

Baker Hughes Proceedings

IPR2016-00596 (U.S. Pat. No. 7,134,505)
IPR2016-00597 (U.S. Pat. No. 7,543,634)
IPR2016-00598 (U.S. Pat. No. 7,861,774)

Unless otherwise noted, all citations herein are to the exhibit list for IPR2016-01506 (774 patent). This exhibit list is available in the Patent Owner Response, Paper 51.

All page citations are to the page numbers added for these proceedings, not the native page numbers of the article, document, etc.

Frequently Cited Exhibits

2050 - McGowen First Declaration
2081 - McGowen Supplemental Declaration
2017-A. Daneshy First Deposition
2085 - A. Daneshy Second Deposition

Thomson

Q. And just to be clear, Thomson does not disclose pumping fracturing fluid into an open-hole annular segment, right?
A. The paper does not describe that, no. The paper describes through a cemented casing in this case.
Q. Was one of the goals of Ellsworth to create multiple fractures through open-hole annular segments?
A. It was not their main goal, no.
Q. Did they do that?
A. No, they didn't need to do that. That's why they didn't do it.
Q. Does the Ellsworth reference describe hydraulic fracturing? A. It describes acid stimulation, and it doesn't get into what pressures were used. So it's not easy to discern whether the acid fractured the rock or not.

Pozen Inc. v. Par Pharm., Inc., 696 F.3d 1151, 1163 (Fed. Cir. 2012)

Amkor Tech., Inc. v. Int'I Trade Comm'n, 692 F.3d 1250, 1260 (Fed. Cir. 2012)

Q. Does the Thompson reference explain why the authors use cemented casing in the horizontal portion of the well?
A. They don't go into it. As far as I can understand, the prior wells in that platform had used casing and cementing and so -- and they were asked to improve the efficiency of the prior wells, so they continued to use what was being used. I doubt it was a decision point.

Harold McGowen - Fracturing Experience

- President and CEO, Navidad Resources LLC
- Overseen over 200 wellsites for NRL
- Voted best CEO for a medium size producer (TIPRO)
- Performed multi-year fracturing fluid performance study on 1,000 Codell-Niobrara refracs.
- Performed reserves projections and economic evaluation of 250+ Bossier/Cotton Valley wells in the Bossier trend.

Dr. Ali Daneshy - Fracturing Experience

- Director of Petroleum Engineering at University of Houston
- VP of Integrated Technology Products at Halliburton
- SPE Distinguished Lecturer
- Academic papers related to fracturing

Q. Did you write your report?

 A. Did I write it personally? No.
[. . .]

Q. When you say reports, and I may have said reports, but we're talking about your declarations, right? A. Yeah, exactly.
Q. Well, let me just ask you this What's your understanding of the legal test for proving that a patent claim is obvious?
A. You're asking the wrong person. I think the definition is somebody -- a person of ordinary skill would be able to use the -- a person of ordinary skill would arrive at that, would come to the conclusion, I think. I don't want to give you -- because I know this is something that is -- I've worked with patent lawyers and thìs is one of those subjects that every time you get into it, each patent lawyer describes it different than others. But if a person of ordinary skill would arrive that it can be done. Based on existing available information, existing knowledge, they would say it could be done.

In the very first declaration that Dr. Daneshy gave, he did not render a conclusion on the legal issue of obviousness with respect to Thomson and its use in an openhole in combination with the Ellsworth reference.

Open Hole Multi-Stage Completion System in Unconventional Plays: Efficiency, Effectiveness and Economics.

$15=2+5=5$

Abstract

During the past decade, the combination of hydraulic fracturing and horizontal wells, has proven to be the key, to the unlocking of unconventional plays across North America and elsewhere. This efficiency has becn accomplished by using
two very distinct completion approaches: the Plug and Perf. method and the Open Hole Multi Stage (OHMS) completion system (typically ball activated fracturing ports). The OHMS completion system has in general been applied to careffuly selected fields and has not yet gained wide
acceptance, across the industry, as a viable altermative to the more popular and extensively utilised Plug and Perf approach acceptance, across the industry, as a viable altermative to the more popular and extensively yutilised Plug and Perf approach.
This resistance to change and the reluctance to consider alternative completion approaches, are due to a number of factors many of which reflect an operational comfort zone from which there is a hesitancy to stray. Offen the disadvantages of the Plug and Preff approcach.
Case histories from a number of North American unconventional plays, for example the Red Oak, the Cotton Valley and Case histories from a number of North American unconventional plays, for example the Red Oak, hise Cotton Valcey and
the Granite Wash, will be both presented and analyzed. This analysis will focus on a number of aspects, including the hydraulic fracturing treatments, the operational efficiencies, the cost effectiveness and the overall risk reduction aspects of
the OHMS vs. the Plug and Perf approaches. Introduction
Introduction
Over the past decade, the Oil and Gas industry has considerably increased the well completion activity levels taking place across the unconventional plays within North America. Continued advancements in both the completions technologies and
the operational techniques, particularly when combining horizontal drilling and hydraulic fracturing, have allowed an efficient access to previously uneconomic resources to be achieved. These previously uneconomic resources comprise of a number of different plays consisting of various pore fluids, formation lithologies and hydrocarbon trapping mechanisms. In
this respect, the tipht this respect, the tight gas-sands, cool bed methane (CBM), shale gas and more recently shale oil opportunities can all be Fundamentally, the reasoning behind the consideration of horizontal well drilling is fairly simple, horizontal wells will provide an additional amount of contact area within the reservoir and by this means an improved production rate compared to a vertical well can be achieved. However, the reality is not as straightforvard and the increased surface area, exposed to the
reservoir, is not the only factor directly affecting this enhanced production rate In order to explain more clearty, consider the simple derivation of the Darcy flow equation for an ideal liquid, for
rest
verical well (l), vertical well (1), writen in oilfield units. This equation simply states that the production rate ($($) is directly proportional to the applied drawdown (Sp), the reservoir thickness (h), the formation permeability (k), the wellbore radius (T_{w}) and is also
inversely proportional to the pore-fluid viscosity (μ) and the fluid formation volume factor (B).

$$
q=\frac{k h}{141.2 B \mu} \cdot \frac{\Delta p}{\ln \left(\frac{r}{r w}\right)}
$$

The P\&P approach was the initial lower completion methodology that allowed the effective deployment of multi-fracture treatments in horizontal wells . . .

Ex. 2001 at 5, A. Casero, Open Hole Multi-Stage Completion System in Unconventional Plays: Efficiency, Effectiveness and Economics, SPE 164009 (2013); see also Ex. 2050, McGowen Decl. at 26; Paper 51, POR at 13-15.

Q. Why does that difference matter? MR. GARRETT: Objection, form.
A. Because the location of the fracture influences [well] productivity and how the reservoir is being depleted. You want uniform depletion of reservoir fluid so that you get as much of the oil or gas out of the formation; and so for that, it is better to know more accurately where the fractures are located.

Ex. 2017, A. Daneshy Depo. at 21:13-20
Ex. 2050, McGowen Decl. at 28 Paper 51, POR at 14

Access to Formation

Open Hole Multi-Stage (No Cemented Casing)

Access to Formation

Isolation

(Cemented Casing)

Access to Formation
$/ 4$

Open Hole Multi-Stage (No Cemented Casing)

Access to Formation

Q. What do you mean by that?
A. You are talking about two systems which are very different in the way they fracture. In a cemented liner completion, as I mentioned, when you create a fracture, it is where the perforations are. When you use external casing packers, the fracture -- with ports, with fracture ports -the fracture can be anywhere between the two external casing packers.

When you fracture the well from perforations, your fracture is likely to be right at or very near the perforation. And since the perforations -- the perforated interval in the well is a very short interval. It could be 12 inches, 18 inches, as opposed to open space between two packers that could be 300 feet, 400 feet. So when we say control, that's the extent of it, whether within a few feet or within several hundred feet.

A POSITA would be aware that there was an optimum distance between stages and that fracture spacing was critical to commercial success.
Q. Why would you care about controlling where a fracture initiates within a 12-to-18-inch span versus a 300-to-400-foot span?
A. Because I want to produce the well in an optimum fashion. It influences the productivity of the well.

If you put a fracture at plus 10 (which is 10 feet from that packer, on one side of it) and minus 10 (which is 10 feet from the packer on the other side of it), these two packers are 20 feet apart from each other. They basically drain the same segment of the well. You are not getting as much benefit from this as the case when the fracture is in the 100 feet from the packer on one side and 100 feet from the packer on the other side.

During the period in question, it was thought that the formation of multiple hydraulic fractures that were too close together would also create complex near wellbore fracture geometries that were thought to be detrimental to successful fracture treatments and subsequent production.

A Case History: Completion and Stimulation of Horizontal Wells with Multiple Transverse Hydraulic Fractures in the Lost Hills Diatomite
M A. Emanuele, Chevron U.S.A. Production Company, W.A. Minner and L. Weijers, Pinnacle Technologies, E. J.
Broussard and D. M. Blevens, Chevron U.S.A. Production Company and B. T. Taylor, Dowell Schlumberger

Abstract
The Lost Hills Field Diatomite has traditionally been developed using vertical wells completed with multiple
propped hydraulic fracture treatment stages. As the main portion of the field is nearing full development at $21 / 2$-acres per producer, the search for additional reserves has moved out to the flanks of the field's anticlinal structure. Due to limited pay thickness these flank portions of the field will not support weonomic vertical well devclopment. The use of hotizunt develop these areas of the field. To evaluate this developmen concept, three horizontal wells were drilled and completed orer the time period from November 1996 to December 1997. several vertical data wells were drilled offset and parallitel to several vertical data wells were drilled offset and parallel t
the intended well path of each horizontal well. Additionally, the intended well path of each horizontal well. Additionally,
two vertical core wells were. drilled in inine with the toe and
heel heel of the horizontal well paths. These data wells were
utilized to estimate properties such as in-situ stress profiles utilized to estimate properties such as in-situ stress profiles, and to determine horizontal well vertical depth placemen. The horizontal wells were then drilled in the direction of minimum horizontal stress (transverse to the preferre hydraulic fracture orientation) and completed with multipl Daged propped hydraulic fracture treatments.
During the completion of the three horizontal wells. hydraulic fracture growth behavior was characterized using surface tiltmeter fracture mapping and real-time fracture
ailtmeter fracture mapping was also used. This combination of fracture diagnostics provided significant insights into hydraulic fracture behavior, allowing diagnosis of anomalous fracture growth behavior and evaluation of remediation measures.
Fracture diagnostics during the first horizontal well revealed an unexpectedly complex near-wellbore fracture geometry, result of fracture initiation problems. These problems slowed the completion process and severely harmed the effectivenes of the fracture-to-wellbore connection. In the subsequent
horizontal wells, a number of design and execution changes horizontal wells, a number of design and execution changes
were made which resulted in simpler near-wellbore fracture seometry and a greatly improved production response. The paper provides an overview of the completion and stimulation of all three horizontal wells, describes the lessons earned along the way, and discusses the implications fo
future Lost Hills horizontal well devclopment.

