're usable on the desired form
factor.

When you do this for the Modify Indexes dialog, you end up again rearranging
the controls so that they are vertically oriented. The result looks something like
Figure 2.9.

The three-step procedure outlined above allows you to make all of your pro
grams useable and give them a professional look, regardless of what device
they're running on.

Page 00093

FIGURE 2.8:

The original Modify Indexes
dialog box running on a
PPC

FIGURE 2.9:

The PPC -fixed version
of the Modify Indexes
dialog box

The Third Commandment: Know Your Form Factor! 67

Modify Indexes

Pro ftf~

OXI0012: (lJShor~)
X2: (Short)
X20003: (Long)
X30013: (Ulong)
X•I0040: (FileTime)

OX600~ 1: (Blob)

Maintaining a Single Codebase Is Nearly Impossible
While all of the form factors are running the same operating system, there are
subtle differences between each form factor that make it very difficult to maintain
a single codebase for your project.

Page 00094

68 Chapter 2 • The Three Commandments of Writing forCE

NOTE The term codebase refers to all of the source code, resource files, etc. , that are
used to create a given project.

Advantages of a Single Codebase
A single codebase can help prevent a situation like this:

You find a bug in, say, the HPC version source code That same code is also in the PPC ver

sion source Now you've got to make the same fix to both the HPC and the PPC source.
When you then run your program on the PPC, you find that the change you've made

breaks something else. Naturally, this also affects both versions

The long and short of it is that you can drive yourself crazy keeping multiple codebases

up-to- date and (relatively) bug-free. Therefore, the preferred way is to maintain only one
codebase.

Typically, when you want to maintain one codebase that compiles for multiple
platforms, you can rely on the availability of compiler defines. Compiler defines
are global constants available at compile time that exist largely for the purpose of
maintaining a single codebase. For example, you might want to perform some
operation differently under the Windows CE emulator than you do on the device.
For such a situation, you can use the _WIN32_WCE_EMULATION compiler define:

#if defined(_WIN32_WCE_EMULATION)
//Do some emulator-specific code here
MessageBox(hwnd, TEXT("You are in the emulator"), TEXT("em x86"),

MB_OK);
#endif

The magic of compiler defines is that they actually control what blocks of code
are compiled into the final executable. The above call to MessageBox would not
be compiled into an application that was built for any platform other than the x86
emulator.

Visual C++ for Windows CE implements the Windows CE-related compiler
defines listed in Table 2.4.

Page 00095

TIP

The Third Commandment: Know Your Form Factor! 69

T A B l E 2 • 4 : Windows CE-Related Compiler Defines

Compiler Define Question It Answers

_WIN32_WCE Are you targeting aCE-based platform?

_WIN32_CE_EMULATION Are you targeting the x86-based emulator?

MIPS Are you targeting a MIPS-based device?

SH3 Are you targeting an SH3-based device?

You may notice that something important is missing from this list, however;
namely, there are no compiler defines that you can use to determine whether
your code is targeting an HPC, a PPC, an Auto PC, or some custom device type.

The AutoPC SDK implements the #APC compiler define to help determine whether

you're compiling for an AutoPC device.

So, how can you determine what device type you're running on? As far as con
ditional compilation is concerned, there is no automatic way to do this, but there
are two possible solutions to this problem:

1. Create your own conditional defines.

2. Create a runtime platform detector.

Creating Your Own Conditional Defines
The way that Microsoft recommends managing a single codebase is to create your
own #define to indicate the platform you're targeting. In other words, if you're
building for the Palm-size PC platform, add the following line to the relevant file
or files:

#define _ PPC

You then build your project for the Palm-size PC platform, remove or comment
out the #define, and build for any other platforms.

Page 00096

70 Chapter 2 • The Three Commandments of Writing forCE

TIP You can also create a #define by simply adding it to the "Preprocessor defines"
edit control on the C/C++ tab of Visual C++'s Project Settings dialog box.

While this does work, it requires you to remember that you've made this
#define when you build for other platforms. This can be a bit tricky, so it's best
to use this method only when necessary. If you can find a way to implement your
platform-specific code without conditional compiles, it will be simpler for you in
the long run.

Creating a Runtime Platform Detector
A runtime platform detector is a function that attempts to guess the current plat
form while the program is running. This is useful for all platform operations that
don't require major changes to the source code. For instance, in the DBView
example above, switching from one version of a dialog box to another is some
thing that can be handled at runtime by a simple platform detector.

Microsoft recommends that you determine the device type by calling System
Parametersinfo() and passing SPI_GETPLATFORMTYPE as the requested
information:

SystemParametersinfo(SPI_GETPLATFORMTYPE , 80, (PVOID)plat, 0);

The only problem with this is that not all of the OEMs support this item, so you
have to use the screen dimensions to guess the platform type. This method is actu
ally fairly reliable, although, eventually, there may be too much variety in the types
of devices running CE to depend on it.

The screen-size method works by calling GetSystemMet ri cs() to get the
height (pass in the SM_CYSCREEN constant) and the width (pass in the
SM_CXSCREEN constant) of the device's screen:

int GuessPlatform()

int iHeight, iWidth;

iHeight = GetSystemMetrics(SM_CYSCREEN);
iWidth = GetSystemMetrics(SM_CXSCREEN);

Once you have these dimensions, you can make a few simple comparisons to
determine the device type. First, check to see if the screen is long and narrow (i.e.,

Page 00097

The Third Commandment: Know Your Form Factor!

is the height greater than the width?). If it is, assume you're running on a Palm
size PC:

if (iHeight > iWidth)

return(PLAT_PPC);

On the other hand, if the device has a screen that's short and wide, you must
perform some additional tests to narrow down your choices. First, check if the
device has a screen like the HPC Pro devices (assumed to be 640 x 480).

if ((iHeight == HPCPRO_HEIGHT) && (iWidth == HPCPRO_WIDTH))

return(PLAT_HPCPRO);

Next, check to see if the height of the screen is equal to the height of an Auto PC's
screen, assumed to be 16 pixels:

else if (rcClient.bottom == APC_HEIGHT)
{

return(PLAT_APC);

As the default condition, if the screen size is not that of an HPC Pro and not that
of an Auto PC, then assume the device is a standard HPC:

else

return(PLAT_HPC);

Finally, as a catchall condition, if the height and width of the screen are equal,
return a value indicating an unknown type:

else

return(PLAT_OTHER);

When it's all put together, the function looks like this:

int GuessPlatform()

int iHeight, iWidth;

Page 00098

72 Chapter 2 • The Three Commandments of Writing forCE

iHeight = GetSystemMetrics(SM_CYSCREEN);
iWidth = GetSystemMetrics(SM_CXSCREEN);

if (iHeight > iWidth)

return(PLAT_PPC);

else if (iHeight < iWidth)
{

else

if ((iHeight HPCPRO_HEIGHT) && (iWidth

return(PLAT_HPCPRO);

else if (iHeight == APC_HEIGHT)
{

return(PLAT_APC);

else

return(PLAT_HPC);

return(PLAT_OTHER);

HPCPRO_WIDTH))

Although this runtime platform detector may look easier to implement than the
"roll your own" conditional defines, there are some situations that the runtime
detector can't handle, and there will be times when you must compile and link
different pieces of code into the program depending on the target platform.

In your own applications, you will probably find that you need to employ a com
bination of the two techniques to successfully deal with any platform-dependant
issues that arise.

Page 00099

Summary 73

summary
In this chapter, you explored some of the issues that you are faced with when pro
gramming for Windows CE. Specifically, you learned the ins and outs of the Uni
code character set and how it affects CE programming. You also learned how to
tailor your code for the low-memory environment of Windows CE. And, finally,
you saw how to deal with the different form factors with a minimum of effort.

Although some of these issues might seem difficult to navigate, it only takes a
llttle bit of practice before they become second nature.

Page 00100Page 00100

Page 00101

(H A .p T (R
T H R { {

To C or Not to C?

• calloc()

• MoveToEx90/LineTo()

• WM_RBUTTONDOWN

• Recreating the fopen{)/FILE*-based functions

Page 00102

76 Chapter 2 • To Cor Not to C?

This chapter will give the experienced C / C++ programmer a heads up as to
what's missing in the C/C++ language for Windows CE. Most importantly, there
are a number of programming constructs and functions that have been removed.
For instance, there is no try .. catch construct. Similarly, many standard func
tions such as fpri ntf() are gone.

The long and short of all this is that whether you're writing a program from
scratch or porting an existing application, you'll definitely run into some road
blocks. In this chapter, we'll take a look at what's missing, how to deal with it,
and what's still there. The most basic of C library functions do exist for Windows
CE, and many API calls also still exist. However, a quick glance at the different
include (.h) file directories (the standard Visual C++ files and the Windows CE
files) reveals just how much of the C/C++ runtime library and Windows API is
missing: there are roughly 350 standard include files, but there are less than 120
CE include files. Ouch! Some of the more important functions / constructs that are
not available to you when coding for CE are listed below:

• Calloc()

• MoveToEx()/LineTo()

• WM_RBUTTONDOWN

• try .. catch

• FILE''', fopen(), fpri ntf(), etc.

When you need to use one of these functions, there are three approaches you
can take:

1. Search for a substitute function provided by the CE runtime libraries or per
haps the CE API.

2. Consider changing the logic of your program to work around the missing
functionality.

3. Write your own function to perform the same task as the function that's
missing.

Page 00103

NOTE

Finding Substitute Functions 77

CE 2.11 does support the full stdi o. h library of functions However, this is of very
little practical use to those of us who need to target al l of the other devices
already on the market.

Let's see how these choices can be applied in a practical way to our list of miss
ing functions.

Finding Substitute Functions
Whenever possible, the best solution to dealing with a missing API function is to
find a substitute function that will perform the same operations as the original. In
this section, we'll take a look at how this applies to three common operations:
calloc(),MoveToEx() I LineTo(),andWM_RBUTTONDOWN.

calloc()
As you probably know, ca 11 oc() is one of the more important functions in the

C/C++ language. It is one of the primary ways that you can allocate and initialize
a block of memory. Unfortunately, it does not exist in CE's runtime library.

Thankfully, Loca 1 A 11 oc (), another allocation function, does exist under CE.
The catch is that ca 11 oc() allocated and initialized the memory, whereas Loca 1 A 1-
1 oc(), requires you to explicitly request that it initialize the memory by specify
ing the LMEM_ZEROINIT flag, like this:

ptr = LocalAlloc(LMEM_ZEROINIT, size);

MoveToEx() I Line To()
While perhaps not as important as call oc(), MoveToEx() and L i neTo() are
important Windows API calls for drawing lines onto an HDC. The two functions
are usually used in a pair, as follows:

RECT rt; GetClientRect(hWnd, &rt);
MoveToEx(hdc, 0, 0, NULL);
LineTo(hdc, rt.right, rt.bottom);

Unfortunately, they too do not exist under Windows CE.

Page 00104

78 Chapter 3 • To C or Not to C?

NOTE Although MoveToEx()/L i neTo() do not exist in t he Windows CE API, they do
exist in MFC forCE.

A quick search through the API documentation, though, reveals that Poly-
L i ne(), another API function, is the recommended substitute. Using Polyline (),
you can draw exactly the same line that the previous code sample produces, as
shown below. (This code can be found on the CD in the directory for this chapter
as MoveToEx_L i neTo. txt.)

POINT Points[2];
RECT rt;
GetClientRect(hWnd, &rt);
Points[O] .x = 0;
Points[O] .y = 0;
Points[l] .x = rt.right;
Points[l] .y = rt.bottom;
Polyline(hdc, &Points[O], 2);

WM_RBUTTONDOWN

TIP

WM_RBUTTONDOWN is the message that Windows sends your program every time
the user right-clicks the mouse. Of course, since most CE devices (all of the PPC
and HPC class devices, in fact) do not have any mouse at all, there is also no right
mouse button, and thus no right-click message. But there are still times when
you'd like to be able to offer a pop-up (i.e., right-click) menu. Under Windows
CE, a right-click is simulated with a combination of pressing the Alt key and tap
ping the stylus to the screen, also known as WM_ LBUTIONDOWN.

For a demonstration of the A lt-tap behavior, just try pressing the Alt key whi le
clicking on your HPC device's Desktop.

The way to support pop-up menus and right-click functionality is to handle
the stylus tap (which translates to a WM_LBUTTONDOWN message), while checking to

Page 00105

NOTE

Changing the Program's Logic: try..catch and Exceptions 79

see whether the Alt key is depressed. Under Windows 98/NT, you would use
code that relies on WM_RBUTTONDOWN:

case WM_RBUTTONDOWN:
{

MessageBox(hwnd, TEXT("Show your pop-up menu"), TEXT("wow!"),
MB_OK);

break;

Under Windows CE, however, your code would instead use WM_LBUTTONDOWN
and then test whether the Alt key (VK_MENU virtual key code) was depressed (as
shown in the file WM_RBUTIONDOWN. txt).

WM_RBUTTONDOWN.txt

case WM_LBUTTONDOWN:
(

if (GetAsyncKeyState(VK_MENU))

MessageBox(hwnd, TEXT("Show your popup menu "),
TEXT("wow! "), MB_OK);

}

break;

This technique does not apply to Palm-size PCs, since programs running on a PPC
device cannot support the Alt-click combination at all. The Input Panel (keyboard)

of a PPC device does not have an Alt key.

Changing the Program's Logic:
try..catch and Exceptions

While some of the missing API functions do have suitable replacements, this isn't
always the case. Some constructs have simply been removed entirely, and there
are no substitutes available. In those situations, you're forced to alter the actual
logic of your programs to work around this fact.

Page 00106

80 Chapter 3 • To Cor Not to C?

NOTE

When it comes to having to restructure your program's logic, the worst offender
is the try .. catch construct. This construct is a wonderfully flexible way for your
program to be notified of an error (exception) created in a block of code. Your pro
gram can then gracefully handle it in the appropriate manner.

But, as you may have guessed, it does not exist under CE. And, because
try .. catch is something that the compiler itself, as opposed to a set of functions,
must implement, there isn' t really a good way to recreate it yourself. Therefore,
your only choice is to rework your existing code so that you add enhanced error
checking and to make sure that you've thoroughly tested your application before
shipping it.

This only applies to the C++-based exception-handling methods. All of the Win32
API-based exception handling still exists. However, there are some subtle differ
ences between the two that may make it difficult to port from one to the other.

Writing Your Own Functions
At the beginning of this chapter, we listed five functions that are missing in CE:
Call oc(), MoveToEx()/L i neTo(), WM_RBUTTONDOWN, try .. catch, and FILE"'
(along with fopen(), fpri ntf(), etc.). In this list, there is one item that is partic
ularly important, probably because you've come to count on its existence more
than on any of the others. Specifically, it's the FILE ~~ /fopen()/fpri ntf() set
of functions contained in stdi o. h. These are among the most basic file-handling
functions of the C language, and almost every C programmer is well versed in
their use. However, Microsoft did not implement them on CE. Instead, Microsoft
implemented only the following three Win32 API file-access functions:

• CreateFile()

• ReadFi l e()

• WriteFile()

Page 00107

NOTE

Writing Your Own Functions 81

If you've ever looked at these functions, you know that they don't offer the
same functionality of formatted output as, say, fpri ntf() does. That means
those of us who prefer the FILE'''-based functions are left with only two choices:

1. Struggle with the CreateFi 1 e()family of functions. This means that you
have to do extensive work on any FILE'~-based code that you want to port
to CE. Most people don't like this option for the following reasons:

2.

• If you were porting legacy code, you'd have to find all of the calls to the
FILE*-based functions and convert them over by hand, one at a time.

• Even if you're not porting legacy code, many longtime C programmers
feel more comfortable with the FILE*-based functions and are probably
not anxious to learn an entirely new system for file access.

Create wrapper functions around the CreateFi 1 e()family of functions
that will elegantly simulate and recreate the FILE1' family of functions in
such a way that you can use both sets of functions interchangeably. This
also means that you will have a much easier time of porting your existing
FILE'~-based code to CE.

Wrapper functions are functions used to insulate us from or wrap functions with
complex parameters. For instance, the CreateProcess() function has 10 para

meters, but 5 of them are always NULL on Windows CE. Therefore, it might make
sense to create a wrapper function for CreateProcess() (say, MyCre
ateProcess()) that would have 5 parameters. These parameters, in turn, would
call CreateProcess(), passing in the 5 values it received, as well as the 5 NULLs.

Naturally, option number two is the one to choose. The up-front investment
you must put in to re-create these functions will pale in comparison to the
amount of time and energy you would waste trying to port your existing code or
learn the API' s file-access functions.

FILE*
All of the FILP'-based functions identify an open, active file via a file pointer. All
of the API' s file access functions identify an open, active file via a file handle.

The Microsoft Developer Network Glossaries define a file pointer as a pointer
to "the next byte to be read or the location to receive the next byte written in a file."

Page 00108

82 Chapter 3 • To C or Not to C?

A file handle, in contrast, is "a unique identifier that Windows assigns to a file
when the file is opened or created. A file handle is valid until the file is closed."

Your first job then is to try and figure out how to implement the FILE~< pointer
type, while still remaining compatible with the CreateFi 1 e()-based functions of
the API. There are two reasons you'd want your file-access routines to remain
compatible with the API's routines:

• Even though you're going to be creating some sophisticated file-access func
tions, you'll still need to be able to use the CreateFi 1 e() functions to do the
core work.

• By maintaining compatibility between our routines and those of the API,
you'll be able to seamlessly mix and match functions from one group with
those from another group.

Although there may be other ways to do this, the most elegant way is to first
#define the FILE type to be equivalent to, or in this case, another name for, stan
dard Win API HANDLEs:

#define FILE HANDLE

Then, declare a simulated file pointer just as you would if you were writing a
Desktop application:

FILEt' fp;

This means that you've made FILE '~ equivalent to HANDLE '~.

Clearly, though, your new file pointer is not the same file pointer you would
have used when writing a Desktop application. However, since you're rewriting
those routines from scratch, and since you just want them to appear to be the same
as the original functions, this substitution is perfectly acceptable.

What that means is that you can design your FILE'~-based functions to take
this faked file pointer and then simply dereference (i.e., use the contents of the
address being pointed to) that file pointer to retrieve the true file handle. Or,
using C- pseudocode, we can illustrate it like this:

FILE'~ fp;
// ...
fsomefileaccess(fp);
// ...

Then in the implementation of fsomefi 1 eaccess, we would have:

// ...

Page 00109

NOTE

Writing Your Own Functions 83

ReadFile('''fp, ...); //API call : ReadFile
// ...

Although this doesn't look like much, it meets both of your goals perfectly. You
can use your file access functions with your fake file pointer, and you can use all
of the API file access functions by dereferencing your file pointer.

Now let's move on to the functions themselves.

All of the code for the FILP'-related routines can be found on the CD in the files
cestdi o. c and cestdi o. h.

fopen()
In the standard C runtime library (RTL), fopen() is defined as follows:

FILE *fopen(const char *filename, const char *mode);

fop en () opens the file specified by filename, and returns either a file pointer or
NULL (if the request fails). The mode parameter is a string that specifies the type
of file access:

Mode What It Means

r For reading

r+ For reading and writing

w For writing

w+ For reading and writing

a For appending

a+ For appending and reading

The original runtime library (RTL) fopen() function supports some additional
values for the mode parameter, but we've decided not to implement them here
since they don't mean anything in Windows CE. For instance, t (for text mode) is
a mode value that we do not support because the underlying CE API functions do
not support text mode file access. Because the fopen() function takes only char
acter strings as parameters, the first question you must address when creating
your own fopen() is whether your fopen() function should require Unicode
strings or ANSI strings.

Page 00110

84 Chapter 3 • To C or Not to C?

NOTE

While it is true that the original fopen() takes ANSI strings, CE is a Unicode
based operating system, and most, if not alt of the CE API functions that take
string parameters require Unicode strings. Therefore, for the sake of consistency
with the CE APt use Unicode strings for your fopen() function. The CE fopen(),
then, will be defined as follows:

FILE* fopen(LPWSTR filename, LPWSTR mode);

As you can see, the char ,., parameters have been replaced with LPWSTR parame
ters. LPWSTR stands for "long pointer to wide (Unicode) string."

Next, let's turn our attention to the implementation of our fopen() function.

LocalAlloc(LMEM_ZEROINIT, LocalFree(

The first thing that fopen() does is allocate memory for your simulated file
pointer, as follows:

h =(HANDLE ''')LocalAlloc(LMEM_ZEROINIT, 1 ,., sizeof(HANDLE));

This is the magic that makes the entire file-pointer simulation possible, as you'll
see when you call the CE API's CreateFi l e function.

Just as your fopen() has "flags" that can be set via the mode parameter, Create
File() also has a set of flags that must be set to indicate the type of file access
desired. The next block of code examines the mode string and converts the value(s)
passed in that string into the corresponding values for the CreateFi leO flags.

First, there's a test to determine whether or not a "modifier" (i.e., the"+" char
acter) is specified in the mode flags:

if(wstrlen (mode) > 1)
{

modifier = mode[l];

Then, use a switch .. case statement to actually set the CreateFi 1 e flags based
on the mode string. In the switch .. case statement, the first character of the mode
string is examined to see what type of file access is requested:

case (TCHAR)'r':

TCHAR is a characte r type which, in the case of Windows CE and any Unicode

based operating system, equates to a 2-byte or wide character. (See Chapter 2 for
more information)

Page 00111

Writing Your Own Functions 85

Then, based on this value, the appropriate CreateFi l e flags are set:

flag = GENERIC_READ;
opentype = OPEN_EXISTING;

This is repeated for each of the possible values and modifiers. The complete
switch .. case statement follows:

switch((TCHAR)mode[O])
{

case (TCHAR)'r':
flag = GENERIC_READ;
opentype = OPEN_EXISTING;
if(modifier == (TCHAR) '+')
{

flag = GENERIC_READ GENERIC_WRITE;

break;
case (TCHAR)'w':

flag = GENERIC_WRITE;
opentype = CREATE_ALWAYS;
if(modifier == (TCHAR)'+')
{

break;

flag = GENERIC_READ I GENERIC_WRITE;
opentype = CREATE_ALWAYS;

case (TCHAR)'a':
flag = GENERIC_WRITE;
opentype = OPEN_ALWAYS;
if(modifier == (TCHAR)'+')
{

break;
default:
break;

flag = GENERIC_READ I GENERIC_WRITE;
opentype = CREATE_ALWAYS;

Page 00112

86 Chapter 3 • To Cor Not to C?

Once you're out of the switch .. case statement, it's time to call to Create
FilE;' (),passing in the flags you've just configured:

hFiletmp = CreateFile(filename, flag, FILE_SHARE_READ,
NULL, opentype, FILE_ATTRIBUTE_NORMAL, NULL);

The first thing you must do now is to test the return value to determine
whether or not C reateFi l e was successful. If it was-and this is where the file
pointer magic comes in-you then take the file hmzdle returned by CreateFi l e
and assign that value to the contents of the file pointer that will be returned by
your fopen() function!

if(hFiletmp != INVALID_HANDLE_VALUE)
{

,.,h = hFiletmp;

If the call to CreateFi l e() was not successful, however, you must free the mem
ory you allocated for the file pointer and return a NULL to indicate failure:

else

LocalFree(h);
return(NULL);

Finally, if everything went smoothly, return the file pointer:

return(h);

That's how to simulate fopen(). The complete function is shown below:

FILE * fopen(LPWSTR filename, LPWSTR mode)
{

HANDLE hFiletmp;
HANDLE *h = NULL;
DWORD opentype = OPEN_ALWAYS;
DWORD flag = GENERIC_READ I GENERIC_WRITE;
TCHAR modifier= (TCHAR)'\0 ' ;

II part of magic to simulate familiar FILE handle
h = (HANDLE ''')LocalAlloc(LMEM_ZEROINIT, 1 ,., sizeof(HANDLE));

II use mode flags

Page 00113

Writing Your Own Functions 87

if(wstrlen(mode) > 1)
{

modifier = mode[l];

switch((TCHAR)mode[O])
{

}

case (TCHAR)'r':
flag = GENERIC_READ;
opentype = OPEN_EXISTING;
if(modifier == ~TCHAR) ' +')

{

flag = GENERIC_READ I GENERIC_WRITE;

break;
case (TCHAR) 'w':

flag = GENERIC_WRITE;
opentype = CREATE_ALWAYS;
if(modifier == (TCHAR)'+')
{

break;

flag = GENERIC_READ I GENERIC_WRITE;
opentype = CREATE_ALWAYS;

case (TCHAR)'a':
flag = GENERIC_WRITE;
opentype = OPEN_ALWAYS;
if(modifier == (TCHAR)'+')
{

break;
default:
break;

flag = GENERIC_READ I GENERIC_WRITE;
opentype = CREATE_ALWAYS;

II actually make the file per params.
hFiletmp = CreateFile(filename, flag, FILE_SHARE_READ,
NULL, opentype, FILE_ATTRIBUTE_NORMAL, NULL);

II if we have a valid handle give it, else we return NULL
if(hFiletmp != INVALID_HANDLE_VALUE)
{

Page 00114

88 Chapter 3 • To Cor Not to C?

else

1'h hFiletmp;

LocalFree(h);
return(NULL);

return(h);

Let's now take a look at fcl ose(), which is considerably simpler.

fclose()
The original fcl ose()is defined as follows:

int fclose(FILE *stream);

As you can see, fc 1 o s e () takes the single FILE 1' pointer parameter and returns
an integer: 0 to indicate success or EOF to indicate an error. Because no strings are
involved and because file pointers have been simulated, the CE fcl ose() can fol
low the existing definition exactly.

The definition done, let's examine the implementation of our fcl ose(). The
first step is to attempt to close the file handle you got from your initial call to
CreateFi 1 e() from within fopen(). Do this by calling Cl oseHandl e(), a fairly
generic API function for closing almost any type of open or active handle,
whether it's for a file, a process, or other handle type.

Because Cl oseHandl e() returns a BOOL, you can easily test the result to determine
what type of value you should return from your fclose() . So, if CloseHandl e()
fails, free your file pointer-you'd have to do this anyway- and return EOF to
indicate an error:

if (!CloseHandle(*fp))

LocalFree(fp);
return(EOF);

In order to implement fcl ose() properly, you must define the value of EOF
because EOF is defined in a header file that does not exist under CE. Furthermore,
the CreateFi l e()-based functions do not return such a value themselves, so

Page 00115

Writing Your Own Functions 89

until now there was no need for EOF to be defined. Therefore, you must define it
yourself, as follows:

#define EOF -1

It's not terribly complex, but it is important, just the same.

If the call to Cl oseHandl e() was a success, howeve1~ free your file pointer
again, something you'd have to do anyway-and return 0 to indicate success:

else

LocalFree(fp);
return(O);

That's all there is to recreating fcl ose(). The complete function is shown
below:

int fclose(FILE * fp)

if (!CloseHandle(*fp))

else

LocalFree(fp);
return(EOF);

LocalFree(fp);
return(O);

Next, let's examine how to re-create some of the simpler FILE'~-based functions,
and we'll work our way up to the more complex ones.

fgetc()
fgetc() is a function that reads one character from the file and returns that char
acter as an integer value. The original fgetc() is defined as follows:

int fgetc(FILE *stream);

For our purposes, this definition will work just fine.

Page 00116

90 Chapter 3 • To C or Not to C?

However, the original fgetc() returns an integer. You'll be returning a Unicode
character, but an integer will work just fine. That's because an integer is 4 bytes
long, whereas a Unicode character is only 2 bytes long. Therefore, you can use the
existing definition for fgetc() without change.

The heart of this function is the actual call to Read File(), which reads a single
TCHAR from the file specified by the file handle supplied:

ret= ReadFile(*fp, charbuf, sizeof(TCHAR), &num, NULL);

Then, as you might expect, a check of the value returned by Read File deter
mines what your fgetc() will return. If ReadFi l e () was not successful, you'll
return EOF; otherwise, you'll return the TCHAR read by ReadFi l e():

if(ret == FALSE)
{

return(EOF);

return(charbuf[O]) ;

int fgetc(FILE *fp)

BOOL ret = FALSE;
DWORD num = 0;
TCHAR charbuf[2];

ret= ReadFile(*fp, charbuf, sizeof(TCHAR), &num, NULL);
if(ret == FALSE)
{

return(EOF);

return(charbuf[O]);

Now that we've looked at reading a single character, let's take a look at writing
a single character.

fputc()
fputc() is the other half of fgetc; it writes a single character to the file and
returns the character written. The original fputc() is defined as follows:

int fputc(int c, FILE *stream);

Page 00117

Writing Your Own Functions 91

Your fputc() will be defined slightly differently in that you'll want to ensure
that the first parameter passed-in the case of the original fputc(), an integer
is explicitly typed as a TCHAR. This is mostly for consistency's sake. If you feel
strongly that you'd like to change it back to an integer, you are welcome to do so.
Your definition of fputc(), then, looks like this:

int fputc(TCHAR value, FILE * fp);

To implement it, initialize the data that you'll actually be passing to Wri teFi 1 e() :

TCHAR msg[2];
msg[O] = (TCHAR)value;
msg[l] = (TCHAR)'\0';

Next, call Wri teFi 1 e() and, as always, check the return value to determine
whether to return EOF (failure) or the character written (success):

if (!WriteFile(*fp, msg, sizeof(TCHAR), &num, NULL))
{

return(EOF);

else

return(value);

Again, it's fairly simple logic. The implementation looks like this:

int fputc(TCHAR value, FILE * fp)

DWORD num = 0;
TCHAR msg[2];
msg[O] = (TCHAR)value;
msg[l] = (TCHAR)'\0';
II data
if (!WriteFile(*fp, msg, sizeof(TCHAR), &num, NULL))

return(EOF);

else

return(value);

Now, let's move on to writing out full strings, instead of just a single character
at a time.

Page 00118

92 Chapter 3 • To Cor Not to C?

fgets()
fgets () is a function that reads a string from the file specified. It will read up to
and including the first newline character or it will read until it has read n charac
ters from the file. fgets () then returns either the string read or EOF to indicate an
error. The RTL fgets() is defined as follows:

char *fgets(char *string, int n, FILE *stream);

As you've probably guessed, your definition will be slightly different, in that
you'll need to change all of the char -;,pointers to Unicode strings (LPWSTR). Your
definition of fgets, then, will look like this:

LPWSTR fgets(LPWSTR msg, int n, FILE *fp);

As you can see, it's very close to the original fgets().

In its implementation, this function basically reads one character at a time, via a
do .. while loop:

do

ret = ReadFile(*fp, charbuf, sizeof(TCHAR), &num, NULL);

If Read File () fails for any reason, it breaks out of the loop:

if(ret == FALSE)
{

return(EOF);

The next block is slightly more complex. Here, you read and append every non
NULL character you read to your return value. However, there's an extra if
statement embedded in this block of code that will keep you from reading past a
newline character:

if(charbuf[O] != (TCHAR)'\0')
{

msg[count] = charbuf[O];
count++;
if (charbuf[O] == (TCHAR)'\n')

break;

Page 00119

Writing Your Own Functions 93

This is consistent with the original fgets (),which also would read until a
newline character was encountered, or until it had read n characters. This brings
you to the end of the do .. whi 1 e loop, where it's time to test to ensure that you do
not read more than n characters:

} while(count <= n);

Next, test to make sure that you did, in fact, read something from the file. If you
didn't, return EOF to indicate an error:

if (count== 0) //no characters read, error

return(EOF);

If you did manage to read some data from the file, however, return the string
that was read:

msg[count] = (TCHAR)'\0';
return(msg);

You're done! The completed function follows:

LPWSTR fgets(LPWSTR msg, int n, FILE *fp)
{

BOOL ret = FALSE;
DWORD num = 0;
TCHAR charbuf[2];
int count = 0;

do

ret= ReadFile(*fp, charbuf, sizeof(TCHAR), &num, NULL);
if(ret == FALSE)
{

return(EOF);

if(charbuf[O] != (TCHAR)'\0')
{

msg[count] = charbuf[O];
count++;
if (charbuf[O] == (TCHAR) ' \n')

break;

while(count <= n);

Page 00120

94 Chapter 3 • To C or Not to C?

if (count == 0) //no characters read, error

return(EOF);

msg[count] = (TCHAR) '\0';
return(msg);

Now let's take a look at fputs(), the companion function to fgets().

fputs()
fputs() writes a string up to (but not including) its NULL character to the file
specified. If successful, it returns a positive number; otherwise, it returns EOF. The
original RTL fputs() is defined as follows:

int fputs(canst char *string, FILE *stream);

Your fputs, of course, will change the char *parameter to an LPWSTR, as with
the previous functions:

int fputs(LPWSTR msg, FILE* fp);

The implementation of your fputs() is fairly straightforward. Call Write-
Fi 1 e(), and based on the result, return either EOF or the number of bytes written
to the file:

int fputs(LPWSTR msg, FILE * fp)

DWORD num = 0;

if (!WriteFile(*fp, msg, wstrlen(msg), &num, NULL))

return(EOF);

else

return(num);

We'll now look at fread() and fwri te() .

Page 00121

Writing Your Own Functions 95

wstrlen(~More on Unicode
As you look at the code for the fputs() function, you may notice one function that's not
defined anywhere in the Microsoft documentation: wstrl en(). wstrl en() is a function
created strictly for the purpose of dealing with Unicode and file access under CE Simply
put, it will return the length, in bytes-not characters-of a Unicode string.

The existing Unicode string length function of CE, wcsl en(), returns string length in
terms of the number of characters in the string. However, WriteFile() and other API
file-access functions require the number of bytes. You'll recall that Unicode strings are 2 bytes
long, hence the difference, making the number of bytes is twice the number of charac
ters. Because of this difference, you need a function that will do the conversion.

wstrlen

is defined as follows:

int wstrlen(LPWSTR wstr)
{

return(wcslen((LPWSTR)wstr) * sizeof(TCHAR));

You'll find that wstrlen() is used in a number of the functions developed in this chapter.

fread()
The original RTL fread() is defined as follows:

size_t fread(void *buffer, size_t size, size_t count, FILE *stream);

fread() reads count items (each one of size size) from the file and returns the
number of items read or, if there's an error, returns 0 to indicate no items were
read. The size parameter, then, specifies the number of bytes each item occupies.
In other words, to calculate the total number of bytes read, you could multiply
size by count.

Your fread() looks and acts exactly the same as the original:

int fread(void *buffer, int size, int count, FILE *fp)

BOOL ret = FALSE;
DWORD num = 0;

Page 00122

96 Chapter 3 • To C or Not to C?

ret = ReadFile(*fp, buffer, size * count, &num, NULL);
return(num I size);

Here, all you have to do is call ReadFi 1 e, calculate the total number of bytes to
be written (size ,., count), and return the number of items (num I size) actu
ally written. If there is an error of any kind, num will still be 0, so fread() will
correctly return 0 to indicate an error.

Not surprisingly, fwri te() works in much the same manner.

fwrite()
The original RTL fwri te () is defined as follows:

size_t fwrite(const void *buffer, size_t size, size_t count, FILE
'''stream) ;

fwri te() works exactly like fread(), except that it writes data instead ofread
ing it. fwri te() writes count items (each one of size size) from the file and returns
the number of items written. The size parameter, then, specifies the number of
bytes each item occupies. In other words, to calculate the total number of bytes to
be written, you could multiply size by count. fwri te() returns the number of
items written or, if there's an error, returns 0 to indicate no items were written.

Your fwri te() will be defined as follows:

i nt fwri te(const void '''buffer, i nt size, i nt count, FILE '''fp)

DWORD num = 0;
WriteFile(*fp, buffer, size * count, &num, NULL);
return(num I size);

As you can see, fwri teO calls Wri teFi 1 e(), calculates the total number of
bytes (size '~ count), and returns the number of items read (num I size).
Again, just as with fread(), if there is an error of any kind, num will still be 0, so
fwri teO will correctly return 0 to indicate an error.

Next, we come to the pair of functions that you will probably use more than
any other, fpri ntf() and fscanf(). These functions are also more complex than
those that you've already implemented in this chapter.

Page 00123

Writing Your Own Functions 97

But What If I Don't Want to Use Unicode?
On the CD for this book, there are ANSI-based versions of all of the Unicode files imple
mented here. They are named according to the Win32 API standard for indicating an
ANSI-based function; namely, they have a capital letter A appended to their name. For
Instance, the Unicode version of the function fpri ntf()is simply fpri nf(), while the
ANSI-based function is named fp ri ntfA().

These ANSI functions will be of particular interest to anyone who is porting significant
volumes of legacy code that explicitly uses char * or LPSTR, both of which are ANSI
string types

For more on helping your application to be Unicode-aware, see Chapter 2

fprintf()

TIP

The original RTL fp ri ntf() is defined as follows:

int fprintf(FILE *stream, const char *format [, argument] ...);

According to the Microsoft documentation, fpri ntf() "formats and prints a
series of characters and values" to the file specified. "Each function argument (if

any) is converted and output according to the corresponding format specification
in format." The format string uses the same format-specifiers as pri ntf() and
wspri ntf() .

The three dots in the function definition mean that the function takes a variable
and an unknown number of arguments. It is up to the implementers of the func
tion to parse the variable argument list.

The only difference between your fp ri ntf() and the original fp ri ntf() is
that yours will, of course, change the char ,., parameter (the format string) to an

LPWSTR Unicode string.

As you can see in the code below, the real trick to implementing fpri ntf() is
in the variable argument list:

int fprintf(FILE 1' fp, LPWSTR format, ...)

