
Page 00326

300 Chapter 10 • RAP I: How the Outside World Talks to CE

The Pascal unit you'll use to create our Delphi RAPI application is a freeware
unit, generously provided by Scott Crossen. Crossen created a Pascal-/Delphi
based import of all of the functions, types, and constants listed in Rapi . h. This in
itself is no small feat-many of the structures in Rapi . h are quite complex and
were probably very difficult to port. But the best thing about the Rapi . pas unit
that Crossen created is that all of the functions are loaded dynamically.

In C/C++, when you use the default Rapi . h, the compiler statically links
Rapi. lib into your program. When the program starts on the user's machine
and they're not running CE Services, it will crash before it even gets off the
ground.

What Crossen did differently was to attempt to find and load Rapi . dll at run
time. If you can't find Rapi . dll, you exit gracefully and return an error code. In
contrast to linking in rapi . lib, Crossen's implementation first checks to see if
RAPI is available. If RAPI isn't available on the user's machine, the program
won't crash; it can still perform every non-RAPI feature just fine.

If you look at the code to do this, you'll see it starts with a call to Loadl i brary(),
passing in 1 RAPI. DLL 1 as the library to load:

RapiModule := LoadLibrary('RAPI.DLL 1);

Check to make sure that the library was successfully loaded:

if RapiModule > HINSTANCE_ERROR then
begin

Result := True;

Next, proceed to retrieve the addresses of all of the RAPI functions, one at
a time:

@mCeRapiinit := GetProcAddress(RapiModule, 1CeRapiinit 1);
// ... and repeat for each RAPI function
@mCeGetSystemPowerStatusEx:= GetProcAddress(RapiModule 1 'CeGet-

SystemPowerStatusEx1);

end
else

Result := False;
end;

You've managed to successfully dynamically load all of the RAPI functions at
once. The amazing thing about the "any Desktop development tool" aspect of

Page 00327

r
Using Other languages 301

RAPI is that the code to retrieve all of the databases looks virtually the same in
Pascal as it does in C/C++.

For instance, when you retrieve the list of databases in your Delphi application,
the code is virtually identical to that of the C/C++ version:

hEnumContext := CeFindFirstDatabase(DBType);
if hEnumContext = INVALID_HANDLE_VALUE then
begin

ShowMessage('Error retrieving DB Info');
Exit;

end;
for i := 1 to TVCEDB.Items.Count-1 do

if Assigned(TVCEDB.Items[i] .Data) then
Dispose(TVCEDB.Items[i].Data);

TVCEDB.Items.Clear;
Node := TVCEDB.Items.Add(nil, 'Device Databases');
Node.Imageindex := 0;
Node.Selectedlndex := 0;
ObjiD := CeFindNextDatabase(hEnumContext);
while ((ObjiD <> 0) and (ObjiD <> ERROR_NO_MORE_ITEMS) and (ObjiD <>

ERROR_INVALID_PARAMETER)) do
begin

CeOidGetinfo(ObjiD, CeOIDinfo);
if CeOIDinfo.wObjType <> OBJTYPE_DATABASE then
begin

ObjiD := CeFindNextDatabase(hEnumContext);
Continue;

end;
Application.ProcessMessages;

The only difference comes when you actually add the items to your Tree View,
in that you're adding some data along with the actual text:

with Node, CeOIDinfo.infDatabase do
begin

Node := TVCEDB.Items.AddChild(TVCEDB.Items[O], String(szDbase-
Name));

Data := new(PCeOIContainerStruct);
TCeOIContainerStruct(DataA).OID := ObjiD;
TCeOIContainerStruct(DataA).OIDinfo := CeOIDinfo;
Imagelndex := 1;
Selectedindex := 3;

Page 00328

302 Chapter 10 • RAPI: How the Outside World Talks to CE

end;
ObjiD := CeFindNextDatabase(hEnumContext);

end;
if ObjiD = ERROR_INVALID_PARAMETER then

ShowMessage('An Error occured while retrieving information from the
CE device.');

TVCEDB.Items[O] .Expand(True);

With that one simple exception, the two sets of source code are virtually the same.

By using some free source code, you can give your Delphi applications access to
the entire RAPI library. And, since Inprise (formerly Borland) does not appear to
have plans for a Delphi that compiles a true CE-based executable, this is definitely
the next best thing.

Summary
RAPI helps extend the CE application into the Desktop by giving the other machines
in your system access to the data and files on the CE device. This is especially
important given that the data on these devices wouldn't be worth very much if
you couldn't get that data circulated to other machines and other pieces of soft
ware. In this chapter, you saw how you could get a Desktop program to perform the
very same types of data access possible on the CE devices themselves. In addi
tion, you saw how it was possible to extend even non-Microsoft development
products so that they, too, could access and talk to a CE device.

Page 00329Page 00329

Page 00330Page 00330

Page 00331

CHAPT{R

How CE Talks to the
Outside World

• Serial Communications Issues

• Modem-Based Communications Issues

• PC Card/PCMCIA Communications Issues

• Winsock Commmunications Issues

Page 00332

306 Chapter 11 • How CE Talks to the Outside World

In the last chapter, you saw how Desktop programs can talk to a CE device. In
this chapter, we'll be looking at how to get your CE device talking to the outside
world, including all of your other devices, Desktop machines, or any other piece
of equipment you might have in mind. We'll explore all areas of CE-based com
munication from serial I/O to CE's Winsock support, starting with a brief overview
of your options when it comes to CE communications. Then we'll look at each of
the options in detail.

What's in the Box?
There are two aspects to Windows CE-based communication:

• The hardware aspect

• The software aspect

Although this may seem like an obvious distinction, it's not. That's because
tmder Windows 98/NT, an application could open a serial port or begin a Winsock
operation without paying much attention to the underlying hardware. Windows
CE is closer to the hardware level, however, so you generally have no such lux
ury. And, as you've seen in previous chapters, each manufacturer may expose dif
ferent features.

The Hardware Aspect
When it comes to hardware, there are only two ports you can count on:

• A serial port

• An Infrared (IR) port

In addition to these ports, there is an entire set of uncertain hardware, including:

• Modems

• PCMCIA cards

Page 00333

TIP

What's in the Box? 307

The Serial Port

The default serial port is usually the same one used to connect to the Desktop
computer, and it is usually COMl. For the most part, it behaves like a serial port
on a Desktop machine. Just as in Windows 98/NT, you can open the port in CE
with a call to CreateFi 1 e(), read from it with ReadFi l e(), and so on. Most of
your existing Windows-based serial communications code should port to CE
rather easily.

TheIR Port

The IR port is more of a gray area, however. Although all commercial CE devices
offer an IR port, the port number (i.e., COMl, COM2, etc.) changes from one device
to the next.

Also, some manufacturers configure their devices so that both the serial port
and theIR port appear as COMl. In this case, the only way to specify which one
you want is to open the port and then try to set it into IR mode.

And, as if it isn' t confusing enough already, some devices allow you to open a
serial port and an IR port at the same time. This goes against everything we've
ever been told about CE allowing only one serial connection at a time.

Modems and PCMCIA Cards

As for devices that may or may not be available to you, some devices, such as the
HP Jornada, have a built-in modem; other devices offer it as an upgrade; and
some don't offer a modem at all. Similarly, the PCCard (PCMCIA) slot opens the
device up to such hardware as networking cards, cell phone modems, additional
serial ports, or higher-speed modems.

If your application calls for additional serial ports, your best bet is either the serial

1/0 card or the dual serial I/O card offered by Socket Communications of Newark,
California (http: I /www. socketcom. com). Both are PCMCIA cards that instantly
add one or two RS-232 ports to your CE device.

All of this hardware variety only makes it more of a challenge to design reliable
communications-related software.

Page 00334

308 Chapter 11 • How CE Talks to the Outside World

The Software Aspect
Obviously, with so much possible hardware available on aCE device, there's
some complexity to the software as well. When it comes to communications, Win
dows CE supports a mix of everything from Win32 serial communications func
tions to Winsock to special blends of Winsock and IR.

Serial Communications

Serial communications haven't changed very much from Windows 98/NT to
Windows CE. CE supports 16 of the 23 communications-related API calls, and the
ones that aren't there probably won't affect your applications much, if at all. The
seven unsupported functions are

• Buil dCommDCB()

• BuildCommDCBAndTimeouts()

• CommConfigDialog()

• GetCommConfig()

• GetDefaultCommConfig()

• SetCommConfig()

• SetDefaultCommConfig()

It is possible to do almost everything these functions do with the functions
that are supported by Windows CE. For instance, most of the functionality of
GetCommConfi g() can easily be replaced with the function GetCommState(),
which is supported by CE.

The following is a list of the 16 functions that are supported under Windows CE:

• ClearCommBreak()

• ClearCommError()

• EscapeCommFunction()

• GetCommMask()

• GetCommModemStatus()

• GetCommProperties()

Page 00335

NOTE

What's in the Box? 309

• GetCommState()

• GetCommTimeouts()

• PurgeComm()

• SetCommBreak()

• SetCommMas k ()

• SetCommState()

• SetCommTimeouts()

• SetupComm()

• TransmitCommChar()

• WaitCommEvent()

With this many supported functions, it's clear that the few functions that are
missing shouldn't affect you too much.

For more information on some of the missing API functions, see Chapter 3.

IR Communications

IR communications on a CE device are available in three classes:

• RawiR

• IrCOMM

• Infrared Sockets (IrSock)

Raw IR Raw IR means that you'll be using theIR port as though it was any other
serial port. There is no special handshaking and no error handling.

The most difficult part about using the IR port as a raw serial port comes from
the fact that, as noted above, every manufacturer seems to assign a different port
number to the IR port. With some of the earlier CE devices, it was possible to
query a certain key in the registry to determine the IR port number, but it seems
that all manufacturers do not store that information in the same place.

Page 00336

310 Chapter 11 • How CE Talks to the Outside World

The only truly reliable way to determine the logical designation of theIR port is
to loop through all of the ports and ask each one if it's theIR port.

The way to ask a port whether it is an IR port or a standard serial port is to call
EscapeCommFun cti on () and pass in the handle to the open port and a flag
(SETIR) indicating that you want to put the port into IR mode:

EscapeCommFunction(hPort, SETIR);

Since this function only returns TRUE if the port is an IR port, it's safe to
assume that if the call fails, the port is not an IR port, and you need to keep look
ing. The most efficient and effective way to use this trick is probably to create a
routine to detect the presence of theIR port. To do this, first initialize the result of
the function to 0 to indicate that an IR port could not be found and then allocate
memory to store the "name" (COMl, COM2, etc.) of the comm port:

result = 0; //zero indicates error, could not find port
szPort = (TCHAR ''')LocalAlloc(LMEM_ZEROINIT, MAX_PATH);

Then, loop from 1-the lowest comm port number-to MAX_PORTS, a prede
fined constant indicating the highest port number to test:

for (i=l; i <= MAX_PORTS; i++)

WARNING The MAX_PORTS value differs greatly from one device to another. On some devices,

such as the Casio E-1 0, the highest comm port number is COM3; on the Casio 2400,
the highest comm port number is COM4; and on the HP Jornada, the highest comm
port number is COM6!

NOTE

Next, construct the name of the comm port using the value of i as the number
of the comm port:

_tcscpy(szPort, TEXT("COM"));

_itow(i, szNum, 10); //convert to string
_tcscat(szPort, szNum);
_tcscat(szPort, TEXT(":"));

In the above code, there is a call to the RTL function _ i tow(), which only works with
Unicode-based strings. Ideally, the function to use is_ itot(), which works

with the generic-string types. However,_ i tot() is not supported on all of the CE

platforms. See Appendix A for more information.

Page 00337

--

WARNING

What's in the Box?

You'll notice that the last step in the above code is to append a colon to the port
name. Although Windows 98 and Windows NT do not require that the port name
be followed with a colon, Windows CE does.

311

The next step is to open the port whose name you've just created. Just as you
would on Windows 98/NT, do this using the CreateFi 1 e() function:

hPort = CreateFile(szPort, GENERIC_READ I GENERIC_WRITE,
0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if (hPort != INVALID_HANDLE_VALUE)
{

Now, if you've been able to successfully open the port, you can apply the trick
of attempting to set the port to IR mode. If it returns TRUE, that means you found
theIR port:

if (EscapeCommFunction(hPort, SETIR))
{

//Ir Port Found!!!
result = i ;
CloseHandle(hPort);
break;

The rest of the function is just clean up and remembering to return the numeric
value representing theIR comm port:

CloseHandle(hPort);
}

LocalFree(szPort);
return result;

When fully assembled (and with some function calls to display the status of
your search in a list box), the full function looks like this:

int DetectiRPort(void)
{

int i, result;
TCHAR * szPort;
TCHAR szNum[4];
HANDLE hPort;

Page 00338

312 Chapter 11 • How CE Talks to the Outside World

result = 0; //zero indicates error, could not find port
szPort = (TCHAR ''')Local A 11 oc(LMEM_ZEROINIT, MAX_PATH);
for (i=l; i <= MAX_PORTS; i++)

{
_tcscpy(szPort, TEXT("COM"));
_itow(i, szNum, 10); //convert i to string
_tcscat(szPort, szNum);
_tcscat(szPort, TEXT(":"));
SendMessage(hListBox, LB_ADDSTRING, 0, (LPARAM)TEXT("Now testing

port:"));
SendMessage(hListBox, LB_ADDSTRING, 0, (LPARAM)szPort);
SendMessage(hListBox, LB_ADDSTRING, 0, (LPARAM)TEXT(" ... "));
hPort = CreateFile(szPort, GENERIC_READ I GENERIC_WRITE,

0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hPort != INVALID_HANDLE_VALUE)
{

if (EscapeCommFunction(hPort, SETIR))
{

SendMessage(hListBox, LB_ADDSTRING, 0, (LPARAM)TEXT("IR Port
Found! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! "));

SendMessage(hListBox, LB_ADDSTRING, 0, (LPARAM)szPort);
result = i;
CloseHandle(hPort);
break;

CloseHandle(hPort);
}

LocalFree(szPort);
return result;

When integrated into a sample test application, the result looks like the applica
tion shown in Figure 11.1.

lrCOMM In addition to the raw IR, which we've just examined, there is another
kind of IR communication available under Windows CE, IrCOMM. This is a more
reliable form of IR serial communication that provides handshaking, error handling,
and many other features that make it an attractive alternative to raw IR.

Page 00339

What's in the Box? 313

FIGURE 11.1: IRDetect- queues serial ports t ... l3
The lrDetect application Now tBsting port:

COMl: ...
lR Port Found!!!!!!!!!!ll!l!!!
COMl:

The best part about all of these additional features is that they're completely
transparent-as far as your code is concerned, the IrCOMM port is just like any
other serial port. In other words, the IrCOMM port can be used as though it were
a standard serial port. That means you can call CreateFi l e(), ReadFi l e(), etc.,
while still enjoying the benefits of a more reliable connection.

In fact, the only difference between raw IR and IrCOMM that you'll actually
notice is that the IrCOMM port is on a different logical comm port number than
the raw IR port! To ensure that you open the correct IrCOMM port, you'll need to
consult the registry. The key containing the information about the IrCOMM port
is HKEY _ LOCAL_MACHINE\Dri vers\Bui l tin\IrCOMM. The actual port number is
contained in the value Index under this key. Or, as it would appear in code:

HKEY hKeyiR;
if (ERROR_SUCCESS == RegOpenKeyEx (HKEY_LOCAL_MACHINE,
TEXT("Drivers\\Builtin\\IrCOMM"), 0, KEY_READ, &hKeyiR))
{

DWORD dwiRport;
DWORD dwSizeData = sizeof (DWORD);
if (ERROR_SUCCESS == RegQueryValueEx (hKeyiR, TEXT("Index "),

NULL, NULL, (LPBYTE)&dwiRport, &dwSizeData))

WCHAR wszMsg[64];

Page 00340

~14 Chapter 11 • How CE Talks to the Outside World

wsprintf (wszMsg, TEXT"IrCOMM port number is: %u"),
dwiRport);

MessageBox (NULL, wszMsg, TEXT("IR Port Info "), MB_OK);

Infrared Sockets (lrSock) Infrared Sockets is a Winsock-like wrapper for
communicating over the Infrared port. Refer to the "Winsock-Based Communica
tions" section later in this chapter to see what it takes to convert a simple
Winsock-based application to an Infrared Sockets application.

Modem-Based Communications

There are really three classes of modems when it comes to CE:

• Standard external modems connected via the serial port

• Built-in modems

• PC Card/PCMCIA modems

Standard External Modems Standard external modems are just that: stan
dard. There is nothing special about opening a serial port and dialing a modem
connected to that serial port when working with Windows 98/NT, and that's true
under Windows CE as well.

Built-in Modems It's tempting to conclude that built-in modems work just like
external modems-and they do. The trick, however, is finding the internal modem,
or more correctly, finding the comm port of the internal modem. The way to do this
is to iterate through the HKEY _LOCAL_MACHINE\ExtModems key of the registry.
Under this key, there will be a key for each of the modems the device knows
about. For example, all CE devices have a default Hayes Compatible modem set
ting that refers to any external modem on COMl. Therefore, under the HKEY _LOCAL_
MACHIN E\ExtModems key, there is a Hayes Compati b 1 e key. To get the actual
comm port name, which you can then use to open the port, simply retrieve the
string stored in the Port value of the Hayes Compati b 1 e key. Or, in code, open
the ExtModems key under HKEY _LOCAL_MACHINE as the first step:

RegOpenKeyEx (HKEY_LOCAL_MACHINE, TEXT("ExtModems"), 0, KEY_READ,
&hKey);

if (hKey)

Page 00341

What's in the Box? 315

Next, create awhile loop that retrieves the names of the subkeys under the
ExtModems key (i.e., the subkeys for each of the different modems).

retCode = ERROR_SUCCESS;
i = 0;
while (retCode == ERROR_SUCCESS)
{

cbName = MAX_PATH;
memset(szSubKeyName, 0, MAX_PATH);
retCode = RegEnumKeyEx(hKey, i, szKeyName,&cbName, NULL, NULL,

NULL, NULL);
i++;

If you are able to successfully enumerate the key, then try to open the key so
you can retrieve the values you're after:

if (retCode == (DWORD)ERROR_SUCCESS)
{

memset(szModeminfo, 0, MAX_PATH);
memset(szPortinfo, 0, MAX_PATH);
memset(szDevName, 0, MAX_PATH);

RegOpenKeyEx (hKey, szKeyName, 0, KEY_READ, &hSubKey);

If you are able to open the key, you can retrieve the Port value and the
Fri endl yName of the modem:

if (hSubKey)
{

dwBytes = MAX_PATH;
RegQueryValueEx (hSubKey, TEXT("Port"), NULL, &dwType,

(LPBYTE)szPortlnfo, &dwBytes);
dwBytes = MAX_PATH;
RegQueryValueExW(hSubKey, TEXT("FriendlyName"), NULL, &dwType,

(LPBYTE)szDevName, &dwBytes);

Optionally, you could then format the two strings retrieved and add the for
matted string to a ComboBox:

wsprintf (szModeminfo, TEXT("%s %s"), szPortinfo, szDevName);
SendDlgitemMessage(hwnd, IDC_CBOMODEMS, CB_ADDSTRING, 0,

(LPARAM)szModeminfo);

Finally, clear out your strings for the run through the next subkey:

memset(szModeminfo, 0, MAX_PATH);
memset(szPortlnfo, 0, MAX_PATH);

Page 00342

316 Chapter 11 • How CE Talks to the Outside World

}

}

}

}

memset(szDevName, 0, MAX_PATH);
RegCloseKey(hSubKey);

If you then create a simple dialog with a ComboBox and put this code into, say,
a WM_INITDIALOG message handler, the final assembled message handler looks
like this:

case WM_INITDIALOG:
{

HKEY hKey, hSubKey;
DWORD dwDisposition;
DWORD dwType;
DWORD dwBytes = 0;
TCHAR *szSubKeyName;
TCHAR tcszKeyName;
TCHAR ClassName[MAX_PATH] =TEXT(""); I I Buffer for class name .
DWORD cbName ;
TCHAR ''szPortinfo;
TCHAR >r s zDevName;
TCHAR *szModeminfo;
DWORD retCode;
i nt i;

szSubKeyName = (TCHAR *)LocalAlloc(LMEM_ZEROINIT, MAX_PATH);
szKeyName = (TCHAR ''')LocalAlloc(LMEM_ZEROINIT, MAX_PATH);
szPortlnfo = (TCHAR ''')LocalAlloc(LMEM_ZEROINIT , MAX_PATH);
szDevName = (TCHAR *)LocalAlloc(LMEM_ZEROINIT, MAX_PATH);
szModeminfo = (TCHAR *)LocalAlloc(LMEM_ZEROINIT, MAX_PATH);

RegOpenKeyEx (HKEY_LOCAL_MACHINE, TEXT("ExtModems "), 0, KEY_READ,
&hKey);

if (hKey)
{

retCode = ERROR_SUCCESS;
i = 0;
while (retCode == ERROR_SUCCESS)
{

cbName = MAX_PATH;
memset(szSubKeyName, 0, MAX_PATH);

Page 00343

What's in the Box? .. 317 J

retCode = RegEnumKeyEx(hKey, i, szKeyName,&cbName, NULL,
NULL, NULL, NULL);

i++;

if (retCode == (DWORD)ERROR_SUCCESS)
{

memset(szModeminfo, 0, MAX_PATH);
memset(szPortlnfo, 0, MAX_PATH);
memset(szDevName, 0, MAX_PATH);
RegOpenKeyEx (hKey, szKeyName, 0, KEY_READ, &hSubKey);
if (hSubKey)
{

dwBytes = MAX_PATH;
RegQueryValueEx (hSubKey, TEXT("Port"), NULL, &dwType,

(LPBYTE)szPortinfo, &dwBytes);
dwBytes = MAX_PATH;
RegQueryValueExW(hSubKey, TEXT("FriendlyName"), NULL,

&dwType, (LPBYTE)szDevName, &dwBytes);
wsprintf (szModeminfo, TEXT("%s %s"), szPortinfo,

szDevName);
SendDlgltemMessage(hwnd, IDC_CBOMODEMS, CB_ADDSTRING, 0,

(LPARAM)szModeminfo);
memset(szModeminfo, 0, MAX_PATH);
memset(szPortinfo, 0, MAX_PATH);
memset(szDevName, 0, MAX_PATH);
RegCloseKey(hSubKey);

LocalFree(szSubKeyName);
LocalFree(szKeyName);
LocalFree(szPortinfo);
Loca1Free(szDevName);
LocalFree(szModeminfo);
return TRUE;

The resulting Modem Selector dialog looks something like the one pictured in
Figure 11.2.

Page 00344

318 Chapter 11 • How CE Talks to the Outside World

FIGURE 11.2: Modem Selector r:::J 13
The Modem Selector dialog

TIP

PC Cards/PCMCIA Modems PCMCIA modems are really just another kind of
PCMCIA device. In the next section, we'll be looking at all PCMCIA devices as a
group, regardless of whether the actual card is a modem, a serial I/ 0 card, or a
network interface card.

PC Cards/PCMCIA Cards and Communications

PC cards/PCMCIAcards are fairly transparent when it comes to communica
tions. Your application could open a comm port and never really know that the
port it just opened was really, say, a PCMCIA modem.

However, there are two occasions when your application will care about the
PCMCIA slot:

• When the application starts and needs to find out if the desired card/port is
inserted into the slot and available for use

• When the application is running and the card in the slot changes (i.e., a card
is added or removed)

When the Application Starts Officially, the Microsoft documentation says
that when your application starts, you can use a function called EnumPnpids() to
retrieve a double-NULL terminated list of strings representing the device(s) cur
rently inserted in the PCMCIA slot(s). However, there is one problem with this
function: it doesn't exist in any of the . h files for any versions of Windows CE!

The Pnp in EnumPnpids() stands for Plug and Play

This doesn't mean you can't get a list of available PCMCIA cards when your
program starts, however; you just can't get that list using the EnumPnpids()

Page 00345

NOTE

NOTE

NOTE

What's in the Box?

function. Instead, you can create a function that does the exact same thing by
querying the registry.

319

In this case, the key you're interested in is HKEY_LOCAL_MACHINE\Drivers\
Active. In this key you will find a set of double-digit subkeys numbered 00 to nn,
where nn is a double-digit integer.

Each of these double-digit subkeys specifies a different driver or hardware compo
nent that is currently being used by the device. The values of nn are assigned
somewhat sequentially, with the OEM system components taking the lower num
bers first. For instance, on many systems, the 00 entry contains information about
the sound component, WAVl: . The value of nn assigned to a PCMCIA card
depends on the number of times any cards have been inserted since the device
was last reset. If the OEM has used, say 00 through 09 for system devices, the first
PCMCIA card inserted will get an nn value of 10, the second card a value of 11,
and so on. Also, if a card is inserted, removed, and then inserted at a later time
(but before a reset) that card may or may not be assigned a different value than
the one it had the last time it was used.

The way this set of double-digit subkeys helps make it possible to get informa
tion about the PCMCIA cards currently available on the device is that all PCMCIA
related subkeys will have a value called Pnpid. If an entry has this value and a
Name value containing the string COM, then it is a serial communications card of
some kind.

Note that this method also detects compact flash cards, so if your application
expects a comm port in the form of a compact flash card, this technique will work
to detect its presence as well.

Using the same logic employed above in the modem detection routine, you can
start by opening the HKEY _LOCAL_MACHINE\Dri ve rs\Acti ve key:

RegOpenKeyEx (HKEY_LOCAL_MACHINE, TEXT("Drivers\\Active"), 0, KEY_READ,
&hKey);

We present only a portion of the full code here so as to avoid duplicating the
modem detection code above. The full code for the Pnpid enumeration is on the
CD for this book, in the directory for this chapter.

Page 00346

320 Chapter 11 • How CE Talks to the Outside World

Just as before, you can enumerate the nn subkeys:

RegEnumKeyEx(hKey, i, szKeyName,&cbName, NULL, NULL, NULL, NULL);

And for each subkey enumerated, you can attempt to retrieve the Pnpid and
the device name (i.e., COMl, COM2, etc.):

I I ...
RegQueryValueEx (hSubKey, TEXT("Pnpid"), NULL, &dwType,

(LPBYTE)szPnpld, &dwBytes);
// ...
RegQueryValueExW(hSubKey, TEXT("Name "), NULL, &dwType,

(LPBYTE)szDevName, &dwBytes);

If the string retrieved from the Pnpid value is non-NULL, add this item to your
list box of PCMCIA devices:

if (_tcscmp(szPnpld, TEXT("")) != 0) / / there was a Pnpid

wsprintf (szDevName, TEXT(" %s %s"), szDevName, szPnpld);
SendDlgitemMessage(hwnd, IDC_LSTPNPIDS, LB_ADDSTRING, 0,

(LPARAM)szDevName);

When this code is hooked up to a dialog box with a ListBox on it, the result is
something like Figure 11.3.

FIGURE 11.3:
CMCIA·Pnplds m:J 13

PCMCIA-Pnpids
application

TIP

PCMCIA-Pnplds (c) 1999 Terence Gogg1n from
"The Windows CE Developer's Handboo~."

It turns out that the EnumPnplds()actually does exist, it 's just completely undocu
mented. John Psuik, technical editor of th is book, has included a sample on the
CD documenting how to call this function, if you prefer to go the undocumented
route.

Page 00347

What's in the Box? 321

When the Card in the Slot Changes If you are doing serial communications
in your application, you're going to have to know when the card in the PCMCIA
slot changes.

Why? Well, first you have the issue of error prevention or detection. If your
application is in the middle of a file transfer over a PCMCIA-based serial port, and
the user pulls the card out, your application will immediately know an error has
occurred. However, your application will be much more robust if it is able to deter
mine that the source of the error was the user removing the card and not, say, a
problem with the other computer.

Second, even if your application is not actually using a cornrn port at the moment
a card is removed or added, you'll probably want to update the cornrn port options
that you offer the user. If the user inserted a modern or a serial 1/0 card, it's a safe
guess they want to use that port with your program, and they don't want to have to
restart your application in order to refresh the list of available cornrn ports.

Now that we know the advantages of monitoring changes in the PCMCIA slot,
let's investigate how to do it. Like the techniques outlined in the section above,
detecting a change in the current PCMCIA card requires some undocumented-or
at least under-docurnented--CE h·icks. Here again, the documentation says that an
application need only respond to the WM_DEVICECHANGE message in order to be
notified when a PCMCIA card is inserted or removed. However, there appears to
be a small problem with this in that other portions of the documentation indicate
that WM_DEVICECHANGE doesn't even exist onCE!

So what's the truth?

The WM_DEVICECHANGE message does exist, but it's not defined in the wi nuser. h
header file where all of the other WM_ messages are defined. Instead, the
WM_DEVICECHANGE message and a number of related constants and structures are
all defined in a separate header file called dbt. h.

The first step, then, in handling the WM_DEVICECHANGE message is including this
header file.

The second step is correctly interpreting the wParam value that the
WM_DEVICECHANGE message passes to your application. From testing, it appears
that there are only two values that matter under Windows CE:

• DBT_DEVICEARRIVAL A card has just been inserted into the slot.

• DBT _DEVICEREMOVECOMPLETE A card has just been removed from the slot.

Page 00348

322 Chapter 11 • How CE Talks to the Outside World

NOTE

Code to handle the wParam of the message, then, might look like this:

switch(wParam)
{

case DBT_DEVICEARRIVAL:
//Card was inserted
break;

case DBT_DEVICEREMOVECOMPLETE:
//Card was removed
break;

The l Par am of WM_DEVICECHANGE is a pointer to a structure that should tell you
a little bit of information about the device. The trick to using the l Par am is that it
points to one of several possible structures, depending on what type of card has
been inserted. In order to determine what type of card and, therefore, which
structure l Param is pointing to, you must first cast the l Param to a generic struc
ture and read one of that structure's members.

The generic structure is called DEV_BROADCAST _HEADER and is defined as follows:

struct _DEV_BROADCAST_HEADER
{

} ;

DWORD dbcd_size;
DWORD dbcd_devicetype;
DWORD dbcd_reserved;

In order to determine the type of card that was just inserted or removed, you
must examine the value of the structure's dbcd_devi cetype member. The possible
values for dbcd_devi cetype are

•

•
•

DBT_DEVTYP _OEM Unspecified OEM type card

DBT _DEVTYP _PORT Serial or parallel port

DBT_DEVTYP _NET Network resource

There are other possible values for the dbcd_devi cetype member, but they do
not appear to have meaning under Windows CE.

Page 00349

What's in the Box? 323

Once you've tested the dbcd_devi cetype value, you can cast the l Param to a
more detailed structure specific to the card's type. For some reason, however, it
appears that CE reports all PCMCIA cards as being DBT _DEVTYP _ PORT cards-in
other words, it considers all cards to be serial- or parallel-port cards.

The positive side of this is that you only have to worry about casting the l Par am
to one type of structure; the negative side is that you'll have to work even harder to
differentiate the cmmn port cards from the other types of cards.

The comm port-specific structure is called DEV _BROADCAST _PORT and is defined
as follows:

typedef struct DEV_BROADCAST_PORT __ W
{

} ;

DWORD dbcp_size;
DWORD dbcp_devicetype;
DWORD dbcp_reserved;
wchar_t dbcp_name[l];

As you may have guessed, the member of this structure that actually makes it
possible to determine whether or not the card in question is a comm port is
dbcp_name [1]. If the card is a comm port, the name will contain the text "COM "
followed by a number and a colon. The good news about this is that the name is
all you need in order to call CreateFi le()and open that port.

If you now put everything that you know about PCMCIA cards into a simple
testing utility, you'll wind up with something like the application pictured in
Figure 11.4.

FIGURE 11.4: PU~CIA-detect - detects when a PCCard{PCMCIA card Is inserted into . .. £1
The PCMCIA Detect
application

WM DEVICEQ-l.~NGE:
Card-was inset ted.
wParam: sooo

Vice is a serial/parallel port.
OM2:

IPararn: 18040004

Page 00350

324 Chapter 11 • How CE Talks to the Outside World

Of course, the WM_DEVICECHANGE message handler does the real work of this
application:

case WM_DEVICECHANGE:
TCHAR ,., szParam;
TCHAR szNum[MAX_PATH];
PDEV_BROADCAST_HDR pdbhDeviceHeader; //the generic card structure

First, add a status message to a list box to let the user know that notification
was received:

SendMessage(hListBox, LB_ADDSTRING, 0,
(LPARAM)TEXT("WM_DEVICECHANGE: "));

Next, based on the value of wParam, alert the user as to whether the card is
being inserted or removed:

switch(wParam)
{
case DBT_DEVICEARRIVAL:

SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)TEXT("Card was
inserted."));

break;
case DBT_DEVICEREMOVECOMPLETE:

SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)TEXT("Card was
removed."));

break;

Next, you can convert wParam and l Par am to strings and display their actual
values:

szParam = (TCHAR ''')LocalAlloc(LMEM_ZEROINIT, MAX_PATH);
_tcscpy(szParam, TEXT("wParam: "));
_ltow(wParam, szNum, 16); //convert i to hex string
_tcscat(szParam, szNum);
SendMessage(hListBox, LB_ADDSTRING, 0, (LPARAM)szParam);
memset(szParam, 0, MAX_PATH);
_tcscpy(szParam, TEXT("lParam: "));
_ltow(lParam, szNum, 16); //convert i to hex string
_tcscat(szParam, szNum);

Now, treat the l Par am as the generic device information structure:

pdbhDeviceHeader = (PDEV_BROADCAST_HDR)lParam;

Page 00351

Then, attempt to determine the type of card:

switch(pdbhDeviceHeader->dbch_devicetype)
{

What's in the Box? 325

If it's a serial or parallel port, go ahead and treat the l Par am as a specific
DEV _BROADCAST _PORT structure:

case DBT_DEVTYP_PORT:
PDEV_BROADCAST_PORT pdbpPortDeviceHeader;
pdbpPortDeviceHeader = (PDEV_BROADCAST_PORT)lParam;

You can also let the user know the type of card, and, from the DEV_BROADCAST
_PORT structure, the name of the port, as well:

SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)TEXT("Device is a
serial/parallel port."));

SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)pdbpPortDevice
Header->dbcp_name);

break;

As noted before, all PCMCIA cards appear to be recognized by CE as serial or
parallel ports. Therefore, the default clause here is mostly for the sake of good
coding:

default:
SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)TEXT("Device is of

an unknown type."));

When fully assembled, the entire message handler looks like this:

case WM_DEVICECHANGE:
TCHAR * szParam;
TCHAR szNum[MAX_PATH];
PDEV_BROADCAST_HDR pdbhDeviceHeader;
SendMessage(hlistBox, LB_ADDSTRING, 0,

(LPARAM)TEXT("WM_DEVICECHANGE: "));
switch(wParam)
{

case DBT_DEVICEARRIVAL:
SendMessage(hListBox, LB_ADDSTRING, 0, (LPARAM)TEXT("Card was

inserted."));
break;

case DBT_DEVICEREMOVECOMPLETE:

Page 00352

326 Chapter 11 • How CE Talks to the Outside World

TIP

SendMessage(hlistBox, LB_ADDSTRING , 0, (LPARAM)TEXT("Card was
removed."));

break;

szParam = (TCHAR *)LocalAlloc(LMEM_ZEROINIT, MAX_PATH);
_tcscpy(szParam, TEXT("wParam: "));
_ltow(wParam, szNum, 16); //convert i to hex string
_tcscat(szParam, szNum);
SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)szParam);
memset(szParam, 0, MAX_PATH);
_tcscpy(szParam, TEXT("lParam: "));
_ltow(lParam, szNum, 16); //convert i to hex string
_tcscat(szParam, szNum);
pdbhDeviceHeader = (PDEV_BROADCAST_HDR)lParam;
switch(pdbhDeviceHeader->dbch_devicetype)
{

case DBT_DEVTYP_PORT:
PDEV_BROADCAST_PORT pdbpPortDeviceHeader;
pdbpPortDeviceHeader = (PDEV_BROADCAST_PORT)lParam;
SendMessage(hListBox, LB_ADDSTRING, 0, (LPARAM)TEXT("Device is a

serial/parallel port . "));
SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)pdbpPortDevice

Header->dbcp_name);
break;

case DBT_DEVTYP_NET:
SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)TEXT("Device is a

network interface card."));
break;

default:
SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)TEXT("Device is of

an unknown type."));

SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)szParam);
LocalFree(szParam);
SendMessage(hlistBox, LB_ADDSTRING, 0, (LPARAM)TEXT(""));
break;

You now have a complete set of PCMCIA detection routines.

This WM_DEVICECHANGE code should also work quite nicely under Windows 98/NT!

Page 00353

What's in the Box? 327

Winsock-Based Communications

Windows CE supports a subset of the Winsock 1.1 specifications. What this means
on a practical level, though, is that most of your Windows 98/NT Winsock-based
code will not port to Windows CE. If, however, you have some Windows 3.x code
that you want to port, that process will probably go very smoothly.

Of course, there's still a lot you can do with Winsock 1.1. In fact, you can really
do just about everything you can do with Winsock 2, but your code will look very
different. For instance, under Winsock 1.1, there is no WSMsyncSelect() func
tion to help you process socket-related events. In fact, there are only five WSA
functions supported under Windows CE:

• WSACl eanup()

• WSAGetlastError()

• WSAiocl ()

• WSASetlastError()

• WSAStartup()

All of the WSA-related functionality is only accessible through Berkeley Sockets
style functions, such as accept(), bind(), and receive().

Winsock 1.1 To learn how to make the Winsock 1.1 functions actually do some
thing, let's create a simple whois client. As you know, whois is a very simple proto
col used to retrieve registration information about domain names. All the client
does is connect to the server, send the request in the form whoi s somedomai n. com,
and wait for the result. The server will return some text containing the desired
information or a message indicating that the domain is available.

First, create a simple dialog, with an Edit control, a multiline Edit control, and a
button, so that when you're done, you have a dialog looking something like the
one in Figure 11.5.

The user will be able to enter a domain name to look up in the single-line Edit
control and view the results in the multiline Edit control. The actual look-up code
will be triggered whenever the user clicks the button.

Page 00354

328 Chapter 11 • How CE Talks to the Outside World

FIGURE 11.5: whols-CE mJ £I
The who is program Demonstration ri Windows CE Winsock-bBsed

communication, This s~mple will do a "whois"
lookJ;p on a domain name.

Doma~n: 1$'/bex.com

I Dolookup

OR,e¢tr(lnt!ljS· • • Inc.
5YIEX-tl()M)O 1151 Marina Vil!age
arl<w~YC Alame~, CA 9450100

Name: SYBEX.COMOO
~otiYa Cont~ct, Technical

whois-CE (c) 1999 Terence GOWin from
"The Windows CE De~elopers' Handbook:'

...

The first step to take in the WM_COMMAND event handler for the button when cod
ing your whois client is to initialize Winsock with the WSAStartup() function,
just as you would under Winsock 2:

if (WSAStartup(wVersionRequested, &wsaData))

WSACl eanup();
return TRUE;

Next, create the client socket with a call to the socket() function:

sockWhois = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (sockWhois == INVALID_SOCKET)

WSACleanup();

Then, populate a SOCKADDR_IN structure with information about the whois
server's address and port number to cormect on:

saddrinternic.sin_family = AF_INET;
//198.41.0.6 - whois.internic.net *the* whois server
saddrinternic.sin_addr.S_un.S_un_b.s b1 198;
saddrinternic.sin_addr.S_un.S_un_b.s_b2 41;
saddrinternic.sin addr.S_un.S_un_b.s b3 0;
saddrinternic.sin_addr.S_un.S_un_b.s_b4 6;
saddrinternic.sin_port = htons(43); //whois port number

Page 00355

What's in the Box? 329

Now, attempt to connect to the server:

if (connect(sockWhois, (LPSOCKADDR)&saddrlnternic,
sizeof(SOCKADDR_IN)) == SOCKET_ERROR)

closesocket(sockWhois);
WSACleanup();

Next, construct the string that will be your request to the server by concatenat
ing 11 whoi s 11 with the domain name the user entered into the edit box:

WARNING

strcpy(szWhoi s, 11 Whoi s ");
GetDlgitemText(hwnd, IDC_DOMAIN, szUnicodeDomain, MAX_PATH);
WideCharToMultiByte(CP_ACP, 0, szUnicodeDomain, wcslen(szUnicode-

Domain) * sizeof(TCHAR), szTemp, MAX_PATH, NULL, NULL);
strcat(szWhois, szTemp);

Note the use of the Wi deCharToMulti Byte() function above. Although CE is
Unicode-based, all of the Internet protocols still use ANSI text strings. Therefore,
you must convert the Unicode-string of the edit box to an ANSI string. For more
information on working with Unicode, see Chapter 2.

You can now send this request string to the whois server:

if (send(sockWhois, szWhois, strlen(szWhois), 0)
{

closesocket(sockWhois);
WSACl eanup();

SOCKET_ERROR)

Loop until you receive the full text of the reply from the server, calling the
recv() function to get a small portion of the text each time through the loop:

do
{

iResult = recv(sockWhois, szTemp, sizeof(szTemp), 0);
if (iResult == SOCKET_ERROR)

break;
strcat(szWhois, szTemp);
memset(szTemp, 0, MAX_PATH);

}while (iResult != 0);

Page 00356

!330 Chapter 11 • How CE Talks to the Outside World

Now you can close the socket and clean up:

closesocket(sockWhois);
WSACl eanup();

When some code to display the errors to the user is added and the entire rou
tine is assembled, it looks like this:

case IDC_BTNLOOKUP:
{

WORD wVersionRequested = MAKEWORD(1,1);
WSADATA wsaData;
SOCKET sockWhois;
int iResult;
SOCKADDR_IN saddrlnternic;
char '''szWhoi s;
char ;'szTemp;
TCHAR *szUnicodeDomain;
DWORD dwNumWritten;
SendMessage(hEdtinfo, WM_SETIEXT, 0, (LPARAM)TEXT("Initializing

Winsock."));
if (WSAStartup(wVersionRequested, &wsaData))

SendMessage(hEdtinfo, WM_SETIEXT, 0, (LPARAM)TEXT("ERR: Unable
to initialize Winsock. "));

WSACl eanup();
return TRUE;

sockWhois = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (sockWhois == INVALID_SOCKET)

SendMessage(hEdtinfo, WM_SETIEXT, 0, (LPARAM)TEXT("ERR: Unable
to create client socket."));

WSACleanup();
return TRUE;

SendMessage(hEdtinfo, WM_SETIEXT, 0, (LPARAM)TEXT("Socket
created. "));

saddrlnternic.sin_port = htons(43); //whois port
saddrinternic.sin_family = AF_INET;
//198.41.0.6 - whois.internic.net *the* whois server
saddrlnternic.sin_addr.S_un.S_un_b.s_bl = 198;
saddrlnternic.sin_addr.S_un.S_un_b.s_b2 = 41;

Page 00357

What's in the Box? 331

saddrinternic.sin_addr.S_un.S_un_b.s_b3 = 0;
saddrinternic.sin_addr.S_un.S_un_b.s_b4 = 6;
if (connect(sockWhois, (LPSOCKADDR)&saddrinternic, sizeof(SOCKADDR

_IN)) == SOCKET_ERROR)

SendMessage(hEdtinfo, WM_SETIEXT, 0, (LPARAM)TEXT("ERR: Unable
to connect to server. "));

closesocket(sockWhois);
WSACleanup();
return TRUE;

SendMessage(hEdtinfo, WM_SETIEXT, 0, (LPARAM)TEXT("Connected to
server."));

szWhoi s = (char ''')LocalAlloc(LMEM_ZEROINIT, MAX_PATH '~ 2);
szUnicodeDomain = (TCHAR ''')LocalAlloc(LMEM_lEROINIT, MAX_PATH ;, 2 ,.,

sizeof(TCHAR));
szTemp = (char *)LocalAlloc(LMEM_ZEROINIT, MAX_PATH);
strcpy(szWhoi s, "whoi s ");
GetDlgitemText(hwnd, IDC_DOMAIN, szUnicodeDomain, MAX_PATH);
WideCharToMultiByte(CP_ACP, 0, szUnicodeDomain, wcslen(szUnicodeDo-

mai n) ,., si zeof(TCHAR), szTemp, MAX_PATH, NULL, NULL);
strcat(szWhois, szTemp);
SendMessage(hEdtinfo, WM_SETIEXT, 0, (LPARAM)TEXT("Sending

request."));
if (send(sockWhois, szWhois, strlen(szWhois), 0) == SOCKET_ERROR)

SendMessage(hEdtinfo, WM_SETIEXT, 0, (LPARAM)TEXT("ERR: Unable
to send request to server."));

closesocket(sockWhois);
WSACleanup();
return TRUE;

memset(szWhois, 0, MAX_PATH '~ 2);

strcpy(szWhois, " ");
memset(szTemp, 0, MAX_PATH);
SendMessage(hEdtinfo, WM_SETIEXT, 0, (LPARAM)TEXT("Receiving

reply.")) ;
do
{

iResult = recv(sockWhoi s , szTemp, si zeof(szTemp), 0);
if (iResul t == SOCKET_ERROR)

break;

Page 00358

332 Chapter 11 • How CE Talks to the Outside World

TIP

strcat(szWhois, szTemp);
memset(szTemp, 0, MAX_PATH);

}while (iResult != O);
closesocket(sockWhois);
WSACl eanup();
MultiByteToWideChar(CP_ACP, 0, szWhois, strlen(szWhois), szUnicode

Domai n, MAX_PATH ,., 2 ,., si zeof(TCHAR));
SendMessage(hEdtinfo, WM_SETTEXT, 0, (LPARAM)szUnicodeDomain);
WriteFile(hFile, szUnicodeDomain, _tcslen(szUnicodeDomain) *

sizeof(TCHAR), &dwNumWritten, NULL);
LocalFree(szWhois);
LocalFree(szUnicodeDomain);
LocalFree(szTemp);

When you actually look at this code, you can see that Winsock 1.1, while crude
compared to Winsock 2, is not too difficult to use and should be adequate for
most of your communications needs.

Infrared Sockets (lrSock) Infrared Sockets is version of Winsock 1.1 that uses
theIR port as a transport medium. There really isn't a whole lot of difference
between IrSock and Winsock-in fact, just make sure you take these precautions
when converting your Winsock code to IrSock code: ~. ·

• Always include the af _ i rda. h header file.

• Use AF _IRDA instead of AF _INET when creating a socket.

• Use the SOCKADDR_ IRDA structure instead of the SOCKADDR_IN structure.

With these three exceptions, everything else is exactly the same as standard
Winsock operations.

MFC's CCeSocket does provide some rudimentary support for asynchronous noti
fication; you may want to consider using MFC if code that you are porting depends

heavily on asynchronous notification.

Page 00359

Summary 333

summary
In this chapter, you've explored CE's communications hardware and software
sides, and you saw how to smoothly integrate the two in order to make our appli
cations as robust and as flexible as possible. You started with simple serial commu
nications and moved up to Infrared ports. You learned how to detect internal
modems on aCE device and you even delved into a bit of undocumented Win
dows CE in order to detect changes in the PCMCIAhardware. Finally, you took a
look at Winsock 1.1 and IrSock technologies.

Page 00360Page 00360

Page 00361

TW{LV{

Third-Party Database Engines

• Raima's RDM/CE

• Sybase's Adaptive Server Anywhere

• Oracle Lite

• Comparison of Features

Page 00362

336 Chapter 12 • Third-Party Database Engines

NOTE

In Part I of this book, you learned about the database engine that Windows CE
provides as part of the API. As you saw, CE's database engine has some quirks
and limitations that may affect its usefulness, depending on your purpose. To
summarize, the real strengths of the CE database engine are:

• Zero cost: it's part of the CE operating system/ API.

• Automatic Data Compression: all CE databases are compressed by default.

• Simple searches: simple searches of the indexed field can be performed.

• Simple sorts: simple sorts through sort orders can be performed.

However, the CE database engine falls a little short in these areas:

•
•
•
•

Unusual table structures/organization

Complex API calls

No data relationships

No support for SQL

In addition to the above list, there are a number of reports on the CE newsgroups

and mailing lists that bog down the CE database engine since it's dealing with
such large amounts of data.

In this chapte1~ we'll address the issue of what to do when the CE database
engine doesn't meet your needs. Specifically, we'll be looking at some of the
third-party database engines that are available for Windows CE.

When it comes to data access onCE, there are three leading third-party vendors:

• Raima offers Raima Data Manager forCE

• Sybase offers Adaptive Server Anywhere forCE

• Oracle offers Oracle Lite for CE

A little experimentation is necessary to ensure that you choose the best data
base engine for your needs. Therefore, each of these three vendors has prepared a
sample application as well as some introductory text about their database engine.

Page 00363

Raima's RDM/CE for Data Storage 337

These three sections will comprise the bulk of this chapter. After that, we'll do a
feature-by-feature comparison of the engines so that you can pick the one that
best meets your development needs.

Raima's RDM/CE for Data Storage
When you need to store more data access it in ways that are difficult using CE's
native facilities, it's time to look at a more robust data manager. You can write
your own, or use a third-party product. In this section, we examine one of those
third-party products, Raima Data Manager for Windows CE (RDM/CE).

RDM/CE is a network model database with extensive indexing and navigation
capabilities. Its data files are binary compatible with ROM for Win32, Win16,
and even DOS, so you can prepare data on whichever platform is most conve
nient to you.

Network and Relational Data Models
While Windows CE offers incredible computing speed for the price, current plat
forms are limited in the amount of data they can store. On some platforms, main
memory is shared with mass storage and can be as small as 2MB. If your applica
tion requires a lot of data storage, finding the most compact data format can make'
your application a real winner. As with any tool forCE development, you'll want
to consider the files size of the DLL involved. More important in database man
agement though, is the size of the data files themselves as you add your data.

The most commonly used data storage format in business computing is the
relational model. Relational technology uses common fields and indexes to allow
navigation from one record to another. For example, consider an invoicing system
in which you have CUSTOMER, INVOICE and INVOICE_ITEM tables. Each
CUSTOMER will have a unique CUST_ID, and the CUST_ID will likely be indexed.
Each INVOICE will have its INV _ID, which will also be indexed, along with the
INV _CUST_ID stored in the INVOICE table. Similarly, each INVOICE_ITEM
record will contain an indexed field, the II_INV _10.