Lost Hills Field Setting and Horizontal Well Rationale

Field Description. The Lost Hills Field is an asymunteri anticline, approximately one mile wide and twelve miles long,
ocated in Kern County, California, approximately 45 miles northwest of Bakersfield (see Figure 1). The anticline trends NW-SE, nearly parallel to the San Andreas Fault. The main eservoir is approximately 1000 ft thick, occurring at depth
ranging from 1000 to 3000 ft ranging from 1000 to 3000 ft .
has a primary constituent of siliceous shells that are the has a primary constituent of siliceous shells that are the
remains of single-celled, algae-like plants called diatoms. These diatoms were plentiful in the shallow marine environment during the late Miocene ($5-10$ million years ago),
in what is now California's San Joaquin Valley. Due to the open structure and round shape of the small ($50 \mu \mathrm{~m}$-diameter) diatoms, porosity can be as high as 65%, while permeability is typically much less than 1 mD (see Table 1). With such high porosity, lithostatic (overburden) gradients are relatively low
at $0.79-0.82$ psift.
1200 ft . Throughout the field, key reservoir propenties change 1200 ft . Throughout the field, key reservoir properties change
at a depth varying between 1900 and 2700 ft , where the

Fracture diagnostics during the first horizontal well revealed an unexpectedly complex near- wellbore fracture geometry, a result of fracture initiation problems. These problems slowed the completion process and severely harmed the effectiveness of the fracture-towellbore connection.

Ex. 2066 at 1, Emanuele, SPE 39941 "A Case History: Completion and Stimulation of Horizontal Wells with Multiple Transverse Hydraulic Fractures in the Lost Hills Diatomite" (1998); Ex. 2050, McGowen Decl. at 27-29.

Methodology to Predict the Initiation of Multiple Transverse Fractures from Horizontal Wellbores
D.G. CROSBY, Z. YANG, S.S. RAHMAN

University of New South Waks

transversely fractured horizontal wellbores are still plagued by a number of problems, most of which stem from the complex fracture geometries connecting the wellbore to the main fracture. These complex fracture geometries usually take the form of multiple fractures, twisted fractures, H- or S-shaped fractures
Ex. 2063 at 2, Crosby, D.G., "Methodology to Predict the Initiation of Multiple Transverse Fractures from Horizontal Wellbores" (2001); Ex. 2050, McGowen Decl. at 27-29.

SPE 37354
A Case Study for Driling and Completing a Horizontal Well in the Clinton Sandstone William F. Murray Jr., SPE, Belden \& Blake Corporation, Leo A. Schrider, SPE, Belden \& Blake Corporation, Raymond L. Mazza, SPE, Petroleum Consulting Services, Albert B. Yost II, SPE, U.S. DOE

Abstract
Horizontal well drilling for the recovery of natural gas and oil has been touted as the panacea for optimum recovery from hydrocarbon reservoirs. This technology has been
applied to reservoirs throughout the world, primarily in environments such as the North Sea off the coast of Great Britian and the Austinchalk in Southeastern Texas. To
date., very few wells have been attempted in the date, very few wells have been attempted in the
Appalachian Basin. To test this technology in the Appalachian Basin. To test this technology in the
Appalachian Basin, a joint effort between Belden \& Blake Appalachian Basin, a joint efforn between Belden \& Blake
Corporation and the U.S. DOE resulted in the first horizontal well successfully drilled and stimulated in the Silurian Climton Sand formation. The Central Waste \#14 County, Ohio, which is one of the better remaining areas for Clinton Sand developmental drilling. The $\mathrm{CW} \pi 14$ was spudded in October 1993 and drilled to a total measured
depth of 6.505 feet at a maximum inclination of nearly 92 depth of 6.505 feet at a maximum inclination of nearly 92
degrees from vertical with approximately 1.320 feet of decrres from verical wind. Thproximal Clinton interval footage
Clinton interval exposed. Ther greater than 85 degrees was about 1,142 feet. Three hydraulic fracturing stages were successfully completed
within the horizontal wellbore. Since this was the first within the horizontal wellbore. Since this was the first
horizontal well drilled in the Clinton Sand interval.
driling and completing this well. The actual drilling operation required about 44 days of rig time. The well was
stimulated during the summer/fall of 1994 and placed on production in early 1993
downhole pump and has produced approximately 20,00 MCF of natural gas and 7,000 barrels of oil in its first full
year of production. Unlike similar wells drilled in this are year of production. Unlike similar wells drilled in this are
the oil production is about twice that expected while the gas production is less than half of the neeighboring offsets.
Based on the production performance to date which has Based on the production performance to date which has
displayed a much shallower gas decline rate than a vertical displayed a much shallower gas decline rate than a verical
well in the area, the $C W H 14$ is currently estimated to have an ultimate recovery in the range of 330 to 400 MMCFE
which is approximately 1.6 to 2.0 times its vertical offsel wells.
While we are encouraged with the 1.6 to 2.0 increase
in estimated uttimate recovery, horizontal drilling does not in estimated utimate recovery, horizontal drilling does no
appear to be a viable economic alternative for primary appear to be a viable economic alternative for primary
development in this area without further improvements in reserve potential along with significant cost reductions. A this time, drilling this type well may be limited to special
ipplications for secondary or enhanced oil recovery applications for secondary or enhanced oil recovery or
perhaps for natural gas storage. The CW \#14 horizontal perraps for natural gas storage. The CW \#14 horizontal
drillng project, however, suceessfully demonstrated that the extremely hard and abrasive Clinton Sand can be
horizonally drilled and stimulated which we considered a horizontally drilled and stimulated which we considered a
major technical accomplishment for drilling a well of this major technical accomplishment for drilling a well of this epe in the Appalachian Basin.

Introduction

The Clinton Sand is a low permeable gas reservoir in
Northeastern Ohio with initial well production generally in the 75 to 150 MCF per day and 5 to 10 barrels of oil per the 75 to 150 MCF per day and 5 to 10 barrels of oil per
day. Ultimate production from a vertical well in the Clinton formation in Smith Township, Mahoning County is projected to be about 205 million cubic feet of gas
[A] decision was made to attempt a cased hole completion with a perforated interval not to exceed two (2) feet. It has been documented in literature and field proven that a smaller focused perforated interval (2 to 3 feet) enables a major fracture system to be initiated rather than several minor fractures which compete for fracturing fluid and ultimately are unable to propagate and extend.

Ex. 2100 at 9, Murray, SPE 37354 "A Case Study for Drilling and Completing a Horizontal Well in the Clinton Sandstone" (1996); Ex. 2081, McGowen Decl. at 24.

Several years ago, conventional wisdom held that a few widely spaced long length fractures were the best way to fully exploit the reservoir and ensure maximum economic ultimate recovery.

Recent experience has shown, however, that numerous closely spaced short fractures produce better results over the life of the reservoir. This outcome would seem to tilt the scale in favor of OHMS owing to its superior efficiency, but OHMS is not the predominant technique in many plays.
A. . . . That's what a single fracture would have looked like. When you put 20, 30, 40 of these together, then they don't look like that.
Q. What do they look like?
A. Today the industry uses the term "complex" because they don't really know what it looks like.
Q. Are persons of skill in the art today trying to create complex fractures?
A. Yes.
Q. In the past, would a person of skill in the art try and avoid complex fractures?
A. When is "past"?
Q. The time before 2001.
A. Yes, when we fractured vertical wells, we did not want to create complex fractures.
Q. Back before 2001, how did persons of skill in the art expect fractures to behave?
A. They expected them to behave just like they did in vertical wells.

Fig. 6-Nonplanar fracture geometries.

For a normal hydraulic

fracturing treatment where proppant is used, if there is a leak around a packer during the hydraulic fracturing ("frac") stage, excessive leak-off could cause a screen out event, resulting in a complete failure of that frac stage and loading the hole up with proppant that would have to be removed at great expense.

SPE 18263
Simultaneous Multiple Entry Hydraulic Fracture Treatments of Horizontally Drilled Wells
by C.E. Austin and R.E. Rose, Halliburton Services, and F.J. Schuh, Drilling Technology Inc. SPE Members

To be effectively fracture stimulated, a horizontally drilled well must be cased and cemented through the horizontal producing section of the well. Casing and cementing the horizontal section allows fracture initiation points to be controlled in placing multiple fractures.

Ex. 2098, Austin, SPE 18263, Simultaneous Multiple Entry Hydraulic Fracture Treatments of Horizontally Drilled Wells at 1 (1988); Ex. 2081 at 24-25; Ex. 2081, McGowen Decl. at 24-25; Paper 51, POR at 20-21.

Practical Considerations of Horizontal Well Fracturing in the 'Danish Chalk'
.A. Owens and M.J. Pitts, Maersk Oill \& Gas A/S, and H.J. Klampferer and
SPE Members
Coprigen 1982, Sociny of Perctoum Eng neess ho.

ABSTRACT

ABIT
Placement of a propped hydraulic fracture in parameters. These is dependent on several such as reservoir conditions, drilling practices, and completion techniques. This paper outline some of the practical considerations that must be accounted for during the placement of proppat fracture treatment on an offshore horizontal well he paper discusses treatment design onsiderations and verifies the operational and utilizing a state-of-the-art stimulation vessel.
INTRODUCTION
Hydraulic fracturing of horizontal wells is often ttractive for a fo wells drilled in the vertical condition also require his type of treatment. The Dan field in the nish sector of the North Sea is no exception is philosophy. The field, discovered in 1971, is
produced from the Tertiary Danian and Cretaceous Maastrichtian chalks, typified by hig porosities (30%) and low permeabilities (1 md) Since the start of development, all conventiona stimulated to improve productivity. Howeve ost stimulation production results were disappointing. A feasibility study performed on References and illustrations at end of paper.
application of horizontal wells in the Dan field
concluded that horizontal concladed that horizontal wells were
economically attractive economically attractive only by fracture
stimulating multiple zones in the section and maintaining appropriate zoinhole section and maintaining appropriate zonal
isolation. ${ }^{3}$ Therefore, in 1987 the operator commenced drilling of horizontal wells to increase the field's production potential.
The initial Dan horizontal wells were stimulated with acid fracture treatments, the industry
standard for a chalk reservoir. The placement of these treatments proved effective, however, th medium term production was limited due to th low formation integrity and consequent collaps
of the induced fracture system. Propped fracture treatments replaced the acid treatments and the benefits to productivity were quickly seen. However, the placement of proppant into some
of the Dan horizontal wells became difficult, and of the Dan horizontal wells became difficult, an in some cases impossible. The difficulties in Principal among these is the direction of the horizontal wellbore relative to the preferred
direction of the induced fracture. ${ }^{4}$ The situation is further complicated by the varyin nonconformities that can exist at the near wellbore area.
The theory and completion philosophy utilized in performing multiple fracturing treatments in in performing multiple fracturing treatments in
horizontal wells has been the topic of several previous papers. ${ }^{610}$ This paper will present

A horizontal well that is to be fracture stimulated over multiple zones must be cased and cemented.

