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Tfie intricate color patterns shimmering across an oil slickvon

3 wet asphalt pavement (see photo) result from one of the
more common manifestationsof the phenomenon of interfer-
ence.* on a macroscopic scale we might consider the related

problem of the ipnteraction of surface ripples on aipool of
water. Our everyday experience with this kind’ of situation
allows us to envision acomplex distribution of disturbances

(as shown, e.g.,' in Fig." 9.1). There might be regions Where two
.(or more) waves have overlapped, partially or even complete-
1y canceling each other. Still other regions might exist in the

pattern, where the resultant troughs and crests are even more
pronounced than those of any of the constituent waves. After
being superimposed, the individual waves separate and con-

tinue on, completely unaffected by their previous encounter.

Although the subject could be treated from the perspective

of QED (p. 139), we’ll take a much simpler approach. The

wave theory of the electromagnetic nature of light provides a

natural basis from which to. proceed. Recall that the expression

describing theroptical disturbance is a second-order, homoge-
neous, linear, partial, differential equation [Eq. (3.22)]. As we

have seen, it therefore obeys the important Superpositiglt
Principle. -Accordingly, the resultant electric-field intensity E,

at a point in space where two or more lightwaves overlap, is

equal to the vectorrsum of the individual constituent distur-

bances. Briefly then, optical interferen.ce‘corresponds to the
interaction of two or more lightwaves yielding ti resultant
irradiance that deviates from the sum of the component

irradiances. I
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnu

‘The layer of water on the asphalt allows the oil film to assume the
shape of a smooth planar surface. The black asphalt absorbs the

, transmitted light, preventing back reflection, which would tend to

obscure the fringes.

3 8 5

 

These roughly circular interference fringes are due to an oil film on wet
pavement. They are fringes of equal thickness (see p..404) and so don't
change when viewed at different angles. Of course, they appear in a

rainbow of colors. _ ._ - _ * . . '

Out of themultitude of optical systems that produce inter-

ference, we will choose a few of the more important to exam-

ine. Interferometric devices will be divided, for the sake of
discussion, into two groups: wavefront splitting and amplitude
splitting. In the first instance, portions of the primary wave-
front are used either directly as sources to emit secondary

waves or in conjunction with optical devices to’produce.virtu-
al sources of secondary waves. These secondary waves are

then brought together, thereupon to interfere. In the caseof
amplitude splitting, the primary wave itself is divided into two
segments, which travel different paths before recombining and
interfering. ' ' Z ' ’
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Figure‘ 9.1 Water waves from two in-phase point sources in a ripple

tank. In the middle of the pattern the wave peaks (thin bright bands), a
and troughstthin black bands) lie within long wedge-shaped areas -
(maxima) separated by narrow dark regions of calm (minima). Although

the nodal lines look straight, they're really hyperbolic. The optical equiva-
lent is the electric field distribution depicted in Fig. 9.3c. (Photo courtesy

PSSC College Physics, 1968, @ 1965 Educational Development Center, Inc.)

‘91 General Considerations 

We have already examined the problem of the superposition of

two scalar waves» (Section 7.1), and in many respects those

results will again be applicable. But light is, of course, a vec-

tor phenomenon; the electric and magnetic fields are vector
fields. An appreciation of this fact is fundamental to any kind

of intuitive understanding of interference. Still, there are many

situations in which the particular optical system can be so con-

figured that the vector nature of light is of little practical sig-
nificance. We will derive the basic interference equations

within the context of the vector model, thereafter delineating-

the conditions under which the scalar treatment is applicable.