Navigating from a specific customer record involves first retrieving the
CUSTOMER record. This gives you the CUST_ID. You then must look in the
INV _CUST_ID index for the INVOICE table, retrieving each INVOICE record

Page 00364

338 Chapter 12 • Third-Party Database Engines

in turn, as you find it in the index. Retrieving all the INVOICE_ITEM records
involves the II_INV _ID index, since the INV _ID is the key to retrieving the data.

This technology is easy to understand, practical, and flexible. But in a con
strained environment like Windows CE, how can you cut some corners, save
some space, and still get the data retrieval you need? The network model can
offer a real advantage.

Rather than relying on a common field and performing index lookups to do a
JOIN, the network model offers direct record-to-record navigation, either manu
ally or using what RDM calls sets. In an RDM set, one record is designated an
owner, and one or more record types serve as members.

In the example above, the CUSTOMER record would be the owner of the
INVOICE record, and the INVOICE record would in turn be the owner of the
INV _ITEM record. Embedded in each CUSTOMER record are the physical
addresses of the first and last INVOICE records. Each INVOICE record contains
the physical address of the related CUSTOMER record and the physical addresses
of the next and previous INVOICE records for the same customer.

Navigating the data is more direct, since reading the CUSTOMER record immedi
ately yields the physical address of the first INVOICE record. Reading the INVOICE
record instantly yields the address of the first INV _ITEM record.

In RDM, this physical address is called the database address, or DB_ADDR.
Sets can be managed using a number of set functions, or DB_ADDR fields can be
stored in your own programs during processing. They can even be added to the
other fields in your database definition.

This direct record-to-record navigation, with its advantage of speed and optional
elimination of indexes, makes network databases like RDM an excellent match
for Windows CE.

Introducing Hpcladr
A ladder puzzle is an old word game. An example of a ladder puzzle is, given a
start word of CAP and a destination word of PIN, you can transform one letter at
a time thus: CA~ CAN, PAN, PIN. HpcLadr is a Windows CE application that
makes it possible to create these puzzles yourself; it also allows you to solve the
puzzles it creates. Figure 12.1 shows the completed HpcLadr running on a CE
device.

Page 00365

Raima's RDM/CE for Data Storage 339

FIGURE 12.1:

HpcLadr running on a

CE device

OK Cencel

The first item you need so you can write a program like HpcLadr is a database of
words. You can prepare this database with an application running on Windows NT,
using ROM for Windows NT. This program, called LadrPrep, is also in the \LADDER
directory. When you run it, you will find it has only two actions it can perform:

• Import words

• Export words

HpcLadr comes complete with a set of data and index files; you will only need
to use LadrPrep if you wish to change the words in the HpcLadr database.

The database that LadrPrep creates is structurally simple. Each word is entered
into a table of similarly sized words. The database is searched for other words
that could be adjacent in a ladder puzzle, and mutual DB_ADDR pointers are
added. For example, CAP points to CAN, and CAN points to CAP.

In designing the database, you must take into account how you intend to use it.
In this case, you know that your only use for the database is to find a specific word
and from it find all ladder-adjacent words. Therefore, instead of using RDM's full
set capabilities, it makes sense to use a very simple database entry for each word,
such as this record definition for three-letter words:

record word3 { char w3[3]; DB_ADDR adjacent; }

In the adjacent field, store the physical address of the first related word you
find. The size of the entire record is only 7 bytes. However, rather than pointing
to the actual word, the DB_ADDR points to a junction record (only 8 bytes and no
index necessary):

record junction { DB_ADDR target_word; DB_ADDR next_adjacent; }

Page 00366

340 Chapter 12 • Third-Party Database Engines

The logic of adding the word CAP to a database already containing CAN could
be represented with pseudocode that looks something like this:

Add new word to database; its DB_ADDR is db_new
Search database for adjacent words
For each adjacent word db_adj

Create two new junction records, jl and j2
Set jl's next_adjacent to db_adj's adjacent
Set jl's target_word to db_adj
Set db_adj 's adjacent to jl
Set j2's next_adjacent to db_new's adjacent
Set j2's target_word to db_new
Set db_new's adjacent to j2

End for

The ability to directly store physical database addresses here gives you both
speed and compactness of data representation. Using relational technology, the
junction set has to contain not two 32-bit quantities, but one column for the target
word and one column for the adjacent word. Even if you limit yourself to seven
letter words, a 14-byte record is required instead of an 8-byte record. In addition,
for practical use the junction table must be indexed, adding overhead of at least
11 bytes per record, for a total of 25 bytes instead of RDM's 8 bytes.

This may seem like a contrived example, but think about the data in your own
application: how much data access travels along predictable paths, parent record
to child record? Could you speed up your application and reduce storage require
ments by trying network technology?

Adding a list of words to LadrPrep creates a database in which every word is
directly linked to all words that differ by only one letter. It will also contain a
number of words, like xylophone, which aren't linked to any others, because no
other word differs from them by only one letter. Therefore, the LadrPrep function's
Export Word List only exports words that have links.

If you decide to create your own database for HpcLadr using LadrPrep, you
will get the smallest database by performing the following steps:

1. Import the word list.

2. Export the word list.

3. Import the word list once more.

This will ensure that the database is as compact as possible.

Page 00367

Sybase's Adaptive Server Anywhere 341

Once the database is prepared, writing HpcLadr is pretty easy. In its Make a
Ladder mode, HpcLadr simply displays a list from which you may choose words.
Once you choose a step in your ladder, HpcLadr shows all the adjacent words,
eliminating any that are closer to the begirming of the ladder than the current
step. This way, you are guaranteed that any puzzle you construct using HpcLadr
will use the shortest possible route between your chosen words, given the vocab
ulary used by the program.

In its Solve a Ladder mode, HpcLadr shows the starting word, the ending
word, and a varying number of hint words. You fill in the ladder by typing in the
adjacent words or by clicking on the words in the hint list.

Implementing both modes is quite easy using RDM and the database you
designed. Given a specific word, retrieve its record and read the junction record's
DB_ADDR. Each junction record contains a DB_ADDR target_word. Retrieve
that and add a word to the list of words displayed as adjacent to your original
word. Navigate to the junction record's next_adj acent, and you're at a new
junction record. Simple, direct, fast, and there's no need for indexes.

Putting ROM to Work
You can find the file Ra i maDM. zip in the \Ra i ma directory on this book's compan
ion CD. It contains two files: README. txt and RDMCE. zip. Please read the license
agreement in README. txt; if you agree with the terms, you are welcome to try the
full RDM/CE product, encrypted with a key disclosed in the license agreement.
More information is available direct from Raima at http: I jwww. rai ma. com.

Sybase's Adaptive Server Anywhere
As part of their SQLAnywhere Studio, Sybase offers Adaptive Server Anywhere
(ASA) for Windows CE. ASA builds on Sybase's technology to deliver a small
footprint, self-tuning, fully functional RDBMS engine for applications operating
in remote or mobile computing environments.

In the next section, we'll be looking at a sample application provided by Sybase
for the purpose of demonstrating some of the features and benefits of ASA for
WindowsCE.

Page 00368

342 Chapter 12 • Third-Party Database Engines

Sybase's Adaptive Server Anywhere Sample
Application

TIP

NOTE

This sample application demonstrates database access, multi-user features/user
rights, and report generation using SQL stored procedures. The application allows
a user to log in to the database. Based on their user rights, they will be able to
choose a report to view. The reports are stored in the database as stored proce
dures. When the user selects a report to view, the ASA database engine will exe
cute a stored procedure. The application will then display the results of this
procedure.

Stored procedures are complex SQL statements, stored and managed by the data

base engine, which can then be executed and referenced like other SOL functions.

A major advantage of storing the reports as stored procedures is that very little
SQL code needs to be hard-coded into the application. For example, if a new report
needs to be created, it can simply be added to the database without having to
recompile and test the application. Similarly, through the replication and synch
ing features of ASA, these new reports can be added to a central database and
then populated to all of the CE devices that connect to that central database.
Database replication can also be very useful in cases where the data is changing
on a consistent basis.

This sample application does not include database synching functiona lity, but it is

a very simple task to include it.

The Database Schema

The application uses two types of tables:

• Fake sales data

• Report data

Page 00369

TIP

Sybase's Adaptive Server Anywhere 343

For our purposes, the table that's of interest is the Report table. The Report
table is organized as follows:

report_ id A unique integer column used as the table's primary key.

report_name The "friendly" name of the report. The application uses
this column to display the list of available reports.

proc_name The name of the SQL stored procedure that generates the
report.

security_ level A numeric value used to determine the user's rights.

Administering and Managing ASA forCE Databases

Due to the limited resources of Windows CE, Sybase does not provide database
administration tools that run on CE devices. Therefore, you have two options for
administering these databases:

• Active Sync

• File copy

Administering the database with Active Sync might be easy for users who are
familiar with the Active Sync process. However, as you know, transferring data
over the serial port is incredibly slow. Therefore, this option can be fairly time
consuming, especially if there are a large number of records that need to be
synched.

The second alternative is to copy the database (.db) and transaction log (.log)
from the CE device to your desktop. This, of course, can be done with an Ether
net connection or any other way you prefer to get your CE device connected to
your desktop. This method is almost always quicker than synching over a serial
connection.

Since the databases are completely binary compatible, you can start this database
on your desktop and administer it directly from Sybase Central. Once the changes
are complete, you can recopy it down to your CE device.

Page 00370

344 Chapter 12 • Third-Party Database Engines

Configuring the Application

To set up the demo, follow these steps:

1. Install ASA forCE on the device.

2. Once the setup has been completed, copy both the application and the data
base files to the root directory of the CE device.

3. Start up the database server by running the following command:

"\program files\asa\ dbsrv6 " -x 1 TCPIP " - z -n demo asademo.db

After the database has started, you are ready to start the application.

ASA for CE Command Line Options

NOTE

In this example, you're starting the ASA server with several command line options that
allow you to tweak the server's operation for your individual needs. For instance, the - x
"TCPIP" option assumes that the device is connected to the network and that you'll be
connecting to it via TCP/IP. If you're not connected to the desktop, simply use -x 1

I

instead.

Similarly, the -z option gives you debugging information and is not required . The - n
option assigns the name demo to the current session of the server. The asademo. db tells
the server to start the asademo. db database.

Incidentally, Sybase recommends creating a shortcut specifying you r most common con
figuration to avoid typing the full command line each time.

The default database administrator userid is dba and the password is sql .

The Demo

In the previous section, you started the database server. Now you'll start the
application by launching asademo. ex e. Figure 12.2 shows the login window.
When prompted, you'll enter a userid of clark and a password of sales.

Fl

Th

F I

ThE

F I

Res
Cu!

Page 00371

Sybase's Adaptive Server Anywhere 345

FIGURE 12.2: Login EJ
The Login dialog User ID let•• k

Possword ;..,j....,..,.jr'""""..,;;;;;,---'!

When you click OK, the application executes the Logon method of the
CDemoDB class:

result= m_db.Logon(m_user, m_password);

Next, the application will attempt to log in to the database. If unsuccessful, it
will return an error message. If successful, the application will display the Report
dialog, as shown in Figure 12.3.

FIGURE 12.3: .1\SADnmo tr::!CJ
The Report dialog R~ort

eu..tnn. list
Sale5 Report

I

. ~ ~eeJD•~

The server returns the employee ID in the bottom right corner of the page, as
well as the user rights assigned to this user in the bottom left corner. Based on
these user rights, the application displays all of the reports that this user can
access. If you click on Customer List in the CL i stBox labeled Reports List, the
application calls the appropriate stored procedure, which is executed by the
ASA Server. The application then displays the results of the stored procedure in
the CL i stVi ew control. This is shown in Figure 12.4.

FIGURE 12.4:

Results of running the
Customer List report

Page 00372

346 Chapter 12 • Third-Party Database Engines

The code performing this operation first retrieves the name of the report from
the CL i stBox control (called m_reports):

TCHAR Buffer[60];
m_reports.GetText(m_reports.GetCurSel(), Buffer);

Next, translate the friendly name of the selected report into the name of the
stored procedure, again using your CDemoDB class:

m_db.GetReportProcedure(Buffer, m_empid); //m_db is of class
CDemoDB

Then, after setting up the CL i stVi ew control, add one record at a time to the
CListView, looping until there are no more records to display:

for (; ;)

if (m_db.GetNextReportRow() == false)
break;

FilllistCtrl(m_db.m_resultl,m_db.m_result2,m_db.m_result3);

If you now click on Sales Report, the Server will run the Sales Report stored
procedure. Once again, the appropriate stored procedure is called, which brings
back all of the sales this person has made. As before, the resulting set of data is
displayed in the ListView control.

If you then close the application and start it again, this time logging in as a dif
ferent user, you will see the user rights features at work. This time, log in with a
user ID of kelly and a password of manager.

Once you're logged in, you'll see the same dialog as before. However, this
time the employee ID in the bottom right corner is different, and the privileges
assigned to this user are different than those of the previous user. For instance,
this user has rights to view three reports, as opposed to the previous user who
could only view two reports. It stands to reason that the results of their reports
will also differ.

In fact, that is exactly what happens when you click on Customer List. This time,
the stored procedure returns a list of all the customers. The reason the full list is
displayed is that this user has privileges to view all customers, whereas the previ
ous user did not. These user privileges are a major advantage of using stored pro
cedures over standard SQL calls.

I

Page 00373

Oracle Lite Introduction 347

In conclusion, ASA forCE offers all of the same functionality you've come to
expect from a high-performance database engine with all the compactness of a
CE application. Keep in mind that the above application shows off only a small
portion of the features and benefits offered by Adaptive Server Anywhere forCE.

oracle Lite Introduction
Oracle Lite is a powerful object-relational client database for mobile enterprise
applications. Its built-in replication engine enables data to be synchronized with
Oracle 7.3 (or higher) data servers. Its small footprint allows it to run on laptops
and PDAs, including Windows CE devices.

Oracle Lite is an enabling technology that allows large-scale deployment of
Windows CE devices for enterprise applications such as sales force automation,
maintenance crew support, outpatient care support, etc.

Although widely used for personal information management, PO As have not
become mainstream business tools yet for two main reasons:

• The cost of accessing corporate data from mobile devices is prohibitive.

• PDAs could not previously do complex data management and processing.

Prohibitive Cost

Traditionally, the only available technology for accessing corporate data from
PDAs has been wireless distant database querying and file exchanges. Wireless
communication has two obvious handicaps, however: high cost and slow com
munication. These handicaps normally make permanent wireless connection of
large fleets of PO As with corporate databases and file systems too expensive.

Lack of Processing Power

Until now, there was no true object-relational database on the Windows CE plat
form that seriously impaired any development of data-intensive enterprise appli
cations. Oracle Lite changes this.

Page 00374

348 Chapter 12 • Third-Party Database Engines

Oracle Lite solves these two problems and enables large-scale deployment of
Windows CE devices for business applications by doing the following:

• It allows fast and inexpensive access to corporate data on mobile devices.

• It enables data-intensive applications on PDAs.

Fast and Inexpensive Access to Corporate Data on
Mobile Devices

Thanks to replication technology, a subset of the larger corporate database popu
lates the local database. After the local database is populated, the mobile applica
tion accesses and modifies this local subset of data. This allows much faster
transactions than wireless database queries. At regular intervals, the local data
base is synchronized with the master database. During synchronization, only the
changes, not the entire subsets, are transferred between the central database and
the local databases; the process is very bandwidth-efficient. Overall bandwidth
cost is a fraction of that of wireless distant queries, with the same end user benefits.

Data-Intensive Applications on PDAs

Oracle Lite is a true object-relational database on the Windows CE platform and
may be accessed through standard methods, such as ODBC. Because Oracle Lite
is ODBC compliant, programming is truly easy and uses standard SQL state
ments. Oracle Lite is the database of choice for building any mobile enterprise
application on the Windows CE platform and enables a wide range of mobile
applications to be developed. These applications reduce the cost of tasks per
formed by mobile workers.

For further information regarding Oracle Lite solutions in your industry, visit
the Oracle Lite Industry Solutions Guide at www. oracle. com/mobile/ o lite/. To
download the Oracle Lite database engine, visit www. oracle. com/mobile/.

Oracle Lite for Windows CE
The Oracle Lite database engine is available on all Windows CE Handheld PC
(HPC) and tablet devices running Windows CE 2 (and higher). With Oracle Lite,
enterprise applications using standard SQL can run on Windows CE and have
their data automatically synchronized with enterprise servers. Like Oracle Lite on

Page 00375

Oracle Lite Introduction 349

the desktop or laptop, Oracle Lite on Windows CE offers a standard ODBC inter
face and takes full advantage of Oracle Advanced Replication.

Key Features

The key features of Oracle Lite are:

• Fully object-relational Oracle database for Windows CE

• Small footprint: 350KB core engine, 750KB with ODBC support

• Built-in bidirectional replication to Oracle data servers over multiple
protocols

• Built-in subsetting and conflict resolution to support multiple unique clients

• Support for wireless client applications

ODBC Support

With the Oracle Lite ODBC driver for Windows CE, porting an existing SQL
based application can be as simple as recompiling it for the target Handheld PC
using a tool such as Visual C++. Alternatively, an application can be developed
from the ground up that supports complex SQL queries to be executed on the
Handheld device. Oracle Lite for Windows CE leverages your investment in the
tools and applications you already have by providing open data access. In addi
tion, tools such as Oracle Navigator and SQL *Plus can be used from the desktop
to access the Oracle Lite database on Windows CE through the Remote ODBC
feature. Using this feature with Oracle Navigator, you can even drag and drop a
table from a mainframe to Windows CE or from an Oracle server to Oracle Lite.

Application Development Support

Applications for the Handheld PC are most often developed and tested first on
the desktop, after which they are then downloaded to the actual Handheld
device. Oracle Lite for Windows CE provides support for this kind of cross-devel
opment environment, and developers have three different models to choose from:

• Applications can be developed using Oracle Lite for 95/98/ NT first. Once
perfected, the applications can then be recompiled for the target CE device.

Page 00376

350 Chapter 12 • Third-Party Database Engines

TIP

• Developers can use the CE emulation mode support on an NT workstation.
This allows rapid development and testing cycles without having to down
load to the CE device after every recompilation.

• Applications can be tested directly on the CE device to ensure proper func
tionality on the target platform.

In addition, Oracle Lite for Windows CE comes with a download utility to
simplify application deployment to the CE device.

Currently, Oracle Ute on Windows CE only works with Visual C++ for CE. Other
development tools will be supported as they become available for Windows CE.

Sample Application

The following code samples illustrate how the Oracle Lite database can be
accessed on the CE device. The first segment defines an Execute primitive that
allows a SQL statement to be passed and a result set to be returned.

II Execute a Statement and Return a Result Set
II
CSQLResult* COLiteDB :: Execute (LPCTSTR pszSQL)
{

SWORD len;
SWORD nCol;
HSTMT stmt;
CWaitCursor wait;

if(: :SQLAllocStmt (m_dbc, &stmt) == SQL_SUCCESS)
{

if (::SQLExecDirect (stmt, (BYTE*): :MakeChar (pszSQL), SQL_NTS)
== SQL_SUCCESS)

{

g_szBuff[O] = 0;
if(: :SQLNumResultCols (stmt, &nCol) == SQL_SUCCESS && nCol > 0)
{

CSQLResult* result= new CSQLResult (stmt, TRUE); liN Columns

for (inti= 1; i <= nCol; i++)

Page 00377

Oracle Lite Introduction 351

if (::SQLDescribeCol (stmt, i, (BYTE*)g_szBuff,
sizeof(g_szBuff),

&len, NULL, NULL, NULL, NULL) == SQL_SUCCESS)
result->AddColumn ((const char*)g_szBuff);

return result;

: :SQLFreeStmt (stmt, SQL_CLOSE);
: :SQLExecDirect (stmt, g_pszCommit, SQL_NTS);

else

UCHAR state[32];
SDWORD err;
UCHAR msg[1024];
SWORD len;

: :SQLError (m_env, m_dbc, stmt, state, &err, msg, 1024, &len);
state[6] = 0;
wsprintf (g_szBuff, TEXT ("SQLExecDirect: Native=%d

message=%s"), err, MakeWideChar ((char*)state));
: :SQLFreeStmt (stmt, SQL_CLOSE);

: :SQLFreeStmt (stmt, SQL_DROP);

return NULL;

The code segment below shows how the Execute primitive can be called to cre
ate a table and insert rows.

l/ll//ll////ll/l//l/l/l//l/////////////l////ll//l////l/l///l//llll/////
/IIIII
II CSampleApp initialization

BOOL CSampleApp: :Initinstance()
{

COLiteDB db;
if (db.Connect())

- {
db.Execute (_T ("CREATE TABLE TI (COLl VARCHAR2(40), COL2
VARCHAR2 (50))"));
if (*db.GetError())

Page 00378

Chapter 12 • Third-Party Database Engines

AfxMessageBox (db.GetError());

db. Execute (_ T c II INSERT INTO n VALUES c I TEST1 1 ' 'TEST2 ') II));
if (*db.GetError())

AfxMessageBox (db.GetError());

db.Execute (_T ("UPDATE TI SET COL2 'TESTING ORACLE LITE'
WHERE COLl= I TESTl' II));

if (*db.GetError())
AfxMessageBox (db.GetError());

CSQLResult* pres = db.Execute (_T ("SELECT* FROM TI"));
if (pres != NULL)
{

const CRowObj* pobj = pres->Fetch();
while (pobj)
{

CString str = (LPCTSTR)pobj->GetAt (0);
str += TEXT C" ");
str += (LPCTSTR)pobj->GetAt (1);
AfxMessageBox (str);

pobj = pres->Fetch();

delete pres;

II Since the dialog has been closed, return FALSE so that we
exit the
II application, rather than start the application's message

pump.return FALSE;

The full code sample can be found on the Oracle Lite 3.5 CD.

Oracle Lite Replication

Oracle Lite enables subquery subsetting for mobile users. Subquery subsetting is
a technique that allows the server to identify the exact, unique subset of informa
tion that each user needs to see or is authorized to see. For instance, each sales

Page 00379

Oracle lite Introduction 353

representative gets only the information relating to his or her accounts. This sub
setting capability extends to any tables in one-to-one, many-to-one, many-to
many, or one-to-many relationships between relevant tables. Not only do sales
reps receive only the customer records unique to them, that uniqueness extends
to any dependent or associated records in other tables such as order numbers,
addresses, or other related information.

Subquery subsetting works hand in hand with Oracle Lite's extensive, powerful
replication capabilities. Users receive only the records of interest to them; in addi
tion, users can update only the records that are their responsiblity. Oracle Lite's
replication functionality allows you to automatically copy information between
Oracle Lite and Oracle servers. More than just a copy mechanism, replication takes
two tables with the same structure and automatically merges them together at two
or more locations, giving distributed users data synchronization with a centralized
Oracle7 or OracleS server running anywhere in your enterprise.

Oracle Lite forCE offers three replication options:

• Wireless replication using Oracle Mobile Agents

• Internet replication

• File-based replication and disk file replication

Wireless Replication Using Oracle Mobile Agents Oracle Lite allows
users to do wireless replication using a store-and-forward method. This replica
tion strategy uses Oracle Mobile Agents to pass changes to a replication agent on
the server side and receive updated information from the server. The agent then
handles all communication with the master site, applying and receiving changes
on behalf of the snapshot site. Changes are then batched and returned to the
snapshot site.

Oracle Mobile Agents is described more thoroughly in the "Oracle Mobile
Agents" section later in this chapter.

Internet Replication With a connection to the Internet, users can invoke repli
cation and send the changes from the snapshot site to a Web application server
through HTTP or MIME protocols. The Web application server then communi
cates with the master site (behind a firewall) to apply changes, receive changes
intended for the snapshot site, and send those changes back over the Internet to
the snapshot site. Changes can be sent almost any way the Internet allows, even
via e-mail.

Page 00380

354 Chapter 12 • Third-Party Database Engines

Internet replication allows any user who has an Internet connection to perform
replication with the master site. It also minimizes the number of connections
users have to make. For example, if they connect to the Internet to check mail or
to browse, they can also send and receive database changes.

File-Based Replication and Disk File Replication With file-based replica
tion mechanisms, Oracle Lite exposes its replication capabilities so that a devel
oper can execute replication and post the snapshot changes to a file. The developer
can then choose to move this file to the master site in whatever manner desired
including MAPI, FTP, sneaker net, or flash memory cards. The master site will
then apply the changes to the master table and place its changes in a file that the
developer can move back to the snapshot site so as to apply the snapshot.

File-based replication gives developers control over how replication changes
are moved to the master site. It also provides flexibility in how replication is per
formed during other types of connections (i.e., mail transfers).

Security

Oracle Lite can be made secure either for local data protection purposes or for
transmission purposes. Users or user applications can encrypt an Oracle Lite
database with a key as a password, send the database to a master site, and then
connect to the encrypted database using the same key.

Oracle Mobile Agents

As an integral part of Oracle's mobile computing strategy, Oracle Mobile Agents
provides the connectivity required for mobile computing. This flexible, standards
based solution provides the connectivity for all mobile users, whether LAN
based, dial-up, or wireless, on a wide variety of platforms.

Anytime, Anywhere Oracle Mobile Agents is a mobile middleware product,
that is, an asynchronous, secure, store-and-forward messaging system that pro
vides the foundation on which to quickly build and deploy mobile applications.
Oracle Mobile Agents supports a variety of wireless networks, including packet
data networks and dial-up and LAN connections. Its scaleable architecture can
add mobility to and enhance the productivity of any application in the enterprise.

Optimized for the Mobile Environment The client/agent/server architec
ture used by Oracle Mobile Agents minimizes traffic over the wireless link, which
is often slower and less reliable than a LAN; this is a key feature for any mobile

Page 00381

Oracle Lite Introduction 355

application. It minimizes traffic by using a software agent to work on behalf of
the mobile client. While traditional client/ server operations require the client to
remain connected for the duration of a transaction, Oracle Mobile Agents requires
the client to remain connected only long enough to submit a request to an agent.
With combined data compression and carefully optimized message size, expensive
connect time can be kept to a minimum. From a user perspective, application perfor
mance over wireless links becomes comparable to a LAN connection.

Wireless Replication with Oracle Lite Oracle Lite exploits the features of
Oracle Mobile Agents to provide wireless replication. Replication is the synchro
nization of data between databases, in this case an Oracle Lite database on a client
and a server side Oracle7 or Oracle8 database. Wireless replication provides flexi
bility to a mobile user to replicate data at any time-for example, right after a large
order has been entered into the client database-to ensure that the order-processing
commences immediately. Using Oracle Mobile Agents for wireless replication
requires no additional programming.

Developing Applications and Agents The Oracle Mobile Agents architec
ture requires that a client application be modified (or written from scratch) to
communicate with the flexible Oracle Mobile Agents' API. Client applications
can access Oracle Mobile Agents via OLE v2, or Windows' DLLs, or by using the
ActiveX interface. For new applications, all of the typical development packages
can be used.

An agent must also be written that will act on behalf of the application at the
server, and this agent will also communicate with the Oracle Mobile Agents infra
structure via the same API. The role of the agent is to keep all of the highly inter
active network traffic within the corporate network, thus minimizing network
round trips over the mobile link. Additionally, the agent allows work to be per
formed for the client even when the client is not active or connected to the sys
tem. Agents are a combination of code you write and a code library, called the
Agent Event Manager, supplied as part of Oracle Mobile Agents.

Secure and Reliable The public nature of most wireless services raises valid
security concerns. Oracle Mobile Agents addresses these concerns by providing
configurable authentication, encryption, and tamper proofing, all of which are
implemented using industry standard algorithms. Further, Oracle Mobile Agents'
store-and-forward architecture guarantees message delivery. If a mobile worker is
unavailable or suddenly loses coverage, messages are queued rather than dis
carded. Together, these services allow the mobile worker to work when and where
they want, without worrying about network availability and knowing that corpo
rate information is safe.

Page 00382

Chapter 12 • Third-Party Datab;3se Engines

TIP

Samples

The sample program in the Odbc directory creates the table tt (in the database
\oracl e\pol i te. odb) and inserts one new row into the table tt containing
the data:

'Testl' 1 'Testing Oracle Lite'

The statements used to create the table and insert data into the table may be seen
in the file SAMPLE. CPP located in the Odbc directory.

The program then prints out the contents of all rows in tt in separate dialog
boxes on the Windows CE device.

The REPSVR sample under the rep 1 i cation subdirectory demonstrates bi
directional replication between the Windows CE device and an Oracle Web Server.

When compiling REPSVR. exe, the application is copied to the Windows CE
device. The first logon screen requires the server user name, password, connect
string, the <Server URL>\repcartx, and the Communication Type (HTIP or
OMA). A sample URL is: HTTP: I /testserver. us. oracle. com/repcartx. The
second logon screen requires the local user name, password, and ODBC DSN
(such as POLITE).

The main screen gives you the option to create a snapshot, add a snapshot to
the snapshot group, drop a snapshot, or replicate.

Comparison of Features
Because the different vendors' sample applications only show off a small portion
of each product's full potential, in this section we'll look at some comparison
tables that show what each one offers. This way, you can pick the one that best
suits your needs. In addition, for the purposes of having a full and complete pic
ture, we'll also include the CE database engine in the tables.

The features we'll be examining are:

• Is the data automatically compressed?

• How does the data get copied to/synched with desktop data?

Page 00383

Comparison of Features 357

• How much storage space does the engine require?

• Does it support SQL?

• Does it support stored procedures?

• Does it support user privileges?

Is the Data Automatically Compressed?

CE Raima Sybase Oracle

Yes No No No

CE's own native engine is the only one that automatically compresses data,
unless you explicitly tell it not to.

How Does the Data Get Copied To/Synched with Desktop Data?

CE Raima Sybase Oracle

Custom Coding Custom Coding Automated for us Automated for us

(some automatic functionality)

How Much Storage Space Does the Engine Require?

CE Raima Sybase Oracle

None (part of the OS) 50 0K 1MB 1MB

Does the Engine Support SQL?

CE Raima Sybase Oracle

No Subset Yes Yes

Does the Engine Support Stored Procedures?

CE Raima Sybase Oracle

No No Yes Yes

Page 00384

358 Chapter 12 • Third-Party Database Engines

Does the Engine Support User Privileges'?

CE Raima Sybase Oracle

No No Yes Yes

Summary
In this chapter, we looked at some of the features offered by third-party databases
for Windows CE. We also compared the CE database engine to those of Raima,
Sybase, and Oracle, with the following results:

• CE's database engine is towards the low end, but it is still very attractive
due to its compression and its zero footprint.

• Raima's RDM/CE is somewhere towards the high-middle range, with a
number of professional features, such as true indexing and very small
footprint.

• Oracle and Sybase are very high end, with features that we've come to
expect from these two database engine leaders.

Just as with any technical implementation issue, there are always tradeoffs.
Choosing the database engine that's right for you is no different. For many appli
cations, the CE database engine will be adequate, if not overkill. For others,
stored procedures will be a must.

Page 00385Page 00385

Page 00386Page 00386

Page 00387

CHAPT{R
T H I R T f f N

Windows CE Case Studies and
Cost Analysis

• Study 1: Inventory Management System

• Study 2: Insurance Agents in the Field

• Study 3: Choosing Your Development Machine

Page 00388

362 Chapter 13 • Windows CE Case Studies and Cost Analysis

In this chapter, we'll look at several example case studies that are based on real
case studies and stories about how CE devices are being used in the real world.
The purpose of this chapter is to provide some sample ideas on how CE is being
used or could be used and the costs of implementing CE-based solutions.

Study 1: Inventory Management System
An inventory management system is perhaps the most frequently cited ideal
Windows CE solution. The vision of CE devices as an inventory management tool
often goes something like this:

"The user performing the actual inventorying would walk through the ware
house with either a Palm-size PC or Handheld PC and a bar-code scanner attached
to this device. They would travel the warehouse and scan in the bar-codes on the
boxes as they went. The information could be automatically recorded in a database
and then synchronized with the main database when the device is attached to a
Desktop computer sometime later."

But is the technical implementation of this process correct? Is it cost-effective
for the company? Is this really the best use of some CE devices? In short, does it
make sense for the company to do this?

Of course, some of these questions are really a matter of opinion (and some
might even cause fierce debate), but others can be answered with a careful analy
sis of the plan.

The Technical Issues
First, let's examine the technical details. When it comes to the technical details,
there are really only three major questions:

• Is the bar-code scanner attachment the most efficient way to implement this
solution?

• Is it best to synchronize the data afterward or is there a better alternative?

• Which form factors can be used?

Page 00389

NOTE

Study 1: Inventory Management System 363

The Bar-Code Scanner

It seems that a bar-code scanner is, in fact, the best way to implement this solution,
for a number of reasons. First, bar codes are extremely efficient. In fact, it's safe to say
that almost every large inventory management system uses bar codes in some way.

Second, as you saw in Chapter 1, the leading bar-code devices for Windows CE
scan the bar code and enter the input into the keyboard buffer as though the numeric
values of the bar code were typed in by the user. The advantage of such a system is
that you don't have to write any special code to support a bar-code scanner. Simply
write your application to accept keyboard input, then hook up the bar-code scanner.
This means that you can deliver a fully functional solution, even if the customer I
user decides not to include the bar-code scanner in the final package. Further, since
these readers are available in either PCMCIA or CF (compact flash) implementations,
you still have maximum flexibility in terms of any unused port(s) on the CE device.

As mentioned in Chapter 1, the maker of these C E barcode readers is Socket
Communications (http: I /www. socket com. com).

Synchronization vs. a Wireless Connection

The next issue to look at is whether the data should be synchronized after it's
been collected or whether you should use a wireless connection to ensure that
the data is always accurate up to the minute.

The main benefit of synchronization is its low cost of implementation. CE
devices are automatically configured to hook up to a Desktop machine and trans
fer data over a serial cable. The downside to a synchronization-based solution is
that your main databases will never be 100 percent accurate and will always lag
behind the real count of items in your warehouse by at least eight hours.

A wireless LAN solution, however, ensures that the data in your main data
bases is at most a few seconds old. But there is also a higher cost associated with
this way of updating your main database.

Also, the size of the warehouse becomes an issue here because a wireless LAN
hub has a range of approximately 500 square feet. This means that it might well
require more than one or two wireless LAN hubs to cover the entire warehouse.
While this might appear to be expensive, it may be that the benefit of having all

Page 00390

364 Chapter 13 • Windows CE Case Studies and Cost Analysis

of the inventory data updated as the information is being scanned in far out
weighs the cost of the wireless LAN hubs.

The main difference between this issue and the bar-code issue is that this one
must be decided before any application development is begun. If you're going to
connect to a database server, you'll need to build the application with support for
some kind of wireless client libraries. As you can imagine, this is a much more
complicated task once the application's already been written.

Form Factor Choices

As with any part of this system, there are trade-offs when it comes to choosing
the right form factor. For inventory management, though, there are really only
two practical form factors available:

• Palm-size PC

• Handheld PC

Palm-Size PC The advantages of the Palm-size PC for this application are some
what obvious: their small size means that the user is free to move about and can
access harder-to-reach areas more easily. The disadvantage of a Palm-size PC for
this solution is that PPCs only have a single CF (compact flash) slot. This means
that there is no way to connect them to a wireless LAN, as the wireless LAN cards
are PCMCIA based. And, even if there were wireless LAN cards that worked off
of the CF slot, there wouldn't be any place for the bar-code scanner to attach to
the device if the CF slot were used for the LAN connection. Clearly, then, the PPC
devices are only a good solution in cases where the data does not need to be
updated live but can be synched later.

Handheld PC The Handheld PC devices have that extra slot that makes them a
more powerful solution to this problem. HPCs have a place for a bar-code scan
ner (the CF slot) and a place for a wireless LAN connector (the PCMCIA slot).
However, the HPC devices are almost always more expensive and somewhat
larger in bulk. Low cost is still one advantage possessed by the PPCs.

Page 00391

Cost

Study 1: Inventory Management System 365

Let's now take a look at the costs of implementing such a solution to this inven
tory management problem. Depending on the system purchased, traditional,
non-CE-based inventory management devices can cost upward of $2000 per unit;
let's see how that compares to the possible Windows CE-based solutions.

WARNING Please note that all prices should be considered approximate guides only. Prices
may-and probably will-change by the time you read this.

Palm-Size PC-Based Solution Cost Analysis

Table 13.1 shows the Palm-size PC-related form factor expenses.

TABLE 1 3 . 1 : Palm-Size PC-Related Expenses

Item Maker Model Cost

Palm-size PC Casio E-1 1 $299

Bar-code Scanner CF card Socket Communications N/A $180 (est.)

Total Cost $479

Handheld PC-Based Solution Cost Analysis

Table 13.2 shows the Handheld PC- related form factor expenses. The main differ
ence here is that you must figure in the additional costs for the wireless LAN
hardware.

TABLE 1 3. 2: Handheld PC -Related Expenses

Item Maker Model Cost

Handheld PC Casio PA-2400 $499 (est.)

Bar-code Scanner CF card Socket Communications N/A $180 (est.)

RangeLAN2 PCMCIA card Proxim N/A $595

Total Cost $1274

Page 00392

366 Chapter 13 • Windows CE Case Studies and Cost Analysis

NOTE

In addition to these expenses, which are per-device costs, there is the cost of
one or more wireless hubs (about one hub per 500-1000 square feet). This cost is
displayed in Table 13.3.

T A B L E 1 3 • 3 : Wireless LAN Hub Cost

Item Maker Model Cost

RangeLAN2 Ethernet Access Point Proxim N/A $1895

As mentioned in Chapter 1, you should be using Proxim's (http: I jwww. proxi m
. com) RangeLAN2 family of products for your wireless LAN calculations.

Although the HPC solution costs more, it also offers much more in the way of
network connectivity and, more specifically, data access.

Conclusion of Study 1
This example is a very popular real world use of CE devices. It turns out that in
many cases, the benefits of either solution-whether you choose the PPC or the
HPC-far outweigh the cost. As mentioned above, most bar-code-based inven
tory systems cost more than $2000 per unit. At a cost of approximately $500, the
PPC-based solution is not only very high-tech, it's also very, very cheap!

Study 2: Insurance Agents in the Field
One issue that seems to have a lot of consumers' attention is the benefits of an
HPC/Pro device, such as the Hewlett-Packard Jornada, over a standard Windows
98/NT laptop. One of the advantages that's often cited is the 10-hour (or greater)
battery life of an HPC/Pro device as compared with the one-and-a-half to two
hour battery life of a laptop.

Here's a practical example that shows just how much of a difference an HPC/Pro
device can make.

Page 00393

Study 2: Insurance Agents in the Field 367

Consider insurance agents working on claims in the field. They need to take
pictures of property damage and then file those pictures, along with their reports,
once they return to the office. Currently, however, they have no really good way
to preview their pictures and make sure that the pictures did the job.

Solution
If these agents could use digital cameras that store images on compact flash mem
ory cards, they could transfer the pictures over to the handheld device using the
CF slot. Their HPC/Pro devices, using Sierra Imaging's Image Expert forCE,
would allow them to preview and, if necessary, retake any pictures that didn't
turn out as they expected.

Here again, you are faced with a similar set of questions: Is this the best use of
the insurance agency's money? What are they really getting for their money?

Let's examine how well this solution meets the agents' needs.

The Technical Issues
There are really two technical issues that need to be addressed here:

• Is a digital camera the right tool for the job?

• Is aCE-based HPC/Pro the right tool for the job?

Digital Camera

First, let's examine the question of whether or not a digital camera is the right tool
for the job.

Many people who rely on some kind of photography in their professions have
probably already begun to switch to digital cameras. There are many advantages
to digital cameras, such as more pictures, not having to get your pictures devel
oped, being able to preview your pictures, etc.

So a digital camera is probably the right tool for this job on its technical merit
alone. As you'll see in the cost analysis section, there's another very compelling
reason to go to a digital camera.

Page 00394

368 Chapter 13 • Windows CE Case Studies and Cost Analysis

Cost

HPC/Pro

The HPC/Pro is an obvious choice here simply based on the battery life. If the
agents were to use a laptop instead, they would only be able to work with it on
battery power for a maximum of 2 hours. The HPC/Pro class devices all run for
10 or more hours on a fully charged battery.

The extra eight hours of battery life means that the agents could easily spend a full
eight-hour day in the field without worrying about their computer going down.

Further, there's already very inexpensive image editing/viewing software
available forCE devices, so there's no real difference between the CE-based solu
tion and the laptop-based solution in terms of the functionality needed for this
purpose.

Now, let's take a look at cost and see if our technical conclusions are justified.
First, you've got to select your hardware.

For the camera, let's use the Canon PowerShot AS, which seems to be a fairly pop
ular model of digital camera. It uses compact flash memory and costs about $699.

And, since we'll be doing a pricing comparison here, let's choose a laptop. Most
reviews seem to like comparing the HPC/Pro devices to the Sony Vaio ultrathin
laptop, which costs about $1999.

Now let's see how this stacks up against the Windows CE-based solution.

WARNING
Again, please note that all prices should be considered approximate guides only.
Prices may-and probably will-change by the time you read this.

Laptop-Based Solution Cost Analysis

Table 13.4 shows the laptop-related expenses, if you decide to choose that type of
hardware.

Page 00395

NOTE

Study 2: Insurance Agents in the Field 369

TABLE 13.4: Laptop-Related Expenses

Item Maker Model Cost

Laptop Sony Vaio $1999 (est.)

Digital Camera Canon PowerS hot AS $699 (est.)

Total Cost $2698

HPC/Pro-Based Solution Cost Analysis

Now let's look at the HPC/Pro-based solution. Table 13.5 shows the Handheld
PC-related expenses, if you decide to choose that form factor. The main difference
here is that you must figure in the additional costs for the wireless LAN hardware.

TABLE 1 3. 5: HPC/Pro-Related Expenses

Item Maker Model Cost

HPC/Pro Hewlett -Packard Jornada $899 (est)

Digital Camera Canon PowerS hot AS $699 (est.)

Graphics S/W Sierra Imaging Image Expert $50

Total Cost $1648

Sierra Imaging's (http: I jwww. si errai magi ng. com) Image Expert forC E is the
leading graphics software for Windows CE.

In addition to being the right choice based strictly on technical merit, the Win
dows CE-based solution is also significantly cheaper-by $1050, to be exact.

Page 00396

370 Chapter 13 • Windows CE Case Studies and Cost Analysis

Conclusion of Study 2
An HPC/Pro device proved to clearly be the winner on technical merits, as well
as the winner on price. This is a perfect example of putting CE to work.

Study 3: Choosing Your Development
Machine

One type of study that will probably be of the most interest to you as a developer
is how to choose your first CE device for development purposes.

Unless you're committing to CE full time, chances are you'll want to test the
waters, so to speak, by purchasing one device and working with it as your devel
opment machine until you have had a chance to fully evaluate Windows CE. Yes,
you can theoretically develop an entire application in the emulator, but it's not
generally recommended practice. At some point, you'll need or want to test your
application on a real, honest-to-goodness device, just to make sure that the emu
lator didn't give you a false impression of how your program was running.

Solution
In this case, there really is no clear-cut solution. But let's take a look at the pros
and cons of each device type and from that, perhaps, you'll be able to find the one
that's right for you.

PPC Devices

Palm-size PCs are great for applications where

• Minimal data entry is required

• Heavy reading isn't required

• The lack of a PCMCIA slot is acceptable

• The information displayed can be made to fit in the 320 x 240 display area

Page 00397

Study 3: Choosing Your Development Machine 371

If your future application is likely to be OK with those constraints, by all
means, consider a PPC device. Their main advantage from the prospective CE
developer's point of view, as we'll see in a moment, is their cost. As a develop
ment tool, the PPC devices are more demanding than an HPC/Pro because get
ting an application to look good on a PPC device requires more work than on
either of the other platforms.

HPC Devices

HPCs offer a midrange option for applications where

• A keyboard is required

• A PCMCIA slot is required

• A larger screen is required

If that sounds like your future application, then an HPC is the way to go. One
additional advantage of an HPC is that most HPCs are still running CE 2. If your
program runs on an HPC running CE 2, it should run on all of the CE platforms.

HPC/Pro Devices

HPC/Pros occupy a unique niche in the array of portable devices available. They
are near-laptops with just about everything a laptop offers. They're perfect for
applications where

• A keyboard is required

• A PCMCIA slot is required

• A much larger screen is required

If your future application fits the bill, then you'll want to consider an HPC/Pro
device. And if you don't already own a laptop, you'll want to seriously consider
the HPC/Pro devices. As a laptop substitute, the HPC/Pro devices will likely
prove very adequate for most uses. One thing to watch out for, though, is that
HPC/Pros run CE 2.11, which offers a number of features not available on other
versions of CE. In other words, if you want your application to compile for all of
the 2.x versions of CE, you will have to be extra cautious when coding to make
sure that you use only those functions available on all CE devices.

Page 00398

372 Chapter 13 • Windows CE Case Studies and Cost Analysis

Cost
Table 13.6 shows the different approximate costs of each of the form factors.

T A B L E 1 3 . 6 : CE Form Factors and Their Approximate Costs

Form Factor Cost

PPC $200-$299

HPC $400-$499

HPC/Pro $899

As of this writing, most PPC devices are priced right around $300, but some
have been priced as low as $200. This means that for a relatively small investment
(the cost of a new hard drive, perhaps), you can have an actual CE device to test
and develop with.

HPC devices are getting cheaper all the time, with the price hovering aronnd
the $400-$499 range, while HPC/Pros are still the most expensive of the lot,
priced at around $899.

Conclusion of Study 3
The conclusion you make really depends on your own personal CE needs and
plans. If you're just experimenting, the PPC devices are probably the best low
risk, low-investment strategy. If cost is not an issue, however, either the HPC or
the HPC/Pro devices will serve you quite nicely.

Summary
In this chapter, you saw at two examples of how CE devices can be used. In addi
tion, you examined the pros and cons of each CE device so that you can pick the
most appropriate CE device for your development purposes.

In the next chapter, you'll see how to put the finishing touches on a Windows CE
application.

Page 00399Page 00399

Page 00400Page 00400

Page 00401

Finishing Touches

I Chapter ‘F4: Distributing Your CE Applicaiion

I Chapter 15: Microsoft's Logo Requirements

Page 00401

Page 00402Page 00402

Page 00403

CHAPT£R
~OURT[[N

Distributing Your CE
Application

• Creating Help for Windows CE

• The Two Types of CE Help Files

• Installing Your Software

Page 00404

378 Chapter 14 • Distributing Your CE Application

In this chapter, we'll explore what it takes to put the finishing touches on your
CE applications. Specifically, you'll learn how to create help files for Windows CE,
what the different types of help files are, and what the advantages and disadvan
tages of each one are. Then, to round out the chapter, we'll look at the available
options as far as setup or install programs are concerned.

Creating Help for Windows CE

TIP

If you've ever written help files for Windows 3.x, 98, or NT, you know what a
pain they can be ... Some of their more notable problems are that

• The text portion of the help files has to be written in an arcane set of format
ting commands known as RTF

• The pictures and text all have to be compiled into an HLP file

• If any portion of the help file is incorrect, the whole thing has to be recom
piled from scratch

The whole process was much more complex and time-consuming than it
needed to be. Thankfully, though, Windows CE has done away with the Win
dows 98/NT help-file system completely!

Instead, the CE help system uses a unique subset of HTML-the same set of
universally supported formatting commands used to create Web pages.

One of the nice things about an HTML-based help system is that testing and
debugging your help is a much quicker process. That's because you can actually
edit the help files on the device if you find a small mistake and want to correct it
immediately. This means you can test your fix right away, without having the delay
of copying the help file from the Desktop to the device.

Page 00405

Creating Help for Windows CE 379

The Two Types of CE Help Files

NOTE

Just like the Windows 98/NT help system, which has the .cnt, or Contents, file
and the .hlp file formats, Windows CE also has two help file-types:

1 .. htc, or Help Contents file (comparable to the .cnt file of 98/NT)

2 .. htp, or Help Topic file (comparable to the .hlp file of 98/NT)

A file extension of .html will also work for help files; in fact, this is the required file
extension for PPC help files.

The HTC/Contents format is used, as you've probably guessed, to store a table
of contents, almost like a home page that contains links to one or more Help Topics.
Each of these Help Topics is then contained in a separate HTP /Topic file.

The HTC/Contents file has only one purpose, but the HTP /Topic files have
two possible purposes:

• Use as a file containing one or more single topics (subpages of an HTC file)

• Use as a standalone, self-contained help file, with a reduced table of con
tents and multiple smaller topics.

One way to organize your program's help system is to use one HTC/Contents
file and multiple HTP /Topic files. This is the way you'd probably organize your
help system if you had, say, a complex program with multiple features in which
the user might need additional instruction. The tradeoffs of this multiple-file help
system can best be viewed in this way:

Multiple-File Help System (HTC File Paired with One or More
HTP Files)

Advantages With minor tweaking, can be created with
an off-the-shelf HTML editor.

Disadvantage

Topic files may be stored anywhere on
device.

More difficult to maintain and test.

All files must be located in the \Windows
directory.

Page 00406

Chapter 14 • Distributing Your CE Application

NOTE

The other way to organize your program's help system is to put everything
(including a brief contents page) into one single HTP /Topic file. This is almost
certainly the way you'd organize your help if you were writing an application on
the scale of complexity close to a notepad-like application. The trade-offs of the
single-file system can best be viewed in this way:

Single-File Help System (Stand-Alone HTP File)

Advantage Easier to maintain and test a single help file.

Disadvantages Can't be easily created with an off-the-shelf
HTML editor. See the "FrontPage and HTP
Files" sidebar below for more information.

Help files can be anywhere on the device, but
links must then contain full paths, even if the
link points to the same file in which it appears.

The only exceptions to this is when the file
is in the \Windows directory, in which case
your internal links do not have to include
the full path.

Most of the applications that are already on your CE device, including those writ
ten by Microsoft, use the single-file help system.

Let's examine each help system in detail, dissecting a sample system in each style.