Ex. 2099, Owens, SPE 25058, Practical Considerations of Horizontal Well Fracturing in the "Danish Chalk" at 2 (1992); Ex. 2081, McGowen Decl. at 23; Paper 51, POR at 20-21.

A Case History of Completing and Fracture Stimulating a Horizontal Well Hazim H. Abass,** Peter Hagist,* James Harry, + James L. Hunt,** Mark Shumway, + Naz Gazi**
*Pennzoil, **Halliburton Energy Services, + Choctaw II Oil and Gas, Ldd *Pennzoil, **Halliburton Energy Services, tChoctaw II Oil and Gas, Ld
SPE Members

Copyright 1995, Society of Pettroluum Engineers inc.
This paper was propared for presentation at the 1995 SPE Procuccion Operations Symposium, Okiahoma City, April 2-4.

Abstract
This paper presents a detailed description of the completion and fracture stimulation of a high-angle
well in the Madison formation of the Williston Basin in well in the Madison formation of the Williston Basin in North Dakota. The case history of the Candee 26-13
HA well is used. The completion and fracture stimula tion techniques used on this well resulted in a three and a half-fold increase in the ultimate recovery of the well, in comparison to a vertical well in the same field. The well was directionally drilled to intersect natural fractures and provide optimal conditions for hydraulic fracture stimulation. To ensure zone selectivity and isolation, the well was cased and cemented. Notching techniques were used to allow hydraulic fracture treatments to be selectively initiated along the wellbore Matrix acidizing was an essential phase to achieve this goal.
This paper also presents a discussion of how reservoir simulators can be used to optimize the number of fractures needed to cover a given drainage area. In addition, prefracture and postfracture evaluations are discussed.

Introduction
The primary benefit of drilling a horizontal well is to take advantage of a greater effective drainage area than take advantage of a greater effective drainage area than
that available from a vertical well drilled in the same thar available from a vertical well drilled in the same area. Fracturing a horizontal well has presented prob-
lems because of premature screenouts and high treatment pressures. In most geological formations, the orientation angle of a horizontal well from the maximum horizontal stress plays a crucial role in achieving a successful stimulation treatment. The following three mechanisms related to wellbore orientation relative to the maximum horizontal stress (orientation angle) need to be addressed. ${ }^{\text {' }}$

- Fracture-wellbore communication area. Two extreme cases, longitudinal and orthogonal fraccares, provide maximum (longitudinal) and minium (orthogonal) com fration area between the ellbore and propagating fractures.
Fracture geometry near the wellbore. Fracture geometry is an important factor that may cause early screenouts. Several different fracture geom-
etries can result when a horizontal well is fractured, including multiple fractures, T-shaped fractures, and complex fractures.

Casing and cementing a horizontal well
 is essential to provide zone selectivity and isolation during fracture stimulation.

Ex. 2078 at 9, Abass, H., "A Case History of Completing and Fracture Stimulating a Horizontal Well" SPE 29443 (1995); Paper 51, POR at 20-21.

A Case History of Completing and Fracture Stimulating a Horizontal Well Hazim H. Abass,** Peter Hagist,* James Hary,, + James L. Hunt,** Mark Shumway, \uparrow Naz Gazi***
*Pennzoil, *Halliburton Enerry Services, + Choctaw II Oil and Gas, Ldd *Pennzoil, **Halliburton Energy Services, tChoctaw II Oil and Gas, Ld
SPE Members

Copyrigh 1995, Society of Petroleum Engineers inc.
This paper was propared for presentation at the 1995 SPE Procuccion Operations Symposium, Okiahoma City, April 2-4.
 by the author(s). Contunts of the paper, as prasentes, heve not beon revieword by the Society of Potroleum Engineors and are subient
 should contain conspicuous acknowedgment of whero and by whom the
B33336, Richartison, TX 75083-3336, U.S.A. Tletex, 730999 SPEDAL.

Abstract
This paper presents a detailed description of the completion and fracture stimulation of a high-angle
well in the Madison formation of the Williston Basin in well in the Madison formation of the Williston Basin in North Dakota. The case history of the Candee 26-13
HA well is used. The completion and fracture stimula tion techniques used on this well resulted in a three and a half-fold increase in the ultimate recovery of the well, in comparison to a vertical well in the same field. The well was directionally drilled to intersect natural The well was direcionally drilled to intersect natural fracture stimulation. To ensure zone selectivity and isolation, the well was cased and cemented. Notching techniques were used to allow hydraulic fracture treatments to be selectively initiated along the wellbor Matrix acidizing was an essential phase to achieve this goal.
This paper also presents a discussion of how reservoir simulators can be used to optimize the number of fractures needed to cover a given drainage area. In addition, prefracture and postfracture evaluations are discussed.

Introduction
The primary benefit of drilling a horizontal well is to take advantage of a greater effective drainage area than take advantage of a greater effective drainage area than that available from a vertical well drilled in the same rea. Fracturing a horizontal well has presented probment pressures. In most geological formations, the orientation angle of a horizontal well from the maximum horizontal stress plays a crucial role in achieving a successful stimulation treatment. The following three mechanisms related to wellbore orientation relative to the maximum horizontal stress (orientation angle) need o be addressed.'

- Fracture-wellbore communication area. Two extreme cases, longitudinal and orthogonal fractures, provide maximum (longitudinal) and minium (orthogonal) com fration are between the ellbore and propagating fractures.
Fracture geometry near the wellbore. Fracture geometry is an important factor that may cause early screenouts. Several different fracture geom-
etries can result when a horizontal well is fractured, including multiple fractures, T-shaped fractures, and complex fractures.

Perforations play a crucial role in achieving a successful fracturing treatment in horizontal wellbores.

Ex. 2078 at 9, Abass, H., "A Case History of Completing and Fracture Stimulating a Horizontal Well" SPE 29443 (1995); Paper 51, POR at 20-21.
and rapidly flattens after four to five fractures. Based on the diminishing slope of the cumulative productio ould be the most effective number of fractures for subject well. However, after considering the behavior of the well/fracture system, designers considered economics and selected three fractures for the subject well.

Fig. 7-Cumulative liquid production vs. the number of Fig. 7-Cumulative liquid produr fracturing.
fractures for various times after frat

Stimulation Treatment
The stimulation treatment was designed to achieve the following objectives:

To create a cavity near the wellbore. To ease the near-wellbore restriction, an acid stage was used to presents a schematic of the longitudinal slots. created via hydrojetting. Fig. 9 shows a conceptual representation of what might have happened after an acid treatment. Fig. 10 shows the creation of the main fracture as it initiates from the cavity.
To prevent the natural fractures intersecting the wellbore from initiating and propagating multiple fractures. For fluid-loss contol, 100 -mesh sand was pumped after the pad.
To help withstand the high compressive stress near the wellbore and reduce the pressure drop resulting from the radial flow convergence. High-strength, coarse proppant was used as a tail-in stage.

Fig. 8-Longitudinal slots created by hydrojetting.

Fig. 9-Conceptual representation of what might hav happened after an acid treatment.

The stimulation treatment was designed to achieve the following objectives:

- To create a cavity near the wellbore. To ease the near-wellbore restriction, an acid stage was used to communicate all the hydrojetted notches. Fig. 8 presents a schematic of the longitudinal slots created via hydrojetting. Fig. 9 shows a conceptual representation of what might have happened after an acid treatment. Fig. 10 shows the creation of the main fracture as it initiates from the cavity.
- To prevent the natural fractures intersecting the wellbore from initiating and propagating multiple fractures. For fluid-loss contol, 100-mesh sand was pumped after the pad.
- To help withstand the high compressive stress near the wellbore and reduce the pressure drop resulting from the radial flow convergence. High-strength, coarse proppant was used as a tail-in stage.

Ex. 2078 at 9, Abass, H., "A Case History of Completing and Fracture Stimulating a Horizontal Well" SPE 29443 (1995); Paper 51, POR at 20-21.

A Unique Method for
 field in 1987 with hep primary goal of improving wrels in the Davivivy in
the low-permeability chalk. A feasibility study concluded that a
 fore, to make horizontalal wells ceocomically yatractive, fracture
stimulating multiple zones in the drainhole section would be nec

 increases by a factor of three w our over that of a conventional
well Thus , the decision was made that further fileld developmen
would be based mainly on multiple fractured stimulated horizootal $\underset{\text { woulds. }}{\substack{\text { wo }}}$
 cessfull liner insalation and cementation is considered a prerequiu
site to ensure adequate zonal isolation for multiple fractur treatments in horizontal wells. The radius of curveature for both the
short- and moclium-radius methods (33 to 50 fl and 300 f , respec. tively) would make successful liner cementation difficult. For this
reason, the long-radius directional drilling method was considered to be the most attractive option.
Although the first horizontal well (Well MFB-14) was equippes with a 5 h-in. liner across he reservoir, 7 -in. Linerrs save been in in stalled in subsequent wells to allow more flexibibity in the selce
tion of pertorting and stimulation tools.

 ing cementation. This was confirmed during execution of fractur
ing jobs where no communication between individual fracures wai ing jobs wiw
observed.
Previous Perforating/Stimulating Techniquess. The following ab-
breviated history of completion breviated history of completion systems used in previous Dat
horizootal wwels socroborates the need for an improved Comple tion system for multiple stimulated horizontal wells.
Well MFB-14 was perforated and stimulated with the following
 1. The zone was periorald
drillstem test string. 2. After hhe well 1 was killed with brine and losses were cured with
1.t. ${ }^{-}$Now wit the Weresen Co.

```
O
```


 are inemable sex
Dovolopment of Mothod

Successful liner installation and cementation is considered a prerequisite to ensure adequate zonal isolation for multiple fracture treatments in horizontal wells.

[^0]| | |
| :---: | :---: |
| | |
| | |
| | |
| | yreed |
| | |
| | are subiect toputbation reveru by |
| | de |
| | |
| | |
| | |

Abstract

Aist results of fracture stimulating low permeability horizontal wells. The use of both propped and acid fracture treatments will be described.
The process has been used for openhole completions aligned in the approximate direction of fracture propagation as well as for fractures transverse to the well bore. The technique has effectively eliminated well bore connectivity problems that had been observed in vertical completions and cased and
cemented horizontal wells with transverse fractures.

The process has been used to increase production over 25 old in a 30 year old field. It has also proven successful in a marginally economic field that propped fractures in vertical wells.
procedure employs a system of multiple, retrievable reaing sibs mat are specifily configuration and allow treating the entire interval with a
single stage. The treating subs are designed to distribute the treating fluid as desired along the length of the lateral. The process has been successfully used in over 100 wells and laterals in fields located in California, Illinois, New Mexico,
Utah, and Texas. tah, and Texas.