Page 00124

98 Chapter 3 • To C or Not to C?

DWORD num = 0; (
TCHAR msg[512];
unsigned short *pmsg NULL;
int len = 0;
BOOL bResult;

va_l i st marker;
va_start(marker, format);

pmsg = (TCHAR ''')&msg [0] ;
wvsprintf(pmsg, format, marker);
II get string length for WriteFile call.
len= wstrlen((LPWSTR)pmsg);
bResult = WriteFile(*fp, pmsg, len, &num, NULL);

va_end(marker);
if (bResult)

return(num);

else

return(EOF);

Because this function is a bit complex, let's take each part and examine it.

First, you must set up the variable argument list:

va_list marker;
va_start(marker, format);

Next, declare the argument list with the va_l i st macro. Then, call va_start(),
passing the variable argument list and the parameter that appears just before the
variable argument list in the function declaration.

Next, use the little-known variant of wspri ntf to help you do your work:

pmsg = (TCHAR *)&msg[O];
wvsprintf(pmsg, format, marker);

wvspri ntf() differs from wspri ntf() in that it takes the entire variable argu
ment list as a single variable (i.e., one declared with the va_l i st macro) instead

Page 00125

Writing Your Own Functions 99

of the actual arguments themselves. This means that you don't have to do any
parsing of the format string and the variable argument list yourself!

Then, call Wri teFi 1 e(), passing it the string you just got back from
wvspri ntf():

len = wstrlen((LPWSTR)pmsg);
bResult = WriteFile(*fp, pmsg, len, &num, NULL);

Now that you're finished with the variable argument list, use the va_end()
macro to indicate that:

va_end(marker);

Finally, check the value you got back from Wri teFi 1 e() and indicate whether
or not your operation has been successful:

if (bResult)

·return(num);

else

return(EOF);

And you're done. On to fscanf(), the next function on our list.

fscanf()
The Microsoft Developer Network documentation defines fscanf() as:

int fscanf(FILE *stream, canst char *format[, argument] ...);

"The fscanf() function reads data from the current position of stream into the
locations given by argument (if any). Each argument must be a pointer to a vari
able of a type that corresponds to a type specifier in format."

In other words, fscanf() is used to read formatted data from a file. Just as with
fpri ntf(), the format string specifies the data types of the various items being
read. And, just as with the other functions you've worked on, the only parameter
that needs to change is format, which you can implement as an LPWSTR instead of
a char *

Page 00126

100 Chapter 3 • To C or Not to C?

TIP

fscanf() is the longest (in terms of lines of code) of our functions, so it's easi
est to break it into steps. Begin with the same variable argument handling that
you used in fpri ntf():

va_list ap;
va_start(ap, format);

Here you declare the argument list "ap" with the va_l i st macro. Then, call
va_start(), passing the variable argument list and the parameter that appears
just before the variable argument list in the function declaration.

The next step is to set up awhile loop and switch .. case statement that will
iterate through all of the characters in the format string:

while ('"'format)
{

count = 0;
switch(*format++)

The '''format++ in the switch statement increments the ,·, format string pointe r
(LPWSTR) so that it automatically points to t he next character in the fo rmat string.

This is how you know the data type of the items you're reading from the for
matted input file. It is also how you know the expected data types of the items in
the variable argument list, as you'll see from the case portion of your switch
statement. Here's the first condition, which tests for, and then reads, a s tring from
the file:

case (TCHAR)'s': II string
s = va_arg(ap

1
TCHAR ,.,);

The second line extracts the next variable argument from the list and uses the
variable "s" to act as that variable. At the same time, the variable argument list is
advanced by the size of a TCHAR pointer.

The next portion of this case is a do .. while loop which reads a TCHAR from the
file and, if it's not NULL, appends it to the results:

do

ret ReadFile(*fp 1 charbufl sizeof(TCHAR) 1

&num I NULL);

Page 00127

Writing Your Own Functions 101

if(ret == FALSE)
{

break;

if(charbuf[O] != (TCHAR)'\0')
{

s[count] = charbuf[O];
count++;

while((charbuf[O] != (TCHAR)'\n') && (charbuf[O]
!= (TCHAR)'\r') && (charbuf[O] != (TCHAR)' ') && (charbuf[O] !=
(TCHAR) '\0')) ;

s[count] = (TCHAR)'\0';
break;

You'll also notice here that the end of a string is defined by the while condition
of the do .. while loop, repeated here for clarity:

while((charbuf[O] != (TCHAR)'\n') && (charbuf[O] != (TCHAR)'\r') &&
(charbuf[O] != (TCHAR)' ') && (charbuf[O] != (TCHAR)'\0'));

What this means is that "whitespace" for our fscanf() is defined as any char
acter that is:

• ' \n ' a linefeed

• ' \ r ' a carriage return

• ' ' a space

• '\0' aNULL

As you can see, all of the conditions in our switch .. case statement follow the
same guidelines for determining whitespace.

The next case condition tests for long integers and integers and treats them in
the same manner:

case (TCHAR)'d':
case (TCHAR)'l':

d = va_arg(ap, int 1'r);

II int
II int

Here again, you are extracting the next item from the list of variable arguments
and assigning it to the variable d, an integer. The variable argument list is then
advanced by the size of an integer pointer. Unlike the string processing code,

Page 00128

102 Chapter 3 • To C or Not to C?

h.owcver, this case condition will first attempt to read any leading blanks from the
file before reading the numeric digits:

do

&num, NULL);
ret= ReadFile(*fp, charbuf, sizeof(TCHAR),

if(ret == FALSE)
{

break;

while(charbuf[O] == (TCHAR) 1 1
);

Then, because you had to read one nonblank character (i.e., a numeric digit) in
order to break out of the loop, you must save that extra character:

tmp[count] = charbuf[O];
count++;

Now that you've stripped out any leading blanks, continue to read digits until
you encounter whitespace:

do

&num, NULL);
ret = ReadFile(*fp, charbuf, sizeof(TCHAR),

if(ret == FALSE)
{

break;

if(charbuf[O] != (TCHAR) 1 \0 1
)

{

tmp[count] = charbuf[O];
count++;

while((charbuf[O] I= (TCHAR) 1 \n 1
) && (charbuf [O]

!= (TCHAR) 1 \r 1
) && (charbuf[O] != (TCHAR) 1 1

) && (charbuf[O] !=
(TCHAR) I \0 I));

Finally, append a NULL to the end of the string of digits you've collected and
convert it to an integer:

tmp[count] = (TCHAR) 1 \0 1
;

,.,d = _wtoi (tmp);
break;

Page 00129

Writing Your Own Functions 103

Floating-point values are handled in much the same way, by grabbing the next
argument off the variable argument list and reading the leading blanks:

&num, NULL);

case (TCHAR) 1 f 1
:

f = va_arg(ap, float ''');
do
{

II float

ret = ReadFile(*fp, charbuf, sizeof(TCHAR),

if(ret == FALSE)
{

break;

while(charbuf[O] == (TCHAR) 1 1
);

tmp[count] = charbuf[O];
count++;

Then, read a digit at a time, until you encounter whitespace:

do

&num, NULL);
ret = ReadFile(*fp, charbuf, sizeof(TCHAR),

if(ret == FALSE)
{

break;

if(charbuf[O] != (TCHAR) 1 \0 1
)

{

tmp[count] = charbuf[O];
count++;

while((charbuf[O] != (TCHAR) 1 \n 1
) && (charbuf[O]

!= (TCHAR) 1 \r 1
) && (charbuf[O] != (TCHAR) 1 1

) && (charbuf[O] !=
(TCHAR) I \0 I));

To finish off, append a NULL to the string of digits you've collected and con-
vert it to a floating-point value using swscanf():

tmp[count] = (TCHAR)'\0';
swscanf(tmp, TEXT("%f "), f);
break;

Page 00130

104 Chapter 3 • To C or Not to C?

NOTE swscanf() works just like fscanf(), except that it reads and parses formatted

data from a string, as opposed to a file.

The last time you will use switch .. case is for single characters. Again, start by
grabbing the next argument from the variable argument list:

case (TCHAR)'c': II char
c = va_arg(ap, TCHAR ,.,);

Then, because you're only reading a single char, don't scan for whitespace or
leading blanks. Instead, just read a single character from the file:

ret = ReadFi l e("'fp, charbuf, si zeof(TCHAR), &num,
NULL);

If the read is not successful for any reason, simply continue to the next iteration
of the while loop:

if(ret == FALSE)
{

continue;

Otherwise, assign the result of our parsing to the appropriate variable:

*c = charbuf[O];

Since that's the last of the data types you're checking for, close the
switch .. case, the while loop, and, finally, the function itself.

Before you're done, however, you must properly reset the variable argument
list pointer:

va_end(ap);

And that's all there is to re-creating fscanf().

Here is the code in its entirety:

int fscanf(FILE ,., fp, LPWSTR format, ...)

TCI-IAR ,., c , ,., s ;
int ,·,d;

float '''f;
DWORD num = 0;
TCHAR charbuf[2];
TCHAR tmp[80];

Page 00131

Writing Your Own Functions 105

int count = 0;
BOOL ret = FALSE;

va_list ap;
va_start(ap, format);
while ('''format)
{

count = 0;
switch(*format++)
{

case (TCHAR)'s ' : II string
s = va_arg(ap, TCHAR ''');
do

ret= ReadFile(*fp, charbuf, sizeof(TCHAR),
&num, NULL);

if(ret == FALSE)
{

break;

if(charbuf[O] != (TCHAR)'\0')
{

s[count] = charbuf[O];
count++;

while((charbuf[O] != (TCHAR)'\n') && (charbuf[O]
!= (TCHAR) ' \r') && (charbuf[O] != (TCHAR)' ') && (charbuf[O] !=
(TCHAR) '\0')) ;

&num, NULL);

s[count] = (TCHAR) ' \0 ' ;
break;

case (TCHAR)'d':
case (TCHAR)'l':

II int
II int

d = va_arg(ap, int
do

~·,) ;

ret= ReadFile(*fp, charbuf, sizeof(TCHAR),

if(ret == FALSE)
{

break;

while(charbuf[O] == (TCHAR)' ');
tmp[count] = charbuf[O];

Page 00132

106 Chapter 3 • To C or Not to C?

&num, NULL);

count++;
do

ret= ReadFile(*fp, charbuf, sizeof(TCHAR),

.. if(ret == FALSE)
{

break;

if(charbuf[O] != (TCHAR)'\0')
{

tmp[count] = charbuf[O];
count++;

while((charbuf[O] != (TCHAR) ' \n 1
) && (charbuf[O]

!= (TCHAR) 1 \r ') && (charbuf[O] != (TCHAR) 1 1
) && (charbuf[O] !=

(TCHAR) I \0 I));

&num, NULL);

&num, NULL);

tmp[count] = (TCHAR) 1 \0 1
;

,.,d = _wtoi (tmp);
break;

case (TCHAR) 1 f 1
: II float

f = va_arg(ap, float ''');
do

ret = ReadFile(*fp, charbuf, sizeof(TCHAR),

if(ret == FALSE)
{

break;

while(charbuf[O] == (TCHAR) 1 1
);

tmp[count] = charbuf[O];
count++;
do
{

ret= ReadFile(*fp, charbuf, sizeof(TCHAR),

if(ret == FALSE)
{

break;

if(charbuf[O] != (TCHAR)'\0')
{

Page 00133

Writing Your Own Functions 107

tmp[count] = charbuf[O];
count++;

while((charbuf[O] != (TCHAR)'\n') && (charbuf[O]
!= (TCHAR)'\r') && (charbuf[O] != (TCHAR)' ') && (charbuf[O] !=
(TCHAR)'\0'));

tmp[count] = (TCHAR) '\0';
swscanf(tmp, TEXT("%f "), f);
break;

case (TCHAR)'c': II char

NULL);

c = va_arg(ap, TCHAR ''');
ret= ReadFile(*fp, charbuf, sizeof(TCHAR), &num,

if(ret == FALSE)
{

continue;

'''c = charbuf[O];
break;

default:

va_end(ap);
return(l);

break;

Differences between Our fscanfO and
the Original fscanf()

As you may have noticed, this is not a 100 percent perfect recreation of fscanf(). For
instance, there are some format specifiers that this fscanf() does not understand:

• "%Ox ... " hex value specifiers

• "%03d" leading zero specifiers when reading integers into string variables

• Literals embedded in the format string

These limitations aside, however, it is practical for moderate use and can be easily
extended or customized to meet specific requirements.

Page 00134

108 Chapter 3 • To Cor Not to C?

fseek()
The last function in our list of FILE'''-based functions to re-create onCE is
fseek(). fseek() is used to change the current position of the file. The original
RTL fseek() is defined as follows:

int fseek(FILE *stream, long offset, int origin);

where stream is the file pointer, offset is the number of bytes to move (positive
or negative value), and origin specifies the starting point. origin can be one of
three values, predefined as constants:

• SEEK_CUR offset is relative to current position in file

• SEEK_ END offset is relative to end of file

• SEEK_SET offset is relative to beginning of file

Your fseek() will follow this definition exactly. Here, however, you're really
just translating these constants into constants used by the API's SetFi l ePoi nter
function.

SetFi 1 ePoi nter-a member of the CreateFi 1 e-family of functions-does
essentially the same thing as fseek() but requires rewriting existing code.
fseek(), therefore, is easier to use.

First, map the constants from one function to the constants from another func
tion, using a switch .. case statement:

switch(origin)
{

case SEEK_CUR:
default:

how = FILE_CURRENT;
break;

case SEEK_END:
how = FILE_END;
break;

case SEEK_SET:
how = FILE_BEGIN;
break;

Page 00135

Writing Your Own Functions 109

That done, call SetFi 1 ePoi nter and then check the result type for an error:

ret= SetFilePointer(fp, offset, NULL, how);
if(ret == OxFFFFFFFF) //error

return(l);
return(O);

And that's it!

Here is the entire fseek () function, as you'll implement it:

int fseek(FILE *fp, long offset, int origin)

DWORD how;
DWORD ret;
switch(origin)
{

case SEEK_CUR:
default:

how = FILE_CURRENT;
break;

case SEEK_END:
how = FILE_END;
break;

case SEEK_SET:
how = FILE_BEGIN;
break;

ret SetFilePointer(fp, offset, NULL, how);
if(ret == OxFFFFFFFF) //error

return(l);
return(O);

As you can see, it's fairly simple and straightforward. At this point, with a few
functions, some API calls, and a clever #define, you have re-created the key
stdi o. h file-access functions.

Page 00136

11 0 Chapter 3 • To C or Not to C?

Summary
In this chapter, we reviewed some of what's missing in the C/C++ language for
Windows CE. You learned that, although some favorite constructs and functions
are missing from Windows CE, there are ways to work around this. You can find
substitute functions, change your program's logic, or re-create the missing func
tions yourself. In addition to reviewing some of the items that were removed, you
also implemented your own FILE*-based functions!

Page 00137Page 00137

Page 00138Page 00138

Page 00139

CHAPT(R
r o u R

CE's Structured Storage

• The Registry

• The Windows CE Database Engine

• CE's Database Engine vs. Familiar Database Engines

• The CE Database Engine API

Page 00140

114 Chapter 4 • CE's Structured Storage

Windows CE was designed to power information appliances and, when you
think about it, an information appliance without a way to store information is
pretty useless. That's why Microsoft provides two kinds of structured storage as
part of the CE operating system itself. These two kinds of structured storage are

• The Windows CE registry

• The Windows CE Database Engine

The Windows CE registry is used for the same purpose as the registry in Win
dows 98/NT: to store user settings and small amounts of user data. As you'll see
later in this chapter, there are a few precautions you must take when using the CE
registry because, in contrast to the registry of Windows 98/NT, the CE registry
has a reduced scope and purpose.

The registry as a form of structured storage has some characteristics in corrunon
with a database system, but it really isn't a true database system. Instead, it is a hier
archical data store that allows us to irrunediately access any specific piece of infor
mation. In addition, it provides the functionality for us to search the entire data store
for a value. But, as you'll also see, that's about all you can do with the registry.

Windows CE provides an additional, better form of structured storage: it comes
with its own database engine. However, the CE Database Engine is significantly
different from most of the database engines we're used to. The tables created with
the CE Database Engine are closer to text files than to relational structures used
by most database systems. Further, the CE Database Engine does not support
SQL and does not come with the usual array of database management software.
Naturally, these factors will impact your choices when it comes to storing and
organizing your data.

Despite its limitations, though, the CE Database Engine does have enough
functionality to be very useful for light database work. For instance, just as with
the registry, you can search aCE database for a specific value. Likewise, you can
irrunediately access any specific piece of data. Furthermore, the CE Database
Engine even allows you to use indexes (called sort orders) to order the records of a
table. On the whole, the CE databases provide a convenient, no-frills, low-effort,
zero-cost way to store and organize your data.

In this chapter, we'll examine the trade-offs of using the registry, when to use it,
and when not to use it. In addition, we'll look at when to use the registry vs.
when to use the Database Engine. Then we'll examine the trade-offs of using the

Page 00141

The Registry n 5

Database Engine, when to use it, and when not to use it. We'll finish up with a
sample application that shows off the features of the CE Database Engine.

The Registry
In this section, we'll be examining the basics of working with the registry under
Windows CE. Data in the registry is organized in a hierarchical fashion, with four
major roots, called keys, as outlined in Table 4.1.

T A B L E 4 . 1 : The Roots of the Windows CE Registry Hierarchy

Key Name Type of Information Stored under Key

HKEY_LOCAL_MACHINE

HKEY_CURRENT_USER

HKEY_USERS

HKEY_CLASSES_ROOT

Hardware information and program settings that apply to the machine
as a whole

Program settings relating to the preferences of the currently logged
In user

Program settings stored by user name

Active X classes and file types registered with the system

Each of these roots or keys has an unlimited number of branches called sub
keys. Each of these subkeys can then have subkeys of their own, and so on, and
so on. It is these keys that form the hierarchical structure of the registry.

HKEY_CURRENT_USER and HKEY_USERS
Under Windows CE

Traditionally, under Windows 98/NT, the HKEY _USERS key retains the settings for all of the
users, organized by user name. So, when a user logs into the system, their individual set
tings are loaded into the HKEY _CURRENT _USER key. Because Windows CE doesn't support
multiple users, the HKEY _USERS key exists largely for the purpose of backward compatibil
ity with Desktop Windows applications ported to the CE platform. You can continue to
use both the HKEY _USERS and HKEY _CURRENT _USER keys just as you would under 98/NT;
however, only HKEY_CURRENT_USER will have any real use under CE.

Page 00142

116 Chapter 4 • CE's Structured Storage

Proper Uses of the CE Registry
Under Windows CE, there are really only two main uses of the registry:

• Storing system data

• Storing user-specific information

Storing System Data

The operating system itself maintains certain system data in the registry. Typically,
this consists of file associations, properties of ActiveX controls, locale settings, owner
information, control panel settings, and other information necessary to maintain the
state of the system.

Acceptable kinds of information you might write to the registry include your
application-specific file associations, persistent state information, and user option
settings. Other types of data written to the registry may include COM object reg
istration (i.e., ActiveX controls and input methods) and references to other
installed application or data files .

Storing User-Specific Information

The second acceptable use of the registry is to store user-specific information such
as color preferences, MRU (most recently used) file lists, default file locations, etc.
For example, Microsoft's Pocket Internet Explorer stores its user-specific informa
tion under the key HKEY_CLASSES_ROOT\Software\Apps\PocketiE. If you exam
ine the various settings found under this key, you'll find ones like the default
search engine, the proxy server address, and even the maximum cache size. The
point is that even Microsoft only stores the bare minimum information needed.

Improper Uses of the CE Registry
The basic rule to follow when deciding whether or not to write a specific piece of
data out to the CE registry is: "Is this absolutely critical and necessary to the oper
ation of our program?" If you can't answer "yes" to that question, you shouldn't
be writing that data to the registry at all. There are two reasons for this:

• Limited storage space

• Decreased system performance

Page 00143

The Registry 117

The issue of limited storage space is obvious. CE devices don't have a lot of
memory, so you must be conservative in your use of what memory is available.
Not quite as obvious is the issue of decreased system performance. This is
because every application, including the OS itself, needs to access the registry on
an almost constant basis. For example, the simple act of minimizing a window
under Windows 98/NT generates at least six reads from the registry! The problem
here is that if you load the registry down with a lot of unnecessary data, it takes
longer to access any specific piece of data. Simply put, if you add lots of data to
the registry, its overall size increases. If its overall size increases, it takes longer to
either search the registry or to access a specific piece of data. The more bloated
the registry becomes, the longer it takes to access the information you're after
because the registry-related functions have to wade through data you don't care
about.

Unless you feel that there's a compelling reason to do so, there are several types
of information that you should avoid writing to the registry:

• Application version information

• BLOB data of any kind

• Redundant information that can be dynamically generated

MFC, Palm-size PCs, and the Registry
One of the problems with MFC on a Palm-size PC is that the usual MFC classes that are

used to work with the registry are Active Template Library (ATL) classes. Unfortunately, the

ATL is not supported on PPC devices. Therefore, it's probably best to use straight API-based
functions for working with the CE registry under MFC This will ensure that your code wi ll

compile for as many platforms as possible On the CD for this book, there is a sample pass

word application that demonstrates how to use the registry API from within an MFC appli

cation. Basically, the application prevents anyone from doing anything on the device until

the correct password is entered The user can also change the password if desired. As you

can guess, the application uses the registry to store and retrieve the password

Page 00144

118 Chapter 4 • CE's Structured Storage

Application Version Information

Typically, under Windows 98/NT, when an application is installed, it writes some
application version information to the registry. For instance, when Windows itself
is installed or upgraded, Microsoft writes the version number to the registry
underthekeyHKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Cur
rentVersion\Version. While this is fine to do on a Desktop machine, it would
be considered very poor design to write such information to the CE registry
because of the limited storage space of aCE device.

Under Windows 98/NT, storage space is theoretically not an issue, so the extra
few bytes or so that it takes to write this setting to the registry don't count a great
deal. However, under CE if every application vendor wrote such information to
the registry, your free space would rapidly disappear. A quick review of the CE
registry reveals that almost no vendors at all write this kind of information to the
registry. Of course, there are situations in which your application may legiti
mately need to store this type of data; however, it is best to be as conservative as
possible.

BLOB Data of Any Kind

BLOB (Binary Large Object) data is free-form binary data of a certain length that
can represent anything from the user's address to a bitmap image. Under CE, just
as with Windows 98/NT, it's possible to store BLOB data in the registry. How
ever, it's not necessarily a good idea. The main issue here is, once again, storage
space. As a developer, you need to ensure that you do not take up too much stor
age space, especially in the registry, which is an area that most users do not have
the tools or skills to edit directly.

Redundant Information

Information in this category is anything that can be calculated or otherwise
retrieved from another source instead of being stored. For instance, you wouldn't
want to store the time stamp of a file in the registry because you can always
retrieve that information by querying the file itself.

Page 00145

The Windows CE Database Engine 119

The Registry vs. the Database Engine
When it comes to choosing the registry over the database engine, the main issue is stor
age space. While it's true that there are some uses for which a database is naturally more
suited, there is another issue that makes databases very attractive as a means of struc
tured storage. By default. all databases are compressed. That means that even if you store
the same number of characters to the registry and a database, you'll be saving the user
some storage space simply by choosing the database method.

The Windows CE Database Engine
In this section, we'll be looking at the CE database engine and what it can and
can't do. First, we'll look at the differences and similarities between the CE data
base engine and other database engines. After that, we'll move on to a sample
application.

Differences between CE's Database Engine and
Familiar Database Engines

When it comes to CE's database engine, there are a few points you need to know
up front. Typically, the most challenging part of getting started with aCE data
base is getting used to the differences between the CE database engine and other
database engines.

These differences come in two forms:

• The engine's organization and naming of data

• Features offered by the engine itself

Page 00146

120 Chapter 4 • CE's Structured Storage

Organization and Naming of Data

There are three important facts about the organization and naming of data by the
CE database engine:

• CE's "databases" are really just tables.

• CE's database engine is not relational.

• Fields are record-specific and not table-specific.

CE's Databases Are Really Just Tables The term database is misused under
Windows CE. That's because aCE database is what most of us would call a
table-an object containing columns and rows of data. Typically, of course, a
database is a collection of related tables, each table having columns and rows.

CE's Database Engine Is Not Relational The CE Database Engine is not a
relational database system. There are no foreign keys or master-detail relation
ships that the engine will create for us. Instead, it is a system closer in logical
appearance to an early version of the DBF file format; that is, aCE database is
basically a well-organized text file.

Fields Are Record-Specific and Not Table-Specific The fields of a CE data
base are record-specific and not table-specific. In other words, it's entirely possible
for one record to have three fields and the next record to have five fields. Fields, in
fact, are considered to be a record's properties, undefined until the record's con
tents are actually written out to the database. Consider a standard table of the type
you're used to:

ID NAME COMPUTER TYPE DEPARTMENT

34 Jane 5 PII Engineering

9A Joe R. 486 Sales

44 TedW. 586 Sales

Page 00147

The W indows CE Database Engine 121

ACE Table, on the other hand, might look something like this:

Record 1:

ID NAME COMPUTER TYPE DEPARTMENT

34 JaneS Pll Engineering

Record 2:

ID NAME COMPUTER TYPE DEPARTMENT SALARY PICTURE

9A Joe R. 486 Sales $44,000 00 (BLOB Data)

Record 3:

ID NAME COMPUTER TYPE DEPARTMENT SALARY

44 TedW 586 Sales $42,500.00

Record 4:

ID NAME COMPUTER TYPE DEPARTMENT

Z7 Betty Y K-6 Engineering

Differences in Features Offered by the Engine Itself

The features offered by the CE Database Engine itself make up the additional dif
ferences between the CE Database Engine and more traditional database engines.
For instance, CE's Database Engine does not support SQL (Structured Query Lan
guage) queries. This means that you must use the API and your own code in
order to perform searches of a database.

Similarly, the CE Database Engine does not offer the usual package of manage
ment tools and utilities that most engines do. Most database engines, for instance,

Page 00148

122 Chapter 4 • CE's Structured Storage

come with some kind of Enterprise Manager application, which provides a
graphical way to manage your databases and tables.

Now that you've seen all of the differences between CE's Database Engine and
other engines, let's take a look at the similarities.

Similarities between CE's Database Engine and
Familiar Database Engines

Despite the differences between CE's Database Engine and other database
engines, there are a number of similarities. For instance, CE's Database Engine
allows you to do two of the most common database operations:

• Indexing

• Searching

Even when you're performing these more common database operations, there
are still some unusual aspects you need to deal with before diving in.

Indexing

Just as most database engines do, CE's Database Engine allows you to create
indexes (or "sort orders") for your tables. While these indexes/sort orders allow
you to sort the records of aCE database, they do have a few limitations. Before
you can understand these limitations and how they'll affect you, however, you
need to first understand how databases are created and then opened.

To create aCE database, call CeCreateDatabase(). CeCreateDatabase() is
defined as follows:

CEOID CeCreateDatabase(LPWSTR lpszName, DWORD dwDbaseType, WORD wNum
SortOrder, SORTORDERSPEC * rgSortSpecs);

The first parameter, l pszName, is simply the name you're going to assign to the
database once it's created.

The second parameter, dwDbaseType, is a numeric value that your application
uses to uniquely identify one of its databases from another.

Page 00149

NOTE

The Windows CE Database Engine 123

The dwDbaseType value does not have to be globally unique; only your applica

tion uses this value.

The third parameter, wNumSortOrder, tells the CE Database Engine how many
sort orders you'll be creating.

The fourth parameter, rgSortSpecs, is a pointer to an array of SORTORDERSPEC
structures, which serve to define the actual sort orders. The SORTORDERSPEC struc
ture has two members:

PEGPROPID propid;

DWORD dwFlags;

PEGPROPID is a long integer, composed of two WORDs. The low-order WORD speci
fies the field type using one of the eight possible constants defined by Microsoft,
as outlined in Table 4.2.

T A B L E 4 . 2 : Field Types of the CE Database Engine

Field Type Description

CEVT _LPWSTR The field is a Unicode string, NULL terminated

CEVT_FILETIME The field is a FILETIME type.

CEVT _I2 The field is a 16-bit signed int type

CEVT_I4 The field is a 32-bit signed int type.

CEVT_ UI2 The field is a 16-bit unsigned int type.

CEVT_ UI4 The field is a 32-bit unsigned int type

CEVT _R8 The field is a double (floating point) type

CEVT _BOOL The field is a Boolean type

CEVT_ BLOB The field is a BLOB type

WARNING The CEVT _BLOB type, which is included here for completeness, cannot be indexed.

All other field types can be indexed.

Page 00150

124 Chapter 4 • CE's Structured Storage

WARNING The CEVT_RB and CEVT_BOOL types are new to CE 2.11 and are not supported in

previous versions. To store a floating point value under CE 2.0x, you must convert

the value to a string and store it that way. Similarly, to store a Boolean value under

CE 2.0x, you should probably convert it to an integer and store it that way.

The high-order WORD is an application-defined value. It is a numeric value used
by the application to uniquely distinguish one field from another. Just as with the
dwDbaseType parameter of CeCreateDatabase(), the high-order WORD here is
only intended to be unique within the scope of the application. In other words,
it's perfectly acceptable to have one application that used the value 100 for the
first field of its database and a second application that also used 100 for the first
field of its database.

The second part of the SORTORDERSPEC structure is the dwFl ags parameter, which
is a bitmask value specifying the way in which the records should be ordered. A
complete listing of the possible values and their descriptions is shown in Table 4.3.
As indicated in the table, these values can be combined to further customize the sort.

T A B l E 4. 3 : Sort Types Available

Value

CEDB_SORT_GENERICORDER

CEDB_SORT_DESCENDING

CEDB_SORT_CASEINSENSITIVE

CEDB_SORT_UNKNOWNFIRST

Description

The default setting, wherein records are sorted in ascending order.
(The value 0 will appear before 9.) You cannot use the OR operator
on this value and CEDB_SORT _DESCENDING because they confl ict
with each other.

The records are sorted in descending order. (The value 9 will appear
before 0) You cannot use the OR operator on this value and
CEDB_SORT _GENERICORDER because they conflict with each other.

If the field being sorted is a character string, the records are sorted
without regard to case (The value a has the same rank as the value A.)
You can use the OR operator on this value together with any of the
other flags.

This flag exists to handle the condition of records that do not contain
the field being sorted As you saw earlier, it's entirely possible for
some records to possess a field that is not shared by other records
By default, records that do not possess the field being sorted will
be sorted to appear at the end of the database. However, if you
use CEDB_SORT _UNKNOWN FIRST, these records will appear at the
beginning of the database. You can safely use the OR operator on
this value together with any of the other flags

Page 00151

NOTE

NOTE

TIP

The Windows CE Database Engine 125

The CEOID (CE Object Identifier) return type of CeCreateDatabase() is another
globally unique value. CEOIDs are like ID numbers given to all CE system objects,

such as f iles and databases, which CE uses to keep track of them. Even records of
aCE database get their own CEOID number.

Now that you know everything that goes into creating a database, let's look at
some code that actually does the work of creating a database. This example is from
an application we'll be developing throughout the rest of this chapter. Here, we'll
create a database to hold a list of area codes and the states they correspond to.

In the source code for this project, each database-related operation is encapsu
lated in its own function, named for the operation being performed. For instance,

the database creation code you're looking at now is contained in a function called
AreaCodeDatabaseCreate().

Your first task when creating a database is to choose the unique value to iden
tify this database type; this will be used for the dwDbaseType parameter of
CeCreateDatabase():

#define DB_ID 1911

You must also define a constant for the name of the database:

#define AREACODEDBNAME TEXT("ACDB")

Next, choose values to identify the field types; these values will be used first in
your SORTORDERSPEC array:

#define PROP_AREACODE 100
#define PROP_STATE 200

It's best to define the database type identifier, database name, and field identifiers
as constants because you 'll be using them throughout your application.

The next step is to create and then fill in the values for your SORTORDERSPEC
array. Your array will be two SORTORDERSPECs wide, one sort order for the area
code field and one sort order for the state field:

SORTORDERSPEC soSortOrders[2];

Page 00152

126 Chapter 4 • CE's Structured Storage

Then fill in the values of the SORTORDERSPEC structures, starting with the
SORTORDERSPEC for the area code field, then the state field:

soSortOrders[O] .propid = MAKELONG(CEVT_LPWSTR,PROP_AREACODE);
soSortOrders[O] .dwFlags= CEDB_SORT_GENERICORDER;
soSortOrders[l] .propid = MAKELONG(CEVT_LPWSTR,PROP_STATE);
soSortOrders[l] .dwFlags= CEDB_SORT_GENERICORDER;

Now that you've prepared everything, call CeCreateDatabase(), passing in
the database name, the database type ID, the number of sort orders, and a pointer
to the sort order array:

m_obj = CeCreateDatabase(AREACODEDBNAME, DB_ID, 2, &soSortOrders);

You can then test the result and perform some action based on the value of
m_obj. In this case, you'll be returning a TRUE or FALSE result from a function:

if (lm_obj) //a NULL result from CeCreateDatabase indicates failure

return(FALSE);

else

return(TRUE);

When you're all done, your completed AreaCodeDatabaseCreate() function
looks like this:

BOOL AreaCodeDatabaseCreate()
{

//fill in the properties of our sort orders before we create the
database

soSortOrders[O] .propid = MAKELONG(CEVT_LPWSTR,PROP_AREACODE);
soSortOrders[O] .dwFlags= CEDB_SORT_GENERICORDER; //Ascending

(default) order
soSortOrders[l] .propid = MAKELONG(CEVT_LPWSTR,PROP_STATE);
soSortOrders[l] .dwFlags= CEDB_SORT_GENERICORDER; //Ascending

(default) order

m_obj = CeCreateDatabase(AREACODEDBNAME, DB_ID, 2, &soSortOrders);

if (!m_obj) //a NULL result from CeCreateDatabase indicates failure

Page 00153

The Windows CE Database Engine 127

return(FALSE);

else

return (TRUE);

Let's now proceed to the AreaCodeDatabaseOpen() function. To open a data
base, use the API function CeOpenDatabase(), which is defined as follows:

HANDLE CeOpenDatabase(PCEOID poid, LPWSTR lpszName, CEPROPID propid,

DWORD dwFlags, HWND hwndNotify);

The first parameter, poi d, is a pointer to a CEOID. Since you probably won't
know the CEOID most of the time (you'll probably only know the database name)
you can set this value to 0. For example:

CEOID oid = 0;

CeOpenDatabase(&oid, ...);

CE's Database Engine will then write the value of the database's CEOID to the
variable passed in as poi d.

WARNING Because CE's Database Engine will actual ly be writing a value to the poi d parame

ter, you should never pass 0 as a constant value.

The second parameter, l pszName, is the name of the database that you assigned
when you created the database. In the case of your area code application, use the
same value you used before, AREACODEDBNAME.

The third parameter, p ropi d, specifies the sort order you'd like to use. It must
be either 0 (for no sort order) or a long integer, just like the p ropi d value of
your SORTORDERSPECS. Therefore, your value for the propi d parameter will be
MAKELONG(CEVT_ LPWSTR, PROP_AREACODE).

The fourth parameter, dwFl ags, specifies what, if anything, will be done to the
current record pointer each time you read a record. The choices are

• CEDB_AUTOINCREMENT

• 0 (no operation)

Page 00154

128 Chapter 4 • CE's Structured Storage

TIP

With the CEDB_AUTOINCREMENT value, the CE Database Engine will automati
cally set the current record pointer to point to the next record in the database each
time you read a record. With the value of 0, the CE Database Engine won't do
anything to the current record pointer. For your purposes, the auto-increment
option will be just fine.

The fifth parameter, hwndNoti fy, is used if you want to receive notification
messages when another program is accessing your database at the same time you
are accessing it. You don't need this for your application, so pass in a NULL value.

The hwndNoti fy parameter can be used to set up some kind of crude record-locking
mechanisms so that the two programs accessing the same data will not overwrite
each other's data

Your actual call to CeOpenDatabase(), then, looks like this:

m_Handle = CeOpenDatabase(&oid, AREACODEDBNAME,
MAKELONG(CEVT_LPWSTR,PROP_AREACODE), CEDB_AUTOINCREMENT, NULL);

And your entire AreaCodeDatabase() function looks like this:

BOOL AreaCodeDatabaseOpen()
{

CEOID oid 0;
CEPROPID propid = 0;
HWND hwndNotify = NULL;
m_Handle = CeOpenDatabase(&oid, AREACODEDBNAME, MAKELONG(CEVT_LPW

STR,PROP_AREACODE), CEDB_AUTOINCREMENT, NULL);
if(m_Handle == INVALID_HANDLE_VALUE)
{

return(FALSE);

else

return (TRUE);

Now that you have a pretty good background on what goes into creating and
opening a database and how sort orders are created and used, we can return to
our original discussion of database sort orders. As you just learned, these sort

Page 00155

I

The Windows CE Database Engine 129

orders have a few limitations that may affect how you use them. These limita
tions are:

• A sort order can only sort records based on one of the database's fields.

• Only one sort order per database can be marked as active.

• A database can have a maximum of four sort orders.

• The sort orders should be created when the table is created.

Let's take a look at these limitations and how to ensure that these sort orders
will still work for you.

A Sort Order Can Only Sort Records Based on One of the Database's
Fields Typically, with other database engines it would be possible to create an
index that ordered records based on multiple fields. However, as you've just seen,
you are limited to a one-field-per-sort-order rule when you create a sort order.

Only One Sort Order per Database Can Be Marked as Active Unlike
ordinary database engines, where an index exists more for the purpose of main
taining a certain relationship between records, CE' s sort orders are analogous to a
SQL "view" that displays the records of the database in the order specified. Sort
orders do not change the physical order of the records in any way. The catch to
this is that you can only use one sort order at a time. If you want to change sort
orders, you must close the database and then reopen it, specifying a different sort
order.