In accordance with the Principle of Superposition, the elec-
tric field int_<;nsi£yE, at a point in space, arising from the sep-
arate fields E1, E2, .. of various contributing sources is given

by

E=E+E+~

The optical disturbance, or light field E, varies in time at an
exceedingly rapid rate, roughly

4.3>< 1014 Hz to 7.5 x 10” Hz

making the actual field an impractical quantity to detect. On
the other hand, the irradiance I can be‘ measured directly with

a wide variety of sensors (e.g., photocells, bolometers, photo-

graphic emulsions, or eyes). The study of interference is there-
fore best approached by way of the irradiance. 1

Much of the analysis to follow can be performed without

specifying the particular shape ofthe wavefronts, and the
results are therefore quite general (Problem 9.1). For the sake
of simplicity, however, consider two point sources, S1 and S2,
emitting monochromatic waves of the same frequency in a
homogeneous medium. Let their separation at be much greater

than A. Locate the point of observation P far enough away
from the sources so that at P the wavefronts will be planes

(Fig. 9.2). For the moment, consider only linearly polarized
waves of the form ‘

E1(?,t) = E01 cos (E -F - wt + 81) (9.261)

and V Egg, U 7: E02 COS ‘ -11 ". wt +9 £2)

We saw in'Chaptcr 3 that the irradiance at P is given by

V I = €U<-E>2 >1‘

Inasmuch as we will be concerned only with relative irradi'
ances within the same medium, we will, for the time being at

least, simply neglect the constants and set

I = <fi2)'r

What is meant by <-fi2>T is of course the time average 01:,the
magnitude of the electric-field intensity squared, or (E ~ E)?
Accordingly

‘I-32 = ‘E’ . is’

where now _

F‘? = (113 + E) - (E + ii)

and thus

it? = E’? + ’1':’§+ 213’, -‘E’, i (93?

(9.1) ,



(a)

£1/k1

%viw
a -‘ ‘ r'_

if""""""" P
‘nym-4.»

122/k2

a>)t

|=igure.9.2,, Waves from two: pointsourc.es_ ovetrlapning in 5930.9-

Taking the time average of both sides, we find that the irradi-
ance becomes —

,I=I1+I2+I12 (9.4)

provided that , I
 ' I1 = <'I1:’%>T (9.5)

12 = <'I':’%>T (9.6)

and 112 ‘‘ 2<E1'E2>T (9-7)

The latter expression is known as the interference term. To
evaluate it in this specific instance, we form

«--> -9 -> -> —> _,

E1'E2= E01'E02COS (k1'l’ “ (1)l"'i‘81)

X cos (it); -i" - cot + 32) 4 (9.8)

or equivalently

‘E1 ‘E2 =

fi01~fi02 [cos -3‘ + e1)‘cos wt + sin (E1-ii + 51) sin wt]

>< [cos (:2 -i" + 82) cos cot + sin (E2 -i" + 82) sin wt] (9.9)

Recall that the time average of some functionf(t), taken over

an interval T, is.
t+T

‘ 1

<f(t)>T = $1 f(t’) dt’ (9.10) —
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The period 1' of the harmonic functions is 27r/co, and for our
present concern T >> r. In that case the 1_/T coefficient in
front of the integral has a dominant effect. After multiplying
out and averaging Eq. (9.9) We have

—> --> 1-) -_—> -) _, —-> _)
(E1°E2)T = EE01‘E02 003 (k1‘l‘ fl‘ 8.1‘ k2'1‘ “ 82)

where use was made of the fact (p. 49) that (_c_os2 wt)T = §,

(sing a1t)T = %, and (cos wt sin cot)T f—‘ O. The interference term
is then

112 = E0, -"1330, cos 5 (9.11)

and 6, equal to (i’, -? - ii; -9? + 51 - 82), is the phase di]j”er-
ence arising from a combined path length and initial phase-
anglgdifference. Notice that if T501 and E02 (and therefore E1‘ ‘
and E2) are perpendicular, 112 = O and I = 11 + 12. Two such
orthogonal 9}’-states will combine to yield an 911:, £84, 9-, or %-
state, but the flux—density distribution will be unaltered.

The most) common situation in the work to follow corre-
sponds to E01 parallel to E02.» In that case, the irradiance
reduces to the value found in the scalar treatment of Section

7.1. Under those conditions

112- ‘-3 E01E()2 COS 5

This can be written in a more convenient way by noticing that

1, = (E19 T = ~—-— (9.12)
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and 1, = (iii), = E53 (9.13)
The interference term becomes

1 112 = 2\/111-2 cos 8

whereupon the totalirradiance is

"At various points in space, the resultant irradiance can be
greater, less than, or equal to 11 + 12, depending on the value

of I12, that is, depending on 8. A maximum irradiance is

obtained when cos 8 = 1, so that

Imax = 11+ 12 + 2 V 1112

when 8 = 0, i'2'7r, ;':47r,...