Introduction History of Horizontal Wells ${ }^{1,2}$. Horizontal and high angle
wells have been envisioned and or used for approximately 80

In the Red Oak horizontal, the geologic expectation was to cross natural fractures and yield economic production without fracture stimulation. Natural fractures were not encountered and production was uneconomic from the openhole. Thus, the contingency plan to set and cement a liner to pump multiple transverse fractures was implemented.

Ex. 1023 at 3, P.D. Ellis, Application of Hydraulic Fractures in Openhole Horizontal Wells, SPE 65464 (2000); Paper 41 Surreply at 3.
implementation. Among these complications is the
hole navigation. The production outcome of a hole navigation. The production outcome of a
horizontal hole depends greatly on the location of the hole relative to the formation. For example, delaying water production requires placing the horizontal hole close to the top of the reservoir.
Without water or gas, best production resuls Without water or gas, best production results come Given the complex geology and structure of most reservoir formations, placing the well at the desired part of the formation can become a daunting task. Consider the structure shown in Fig. 4 A . A straight
horizontal hole in this formation will intersect the horizontal hole in this formation will intersect nhe
water zone and lose most of is advantages. The water zone and lose most of ts advantages. The
success of the horizontal hole depends on the ability to steer the well properly within the reservoir. For example, the case shown in Fig. 4 B satisfies the requirement for distance from the oi/water contact but it could face operational problems due to hole curvature and the possibility of debris collection
the bottom of the well. thus impeding flow of reservoir fluid. A shorter and better placed hole can offer better production results, as shown in Fig. 4 C . Obviously the challenge here goes beyond planning and drilling operations, It mandates superio reservoir mapping and characterization.
At the present time, most horizontal holes are At the present time, most horizontal holes as
completed openhole. The main reasons for this choice are:

The main benefit of horizontal holes comes from their long contact with the permeable reservoir. Casing and perforating these holes reduces this
contact. However, whenever completion operation require hydraulic fracturing, the horizontal holes are in fact cased, cemented, and perforated to facilitate effective fracturing.
Contrary to initial fears, in many formations hole stability has not been a big problem. This is specially true in those areas where the maximum in
situ principal stress is horizontal. Concerns about hole stability have sometimes been addressed by placing slotted or perforated liners inside the horizontal section.

Since dilling a horizontal hole costs more an takes longer, part of the
openhole completions
Cemented completion of horizontal holes is still uncharted territory for many operators and therefore preference is given to alternative
completions. Mompletions. presented later in this chapter:

3.1.3 Multilateral wells

Side-tracking off of an existing well and drilling a ranch well has long been an established practice echnique was limited to problem wells where continuation of the existing well path was either mpossible or very costly. The process consisted of placing a high strength cement or mechanical plug
inside the well to divert the bit into a new path. But doing this left the original hole plugged and inaccessible for future production or operations. With the feasibility and benefits of horizontal wells verified by actual applications, industry novess for more robust prod eni shemes S groups, mostly in the North Sea, began planning for completion architectures involving production from multiple horizontal holes connected to a mother bore. Among these were groups such as Maersk, BEB, Norsk Hydro, BP, and service companies such
as Halliburton and Baker. Athough the side-tracking technology was mature and well-established new technology was mature and well-establishec, new
technologies were needed to allow the selective re-entry of various laterals, as well as commingled roduction from them. The technology for side-tracking and drilling off years. Almost all of these side--tracked wells were mandated by drilling problems that made cumtinuation or the existing bure either impussible or very costly. But in all these applications, the original

fig. 4. Different hole hayouts in a horizomal hole: A, undesirable orientation with respect to oil/water contact:
B, hole tracking oil/water contact; C, the same as B, but with a shorter and better piaced hole.
The main benefit of horizontal holes comes from their long contact with the permeable reservoir. Casing and perforating these holes reduces this contact. However, whenever completion operations require hydraulic fracturing, the horizontal holes are in fact cased, cemented, and perforated to facilitate effective fracturing.

Ex. 2015, Encyclopedia of Hydrocarbons, at p. 8 (2007); Paper 51, POR at 21.

Open Hole Multi-Stage Completion System in Unconventional Plays: Efficiency, Effectiveness and Economics.

$125=5$

Abstract

During the past decade, the combination of hydraulic fracturing and horizontal wells, has proven to be the key, to the unlocking of unconventional plays across North America and elsewhere. This efficiency has becn accomplished by using
two very distinct completion approaches: the Plug and Perf. method and the Open Hole Multi Stage (OHMS) completion
system (typically ball accivated fracturing pors). The OHMS completion system has in general been applied to careffuly selected fields and has not yet gained wide
acceptance, across the industry, as a viable altermative to the more popular and extensively utilised Plug and Perf approach acceptance, across the industry, as a viable altermative to the more popular and extensively yutilised Plug and Perf approach.
This resistance to change and the reluctance to consider alternative completion approaches, are due to a number of factors many of which reflect an operational comfort zone from which there is a hesitancy to stray. Offen the disadvantages of the Plug and Preff approcach.
Case histories from a number of North American unconventional plays, for example the Red Oak, the Cotton Valley and Case histories from a number of North American unconventional plays, for example the Red Oak, hise Cotton Valley and
the Granite Wash, will be both presented and analyzed. This analysis will focus on a number of aspects, including the hydraulic fracturing treatments, the operational efficiencies, the cost effectiveness and the overall risk reduction aspects of
the OHMS vs. the Plug and Perf approaches. Introduction
Introduction
Over the past decade, the Oil and Gas industry has considerably increased the well completion activity levels taking place across the unconventional plays within North America. Continued advancements in both the completions technologies and
the operational techniques, particularly when combining horizontal drilling and hydraulic fracturing, have allowed an efficient aceess to previoussly uneconomic resources to be achieved. These previously uneconomic resources comprise of number of different plays consisting of various pore fluids, formation lithologies and hydrocarbon trapping mechanisms. In
this respect, the tipht this respect, the tight gas-sands, coal bed methane (CBM), shale gas and more recently shale oil opportunities can all be Fundamentally, the reasoning behind the consideration of horizontal well drilling is fairly simple, horizontal wells will provide an additional amount of contact area within the reservoir and by this means an improved production rate compared to a vertical well can be achieved. However, the reality is not as straightforward and the increased surface area, exposed to the reservir, is not the only factor directly affecting this enhancec production rate.
In order to explain more clearly, consider the simple derivation of the Darcy flow equation for an ideal liquid, for vertical well (1), writen in oilfifid dnits. This equation simply states that the eproduction rate (q) is directly proportional to the applied drawdown (Sp), the reservoir thickness (h), the formation permeability (k), the wellbore radius (T_{w}) and is also
inversely proportional to the pore-fluid viscosity (μ) and the fluid formation volume factor (B).

$$
q=\frac{k h}{141.2 B \mu} \cdot \frac{\Delta p}{\ln \left(\frac{r}{r w}\right)}
$$

Some of the features of the OHMS approach are often depicted as disadvantages, such as the inferred inability to control the initiation point of the fractures. . . .

Ex. 2001 at 5, A. Casero, Open Hole Multi-Stage Completion System in Unconventional Plays: Efficiency, Effectiveness and Economics, SPE 164009 (2013); Paper 51, POR at 22.

BAKAR RUGHES

The POSITA would have been aware that there is a significant economic risk associated with adopting new technology and/or methods that defy "tried and true" technology and/or methods.

$12+5=4=5+5=5$

Abstract

During the past decade, the combination of hydraulic fracturing and horizontal wells, has proven to be the key, to the unlocking of unconventional plays across North America and clsewhere. This efficiency has becn accomplished by using
two very distinct completion approaches: the Plug and Perf. method and the Open Hole Multi Stage (OHMS) completion
system (typically ball activated fracturing ports).
The OHMS completion system has in general been applied to carefully selected fields and has not yet gained wider acceptance, accoss the industry, ts a viathbe calernative to the more e copular and extensively utilised Plug and Perf approach
This resistance to change and the reluctance to consider alternative completion approaches, are duc to a number of factors, acceptance, across the industry, as a viable altemaive to the more popular and extensictys are duc too a number of factors,
This risisance to change and the reluctance co consider alternative completion appooches
many of which reflect an operational comfort zone from which there is a hesitancy to stray. Offen the disadvantages of the masy of which reflect an operational comefor zons efrom which there is a hesitiancy tos stray. Offen the disadvantages of the
OHMS approach may be overemphasized, while the associated advantages are not suitably considered and vice versa for the Plug and Perf approach.
Case histories from a number of North American unconventional plays, for example the Red Oak, the Cotton Valley and the Granite Wash, will be both presented and analyzed. This analysis will focus on a number of aspects, including the hydraulic fracturing treatments, the operational efficiencies, the cost effectiveness and the overall risk reduction aspects of the OHMS vs. the Plug and Perf approaches.

Introduction

Over the past decade, the Oil and Gas industry has considerably increased the well completion activity levels taking place across the unconventional plays within North America. Continued advancements in both the completions technologies and
the operational techniques, particularly when combining horizontal drilling and hydraulic fracuring, have allowed ant efficient access to previously uneconomic resources to be achieved. These previously uneconomic resources comprise of a number of different plays consisting of various pore fluids, formation lithologies and hydrocarbon trapping mechanisms. In
this respect, the tipht this respect, the tight gas-sands, coal bed methane (CBM), shale gas and more recently shale oil opportunities can all be Fundamentally, the reasoning behind the consideration of horizontal well drilling is fairly simple, horizontal wells will provide an additional amount of contact area within the reservoir and by this means an improved production rate compared to
a vertical well can be achicved. However, the reality is not as straightforward and the increased surface arca, exposed to the a vertical well can be achieved. However, the reality is not as straightforward and the increased surface area, exposed to the
reservoir, is not the only factor directly affecting this enhanced production rate. In order to explain more clearly, consided the simple derivation of the Darcy flow equation for an ideal liquid, for a
vertical well (1). writen in oilferd units. This equation simply sotases that the production rate (q) is directly prop vertical well (1), writun in oilfield units. This equation simply states that the production rate (9) is directly proportional to the applied drawdown (Ap), the reservoir thickness (h), the formation permeability (k), the wellbore radius (T_{w}) and is also
inversely proportional to the pore-fluid viscosity (μ) and the fluid formation volume factor (B).

$$
q=\frac{k h}{141.2 B \mu} \cdot \frac{\Delta p}{\ln \left(\frac{r}{r w}\right)}
$$

The P\&P approach was the initial lower completion methodology that allowed the effective deployment of multi-fracture treatments in horizontal wells and it is difficult to progress from an established, standardized and successful technique; unless there are significant tangible benefits that can be demonstrated via a different method.

Ex. 2001 at 5, A. Casero, Open Hole Multi-Stage Completion System in Unconventional Plays: Efficiency, Effectiveness and Economics, SPE 164009 (2013)
[A]nother, for example, reason you would use cemented liner is because your neighbors are using cemented liner and you're getting a better production and you say, "I don't know why they're doing it but they're getting better production. I'm going to use what they are using."