With aCE database, each time you open the database, you have the opportu
nity to select one of your sort orders (or no sort order at all). One way to think
about sort orders is that they are comparable to the columns in a List View control
in the Report View style (pictured in Figure 4.1). By clicking on any of the column
headings, you can sort the data according to the values in that column. In much
the same way, by selecting one of the sort orders, you will sort the data according
to the data in the column that the sort order points to.

Page 00156

130 Chapter 4 • CE's Structured Storage

FIGURE 4 . 1:

A ListView control,
Report View style

TIP

~lame 1r S.:elljlj)!! l Mo:lb<ld LAltmuiadL
_ I\1/MIPSO bg File Folder 1 /29/99 6 37 PH
_.J WfA I p~; R el File Folder 2/2/99 12 07 AM

~Acdb001 21KB 001 File 12/29/98 9:32 PM A

~Acdb apz 36KB APS File 2/2/99 12:07 AM A
~ACDB c 13KB C File 1/29/99 4:32AM A

~ACOB d!<p 22KB OSP File 1/29/99 6:37PM A
~1\.COB d!:W 1KB DSWFile 1/29/99 6:37 PM A

~ .6.CO B e:~e 19K8 /l.pplication 1 /29/99 4:43 /l.M A

~.n.COB ncb 73KB NCB File 2/1/99 4:47 PH A
~.6,[08 opt 54KB OPT File 2/2/99 12:07 .II.M A

~ACOB pig 2KB PLG File 2/2/9912:07 AM A
G)ACOB rc 4KB RCFrle 2/2/9912:07 AM A
~ areacodec.txt 6KB Text Oocu 1/23/99 3:37PM A

~db,c 16K8 C File 1 /29/99 4 38 AM A

~db.h 3KB H File 1 /29/99 3 43 />M 1>.

~rcon1 to 1KB Icon 12/1/98 5:54 Pf.1 A

GJ te~oo.llce h 2KB H File 1/29/99 3:27AM A

- ~

If you don't select a sort order, the records will appear in the order in which they
were entered into the database.

A Database Can Have a Maximum of Four Sort Orders An additional
limitation of sort orders is that you can only create a maximum of four indexes
per table. This probably won't affect most of your applications, but it's worth
knowing about before you get too far into your application.

The Sort Orders Should Be Created When the Table Is Created The
final limitation of the CE sort orders is that it is best to create them when the table
is created. This is because the CE Database Engine operates more efficiently when
building the indexes as the records are entered, as opposed to creating an index
after the database has been populated with records.

In version 2.11 of Windows CE, however, Microsoft did add a feature that makes
it possible to add and delete indexes after you've created and populated the table.
As is usually the case, there are trade-offs to this option. First, there is the fact that
it only works onCE version 2.11, which limits your code to HPC/ Pro devices (or
upgraded HPCs). The second trade-off is that building new sort orders is a very
resource-intensive task that can take several minutes to complete. Therefore, it's
always best to create the sort orders at the same time you create the table.

Page 00157

TIP

The Windows CE Database Engine 131

Searching

Despite its lack of support for SQL, CE's database engine does allow you to
search the databases. The catch here is that the engine does not allow wildcard
matching as SQL does. Instead, the CE Database Engine provides one function,
CeSeekDatabase(), which serves as a way to both search the database and
manipulate the current record pointer. CeSeekDatabase() is defined as follows:

CEOID CeSeekDatabase(HANDLE hDatabase, DWORD dwSeekType, DWORD dwValue,
LPDWORD lpdwindex);

The first parameter, hDatabase, is a handle to an open database.

The second parameter, dwSeekType, specifies the type of seek or search operation

you want to perform. In this way, you tell the CE Database Engine whether you're
searching for a value or merely moving the current record pointer. When you do a
search, a sort order must be active. That's because CE's database engine only
searches on the sort order field. For the purpose of this discussion, searching
means that you are attempting to find a value in the database matching the one
supplied; seeking means simply moving the current record pointer to some re lative

or absolute position in the database.

The third parameter, dwVa l ue, specifies the value you're searching for or is a
numeric value specifying how the current record pointer should be moved.

The fourth parameter, l pdw!ndex, is a pointer to a WORD that the CE Database
Engine will fill in with the number of records from the start of the database to the
record that was found.

There are eight different types of search or seek operations you can perform.
When searching, you can look for a record that has a

• Certain CEOID

• Value smaller than the value you're searching for

• Value greater than the value you're searching for

• Value equal to the value you're searching for

Page 00158

132 Chapter 4 • CE's Structured Storage

When seeking, you can move the current record pointer to the record that is

• The next record having a value equal to the value you just searched for
(used with the last search operation above)

• A given number of records from the first record in the database

• A given number of records from the last record in the database

• A given number of records from the current record

A Record That Has a Certain CEOID This is a search operation that attempts
to find a record that has a CEOID matching the one you specify in the dwVa l ue
parameter. To perform this type of search, pass in the value CEDB_SEEK_CEOID to
CeSeekDatabase():

CeSeekDatabase(m_Handle, CEDB_SEEK_CEOID, oidValue, &dwlndex);

While this search is very efficient, it's unlikely that you'll know the CEOID for
your records. Therefore, you probably won't be performing this type of search
very often. \

A Record That Has Smaller Value than the Value You're Searching For
This is a search operation that finds the largest value that is smaller than the
search value. So, if you had a database with the following records:

ID

42

43

47

56

and you were searching for the value 44 and specifying the CEDB_SEEK_VALUE
SMALLER flag, the result of your search would point to the record with the ID
value of 43. The code to perform this search looks like this:

CeSeekDatabase(m_Handle, CEDB_SEEK_VALUESMALLER, 44, &dwindex);

Page 00159

The Windows CE Database Engine 133

A Record That Has a Value Greater than the Value You're Searching
For This is a search operation that finds the smallest value that is greater than
the search value. So, if you had a database with these records:

10

42

43

47

56

and you were searching for the value 44 and specifying the CEDB_SEEK_
VALUEGREATER flag, the result of your search would point to the record with the
ID value of 4 7. The code to perform this search looks like this:

CeSeekDatabase(m_Handle, CEDB_SEEK_VALUEGREATER, 43, &dwindex);

A Record That Has a Value Equal to the Value You're Searching For
This is a search operation that finds the first value that's equal to the search value.
So, if you had a database with these records:

10

42

43

47

56

and you were searching for the value 43 and specifying the CEDB_SEEK_VALUE
FIRSTEQUAL flag, the result of your search would point to the record with the ID
value of 43. Similarly, if you were searching for the value 44 or some other value
that doesn't exist in the table, the result of your search would point to the end of
the table. The code to perform this kind of search looks like this:

CeSeekDatabase(m_Handle, CEDB_SEEK_VALUEFIRSTEQUAL, 43, &dwindex);

Page 00160

)

134 Chapter 4 • CE's Structured Storage

The Record That Is the Next Record Equal to the Search Criteria This is
a seek operation that is used in conjunction with the search operation you just
looked at. Simply put, if you have a database with these records:

10

42

43

43

57

and if you just searched for the value 43 specifying the CEDB_SEEK_VALUEFIRST
EQUAL flag, the result of your search would point to the first record with the ID
value of 43. If you then called CeSeekDatabase(), specifying the CEDB_SEEK_
VALUENEXTEQUAL flag, your database cursor would be positioned at the second
record with the ID value of 43. The code to perform this type of operation looks
like this:

CeSeekDatabase(m_Handle, CEDB_SEEK_VALUENEXTEQUAL, 43, &dwindex);

The Record That Is a Given Number of Records from the Beginning of
the Database This seek operation positions the current record pointer to a
record that is dwVa l ue records from the first record in the database. One use of
this function is to position the cursor to the beginning of the database by specify
ing 0 as the dwVa l ue parameter. The code to perform this type of operation looks
like this:

CeSeekDatabase(m_Handle, CEDB_SEEK_BEGINNING, 0, &dwindex);

The Record That Is a Given Number of Records from the End of the
Database This seek operation positions the current record pointer to a record
that is dwVa l ue records from the last record in the database. One use of this func
tion is to position the cursor at the last record of the database by specifying 0 as
the dwVa l u e parameter. The code to perform this type of operation looks like this:

CeSeekDatabase(m_Handle, CEDB_SEEK_END, 0, &dwindex);

Page 00161

The CE Database Engine API 135

The Record That Is a Given Number of Records from the Current
Record This seek operation positions the current record pointer to a record that
is dwVa 1 ue records from the current record in the database. For example, the code
to advance the cursor by one record looks something like this:

CeSeekDatabase(m_Handle, CEDB_SEEK_CURRENT, 1, &dwindex);

The CE Database Engine API

FIGURE 4.3:

Although we've previewed it a little bit, let's now concentrate on creating a data
base application that will show off some of the lessons you've just learned. The
application you'll create will be an area code lookup utility, which will enable the
user to either:

• Find an area code if they know the state or

• Find a state if they know the area code

For the sake of simplicity, we'll make it a dialog-based application. The final
dialog will look something like Figure 4.2.

The Edit/Add Record dialog

I

(ji) Show by <;;ode

() Show by 2tate

Page 00162

136 Chapter 4 • CE's Structured Storage

FIGURE 4.3:

The idea here is that the large list box will display the area codes and states. The
user will have the option via two radio buttons to sort the list by area code or by
state. They'll also be able to add or delete records using the buttons along the bot
tom of the form. When the user chooses to add a record, a separate dialog, shown
in Figure 4.3, will appear, prompting them for an area code and a state.

Edit/Add Record ~ £I
The EdiUAdd Record dialog

j

NOTE

Your first task will be to create a library of database-related functions, as you'll
be performing many of these operations several times throughout the running of
the program. You'll create a wrapper function for each one of the database opera
tions your application will perform.

We'll examine only the highlights of the application's code here. The full code is
provided on the CD-ROM, of course.

At this point, the only routines you still need to develop are

• AreaCodeDatabaseRead() for reading records from the database

• AreaCodeDatabaselnsert() for adding records to the database

• AreaCodeDatabaseDe 1 eteRecord() for deleting records from the database

• AreaCodeDatabaseFi ni sh() for performing any cleanup operations

AreaCodeDatabaseRead()

Reading a record from aCE database is accomplished via CeReadRecordProps(),
which is defined as follows:

CEOID CeReadRecordProps(HANDLE hDbase, DWORD dwFlags, LPWORD lpcPropiD,
CEPROPID ,., rgPropiD, LPBYTE ,., lplpBuffer, LPDWORD lpcbBuffer);

Page 00163

The CE Database Engine API 137

The first parameter, hDbase, is a handle to an open database.

The second parameter, dwFl ags, tells the CE Database Engine whether or
not it can reallocate memory if the memory pointed to by the fifth parameter
is too small. To allow the database engine to reallocate the memory, pass in
CEDB_ALLOWREALLOC; to insist that it not reallocate the memory, pass in 0.

WARNING Although it's possible to pass in 0 for this parameter, you'll almost always want to
let the system reallocate memory as needed. Otherwise, your function call could

fail, and you'll have to reallocate the buffer yourself.

NOTE

The third parameter, l peP rapiD, is a pointer to a long integer specifying the
number of properties to be read. If you set this value to NULL, the variable you
pass as 1 peP rapiD will receive an integer value specifying the number of proper
ties read. Recall that database fields are referred to as properties of a record.

The fourth parameter, rgPropiD, is a pointer to an array of CEPROPID structures
specifying which properties are to be read. If you set this parameter to NULL, all
properties will be read.

This is the same type of structure used to specify the active sort order when calling
CeOpenDatabase().

The fifth parameter, 1 p1 pBuffer, is a pointer to a pointer to an array of
CEPROPVAL structures. This is where the properties you requested will actually
be returned. CEPROPVAL is a somewhat complicated structure that has four
members:

• CEPROPID propi d

• WORD wlenData

• WORD wFl ags

• CEVALUNION va 1

Page 00164

138 Chapter 4 • CE's Structured Storage

The propi d member is just like all the other CEPROPIDs you've seen in this chap
ter: a long integer comprised of two WORDs that tell you about the field you're look
ing at. wlenData is officially unused, and wFl ags will only be one of two values:

• CEDB_PROPNOTFOUND if you're reading a record and the requested property
doesn't exist

• CEDB_PROPDELETE if you're removing a property from a record

That leaves just one member of the CEPROPVAL structure: val, a CEVALUNION,
which is a union type that changes its contents based on the type of the field
itself. This is a bit confusing at first, but it will become clear as soon as you begin
to look at the code.

The final parameter of CeReadRecordProps() is l pcbBuffer, which is a pointer
to an integer that will receive the size of the buffer that is the fourth parameter.

To look at AreaCodeDatabaseRead() from a coding perspective, what you have
is a WORD used to store the number of properties read, a CEPROPVAL pointer (your
buffer), and the number of bytes in the reallocated buffer:

BOOL AreaCodeDatabaseRead()
{

WORD cProps;

CEPROPVAL * pBuf;

DWORD cbBuf;

Then, you call CeReadRecordProps():

if (!CeReadRecordProps(m_Handle, II handle to the database
CEDB_ALLOWREALLOC, II allow pBuf allocation
&cProps, II return count of properties
NULL, II retrieve all properties
(LPBYTE ~')&pBuf, I I buffer to return prop data
&cbBuf)) II count of bytes in pBuf

Then, you return a BOOL value based on the result of the call:

return FALSE;

Page 00165

NOTE

The CE Database Engine API 139

else

return TRUE;

You may not have encountered an error, even if CeReadRecordProps() returns a
0. It's up to the calling procedure to check GetlastError() to determine whether
an error occurred or whether you merely reached the end of the database.

AreaCodeDatabaselnsert()

Your next task is inserting or adding records to your database. The function that
does this is called CeWri teRecordProps() and is defined as follows:

CEOID CeWriteRecordProps(HANDLE hDbase, CEOID oidRecord, WORD cPropiD,
CEPROPVAL 1

' rgPropVal);

The first parameter, hDbase, is a handle to an open database. The second para
metet~ oi dRecord, is the CEOID of an existing record. If this parameter contains a
value, the record being written will actually overwrite the existing record. If this
parameter is 0, the record being written will be added as a new record. The third
parameter, cPropiD, is the number of properties you're writing. Finally, the
rgPropVal parameter is a pointer to an array of CEPROPVAL structures, just as you
saw above with CeReadRecordProps().

In order to write a new record to your database, then, you need a function
like this:

BOOL AreaCodeDatabaseinsert(LPTSTR szCode, LPTSTR szState)
{

CEPROPVAL pvPropVals[2];

In this case, you are receiving the values for the area code property and the
state property. You use these values passed in to your function as the values of
the properties you'll write to the database:

pvPropVals[O] .propid = MAKELONG(CEVT_LPWSTR, PROP_AREACODE);
pvPropVals[O] .wFlags = 0;
pvPropVals[O] .val.lpwstr = szCode;
pvPropVals[l] .propid = MAKELONG(CEVT_LPWSTR, PROP_STATE);
pvPropVals[l] .wFlags = 0;
pvPropVals[l] .val .lpwstr = szState;

Page 00166

140 Chapter 4 • CE's Structured Storage

Once you've initialized your CEPROPVAL array, you can then call
CeWriteRecordProps():

if (!CeWriteRecordProps(m_Handle, 0, 2, &pvPropVals))

You then return a value based on the result of CeWriteRecordProps():

return(FALSE);
else

return(TRUE);

AreaCodeDatabaseDelete()

To delete a record, you use a function called CeDe l eteReco rd (). So, in the con
text of this application, to delete a record from your database, you would have a
function like the following, where you pass in a string containing the CEOID of the
record to be deleted:

BOOL AreaCodeDatabaseDeleteRecord(LPWSTR data)
{

The next step is to convert the string to a numeric value:

CEOID oidRecord;
oidRecord = (CEOID)_wol(data);

Once that's done, all you have to do is call CeDe l eteRecord():

ret= CeDeleteRecord(m_Handle, oidRecord);
return(ret);

And that's all there is to deleting records from a database.

AreaCodeDatabaseFinish()

The only action you really have to take here is to remember to close the database
and free any memory still in use. To close a database, call Cl oseHandl e() and
pass in the handle to the open database:

void AreaCodeDatabaseFinish()
{

CloseHandle(m_Handle);

Page 00167

Summary 141

summary
In this chapter, we looked at the basics of CE's structured storage types. There's a
lot of information to master here, and it can be quite dizzying at first. With a little
bit of practicing on the examples provided here, however, you're sure to have it
down in no time.

In Chapter 12, we'll look at some alternatives to API-based database access.
Specifically, we'll be looking at MFC's approach to databases, as well as some
database engines provided by third-party vendors.

Page 00168Page 00168

Page 00169

Mastering the
Developer's Tools

I CHAPTER 5: CE Toolkit for Visual C++

I CHAPTER 6: Yes, It's Possible-—MFC on CE

I CHAPTER 7: Reai MFC Applications Ported to CE

I CHAPTER 8: Visual Basic Toolkit for CE

I CHAPTER 9: A Real VB Application Converted to CE

Page 00169

Page 00170Page 00170

Page 00171

CHAPT£R
r 1 v {

CE Toolkit for Visual C++

• Using VC++ to Develop for Windows CE

• The Windows CE Toolkit for VC++

• The Platform SDKs

• MFC versus SDK-Style Coding

Page 00172

146 Chapter 5 • CE Toolkit for Visual C++CE

The purpose of this chapter is to show off the Windows CE Toolkit for Visual
C++ (VC++). After reading this chapter, you will have a thorough understanding
of the most important features of the toolkit and will know how to integrate the
toolkit into VC++ as smoothly as possible. You'll also have a sense of what sort of
common problems crop up from time to time when using the toolkit. (There are a
few, but not too many.)

Along the way, you'll develop a Wizard for VC++ to help you prototype CE
applications with a minimum of code and effort by creating small, dialog
based applications! Next, we'll examine the tradeoffs of coding in Microsoft
Foundation Classes (MFC) vs. SDK-style coding. Of course, we'll be picking up
MFC again in a later chapter. Finally, we'll present a simple SDK-style applica
tion, written specifically for the PPC devices, which will illustrate the differences
if any-between "regular" (i.e., desktop) applications and CE applications.

Using VC++ to Develop for Windows CE
When we use Visual C++ to build programs for Windows CE, we're really using
two products at once.

The first product is the Microsoft Windows CE Toolkit for Visual C++. The
toolkit consists of the core files needed to build and debug executables for the
various Windows CE platforms.

The second product is the Software Development Kit (SDK) for the platform
we're targeting. The SDK consists of additional tools to help prototype and debug
our applications, such as the Windows CE emulators.

In this section, we'll look at the components that make up both the toolkit and
the emulator and show you what you really need to know about each.

The Windows CE Toolkit for VC++
As noted, the toolkit is the core that makes it possible for Visual C++ to build exe
cutables for the Windows CE operating system, including such tools as

• The compilers

• The Platform Manager

• The Project Wizards

Page 00173

Using VC++ to Develop for Windows CE 147

The Compilers

Because CE is an operating system that runs on a variety of chip types, several
compilers are included in the toolkit, one for each chip. While the fact that you
have more than one compiler might seem unusual to many Windows developers,
the compilers are generally fairly transparent. However, there are times when it
can be useful to know a bit about them.

The major issue that you'll experience from time to time is that of the compilers
not being able to find the correct path or location of certain . h or . lib files that it
needs in order to build and link your project successfully. This issue may appear
trivial, but it's not! In fact, questions relating to directories and linking are among
the most commonly asked by those new to CE programming.

If you're using the toolkit for VC++ 5, the paths are

BIN

%WCESDK%\wce\ emul \ hpc\ windows

%WCETOOLKIT%\Bin

%WCESDK%\wce\bin

INCLUDE

%WCETOOLKIT%\Include\ WCE200

%WCETOOLKIT%\MFC\Include\ WCE200

%WCETOOLKIT%\ATL\Include

LIB

%WCETOOLKIT%\LIB\wce200\%CHIPTYPE%

%WCETOOLKIT%\MFC\LIB\ wce200\%CHIPTYPE%

Page 00174

148 Chapter 5 • CE Toolkit for Visual C++CE

NOTE

For VC++ 6, the paths are

BIN

%WCETOOLS%\Bin

INCLUDE

%WCETOOLS%\WCE200\%PLATFOR~Io\Include

%WCETOOLS%\MFC\ WCE200\%PLATFORM%\Include

%WCETOOLS%\WCE200\ATL\%PLATFORM%\Include

INCLUDE

%WCETOOLS%\WCE200\%PLATFORM%\Lib\%CHIPTYPE%

%WCETOOLS%\MFC\ WCE200\%PLATFOR~Io\ Lib\%CHIPTYPE%

%WCETOOLS%\WCE200\ATL\%PLATFORM%\ Lib\%CHIPTYPE%

There are special assemblers for each of the chips.

The Platform Manager

The Platform Manager is a new tool provided in the toolkit for VC++ 6 that
makes it much easier to specify the target device and the preferred connection
method for EXE file uploading and debugging purposes. As shown in Figure 5.1,
the Platform Manager can maintain a listing of all your CE devices, organized by
platform type.

By right-clicking on one of the platform types (e.g., Palm-size PC 2.01) and
selecting the Property menu, you can view information about the platform type,
including which version of CE is supported and which chip types and architec
tures are supported. The Platform Property dialog is shown in Figure 5.2.

Page 00175

FIGURE 5.1:

The main view of Platform
Manager

FIGURE 5 . 2:

The Platform Property
dialog

Using VC++ to Develop for Windows CE 149

Windows CE Platform ldanager Configuration

Select a platform or device to configure

E;J @I H/PC Pro 2.11

l I ~ Handheld PC Pro (Default Device)
· Hewlett Packard Jornada

~ • H/PC Ver. 2 00
! Casio 2400

l Casio 2500
SJ Handheld PC (Default Device)

j ~ Handheld PC Eml~lation
8 .. @1 Palm-size PC 2 01

•• Casio E-11
Palm-size PC (Default Device)
Palm-size PC Emulation

Platform Propert.l'

Platform Name:

Supported CPU(s)

Name Alchkecture T e

Page 00176

150 Chapter 5 • CE Toolkit for Visual C++CE

FIGURE 5.3:

Additionally, Platform Manager allows you to set the properties for each device
registered with the system. By right-clicking on a device and selecting Property,
you can tell Platform Manager how you would like the CE development tools to
connect to your CE devices. There are three possible ways to connect to a CE
device, as shown in Figure 5.3: PPP Transport for Windows CE, TCP /IP Transport
for Windows CE, or Windows CE Services.

Device Properly

The Device Property dialog Device Name:
---:-7-~

jHewlett Packard Jornada

I """• ,.locl a"""""""' hom the fcll,.;og "'- U•elhe te• b""o' lo teol
the communication to a connected dev1ce.

Available Transports Components

I f""'""'""'""'"''l L P..~ j -~-a-nce_l __ I_es_t_.. C.Qnfigure j 8dvancedj

Of the three, Windows CE Services is probably the most common means of con
necting to a device. CE Services is the standard, serial-line connection that is usu
ally used for Active Syncing devices with the Desktop. The drawback to debugging
over a serial line is that it's very slow. In fact, you'll find that it takes so long to
execute a single line of source code while debugging over the serial port that you
can actually count the seconds. Obviously, this can be very frustrating.

That's why the debugging method that most developers will probably want to
use is the TCP /IP Transport for Windows CE. Basically, this allows you to set up
your CE devices and all of the CE-related tools so that they use debugging over
Ethernet. The immediate advantage of this is that it is many times faster than
debugging over the serial connection.

Page 00177

Using VC++ to Develop for Windows CE 151

Ethernet Debugging
When it comes to debugging your applications, the Ethernet TCP/IP Transport is about as
fast as it gets. It's so useful and such a time saver, in fact, that it's really worth the invest

ment to get your CE device connected to your LAN.

As mentioned in Chapter 1, there are two options available to get your CE device on your

LAN. The first is a wireless LAN solution from Proxim, Inc of Mountain View, California

(http: I /www. proxi m. com). Proxim offers a product called the Rangelan2 Bridge, wh ich
serves as a kind of wireless hub or access point to the network. The other part of this solu

tion is a PC Card (PCMCIA Card) that you use with the CE Device itself.

Your second option for Ethernet debugging is a solution provided by Socket Communica

tions of Newark, California (http: I /www. socketcom. com). Socket Communications
offers a PC Card (PCMCIA Card) or Compact Flash Card that provides an instant (wired)

connection to the network. Both the PC Card and the Compact Flash solution are easy to
configure. However, the Compact Flash version has the added benefit of taking advantage
of a slot you're probably not using, and it will run on Palm-size PC devices, too.

The Project Wizards

The Project Wizards are the add-ins to VC++ that appear whenever you choose
File> New and highlight the Projects tab, as shown in Figure 5.4. Although there
are over 20 Wizards in all, there are 7 Wizards that help to speed up Windows CE
development. They are

• WCE Application

• WCE ATL COM AppWizard

• WCE Dynamic-Link Library

• WCE MFC ActiveX Control

• WCE MFC AppWizard (DLL)

• WCE MFC AppWizard (EXE)

• WCE Static Library

However, of these seven Wizards, you'll probably only use two of them on a
regular basis, the WCE Application Wizard and EXE version of the WCE MFC
AppWizard.

Page 00178

152 Chapter 5 • CE Toolkit for Visual C++CE

FIGURE 5.4:

The Project Wizards

New DEJ

Dialog-based Application

Dynamic-Link Library Project name:
~~~------------~~ 

MFC ActiveX Control J 
MFC AppWizard (dn) 
MFC AppWizard (81<~ 

WCE Static Library 

LOQation: 

lE:\BookFaes\Originai\Ch02\ 

Console Applicatio~ Ci' C!eate new workspace 
0 ynamic-Link Libr ar (" 8dd to current workspace 

Static Library 

II Cancel 

WCE Application Wizard Using the WCE Application Wizard is the simplest 
way to create a full-fledged SDK-style Windows CE application. In less than three 
steps, the WCE Application Wizard will create 

• An empty project, with no source files whatsoever 

• A Simple Windows CE Application, which merely has an empty Wi nMai n() 

• A "Hello World"-style application, complete with a simple window, Wnd

Proc() function, and an icon, as shown in Figure 5.5 

WCE MFC AppWizard The WCE MFC AppWizard is the one you'll use for 
every CE-based MFC Application you create. It's very similar to the standard 
MFC AppWizard that you've probably used to create Desktop-based MFC appli
cations. However, there are a few noticeable differences between the CE version 
and the Desktop version. 

The biggest potential problem to watch out for relates to choosing the correct 
implementation of CommandBars for your application. On the second page of 
the Wizard (shown in Figure 5.6), you are asked to choose the type of Command
Bar you'd like for your application. 



Page 00179

FIGURE 3.5: 

The "Hello World" 
application 

FIGURE 5.6: 

The WCE MFC AppWizard 

Using VC++ to Develop for Windows CE 153 

Hello World! 

twlzzler '"''~ 9:24 pp,oJ ~ 

W CE tdFC AppWizard [exe)- Step 2 of 4 IJEJ 

!:ile !;;dit ~ie• !!elp 
What features WOLlld you like to include? 

n il,~ Sock~ n .Erinting(21 only] 

n Windows H~lp 

JJ Activ~ Controls 

Cortr I bar type 

r. Basic CommandBar 

(" bOmmandB ar with toolbar buttons 

r: Internet Explorer fieBars 

c'"i MFC ~ O·compatible CommandBar 

C ~talus bar 

How many files would you 14 :::zJ 
like on your recent file list? .-::..1 



Page 00180

154 Chapter 5 • CE Toolkit for Vi sua I C++CE 

The Wizard presents you with four options: 

• Basic CommandBar 

• CommandBar with toolbar buttons 

• Internet Explorer ReBars 

• MFC 2.0-compatible CommandBar 

The problem is that unless you explicitly choose the fourth option, you will 
only be able to compile forCE 2.01 or CE 2.11, which are the versions of CE that 
PPC and HPC/Pro devices are running; all of the HPC devices are running CE 2! 
And, while it's true that some OEMs will be offering customers the ability to 
upgrade to CE 2.11, not all of them will. This means that if you don't choose the 
MFC 2-compatible CommandBar, you will be ignoring a potentially huge market 
for your software. 

Of course, everything has its tradeoffs. When you do choose the 2.0-compatible 
CommandBar, you lose the option of having a status bar and support for print
ing, both of which are only available forCE 2.01 and 2.11. The end result of this is 
that you either have to explicitly target only PPC and HPC/Pro devices, or you 
have to write your own printing and status bar code. 

As of this writing, there are no commercially available HPC devices running 
CE 2.11; only the HPC/Pro devices run CE 2.11 . The Palm-size PCs run CE 2.01. 
However, as mentioned in Chapter 1, some HPC manufacturers do offer a soft
ware or ROM upgrade from CE 2 to CE 2.11. 

Creating A Wizard for Dialog-Based Applications-A Sample 
Application In previous versions of the toolkit, the array of Wizards was not 
nearly so complete. In fact, there was no way to quickly prototype an application 
at all. Even with the current toolkit's extensive list of Wizards, there may be a 
variety of custom applications or frameworks that you'd also like to be able to 
use for quick development. 

For instance, there's no way to quickly and easily create a dialog-based applica
tion. In many situations, dialog-based applications represent a very handy tool in 
prototyping or rapidly developing an application that would take much longer to 
create if you used any other method. 

To remedy this situation, let's create our own Wizard for VC++ in 10 easy steps, 
first creating a simple, dialog-based application and the Wizard based on the 
application. 



Page 00181

FIGURE 5.7: 

The generic dialog 

Using VC++ to Develop for Windows CE 155 

1. To create the dialog-based application, create a new WCE Application with 
the Simple Windows CE Application option specified. 

2. After VC++ creates the source files and places you in the project, create a 
simple, generic dialog, as shown in Figure 5.7. 

Dialog r:l3 EJ 

R.ecycle Bin 

MY Handhel ... 

Contacts Microsoft 
Pocket Word 

Microsoft 
Pocket Exce I 

Shortcut to Microsoft 
Notepad Pocket 

PowerP_oJnt 

3. Your next task is to create a simple Dial ogProc(). So that your project is 
generic enough to be useful for a variety of applications, make it handle two 
messages: 

WM_INITDIALOG 
WM_COMMAND 

(You may also want to handle WM_CTLCOLORDLG if you find that your dialog 
paints strangely on some devices.) 

When you're finished, you have a fairly basic-looking Dial ogProc(): 

BOOL CALLBACK DlgProc (HWND hwnd, UINT uMsg, WPARAM wParam, 
LPARAM lParam) 
{ 

switch (uMsg) 
{ 

case WM_INITDIALOG: 
{ 

return TRUE; 



Page 00182

156 Chapter 5 • CE Toolkit for Visual C++CE 

case WM_CTLCOLORDLG: 
( 

SetBkColor((HDC)wParam, LTGRAY_BRUSH); 
return FALSE; //for occasional strange painting 

case WM_COMMAND: 

switch(LOWORD(wParam)) 
( 

default: 

case IDCANCEL: 
case IDOK: 

EndDialog(hwnd, 0); 
return TRUE; 

return FALSE; 

4. The only thing left to do is to edit your Wi nMa i n () function to launch the dialog: 

DialogBox ((HANDLE) hinstance, MAKEINTRESOURCE(IDD_DIALOGl), NULL, 
(DLGPROC)DlgProc); 
return 0 ; 

You are now done creating your template application. 

5. Now to create the Wizard. Choose File> New in VC++. Then choose the 
Projects tab, and select CustomAppWizard from the list. Enter a name for 
your new Wizard such as WCE Dialog-based Application. Click Next. 

6. When you've done this, you'll be presented with a list of options, as shown 
in Figure 5. 8. 

7. Choose An Existing Project as the starting point for your Wizard, and click 
the Next button. 

8. In the dialog that appears, enter the name of the application you created in 
steps 1-4. Click Next. You'll then be asked to confirm your options; click 
Done to finish. 



Page 00183

FIGURE 5.8: 

The Custom App 
Wizard dialog 

Using VC++ to Develop for Windows CE 157 

Custom App\tliza1d - Step 1 of 2 1:1 

Next> 

What would you like as a starting point for 
yow custom AppWizard? 

r. An · loo .12t'Oie~·~ 
! Standard MFC 8ppWizard steps 

(: Your own .QLJstom steps 

What should your custom .ll,ppWizard be called 
in the Projects Jist? 

I appwz AppWizard 

Cancel 

9. When VC++ places you into the project, NEWPROJ.INF should read some
thing like the following: 

= : ICONl. ICO 
RESOURCE.H 
=SIMPLE.( 
ROOT . RC 

i conl. i co 
resource.h 
simple.c 
$$root$$.rc 

Change this so that the line referencing simple. c- or the name of your 
application's main C/C++ file- now reads 

=SIMPLE.C $$root$$.c 

This ensures that your main C/C++ file will be renamed to reflect whatever 
project name is entered into your Wizard when someone creates a new project. 

10. Next, compile your Wizard- and it's ready to use! 



Page 00184

158 Chapter 5 • CE Toolkit for Visual C++CE 

The Platform SDKs 

TIP 

The platform SDKs can be regarded as two separate packages: First, there are the 
generic tools that will work for any CE platform. Second, there are the platform
specific tools, such as the emulators. 

The Generic Tools 

The major part of every SDK is the supplementary tools and utilities designed to 
make it easier to target and debug the Windows CE platforms. Some of the tools 
currently shipping with the SDKs are 

• Remote File Viewer, a Desktop-based Explorer for CE Devices 

• Remote Heap Viewer, which allows you to view information about Heap 
allocation on your device 

• Remote Process Viewer, a kind of Desktop-based task manager for CE 

• Remote Registry Editor, which allows you to edit the registry of your CE 
device 

• Remote Spy++, which allows you to view class information and messages 
for the various windows, both hidden and active, on your CE device 

• Remote Zoomin, a tool for taking screenshots of programs running on your 
device 

These tools are included in all of the SDKs and should work with any CE devices, 
regardless of form factor. However, in each toolkit there is a unique tool that can 
help you develop for a CE-based form factor, even if you do not own a device. 

All SDK tools are simple RAPI applications, which means that you can easily create 

your own CE tools for debugging! For more on RAPI and creating RAPI applications, 

see Chapter 10. 

The Emulators 

Each of the SDKs comes with a Desktop-based emulator for the platform the SDK 
is targeting. For example, the AutoPC SDK comes with an emulator for the Auto PC. 

1 



Page 00185

Using VC++ to Develop for Windows CE 159 

The emulators can be a wonderful tool for prototyping and debugging your 
application before you begin testing it on a device. 

There are, however a few drawbacks to using the emulators. The first disadvan
tage is that they're not true emulators. You must compile a special version of your 
program just for the emulator. 

Second, the emulators only run on Windows NT; they will not run under 
Windows 98. This is because the emulators, like Windows CE itself, are Unicode
based, while Windows 98 is ANSI-based. It is true that 98 does have stub code for 
some Unicode operations, but it is not enough to support the CE emulators. 

WARNING Because the emulators and many of the SDK tools do not run under Windows 
95/98, it is recommended that you use Windows NT as your development plat

form . Although the emulators do not work under 95/98, two of the SDK tools wi ll 

run just fine: Remote Zoomin and Heap Viewer 

The typical CE application development cycle, then, is to first compile for the 
emulator of your choice (yes, you must actually do a special compilation just for 
the emulator). Next, test and debug your application in the emulator as thor
oughly as possible. Finally, when you believe that your application is ready, 
upload it to the CE device and repeat the process. Of course, since testing and 
debugging on aCE device may be quite time-consuming, being able to debug on 
the Desktop is a serious advantage. 

The third real disadvantage of using the emulators is that they tend to be more 
forgiving of bad code than the devices are. What that means is that even though 
your code works in the emulator, you may still have some work to do before it 
will work on the device. Simply put, the emulators are not a 100 percent-reliable 
measure of how your code will work on a device. For instance, in the HPC emula
tor, the following code either crashes or runs and displays the desired result: 

case WM_INITDIALOG: 

LPSYSTEMTIME lpSystemTime; //system time struct 
TCHAR chTime[254]; //string to display system time 
GetSystemTime(SystemTime); 
wsprintf((LPTSTR)chTime, TEXT("Today's date: %d/%d/%d"), 

lpSystemTime->wMonth, lpSystemTime->wDay, lpSystemTime->wYear); 
SetWindowText(hwnd, TEXT("Hello WinCE!")); 



Page 00186

160 Chapter 5 • CE Toolkit for Visual C++CE 

SendDlgitemMessage(hwnd, IDC_DATETEXT, WM_SETTEXT, 0, 
(LPARAM) (LPTSTR)chTime); 

return TRUE; 

At first glance, it seems like acceptable code, but look closely. The l pSystem-
Ti me structure is never initialized to point to a valid memory location before it is 
passed to GetSystemTime(). When this same code L-; executed on an HPC device, 
the program runs and behaves relatively normally, with the exception thal there 
is an area of the dialog box that, instead of showing the date, shows the word Stntic. 

The corrected code looks like this: 

case WM_INITDIALOG: 
{ 

SYSTEMTIME SystemTime; //system time struct 
TCHAR chTime[254]; //string to display system time 
GetSystemTime(&SystemTime); 
wsprintf((LPTSTR)chTime, TEXT("Today's date: %d/%d/%d"), 

SystemTime.wMonth, SystemTime.wDay, SystemTime.wYear); 
SetWindowText(hwnd, TEXT("Hello WinCE!")); 
SendDlgitemMessage(hwnd, IDC_DATETEXT, WM_SETTEXT, 0, 

(LPARAM) (LPTSTR)chTime); 
return TRUE; 

Here, the address of a SYSTEMTIME variable (not just an LPSYSTEMTIME variable, 
as before) is passed to GetSystemTi me(), which will return the correct values on 
a device or in the emulator. 

MFC vs. SDK-Style Coding 
There's ongoing debate about using MFC or SDK-style code. And, in the case of 
Windows CE, both SDK-style programmers and MFC programmers have had to 
give up a little. As demonstrated in Chapters 3 and 6, many API calls are missing 
from the CE API and some MFC classes have been modified or dropped com
pletely on CE. In the end, however, it comes down to two simple issues: storage 
space and ease of development. 



Page 00187

MFC vs. SDK-Style Coding 161 

Storage Space 
If you create the simplest possible SDK-style application and the simplest possible 
MFC application, you'll get the following results: 

MFCorSDK 

SDK 

MFC 

EXE Size 

8.SK 

lOK 

Additional DLLs 

(none) 

356K 

Total Storage 
Space 

8.SK 

366K 

When developers first started writing forCE, this 350K difference was a big 
reason that so much SDK-style development was done. However, CE devices and 
their uses are changing in a couple of ways that make MFC more attractive. 

First, many applications are being developed as vertical market applications, 
which means that the device will likely be running just that one application. In 
that case, it obviously doesn't matter how much storage space your program 
occupies, because you have the entire device to yourself. 

The second changing aspect of CE devices is that OEMs are now starting to 
include the MFC runtimes in the ROM of the devices themselves. This means that 
it will no longer be necessary for you to ship a 350K DLL with your applications. 

Of course, not all devices have the DLL in ROM, so this is still an issue for the 
time being. And, SDK-style programmers will correctly point out that they can 
still write tighter, more compact code than that which MFC can produce. 

Ease of Development 
Ease of development is more of an individual decision. If you happen to have an 
existing program that you're looking to port to Windows CE, you're almost cer
tainly going to choose whichever style of coding the existing program was origi
nally written in. 

Only a few MFC classes have not been implemented onCE, so it is typically 
easier to port existing MFC code than it is to port existing SDK-style code. This is 
especially true as large numbers of the API and C-runtime library functions have 
not been implemented forCE. However, just as with the issue of storage space, 
some of these objections are also fading away. For instance, with the release of 



Page 00188

162 Chapter 5 • CE Toolkit for Visual C++CE 

CE 2.11, Microsoft significantly enhanced the available C-runtime libraries, mak
ing it easier to port existing code and to write new code. 

The end result of this is that the line dividing MFC and SDK-style CE develop
ers is becoming almost invisible. With the release of CE 2.11 and future releases, 
you'll likely see both styles of coding become equally popular, with no clear bene
fit to either one. In the next chapters, we'll examine MFC and SDK-style program
ming in more detail. We'll look at the benefits of each and tell you how to work 
around what's missing from each when it comes to Windows CE. 

A Sample SDK-Style Application 

FIGURE 5.9: 

The PPC device 
Task Manager 

At this point, let's take a look at a sample SDK-style application forCE and exam
ine how it differs from a standard Win32 application. For this demonstration, let's 
make a simple Task Manager-style application for the Palm-size PC. Currently, 
the only way to see all of the programs running on your PPC device and close a 
program that's running requires you to go to Start> Settings> System, then 
click the Task Manager tab, as shown in Figure 5.9. In our sample application, we 
will change this so that our Task Manager will allow the user to close any applica
tion with one click. 

~nd Task 



Page 00189

A Sample SDK-Style Application 163 

Using the Dialog-based App Wizard that you just created, you will now create a 
simple, dialog-based application from which you'll begin your Task Manager. 
Your Task Manager will have three purposes: 

• To display a list of running tasks 

• To allow the user to switch to any of the tasks 

• To allow the user to close any of the tasks 

We will cover each of these purposes separately in the following sections. 

Displaying a List of Running Tasks 
The first step in this process is to add a list box to your dialog box that will show 
the list of running tasks once they've been retrieved from the system. Using the 
dialog editor of VC++, go ahead and add a list box by selecting the ListBox icon 
from the toolbar and dragging in onto your form. Then, right-click the list box, 
select Properties, and rename its identifier to IDC_LISTTASKS. Since you'll also 
need an End Task and a Switch To button, go ahead and add them to the form 
now. Give the End Task button an identifier of IDC_ENDTASK and the Switch To 
button an identifier of IDC_SWITCHTO. 

Now, on to the list of tasks. Filling the list box with the list of windows on the sys
tem is quite easy. First, make sure to clear out any existing contents of the list box: 

SendMessage(hwndCtrl, LB_RESETCONTENT, 0, 0); 

Then, begin looping through all of the windows on the system with successive 
calls to GetWi ndow(): 

hWndAWindow = GetWindow(hwnd, GW_HWNDFIRST); 
while (hWndAWindow != 0) 
{ 

Be careful to filter out your own application, any hidden windows, any child 
windows, and, of course, the Desktop itself: 

&& 

if ((hWndAWindow != hwnd) && 
IsWindowVisible(hWndAWindow) && 
(GetWindow(hWndAWindow, GW_OWNER) == 0) && 
(GetWindowText(hWndAWindow, szBuff, MAX_PATH) != 0) 

(lstrcmpi (szBuff, TEXT("Desktop")) != 0)) 



Page 00190

164 Chapter 5 • CE Toolkit for Visual C++CE 

If the window you find passes these tests, simply add its caption to your list 
box and retrieve the next window handle: 

SendMessage(hwndCtrl, LB_ADDSTRING, 0, (LPARAM) 
(LPCTSTR) szBuff); 

hWndAWindow = GetWindow(hWndAWindow, GW_HWNDNEXT); 

When it's all put together, it looks like this: 

dow) && 

&& 

SendMessage(hwndCtrl, LB_RESETCONTENT, 0, 0); 
hWndAWindow = GetWindow(hwnd, GW_HWNDFIRST); 
while (hWndAWindow != 0) 

{ 

if ((hWndAWindow != hwnd) && IsWindowVisible(hWndAWin-

(GetWindow(hWndAWi ndow, GW_OWNER) == 0) && 
(GetWindowText(hWndAWindow, szBuff, MAX_PATH) != 0) 

(lstrcmpi (szBuff, TEXT("Desktop")) != 0)) 
SendMessage(hwndCtrl, LB_ADDSTRING, 0, (LPARAM) 

(LPCTSTR) szBuff); 
hWndAWindow = GetWindow(hWndAWindow, GW_HWNDNEXT); 

A Missing API Call and Some Recycled Code 
With a few changes, the above code can double as a replacement for GetDesktop 
Window(), one of the API calls that's missing from the CE API. GetDesktopWi ndow() is 

used to get the window handle of the desktop. This has many uses, including retrieving 

the device context (DC) of the desktop so that you can paint directly on it. However, 
although it is used quite commonly in desktop PC programming, GetDesktopWi ndow() is 

not supported under Windows CE. 

If you look at the code we just wrote, though, you'll note that we're making sure not to 
add the Desktop window to our task list. Therefore, it stands to reason that there is a win

dow calling itself the Desktop. If you know this, you can get its handle. For instance, if you 
modified your existing block of code from the example above so that you are explicitly 

looking for that Desktop window, you can simulate GetDesktopWi ndow() . 

Continued on next page 



Page 00191

A Sample SDK-Style Application 165 

The modified code for a GetDesktopWi ndow()-style routine has the same GetWi ndow() 

loop as the above example: 

hWndAWindow = GetWindow(hwnd, GW_HWNDFIRST); 

while (hWndAWindow != O) 
{ 

Again, it retrieves the caption of each window: 

GetWindowText(hWndAWindow, szBuff, MAX_PATH); 

This time, however, it only quits if it finds one whose caption matches the word Desktop: 

if (lstrcmpi (szBuff, TEXT("Desktop")) == 0) 
{ 

break; 

Otherwise, it continues to retrieve the next window: 

hWndAWindow = GetWindow(hWndAWindow, GW_HWND-
NEXT); 

When assembled, the entire block of code looks like this: 

NEXT); 

hWndAWindow = GetWindow(hwnd, GW_HWNDFIRST); 
while (hWndAWindow != 0) 
{ 

GetWindowText(hWndAWindow, szBuff, MAX_PATH); 
if (lstrcmpi (szBuff, TEXT('Desktop")) == 0) 

break; 

hWndAWindow = GetWindow(hWndAWindow, GW_HWND-

With just a few lines of mostly recycled and borrowed code, you've just managed to simu
late one of the missing API calls. Of course, you might not be so lucky all the time-for 
more on working around missing API calls, see Chapter 3. 



Page 00192

166 Chapter 5 • CE Toolkit for Visual C++CE 

Switching to One of the Tasks 
Switching to one of the tasks in the task window is extremely simple. All you 
have to do is to add a handler for the WM_COMMAND message, since the user will be 
clicking a button in order to make this work. First, make sure that the user actu
ally did select an item from the list: 

cbCnt ~ (int)SendMessage(GetDlgitem(hwnd, 
IDC_LISTTASKS), LB_GETCURSEL, 0, OL); 

if ((cbCnt < 0)) 
{ 

MessageBox(hwnd, TEXT("You must first 
select a task."), TEXT("Error: No task"), MB_OK I MB_ICONSTOP); 

return TRUE; 

If they did select an item, retrieve the text of the currently selected item: 

SendMessage(GetDlgltem(hwnd, IDC_LISTTASKS), 
LB_GETTEXT, 
(WPARAM)SendMessage(GetDlgltem(hwnd, 

IDC_LISTTASKS), LB_GETCURSEL, 0, OL), 
(LPARAM)(LPSTR)szBuff); 

Then, make sure the window still exists by calling Fi ndWi ndow(): 

if (FindWindow(NULL, szBuff) !~ NULL) 
{ 

If it does, call SetFo reg roudWi ndow(): 

hWndAWindow = FindWindow(NULL, szBuff); 
SetForegroundWindow(hWndAWindow); 

This done, the only job remaining is to add the logic for closing a running 
application. 

Closing an Application 
You may have noticed that in the last code example, which switches to an appli
cation, the if ( Fi ndWi ndow(NULL, szBuff) ! = NULL) block was never actually 
finished. This is because with just another few lines of code, you can make the 
same routine serve to close an application as well. All you have to add to the 
above code is: 

if (LOWORD(wParam) ~~ IDC_ENDTASK) 



Page 00193

NOTE 

A Sample SDK-Style Application 167 

SendMessage(hWndAWindow, WM_CLOSE, 0, 
0); 

Then, add one additional line to close the Task Manager: 

SendMessage(hwnd, WM_CLOSE, 0, 0); 

Close the Task Manager after the user has switched to another program or closed 

a program to be consistent w ith the behavior of the Windows 98 Task Manager, 
which does the same thing . 

At first, this handling of two button events with the same WM_COMMAND 
message handler might seem a bit confusing, so let's take a look at the entire mes
sage handler block of code: 

case WM_COMMAND: 

switch(LOWORD(wParam)) 
{ 

case IDCANCEL: 
case IDOK: 

EndDialog(hwnd, 0); 
return TRUE; 

case IDC_ENDTASK: 
case IDC_SWITCHTO: 

int cbCnt; 
TCHAR szBuff[MAX_PATH]; 
HWND hWndAWindow; 
cbCnt = (int)SendMessage(GetDlgitem(hwnd, 

IDC_LISTTASKS), LB_GETCURSEL, 0, OL); 
if ((cbCnt < 0)) 

MessageBox(hwnd, TEXT("You must first 
select a task . "), TEXT("Error: No task"), MB_OK I MB_ICONSTOP); 

return TRUE; 

SendMessage(GetDlgitem(hwnd, IDC_LISTTASKS), 
LB_GETTEXT, 



Page 00194

168 Chapter 5 • CE Toolkit for Visual C++CE 

(WPARAM)SendMessage(GetDlgitem(hwnd, 
IDC_LISTTASKS), LB_GETCURSEL, 0, OL), 

window still exists! 

0); 

(LPARAM)(LPSTR)szBuff); 
if (FindWindow(NULL, szBuff) != NULL) //the 

hWndAWindow = FindWindow(NULL, szBuff); 
SetForegroundWindow(hWndAWindow); 
if (LOWORD(wParam) == IDC_ENDTASK) 
{ 

SendMessage(hWndAWindow, WM_CLOSE, 0, 

SendMessage(hwnd, WM_CLOSE, 0, 0); 
return TRUE; 

else //if you didn't find the app, it ' s time to 
refresh the list of tasks 

SendMessage(hwnd, WM_USER + 200, 0, 0); 
break ; 

As you can see, it makes sense to handle both the IDC_ENDTASK and the 
IDC_SWITCHTO button clicks in the same handler because, with the exception of 
the very last if statement, they need to do exactly the same thing. Both of them 
need to make sure the user selected an item from the list, and both of them need 
to make sure that if they did select an item, that item is still a valid window. By 
combining the two button handlers into one, you can make the application much 
more efficient. 

One Last Snag: Keeping the List of Tasks Current 
If you look closely at the entire WM_COMMAND message handler, you'll notice 
that there's one extra line of code at the end that we haven't yet discussed. It reads 

SendMessage(hwnd, WM_USER + 200, 0, 0); 

This simple line of code exists to solve a common Task Manager problem: it 
ensures that the list of tasks in the list box is current. In other words, you don't 
want the application to display a task that's no longer running. Normally, you 
might handle something like this by setting up a timer, but here that's not neces
sarily the most efficient way to accomplish this. 



Page 00195

-
A Sample SDK-Style Application 169 

Instead, take the code that fills up your list box and move it to a custom mes
sage (say, WM_USER+200) handler, like this: 

case WM_USER + 200: 

//fill list box code get moved here ... 

Then, ensure that the Task Manager application sends itself this WM_USER + 200 
message on any one of the following three occasions: 

• When the program starts up 

• When the program receives a WM_CTLCOLORDLG message (the closest thing to 
WM_PAINT when working with dialogs) 

• Whenever the user selects a task from the list that no longer exists 

The first case can be handled by amending the WM_INITDIALOG handler to read 

case WM_INITDIALOG: 

SendMessage(hwnd, WM_USER + 200, 0, 0); 
return TRUE; 

The second case can be implemented similarly with regard to the WM_CTLCOL
ORDIALOG message: 

case WM_CTLCOLORDLG: 

SendMessage(hwnd, WM_USER + 200, 0, 0); 
return TRUE; 

The third item, as you saw already, is implemented in the WM_COMMAND handler 
by trapping the condition of the selected item not being a valid window handle. 
This is shown in the last line of this block of code: 

window still exists! 
if (FindWindow(NULL, szBuff) !=NULL) / /the 

hWndAWindow = FindWindow(NULL, szBuff); 
SetForegroundWindow(hWndAWindow); 
if (LOWORD(wParam) == IDC_ENDTASK) 



Page 00196

Chapter 5 • CE Toolkit for Visual C++CE 

TIP 

0); 
SendMessage(hWndAWindow, WM_CLOSE, o 

SendMessage(hwnd, WM_CLOSE, 0, 0); 
return TRUE; 

' 

else //if you didn't find the app, it's time to 
refresh the list of tasks 

SendMessage(hwnd, WM_USER + 200, 0, 0); 

When you're finished, you'll have a professional-looking application that will 
make the Palm-size PC devices much easier to use. 

There's absolutely no reason you can't run your Task Manager on an HPC device, too. 

As you can see, SDK-style coding forCE doesn't look all that different from 
SDK-style coding for desktop PCs. The main difference between SDK-style cod
ing and any Win32 code you may have written is the use of the TEXT macro to 
account for Unicode strings. Of course, you can and should use this macro when 
coding for 98 or NT, but most programmers still regard it as optional. 

Summary 
In this chapter, we learned the basics of using Visual C++ to build applications for 
Windows CE. We also examined some of the advantages of both MFC and SDK
style coding. Finally, we made a simple Task Manager application to make our 
Palm-size PCs more user-friendly.w 

In the next chapters, we'll be exploring more MFC on CE as well as Visual Basic 
on CE. MFC has several"new" classes that exist only on the CE platform, and 
we'll be looking at each of them and how to use them. Similarly, Visual Basic on 
CE has a number of unique tools and features that we'll learn to master. 



Page 00197Page 00197



Page 00198Page 00198



Page 00199

CHAPT£R 
S I X 

Yes, It's Possible-MFC onCE! 

• New Classes for CE 

• Modified Classes 

• Classes That Lost Functionality 

• Classes That Gained Functionality 

• Missing Classes 



Page 00200

174 Chapter 6 • Yes, It's Possible-MFC onCE! 

In chapter 5, we looked at some of the differences between coding in an SDK
style versus using MFC. In this chapter, we'll explore the differences between 
MFC on the Desktop and MFC on a CE device. While most of MFC remains 
unchanged, there are a few changes we need to know about. Generally, these 
changes fall into three categories: 

• New classes and how to use them 

• Modified classes and how to deal with them 

• Deleted classes and how to live without them 

We'll be taking a look at each of these areas and how they'll affect our 
applications. 

New Classes for CE 
Because some of the functionality offered by the Windows CE API was so differ
ent from anything in the desktop world, Microsoft found it necessary to add five 
new classes to the MFC class library. They are: 

• CCeSocket 

• CCeDBEnum 

• CCeDBDatabase 

• CCeDBProp 

• CCeDBRecord 

The first of these classes, CCeSocket, handles the limited Winsock operations 
supported by Windows CE. The remaining four classes allow MFC programs to 
use the Windows CE database engine. 



Page 00201

New Classes forCE 175 

ccesocket 

FIGURE 6.1: 

The CCeSocket is a very unusual class. Mostly, that's because all of its documen
tation advises us that CAsyncSocket is not supported under Windows CE and 
that we should use CCeSocket instead. However, this is only partially true. 

In fact, we should use CCeSocket for all Winsock-based communication under 
Windows CE. That's because CE doesn't support true asynchronous communica
tion. Instead, CCeSocket simulates asynchronous events by creating two threads 
that watch for socket-related operations and events. When an event occurs, the 
threads pass the notification to the correct message handler. That's the part of the 
statement about CAsyncSocket and CCeSocket that's true. 

The part that isn't true is that there is, in fact, a CAsyncSocket on Windows CE. 
It's just that it's buried about three levels deep and exists only as a base class upon 
which the other two socket classes of Windows CE (CSocket and CCeSocket) 
are built. 

Under Windows 98/NT, the object hierarchy for socket classes looks something 
like the diagram in Figure 6.1. 

CObject 

Socket classes object hier
archy under Windows 98/NT L CAsyncSocket 

L CSocket 

FIGURE 6.2: 

Socket classes object hier
archy under Windows CE 

Under Windows CE, there is one extra class, as shown in Figure 6.2. 

CObject 

L CAsyncSocket 

L CSocket 

L CCeSocket 



Page 00202

Chapter 6 • Yes, It's Possible-MFC onCE! 

TIP 

TIP 

For more on communication with Windows CE, see Chapter 11 . 

MFC forCE also defines a custom Windows message, WM_SOCKET_NOTIFY, for 
use with the CCeSocket class. However, since this message appears to be used 
only internally, it should not affect our development at all. 

The remaining four classes in our list are CE database classes and exist strictly 
for the purpose of encapsulating the Windows CE Database Engine. In this sec
tion, we'll take a look at each class and how to use it. 

CCeDBEnum 
CCeDBEnum is a class that wraps the CeFi ndFi rstDatabase() I CeFi ndNextData
base() functions. When you create a CCeDBEnum object-just as with the CeFi nd
Fi rstDatabase() function-you can pass in a database-type identifier to look 
for a specific type of database, or you can pass in 0 to tell the object to enumerate 
all databases. You can then retrieve the CEOID of each database matching your 
criteria by calling the class's Next() method. 

In code, retrieving a listing of all databases might look something like this: 

CCeDBEnum DBEnum; 
DBEnum = new CCeDBEnum(O); 
while (idCEOID = DBEnum.Next()) 
{ 

// ... do some processing here 
} 

// .. 0 

CCeDBProp 
The CCeDBProp class encapsulates the CEPROPVAL structure used to set and 
retrieve values for properties (fields) of a database record. Table 6.1 shows the 
methods of CCeDBProp and the members of the CEPROPVAL structure to which 
they correspond. 



Page 00203

New Classes forCE 177 

TABlE 6. 1 : CCeDBProp Methods and Corresponding CEPROPVAL Members 

Method CEPROPVAL members Description 

GetBl ob() myCEPROPVAL.val.blob Retrieves the CEBLOB value of the property 

GetFi l eti me() myCEPROPVAL.val .filetime Retrieves the FILETIME value of the property 

Get I dent() HIWORD(myCEPROPVAL.propid) Retrieves the identifier of the property 

Get long() myCEPROPVAL.val.lVal Retrieves the long int value of the property 

GetShort() myCEPROPVAL.val .iVal Retrieves the int va lue of the property 

GetSortFl ags() myCEPROPVAL.wFlags Retrieves the flags specifying how the property is 
sorted 

GetStri ng() myCEPROPVAL.val .lpwstr Retrieves the wide string value of the property 

GetType() LOWORD(myCEPROPVAL.propid) Retrieves the type of the property 

GetULong() myCEPROPVAL.val .ulVal Retrieves the unsigned long int value of the 
property 

GetUShort() myCEPROPVAL.val.uVal Retrieves the unsigned int value of the property 

SetBl ob() myCEPROPVAL.val.blob Retrieves the CEBLOB value of the property 

SetFi l eti me() myCEPROPVAL. val . fil eti me Sets the FILETIME value of the property 

Setident() HIWORD(myCEPROPVAL.propid) Sets the identifier of the property 

Set long() rnyCEPROPVAL.val .lVal Sets the long int value of t he property 

SetShort() rnyCEPROPVAL .val.uVal Sets the unsigned int value of the property 

Set So rtFl ags() myCEPROPVAL.wFlags Sets the flags specifying how the property is 
sorted 

SetStri ng() myCEPROPVAL.val . lpwstr Sets the wide string value of the property 

SetType() LOWORD(myCEPROPVAL.propid) Sets the type of the property 

SetULong() myCEPROPVAL.val.ulVal Sets the unsigned long int value of the property 

SetUShort() rnyCEPROPVAL.val .uVal Sets the unsigned int value of the property 



Page 00204

178 Chapter 6 • Yes, It's Possible-MFC onCE! 

The one point you must be aware of here is that these methods to set and retrieve 
a value of a certain type do not perform any conversions. If you attempt to read a 
numeric value from a property that contains a string, you will likely get invalid 
data and cause an error. In other words, you must always check the type of the 
property before reading its data. 

Although there are lots of ways to accomplish this, the most generic-and, it 
would seem, most popular-is through the use of a switch .. case block based 
on the value returned by the GetType() method: 

switch(MyCeDBProp.GetType()) 
{ 

case CEVT_I2: 
wsprintf(szBuf, TEXT( "%d"), MyCeDBProp.GetShort()); 
break; 

case CEVT _UI2 : 
0sprintf(szBuf, TEXT( "%d"), MyCeDBProp.GetUShort()); 
break; 

case CEVT_I4: 
wsprintf(szBuf, TEXT( "%d"), MyCeDBProp.Getlong()); 
break; 

case CEVT_UI4: 
wsprintf(szBuf, TEXT( "%d"), MyCeDBProp.GetULong()); 
break; 

case CEVT_FILETIME: 
wsprintf(szBuf, TEXT( "FILETIME DATA ")); 
break; 

case CEVT_LPWSTR: 
wsprintf(szBuf, MyCeDBProp.GetString()); 
break; 

case CEVT_BLOB: 
wsprintf(szBuf, TEXT( "BLOB_DATA")); 
break; 

This switch .. cas e block is very similar to the one we'll create later in Chap
ter 10. One of the reasons for this is that although the MFC classes for accessing 
data do provide some abstraction from the API, they do not provide the same 
level of abstraction as, say, CStri ng provides. 



Page 00205

New Classes for CE 179 

CCeDBRecord 
The CCeDBRecord class serves mostly as a way to group a set of CCeDBProp objects 
together so that they may be treated as a record. In reality, this class is little more 
than a wrapper for a CObArray object. This means that the methods of CCeDBRecord 
do not have any API equivalents, and they have absolutely no effect on the under
lying data. They exist only to provide a friendly, logical way to associate CCeDB
Prop objects. Table 6.2lists the CCeDBRecord methods and reveals what each 
method actually does. 

T A B l E 6 . 2 : CCeDBReco rd Methods and What They Do 

Method Description 

Add Prop() Calls the CObArray. Add() method 

AddProps() Calls the CObArray .Add() method for each property passed in 

DeleteAllProps() Removes al l elements from the CObArray and frees all used memory 

DeleteProp() Removes specified property from CObArray 

GetNumProps() Returns number of elements in CObArray 

GetPropFromident() Finds specified property and returns CCeDBProp object 

GetPropFromindex() Returns nth CCeDBProp from CObArray 

CCeDBDatabase 

NOTE 

The CCeDBDatabase class encapsulates all of the API calls dealing with database 
creation and seeking and accessing records. In short, CCeDBDatabase makes it 
possible for us to treat a CE database as an object. Table 6.3 lists the methods of 
the CCeDBDatabase class and shows the API function that each method corre
sponds to. 

In Table 6.3, only the key values have been filled in for each API function. 



Page 00206

180 Chapter 6 • Yes, It's Possible-MFC on CE! 

TAB l E 6. 3 : CCeDBDatabase Methods and Corresponding API Functions 

CCeDBDatabase API function 
Method 

AddRecord() CeWriteRecordProps( . .. 
,0, ... ' ... ) 

Close() CloseHandle() 

Delete() CeDeleteDatabase(idCEOID) 

DeleteCurrRecord() CeDeleteRecord(hDatabase, 
i dCEOID) 

DeleteCurrRecordProps() cepvPropVal.wFlags = 

CEDB_PROPDELETE 

Exists() 

GetCu rrindex() 

GetCur rRecord() 

Getident() 

GetlastModified() 

GetName() 

GetNumRecords() 

GetSi ze() 

GetSortProps() 

CeOpenDatabase() 

CeSeekDatabase( ... ,CED 
B_SEEK_CURRENT, . .. ,&dw 
Index) 

CeSeekDatabase( .•. ,CED 
B_SEEK_CURRENT, ... , •.. ) 

CeOidGetinfo(idCEOID, ... ) 

CeOidGetinfo(idCEOID, ... ) 

CeOidGetinfo(idCEOID, . . . ) 

CeOidGetinfo(idCEOID, ... ) 

CeOidGetinfo(idCEOID, ... ) 

CeOidGetinfo(idCEOID, ... ) 

Description 

Writes the specified CCeDBRecord to 
the database Used for appending a 
new record to the database. 

Closes the database. 

Deletes the database. 

Deletes the record with the specified 
CEOID from the database . 

Equivalent to setting the wFl ags of a 
CEPROPVAL to CEDB_PROPDEL TE. 
Deletes the specified property or 
properties from the current record. 

Attempts to open specified database; 
if not found, function returns FALSE. 

Ca lls CeSeekDatabase() to retrieve 
the index value returned in the fourth 
parameter 

Retrieves the current record. 

Calls CeOi dGetinfo () to retrieve the 
database type identifier. 

Calls CeDi dGetinfo() to retrieve the 
date that the database was last modi
fied 

Ca lls CeOi dGetinfo() to ret rieve the 
database name. 

Calls CeOi dGetinfo() to retrieve the 
number of records in the database. 

Ca lls CeOi dGetinfo() to retrieve the 
database size. 

Ca lls CeOi dGetinfo() to retrieve the 
database's SORTORDERSPEC array. 

-



Page 00207

New Classes for CE 181 

TA 8 L E 6. 3 C 0 NT IN U ED: CCeDBDatabase Methods and Corresponding API Functions 

CCeDBDatabase 
Method 

Open() 

ReadCurrRecord() 

SeekFi rst() 

SeekFi rstEqual () 

Seek last() 

SeekNex t() 

SeekNextEqual () 

SeekPrev() 

SeekToindex() 

SeekToRecord() 

SeekValueGreater() 

SeekValu eSmaller() 

API function 

CeOpenDatabase() 

CeReadRecordProps() 

CeSeekDat abase( .. . ,CEDB_ 
SEEK_BEGINNING,O, ... ) 

CeSeekDatabase( ... ,CEDB_ 
SEEK_VALUEFIRSTEQUAL,cep 
vPropToMatch, .. . ) 

CeSeekDatabase( • •. ,CEDB_ 
SEEK_END,O, ... ) 

CeSeekDatabase( •.• ,CEDB_ 

SEEK_CURRENT,l, ••. ) 

CeSeekDatabase( ••• ,CEDB_ 
SEEK_NEXTEQUAL, .•. , .•• ) 

CeSeekDatabase( ... ,CEDB_ 
SEEK_CURRENT, - 1,0) 

CeSeekDatabase( ... ,CEDB_ 
SEEK_END,-lval, ... ) 
or 
CeSeekDatabase( ... ,CEDB_ 
SEEK_BEGINNING,lval, ... ) 

CeSeekDatabase( . .. ,CEDB_ 
SEEK_CEOID, i dCEOID, ... ) 

CeSeekDatabase( . . . ,CEDB_ 
SEEK_VALUEGREATER,cepvPr 
opToMatch, ... ) 

CeSeekDatabase( ... ,CEDB_ 

SEEK_VALUESMALLER,cepvPr 
opToMatch, ... ) 

Description 

Calls CeOpenDatabase() to open the 
database 

Calls CeReadRecordProps() to read 
in the current record 

Calls CeSeekDatabase() and passes 
in CEDB_ SEEK_BEGINNING. 

Calls CeSeekDatabase()and tells 

it to try to match a specific value/ 
property 

Calls CeSeekDatabase()and passes 
in CEDB_SEEK_ END. 

Calls CeSeekDatabase() and tells it 

to advance the record pointer by one 
recmd. 

Calls CeSeekDatabase()and passes 
in CEDB_SEEK_NEXTEQUAL 

Calls CeSeekDatabase( )and tells it 
to move the record pointer back by 
one record. 

Calls CeSeekDatabase()and tells it 

to seek from the beginning or end 
of the database if the number of 
records to seek is positive or negative, 
respectively. 

Calls CeSeekDatabase()and tells it 
to find the record with a matching 
CEO !D. 

Calls CeSeekDatabase()and tells it 
to find the first value/property greater 
than that specified 

Calls CeSeekDatabase()and tells it 
to find the first value/property smaller 
than that specified 



Page 00208

182 Chapter 6 • Yes, It's Possible-MFC onCE! 

TIP 

T A B L E 6 . 3 C 0 NT I N U E D : CCeDBDatabase Methods and Corresponding API Functions 

CCeDBDatabase 
Method 

Setident() 

SetLastModified() 

SetName() 

SetSortProps () 

WriteCurrRecord() 

API fundion 

CeSetDatabaseinfo 
(idCEOID, ... ) 

CeSetDatabaseinfo 
(i dCEOID, ... ) 

CeSetDatabaseinfo 
(idCEOID, ... ) 

CeSetDatabaseinfo 
(idCEOID, ... ) 

CeWriteRecordProps( ... ,i 
dCEOID, ... , ... ) 

Description 

Calls CeSetDatabaseinfo () to set 
the database type identifier. 

Calls CeSetDatabaseinfo 0 to set 
the last modified date 

Calls CeSetDatabaseinfo () to set 
the database name. 

Calls CeSetDatabaseinfo ()to set 
the database's SORTORDERSPEC array. 

Calls CeWri teRecordProps() to 
save changes to current record. Used 
for editing an existing record 

Using the CCeDB Classes: Database as Document 

In this section, we'll look at how to integrate the CCeDB classes into an MFC appli
cation. Specifically, we'll take an existing Windows CE MFC application and con
vert it so that it stores data in a database instead of in a file. 

Although the techniques outlined here apply to any file-based MFC application, 
the project we're using is the one we'll be working with in the next chapter. 

The first thing you need to know about using the CCeDB classes is that in the 
MFC Document/View architecture, the database itself becomes the Document. 
In order to make this happen, you need to add one member data element to the 
pub 1 i c section of our CShoppi ngl i stDoc class. This will be a CCeDBDatabase 

object called m_Mydb. Or, in code: 

II Attributes 
public: 

CCeDBDatabase m_Mydb; 



Page 00209

WARNING 

New Classes forCE 183 

Previously, in the file-based version of this application, the CShoppi ngl i stDoc 

class had only public member data and no methods. The example here assumes 

that you have already deleted the existing member data elements. 

In addition to that data element, you'll also add four methods to our (Shop
pi ngl i stDoc class: 

• CreateDB() 

• OpenDB() 

• Cl oseDB() 

• AddRecord() 

Before you implement these methods, though, you need to define some global 
constants. The first of these is the database type identifier, DB_IDENT: 

const DWORD DB_IDENT "' 13245; 

Next, define a constant to hold the name of the database: 

const WCHAR DB_NAME[] = _T("ShoppingCEDatabase"); 

Finally, declare the property type identifiers, one for each of the record properties: 

const WORD PROP_DESCRIPTION "' 101, 

PROP_QTY = 102, 

PROP_STORE1 = 103, 

PROP_STORE2 = 104, 

PROP_STORE3 = 105, 

PROP_STORE4 = 106; 

CreateDB() The CreateDB() will be responsible for creating the actual database 
that your application will use to store the user's shopping list data. First, declare 
a variable of type CEOID that you'll use in just a moment when you create the 
database: 

BOOL CShoppinglistDoc: :CreateDB() 

{ 

CEOID poid; 

Next, set up the sort order for your database. To do this, create a one-cell array 
of type CCeDBProp. The property for which you're creating the sort order is a 



Page 00210

184 Chapter 6 • Yes, It's Possible-MFC onCE! 

NOTE 

string property, identified by the value PROP _DESCRIPTION. The sort order will be 
ascending, case insensitive: 

CCeDBProp SortProps[l] = 
{ 

tive) 
} ; 

CCeDBProp(CCeDBProp: :Type_String, PROP_DESCRIPTION, 
CCeDBProp: :Sort_Ascending I CCeDBProp: :Sort_Caseinsensi-

Next, it's time to attempt to create the database. At the same time you do that, 
store the result (a CEOID) as well and verify that the creation was successful: 

if (!(paid= m_Mydb.Create(DB_NAME,DB_IDENT,l,SortProps))) 
return FALSE; 

Next, call CShoppi ngl i stDoc: :Open DB() 

return ::OpenDB(); 

OpenDB() The next method you'll implement is your Open DB() function. This 
function tests whether or not the database has already been created by calling the 
Exists() method of the CCeDBDatabase class: 

BOOL CShoppingListDoc: :OpenDB() 
{ 

if (!CCeDBDatabase: :Exists(DB_NAME)) 

Exists() is a sta ti c method of the CCeDBDatabase class, which means you 
should not call it as a member function of a specific object; instead, you should 
cal l it as you would any other globally available function . 

If the database does not exist, you must attempt to create it. This accounts for 
first-time uses of the program where the database isn't necessarily created ahead 
of time: 

if (!CreateDB()) 
return FALSE; 



Page 00211

NOTE 

New Classes forCE 185 

Otherwise, if the database does exist, simply open it, calling the Open() method 
of your CCeDBDatabase object, m_Mydb: 

else 

m_Mydb.Open(DB_NAME); 

return TRUE; 