In this case of total iconstructive interference,’ the‘ phase" dif-

ference between the two waves is an integer multiple of 277,

and the disturbances are in-phase. When __0 < cos8 < l the
waves are out-of-phase,‘ 11 + 12 < I '< Im,’,,1, and the result is

constructive interference. At 5 = 77/2, cos 6 = 0, the optical

disturbances are 90°‘ out-ofgphase, and I »= 11’ + '12: For 0 >
cos 6 > ~1 we have the condition of destructive interference,

11 + 12 > I > I,,,1,,. A minimum irradiance results when the

waves are 180° out~of—phase, troughs overlap crests, cos 6 =

~ 1, and

I,,,1,,== 11+ 1, - 2\,_/T11‘, 1 (9.16)

This occurs when 8 = in‘, ‘$317, —: 57r,. . ., and it is referred to
as total destructive interference. 1

Another somewhat special yet very important case arises

when the amplitudes of both waves reaching P in Fig. 9.2 are
equal.-(i.e., E01 = E112). Since the irradiance contributions from

both sources are then equal, let 11 2 I2 = 10. Equation (9.14)
can now be written as . . ’ «

1%‘2I11(;1‘fii*;Ct)Sgh§)”§e4I11={:os?'7§f _ (9.17)

from which itfollows that 1,,,;, = 0 and r,,,,,1 = 41,. For an
analysis in terms of the angle between the two beams, see
Problem 9.3.

Equation. (9. 14) holds equally well for the spherical waves

emitted by S1 and S2. Such waves can be expressed as A

if1(r,, t) = i301(r,) exp [i(kr1 — cut + 21)] (9.l8a)

and ii,(r,, :) = E’0,(r,) exp [i(kr2 —- wt + 52)] (9.18b)

The terms r1 and 2, are thegradii of the spherical wavefronts
overlapping at P; they specify the distances from the sources
to P. In this case

5=Mn*m%Hn*a) flw)

The flux density in the region surrounding S1 and S2 will

certainly vary from point to point as (r1 - r2) varies. None-

theless, from the principle of conservation of energy, we

"expect the spatial average of I to remain constant and equal to

the average of 11 + 12. The space average of 112 must therefore

be zero, a property verified by Eq. (9.11), since the average of

the cosine term is, in fact, zero. (For further discussion of this

point, see Problem 9.2.) ’
Equation (9.17) will be applicable when the separation

between S1 and S2 is small in comparison with r1 and r2 and -

when the interference region_is also s_r_pal1 in the same sense.
Under these circumstances, E111 and E02 may be considered

independent of position, that is, constant over the small region

gxamingd. If the emitting sources are of equal strength,
E01 = E02, 11 : I2 = [0 and We have

1 = 41,, cos2 %[k(r1 j— r2) + (£1 - 82)].

Irradiance maxima occur when

8 = 217m

provided that m = o, : 1, :2,.‘.. Similarly," minima, for which
I = O, arise when '

8==7rm’

where m’ = :1, :3, i5,..., or if you like, m’ = 2m +1-
Using Eq. (9.19) these two expressions for 8 can be rewritten
such that maximum irradiance occurs when

A (F: * r2) = [2'ITm + (Ia * 81)l/k ' (9-203)
and minimum when

(r1_ - r2) = [7m’ + (61 - 81)]/k (9.20b)