Abstract
Risk aversion was concluded as being a significant
factor in the observed slow uptake of technology in the factor in the observed slow uptake of technology in the
Upstream Sector of the Oil and Gas business Upstream Sector of the Oil and Gas business.
Hypotheses centered on information asymmetr, effect of risk volatility on tolerancte, and risk profiles of decision makers molded by structural or temporal considerations
Remedies proposed for debate and action included the creation of industry wide independent entities (testing
agency or insurance company) charged with closing the agency or insurance company) charged with closing the
gap created by asymmetries, as well as the creation of gap created by asymmetries, as well as the creation of
an industry award for excellence in technology uptake.

Background
This paper attempts to summarize a series of
discussions held by a technical breakout group as part discussions held by a technical breakout group, as part
of the larger SPE Applied Technology Workshop on Accelerating Technology Acceptance held on March 15 16, 2005 at the Del Lago Resort in Montgomery, Texas
USA. Approximately one hundred (100) attendees participated in the ATW, with six technical breakout sessions conducted during the 2-day workshop. Topics covered included Nucleating and Funding E\&P Technology, Prioritization and Assessment, Lines, and Technical Backbone.
Some of the concepts discussed within the ATW were Some of the concepts discussed within the ATW were
reported in an earlier article published in the May 2005 issue of the Journal of Petroleum Technology titled Annual Drilling Conference Probes Technology Development and Lessons Learned', which reported on
and Exhibition in Amsterdam earlier this year. The article expanded on the concept that the speed of
technology uptake is an important problem faced by our technology uptake is an important problem faced by our
industry. The SPE was subsequently encouraged by industry. The SPE was subsequently encouraged
readership response to hold an Applied Technology Workshop in order to produce a platform for the discussion of remedies.
Below we summarize some of the discussions held within the specific breakout session tasked with
understanding the roles played in technology uptake understanding the roles played in technology uptake
from a risk and reward perspective. While the paper represents in large part the findings of the group, further
influenced by discussion in the larger forum of the ATW influenced by discussion in the larger forum of the ATW views expressed below, including the weight placed on views expressed below, including the weight placed on
the different hypotheses and remedies. We therefore have written this paper in the form of a normal
publication, and acknowledge that its content is neither publication, and acknowledge that its content is neithe
an actual accountino of discussions which took place an actual accounting of discussions which took place
nor is it necessarily faithful to the chronology of events.

Methods

A breakout group of about twenty-two persons
considered the stated problem. considered the stated problem

Problem: Risk aversion is likely an important reason for slow technology uptake.
It was generally presumed that the technologies in
question have demonstrated application suitability with question have demonstrated application suitability with single focus of discussions. A presentation of macro economic trends having likely influencing behavior was given, followed by a moderated discussion. The general
concepts surrounding risk-taking were also discussed and examples were provided. Basic ground rules were laid out: Hypotheses for the observed behavior would be put forward and discussed, and the group would rank the most relevant hypotheses. In some instance
hypotheses were combined into logical groupings. Th breakout group would then advance those specifi remedies that addressed one or more of the chosen
hypotheses. These in turn would be ranked for eventual hypotheses. These in turn would be ranked for eventual

Risk aversion was concluded as being a significant factor in the observed slow uptake of technology in the Upstream Sector of the Oil and Gas business.

Ex. 2093 at 1, V. Rao, Accelerating Technology Acceptance: Hypotheses and Remedies for Risk-Averse Behavior in Technology Acceptance, SPE 98511 (2005)

SPE 135386

Comparative Study of Cemented Versus Uncemented Multi-Stage Fractured Wells in the Barnett Shale
Darrell Lohoefer, SPE, Eagle Oil \& Gas, and Daniel J. Snyder, SPE, Rocky Seale, SPE, and Daniel Themig, SPE, Dackers Plus Energy Services
Paren

Abstract
The industry has made a very quick turn toward both uncorventional reservoirs and horizontal, mult-stage fracturing. The industry has made a very quick turn toward both uncorvventional reservoirs and horizontal, mult--stage fracturin Some industry experts have begun to question e he efreciveness of recoveries an totese massive reserve assets. A been used to fracture stimulate horizontal wells. In fact, much of the learning curve for completion practices has come
from experimental work in this unconventional play. from experimental work in this unconventional play

From 2004 through 2006, a new, open hole, multi-stage system (OHMS) completion technology was run in Denton County, Texas. Using publically available data from the past five years, this study contrasts long-term production results from OHMS completed wells and wells completed with cemented casing.
The data set for OHMS fractured wells compared to the data set for cemented fractured wells indicates that open hole wells, on average, performed better. Significantly, no failures or shut-in periods were observed for the OHMS wells. This establishes the viability, reliability and effectiveness of this technology for the long-term life of wells not only in th Barnett, but for performance enhancement in other shale plays.
Substantial amounts of money are currently being spent to rapidly develop resource plays similar to the Barnett worldwide. Based on short-term results using current completion methods, predictions for ultimate recoveries may be overestimated. This paper evaluates the effectiveness of current completion practices by contrasting two methods in terms of production, economics, operational efficiency, and best fracturing practices to determine whether the completion method can affect overall well performance and long-term recovery.

Introduction
Formation Description. The Barnett Shale is a Mississipplian-age shale located in the Forth Worth Basin and covers approximately 5,000 square miles ($12,950 \mathrm{~km}^{2}$) of north-central Texas (Figure 1). The Barnett represents the grandfather of shale reservoirs where "shale as source rock" was first established, and where the necessary set of
technologies, namely horizontal drilling and multi-stage fracturing. were developed to make hydrocarbon extraction economically feasible in shale.
The Barmett is conformably overlain by the Pennsylvanian-age Marble Falls Limestone and unconformably overlies the The Barnett is conformably overiain by the Pennsylvanian-age Marble Falls Limestone and unconformably overies the
Ordovician-age Viola Limestone/Elenberger Group, which serves as a frac barrier (Figure 2) (Bowker, 2003; Pollastro Orovician-age viola Limestonetellenberger Group, which serves as a frac barrier (Figure 2) (Bowker, 2003 . The core area of the Barnett is located in the Denton, Wise and Tarrant Counties where it is
et al et al., 2003. The core area of the Barnett is located in the Denton, wise and Tarrant Counties where it is
approximately 300 to 500 ft . thick with porosity and permeability values in the range of $3-5 \%$ and $0.00007-0.0005$

Figure 6. Summary of cumulative production data for OHMS and offset wells in Denton County.

Y Axis (ft)

"game-changing technology"

(Ex. 2033) "prize product"
(Ex. 2004)

"revolutionary technology"

(Ex. 2048)
(Ex. 2008)
"disruptive technology"
(Ex. 2046)
"... revolutionized the completions sector..."
(Ex. 2006)
"legendary"
(Ex. 2046)
"the industry standard"

(Ex. 2048)
(Ex. 2009)

That focus led to the development of a number of completion technologies, starting with the StackFRAC system, which revolutionized the completions sector by introducing multistage fracturing systems in horizontal wells, credited with unlocking the potential of tight and shale oil and natural gas.

Ex. 2006, Leading the Way: Multistage fracking pioneer Packers Plus plays major role in cracking the tight oil code, Canadian OilPatch Technology Guidebook (2012); Paper 51, POR at 26-31.

Packers Plus Energy Sery

INJANUARY 2000, Dan Themig, Ken Paltaat and Peter Krab- FPM: Why did you en abandoned the security of their ijbst at oil-sesvices giant Hal- own, to star your Energy Services Inc aimed to help the indsustry tuckle the thorni THEMG: Working est, hardese-to-reach deposits. When a dient from Taxas presented smaller compeny ${ }^{4}$ he upstart with one such challenge in 2001, Thenig ved his time on a fight to a meecting to sketch oat the The wechnology unlocols previously anvidrle seporis. axinixing production in mature oilfelds and tight rock formations. Now, with the hecp of a parrner - internabonal oilficld giant Schlumberger - Packers is rapidly apanding oversess. Here, founding parmer and presiFINANCIAL POST MAGAZINE: What drew you wo the oil-and-gas indostyy? You're a farm lid from southern Illinois - not exactly ail country
DAN THEMC: My dad worl Wision bot not in exploration for Unocal's pipeline about the oil-and-gas business unil I graduated with
 at Halliburton. I ended up in Texas for foor years, then 1 alked nyy way into being transfered to Canad. I love to snowboard,
sle, dimb and whitewater-kyykic and they just dont have many sho cuntins in Texas. Aso, the Canadian oilieieds are known for
mount fostering small companies and innovation. Somieone once told me that at an oil-and-gas conference in Europe, the first thing [ap presenter]] said was, "If the technology isnt bo
Norwy, its probably not worth allking about"

- No. OF EMPLOTEES IN20 - No. Of OPERKTING LCAATONS IN 2000:1 - LCATTONS N $2009: 25$

Wet Pockers Phus tectno

 the Bakken oifleld weme tinpioducing 100 tarrols of
tay in 2006 to 60.000
— That was like putuin FPM: What were th
THEMIG: The what THEMIG: The whol

two companies in | two companies in |
| :--- |
| ow was like jumpren | would work You're with Ken and Pecesets to buikd his ore

together we had a ger
> NO. OF EMPLOYEES IN 2000: 3
> 2009: ABOUT 350
> NO. OF OPERATING LOCATIONS IN 2000: 1
> LOCATIONS IN 2009: 25

With Packers Plus technology, the Bakken oilfield went from producing 100 barrels of oil a day in 2006 to 60,000 now.

StackFRAC, the company's prize product and primary innovation, is an open hole ball drop completion system that's widely credited with unlocking old resource plays that were thought to be too expensive or to technically challenging to tap.

Ex. 2005, Exploration and Development, Alberta Oil Magazine; Paper 51, POR at 26-31.