The Single-File Help System
First, let's take a look at the simpler single-file help system, where all of the help
topics and the contents are placed in a single HTP file.

At first glance, the source for one such HTP file might look a little like a Web
site desperately in need of content. Figure 14.1 shows a simple HTP file, which
has one Contents entry and one topic.

Page 00407

FIGURE 14.1:

A simple HTP help file, as
it would be viewed on a
CE device

Creating Help for Windows CE 381

My Handheld
PC

~

My
Documents

~
Recycle Bin

The Contents Here's where you could list
the entire contents of your help fi le, along
with some introductory text, perhaps
Ilu1k.fi

Microsoft
l...=.!o~-"'-'-'---'-"-~.!!L.L......._. ____ -'=='! Pocket

JlowerPolnt

This is the source of that same HTP file:

<HTML>
<HEAD>

jlilf'!.e !~)7 :49PM ~

<META HTIP-EQUIV="Content-Type " Content= "template.htp#contents ">
<title>Template Single-File Help System</ title>
</ HEAD>
<BODY BGCOLOR=#FFFFFF TEXT=#OOOOOO>
<!-- PegHelp -->
<p>
The Contents
</p>
<p>
Topic #1
</p>
<!--now include a link (image) to next topic-->
<div align=right>

</div>
<!-- PegHelp -->

Topic #1</ b>
<!--now include a link (image) to the "main " page or topic-->
<div align=right>

Page 00408

382 Chapter 14 • Distributing Your CE Application

<!-- PegHelp -->
</BODY>
</HTML>

As you can see, it's not very complex. However, as with most CE development
tasks, everything has to be done just right. So, in order to get a better understand
ing of the various parts of this help file, let's take it one step at a time.

The Header

Let's take a look at a typical CE help-file header, which looks very similar to the
header of a standard HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<META HTIP-EQUIV="Content-Type" Content="template.htp#contents">
<title>Template Single-File Help System</title>
</HEAD>
<BODY BGCOLOR=#FFFFFF TEXT=#OOOOOO>

The main difference between an HTML document and an HTP document is
that the HTP single-file help system requires that the META HTTP-EQUIV 11 Con

tent-Type 11 tag contain the name of the help file (template. htp), followed by
the pound sign(#), followed by the name or anchor of the first Contents entry.
Hence the line:

<META HTIP-EQUIV= 11 Content-Type" Content="template.htp#contents">

FrontPage and HTP Files
Incidentally, it is this customization of the "Content-Type • entry that makes it difficult to
create single-file HTP help systems with off-the-shelf HTML editors such as Microsoft
FrontPage 98. Although FrontPage will allow you to add, modify, and delete most other
HTIP-EQUIV tags, it does not allow you to change the "Content-Type" entry. Like most
documents, help files often require multiple revisions. The consequence of this is that each
time you save your help file for testing, you must manually edit this line. As you can imag
ine, this can be quite annoying. That's why it's easier to simply use Notepad to create and
edit the single-file system HTP help files.

Page 00409

Creating Help for Windows CE 383

The <!--PegHelp--> Comment

The next thing you'll probably notice about the HTP source is the line that reads:

<!-- PegHelp -->

Yes, this is just a fairly standard-looking comment tag, but the Peg He 1 p text means
that it serves a special purpose for the CE help viewer. The <! -- Peg He 1 p -->
comment is used as a separator between sections. It must also appear before the
contents and after the final topic.

The next chunk of the HTP file is the only entry on the Contents page:

<p>
The Contents

Here's where you could list the entire contents of your help file, along with
some introductory text, perhaps:

</p>
<p>
Topic #1
</p>

For the most part, this is fairly standard HTML. The href tag is what's of real
interest here. It looks and works just like a standard h ref tag, and in the case of sin
gle-file HTP files, it's how you provide a link to a topic-subtopi c_l in this case.

Next, you have a link to subtopi c_l, this time via an image.

<!--now include a link (image) to next topic-->
<div align=right>

</div>

Here again, this is fairly standard HTML, and all that's really worth noting is
that the image is a 2-bit-per-pixel bitmap file, instead of a more traditional GIF or
JPEG file format.

WARNING The Windows CE Help Viewer does not support GIF and JPEG images; only Wi n

dows CE bitmap types can be displayed in help files. Be especially careful of this if

you're porting some existing HTML-based help documents to CE.

Page 00410

384 Chapter 14 • Distributing Your CE Application

The Rest of the HTP file

The next section of the HTP file is the first actual topic of the help file, again,
beginning with the<!-- PegHel p -->comment:

<! -- PegHelp -->

Topic #1

Here's where you could provide some information about topic #1 to the user.
For instance, maybe they need advice about how to use the help system.

Next, just as with the end of the Contents entry, you have a link (again via an
image), this time taking the user back to the previous topic:

<!--now include a link (image) to the "main" page or topic-->
<div align=right>

Finally, you have a closing<!-- Peg Help - - > comment, followed by the stan-
dard HTML closing tags.

<!-- PegHelp -->

</BODY>
</HTML>

Additional HTP File Tricks!
There's one additional trick that you can make your HTP files do, and that is to display
some static text (or links) at the beginning of every topic in the help file.

Simply by inserting any valid HTP/HTML tag after the <BODY BGCOLOR=#FFFFFF
TEXT=#OOOOOO> tag and before the first<!-- PegHel p --> comment, you can cause
that text to appear as the first thing on every page in the help file.

You might want to exploit this trick to let the user know that they can always find the lat
est information on your Web site, as in this example:

<!- - ... -->
<BODY BGCOLOR=#FFFFFF TEXT=#OOOOOO>
<i>Please visit http://www.ce- faq.com</i><hr>
<!-- PegHelp -->
<!-- ... -->

Continued on next page

Page 00411

Creating Help for Windows CE 385

When viewed on aCE device, the HTP file looks like this:

WARNING

My Handheld
PC

My
Documents

·~· ..
\~

Recycle Bin

Topic #1 Here's where you could provide
some information about topic #1 to the
user For instance, maybe \hey need advice
about how to use the help system

•

Don't forget: The single-file help system requires you to either use full paths in
your links or that you put all of your HTP files in the \Windows\ directory!

The Multiple-File Help System: The HTC File
The layout of the multiple-file help system is even closer to standard HTML than
the HTP file you just examined. And, the best part about the multiple-file help
system is that the files are so close to standard HTML that you can create and edit
them using an off-the-shelf HTML editor such as FrontPage 98.

To develop a multiple-file help system, you must first create an HTC/Contents
file. Figure 14.2 shows what a fairly standard HTC file might look like when
viewed on a CE device.

Here's what the source code for that HTC file looks like:

<html>
<head>
<title>This is the Main Topic</title>
<meta http-equiv=refer content="">
</head>
<body>
<h3>This is the Table of Contents for our help file!</h3>

Page 00412

386 Chapter 14 • Distributing Your CE Application

FIGURE 14.2:

A standard HTC as viewed
on a CE device

<p>this way to topic #1</p>
<p>or topic #2, if you
prefer</p>
</body>
</html>

MY Hdl"lCihe ld
PC

~

MY
Da::uments -Recycle Bin

This is the Table of Contents
for our help file!
this way to topic #1
or topic #2 ifyo11 prefer

Probably the first thing you noticed about this HTC file is that it's even simpler
than the HTP file you just examined. But just to be sure that you understand
everything in it1 lefs once again take it apart, one section at a time.

The Header

First/ let's take a look at a standard HTC file header:

<html>
<head>
<title>This is the Main Topic</title>
<meta http-equiv=refer content= "">
</head>

The only point of real interest in this header is the fact that it's truly a standard
HTML header. Unlike the HTP file you just looked at1 this one has nothing unique
or custom about it, and that's one of the main reasons ifs possible to create these
files with a standard HTML editor.

Page 00413

Creating Help for Windows CE 387

The Table of Contents

Now you come to the Table of Contents section for your HTC file. This is literally
the body of your document:

<body>
<h3>This is the Table of Contents for your help file!</h3>

<p>this way to topic #1</p>
<p>or topic #2, if you
prefer</p>
</body>
</html>

In this example, the Table of Contents consists of a line announcing the table of
contents:

<h3>This is the Table of Contents for your help file!</h3>

This is then followed by links to the two topics in our minimal help system:

<p>this way to topic #1</p>
<p>or topic #2, if you prefer</p>

The important point about these links is that they're just standard HTML code.
This is just another reason why the multiple-file help systems are much easier to
create.

Also, note that because there really aren't any topics, there aren't any of the
<! -- PegHel p -->tags which pepper the single-file help system's HTP files.

TIP Although Microsoft's sample help files show tags such as <a href= " fi 1 e: I
/this_ is_ to pi cl. htp" > omitting the double slashes after "fi 1 e: ", this does
not appear to matter.

Table of Contents Entry Tags
In this sample HTC file, the Table of Contents entries are listed as individual paragraphs, as
demonstrated by the use of the <p> and </p> tags. However, which tags you use is largely
a matter of personal preference, and you can use any number of tags to list the entries in
your Table of Contents.

Continued on next page

Page 00414

388 Chapter 14 • Distributing Your CE Application

Officially, Microsoft's documentation recommends the use of the <menu> tag, which can
be used to list any number of items so that they are indented and appear as one block of
text. The following illustration shows what your simple HTC file would look like if you had
used the menu tag instead of individual paragraphs.

My Handheld
PC

~
My

Documents
\~· •QJ

Recycle Bin

This is the Table of Contents
using the menu tag

this way to top jc #1
or topic #2 if you prefer

It's also worth noting that Microsoft and many others do not use the <menu> tag at all but
instead choose list tags, such as and .

Now that we've seen how simple an HTC file can be, let's see how simple a
multiple-file help system's HTP files can be.

The Multiple-File Help System: The HlP File
When creating a multiple-file help system, you can use HTP files to contain

• multiple topics per file, or

• one topic per file.

If you choose the first option, the document source of your HTP file will end
up looking exactly like a single-file help system's HTP file-in fact, it will look
exactly like the one featured in the second section of this chapter. This, of course,
means that you're back to HTP files that can't easily be created with off-the-shelf
HTML editors. In other words, you could end up losing all of the advantages of
the multiple-file help system.

Page 00415

Creating Help for Windows CE 389

However, if you choose the second option, the document source of your HTP
file will look very different from the single-file help system's doocument source.
Figure 14.3 shows one such HTP file as it looks in the CE Help Viewer.

FIGURE 14.3:

Multiple-file help
system HTP file

My Handheld
PC

My
Documents ,,
~

Recycle Bin

topic #1
Here's some informa1ion abou1
http:IMM-w ce-faq.com

The source for this document is amazingly simple:

<html>
<head>
<meta http-equiv="refer" content="file://the_contents.htc">
<title>some stuff</title>
</head>
<body>

topic #1

<p>Here's some information about
http://www.ce-faq.com</p>
</body>
</html>

The first point you'll notice about this HTP file is that it is almost entirely stan
dard HTML formatting commands. In fact, there's only one line in the entire file
that's CE-specific: an entry in the <meta> tag section of the header.

The Custom <Meta> Tag

The FrontPage 98 help defines <meta> tag as, "An HTML tag that must appear in
the <head> portion of the page. <Meta> tags supply information about a page but
do not affect its appearance."

Page 00416

390 Chapter 14 • Distributing Your CE Application

The <meta> tag in your HTP file looks like this:

<meta http-equiv="refer" content="file://the_contents.htc">

In this case, your <meta> tag is used to tell the CE Help Viewer that your HTP
file refers to a certain HTC file; specifically, the_contents. htc. Aside from
that, everything else in the HTP file is standard HTML and can easily be gener
ated with FrontPage 98 or any other HTML editor.

Creating the Custom <Meta> Tag I HTTP_EQUIV
Values within FrontPage 98

1. Open an existing HTP document, or create a new document.

2. Right-click on the document and select Page Properties from the pop-up menu.

3. Click the Custom tab, as shown below.

General! Background I Margins Custom J Language I
.&~Y•I"m Vanml" (HTTP EOUIVI

~l¥ne Vitie

I f!!l!!ftl'"!H!I!!""""'I'•i®
Jjame: !relet

Jrile://

xl

AgoL I
OK Cancal j

1
!:! elp Mgdif~-- I

OK I [Cancel I Help

4. Click the Add button. The System Meta Value dia log box appears.

5. In the box marked Name, type refer.

6. In the box marked Value, type file://, followed by the CE path and file name of your
contents file

7. Click OK. That's it!

Page 00417

Getting the Application to the User's Device 391

Now you know everything there is to know about CE help systems and how to
create them. The next issue to tackle is the setup program-in short, how do you
get your applications onto the end user's device?

Launching CE's Help Viewer from Your Application
Under Windows 98/NT. the help-viewer application is called wi nh 1 p32. exe; under Win
dows CE, the help-viewer application is called peghel p. exe. To launch the help viewer
and cause it to bring up a specific help file, use code that looks something like this:

case WM_HELP: //handling a WM_HELP message
PROCESS_INFORMATION pi;
TCHAR szAppName [MA>(_PATH] = TEXT(" peg he 1 p. exe");
TCHAR szCmdLine[MAX_PATH] = TEXT("\\My App\\MyHelp.HTP");
dwCreate = 0;
CreateProcess(szAppName, szCmdLine, NULL, NULL, FALSE,

dwCreate, NULL, NULL, NULL, &pi);

Getting the Application to the
User's Device

When it comes to installing your program on a user's CE device, you have two
options.

The first option is to create a set of arcane, confusing, and generally difficult-to
use files and tools. If you decide to do this, you will need to create a setup program
of your own design. This type of installation doesn't have to be fancy, though-it
just needs to be able to copy files and launch another program. The advantage to
this method is that it is free. The tools that you'll use, while difficult to master, are
usually included with the CE toolkits or should be available from the Microsoft
Web site. Let's call this option the Cab Wizard option, named for the tool you'll be
using to create your installations, cabwi z. ex e.

The second option is to use a graphical, familiar tool that allows you to create
the setup in a few simple steps. You won't have to create your own setup pro
gram, and you'll have a complete, customized installation quickly and easily.
This is the InstallShield for CE option.

Page 00418

392 Chapter 14 • Distributing Your CE Application

In the following sections, we'll create a setup program for the TaskCE applica
tion developed in Chapter 5. First, we'll create a Cab file-based setup, and then
we'll create an InstallShield-based setup.

The Cab Wizard Option
When it comes to the Cab Wizard option, there are three steps you need to com
plete in order to install your application on a user's CE device:

1. Create the Cab, or archive, files, one for each device or platform you've got
anEXE for.

2. Next, create anINI file that contains some user-friendly information about
your application, such as the application name, author, and so on.

3. Finally, create a Desktop PC-based setup program of your own.

Creating the Cab File

Cab files are a special kind of compressed archive file that Microsoft designed
specifically for installations. To make Cab files for Windows CE installations,
you'll have to use a program called Cab Wizard.

The creation of a Cab file can be broken down into two distinct steps:

• Creating an INF file to tell Cab Wizard which files to use

• Running Cab Wizard to create the Cab archive

Creating an INF File Cab Wizard is not your typical interactive wizard program;
instead, it's a command-line utility that gets all of the information it needs from a
complicated text file. It's this text file, known as the INF file, yvhich you must create
before you do anything else. The INF file is a basic settings file; a common INF file
for creating CE applications has about a dozen sections, each one identified with a
unique name enclosed in brackets, with several settings per section.

Before you start, note that this is the most complicated and confusing part of
creating a Windows CE installation. While it's true that the INF file is basically an
INI file, and therefore nothing you haven't seen before, it's also a good deal more
complex than a standard INI file. For instance, there are several places in the INF
file where settings in one section refer to settings in another section, which then
refer to something else entirely. However, it should also be noted that CE devel
opers create INF files regularly, so it isn't an impossible task.

Page 00419

Getting the Application to the User's Device 393

The first section to be found in any INF file is the [Version] section, which
usually looks like this:

[Version]
Signature = "$Windows NT$ "
Provider= "doctorce.com"
CESignature = "$Windows CE$"

The Signature specifies the development machine; it is usually set to either
"$Windows NT$" or 11 $Windows 95$ 11

• The Provider is the company or individ
ual who wrote the software. Finally, the CESi gnatu retells Cab Wizard that it
must build CE-specific Cab files. This value is always set to "$Windows CE$ 11

•

The next section in an INF file is the [CEStri ngs] section. This is where to set
up any paths or strings that you'll be using throughout the INF file. For example,
your [CEStri ngs] section will look like this:

[CEStri ngs]
AppName = taskCE
Insta11Dir = %CE1%

TIP The reference to %CE1% is explained in detail in the "Predefined Destination Direc
tories" sidebar below.

AppName and Insta 11 Di rare now available to be used throughout the INF file.
This means that you can later specify the following elsewhere in the INF file:

SomeSetting=%Insta11Dir%\thefi1e.txt

AppName, of course, is the name of the application, and Insta 11 Di r is the destina
tion directory on the device.

The Predefined Destination Directories
When you specified your Insta 11 Di r above, you used an identifier enclosed in percent
symbols:

Instal1Dir = %CE1%

The %CE1% is part of a list of 17 predefined destination directories that you can use when
creating your INF file. They can be used as the full path, as shown above, or they can be
combined with string literals to specify a customized destination :

InstallDir = %CEl%\doctorce.com\TaskCE

Continued on next page

Page 00420

394 Chapter 14 • Distributing Your CE Application

Obviously, the reason they're provided is to save you from retyping the more common
paths and to prevent simple errors. These 17 predefined paths are listed in the following

table:

Macro String HPC Devices' Directory Palm PC Devices' Directory

%CE1% \Program Files \Program Files

%CE2% \Windows \Windows

%CE3% \Windows\Desktop

%CE4% \Windows\StartUp \Windows\StartUp

%CE5% \My Documents \My Documents

%CE6% \Program Files\Accessories \Program Files\Accessories

%CE7% \Program Files\Communication \Program Files\

Communication

%CE8% \Program Files\Games \Program Files\Games

%CE9% \Program Files\Pocket Outlook

%CE10% \Program Files\Office

%CE11% \Windows\Programs \Windows\Start Menu\
Programs

%CE12% \Windows\Programs\Accessories \Windows\StartMenu\
Programs\Accessories

%CE13% \Windows\Progra ms\ \Windows\StartMenu\

Communications Programs\Communications

%CE14% \Windows\Programs\Games \Windows\StartMenu\Pro-

grams\Games

%CE15% \Windows\Fonts\Windows\Fonts

%CE16% \Windows\Recent

%CE17% \Windows\Favorites \Windows\Start Menu

The next sections to create are the [CEDevi ce. Chi pType] sections. These sections
specify the chips you're targeting, so you need to create one [CEDevi ce. Chi pType]

Page 00421

Getting the Application to the User's Device 395

section for each chip. In addition, in each section you'll need to indicate the proces
sor type(s) you're supporting:

[CEDevi ce. SH3]
ProcessorType = 10003
[CEDevice.MIPS]
ProcessorType = 4000

The next section we'll deal with is the [Defaul tinsta ll] section. This is where
to tell Cab Wizard which additional sections of the INF file are to be processed,
regardless of what type of device the user has. Options that might appear here
include registry settings, readme files, help files, and so on. Your [Defaul tin
stall] section for TaskCE merely contains a reference to a section that will con
tain information about a shortcut that you might like to create a little later on:

[Defaul tinsta ll]
CEShortcuts = Shortcuts.All

It might also contain registry settings for both MIPS and SH3 installations.

The next sections you'll need to create are the [Defaul tin stall. Chi pType]
sections. Just as you did with the generic [Defau l tinsta ll] section, in the
[Defau l tlnsta ll . Chi pType] sections, you'll need to refer to later sections that
contain settings for chip-specific files:

[Defaultinstall .SH3]
CopyFiles = Files.Common, Files.SH3

[Defaultinstall .MIPS]
CopyFiles = Files.Common, Files.MIPS

So, in the above example, Files. Common, Files. SH3, and Files. MIPS are all sec
tions that appear later in the INF file.

Next, create a set of [Sou rceDi skNames] sections in which each source direc
tory is identified with a unique number.

[SourceDisksNames]
1 = ,"Common Files", , "h:\"

[SourceDisksNames.SH3]
2 = , "SH3 Files","h:\sh3"

[SourceDisksNames.MIPS]
2 = , "MIPS Files", ,"h:\mips"

Page 00422

396 Chapter 14 • Distributing Your CE Application

Now that you've identified each source directory, you can tell Cab Wizard
which files to add to the archive and where to find each file. You do this in three
[Sou rceDi skFi 1 es] sections:

[SourceDisksFiles]
readme.txt = 1

[SourceDisksFiles.SH3]
taskCE.exe = 2

[SourceDisksFiles.MIPS]
taskCE.exe = 2

From the settings in these sections, Cab Wizard knows to look for the common
file readme. txt in the directory marked 1 under the [Sou rceDi s kNames] section
above.

Next, tell Cab Wizard where you want all of these files to end up once they're
on the CE device. This section, [Desti nati onDi rs], is fairly self-explanatory.
Each previously outlined section is assigned a destination directory where all of
the files will eventually be copied:

WARNING The %Insta 11 Di r% path is subject to change; the only thing it really specifies is
the default installation path, which the user may change when installing the soft
ware via App Manager.

NOTE

[DestinationDirs]
Shortcuts.All = O,%CE3%
Files.Common = O,%Instal1Dir%
Files.SH3 = O,%Instal1Dir%
Files.MIPS = O,%InstallDir%
DefaultDestDir = O,%Instal1Dir%

The Shortcuts. All entry specifies the destination for all shortcuts, the
Files . Common specifies the destination for all common files, and so on.

The 0 that precedes each directory is a feature normally found in Desktop PC INF
files, but Windows CE does not support this feature.

Page 00423

Getting the Application to the User's Device 397

Next, you get to specify options for each of the files we're copying. In the
[Files. Common] section, tell Cab Wizard to rename readme. txt to readthi s. txt.
The executables (in [Files. SH3] and [Fi 1 es. MIPS]), however, will remain
unchanged:

[Files.Common]
readme.txt,readthis.txt, ,0

[Files.SH3]
taskCE.exe,, ,0

[Files.MIPS]
tas kCE. exe, , , 0

Finally, tell Cab Wizard that you'll want a shortcut for your TaskCE application
to be placed on the Desktop:

[Shortcuts.All]
taskCE,O,taskCE.exe

The entry under [Shortcuts. A 11] can be broken down in this way: the first
item is the name of the shortcut, the 0 indicates that this is a shortcut to a file, and
the last value specifies the name of the executable the shortcut is pointing to.

You can also specify a shortcut to a folder by changing the 0 to any other num
ber. Similarly, you can specify that a shortcut be created in a directory other than
that specified in [Desti nati onDi rs] by simply appending your desired direc
tory to the existing entry. So, in the above example, if you wanted that shortcut to
appear in \Wi ndows\Program Fi 1 es\Accessori es instead of the default direc
tory, you would set it up as

[Shortcuts.All]
taskCE,O,taskCE.exe, %CE6%

That's the full picture on INF files. As you've probably realized, they're not
very easy to create or friendly to use. It's generally regarded that once you create
one that does what you need, you ought to simply use it as a template for all
future installations. Naturally, the INF file we've created here is provided on the
CD for this book so that you can use it as a template for your installations.

Running Cab Wizard to Create the Cab Archive Now that you've finished
with your INF file, the next step is to run the Cab Wizard against your INF file so
that it can create the Cab archives for you. Of the two steps, this is definitely the
simpler one.

Page 00424

398 Chapter 14 • Distributing Your CE Application

All you have to do to create your Cab files is open a command prompt window,
go to the directory where CabWi z. exe is located and type:

CabWiz.exe "C:\TaskCE\TaskCE.INF" /err errors.txt / cpu mips sh3

The Cab files will be created for you and placed in the same directory as Cab
Wi z. ex e. In the case of your TaskCE project, the resulting Cab files will be named
TaskCE. SH3. cab and TaskCE. MIPS. cab-one Cab file for each chip type speci
fied after the I cpu command line option. If Cab Wizard cannot create the Cab
files for any reason, the errors will appear in the errors. txt file you specified
with the I err option.

Now that your Cab file creation is completed, it's time to create anINI file.

Creating an INI File

The INI file you're going to create now is the INI file that will be used by your
setup program to register your application with the CE Application Manager,
shown in Figure 14.4.

FIGURE 14.4: .~. Apphcalion Manager liJ£1
The CE Application
Manager

To add or remove an application. click the check box

A disabled box means that you can only remove the application
from the mobile device

Microsoft ActiveX Data Objects [AD_,

O~MpegTVXaudio MP3 Player 197 9 K

Space required: 0 0 K
Space available on device: 1.419 4 K

Description----

B.emove ...

W' Install usng the default application install drrectory

OK

Page 00425

Getting the Application to the User's Device 399

This INI file has only two sections and can be created very quickly.

The first section, [CEAppManager], specifies two values:

• The version of CE App Manager, which should always be 1.0

• The name of the next section in the INI file

Or, as it appears in the actual INI file:

[CEAppManager]
Versi on=l. 0
Component=TaskCE

The second section, named for the Component setting of the first section (in
your case [TaskCE]), specifies several additional values used by the CE Appli
cation Manager:

[TaskCE]
Description=TaskCE
CabFiles=taskce.sh3.CAB,taskce.mips.CAB

The Description setting specifies the text that CE Application Manager will
display when the user highlights your application in the list of available pro
grams. The CabFi 1 es option tells CE Application Manager the names of your
Cab files. The most important point to know about the CabFi 1 es setting is that
there should not be any spaces following the equal sign or the comma(s); a space
on this line can actually cause your installation to fail!

As you can see, the INI file is very simple. Here again, it's a good idea to create
one that works, and then use it as a template for future installations.

Creating Your Own Setup Program

The next step in the Cab file method of installing your software is to create your
own setup program. The only real task that the setup program must perform is to
copy the Cab files and the INI files to a subdirectory under the directory in which
the CE Application Manager is located. We'll design your setup program to be as
generic as possible so that when it's done, all you have to do is include it in the
same directory as your INI and Cab files, and it will do the rest!

Although you can create your setup program using just about any tool, includ
ing batch files, let's use Delphi as a quick-and-dirty solution. We'll create a blank
project without any forms so that what you're left with will be a single DPR file
with a minimal Uses clause.

Page 00426

Chapter 14 • Distributing Your CE Application

TIP Removing the forms and reducing the Uses clause keeps your EXE file size low.

The first thing your setup must do is locate your INI file, which should exist
in the same directory as the setup program itself. Use the FindFirst function to
search for the first INI file in your directory:

AppExePath := ExtractFilePath(ParamStr(O));
if (FindFirst(AppExePath + '*.ini ' , faAnyFilel SearchRec) <> 0) then
begin

If no INI file is found, report the error and quit:

MessageBox(NULL, PChar('No Ini file found. Aborting.'),
PChar('Error'),MB_OK);

Exit;
end

If the INI file was found, however, the next step is to locate the CE Application
Manager. The way to do this is by querying the registry. When CE Services are
installed on the user's machine, a set of values are added to the registry under
HKEY_LOCAL_MACHINE \SOFTWARE\Microsoft\Windows CE Services\.Oneof
these values in particular, Insta 11 edDi r, tells you where the CE Services files,
including the CE Application Manager, are installed. Your next step, then, is to
retrieve that value using Delphi's TRegi stry object:

else
begin

Reglni := TRegistry.Create;
Reglni .CloseKey;
Reglni .RootKey := HKEY_LOCAL_MACHINE;
Reglni .OpenKey('\SOFTWARE\Microsoft\Windows CE Services\ ' 1 False);
//CEAppMgrPath := Reglni .ReadString(' ' I ''I '') + ' \ceappmgr.exe ' ;
CEAppMgrPath := Reglni .ReadString('InstalledDir ');
Reglni .Free;

end;

The next step is to open the INI file you located earlier and retrieve the Compo-
nent value from the [CEAppManager] section:

Applni := TiniFile.Create(AppExePath + IniFileName);
DestinationDir := Applni .ReadString(' CEAppManager ' 1 'Component', '');
Applni .Free;

Page 00427

TIP

NOTE

Getting the Application to the User's Device 401

You'll use this value as the name of the subdirectory where you'll copy the INI
and Cab files. If this value is empty or does not exist, report the error to the user
and quit:

if Desti nati onDi r = ' ' then
begin

MessageBox(NULL, PChar('Error in INI file. Aborting. 1
),

PChar(1 Error 1),MB_OK);

Exit;
end;

Next, create the destination subdirectory (under the path of the CE Application
Manager):

CreateDirectory(PChar(CEAppMgrPath + 1
\

1 + DestinationDir), nil);

Then loop through all of the files in the same directory as the setup program,
copying them into the destination directory and making sure not to copy the
setup program itself:

i Result : = Fi ndFi rst(AppExePath + ',.,. ,., 1
1 faAnyFil e I SearchRec);

while (iResult <> 0) do
begin
if (SearchRec.Name <> ExtractFileName(ParamStr(O))) then

CopyFile(PChar(AppExePath + SearchRec.Name),
PChar(CEAppMgrPath + 1

\' + DestinationDir + 1
\' +

SearchRec.Name), TRUE);
iResult := FindNext(SearchRec);

end;
FindClose(SearchRec);

Finally, launch the CE Application Manager, specifying the INI file you just
copied as the command line parameter:

WinExec(PChar(CEAppMgrPath + 1 \ceappmgr.exe " I + CEAppMgrPath + 1
\

1 +

DestinationDir + 1
\

1 + IniFileName + 111 1
), SW_NORMAL);

If the CE Application Manager ever gives you an error message, you can turn on
its debugging feature by adding the /report option to the command line just
before the name of the INI file.

It is also possible for a user to download a CAB file directly onto thei r CE device
and install the software by double-tapping the actual CAB file. For more informa

tion, see Chapter 15.

Page 00428

402 Chapter 14 • Distributing Your CE Application

And that's how to create a complete Cab file-based setup. While there are quite
a few steps to manage and some of them are a bit confusing, many CE applica
tions are installed in just this way without any additional tools.

However, if you prefer an easier route, there is a third-party tool that can be a
big help.

lnstaiiShield for Windows CE
Install Shield for Windows CE is a tool that can help you to quickly and easily
create installation files for Windows CE-based applications. InstallShield for Win
dows CE automatically knows about the different devices and chip types and
makes it possible to target multiple platforms with ease.

When you start InstallShield and create a new project, you are first asked to
enter some basic information about the application.

Next, the wizard asks you to specify the default destination folder of the appli
cation on the CE device. By default, InstallShield selects the \Program Files\
<Company Name>\<Appl i cation Name> folder. You may specify another desti
nation folder by selecting the desired destination in the Tree View, as shown in
Figure 14.5.

FIGURE 14.5: -*' lnstaiiShield for Windows CE · Destination Information l!lrif £J

Specifying the default
destination folder

Choose a default Installation folde1 f01 your application This will allow your users
to chance the de$linati•ln of your application f~es du1111g the instaUation

!lefault destination folder:

8 ::3\
1:'-1 .::ll PrOIJrarn File~

! Accenane!
~ CcmrrM'tMlion

LJ Gamer
S ~ CE 0611 H.andoool<

L.J tildi1Flt€kW
El tj WindoYn.
I LJ Sla~IUJ!

ltl ~ Start Menu
Foot.: ~-~

Qelete I

Page 00429

Getting the Application to the User's Device 403

Next, you're asked to specify all of the files you'll be installing to the user's
device. The Files dialog, as shown in Figure 14.6, displays the name, destination
folder, source folder, device type, supported processor type(s), and the size of
each file you specify to include with your application. The Add File button allows
you to add any files needed to run your application on the device.

FIGURE 14.6: • lnstaiiShield fm Wrndows CE - Files IlliG! F.J i

The Files dialog displays all
of the files you'll be
installing.

~pec~y all files to inslalf on the devrce:

T askM anager

For your TaskCE application, browse to the location of the TaskCE files, select
both the MIPS and SH3 files, and click Open. You can then add any additional
files, such as the readme. txt file, in the same way.

In the next step, you can specify unique properties in the File Properties dialog
for all of the files you've added using the Add File button. As shown in Figure 14.7,
you can specify:

• Different destination folders

• Special copying options (i.e., Always update older file on target)

• Target chip type of file

In the next step, you can specify any shortcuts that you'll need. So, for your
TaskCE project, you'll need to create a shortcut on the Desktop. Identify the short
cut target, the destination for the shortcut, and a name. You can rename shortcuts
or change the destination folder of the shortcut by selecting the desired shortcut

Page 00430

404 Chapter 14 • Distributing Your CE Application

from the list in the Shortcuts dialog and clicking the Properties button. The Short
cut Properties dialog is shown in Figure 14.8.

FIGURE 14.7: simple.001 Properties £J

The File Properties dialog

FIGURE 14.8:

The Shortcut Properties
dialog

Destr1al10n j\CE Dev Handbook\CE T askManage~

b;opy~

r AIWIIYS copy file to target

r. Always updete older frle on target
r Copy only ~ file exists on ta~ge\

Etatlorm !Palm·size and Handheld

Prycessm: jrall) ~ _

Shurtcut Properties £1
1

Dis play Name: Shottcul to T askCE

Iarget: I \Program Files\CE Dev Handbook\CE T askManager\11:£]

E'latform: P aim-size and Handheld

Q estination:

l
· Communication
w Games

~ c.J CE Dev Handbook
tjWindows

' J l,J Startup
8 J:S. Start Menu
I !- i!:J 11!!.1111

' CJ Accessories
C:J Communication
~Games

In the next few steps, InstallShield allows you to specify additional options for
your application, such as file associations and registry keys. While TaskCE does

Page 00431

Summary 405

not have any file associations or registry keys associated with it, it's worth noting
how easily these items can be configured with InstallShield.

Finally, when you're all finished setting up the application and any additional
options, InstallShield displays a confirmation/ summary of the options you've
specified, as shown in Figure 14.9.

FIGURE 14.9: -~ lnstaiiSh•eld lor \l/1ndows CE - Summarv !'Iii EJ

The summary or
confirmation dialog

About

The inst&lk!tlon wil be c16aled acco1dlng to your settings below Click build to
Cleate the device instaWation fdes and copy them to your output directOI}'

lntt41!itJg "Windows C£ Developers Handbook CE T askM11nage1"
,.jo ''\P!ogrem Files\CE Dev Handbook \CE T askManager"

fde{s)
1 shortcut(s)
0 regishy entJy(-ies]
Osetup Dl..l.js)
D document association(s]

OlAplt files st01ed in:
E \zet,p\ncel~

Confirm the options you've set, and InstallShield will create the INI, INF, and
Cab files for you. You then have one set of distributable files that you can use for
all of the chip types you're targeting.

Clearly, when it comes to CE installs, there's an easy way and a hard way to do it.
You may prefer to create your own INF files so that you have more control over the
install process, but the ease of using InstallShield forCE is a definite timesaver.

Summary
In this chapter, you learned how to put the finishing touches on aCE application.
The help files are relatively easy to create, and there are a number of options that
you can choose from to get the job done. CE installs, on the other hand, can be a
bit time-consuming unless you use a third-party tool to help you.

Page 00432Page 00432

Page 00433

CHAPT{R
flfT((N

Microsoft's Logo
Requirements

• Installation Requirements

• Ul Requirements

• Functionality Requirements

• File-Handling Requirements

Page 00434

Chapter 15 • Microsoft's Logo Requirements

In this chapter, we'll be exploring the Logo process and what it takes to get
your applications approved for the "Powered By Windows CE" Logo. The Logo
program is often touted as a way for users to judge the quality of an application.
In some sense, it may help to give the potential customer a sense that Microsoft or
the powers that be have approved your application.

What Is the Logo Program and Why
Should You Care?

TIP

NOTE

The Logo program is not a computer program; rather, it is a type of program that
developers can participate in. If your application conforms to these standards and
rules, you can pay to have it certified by Microsoft's approved testing labs, Veritest.
If your application passes the tests and is certified as conforming to the standards
outlined by Microsoft, you earn the right to put the "Powered By Windows CE"
logo on your application's box, advertisements, and so on.

As of this writing, the cost to have an application tested by Veritest is $300 per
application.

The general idea is that a potential customer for your software sees this Logo
and concludes that your software has been tested and certified to be OK. As
you'll see, the Logo is not a mark of quality or reliability of the software, but
rather a certification that the program looks and feels a certain way.

Logo'd is the official Microsoft term for a product that has been verified as con
forming to the Logo requirements.

Most of the freeware or shareware Windows CE programs do not conform to
the Logo requirements. In fact, some of the Logo requirements may actually be in
direct opposition to the wants of your users. For instance, it is required that cer
tain Palm-size PC applications not show the file system or directory hierarchy in
any way. For experienced users, not including an explorer or file manager-type
application because of this requirement is extremely frustrating. To remedy this,

Page 00435

What Is the Logo Program and Why Should You Care?

Casio provides a Find File utility, which can also be used to browse directories
and files. Of course, this application would never be approved for a Logo, but it is
extremely useful and probably quite popular.

Many other programs are already in compliance with the majority of the Logo
requirements, and adding or modifying a few features here and there probably
wouldn't be a major effort.

so What'?
The real question is what benefit do you get from having your application Logo'd?
It's certainly true that many potential customers may never notice the Logo on
your program's box. Some may not care even if they do notice it. So why go to all
of this trouble?

Well, of course, there is the argument that some potential customers do care.
They want to know that launching your PPC application when there's already a
copy running won't start two instances of it, but will instead bring the existing
one to the foreground. They care that your HPC application supports mouse cur
sors, and that it will resize itself to account for the user's taskbar preferences.

However, the real benefits of the Logo program are in the perks that Microsoft
provides to you. If you had your application certified for that reason alone, it
would be worth the time and expense. Some of the more important benefits
Microsoft provides for Logo' d applications include:

• Listing of your company and product on the Third-Party Showcase on the
Microsoft Web site. This showcase is only for third parties that have quali
fied for the Logo.

• Microsoft quote provided if you are announcing in a press release that your
company recently received the Logo.

• Discounts and special premium invitations to participate in the Windows
CE-based Application CD samplers that are distributed to qualified
Microsoft customers and at various trade shows.

• Invitation to participate in co-op advertising campaigns focused around
Microsoft product launches.

• Invitation to participate in direct mail campaigns, joint seminars, and train
ing events focused around Microsoft product launches.

Page 00436

410 Chapter 15 • Microsoft's Logo Requirements

•

•

•

Opportunity to participate in Microsoft Partner Pavilions at trade shows
such as Windows World and COMDEX. '

Inclusion of your company and Logo' d product in the Windows CE-based
Product Spotlight.

Opportunity to participate in magazine advertisement discount offers of 10
percent (for new ad contracts only). To receive this discount, your product
must be Logo' d and the Powered by Windows CE Logo must appear in the
advertisement.

Clearly, there's a real, tangible benefit here that goes beyond just putting some
additional art on a product's box. Assuming you've decided the Logo program is
something you want to participate in, you then need to know what sort of modifi
cations you'll have to make in order to get your programs to conform to the stan
dards and rules.

In most cases, you won't have to do much of anything at all. If you've followed
the UI guidelines and the model provided by the Microsoft applications, you'll
probably be just fine. To see how the Logo rules will likely affect you, let's take a
look at the most important ones for each platform, starting with the Palm-sized
PC and then the Handheld PC (which includes HPC/Pro).

The Logo Requirements
For the rest of this chapter, we'll examine the four major areas in which the Logo
requirements are likely to affect your application. They are:

• Installation

• UI Design

• Functionality

• File Handling

Although there are other sections to the Logo specifications, these are the items
that are likely to affect you more than the others.

Page 00437

The Logo Requirements 411

Installation

fNOTE

When it comes to installing your software on the user 's device, there are anum
ber of rules you need to follow to ensure that you get Logo' d. Most of them make
good sense anyway, and the others are relatively minor.

1. Your application must install using CAB files and/or the CE Applica
tion Manager.

HPC PPC

Required Required

Simply put, Microsoft wants you to use their system of CAB files and the CE
Application Manager to install applications to the CE Device.

When the user downloads a CAB f ile from the Internet directly to their device, the
installation is performed by aCE-based utility called WCELoad.

2. Your application must register the CAB files for all processors with
CE AppManager when installed from the desktop.

HPC PPC

Required Required

Along with Installation Rule #7, this rule's purpose is to make sure that CE
AppManager knows about the CAB files for processors other than the one used
in the device hooked up at the time of install.

3. All nonshared program files must be installed to your application's
directory.

HPC PPC

Required Required

All EXE and DLL files must be installed to the application directory, as long as
these files will be used by your program and your program alone.

Page 00438

412 Chapter 15 • Microsoft's Logo Requirements

NOTE

4. All shared program files must be installed to the Windows directory.

HPC PPC

Required Required

All EXE and DLL files which might be used by more than one application
should be installed to the \Windows directory.

In the official documents from Microsoft, Installation Rules #3 and #4 are com
bined into one rule for the PPC platform.

5. When your application is uninstalled, you must remove the user
settings from the Windows CE registry

HPC PPC

Required Required

When your application is uninstalled, you must remove all traces of it from the
registry.

6. When installing from the desktop to the device, you should first
copy all of the files to a subdirectory of the CE AppManager Path.

HPC PPC

Recommended Recommended

This technique is demonstrated by the sample setup described in the previous
chapter.

7. CAB files for all processors should be copied to the desktop when
the user is installing from the desktop to the device.

HPC PPC

Recommended Recommended

The idea here is that even if the end user only has a MIPS device, you must
copy the CAB files for the other processors to their desktop machine. Although

Page 00439

TIP

The Logo Requirements 413

users typically only have one CE device, they could very easily upgrade or pur
chase a new device that uses a different chipset. Therefore, it's best to provide a
way for them to install your software to their new device, if needed.

MIPS R391 0 binaries will run on all of the MIPS chips.

8. When allowing the user to install from the Internet to a device,
you should instruct them on choosing the correct CAB file for their
device.

HPC PPC

Recommended N I A

This rule applies only to HPC devices, as PPC devices are not configured to
allow a direct Internet-to-device installation.

Determining the User's CPU Type over the Internet
Microsoft recommends that you set up your Web site to automatically choose the correct
CAB file for the user. This is possible because Pocket IE sends a special HTTP variable indi
cating the CPU type of the device. To determine the User Agent CPU, you can reference
the environment variable HTIP _UA_CPU.

For example, here is a simple Peri script that tells the user what type of browser and CPU
their device is running:

#!/usr/local/bin/perl
print "Content-type: text/plain \n\n";
print "Your browser type is: ";
print $ENV{'HTIP_USER_AGENT'};
print '\n\nYour CPU type is: ";
print $ENV{'HTTP_UA_CPU'};
exit;

You could then easily use this HTTP _UA_CPU variable to direct the user's browser to the
specific CAB file that's right for their device.

Page 00440

414 Chapter 15 • Microsoft's Logo Requirements

9. When your application is uninstalled, you must either remove
the data files or alert the user to the fact that you did not remove
these files.

HPC PPC

Recommended Recommended

If you choose not to delete these files, Microsoft recommends that you advise
the user to move the data files to the desktop, then recopy them to the device as
needed.

10. If you do remove user data files, you must alert the users and
give them the option of saving these files.

HPC PPC

Recommended Recommended

As a corollary to Installation Rule #10, if you are going to delete the user's data
files, you must give the users the option of copying these files to the desktop first.

11. You must use meaningful, unique names for program files.

HPC PPC

Recommended Recommended

The idea here is that you would like to avoid installing a shared DLL from your
application to the Windows directory when a similarly named file from another ven
dor may already exist. So, naming your DLL "OurCompany_OurAppl i cation_Our
DLL. DLL" would be unique and, therefore, unlikely to conflict with any other
vendor's DLLs.

12. You must support installation to a compact flash card.

HPC

N/A

PPC

Required

Page 00441

The Logo Requirements 415

When your application is installed, the user will have the option (via CE App
Manager) of installing to a compact flash card. If the user chooses this option, you
must copy as many files as possible to the compact flash card.

13. You must create a shortcut on the Start menu for your application.

HPC PPC

Recommended Required

When installing your application to a PPC device, you need to create a shortcut
to your application under the \Wi ndows\Start Menu\Programs\ directory on
the device. While it is a good idea to do this on both platforms, it is especially
important on the PPC device, as there is no Explorer-type application by which
the user could otherwise find and run your application once it is installed.

When installing to an HPC device, Microsoft recommends that you create short
cuts to your application in the \Program Files\ directory instead of the desktop.

Ul Requirements

NOTE

In this section, we'll look at all of the UI and shell-related requirements. The rules
in this section are designed to ensure that all Windows CE programs present a
consistent look and feel.

1. The command bar and rebars must appear at the top of the screen.

HPC PPC

Required Required

Although Microsoft allows you to offer the option of hiding the command bar,
they do require you to, by default, show the command bar and to place it at the
top of your application's main window.

Games and other applications that wouldn't ordinarily have menus or toolbars
may not be required to follow this rule.

Page 00442

416 Chapter 15 • Microsoft's Logo Requirements

2. Menus must appear in the left-hand portion of the command b
while buttons must use the right-hand portion. ar,

HPC PPC

Required Required

This organization can be seen on just about any of the Microsoft applications
that ship with aCE device.

3. Your Help "?" button must be placed to the right of the screen,
just to the left of the Close "X" button.

HPC PPC

Required N I A

This UI-related rule, as well as the next one, does not apply to PPC devices, as
the help system on PPC devices works slightly different than on HPC devices.
For the PPC version, see UI Rule #5.

4. Your application must allow the user to press Alt+H to bring up Help.

HPC PPC

Required N I A

This rule is intended to ensure that users will be able to click or tap the "?"but
ton and receive help. If for some reason you do not want to offer this functional
ity, Microsoft gives you the option of adding a Help menu to your command bar,
which could then be accessed via the Alt+H key combination.

Here again, this rule does not apply to PPC devices; for PPC devices, see UI
Rule#S.

5. Your applications must not show a"?" Help button on the com
mand bar.

HPC

NIA

PPC

Required

Page 00443

The Logo Requirements 417

As you saw in the previous chapter, PPC users access the help system off of the
Start menu. In order to be consistent, your applications should not offer any dif
ferent means of accessing help. This, of course, is also why UI Rules #4 and #5 do
not apply to applications running on PPC devices.

6. Standard menu items must appear in a set order.

HPC PPC

Required Required

UI Rules #6, #7, and #8 all go together. They are concerned with making sure
that your applications present the same look and feel as other applications, at
least as far as the command bar is concerned. This rule, for instance, says that if
your application includes the standard File, Edit, etc. menus, you must arrange
them in the usual set order, from left to right, of:

File, Edit, View, Insert, Format, Tools, Window

7. Standard buttons must appear in a set order.

HPC PPC

Required Required

This rule parallels UI Rule #6 and says that if your application includes the
standard New, Open, etc. buttons, you must arrange them in the usual set order,
from left to right, of:

New, Open, Save, Print

8. Standard functions must appear in a set order.

HPC PPC

Required Required

This rule also parallels UI Rule #6 and says that if your application includes the
standard text-formatting functionality, the buttons or drop-down combos that
provide that functionality must appear in the following order, from left to right:

Style, Font, Font Size, Bold, Italic, Underline

Page 00444

418 Chapter 15 • Microsoft's Logo Requirements

TIP

9. Users can not close the application themselves.

HPC

N/A

PPC

Required

This rule requires that your PPC applications not have a Close "X" button or a
File>- Exit menu. The reason for this is thal Microsoft does not want the user to
have to worry about managing m m ry; instead, th operating system itself
closes the applications as memory is needed.

Because the Close "X" button is probably more comfortable to you as a devel
oper, you may want to include the Close button until you're all finished testing the
application, then remove it before shipping.

Finding the Previous Instance
One of the consequences of Ul Rule #9 is that every time the user starts an instance of your
application, you must make sure you check to see that no other instance is already running.
To do this, you can use Fi ndWi ndow() from within your Wi nMai nO function. For example:

int WINAPI WinMain(HINSTANCE hinstance,
HINSTANCE hPrevlnstance,
LPTSTR lpCmdline,
int nCmdShow)

HWND hWnd;

Assuming that szAppName is your application's window class name, and szTi tl e is the
caption of your application's main window, call Fi ndWi ndow():

hWnd = FindWindow(szAppName, szTitle);
If Fi ndWi ndow() finds a window matching your criteria, it will return a handle to that
window. So, if hWnd contains a valid window handle:

if IsWindow(hWnd)
(

set the focus to that window, bringing it to the front, and then exit from the second instance:

SetForegroundWindow(hWnd);
return 0;

Page 00445

The Logo Requirements 419

10. Command bar buttons must offer tool tips.

HPC PPC

Required Required

All of the buttons-if there are any-on your command bar must offer tool tip
hints so that the user can hold their stylus over the button for a few seconds and
receive a "yellow balloon hint" as to that button's purpose. Further, while both
the FPC and HFC platforms require these tool tips, Microsoft has rules on how
the hints are to be worded for each platform.

10a. Hints for HPC Applications must give the button's function and
its keyboard shortcut. In other words, a hint for a button on an HFC applica
tion that printed the application's data might read "Print (Ctrl +P)."

10b. Hints for PPC Applications must give the button's function but
not its keyboard shortcut. In other words, a hint for a button on a FPC
application that printed the application's data might read "Print" (notice the
omission of "Ctrl+P").

11. Applications must provide small (16 x 16) and large (32 x 32)
icons for the main executable and all registered file types.

HPC PPC

Required Required

This is a common sense rule that's something you'd want to do with any Win
dows application.

12. Your applications must not duplicate the functionality of the
Address Book API.

HPC PPC

Required Required

This rule, which affects mostly FIM (Personal Information Manager) applications,
is designed to conserve storage space on the CE Device. Simply put, Microsoft does

l

Page 00446

420 Chapter 15 • Microsoft's Logo Requirements

not want each PIM application to create its own database in addition to the Cont
application database that's already on the system. If all PIM applications use th~ts
same database, there will theoretically be less wasted storage space. Therefore .f

'1
your application performs any kind of contacts-related operations, you must use th
existing Contacts database and the Contacts database functions. e

13. Your applications must not duplicate the functionality of the
msgstore API.

HPC PPC

Required Required

Just as UI Rule #12 requires you to use the Contacts database and related func
tions, this rule deals with messages and message-related applications. If you have
an application that stores messages similar to e-mail messages, you must use the
msgstore database and the related msgstore functions.