 
 

at

Either one of these equations defines a family of surfaces, each

of whichsis a hyperboloid of revolution. The vertices of the

hyperboloids are separated by distances equal to the right-

hand sides of Eqs. (9.20a) and (9.20b). The foci are located at
S1 and S2.-If the waves are in-phase at the emitter, £1 - £2 = 0,

and Eqs. (9.20a) and (9.20b) can be simplified to

[maximal (r1 - r2) '= 277m/k 5 m)t

[minimal (r1 - r2) = vrm’/k =-= %m’)t »(9.2lb)

for maximum and minimum irradiance, respectively. Figure

9.3a shows a few of the surfaces over which there are irradi—_
ance rnaxima. The dark and light zones that would be seen on

a screen placed in the region of interference are known as

interference fringes (Fig. 9.31)). Notice that the central bright

  

(9.21a) ‘
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Figure 9.3 (a) Hyperboloidal surfaces of maximum
irradiance for two point sources. The quantity
m is positive where r1,> r2. (b) Here we" see
how the irradiance maxima are distrib‘uted'ori‘a

plane containing 81 and 82. (c) The electriofieid
distribution in the plane shown in part (b)-. The tall

peaks, are the point sources 81 and 82. Note
that the spacing of the sources is different in (b)
and (C)- (Photo courtesy,‘ Ttie"Optics Project,’ Mississippi

State University.) ' i

band, equidistant from the two sources, is.the so—called zeroth-
order fringe (m = O), which is straddled by the m’ : ipl min-

’ ima, and these, in turn, are bounded by the first-order (m =

.4: 1) maxima, which are straddled by the m’ = :23 minima,

and so forth. _ , _ V _ _

Since the wavelength A for light is very small, a large num-
ber of -surfaces corresponding to the lower values of m will
exist close to, and on either side of, the plane m = O. A num-
-ber of‘fairly straight parallel fringes will therefore appear on a
screen placed perpendicular to that,_(m ‘F 0) plane and in the
vicinity of it, andfor this case the approximation r1 '~= r2 will
hold. If S1 and S; are then displaced normal to the_§T§‘; line,
the fringes will merely be displaced parallel to themselves.
Two narrow slits will generate a large number ofexactly over-

lappingfringes, thereby increasing the irradiance, leaving the
central region of the two-point source pattern otherwise
essentially unchanged. T
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9.  ditins folner)5, .- ........, . . ......................................_.  

If two beams are to interfere to produce a stable pattern, they
must have very nearly the same frequency. A significant "fre-

quency difference would result in a rapidly varying, time-
dependent phase difference, which in turn would cause I12 to

average to zero during the detection interval (see Section 7.1).

Still, if the sources both emit white light, the component reds

will interfere with reds, and the blues with blues. A great many

fairly similar, slightly displaced, overlapping monochromatic
patterns will produce one total white-light pattern. It will not

be as sharp or as extensive as a quasimonochromatic pattern,,

but white light willproduce’ observable interference.

The clearest patterns exist when the interfering waves have

equal or nearly equal amplitudes. The central regions of the

dark and light fringes then correspond to complete destructive

and constructive interference, respectively, yielding maximum
contrast. ‘

For a fringe pattern to be observed, the two sources need

not be in—phase with each other. A somewhat shifted but oth-

erwise identical interference pattern will occur if there is some

‘ g initial phase difference between the sources, as long as it
remains constant. Such sources (which may or may not be in

step, but are always marching together) are coherent?“

9.2.1 Temporal and Spatial Coherence

Remember that because of the granular nature of the emission

process, conventional quasimonochromatic sources produce
light that is a mix of photon wavetrains. At each illuminated

point in space there is a net field that oscillates nicely (through
roughly a million cycles) for less than 10 ns or so before it ran-

domly changes ph'ase.'This interval over which the lightwave
resembles a sinusoid is a measure of its temporal coherence.

The average time interval during which the lightwave oscil-

lates in a predictable way we have already designated as the

coherence time of the radiation. The longer the coherence
time, the greater the temporal coherence of the source.