Abstrac
 During the past decade, the combination of hydraulic fracturing and horizontal wells, has proven to be the key, to the unlocking of unconventional plays across North America and clsewhere. This efficiency has becn accomplished by using two very distinct completion approaches: the Plug and Perf. method and the Open Hole Multi Stage (OHMS) completion
 system (typically ball activated fracturing ports). The OHMS completion system has in general been applied to carefully selected fields and has not yet gained wider acceptance, across the industry, as a viable alternative to the more popular and exxensively unuiscd Yug and Perf approach. This resistance to change and the reluctance econside raternative completion appooches, are due to a number of factors, many of which reflect an operational comfort zone from which there is a hesitancy to stray. Offen the disadvantages of the many of which reflect an operational comfort zone from which there is a hesitancy to stray. Often the disadvantages of the OHMS approach may be overemphasized, while the associated advantages are not suitably considered and vice versa for the Plug and Perf approach. Case histories from a number of North American unconventional plays, for example the Red Oak, the Cotton Valley and hydraulic fracturing treatments, the operation the OHMS vs. the Plug and Perf approaches.
 Introduction
 Over the past decade, the Oil and Gas industry has considerably increased the well completion activity levels taking place across the unconventional plays within North America. Continued advancements in both the completions technologies and the operational teehniques, particularly when combining horizontal drilling and hydraulic fracturing, have allowed an efficient access to previously uneconomic resources to be achieved. These previously uneconomic resources comprise of at number of different plays, consisting of various pore fluids, formation lithologies and hydrocarbon trapping mechanisms. In number of different plays, consisting of various pore fluids, formation lithologies and hydrocarbon trapping mechanisms. In this respect, the tight gas-sands, coal bed methane (CBM), shale gas and more recenty shale oil opportunities can all be this respect, the tipht gas-sands, coal bed methane (CBM), shale gas and more recently shale oil opportunitics can all be cousidered a part of the uncouventioual rsource grouping. Fundamentally, the reasoning behind the consideration of horizontal well drilling is fairly simple, horizontal wells will Fundamentally, the reasoning behind the consideration of horizontal well drilling is fairly simple, horizontal wells wil provide an additional amount of contact area within the reservoir and by this means an improved production rate compared to provide an additional amount of contact aree within the reservio and by this means an improved production rate comparted to a vertical well can be actieved. However, the reality is not satraightforvard and the increased sufface area, exposed to the In order to explain more clearly, consider the simple derivation of the Darcy flow equation for an ideal liquid, for a vertical well (1), writen in oilfield units. This equation simply states that the production rate ()) is directly proporional to inversely proportional to the pore-fluid viscosity (μ) and the fluid formation volume factor (B).

$$
q=\frac{k h}{141.2 B \mu} \cdot \frac{\Delta p}{\ln \left(\frac{r}{r w}\right)}
$$

With the objectives of making multi stage horizontal well fracturing more efficient, both in terms of cost and time, the first commercial OHMS systems were developed and deployed in 2001 (Snyder 2011).

Ex. 2014 at 5, A. Casero, Open Hole Multi-Stage Completion System in Unconventional Plays: Efficiency, Effectiveness and Economics, SPE 164009 (2013); Paper 51, POR at 26-31.

Open Hole Multi-Stage Completion System in Unconventional Plays: Efficiency, Effectiveness and Economics.

$12=5$

Abstract

During the past decade, the combination of hydraulic fracturing and horizontal wells, has proven to be the key, to the unlocking of unconventional plays across North America and elsewhere. This efficiency has becn accomplished by using
two very distinct completion approaches: the Plug and Perf. method and the Open Hole Multi Stage (OHMS) completion system (typically ball activated fracturing ports). acceptance, across thic industry, as a viable altermative to the more popular and extensively utilised Plug and Perf approach. acceptance, across the industry, as a viable altermative to the more popular and extensively yutilised Plug and Perf approach.
This resistance to change and the reluctance to consider alternative completion approaches, are due to a number of factors many of which reflect an operational comfort zone from which there is a hesitancy to stray. Offen the disadvantages of the Plug and Preff approcach.
Case histories from a number of North American unconventional plays, for example the Red Oak, the Cotton Valley and Case histories from a number of North American unconventional plays, for example the Red Oak, the Cotton Valley and
the Granite Wash, will be both presented and analyzed. This analysis will focus on a number of aspects, including the hydraulic fracturing treatments, the operational efficiencies, the cost effectivencess and the overall risk reduction aspects of
the OHMS vs. the Plug and Perf approaches. Introduction
Introduction
Over the past d
Over the past decade, the Oil and Gas industry has considerably increased the well completion activity levels taking place across the unconventional plays within North America. Continued advancements in both the completions technologies and
the operational techniques, particularly when combining horizontal drilling and hydraulic fracuring, have allowed an efficient access to previously uneconomic resources to be achieved. These previously uneconomic resources comprise of a number of different plays consisting of various pore fluids, formation lithologies and hydrocarbon trapping mechanisms. In
this respect, the tipht this respect, the tight gas-sands, coal bed methane (CBM), shale gas and more recently shale oil opportunities can all be Fundamentally, the reasoning behind the consideration of horizontal well drilling is fairly simple, horizontal wells will provide an additional amoumt of contact area within the reservoir and by this means an improved production rate compared to a vertical well can be achieved. However, the reality is not as straightforvard and the increased surface area, exposed to the
reservoir, is not the only factor directly affecting this enhanced production rate. In order to explain more clearly, consider the simple derivation of the Darcy flow equation for an ideal liquid, for a vertical well ($($), writuen in oilfifid d units. This equation simply states that the e production rate (q) is directly proportional to the applied drawdown (Ap), the reservoir thickness (h), the formation permeability (k), the wellbore radius (T_{w}) and is also
inversely proportional to the pore-fluid viscosity (μ) and the fluid formation volume factor (B).

$$
q=\frac{k h}{141.2 B \mu} \cdot \frac{\Delta p}{\ln \left(\frac{r}{r w}\right)}
$$

Currently, there are a number of commercial OHMS systems to choose from, but for the most part, these systems utilize similar principles.

Ex. 2014 at 4, A. Casero, Open Hole Multi-Stage Completion System in Unconventional Plays: Efficiency, Effectiveness and Economics, SPE 164009 (2013); Paper 51, POR at 26-31.

Packers Plus
 ®

DO IT ONCE. DO IT RIGHT.

Exs. 2004; 2018; 2053; 2056; 2057; 2058 (video); 2061 (video)

阿
Q. Are you familiar with Baker Hughes' Fracpoint system?
A. Ditto what I told you about Packers Plus relative to Baker Hughes.
Q. That's another open-hole balldrop system, right?
A. Yes. It's open.

IsoFrac-Generation 1

- Generation 1
- System Status (Testing and
- Packer
- Design Requirements - H_{1} in. open hole
- Packer Testing Results able to achieve $10,000 \mathrm{psi}$
- Frac Sleeve
- Design Requirements - Ri
- Ball Testing Time Line anc
- Equipment Delivery
- Status of Equipment
- System Issues

Market Drivers \& Opportunities

- Competition:
- Packers Plus
- Proven System
- Opportunities
- Mid Con
- Generation 1 and Generation 2
- 6 1/4* ${ }^{*}$ Open Hole, 8,500PSI, 8250 F
- MALT
- Generation 3
- 6% Open Hole, 10,000PSI, \& 375F

CONFIDENTAL

FracPoint Experience in North America

Total number of FracPoint sleeves as of 03/28/12

Installed in more than 35 formations by 117 Oil \& Gas Operators Trends - Increased number of stages per system
>2400 Wells-38,000 Packers-40,000 Sleeves

Plug \& Perf Experience in North America

Total number of Composite Plugs as of 6/1/12

Ex. 2019 at 5

Packers Plus.

DO IT ONCE. DO IT RIGHT.

Since it was founded in 2000, Packers Plus has grown from a company of only a handful of individuals generating less than a million dollars in revenue to at its height, employing more than 900 emplovees around the globe and generating in annual U.S. revenue. The StackrRAC system has been critical to that success. Since StackFRAC was first introduced, Packers Plus has sold tools for or performed fracture treatments for tens of thousands of StackFRAC stages in the United States. That work accounts for the vast majority of Packers Plus' overall revenue and profits.

Figure 1. The OHMS technique for frac treatments is used in the Bakken play
more than in other plays.
Ex. 2011 at 4

SPE-171183-MS

Single-Size-Ball Interventionless Multi-Stage Stimulation System Improves Stimulated Reservoir Volume and Eliminates Milling Requirements: Case Studies
Feng Yuan, Eric Blanton, and Jamie Inglesfield, Weatherford

Copright 2014, Socioly of Peroroleum Engnneers

 and

Abstract

In the last decade, there has been a tremendous growth in multi-stage fracturing for unconventional plays mploying stimulation sleeves with open hole (OH) packers or cementing. Standard ball-activated frac sleeve systems with graduated ball seats have primarily been used because they can significantly save completion time and cost by facilitating the performance of multiple stimulations in a single continuous process compared with the conventional Plug and Perforate ($\mathrm{P}-\mathrm{n}-\mathrm{P}$). . H owever, traditional bali-activated
frac sleeves have limitations in the number of stages that can be handled, the pressure drop and friction loss each one creates and the need to mill through the ball seats after stimulation. As the number of frac stages increases, the ball seat sizes become dramatically smaller leading to large increases in the surface treating pressure and hydraulic horse power (HHP) needed to generate a given net downhole pressure or injection rate.
To solve these limitations a revolutionary ball-activated fracturing system has been designed. This system behaves in similar fashion of activation to the traditional graduated ball seat frac sleeve in that the ball locks into place on the seat, but all the ball seats are the same size and retract, allowing the first ball size, lands on the next seat up and so on, allowing a virtually unlimited number of zones to be treated for either OH or cemented application. With this new system, there is no milling operation involved and the completion string maintains full drift inside diameter (ID) ready for production after stimulation operations have been completed.
In this paper the authors will describe in detail the operational mechanism of this new frac sleeve and present case studies of its use which illustrates the effect of this new technology in optimizing fracturing operations both in horsepower requirements and overall completion time and cost.

Introduction

There is a lot of debate about how best to complete and fracture unconventional formations regarding the ffectiveness and efficiency differences between frac sleeve and P-n-P methods. Generally speaking, $\mathrm{P}-\mathrm{n}-\mathrm{P}$ is a time-consuming frac technique, due to the need for running Tubing Conveyed Perforating

Figure 1-Percentages for different frac methods at Weatherford.
Figure 1 shows the distribution in percentages for different frac methods used in operations performed by Weatherford which reflect closely the overall distribution throughout the industry.

Lane-Wells

Figure 5.29 Acid is injected down the tubing and into the formation through perforations to remove formation damage without fracturing the formation.

Types of Acidizing Treatments

There are two basic kinds of acid stimulation treatments: acid fracturing and matrix acidizing.

Acid fracturing, or fracture acidizing, is similar to hydraulic fracturing, with acid as the fluid. Acid fracturing does not require proppants, however, because it does not just force the rock apart, but also eats it away. It is the more widely used treatment for well stimulation with acid. Since most limestone and dolomite formations have very low permeabilities, injecting acid into these formations, even at a moderate pumping rate, usually results in fracturing.