14. If your applications use the IR port, you must adhere to the lrDA
standards.

HPC PPC

Required Required

The purpose of this rule is merely to ensure that all CE-based applications use
the IrDA standards.

15. Your applications must use the hourglass or wait cursor when
ever necessary.

HPC PPC

Required Required

Although the HP Jornada is the only CE device with a mouse, all CE devices
support an hourglass or wait cursor, although it looks slightly different from a
regular Windows 98/NT wait cursor. The CE wait cursor appears as a small win
dow, about 32 x 32, which displays an animation of a wait cursor.

Page 00447

The Logo Requirements 421

16. Your applications must resize themselves depending on the
taskbar settings.

HPC PPC

Required Required

Because the user can always choose to auto-hide the taskbar, your application
must be able to accommodate the taskbar settings and use the full screen area.

Working with the Taskbar
There are really only two things you must do to work with the taskbar and use the full

screen area for our main window.

1. The first time you need to be concerned about the taskbar is when you create our
main window.

2. The second time you need to be concerned about the taskbar is if the user changes
their taskbar preferences while your application is running.

1. Creating the Main Window
When you create your application's main window, you should specify its dimensions as 0 I
0 1 CW_DEFAUL T, CW_DEFAUL T. Your call to CreateWi ndow(), then, might look like this:

hWnd = CreateWindow(szWindowClass, szTitle, WS_VISIBLE I WS_SYS

MENU I WS_CAPTION, 0, 0, CW_USEDEFAULT, CW_USEDEFAULT, NULL, NULL,
hlnstance, NULL);

The CW_DEFAUL T value on Windows CE ensures that your application will occupy the full

screen area, taking into account the taskbar settings.

2. Watching for Taskbar Changes While Your Application
Is Running
Since the user can also change their taskbar settings while your application is running, you
need to be able to resize your window at runtime. The way to accomplish this is to handle
the WM_SETIINGCHANGE message. When you receive this message, you can call System
Parameters Info() and request the dimensions of the working area (i.e., the screen size

Continued on next page

Page 00448

422 Chapter 15 • Microsoft's Logo Requirements

NOTE

TIP

minus the taskbar size). You can then call MoveWi ndow() to resize your wind.ow accord~
ingly. Or, in code: ·'

case WM_SETTINGCHANGE:
RECT rcWorkArea;
//Get the working area
SystemParametersinfo(SPI_GETWORKAREA, 0, &rcWorkArea, 0);
//resize the window
return MoveWindow(hWnd, rcWorkArea.top, rcWorkArea.left,

rcWorkArea.right, rcWorkArea.bottom, TRUE);
break;

With these two changes in place, your application will be able to perfectly adapt to the
user's taskbar preferences, making your application that much closer to being Logo' d.

17. Your applications must support Alt+tap for pop-up menus and
Alt+Enter for property sheets.

HPC PPC

Required N I A

While pop-up menus and property sheets are by no means required compo
nents of a Logo'd application, if the application does offer those items, Microsoft
requires that the user be able to access them in a certain way.

This rule does not apply to PPC devices, as the default Input Panel keyboard has
no Alt key.

Chapter 3 has a demonstration of handing an Alt+tap event.

18. Your applications must support mouse cursors.

HPC PPC

Required N I A

Page 00449

The Logo Requirements 423

OnCE devices that have a mouse, your applications must accommodate the
mouse, especially in regard to selection operations and right-clicking.

WM_RBUTTONUP and Pop-up Menus
As you saw in Chapter 3, the WM_RBUTIONUP message was removed from the CE API, sim
ply because CE devices didn't have a mouse. However, with the advent of CE devices such
as the HP Jornada, which does offer a mouse. the WM_RBUTIONUP message has been
added back into the CE API. So, in order to get an application to compile for (and behave
correctly on) multiple CE platforms with regards to right-click handling, you must put an
#i fdef around your WM_RBUTIONUP message handler:

#ifdef WM_RBUTTONUP
//if there's true mouse support ...
case WM_RBUTTONUP:

PopupMenuHandler();
break;

#endif

19. Your applications should use the default system font (9-point
Tahoma) whenever possible.

HPC PPC

Required N I A

This is the simplest of the UI Rules, requiring you to do absolutely nothing when
it comes to fonts. Tahoma (9-point) is the default system font, so as long as you don't
specify any font settings, you'll be in compliance with this rule automatically.

20. Your dialogs should be centered on the screen.

HPC PPC

Recommended N I A

Microsoft recommends centering dialogs in the nontaskbar area of the screen to
improve the overall look and feel of your applications.

Page 00450

424 Chapter 15 • Microsoft's Logo Requirements

NOTE

21. Your dialogs shouldn't be any larger than 466 x 198.

HPC PPC

Recommended N I A

Since the smallest HPC resolution is 480 x 240, you can safely design your
dialogs to be 466 x 198 and be assured that they'll look good on any of the HPC
devices.

22. Your buttons should use a bold font style to improve readability,

HPC PPC

Recommended N I A

Microsoft recommends using a bold font on command buttons to improve
readability and to be consistent with other HPC applications.

23. Your applications must deal with the showing/hiding of the
Input Panel.

HPC

NIA

PPC

Required

Specifically, your windows and dialogs must be arranged so that an Input
Panel does not hide any edit boxes. (Input Panels are assumed to be 80 pixels
high for the purpose of this rule) . It's worth noting that it is apparently OK to
have an edit box that's hidden by an Input Panel, as long as the window has a
scroll bar available so the user can scroll the edit box into view. This, in fact, is
the way many Microsoft PPC applications work.

Chapter 1 demonstrates how to add and remove a scroll bar whenever the Input
Panel's state changes.

Page 00451

The Logo Requirements

24. If you choose not to provide a tray icon or Start menu shortcut to
your applications, you must ensure that the applications use the
desktop as their parent window.

HPC

N/A

PPC

Required

This rule seems to be somewhat pointless, considering that any application
not providing a Start menu shortcut would be in direct conflict with Installa
tion Rule #13.

25. Your applications should not display underlined accelerators
(Ait+letter) or shortcut keys (Ctrl+letter) in menus or dialogs.

HPC

N/A

PPC

Recommended

It is perfectly acceptable to use underlined accelerators in HPC applications;
this rule applies only to PPC applications where there is no Alt key on the stan
dard Input Panel keyboard.

Similarly, although PPC keyboards do have the Ctrl key, it is usually a more
complex process for the user to tap out Ctrl+X than it would be for them to go
directly to that menu item. Therefore, it's recommended that you not display the
shortcut keys in our menu items' text.

26. Toolbar buttons should have keyboard equivalents.

HPC PPC

Recommended Recommended

Despite UI Rule #lOb, which says that you must not show keyboard shortcuts
in your tool tips, Microsoft recommends that you provide keyboard equivalents
just the same.

27. Your buttons should support pop-up help.

HPC

N!A

PPC

Recommended

Page 00452

426 Chapter 15 • Microsoft's Logo Requirements

Many of the PPC applications support pop-up help, so Microsoft recommend
that, for consistency's sake, your applications should offer it, too.

8

28. Your applications' windows should not be overlapping or resizable.

HPC PPC

Recommended Recommended

Microsoft strongly recommends that applications take advantage of the full
screen area to the maximum amount possible. Further, CE devices do not allow
the user to resize windows. Therefore, it is recommended that none of your appli
cations' windows overlap any existing windows.

29. Your applications should use HTML-based help.

HPC PPC

Recommended Recommended

As the Windows CE help viewer uses HTML-based help files, it's strongly rec
ommended that your applications use HTML-based help, as opposed to using
some other help system.

30. Your applications' windows should not display a title bar.

HPC PPC

Recommended Recommended

As screen real estate onCE devices is already somewhat limited, you should do
everything you can to maximize the space you do have available. One of the modi
fications you can make is to eliminate title bars from your applications and sim
ply avoid putting the name of the applications anywhere on the top of the main
window.

31. Your applications' closing and launching should execute as
quickly as possible.

HPC PPC

Recommended Recommended

Page 00453

NOTE

The Logo Requirements

The idea behind this rule is that your applications should mimic as closely as
possible the "instant on" feature of a CE device. The user will come to xpect
everything on aCE device to be instantaneous and, to maintain this appearance,
youl' applications should start and clos immediately.

32. Your applications' ListView controls should allow for drag
multi-select.

HPC

N!A

PPC

Recommended

Because it's somewhat difficult to press the Ctrl or Shift keys on a PPC device
while selecting items in a ListView, Microsoft recommends that you allow the
user to simply mark Lhe items they want by pressing and dragging th stylus
around the items they want to select.

This is the default behavior for a ListView control and will require no extra work on

your part.

Functionality Requirements

TIP

Although the Powered by Windows CE Logo is not intended to be an indication
that the application behaves as advertised, there are some functionality-related
rules that an application must follow in order to be approved.

1. Your applications must run on all of the CE-supported CPUs.

HPC PPC

Required Required

Unless you've included some kind of chip-specific assembly language in your
application, you should have no trouble at all meeting this requirement.

The exception to this rule is that if there is no commercially available device that
uses a certain CPU, then your application will not be tested and is not required to
be compatible with that CPU.

Page 00454

428 Chapter 15 • Microsoft's Logo Requirements

TIP

2. Your applications must be fully functional when submitted for
testing.

HPC PPC

Required Required

Microsoft requires that all of the parts of your application are working and
functional at the time you submit the application for testing. This rule simply
exists so that your application can be fully tested for compatibility with the rules.

3. Your applications' windows and graphical components must resize
themselves based on resolution and screen size.

HPC PPC

Required N I A

For the most part, this rule is covered if you simply create your window using
the default values for width and height, as illustrated in UI Rule #16. However, it
may be necessary to incorporate, say, a scroll bar on the left of your applications'
main forms, so that it will still be possible for the user to access all of the controls
on a smaller screen.

The reason this doesn't apply to PPC devices is that all of the PPC devices available
have the same display size.

4. Your help files must be working when you submit our applications
for testing.

HPC PPC

Required Required

Although it's not required that your help files actually be fully written, they
must at least display the correct topic when the user asks for help.

Page 00455

The Logo Requirements 429

s. Your applications must use RAPI where applicable.

HPC PPC

Required Required

Simply put, Logo' d applications may not use any custom means of communi
cating with desktop or companion applications.

6. Your applications must use Winsock where applicable.

HPC PPC

Required Required

Here again, where possible and applicable, your applications should use
Winsock to communicate with desktop or companion applications.

7. Your application must respond to WM_HIBERNATE messages by
reducing the amount of memory used.

HPC PPC

Required Required

The only element not specified by this rule is the amount by which your applica
tion should reduce its memory usage. However, Microsoft does recommend a
25 percent reduction.

8. Your applications must exit without user intervention.

HPC

N/A

PPC

Required

This special FPC-specific rule is related to UI Rule #9, regarding the fact that
users should not be able to close the applications themselves. Because the PPC OS
closes applications as memory is needed, it's important that your applications
don't require any user intervention to be closed. In this way, the automatic clos
ing of applications is seamless, and the user never knows what's going on behind
the scenes.

Page 00456

430 Chapter 15 • Microsoft's Logo Requirements

9. Our applications must store and load their state.

HPC

N/A

PPC

Required

This rule is also related to the way in which the PPC OS closes applications
automatically. Parl of the way the automatic closing process is supposed to work
is lhat when the user starts up your applications for the second time, everything
must appear cxa tly as they left it-again, this is so that they don't know what's
going on behind the scenes. It's up to you to ensure that your applications save
and restore their state to carry off the illusion of everything appearing as they
left it.

10. Your applications' dialogs must not obscure the Input Panel.

HPC

N/A

PPC

Required

This applies only to dialogs that are not full-screen dialogs. If the dialog is long
enough that it will obscure some portion of the Input Panel regardless, it must be
positioned so that it is flush with the top of the display area.

11. Your applications should capitalize the first letter of any text in
an edit box.

HPC

N/A

PPC

Recommended

This rule is designed to make it easier for PPC users to enter data with the
Input Panel, especially contact-type data, where the first character of the text is
capitalized anyway.

12. Your applications should support color.

HPC PPC

Recommended Recommended

There is a wide variety of devices available today, and your applications should
look good on all of them.

Page 00457

The Logo Requirements 431

13. Your applications must support long file names in all file-related
operations.

HPC PPC

Required Required

Where appropriate, your applications must support and use long file names for
saving/ opening files, displaying file names, and so on. Further, it is recom
mended that your applications hide the three-digit file extension.

Here are the tests that Microsoft recommends in order to verify that your appli
cations properly handle LFNs. If your applications follow the rules of this table,
then you're handling LFNs just fine.

What the user enters

Test

Test test test test

Test 1234567890f ... to 250 chars]

test (3 blank spaces@ beginning
of file name)

What the result should be

Test.ext

test test test test.ext

Test 1234567890[...]. ext

test. ext (no blanks)

test (3 blank spaces@ end of file name) test. ext (no blanks)

test ; + , = [] test;+,= [].ext

In addition, files with invalid names (i.e., those containing characters such as
question marks) should not save.

File-Handling Requirements
This set of rules relates to applications that mainly open, create, and edit documents.

1. Your applications must use common dialog boxes whenever
appropriate.

HPC PPC

Required Required

This is another common-sense rule that applies across all Windows platforms.

Page 00458

432 Chapter 15 • Microsoft's Logo Requirements

TIP

2. Your applications should display the name of the open docume t
on their taskbar buttons. n

HPC PPC

Required N I A

For an example of this, look at Pocket Word.

This rule does not apply to PPC devices, as PPC applications do not have buttons in
the taskbar.

3. Your applications should not be multi-instance.

HPC

NIA

PPC

Required

Again, in relation to UI Rule #9, your PPC-based applications must only allow a
single instance of themselves to be running at once.

4. Your applications must not show the file system in any way.

HPC

NIA

PPC

Required

Perhaps in order to make PPC devices more accessible to some users, Microsoft
is attempting to insulate them from having to know the file system of their device.
At any rate, if you stick to the common dialogs for file access, you should be just
fine with this rule.

5. Your applications should create a shortcut to a recently used docu
ment in the Start Menu > Documents menu.

HPC PPC

Recommended N I A

Page 00459

Summary 433

Microsoft recommends that you create a shortcut for a recently used document
under the \Wi ndows\Recent directory so that it will appear on the Start Menu>
Documents menu.

6. Your applications should have their own MRU lists.

HPC PPC

Recommended N I A

In addition to adding recently opened files to the system's Documents menu,
your application should also maintain its own MRU list.

1. Your applications should support IR transfer of files, if appropriate.

HPC

N/A

PPC

Recommended

As there is no Explorer-type application on PPC devices that offers this func
tionality at a system level, it's recommended that you provide this feature from
within your applications.

8. Your applications should offer the ability to e-mail files.

HPC

N/A

PPC

Recommended

Again, since this functiomility is not offered in any other way on the PPC
devices, it's up to you to provide it as a feature of your applications.

Summary
In this chapter, we've seen some of the more important Logo requirements and
how they may or may not affect your applications. And, while there are other
requirements, such as those for companion desktop applications, they generally
won't affect the majority of the CE applications you create. Joining the Logo pro
gram is one of the best things you can do for your application, and, in most cases,
shouldn't require more than $300 and some minor cosmetic changes.

Page 00460Page 00460

Page 00461

AppendicesJ-

. Appendix A:Ti1e C Runtime Library Functions of Windows CE

I Appendix B: The CE 2.0 API

Page 00461

Page 0046226400e
8

aP

Page 00463

APP(NDIX
A

The C Runtime Library
Functions of Windows CE

Page 00464

438 Appendix A • The C Runtime Library Functions of Windows CE

TIP

This appendix contains all of the C runtime library functions that are sup
ported on all versions of Windows CE. In other words, you can safely use any f
the functions listed here on any 2.x version of Windows CE. Although CE 2.ll

0

supports many additional functions, they are of very little benefit to anyone Wh
needs to target a wide range of CE devices. The format that we will use to

0

describe these functions is as follows:

Function name

#include <Header file to be included>

Brief description

Example (if appropriate)

There are several places where Microsoft's online help contains an excellent example
of some of these functions. In those cases, we have opted not to include an exam
ple, as it would only duplicate the help files. Instead, we refer you to the online
help in a boxed tip like this one.

_cabs()

#include <math.h>

Returns a daub 1 e containing the absolute value of a complex number.

Example:

struct _complex number= { 3.0, 4.0 };
double d;
d =_cabs(number);
printf("The absolute value of %f + %fi is %f\n",

number.x, number.y, d);

_chgsign()

#include <float.h>

Changes the sign of a daub 1 e from positive to negative and vice versa.

Example:

_chgsign(-3.90923); //returns 3.90923

Page 00465

_clearlp()
#include <float.h>

Clears the floating-point status WORD.

Example:

_clearfp();

_controlfp()

#include <float.h>

Sets the value of the floating-point status WORD.

Example:

_clearfp() 439

_controlS?(_PC_64, MCW_PC); //sets precision to 64 bit

_copysign ()

#include <float.h>

Returns the first value with the sign of the second.

Example:

_copysign(9.54, -8.6); //returns -9.54

_ecvt()

#include <stdlib.h>

Converts a doub 1 e numeric value to an ANSI string.

Example:

int dec, sign;
char *szNum;
szNum = _ecvt(3.7834, 4, &dec, &sign); //szNum = "3.7834"

_fcvt()

#include <stdlib.h>

Converts a floating-point number to a string.

Example:

i nt dec, sign;
char *szNum;
szNum- _fcvt(3.7834, 4, &dec, &sign); //szNum = "3.7834"

Page 00466

Appendix A • The C Runtime Library Functions of Windows CE

TIP

TIP

_finite()

#include <float.h>

Determines whether given double value is finite.

Example:

if (_finite(99.74))

// ... do something

else

// ... this code will never be reached

_fpc/ass()

#include <float.h>

Returns status word containing information on floating-point class.

Example:

double dVal;
II some code
int icls = _fpclass (dVal);
if (_FPCLASS_SNAN == icls I 1 _FPCLASS_QNAN == icls)
{

II show error, dVal is a Non-number
}

fpieee_flt()

Invokes user-defined trap handler for IEEE floating-point exceptions.

The online help contains an excellent example of this function.

_fpreset()

Resets the floating-point package.

The online help contains an excellent example of this function.

Page 00467

_gcvt() 441

_gcvt()

#include <stdlib.h>

Given a floating-point value and the precision, converts the value to a string.

Example:

_gcvt(9.00213, 6, szDest);

_hypot()

#include <math.h>

Given floating-point lengths of two sides of a triangle, returns the hypotenuse.

Example:

fLengthC = _hypot(fLengthA, flengthB);

_isnan()

#include <float.h>

Checks given double-precision floating-point value for not a number (NaN).

Example:

if (_isnan (fValue))
{

II handle non-number value, show error, etc ..

_itoa()

#include <stdlib.h>

Given an integer and the base (radix), converts the integer to an ANSI string.

Example:

_itoa(iNum, szBuff, 16);

_itow()

#include <stdlib.h>

Given an integer and the base (radix), converts the integer to a Unicode string.

Example:

_itow(iNum, szBuff, 16);

Page 00468

Appendix A • The C Runtime Library Functions of Windows CE

JO()

#include <math.h>

Computes the Bessel function.

Example:

_j 0(3. 987);

J1()

#include <math.h>

Computes the Bessel function.

Example:

_j 1(3. 987);

Jn()
#include <math.h>

Given the order of the function to compute, computes the Bessel function.

Example:

_jn(iOrder, 3.987);

_Iogb()

#include <float.h>

Extracts exponential value of doub 1 e argument.

Example:

double dExp =_1ogb (7.775);

_/rot/()

#include <stdlib.h>

Left rotates a Long integer value by n bits.

Example:

_1rotl(Ox759fe, nBitsToRotate);

Page 00469

_/rotr()

#include <stdlib.h>

Right rotates a Long integer value by n bits.

Example:

_lrotl(Ox759fe, nBitsToRotate);

_ltoa()

#include <stdlib.h>

_lrotr() 443

Given a Long integer and the base (radix), converts the integer to an ANSI
string.

Example:

_ltoa(lVal, szNum, 16);

_/tow()

#include <stdlib.h>

Given a Long integer and the base (radix), converts the integer to a Unicode
string.

Example:

_ltow(lVal, szNum, 16);

_matherr()

#include <math.h>

Handles math errors.

The online help contains an excellent example of this function.

Page 00470

Appendix A • The C Runtime Library Functions of Windows CE

_memccpy()

#include <memory.h>

(or string. h)

Copies characters from a buffer until i NumToCopy characters have been copied
or until the cToStopAt character is found in the source. '

Example:

char szWal rus[13] = "IAmTheWal rus\0";
char szCopy[13];
int iNumToCopy = 13;
char cToStopAt = "\0" ;
_memccpy(szCopy, szWalrus, cToStopAt, iNumToCopy

_memicmp()

#include <memory.h>

(or string. h)

Performs a case-insensitive comparison on i Num characters in two strings.

Example:

char szComp1[]
char szComp2[]
int iNurn = 14;

"Red house over";
"RED HOUSE OVER yonder" ;

_memicmp(szComp1, szComp2, iNurn);

_msize()

#include <malloc.h>

Returns size in bytes of a memory block allocated with ma 11 oc ().

Example:

iSize = _msize(pMemlocation);

_nextafter()

#include <float.h>

Returns next representable neighbor of x in the direction of y.

Page 00471

Example:

double x, y, result;
X = 200.39434399999;
y = 1000.99999;
result= _nextafter(x, y);

_nextafter() 445

WARNING This function seems to consistently return the value passed in as x. For instance, in

this example, you would expect the function to return 200.394344; however, it

seems to consistently return 200.39434399999.

T1P

_rot/()

#include <stdlib.h>

Left rotates an integer value by n bits.

Example:

rotl (Ox759fe, nBitsToRotate);

_rotr()

#include <stdlib.h>

Right rotates an integer value by n bits.

Example:

_rotr(Ox759fe, nBitsToRotate);

_scalb()

#include <float.h>

Calculates the value of x * 2Y.

Example:

_scalb(x, y);

_statusfp()

#include <float.h>

Gets the floating-point status word.

The online help contains an excellent example of this function .

Page 00472

446 Appendix A • The C Runtime Library Functions of Windows CE

_swab()

#include <stdlib.h>

Swaps n bytes from one byte or char array to another.

Example:

_swab(szSource, szDest, nBytesToCopy);

_ultoa()

#include <stdlib.h>

Given ~n unsigned Long integer and the base (radix), converts the integer to an
ANSistnng.

Example:

_ultoa(lVal, szNum, 16);

_ultow()

#include <stdlib.h>

Given a Long integer and the base (radix), converts the integer to a Unicode
string.

Example:

_ultow(lVal, szNum, 16);

_wcsdup()

#include <string.h>

(or wchar. h)

Allocates a Unicode string buffer and then copies the contents of szSource Int0
the new string. The new string will be created with ma 11 oc(), and it is the responsi~

bility of the calling program to free() the string at some point.

Example:

szNewString = _wcsdup(szSource);

Page 00473

_wcsicmp()
#include <string.h>

(or wchar. h)

Compares lower-cased versions of two Unicode strings.

Example:

WCHAR szFirst[] = TEXT("Windows CE is great!");
WCHAR szSecond [] = TEXT("WINDOWS CE IS GREAT!");

_wcsicmp() 447

iResult = _wcsicrnp(szFirst, szSecond); //these strings will be
equal.

_wcslwr()
#include <string.h>

(or wchar. h)

Lowercases a Unicode string.

Example:

WCHAR szUpper[] = TEXT("WINDOWS CE IS GREAT!");
_wcslwr(szUpper);

_wcsnicmp()
#include <string.h>

(or wchar. h)

Performs a case-insensitive comparison on i Num characters in two strings.

Example:

WCHAR szCompl[]
WCHAR szComp2[]
int iNurn = 14;

"Red house over";
"RED HOUSE OVER yonder" ;

_wcsicrnp(szCornpl, szCornp2, iNurn);

_wcsnset()
#include <string.h>

(or wchar. h)

Page 00474

448 Appendix A • The C Runtime Library Functions of Windows CE

Replaces i Num characters of a Unicode string with the character specified· , see
also memset().

Example:

WCHAR szString[] = TEXT("Red house over");
_wcsnset(szString, TEXT('@ '), 10);

_wcsrev()
#include <string.h>

(or wchar. h)

Reverses characters in a Unicode string.

Example:

WCHAR szString[] ="Red house over";
_wcsrev(szString);

_wcsset()
#include <string.h>

(or wchar. h)

Replaces all characters of a Unicode string with the specified character.

Example:

WCHAR szString[] ="Red house over ";
_wcsset(szString, TEXT('@'));

_wcsupr()
#include <string.h>

(or wchar. h)

Uppercases a Unicode string.

Example:

WCHAR szUpper[] = TEXT("windows ce is great!");
_wcslwr(szUpper);

Page 00475

_wtoi()

#include <stdlib.h>

(or wchar. h)

Converts a Unicode string to an integer.

Example:

WCHAR szNum [] = TEXT("12345");
iNum = _wtoi(szNum);

_wtol()

#include <stdlib.h>

(or wchar. h)

Converts a Unicode string to a Long integer.

Example:

_yO()

WCHAR szNum [] = TEXT("12345");
iNum = _wtol(szNum);

#include <math.h>

Computes the Bessel function.

Example:

_y0(3.987);

_y1()

#include <math.h>

Computes the Bessel function.

Example:

_y1(3 . 987);

_wtoi()

-

Page 00476

450 Appendix A • The C Runtime Library Functions of Windows CE

_yn(J

#include <math.h>

Computes the Bessel function of order x.

Example:

_yO(x, 3.987);

abs(J

#include <stdlib.h>

(or math. h)

Calculates the absolute value of an integer.

Example:

iAbsoluteVal = abs(-8000);

acos(J

#include <math.h>

Calculates the arccosine of an angle of x radians.

Example:

fArcCos = acos(x);

asin(J

#include <math.h>

Calculates the arcsine of x radians.

Example:

fArcSin = asin(x);

atan(J

#include <math.h>

Calculates the arctangent of x radians.

Example:

fArcTan = atan(x);

Page 00477

atan20
#include <math.h>

Calculates the arctangent of xI y radians.

Example:

fArcSin = atan2(y/x);

atoi()
#include <stdlib.h>

Converts an ANSI string to an integer.

Example:

char szNum [] = "12345";
iNurn = atoi(szNum);

a to/()
#include <stdlib.h>

Converts an ANSI string to a Long integer.

Example:

ceil()

char szNum [] = "12345";
iNurn= atol(szNum);

#include <math.h>

Calculates the ceiling of a floating-point value.

Example:

fCeiling = ceil(x);

cos()
#include <math.h>

Calculates the cosine of x radians.

Example:

fCosine = cos(x);

atan2()

Page 00478

Appendix A • The C Runtime library Functions of Windows CE

cosh()

#include <math.h>

Calculates the hyperbolic cosine of x radians.

Example:

fHypCosine; cosh(x);

difflime()

#include <time.h>

Returns the difference between two t i me_ t times.

Example:

div()

time_t starting, ending, difference;
time(&starting);
// ... do something time consuming
time(&ending);
difference; difftime(starting, ending);

#include <stdlib.h>

Given numerator and denominator, calculates quotient and remainder, return
ing result in di v _ t structure.

Example:

div_t result;
result ; div(3, 5); //3 divided by 5

exp()

#include <math.h>

Given a floating-point value, calculates the exponential.

y; exp(9.012847);

Page 00479

tabs()
#include <math. h>

Calculates the absolute value cf an integer.

Example:

fAbsoluteVal = fabs(-4.36742);

floor()

#include <math.h>

Calculates the floor of a floating-point value.

Example:

fFloor = floor(x);

fmod()

#include <math.h>

Returns the modulus of a floating-point division.

Example:

fModulus = fmod(3.00, 5.00); //3.00 divided by 5.00

free()

#include <stdlib.h>

(ormalloc.h)

Deallocates or releases memory allocated with ma 11 oc ().

Example:

free(szDynamicString);

frexp()

#include <math.h>

fabs()

Returns the mantissa and the exponent for a given floating-point value; per
forms the reverse operation of 1 dexp().

Example:

fMantissa = frexp(fFloatVal, &iExponent);

Page 00480

Appendix A • The C Runtime Library Functions of Windows CE

iswalnum()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character falls in one of these ranges: A-Z, a-z,
or 0-9.

Example:

bResult = iswalnum(TEXT('s'));

iswalpha()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character falls in either of these ranges: A-Z or a-z.

Example:

bResult = iswalpha(TEXT('s'));

iswascii()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character is an ASCII character.

Example:

bResult = iswascii('s');

iswcntrl()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character is a control character.

Example:

bResult = iswcntrl(TEXT('\t'));

Page 00481

iswctype()

#include <ctype.h>

Tests the character c for the specified property.

Example:

inti = iswctype('D', _ALPHAI_UPPER);

iswgraph()

#include <ctype.h>

(or wchar. h)

iswctype()

Returns true if the Unicode character is a printable character and not a space.

Example:

bResult ~ iswgraph(TEXT('~'));

iswlower()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character is a lowercase character.

Example:

bResult = iswalnum(TEXTC't'));

iswprint()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character is a printable character.

Example:

bResult ~ iswprint(TEXT('*'));

Page 00482

Appendix A • The C Runtime Library Functions of Windows CE

iswpunct()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character is a punctuation mark.

Example:

bResult = iswpunct(TEXT('! '));

iswspace()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character is a space.

Example:

bResult = iswpunct(TEXT(' '));

iswupper()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character is an uppercase character.

Example:

bResult z iswupper(TEXT('E'));

iswxdigit()

#include <ctype.h>

(or wchar. h)

Returns true if the Unicode character is a hexadecimal digit; that is, a character
that falls in one of these ranges: 0-9, A-F, or a-f.

Example:

bResult = iswxdigit(TEXT('d'));

Page 00483

----- labsO [i57J

labs()
#include <stdlib.h>

(or math. h)

Calculates the absolute value of a Long integer.

Example:

lAbsoluteVal = abs(-4,568,992);

ldexp()

#include <math.h>

Given the mantissa and the exponent, calculates a floating-point value; per
forms the reverse operation of frexp().

Example:

fFloatVal = frexp(fMantissa, &iExponent);

ldiv()

#include <stdlib.h>

Given numerator and denominator, calculates quotient and remainder, return
ing result in ldiv _t structure; Long integer version of di v().

Example:

ldiv_t result;
result= div(39873, 574359); //39873 divided by 574359

log()

#include <math.h>

Calculates the logarithm of a given floating-point value.

Example:

y = log(x);

Page 00484

Appendix A • The C Runtime Library Functions of Windows CE

TIP

log10()

#include <math.h>

Calculates the natural (or base 10) logarithm of a given floating-point valu e.

Example:

y = log(x);

longjmp()

#include <setjmp.h>

Restores stack environment and execution locale.

The online help contains an excellent example of this function.

malloc()
#include <stdlib.h>

(or ma 11 oc . h)

Allocates or reserves memory blocks.

Example:

szString = (TCHAR *) malloc(lOO * sizeof(TCHAR));

mbstowcs()
#include <stdlib.h>

Converts a sequence of multibyte or ANSI characters to a corresponding
sequence of wide or Unicode characters.

Example:

mbstowcs(szWideString, szANSIString, strlen(szANSIString));

Page 00485

memchr()
#include <memory.h>

(or string. h)

memchr() 459

Searches i Count characters of the szStri ng buffer for the character cChar;
returns a pointer to the first occurrence of the cChar.

Example:

szMatch = memchr(szString, cChar, iCount);

memcmp()
#include <memory.h>

(or string. h)

Compares i Count characters of two buffers.

Example:

iResult = memcmp(szStrl, szStr2, iCount);

memcpy()
#include <memory.h>

(or string. h)

Copies i Count characters from szSource to szDest buffers.

Example:

memcpy(szDest, szSource, iCount);

memmove()
#include <string.h>

(or memory. h)

Copies i Count characters from szSource to szDest buffers.

Example:

memmove(szDest, szSource, iCount);

Page 00486

460 Appendix A • The C Runtime Library Functions of Windows CE

memset()

#include <string.h>

(or memory. h)

Replaces i Num characters of an ANSI string or char buffer with the character
specified; see also _wcsnset().

Example:

char szString[] = "Red house over ";
memset(szString, '@ ' , 10);

modf()

#include <math.h>

Extracts the integer portion and decimal portion of a floating-point number.

Example:

fDecimalPortion = modf(fFloatVal, &iintPortion);

pow()

#include <math . h>

Returns x to the y power.

Example:

pow(x, y);

qsort()

#include <stdlib.h>

Performs a quick sort.

Example:

qsort (infoarray, numelements, sizeof(DWORD), fnCompare);

rand()

#include <stdlib.h>

Returns a pseudorandom number.

Page 00487

Example:

iWinninglottoNum = rand();

realloc()

#include <stdlib.h>

(or ma 11 oc . h)

realloc() 461

Reallocates memory blocks originally allocated with ma 11 oc() .

Example:

realloc(szBuffer, iNewSize);

sin()

#include <math.h>

Calculates the sine of x.

Example:

si n(x);

sinh()

#include <math.h>

Calculates the hyperbolic sine of x.

Example:

sinh(x);

sqrt()
#include <math.h>

Calculates the square root of a given floating-point value.

Example:

sqrt(4.00);

Page 00488

462 Appendix A • The C Runtime Library Functions of Windows CE

srand()
#include <stdlib.h>

Seeds the random number generation function, rand(), with a starting value.

Example:

srand(8945373);

strcat()
#include <string.h>

Concatenates or adds the contents szStri ng2 to the end of szStri ngl, where
szStri ngl and szStri ng2 are both ANSI strings.

Example:

strcat(szStringl, szString2);

strchr()
#include <string.h>

Finds an ANSI character in an ANSI string and returns a pointer to the first
occurrence of that character in the string.

Example:

strchr(szString, 'c');

strcmp()
#include <string.h>

Compares contents of two NULL-terminated ANSI strings; performs a case
sensitive comparison.

Example:

iResult = strcmp(szStrl, szStr2);

strcpy()
#include <string.h>

Copies the contents of one ANSI string to another.

Example:

strcpy(szDest, szSource);

Page 00489

strcspn() 463

strcspn()
#include <string.h>

Searches an ANSI string szToSearch for an ANSI substring szSub; returns an
integer specifying the number of characters in szToSearch before one of the char
acters in szSub occurs.

Example:

char szToSearch [] "' "789areyou?";
char szSub[] = "eyou?";
strcspn(szToSearch, szSub); //result will be 5

strlen()
#include <string.h>

Returns the length in bytes of an ANSI string.

Example:

strlen("Hello, World!"); //result will be 13

strncat()
#include <string.h>

Appends at most i Count characters from ANSI string szSou rce to ANSI string
szDest.

Example:

strncat(szDest, szSource, iCount);

strncmp()
#include <string.h>

Compares i Count characters of two ANSI strings.

Example:

iResult"' strncmp(szStrl, szStr2, iCount); //compare the first
iCount characters

strncpy()
#include <string.h>

Page 00490

464 Appendix A • The C Runtime Library Functions of Windows CE

Copies i Count characters from ANSI string szSou rce to ANSI string szDest.

Example:

strncpy(szDest+S, szSource, iCount); //copy first iCount characters
of szSource to szDest, starting at szDest ' s 5th character

strstr()

#include <string.h>

Finds an ANSI substring szSub in an ANSI string szSt ring; returns a pointer
to the first occurrence of szSub in szStri ng.

Example:

szFirstOccurrence = strstr(szString , szSub);

strtok()

#include <string.h>

Parses an ANSI string by searching for single ANSI character delimiters in the
string; returns a pointer to the next token.

Example:

char szStrToParse [] = "Windows CE version 2 .11";
char* szToken = strtok(szStrToParse , " "); //szToken will point to

"Windows"
szToken = strtok(NULL, " "); //szToken will point to "CE"
I I .. . etc.

swprintf()

#include <stdio.h>

(or wchar. h)

A p ri ntf()-like function that "prints" the data elements to a Unicode string
instead of a console.

Example:

swprintf(szMsg , TEXT("%d:%d -%s"), 5024, 898, szTemp);

Page 00491

swscanf() 465

swscanf()

#include <stdio.h>

(or wchar. h)

Reads data elements from a formatted Unicode string; essentially performs the
reverse function of swpri ntf().

Example:

swscanf(II 3 9 4 yes! II, 11 %d %d %d %s II, i Intl, i Int2, i Int3,
szString); //iintl, etc. will all be filled with correct values from
the string

tan()

#include <math.h>

Calculates the tangent of x.

Example:

fTangent = tan(x);

tanh()

#include <math.h>

Calculates the hyperbolic tangent of x.

Example:

fHypTangent = tanh(x);

tow lower()

#include <ctype.h>

(or wchar. h)

Converts a Unicode character to lowercase; characters already lowercased are
ignored.

Example:

towlower('P');

Page 00492

Appendix A • The C Runtime Library Functions of Windows CE

towupper()

#include <ctype.h>

(or wchar. h)

Converts a Unicode character to uppercase; characters already uppercased are
ignored.

Example:

towupper(' P');

vswprintf()

#include <stdlib.h>

Writes formatted output using a pointer to a list of arguments.

Example:

WCHAR wszBufferX[lOO];
mywsprintf (wszBufferX, TEXT("Number: %u, Text: %s "), 1234, 31415,

TEXT("Hello"));

//wraps a wsprintf function
void mywsprintf (LPWSTR pszTarget, LPWSTR pszFormat, int iCustom

Value, ...)
{

va_list varlist;
va_start (varlist, iCustomValue);
vswprintf (pszTarget, pszFormat, varlist);

wcscat()

#include <string.h>

(or wchar. h)

Concatenates or adds the contents szStri ng2 to the end of szStri ngl, where
szStri ngl and szStri ng2 are both Unicode strings.

Example:

wstrcat(szStringl, szString2);

Page 00493

wcschr()

#include <string.h>

(or wchar. h)

wcscmp() 467

Finds a Unicode character in a Unicode string and returns a pointer to the first
occurrence of that character in the string.

Example:

wcschr(szString, TEXT("c"));

wcscmp()

#include <string.h>

(or wchar. h)

Compares contents of two Unicode sh·ings; performs a case-sensitive comparison.

Example:

iResult = wcscmp(szStrl, szStr2);

wcscpy()

#include <string.h>

(or wchar. h)

Copies the contents of one Unicode string to another.

Example:

wcscpy(szDest, szSource);

wcscspn()

#include <string.h>

(or wchar. h)

Searches a Unicode string szToSearch for a Unicode substring szSub; returns
an integer specifying the number of characters in szToSearch before one of the
characters in szSub occurs.

Example:

WCHAR szToSearch[] = TEXT("789areyou? ");
WCHAR szSub[] = TEXT("eyou?");
wcscspn(szToSearch, szSub); //result will be 5

Page 00494

468 Appendix A • The C Runtime Library Functions of Windows CE

wcslen()
#include <string.h>

(or wchar. h)

WARNING

Returns the length in characters of a Unicode string.

You'll recall that Unicode characters are actually two bytes wide, which means
that you must multiply the return value of wscl en() by 2 if you want to deter
mine the number of bytes the Unicode string occupies.

Example:

wcslen(TEXT("Hello, World!")); //result will be 13

wcsncat()

#include <string.h>

Appends at most i Count characters from Unicode string szSou rce to Unicode
string szDest.

Example:

wcsncat(szDest, szSource, iCount);

wcsncmp()
#include <string.h>

(or wchar. h)

Compares i Count characters of two Unicode strings.

Example:

iResult = wcsncmp(szStrl, szStr2, 7); //compare the first 7 charac-
ters

wcsncpy()

#include <string . h>

(or wchar. h)

Page 00495

wcspbrk() 469

Copies iCount characters from Unicode string szSource to Unicode string
szDest.

Example:

wcsncpy(szDest+5, szSource, 6); / / copy first 6 characters of
szSource to szDest, starting at szDest 1

S 5th character

wcspbrk()

#include <string.h>

Scans strings for characters in specified character sets.

Example:

LPWSTR wszStr = TEXT("Test+String");
LPWSTR wszSearchChars =TEXT("+");

//locate the first occurence of any character in the wszSearchChars
list

LPWSTR pszFound = wcspbrk(wszStr, wszSearchChars);
should point to "+String "

wcsrchr()

#include <string.h>

(or wchar. h)

//pszFound

Finds a Unicode character in a Unicode string and returns a pointer to the first
occurrence of that character in the string.

Example:

wcsrchr(szStri ng, 1 c 1
);

wcsspn()

#include <string.h>

(or wchar. h)

Searches a Unicode string szToSearch for a Unicode substring szSub; returns
an integer specifying the number of characters in szToSearch before one of the
characters in szSub occurs.

Page 00496

470 Appendix A • The C Runtime Library Functions of Windows CE

Example:

WCHAR szToSearch[) = TEXT("789areyou?");
WCHAR szSub[] = TEXT("eyou?");
wcsspn (szToSearch, szSub); //result will be 5

wcsstr()
#include <string . h>

(or wchar. h)

Finds a Unicode substring szSub in a Unicode string szStri ng; returns a
pointer to the first occurrence of szSub in szStri ng.

Example:

szFirstOccurrence = wcsstr(szString, szSub);

wcstod()
#include <string.h>

(or wchar. h)

Converts a string szNum to a (double) floating-point value; stops scanning at
first non-numeric character and returns a pointer to this first non-numeric charac
ter as szStopAt.

Example:

fFloatVal = wcstod(szNum, &szStopAt);

wcstok()
#include <string.h>

(or wchar. h)

Parses a Unicode string by searching for single Unicode character delimiters in
the string; returns a pointer to the next token.

Example:

WCHAR szStrToParse[] = TEXT("Windows CE version 2.11");
WCHAR* szToken = wcstok(szStrToParse, TEXT(" ")); //szToken will

point to "Windows "
szToken = wcstok(NULL, TEXT(" ")); //szToken will point to "CE"
// ... etc.

Page 00497

,.

wcstol()

#include <string.h>

(or wchar. h)

wcstol() 471

Converts a string szNum to a Long integer value; stops scanning at first non
numeric character and returns a pointer to this first non-numeric character as
szStopAt.

Example:

fLongintVal = wcstol(szNum, &szStopAt);

wcstombs()

#include <string.h>

(or wchar. h)

Converts a sequence of Unicode characters to a corresponding sequence of
multibyte or ANSI characters.

Example:

wcstombs(szANSIString, szWideString, wcslen(szWideString) *
sizeof(WCHAR));

wcstoul()

#include <string.h>

(or wchar. h)

Converts a string szNum to a Long unsigned integer value; stops scanning at
first non-numeric character and returns a pointer to this first non-numeric charac
ter as szStopAt.

Example:

fUintVal = wcstoul(szNum, &szStopAt);

wsprintf()

#include <winbase.h>

A pri ntf()-like function that "prints" the result to a string instead of J console.

Example:

wsprintf(szMsg, TEXT("%d:%d -%s"), 5024, 898, szTemp);

Page 00498Page 00498

Page 00499

APP£NDIX
B

The CE 2.0 API

Page 00500

~ Appendix B • The CE 2.0 API

This appendix contains a list of those API functions specific to Windows CE 2.0.
The format that we will use to describe these functions is as follows:

Function Name

#include <Header file to be included>

Brief description

Example

Explanation of example

Unless otherwise explicitly stated, all strings are assumed to be Unicode-based
or wide strings. If a function has a RAPI version that is named the same as the
CE-based version, the CE-based header file will be given first, with rapi . h fol
lowing on the next line to indicate that a RAPI version of that function (with that
name) also exists.

AddAddressCard()

#include <addrstor.h>

One of the Contacts database functions; adds a new entry to the Contacts
database.

Example:

AddAddressCard(&ac, &oidCard, &index);

Where:

• ac is an AddressCard holding the information to be added to the database.

• oi dCard is a CEOID; the function will return the CEOID of the record after it
has been added.

• i ndex is an integer; the function will return the index of the record after it
has been added.

The AddressCard structure is defined as follows:

typedef struct _AddressCard
SYSTEMTIME stBirthday;
SYSTEMTIME stAnniversary;
TCHAR *pszBusinessFax;
TCHAR *pszCompany;

Page 00501

TCHAR *pszDepartment;
TCHAR *pszEmail;
TCHAR *pszMobilePhone;
TCHAR *pszOfficelocation;
TCHAR ''pszPager;
TCHAR *pszWorkPhone;
TCHAR *pszTitle;
TCHAR *pszHomePhone;
TCHAR *pszEmail2;
TCHAR *pszSpouse;
TCHAR *pszNotes;
TCHAR *pszEmail3;
TCHAR *pszHomePhone2;
TCHAR *pszHomeFax;
TCHAR *pszCarPhone;
TCHAR *pszAssistant;
TCHAR *pszAssistantPhone;
TCHAR *pszChildren;
TCHAR *pszCategory;
TCHAR *pszWebPage;
TCHAR *pszWorkPhone2;
TCHAR *pszNamePrefix;
TCHAR *pszGivenName;
TCHAR *pszMiddleName;
TCHAR *pszSurname;
TCHAR *pszGeneration;
TCHAR *pszHomeAddrStreet;
TCHAR *pszHomeAddrCity;
TCHAR *pszHomeAddrState;
TCHAR *pszHomeAddrPostalCode;
TCHAR *pszHomeAddrCountry;
TCHAR *pszOtherAddrStreet;
TCHAR *pszOtherAddrCity;
TCHAR *pszOtherAddrState;
TCHAR *pszOtherAddrPostalCode;
TCHAR *pszOtherAddrCountry;
TCHAR *pszOfficeAddrStreet;
TCHAR *pszOfficeAddrCity;
TCHAR *pszOfficeAddrState ;
TCHAR *pszOffi ceAddrPostalCode ;
TCHAR *pszOfficeAddrCountry;
BYTE ,·,rgbReserved [84]
} AddressCard;

AddAddressCard() 4 7 5

Page 00502

[476""" Appendix B • The CE 2.0 API

TIP

BatteryNotifyO"imeChange()

#include <winbase.h>

Notifies battery of system time change. Used by OS to recalculate battery
elapsed time when user or an application changes system time.

Example:

SYSTEMTIME st;
FILETIME ft;
BOOL bAhead;
GetSystemTime(&st);
bAhead =TRUE;
st.wHour = st.wHour + 1; //daylight savings? spring ahead
SetSystemTime(&st);
memset(&st, "/0", sizeof(st));
st.wHour = 1;
SystemTimeToFileTime(&st, &ft)
BatteryNotifyOfTimeChange(bAhead, &ft);

Where:

•

•

bAhead is a BOOL indicating whether the time is being set ahead (TRUE) or
backward (FALSE).

ft is a FILETIME 64-bit time structure .

It is almost always easier to use the SYSTEMTIME structure and then convert to a
FILETIME, as opposed to attempting to directly manipulate the FILETIME struc
ture. This is shown in the above example.

CeCheckPassword()

#include <winbase.h>

(or rapi . h)

Checks supplied password against system password.

Example:

TCHAR szPwd [MN<_PATH] = TEXT(" IamTheWa 1 rus");
CeCheckPassword(szPwd);

Page 00503

TIP

CeC/earUserNotification() 477

Where:

• szPwd is a string specifying the password to be checked.

CeC/earUserNotification ()

#include <notify.h>

Removes or clears a User Notification created with a prior call to CeSetUser
Notification().

Example:

CeClearNotification(hNotification);

Where:

• hNoti fi cation is a handle to an existing notification.

CeC/oseHandle()

#include <rapi .h>

RAPI version of the Cl o s eHand 1 e () function; closes an active handle to an
object.

Example:

CeCloseHandle(hCeObject);

Where:

• hCeObject is an active handle to aCE system object such as a file .

Although CeFi ndCl ose() is used to close a CeFi ndFi rstFi l e() search,
CeCloseHandl e() should be used to close a CeFi ndFi rstDatabase() search.

CeCopyFile()

#include <rapi.h>

RAPI version of the CopyFi 1 e() function; copies an existing file on the CE
device to a new path/file on the CE device.

Page 00504

478 Appendix B • The CE 2.0 API

Example:

TCHAR szSource[MAX_PATH] = TEXT("\\source.txt");
TCHAR szDest[MAX_PATH] = TEXT("\\dest.txt");
bFailOnExist = FALSE;
CeCopyFile(szSource, szDest, bFailOnExist);

Where:

• szSou rce is the source file.

• szDest is the destination file.

• bFai lOnExi st is a BOOL indicating whether the function should fail if the
destination file already exists.

CeCreateDatabase()

#include <winbase.h>

(or rapi . h)

Part of the CE database engine; creates a database.

Example:

TCHAR szName[MAX_PATH] = TEXT("MasterDB"); //set name of database
//set up sort orders
soSortOrders[SORT_ORDER_CODE].propid =

MAKELONG(CEVT_LPWSTR,PROP_CODE);
soSortOrders[SORT_ORDER_CODE] .dwFlags= CEDB_SORT_GENERICORDER;

//Ascending (default) order
soSortOrders[SORT_ORDER_STATE].propid =

MAKELONG(CEVT_LPWSTR,PROP_STATE);
soSortOrders[SORT_ORDER_CODE] .dwFlags= CEDB_SORT_GENERICORDER;

//Ascending (default) order
wCount = 2; //two sort orders
oidObjid = CeCreateDatabase(szName, DB_ID, wCount, soSortOrders);

Where:

• szName is a string containing the name of the database.

• DB_ID is an integer identifying the database. The database ID is intended to
be used as a unique ID by which applications may reference a database
instead of using the database's name, usually a #define constant.

Page 00505

TIP

CeCreateDirectory() 479

• wCount is a WORD specifying the number of sort orders (maximum is 4).

• so So rtOrde rs is an array of SORTORDERSPEC structures used to specify the
sort orders of the database.

• oi dObj Id is a CEOID. The function will return the CEOID of the database
created.

The SORTORDERSPEC structure is defined as follows:

typedef struct _SORTORDERSPEC
PEGPROPID propid;
DWORD dwFlags;
} SORTORDERSPEC;

CeCreateDirectory()

#include <rapi.h>

RAPI version of CreateDi rectory() function; creates a directory on the CE
device.