As observed from a fixed point in space, the passing light-
wave appears fairlysinusoidal for some number of oscilla-

tions between abrupt changes of phase. The corresponding
spatial extent over which the lightwave oscillates in a regular,

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu n

*Chapter 12‘ is devoted to the study of coherence, so here we'll merely
touch on those aspects that are immediately pertinent.

predictable way is the coherence length [Eq. (7.64)]. Once

again, it will be convenient to picture the light beam as a pro.

gression of well-defined, more or less sinusoidal, wavegroups
of average length Ale, whose phases are uncorrelated to one

A another. Bear in mind that temporal coherence is a manifes-
tation ofspectralpurity. If the light were ideally monochro-

matic, the wave would be a perfect sinusoid with an infinite

coherence length. All real sources fall short of this, and all

actually emit a range of frequencies, albeit sometimes quite

narrow. For instance, an ordinary laboratory discharge lamp
has a coherence length of several millimeters, whereas certain

kinds of lasers routinely provide coherence lengths of tens of
kilometers.

Figure 9.4 summarizes some of these ideas. In (a) the

wave, which arises from a point source, is monochromatic and.

has complete temporal coherence. What happens at P1 will, a

moment later, happen at P5 and still later at P§——all totally pre-
dictably. In fact, by watching Pf, we can determine what the

wave will be doing at Pi at any time. Every point on the wave

is correlated; its coherence time is unlimited. By contrast, Fig,

9.4b shows a point source that changes frequency from
moment to moment. Now there’ s no correlation of the wave at

points that are far apart like P3 and P2,. The waves lack the

total temporal coherence displayed in (a), but they’re not com-

pletely unpredictable; the behavior at points that are close
together such as P5 and Pg are somewhat correlated. This is an.

instance ofpartial temporal coherence, a measure of which is;

the coherence length—-the shortest distance over which the ‘

disturbance issinusoidal, that is, the distance over which the

phase is predictable. g
Notice, in both parts of Fig. 9.4, that the behavior of the

waves at points P1, P2, and P3 is completely correlated. Each

of the two wave streams arises from a single point source and
P1, P2, and P3 lie on the same wavefront in both cases; the dis-

turbance at each of these laterally separated points is in—phase

and stays in-phase. Both waves therefore exhibit complete

spatial coherence. By contrast, suppose the source is broad,

that is, composed of many widely spaced point sources

(monochromatic ones of period 1'), as is Fig. 9.5. If we could

take a picture of the wave patternin Fig. 9.5 every 1' seconds,

it would be the same; each wavefront would be replaced by an
identical one, one wavelength behind it. The disturbances‘ at

P1, Pg, and Pg are correlated, and the wave is temporally
coherent.

Now to insert a little realism; suppose each point source

changes phase rapidly and randomly, emitting l0—ns long

sinusoidal wavetrains. The waves in Fig. 9.5 would randomly



(b) _

Figure 9.4 Temporal and spatial coherence. (a) Here the waves-display

both forms of coherence perfectly. (b)~Here there is complete spatial

coherence but only partial temporal coherence.

change phase, shifting, combining, and recombining in a fren-
zied tumult. The disturbances at P1, P5, and Pg would only be

correlated for a time less than 10 ns. And the wave field at

two, even modestly spaced, lateral points such as P1 and P2

would be almost completely uncorrelated depending on the
size of the source. The beam from A candle flame or a shaft of

sunlight is a multi-frequency mayhem much like this.

Two ordinary sources, two lightbulbs, can be expected to

maintain a constant. relative phase for a time no greater than

Arc, so the interference pattern they produce will randomly

shift around in space at an exceedingly rapid rate, averaging

out and making it quite impractical to observe. Until the

9.2 Conditions for interference 391

advent of the laser, it was a working principle that no two indi-

' vidual sources could ever produce an observable interference

pattern. The coherence time of lasers, however, can be appre-

ciable, and interference via independent lasers has been

observed and photographed.* The most common means of

overcoming this problem with ordinary thermal sources is to

make one source serve to produce two coherent secondary
sources.

9.2.2 The Fresnel-Arago Laws _

In Section 9.1 it was assumed that the two overlapping optical

disturbance vectors were linearly polarized and parallel.