CloseDB() The Cl oseDB () method is the simplest of the ones you're creating 
here. All it does is call the Close() method of our CCeDBDatabase object, m_Mydb: 

BOOL CShoppinglistDoc: :CloseDB() 
{ 

m_Mydb. Close(); 
return TRUE; 

AddRecord() The next method you'll create is the AddRecord() method. This is 
the function that will receive the data from the Add Item dialog and write it to the 
database. Your first job is to convert the float values representing the stores' 
prices into strings, because the CE database engine does not support floating 
point values. The quickest and easiest way to perform this conversion is via 
swpri ntf(), as shown below: 

BOOL CShoppinglistDoc: :AddRecord(CString sDescription, int nQTY, float 
fStorel, float fStore2, float fStore3, float fStore4) 
{ 

WCHAR wcDescription[2SS], wcStorel[lO], wcStore2[10], wcStore3[10], 
wcStore4[10]; 

swprintf(wcDescription,_T("%s"),sDescription); 
swprintf(wcStorel,_T("%.2f"),fStorel); 
swprintf(wcStore2,_T("%.2f"),fStore2); 
swprintf(wcStore3,_T("%.2f"),fStore3); 
swprintf(wcStore4,_T("%.2f"),fStore4); 

CE 2.11 has added support for floats as a standard datatype but, as of this writ
ing, that support has not been added to MFC. 



Page 00212

186 Chapter 6 • Yes, It's Possible-MFC onCE! 

Next, declare an object of type CCeDBRecord: 

CCeDBRecord rec; 

And declare a six-cell array of type CCeDBProp, which will hold all of the informa
tion about our record's properties: 

CCeDBProp props[6]; 

Then, create and initialize all of the CCeDBProp objects in that array: 

props[O] = CCeDBProp(wcDescription,PROP_DESCRIPTION); 
props[l] = CCeDBProp((USHORT)nQTY, PROP_QTY); 
props[2] = CCeDBProp(wcStorel, PROP_STOREl); 
props[3] = CCeDBProp(wcStore2,PROP_STORE2); 
props[4] = CCeDBProp(wcStore3,PROP_STORE3); 
props[5] = CCeDBProp(wcStore4,PROP_STORE4); 

You then add these properties to your CCeDBRecord object, rec: 

rec.AddProps(props,6); 

Now, write the record out to the database: 

if (!m_Mydb .AddRecord(&rec)) 
return FALSE; 

Finally, clean up your used memory by calling the Del eteA ll Props () method 
of rec: 

rec.DeleteAllProps(); 
return TRUE; 

Now that you've managed to implement the Document part of your database 
work, let's take a look at the second half of the equation and see what it takes to 
get the database to integrate into the View portion of your application. 

Using the CCeDB Classes: Database as View 

Of course, just making the database your document isn't quite enough. You 
also have to integrate this new type of document into your application from 
the View side of the application. This means writing new code to populate the 
ListView control and handle deletion of records. It also means writing a slightly 



Page 00213

New Classes for CE 187 
-------------------------------------------------------

different handler for the user inserting a new record. Those three methods of 
your CShoppi ngl i stVi ew class are 

• Updatel i stBox() 

• OnDel ete() 

• Oninsert() 

Let's take a look at each of these methods now and see exactly how the data
base Document interacts with your View. 

UpdateListBox() In the file-based version of the Shopping List application, 
Updatel i stBox() was the function responsible for reading the data out of the file 
and then populating the List View. In the database-aware version, however, 
Updatel i stBox() will be reading data in from the database object and populat
ing the ListView with the records. 

The first thing you need to do here is clear out the List View so that you can 
start fresh: 

void CShoppinglistView: :UpdatelistBox() 
{ 

m_ListBox.DeleteAllitems(); 

Next, declare some local variables to be used as temporary placeholders for the 
data as you read it from the database and store it momentarily before putting into 
the ListView control: 

CString sProductName, slemp; 
int nQty; 
CString sStorelPrice; 
CString sStore2Price; 
CString sStore3Price; 
CString sStore4Price; 

Then declare a CCeDBReco rd, which you'll be using to access the data: 

CCeDBRecord rec; 

Next, declare pointers to CCeDBProp objects, so that you have a means of 
accessing the individual properties once they're read into your CCeDBRecord 
object, which you just declared above: 

CCeDBProp *pPropDescription, 
*pPropQty, 



Page 00214

188 Chapter 6 • Yes, It's Possible-MFC on CE! 

'''pPropStorel, 
'''pPropStore2, 
'''pPropStore3, 
'''pPropStore4; 

The first action is to close and then reopen the database using the Cl oseDB() 
and OpenDB() methods of our Document: 

GetDocument()->CloseDB(); 
GetDocument()->OpenDB(); 

Next, seek to the first record, using the SeekFi rst() method of your Docu
ment's m_Mydb member object: 

GetDocument()->m_Mydb.SeekFirst(); 

Next, set the m_bAutoSeekNext flag of m_Mydb to indicate that you want the 
record pointer to be automatically advanced to the next record each time you 
read a record: 

GetDocument()->m_Mydb.m_bAutoSeekNext = TRUE; 

Now, retrieve the number of records in the database by calling the GetNum
Records() method of m_Mydb: 

int nNumOfRecs = 0; 
nNumOfRecs = (int)GetDocument()->m_Mydb.GetNumRecords(); 

Then reserve that number of rows in your List View control: 

for (int t = 0; t <= nNumOfRecs; t++) 

m_ListBox.Insertitem(t, NULL); 

Now you can begin to populate the List View with the data in the database. Do 
this via a for loop based on the record count we retrieved earlier: 

for (int i = 0; i < nNumOfRecs; i++) 

The first thing to do is to read the current record from the database: 

GetDocument()->m_Mydb.ReadCurrRecord(&rec); 



Page 00215

TIP 

New Classes for CE 189 

This is where the m_bAutoSeekNext flag comes in: each time you call ReadCu rr
Record(), the record pointer is automatically positioned on the next record. You 
don't have to worry about it at all. 

Now, extract CCeDBProp objects from the CCeDBRec object (rec) using the con
stants you declared at the beginning of the program: 

pPropDescription ~ rec.GetPropFromident(PROP_DESCRIPTION); 
pPropQty rec.GetPropFromldent(PROP_QTY); 
pPropStorel 
pPropStore2 
pPropStore3 
pPropStore4 

rec.GetPropFromident(PROP_STOREl); 
rec.GetPropFromident(PROP_STORE2); 

rec.GetPropFromldent(PROP_STORE3); 
~ rec.GetPropFromident(PROP_STORE4); 

Then extract the actual property values into your local variables, which you 
declared earlier in this function: 

sProductName pPropDescription->GetString(); 
nQty pPropQty->GetUShort(); 
sStorelPrice pPropStorel->GetString(); 
sStore2Price pPropStore2->GetString(); 
sStore3Price pPropStore3->GetString(); 
sStore4Price pPropStore4->GetString(); 

Next, add the items to the list box, one column at a time: 

m_ListBox.SetltemText(i, 0, sProductName); 
sTemp.Format(_T("%i "),nQty); 
m_ListBox.SetltemText(i, 1, sTemp); 
m_ListBox.SetltemText(i, 2, sStorelPrice); 
m_ListBox.SetltemText(i, 3, sStore2Price); 
m_ListBox.SetitemText(i, 4, sStore3Price); 
m_ListBox.SetitemText(i, 5' sStore4Price); 

Finally, just as you did with the file-based version, create a row indicating the 
total cost for each store: 

CreateTotals(); 
} 

OnDelete() The CShoppi ngl i stVi ew's On Delete() method has changed con
siderably from that of the file-based version of your application. Now, rather than 



Page 00216

190 Chapter 6 • Yes, It's Possible-MFC onCE! 

just removing the item from an array, you're going to immediately delete it from 
the database. 

The first thing to do is to ensure that the currently selected item in the List View 
represents a valid record. You can do this by testing that the index of that item
the number of records between the selected record and the first item in the 
List View-is less than the number of records in the database and greater than or 
equal to 0: 

void CShoppi ngl i stVi ew: :On Delete() 
{ 

if (m_nlistBoxindex <= GetDocument()->m_Mydb.GetNumRecords() && 
m_nlistBoxindex >= 0) 

If it is, tell your Document's m_Mydb to seek to that record in the database: 

CCeDBRecord rec; 
GetDocument()->m_Mydb.SeekToindex(m_nListBoxindex); 

Then ask the user to confirm that they want to delete the record : 

if (AfxMessageBox(_T("Are you sure you want to delete " 
+ m_ListBox.GetitemText(m_nlistBoxindex, 0) + " 

?"),MB_OKCANCEL) == IDOK) 
{ 

If they do, go ahead and delete the record from the database by calling the 
Del eteCurrentRecord() method of your Document's m_Mydb: 

GetDocument()->m_Mydb.DeleteCurrRecord(); 
Updatel i stBox(); 

Onlnsert() The database-aware Oninsert() has changed very little from the 
file-based version of the function. You still use it to launch the Add Item dialog: 

void CShoppinglistView: :Oninsert() 
{ 

CinsertDlg dlg; 
if (dlg.DoModal() 
{ 

IDOK) 



Page 00217

Modified Classes 191 

You also still retrieve the values from the dialog and store them into local 
variables: 

int nQty = dlg.m_nQty; 
CString sProductName = dlg.m_sPdtName; 
float fStorelPrice = dlg.m_fStorel; 
float fStore2Price = dlg.m_fStore2; 
float fStore3Price = dlg.m_fStore3; 
float fStore4Price = dlg.m_fStore4; 

But instead of adding these values to a set of arrays, you then call the 
AddRecord() method of your Document class, passing in the local variables we 
just created: 

GetDocument()->AddRecord(sProductName, nQty, fStorelPrice, 
f5tore2Price, fStore3Price, f5tore4Price); 

UpdatelistBox(); 

And that's how to integrate databases into the View side of the Document/View 
architecture. Of course, the various pieces of making the database work within 
the Document/View architecture will vary with each application's needs, but this 
does provide you with a good model to follow. 

Now that you know all about the new classes of MFC forCE, let's move on to 
the classes that have been altered in some way to conform to the CE operating 
system. 

Modified Classes 
It would seem that all of MFC's classes, including CStri ng, have been modified 
some way when they were ported to the CE operating system. Thankfully, most of 
these changes are minor and should not affect us. Although space does not permit 
a full listing of each of the changed classes and their changed elements, we will 
review some of the more common classes and how their changes might affect us. 

The modified classes fall into two categories: 

1. Classes that lost some functionality 

2. Classes that gained some functionality 



Page 00218

Chapter 6 • Yes, It's Possible-MFC onCE! 

Classes That Lost Functionality 
Most of the modified classes lost some degree of functionality. After all, CE as an 
operating system doesn't have as much functionality as Windows 98/NT, so it 
only makes sense that some classes would lose a feature or two. The more impor
tant classes that have lost some functionality are 

• CFrameWnd 

• CWnd 

• CDC 

CFrameWnd 

Most of the functionality that CFrameWnd has lost relates to the fact that CE itself 
does not offer support for dockable toolbars. For instance, of the 13 methods no 
longer supported by CFrameWnd, 7 are directly related to the lack of dockable tool
bars. The remaining unsupported methods can also be traced directly to some 
feature of Windows 98/NT that is not supported by CE. 

CWnd 

Similarly, the methods that are not supported by CWnd are also closely tied into 
missing features of the CE operating system. There are 97 missing functions in all! 
While that seems daunting at first, many of these functions probably won't affect 
you directly. In fact, 20 of these missing functions are directly related to the fact 
that most CE devices don't have a mouse. 

CDC 

Almost as bad as CWnd is CDC, which has lost 86 of its functions. Here again, most 
of these functions do not work under CE simply because the operating system 
does not offer them. 

Classes That Gained Functionality 
While many classes lost some features, a few classes actually gained function
ality. It seems strange, but there are actually some features offered by CE that 



Page 00219

TIP 

Modified Classes 193 

Windows 98/NT doesn't offer. The more important classes that have gained 
functionality are 

• CFrameWnd 

• CWnd 

CFrameWnd 

CFrameWnd actually gained functions for the same reason it lost them! Although 
CE doesn't offer dockable toolbars, it does offer CommandBars. So, CFrameWnd 
picked up all of the functions for dealing with CommandBars: 

• AddAdornments() 

• AddBi tmap() 

• AddComboBoxString() 

• GetComboCount() 

• GetComboCurSel() 

• InsertButtons() 

• InsertComboBox() 

• InsertMenu() 

• SetComboCurSel() 

For more information on how to use these new functions, see Chapter 7. 

CWnd 

As a class, CWnd didn't pick up any new members. But it did get something very 
important under Windows CE: the ability to process the WM_HIBERNATE message. 
As we saw in Chapter 2, the WM_HIBERNATE message is sent by the operating sys
tem under low-memory conditions as a way to request that running applications 
free some memory. Of course, this new feature is relatively transparent to you, 
except for the fact that you can now create your own handler for WM_HIBERNATE 
within the context of a CWnd object. 



Page 00220

194 Chapter 6 • Yes, It's Possible-MFC onCE! 

Missing Classes 

NOTE 

Some classes are gone completely. In most of these cases, the class is unsupported 
because the underlying control does not exist in Windows CE. For instance, there 
is no Font Selection Dialog, so CFontDi a log is not supported. Likewise, there is 
no Printer Setup Dialog in Windows CE, so CPri ntSetupDi a log is not supported. 
And, of course, all of the Windows 98/NT-specific common controls that don't 
exist under CE (Ani mateCtrl, Checkl i stBox, etc.) are also not supported by MFC. 

CPri ntDi al og is still supported by MFC 2.1 0; it's only CPri ntSetupDi al og that 
doesn't exist under Windows CE. 

Summary 
In this chapter, we learned about the new classes that MFC offers forCE. Specifi
cally, we saw that CCeSocket is almost exactly the same as CAsyncSocket. In 
addition, we learned how to work with databases and the Windows CE database 
engine. Then we took a brief look at some of the classes that have changed a bit 
from their Desktop-based counterparts. Finally, we learned what to expect in the 
way of classes that aren't supported at all under CE. 



Page 00221Page 00221



Page 00222Page 00222



Page 00223

CHAPT(R 

Real MFC Applications Ported 
to CE 

• The Shopping List Application 

• Mechanical Issues of Porting 

• Toolbars and Status Bars 

• Printing Support 

• Optimizing forCE 



Page 00224

198 Chapter 7 • Real MFC Applications Ported to CE 

In the last chapter, you examined what sort of things were and were not sup
ported by MFC forCE. In this chapter~ you'll be converting a real MFC application 
to Windows CE. Wh n you're done, you'll have an understanding of what's involved 
in converting even the simplest of MFC Desktop applications to U1e CE platform. 

First you'll take a look at the project as it exists now. TI1en, starting with the sim
pler tasks, you'll work yoUT way through the conversion to CE to gel a no-frills 
version of the application rLU1ning on aCE device. Next, you'll look at porting 
some of the optional features and at optimizing the user interface and the code for 
the Windows CE platform. Finally, you'll see how to optimize your program for the 
CE platfot·m and why it may be necessary to drop or add certain features. 

The Shopping List Application 

FIGURE 7.1: 

The Shopping List application that you'll be porting is a program designed to help 
you keep track of your pw·chases so you can determine which store, if any, really 
has better prices on the items you want to buy. Th program i tseJ£ is d eslgned pri
mcuilyfor supermarkets, where a us r might have time to collect prices from vari
ous stores by shopping at each of them a few times. TI1ey can th n entet prices of 
various items at a variety of stores and sit back and let the program show them 
how much they actually spent. The main window of this application is shown in 
Figure 7.1. 

The Desktop version of the f~e 
Shopping List application 

Product Name 

11Soda 
1 j Cere~l ... _ 
5 Bottled Water 



Page 00225

NOTE 

The Shopping List Application 199 

You'll note that most of the user interface of this program is taken up with a 
large grid. The user can navigate the grid with the keyboard or the mouse, enter
ing quantity, item description, and the prices at each of the stores. This data can 
then be serialized out to a text file whenever the user clicks the Save button. The 
user also has the option of changing the names of the supermarkets/stores at 
which they're doing their price comparisons. 

The grid you see in Figure 7.1 is not part of MFC itself; it is a thi rd-party MFC 
library. This grid handles its own serializat ion and contains built-in functionality for 
simple operations such as summing a column. 

At first glance, the application looks pretty much like it could run on aCE 
device without any modifications at all. However, there are a number of changes 
you'll have to make to this application just to get a minimal version working on 
CE. The areas of this application that you'll have to either eliminate or alter to get 
your application running on a CE device are 

• Toolbars and status bars 

• Printing support 

• The grid 

When you first look at this list, you might think that you'd need to change 
everything that makes this application what it is. After all, the items on this list 
basically represent the entire graphical portion application, and, especially with
out a gridlike control to display the pricing information to the user, the Shopping 
List application seems at a definite disadvantage. 

But it's not as bad as it first appears. Some of these items are easy to fix and 
involve nothing more than choosing a different option in the WCE MFC App
Wizard. Now that you have an idea of what portions of your Shopping List 
application might need some reworking, let's take each item and begin to port 
the application, performing the tasks in order of complexity. 



Page 00226

200 Chapter 7 • Real MFC Applications Ported to CE 

How, Exactly, Do You Get a Desktop MFC Application 
to Compile for CE? 

In Toolkit for VC++ 5, it was very easy to compile an existing Desktop application for Win
dows CE. All you had to do was choose Build.);.>Configurations from the menu, click the 
Add button on the dialog shown below, and add a C E-based configuration. Assuming 
your code was written in such a way that all of your classes were available under CE, a 
port was merely one build away. 

Conllgurahona lfi E:J 

El twizzler 
Win32 (\1/CE MIPS) Release 
Win32 (\1/CE MIPS) Debug 
Wn32 (\1/CE SH4) Release 
Wn32 ('WCE SH4] Debug 

Even if major pieces of code had to change, this was still the simplest way to start a port of 
a desktop program to CE. (Although if you knew you were going to be changing major 
pieces of code, it was probably advisable to make a copy of your project and then begin 
the work of porting it.) 

If you were going to do a full port, you'd simply add all of the CE configurations that you 
needed and then remove the Desktop configurations. That's all it took to get a 100 per
cent CE-based project from your existing Desktop project. 

As you may know, however, VC++ 6 does not allow projects to contain both Desktop and 
CE configurations. The unfortunate truth is that, unless Microsoft announces some kind 
of patch or special tool to make this possible, you'll have to re-create your application 
from scratch, cutting and pasting code and files as appropriate. 

For this reason, it may actually be advisable to keep a copy of VC++ 5 and the earlier 
toolkit on one of your machines. There is simply no other way to create an application that 
will build for both Desktop and CE platforms. Further, there is no easier way to get started 
with a port of an existing program to CE. 

In the case of the application in this chapter, you will employ the cut-and-paste method of 
porting so that some of the changes are more manageable. This will apply to many appli
cations that require major changes; the cut-and-paste method will probably be easier in 
the long run, as opposed to attempting to compile your project for both Desktop- and CE
based platforms at once. 



Page 00227

Mechanical Issues of Porting 201 

Mechanical Issues of Porting 
Some of the items that won't port are easier to fix than others. We'll work from 
the easiest to fix to the most difficult. 

Toolbars and Status Bars 
The easiest items to fix, at least in terms of actual coding required, are the status 
bar and the toolbar. In fact, fixing these items requires that you do nothing more 
than correctly check off some of the options on the WCE MFC AppWizard. How
ever, deciding which options to check off is sometimes not that simple. As you 
learned in Chapter 5, there are a number of subtle differences between MFC for 
CE version 2.0 and MFC forCE version 2.1. 

Probably, the most notable of these differences is the multiple types of com
mand bars. You'll recall that of the four possible command-bar types offered by 
the WCE MFC AppWizard, only one of them (the fourth) can compile and run on 
both the PPC, HPC, and HPC/Pro devices. The first three will only run on PPC 
and HPC/Pro devices. In the current context of having to port a status bar and a 
toolbar, this 2.0/2.1 version difference affects us in several ways. 

First and foremost, you must choose which devices you really want to target 
with your application. If you'd like to run it on all of the three major CE plat
forms, then you must choose the fourth type of command bar. However, by doing 
this, you are explicitly setting your application to be 100 percent compatible with 
MFC 2.0 and thus eliminating the option of having a status bar for your applica
tion, since status bars are only supported in MFC 2.1. How frustrating! This 
means that some elements of the design and visual appearance of your program 
may be limited simply because you want to reach the widest possible market for 
your program. 



Page 00228

202 Chapter 7 • Real MFC Applications Ported to CE 

MFC 2.0 vs. MFC 2.1 
So, why are there different versions of MFC on an operating system and platform that are 

basically brand new? 

With the release of CE 2.0-the version that's running on all of the Handheld and Palm
size PCs currently on the market-there was also a 2.0 release of MFC. Officially, the 2.0 
version of MFC would work only on the Handheld devices, not the Palm-size. 

Of course, that didn't stop a large number of developers from copying the MFC DLLs to 

their PPCs and trying to run their applications anyway. What they found was that 
although their MFC programs could and did run, they were rather slow at times. 

When Microsoft released Windows CE version 2.11-that's the version that runs on 
HPC/Pro devices, such as the HP Jornada-they also released a new version of MFC, 

dubbed 2 1. 

One of the major advantages of this new MFC is that you can now officially use it to build 

programs for Palm-size devices. In addition, MFC 2.1 added features such as new com
mand bar styles, status bars, and printing support. The following table summarizes the 
features in each version. 

MFC Version Devices supported Tool bars Status Bar 

2 

2.1 

HPC 

PPC. HPC/Pro 4 

style 

styles 

No 

Yes 

Printing 

No 

Yes 

As you can see, the configuration that gives you the most flexibility in terms of devices to 

target also takes away your ability to print and/or provide a status bar. Which configura

tion you decide to use comes down to whether support for printing is more important 
than being able to sell your product to owners of a standard HPC device. 

In the case of the project that we're porting now, let's opt to support the PPC, 
HPC, and HPC/Pro devices, even though this means that you'll lose your status 
bar. To support all three devices, make sure that you select the fourth command 
bar type when you're going through the WCE MFC AppWizard. 

As it turns out, the status bar isn't a great loss. You weren't really using it for 
much, so letting it go does not really affect your application. In practical terms, all 



Page 00229

Mechanical Issues of Porting 203 

it means is that you must remove the following lines of code from your CMain
Frame's On( reate() event: 

if (!m_wndStatusBar.Create(this) I I 
!m_wndStatusBar.Setlndicators(indicators, 

sizeof(indicators)/sizeof(UINT))) 

TRACEO("Failed to create status bar\n"); 
return -1; //fail to create 

It's worth noting that, with one simple choice in a wizard, we've managed to 
deal with two of the items on the list of possible problem areas that appeared ear
lier in the chapter. As far as the command bar is concerned, the original code to 
create the toolbar in the Desktop application is called from within the CMain
Frame's On( reate() event handler. There, you create the toolbar object and pop
ulate it with the buttons contained in the IDR_MAINFRAME resource, as follows: 

if (!m_wndToolBar.Create(this) I I 
!m_wndToolBar.LoadToolBar(IDR_MAINFRAME)) 

TRACEO("Failed to create toolbar\n"); 
return -1; //fail to create 

Then, set the style of the toolbar, so that it will give the ToolTip hints and be 
resizable: 

m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() I 
CBRS_TOOLTIPS I CBRS_FLYBY I CBRS_SIZE_DYNAMIC); 

Finally, make it possible for the user to dock and undock the toolbar: 

m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY); 
EnableDocking(CBRS_ALIGN_ANY); 
DockControlBar(&m_wndToolBar); 

In the Windows CE version of your CMai nFrame: : OnCreate( ), the code to cre
ate the Command Bar looks somewhat different. All you have to do here is call 
the CFrameWnd:: InsertButtons() member function, as follows: 

if (!InsertButtons( g_tbSTDButton, 
sizeof(g_tbSTDButton)/sizeof(TBBUTTON), 
IDR_MAINFRAME, 
6 )) 



Page 00230

204 Chapter 7 • Real MFC Applications Ported to CE 

TRACEO("Failed to add command bar buttons\n"); 
return -1; 

In the above code, g_tbSTDButton is an array of properties that describe how 
the buttons are to be displayed and IDR __ MAINFRAME is the resource ID for the 
Command Bar images. 

WARNING The InsertButtons() call can be the cause of some very odd behavior if it's not 
called with the correct number of buttons specified as the final parameter. If the 
value is less than the number of actual buttons, the X (or Close) button of the 
application will have the same image as the last button on the toolbar. If the value 
is greater than the number of actual buttons, the X button will have absolutely no 
image at all! 

More on CMainFrame: lnsertButtons() 
InsertButtons() takes an array of type TBBUTION. TBBUTION is a structure that defines 
properties for each of the buttons to be displayed and is defined as follows: 

typedef struct _TBBUTTON 

int iBitmap; 

int idCommand; 

BYTE fsState; 

BYTE fsStyle; 

DWORD dwData; 

int iString; 

} TBBUTTON, NEAR"' PTBBUTTON, FAR* LPTBBUTTON; 

typedef canst TBBUTTON FAR'"' LPCTBBUTTON; 

Of the items in the structure, the most important ones to you will be 

• i Bitmap, which specifies the order of the button/image in the Command Bar 

Continued on next page 



Page 00231

Mechanical Issues of Porting 205 

• i dCommand, which makes your Command Bar button act like a true button in that 
the value specified in i dCommand will be passed to the application's WM_COMMAND 
handler when the button is clicked 

• fsState, which specifies that the state (hidden, enabled, etc.) will typically be 0 (dis
abled), TBSTATE_ENABLED, or TBSTATE_HIDDEN 

• fsStyl e, which specifies whether you're creating a checkbox, a button, or a separator 

The rest of the values in the structure are simply set to -1 or 0, as shown below. A stan

dard TBBUTION array would look something like this: 

static TBBUTION g_tbSTDButton[] = { 

{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0}, 
{0, ID_FILE_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 

{1, ID_FILE_OPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{2, ID_FILE_SAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 

{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, -1}, 
{3, ID_EDIT_CUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 

{4, ID_EDIT_COPY, TBSTATE_ENABLED, TBSTYLE_BUTION, 0, 0, 0, -1}, 
{5, ID_EDIT_PASTE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 

{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, -1}, 
{ 0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0} 

} ; 

If you had custom buttons to add, you'd simply draw them in the Resource Editor, as 
shown below, and then add their properties to this array. 

Continued on next page 



Page 00232

206 Chapter 7 • Real MFC Applications Ported to CE 

The modified TBBUTTON array, then, would look like this: 

static TBBUTTON g_tbSTDButton[] = { 

} ; 

[0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0}, 
{0, ID_FILE_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
[1, ID_FILE_OPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
(2, ID_FILE_SAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, -1}, 
{3, ID_EDIT_CUT, 0, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{4, ID_EDIT_COPY, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{5, ID_EDIT_PASTE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, -1}, 
{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0}, 
//A new button! 
{6, ID_NEWBUTTON, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 

Then, you'd simply update the value you passed to InsertButtons() to reflect the new 
button count: 

InsertButtons( g_tbSTDButton, 
sizeof(g_tbSTDButton)/sizeof(TBBUTTON), 
IDR_MAINFRAME, 
7 ); //now there are 7 buttons. 

This simple change is, in fact, one you'll be making a little later in the process of porting 
your Shopping List application. 

Although you did have to drop a status bar, the port here was relatively simple. 
However, you'll see that, as you progress into the application, your next porting 
issues may not be so easy. 

Printing Support 
The second major consequence of choosing to target all three of the major CE 
platforms is that we've now lost the ability to offer printing support in your 
application. This is yet another of the subtle differences between MFC 2.0 and 2.1. 
If you want to support all three CE-based device types, you won't be able to use 
MFC' s printing support. 



Page 00233

Mechanical Issues of Porting 207 

However, there are a few possible solutions to this dilemma. The first is that 
you could drop printing support altogether. After all, the majority of CE devices 
do not have access to a printer, and there is only one printer that's even specifi
cally targeted to the CE market. 

The printer specifically targeted to the C E market is the PocketJet II from Pen tax 

Technologies. For more information, visit http: I /www. pentaxtech. com. 

The second option is for you to create your own printing object that would 
encapsulate all of the API's own printing routines. The problem with this, of 
course, is that it can be quite time-consuming, and requires you to learn more 
about the API's methods of printing than you probably want to know. 

These two options might seem a little bleak, but there is a third that is ideal for 
certain types of applications. It the application in question is already being tai
lored to a wireless environment, the solution to consider is one provided by 
Odyssey Software (http: I /www. odysseysoft.ware. com). AB part of an extensive 
package called CEFusion that exposes many of th NT (BackOfficc products to 
CE developers, Odyssey offers aCE-based client product that makes it possible 
for developers to write code to print to any Windows NT-based network printer. 
The kind of printing that CEFusion allows you to d is fairly basic, but if the 
application really needs to be able to print and you're already considering a wire
less environment, this could be the ideal solution. 

The Grid 
The most complex change you'll probably have to make is to the grid that now 
occupies most of the main form of your application. Because you're using a third
party MFC class that hasn't yet been ported to CE, you're in a tight spot with this 
issue. 

Of course, if the third-party grid existed onCE, you'd be all set, and the porting 
process would pretty much be done by now. Instead, what you'll have to do is to 
select a replacement grid or control that you can use in the same way. As far as 
selecting a new grid control is concerned, you have two options: 

• The Microsoft ActiveX Grid Control 

• A replacement control 



Page 00234

208 Chapter 7 • Real MFC Applications Ported to CE 

NOTE 

Unfortunately, there's no ideal solution here. Whatever you choose will likely 
require serious reworking of your code. While that's never really a pleasant task, 
it may still be the best-if not the only-way to successfully port your application. 

Microsoft's ActiveX Grid Control 

Microsoft provides a simple, no-frills grid control in the form of an ActiveX con
trol. This control is available either from the ActiveX control pack, which is freely 
downloadable from the Microsoft Web site, or from the Windows CE toolkit for 
Visual Basic 6. As grid controls go, the ActiveX grid control is more than adequate 
for your needs. There are, however, a few disadvantages to using it. 

The first disadvantage is that it's really designed for Visual Basic. That's not to 
say that you couldn't use it, but VC++ doesn't come with the Control Manager 
tool for registering ActiveX controls on the device or in the emulator. That means 
that you have to manage the registration of this component yourself instead of 
having VB take care of it for you. Plus, assuming that you don't have the latest 
toolkit for Visual Basic, you'd have to use the version of the control that comes 
with the ActiveX control pack. Because the ActiveX control pack was created 
before the development of CE 2.11, the ARM and SH4 processors aren't sup
ported, which means that you would not be able target some of the HPC/Pro 
devices. 

The Control Manager tool from the Visual Basic toolkit is covered in more detail in 
Chapter 8. 

The other problem with using the Microsoft Grid ActiveX control, or any 
ActiveX control, for that matter, is the additional disk space it requires. The Grid 
control itself is about lOOK in size, and on devices with limited resources, lOOK 
can represent a good deal of space. Instead of using the ActiveX grid, then, let's 
look at a solution that works well with VC++ and doesn't use too much addi
tional space. 

A Replacement Control 

When it comes to finding a replacement for your grid that won't occupy any 
additional space and will still allow you the same or similar functionality, one 
control stands out: the CListView control. ListView controls can perform almost 



Page 00235

Mechanical Issues of Porting 209 

all of the functions that a grid can perform, and using a List View doesn't add 
lOOK to the size of the files you'll have to distribute. 

However, List View controls will require you to write code to handle the editing 
and display of the user's data. Previously, of course, the grid handled all of this 
work itself. The basic tasks that you've got to handle on your own are 

• Managing the user's data while the program is running 

• Displaying the user's data 

• Allowing the user to enter and delete data 

Let's take a look at how you can implement each one and finish getting your 
application ported to CE. 

Managing the User's Data While the Program Is Running The task at 
hand is to store all of the user's data as they enter it, so that you can display it to 
the CListView control, serialize it out to a file, etc. To accomplish this, you'll need 
to add several arrays to the CDocument class. In all, there will be seven arrays: 

• An array to maintain the names of the stores on your shopping list: 
CStringArray m_sStoreNames; 

• An array to store the quantities of the items you'll be price comparing: 
CArray<int,int> m_Qty; 

• An array to store the names of the actual products you'll be price comparing: 
CStringArray m_sProductName; 

• Four arrays to store the prices for each item at each of the four stores on 
your shopping list: 
CArray<float,float> m_fStorelPrice; 
CArray<float,float> m_fStore2Price; 
CArray<float,float> m_fStore3Price; 
CArray<float,float> m_fStore4Price; 

With these arrays, you can store all of the user's data while the program is run
ning. Now, you must handle the task of displaying this data to the user. 



Page 00236

210 Chapter 7 • Real MFC Applications Ported to CE 

Displaying the User's Data Given your list of arrays, your first task whenever 
the user requests a new document is to set up default values for the store names 
and clear out the other arrays. In the CShoppi ngL i stDoc: : OnNewDocument() 
event, first clear out the m_sStoreNames array: 

m_sStoreNames.RemoveAll(); 

Then, initialize the array with default values: 

m_sStoreNames.Add(_T("Store 1")); 
m_sStoreNames.Add(_T("Store 2")); 
m_sStoreNames.Add(_T("Store 3")); 
m_sStoreNames.Add(_T("Store 4")); 

Next, clear out the other arrays, so that everything is reset for the next shop-
ping list: 

m_fStore1Price.RemoveAll(); 
m_fStore2Price.RemoveAll(); 
m_fStore3Price.RemoveAll(); 
m_fStore4Price.RemoveAll(); 
m_Qty.RemoveAll(); 
m_sProductName.RemoveAll(); 

The next step is to set up the colunm headers on the CListView control, so that 
the data has some meaning to the user and they know what it is they're looking 
at. Do this in the CShoppi ngL i stVi ew: : CreateL i stBoxHeader() method. First, 
retrieve the store names from the m_sStoreNames CStringArray and store those 
names in local variables: 

(String sStore1Name = GetDocument()->m_sStoreNames[O]; 
(String sStore2Name = GetDocument()->m_sStoreNames[1]; 
CString sStore3Name = GetDocument()->m_sStoreNames[2]; 
CString sStore4Name = GetDocument()->m_sStoreNames[3]; 

Then, delete and then re-create each colunm as you change its heading: 

m_ListBox.DeleteColumn(O); 
m_ListBox.InsertColumn( 0, _T("Product Name") , LVCFMT_LEFT, 175 ); 
m_ListBox.DeleteColumn(1); 
m_ListBox.InsertColumn( 1, _T("Qty") 
m_ListBox.DeleteColumn(2); 

, LVCFMT_LEFT, 50 ); 

m_ListBox.InsertColumn( 2, sStore1Name , LVCFMT_RIGHT, 95 ); 
m_ListBox.DeleteColumn(3); 
m_ListBox.InsertColumn( 3, sStore2Name , LVCFMT_RIGHT, 95 ); 



Page 00237

NOTE 

Mechanical Issues of Porting 211 

m_ListBox.DeleteColumn(4); 
m_ListBox.InsertColumn( 4, sStore3Name , LVCFMT_RIGHT, 95 ); 
m_ListBox .DeleteColumn(5); 
m_ListBox.InsertColumn( 5, sStore4Name , LVCFMT_RIGHT, 95 ); 

You do this to ensure that the heading text is properly refreshed each time. 

This is also where you could change the width of a column if you wanted to; just 
change the value of the fourth parameter in the calls to InsertCo l umn () . 

The next step is to add code to get the data from these arrays that you created into 
your CListView control. This is done in the CShoppi ngl i stVi ew:: Updatel i stBox() 
method. First, clear out the CListView: 

m_ListBox.DeleteAllitems(); 

Next, pre-reserve all of the rows you'll need in the CListView: 

//how many product names do we have? 
int nlndex = GetDocument()->m_sProductName.GetSize(); 
for (int t = 0; t <= nlndex; t++){ 

m_ListBox.Insertltem(t, NULL); 

Then loop through the arrays, adding their information to your replacement 
grid, CListView: 

for (int i = 0; i < nlndex; i++) 

Here, you retrieve the array values and store them in local variables temporarily: 

nQty = GetDocument()->m_Qty[i]; 
fStorelPrice = GetDocument()->m_fStorelPrice[i]; 
fStore2Price = GetDocument()->m_fStore2Price[i]; 
fStore3Price = GetDocument()->m_fStore3Price[i]; 
fStore4Price = GetDocument()->m_fStore4Price[i]; 
sProductName = GetDocument()->m_sProductName[i]; 

Then, add the product name to the oth column: 

m_ListBox.SetltemText(i, 0, sProductName) ; 



Page 00238

212 Chapter 7 • Real MFC Applications Ported to CE 

FIGURE 7.2 

The Add button 

Now, add the quantity to the first column: 

sTemp.Format(_T("%i"),nQty); 
m_ListBox.SetitemText(i, 1, sTemp); 

Add the first store's price to the second column: 

sTemp. Format(_ T( "%. 2f"), fStorelPri ce); 
m_ListBox.SetitemText(i, 2, sTemp); 

You repeat this process for each of the remaining pieces of data: 

sTemp. Format(_ TC' %. 2f"), fStore2 Price); 
m_ListBox.SetitemText(i, 3, sTemp); 

sTemp. Format(_T( "%. 2f"), fStore3Pri ce); 
m_ListBox.SetitemText(i, 4, sTemp); 

sTemp. Format(_ T( "%. 2f"), fStore4Pri ce); 
m_ListBox.SetitemText(i, 5, sTemp); 

So far, so good! Now let's move on to allowing the user to enter and delete data. 

Allowing the User to Enter and Delete Data Your first task is to allow the 
user to enter data into the CListView control. However, instead of letting them 
simply click on the CListView and add whatever they'd like, add a button to the 
toolbar that, when clicked, will pop up a dialog box. This dialog will ask the user 
to enter information about the product that they're adding to their shopping list. 
This dialog-based approach allows for greater validation on your part because it's 
easier to limit the number of ways that data can be entered into the system. The 
first step is to go to the Resource Editor and create a new button that will be for 
adding records. For the sake of simplicity, just type a large letter A on the button 
face, as shown in Figure 7.2. 



Page 00239

Mechanical Issues of Porting 213 

The next step to getting your new button loaded onto the Command Bar is to 
add it to the TBBUTTON array discussed earlier. So, add an entry to that array as 
follows: 

[6, ID_INSERT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1} 

Then you've got to change one value in your call to CMai nFrame: : InsertBut
tons(). Previously, you had: 

if (!InsertButtons( g_tbSTDButton, 
sizeof(g_tbSTDButton)/sizeof(TBBUTTON), 
IDR_MAINFRAME, 
6 )) 

// ... 
Now, because you've added an additional button, you must increase the num

ber of buttons (six, in the above code) to seven. Therefore, your call to Insert
Buttons() should now read: 

if (!InsertButtons( g_tbSTDButton, 
sizeof(g_tbSTDButton)/sizeof(TBBUTTON), 
IDR_MAINFRAME, 
7 )) 

// ... 

Now that you've added an Add button onto the Command Bar, you must cre
ate the Adci dialog. To do this, use the Resource Editor to insert a new dialog. You 
can now add controls to the dialog according to the data you'll need to get from 
the user. In this case, the dialog should have six edit boxes: 

• One edit box to record the quantity of the item being added 

• One edit box to record the name of the product 

• Four edit boxes to record the price of the item at each store 

Figure 7.3 shows a possible design for this dialog. 



Page 00240

214 Chapter 7 • Real MFC Applications Ported to CE 

FIGURE 7.3: 

The Add/Insert dialog 

E! educt Name: 111411> I cancet- 1 
store 1 ltij 
Store ~ 
store 1 ~ 

~ 

Now create a class to act as a wrapper for the dialog. Simply double-clicking 
anywhere on the dialog while in the Resource Editor will do the trick. Call your 
class CinsertDi a log. Then, using the Class Wizard, create member variables for 
Cinse rtDi a log to store the data entered by the user and add code to launch the 
dialog in the CShoppi ngl i stVi ew: : Oninsert() event: 

ClnsertDlg dlg; 
if (dlg.DoModal() == IDOK) 

{ 

If the user clicked the OK button, go ahead and get the values that they entered 
and store them into local variables: 

int nQty = dlg.m_nQty; 
CString sProductName = dlg.m_sPdtName; 
float fStorelPrice = dlg.m_fStorel; 
float fStore2Price = dlg.m_fStore2; 
float fStore3Price = dlg.m_fStore3; 
float fStore4Price = dlg.m_fStore4; 

Then add the values you just retrieved from the dialog into your arrays: 

GetDocument()->m_Qty.Add(nQty); 
GetDocument() ->m_sProductName.Add(sProductName); 
GetDocument()->m_fStorelPrice.Add(fStorelPrice); 
GetDocument() ->m_fStore2Price.Add(fStore2Price); 
GetDocument() ->m_fStore3Price.Add(fStore3Price); 
GetDocument() ->m_fStore4Price.Add(fStore4Price); 



Page 00241

Mechanical Issues of Porting 215 

Finally, make sure that you indicate that the data has changed, and update the 
CListView control: 

GetDocument()->SetModifiedFlag(TRUE); 
UpdateListBox(); 

The next step in allowing the user to enter and delete data is to allow them to 
change the names of the four supermarkets/stores at which you're performing 
your price comparisons. Just as you did with the Add dialog, start by creating a 
button (using, let's say, a capitalS for stores) and add it to the TBBUTION array: 

{7, ID_STORE_NAMES, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 

Again, change the call to CMai nFrame:: InsertButtons() to reflect the addi
tional button: 

if (!InsertButtons( g_tbSTDButton, 
sizeof(g_tbSTDButton)/sizeof(TBBUTTON), 
IDR_MAINFRAME, 
8 )) //changed to '8' from '7 ' 

To launch the dialog, create an OnStoreNames() event in your CShop-
pi ngl i stVi ew class. However, unlike in the Add dialog, put some initial values 
into the dialog box: 

CChgStrNameDlg dlg; 
dlg.m_sStorelName 
dlg.m_sStore2Name 
dlg.m_sStore3Name 
dlg.m_sStore4Name 

GetDocument()->m_sStoreNames[O]; 
GetDocument()->m_sStoreNames[l]; 
GetDocument()->m_sStoreNames[2]; 
GetDocument()->m_sStoreNames[3]; 

Then, if the user clicks the OK button, retrieve their values and store them in 
the m_sStoreNames array: 

if (dlg.DoModal() == IDOK) 

GetDocument()->m_sStoreNames[O] dlg.m_sStorelName; 
GetDocument()->m_sStoreNames[l] dlg.m_sStore2Name; 
GetDocument()->m_sStoreNames[2] dlg.m_sStore3Name; 
GetDocument()->m_sStoreNames[3] dlg.m_sStore4Name; 

When you're all done, refresh the column headings: 

CreatelistBoxHeader(); 



Page 00242

216 Chapter 7 • Real MFC Applications Ported to CE 