Example:

TCHAR szPath[MAX_PATH] = TEXT("\\My Documents\\My App");
CeCreateDirectory(szPath, NULL);

Where:

• szPath is a string specifying the directory to be created .

The second parameter is always NULL onCE; on 98/NT it wou ld specify the secu

rity attributes of the directory.

CeCreateFile()

#include <rapi .h>

RAPI version of CreateFi 1 e() function; creates a file for reading or writing
and returns an active handle to that file.

Example:

TCHAR szFileName[MAX_PATH] = TEXT("\\data.txt");
wAccess = GENERIC_WRITE;
wShare = 0;

Page 00506

480 Appendix B • The CE 2.0 API

TIP

dwCreate = CREATE_ALWAYS;
dwFlags = FILE_ATTRIBUTE_NORMAL;
hSrc = CeCreateFile(
szFileName,
wAccess,
wShare,
NULL,
dwCreate,
dwFlags,
NULL);

Where:

•
•

•

•

•

szFi 1 eName is a string specifying the name of the file to open .

wAccess is a WORD specifying the type of access (GEN ERIC_READ and/ or
GENERIC_WRITE).

wShare is a WORD specifying under what conditions another application may
open or modify the file while you are using it (0 for no access,
FILE_SHARE_READ to permit read access, and FILE_SHARE_WRITE to permit
write access).

dwCreate is a DWORD specifying whether you are attempting to open an
existing file or create a file (CREATE_ALWAYS always creates the file,
OPEN_EXISTING attempts to open an existing file, etc.).

dwFl ags is a DWORD specifying additional file attributes, such as the archive,
hidden, or read-only flags.

The fourth parameter specifies security attributes and the seventh specifies a tem
plate file. Both are always NULL on CE.

CeCreateProcessO

#include <rapi .h>

RAPI version of CreateProcess() function; launches a program on the CE
device.

Page 00507

CeDeleteDatabase() 481

Example:

//launches Pocket Word
TCHAR szAppName[MAX_PATH] = TEXT("\\windows\\pword.exe");
TCHAR szCmdLine[MAX_PATH] = TEXT("\\My Documents\\AWordFile.doc");
dwCreate = 0;
CeCreateProcess(szAppName, szCmdLine, NULL, NULL, FALSE, dwCreate,

NULL, NULL, NULL, &pi);

Where:

• szAppName is the path and file name of the application to be started on the
CE device.

• szCmdL i ne is a string specifying the command line to be passed to the appli
cation being started; can be NULL.

• dwCreate is a DWORD specifying creation options, such as whether the
process is to be created suspended, and so on. In this example, we set
dwCreate to 0 so that the process will be launched immediately.

• pi is a structure of type PROCESS_INFORMATION; used to return information
about the started process to the calling application.

The PROCESS_INFORMATION structure is defined as follows:

typedef struct _PROCESS_INFORMATION
HANDLE hProcess;
HANDLE hThread;
DWORD dwProcessid;
DWORD dwThreadid;
} PROCESS_INFORMATION;

CeDeleteDatabase()

#include <winbase.h>

(or rapi . h)

Deletes a database from the CE device.

Example:

CeDeleteDatabase(CeOid);

Where:

• CeOi d is a CEOID of a valid, existing database.

Page 00508

482 Appendix B • The CE 2.0 API

WARNING Although CeDel eteDatabase() is sensitive to sharing violations (i.e., it will not
delete the database if it is being actively used by another process), it does not check
to ensure that the database is empty before deleting it. In other words, it is entirely
possible to delete a database with perfectly good data in it.

CeDeleteFile()

#include <rapi.h>

RAPI version of Del eteFi l e() function; deletes a file from the CE device.

Example:

TCHAR szFil eName[MAX_PATH] = TEXT("\ \del eteme. txt ");
CeDeleteFile(szFileName);

Where:

• szFi 1 eName is the name of the file to be deleted.

CeDeleteRecord()

#include <winbase.h>

(or rapi . h)

Deletes the specified record from the specified database.

Example:

CeDeleteRecord(hDatabase, oid);

Where:

• hDatabase is a valid handle to a database.

• oi d is the CEOID of the record to be deleted.

CeFindAIIDatabases()

#include <rapi.h>

RAPI function that returns a list of all databases of a certain type on the CE
device.

Page 00509

Example:

dwType = 0;
LPCEDB_FIND_DATA pFindData;

CeFindAIIDatabases() 483

wFlags = FAD_OID I FAD_FLAGS I FAD_NAME I FAD_TYPE FAD_NUM_RECORDS
FAD_NUM_SORT_ORDER I FAD_SORT_SPECS;

CeFindAllDatabases(DbType, OxFF, &cFound, &pFindData);

Where:

• dwType is a DWORD specifying the database type ID to search for; 0 retrieves
all databases.

• wFl ags is a WORD specifying what pieces of information the function should
retrieve. (In the example above, all possible flags are retrieved; the same
effect could be achieved by setting this parameter to OxFF.)

• cFound is an integer used by the function to indicate the number of match
ing databases found.

• pFi ndData is a pointer to an array of cFi ndData elements, where each
element is a CEDB_FIND_DATA structure.

The CEDB_FIND_DATA structure is defined as follows:

struct CEDB_FIND_DATA
CEOID OidDb;
CEDBASEINFO Dbinfo;
} ;

The CEDBASEINFO, which you'll notice is a member of the CEDB_FIND_DATA
structure, is defined as follows:

typedef struct _CEDBASEINFO {
DWORD dwFlags;
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN];
DWORD dwDbaseType;
WORD wNumRecords;
WORD wNumSortOrder;
DWORD dwSize;
FILETIME ftlastModified;
SORTORDERSPEC rgSortSpecs[CEDB_MAXSORTORDER];
} CEDBASEINFO;

Page 00510

484 Appendix 8 • The CE 2.0 API

CeFindAI/Files()

#include <rapi .h>

RAPI function that returns a list of all files on the CE device matching the speci
fied criteria.

Example:

TCHAR szSearchPath [MA)(_PATH] = TEXT(11
\\ *.txt 11

);

dwAttributes = FAF_ATTRIBUTES I FAF_NAME;
CeFindAllFiles(szSearchPath, dwAttributes, &cFound, &pFindData);

Where:

• szSearchPath is a string specifying the path and/ or filename to search for;
can contain wildcards.

• dwAttri butes is a DWORD used to set searching options; can be used to filter
certain file types and tell the function which pieces of information you want
it to return to your program.

• cFound is an integer used by the function to return the number of matching
files found.

• pFi ndData is a pointer to an array of cFound elements where each element
is a CE_ FIND_DATA structure.

The CE_FIND_DATA structure is defined as follows:

typedef struct _CE_FIND_DATA
DWORD dwFileAttributes;
FILETIME ftCreationTime;
FILETIME ftlastAccessTime;
FILETIME ftlastWriteTime;
DWORD nFileSizeHigh;
DWORD nFileSizelow;
DWORD dwOID;
WCHAR cFileName[MAX_PATH];
} CE_FIND_DATA;

CeFindCiose()

#include <rapi .h>

RAPI version of Fi ndCl ose() function; closes a search handle and frees mem
ory associated with Find operation.

Page 00511

CeFindFirstDatabase() [4i5J

Example:

hFind = CeFindFirstFile(TEXT(" \\'~.exe"), &wfd);
do
{

//do something with found files
}while(CeFindNextFile(hFind, &wfd));
CeFindClose(hFind);

Where:

• h Find is a handle to the search operation.

CeFindFirstDatabase()

#include <winbase.h>

(or rapi . h)

Finds the first database matching the criteria.

Example:

dwDatabaseType = 0;
hFind = CeFindFirstDatabase(dwDatabaseType);
do
{

// ...
while (oid = CeFindNextDatabase(hFind));

CloseHandle(hFind);

Where:

• dwDatabaseType is a DWORD specifying either the database type ID to search
for, or 0 to retrieve all databases.

CeFindFirstFile()

#include <rapi.h>

RAPI version of Fi ndFi rstFi 1 e() function; finds first file matching specified
criteria.

Example:

TCHAR szFileSpec[MAX_PATH] = TEXT("\\1'.exe");
hFind = CeFindFirstFile(szFileSpec, &wfd);

Page 00512

~ Appendix B • The CE 2.0 API

do
{

//do something with found files
}while(CeFindNextFile(hFind, &wfd));
CeFindClose(hFind);

Where:

• szFi 1 eSpec is a string specifying the filename to match; can contain wild
cards.

CeFindNextDatabase()

#include <winbase.h>

(or rapi . h)

Finds the next database matching the criteria; used in conjunction with
CeFindFirstDatabase().

Example:

dwDatabaseType = 0;
hFind = CeFindFirstDatabase(dwDatabaseType);
do

// ...
while (aid = CeFindNextDatabase(hFind));

CloseHandle(hFind);

Where:

• hFi nd is a valid handle returned by CeFi ndFi rstDatabase().

CeFindNextFile()

#include <rapi.h>

RAPI version of Fi ndNextFi 1 e () function; finds next file matching specified
criteria.

Example:

TCHAR szFileSpec[MAX_PATH] = TEXT("\V.exe");
hFind = CeFindFirstFile(szFileSpec, &wfd);
do

Page 00513

//do something with found files
}while(CeFindNextFile(hFind , &wfd));
CeFindClose(hFind);

Where:

CeGetC/assName() 487

• szFi 1 eSpec is a string specifying the filename to match; can contain wild
cards.

CeGetC/assName()

#include <rapi.h>

Retrieves the class name of a given window handle.

Example:

GetClassName(hWnd, szClass, ilength);

Where:

• hWnd is the handle of the window whose class name is being requested.

• szCl ass is a string the function will use to store the class name of the
window.

• i Length is the maximum length, in number of characters, of szCl ass.

CeGetDesktopDeviceCaps()

#include <rapi.h>

RAPI version of GetDevi ceCaps() function; retrieves one of several possible
pieces of information about the CE device.

Example:

iParamToRetrieve = HORZSIZE;
iWidth = CeGetDesktopDeviceCaps(iParamToRetrieve);

Where:

• i ParamToRetri eve is an integer specifying one of several possible flags that
tell the function which piece of information to retrieve. The value returned
will be an integer containing the value requested. Some common flags spec
ified are

HORZSIZE Function retrieves the horizontal dimensions of the device's
screen.

Page 00514

488 Appendix B • The CE 2.0 API

TIP

NOTE

VERTSIZE Function retrieves the vertical dimensions of the device's
screen.

HORZRES Function retrieves the horizontal resolution of the device's
screen.

VERTRES Function retrieves the vertical resolution of the device's
screen.

CeGetDeviceld()

#include <ceutil.h>

Retrieves the ID of the currently selected device. Although the CE devices reg
istered with the system appear as "friendly names" in the Mobile Devices win
dow, they are actually identified in the Desktop machine's registry via a unique
ID assigned to each device when it first connects to the system. This function,
then, is useful in enabling you to work with the registry to retrieve various set
tings and properties of the connected device.

Example:

iCurrentDeviceid CeGetDeviceid();

Where:

• i Cur rentDevi celd is an integer that will store the ID of the currently con
nected device.

The device ID is a subkey of the HKEY_CURRENT_USER\Software\Mi crosoft\
Windows CE Servi ces\Partners key.

This is a Desktop-based function designed for working with registry entries related
to CE Services. Unlike RAP/ functions, you do not need to have aCE device con
nected in order to use the ceuti 1 functions.

Page 00515

CeGetFileAttributes() 489

CeGetFileAttributes()

#include <rapi.h>

RAPI version of GetFi 1 eAttri butes() function; retrieves attributes for a file,
given the file name.

Example:

TCHAR szFile[MAX_pATH] = TEXT("\\windows\\pword.exe");
dwAttribs = CeGetFileAttributes(szFile);

Where:

• szFi 1 e is a string containing the name of the file whose attributes the func
tion should retrieve.

• dwAttri bs is a DWORD into which the function will return the file's attributes.
In addition to the usual archive, read-only, etc. flags, Windows CE intro
duces two new file attributes:

FILE_ATTRIBUTE_INROM A nonexecutable ROM file. Can be
opened for read-only access.

FILE_ATTRIBUTE_ROMMODULE An executable ROM file. Cannot
be opened as a file, but must instead be executed (if an executable) or
loaded (if a DLL).

CeGetFileSize()

#include <rapi.h>

RAPI version of GetFi 1 eSi ze() function; retrieves size of a file.

Example:

DWORD dwHigh;
dwSize = GetFileSize (hFile, &dwHigh);

Where:

• hFi 1 e is a handle to an open file.

• dwSi ze will receive the low 32 bits of the file's size.

• dwHi gh will receive the high 32 bits of the file's size; may be NULL if files
are known to have a size of 4GB or less.

Page 00516

490 Appendix B • The CE 2.0 API

TIP

CeGetFileTime()

#include <rapi .h>

RAPI version of GetFi 1 eTi me() function; retrieves the created, last accessed,
and last modified date-time stamps for a file.

Example:

CeGetFileTime(hFile, &ftCreate, &ftAccess, &ftModified);

Where:

• hFi 1 e is a handle to an open file.

• ftCreate is a FILETIME structure the function will use to return the created
date-time.

• ftAccess is a FILETIME structure the function will use to return the created
date-time.

• ftModi fi ed is a FILETIME structure the function will use to return the cre
ated date-time.

See Batte ryNoti fyOfTi meChange() for more information about the FILETIME
structure and how to best use it.

WARNING Only files stored on a Compact Flash card wil l report the same values for ftModi
fi ed and ftCreate . Files stored in main storage (not a Compact Flash card) will
always report all three FILETIME values as being the same as the last modified
date ftModi fi ed.

CeGetLastError()

#include <rapi.h>

RAPI version of GetlastError() function; returns numeric value oflast error
generated due to error on the CE device itself.

Example:

hErrorCode = CeGetlastError();

Page 00517

NOTE

CeGetSelectedDeviceld() 491

Where:

• hErrorCode is an HRESUL T value.

C£·GetSelectedDeviceld()

#include <ceutil.h>

Related to CeGetDevi ceid(); part of the RAPI-like ceuti l . h functions.

Example:

dwDeviceid = CeGetSelectedDeviceid();

Where:

• dwDevi ceiD is a DWORD that will store the device ID returned by the
function.

CeGetSpecia/FolderPath()

#include <rapi .h>

RAPI version of the GetSpeci al Fo l derPath() function; retrieves the true path
of a system "special folder."

Example:

CeGetSpecialFolderPath(CSIDL_BITBUCKET, MAX_PATH, szPath);

Where:

•

•
•

The first parameter specifies which path (i.e., special folder) to retrieve; in
this case, the recycle bin.

The second parameter specifies the length of szPath .

szPath is a string that will hold the actual path of the special folder .

For more information on this function and its parameters, see Chapter 10.

Page 00518

Appendix B • The CE 2.0 API

CeGetStorelnformation()

#include <rapi.h>

RAPI version of GetStoreinformati on() function; retrieves information about
the CE object store (i.e., that part of RAM used as storage space).

Example:

CeGetStoreinformation(&siStoreinfo);

Where:

• si Storeinfo is a STORE_ INFORMATION structure.

The STORE_INFORMATION structure is defined as follows:

typedef struct STORE_INFORMATION
DWORD dwStoreSize;
DWORD dwFreeSize;
} STORE_INFORMATION;

CeGetSystemlnfo()

#include <rapi.h>

RAPI version of GetSysteminfo(); retrieves generic operating system informa
tion about the CE device.

Example:

CeGetSysteminfo(&siSysteminfo);

Where:

• si Systeminfo is a SYSTEM_INFO structure.

The SYSTEM_ INFO structure is defined as follows:

typedef struct _SYSTEM_INFO
DWORD dwOemid;
DWORD dwPageSize;
LPVOID lpMinimumApplicationAddress;
LPVOID lpMaximumApplicationAddress;
DWORD dwActiveProcessorMask;
DWORD dwNumberOfProcessors;
DWORD dwProcessorType;
DWORD dwAllocationGranularity;
DWORD dwReserved;
} SYSTEM_INFO;

Page 00519

CeGetSystemMetrics() 493

CeGetSystemMetrics()

#include <rapi .h>

RAPI version of GetSystemMetri cs() function; retrieves sizes (in pixels) of
certain graphical elements.

Example:

iWidth = CeGetSystemMetrics(SM_CXSCREEN); //retrieves width of
screen

Where:

• iWi dth is an integer that will store the value returned by the function. Com
mon values for this parameter are

SM_CXSCREEN Retrieves the width of the screen.

SM_ CYSCREEN Retrieves the height of the screen.

CeGetSystemPowerStatusEx()

#include <rapi.h>

RAPI version of GetSystemPowerStatusEx() function; retrieves information
about the CE device's power source.

Example:

bMostCurrentinfo = FALSE;
CeGetSystemPowerStatusEx(&psPowerStatus, bMostCurrentinfo);

Where:

• psPowerStatus is a SYSTEM_POWER_STATUS_EX structure.

• bMostCurrentinfo is a BOOL value indicating whether the function should
query the device driver directly for the most up-to-date information or
whether it should use cached information that may be several seconds old.

The SYSTEM_POWER_STATUS_ EX structure is defined as follows:

typedef struct _SYSTEM_POWER_STATUS_EX
BYTE ACLineStatus;
BYTE BatteryFlag;
BYTE BatterylifePercent;
BYTE Reserved!;

Page 00520

494 Appendix 8 • The CE 2.0 API

DWORD BatterylifeTime;
DWORD BatteryFulllifeTime;
BYTE Reserved2;
BYTE BackupBatteryFlag;
BYTE BackupBatteryLifePercent;
BYTE Reserved3;
DWORD BackupBatteryLifeTime;
DWORD BackupBatteryFulllifeTime;
} SYSTEM_POWER_STATUS_EX;

CeGetTempPath()

#include <rapi.h>

Retrieves the CE device's TEMP path.

Example:

CeGetTempPath(dwStrlen, szPath);

Where:

• dwStrlen is a DWORD specifying the length of szPath.

• szPath is a string the function will use to return the TEMP path.

CeGetUserNotificationPreferences()

#include <notify.h>

Launches the Notification Options dialog with the options you set. The dialog
allows the user to set options about how they'd like a notification to appear. The
user's changes to the notification options are then returned via the structure
passed as the second parameter.

Example:

unNotify.ActionFlags = PUN_LED I PUN_DIALOG;
unNotify.pwszDialogTitle = TEXT("Notification!");
unNotify.pwszDialogText = TEXT("Your notification.");
CeGetUserNotificationPreferences(hWnd, &unNotify);

Where:

• hWnd is the handle of the calling application.

Page 00521

CeGetVersionEx() 495

• unNoti fy is a CE_USER_NOTIFICATION structure. (PUN_LED specifies that the
LED on the device should be blinked; PUN_DIALOG specifies that the user
should be notified via a dialog box.)

The CE_USER_ NOTIFICATION structure is defined as follows:

typedef struct UserNotificationType
DWORD ActionFlags;

TCHAR "'pwszDialogTitle;
TCHAR '~pwszDi al ogText;

TCHAR *pwszSound;
DWORD nMaxSound;
DWORD dwReserved;

} CE_USER_NOTIFICATION

WARNING Calling the CeGetUserNoti fi cati onPreferences() f unction and displaying

the Options dialog does not actually create or set the actual not ification. The

application must still call CeSetUserNoti fi cation() itself.

NOTE Giving the user the option to alter the notif ication settings is purely optional; it's
possible to create a notification using any combination of preferences and settings
without ever consulting the user.

CeGetVersionEx()

#include <rapi .h>

RAPI version of GetVersi on Ex() function; returns version information.

Example:

CeGetVersionEx(&viOSVerinfo);

Where:

• vi OSVerinfo is an OSVERSIONINFO structure.

The OSVERSIONINFO structure is defined as follows:

typedef struct _OSVERSIONINFO{

DWORD dwOSVersioninfoSize;
DWORD dwMajorVersion;

Page 00522

~ Appendix B • The CE 2.0 API

DWORD dwMinorVersion;
DWORD dwBuildNumber;
DWORD dwPlatformid;
TCHAR szCSDVersion[l28];
} OSVERSIONINFO;

CeGetWindow()
#include <rapi.h>

RAPI version of GetWi ndow() function; returns the handle of a window match
ing the criteria specified.

Example:

uWndType = GW_HWNDFIRST;
hMatchingWnd = CeGetWindow(hWnd, uWndType);

Where:

• hWnd is the handle to a window, usually that of the calling application.

• uWndType is a UINT specifying the criteria of the window to search for, in
this case, the window at the top of the Z-order.

• hMatchi ngWnd is a handle to the window matching the criteria, or NULL if
no window matches.

CeGetWindowLongO
#include <rapi.h>

RAPI version of GetWi ndowlong () function; retrieves extended information
about the window specified.

Example:

iVal = GWL_WNDPROC;
DefEditProc = GetWindowlong(hWnd, iVal);

Where:

• hWnd is the handle to the window whose information the function should
retrieve.

• iVa 1 is an integer specifying the piece of information the function should
retrieve, in this case, the address of the hWnd's WndProc() function.

Page 00523

CeGetWindowText() 497

CeGetWindowText()

#include <rapi.h>

RAPI version of GetWi ndowText() function; retrieves the caption or text dis
played by the window specified.

Example:

GetWindowText(hWnd, szText, iSize);

Where:

• hWnd is a handle to a window.

• szText is a string that will receive the window's text.

• i Size is the size or maximum length of szText.

CeG/oba/MemoryStatus()

#include <rapi.h>

RAPI version of Gl oba 1 MemoryStatus() function; retrieves information about
memory of the CE device.

Example:

CeGlobalMemoryStatus(&msMemStatus);

Where:

• msMemStatus is a MEMORYSTATUS structure.

The MEMORYSTATUS structure is defined as follows:

typedef struct _MEMORYSTATUS
DWORD dwlength;
DWORD dwMemoryload;
DWORD dwTotalPhys;
DWORD dwAvailPhys;
DWORD dwTotalPageFile;
DWORD dwAvailPageFile;
DWORD dwTotalVirtual;
DWORD dwAvailVirtual;
} MEMORYSTATUS

Page 00524

498 Appendix B • The CE 2.0 API

CeHandleAppNotifications()

#include <notify.h>

Marks all"triggered" notifications created by the calling application as handled.

Example:

CeHandleAppNotifications(szAppName);

Where:

• szAppName is a string containing the name of the application, as it was speci
fied in calls to CeSetUserNoti fi cation().

CeMoveFile()

#include <rapi.h>

RAPI version of MoveFi 1 e() function; moves (i.e., renames) a file or directory
on the CE device.

Example:

CeMoveFile(szOldName, szNewName);

Where:

• szOl dName is a string specifying the current name of the file or directory.

• szNewName is a string specifying the new name of the file or directory.

CeOidGetlnfo()

#include <winbase.h>

(or rapi . h)

Retrieves information about a CEOID; can be used to identify the type of object
specified, etc.

Example:

CeOidGetinfo(oid, &oiOidinfo)

Page 00525

TIP

CeOpenDatabase() 499

Where:

• oi d is a CEOID whose properties the function is to retrieve.

• oi Oi dlnfo is a CEOIDIN FO structure.

The CEOIDINFO structure is defined as follows:

typedef struct _CEOIDINFO
WORD wObjType;
DWORD dwSize;
WORD wPad;
union {
CEFILEINFO infFile;
CEDIRINFO infDirectory;
CEDBASEINFO infDatabase;
CERECORDINFO infRecord;
} ;
} CEOIDINFO;

CeOpenDatabase()

#include <winbase.h>

(or rapi. h)

Part of the CE database engine; opens aCE database.

Example:

oid = 0;
TCI-IAR szDBName [MAX_PATH] = TEXT(" My DB ");
m_Handl e = CeOpenDatabase(&o·i d, szDBName, 0, 0, NULL);

Where:

•

•

oi dis a CEOID (can be 0, if the CEOID of the database is unknown, but the
szDBName is supplied. In that case, the CEOID of the database will be written
back to oi d).

szDBName is a string containing the name of the database to be opened .

The remaining parameters are explored in greater detail in Chapter 4.

Page 00526

Appendix B • The CE 2.0 API

NOTE

CeRapiFreeBuffer()

#include <rapi.h>

Frees memory allocated by calls to RAPI functions such as CeFi ndA 11 Data
bases(),CeFindAllFiles(),orCeReadRecordProps().

Example:

CeFindAllDatabases(DbType, OxFF, &cFound, &pFindData);
//do something with info ... then, when done ...
CeRapiFreeBuffer(pFindData);

Where:

• pFi ndData is a pointer to an array created by a call to CeFi ndDatabases() .

CeRapiGetError()

#include <rapi.h>

Returns an error value if a call to a RAPI function failed due to a RAPI
related problem (e.g., the device was suddenly disconnected) as opposed to
aCE-related problem (e.g., one of the parameters contained an illegal value).

Example:

if (CeRapiGetError() !~ NO_ERROR)
{

//Function failed due to RAPI-related problem

This function takes no parameters and returns either NO_ERROR or an error
specific code.

CeRapilnit()

#include <rapi .h>

Ensures a device is connected and initializes RAPI library.

Example:

if (CeRapiinit() !~ E_FAIL)
{

//Connected to device successfully!

Page 00527

NOTE

CeRapilnitEx() 501

This function takes no parameters and returns E_FAIL if unsuccessful.

CeRapilnitEx()

#include <rapi.h>

"Connects" to device, initializes RAPI library, and returns an event handle.

Example:

riRapiinit.cbSize = sizeof(RAPIINIT);
CeRapiinitEx(&riRapiinit);

Where:

• ri Rapi Ini tis a RAPIINIT structure, which the function uses to return the
event handle.

The RAPIINIT structure is defined as follows:

typedef struct _RAPIINIT
DWORD cbSize;
HANDLE heRapiinit;
HANDLE hrRapiinit;
} RAPIINIT;

CeRapilnvoke()

#include <rapi .h>

Executes a function in a DLL located on the CE device.

Example:

WCHAR szDll Name [MAX_PATH] = TEXT("\ \Windows\ \mydll. dll ") ;
WCHAR szTmp[MAX_PATH];
WCHAR szFxn[MAX_PATH];
WCHAR szlnput[MAX_PATH];
LPTSTR szOut = NULL;
BOOL fStream = FALSE;
IRAPIStream *pStream = NULL;
DWORD dwlnput = 0;
DWORD dwOut = MAX_PATH;
TCHAR sz[MAX_PATH];

Page 00528

502 Appendix B • The CE 2.0 API

NOTE

NOTE

// ...
CeRapiinit();

// ...
HRESUL T hr = CeRapi Invoke(szDll Name, szFxn, dwinput, (BYTE ''')

szinput, &dwOut, (BYTE **)&szOut, fStream? &pStream : NULL, NULL);

Where:

•

•
•
•
•
•
•

szDll Name is a string specifying the name of the DLL.

szFxn is a string specifying the name of the function .

dwlnput is a DWORD specifying the length in bytes of szlnput .

szlnput is a string specifying the input to the function .

dwOut is a DWORD that will receive the length in bytes of szOut .

szOut is an ANSI string that will receive the output data .

pStream is an !RAPISt ream interface .

The last parameter of this function is always NULL.

CeRapiUninit()

#include <rapi.h>

"Disconnects" from device and uninitializes RAPI library.

Example:

CeRa pi Uni ni tO;

This function takes no parameters and returns E_FAIL only if the RAPI libraries
were not initialized to begin with .

CeReadFile()

#include <rapi.h>

RAPI version of ReadFi 1 e() function; reads data from a file opened with
CreateFi 1 e().

Page 00529

TIP

CeReadRecordPropsO 503

Example:

CeReadFile(hFile, &szData, dwBytesToRead, &dwBytesRead, NULL);

Where:

•
•
•

•

hFi leis a handle to a file .

szData is a string or buffer to hold the data being read .

dwBytesToRead is a DWORD specifying number of bytes to read .

dwBytesRead is a DWORD used by the function to indicate number of bytes
actually read.

The last parameter of CeReadFi l e() is always NULL.

CeReadRecordPropsO
#include <winbase.h>

(or rapi . h)

Reads the properties (fields) of a record in aCE database.

Example:

objld = CeReadRecordProps(hOB,CEDB_ALLOWREALLOC,
&cProps, NULL, (LPBYTE *)&pBuf, &cbBuf);

Where:

• hDB is a handle to an open database.

• CEDB_ALLOWREALLOC is a flag that tells the function it can reallocate the
buffer passed as the fifth parameter if necessary; can be 0 for no reallocation.

• cProps is an integer u sed by the function to return the number of proper
ties read.

• NULL specifies that you want the function to read all of the record's
properties.

• pBuf is a pointer to an array of CEPROPVAL structures.

• cbBuf is a DWORD specifying the size of pBuf in bytes; useful mostly if
CEDB_ALLOWREALLOC is not specified.

Page 00530

504 Appendix B • The CE 2.0 API

The CEPROPVAL structure is defined as follows:

typedef struct _CEPROPVAL
CEPROPID propid;
WORD wLenData;
WORD wFlags;
CEVALUNION val;
} CEPROPVAL;

CeRegCioseKey()

#include <rapi.h>

RAPI version of RegCl oseKey() function; closes handle to a specified registry
key on the CE device.

Example:

CeRegCloseKey (hKey);

Where:

• hKey is a handle to a registry key.

CeRegCreateKeyEx()

#include <rapi.h>

RAPI version of RegCreateKeyEx() function; creates a registry key on the CE
device.

Example:

HKEY hKeyResult;
DWORD dwCreateStatus;
DWORD dwType;
DWORD dwBytes = 0;
TCHAR szKeyName[MAX_PATH] = TEXT("Preferences");
CeRegCreateKeyEx(hKey, szKeyName, 0, NULL, 0, 0 NULL, &hKeyResult,

&dwCreateStatus);

Page 00531

CeRegDeleteKey() 505

Where:

• hKey is a handle to the key under which the new key will be created. This
parameter can be a handle to a key or any of the following predefined

constants:

• HKEY_ CLASSES_ ROOT

• HKEY_ CURRENT_ USER

• HKEY_ LOCAL_MACHINE

• HKEY_ USERS

• szKeyName is the name of the new key.

• hKeyResul tis a handle to receive the handle of the newly created key.

• dwCreateStatus is a DWORD used by the function to indicate whether the
key was created (REG_CREATED_NEW_KEY) or whether it already existed

(REG_OPENED_EXISTING_KEY).

CeRegDeleteKey()

#include <rapi .h>

RAPI version of Reg Del eteKey(); deletes the specified key and any sub keys

from the registry.

Example:

TCHAR szKeyName[MAX_PATH] = TEXT("Preferences ");
//delete key created in example for CeRegCreateKeyEx() above
CeRegDeleteKey(HKEY_CURRENT_USER, szKeyName);

Where:

• HKEY _CURRENT _USER is a predefined constant value. This parameter can be a

handle to a key or any of the following predefined constants:

• HKEY_CLASSES_ ROOT

• HKEY_ CURRENT_ USER

• HKEY_ LOCAL_MACHINE

• HKEY_USERS

• szKeyName is a string specifying the name of the key to be deleted.

Page 00532

Appendix B • The CE 2.0 API

CeRegDeleteValue()

#include <rapi.h>

RAP! version of Reg De 1 eteVa 1 ue() function; deletes the specified value from
the registry of the CE device.

Example:

TCHAR szValName[MAX_PATH] = TEXT("value2");
LONG CeRegDeleteValue(hKey, szValName);

Where:

• hKey is a handle to a registry key. This parameter can be a handle to a key or
any of the following predefined constants:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_ USER

• HKEY_ LOCAL_MACHINE

• HKEY_USERS

• szVa 1 Name is a string specifying the value to be deleted.

CeRegEnumKeyEx()

#include <rapi.h>

RAP! version of RegEnumKeyEx() function; lists subkeys of the specified reg
istry key on the CE device.

Example:

while (ERROR_NO_MORE_ITEMS != CeRegEnumKeyEx(hKey, iindex,
szKeyName, &cbKeyName, NULL, szClassName, &cbClassName, NULL)

{
//do something ...
iindex++; //always increment index value
cbClassName = 0; //these values must be reset each time
cbKeyName = 0;

Page 00533

TIP

CeRegEnumValue() 507

Where:

• hl<ey is a handle to a registry key. Tl1i.s parameter can be a handle to a key or

•

•

•

•

•

any of the following predefined constants:

• HI<EY_CLASSES_ ROOT

• HI<EY_CURRENT_ USER

• HKEY_ LOCAL_MACHINE

• HKEY_USERS

i Index is an integer specifying the index of the subkey to be enumerated .

szKeyName is a string to receive the name of the subkey.

cbKeyName is an integer specifying the maximum length of szl<eyName in bytes .

szCl ass Name is a string to receive the class name of the sub key.

cbCl ass Name is an integer specifying the maximum length of szCl ass Name
in bytes.

The fifth and eighth parameters of this function are always NULL.

CeRegEnumValue()

#include <rapi .h>

RAPI version of RegEnumVa l ue(); lists values belonging to the specified key.

Example:

retValue = CeRegEnumValue (hKey, dwindex, szValName, &dwValLen,
NULL, &dwValType, (LPBYTE)szData, &dwDataLen);

Where:

• hl<ey is a handle to a key. This parameter can be a handle to a key or any of
the following predefined constants:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_USER

• HKEY_ LOCAL_MACHINE

• HKEY_USERS

Page 00534

Appendix B • The CE 2.0 API

NOTE

• dwindex is a DWORD specifying the index of the value to retrieve; this value
should be 0 on the first call to the function and incremented before each
additional call.

• szVa 1 Name is a string used by the function to return the name of the value.

• dwVa 1 Len is a DWORD specifying the size of the szVa 1 Name buffer.

• dwVa 1 Type is a DWORD used by the function to return the type of the value.

•
•

The most common values returned to this parameter are

REG_BINARY Binary data

REG_DWORD ADWORD

REG_SZ A string

szData is a string or byte array used to hold the data being returned .

dwDatalen specifies the length of the szData buffer in bytes .

The fifth parameter of this function is always NULL.

CeRegOpenKeyEx()

#include <rapi.h>

RAPI version of RegOpenKeyEx(); opens the specified registry key.

Example:

CeRegOpenKeyEx (hKey, szKeyName, 0, KEY_READ, &hSubKey);

Where:

• hKey is a handle to a key. This parameter can be a handle to a key or any of
the following predefined constants:

• HKEY_CLASSES_ ROOT

• HKEY_ CURRENT_ USER

• HKEY_ LOCAL_MACHINE

• HKEY_USERS

Page 00535

CeRegQuerylnfoKey() 509

• szKeyName specifies the name of the key to be opened. This key must be a
subkey of the key specified by hKey.

• KEY _READ specifies the type of access/ operation we'll be performing. Some
common values are

• KEY_ READ

• KEY_WRITE

• KEY_ALL_ACCESS

• hSubKey is a handle to the key specified by szKeyName, if the function was

successful.

CeRegQuerylnfoKey()

RAPI version of RegQueryinfoKey(); retrieves information about the specified

registry key.

Example:

CeRegQuerylnfoKey(hKey, szClassName, &dwClassLen, NULL,
&dwSubKeyCount, &dwMaxSubKeyLen, &dwMaxClassLen, &dwValueCount,
&dwMaxValueName, NULL, NULL, NULL);

Where:

• hKey is a handle to a key. This parameter can be a handle to a key or any of
the following predefined constants:

• HKEY_CLASSES_ROOT

• HKEY_CURRENT_USER

• HKEY_LOCAL_MACHINE

• HKEY_ USERS

• szCl ass Name is a string the function uses to return the class name of the key.

• dwCl ass len is the size of the szCl assName buffer.

• dwSubKeys is a DWORD the function uses to return the number of subkeys.

• dwMaxSubKeylen is a DWORD the function uses to return the length of the
longest subkey.

Page 00536

510 Appendix B • The CE 2.0 API

NOTE

•

•

•

dwMaxCl ass len is a DWORD the function uses to return the length of the
longest class name of a sub key.

dwVa l ueCount is a DWORD the function uses to return the number of values
belonging to the key.

dwMaxVa l uelen is a DWORD the function uses to return the length of the
longest value name.

The fourth, tenth, eleventh, and twelfth parameters of this function are always NULL.

CeRegQueryValueEx()

#include <rapi .h>

RAPI version of RegQueryVal ueEx(); retrieves data and information about a
specified value.

Example:

RegQueryValueEx (hKey, szValName, NULL, &dwValType, (LPBYTE)szData,
&dwDataLen);

Where:

• hKey is a handle to a key. This parameter can be a handle to a key or any of
the following predefined constants:

• HKEY_ CLASSES_ ROOT

• HKEY_CURRENT_USER

• HKEY_ LOCAL_MACHINE

• HKEY_ USERS

• szVa l Name is a string specifying the name of the value to retrieve.

• dwVa l Type is a DWORD used by the function to return the type of the value.
The most common values returned to this parameter are

REG_BINARY Binary data

REG_DWORD A DWORD

REG_SZ A string

Page 00537

CeRegSetValueEx() 511

• szData is a string or byte array used to hold the data being returned.

• dwDatalen specifies the length of the szData buffer in bytes.

NOTE The third parameter of this function is always NULL.

CeRegSetValueEx()

#include <rapi .h>

RAPI version of RegSetVal ueEx(); writes data to the specified registry value.

Example:

CeRegSetValueEx(hKey, szValName, NULL , dwValType , (LPBYTE)szData,
dwDatalen);

Where:

• hKey is a handle to a key. This parameter can be a handle to a key or any of
the following predefined constants:

• HKEY_CLASSES_ ROOT

• HKEY_CURRENT_USER

• HKEY_LOCAL_MACHINE

• HKEY_ USERS

• szVa 1 Name is a string specifying the name of the value to retrieve.

• dwVa 1 Type is a DWORD used by the function to return the type of the value.
The most common values returned to this parameter are

REG_BINARY Binary data

REG_DWORD A DWORD

REG_SZ A string

• szData is a string or byte array used to hold the data being returned.

• dwDatalen specifies the length of the szData buffer in bytes.

Page 00538

512 Appendix B • The CE 2.0 API

NOTE The third parameter of this function is always NULL.

CeRemoveDirectory()

#include <rapi.h>

RAP! version of RemoveDi rectory(); deletes a directory. The directory must be
empty before it can be removed.

Example:

TCHAR szDir[MAX_PATH] "'TEXT("\\AppTempDir");
CeRemoveDirectory(szDir);

Where:

• szDi r is the name of the directory to remove.

CeRunAppAtEvent()

#include <notify.h>

Runs the specified application when the specified system-level event occurs;
similar to CeRunAppAtTime().

Example:

TCHAR szAppName[MAX_PATH] = TEXT("\\windows\\pword.exe ");
CeRunAppAtEvent(szAppName, NOTIFICATION_EVENT_TIME_CHANGE);

Where:

• szAppName is a string specifying the application to run.

• NOTIFICATION_EVENT_TIME_CHANGE is a predefined constant. Possible val-
ues for this second parameter are

NOTIFICATION_EVENT_SYNC_END When the device is finished
syncing with the Desktop.

NOTIFICATION_EVENT_DEVICE_CHANGE When a PCMCIA
card is removed or inserted.

NOTIFICATION_EVENT_RS232_DETECTED When a serial port
connection is made.

Page 00539

CeRunAppAtTime()

NOTIFICATION_EVENT_TIME_CHANGE When the system time
has been changed.

NOTIFICATION_EVENT_RESTORE_END When a device data
restore operation is completed.

To remove a previously set notification, the value to pass for the second
parameter is

NOTIFICATION_EVENT_NONE Removes run-at settings for the
specified application.

CeRunAppAtTime()

#include <notify.h>

Runs the specified application at the specified time; similar to CeRunAppAt
Event().

Example:

TCHAR szAppName [MA.>(_PATH] = TEXT(11
\ \windows\ \pword. exe 11

);

CeRunAppAtTime(szAppName, &stSystemTime);

Where:

• szAppName is a string specifying the application to run.

• stSystemTime is either a pointer to a SYSTEMTIME structure or NULL. If
NULL, any previously set run-at-time events for the specified application
will be cleared.

For more information on working with the SYSTEMTIME structure, see Bat

teryNoti fyOfTi meChange() earlier in this appendix.

CeSeekDatabase()

#include <winbase.h>

(or rapi . h)

Part of the CE database engine; serves as a way to both search the database and
manipulate the current record pointer (seek).

Page 00540

514 Appendix B • The CE 2.0 API

NOTE

Example:

CeSeekDatabase(hDb, dwSeekType, dwValue, &dwindex);

Where:

•

•
•

•

hOb is a handle to an open database .

dwSeekType specifies the type of search/seek to perform .

dwVa 1 ue is the value you're searching for or is a numeric value specifying
how the current record pointer should be moved.

dwindex is a DWORD that the CE Database Engine uses to return the number
of records from the start of the database to the record that was found.

This function, and the dwSeekType parameter in particular, is fully documented in
Chapter 4.

CeSetDatabaselnfo()

#include <winbase . h>

(or rapi . h)

Part of the CE Database Engine; sets various properties of the database.

Example:

CeSetDatabaseinfo(oid, &dbiDatabaseinfo) ;

Where:

• oi dis the CEOID of the database whose properties are to be changed.

• dbi Databaseinfo is a CEDBASEINFO structure.

The CEDBASEINFO is defined as

typedef struct _CEDBASEINFO {
DWORD dwFlags;
WCHAR szDbaseName[CEDB_MAXDBASENAMELEN];
DWORD dwDbaseType;
WORD wNumRecords;
WORD wNumSortOrder;
DWORD dwSize;

Page 00541

FILETIME ftlastModified;
SORTORDERSPEC rgSortSpecs[CEDB_MAXSORTORDER];
) CEDBASEINFO;

CeSetEndOfFile()

#include <rapi .h>

CeSetEndOfFile() 515

RAPJ version of SetEndOfFi l e(); marks current position as the end of the file.

Example:

CeSetEndOfFile(hFile);

Where:

• h File is a handle to an open file on the CE device; you must have write
access to the file in order to successfully set the EOF of that file.

CeSetFileA ttributes()

#include <rapi .h>

RAPT version of SetFi l eAtt ri butes ();sets attributes of a file on the CE
device.

Example:

TCHAR szFileName[MAX_PATH] = TEXT('\\myappdata.txt');
dwFi ·1 eAttri butes = FILE_ATTRIBUTE_NORMAL;
CeSetFileAttributes(szFileName, dwFileAttributes);

Wbere:

• szFi l eName is the name of the file whose attributes you want to change.

• dwFi l eAtt ri butes is a DWORD specifying the attributes to set. It can be
any combination of the following values:

FILE_ATTRIBUTE_ARCHIVE Sets the archive flag.

FILE_ATTRIBUTE_HIDDEN Sets the hidden flag.

FII"E_ATTRIBUTE_NORMAL Clears all other attributes; cannot be
combined with other attributes.

FILE_ATTRIBUTE_OFFLINE File has been moved to offline storage.

FILE_ATTRIBUTE_READONLY Sets the read-only flag.

Page 00542

516: ·' Appendix B • The CE 2.0 API

NOTE

FILE_ATTRIBUTE_SYSTEM Sets the system flag.

FILE_ATTRIBUTE_ TEMPORARY Marks the file as being for tempo
rary use only, which can improve access time. It is still the responsibility
of the application to remove the temporary file when finished with it.

CeSetFilePointer()

#include <rapi.h>

RAPI version of SetFi l ePoi nter(); advances or reverses the file pointer of an
open file.

Example:

CeSetFilePointer(hFile, 3000, NULL, FILE_BEGIN);

Where:

• hFi 1 e is a handle to an open file.

• 3000 is the number of bytes to move.

• FILE_BEGIN is the point that the file pointer will move relative to. In other
words, in the above example, the file pointer will be positioned 3000 bytes
from the beginning of the file. Other possible values for this parameter are

FILE_ CURRENT Distance to move is relative to the current position
of the file pointer.

FILE_END Distance to move is relative to the EOF.

The third parameter can either be NULL, as in the example here, or it can serve as
the high-order DWORD if the distance to move is a 64-bit value. In that case, the
second parameter would be the low-order DWORD.

CeSetFileTime()

#include <rapi.h>

RAPI version of SetFi 1 eTime(); sets the creation, last accessed, and/or last
modified date-time stamps of the specified file.

Page 00543

Example:

SYSTEMTIME st;
FILETIME ftCreate, ftAccess, ftModify;
BOOL bAhead;
GetSystemTime(&st);

CeSetuserNotifica tion() 517

//set all three dates equal to current date-time stamp
SystemTimeToFileTime(&st, &ftCreate);
SystemTimeToFileTime(&st, &ftAccess);
SystemTimeToFileTime(&st, &ftModify);
CeSetFileTime(hFile, &ftCreate, &ftAccess, &ftModify);

Where:

• h Fi 1 e is a handle to an open file.

• ftC reate is a FILETIME structure specifying the new creation date-time
stamp of the file.

• ftAccess is a FILETIME structure specifying the new last accessed date-time
stamp of the file.

• ftModi fy is a FILETIME structure specifying the new last modified date
time stamp of the file.

CeSetUserNotification()

#include <notify.h>

Creates or updates a user notification.

Example:

BOOL ret;
SYSTEMTIME stTime, stFuture;
CE_USER_NOTI FICATION unNotify;
HANDLE hNotification;
TCHAR szAppFullPath[MAX_PATH] = TEXT("\\Windows\\Start Menu\\

helloworld.exe");
GetlocalTime(&stTime);
stFuture = stTime;
stFuture.wMinute = stFuture.wMinute + 1;
unNotify.Action Fl ags = PUN_LED I PUN_DIALOG;
unNotify.pwszDialogTitle = TEXT("Noti f ication! ");
unNotify.pwszDialogText = TEXT("Your notification is here! ") ;

Page 00544

518 Appendix B • The CE 2.0 API

hNotification = NULL;
hNotification = CeSetUserNotification(hNotification, szAppFullPath

&stFuture, &unNotify);

Where:

• hNoti fi cation is NULL to create a notification (as in this example) or the
handle to an existing notification.

'

• szAppFull Path is a string specifying the full path to the executable creating
the notification. This is the application whose icon will appear in the notifi
cation dialog box and the application that will be executed if the user clicks
the Open button on the notification dialog.

•

•

stFuture is a SYSTEMTIME structure specifying the date-time stamp at
which the notification is to occur.

unNoti fy is a CE_USER_NOTIFICATION structure, specifying various notifi
cation options.

The CE_USER_NOTIFICATION structure is defined as follows:

typedef struct UserNotificationType
DWORD ActionFlags;
TCHAR *pwszDialogTitle;
TCHAR '''pwszDi al ogText;
TCHAR *pwszSound;
DWORD nMaxSound;
DWORD dwReserved;
} CE_USER_NOTIFICATION

CeSHCreateShortcut()

#include <rapi.h>

RAPI version of SHCreateShortcut(); creates a shortcut.

Example:

TCHAR szShortcutFile[MAX_PATH];
TCHAR szActualExe[MAX_PATH];
szShortcutFile = TEXT("\\MyApp.lnk");
szActualExe = TEXT("\\Windows\\MyApp.exe");
CeSHCreateShortcut(szShortcutFile, szActualExe);

Page 00545

CeSHGetShortcutTarget() 519

Where:

• szShortcutFi leis a string specifying the full path of the shortcut file.

• szActua l Exe is a string specifying the full path to the actual executable file.

CeSHGetShortcutTarget()

RAPI version of SHGetShortcutTarget(); retrieves the path to the target exe
cutable of the specified shortcut.

Example:

TCHAR szShortcutFile[MAX_PATH];
TCHAR szActualExe[MAX_PATH];
int iActualExelen = MAX_PATH;
szShortcutFile = TEXT('\\MyApp.lnk');
CeSHGetShortcutTarget(szShortcutFile, szActualExe, iActualExelen);

Where:

• szShortcutFi leis a string specifying the full path of the shortcut file.

• szActua l Exe is a string the function uses to return the full path to the actual
executable file.

• i Actual Exelen is an integer specifying the maximum possible length of
szActual Exe.

CeWriteFile()

#include <rapi .h>

RAPI version of Wri teFi l e(); writes data to an open file.

Example:

CeWriteFile(hFile, szBuf, dwBufSize, &dwNumWritten, NULL));

Where:

•

•

•
•

hFi leis a handle to an open file .

szBuf is a buffer of some kind .

dwBufSi ze is a DWORD specifying the size of szBuf in bytes .

dwNumWri tten is a DWORD the function uses to return the number of bytes
written to the file.

Page 00546

520 Appendix B • The CE 2.0 API

WARNING When using CeWri teFi l e() to write Unicode data to the file, remember that
dwBufSi ze is the number of bytes-not characters-in the buffer. When writing
Unicode text, you must remember to double the number of characters to get the
number of bytes.

CeWriteRecordProps()

#include <winbase.h>

(or rapi . h)

Part of the CE Database Engine; creates or modifies a record in a database.

Example:

CEOID oidRecord;
WORD wPropCount;
CEPROPVAL pvPropVals[2];
pvPropVals[O].propid = MAKELONG(CEVT_LPWSTR, PROP_CODE);
pvPropVals[O].wFlags = 0;
pvPropVals[O].val .lpwstr = szCode;
pvPropVals(l].propid = MAKELONG(CEVT_LPWSTR, PROP_STATE);
pvPropVals[l].wFlags = 0;
pvPropVals[l].val.lpwstr = szState;
wPropCount = 2;
// ...
//get a value for the record's oid & store in oidRecord
// ...
CeWriteRecordProps(hDb, oidRecord, wPropCount, pvPropVals);

Where:

• hOb is a handle to an open database.

• oi dRecord is the CEOID of the record being modified; if adding a new
record, this value should be set to 0.

• wPropCount is a WORD indicating the number of properties being written to.

• pvPropVal sis an array of CEPROPVAL structures.

Page 00547

NOTE

The CEPROPVAL structure is defined as follows:

typedef struct _CEPROPVAL
CEPROPID propid;
WORD wlenData;
WORD wFlags;
CEVALUNION val;
} CEPROPVAL;
typedef CEPROPVAL;

CloseAddressBook()

#include <addrstor.h>

CloseAddressBook() 521

Closes the Contacts database; part of the AddressBook family of functions.