Nonetheless, the formulas apply as well to more complicated
situations; indeed, the treatment is applicable regardless of the

polarization state of the waves. To appreciate this‘, recall that

 
Figure 9.5 With multiple (here four) widely spaced point sources, the

resultant wave is still coherent. But if those sources change phase rapid-
ly and randomly, both the spatial and temporal coherence diminish

accordingly. ' »
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* G. Magyar and L. Mandel, “Interference fringes produced by superpo-

sition of two independent maser light beams,” Nature 198, 255 (1963).
F. Louradour, F. Reynaud, B. Colombeau, and C. Froehly, ‘flnterference
fringes between two separate lasers,” Am. J. Phys. 61, 242 (1993). L.

Basano and P. Ottonello, “lnterference fringes from stabilized diode

lasers,” Am. J. Phys. 68, 245 (2000). E. C. G. Sudarshan and T.

Rothman, “The two-slit interferometer reexamined,” Am. J. Phys. 59,
592 (1991). , '
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any polarization ‘state can be synthesized out of two orthogo-

nal QP-states. For natural light these 9}’-states are mutually

incoherent, but that represents no particular difficulty.

Suppose that every wave has its propagation vector in the

same plane, so that we can label the constituent orthogonal 9}’-

states, with respect to that plane, for example, in and El,
which are parallel andlperpendicular to the plane, respectively

(Fig. 9_.6a). Thus any plane wave; whether polarized or not,
can be written in the for_r>n (E, + EL). Imagine that the waves
(Em + E,1) and (EH2 + Eiz) emitted from two identical.eoher-

ent sources superimpose in some region of space. The result-

ing flux-density ’distribution will consist of two indeperident,
precisely, overlapping interference patterns ((33.1 -_I- E,,2)2)T
and «I3:L1 + E_[_2)2)-T. Therefore, although we derived the
equations of the previous section specificallyfor linear light,

they are applicable to any polarization state, including natur-

al light. * ' ‘ ' A

Notice thgt even_t>hough ll,1 and _I§_L2 are always parallel to
each other, E,” and Eng, which are in the reference plane, need

not be. They will be parallel only when the two beams are
‘themselves parallel’(i;e.s;s‘k_1s’;==“I;>2)."Thesinherents vector nature‘ ““ i’
of the interference process as manifest in the dot—product rep-

Figure 9.6 Interfer-

ence of polarized light.

resentation [Eq. (9.1 1)] of [12 cannot be ignored. There are

many practical situations in which the beams approach being

parallel, and in these cases the scalar theory will do nicely.
Even so, (b) and (c) in Fig. 9.6 are included as an urge to cau-

tion. They depict the imminent overlapping of two coherent

linearly polarized waves. In Fig. 9.6b the optical vectors are
parallel, even though the beams ar_en’t, and interference would
nonetheless "result. In Fig. 9.6c the optical vectors are perp611'

dicular, and I12 = 0, which would be the case here ‘even if the

beams were parallel. _
Fresnel and Arago made an extensive study of the cond1'

tions under which the interferenceof polarized light occurs-

and their conclusions summarize some of the above consider‘

ations. The Fresnel—Arago Laws are as follows: ‘

1. Two orthogonal, coherent 9}’-states cannot interfere in the
sense that 112 é 0 and no fringes result.

2. Two parallel, coherent 9’-states will interfere in the same
way as will natural light. , _ _

3. The two constituent orthogonal 9}?-states, of natural light
-cannot interfere to form a readily observable fringe pattern

_ -standable, since these 9l?~states are incoherent.

even"ifrotatedssinto“ali'gnment."Thisilast*point is under
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The main problem in producing interference is the sources:

they must be coherent. And yet separate, independent, ade-

quately coherent sources, other than the modern laser, don’t
exist! That dilemma was first solved two hundred years ago by

Thomas Young in his classic double-beam experiment. He

- brilliantly took a single wavefront, split off from it two coher-

ent portions, and had them interfere.

9.3.1 Young’s_Experiment-
In 1665 Grimaldi described an experiment he had performed

to examine the interaction between two beams of light. He

admitted sunlight into a dark room through two close-together

pinholes in an opaque screen. Like a camera obscura (p. 215),
each pinhole cast an image of the Sun on a distant white sur-

face. The idea was to show that where the circles of light over-

’ lapped, darkness could result. Although at the time he couldn’t ‘

possibly understand why, the experiment failed because the
primary source, the Sun’s disk (which subtends about 32 min-

utes of arc), was too large and therefore the incident light

didn’t have the necessary spatial coherence in order to proper-

ly simultaneously illuminate the two pinholes. To do that, the

Sun would have "had to subtend only a few seconds of arc.