At this point the only thing left to do is to add functionality to allow the user to 
delete items from their Shopping List. Here again, start by creating a button (with 
a capital D for delete) and adding it to the TBBUTTON array: 

{8, ID_DELETE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 

Again, change the call to CMai nFrame:: InsertButtons() to reflect the addi
tional button: 

if (!InsertButtons( g_tbSTDButton, 
sizeof(g_tbSTDButton)/sizeof(TBBUTTON), 
IDR_MAINFRAME, 
9 )) //changed to '9' from '8' 

To actually delete the selected record, you'll need to create a CShoppi ngl i stVi ew 
: :On De 1 ete () method which will do the actual work of deleting the item out of 
the array. 

First, make sure that the index of the selected item is valid by ensuring that it's 
less than the number of items available and greater than 0: 

if (nlistBoxindex <= GetDocument()->m_sProductName.GetSize() && 
nListBoxindex >= 0) 

Next, confirm with the user that they do want to delete the record in question: 

if (AfxMessageBox(_T("Are you sure you want to delete " 
+ GetDocument()->m_sProductName[nListBoxindex] + 

"?"),MB_OKCANCEL) == lOOK) 
{ 

If they do want to delete the item, give them the various arrays to delete the 
values at the appropriate index: 

GetDocument() ->m_Qty.RemoveAt(nlistBoxindex,l); 
GetDocument()->m_sProductName.RemoveAt(nlistBoxindex,l); 
GetDocument()->m_fStorelPrice.RemoveAt(nlistBoxindex,l); 
GetDocument() ->m_fStore2Price.RemoveAt(nlistBoxindex,l); 
GetDocument()->m_fStore3Price.RemoveAt(nListBoxindex,l); 
GetDocument() ->m_fStore4Price.RemoveAt(nlistBoxindex,l); 

Finally, set the modified flag, and update the contents of the CListView: 

GetDocument()- >SetModifiedFlag(TRUE); 
Updatelis t Box(); 



Page 00243

FIGURE 7.4: 

The final, ported 
application 

Optimizing forCE 217 

When you're all done, you should have an application that looks something 
like the one shown in Figure 7.4. 

Although it looks very different from the application you started with, you can 
see that the two applications are functionally very similar. Of course, this is merely 
a rough port. There's a lot you can do to enhance and optimize this application to 
be more in tune with the features and limitations of aCE device. 

Optimizing for CE 
You now have a port of your application to CE, and, technically, you're finished. 
However, there are a few steps you can take to make your application run just a 
little bit more smoothly on aCE device. The first one, which takes almost no 
effort on your part, is to limit the application to only opening one true Shopping 
List file. Currently, the user can create any number of shopping list files . How
ever, given the limited storage space of aCE device and the fact that you don't 
really want the user to litter their CE device with dozens of shopping list files, it 
would be much better to simply enforce a single-file policy. Fortunately, it only 
takes one line of code in order to ensure that Shoppi ngl i st. dat is always the file 
opened by the application: 

OpenDocumentFile(_T("Shoppinglist.dat")); 



Page 00244

218 Chapter 7 • Real MFC Applications Ported to CE 

TIP 

You'll also want to fix the Command Bar so that it does not have any buttons 
relating to New and Open. To do that, first edit the resource containing the tool
bar buttons, so that the first three buttons are deleted, then edit the TBBUTION 
array so that it now reflects the true number of button images available. 

To delete a button, either click on it and then press the delete key, or click and 
drag it off the screen with your mouse. 

static TBBUTTON g_tbSTDButton[] = 

} ; 

{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0}, 
{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, -1}, 
{0, ID_EDIT_CUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{1, ID_EDIT_COPY, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{2, ID_EDIT_PASTE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, -1}, 
{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0}, 
{3, ID_INSERT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{4, ID_STORE_NAMES, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{5, ID_DELETE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, -1}, 
{0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0} 

You'll notice that the first three buttons have now been removed, and the index 
values for the remaining buttons have all been appropriately adjusted. 

Naturally, you must also alter your call to CMai nFrame: :Insert Buttons(): 

if (!InsertButtons( g_tbSTDButton, 
sizeof(g_tbSTDButton)/sizeof(TBBUTTON), 
IDR_MAINFRAME, 
6 )) //reflects loss of 3 buttons 

This modification helps to cut down on possible excessive storage space use 
and does so with only a minimal loss in functionality. 

There's one additional optimization that you can make here that would 
improve the efficiency and memory usage of your application. When you origi
nally performed the port on this application, there were a number of occasions 
where, for debugging and illustration purposes, you stored values from an array 
into a local variable and then displayed them to the user. The step of storing the 
values into local variables can be entirely eliminated. In fact, to be truly low
memory aware, you should eliminate as many nonessential variables as possible, 



Page 00245

Optimizing forCE 219 

as they are essentially memory allocations. Let's take a look at how one of these 
blocks of code might change. 

You'll recall that in the CShoppi ngl i stVi ew:: Createl i stBoxHeader() 
method you retrieve the store names from the m_sStoreNames CStri ngArray and 
put the values into local variables: 

CString sStorelName = GetDocument()->m_sStoreNames[O]; 
CString sStore2Name = GetDocument()->m_sStoreNames[l]; 
CString sStore3Name = GetDocument()->m_sStoreNames[2]; 
CString sStore4Name = GetDocument()->m_sStoreNames[3]; 

Then, you refresh the actual heading text, passing the local variables to the 
InsertCol umn() method, where appropriate: 

m_ListBox.DeleteColumn(O); 
_T("Product Name"), LVCFMT_LEFT, m_ListBox.InsertColumn( 0, 

m_ListBox.DeleteColumn(l); 
m_ListBox.InsertColumn( 1, 
m_ListBox.DeleteColumn(2); 
m_ListBox.InsertColumn( 2, 
m_ListBox.DeleteColumn(3); 
m_ListBox.InsertColumn( 3, 
m_ListBox.DeleteColumn(4); 
m_ListBox.InsertColumn( 4, 
m_ListBox.DeleteColumn(S); 
m_ListBox.InsertColumn( 5, 

_T( "Qty"), LVCFMT_LEFT I 50 ) ; 

sStore1Name, LVCFMT_RIGHT, 95 ) ; 

sStore2Name, LVCFMT_RIGHT, 95 ) ; 

sStore3Name, LVCFMT_RIGHT, 95 ) ; 

sStore4Name, LVCFMT_RIGHT, 95 ) ; 

175 ); 

Although this does make it easier to debug this procedure, there's no reason at 
all to leave the code organized in this way for the final shipping product. Instead, 
you'd do much better to pass the array values directly to the InsertCol umn() 
method, thus eliminating the need for local variables entirely: 

m_ListBox.DeleteColumn(O); 
m_ListBox.InsertColumn( 0, _T("Product Name"), LVCFMT_LEFT, 175 ); 
m_ListBox.DeleteColumn(l); 
m_ListBox.InsertColumn( 1, _T("Qty"), LVCFMT_LEFT, 50 ); 
m_ListBox.DeleteColumn(2); 
m_ListBox.InsertColumn( 2, GetDocument()->m_sStoreNames[O], 

LVCFMT_RIGHT, 95 ); 
m_ListBox.DeleteColumn(3); 
m_ListBox.InsertColumn( 3, GetDocument()->m_sStoreNames[l], 

LVCFMT_RIGHT, 95 ); 
m_ListBox.DeleteColumn(4); 



Page 00246

220 Chapter 7 • Real MFC Applications Ported to CE 

m_ListBox.InsertColumn( 4, GetDocument()->m_sStoreNames[2], 
LVCFMT_RIGHT, 95 ); 

m_ListBox.DeleteColumn(5); 
m_ListBox.InsertColumn( 5, GetDocument()->m_sStoreNames[3], 

LVCFMT_RIGHT, 95 ); 

If you make this simple change everywhere else it's needed in the source, you 
will have saved quite a bit of needless memory allocation. 

One Final Surprise 
Although it wasn't demonstrated in the porting of the Shopping List application, 
there is one additional surprise that you need to know about when you're porting 
toCE. 

Under Windows 98 or NT, there are a number of cases where you rely on 
another program to do a task for you, rather than attempting to duplicate that 
functionality on your own. For instance, many programs that don' t require a full
fledged reporting engine of their own may opt to use Microsoft Word as a report
ing engine. Typically, the developer will create template documents for Word. 
Then, via a service known as OLE Automation, it's possible to launch Word in a 
hidden state, pass it values to insert into the template document, and even ask it 
to print the document for you. All this is done without the user 's knowledge that 
Word has been invoked at all. For instance, in your CWi nApp's Ini tinstance() 
method, you might actually launch a hidden copy of Excel with code that looks 
something like this: 

m_pExcelWS = new IWorksheetFunction; 
ASSERT (m_pExcelWS!= NULL); 
if (!m_pExcelWS->CreateDispatch("Excel.Application ")) 

return AfxMessageBox("Failed to Connect, Please make sure you have 
Excel 97 Installed"); 

The problem is that under CE, the programs that are most commonly used as 
OLE Automation servers-namely, the Microsoft Office Suite of applications-do 
not offer any OLE Automation features. So, if you had an application like the one 
pictured in Figure 7.5, which uses Excel as an OLE Automation server to perform 
an interest calculation, you would be facing an additional porting task. 



Page 00247

FIGURE 7.5: 

The Desktop version 
of CarCalc 

One Final Surprise 221 

~-Car Pavment Calculator £J 
Price:,...... ...... ..-..................... ~ ...... ~, 

Selling Price of car: 

Sales T"" Rate: 

Tax: 

Regristration Fees: 

Other Fees: 

Totals: 

Amount Borrowed: 

T otallnterest: 

This application imports all of the functions Excel makes available. Then, using 
a pointer to the Excel object, it lets Excel perform the calculation: 

m_nMonthlyPayment = pApp->m_pExcelWS->Pmt(dint, m_nNumOfMonths, 
m_nAmountBorrowed, d, e); 

In this way, you have a fully functional application without having to do any of 
the interest payment algorithms yourself. However, when you port this CarCalc 
application to CE, you soon find that you're not so lucky because, in order to get 
this application to run on aCE device, you have to do all of the math yourself. 
What was previously one simple line of code is now an entire algorithm for calcu
lating monthly payments: 

if (m_nNumOfMonths > O) 

double pow = 1; 
double value; 
double dTempAPR m_nAPR I 12; 

for (int i = 0; < m_nNumOfMonths; i++){ 
pow= pow * (1 + dTempAPR); 
value= (m_nAmountBorrowed ,., pow'~' dTempAPR) I (pow- 1); 

m_nMonthlyPayment value; 



Page 00248

222 Chapter 7 • Real MFC Applications Ported to CE 

sTemp.Format(_T("%.2f"),m_nMonthlyPayment); 
m_nMonthlyPayment = (double)wcstod(sTemp, ' \0 ' ); 

All of your code that relies on OLE Automation will almost certainly have to 
change in a similar fashion. 

Summary 
In this chapter, you examined the porting of a Desktop-based MFC application to 
aCE-based MFC application. You learned what sort of perils can arise and looked 
at some common solutions for these problems. In addition, you took a look at 
some of the services provided by a third-party application (Office) and what you 
could do to compensate for the fact that the Pocket versions of those applications 
did not provide the same features. 

In the coming chapters, you'll be looking at the Visual Basic side of program
ming forCE. You'll then explore some features that are unique to the Windows 
CE operating system. 



Page 00249Page 00249



Page 00250Page 00250



Page 00251

CHAPT{R 
{ I G U T 

Visual Basic Toolkit for CE 

• The Application Templates 

• The Debugger 

• The Runtime Files 

• The Control Manager 

• The ActiveX Control Pack 

• The Standard VBCE Controls 

• The Setup Wizard 



Page 00252

226 Chapter 8 • Visual Basic Toolkit forCE 

The purpose of this chapter is to show off the Windows CE toolkit for Visual 
Basic. We'll take a look at some of the things you can do with VBCE and what 
exactly the toolkit offers. We'll also take a look at the special debugger forCE
based applications. In addition, we'll pay special attention to VBCE's own Appli
cation Setup Wizard, a special tool available only for Visual Basic. Then we'll 
move on to changes in the actual Visual Basic language for CE. Finally, we'll pre
sent a sample Visual Basic application. 

The Windows CE Toolkit for VB 
When you use the Windows CE toolkit for Visual Basic to build programs, you're 
really using a collection of tools and products all at once. Unlike VC++, where the 
various SDKs and toolkit features seem to be one product, VB' s toolkit is distinct 
and different from any tools provided with the SDK The toolkit for VB consists of 
the following core components: 

• The application templates 

• The debugger 

• The runtime files 

• The Control Manager 

• The ActiveX Control Pack 

• The Standard VBCE controls 

• The Setup Wizard 

The Application Templates 
The application templates, as shown in Figure 8.1, are the three types of Windows 
CE applications that you can create with VBCE. They are 

• Windows CE HPC Project 

• Windows CE HPC/Pro Project 

• Windows CE Formless Project 



Page 00253

The Windows CE Toolkit for VB 227 

FIGURE 8.1: New Project 13 
The Application Templates 

TIP 

~\·· K· 2?1 2?1 ~ . 
~. #. 

1/B Application VB Wizard ActiveX Activex 
Wizard ~1anager Document Dll Document Exe 

~ ~ ~ ~ 
Addin Data Project DHTML liS Application 

Application 

~ ~ ~ ~ 
VB Enter prise Windows CE Windows CE 
Edition Co ... Formless ... HPC Pr·oject 

The first of these templates has existed since the toolkit for VB 5 and is the stan

dard project that you can create for any HPC device. The other two templates are 
new to the VB 6 toolkit. As you might guess, the HPC/Pro template allows you to 

create applications for HPC/Pro devices, such as the HP Jornada. 

An HPC/Pro VBCE application will also run on HPCs that have been upg raded to 
Windows C E version 2.11. 

The last of these templates, the Formless Project, may not make sense at first. 
Starting with the toolkit for VB 6, we can now use Visual Basic to create applica

tions that are formless. The main purpose of such an application would be to 
develop applications to run on embedded versions of Windows CE. 

Embedded Applications with VB 
As you may know, Microsoft offers a version of Windows CE for developers of embedded 
systems. The way it works is that a developer who wants to use CE for an embedded device 
must purchase the Embedded Toolkit for VC++. The developer then builds a special, com
pletely customized version of Windows CE, according to the specific needs of their appli
cation or device. 

Continued on next page 



Page 00254

228 Chapter 8 • Visual Basic Toolkit forCE 

However, when they're finished building their custom version of CE, they don't get the 
attractive Windows 98-like shell. Instead, their version of CE has either a minimal shell or 
is a text-mode operating system. This lack of a standard shell is the reason for the formless 
VB application type. 

With the advent of the formless VB application, you can build your custom version of CE 
itself using the Embedded Toolkit and VC++, then code all of your embedded applications 

using Visual Basic. 

The Debugger 

NOTE 

Unlike the standard Visual Basic debugger, the debugger forCE-based applica
tions is actually a completely separate program from the IDE. This makes it a little 
more difficult to use in a number of ways. 

1. Setting breakpoints in your code becomes a challenge in itself. The problem is 
that, because the debugger is a separate executable, you can't set break
points from within the VB IDE itself. Instead, you must manually set your 
breakpoints while your application is running in the debugger. When your 
program is passed to the debugger, there are three distinct events that take 
place: 

a. First, if appropriate, the debugger launches the Desktop emulator. 

b. Next, the debugger launches your program. 

c. Finally, your program, as shown in Figure 8.2, is displayed in the 
debugger. 

What this means to you is that it's extremely difficult to set any breakpoints on 
anything that executes as part of the initialization code for your project's startup 
object. You literally have to race to get to the code in time to put a breakpoint on 
any of it. 

In the newest version of the toolkit (for VB 6) there is a Step Into option in the IDE 
that goes a long way toward fixing the problem. However, it's still not very effi
cient if your application does a lot of processing at startup and you only want to 
break toward the end of the operation. 



Page 00255

The Windows CE Toolkit for VB [2191 

FIGURE 8.2: 

An application as viewed in 
the debugger 

NOTE 

2. 

3. 

im i 
rivate Sub cmdStart_Click () 

i = 0 
Timerl.Enabled = True 

rivate Sub cmdStop_Click() 
Timerl.Enabled = False 
txtEnd.Text = Time 
txtDifference.Text = i & • seconds elapsed" 

Sub 
erivate Sub Timerl_ Timer() 

+ 1 

Your breakpoints are only temporary. As soon as you exit the debugger, they're 
lost. So, if you want to debug the same code more than once, you must set 
all the breakpoints each time. 

When your program is finished running, the debugger asks you if you want to close 
the debugger as well. This can be quite annoying. 

It is expected that the debugger will no longer ask you if you want to close the 
debugger in the final release version of the toolkit; however, as of this writing, 
only the beta version of the toolkit was available. 

In conclusion, the VBCE debugger still needs some work before it will be as 
user-friendly or as easy to use as VB's standard debugger. 

The Runtime Files 
VBCE's runtime files are not the same as the VBRUNxOO. dll files that exist in the 
Desktop VB world. Instead, the VBCE runtime engine is a CE port of Microsoft's 



Page 00256

230 Chapter 8 • Visual Basic Toolkit for CE 

Visual Basic Script engine! This means that when you're writing a VBCE pro
gram, you're really working with an enhanced version of the VBScript language. 

Although the toolkit for VB 5 only supported two processors, VBCE 6 supports 
nine different processors and devices. They are 

• Strong ARM 

• Intel486 

• MIPS 39xx 

• MIPS 41xx 

• MIPS43xx 

• Power PC 821 

• SA 1100 

• SH3 

• SH4 

The actual runtime files, should you ever need to manually copy them, are 

• pvbload.exe 

• pvbform2.dll 

• pvbhost2.dll 

• vbscript.dll 

• vbsen.dll 

The Control Manager 
The Control Manager is an application designed to help developers know which 
ActiveX controls are registered on which devices. When it starts, Control Man
ager queries the Desktop operating system for a list of all registered Windows CE 
controls. It then queries the Emulator and the currently connected Windows CE 
device (if any) for the same information. 

When finished, Control Manager displays the list of all the CE ActiveX controls 
available and whether or not they exist on the device and the Emulator. You can 



Page 00257

The Windows CE Toolkit for VB 231 

then register (or delete) controls as needed. Of course, when you distribute your 
application it will be the responsibility of your setup program to register controls 
on the user's device. That's why Control Manager is so useful: it saves you from 
having to create that setup program every time you add or remove a control from 
your project. 

The ActiveX Control Pack 
The original version of the toolkit didn't come with anywhere near the variety of 
ActiveX controls that VB developers have come to expect. To remedy this situa
tion, Microsoft released the ActiveX Control Pack, which contains six additional 
ActiveX controls for Windows CE. Although these controls are now shipped as 
part of the toolkit, they're worth mentioning separately in the event that you're 
using the VBCE toolkit for VB 5. 

The ActiveX Control Pack includes the following controls: 

• Grid 

• TabStrip 

• TreeView 

• ListView 

• ImageList 

• Common Dialog 

Grid 

The Grid control of the ActiveX Control Pack is a simple, low-powered version of 
the MSFlexGrid control that comes with VB 6. While the grid is fine for display
ing and organizing small amounts of data, it is read-only and doesn't support fea
tures such as FixedRows. For most applications, you're probably better off 
purchasing a third-party grid or modifying your project to use a ListView control. 
Figure 8.3 shows the Grid control at runtime. 



Page 00258

232 Chapter 8 • Visual Basic Toolkit forCE 

FIGURE 8.3: 

The Grid control at runtime 

Solving the Read-Only Problem 
For many of us, a read-only grid is not worth very much at all. Typically, users like to be 
able to edit the data they see in a grid, and CE users are certainly no exception. Unfortu
nately, the standard Grid control of the ActiveX Control Pack is read-only, just like its Desk
top cousin, the MSFiexGrid. 

If you've worked with the MSFiexGrid control for any length of time, you've probably seen 
the MSDN sample code that demonstrates how to simulate in-place editing with the 
MSFiexGrid. However, the problem with that code is that it doesn't work on CE without 
some modification. Although there are lots of issues related to porting Desktop VB code 
to VBCE that we'll deal with in the next chapter, this MSDN code fails for one simple rea
son: CE-based controls do not respect the Z-order set at design time. (As you probably 
know, Z-order refers to the order in which controls sit "on top of" one another-the 
BringToFront and SendToBack menu options available at design time.) 

The problem comes from the fact that the Grid control always seems to place itself at the 
top of the Z-order, obscuring all the controls previously above it. The solution to this prob
lem is to hide the Grid control, then reshow it after you show the Edit control. 

The original MSDN code to position and show the Edit control looked like this: 

Edt.Move MSHFlexGrid.Left + MSHFlexGrid.Cellleft, _ 
MSHFlexGrid.Top + MSHFlexGrid.CellTop, _ 
MSHFlexGrid.CellWidth - 8, _ 
MSHFlexGrid.CellHeight - 8 

Edt.Visible =True 
Edt.SetFocus 

Continued on next page 



Page 00259

FIGURE 8.4: 

The TabStrip control at 
runtime 

The Windows CE Toolkit for VB 233 

To make the Grid control effective, that code must now be changed to hide and then 
show the Grid control: 

Edt.Move MSHFlexGrid.Left + MSHFlexGrid.Cellleft, _ 
MSHFlexGrid.Top + MSHFlexGrid.CellTop, MSHFlexGrid.CellWidth -

8, -
MSHFlexGrid.CellHeight - 8 

MSHFlexGrid.Visible = False 
Edt.Visible =True 
MSHFlexGrid.Visible =True 
Edt.SetFocus 

'Hide the Grid 
'Show the Edit control 
'Show the Grid again 

This fix correctly causes the Grid control to be shown "under" the Edit control, completing 
the illusion of in-place editing. 

TabStrip 

The TabStrip control is another rather simplistic control, but it's one that can be 
quite useful when you have too many controls for one form. Using the TabStrip 
control, you can logically group related UI elements so that when the user clicks 
on a tab, a different set of controls is shown. (This behavior can also be seen on 
any Windows 98/NT property sheet dialog.) Figure 8.4 shows the TabStrip con
trol at runtime. 

.Form1 EJ I 

Forml 



Page 00260

234 Chapter 8 • Visual Basic Toolkit forCE 

WARNING The TabStrip control does not actually manage the showing and hiding of related 
controls. You must write the code to do this yourself. 

Tree View 

The Tree View control is simply an implementation of the standard Windows CE 
Tree View control. 

ListView 

Similarly, the ListView control is an implementation of the standard Windows CE 
List View control. It supports the four standard views of data supported by the 
Desktop ListView control: Large Icon, Small Icon, List, and Report. 

lmagelist 

The ImageList control is an implementation of the standard Windows CE Image
List control. As you probably know, the Image List control is used to manage 
bitmaps that are then accessed by other controls, such as Tree Views and 
List Views. 

Common Dialog 

The Common Dialog control is a control that serves as a wrapper for the four 
common dialogs: 

• File Open 

• File SaveAs 

• Color Selection 

• Font Selection 

In addition, the Common Dialog control can also be used to display a help file 
using the CE Help system. The methods of the Common Dialog control are out
lined in Table 8.1. 



Page 00261

The Windows CE Toolkit for VB 235 

T A B L E 8 . 1 : Methods of the Common Dialog Control 

Method 

ShowOpen 

ShowSave 

ShowColor 

ShowFont 

ShowHelp 

What It Does 

Launches the FileOpen dialog. The selected FileName is returned in the FileName 
property. 

Launches the FileSaveAs dialog. The FileName is returned in the FileName property. 

Launches the Color Selection dialog. The value of the selected color is returned in the 
Color property. 

Launches the Font Selection dialog. The selected FontName, FontSize, and other attrib
utes are returned in the similarly named properties of the control. 

Launches PegHe l p. exe, the Windows CE Help Viewer. Invokes the Windows Help 
Engine. The HelpFile property specifies the complete path of the application's help file. 

The Standard VBCE Controls 
Of course, the ActiveX Control Pack is only intended to supplement the core con
trols offered by VBCE. Some of these controls are implemented as ActiveX con
trols, while others are included as part of the VBCE language itself. Wherever 
possible, you'll want to stick to the native VBCE controls instead of the ActiveX 
controls. That's because each ActiveX control you use adds to the total storage 
space requirement of your program, and, on aCE device, storage space is always 
at a premium. 

Table 8.2 below lists the controls available to VBCE programmers and describes 
what type of control each is as well as the purpose of each control. 

T A B l E 8 . 2 : The Standard VBCE Controls 

Control Implemented As 

CheckBox Native VBCE control 

ComboBox Native VBCE control 

Comm ActiveX control 

Purpose 

Standard CheckBox control 

Standard ComboBox control 

Similar to Desktop Comm control; provides access to ser
ial communications 



Page 00262

236 Chapter 8 • Visual Basic Toolkit forCE 

T A 8 l E 8 . 2 C 0 N T I N U E D : The Standard VBCE Controls 

Control Implemented As Purpose 

Command Bar ActiveX control Windows CE CommandBar; helps to improve CE-Iike 
appearance of VBCE applications 

File ActiveX control Provides read-and-write access functions for working 
with files 

FileSystem ActiveX control Exposes file-system functions such as FileCopy 

Finance ActiveX control Provides financial functions such as PMT 

Frame Native VBCE control Standard Frame control 

Image ActiveX control Similar to Desktop Image control; used for displaying 
bitmaps, but does not support any drawing operations 

Label Native VBC E control Standard Label control 

Line Native VBCE control Standard Line control 

ListS ox Native VBCE control Standard ListBox control 

Menu Native VBC E control Standard Menu control 

Option Button Native VBCE control Standard OptionButton control 

Picture Box ActiveX control Similar to Desktop PictureBox control; used for displaying 
bitmaps; offers several drawing functions 

Scrollbar Native VBC E control Standard Scrollbar control 

Shape Native VBCE control Standard Shape control 

TextBox Native VBCE control Standard TextBox control 

Timer Native VBC E control Standard Timer control 

Win sock ActiveX control Provides Winsock functions for communication over the 
IR port of the CE device 

The Setup Wizard 
One of the most useful tools provided with VBCE is the Setup Wizard. As you'll 
see in Chapter 14, creating a correct, working Windows CE setup application is a 
task no one welcomes. That's where the Setup Wizard comes in. 



Page 00263

Changes in the Visual Basic Language 237 

The Setup Wizard is a tool that takes your application, any related files, and the 
VBCE runtime engine, and creates a setup program for you. All you have to do in 
order to create this setup program is to give the wizard the following information: 

1. Which VB (application) file you want to install 

2. Where you want your files to end up when copied to the device 

3. Which ActiveX controls or additional files you want installed 

4. Whether or not to copy the VBCE runtime files 

That's all there is to creating a setup. As you'll see in Chapter 14, creating setup 
programs for Windows CE is usually considerably more complex unless you opt 
for a third-party tool like InstallShield for Windows CE. However, with VBCE's 
Setup Wizard, it's a breeze. 

Changes in the Visual Basic Language 
As you probably know, VBCE is really a souped-up version of the VBScript lan
guage. VBScript is a language that was designed to compete with JavaScript; in 
other words, it's a simple language for scripting Web pages. However, VBScript is 
loosely based on Visual Basic, and these languages really aren't that diffeent from 
one another. 

But not all features of the Visual Basic language exist on CE and, as you'd 
expect, the features that do exist are not the same in the version 5 toolkit as they 
are in the version 6 toolkit. 

The version 5 toolkit is fairly restrictive in what it offers in terms of the Visual 
Basic language. As a general rule, it seems to be much closer to VBScript than to 
Visual Basic. For instance, the Dim vari ab 1 e As Type syntax is not supported. 
You can still declare your variables using Dim, but you cannot specify an explicit 
type. That's because VBScript is basically a typeless language; every variable is a 
variant. 

The toolkit for Visual Basic version 6 is, as the Microsoft documentation says, 
"essentially identical to the earlier version." However, there are a number of 
familiar statements and other language features that have been added. Table 8.3 
shows some of the more common Visual Basic for CE Language features and 
which versions of the toolkit, if either, offer those features. 



Page 00264

238 Chapter 8 • Visual Basic Toolkit forCE 

T A B L E 8 . 3 : Visual Basic forCE Language Features 

Language Feature Supported by 
Version 5 of Toolkit? 

#lf...#Eise No 

Do Events No 

Go To No 

With ... End With No 

End No 

Debug.Print No 

Declare No 

Dim Variable As Type No 

LoadResString No 

Supported by 
Version 6 of Toolkit? 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

In addition to the above list, all file access and financial functions are now 
encapsulated in ActiveX controls. However, the following standard Visual Basic 
controls are unsupported: 

• Directory List Box 

• Drive List Box 

• File List Box 

• Data 

• OLE 

A Sample Application 
In order to get familiar with the Visual Basic for CE environment and language, 
let's create a sample application based on one of the old tutorial examples from 
early versions of VB. Specifically, you'll make a simple stopwatch-like applica
tion. It will record the starting and ending times, as well as the number of seconds 
elapsed. 



Page 00265

FIGURE 8.5: 

The Stopwatch form at 
design time 

A Sample Application 239 

Start by creating a new HPC or HPC/Pro Project by choosing File> New Pro
ject off of the main menu. The Application Properties window will appear. When 
you finish filling out the Properties window, you'll be presented with a standard
looking blank form. 

Let's begin the visual design of the application by adding three edit controls to 
the form. Stack them so they appear one on top of the other. Name these edit con
trols txtStart, txt End, and txtDi fference. When you're done with that, add 
three label controls to identify the edit controls' purposes as Starting Time, End
ing Time, and Difference. 

Now, add two buttons to the form. Name the first button cmdStart and change 
its caption to Start. Name the second button cmdStop and change its caption to Stop. 

Finally, add a timer control to your form. The default name of Ti merl will be 
fine, but change the interval to 1000. This will cause the Timer() event to be trig
gered every 1000 milliseconds, or once a second. When you're all finished, you 
should have a form that looks something like that shown in Figure 8.5. 

iii. Form1 l!lliJEJ 

Now you'll add some code to the form to make it actually do something! Start 
by declaring the variable i . Do this just under the Option Exp 1 i cit line at the 
top of your code. When you're done, the first two lines of your code should read 

Option Explicit 
Dim i As Integer 



Page 00266

240 Chapter 8 • Visual Basic Toolkit forCE 

Next, add some code for the cmdStart button's Click() event. Specifically, 
you'll be initializing i, starting the timer control, and recording the starting time 
in the txtStart edit control: 

Private Sub cmdStart_Click() 
i = 0 'initialize i 
Timerl.Enabled =True 'start the timer 
txtStart.Text =Time 'record starting time 

End Sub 

Then, add some code for the timer control's Timer() event. Specifically, incre
ment i by 1 whenever the Timer() event is triggered: 

Private Sub Timerl_Timer() 
i = i + 1 

End Sub 

Finally, add some code to the cmdStop button's Click() event. Here, you'll stop 
the timer, record the ending time in the txt End edit box, and display the number 
of seconds elapsed by writing the value of i to the txtDi fference edit box: 

Private Sub cmdStop_Click() 
Timerl.Enabled = False 'stop the timer 
txtEnd.Text =Time 'record the ending time 
txtDifference.Text = i & " seconds elapsed" 'display elapsed time 

End Sub 

You're done! You now have aCE stopwatch application, created in only a few 
minutes, with a minimum of coding and contro.ls. 

Summary 
In this chapter, you examined Visual Basic for Windows CE. First, you saw what 
the toolkit had to offer. You looked at some of the special tools and utilities we'll 
need to build and distribute VBCE applications. You also examined some of the 
language differences between the VB you're used to and VBCE. Finally, to famil
iarize yourself with VBCE, you created a simple application. 

In the next chapter, you'lllook at what it takes to get a Desktop Visual Basic 
application ported to Windows CE and how to make that process go as smoothly 
as possible. 



Page 00267Page 00267



Page 00268Page 00268



Page 00269

CHAPT{R 
N I N ( 

A Real VB Application 
Converted to CE 

• A Sample Application: International ATM 

• Mechanical Issues of Porting 

• Optional Features 

• Optimizing forCE 



Page 00270

244 Chapter 9 • A Real VB Application Converted to CE 

In this chapter, we'll be converting a real Visual Basic application to Windows 
CE. When we're done, you'll have an understanding of what's involved in con
verting even the simplest of Visual Basic desktop applications to the CE platform. 
In addition, you'll see why you have to drop certain features and that you may be 
inspired to add new ones. 

At this point, you already have an understanding of which Visual Basic fea
tures are and are not supported under Windows CE. It probably comes as no 
surprise that Microsoft's recommendation for porting existing Visual Basic appli
cations to CE is: don't! Microsoft believes that you're better off starting from 
scratch. However, that's simply not realistic, since many of you already have sig
nificant investments in your existing Visual Basic code, and you're probably not 
willing to rewrite everything. The steps to porting a VB application to CE are cov
ered in the following order: 

1. We'll take a look at the project as it exists now. 

2. We'll work our way through the conversion, starting with the simpler tasks. 
The goal is to get a no-frills version of the application running on a CE 
device. 

3. During the conversion, we'll consider porting some optional features. 

4. We'll look at optimizing the user interface and the code for the Windows CE 
platform. 

The Application: International ATM 

NOTE 

The application we'll be porting is one you're probably already famiJiar with
it's the ATM sample that ships with VBS. In case you've never run into it before, 
though, let's take a quick look at it. 

This chapter uses the ATM sample application that comes with Visual Basic 5. You can 
find this application in the VB\Samp 1 es\Pgui de\ATM directory on the VB 5 CD-ROM. 



Page 00271

FIGURE 9.1: 

The Application: International ATM 245 

The ATM program is a simple demonstration of a multilingual cash machine. 
When you first start it, the application presents the flags of five countries with a 
button next to each one, as shown in Figure 9.1. 

Automated Teller Machine [A.T.M.) EJ 

The opening form of the 
ATM application 

Welcome to the 
WORLD TRAVELER BANK 
Automated Teller MHchine 

"Custom service Hround the world" 

FIGURE 9.2: 

~Plea select a language:====~ 

Italiano 

C!:l Espai'lol 

~ Deutsch 

As you move your mouse over each of the buttons, your cursor changes to indi
cate that you can click on the buttons. Clicking on one of the buttons selects your 
preferred language for the rest of your transaction. Upon selecting your preferred 
language, you are presented with another form, asking for two pieces of informa
tion (see Figure 9.2): 

• Your PIN number 

• The amount you want to withdraw in U.S. dollars 

Oii Benvenuti EJ 

The controls on the form 
display text in whatever 
language the user chose. 

r. Canto COirente 

r Libretto di risparmio 

Digitare Ia cilra richiesta: 

US Dollars 

Attendere 



Page 00272

246 Chapter 9 • A Real VB Application Converted to CE 

FIGURE 9.3: 

The ATM application 
performs the currency 
conversion. 

Another form then pops up and asks you to confirm the amount of your with
drawal in U.S. dollars, as shown in Figure 9.3. (Naturally, the program performs 
the currency conversion for you.) 

La seguente cifta vena prelevata 
dal vcnllo: Conlo commte 

1 USD ($) • 1614 Lire liable 

US Dolars Lileltaliane 

JS4560 

Finally, once the transaction is finished, the program plays a "thank you" mes
sage as a WAV file in your chosen language. 

Porting the ATM Application: Not As Simple 
As It Looks 

At first glance, it doesn't look like there's anything here that would be difficult to 
port. After all, there are only about 8 buttons, 4 edit boxes, and just over 150 lines 
of code in the whole project- it really looks like this is going to be a piece of cake. 

As soon as you look a little more closely, however, you can see that there are 
quite a few things in the ATM program that absolutely will not port to CE under 
any circumstances. For instance, the "thank you" WAV file in the example 
requires the following Declare statement to play: 

Declare Function sndPlaySound Lib "WINMM.DLL" Alias "sndPlaySoundA" 
(ByVal lpszSoundName As Any, ByVal uFlags As Long) 

VBCE, however, has no Declare statement and no support for calling external 
DLLs, so the code for the existing WAV files simply will not port to CE. If you still 
want to play WAV files, you must find another way. 



Page 00273

NOTE 

The Application: International ATM 247 

This has been remedied with the VB 6 Toolkit for Windows CE, in which the core 
VBCE language was modified to include the Declare statement. At the time of this 
writing, both the version 5 and 6 toolkits are still in popular use. Therefore, in the 
porting process of this chapter, we have followed the more restrictive standards of 
the VB 5 toolk it for illustration purposes. Additionally, the majority of the issues 
discussed here are still relevant to the VB 6 Toolkit for Windows CE. 

How, Exactly, Do You Port from VB {Desktop) 
to VBCE? 

There are two ways to get the forms from one project to the other when porting from an 
existing VB (desktop) application to a VBCE application: 

• Start a new CE project, and then attempt to add the existing desktop forms to the 
new CE project (Project> Add Form on the main menu). 

• Start two copies of Visual Basic, open the existing project in one copy of VB, and 
open the new project in the other copy of VB. Then create a form in the new project. 
Go back to the old project and proceed to cut and paste controls (one at a time or all 
at once) and code from one to the other until you are finished. 

Officially, Microsoft does not recommend the first method. However, both options pro
duce essentially the same result: as you add the existing form to the new project, or as you 
paste one or more controls, VB will notify you about each control that is not supported 
under CE and will then remove it from the form. The only distinct advantage of the sec
ond method is that your forms will be automatically sized to the HPC screens by default. 
With the first method, you have to make sure your forms fit the smaller screens. Aside 
from this difference, however, both methods appear to work equally well, and which one 
you choose is a question of personal preference. 

Planning the Porting Process 

Before you start to dissect the application for porting, perhaps the best thing to do 
is to make a list of everything that will not port to CE without modifications of 
some kind. This way, you can get a sense of the work involved and can begin 
researching some clever workarounds or fixes. 



Page 00274

248 Chapter 9 • A Real VB Application Converted to CE 

NOTE 

When you take a look at everything that needs to be fixed or changed for the 
ATM project to compile and run under CE, the list looks like this: 

• Several Global Const declarations. Although it doesn't appear to be docu
mented anywhere, VBCE does not support Global declarations. 

• All the project's variable declarations that specify a data type must be 
changed. For example: 

Dim ConversionValue As Currency 

must be changed to 

Dim ConversionValue 

• An array of currency values initialized with the following line of code: 

• 

• 

• 

• 

ConversionTable =Array(!@, 4.8635@, 1.3978@, 1614@, 119.07@, 
89.075@) 

This will not compile under CE because it uses explicit typing; specifically, 
the values in the array are being cast to the currency type by the @ sign 
placed at the end of each value. Other explicit casting operations used in the 
ATM project also will not port, such as Val() or CCur(). 

The Flag pictures on frmOpen must be changed from standard Image Con
trols to controls supported under CE, such as the CE Image Control. (The 
same change must be made to the two other forms in the application, as 
they also use an Image Control.) 

The WAY-playing functions, as mentioned previously, will not port to CE . 

The changing of the cursor as you pass over the buttons on frmOpen will not 
port to CE, as CE has no mouse cursors. 

The manner in which the secondary forms (i.e., not the main form) are 
shown modally will not port to CE, as VBCE does not support modal forms. 

A modal form is one that locks out other parts of the program until the user dis
misses or closes it, typically by clicking an OK or Cancel button. 



Page 00275

Mechanical issues of Porting 249 

• The very core of the ATM application itself, namely, the ability to load lan
guage-specific strings and images from a resource file, will not port to Win
dows CE because VBCE doesn't support the necessary LoadResStri ng and 
LoadRes Picture functions. 

When you look at this list, porting the ATM application to VBCE can appear to 
be somewhat daunting. Yes, there are some items that are rather easy to fix and 
may involve nothing more than a bit of editing and a few REM statements. On the 
other hand, the ATM application relies upon being able to show a form modally and 
being able to load strings from a resource file. If it can't change the language of the 
buttons and labels dynamically, it doesn't have a purpose anymore. 

Now that we have a better sense of parts of the ATM project that won't immedi
ately port, let's come up with an action plan so that we can manage and rank the 
tasks in order of importance and complexity. 

Mechanical Issues of Porting 
When you look at the list of things that won't port, it's clear that some of them 
will be easier to fix than others. Let's start with the easier parts first. 

Change G1 oba 1 to Pub 1 i c Probably the easiest change to make is that of 
replacing the word G1 oba 1 with the word Pub 1 i c. This can be done with a 
simple Find .. Replace operation that searches all files in the current project. 
This takes very little effort and fixes the problem completely. After all, the 
word G1 oba 1 only appears about three or four times in the entire ATM 
application! 

Explicit type declarations The next easiest changes to make are the 
Explicit Type declarations. To fix these, search for As on all files in the pro
ject. Each time you find an occurrence, stop and edit the code to remove 
the As and the type name after the As. Again, there are only a few such 
occurrences in the ATM project, so fixing them is pretty simple. 



Page 00276

250 Chapter 9 • A Real VB Application Converted to CE 

Explicit Types While you're working on data-type-specific issues, you 
should also fix the currency conversion array. This occurs on line 26 of the 
modATM. bas module. Before the fix, it reads: 

ConversionTable = Array(1@, 4.8635@, 1.3978@, 1614@, 119.07@, 
89.075@) 

To fix it, change it to read: 

ConversionTable = Array(1, 4.8635, 1.3978, 1614, 119.07, 89.075) 

Typecasts Let's move on to removing the Val() and CCur() typecasts 
that are used on lines 20 and 21 of the code for frmAmountWi thdrawn. They 
now read: 

txtUSDollarsAmt = Val(frminput.txtUSDollarsAmt.Text) 
txtConvertedAmt = ConversionValue * CCur(txtUSDollarsAmt.Text) 

To fix it, change it to read: 

txtUSDollarsAmt = frminput.txtUSDollarsAmt.Text 
txtConvertedAmt = ConversionValue * txtUSDollarsAmt.Text 

Bitmaps, icons, and the Image Control Then there's the question of the 
Image Controls and the little flag pictures. As we discovered earlier, the 