Example:

CloseAddressBook();

This function takes no parameters and does not return a value.

CommandBands_AddAdornments()

#include <commctrl.h>

Adds the Close (X) button to the CommandBands control. Can also add Help
(?) and/ or OK buttons. These buttons are considered separate adornments bands.

Example:

DWORD dwFlags = CMDBAR_HELP I CMDBAR_OK;
REBARBANDINFO rbiinfo;
rbiinfo.cbSize = sizeof (REBARBANDINFO);
rbiinfo.fMask = RBBIM_ID;
rbiinfo.wiD = 300;
CommandBands_AddAdornments(hBands, hlnstance, dwFlags, &rbiinfo);

Where:

• hBands is a handle to the window's CommandBands control.

• hlnstance is a handle to the instance of the application.

Page 00548

522 Appendix B • The CE 2.0 API

• dwFl ags is a DWORD specifying one or more of the following values:

CMDBAR_HELP Add the Help (?)button.

CMDBAR_OK Add the OK button.

• rbi Info is optionally NULL or a REBARBANDINFO structure, which can be
used to override the default ID for the adornments band. Usually, the ID of
the adornments band is set to OxFFFFFFFF; the example above sets it to 300.

The REBARBANDINFO structure is defined as follows:

typedef struct tagREBARBANDINFO{
UINT cbSize;
UINT fMask;
UINT fStyle;
COLORREF clrFore;
COLORREF clrBack;
LPTSTR lpText;
UINT cch;
int iimage;
HWND hwndChild;
UINT cxMinChild;
UINT cyMinChild;
UINT ex;
HBITMAP hbmBack;
UINT wiD;
UINT cyChild;
UINT cyMaxChild;
UINT cyintegral;
UINT cxideal;
LPARAM lParam;
} REBARBANDINFO;

CommandBands_AddBands()

#include <commctrl.h>

Adds bands to the CommandBands control.

Example:

REBARBANDINFO rbiinfo[2];
UNIT iBandCount = 2; //add 2 bands
rbiinfo[O] .cbSize = sizeof (REBARBANDINFO);
rbiinfo[O] .fMask = RBBIM_ID I RBBIM_STYLE;

Page 00549

CommandBands_Create() 523

rbilnfo[O] .fStyle = RBBS_GRIPPERALWAYS I RBBS_FIXEDSIZE;
rbilnfo[O] .wiD = 0;
rbiinfo[O] .iimage = 0;
rbiinfo[1] .cbSize = sizeof (REBARBANDINFO);
rbiinfo[1].fMask = RBBIM_ID I RBBIM_STYLE;
rbiinfo[1] .fStyle = RBBS_GRIPPERALWAYS I RBBS_FIXEDSIZE;
rbiinfo[1].wiD = 1;
rbilnfo[1] .iimage = 1;
CommandBands_AddBands(hBands, hinstance, iBandCount, &rbilnfo);

Where:

• hBands is a handle to the CommandBands control.

• hinstance is a handle to the application instance.

• i Band Count is an integer specifying the number of bands to add.

• rbi Info is an array containing i BandCount REBARBANDINFO structures.

CommandBands_ Create()

#include <commctrl.h>

Creates a new CommandBands control.

Example:

DWORD dwStyles = CCS_VERT I RBS_VERTICALGRIPPER; //create a
vertical band with the proper vertical gripper

WORD wiD = ID_CMDBAND;
hBands = CommandBands_Create (hinstance, hWnd, wiD, dwStyles,

hlmglist);

Where:

• hBands is the handle of the newly created CommandBands control if the
function is successful.

• hWnd is the handle to the window that will own the CommandBands control.

• hinstance is a handle to the application instance.

• wiD is a WORD specifying the numeric ID of the CommandBands control to be
used in notification messages for that Command Bands control.

Page 00550

Appendix 8 • The CE 2.0 API

• dwStyl es is a DWORD specifying how the CommandBands control is to
appear. This value a combination of the following constants:

CCS_ VERT CommandBands control should appear vertically.

RBS_AUTOSIZE CommandBands control's size will change auto
matically as needed.

RBS_BANDBORDERS CommandBands control will be drawn with
borders.

RBS_FIXEDORDER The order of the CommandBands control's indi
vidual bands cannot be changed.

RBS_SMARTLABELS CommandBands control's bands will only
show their icon when minimized.

RBS_ VARHEIGHT CommandBands control will occupy the mini
mum possible vertical space.

RBS_ VERTICALGRIPPER CommandBands control will have a verti
cal gripper; for vertical CommandBands only.

• himgl i st is a handle to an Image List.

CommandBands_ GetCommandBar()

#include <commctrl.h>

Retrieves the handle to a CommandBar child control in a band of the Com
mand Bands control.

WARNING

Example:

HWND CommandBands_GetCommandBar(HWND hwndCmdBands, UINT uBand);

Where:

•
•

hwndCmdBands is the handle to a CommandBand .

uBand is a UINT zero-based index specifying which CommandBar within the
CommandBand you want to retrieve the handle of.

The uBand index value applies to the currently displayed order of the Command
Bars and may be altered by user repositioning.

Page 00551

CommandBands_GetRestorelnformation() 525

CommandBands_ GetRestorelnformation()

#include <commctrl.h>

Retrieves information to restore a band's current state.

Example:

CommandBands_GetRestoreinformation(hBands, uBand, &cbrRestoreinfo);

Where:

• hBands is a handle to the CommandBands' control window.

• uBands is the index of the CommandBands control whose restore info the
function should retrieve.

• cbrRestorelnfo is a COMMANDBANDSRESTOREINFO structure that the function
will use to return the information.

The LPCOMMANDBANDSRESTOREINFO is defined as follows:

typedef struct tagCOMMANDBANDSRESTOREINFO {
UINT cbSize;
UINT wiD;
UINT fStyle;
UINT cxRestored;
BOOL fMaximized;
} COMMANDBANDSRESTOREINFO;

CommandBands_Height()

#include <commctrl.h>

Returns the height (in pixels) of a CommandBands control.

Example:

CommandBands_Height(hBands);

Where:

• hBands is a handle to the CommandBands control you want to get the
height of.

Page 00552

526 Appendix B • The CE 2.0 API

CommandBands_lsVisible()

#include <commctrl.h>

Determines whether or not the CommandBands control is visible.

Example:

BOOL CommandBands_IsVisible (hBands);

Where:

• hBands is a handle to the CommandBands control.

CommandBands_Show()

#include <commctrl.h>

Shows or hides the CommandBands control.

Example:

bShow = TRUE;
CommandBands_Show(hBands, bShow);

Where:

• hBands is a handle to the CommandBands control.

• bShow is a BOOL value indicating whether the function should show (TRUE)
or hide (FALSE) the CommandBands control.

CommandBar _AddAdornments()

#include <commctrl.h>

Adds the Close button (X) to the CommandBar. You can also use it to add the
Help button (?) and the OK button.

Example:

DWORD dwFlags = CMDBAR_HELP I CMDBAR_OK;
CommandBar_AddAdornments(hCB, dwFlags, 0);

Where:

• hCB is the handle to the CommandBar.

Page 00553

CommandBar_AddBitmap() 527
--

NOTE

NOTE

• dwFl ags is a DWORD specifying one or more of the following values:

CMDBAR_HELP Add the Help(?) button.

CMDBAR_OK Add the OK button.

The last parameter of this function is reserved and should always be 0.

Command Bar _AddBitmap()

#include <commctrl.h>

Adds a bitmap containing button images to the available CommandBar button
images.

Example:

hCB = CommandBar_Create(hinstance, hwnd, 1);
iBmpiD = IDB_BUTTONS;
iNumimages = 3;
CommandBar_AddBitmap(hCB, hinstance, iBmpiD, iNumimages, 0, 0);

Where:

•
•

•
•

hCB is a handle to the CommandBar .

hinstance is an instance handle to the module containing the bitmap .

i BmpiD is the identifier of the bitmap resource .

i Numlmages is the number of 16 x 16 images contained in the bitmap .

The last two parameters of th is function are reserved ; it appears that it is safe to

pass any integer values.

CommandBar _AddButtons()

#include <commctrl.h>

Adds buttons to an existing Command Bar.

Example:

CommandBar_AddButtons(hCB, iNumButtons, tbButtons);

Page 00554

528 Appendix B • The CE 2.0 API

Where:

• hCB is a handle to the CommandBar.

• i NumButtons is the number of buttons to be added.

• tbButtons is an array of TBBUTTON structures.

The TBBUTTON structure is defined as follows:

typedef struct _TBBUTTON
int iBitmap;
int idCommand;
BYTE fsState;
BYTE fsStyle;
DWORD dwData;
int iString;
} TBBUTTON;

CommandBar _AddToo/Tips()

#include <commctrl .h>

Adds ToolTips hints to the buttons of a CommandBar.

Example:

Command Bar __ AddToolTi ps (hCB, uNumTi ps, l pszTi ps);

Where:

• hCB is a handle to the CommandBar.

• uNumT·i ps is the number of Tool Tip strings to ad d.

• l pszTi psis an array containing uNumTi ps strings containing the tips.

CommandBar _Create()

#include <commctrl.h>

Creates a CommandBar control.

Example:

iCmdiD = 1;
hCB = CommandBar_Create(hinstance, hWnd, iCmdiD);

Page 00555

CommandBar_DrawMenuBar() 529

Where:

• hlnstance is the instance handle of the application.

• hWnd is the handle of the parent window of the Command Bar to be created.

• i CmdiD is an integer used to identify this Command Bar from other Com
mandBars used in the application.

CommandBar _DrawMenuBar()

#include <commctrl.h>

Redraws the CommandBar after one of its menus has been modified.

Example:

CommandBar_DrawMenuBar(hCB, iMenuBar);

Where:

• hCB is a handle to a CommandBar.

• i Menu Bar is the index of the menu within the CommandBar that you wish
to redraw.

Command Bar_ GetMenu()

#include <commctrl.h>

Retrieves the handle to a menu of the Command Bar.

Example:

hCmdBarMenu CommandBar_GetMenu(hCB, iButton);

Where:

• hCB is a handle to a CommandBar.

• i Button is the index of the CommandBar separator button holding the
menu; in most cases, this will be 0.

CommandBar _Height()

#include <commctrl .h>

Returns the height of the Command Bar in pixels.

Page 00556

530 Appendix B • The CE 2.0 API

Example:

CommandBar_Height(hCB);

Where:

• hCB is a handle to the CommandBar whose height you want to know.

CommandBar _lnsertButton(J

#include <commctrl.h>

Inserts a button into the CommandBar.

Example:

CommandBar_InsertButton(hCB, iButton, &tbButton);

Where:

• hCB is a handle to a CommandBar.

• i Button is the index of the button that this new button will be placed to the
left of.

• tbButton is a TBBUTTON structure.

Command Bar _lnsertComboBox(J

#include <commctrl .h>

Inserts a combo box control into the CommandBar.

Example:

iComboiD = 300;
iButton = 4;
hCombo = CommandBar_InsertComboBox(hCB, hinstance, 120,

CBS_DROPDOWNLIST, ID_CMDCOMBO, iButton);

Where:

• hCombo is the handle to the newly created combo box if the function is
successful.

• hCB is a handle to a CommandBar.

• hlnstance is the instance handle of the application.

Page 00557

CommandBar_lnsertMenubar() 531

• CBS_DROPDOWNLIST is a constant specifying the style of combo box to be cre
ated. Any valid "Window Style" constants can be combined for this parameter.

• i ComboiD is an integer used to identify this combo box from other combo
boxes used in the application.

• i Button is the index of the button that the combo box will be placed to the
left of.

CommandBar _lnsertMenubar()

#include <commctrl.h>

Inserts a MenuBar into the CommandBar.

Example:

CommandBar_InsertMenubar(hCB, hlnstance, idMenu, iButton);

Where:

• hCB is a handle to a CommandBar.

• hinstance is the instance handle of the application.

• i dMenu is an integer used to identify this combo box from other combo
boxes used in the application.

• i Button is the index of the button that the combo box will be placed to the
left of.

CommandBar _lnsertMenubarEx()

#include <commctrl.h>

Inserts a menu into a CommandBar.

Example:

CommandBar_InsertMenubarEx(hCB, hlnstance, lpszMenuName, iButton);

Where:

• hCB is the handle to the Command Bar.

• hlnstance is the instance handle of the application.

• 1 pszMenuName is the name of the menu resource.

Page 00558

Appendix B • The CE 2.0 API

TIP

• i Button is the index of the button that the combo box will be placed to the
left of.

The main difference between CommandBar _InsertMenubar() and Command
Bar _InsertMenubarEx() is that with the "-Ex()" version, the menu to be
inserted can be identified by a resource name or by its handle if it has already been
created.

CommandBar _Is Visible()

#include <commctrl.h>

Determines whether or not the CommandBar is visible.

Example:

CommandBar_IsVisible(hCB);

Where:

• hCB is the handle to the CommandBar.

CommandBar _Show()

#include <commctrl.h>

Shows or hides the CommandBar.

Example:

bShow = TRUE;
BOOL CommandBar_Show(hCB, bShow);

Where:

• hCB is a handle to the CommandBar control.

• bShow is a BOOL value indicating whether the function should show (TRUE)
or hide (FALSE) the CommandBar control.

Page 00559

CreateAddressBook() 533

CreateAddressBook()

#include <addrstor.h>

Creates the Contacts database if it doesn't exist.

Example:

int iSortOrderCount = 4;
HHPRTAG hPrTaglist[4] = {HHPR_COMPANY_NAME, HHPR_FILEAS,

HHPR_GIVEN_NAME, HHPR_TITLE};
CreateAddressBook (hPrTagList, iSortOrderCount);

Where:

• hPrTagL i st is an array of HHPRTAG constants specifying the possible sort
orders for the Contacts database. It may contain up to four HHPRTAGs.

• i SortOrderCount is an integer specifying the number of HHPRTAGs in the
hPrTagL i st array.

CreateFileForMapping()

#include <winbase.h>

Creates a memory-mapped file.

Example:

TCHAR szFileName[MAX_PATH] = TEXT("\\data.txt");
wAccess = GENERIC_WRITE;
wShare = 0;
dwCreate = CREATE_ALWAYS;
dwFlags = FILE_ATTRIBUTE_NORMAL;
hSrc = CreateFileForMapping(
szFileName,
wAccess,
wShare,
NULL,
dwCreate,
dwFlags,
NULL);

Page 00560

534 Appendix 8 • The CE 2.0 API

TIP

Where:

•
•

•

•

•

szFi 1 eName is a string specifying the name of the file to open .

wAccess is a WORD specifying the type of access (GENERIC_READ and/ or
GENERIC_WRITE).

wShare is a WORD specifying under what conditions another application may
open or modify the file while you are using it (0 for no access,
FILE_SHARE_READ to permit read access, and FILE_SHARE_WRITE to permit
write access).

dwCreate is a DWORD specifying whether you are attempting to open an
existing file or create a file (CREATE_ALWAYS always creates the file,
OPEN_EXISTING attempts to open an existing file, etc.).

dwFl ags is a DWORD specifying additional file attributes, such as the archive,
hidden, or read-only flags.

The fourth parameter specifies security attributes and the seventh specifies a tem
plate file. Both are always NULL on CE.

DeleteAddressCard()

#include <addrstor.h>

Deletes the specified entry from the Contacts database.

Example:

DeleteAddressCard(oidToDelete);

Where:

• oi dToDel ete is a CEOID specifying the entry (record) to delete.

DeleteAndRenameFile()

#include <winbase.h>

Copies source file to destination file, then deletes source file.

Page 00561

DeregisterDevice() 535

Example:

TCHAR szSource[MAX_PATH] = TEXT("\\MyData.txt");
TCHAR szDest[MAX_PATH] = TEXT("\\Archived\\MyData.txt");
DeleteAndRenameFile(szDest, szSource);

Where:

• szDest is a string specifying the name of the destination file.

• szSource is a string specifying the name of the source file.

DeregisterDevice()

#include <winbase.h>

Deregisters a device previously registered with a call to Regi ste rDevi ce () .

Example:

DeregisterDevice(hDev);

Where:

• hDev is a handle to a device.

EnableEUDC()

#include <wingdi.h>

Enables or disables end user- defined characters (EUDCs). Applies to Asian
language versions of Windows CE.

Example:

BOOL bEnable;
if (IDYES == MessageBox(hWnd, TEXT("Do you want enabl e EUDCs?") ,

TEXT("Question"), MB_YESNO))
{

bEnable = TRUE;

else

bEnable = FALSE;

EnableEUDC(bEnable);

Page 00562

536 Appendix 8 • The CE 2.0 API

TIP

Where:

• bEnab leis a BOOL specifying whether EUDCs are to be enabled (TRUE) or
disabled (FALSE).

EnableHardwareKeyboard()

#include <winuser.h>

If the device has a hardware keyboard, this function can be used to turn it on
or off.

Example:

BOOL bEnable;
if (IDYES == MessageBox(hWnd, TEXT("Do you want to turn on the

keyboard again?"), TEXT("Question"), MB_YESNO))
{

bEnable = TRUE;

else

bEnable = FALSE;

EnableHardwareKeyboard(bEnable);

Where:

• bEnab l e is a BOOL specifying whether EUDCs are to be enabled (TRUE) or
disabled (FALSE).

This function might be useful in situations where the user is concerned about acci
dentally striking keys (for example, when they are entering data with the stylus for
an extended period of time).

FindFirstEntry()

#include <addrstor.h>

Searches the object store for the first item that follows the specified value;
returns the oi d of the matching item.

Page 00563

FindFirstEntry()
537

Example:

if (OpenAddressBaak (NULL, HHPR_FILEAS))
{

value
TCHAR szTaMatch [MAX_PATH] = TEXT(" J"); I /find first '''fall . .

aw1ng"

dwFlags = 0;
aid= FindFirstEntry(szTaMatch, HHPR_FILEAS, &ilndex d Fl)

• w ags ;
Where:

•
•

•

oi d is the CEOID of the first item following the searched-for value .

szToMatch is a string specifying a value to search for .

HHPR_COMPANY _NAME is an HHPRTAG, one of numerous possible constants
specifying the property (field) to search on. Other possible values include

• HHPR_ANNIVERSARY

• HHPR_ASSISTANT_NAME

• HHPR_ASSISTANT _ TELEPHONE_.NUMBER

• HHPR_BIRTHDAY

• HHPR_BUSINESS_FAX_NUMBER

• HHPR_CAR_TELEPHONE_NUMBER

• HHPR_CATEGORY

• HHPR_CHILDREN_NAME

• HHPR_COMPANY_NAME

• HHPR_CUSTOM_DISPLAY_FIELDS

• HHPR_DEPARTMENT_NAME

• HHPR_EMAILl_EMAIL_ADDRESS

• HHPR_EMAIL2_EMAIL_ADDRESS

• HHPR_EMAIL3_EMAIL_ADDRESS

• HHPR_GENERATION

• HHPR_GIVEN_NAME

• HHPR_HOME2_TELEPHONE_NUMBER

Page 00564

538 Appendix B • The CE 2.0 API

• HHPR_HOME_ADDRESS_CITY

• HHPR_HOME_ADDRESS_COUNTRY

• HHPR_HOME_ADDRESS_POSTAL_CODE

• HHPR_HOME_ADDRESS_STATE

• HHPR_HOME_ADDRESS_STREET

• HHPR_HOME_FAX_NUMBER

• HHPR_HOME_TELEPHONE_NUMBER

• HHPR_MIDDLE_NAME

• HHPR_MOBILE_TELEPHONE_NUMBER

• HHPR_NAME_PREFIX

• HHPR_NOTES

• HHPR_OFFICE_ADDRESS_CITY

• HHPR_OFFICE_ADDRESS_COUNTRY

• HHPR_OFFICE_ADDRESS_POSTAL_CODE

• HHPR_OFFICE_ADDRESS_STATE

• HHPR_OFFICE_ADDRESS_STREET

• HHPR_OFFICE_LOCATION

• HHPR_OFFICE_TELEPHONE_NUMBER

• HHPR_OFFICE2_TELEPHONE_NUMBER

• HHPR_OTHER_ADDRESS_CITY

• HHPR_OTHER_ADDRESS_COUNTRY

• HHPR_OTHER_ADDRESS_POSTAL_CODE

• HHPR_OTHER_ADDRESS_STATE

• HHPR_OTHER_ADDRESS_STREET

• HHPR_PAGER_NUMBER

• HHPR_SPOUSE_NAME

Page 00565

FreeAddressCard() 539

• HHPR_ SURNAME

• HHPR_TITLE

• HHPR_WEB_ PAGE

• HHPR_YOMI_ NAME //Japanese CE only

• HHPR_YOMI_COMPANY //Japanese CE only

• i Index is an integer used by the function to return the index of the match

ing item.

• dwFl ags is either 0 or FFE_CONTAINS. Specifying FFE_CONTAINS searches for
the first value following and containing szToMatch.

FreeAddressCard()

#include <addrstor.h>

Frees memory allocated by calls to OpenAddressCard() or
GetAddressCardProperties().

Example:

AddressCard ac;
GetAddressCardProperties(oidCard, &ac, 8, rghhProp);
// ... do something ...
FreeAddressCard(&ac);

Where:

• ac is an AddressCard structure.

The AddressCard structure is defined as follows:

typedef struct _AddressCard
SYSTEMTIME stBirthday;
SYSTEMTIME stAnniversary;
TCHAR *pszBusinessFax ;
TCHAR *pszCompany;
TCHAR *pszDepartment;
TCHAR *pszEmail;
TCHAR *pszMobilePhone;
TCHAR '''pszOffi celocati on;
TCHAR *pszPager;
TCHAR *pszWorkPhone;

Page 00566

, 540 , Appendix 8 • The CE 2.0 API

TCHAR "'pszTitle;
TCHAR *pszHomePhone;
TCHAR *pszEmail2;
TCHAR *pszSpouse;
TCHAR '~pszNotes;

TCHAR '~pszEmai 13;
TCHAR *pszHomePhone2;
TCHAR *pszHomeFax;
TCHAR '~pszCarPhone;
TCHAR *pszAssistant;
TCHAR *pszAssistantPhone;
TCHAR *pszChildren;
TCHAR '~pszCategory;
TCHAR '~pszWebPage;
TCHAR *pszWorkPhone2;
TCHAR '~pszNamePrefi x;
TCHAR '"'pszGi venName;
TCHAR *pszMiddleName;
TCHAR "'pszSu rname;
TCHAR *pszGeneration;
TCHAR *pszHomeAddrStreet;
TCHAR *pszHomeAddrCity;
TCHAR *pszHomeAddrState;
TCHAR *pszHomeAddrPostalCode;
TCHAR *pszHomeAddrCountry;
TCHAR "'pszOtherAddrStreet;
TCHAR *pszOtherAddrCity;
TCHAR *pszOtherAddrState;
TCHAR *pszOtherAddrPostalCode;
TCHAR *pszOtherAddrCountry;
TCHAR *pszOfficeAddrStreet;
TCHAR *pszOfficeAddrCity;
TCHAR '"'pszOffi ceAddrState;
TCHAR '~pszOffi ceAddrPostalCode;
TCHAR *pszOfficeAddrCountry;
BYTE *rgbReserved[84]
} AddressCard;

FtpCommand()

#include <wininet.h>

Sends the specified command to an FTP server.

Page 00567

GetAddressCardlndex() 541

Example:

BOOL bResponse = TRUE;
char szCmd[MAX_PATH] = "HELP\r\n";
DWORD dwFlags = FTP_TRANSFER_TYPE_ASCII;
DWORD dwContext = 100;
WINAPI FtpCommand(hFtpSession, bResponse, dwFlags, szCmd,

dwContext);

Where:

• hFtpSessi on is a handle to an open FTP session.

• bResponse is a BOOL indicating whether the command being sent will gen
erate a response; in this example, it will generate a response.

• dwFl ag is a DWORD specifying the type of data being sent. Can be one (but
not both) of the following:

FTP _TRANSFER_TYPE_ASCII ASCII data transfer

FTP _TRANSFER_TYPE_BINARY Binary data transfer

• szCmd is a string containing the command to send to the server.

• dwContext is a DWORD used to uniquely identify this command for use with
the status callback functions.

GetAddressCardlndex()

#include <addrstor.h>

Retrieves index of an address card in the contacts database, given its CEOID.

Example:

ilndex = GetAddressCardindex(oidAC);

Where:

• i Index is an integer that will receive the index of the address card or a
value indicating an error. This zero-based index is based on the current sort
order of the Address Book.

• oi dAC is the CEOID of the address card whose index the function will
retrieve.

Page 00568

542 Appendix B • The CE 2.0 API

GetAddressCardOid()

#include <addrstor.h>

Retrieves the CEOID of an address card given its index.

Example:

oidAC = GetAddressCardOid(iindex);

Where:

• oi dAC is the CEOID of the address card whose index is being passed to the
function.

• i Index is an integer specifying the index of the address card.

GetAddressCardProperties()

#include <addrstor.h>

Opens an address card and returns its properties.

Example:

AddressCard ac;
int iPropCount = 7; //retrieve 7 properties
HHPRTAG ptProps[7] = {HHPR_SURNAME, HHPR_GIVEN_NAME, HHPR_TITLE,

HHPR_OFFICE_LOCATION, HHPR_OFFICE_TELEPHONE_NUMBER,
HHPR_BUSINESS_FAX_NUMBER, HHPR_ANNIVERSARY};

GetAddressCardProperties(oidCard,&ac,iPropCount, ptProps);

Where:

• oi dCard is the CEOID of the card whose properties the function will retrieve.

• ac is an AddressCard structure. The members of the AddressCard structure
that correspond to the properties requested will contain the values of those
properties when the function returns.

• i PropCount is an integer specifying the number of properties requested.

• ptProps is an array containing i PropCount HHPRTAG values. See Find
Fi rstEntry() for a list of possible values for"this parameter.

Page 00569

GetC/ipboardDataAI/oc() 543

GetCiipboardDataA/Ioc()

#include <winuser.h>

Allocates memory for and returns a handle to the data in the clipboard. This
handle to memory must be freed later by the application via a call to Loca 1-
Free() .

Example:

UINT uTypeOfData = CF_TEXT;
TCHAR *szClipData;
szClipData = (TCHAR *) GetClipboardDataAlloc(uTypeOfData);

Where:

• szCl i pData is a buffer (in this case, a TCHAR buffer) that will point to the
data in the clipboard when the function returns.

• uTypeOfData is UINT specifying the format of the clipboard data. Common
values include

CF _UNICODETEXT The clipboard contains (Unicode) text data.

CF _BITMAP The clipboard contains bitmap data.

GetColumnProperties()

#include <addrstor.h>

Retrieves an array of properties representing the properties on which the Con
tacts database can be sorted.

Example:

int iColCount = 4; //maximum# of properties the function can
return.

HHPRTAG ptProps[4]; //reserve enough space for maximum # of
properties

GetColumnProperties(&ptProps[O], &iColCount);

Where:

• ptProps is an array of HHPRTAG property specifiers. See GetAddressCard
Properti es() for a list of possible HHPRTAG values. The function returns a
maximum of four HHPRTAG values in the array.

• i Co 1 Count is an integer specifying the number of HHPRTAG props actually
returned by the function.

Page 00570

I 544 Appendix B • The CE 2.0 API ---
GetMatchingEntry(J

#include <addrstor.h>

Searches specified text-based property of the Contacts database for a matching
value.

Example:

CEOID oidMatch;
HHPRTAG ptProp;
TCHAR szToMatch[MA)(_PATH] "'TEXT("billg@microsoft.com"); //find

matching value
iToMatchlen "'_tcslen(szToMatch);
TCHAR szPropToSearch[MAX_PATH] = TEXT("Internet");
if (OpenAddressBook (NULL,NULL))
{

GetMatchingEntry(szToMatch, iToMatchLen, szPropToSearch,
&oidMatch, &ptProp);

// ...

Where:

• szToMatch is a string specifying a value to search for.

• iToMatchlen is an integer specifying the length of szToMatch.

• szPropToSearch is the name of the Contacts database property (field) to
search.

• oi dMatch is a CEOID the function uses to return the CEOID of the matching
record.

• ptProp is an HHPRTAG value the function uses to return the HHPRTAG of the
matching record. See GetAddressCardProperti es() for a list of possible
HHPRTAG values.

GetMessageSource(J

#include <winuser.h>

Used to determine the origin of a keyboard-related message.

Example:

UINT iMsgSource;
iMessageSource = GetMessageSource();

Page 00571

GetMouseMovePoints() 545

Where:

• i MessageSou rce is a UINT value, which when the function returns will con-
tain one of the following values:

MSGSRC_SOFTWARE_POST Another application generated the
sent or posted the keyboard message to our application.

MSGSRC_HARDWARE_KEYBOARD The user actually struck a key
on the keyboard to generate this message.

MSGSRC_UNKNOWN Source of the keyboard message is unknown.

GetMouseMovePoints()

#include <winuser.h>

Retrieves an array of POINTs indicating all of the points the mouse or stylus has
been at for the current mouse-/stylus-related message. The advantage of this is
that typically these points are recorded at too high a rate for an application to
properly handle them. This function, then, allows for higher-resolution tracking
of the stylus or mouse.

WARNING

Example:

POINT ptPointArray[lO]; //reserve room for up to 10 POINT
structures

UINT uPointCount = 10; //# of elements in array
UINT uPointsRetrieved;
GetMouseMovePoints(&ptPointArray, uPointCount, &uPointsRetreived);

Where:

•

•

•

ptPoi ntArray is an array of POINT structures .

uPoi ntsCount is a UINT specifying the number of POINT structures in
ptPoi ntArray.

u Poi ntsRet ri eved is a UINT the function will use to indicate how many
points it actually wrote to ptPoi ntArray.

This function does not exist under the CE emulators!

Page 00572

546 Appendix B • The CE 2.0 API

GetNumberOfAddressCards()

#include <addrstor.h>

Retrieves the number of address cards (records) in the Contacts database.

Example:

int iAddressCardCount;
iAddressCardCount = GetNumberOfAddressCards();

Where:

• i Add res sCardCount is an integer that will receive the return value indicat
ing the number of address cards.

GetPropertyDataStruct()

#include <addrstor.h>

Retrieves information about a property in the Contacts database.

Example:

int fFlag = GPDS_PROPERTY;
ULONG uPropiD = HHPR_COMPANY_NAME;
PropertyDataStruct pds;
GetPropertyDataStruct(fFlag, uPropiD, &pds);

Where:

• fFl ag is an integer specifying how the function should search for the prop-
erty. Possible values are

GPDS_INDEX Treat the function's second parameter as the index of
the property to search for.

GPDS_NAME Treat the function's second parameter as a string speci
fying the name of the function.

GPDS_PROPERTY Treat the function's second parameter as an
HHPROPTAG value, as in the example above.

• uP rapiD is a ULONG value. Its purpose depends on the value of the first
parameter.

• pds is a PropertyDataStruct structure the function will use to return infor
mation about the specified property.

Page 00573

GetSortOrder() 547

GetSortOrder()

#include <addrstor.h>

Retrieves the property on which the Contacts database is currently sorted.
Returns the property tag of this property.

Example:

BOOL bTrueSort = TRUE;
HHPRTAG hptPropSortOrder;
hptPropSortOrder = GetSortOrder(bTrueSort);

Where:

• hptPropSortOrder is an HHPRTAG value that is being used to store the
return value of the function, identifying the property on which the Contacts
database is currently sorted.

• bTrueSort is a BOOL specifying whether the function should return the
property tag of the property the database is actually sorted on (TRUE), or
the property tag of the property the user thinks the database is sorted
on (FALSE). For example, although the database might be sorted on the
HHPR_GIVEN_NAME, it would appear to the user to be sorted on the HHPR_
FIRST _LAST _NAME property.

GetStorelnformation()

#include <winbase.h>

Returns information about free space of the CE device's object store.

Example:

STORE_INFORMATION siinfo;
CeGetStoreinformation(&siinfo);

Where:

• si Info is a STORE_INFORMATION structure to be filled with the information
about the object store.

The STORE_ INFORMATION structure is defined as follows:

typedef struct STORE_INFORMATION
DWORD dwStoreSize;
DWORD dwFreeSize;
} STORE_INFORMATION

Page 00574

548 Appendix B • The CE 2.0 API

GetSystemPowerStatusEx()

#include <winbase.h>

Retrieves information about the CE device's power source.

Example:

bMostCurrentinfo = FALSE;
CeGetSystemPowerStatusEx(&psPowerStatus, bMostCurrentinfo);

Where:

• psPowerStatus is a SYSTEM_POWER_STATUS_EX structure.

• bMostCurrentinfo is a BOOL value indicating whether the function should
query the device driver directly for the most up-to-date information, or
whether it should use cached information that may be several seconds old.

The SYSTEM_POWER_STATUS_EX structure is defined as follows:

typedef struct _SYSTEM_POWER_STATUS_EX
BYTE ACLineStatus;
BYTE BatteryFlag;
BYTE BatterylifePercent;
BYTE Reservedl;
DWORD BatterylifeTime;
DWORD BatteryFulllifeTime;
BYTE Reserved2;
BYTE BackupBatteryFlag;
BYTE BackupBatterylifePercent;
BYTE Reserved3;
DWORD BackupBatterylifeTime;
DWORD BackupBatteryFulllifeTime;
} SYSTEM_POWER_STATUS_EX;

lmageList_Duplicate()

#include <commctrl.h>

Creates a duplicate or copy of an existing image list.

Example:

HIMAGELIST himglistNew;
himglistNew = Imagelist_Duplicate(himglistOld);

Page 00575

lnitCommonControlsEx() 549

Where:

• hlmgl i stNew is a handle to an image list. If the function is successful,
hlmgl i stNew will be a handle to a new image list containing the same
images as hlmgl i stOld.

• hlmgl i stOl dis a handle to the image list to be copied.

lnitCommonControlsEx()

#include <commctrl.h>

Initializes the commctrl. dlllibrary and makes the requested controls available
to the calling application.

Example:

INITCOMMONCONTROLSEX icinitCommCtrl;
iclnitCommCtrl .dwSize = sizeof(INITCOMMONCONTROLSEX);
icinitCommCtrl .dwiCC = ICC_TREEVIEW_CLASSES;
InitCommonControlsEx(&iclnitCommCtrl);

Where:

• i cini tCommCtrl is an INITCOMMONCONTROLSEX structure. The dwiCC mem
ber of this structure specifies which controls are being requested from the
commctrl. dll. The dwiCC member can be any combination of the following
values:

ICC_BAR_CLASSES "Bar" controls: toolbar, status bar, trackbar, and
Command Bar

ICC_ COOL_ CLASSES Rebar control

ICC_DATE_CLASSES Date and date-time picker controls

ICC_LISTVIEW _CLASSES Listview and header controls

ICC_PROGRESS_CLASS ProgressBar control.

ICC_TAB_CLASSES Tab controls

ICC_TREEVIEW_CLASSES Treeview control

ICC_UPDOWN_CLASS Up-down control

Page 00576

550 Appendix B • The CE 2.0 API

NOTE

The INITCOMMONCONTROLSEX structure is defined as follows:

typedef struct tagiNITCOMMONCONTROLSEX
DWORD dwSize;
DWORD dwiCC;
} INITCOMMONCONTROLSEX;

lnitlnkX()

#include <richink . h>

Initializes the Ink control libraries; must be called before attempting to use the
Ink control.

Example:

Ini tinkX();

This function takes no parameters and does not return a value.

WARNING You must always call Ini tCommonControl s() before calling Ini tinkX()

TIP

lnitHTMLControl()

#include <htmlctrl.h>

Initializes the HTML control.

Example:

InitHTMLControl(hinstance);

Where:

• hlnstance is a handle to the application's instance .

Although the documentation says, "An application must load the HTML control
library Html view. dll" before calling Ini tHTMLContro l (), this is not necessary.
Simply calling Ini tHTMLControl ()is enough.

Page 00577

JnterJockedTestExchange() 551

lnterlockedTestExchange()

#include <winbase.h>

Conditionally sets the value of a LONG variable, guaranteeing that the values
will be successfully exchanged via synchronization in the case of multiple threads
accessing the variables.

Example:

LONG lTarget = 444;
LONG lOldVal = 444;
LONG lNewVal = 42;
InterlockedTestExchange(lTarget, lOldVal, lNewVal);

Where:

• l Target is a LONG variable whose value the function will conditionally
replace.

• l Ol dVa l is a LONG value the function uses to determine whether or not it
should replace the value of lTarget. If lTarget and 101 dVa 1 are equal,
then the function will replace the value of lTarget.

• l NewVa l is a LONG value the function will assign to lTarget providing that
l Target is equal to l Ol dVa l.

MaiiCiose()

#include <msgstore.h>

Closes an open message store handle.

Example:

MailClose(hMsgStore);

Where:

• hMsgStore is an open handle to the message store.

Mai/Delete()

#include <msgstore.h>

Deletes a mail message from the message store.

Page 00578

552 Appendix B • The CE 2.0 API

Example:

MailDelete(hMsgStore, &mmMsg);

Where:

• hMsgStore is an open handle to the message store.

• mmMsg is a Mai lMsg structure specifying the message to be deleted.

The Mai 1 Msg structure is defined as follows:

typedef struct MailMsg
DWORD dwMsgid;
DWORD dwFlags;
DWORD dwMsglen;
WORD wBodylen;
FILETIME ftDate;
LPWSTR szSvcid;
LPWSTR szSvcNam;
WCHAR *pwcHeaders;
LPWSTR szBody;
CEOID oid;
HANDLE hHeap
} MailMsg;

MaiiDeleteAttachment()

#include <msgstore.h>

Deletes a mail message's attachment.

Example:

BOOL bDeleteEntire =TRUE;
MailDeleteAttachment (hMsgStore, &mmMsg, maAttach, bDeleteEntire);

Where:

• hMsgStore is an open handle to the message store.

• mmMsg is a Mai lMsg structure specifying the mail message to which the
attachment belongs.

• maAttach is a Mai lAtt structure specifying the attachment to be deleted.

• bDe 1 eteEnti re specifies whether the entire attachment is to be deleted
(TRUE) or whether the header of the attachment should be retained (FALSE).

Page 00579

The Mai lAtt structure is defined as follows:

typedef struct MailAtt_s
UINT uiAttachmentNumber;
DWORD dwFlags;
ULONG ulCharacterPosition;
ULONG ulSize;
LPWSTR szOriginalName;
LPWSTR szlocalName;
} MailAtt;

Mail Error()

#include <msgstore.h>

Mai!Error() 553

Comparable to GetlastError(); returns a numeric code for the last error that
was caused by a Message Store function.

Example:

i nt i Error;
iError = MailError(hMsgStore);

Where:

• i Error is an integer used to store the result of the function.

• hMsgStore is an open handle to the message store.

MaiiErrorMsg()

#include <msgstore.h>

Comparable to FormatMessage(); formats a string error message based on the
last error that was caused by a Message Store function. Also provides the numeric
identifier of the last error as its return value.

Example:

int iError;
i nt i L i neNo;
TCHAR szError[MAX_PATH];
iError = MailError(hMsgStore, szError, MAX_PATH, &ilineNo);

Where:

• i Error is an integer used to store the result of the function.

• hMsgStore is an open handle to the message store.

Page 00580

554 Appendix B • The CE 2.0 API

•

•
•

WARNING

s z Error is a string that, if the function is sucessful, will contain a text mes
sage indicating the error that occurred.

MAX_PATH specifies the length, in bytes, of szError .

i L i neNo is an integer the function uses to return the line number on which
the error occurred.

This function is provided as an alternative to Mail Error().

Mail First()

#include <msgstore.h>

Retrieves the first message matching the specified criteria.

Example:

if (MailOpen(&hMsgStore, FALSE))
{

mmMsg.dwFlags = MAIL_FOLDER_INBOX I MAIL_FULL;
MailFirst(hMsgStore, &mmMsg);
// ...

MailClose(hMsgStore);

Where:

• hMsgStore is an open handle to the message store.

• mmMsg is a Mai 1 Msg structure specifying the mail message to retrieve.

The MailMsg structure is defined as follows:

typedef struct MailMsg
DWORD dwMsgid;
DWORD dwFlags;
DWORD dwMsglen;
WORD wBodylen;
FILETIME ftDate;
LPWSTR szSvcid;
LPWSTR szSvcNam;
WCHAR *pwcHeaders;
LPWSTR szBody;

Page 00581

CEOID oid;
HANDLE hHeap
} MailMsg;

Mai/Free()

#include <msgstore.h>

Mai/Free() 555

Frees memory allocated by calls to Mail First(), Mai lGet(), or Mail Next() .

Example:

if (MailOpen(&hMsgStore, FALSE))

mmMsg.dwFlags = MAIL_FOLDER_INBOX I MAIL_FULL;
MailFirst(hMsgStore, &mmMsg);
I/ .. .
// ... done w/ message, so free memory
MailFree(&mmMsg);

MailClose(hMsgStore);

Where:

• hMsgStore is an open handle to the message store.

• mmMsg is a Mai lMsg structure specifying the mail message to retrieve.

Mail Get()

#include <msgstore.h>

Retrieves specified mail entry from the message store.

Example:

if (MailOpen(&hMsgStore, FALSE))

memset(&mmMsg, 0, sizeof(MailMsg));
mmMsg.dwFlags = MAIL_FOLDER_INBOX I MAIL_FULL;
MailGet(hMsgStore, &mmMsg);
// .. .
// ... done w/ message, so free memory
MailFree(&mmMsg);

MailClose(hMsgStore);

Page 00582

§] Appendix B • The CE 2.0 API

Where:

• hMsgStore is an open handle to the message store.

• mmMsg is a Mai 1 Msg structure specifying the mail message to retrieve.

Mai/GetA ttachment()

#include <msgstore.h>

Retrieves an attachment to a mail message.

Example:

MailAtt maAtt;
MailMsg mmMsg;
if (MailFirst(hMsgStore, &mmMsg))
{

II see if any attachments in this message
if (mmMsg.dwFlags & MAIL_STATUS_ATTACHMENTS)

MailGetAttachment (hMsgStore, &mmMsg, &maAtt);

Where:

• hMsgStore is an open handle to the message store.

• mmMsg is a Mai 1 Msg structure specifying the mail message whose attachment
you want to retrieve.

• maAttachment is a Mai lAtt structure the function will use to return the
attachment.

The Mai lAtt structure is defined as follows:

typedef struct MailAtt_s
UINT uiAttachmentNumber;
DWORD dwFlags;
ULONG ulCharacterPosition;
ULONG ulSize;
LPWSTR szOriginalName;
LPWSTR szlocalName;
} MailAtt;

Page 00583

Mai/GetField()

#include <msgstore.h>

Retrieves a specified header field from the mail message.

Example:

LPWSTR szFieldName = TEXT("Subject");
bGetName = FALSE;
MailGetField(&mmMsg, szFieldName, bGetName);

Where:

Mai/Getfield() 557

• mmMsg is a Mai 1 Message previously retrieved with a call to Mai 1 First(),
Mail Get(), etc.

• szFi el dName is the name of the mail message field to retrieve. Possible val
ues include

"Subject" Retrieves the subject field of the message.

"To" Retrieves the recipient field of the message.

''From" Retrieves the sender field of the message.

"CC" Retrieves the carbon-copy-recipient field.

• bGetName is a BOOL indicating whether the function should retrieve the
name of the field (e.g., "Subject") or the actual contents of the field. A TRUE
value retrieves the field name; a FALSE value retrieves the contents.

Mai/GetFolderld()

#include <msgstore.h>

Retrieves the ID number of a mail folder from the message store.

Example:

BYTE iFolderiD; //will receive ID of folder if successful.
LPWSTR szFolderName = TEXT("Inbox");
MailGetFolderid(hMsgStore, &iFolderiD, szFolderName);

Where:

• hMsgStore is an open handle to the message store.

Page 00584

558 Appendix B • The CE 2.0 API

• i F o 1 de rID is an integer the function will use to return the 10 number of the
folder specified.

• szFol derName is a string specifying the name of the folder whose ID you
want to retrieve.

MaiiGetFolderName()

#include <msgstore.h>

Retrieves the name of a mail folder from the message store.

Example:

WCHAR szFolderName[MAX_PATH];
int ilen ~ MAX_PATH;
int iFolderiD = MAIL_FOLDER_OUTBOX;
MailGetFolderName(hMsgStore, &iFolderiD, &ilen, szFolderName);

Where:

• hMsgStore is an open handle to the message store.

• i Fo 1 de riD is an integer the function will use to return the ID number of the
folder specified. Predefined system folder IDs include

MAIL_FOLDER_INBOX Inbox Folder

MAIL_FOLDER_OUTBOX Outbox Folder

MAIL_FOLDER_SENT Sent Folder

• i Len is the maximum length of szFol derName.

• szFo 1 derName is a string specifying the name of the folder whose ID you
want to retrieve.

MaiiGetSort()

#include <msgstore.h>

Retrieves the information about the current sort order of the open message store.

Page 00585

TIP

Example:

MAILSORTINFO msiSortinfo;
if (MailGetSort (hMsgStore, &msiSortinfo))

if (msiSortinfo == MAIL_SORT_FROM)

//do something ...

Where:

• hMsgStore is an open handle to the message store.

• msi Sortinfo is a MAILSORTINFO structure.

The MAILSORTINFO structure is defined as follows:

typedef struct _MAILSORTINFO
MAILSORTFIELD iSort;
BOOL fAscending;
int cMsgs;
} MAILSORTINFO;

MaiiGetSvcld()

#include <msgstore.h>

Mai/GetSvcld() 559

Retrieves the CEOID (object identifier) of a mail message from the message store
based on the value of the szSvcid and szSvcNam (service identifier) fields of the
Mail Msg structure.

Example:

MailGetSvcid(hMsgStore, &mmMsg);

Where:

•

•

hMsgStore is an open handle to the message store .

mmMsg is a Mai lMessage structure that contains values for the szSvcid and
szSvcNam fields.

The "service identifier" is a string that uniquely identifies a mail message.

Page 00586

560 Appendix B • The CE 2.0 API

Mai/HeaderLen()

#include <msgstore.h>

Returns the size, in characters, of a mail message's header.

Example:

DWORD dwHeaderlen;
dwHeaderlen = MailHeaderlen(&mmMailMsg);

Where:

• dwHeaderLen is a DWORD used to store the return value of the function.

• mmMai lMsg is a Mai lMsg structure.

Mai/Loca/A ttachmentLen()

#include <msgstore.h>

Returns the total size of a mail message's attachments.

Example:

DWORD dwTotalAttSize;
MaillocalAttachmentlen(hMsgStore, &mmMsg);

Where:

• dwTota 1 AttSi ze is a DWORD used to store the return value of the function.

• mmMai lMsg is a Mai lMsg structure.

Mai/Next()

#include <msgstore.h>

Used in conjunction with Mai 1 First(); retrieves the next mail message match
ing the criteria specified in Mai 1 First().

Example:

MailNext(hMsgStore, &mmMailMsg);

Where:

• hMsgStore is an open handle to the message store.

• mmMsg is a Mai lMessage structure that the function will use to return the
next matching message.

Page 00587

Mai!Open() 561

Mai/Open()

#include <msgstore.h>

Opens the me~sage store and obtains a handle to the mail context.

Example:

HANDLE hMsgStore;
BOOL bAllowCreate = TRUE;
MailOpen(&hMsgStore, bAllowCreate);

Where:

• hMsgStore is a handle; if the function is successful, it will be a handle to the
message store.

• bAll owCreate is a BOOL specifying whether you'd like the message store to
be created if it does not exist.

Mail Open Notify()

#include <msgstore.h>

Opens the message store, obtains a handle to the mail context, and specifies
that the calling application should receive notification if the message store is
modified while the application is accessing it.

Example:

HANDLE hMsgStore;
BOOL bAllowCreate =TRUE;
MailOpenNotify(&hMsgStore, bAllowCreate, hWnd);

Where:

• hMsgStore is a handle; if the function is successful, it will be a handle to the
message store.

• bA 11 owCreate is a BOOL specifying whether you'd like the message store to
be created if it does not exist.

• hWnd is the handle to the window that should receive the notification
messages.

Page 00588

562 Appendix B • The CE 2.0 API

Mail Put()

#include <msgstore.h>

Retrieves specified mail entry from the message store.

Example:

if (MailOpen(&hMsgStore, FALSE))
{

II ...
//fill in mmMsg structure here
// ...
MailPut(hMsgStore, &mmMsg);
// ...

MailClose(hMsgStore);

Where:

• hMsgStore is an open handle to the message store.

• mmMsg is a Mail Msg structure specifying the mail message to retrieve.

MaiiPutA ttachment()

#include <msgstore.h>

Appends or modifies an attachment to a mail message.

Example:

MailAtt maAtt;
MailMsg mmMsg;
if (MailFirst(hMsgStore, &mmMsg))
{

// ...
//make any modifications to maAtt here
II
MailPutAttachment (hMsgStore, &mmMsg, &maAtt);

Where:

• hMsgStore is an open handle to the message store.

Page 00589

NOTE

Mai/PutFo/der() 563

• mmMsg is a Mai lMsg structure specifying the mail message whose attachment
you want to retrieve.

• maAttachment is a Mail Att structure the function will use to return the
attachment

To append the attachment to the mail message, set uiAttachmentNumber mem

ber of the Mail Att structure to be one higher than the ui AttachmentNumbe r of
the last attachment of the message; to update an existing attachment, set ui At
tachmentNumber to the ui AttachmentNumber value of the existing attachment.

Mai/PutFolder()

#include <msgstore.h>

Creates, deletes, or renames mail folders.

Example:

//create a folder
LPWSTR szFolderName = TEXT("Spam Mail ");
BYTE iFolderiD = 224;
MailPutFolder(hMsgStore, &iFolderiD, szFolderName);

Where:

• hMsgStore is an open handle to the message store.

• i Fo l de riD is an integer used to uniquely identify the folder; must be
between 0 and 255.

• szFo 1 derName is a string specifying the name of the folder to create or
rename. To delete a folder, set this value to NULL.

MaiiRequestA ttachment()

#include <msgstore.h>

Requests and/ or downloads an attachment to a mail message that has not yet
been saved to the local machine.