Matrix acidizing can be subdivided into two types. The first is wellbore cleantup, or wellbore sork. In wellbore soak, the crew fills up the wellbore with acid without any pressure and allows it to react merely by soaking. It is a relatively slow process because little acid actually comes in contact with the formation. The second matrix acidizing method is a low-pressure treatment that does not fracture the formation, butallows the acid to work through the natural pores (fig. 5.29). This second process is what people in the oil patch are usually referring to when they speak of matrix acidizing. Operators generally use matrix acidizing when the formation is damaged or when a water zone or gas cap is nearby and fracturing might result in excessive water or gas production. \quad Ex. 1006 at 4

If the operator exceeds the fracture gradient and fractures the formation, the acid will be forced into the fracture where it is quickly transferred away from the wellbore and spends on the face of the fracture. This would defeat the purpose of the matrix acidizing, which is to cause acid to remove reservoir damage in the formation near the wellbore (the "near-field")

LANE-WELLS TUBING PORT VALVE

The Lane-Wells Tubing Port Valve is used primarily to displace fluids in the annulus above a packer. When formation pressures are such that heavy fluids in the well cannot be displaced prior to setting a packer, the installation of the Tubing Port Valve is needed. After Tubing Port Valve is placed in tubing string above packer and run in, the packer is set and the well head closed in. With the well secure, a ball is dropped through the tubing to seat in the Tubing Port Valve. Flow through tubing is stopped and pump pressure build-up causes spring to compress which opens side ports. This "inside out" circulation allows safe displacement of fluids in the annulus.

The Tubing Port Valve also provides a means of acidizing two zones with packer setting in either open-hole or cased hole completion. Three zone acidizing is possible with a three packer set-up and two different sized Tubing Port talves.

Features:
Departure from standard Lane-Wells Design principles to permit hookwal!
action in limited space For detailed discussion of any of these applications call your nearest Lane--
Wells branch or write to the Lane-Wells Company, P. O. Box 2194, Los Angeles Wells shanch or write to the Lane-Wells Company, P. O. Be
$\$ 4$, Calif.
LANE-weus tubing port vaive
The Lane-Wells Tubing Port Valve is used primarily to displace fluids in the
annulus above a packer. When formation pressures are such that heavy fluids in annulus above a packer. When formation pressures are such that heavy fluids in the well cannot be displaced prior to setting a packer, the instaitation of the
Tubing Port Valve is needed. After Tubing Port Vave is placed in tubing string
above packer and ruin in, the packer us set and the well head closed in. With the above packer and run in, the packer is set and the well head closed in. With the
well secure, a ball is dropped through the tubing to seat in the Tubing Port
vert well secure, a ball is dropped through the tubing to seat in the Tubing Port
Valve. FIow through tubing is sopped and pump pressure build-up causes
隹 spring to compress which opens side ports. This "inside out" circulation allows
sale displacement of fluids in the annulus.
The Tubing Port Valve also provides a means of acidizing two zones with packer seting in either open hole or cased hole completion. Three zone acidizing
is possible with a three packer set-up and two different sized Tubing Fort For detailed operating and enginecring specifications, write Lane-Wells Com-
pany, P. O. Box 2194, Los Angeles 54, California.

Lane-Wells

 Packers
SERIES 3 \& 4 FORMATION PACKERS

 (Sleeve Packing Element) (Series 4 is Valve Anchor Type)Lane-Wells Series 3 Packers are used in the following applications to obtain a positive open-hole-to-tubing prevail and a by pass or nulve to head late above packer is not required. 1 ane.Wells Seics 4 Pat uane-Vells Series 4 Packers are
used in the following applications to used in the following applications to
obtain a positive pack-off between open hole and tubing or drill pipe in fluidladen wells, The by-pass makes possible easy rumning and pulling through fluid, and the circulating valve permits changing fuids, equalization of preslation, For:
For: Improving Gas-Oil Ratios Packing-off Water
Protecting Casing
Testing Formation Content, Single Acidizing, Single Zone
Inducing Tubing Flow with Side Door Chokes, Tubing Perforations or Gas 1.1 ff Valves
Improving Volumetric Efficiency of Plunger Pumps, Separating Zones, Reducing Heading, etc., in Pumping Wells
For detailed and helpful discussion of packer applications call your nearest Lane-Wells Branch.
rop
Where below packer pressures and/or lack of tubing weinht Packer, Lane Wells Tension Operated Packers best meet the requirement. The slips are set and the packing rings expanded by pulling tension on the tubing instead of applying weight on top of the packer. This packer is excellent in formation fracturing operations. The TOP is especially recommended for water flood injection.

HYDRAULIC HOLD DOWN TOOL
For additional resistance to vertical movement of a packer when extremely high below packer are anticipated, the Hydraulic Hold Dow available. This tool holds over 6,000 psi di has non-porous nickel plated pistons and be vidual and specific holding points on the afford a positive fix in the casing and is of because of its simplicity of design. The tool entirely by hydraulic pressures built up in the at the rear of the piston forcing the pistons contact in the casing. The greater the pressure trying to move the packer in the casing, the greater the pressure on the pistons and resultant holding action.

Hrdrawlic
Hold Dowe

TOP

Where below packer pressures and/or lack of tubing weight make it impractical to use a conventional packer, Lane-Wells Tension Operated Packers best meet the requirement. The slips are set and the packing rings expanded by pulling tension on the tubing instead of applying weight on top of the packer. This packer is excellent in formation fracturing operations. The TOP is especially recommended for water flood injection.

Both the TOP and the Hydraulic Hold Down Tool are specifically designed for use inside casing as their pressure rating and performance depend upon affixing the packer to the casing wall using slips and/or pistons that contact the casing wall.

PACKER TYPES There are two main classes of packers: ported by slips gripping the wall of f pcasing. These slipps resist downward movement and when weight is applied,
the packing element expands until is set. 2. ANCHOR PACKERS-supported by a tail pipe resting on bottom or connecting with another type packer se
below. This anchor setting prevents
ownward movement of the packer when oressure is applied, and ay ows expanser is
of the packing assembly until packer is
ENGINEERED PACKER SERVICE Engineered Packer Service is availab foe, cost, or obligation. This service no sures the operator of correct procedures
and applications to ronted in packer operation. Ask your Lane-Wells man for further information.

INFORMATION REQUESTED WHEN ORDERING

HOW TO ORDER
We can serve you better if you supply all the information requested below at the time you send an inquiry or order

Packers
Specifications covering Packers should show:

1. Type and Number of Pecker (AO-1, etc.). No number needed for CO and SD.
2. Size and weight per foot (or I.D.) of casing in which packer is to be se (as $5 / 2^{\prime \prime}-17 \mathrm{lbs}$.)
. I.D. of mandrel required (as $2^{\prime \prime}$) Write for Packer Bulletin for ava able diameters in each packer size.
Size, weight and ar abing, drill pipe or tool joint on which packer is to be run. Always specify tubing as non-upset or external upset (E.U.E.). Tubing thread con-
nection will be furnished A.P.I. nection will be furnished A.P.I.
Round Thread E.U.E. unless otherwise ordered. On Formation Packer order, specify I.D. of casing packer is to run through and diameter open hole in which packer is to be set General
All Packers can be furnished in drillable material, or with anti-corrosion coating. extra cost.
All prices, dimensions, specifications, change without notice Special designs of p.
0 order as "Custom" packers will be built on such Destination
To comply with Department of Cominquireg regulations, it is necessary that all inquiries and orders for export state final
destination.

PACKER TYPES

There are two main classes of packers: 1. HOOKWALL PACKERS-supported by slips gripping the wall of the casing. These slips resist downward movement and when weight is applied, the packing element expands until packer is set.
2. ANCHOR PACKERS-supported by a tail pipe resting on bottom or connecting with another type packer set below. This anchor setting prevents
downward movement of the packer when pressure is applied, and allows expansion of the packing assembly until packer is set.

Tubing Size
A.P.I. Standard Nomenclature lists tubing according to Actual O.D. instead of Nominal I.D. as formerly nations.

Prices
arrent Packer Prest are available on request
from all Lane-Wells offices.

Spare Parts

A pamphlet titled "Packer Parts Lists and Inter-
changeability Tables" is available on request. Thi
information is especially useful to customers outside orders of parts.

Packer Availability
Ex. 1002 at 12. Popular types and sizes of Lane-Wells available in stock at Lane-Wells Branch locatio

Lane-Wells

SERIES 3 \& 4 FORMATION PACKERS

 (Sleeve Packing Element) (Series 4 is Valve Anchor Type)

Lane-Wells Series 3 Packers are
used in the following applications to used in the following applications to
obtain a positive open-hole-to-tubing pack-off where very low fluid heads prevail and a by-pass or value to circy late above packer is not required: lane-Wells Series 4 Packers lane-Wells Series 4 Packers are
used in the following used in the following applications to
obtain a positive pack-off between open hole and tubing or drill pipe in fluidladen wells. The by-pass makes possible easy rumning and pulling through fluid, and the circulating valve permits changing fluids, equalization of pressurer and removal of settings by cire lation,

For:
Improving Natural Flow Efficiency Improving Gas-Oil Ratios Packing-off Water
Protecting Casing
Testing Formation Content, Single Acidizing, Single Zone Inducing Tubing Flow with Side Door Chokes, Tubing Perforations or Gas 1.1 ff Valves
Improving Volumetric Efficiency of Plunger Pumps, Separating Zones, Reducing Heading, etc., in Pumping Wells
For detailed and helpful discussion of packer applications call your nearest Lane-Wells Branch.
rop
Where below packer pressures and/or lack of tubing weight make it impractical to use a conventional packer, Welle Tension Operated Packers best meet the requirement. The slips are set and the packing rings expanded by pulling tension on the tubing instead of applying weight on top of the packer. This packer is excellent in formation fracturing operations. The TOP is especially recommended for water flood injection.

HYDRAULIC HOLD DOWN TOOL For additional resistance to vertical movement packer when extremely high below packer press are anticipated, the Hydraulic Hold Down Too available. This tool holds over 6,000 psi differen has non-porous nickel plated pistons and body, vidual and specific holding points on the pisto afford a positive fix in the casing and is coonom because of its simplicity of design. The tool opera entirely by hydraulic pressures built up in the man at the rear of the piston forcing the pistons out contact in the casing. The greater the pressure trying to move the packer in the casing, the greater the pressure on the pistons and resultan holding action.

For:
Improving Natural Flow Efficiency Improving Gas-Oil Ratios
Packing-off Water
Protecting Casing
Testing Formation Content, Single Zone

Acidizing, Single Zone

Inducing Tubing Flow with Side Door Chokes, Tubing Perforations or Gas Lift Valves
Improving Volumetric Efficiency of Plunger Pumps, Separating Zones, Reducing Heading, etc., in Pumping Wells
[A] POSITA would know that the term "Acidizing" in the context of this 1955 reference does not equate to "Fracturing".

DEVELOPMENT and APPLICATION of "FRAC" TREATMENTS in the PERMIAN BASIN

It should not be inferred that frac treatments are a cure-all that eventually will replace other methods of well stimulation, such as acidizing. Some formations, especially those in a plugged condition, require an acid treatment preceding the frac treatment. Almost any zone will be benefitted by a spearhead of regular or mud acid. Such a pretreatment results in lowering injection pressures and dissolving materials that may cause restriction to flow.
"Permian Basin" for so long that the term will be
here. It includes an area south of the Matador A here. It includes an area south of the Matados.
approximately 250 miles wide and 300 miles long. tural features of importance within the basin are Northwest Shelf, Eastern Platform, Midland Basin,

tral Basin Platform, and Delaware Basin. The prin | rall Basin Platform, and Delaware Basin. The p |
| :--- |
| producing formations include sand, limestone and | mite, with lesser amounts of shale, anhydrite, chert,

various silicates.
All of the producing formations in the Permian Basin have responded to some type of frac treatment. Essenially, a frac treatment may be defined as the injection,
into a formation, of a fluid carrying agent containing into a formation, of a fluid carrying agent containing
a particulated solid (ussually sand), for the purpose of a partacing production. The application of this method of well stimulation to many differing Permian Basin rese voirs has necessitated numerous changes and improve-
ments in carrying agents, solids, service equipment, well ments in carrying agents, solids, sers
equipment, and treating techniques.