standard Image Control doesn't exist onCE. While it's true that there is a 
substitute CE Image Control that you can use for this purpose, that may 
not be the best action to take, as we'll examine shortly. For the time being, 
simply leave the flags off the form. 

Now that we've finished the simpler tasks, let's move on to some of the more 
complex conversions and fixes. 

Converting WAV Files 

First, let's deal with the WAY-playing functionality. Because YBCE offers no way 
to call an external DLL, and since it does not provide any multimedia functions of 
its own, you will have to Rem out and/ or delete most of the WAY-related code for 
the time being. You should delete: 

• The Declare statement(s) 

• The actual DLL calls 

• Any constants associated with the sound functions 



Page 00277

TIP 

Mechanical Issues of Porting 251 

Then, stub the existing Sub procedures, so as not to break any other code that 
may be calling those procedures. Stubbing is the process of removing the code 
from a procedure while keeping the Sub and End Sub blocks. Stubbing these pro
cedures reduces the chance that something dependent on these routines will 
break when the routine is no longer there; it also ensures that other parts of the 
program still have a subroutine-even an empty one-that they can reference or 
call without breaking. 

Currently, toward the top of your modATM. bas file, you should have some code 
that looks like this: 

1 High level sound support API 
#If Win32 Then 
Declare Function sndPlaySound Lib "WINMM.DLL" Alias 

"sndPlaySoundA" _ (ByVal lpszSoundName As Any, ByVal 
uFlags As Long)As Long 

#Else 
Declare Function sndPlaySound Lib "MMSYSTEM.DLL" 

(ByVal lpszSoundName As Any, ByVal wFlags As Integer) As 
Integer 

#End If 
Public Const SND_ASYNC ~ &Hl 1 Play asynchronously 
Public Const SND_NODEFAULT = &H2 I Don't use default sound 
Public Const SND_MEMORY = &H4 ' lpszsoundName points to mem 

Public SoundBuffer 

Mark and delete all of the code. When you're finished with the conversion, no 
portion of it should remain. 

Even if VBCE did have a Declare statement, you'd still have to do some work on 
the section of code that references the WAV-playing functions . That's because 
VBCE doesn't support the conditional compile directives (#If .. #Else .. #End If) 
that are used heavily in this block of code. 



Page 00278

2S2 Chapter 9 • A Real VB Application Converted to CE 

A little further down in that same module, some additional code must be 
modified. 

Sub BeginPlaySound(ByVal Resourceid As Integer) 
Dim Ret As Variant 
#If Win32 Then 

SoundBuffer = StrConv(LoadResData(Resourceid, 
"ATM_SOUND "), vbUnicode) 

#Else 
SoundBuffer = LoadResData(Resourceid, "ATM_SOUND ") 

#End If 
Ret= sndPlaySound(SoundBuffer, SND_ASYNC Or SND_NODEFAULT 

Or SND_MEMORY) 
1 Important: This function is neccessary for playing sound 

1 asynchronously 
DoEvents 

End Sub 

Sub EndPlaySound() 
Dim Ret As Variant 
Ret = sndPlaySound(O&, 0&) 

End Sub 

To convert it, change the block of code to now read: 

Sub BeginPlaySound(ByVal Resourceid As Integer) 
End Sub 

Sub EndPlaySound() 
End Sub 

What you did here was remove all of the code from the body of the 
Begi nPl aySound and EndPl aySound procedures. Here again, by stubbing these 
routines, you ensure that any procedures attempting to call the Begi nPl aySound 
or EndPl aySound procedures will be able to proceed as if the sound was still 
started or stopped. 

Modifying Mouse/Cursor Code for CE 

As we've covered in previous chapters, most CE devices do not have a mouse. 
And, clearly, if there's no mouse, there's also no mouse cursor. Therefore, to ensure 
that the ATM application will be compatible with as many CE devices as possible, 
all of the cursor-related code will have to go. But, as before, let's stub the procedures 



Page 00279

Mechanical issues of Porting 253 

related to the cursor operations-just in case. For example, the following block of 
code is from modATM. bas: 

Sub Cursor_Initialize() 
Set curSelect = LoadResPicture(l, vbResCursor) 

End Sub 

Sub SetCursor(Button As CommandButton) 
Button.MousePointer = 99 
Button.Mouselcon = curSelect 

End Sub 

To stub the cursor operator procedures, modify this segment of code to read: 

Sub Cursor_Initialize() 
'CE: no cursors 

End Sub 

Sub SetCursor(Button) 
'CE: no cursors 

End Sub 

Again, you're completely gutting these procedures by deleting all of the code 
between the Sub and End Sub lines. The reason to leave the functions here, although 
they're empty, is to accommodate other parts of the program that may still con
tain a call to one of these procedures. Of course, you should still go back and try 
to remove all references to the empty procedures, but you might not catch all 
of them. 

Converting Modal Forms 

Now that you've finished the smaller stuff, you come to one of the bigger difficul
ties of porting the ATM application to CE-the fact that VBCE doesn't support 
modal forms. It's simple to compile the application: 

1. Use a Find operation for the string Show 1. Every time you find a match, 
delete the 1. 

2. Make sure there are no Un 1 oad Me commands below a Show 1 command. In 
the ATM project, an example of this can be found in the Sub cmdOK_c 1 i ck() 
event of frmlnput. Before conversion, the code reads: 

frmAmountWithdrawn.Show 1 
Unload Me 



Page 00280

254 Chapter 9 • A Real VB Application Converted to CE 

Un 1 oad Me lines should be remmed out or deleted because Step 1 (changing 
the Show 1 command to read Show) will cause an error when frmlnput 
attempts to unload itself while its child form, frmAmountWi thd rawn, is still 
visible. Removing the Un 1 oad Me command suppresses this error. 

Snag! It Works, but the Forms Aren't Modal Anymore! Once you've 
made these changes, you're on your way ... or, are you? As you may have realized, 
this fix leaves the ATM application with a serious problem. Specifically, none of 
the forms wait for the active (formerly modal) form to be properly dismissed! 
This is a disaster for any program that depends on modal forms-not just the 
ATM application. Although there are several popular workarounds, none truly 
simulate a modal form perfectly. However, we have an application to port, so let's 
apply some workarounds and see if we like the final result once it's all done. 

The most popular workaround for this problem seems to be to show the fake 
modal form and then immediately hide the parent form. Then, when the fake modal 
form is dismissed (as a true modal form would be), it will be up to the fake 
modal form to show the parent form again. For example, in the parent form, you 
might have code that looks like this: 

frmFakeModal .Show 
Hide 

' first show the fake modal form 
' then hide the parent form ... 

Then, in the frmFakeModa 1 . Un 1 oad event, you might have code that looks like this: 

frmParent.Show ' show the parent form again 

For our purposes, this is a fairly good workaround for the lack of true modal 
forms. However, for larger projects, involving a greater number of forms, this 
could get a bit complicated. 

To fix this problem with this project, you've got to find every place that a form 
was previously shown or unloaded and replace that code with your workaround 
code. In the case of the ATM project, you must add code similar to the code listed 
above wherever there is a Command Button click event on each form. 

As an example, let's take a look at frmOpen and one of the language selection 
Command Buttons. The code for the Click event of the button marked Espa:fiol 
(CommandS) currently looks like this: 

Sub Command5_C1ick() 
i = 144 ' User chose Spanish. 
frminput.Show 

End Sub 



Page 00281

Mechanical Issues of Porting 255 

To add the modal form workaround, modify this code to read: 

Sub Command5_Click() 
i = 144 
frminput.Show 
Hide 

End Sub 

1 User chose Spanish. 

The next step is to repeat this operation for the remaining five buttons on 
frmlnput. Once you've done that, you'll need to add this code to the Unload 
event of frmlnput, as follows: 

frmOpen.Show 

You're not finished yet! You still must add the same logic to the Command But
tons of frmlnput and frmAmountWi thdrawn. For frmlnput, the cmdOK Click event 
should be modified to look something like this: 

Sub cmdOK_click() 
'MsgBox (LoadResString(7 + i)) 1 Remmed for the moment 
Hide 1 Hide yourself before showing the next form ... 
frmAmountWithdrawn.Show 

End Sub 

For frmAmountWi thdrawn, add the following two lines of code to the end of the 
cmdOKEnd Click event: 

frmOpen.Show 
Hide 

That will solve the modal form problem! 

To recap, here's what we just did: 

• Added the workaround code to the Command Buttons of frmOpen 

• Modified the Unload event of frmlnput 

• Modified the cmdOK Click event (on frmlnput) 

• Modified the cmdOKEnd Click event (on frmAmountWi thdrawn) 

Modifying Resource Loads 

Now, we move to the last-and perhaps most important-porting issue of the 
ATM application: specifically, the lack of support for loading resources from a 
resource file. The main feature of the ATM application is that it can dynamically 



Page 00282

256 Chapter 9 • A Real VB Application Converted to CE 

TIP 

change its language. It does this by loading all of its string resources (not to men
tion, flag pictures) from a resource file. In some sense, then, if we cannot port this 
feature or find a workaround that allows the ATM application to dynamically 
change its captions and other text, the entire application will be worthless. 

At this point, you have a couple of options: 

• You can scrap the idea of dynamically changing the language of the pro
gram and instead create six separate executables, one for each language. 

• You can store the string resources in some kind of separate file to be distrib
uted along with the executable. 

• You can use some cleverly designed arrays to store the string resources. 

Of these ideas, the last one is probably the most elegant and appropriate solu
tion, because the final CE version of the ATM application will be very similar to 
the original one. There won't be, as in the case of the second choice, any addi
tional files to distribute along with the executable, not to mention the task of writ
ing the appropriate file reading code. Also, the third option doesn't waste disk 
space, while the first option clearly does. For these reasons, we'll try to imple
ment the third option. 

There are cases when having the different language strings in a separate file is 
beneficial. For instance, it's easier to change the text of a particular message, as 
you wouldn't have to recompile the application. 

When you examine the actual resource file (using Developer Studio (see Fig
ure 9.4) or your favorite resource editor), you find that for each language, there 
are actually only 11 messages. 

Currently, the ATM project already has one array that it uses to perform the 
math for the currency conversion figures displayed by frmAmountWi thdrawn. 
That array contains one value (representing how many units of the chosen cur
rency it takes to equal one U.S. dollar) for each language, or six entries in all. 



Page 00283

Mechanical Issues of Porting 257 

FIGURE 9.4: •, Micro•ofl Developer Stud10 -[E:\. \PGuide\ATM\ATMJ2.AES String Table [Strong Table)) ~EJ 

The resource file as viewed 
in Developer Studio 

18 
19 
20 
21 Plea:.e ente1 an amo•.1nt: 
22 OK 

Your lransaclion is berng p1oces~ed 
Thank you f01 using O\lf AT M 
The following amounl wrll be wrthd1a·,·, from yolu: 
US Dollars 

49 Veuillez enlrer volre code· 
50 Veuii!ez choisir un compte 
51 Compte cheque 
52 Compte epargne 
53 Veu~lez enlrer le monlant 

54 OK 
55 Vo\re tramactron est en cour:;: de haileme(ll 
56 Merci d'avdr ut~r~e notre gu!chet aulomatique de banque 
57 Le montanl suivant va iH1e d8bite de volre : 

Reody 

Using this existing concept, we're going to make 11 additional arrays (one for each 
of the messages) Each array will have six entries (one for each of the languages). 

1. Your first step is to declare an array for each of the 11 messages. Each of 
these arrays will then contain a single phrase in each of the six languages. 
Declare these arrays in the mod ATM. bas module because all forms of the pro
ject will use them. This table shows the declarations for the arrays, as well 
as the English translation of the message each one will store. 

Array Declaration 

Public LanguageWelcome 

Public LanguagePinNumber 

Public LanguageChooseAccount 

Public LanguageChecking 

Messages 

"Welcome" 

"Please enter your PIN number:" 

"Please choose an account:" 

"Checking account" 



Page 00284

258 Chapter 9 • A Real VB Application Converted to CE 

NOTE 

Array Declaration Messages 

Pub 1 i c LanguageSavi ngs "Savings account" 

Pub1 i c LanguageEnterAmount "Please enter an amount:" 

Pub 1 i c LanguageOK "OK" 

Pub1 i c LanguageTransacti on "Your transaction is being 
processed ... " 

Pub1 i c LanguageThankYou "Thank you for using our ATM." 

Pub 1 i c LanguageAmountWi thd rawn "The following amount will be 
withdrawn from your:" 

Pub1 i c LanguageCurrency "U.S. Dollars" 

2. Now that you've declared the arrays, write the code to initialize and popu
late them with the translated messages. Put this code in the Load event of 
frmOpen, as that's where the original ATM project did its initialization. 

Your code to initialize the array for the Welcome messages will look like this: 

LanguageWelcome = Array( "Welcome ", "Bienvenue", "Willkommen ", "Ben
venuti", "Bienvenido", "TRANSLATE: Welcome") 

Microsoft did not provide translations for the Japanese messages in the original 
ATM program, so they are not translated here. 

Then add the array containing the different "Insert Pin Number" prompts, as 
follows: 

LanguagePinNumber = Array( "Please enter your pin number: ", "Veuillez 
entrer votre code:", "Bitte geben Sie Ihre Geheimnummer ein:", 
"Digitare il proprio codice segreto:", "Par favor, ingrese su numero de 
identificaci6n secreta:", "TRANSLATE: Please enter your pin number:") 

Next, the array containing the different "choose an account" prompts looks 
like this: 

LanguageChooseAccount = Array("Please choose an account:", "Veuillez 
choisir un compte:", "Bitte wahlen Sie ein Konto aus:", "Scegliere il 
tipo di conto: ", "Por favor, elija una cuenta: " , "TRANSLATE: Please 
choose an account") 



Page 00285

Mechanical Issues of Porting 259 

The array containing the different checking account labels follows: 

LanguageChecking = Array("Checking account", "Compte ch~que", 
"Gi rokonto", "Conto corrente", "Conto corrente ", "TRANSLATE: Checking 
account") 

Then add the array containing the different savings account labels: 

LanguageSavings = Array("Savings Account", "Compte ~pargne", "Spar
buch", "Libretto di risparmio", "Cuenta de ahorros", "TRANSLATE: Sav
ings Account") 

Then add the array containing the different "enter an account" prompts: 

LanguageEnterAmount = Array("Please enter an amount:", "Veuillez 
entrer le montant:", "Bitte geben Sie einen Betrag ein:", "Digitare la 
cifra richiesta: ", "Por favor, ingrese un importe: ", "TRANSLATE: Please 
enter an amount:") 

Next add the array containing the translations of "OK": 

LanguageOK = Array("OK", "OK", "OK", "Attendere", "Aceptar", 
"TRANSLATE: OK") 

Then add the array containing the "transaction is being processed" status 
messages: 

LanguageTransaction = Array("Your transaction is being processed ... ", 
"Votre transaction est en cours de traitement ... ", "Ihr Auftrag wird 
bearbei tet ... ", "La vostra operazi one e in cor so di esecuzi one ... " , "Su 
transacci6n se esta procesando ... ", "TRANSLATE: Your transaction is 
being processed . . . ") 

Next, add the array containing the different "thank you" messages: 

LanguageThankYou = Array("Thank you for using our ATM", "Merci 
d'avoir utilis~ notre guichet automatique de banque", "Vielen Dank daB 
Sie unseren Geldautomaten verwendet haben.", "Grazie e arrivederci ", 
"Le agradecemos que haya usado nuestro cajero automatico ", "TRANSLATE: 
Thank you for using our ATM ") 

Next, add the array with the different "amount withdrawn" messages: 

LanguageAmountWithdrawn = Array("The following amount will be withdrawn 
from your:", "Le montant suivant va @tre d~bit~ de votre : ", "Die fol
gende Summe wird abgebucht von Ihrem:", "La seguente cifra verr~ prele
vata dal vostro: ", "La siguiente cantidad sera retirada de su:", 
"TRANSLATE: The fo ll owing amount will be withdraw from your : ") 



Page 00286

260 Chapter 9 • A Real VB Application Converted to CE 

Then add the array holding the different currency names: 

LanguageCurrency = Array("US Dollars", "Francs Fran~ais", "OM", "Lire 
Italiane", "Pesetas", "TRANSLATE: US Dollars") 

With your arrays prepared in this manner, you will be able to minimize the 
number of changes you must make to the code. All you need to do is steal the 
code that currently does the lookup into the currency conversion array and mod
ify it to work with your new string arrays. The code that performs the conversion 
lookup is as follows: 

Dim ConversionValue 
ConversionValue = ConversionTable((i - 16) \ 32) 

Based on that, you would change a line of code that looked like this: 

MsgBox LoadResString(8 + i) 

This references the new Language Arrays as follows: 

MsgBox LanguageThankYou((i - 16) \ 32) 

3. Your next task is to go through the source, looking for calls to LoadResStri ng. 
(As with the changes you made earlier, this can probably be accomplished 
most efficiently by doing a Find operation on all files in the project for the 
text LoadResStri ng.) 

When you find a call to LoadResStri ng, you must determine which message 
the ATM program is really looking for. This can usually be determined from the 
context of the surrounding code, or from the object being referenced. (However, if 
you get stuck, you can always run the original desktop ATM application.) 

WARNING After you've made all of your conversions from LoadResStri ng to the Language 
Arrays, you may notice that the controls on the secondary forms (frminput and 
frmAmountWi thdrawn) do not change their text once they've been loaded for the 
first time. This is one of the consequences of the lack of true modal forms and 
using the workaround we were forced to use . What's happening is that those 
forms' Load events are only being called once-when the form is first shown. The 
way to get around this problem is to move all of the code that loads the language
specific text into the Form_Acti vate event instead. 



Page 00287

Mechanical Issues of Porting 261 

Preparing the ATM's frmAmountWithdrawn Form 

Once you've finished replacing all the LoadResSt ring code, you should have a 
functional version of the ATM application. Upon running it, however, you may 
notice some errors corning from the Load event of frmAmountWithdrawn. To get 
the ATM program to work correctly, you'll have to make a few more changes to 
the code in that event. 

1. The first surprise is related to the If statement, which, if you've finished 
your language conversion code, should look like this: 

lblAmountWith = LanguageAmountWithdrawn((i - 16) \ 32) & 11 11 & 
IIf(frminput.optChecking, LanguageChecking((i - 16) \ 32), 
LanguageSavings((i - 16) \ 32)) 

For reasons that are not clear, VBCE did not care for this statement. Instead, 
it works well to convert the IIf statement to an If .. Else .. End If block, 
like this: 

If frminput.optChecking.Value Then 
lblAmountWith = LanguageAmountWithdrawn((i - 16) \ 32) & " " & 

LanguageChecking((i - 16) \ 32) 
Else 

lblAmountWith = LanguageAmountWithdrawn((i - 16) \ 32) & • 11 & 
LanguageSavings((i - 16) \ 32) 

End If 

2. In that same procedure, the following line may also create errors under cer
tain conditions: 

txtUSDollarsAmt = frminput.txtUSDollarsAmt.Text 

The error occurs when the user has not typed a value in the frminput 
. txtUSDo ll arsAmt text box. VBCE is unable to convert the empty string 
value to a numeric value, and the operation fails. To fix this, insert this block 
of code just before the above line of code: 

If frminput.txtUSDollarsAmt.Text =""Then 
frminput.txtUSDollarsAmt.Text = 11 0" 

End If 

That will prevent that situation from causing an error. 

As it now stands, you have an application that will run onCE and perform all 
of the basic tasks that the desktop version of the same application performed. 



Page 00288

262 Chapter 9 • A Real VB Application Converted to CE 

The Optional Features 
In case you were wondering, yes, we do have an application that is a CE-based 
port of an existing desktop application. And, for all practical purposes, it works. 

But, it still doesn't play any sounds. It also doesn't show any flag pictures. The 
ATM application does not depend on these features to run properly, so they are 
an optional part of the porting process. In fact, when we get into optimizing the 
application forCE, we'll probably decide not to include them in the final product. 

Now, however, let's take a look at each of these features and determine: 

• If it's possible to port them 

and 

• Whether or not they should be ported 

Re-Adding the WAV Files 
First, there's the issue uf the WAY files that the original ATM application played 
at the end of the transaction. These WAY files are recordings of someone saying 
something to the effect of "thank you for using the ATM" in the chosen language. 
As we've already learned, VBCE has no way to call the WAY-playing functions of 
Windows CE directly. In addition, VBCE does not have any kind of CE Multime
dia control. That leaves only one option: to look for a third-party control that will 
play WAY files. 

Fortunately, just such a control exists. And, as if this isn't enough, it's also free 
and can be downloaded from the CD included with this book or from the Internet 
by visiting http: I /www. vbce. com. The name of the control is VBCE Miscella
neous Utility Control and, as the name implies, it's a collection of miscellaneous 
routines and functions that weren't included in VBCE itself. 

One of the procedures this control offers is Pl ayWaveFi 1 e, which, naturally, 
plays a WAY file. 

1. The first step is to extract the WAY files from the resource file . This is simple 
and can be easily done with Visual Studio (or any other resource editor). 
You must perform the extraction for two reasons: 

• VBCE doesn't support loading anything from resource data. 

• The VBCE Miscellaneous Utility Control requires the actual name of a 
physical WAY file rather than a resource stored in the executable. 



Page 00289

The Optional Features 263 

To extract the WAV files from the resource file using Visual Studio: 

a. Open ATM32. res in Visual Studio. 

b. Find the ATM_SOUND resource type, and expand it. It will reveal six 
WAV files. 

c. To extract them to individual files, right-dick on each one, and choose 
Export. 

d. When prompted with a Save File As ... dialog box, change the file 
extension to . wav, but do not change the file name. For example, the 
first WAV file in the resource file is named 112. When you've extracted 
it, you should have a file called 112. wav. 

2. Once you've extracted the WAV files, copy them to the emulator and the 
device in a directory of your choice. (The examples on the CD-ROM use the 
\Windows directory.) Then, go back to Visual Basic and find the line of code 
that previously played the WAV file in the Click event for cmdOKEnd handler. 
The line of code in question previously read: 

BeginPlaySound i 

3. If you haven't already commented that line out, do that now. 

4. Next, if you haven't already installed the VBCE Miscellaneous Utility Con
trol and added it to your toolbox, do that now. (Right-click on the toolbox 
and select Components.) 

Once you've done that, add a VBCE Miscellaneous Utility Control to 
frmAmountinput. 

5. Next, head back to the code for the cmdOKEnd Click event and add the fol
lowing line where the previous WAV-playing code was located: 

VBCEUtill.PlayWaveFile ("\windows\" & i & ".wav ") 

Snag! WAV Files, but Still No Sound! And that's all there is to it.. .. Or is it? 
You may notice one rather interesting problem when you go to test this program. 
It still doesn't play the sounds! Not on the emulator, nor on the device! Yet, both 
the emulator and the device can play WAV files, so what's the difference? 

A comparison of the properties of WAV files that do play on the device (i.e., 
A 1 arml. wav) with those that don't play reveals that the WAV files we're working 
with are in a different WAV file format. 



Page 00290

264 Chapter 9 • A Real VB Application Converted to CE 

NOTE 

FIGURE 9.5: 

There are two WAV file formats involved here: 

1. 

2. 

PCM, 11.025kHz, 8-bit, Mono, which plays on the CE device 

Microsoft ADPCM, 8.000kHz, 4-bit, Mono, which came with the ATM pro
ject but does not play on the CE device 

It's puzzling that CE will play the higher quality 8-bit format, but not the 4-bit for
mat. However, CE insists on the PCM, 11.025kHz, 8-bit, Mono format and w ill not 
play anything but that. 

So, our next task is to convert the WAV files to the correct format, which we can 
do with a tool as simple as the standard Windows Sound Recorder. 

To convert the WAV files to the correct format: 

1. Open them one at a time in Sound Recorder. Choose File> Properties 
from the main menu. You will see a Properties dialog like that pictured 
in Figure 9.5. 

Properties lor 112.wav iJ &f, 

The WAV file properties dia
log of Sound Recorder 

Detl!ib I 
112 wev 

Copyright: No Copyright irlormalion 

Length: 7 18 sec 

Data Size: 29440 b}'les 

Audio Format Microsdt ADPCM 8000kHz. 4 B~. Mono 

Fonnatton.•lan====="""'=====t~ 

To adjust the $0\nd ~y or use less space lm 
this $0Und. click Convert Now. 



Page 00291

FIGURE 9.6: 

The Sound Selection 
dialog box 

NOTE 

The Optional Features [265] 

2. Click the Convert Now button, and you will see the Sound Selection dialog 
box, which allows you to choose a new format for the WAV file. This is 
shown in Figure 9 .6. 

3. 

4. 

Choose PCM,l1.025 kHz, 8 Bit, Mono from the Attributes list box and click 
the OK button. Then close the Properties dialog. 

From the Sound Recorder's main menu, select File> Save. Now, simply 
recopy the WAV files to the device, and they should play just fine. 

The WAV files do not play in the emulator, regardless of the file format. This may be 
an issue related to the emulator or the VBCE Miscellaneous Utility Control. (They 

do, however, play correctly on the device after conversion to the correct file 
format.) 

Size Matters One issue that almost evaded us while we were converting 
WAV files to the correct format is the need to monitor the size of the WAV files. 
Because the original format of the WAV files was a lesser quality format, the files 
were smaller than after the conversion. 

In fact, their size after the conversion is now more than double what it was 
before. The total size of all the WAV files before the conversion was 157K; after 
the conversion their total size was 404K! 

This difference cannot be ignored on a platform where space is at such a pre
mium. So, although it's possible to port the WAV file functionality, you may want 
to think twice about doing it because of the resources required. You might be bet
ter off just playing A l arml. wav instead of the other WAV files. 



Page 00292

266 Chapter 9 • A Real VB Application Converted to CE 

TIP 
The VBCE Miscellaneous Utility Control will not cause an error if the WAV file does 
not exist. This is very helpful because you can add the code to play the WAV files 

and, if you decide later that you'd rather not distribute them, you won't have to 
rebuild your program. 

The Country and Flag Bitmaps 
Now we come to the issue of the images of the different countries' flags and geo
graphical shapes and whether they should be included in the final application. In 
the original ATM application, the flag images were icons displayed by an Image 
Control, and the country images were loaded from resources just like the WAV 
files. As we've already discovered, resources and the resource-related functions 
are not supported under CE. However, all is not lost. 

Although it's true that the standard Image Control does not support resources, 
it will load a bitmap directly from a file. Therefore, it will probably still suit our 
purposes. 

1. First, let's extract the country bitmaps from the resource file of the original 
ATM project, following the same procedures we did when extracting the 
WAV files earlier. 

Extract the country bitmaps following the same steps as before: 

a. Open ATM32. res in Visual Shtdio. 

b. Find the bitmap resource type, and expand it to reveal six items. These 
are the individual bitmaps. 

c. Right-dick on each one and choose Export. 

d. When prompted with the Save File As ... dialog, accept the default file 
name, which should be the same as the resource ID. For example, the 
first bitmap file in the resource file is marked as 112. When you've 
extracted it, you should have a file called 112. bmp. 

When you're finished with the extracting process, you should have a 
112. bmp, a 144. bmp, etc. 



Page 00293

NOTE 

The Optional Features 267 

2. Copy these files to the emulator and the device in a directory of your choice. 
(As with the WAV files, the examples on the CD-ROM use the \Windows 
directory.) 

If you haven't already added the CE Image Control to your toolbox, do 
that now. 

3. Right-click on the toolbox and select Components. Add a CE Image Control 
to both frmlnput and frmAmountWi thdrawn, in about the same place they 
were in the original ATM project (Left: 120, Top: 120). For the sake of consis
tency with the original ATM project, name both of these CE Image Controls 
imgFl ag. 

4. In the Fo rm_Acti vate procedure for both of the forms, add the following 
line of code: 

ImgFlag.Picture = "\windows\' & i & ".bmp" 

Both forms are restored to the way they looked in the original ATM application, 
but frmOpen still does not have the flag icons next to each button. Of course, the 
icons themselves are readily available-they don't even have to be exported from 
a resource file, as they're just some of the standard icons that come with Visual 
Basic (they're located in the \Graphi cs\Icons\Fl ags directory). The problem 
occurring this time is that neither of the image-handling controls of VBCE sup
port icons! 

So, if you want to put these flags back on the main form, you'll have to convert 
them to bitmaps first. 

1. You can use a variety of graphics packages or utilities to do this. In Corel 
Photo-Paint, for example, after opening the icon, select Image > Convert To > 
Paletted (8-bit). Then, choose the Optimized palette, and select 16 colors. (The 
images on the CD-ROM were also cropped to 16 x 16 instead of 32 x 32.) 

Just as with WAV files, Windows CE is limited to the types of bitmap formats it 
recognizes. Although the documentation claims that CE will recognize bitmaps 
that use up to 32 bits per pixel, 8 bits per pixel seems to be preferred. 

For these conversions, follow your existing naming convention of using the 
numeric identifier (established in the originalATM project) for each language. 
This time, though, since you already have a 112. bmp, 144. bmp and so on, name 



Page 00294

Chapter 9 • A Real VB Application Converted to CE 

TIP 

NOTE 

this new batch of flag bitmaps with a prefix of flg so that you can distinguish them 
from the country bitmaps. The list of file conversions looks something like this: 

2. 

3. 

4. 

Original File N arne Becomes ... 

FlgUSA02.ico Flg16.bmp 

Fl gFran. i co Flg48.bmp 

Fl gGerm. i co Flg80.bmp 

Fl g!ta l y. i co Flgll2.bmp 

Fl gSpa in . i co Flg144.bmp 

FlgJapan.ico Flg176.bmp 

The converted resources (WAV and bitmap files) are located in the directory for 
this chapter on the CD. 

When you finish converting the icons to bitmaps, copy the bitmaps to the 
emulator or the device. (Again, the examples on the CD-ROM use the 
\Windows directory.) 

When you're ready, go back to Visual Basic and complete the operation by 
adding six CE Image Controls to frmOpen. As in the original ATM project, 
add one CE Image Control next to each button. 

In the original ATM project, the Image Controls were defined as one control 
array. However, there doesn't seem to be any particular reason for this, so it's up 
to you whether you'd like to make the CE Image Cont rols one array, or six indi
vidual controls. 

Set each CE Image Control's Picture property to reflect the path of the cor
rect flag bitmap. The first CE Image Control's Picture property should be 
set to \wi ndows\Fl g16. bmp, the second control's Picture property should be 
set to \wi ndows\Flg48. bmp, and so on. (This can be done via the Property 
Inspector.) 

When you've completed these steps, the project should be ready to run. 



Page 00295

r 
The Optional Features 269 

WARNING The CE Image Controls do not appear to honor their Visible property if the Visible 

property is set to False. In other words, they will not hide themselves. In the con

text of this project, that's only a problem with the Japanese flag. In the original 
ATM project, the Japanese flag and button are simply hidden to prevent their 
being shown on a non-Kanji system. However, since the CE Image Control doesn't 

hide itself, the Japanese flag is always visible-even though the button is not. To 
resolve this, you may find it easier to simply remove the CE Image Control for the 

Japanese flag entirely, or show the Japanese button regardless of whether the sys
tem supports Kanji. 

NOTE 

At this point, we come to the question of whether the bitmaps are a worthwhile 
feature to port to CE. The WAV files, you'll recall, took up quite a bit of space
nearly half a megabyte! The bitmaps, on the other hand, take up almost no space 
at all-about 7K. Even on a platform like CE, where all the resources are precious, 
the bitmaps are not a big concern. 

However, as a file, the CE Image Control itself does occupy about 67K, so you 
should be concerned about it if you start adding lots of other controls or large 
files to the project. 

If you haven't already done so, you can freely remove the ATM32. res file from the 

ATM project. Simply find it in the VB Project window (under Related Documents), 
right-click it and select Remove. 

The only other noticeable disadvantage to using the CE Image Controls is that 
frmOpen takes longer to load. You will have to decide for yourself whether the 
delay in loading is justified by the enhanced user interface. If you don't mind the 
delay, the bitmaps offer an enhancement with a minimum of cost. 

At this point, you've successfully ported the ATM application to Windows 
CE. Everything that the original application did, the CE application does. 
Congratulations! 



Page 00296

-270 Chapter 9 • A Real VB Application Converted to CE 

Optimizing for CE 
We now come to the third and final issue of the design side of porting a desktop 
application to CE: optimizing and polishing the application for the constraints of 
aCE device. 

We've already ensured that all the features are included; now we must deter
mine which ones to eliminate to make the ATM project a better CE application. 

Even though the program does work in its current state, it could use some opti
mization and cleaning for the low-resource environment of a CE device. 

Here are some issues that need to be considered: 

• Reducing the number of forms used in the application from three to two 

• Eliminating any noncritical controls and DLLs 

• Optimizing the code to improve overall performance 

Eliminating a Form 
First, there is the question of whether we can reduce the number of forms used in 
the application. As a general rule, reducing the number of forms or dialogs in any 
application will help improve the application in a number of ways: 

• The file size of the executable will be reduced, because less data is compiled 
into the program. 

• The speed of the application will be improved-if there's one less form to 
display and manage, there's that much more time for other operations in the 
program. 

When you take a close look at the ATM project, you realize that frmOpen serves 
no real purpose-at least not so important a purpose that it requires a separate 
form. In fact, if we can reduce the language selection process to a single combo 
box, we can eliminate frmOpen from the project. 

1. Start by adding a ComboBox to frmlnput and calling it Cbolanguages. 



Page 00297

FIGURE 9.7: 

frminput with the 
Languages ComboBox 
added 

TIP 

Optimizing forCE 271 

2. Populate its List property with the names of the various languages offered 
by the ATM project. When you're finished, frminput should look some
thing like the one pictured in Figure 9.7. 

3. That done, populate the ItemData property of Cbolanguages with the exist
ing language identifiers (i.e., 16= English, 48= French, etc.) so that the lan
guage names in the List property correspond to the language identifiers in 
the ItemData property. 

4. Set the language ID variable (i) with this line of code, to be placed in the 
Click event of Cbolanguages. 

i = Cbolanguages.ItemData(Cbolanguages.Listindex) 

5. Then take all of the code that's in the frminput Activate event handler, and 
move it to just below that line of code in the Cbolanguage Click event handler. 

With just a single line of code, we've theoretically already eliminated six event 
handlers-one for each of the language-selection buttons located on frmOpen. 



Page 00298

272 Chapter 9 • A Real VB Application Converted to CE 

This way, all of the controls that change their Caption or Text properties will 
refresh themselves every time the user chooses a different language. 

To facilitate frminput being our start-up form, we'll remove all of the initializa
tion code from the frmOpen Load event, and paste it into the frminput Load 
event. 

1. In Visual Basic, find the Load event of frmOpen. It should currently look 
something like this: 

Private Sub Form_Load() 
' Initialize the currency conversion table. 
ConversionTable_ Initialize 
LanguageWelcome = Array( "Welcome", "Bienvenue ", "Willkommen", 

"Benvenuti", "Bienvenido", "TRANSLATE: Welcome ") 
LanguagePinNumber = Array("Please enter your pin number:", 

"Veuillez entrer votre code: ", "Bitte geben Sie Ihre Geheimnummer 
ein:", "Digitare il proprio codice segreto: " , "Par favor, ingrese 
su numero de identificacier of ways: 
no space at all-about 7Ker your pin number: ") 

LanguageChooseAccount = Array("Please choose an account:" , 
"Veuillez choisir un compte: " , 'Bitte wahlen Sie ein Konto aus:", 
"Scegliere il tipo di canto: ' , "Par favor, elija una cuenta: " , 
"TRANSLATE: Please choose an account") 

LanguageChecking = Array( "Checking account " , "Compte ch~que", 
"Gi rokonto", "Conto corrente " , "Canto corrente " , "TRANSLATE: 
Checking account") 

LanguageSavings = Array("Savings Account ", "Compte ~pargne ", 

"Sparbuch", "Libretto di risparmio ", "Cuenta de ahorros " , "TRANS
LATE: Savings Account") 

LanguageEnterAmount = Array( "Please enter an amount: ", 
"Veui ll ez entre r l e montant: " , "Bi tte geben Si e ei nen Bet rag 
ein:", "Digitare la cifra richiesta:", "Par favor, ingrese un 
i mporte: " , "TRANSLATE: Please enter an amount: ") 

LanguageOK = Array( "OK", "OK", 'OK', "Attendere", 'Aceptar " , 
'TRANSLATE: OK") 

LanguageTransaction = Array('Your transaction is being 
processed ... ", "Votre transaction est en cours de traitement ... ", 
"Ihr Auftrag wird bearbeitet ... " , "La vostra operazione ~in corso 
di esecuzione . . . ' , "Su transacci6n se esta procesando ... " , ' TRANS
LATE: Your transaction is being processed ... ") 

LanguageThankYou = Array("Thank you for using our ATM', "Merci 
d'avoir utilis~ notre guichet automatique de banque ", "Vielen Dank 



Page 00299

Optimizing forCE 273 

daB Sie unseren Geldautomaten verwendet haben.", "Grazie e 
arrivederci", "Le agradecemos que haya usado nuestro cajero 
automatico", "TRANSLATE: Thank you for using our ATM") 

LanguageAmountWithdrawn = Array("The following amount will be 
withdrawn from your:", "Le montant suivant va etre debite de votre 
:", "Die folgende Summe wird abgebucht von Ihrem: ", "La seguente 
cifra verri prelevata dal vostro:", "La siguiente cantidad sera 
retirada de su:", "TRANSLATE: The following amount will be with
draw from your:") 

LanguageCurrency = Array("US Dollars", "Francs Francais", 
"DM", "Lire Italiane", "Pesetas", "TRANSLATE: US Dollars ") 
End Sub 

2. Mark and cut the entire body of the Load event handler. 

3. Find the Load event of frminput. (If it does not already exist, you can create 
it by going to the code view window of Visual Basic, selecting frminput in 
the Object ComboBox, and Load in the Procedure ComboBox.) 

4. Paste the code into this event. 

Now you must remove all references to frmOpen from the other forms. For
tunately, there are only two such references, and they're both the exact the 
same line of code: 

frmOpen.Show 

The first of these references to frmOpen occurs in the Unload event of 
frminput, and we can simply comment it out, as it no longer applies. The 
next reference to frmOpen occurs in the cmdOKEnd Click() event of frm
AmountWi thdrawn. To reflect the fact that frminput is now our main form, 
this reference must be changed to: 

frminput.Show 

5. Remove f rmOpen from the project by right-clicking on it in the Project win
dow (under Forms), and selecting the Remove option. 

6. To complete the removal of frmOpen from the ATM project, you need to set 
frminput as the start-up form. 

To do that, select Project> Properties from the main menu. Then, find the 
ComboBox marked Startup Object and select frminput. 



Page 00300

274 Chapter 9 • A Real VB Application Converted to CE 

You have now successfully removed frmOpen from the project, and the project 
has only two forms. This means there is one less form to manage, and, because 
the new start-up form does not have the images to paint (as did frmOpen), the 
entire program loads considerably faster. 

Eliminating Optional Controls and Dlls 
Continuing our exercise in optimization, let's also remove the remaining CE 
Image Controls from frminput and frmAmountWi thdrawn. In addition, let's also 
remove the VBCE Miscellaneous Utility Control. This will let us see how far we 
can compress the resources required by the application. After all, if we don't use 
these two controls, there are two fewer DLLs we'll have to copy onto the user's 
device. 

Eliminating these controls from the project saves us 140K of space on the 
device. Further, because we've eliminated these controls, we no longer have to 
worry about the 400K of WAV files that we'd have to distribute with the applica
tion. Now, let's move one step further, to optimizing the actual code of the ATM 
project. 

Optimizing the Code Itself 
As you may have already realized, every time a language-specific string is loaded 
from an array, a separate calculation is done: 

(i - 16) \ 32 

When we started out, we retained the original language identifiers (i.e., 16= 
English, 48= French, etc.) because it seemed easier to port that way, as so much of 
the code was related to the resource file and the various bitmaps and WAV files. 
However, since you've eliminated all ties to the resource file, there's really no 
need to stick with the default language IDs. Further, by changing these language 
IDs to something simpler, you can eliminate the need to do 12 or 13 calculations 
whenever the user selects a different language. 

Therefore, one of the simplest and easiest optimizations we can perform is to 
re-do all of the language identifiers so that they make more sense. And, since 
you're already using the ItemData property of Cbolanguages to load the correct 



Page 00301

Optimizing forCE 275 

language-specific strings, all you have to do is edit the values of ItemData as 
follows: 

Language Old ItemData Value New Value 

English 16 0 

French 48 1 

German 80 2 

Italian 112 3 

Spanish 144 4 

Japanese 176 5 

Clearly, if you can load the language-specific strings based on a constant value 
rather than an equation, it will be faster and use less processor time. For example, 
code that previously read: 

Caption = LanguageWelcome((i - 16) \ 32) 

should now read: 

Caption = LanguageWelcome(i) 

This will execute faster on any platform-not just CE! 

Once you've edited the ItemData values, there is only one step that remains. 
Perform a Find .. . Replace command on all files in the project, searching for 
(i -16) \ 32 and replacing it with i. It's that easy! 

On the surface, it may appear that for all of your optimizations, you haven't 
really saved or optimized all that much. The size of the PVB file (VBCE exe
cutable) only shrunk from 24K to 17K, not a terrific savings. However, our pro
gram is now much faster. In fact, if you run the project now, you'll find that the 
main form loads faster and, every time you change the language, the various con
trols update themselves faster, as well. 

More importantly, by eliminating the pictures, WAV files, and the controls asso
ciated with them, you've reduced the amount of space the ATM application requires by 
well over SOOK! 



Page 00302

276 Chapter 9 • A Real VB Application Converted to CE 

Summary 

FI G U R E 9 . 8: 

In this chapter, you converted a desktop Visual Basic application to Windows CE. 
In fact, you now have a full-featured port (as well as an optimized, stripped
down version) of the application we started with. 

The final, optimized ATM 
application 

wllhlen Sill ein Konlo aus. 

Bille geben Sie einen Betrsg ein: 

j4o.oo us Dows 