Page 00590

564 Appendix B • The CE 2.0 API

Example:

MailAtt maAtt;
MailMsg mmMsg;
BOOL bDownload = TRUE;
if (MailFirst(hMsgStore, &mmMsg))
{

II see if there are un-retrieved attachments
if (mmMsg.dwFlags & MAIL_STATUS_ATT_REQ)

bDownload);
}

Where:

MailRequestAttachment(hMsgStore, &mmMsg, &maAtt,

• hMsgStore is an open handle to the message store.

• mmMsg is a Mai lMsg structure specifying the mail message whose attachment
you want to download.

• maAttachment is a Mai lAtt structure the function will use to return the
attachment.

• bDownload is a BOOL value specifying whether to download the attachment
(TRUE) or cancel a previous request (FALSE) to download the attachment.

Mai/SetField()

#include <msgstore.h>

Sets a specified header field from the mail message.

Example:

LPWSTR szFieldName = TEXT("Subject");
LPWSTR szVal = TEXT("A New Subject!");
MailSetField(&mmMsg, szFieldName, szVal);

Where:

• mmMsg is a Mai lMessage previously retrieved with a call to Mai 1 First(),
Mail Get(), etc.

Page 00591

Mai/SetSort() 565

• szFi e l dName is the name of the mail message field to retrieve. Possible val
ues include

"Subject" Retrieves the subject field of the message.

"To" Retrieves the recipient field of the message.

"From" Retrieves the sender field of the message.

"CC" Retrieves the carbon-copy-recipient field ... or any custom
header you'd like to add to the message.

• szVa l is a string specifying a value for the header field. If this parameter is
NULL, the header field will be deleted.

Mai/SetSort()

#include <msgstore.h>

Sets the sort order for the messages of an open message store handle.

Example:

MAILSORTFIELD msfSort = MAIL_SORT_DATE;
MailSetSort(hMsgStore, &msfSort)

Where:

• hMsgStore is an open handle to the message store.

• msfSort is a MAILSORTFIELD value specifying how the messages are to be
sorted.

The MAILSORTFIELD is an enumeration defined as follows:

typedef enum {
MAIL_SORT_FROM,
MAIL_SORT_SUBJ,
MAIL_SORT_DATE,
MAIL_SORT_SIZE
} MAILSORTFIELD;

Page 00592

566 Appendix B • The CE 2.0 API

Mai/Update()

#include <msgstore.h>

Updates an existing mail message entry in the message store.

Example:

BOOL bUpdateAllFields =TRUE;
MailUpdate(hMsgStore, &mmMsg, bUpdateAllFields);

Where:

• hMsgStore is an open handle to the message store.

• mmMsg is a Mai lMessage structure that contains the updated information.

• bUpdateA ll Fields is a BOOL specifying whether all of the existing mes
sage's fields should be overwritten (TRUE) or just those specified in the
dwFl ags member of mmMsg.

ModifyAddressCard()

#include <addrstor.h>

Saves changes to an address card back to the Contacts database.

Example:

AddressCard ac;
CEOID oid;
int iindex;
// ...
//obtain oid of card to modify ... then
//populate AddressCard ac
// ...
ModifyAddressCard(&ac, oid, &iindex);

Where:

• ac is an AddressCard structure containing the values to be written back to
the Contacts database.

• oi d is the CEOID of the card (record) to modify.

• i Index is an integer the function will use to return the index of the modified
record.

Page 00593

The AddressCard structure is defined as follows:

typedef struct _AddressCard
SYSTEMTIME stBirthday;
SYSTEMTIME stAnniversary;
TCHAR *pszBusinessFax;
TCHAR '''pszCompany;
TCHAR *pszDepartment;
TCHAR "'pszEmai 1 ;
TCHAR '''pszMobi 1 ePhone;
TCHAR *pszOfficelocation;
TCHAR *pszPager;
TCHAR "'pszWorkPhone;
TCHAR '''pszTit1e;
TCHAR '~pszHomePhone;

TCHAR '~pszEma i 12;
TCHAR "'pszSpouse ;
TCHAR '''pszNotes;
TCHAR *pszEmai13;
TCHAR *pszHomePhone2;
TCHAR ''' pszHomeFax;
TCHAR "'pszCarPhone;
TCHAR '~ pszAssi stant;
TCHAR *pszAssistantPhone;
TCHAR "'pszChi 1 dren;
TCHAR '''pszCategory;
TCHAR '''pszWebPage;
TCHAR *pszWorkPhone2;
TCHAR *pszNamePrefix;
TCHAR "' pszGi venName;

' TCHAR '''pszMi dd1 eName;
TCHAR 1'pszSurname;
TCHAR "'pszGene ration;
TCHAR *pszHomeAddrStreet;
TCHAR *pszHomeAddrCity ;
TCHAR *pszHomeAddrState;
TCHAR *pszHomeAddrPosta1Code;
TCHAR *pszHomeAddrCountry;
TCHAR *pszOtherAddrStreet;
TCHAR '''pszOtherAddrCi ty;
TCHAR *pszOtherAddrState;
TCHAR *psz0therAddrPosta1Code;

ModifyAddressCard() 567

Page 00594

568 Appendix B • The CE 2.0 API

TCHAR *pszOtherAddrCountry;
TCHAR *pszOfficeAddrStreet;
TCHAR *pszOfficeAddrCity;
TCHAR *pszOfficeAddrState;
TCHAR *pszOfficeAddrPostalCode;
TCHAR *pszOfficeAddrCountry;
BYTE i'rgbReserved [84]
} AddressCard;

OpenAddressBook()

#include <addrstor.h>

Opens the Address Book; returns a nonzero value if successful.

Example:

HANDLE hWnd = NULL;
HHPRTAG hptProp = HHPR_FILEAS;
OpenAddressBook(hWnd, hptProp);

Where:

• hWnd is a handle to a window or NULL. Uses a window handle to receive
notification if the Contacts database is modified while your application is
accessing it.

• hptProp is an HHPRTAG value specifying the sort order to apply to the Con
tacts database while in use by your application.

OpenAddressCard()

#include <addrstor.h>

Retrieves all properties of an address card, given the card's CEOID.

Example:

ULONG uFlag = OAC_ALLOCATE;
OpenAddressCard (oidContact, &ac, uFlag);

Where:

• oi dContact is the CEOID of the address card whose properties the function
is to retrieve. The CEOID of the card must be known ahead of time; you can
get the CEOID of a card by calling functions like Fi ndFi rstEnt ry() and
GetMatchingEntry().

Page 00595

NOTE

Random() 569

• ac is an AddressCard structure that the function uses to return the address
card's properties.

• uFl ag is a ULONG value that can be one of the following values:

OAC_ALLOCATE Specifies that the function should allocate addi
tional memory to accommodate any possible modifications to string
properties.

0 Specifies that the function should not allocate the additional mem
ory and essentially makes the card read-only.

Random()

#include <winbase.h>

Returns a DWORD random number.

Example:

DWORD dwRandom;
dwRandom = Random();

Where:

• dwRandom is a DWORD used to store the return value of the function .

This function takes no parameters.

RapiFreeBuffer()

#include <rapi.h>

Frees memory allocated by the RAPI functions CeFi ndA ll Databases(),
CeFi ndA ll Files(), and CeReadRecordProps().

Example:

dwType = 0;
LPCEDB_FIND_DATA pFindData;
wFlags = FAO_OID I FAD_FLAGS I FAD_NAME I FAD_TYPE FAD_NUM_RECORDS

FAD_NUM_SORT_ORDER I FAD_SORT_SPECS;
CeFindAllDatabases(DbType, OxFF, &cFound, &pFindData);
// ...

Page 00596

~ Appendix B • The CE 2.0 API

NOTE

//do something with found databases ...
//then, when finished
RapiFreeBuffer(pFindData);

Where:

• pFi ndData is a buffer allocated by one of the RAPI functions listed above; in
this case, CeFi ndAllDatabases().

RasGetEntryDevConfig()

Although still provided for backward compatibility, this function has been
replaced by RasGetEntryProperties(), which is supported on all versions of
Windows, including 98 and NT.

RasSetEntryDevConfig()

Although still provided for backward compatibility, this function has been
replaced by RasSetEntryProperti es(), which is supported on all versions of
Windows, including 98 and NT.

RecountCards()

#include <addrstor.h>

Causes the system to recount the number of cards in the Contacts database.
Useful if your application is set up to receive notification when the Contacts data
base is modified while your application is using it.

Example:

RecountCards();

This function has no parameters and does not return a value.

RegisterDevice()

#include <winbase.h>

Registers a hardware device.

Page 00597

SetColumnProperties() 571 --

Example:

HANDLE hDev;
DWORD dwlndex;
DWORD dwlnstancelnfo; //depends on device being registered
TCHAR szDevType[MAX_PATH] = TEXT("WAV");
TCHAR szDriverName[MAX_PATH] = TEXT("snd.dll");
dwlndex = 2;
hDev = RegisterDevice(szDevType, dwlndex, szDriverName,

dwlnstancelnfo);

Where:

• hDev is a handle to the device if the function is successful.

• szDevType is a string identifying the type of device.

• dwindex is a DWORD specifying the index of the device.

• szDri verName is a string containing the name of the driver for the device
being registered.

• dwinstanceinfo is a DWORD specifying the instance information of the
device. For example, this might be a hexidecimal memory address.

SetColumnProperties()

#include <addrstor.h>

Sets the available sort orders for the Contacts database.

Example:

HHPRTAG hptProps[4]; //max. 4 properties to sort on
hptProps[O] = HHPR_SURNAME;
int iColumnCount = 1;
SetColumnProperties(&hptProps, iColumnCount);

Where:

• hptProps is an array of HHPRTAG values, specifying the properties on which
the Contacts database is to be sorted.

• i Col umnCount specifies the number of positions in the array containing
valid HHPRTAG values. The maximum value for this parameter is 4.

Page 00598

572 Appendix B • The CE 2.0 API

SetDaylightTime()

#include <winbase.h>

Specifies to the CE operating system whether or not daylight saving time is in
effect.

Example:

DWORD dwDaylight = 1;
SetDaylightTime(dwDaylight);

Where:

• dwDayl i ght is a DWORD value specifying:

• 1 daylight saving time is currently in effect.

• 0 daylight saving time is not currently in effect.

SetMask()

#include <addrstor.h>

Indicates which of the properties in an AddressCard structure are being used
by the application.

Example:

AddressCard ac;
HHPRTAG hptTag;
memset (&ac, 0, sizeof (AddressCard));
ac.pszGivenName = TEXT("Karen");
ac.pszSurname = TEXT("Johnson");
ac.pszCompany = TEXT("Widget Co.");
ac.pszEmail = TEXT("Karen@widgetco.com");
II tell system which properties we are setting.
hptTag = HHPR_GIVEN_NAME;
SetMask (&ac, hptTag);
hptTag = HHPR_SURNAME;
SetMask (&ac, hptTag);
hptTag = HHPR_COMPANY_NAME;
SetMask (&ac, hptTag);
hptTag = HHPR_EMAILl_EMAIL_ADDRESS
SetMask (&ac, hptTag);

Page 00599

SetSortOrder() 573

Where:

• ac is an AddressCard structure.

• hptTag is an HHPRTAG value specifying which members of the AddressCard
structure you're using.

SetSortOrder()

#include <addrstor.h>

Selects one of the available sort orders and marks it as active. The sort order
selected must be one of the sort orders specified with a call to OpenAddress
Book() or SetCol umnProperti es().

Example:

HHPRTAG hptProps[4]; //max. 4 properties to sort on
HHPRTAG hptProp;
hptProps[O] = HHPR_SURNAME;
int iColumnCount = 1;
SetColumnProperties(&hptProps, iColumnCount);
hptProp = HHPR_SURNAME;
SetSortOrder(hptProp);

Where:

• hptProp is an HHPRTAG value specifying the sort order to use.

SHCreateShortcut()

#include <shellapi.h>

Creates a shortcut.

Example:

TCHAR szShortcutFile[MAX_PATH];
TCHAR szActualExe[MAX_PATH];
szShortcutFil e = TEXT(11

\ \MyApp. l nk 11
);

szActualExe = TEXT(11 \\Windows\\MyApp.exe 11
);

SHCreateShortcut(szShortcutFile, szActualExe);

Page 00600

574 Appendix B • The CE 2.0 API

Where:

• szShortcutFi leis a string specifying the full path of the shortcut file.

• szActua l Exe is a string specifying the full path to the actual executable file.

SHGetShortcutTarget()

#include <shellapi .h>

Retrieves the path to the target executable of the specified shortcut.

Example:

TCHAR szShortcutFile[MAX_PATH];
TCHAR szActualExe[MAX_PATH];
int iActualExelen = MAX_PATH;
szShortcutFile = TEXT("\\MyApp.lnk");
SHGetShortcutTarget(szShortcutFile, szActualExe, iActualExelen);

Where:

• szShortcutFi leis a string specifying the full path of the shortcut file.

• szActual Exe is a string the function uses to return the full path to the actual
executable file.

• iActua l Exelen is an integer specifying the maximum possible length of
szActual Exe.

SHLoadDIBitmap()

#include <shellapi .h>

Loads a bitmap from a file and returns a handle to that bitmap if successful.

Example:

HBITMAP hBmp;
TCHAR szBmpName[MAX_PATH] = TEXT("\\MyApp\\resources\\logo.bmp");
hBmp = SHLoadDIBitmap(szBmpName);

Where:

• hBmp is the handle of the bitmap returned by the function if the call is suc
cessful.

• szBmpName is a string specifying the name of the bitmap file.

Page 00601

NOTE

TIP

SHShowOutOfMemory()

#include <shellapi.h>

Shows the Out of Memory message.

Example:

SHShowOutOfMemory(hWnd, 0);

Where:

SHShowOutOfMemory() 575

• hWnd is the handle of the window that will own the dialog .

The second parameter of this function is always 0.

It is recommended that you use this function if your application runs low on mem
ory. This function will work under low-memory conditions, whereas creating your
own new dialog box may fail under low-memory conditions.

Transparent/mage()

#include <wingdi.h>

Copies the contents of one HOC to another, with the ability to specify that one
of the colors in the source HDC is to be considered a transparent color.

Example:

HDC hdcDest, hdcSource;
COLORREF clrTrans;
LONG DstX, DstY, DstCx, DstCy;
LONG SrcX, SrcY, SrcCx, SrcCy;
// ...
//set up hdcDest and hdcSource ...
I I ...
DstX = 0;
DstY = 0;
DstCx = 16;
DstCy = 16;
SrcX = 0;
SrcY = 0;

Page 00602

576 Appendix B • The CE 2.0 API

TIP

SrcCx = 16;
SrcCy = 16;
clrTrans = OxOOFFFFFF; //white is the transparent color
Transparentimage(hdcDest,DstX, DstY, DstCx, DstCy, hdcSource, SrcX,

SrcY, SrcCx, SrcCy, clrTrans);

Where:

•
•
•
•

•
•

•
•
•
•
•

hdcOest is the destination HOC.

OstX is a LONG integer specifying the destination x coordinate .

OstY is a LONG integer specifying the destination x coordinate .

OstCx is a LONG integer specifying the destination x coordinate .

OstCy is a LONG integer specifying the destination x coordinate .

hdcSou rce is the source HOC.

SrcX is a LONG integer specifying the destination x coordinate .

S rcY is a LONG integer specifying the destination x coordinate .

SrcCx is a LONG integer specifying the destination x coordinate .

S rcCy is a LONG integer specifying the destination x coordinate .

cl rTrans is a COLORREF value specifying the transparent color. A COLORREF
is a 32-bit value specifying the RGB value for a color. COLORREFs have the
form OxOOrrggbb, where rr is the red component, gg is the green compo
nent, and bb is the blue component.

Essentially, Transparentimage() is a BitBlt() that supports transparency.

VarVVVVFromZZZZ(J Family of Functions

#include <oleauto.h>

All of the functions having the form VarYYYYFromXXXX() are part of the OLE
automation of Windows CE. Instead of listing each individual function here
(there are approximately 170 different functions), we will provide a description of
the general form and detail the different data types involved.

Page 00603

VarYYYYFromZZZZ() Family of Functions 577

Each of these VarYYYYFromXXXX() functions converts from a variant type to a
nonvariant type. Table B.l shows the abbreviations for each of these data types
and their meanings.

TABLE B .1: Variant Data Types

Abbreviation Data Type

Boo I Boolean

Bstr BSTR

Cy currency

Date date

Dec decimal

Disp I Dispatch

R4 float

R8 double

11 char

12 short

14 long

18 double

Str char*

Ull byte

Ul2 unsigned short

Ul4 unsigned long

A full listing of all of the conversion functions follows:

• VarBoolFromCy()

• VarBoolFromDate()

• VarBoolFromDec()

Page 00604

578 Appendix B • The CE 2.0 API

• VarBoolFromDisp()

• VarBool From!l()

• VarBool Fromi2()

• VarBool Fromi4()

• VarBool FromR4()

• VarBool FromR8()

• VarBool FromStr()

• VarBoolFromUil()

• VarBool FromUI2()

• VarBoolFromUI4()

• VarBstrFromBool()

• VarBstrFromCy()

• VarBstrFromDate()

• VarBstrFromDec()

• VarBstrFromDisp()

• VarBstrFromil()

• VarBstrFromi2()

• VarBstrFromi4()

• VarBstrFromR4()

• VarBstrFromR8()

• VarBstrFromUil()

• VarBstrFromUI2()

• VarBstrFromUI4()

• VarCyFromBool ()

• VarCyFromDate()

• VarCyFromDec()

Page 00605

VarYYYYFromZZZZ() Family of Functions 579

• VarCyFromDi sp()

• VarCyFromil()

• VarCyFromi2()

• VarCyFromi4()

• VarCyFromR4()

• VarCyFromR8()

• VarCyFromStr()

• VarCyFromUil()

• VarCyFromUI2()

• VarCyFromUI4()

• VarDateFromBool()

• VarDateFromCy()

• VarDateFromDec()

• VarDateFromDisp()

• VarDateFromil()

• VarDateFromi2()

• VarDateFromi4()

• VarDateFromR4()

• VarDateFromR8()

• VarDateFromStr()

• VarDateFromUdate()

• VarDateFromUil()

• VarDateFromUI2()

• VarDateFromUI4()

• VarDecFromBool()

• VarDecFromCy()

Page 00606

580 Appendix 8 • The CE 2.0 API

• VarDecFromDate()

• VarDecFromDisp()

• VarDecFromil()

• VarDecFromi2()

• VarDecFromi4()

• VarDecFromR4()

• VarDecFromR8()

• VarDecFromStr()

• VarDecFromUil()

• VarDecFromUI2 ()

• VarDecFromUI4()

• VarilFromBoo 1 ()

• VarilFromCy()

• VarllFromDate()

• VarilFromDec()

• VarilFromDisp()

• Vari1Fromi2()

• Vari1Fromi4()

• Vari1FromR4()

• Vari1FromR8()

• VarilFromStr()

• VarllFromUil()

• Vari1FromUI2()

• Vari1FromUI4()

• Vari2FromBool()

• Vari2FromCy()

Page 00607

VarYYYYFromZZZZ() Family of Functions 581

• Vari2FromDate()

• Vari2FromDec()

• Vari2FromDi sp()

• Va ri2 Fromil()

• Vari2Fromi4()

• Vari2FromR4()

• Vari2FromR8()

• Vari2FromStr()

• Vari2FromUI1()

• Vari2 FromUI2()

• Vari2 FromUI4()

• Vari4FromBool ()

• Vari4FromCy()

• Vari4FromDate()

• Vari4FromDec()

• Vari4FromDi sp()

• Vari4Fromi1()

• Vari4Fromi2()

• Vari4FromR4()

• Vari4FromR8()

• Vari4FromStr()

• Vari4FromUI1()

• Vari4F romUI2 ()

• Vari4FromUI4()

• VarR4FromBool ()

• VarR4FromCy()

Page 00608

582 Appendix B • The CE 2.0 API

• VarR4FromDate()

• VarR4FromDec()

• VarR4FromDi sp()

• VarR4Fromi1()

• VarR4Fromi2()

• VarR4Fromi4()

• VarR4FromR8()

• VarR4FromStr()

• VarR4FromUI1()

• VarR4FromUI2()

• VarR4FromUI4()

• VarR8FromBool ()

• VarR8FromCy()

• VarR8FromDate()

• VarR8FromDec()

• VarR8FromDisp()

• VarR8Fromi1()

• VarR8Fromi2()

• VarR8Fromi4()

• VarR8FromR4()

• VarR8FromStr()

• VarR8FromUI1()

• VarR8FromUI2()

• VarR8FromUI4()

• VarUilFromBool()

• VarUilFromCy()

Page 00609

VarYYYYFromZZZZ() Family of Functions 583

• VarUilFromDate()

• VarUilFromDec()

• VarUilFromDisp()

• VarUilFromil()

• VarUI1Fromi2()

• VarUilF romi4 ()

• VarUI1FromR4()

• VarUI1FromR8()

• VarUilFromStr()

• VarUI1FromUI2()

• VarUI1FromUI4()

• VarUI2FromBool()

• VarUI2 F romCy()

• VarUI2 FromDate()

• VarUI2FromDec()

• VarUI2FromDisp()

• VarUI2Fromll()

• VarUI2Fromi2()

• VarUI2 F romi4 ()

• VarUI2FromR4()

• VarUI2FromR8()

• VarUI2FromStr()

• VarUI2 F romUil()

• VarUI2FromUI4()

• VarUI4FromBool()

• VarUI4FromCy()

Page 00610

Appendix B • The CE 2.0 API

• VarUI4FromDate()

• VarUI4FromDec()

• VarUI4FromDisp()

• VarUI4Fromll()

• Va rUI4F roml2 ()

• VarUI4Fromi4()

• VarUI4FromR4()

• VarUI4FromR8()

• VarUI4FromStr()

• VarUI4FromUI1()

• VarUI4FromUI2()

Page 00611

IND{X
to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a

Note b . d . 'II . . ·, lfn/icized page nun1 ers m Jcate 1 ustratwns. wp1c.

abs(),450
accelerators, 425
accessories, 36-38
acos(), 450
Active Sync, 343
ActiveX Control Pack

A

Common Dialog, 234-235, 235
grid, 231-232, 232
ImageList, 234
ListView, 234
overview, 231
solving read-only problem, 232-233
tab strip, 233-234, 231
Tree View, 234

adding
Add button, 212-213, 212
Add/Insert dialog, 214, 214
AddAddressCard(), 474-475
AddRecord(), 180,185-186
EditAdd Record, 135-136, 135,136

Address Book API, 419-420
allocating memory

AreaCodeDatabaseRead(), 137
calloc(), 77
checking return results of, 57
EXE file size, 56-57
LMEM_ZEROINIT, 77
LocalAiloc(), 58-60, 77, 84
mass, 58-59
overview, 56
types of, 59-60

Alt+Enter for property sheets, 422
Alt+letter for underlined accelerators, 425
Alt+tap for pop-up menus, 422
Alt-click combination for right-click functionality, 8
Alt-tap behavior, 78
ANSI

ANSI-based RTL functions, 47, 47

ANSI-specific string type mappings, 44, 44
converting between Unicode- and ANSI-based

text files, 49-51, 49, 51
vs. Unicode files, 97

API
Address Book, 419-420
vs. CCeDBDatabase methods, 180-182
functions for Windows CE 2.0. Sec API functions

for Windows CE 2.0
msgstore, 420
Polyline(), 78
reduction of, 7
Remote API. Sec RAPI (Remote APJ)
replacing GetDesktopWindow(), 164-165
SetFilePointcr, 108-109
structured storage

AreaCodeDatabaseDelete(), 140
AreCICodeDatabaseFinish(), 140
AreaCodeDatabaseinscrt(), 139-140
AreaCodeDatabascRead(), 136-139

substituting for missing functions
calloc(), 77
MoveToEx() / Line To(), 77-78
WM_Rl3UTTONDOWN, 78-79

Unicode text and, 43
API functions for Windows CE 2.0

AddAddressCard(), 474-475
BatteryNotifyOffimeChange(), 476
CeCheckPassword(), 476-477
CeClearUserNotifica tion(), 477
CeCloseHandle(), 289, 477
CeCopyFile(), 477-478
CeCreateDatabase, 122, 292, 478-479
CeCreatcDirectory(), 479
CeCreateFile(), 28':1, 479-480
CcCreateProcess(), 292, 480-481
CeDeleteDatabase(), 180, 292, 481-482
CcDeleteFile(), 289, 482
CeDeleteRecord(), 140,292,482
CeFindAllDatabascs(), 482-483

Page 00612

586 API functions for Windows CE 2.0-API functions for Windows CE 2.0

CeFindAllFiles(), 484
CeFindClose(), 288, 484-485
CeFindNextDatabase(), 176,292,486
CeFindNextFile(), 288,486-487
CeGetClassName(), 293,487
CeGetDesktopDeviceCaps(), 285, 286, 286,

487-488
CeGetDeviceld(), 488
CeGetFileAttributes(), 489
CeGetFileSize(), 489
CeGetFileTime(), 490
CeGetLastError(), 490-491
CeGetSelectedDeviceld(), 491
CeGetSpecialFolderPath(), 289, 291, 491
CeGetStorelnformation(), 492
CeGetSystemlnfo(), 285, 492
CeGetSystemMetrics(), 493
CeGetSystemPowerStatusEx(), 285, 493-494
CeGetTempPath(), 289, 494
CeGet U serN otifica tionPreferences(), 494-495
CeGetVersionEx(), 285, 495-496
CeGetVersionlnfo(), 285
CeGetWindow(), 292, 496
CeGetWindowText(), 292, 497
CeGlobalMemoryStatus(), 285,286,497
CeHandleAppNotifications(), 498
CeMoveFile(), 498,498
CeOIDGetEx(), 285
CeOidGetlnfo(), 180, 498-499
CeOpenDatabase(), 128, 137, 180, 181, 292, 499
CeRapiFreeBuffer(), 500
CeRapiGetError(), 500
CeRapilnit(), 283-284,293, 500-501
CeRapilnitEx(), 501
CeRapilnvoke(), 501-502
CeRapiUninit(), 283-284, 502
CeReadFile(), 289, 502-503
CeReadRecordProps(), 136, 138, 292, 503-504
CeRegCloseKey(), 287, 504
CeRegCreateKeyEx(), 287,504-505
CeRegDeleteKey(), 287, 505
CeRegDeleteValue(), 287,506
CeRegEnumKeyEx(), 287, 506-507
CeRegEnum Value(), 287, 507-508
CeRegOpenKeyEx(), 287, 508-509
CeRegQuerylnfoKey(), 287,509-510
CeRegQueryValueEx(), 287, 510-511

CeRegSetValueEx(), 287, 511-512
CeRemoveDirectory(), 512
CeRunAppAtEvent(), 512-513
CeRunAppAtTime(),513
CeSeekDatabase(), 131, 132, 133, 134, 135, 180

181,292,513-514 I

CeSetDatabaselnfo(), 182,292, 514-515
CeSetEndOfFile(), 515
CeSetFileAttributes(), 515-516
CeSetFilePointer(), 516
CeSetFileTime(), 516-517
CeSetUserNotification(), 517-518
CeSHCreateShortcut(), 292,518-519
CeSHGetShortcutTarget(), 292, 519
CeWriteFile(), 289, 519-520
CeWriteRecordProps(), 139-140,292,520-521
CloseAddressBook(), 521
CommandBands_AddAdornments(), 521-522
CommandBands_AddBands(), 522-523
CommandBands_Create(), 523-524
CommandBands_GetCommandBar(), 524
CommandBands_GetRestorelnformation(), 525
CommandBands_Height(), 525
CommandBands_Islnvisible(), 526
CommandBands_Show(), 526
CommandBar_AddAdornments(), 526-527
CommandBar_AddButtons(), 527-528
CommandBar_AddToolTips(), 528
CommandBar_Create(), 528-529
CommandBar_DrawMenuBar(), 529
CommandBar_GetMenu(), 529
CommandBar_Height(), 529-530
CommandBar_InsertButton(), 530
CommandBar_InsertComboBox(), 530-531
CommandBar_InsertMenubar(), 531
CommandBar_InsertMenubarEx(), 531-532
CommandBar_IsVisible(), 532
CommandBar_Show(), 532
CreateAddressBook(), 533
CreateFileForMapping(), 533-534
DeleteAddressCard(), 534
DeleteAndRenameFile(), 534-535
DeregisterDevice(), 535
EnableEUDC(), 535-536
EnableHardwareKeyboard(), 536
FindFirstEntry(), 536-539
FreeAddressCard(), 539-540

Page 00613

API functions for Windows CE 2.0-ASA (Adaptive Server Anywhere) 587

FtpCommand(), 540-541
GetAddressCardlndex(), 541
GetAddressCardOid(), 542
GetAddressCardProperties(), 542
GetClipboardDataAlloc(), 543
GetColumnProperties(), 543
GetMatchingEntry(), 544
GetMessageSource(), 544-545
GetMouseMovePoints(), 545
GetNumberOfAddrcssCards(), 546
GetPropertyDataStruct(), 546
GetSortOrder(), 547
GetStorelnformation(), 547
GetSystemPowerSta tusEx(), 548
ImageList_Duplicate(), 548-549
InitCommonControlsEx(), 549-550
InitHTMLControl(), 550
InitlnkX(), 550
InterlockedTestExchange(), 551
MailClose(), 551
MailDelete, 551-552
MailDeleteAttachment(), 552-553
MailErrorMsg(), 553- 554
MailFirst(), 554-555
MailFree(), 555
MailGet(), 555-556
MailGetAttachment(), 556
Mai!GetField(), 557
MailGetFolderid(), 557-558
Mai!GetFolderName(), 558
Mai!GetSort(), 558-559
MailGetSvcid(), 559
MailHeaderLen(), 560
MailLocalAttachmentLen(), 560
MailNext(), 560
Mai!Open(), 561
MailOpenNotify(), 561
Mai!Put(), 562
Mai!PutAttachment(), 562-563
MailPutFolder(), 563
MailRequestAttachment(), 563-564
MailSetField(), 564-565
MailSetSort(), 565
Mai!Update(), 566
ModifyAddressCard(), 566- 568
OpenAddressBook(), 568
OpenAddressCard(), 568-569

Random(), 569
RapiFreeBuffer(), 569-570
RasGetEntryDevConfig(), 570
RasSetEntryDevConfig(), 570
RecountCards(), 570
RegisterDevice(), 570-571
SetColumnPropertics(), 571
SetDaylightTime(), 572
SetMask(), 572-573
SetSortOrder(), 573
SHCreateShortcut(), 573-574
SHGetShortcutTargct(), 574
SHLoadDIBitmap(), 574
SHShowOutOfMemory(), 575
Transparentlmage(), 575-576
VarYYYYFromZZZZ() functions, 576-584

Application Manager
creating INI files, 398-399, 398
creating setup programs, 399-402
Logo program installation, 411, 412

application templates, 226-227, 227
area code lookup utility

Area Code Data BaseCrea te(), 125-126
AreaCodeDatabaseDelete(), 140
AreaCodeDatabaseFinish(), 140
AreaCodeDatabaseinsert(), 139-140
AreaCodeDatabaseRead(), 136-139
Edit/ Add Record dialog, 135-135, 135, 136
overview, 135-135, 135, 136

array declarations, 256- 260, 257
ASA (Adaptive Server Anywhere)

administration and management, 343
command line options, 344
comparison of features, 356-358
configuring application, 344
copying data to desktop, 357
Customer List report, 345-346, 345
data compression, 357
database schema, 342-343
demo,344-347,345
Login dialog, 344-345, 345
overview, 341
proc_name, 343
Report dialog, 345, 345
report_id, 343
report_name, 343
Sales Report, 346

Page 00614

588 ASA (Adaptive Server Anywhere)-(runtime library functions

sample application, 342-347, 345
security _level, 343
SQL support, 357
storage requirements, 357
stored procedures, 357
synching data with desktop, 357
user privileges, 358

asademo.db, 344
atan(), 450
atan2(), 451
ATM conversion,

array declarations, 256-260, 257
Bitmaps, 250
change Global to Public, 249
country and bit maps, 266-269
Declare statements, 246-247
eliminating code, 274-275
eliminating forms, 270-274, 271
eliminating optional controls and DLLs, 274
Explicit Type declarations, 249
Explicit Types, 249
icons, 250
Image Control, 250
mechanical issues, 249-261, 257
modalforrns,248,253-255
modifying resource loads, 255-260, 257
mouse/cursorcode,252-253
optimizing, 270-275
optional features, 262-269, 264, 265
overview, 244-249, 245, 246, 276, 276
planning porting process, 247-249
porting from VB to VBCE, 247
preparing frmAmountWithdrawn Form, 261
sound,263-265,264,265
Typecasts, 250
using Developer Studio, 256-257, 257
WAV files, 250-253,262-266,264,265

atoi(), 451
atol(), 451
AutoPC SDK, 69

8
bar code scanners, 38, 363, 365
BatteryNotifyOfTimeChange(), 476
Bin paths, 147-148

bitmaps,250,266-269
BLOB (Binary Large Object) data, 118, 297
buttons

Add button, 212-213, 212
Close "X" button, 25,204,418
displaying open documents, 432
Help "?" button, 416
HPC applications, 419
InsertButtons(), 204-206
Logo program

taskbar buttons, 432
UI requirements, 416,417, 419, 424, 425

WM_BUTTONDOWN, 78-79
WM_BUTTONUP, 423

(

C runtime library functions
abs(),450
acos(),450
asin(), 450
atan(), 450
atan2(), 451
atoi(), 451
atol(), 451
_cabs(),438
_chsign(), 438
_clearfp(), 439
_controlfp(), 439
_copysign(), 439
cos(),451
cosh(), 452
difftime(), 452
div(), 452
_evct(), 439
exp(), 452
fabs(), 453
_fcvt(), 439
_finite(), 440
floor(), 453
fmod(), 453
_fpclass(), 440
fpieee_flt(), 440
_fpreset(), 440
free(), 453
frexp(), 453

Page 00615

_gcvt(),441
_hypot(), 441
_isnan(), 441
iswalnum(), 454
iswalpha(), 454
iswascii(), 454
iswcntrl(), 454
iswctype(), 455
iswgraph(), 455
iswlower(), 455
iswprint(), 455
iswpunct(), 456
iswspace(), 456
iswupper(), 456
iswxdigit(), 456
_itoa(),441
_itow(),441
_j0(),442
_jl(),442
_jn(), 442
labs(),457
ldexp(), 457
ldiv(),457
log(), 457
loglO(), 458
_logb(),442
longjmp(), 458
_lrotl(), 442
_lrotr(), 443
_ltoa(),443
_ltow(), 443
malloc(), 458
_matherr(), 443
mbstowcs(), 458
_memccpy(), 444
memchr(), 459
memcmp(), 459
memcpy(), 459
_memicmp(), 444
memmove(), 459
memset(), 460
mod£(),460
_msize(), 444
_nextafter(), 444-445
pow(), 460
qsort(),460
rand(), 460-461

C runtime library functions-(runtime library functions 589

realloc(), 461
_rotl(), 445
_rotr(),445
_scalb(), 445
sin(), 461
sinh(),461
sqrt(),461
srand(), 462
_statusfp(), 445
strcat(), 462
strchr(), 462
strcmp(), 462
strcpy(), 462
strcspn(), 463
strlen(), 463
strncat(), 463
strncmp(), 463
strncpy, 463-464
strstr(), 464
strtok(), 464
_swab(),446
swprint£(),464
swscan(), 465
tan(),465
tanh(), 465
tow lower(), 465
towupper(), 466
_ultoa(), 446
_ultow(),446
vswprintf(), 466
wcscat(), 466
wcschr(), 467
wcscmp(), 467
wcscpy(), 467
wcscspn(), 467
_wcsdup(), 446
_wcsicmp(),447
wcslen(), 468
_wcslwr(), 447
wcsncat(), 468
wcsncmp(), 468
wcsncpy(), 468-469
_wcsnicmp(), 447
_wcsnset(), 447-448
wcspbrk(), 469
wcsrchr(), 469
_ wcsrev(), 448

Page 00616

590 C runtime library functions-CDC

_wcsset(), 448
wcsspn(), 469-470
wcsstr(), 470
wcstod(), 470
wcstok(), 470
wcstol(), 471
wcstombs(), 471
wcstoul(), 471
_wcsupr(), 448
wsprintf(), 471
_wtoi(), 449
_wtol(), 449
_y0(),449
_y1(),449
_yn(), 450

CAB files Logo program installation, 411, 412, 413
Cab Wizard

creating Cab files
Cab archive, 397-398
INF files, 392-397
INI files, 398-399, 398

creating setup programs, 399-402
overview, 391-392
predefined destination directories, 393-394

_cabs(),438
Canon PowerShot AS, 368
Cap Edit control

Handheld PC/Pro devices (HPC/Pros), 34
Handheld PCs (HPCs), 27
Palm-size PCs (PPCs), 23-24

Carcalc, 221-222, 221
case studies

choosing development machine
conclusion, 372
cost analysis, 372
HPC devices, 371
HPC/Pro devices, 371
overview, 370
PPC devices, 370-371
solution, 370

insurance field agents
conclusion, 370
cost analysis, 368-369, 369
digital cameras, 367
HPC/Pro, 368
HPC/Pro-based cost analysis, 369, 369
lap-top based cost analysis, 368-369, 369

overview, 366-367
solution, 367
technical issues, 367-368

Inventory Management System
conclusion, 366
cost, 365-366
overview, 362
technical issues, 362-364

Casio
PA-2400 "tablet" device, 35, 35
PA-2500 Handheld PC (HPC), 25,26
Vertical Markets division, 58

C/C++ language forCE
calloc(),77
changing program logic, 79-80
CreateFile(), 80-81
CreateProcess(), 81
exception handling methods, 79-80
fclose(), 88-89
fgetc(), 89-90
fgets(), 92-94
FILE*, 81-83
fopen(), 83-88
fprint(), 97-99
fputc(), 90-91
fputs(), 94-95
fread(), 95-96
fscanf(), 99-107
£seek(), 108-109
fwrite(), 96-97
MoveToEx() /Line To(), 77-78
overview, 76-77
Readfile(), 80
swscanf(), 99-107
try .. catch, 79-80
Unicode and file access, 95
Win32 API file-access functions, 80-81
WM_RBUTTONDOWN, 78-79
wrapper functions, 81
Writefile(), 80
wstrlen(), 95

CCeDBDatabase, 174, 179-182, 180-182
CCeDBEnum, 174, 176
CCeDBProp, 174,176-178, 177, 186
CCeDBRecord, 174,179,179
CCeSocket, 174, 175-176, 175
CDC,192

Page 00617

CE communications
hardware aspects

IR ports, 307
modems,307
overview, 306
PCMICIA cards, 307
serial ports, 307

overview, 306
PC cards/PCMCIA cards

application start, 318-320, 320
card changes, 321-326, 323
overview, 318

PC cards/PCMCIA modems, 318
software aspects

built-in modems, 314-317, 318
Infrared Sockets (lrSock), 314,332
IR communications, 308-314, 313
IrCOMM, 312-314, 313
modem-based communications, 314-318, 318
overview, 308
Raw IR, 309-312
serial communications, 308-309
standard external modems, 314

Winsock -based
Infrared Sockets (IrSock), 314, 332
overview, 327
Winsock 1.1, 327-332, 328

CE devices. See also Windows CE
accessories, 36-38
bar code readers, 38
Handheld PCs (HPCs). See Handheld PCs

(HPCs)
other, 34-35, 35
overview of types, 12
Palm-size PCs (PPCs). See Palm-size PCs (PPCs)
tablet devices, 35, 35

CeCheckPassword(), 476-477
CeClearUserNotification(), 477
CeCloseHandle(), 289,477
CeCopyFile(), 477-478
CeCreateDatabase(), 122, 292, 478-479
CeCreateDirectory(), 479
CeCreateFile(), 289, 479-480
CeCreateProcess(), 292, 48Q-481
CEDB_AUTOINCREMENT flag, 296
CEDB_sort types, 124
CeDeleteDatabase(), 180, 292, 481-482

CE communications-CeRegCreateKeyEx() 591

CeDeleteFile(), 482
CeDeleteRecord(), 140,292,482
CeFindAllDatabases(), 482-483
CeFindAllFiles(), 484
CeFindClose(), 288,484-485
CE_FIND_DATA,289
CeFindFirstDatabase(), 292,293
CeFindFirstFile(), 288
CeFindNextDatabase(), 176,292,486
CeFindNextFile(), 288, 486-487
CeGetClassName(), 293,487
CeGetDesktopDeviceCaps(), 285,286,286,487-488
CeGetDeviceld(), 488
CeGetFileAttributes(), 489
CeGetFileSize(), 489
CeGetFileTime(), 490
CeGetLastError(), 490-491
CeGetSelectedDeviceld(), 491
CeGetSpecialFolderPath(), 289, 291, 491
CeGetStorelnformation(), 492
CeGetSystemlnfo(), 285,492
CeGetSystemMetrics(), 493
CeGetSystemPowerStatusEx(), 285,493-494
CeGetTempPath(), 289, 494
CeGetUserNotifica tionPreferences(), 494-495
CeGetVersionEx(), 288,495-496
CeGetVersionlnfo(), 285
CeGetWindow(), 292, 496
CeGetWindowText(), 292, 497
CeGlobalMemoryStatus(), 285,286,497
CeHandleAppNotifications(), 498
CeMoveFile(), 498
CEOID (Ce Object Identifier), 125, 127, 132
CeOIDGetEx(), 285
CeOidGetlnfo(), 180, 498-499
CeOpenDatabase(), 128, 137, 180, 181, 292, 499
CEPROVALstructures, 137-139,176-177
CeRapiFreeBuffer(), 500
CeRapiGetError(), 500
CeRapilnit(), 283-284, 293, 500-501
CeRapilnitEx(), 501
CeRapilnvoke(), 501-502
CeRapiUninit(), 283-284, 502
CeReadFile(), 289, 502-503
CeReadRecordProps(), 136, 138, 292, 503-504
CeRegCloseKey(), 287,504
CeRegCreateKeyEx(), 287,504-505

Page 00618

592 CeRegDeleteKey()-compiling

CeRegDeleteKey(), 287, 505
CeRegDeleteValue(), 287,506
CeRegEnumKeyEx(), 287,506-507
CeRegEnumValue(), 287,507-508
CeRegOpenKeyEx(), 287, 508-509
CeRegQueryinfoKey(), 287, 509-510
CeRegQueryValueEx(), 287, 510-511
CeRegSetValueEx(), 287, 511-512
CeRemoveDirectory(), 512
CeRunAppAtEvent(), 512-513
CeRunAppAtTime(), 513
CeSeekDatabase(), 131, 132, 133, 134, 135, 180, 181,

292,513-514
CeSetDatabaselnfo(), 182, 292, 514-515
CeSetEndOfFile(), 515
CeSetFileAttributes(), 515-516
CeSetFilePointer(), 516
CeSetFileTime(), 516-517
CeSetUserNotification(), 517-518
CeSHCreateShortcut(), 292, 518-519
CeSHGetShortcutTarget(), 292, 519
CEVT_BLOB type, 297
CEVT_field types, 123-124
CeWriteFile(), 289, 519-520
CeWriteRecordProps(), 139-140,292, 520-521
CFrameWnd, 192, 193
char types, 43-46
checking return result of memory allocation, 57
chips

CE device type, 9
compilers and, 147-148

_chsign(), 438
_clearfp(), 439
CListView control. See ListView controls
closing

applications, 166-168
AreaCodeDatabaseFinish(), 140
close (X) button, 25, 204,418
CloseAddressBook(), 521
CloseDB(), 185
CloseHandle, 88-89
debuggers, 229
fclose(), 88-89
Logo program applications, 418
Task Managet~ 167

CMainFrame
InsertButtons(), 204-206
OnCreate() event, 203

CObArray, 179
codebase defined, 68
color

Handheld PC/Pro devices (HPC/Pros), 29
Handheld PCs (HPCs), 26
support for, 430
Task Manager, 169

ComboBox, 270-271,271
command bars, 415, 416, 419
command line options, 344
CommandBands_AddAdornments(), 521-522
CommandBands_AddBands(), 522-523
CommandBands_Create(), 523-524
CommandBands_GetCommandBar(), 524
Command Bands_ GetRestoreinforma tion(), 525
CommandBands_Height(), 525
CommandBands_Islnvisible(), 526
CommandBands_Show(), 526
CommandBar_AddAdornments(), 526-527
CommandBar_AddButtons(), 527-528
CommandBar_AddToo!Tips(), 528
Command Bar_ Create, 528-529
CommandBar_DrawMenuBar(), 529
CommandBar_GetMenu(), 529
CommandBar_Height(), 529-530
CommandBar_InsertButton(), 530
CommandBar_InsertComboBox(), 530-531
CommandBar_InsertMenuBar(), 531
CommandBar_InsertMenubarEx(), 531-532
CommandBar_Is Visible(), 532
CommandBar_Show(), 532
commandments for writing for Windows CE. See

writing for Windows CE
Common Dialog, 234-235, 235
communications from CE to outside world. See CE

communications
Compact Flash (CF) cards

detecting, 319
Ethernet, 37
supporting installation to, 414-415

compiling
chips, 147-148
compiler defines, 68-69, 69
conditional defines, 69-70
generic string types, 44-45
MFC applications for Windows CE, 200
runtime platform detectors, 69, 70-72
text literals, 46
toolkit for VC++, 146-147

Page 00619

compressing data, 357
conditional defines, 69-70
configuring applications, 344
connecting to CE devices, 150
controls

ActiveX Control Pack, 231-235, 232, 235
Control Manager

grid control, 208
VBCE, 230-231

_controlfp(), 439
Image Controls, 250, 268-269
standard VBCE controls, 235, 235-236
unsupported standard VB controls, 238

converting
MFC applications to CE

Carcalc, 221-222, 221
mechanical issues. See MFC applications

ported to CE
VB applications to CE

array declarations, 256-260, 257
ATM conversion overview, 244-249, 245,246,

276,276
Bitmaps, 250
change Global to Public, 249
country and bit maps, 266-269
Declare statements, 246-247
eliminating code, 274-275
eliminating forms, 270-274, 271
eliminating optional controls and DLLs, 274
Explicit Type declarations, 249
Explicit Types, 249
icons, 250
Image Control, 250
mechanical issues, 249-261, 257
modal forms, 248, 253-255
modifying resource loads, 255-260, 257
mouse/cursorcode,252-253
optimizing, 270-275
optional features, 262-269, 264, 265
planning porting process, 247-249
porting from VB to VBCE, 247
preparing frmAmountWithdrawn Form, 261
sound,263-265,264,265
Typecasts, 250
using Developer Studio, 256-257, 257
WAV files, 250-253,262-266,264,265

Unicode- to ANSI-based text files, 49-51, 49, 51

compressing data-CShoppinglistView 593

copying
comparison between third-party database

engines, 357
_copysign(), 439
file copy in database administration, 343

cos(),451
cosh(), 452
cost analysis

application testing, 408
development machine choices, 372
HPC/Pros, 369, 369, 372
HPCs, 365, 372
laptops, 368, 369
mobile devices, 348
Oracle Lite, 347
PPCs, 364,365,372

country bitmaps, 266-269
CPrintDialog, 194
CPUs

determining type over Internet, 413
Logo program requirements, 427

creating
Cab archive, 397-398
Cab Wizard setup programs, 399-402
CE database, 122-127
conditional defines, 69-70
CreateAddressBook(), 533
CreateDB(), 183-184
Create DC(), 30-31
CreateFile(), 80-81
CreateFileForMapping(), 533-534
CreateHeap(), 60
CreateProcess(), 81
custom<Meta> Tag, 390
INF files, 392-397
INI files, 398-399, 398
multiple-file help system files, 385-391, 389
Project Wizards for dialog-based applications,

154-157,155,157
runtime platform detectors, 70-72
setup programs, 399-402
single-file help system files, 380-385

CShoppingListDoc, 182-183
CShoppingListView

methods of, 187
OnDelete(), 189-190
UpdateListBox(), 187-189

Page 00620

594 Ctrl+letter-DLLs

Ctrl +letter, 425
currency conversions, 246
cursors,420,422-423
custom <meta> tags, 389-391
Custom App Wizard dialog, 157
Customer List report, 345-346, 345
Cwnd, 192, 193

D
databases

access functions, 292
engines. See Windows CE Database Engine
schema, 342-343

dbcd_devicetype, 322-323
DBView, 63-66, 63, 64, 66, 67
debugging

closing debugger, 229
Ethernet, 36, 151
generic SDK tools, 158
HTML-based help, 378
TCP /IP Transport, 150-151
VB IDE,228
VBCE, 228-229, 229
Windows CE services, 150

declaring
Unicode strings, 43-45, 44, 45
VB alternatives to, 246-247, 251

defaults
database administrator userid, 344
drag multi-select, 427
List View controls, 427
specifying default destination folders, 402, 402
system fonts, 423

#define, 69-70
deleting

AreaCodeDatabaseDelete(), 125-126,140
CCeDBDatabase methods for, 180
CeDeleteDatabase(), 180, 481-482
CeDeleteFile(), 482
CeDeleteRecord(), 140,482
data in ListView control, 212-217, 214,217
DDLS, 274
DeleteAddressCard(), 534
DeleteAndRenameFile(), 534-535
forms from VB applications converting to CE,

270-274,271

indexes, 130
OnDelete(), 189-190
optional controls, 274
using EditAdd Record, 136,136

Delphi
Cab Wizard setup programs, 399-402
properties viewer, 299-302, 299

demo,344-347,345
DeregisterDevice(), 535
Developer Studio, 257
development machine choices

conclusion, 372
cost analysis, 372
HPC devices, 371
HPC/Pro devices, 371
overview, 370
PPC devices, 370-371