CARRYINGAGENTS A number of different types of fluid carrying agents
have been developed since the introduction of the frac have been developed since the introduction of the frac
method of well stimulation. These agents have different method of well stimulation. These agents have different
physical and chemical properties, and in many cases the eetrent of production increase derived from the frac
treatment depends on the choice of fluid carrier. Unfortunately, due to many different systems of nomenclafortunately, due to many different systems of nomencla in the oil field, these differences are not alway
tur recognized by the oil operator. In general, carrying recognized by the oil operator. In general, carrying
agents may be divided into the following broad classi-

R.E. Hurst, "Development and Application of 'Frac' Treatments in the

 Permian Basin," SPE 405 (1954) at 4; Paper 51, POR at 47.UNITED STATES PATENT OFFICE
2,689,009
acidizing wells
 Stangind oin and Gas Company, Tulsa, okla.,
a corporation of Delaware
No Drawing. Application April 14, 1951,
20 Claims. (CL. 166-25)

In the art of completing wells or working over old wells to increase the output, acid is injected into the producing zones to increase the permeability of the formation around the well. Since acid reacts very rapidly with calcareous formations, it appears that the action of the acid is very close to the well. Accordingly, the effect of acidizing a well is generally to increase output, but the increase appears to be much less than would be possible if the acid could be made to react into long channels deep into the formations.

Ex. 1137, Brainerd at 1; see also Ex. 2087

UNITED STATES PATENT OFFICE
2,689,009
acidizing wells
 a corporation of Delaware
No Drawing. Application April 14, 1951,
20 Claims. (CL. 166-25)

It is an object of this invention to provide an improved well-treating solution. It is another object of this invention to provide a well-treating solution comprising an emulsion of an acid and an oily vehicle which can be injected into a formation at high pressure to fracture the formation and which subsequently can be removed from the formation without plugging the pores thereof. A

Ex. 1137, Brainerd at 1
Q. How do you know that?
A. Just he says two of the wells were acid stimulated unsuccessfully. He doesn't say whether they were acid fractured or acid -- matrix acidized. They just used acid to stimulate the well. And, of course, immediately after that it says, "Subsequently two transverse fracture treatments were pumped." So the author was not hesitant to use the word "fracture."
Q. Were the first two Gallup wells fractured then?
A. We don't know. We don't know. Oh. We don't know that they were
fractured. We know that they were stimulated.

The non-Priority Provisional Application Does Not Limit the Construction of "Solid Body Packer"

- MPHJ Tech. Investments, LLC v. Ricoh Americas Corp., 847 F.3d 1363, 1367 (Fed. Cir. 2017)
- dunnhumby USA, LLC v. emnos USA Corp., No. 13-CV-0399, 2015 WL 1542365, at *11 (N.D. III. Apr. 1, 2015)
- Ring Plus, Inc. v. Cingular Wireless, LLC, No. CIV.A. 2:06-CV159DF, 2007 WL 5688765, at *10 (E.D. Tex. July 9, 2007)

Thus, as understood by a person of ordinary skill in the art, the term "solid body packer" would mean "packer including a solid, extrudable packing element."
dogs or keys engage in a shoulder or profile on the port sleeve. As they engage, the port sleeve is shifted to the open posit
covering the port and the limited entry port is exposed. The shifting dogs to release, as by
ballsleve and the shifting sleeve moves downward to the next limited entry port sleeve.
The process continues until all sleeves are shifted to the open position. The shifting sleeve will stop when it reaches a shoulder
and will stop fluid from entering the toe end of the well. All or most additional fluid will be diverted through the newly exposed
ports.
Lateral wellbore isolation system (Figure 5)
A wellbore with lateral or siderack - multiple legs can be effectively stimulated with a junction isolation system using packers
such as solid body open hole packers, combined with tubing. A solid body packer is defined as a tool to create a seal between
gand casing or the borehole wall using a packing element which is mechanically extruded, using either mechai

Following the stimulation, the
he solid body packers provid

additional stability to the system. Also, an open hole slip system may be required to stabilize the packers during pressure pumpiis
operations.
A system to isolate open hole laterals and junctions for stimulation may be used with any wellbore stimulation arrangement such
for example with a "sprinkler", focused packer and slecve system, or a multiple stage "sprinkler" system, or any combination
as for example with a "sprinkler". focused packer and sleeve
thereof. It may also be used during production of the well.
Claims - multi-stage sprinkler system:
Wellbore fluids can be distributed to segments of the well bore using "limited entry" by creating a pressure drop through
Wellbore fluids can be diss
pumping flow restrictions.
High pumping rates and pressures may be required to achieve limited entry over a long interval.
3. A series for stages to create a sprinkler effect over smaller intervals may reduce the requirements for high pumping rates.
Smaller segments that are treated may allow and increase pumping rate per foot of formation being treated may be more
Smaller segments that are treated may allow and increase pum
effective in establishing fracturing length of fluid distribution.
A higher density of fluid exit points may create more effective stimulation results
6. Ports with internal protective covers can be installed in a tubing string and then into a well.
7. The protected ports can provide pressure holding capability to allow stimulation fluids to be routed to other segments of
can be installed into the tubing string that will remove the protective cap from the ports to effectively
open the port
. A ball or plug can be pumped into a well that will seat in the movable cutter slecve.
10. Pressure from moving fluids push the moveable cutter sleeve down the wellbore and effectively remove multipl
protective caps to open these ports
The moveable sleeve will seat in a no-go to seal off the lower portion of the well.

For RE Packers, the packing element is mechanically extruded using either mechanically or hydraulically applied force by the mechanical force applied by the metal components of the tool and/or the borehole wall that contact the element as it swells. Moreover, the fluid that enters the element also applies a mechanical or hydraulic force to the element. These forces cause the element to be mechanically extruded as it swells.
Q. Are Baker Hughes's RE packers, are they hydraulically settable?
A. Well, the reactive packer that I'm familiar with is -- operates through wrapping a particular type of elastomer around the casing and it's adhered to the casing. And the nature of the polymer that the material is constructed of is such that it has an affinity for -- it can either be saltwater or hydrocarbon, liquid hydrocarbon. So it generates hydraulic pressure internally as it pulls fluid into the matrix or porosity of the material, and then that causes it to extrude mechanically against the bore hole wall.
Q. If hydraulically settable in the description that. I just gave requires axially compressing the swellable element, is that how it's hydraulicly settable?
A. Well, typically it's constrained on either end such that as the material expands, every action has an opposite and equal reaction. So the elastomer material is actually pushing against that and extruding itself out and contacting the bore hole wall. So it's a different mechanism, but it still requires hydraulic' pressures just internal to the material and it's still generating mechanical force, because the hydraulic pressure is a force applied over an area, so pounds per square.

> Because the evidence shows that the SignalTight connectors are "the invention disclosed and claimed in the patent," we presume that any commercial success of these products is due to the patented invention.

PPC Broadband, Inc. v. Corning Optical Commc'ns RF, LLC, 815 F.3d 734, 747 (Fed. Cir. 2016) (quoting J.T. Eaton \& Co. v. Atl. Paste \& Glue Co., 106 F.3d 1563, 1571 (Fed.Cir.1997).)

This evidence demonstrates that there is a nexus between the claimed technology and the commercial success of FracPoint and StackFRAC. In fact, this technology is such an integral part of these systems that they simply are the invention disclosed and claimed in the 774 patent.

Ex. 2051, McGowen Decl. at 47
See also claim charts at 63-93

However, if the marketed product embodies the claimed features, and is coextensive with them, then a nexus is presumed and the burden shifts to the party asserting obviousness to present evidence to rebut the presumed nexus. The presumed nexus cannot be rebutted with mere argument; evidence must be put forth.

Brown \& Williamson Tobacco Corp. v. Philip Morris Inc., 229 F.3d 1120, 1130 (Fed. Cir. 2000) (internal citations omitted)
Q. Are you familiar with the phrase 'objective evidence of nonobviousness?'
A. Objective evidence of nonobviousness? Can you explain it to me?

We have held that '[w]hile objective evidence of nonobviousness lacks a nexus if it exclusively relates to a feature that was 'known in the prior art,' the obviousness inquiry centers on whether 'the claimed invention as a whole' would have been obvious.'
Where the allegedly obvious patent claim is a combination of prior art elements, we have explained that the patent owner can show that it is the claimed combination as a whole that serves as a nexus for the objective evidence.

WBIP, LLC v. Kohler Co., 829 F.3d 1317, 1331-32 (Fed. Cir. 2016) (internal citations omitted).

Figure 1. Map of U.S. shale gas and shale oil plays (as of May 9, 2011)

Source U.S. Energy Information Administration based on data from various published studies.

Respectfully submitted,

Rapid Completions LLC

By /Justin T. Nemunaitis/
Hamad M. Hamad, Reg. No. 64,641
Bradley W. Caldwell (pro hac vice)
Justin T. Nemunaitis (pro hac vice)
CALDWELL CASSADY CURRY, P.C. 2101 Cedar Springs Road, Suite 1000
Dallas, Texas 75201
Telephone: 214.888.4848
Facsimile: 214.888.4849
hhamad@caldwellcc.com bcaldwell@caldwellcc.com jnemunaitis@caldwellcc.com rapid@caldwellcc.com

Dr. Gregory Gonsalves, Reg. No. 43,639
GONSALVES LAW FIRM
2216 Beacon Lane
Falls Church, Virginia 22043
Telephone: 571.419.7252
gonsalves@gonsalveslawfirm.com

CERTIFICATION OF SERVICE

The undersigned hereby certifies that PATENT OWNER'S ORAL
HEARING DEMONSTRATIVES were served electronically via e-mail on the
following counsel of record for Petitioner:

Mark T. Garrett (Lead Counsel)
Eagle H. Robinson (Back-up Counsel)
NORTON ROSE FULBRIGHT US LLP
mark.garrett@nortonrosefulbright.com
eagle.robinson@nortonrosefulbright.com

Date: October 31, 2017
/Hamad M. Hamad/
Hamad M. Hamad, Reg. No. 64,641

[^0]: Ex. 2079 at 1, Damgaard, A.P., "A Unique Method for Perforating, Fracturing, and Completing Horizontal Wells" SPE 19282 (1992); Paper 51, POR at 20-21.