~~~~ 

You found that, although it did take some work at times, you were able to com
plete the porting process and then go back through your code and optimize it for
the limited resources of aCE device.

Interestingly enough, with the exception of the custom cursors that the origi
nal ATM application had, we could port every feature to the CE platform! Consider
ing that Microsoft doesn't recommend the porting approach, that's quite an
accomplishment.

Of course, not every application will port as well as this one did, but all of them
will likely present similar issues and problems along the way.

Page 00303Page 00303

Page 00304Page 00304

Page 00305

Advanced Topics

I CHAPTER 10: RAPI: How the Outside Worid Taiks to CE

I CHAPTER ‘I1:How CE Talks to the Outside World

I CHAPTER 12: Third~Party Database Engines

I CHAPTER 13: Windows CE Case Studies and Cost Analysis

Page 00305

Page 00306Page 00306

Page 00307

T (N

RAPI: How the Outside World
Talks to CE

• What Is RAPI, Anyway?

• General RAPI Management Functions

• A Sample RAPI Application

• Using Other Languages

Page 00308

282 Chapter 10 • RAPI: How the Outside World Talks to CE

Okay, so you've just written a killer Windows CE application that collects
data, stores it into aCE database, lets the user query the data, runs reports, and
maybe even has the ability to share data with other CE devices.

Now comes the tough part: You need a way to get that data into the desktop
version of your software so that it can be stored in your database server along
with the rest of the company's corporate data.

How do you do that?

Well, if your data is contact information, appointments or tasks, it will be auto
matically synched up with Outlook. But your data doesn't fall into any of those
categories, and you're not using Outlook. That means there's only one way to export
that data from your CE device and import it to your desktop software: RAP!.

RAPI, or Remote API, is a special set of functions that allows developers in situ
ations like yours to access any files, databases, or system information on aCE
device, regardless of what type of chip it's running or what version of CE it has.
You don't even have to worry about any of the mechanics of making the connec
tion to the device or anything like that. All you have to do is ask RAPI to make
sure a device is connected, and then you're set to go.

One of the best things about RAPI is that, because it's a standard Win32 API
and the code runs only on Desktop Windows, you can use any development tool
that will produce Win32 executables. This is the one area of CE where you don't
have to be concerned about chip types or cross-compilers!

In this chapter, we'll be looking at some of the features of RAPI and what it can
do for us. We'll start with a general overview of the more important areas of RAPI,
then move on to some sample applications, including one that will help solve the
problem described above. Finally, we'll demonstrate that we can use any devel
opment tool to write RAPI applications by creating a sample program using Bor
land's Delphi tool.

What Is RAPI, Anyway?
The thing to remember about the majority of the RAPI functions is that if you
know how to write CE code, you also know how to write RAPI code. All but one
or two of the RAPI functions have a CE-based counterpart that behaves in exactly
the same manner, takes the same parameter types, etc.

Page 00309

What Is RAPI, Anyway? 283

RAPI is actually just one DLL called-not surprisingly-Rap; . dll. In all, there
are some 80 functions to RAPI, which can be broken down into the following four
basic categories:

• General RAPI management functions

• System information functions

• Registry access functions

• File access functions

• Database access functions

• Miscellaneous Shell and System functions

General RAPI Management Functions
The general RAPI management functions are those functions used to load and
unload the RAPI DLL and establish a connection to the currently connected
device. The two functions in this group that you'll use most often are

• CeRapiini t()

• CeRapi Uni ni tO

You must call the CeRapi Ini t () function before you do anything else. CeRapi
Ini t() attempts to connect you with aCE device. In order to test whether or not
you are able to connect to an actual device, use the Win32 API's FAILED() macro,
which should look something like this:

// ...
HRESULT hRapiResult;
hRapiResult = CeRapiinit();
if (FAILED(hRapiResult))

MessageBox(hwnd, TEXT("Unable to connect to CE Device and RAPI
services"), TEXT("Error: "), MB_OK);

SendMessage(hwnd, WM_DESTROY, 0, 0);
return TRUE;

}

// ...

Page 00310

284 Chapter 10 • RAPI: How the Outside World Talks to CE

As the code demonstrates, CeRapi Ini t() returns an HRESUL T value that we can
then use to see if there is a device for our application to talk to.

The next function that you'll be using a lot is CeRapi Uni nit().It must be called
to properly disconnect your application when you're all done working with the
CE device:

II ...
CeRapi Uni nit();

With these two management functions, your application can use any other RAPI
functions.

It's worth noting that just because you use some of the RAPI functions in your
application, the CE device does not have to be connected to the Desktop machine
the entire time your program is running-only while you're actually using the
RAPI library. It's quite possible to have your application connect to the device
through RAPI, perform some action, and then immediately disconnect from the
RAPI services. For instance, if you wanted to know what version of the CE oper
ating system was running on the device, you might do something like this:

II ...
hRapiResult ~ CeRapiinit();
if (FAILED(hRapiResult))

MessageBox(hwnd, TEXT("Unable to connect to CE Device and RAPI
services"), TEXT("Error:"), MB_OK);

SendMessage(hwnd, WM_DESTROY, 0, O);
return TRUE;

Osinfo.wOSVersioninfoSize = sizeof(OSinfo);
CeGetVersionEx(&OSinfo);
wsprintf(szBuf, TEXT("You are running CE Version %d.%d"),

OSinfo.dwMajorVersion, Osinfo.DwMinorVersion);
MessageBox(hwnd, szBuf, TEXT("About your device."), MB_OK);
CeRapi Uni nit();
II ...

This way, the application would only be connected to RAPI and the CE device
for as long or as short a time as it needs. Remember that, unless your application
is going to be constantly interacting with the device, there's no need to stay con
nected to RAPI for any length of time.

Page 00311

What Is RAPI, Anyway? 285

System Information Functions
The next group of RAPI functions is the group of system information functions.
These functions provide basic information about the device's hardware. The most
common ones in this group are

• CeGetSysteminfo()

• CeGetVersioninfo()

• CeGlobalMemoryStatus()

• CeGetDesktopDeviceCaps()

• CeOIDGetEx()

• CeGetSystemPowerStatusEx()

Of these functions, the most useful is probably CeGetSysteminfo(). It does
everything that the Windows 98/NT version of that function (called GetSystem
Info()) does. CeGetSysteminfo() can be used to determine the device's CPU,
platform type, and OS version. To call it, just pass the address of a SYSTEM_INFO
structure. The SYSTEM_INFO structure is defined as follows:

typedef struct _SYSTEM_INFO
DWORD dwOemid;
DWORD dwPageSize;
LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
DWORD dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
DWORD dwReserved;
} SYSTEM_INFO;

Likewise, CeGetVersi on Ex() tells us what version of Windows CE is running
on the device. To call it, pass in the address of an OSVERSIONINFO structure. The
OSVERSIONINFO structure is defined as follows:

typedef struct _OSVERSIONINFO{
DWORD dwOSVersioninfoSize;
DWORD dwMajorVersion;
DWORD dwMinorVersion;

Page 00312

286 Chapter 10 • RAPI: How the Outside World Talks to CE

DWORD dwBuildNumber;
DWORD dwPlatformid;
TCHAR szCSDVersion[128];
} OSVERSIONINFO;

CeGl oba 1 Memo ryS tat us () tells you everything you need to know about the
available memory on the device. When you call CeGl obalMemoryStatus(), you
pass in a pointer to a MEMORYSTATUS structure, which is defined as follows:

typedef struct _MEMORYSTATUS {
DWORD dwlength; II sizeof(MEMORYSTATUS)
DWORD dwMemoryload; II percent of memory in use
DWORD dwTotalPhys; // bytes of physical memory
DWORD dwAvailPhys; II free physical memory bytes
DWORD dwTotalPageFile; II bytes of paging file
DWORD dwAvailPageFile; II free bytes of paging file
DWORD dwTotalVirtual; II user bytes of address space
DWORD dwAvailVirtual; II free user bytes }

MEMORYSTATUS;

You can then use the information in this MEMORYSTATUS structure in any way
you like.

CeGetDesktopDevi ceCaps() retrieves the value of certain system variables.
To use it, pass in an identifier indicating the system variable you'd like, and the
function will return the requested value. For most purposes, the values you'll be
requesting are shown in Table 10.1.

T A B L E 1 0 . 1 : Common CeGetDesktopDevi ceCaps () Identifiers

Parameter What the device returns

HORZSIZE Physical screen width (millimeters)

VERTSIZE Physical screen height (millimeters)

HORZRES Screen width (pixels)

VERTRES Screen height (raster lines)

Page 00313

What Is RAPI, Anyway? 287

Registry Access Functions
The registry access functions make it possible for our Desktop applications to
access the system registry of the device as if it were the registry on the Desktop
machine. The functions involved here are

• CeRegOpenKeyEx()

• CeRegEnumKeyEx()

• CeRegCreateKeyEx()

• CeRegCl oseKey()

• CeRegDeleteKey()

• CeRegEnumVal ue()

• CeRegDeleteValue()

• CeRegQueryinfoKey()

• CeRegQueryValueEx()

• CeRegSetValueEx()

One of the great things about these functions is that they operate just like the
Desktop registry functions of the same name. For instance, to open a key in a Desk
top program, you might have code that looks like this:

retCode = RegOpenKeyEx (*hKeyRoot,
RegPath,
0,
KEY_ENUMERATE_SUB_KEYS
KEY_EXECUTE I
KEY_QUERY_VALUE,
&hKey);

if (retCode != ERROR_SUCCESS)
{

if (retCode == ERROR_ACCESS_DENIED)
wsprintf (Buf, TEXT("Error: unable to open key. Probably due

to security reasons."));
else

wsprintf (Buf, TEXT("E rror: Unable to open key, RegOpenKey =

%d, Line = %d"), retCode, _ LINE_);

Page 00314

288 Chapter 10 • RAPI: How the Outside World Talks to CE

MessageBox (hDlg, Buf, TEXT(""), MB_OK);
PostMessage (hDlg, WM_COMMAND, IDB_BACK, 0);
return;

If you were writing for RAPI, the only difference between the above code and
the RAPI-based code would be the addition of the "Ce-" prefix to
RegOpenKeyEx():

retCode = CeRegOpenKeyEx (*hKeyRoot,
RegPath,
0,
KEY_ENUMERATE_SUB_KEYS
KEY_EXECUTE I
KEY __ QUERY_VALUE,
&hKey);

if (retCode != ERROR_SUCCESS)
{

if (retCode == ERROR_ACCESS_DENIED)
wsprintf (Buf, TEXT("Error: unable to open key. Probably due

to security reasons."));
else

wsprintf (Buf, TEXT("Error: Unable to open key, RegOpenKey =

%d, Line = %d"),
retCode, __ LINE __);

MessageBox (hDlg, Buf, TEXT(""), MB_OK);
PostMessage (hDlg, WM_COMMAND, IDB_BACK, 0);
return;

File Access Functions
The file access functions are those functions that allow you to create directories,
read and write files, and find files matching a certain criteria. In this category,
these are the most important functions:

• CeFindFirstFile()

• CeFi ndNextFi 1 e()

• CeFi ndCl ose()

Page 00315

NOTE

What Is RAPI, Anyway? 289

• CeCreateFi l e()

• CeReadFi l e()

• CeWri teFi l e()

• CeCl oseHandl e()

• CeGetSpecialFolderPath()

• CeGetTempPath()

The first three functions-CeFi ndFi rstFi l e(), CeFi ndNextFi l e(), CeFi nd
Cl ose()-all work together to perform file searches, much in the way that the
similarly named functions work together on the Desktop. For example, if you
want to find all files in the \Windows directory called "win'~.~'", simply call
CeFi ndFi rstFil e(), passing in your file mask and an empty CE_FIND_DATA
structure:

hFind = CeFindFirstFile(TEXT("\\windows\\win*.*"), &wfd);

The CE_FIND_DATA parallels the FIND_DATA structure of the Win32 (Desktop
based) API.

WARNING Keep in mind that all of the RAPI functions are Unicode-based, just like the Windows

CE API. That means that you must convert from Unicode to ANSI when writing a
RAPI program for Windows 98. Because Windows NT is already Unicode-based, no

conversion rs necessary.

After checking the return result of that fnnction call, enter a do .. while loop
based on the result of CeFi ndNextFi l e(). Continue to loop until there are no
more matching files:

if (INVALID_HANDLE_VALUE == hFind)

{

do
{

CeRapiUninit();

return 1;

_tprintf(TEXT("%s\n"), wfd.cFileName);

}while(CeFindNextFile(hFind, &wfd));

Page 00316

290 Chapter 10 • RAP I: How the Outside World Talks to CE

When you've found all the matching files, free the memory allocated by the func
tions by calling CeFi ndCl ose():

CeFindClose(hFind);

Working with the CeCreateFi 1 e() set of functions is also just like working
with the similarly named Desktop-based functions. For instance, to open a file in
a Desktop program, you might have code that looked something like this:

hSrc = CreateFile(
wszSrcFile,
GENERI(_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

if (INVALID_HANDLE_VALUE == hSrc)

MB_OK);
}

MessageBox(hWnd, TEXT("Error opening file."), TEXT("ERROR"),

This is fairly standard code for opening the file for reading. If you perform the
same operation under CE, your code will look like this:

hSrc = CeCreateFile(
wszSrcFile,
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

if (INVALID_HANDLE_VALUE == hSrc)

MB_OK);
}

MessageBox(hWnd, TEXT("Error opening file."), TEXT("ERROR"),

As you can see, the CE code is virtually indistinguishable from standard, Desktop
specific file access code.

Page 00317

What Is RAPI, Anyway? 291

CeGetSpecialfolderPathO
CeGetSpeci al Fol derPath() is an often-overlooked function that can be very useful at
times. It can retrieve the true path of certain system-defined directories, such as the loca
tion of the recycle bin, the Desktop directory, etc.

CeGetSpeci al FolderPathO is defined as follows:

DWORD CeGetSpecialFolderPath(int nFolder, DWORD nBufferlength,
LPWSTR lpBuffer);

The first parameter, nFo 1 der, specifies an identifier for the folder we're interested in. It
should be one of the following values:

CSIDL_BITBUCKET The Recycle Bin

CSIDL_COMMON_PROGRAMS The Start > Programs menu folder

CSIDL_CONTROLS The Control Panel folder

CSIDL_DESKTOP The root directory

CSIDL_DESKTOPDIRECTORY The Desktop folder

CSIDL_FONTS The Fonts directory

CSIDL_PERSONAL The My Documents folder

CSIDL_pROGRAMS Location of the user's program groups

CSIDL_RECENT The Start > Documents folder

CSIDL_STARTMENU The Start menu folder

CSIDL_STARTUP The StartUp folder

CSIDL_ TEMPLATES The Templates directory

The second parameter, nBufferLength, specifies the length of the buffer you've allo
cated to hold the actual path. The third parameter, 1 pBuffer, specifies the actual buffer
to hold the path.

Page 00318

292 Chapter 10 • RAPI: How the Outside World Talks to CE

Database Access Functions
The database access functions expose all of the functionality of the CE database
engine to your Desktop-based RAPI program. Using these functions, you can
view and edit databases stored on the CE device. These functions include

• CeCreateDatabase()

• CeDeleteDatabase()

• CeDeleteRecord()

• CeFindFirstDatabase()

• CeFindNextDatabase()

• CeOpenDatabase()

• CeReadRecordProps()

• CeSeekDatabase()

• CeSetDatabaseinfo()

• CeWriteRecordProps()

When it comes to database access, these functions work exactly like the CE
based versions-the only difference is the "Ce-" prefix on the function names. For
a complete CE database reference, see Chapter 4.

Miscellaneous Shell and System Functions
The last and final category of RAPI functions is a set of miscellaneous shell and
system functions that allow you to retrieve information about the various appli
cations running on the CE device, work with CE shortcuts, and start CE applica
tions remotely. These include

• CeCreateProcess()

• CeSHCreateShortcut()

• CeSHGetShortcutTarget()

• CeGetWindow()

• CeGetWindowlong()

• CeGetWindowText()

Page 00319

A Sample RAPI Application 293

• CeGetCl ass Name()

Here again, you have a set of functions that work exactly like their Desktop
based counterparts, with the exception being that they have the "Ce-" prefix. For
example, if you call GetWi ndowlong () from a Desktop program, your code will
look something like this:

lWndStyle = GetWindowlong(hWnd, GWL_STYLE);

Similarly, if you call the RAPI version of GetWi ndowlong (), CeGetWi ndow
Long(), your code will look like this:

lWndStyle = CeGetWindowlong(hWnd, GWL_STYLE);

A Sample RAPI Application

NOTE

Now that you have some idea of what RAPI is all about, let's see what it can do for
you. Let's fulfill the purpose outlined at the beginning of this chapter and create
an application that will export all of the records from a CE database into a comma
delimited text file. Of course, you could integrate this application with your exist
ing applications and transfer the data directly into your Desktop application's
database, but this way you can use the data with any program that can read delim
ited text files. You can also use your CE data with any other applications. The final
application will look something like the one pictured in Figure 10.1.

Of course, before you do anything else, you must call CeRapi Ini t().

Your first job will be to enumerate all of the databases on the CE device, adding
them to a list box as you find them. To do this, first call CeFi nd Fi rstDatabase (),
passing in 0 as the parameter.

if((hEnumObject = CeFindFirstDatabase(O)) != INVALID_HANDLE_VALUE)
{

The 0 value tells CeFi ndFi rstDatabase() that you're going to be retrieving a
list of all of the databases, so it will return a handle to the first database on the
device.

Page 00320

294 Chapter 10 • RAPI: How the Outside World Talks to CE

FIGURE 10.1: . 1: X

The final RapiDBSave
application

I. ~~ I:J \Categories Database
llf CJ \DesktopPositions

I $-D \EventNotifications
f¥-9 IPMAILDB

I
r±l 0 \PMAILDB2
rh-CJ \5 martFill
tp-t:;J \SyncCache
, lfl LJ \UserNotifications

, !r±l ~~)e
I ~o01r

,1!!1 Dxc8001f
CJ Appointments Database

lfl t;:J areacodelist
IB lJ Contacts Database
$ 0 hardly_ TEST

I
I ,l!:J Ox1 0012

-,1!:1 Ox2
1 ~~ Ox20003
I ~~ Ox30013
I 1[9 Ox40040
: 11!:1 Ox5001f

, 1!:1 Ox60041
I m L.J Tasks Databose

I

~
8 Flaga: Ox7
B Name: ACDB_2
BType: 1912

~ecords: 41
~ort Orders: 2
Sorted On:
Row: 6553631

GENERIC ORDER

~-: 13107231

~
I Export DB I
'

Next, begin to iterate through the databases by calling CeFi ndNextDatabase() ,
this time passing in the handle of the previous database:

while((ObjectiD = CeFindNextDatabase(hEnumObject)) != 0)
{

Then, retrieve the database's name and test whether or not you were successful
in this effort:

if (!CeOidGetinfo(ObjectiD , &CeObject))

wsprintf(szBuf, TEXT("CeOidGetinfo failed with
error (%ld)"), CeGetlastError());

MessageBox(NULL, szBuf, TEXT("Error") , MB_OK);
break;

If you were successful, add the database's name to your list box:

else

Page 00321

A Sample RAPI Application 295

II add database name to treeview
if (!SendMessage(hwndLB, LB_ADDITEM, CeObject.infDatabase.szDbaseName,
0, 0))

Finally, if you've exited your while loop, check to make sure that you did not
encounter any errors along the way:

if ((rc=CeGetLastError()) != ERROR_NO_MORE_ITEMS)
{

wsprintf(szBuf, TEXT("CeFindFirstDatabase failed with error
(%ld)"), rc);

MessageBox(NULL, szBuf, TEXT("Error"), MB_OK);

Your next task is to handle the saving of the database to a text file. To do this,
you need to provide a button control on the main form of the application. When
the user clicks the button, you'll get the name of the currently selected database
in the list box and then export the data. The first step is to make sure that a data
base name is highlighted in your WM_COMMAND message handler:

if (hwndCtl == hButton) //the export button was clicked!

if (!szCurrentDBName)
return OL;

If the user did select a database from the list, create a text file (called
dbdump. txt) to hold the exported records:

hFile = CreateFile(
TEXT(".\\dbdump.txt"),
GENERI(_WRITE,
FILE_SHARE_READ,
NULL,
CREATE_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
NULL);

if (INVALID_HANDLE_VALUE == hFile)

MessageBox(hwnd, TEXT("Unable to open file for export. "),
TEXT("Error:"), MB_OK);

return 1;

Page 00322

296 Chapter 10 • RAPI: How the Outside World Talks to CE

NOTE

NOTE

If you were able to successfully create the text file, begin to export the data
base's records by first ensuring that you can open the database:

hOpenDB = CeOpenDatabase(&CeOID, szCurrentDBName, 0,
CEDB_AUTOINCREMENT, NULL);

if (hOpenDB == INVALID_HANDLE_VALUE)
MessageBox(NULL, TEXT("CeOpenDatabase failed after creating

DB"), TEXT("Error"), MB_OK);

Note the use of the CEDB_AUTOINCREMENT flag so that as you read each record in

the database, the record pointer w ill automatically move to the next record in the
database. For more information, see Chapter 4.

Then, if you were able to open the database, read in all of the properties or
fields of the database:

else

while ((CeRecObj = CeReadRecordProps(hOpenDB,
CEDB_ALLOWREALLOC,

&wNumRecProps, NULL, &lpRecProps, &cbRecProps)))

if (lpRecProps)

if (wNumRecProps)
{

pCePropVal = (PCEPROPVAL)lpRecProps;

Again, we don't go into the purpose of the database-related functions here because
they are explained in detail in Chapter 4.

Next, take each field and stream it out to your text file, based on the field's
data type:

for (i= 0 ; i < wNumRecProps; i++)
{

switch(
TypeFromPropiD(pCePropVal [i] .propid))

{

Page 00323

NOTE

A Sample RAPI Application 297

If it's one of the four numeric types, convert it to a string:

case CEVT_I2:
case CEVT_UI2:
case CEVT_I4:
case CEVT_UI4:

wsprintf(szBuf, TEXT("%d "), pCe-
PropVal[i] .val .ulVal);

break;

If it's a date/time value, convert the FILETIME value to a SYSTEMTIME value,
and then copy the portions of the date that you want into a string:

case CEVT_FILETIME:
FileTimeToSystemTime(pCePropVal[i].val.filetime, &stSystemTime);

wsprintf(szBuf, TEXT("%d/%d/%d"),
stSystemTime.wDay, stSystemTime.wMonth, stSystemTime.wYear);

break;

If it's a string, just copy it into a string, and you're done:

pCePropVal[i] .val .lpwstr);

case CEVT_LPWSTR: //and this one
wsprintf(szBuf,

break;
default:

break;

The strings here are wide or Unicode-based strings. In this example, you're writing
them to the text file as Unicode strings. Just as w ith all of the RAP! functions, you'd
have to convert these strings to ANSI string if you were targeting Windows 98.

WARNING In this example, we're not accounting for the CEVT_BLOB type. That's because
BLOBs (Binary Large Objects) can contain any type of data of any length. Further,
the data in a BLOB field is very application-specific and likely requires special proc
essing depending on the nature of the data. This, of course, makes it diff icult to
handle BLOBs in any kind of generic manner.

Page 00324

298 Chapter 10 • RAPI: How the Outside World Talks to CE

Then, simply write the string containing the contents of the field out to the file,
with the appropriate error checking:

if (!WriteFile(hFile, szBuf, _tcslen(szBuf)
1' s i zeof(TCHAR), &dwNumWri tten, NULL))

{

MessageBox(hwnd,TEXT("Unable to write
record props to text file."), TEXT(" Error"), MB_OK);

break;

Now, it's time to write the field separator out to the file. As with all standard
comma-delimited text files, only write the comma if you're not at the end of a
line. The way to do that here is to make sure you're not writing out the last field
or property of the current record:

if (i != wNumRecProps-1)
WriteFile(hFile, TEXT(", "),

_tcsl en(TEXT(", ")) 1' si zeof(TCHAR), &dwNumWri tten, NULL);
}

Then, when you're finished writing the entire record, tack on a carriage return
and linefeed:

WriteFile(hFile, TEXT("\r\n"), _tcslen(TEXT("\r\n ")) ,.,
sizeof(TCHAR), &dwNumWritten, NULL);

Finally, close the handle to the database, free the record buffer, and close the
text file:

CeCloseHandle(hOpenDB);
LocalFree(lpRecProps);
CloseHandle(hFile);
return OL;

Using Other Languages
As you learned at the beginning of this chapter, one of the great things about
RAPI is that you can use any development tool to create RAPI applications. At the

Page 00325

Usi ng Other Languages 299

time of this writing, there is already one RAPI ActiveX control for Visual Basic,
and there's also some free RAPI source code for Delphi. In this section, we'll build a
simple database properties viewer in Delphi using the RAPI source code unit.
The final Delphi application is shown in Figure 10.2.

FIGURE 10.2:

The final Delphi application

... - X

@ hardy_TEST

DB Type 929292

Size: 1212 byles

NI.Oilbef of Records 9

Sort Orde!s:

Modilied 11/231199814129

Static vs. Dynamic Linking
Static linking is when you let the compiler hard code the addresses of the functions you'll
be calling. Dynamic linking is when you load the DLL(s) at runtime and then attempt to
resolve the addresses of the functions you're looking for. Static linking is faster, but it
requires that the DLL you call be present on the user's machine when your application
starts. If the DLL isn't there, you'll get an error message, the program will likely shut down,
and you'll have no control at all.

You have more control with dynamic linking because you can attempt to load the DLL
you're after and, if you can't find it, you can handle the situation in any way you like.