Device Property dialog, 150
dhrystone ratings, 10-11
dialog-based applications, 154-157, 155, 157
difftime(), 452
digital cameras, 367, 369
disk file replication, 354
displays

display size CE devices, 9
display lype CE devices, 9
Handheld PC/Pro devic s (HCP /Pros), 29
Handheld PCs (HPCs), 26
Palm-size PCs (PPCs), 12-15, 14, 15
user data in List View control, 210-212

distributing CE applications
help files

creating, 378
multiple-file system, 388-391
single-file system, 380-385, 381
types of, 379-380

installing programs on user's C ~ device
Cab Wizard oplion, 392-402, 398
lnstallShield, 402-405, 402, 403, 404, 405
overview, 391-392

overview, 378
div(), 452
DLLs

converting WAV files, 250
deleting, 274
driver names, 30
RAPI as,283
storage space, 161
VGA-out port, 29-30

Page 00621

dwSeekType, 131
dynamic vs. static linking, 299

editing
capitalization in edit boxes, 430
Edit/ Add Record dialog, 135-135, 135, 136
grid data, 232-233

embedded applications with VB, 227-228
emulation

emulators for platform SDKs, 158-160
WAV files, 265
_ WIN32_ WCE_EMULATION, 68-69

EnableEUDC(), 535-536
EnableHardwareKeyboard(), 536
Enterprise Manager applications, 122
entry tags, 387-388
EnumPnplds(), 318
Ethernet

debugging, 36, 151
networking solutions

Compact Flash (CF) Ethernet cards, 37
overview, 36
PCMCIA-based "Low Power" Ethernet

cards, 37
Proxim Range LAN2, 37, 151, 366
Socket Communications, 37
wired connections, 37

_evct(), 439
exception handling methods, 79-80
EXE file size, 56-57, 161
Exists(), 184
Exiting

Logo program requirements, 429
Palm-size PCs (PPCs), 24-25

exp(),452
Explicit Type declarations change, 249
Explicit Types change, 250

fabs(),453
fclose(), 88-89
_fcvt(), 439

dwSeekType-frmOpen 595

FEFF signature, 48
fgetc(), 89-90
fgets(), 92-94
fields

not table-specific, 120-121
sorting based on one, 129

files
FILE*-based functions, 81-83
file access functions, 288-290
file handles defined, 81-82
file pointers defined, 81
file-based replication, Oracle Lite forCE, 354
Files dialog, 403-404, 403, 404
Logo program file-handling requirements,

431-433
RAPI file access functions, 288-290

finding
FindFirstEntry(), 536-539
previous instance, 418
substitute functions using C/C++ language,

77-79
_finite(), 440
flag bitmaps, 266-269
floats, 185
floor(), 453
fmod(),453
form factors

compiler defines, 68-69, 69
creating conditional defines, 69-70
creating runtime platform detectors, 70-72
DBView, 63-66, 63, 64, 66, 67
overview, 61-62
single codebases, 67-69
tailoring application UI to device, 62-67, 63, 64,

66,67
format string pointer, 100. See also LPWSTR
_fpclass(), 440
fpieee_flt(), 440
_£preset(), 440
fprint(), 97-99
fputc(), 90-91
fputs(), 94-95
free(),453
FreeAddressCard(), 539-540
frmAmountWithdrawn, 261
frmlnput, 270-273
frmOpen, 270-274

Page 00622

596 fscanf()-help files

fscanf(), 99-107
fseek(), 108-109
FtpCommand(), 540-541
fwrite(), 96-97

_gcvt(),441
generic

G

dialog base for Project Wizard, 154-157, 155, 157
platform SDKs, 158
string types, 44-45, 45

GetAddressCardlndex(), 541
GetAddressCardOid(), 542
GetAddressCardProperties(), 542
GetClipboardDataAlloc(), 543
GetColumnProperties(), 543
GetDesktopWindow(), 164-165
GetMatchingEntry, 544
GetMessageSource(), 544-545
GetMouseMovePoints(), 545
GetNumberOfAddressCards(), 546
GetPropertyDataStruct(), 546
GetSortOrder(), 547
GetStorelnformation(), 547
GetSystemMetrics, 70, 72
GetSystemPowerStatusEx(), 548
GetSystemTime(), 159-160
GetType(), 178
GetWindowText(), 53
Global to Public change, 249
Grids

MFC applications ported to CE, 207-217,214,
217

runtime and, 232
solving read-only problem, 232-233
third-party MFC library, 199
VCBE, 231-233, 232

" Handheld PC/Pro devices (HPC/Pros). See also
Hewlett-Packard Jornada HPC/Pro
devices

application templates, 226-227

Cap Edit control, 34
choosing development machine, 371
choosing machine for development, 371
cost analysis, 369, 369, 372
displays, 29
HTML Viewer controls, 34
Ink control, 34
insurance field agents case study, 368,369, 369

Handheld PCs (HPCs)
Alt-tap behavior, 78
application templates, 226-227
Cap Edit control, 27
choosing machine for development, 371
cost analysis, 365, 365, 372
DBView, 63-67, 63, 64
displays, 26, 29
form factor choices, 364
Handheld PC/Pro devices (HPC/Pros)

overview, 27-28, 28
version numbering of operating system, 34
VGA-out ports, 29-33

HTML Viewer control, 25,27
Ink control, 27
Internet document retrieval, 27
keyboards, 26
Logo program

functionality requirements, 427-431
installation requirements, 411-415
UI requirements, 415-427

overview, 25, 26
predefined destination directories, 394
tailoring application UI to, 62-67, 62, 63, 66
version numbering of operating system, 34

HANDLE, 82, 84, 86
handwritten data, 23
hardware aspects of CE communications

IR ports, 307
modems,307
overview, 306
PCMICIA cards, 307
serial ports, 307

HBRUSH, 31-33
headers, 386
HeapAlloc(), 59-60
"Hello World" application, 153
Help "?" button, 416
help files

Page 00623

creating, 378-379
help viewer, 391
HTML-based, 378, 426
Logo program testing, 428
multiple-file system

FrontPage, 390
header,386
launching help viewer, 391
overview, 385-386, 386
table of contents, 387-388

pop-up, 425-426
sin.gle-file system

<!-PegHelp-> comment, 383
additional HTP file tricks, 384-385
FrontPage, 382
headers, 382
HTP files, 382
overview, 380-382, 381

Hewlett-Packard Jornada HPC/Pro devices
Alt-click combination, 8
application templates, 227
mouse,7
overview, 27-28, 28

hierarchy in registry, 115, 115
HKEY_CLASSES_ROOT,l15
HKEY_CURRENT_USER,l15
HKEY_LOCAL_MACHINE,l15, 118,314,319
HKEY_USER,115
hourglass or wait cursor, 420
HPC/Pros. See Handheld PC/Pro devices

(HPC/Pros)
HpcLadr, 338-341, 339
HPCs. See Handheld PCs (HPCs)
HTC files

header,386
overview, 385-386, 386
table of contents, 387
table of contents entry tags, 387-388

HTML
help, 426
InitHTMLControl(), 550
Viewer controls

Handheld PC/Pro devices (HPC/Pros), 34
Handheld PCs (HPCs), 25,27

HTP files
<-PegHelp-> comment, 383
additional tricks, 384-385

help files-inserting 597

custom<Meta>Tag, 390
in multiple-file help system, 388-389, 389
overview, 380-382, 381

_hypot(), 441

icons, 250, 425
IDC_LISTTASKS, 163-168
Image Controls, 250, 268-269
Image List

ImageList_Duplicate(), 548-549
VBCE,234

improper uses of Windows CE registry, 116-119
Include paths, 147-148
indexing

creating sort order at table creation, 130
deleting indexes, 130
four sort order maximum, 129-130, 130
Modify Indexes dialog box, 66, 66, 67
only one active sort order per database, 129-130
overview, 114, 122-129
sorting based on one field, 129

INF files, 392-397
Infrared Sockets (IrSock), 314, 332
INI files, 398-399, 398
InitCommonControlsEx(), 549-550
InitHTMLControl(), 550
InitlnkX(), 550
Ink control

Handheld PC/Pro devices (HPC/ Pros), 34
Handheld PCs (HPCs),27
Palm-size PCs (PPCs), 18-22, 19

Input Panels
Logo program requirements, 424, 430
Owner applet, 19-22, 19
Palm-size PCs (PPCs), 15, 16-18,18-22, 19,

20-22,79
raising and lowering, 16-18, 16
scroll bars, 20-22

inserting
AreaCodeDatabaselnsert(), 139-140
InsertButtons(), 204-206
mechanical issues porting MFC applications to

CE,204-206

Page 00624

598 installing-license agreement

installing
InstallDir, 393, 396
Logo program requirements, 411-415
programs to user's CE device

Cab Wizard, 392-402, 398
JnstallShield, 402-405, 402, 403, 404, 405

insurance field agents case study
conclusion, 370
cost analysis, 368-369, 369
overview, 366-367
technical issues

digital cameras, 367
HPC/Pro, 368
overview, 367

InterlockedTestExchange(), 551
Internet

determining user's CPU type over, 413
document retrieval, 27
Logo program installation, 411, 413
Oracle Lite forCE, 353-354
replication, 353-354

Inventory Management System
case study

bar code scanner, 363
conclusion, 366
cost analysis, 365-366, 365, 366
form factor choices, 364
Handheld PC (HPC), 364
Palm-size PC (PPC), 364
synchronization vs. wireless connection,

363-364
technical issues, 362-364

overview, 362
invoicing systems, 337-338
IR communications

Infrared Sockets (IrSock), 314,332
IR ports, 307, 420
IR transfer of files, 433
IrCOMM, 312-314, 313
IrDA standards, 420
IrDetect application, 313
overview, 309
Raw IR, 309-312

IrDetect application, 313
_isnan(), 441
iswalnum(),454
iswalpha(), 454

iswascii(), 454
iswcntrl(), 454
iswctype(), 455
iswgraph(), 455
iswlower(), 455
iswprint(), 455
iswpunct(), 456
iswspace(), 456
iswupper(), 456
iswxdigit(), 456
_itoa(), 441
_itot(), 310
_itow(), 310, 441

_jO(), 442
_j1(),442
_jn(), 442

J

K
keyboards

EnableHardwareKeyboard(), 536
Handheld PCs (HPCs), 26
hints for HPC applications, 419
Palm-size PCs (PPCs) lacking, 15
toolbar button equivalents, 425

keys defined, 115

L
labs(),457
ladder puzzles, 338
language selection, 245, 274-275
laptops

case study of use of, 368-369, 369
vs. HPC/Pros devices, 366
HPC/Pros keyboard size comparison, 34
Sony Vaio, 368

ldexp(), 457
ldiv(),457
LIB paths, 147
license agreement, 341

Page 00625

linking, 299
ListView controls

database administration, 346
deleting data, 212-217,214,217
displaying user data, 210-212
drag multi-select, 427
grid replacements, 208-209
managing user data while program runs, 209
as replacement control, 208-209
Report View style, 129, 130
user entry, 212-217,214,217
VBCE,234

LMEM_ZEROINIT, 77
LoadResString, 260
LocalAlloc(), 58-60, 77, 84
log(), 457
log10(),458
_1ogb(), 442
Login dialog, 344-345, 345
Logo program

file handling requirements
common dialog boxes, 431
e-mailing files, 433
file system display, 432
IR file transfers, 433
MRU lists, 433
multi-instance applications, 432
open document name display, 432
shortcut to recently used documents,

432-433
taskbar buttons, 432

functionality requirements
applications storing and loading their state,

430
capitalization in edit boxes, 430
CE-supported CPUS, 427
color support, 430
dialogs and Input Panel, 430
exiting without user intervention, 429
graphical components, 428
help files, 428
long names in file-related operations, 431
RAPI,429
testing, 428
windows, 428
Winsock, 429
WM_HIBERNATE messages, 429

linking-Logo program 599

installation requirements
Application Manager, 411
Cab files, 411, 412
compact flash cards, 414-415
copying files to subdirectory of CEAppMan-

ager Path, 412
installing from desktop to device, 412
installing from Internet to device, 413
naming program files, 414
nonshared files, 411
removing user settings from CE registry, 412
shared program files, 412
shortcut on Start menus, 415
uninstalling, 412, 414

overview, 408-410
Ul requirements

Address Book API, 419-420
Alt+ Enter, 422
Alt+H for Help, 416
Alt+letter, 425
Alt+tap, 422
buttons, 416, 417, 419,424, 425
centering dialogs, 423
closing, 418, 426-427
command bars, 415, 416, 419
Ctrl+letter, 425
default system font, 423
desktop as parent window, 425
drag multi-select, 427
finding previous instance, 418
games,415
Help "?"buttons, 416
hints for HPC Applications, 419
hints for PPC Applications, 419
hourglass or wait cursor, 420
HTML-based help, 426
icons for files types, 419
IR port,420
IrDA standards, 420
keyboard equivalents for toolbar buttons,

425
keyboard shortcuts, 419
launching, 426-427
List View controls, 427
menus,416,417,422,423
mouse cursors, 422-423
msgstore API, 420

Page 00626

600 Logo program-menus

order of standard functions, 417
pop-up help, 425
pop-up menus, 422, 423
property sheets, 422
rebars, 415
resizing,421-422
shortcut keys, 425
showing/hiding Input Panel, 424
size of dialogs, 424
Start menu shortcuts, 425
taskbar settings, 421-422
title bar, 426
tool tips, 419
tray icons, 425
underlined accelerators, 425
windows, 426
WM_RBUTTONUP, 423

longjmp(), 458
lowering

System Input Panels
codes provided for, 16-18, 16
Owner applet, 19, 19

low-memory environment
checking return result of memory allocation,

56-57
different types of memory allocation, 59-60
EXE file size, 56-57
handling WM_HIBERNATE message, 60-61
mass-allocating application memory, 58-60
minimizing static variables, 56
overview, 55-56
reactivating application, 61

LPCTSTR,45
LPTSTR,45
LPWSTR,44, 84,92-93,94,97
_lrotl(), 442
_lrotr(), 443
_ltoa(), 443
_ltow(),443

M
macros

generic string types, 44-45, 45
macro strings, 394
TEXT,46

MailClose(), 551
MailDelete(), 551-552
MailDeleteAttachment(), 552-553
MailErrorMsg(), 553-554
MailFirst(), 554-555
MailFree(), 555
MailGet(), 555-556
MailGetAttachment(), 556
MailGetField(), 557
MailGetFolderld(), 557-558
MailGetFolderName(), 558
MailGetSort(), 558-559
MailGetSvcid(), 559
MailHeaderLen(), 560
MailLocalAttachmentLen(), 560
MailNext(), 560
MailOpen(), 561
MailOpenNotify(), 561
MailPut(), 562
MailPutAttachment(), 562-563
MailPutFolder(), 563
MailRequestAttachment(), 563-564
MailSetField(), 564-565
MailSetSort(), 565
MailUpdate(), 566
malloc(), 458
mass-allocating application memory, 58-60
_matherr(), 443
MAX_PORTS, 310
mbstowcs(), 458
_memccpy(),444
memchr(), 459
memcmp(), 459
memcpy(), 459
_memicmp(), 444
memmove(), 459
memory

allocating. See allocating memory
constraints in Windows CE, 5-7
low-memory environment. See low-memory

environment
WM_HIBERNATE messages, 429

memset(), 460
menus

Logo program UI requirements, 416, 417, 422,
423

pop-up, 422,423

Page 00627

Save As ANSI menu, 51, 51
Start menu shortcuts, 425

i3 !FC applications
missing classes, 194
modified classes, 191-193
modified classes that gained functionality

CFrameWnd,193
CWnd,193
overview, 192-193

modified classes that lost functionality
CDC,192
CFrameWnd,192
CWnd,192
overview, 192

MoveToEx()/LineTo(), 78
new classes for CE

CCeDBDatabase, 174, 179-182, 180-182
CCeDBEnum, 174, 176
CCeDBProp, 174, 176-178, 177
CCeDBRecord, 174,179, 179
CCeSocket, 174, 175-176, 175

;64 overview, 174
Palm-size PCs (PPCs), 117
porting to CE. Sec MFC applications ported to

CE
vs. SDK-style coding, 160-162

n.ory, 58-60 using CCeDB classes
AddRecord(), 185-186
CloseDB(), 185
CreateDB(), 183-184
database as document, 182-186
database as View, 186-191
OnDelete(), 189-190
Onlnsert(), 190-191
OpenDB(), 184-185
UpdateListbox(), 187-189

JFC applications ported to CE
wry Carcalc, 221-222, 221
-7 mechanical issues
~e low-memory ActiveX Grid control, 208

grid control, 207-217, 214, 217
429 InsertButtons(), 204-206

ListView control, 208-217
MFC 2.0 vs. MFC 2.1, 202

.ts, 416,417, 422, printing support, 206-207
status bars, 201-206
toolbars, 201-206

menus-notepad 601

OLE Automation, 220-222, 221
optimizing for CE, 217-220
overview, 198
Shopping List application, 198-200, 198

minimizing, 56-57
mobile devices, 348. Sec also Oracle Mobile Agents
modal forms, 248, 253-255
modems

built-in, 314-318, 318
classes of, 314
hardware aspects, 307
Modem Selector dialog, 318
PCMCIA,318
standard external, 314

modf(),460
Modify Indexes dialog box, 66, 66, 67
Modify AddressCard(), 566-568
mouse

converting VB codes for, 252-253
Hewlett-Packard Jornada HPC/ Pro device, 7
Logo program support for mouse cursors,

422-423
MoveToEx() / Line To(), 77-78
MRU lists, 433
msgstore, API, 420
_msize(), 444
multi-instance applications, 432
multiple-file help system

header,386
HTP files in

custom <meta> tags, 389-391
overview, 388-389,389

launching help viewer, 391
overview, 385-386, 386
table of contents, 387-388

N
networking solutions. See Ethernet
_nextafter(), 444-445
nonshared program files, 411
notepad,48-55, 49,51

Page 00628

602 ODBC support-Platform Manager

ODBC support, 349
Odyssey Software, 207

0

OLE Automation, 220-222, 221
OnDelete(), 189-190
opening

CE database, 127-128
fopen(), 83-88
OpenAddressBook(), 568
OpenAddressCard(), 568-569
OpenDB(), 184-185
Unicode- and ANSI-based text files, 49-51

optimizing
MFC applications ported to CE, 217-220
VB code forCE, 274-275

Oracle Lite forCE
application development support, 349-350
copying data to desktop, 357
data compression, 357
disk file replication, 354
file-based replication, 254
Internet replication, 353-354
key features, 349
ODBC support, 349
overview, 347- 349
replication, 352-354
sample applications, 350-352, 356
security, 254
SQL support, 357
storage requirements, 357
stored procedures, 357
synching data with desktop, 357
user privileges, 358
wireless replication, 353, 355

Oracle Mobile Agents
anytime, anywhere, 354
developing applications and agents, 355
optimized for mobile environment, 354-355
overview, 354
reliability, 355
security, 355
wireless replication, 355

Owner applet, 19-22, 19

p
Palm-size PCs (PPCs)

Cap Edit control, 23-24
choosing machine for development, 370-371
cost analysis, 364-365, 365, 372
display, 12-15, 14, 15
exiting, 24-25
form factor choices, 364
Ink control, 22-23
keyboard vs. Input Panel, 15, 16-17,18-22,19,

20-22,79
Logo program

file-handling requirements, 431-433
functionality requirements, 427-431
installation requirements, 411-415
UI requirements, 415-427

MFC applications, 117
overview, 12, 13
physical memory, 6
predefined destination directories, 394
right-clicking, 8
System Input Panels

detecting when user pops up, 18-22, 19
no Alt key, 79
overview, 15
raising and lowering, 16-18, 16
scroll bars, 20-22

tailoring application UI to, 62-67, 62, 64, 67
Task Manager, 162-163, 162
Taskbar, 24-25
version numbering of operating system, 34
voice recording and playback, 24-25
WM_RBUTTONDOWN message, 79

passwords, 117, 344
PC/PCMCIA cards

hardware aspects, 307
"Low Power" Ethernet cards, 37
software aspects

PCMCIA slot overview, 318
when application starts, 318-320, 320
when card changes, 321-326,323

PDAs, 347-348
Pentax Technologies, 207
PIM (Personal Information Manager) applications,

419-420
Platform Manager, 148-150,149, 150

Page 00629

platform SDKs
emulators, 158-160
generic, 158
overview, 158

plug and play, 318
Pnplds,318-320,320
Pocket Jet II printer, 207
poid parameters, 127
Poly-Line(), 78
porting. See converting
pow(), 460
predefined destination directories, 393-394
Preprocessor defines, 70
printing

CPrintDialog, 194
MFC applications ported to CE, 206-207
PocketJet II, 207

proc_name, 343
Project Wizards

for dialog-based applications, 154-157, 155, 157
overview, 151-152, 152
WCE Application Wizard, 157
WCE MFC AppWizard, 152-154, 153

proper uses of Windows CE registry, 116
properties defined, 137
property sheets, 422
Proxim Range LAN2,37, 151,366

Q
qsort(), 460

R

raising
System Input Panels

Owner applet, 19,19
writing codes for, 16-18, 16

rand(), 460-461
Random(), 569
RangeLAN2, 37, 151, 365-366
RAPI (Remote API)

CeGetSpecialFolderPath(), 291
database access functions, 292
file access functions, 288-290

platform SDKs-registry 603

general management functions, 283-284
Logo program requirements, 429
miscellaneous shell and system functions,

292-293
overview, 282-283
registry access functions, 287-288
sample application, 293-298, 294
SDK tools and, 158
system information functions, 285-286, 286
Unicode-based, 289
using Delphi, 299-302, 299

RapiDBSave application, 293-294, 294
RapiFreeBuffer(), 569-570
RasGetEntryDevConfig(), 570
RasSetEntryDevConfig(), 570
Raw IR, 309-312
RDM/CE (Raima Data Manager forCE)

copying data to desktop, 357
data compression, 357
ripcLadL338-341,339
license agreement, 341
network models, 337-338
relational data models, 337-338
SQL support, 357
storage requirements, 357
stored procedures, 357
synching data with desktop, 357
user privileges, 358

reactivating application, 61
reading

AreaCodeDatabaseRead(), 136-139
ReadFile, 80-81, 90
read-only Grid control problem, 232-233

realloc(), 461
rebars, 415
RecountCards(), 570
recursive functions, 56
RegisterDevice(), 570-571
registry

access functions, 287-288
application vs. information, 118
BLOB (Binary Large Object) data, 118
vs. database engine, 119
hierarchy, 115, 115
improper uses of, 116-119
MFC applications and Palm-size PCs (PPCs),

117

Page 00630

604 registry-searching

proper uses of, 116
redundant information, 118
removing user settings from, 412
storing system data, 116
storing user-specific information, 116

relational database systems, 120, 337-338
remote functions

Remote File Viewer, 158
Remote Heap Viewer, 158, 159
Remote Process Viewer, 158
Remote Registry Editor, 158
Remote Spy++, 158
Remote Zoomin, 158, 159

replacement controls, 208-209
replication

bi-directional, 356
disk file, 354
file-based, 354
Internet, 353-354
Oracle Lite for CE, 352-354
Oracle Mobile Agents, 355
wireless, 355

reports
Report dialog, 345, 345
report_id, 343
report_name, ASA (Adaptive Server Any-

where), 343
REPSVR,356
resourceloads,255-260,257
return result of memory allocation, 57
_rotl(), 445
_rotr(), 445
RTL (runtime library) functions

choosing for Unicode strings, 47, 47
fgets(), 92
fopen(),83
fprintf(), 97
fputs(), 94
fread(), 95
fseek(), 108
fwrite(), 96
in Windows CE, 7

runtime
grid control, 232
library functions. See RTL (runtime library)

functions
platform detectors, 69, 70-72

TabStrip control, 233-234, 233
VBCE files, 229-230

Sales Report, 346
sample application

s

area code lookup utility, 135-140
ASA (Sample Application Anywhere), 342-347,

345
ATM conversion, 244-276, 245, 246, 276
converting between Unicode and ANSI Charac-

ter Sets, 48-55, 49, 51
Oracle Lite forCE, 350-352, 356
RAPI (Remote API), 293-298, 294
sample program in Odbc directory, 356
Shopping List application, 198-200, 198
Stopwatch-like, 238-240, 239
Task Manager, 162-163,162
Wizard for dialog-based applications, 154-157,

157
saving Unicode- and ANSI-based text files, 51-55,

51
_scalb(), 445
scroll bars, 20-22
SDK (Software Development Kit)

AutoPC SDK, 69
platform, 158-160
sample application

closing application, 166-168
displaying task lists, 163-164
keeping task list current, 168-170
overview, 162-163, 162
replacing GetDesktopWindow(), 164-165
switching to one task, 166

using VC++, 146
searching

CCeDBDatabase seek methods, 181
CeSeekDatabase(), 131, 132, 133, 134, 135, 180,

181,513-514
dwSeekType, 131
given number of records, 134-135
matching CEOID records, 132
next record equal to search criteria, 134
overview, 131-132
records with equal value, 133

Page 00631

records with greater values, 133
records with smaller values, 132
vs. seeking, 131
using API for, 121

security
ASA security _level, 343
Oracle Lite forCE, 354
Oracle Mobile Agents, 355

serial communications, 308-309
serial ports, 307
SetColumnProperties(), 571
SetDaylightTime(), 572
SetFilePointer, 108-109
SetMask(), 572-573
SetSortOrder(), 573
Setup programs, 399-402
Setup Wizards

Cab Wizard, 399-402
for VBCE, 236-237

shared program files, 412
SHCreateShortcut(), 573-574
shell and system functions, 292-293
SHGetShortcutTarget(), 574
SHLoadDIBitmap(), 574
Shopping List application, 198-200, 198
shortcuts

destination directories, 397
displaying keys for, 425
hints for HPC applications, 419
Shortcut Properties dialog, 403, 404
Startmenu,425,432

showing
Common Dialog control, 235
SHShowOutOfMemory(), 575

Sierra Imaging, 369
sin(), 461
single codebase, 67-69
sinh(), 461
size

dialogs, 424
EXE files, 56-57, 161
Handheld PC/Pro devices (HPC/Pros), 27
Handheld PCs (HPCs), 25,62
Palm-size PCs (PPCs), 62
resizing based on taskbar settings, 421-422
screen, 62, 70-72
string, 56

searching-strcpy() 605

ofWAV files, 265-266
windows resizing based on screen size, 428

Socket Communications
bar code readers, 38, 363
cost analysis, 365
Ethernet debugging, 151
serial I/0 cards, 307
wired network accessories, 37

software aspects of CE communications
built-in modems, 314-317,318
Infrared Sockets (IrSock), 314, 332
IR communications, 308-314, 313
IrCOMM, 312-314, 313
modem-based communications, 314-318,318
overview, 308
Raw IR, 309-312
serial communications, 308-309
standard external modems, 314

Sony Vaio, 368
sort orders. See indexing
SORTORDERSPEC, 123-127
sound,250-253,262-266,264,265
SQL (Structured Query Language)

alternate program's support for, 357
CE database engine support for, 121,357
stored procedures, 342

sqrt(), 461
srand(),462
static variables, 56
static vs. dynamic linking, 299
status bars, 201-206
_statusfp(), 445
stdio.h file access functions, 52, 77
Stopwatch-like sample application, 238-240, 239
storage

misuse of CE registry, 116-117
registry vs. database engines, 119
structured. See structured storage
of system data, 116
third-party database engines requirements, 357
of user-specific information, 116
VC++ (Visual C++), 161

stored procedures, 342, 357
strcat(), 462
strchr(), 462
strcmp(), 462
strcpy(), 462

Page 00632

606 strcspn()-szChunk

strcspn(), 463
strings

allocating memory for (szChunk), 52-55
ANSI-based RTL functions, 47, 47
ANSI-specific string type mappings

generic to, 44-45, 45
Unicode-specific to, 44, 44

choosing RTL (runtime library) functions for
Unicode, 47, 47

declaring, 43-45, 44, 45
generic types, 44-45, 45
macro, 394
size limits, 56
Unicode-specific types, 44, 44
using Unicode strings for all text literals, 46
using Unicode types vs. char types, overview,

42-44
wide, 43,297

strlen(), 463
stmcat(), 463
stmcmp(), 463
stmcpy, 463-464
strstr(), 464
strtok(), 464
structured storage

CE Database Engine API
AreaCodeDatabaseDelete(), 140
AreaCodeDatabaseFinish(), 140
AreaCodeDatabaselnsert(), 139-140
AreaCodeDatabaseRead(), 136-139
overview, 135-136, 135, 136

indexing
creating sort order at table creation, 130
four sort order maximum, 129-130, 130
only one active sort order per database,

129-130
overview, 122- 129
sorting based on one field, 129

overview, 114-115
registry

application vs. information, 118
BLOB (Binary Large Object) data, 118
hierarchy, 115, 115
improper uses of, 116-119
MFC applications and Palm-size PCs (PPCs),

117
proper uses of, 116

storing system data, 116
storing user-specific information, 116

searching
given number of records from beginning of

database, 134
given number of records from current

record, 135
given number of records from end of data-

base, 134
matching CEOID records, 132
next record equal to search criteria, 134
overview, 131-132
records with equal value, 133
records with greater values, 133
records with smaller values, 132

Windows CE database engine, vs. the registry,
118

stubbing, 251-253
stylus vs. mouse, 7-8
substitute functions, 77-79
Summary I confirmation dialog, 405, 405
_swab(),446
switch .. case blocks, 178
switch statements, 100
swprintf(), 464
swscan(), 104,465
swscanf(), 104
Sybase's ASA (Adaptive Server Anywhere). See

ASA (Adaptive Server Anywhere)
synching data

Active Sync, 343
comparison between third-party database

. engines, 357
stored procedures, 342
vs. wireless connection, 363-364

system information functions, 285-286, 286
System Input Panels

detecting when user pops up, 18- 22, 19
lowering, 16-18, 16
Owner applet, 19-22, 19
raising, 16-18, 16
scroll bars, 20-22

SystemParametersinfo(), 70
szChunk, 52-55

Page 00633

T
table of contents, 387-388
tables, 120-121
tablet devices, 35, 35
TabStrip control, 233-234, 233
Tahoma (9-point), 423
tan(), 465
tanh(), 465
task lists, displaying, 163-164, 168-170
Task Manager, 162-163, 162,167
Taskbars

changes while application running, 421-422
creating main window, 421
displaying open documents, 432
Logo program, 421-422
Palm-size PCs (PPCs), 24-25

TCHAR, 45, 46, 57, 84, 85-88, 90, 91, 94, 98,
100-107,346

text literals, 46
TEXT macros, 46
Third -party database engines

ASA (Adaptive Server Anywhere)
administration and management, 343
command line options, 344
configuring application, 344
copying data to desktop, 357
Customer List report, 345-346, 345
data compression, 357
database schema, 342-343
demo,344-347,345
Login dialog, 344-345, 345
overview, 341
proc_name, 343
Report dialog, 345, 345
report_id, 343
report_name, 343
Sales Report, 346
sample application, 342-347, 345
security _level, 343
SQL support, 357
storage space requirements, 357
stored procedures, 357
synching data with desktop, 357
user privileges, 358

comparison of features, 356-358

table of contents-Third-party database engines 607

Oracle Lite
access to corporate data on mobile devices,

348
copying data to desktop, 357
costs, 347
data compression, 357
data-intensive applications on PDAs, 348
overview, 347
processing power deficiency, 347-348
SQL support, 357
storage requirements, 357
stored procedures, 357
synching data with desktop, 357
user privileges, 358

Oracle Lite for CE
application development support, 349-350
disk file replication, 354
file-based replication, 254
Internet replication, 353-354
key features, 349
ODBC support, 349
overview, 348-349
replication, 352-354
sample application, 350-352, 356
security, 254
wireless replication, 353

Oracle Mobile Agents
anytime, anywhere, 354
developing applications and agents, 355
optimized for mobile environment, 354-355
overview, 354
reliability, 355
security, 255
wireless replication, 355

overview, 336-337
RDM/CE (Raima Data Manager forCE)

copying data to desktop, 357
data compression, 357
HpcLad~338-341,339

license agreement, 341
network models, 337
overview, 337
SQL support, 357
storage requirements, 357
stored procedures, 357
synching data with desktop, 357
user privileges, 358

Page 00634

608 title bars-VB (Visual Basic language)

title bars, 426
tool tips, 419
toolbars, 201-206, 425
toolkits

for VB (Visual Basic language). See VB (Visual
Basic language)

for VC++. See Windows CE toolkit for VC++
towlower(), 465
towupper(), 466
Transparentlmage(), 575-576
tray icons, 425
Tree View

vs. DBView, 65
VBCE,234

try .. catch, 79-80
Typecasts change, 250

u
UI

Logo program requirements, 415-427
tailoring to device, 62-67, 62, 63, 64, 66, 67

_ultoa(), 446
_ultow(), 446
underlined accelerators,425
Unicode Character Set

vs. ANSI-based functions, 97
applications must use, 42-43
converting between Unicode and ANSI

opening text files, 49-51
overview, 48-49, 49
saving text files, 51-55, 51

declaring strings using Unicode vs. char types
generic string types, 44-45, 45
overview, 43-44
Unicode-specific string types, 44, 44

FEFF signature, 48
file access, 95
fopen(),84
RTL functions for Unicode strings, 47, 47
string function equivalents, 47, 47
using with other text files, 48
using Unicode strings for all text literals, 46
wstrlen(), 95

UpdateListBox(), 187-189
user privileges, 358

v
variable argument lists, 97-107
VarYYYYFromZZZZ() functions, 576-584
VB (Visual Basic language)

changes in, 237-238, 238
converting real VB application to CE

array declarations, 256-260, 257
ATM conversion overview, 244-249,245,246,

276,276
Bitmaps, 250
change Global to Public, 249
country and bit maps, 266-269
Declare statements, 246-247
eliminating code, 274-275
eliminating forms, 270-274,271
eliminating optional controls and DLLs, 274
Explicit Type declarations, 249
Explicit Types, 249
icons,250
Image Control, 250
mechanical issues, 249-261, 257
modalforms,248,253-255
modifying resource loads, 255-260, 257
mouse/ cursor code, 252-253
optimizing, 270-275
optional features, 262-269, 264, 265
planning porting process, 247-249
porting from VB to VBCE, 247
preparing frmAmountWithdrawn Form, 261
sound,263-265,264,265
Typecasts, 250
using Developer Studio, 256-257, 257
WAV files, 250-253, 262-266, 264, 265

standard controls, 235, 235- 236
Stopwatch-like application, 238-240, 239
toolkit forCE

ActiveX Control Pack, 231-235, 235
application templates, 226-227, 227
control manager, 230-231
debugger, 228-229,229
embedded applications, 227-228
overview, 226
runtime files, 229-230
Setup Wizard, 236- 237
standard VBCE controls, 235, 235- 236
versions 5 and, 6, 238

Page 00635

VBCE Miscellaneous Utility Control-Windows CE overview

VBCE Miscellaneous Utility Control, 266
VBScript, 237
VC++ (Visual C++)

using to develop for Windows CE, 146
Windows CE toolkit for

compilers, 146-147
debugging, 150-151
Embedded Toolkit, 227-228
MFC vs. SDK-style coding, 160-162
overview, 146
Platform Manager, 148-150, 149, 150
platform SDKs, 158-160
Project Wizards, 151-157, 152, 153, 155, 157

Veritest, 408
version numbering of CE operating systems, 34
VGA-out ports, Handheld PC/Pro devices

(HPC/Pros), 29-33
VirtualAlloc(), 60
vswprintf(), 466

w
WAY files, 250-253, 262-266, 264, 265
WCE Application Wizard, 157
WCE MFC App Wizard, 152-154, 153
WCHAR, 44, 45
wcscat(), 466
wcschr(), 467
wcscmp(), 467
wcscpy(), 467
wcscspn(), 467
_wcsdup(), 446
_wcsicmp(),447
wcslen(), 468
_wcslwr(), 447
wcsncat(), 468
wcsncmp(), 468
wcsncpy(), 468-469
_wcsnicmp(), 447
_wcsnset(), 447-448
wcspbrk(), 469
wcsrchr(), 469
_wcsrev(), 448
_wcsset(), 448
wcsspn(), 469-470
wcsstr(), 470

wcstod(), 470
wcstok(), 470
wcstol(), 471
wcstombs(), 471
wcstoul(), 471
_ wcsupr(), 448
whitespace, 101, 102, 103
whois program, 327-332, 328
wide strings, 43, 297
WindowsCE

database engine. See Windows CE Database
Engine

overview of. See Windows CE overview
registry hierarchy. See registry
toolkit for VC++. See Windows CE toolkit for

VC++
vs. Windows 98/NT, 5-9
writing for. See writing for Windows CE

Windows CE Database Engine
API

AreaCodeDatabaseDelete(), 140
AreaCodeDatabaseFinish(), 140
AreaCodeDatabaseinsert(), 139-140
AreaCodeDatabaseRead(), 136-139
overview, 135-136, 135, 136

vs. other familiar database engines
databases as tables, 120
Enterprise Manager applications, 122
indexing, 122-130
management tools and utilities, 121-122
not relational, 120
organization and naming of data, 120
overview, 119
record-specific vs. table-specific fields,

120-121
searching,131-135
similarities, 122-135
SQL (Structured Query Language) queries,

121
vs . the registry, 119

Windows CE overview
CE defined, 4-5
communications, 10
core OS features, 10
databases, 10-11
dhrystone ratings, 10-11
display size and type, 9

Page 00636

610 Windows CE overview-writing for Windows CE

hardware standardization, 8-9
Internet features, 10
low-memory situations, 6-7
memory constraints, 5-7
networking features, 10
operating system requests, 6-7
physical memory, 6
power of, 11
reduced API, 7
reduced runtime library (RLT), 7
resizing windows, 8
right-clicking, 8
running existing programs, 5
stylus vs. mouse, 7-8
unique features, 10-11
user control over memory availability, 6-7
vs. Windows 98/NT, 5-9
Winsock 1.1, 10
vs. x86 Intel platform, 9

Windows CE toolkit for VC++
compilers, 146
debugging, 150-151
#define, 70
GetDesktopWindow(), 164-165
MFC vs. SDK-style coding

ease of development, 161-162
overview, 160
storage space, 161

overview, 146
Platform Manager, 148-150, 149, 150
platform SDKs

emulators, 158-160
generic tools, 158
overview, 158

Preprocessors defines, 70
Project Wizards

for dialog-based applications, 154-157, 155,
157

overview, 151-152, 152
WCE Application Wizard, 157
WCE MFC AppWizard, 152-154, 153

sample SDK-style application
closing application, 166-168
displaying tasks, 163-164
keeping task lists current, 168-170
overview, 162-163, 162
switching to one task, 166

Windows NT, 159, 175, 192,289,326
Winsock 1.1

in CE communications, 327-332
Infrared Sockets (IrSock), 314, 332
Logo program requirements, 429
overview, 10

Wired network accessories forCE devices, 36-37
wireless connections

accessories for CE devices, 36-37
LAN Hub cost analysis, 366
Oracle Mobile Agents, 355
replication, 353,355
synching vs., 363-364

Wizards
Cab Wizard, 392-402, 398
Project Wizards, 151-152, 152, 154-157, 155, 157
Setup Wizard for VBCE, 236-237
WCE Application Wizard, 157
WCE MFC AppWizard, 152-154, 153

WM_ACTIVATE, 61
WM_COMMAND, 29, 166, 167, 168
WM_DEVICECHANGE, 321-322, 324, 326
WM_HIBERNATE, 60-61,193,429
WM_INITDIALOG, 159-160,316
WM_RBUTTONDOWN, 78-79
WM_RBUTTONUP, 423
WM_SOCKET_NOTIFY, 176
wrapper functions, 81
WriteFile, 80-81, 91
writing for Windows CE

first commandment of, 42-55
form factors

compiler defines, 68-69, 69
creating conditional defines, 69-70
creating runtime platform detectors, 70-72
DBView, 63-66, 63, 64, 66, 67
overview, 61-62
single codebases, 67-69
tailoring application UI to device, 62-67, 63,

64, 66, 67
low-memory environment

checking return results of memory alloca-
tion, 57

different types of memory allocation, 59-60
EXE file size, 56-57
handling WM_HIBERATE message, 60-61
mass-allocating application memory, 58-60

Page 00637

writing for Windows CE-_yn() 611
--

minimizing static variables, 56
overview, 55-56
reactivating application, 61

overview, 42
second commandment of, 55-61

third commandment of, 61-72
'using Unicode Character set

declaring strings using Unicode types vs.
chartypes,43-46,44,45

generic string types, 44-45, 45
overview, 42-43
RTL (runtime library) functions, 47, 47
text literals, 46
Unicode-specific string types, 44, 44
using with ANSI-based text files, 48-55, 49,

51
wide strings, 43

writing your own functions
fclose(), 88-89
fgetc(), 89-90
£gets(), 92-94
FILE*-based functions, 81-83
fopen(), 83-88
fprintf(), 97-99
fputs(), 94
fputz(), 90-92
fread(), 95-96
fscanf(), 99-107
fseek(), 108- 109
fwrite(), 96
overview, 80-81
wstrlen(), 95

WSA-related functions, 327
wsprintf(), 471
wstrlen(), 84, 95
_wtoi(), 449
_wtol(), 449

x86 Intel platform, 9

_y0(),449
_yl(),449
_yn(), 450

X

y

Page 00638

Sybex Presents

MCSD TEST SUCCESSTM
THE PERFECT COMPANION BOOKS TO THE MCSD STUDY GUIDES

Michael McKelvy
ISBN 0-7821-2431-1

$24.99

• Includes hundreds of questions designed to help
you pass the first time

• Objective by objective coverage lets you identify
the gaps in your knowledge-and fill them

• Clear, concise summaries help you review
key material

Other MCSD Test Success Titles Available from Sybex:

MCSD Test Sucmsn•, Analyzing Reqflirements aud
DdJniug Sohlfion Architectures
IAN LEWIS & BRUCE NIELSON

ISBN 0-7821-2430-5

$24.99

Available Summer '99

MCSD Test Success"', Visual Basic® 6 Distributed Applications
MICHAEL GELLIS & YAIR ALAN GRIVER

ISBN 0-7821-1434-8

$24.99

Approvrl SttJiy Guide

Available Summer '99

MCSD Test Success"': Visual Basic® 6 Core Requirements Box
IAN LEWIS, MICHAEL McKELVY & MtcHAEL GELLIS

AND YAIR ALAN GR!VER

ISBN 0-7821-2568-9

$69.99

Contains:
Analytit~g Requirem~Jts and Defining Solution Architectures
Visual Basic® 6 Desktop Applications
Visual Basic® 6 Distn'buted Applications
Includes bonus CD with exclusive interactive testing software

u www.sybex.com

SYBEX'

Page 00639

GET MCSD CERTIFIED WITH SYBEX
THE CERTIFICATION EXPERTS

Ben Ezzell
ISBN 0-7821-2431-3

• Complete coverage of every Microsoft objective

• Hundreds of challenging review questions, in the
book and on the CD

• Hands-on exercises that let you apply the concepts
you've learned

• Page count: 592-752; Hardcover; Trim: 7"h'' x 9";
Price: $44.99; CD included

Other MCSD Study Guides Available from Sybex:

MCSD, Visual Basic® 6 Desktop Applicatious
Study Guide
Michael McKelvy
ISBN 0-7821-2438-0

MCSD, Visual Basic® 6 Distributed
Applicatious Study Guide
Michael Lee with Clark Christensen
ISBN 0-7821-2433-X

MCSD: Access"' 95 Study Guide
Peter Vogel & Helen Fedderna
ISBN 0-7821-2282-5

MCSD, Windorvs~S· Architecture I Study Guide
Ben Ezzell
ISBN 0-7821-2271-X

MCSD, Windows® Architecture II Study Guide
Michael Lee & Kevin Wolford
ISBN 0-7821-2274-4

MCSD: SOL Seroer® 6.5 Database Desigu
Study Guide
Kevin Hough
ISBN 0-7821-2269-8

MCSD: Visual Basic® 5 Study Guide
Mike McKelvy
ISBN 0-7821-2228-0

Available Summer '99:

MCSD, Visual C++® 6 Desktop and
Distributed Applications Study Guide
Peter Thorsteinson
ISBN 0-7821 -2570-0; $49.99

Available Summer '99:

MCSEIMCSD, SQL Server® 7 Database
Design Study Guide
Kevin Hough & Ed Larkin
ISBN 0-7821-2586-7

Available Summer '99:

MCSD Visual Basic,., 6

Core R.equiremmts Box
Michael McKelvy,
Michael Lee with
Clark Christensen &

Ben Ezzell
ISBN 0-7821-2582-4

$109.97

Contains:

A savings
of $25!

MCSD, At~alyzing R.equiren1mts and
Defining Solution Architectures Study Guide
MCSD, Visual Basic~' 6 Desktop
Applicatiom Study Guide
MCSD: Visual Basic® 6 Distributed
Applicatious Study Guide

u
StBEX

www.sybex .com

Page 00640

~. ~'!'-~E~~--·:~-- ... , . . ·~ -- ·--- .
~.... ', c .. t.lo, Ord.,Jhlfl Swpporl Conltt<t Altoul lntNI'•tlon•l tiOfll•

(.,..,., ... ,_
(lw-p::H

(Gnu.,

_ ..

@HAT'S HAPPENING! <::!,.

Promotions
Read aboutconte,13, di.lcounted bool\3 & special pacl\.ages
here! We have special promotions for ooth genelalw
academic reade>':l

Special Publications
Find out what ve' re publishlng on the lat!•t, m.o.t important
~opil:o

Features
Bonw mo.ll!ri81 you can'IJ'ind elsevhere.

@HAT'S NEW!

Our Mmst publka1ions!

~MINGSOON!

Nev series, 11e111opil:s I

Look here for the Ia lest 8IId hottest oool\3
out from. Sybex' We' U be leaturtng
opecial tilles in vuiouo ca~ories on e.
reg\IW baoi.l, so be ~lll-e 10 vi.lit us ~e.in
1o see what's hot!

C. ames

0111 Oomu sl•ll•
llotbtil or u.. Ju.st
andJJM'ISSI
comp11•r 1114 "**to
(amt botlu We'n
Mv. d~Uiil, hlnll
llld Vllklhn:UIIh:l a
wit ulinl!l 10 1111
ho111t;St Ci'Uiwr •!lu.

Network Press
I

Our aim ~lh NeMrlt
Pttn b 10 w~r !lie
by ttcl\llolC)Jies
pmclln:" In
llll1o'CUILIDIII04o,y.
tloMm P.rt.s~
publitbts a full renee
or bookS 10 tunbet
)10\Jr- iln'oll(h
lkiils WI ~I

/!J\ the dynamic and informative Sybex Web site, you can:

view our complete online catalog

preview a book you're interested in

access special book content

order books online at special
discount prices

learn about Sybex

www.sybex.com

SYBEX Inc. • I lSI Marina Village Parkway. Alameda, CA 9450 I • 510-523-8233

~ w
SYBEX

Page 00641Page 00641

Page 00642Page 00642

Page 00643

Page 00643

Page 00644

I
J

I

Page 00645

·=~ --- -

About the CD

The companion CD-ROM contains all the code from the book, PDF versions of
Appendices A and B, and valuable third-party utilities. For installation instructions,
see the README. TXT file.

Code The CD contains all the code presented in the book, along with any
resource files, VC++, VB, or Delphi project files, icons, etc. There are also addi
tional code samples relating to topics only briefly touched on in the book. The
source files are organized into directories name<,i for each chapter, with subdi
rectories for each application. Please remember that if you copy any of these
files to your hard drive manually, you must change the read-only file attribute
before attempting to modify them. For your convenience, all of the code is also
available in a single self-extracting archive.

Appendices The complete text of Appendices A and B (the C RTL and CE 2.0
API references) is provided in PDF format.

Shareware Shareware from DeveloperOne-a sampling of some of the best
shareware utilities and applications for Windows CE.

Utilities Finally, you'll find several third-party samples, namely:

lnstaiiShield for CE evaluation
version

Sybase Adaptive Server
Anywhere sample application

Orac.le Lite sample
application

The RDM/CE database engine

Acrobat Reader

Internet Explorer 4.01

Evaluation version of lnstaiiShield for
Windows CE

Sample application demonstrating fea
tures of Adaptive Server Anywhere

Sample application demonstrating fea
tures of Oracle's Windows CE
products

A third-party database engine for CE

Viewer for PDF versions of Appendices A
and B

A viewer for HTML files on the CD

Platforms The CD runs on Windows 95, Windows 98, Windows NT 4
Workstation.

--- -----..
I

-

Page 00646

WINDOWS CE
Developer's Handbook

Here's the book that helps every Windows
programmer become a Windows CE pro!

The Windows CE Developer's Handbook is for experienced Windows developers who

are ready to apply their skills to the rapidly expanding world of Windows CE. Inside, a

CE expert offers an unflinching look at the realities of CE programming, including con

straints on memory and processing power, a proliferation of device-specific capabilities,

and a reduced API and runtime library. Can you meet these challenges? This book

ensures that you can, providing in-depth coverage of the toughest tasks you'll face:

• Porting existing C/MFCIVB applications

to Windows CE

• Working around CE devices' varying

input and display capabilities

• Getting desktop applications to talk to

CE devices

• Equipping your CE applications with

support for key communications

technologies: serial 1/0, PCMCIA,

infrared, and Win sock

• Building custom RAPI applications

• Creating CE installation and help files

• Using CE databases with C and MFC

• Taking complete advantage of each

hardware platform's features

• Getting your application "logo-approved"

• Recreating file access functions missing

from stdio.h

• Mastering the latest CE API calls

• Optimizing your code for the low

resource environment of CE

Featured on the CD: The enclosed CO conmlns all the sample code

referred to In the book. a free ActlveX control for Wlndo~ CE, and evaluadon

software, including CE development utilities. You'll also find links to CE vendors, useful

CE development Web sites, and PDF versions of the full documentation of CE's API

and C runtime library functions.

ABOUT THE AUTHOR

Terence "Dr. CE" Goggin, a recognized Windows CE expert, is the author of numerous

books and articles on Windows programming and the Internet. He is currently a consultant

working on cutting-edge Windows CE solutions. U.S. $49.99

USER LEVEL INTERMEDIATE/ADVANCED

BOOK TYPE HOW-TO/REFERENCE

CATEGORY PROGRAMMING

c .,
(")

0 25211 22414 4

1'11
> z

ISBN 0-7821-2414-3
900 00

9 780782 124 49

Page 00647

QA 76
.76
.063
G636
1999
COPY 2