A hundred and forty years later, Dr. Thomas Young (guid-

ed by the phenomenon of beats, which was understood to be

produced by two overlapping sound waves) began his efforts

to" establish the wave nature of light. He redid Grimaldi’s

experiment, but this time the sunlight passed through an initial

pinhole, which became the primary source (Fig. 9.7). This had

the effect of creating a spatially coherent beam that could

identically illuminate the two apertures. In this way Young
succeeded in producing a system_of alternating bight and dark

bands-—interference fringes. Today, aware of the physics

involved, we generallyreplace the pinholes with narrow slits

that let through much more light (Fig. 9.8a). _
Consider a hypothetical monochromatic plane waveillumi-f

nating a long narrow slit. From that primary slit light will be

diffracted out at all angles in the forward direction and a cylin-
drical wave will emerge. Suppose that thiswave, in turn, falls

on two parallel, narrow, closed spaced slits, S1 and S2. This is

shown in a three-dimensional View in Fig. 9.8a. When sym-

metry exists, the segments of the primary wavefront arriving

at the two slits will be exactly in-phase, and the slits will con-
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stitute two coherent secondary sources. We expect that wher-

ever the two waves coming from S1 and S2 overlap, interfer-
ence will occur (provided that the optical path difference is

less than the coherence length, c-(Ate).
Figures 9.8a, b, and c correspond to theclassic arrange-

ment of Young’s Experiment, although there are other varia-

tions. Nowadays the first screen is usually dispensed with, and

plane waves from a laser directly illuminate the aperture
screen (Fig. 9.8f). In a realistic physical situation, the distance

between each of the screens (2,, and 20) in Fig. 9.8c would be

very large in comparison with the distance a between the two

slits, several thousand times as much, and all the fringes would
be fairly close to the center 0 of the screen. The optical path
difference between the rays along :91? and Sglfican be deter-

mined, to a good approximation, by dropping a perpendicular

from S2 onto This path difference is given by

(5715) = (3-17) *‘ (33.7) (9-22)

or (3:19) = r, - r2

Continuing with this approximation (see Problem 9.15),
(r, - r2) = a sindand so

r1 — r2 ~ ae ' (9.23)

since 9 2-“ sin 6. Notice that

. (9.24)

 
Figure 9.7 The pinhole scatters a wave that is spatially coherent, even
though it's not temporally coherent.
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A ‘ 2.,
In accordance with Section 9.1, constructive interference

Figure 9.8 Young's Experiment. (a) Cylindrical waves superimposed in the region beyond the aperture
screen. (b) Overlapping waves showing peaks and troughs. The maxima and minima lie along nearly ’
straight hyperbolas. (c) The geometry of Young's Experiment. (d) A path length difference of one wave-
length corresponds to m = :1 and the first-order maximum. (e) (Photo courtesy M. Cagnet, M. Francon, and
J. C. Thierr: Atlas optischer Erscheinungen, Berlin~Heidelberg—New York: Springer, 1962.) (f) A modern version of
Young's Experiment using a photodetector (e.g., a photovoltaic cell or photodiode like the RS 305-462)
and an X — Y recorder. The detector rides on a motor-driven slide and scans the interference pattern.

and so r1 - 192 ~ -3-): (925) will occur when



  
  (e)

r, - 2, = m/\

Thus, from the last two relations we obtain

S

mzfl A3’ am
(9.27)

This gives the position of the mth bright fringe on the screen,
if we count the maximum at O as the zeroth fringe. The angu-

lar position of theefringe_is,.:obtai3-Ed.by_;:$~ubstituting the last

expression into .(9;24j;,:r:u;s»,’~ . ’
  

(9:28)

This relationship can be obtained directly by inspecting Fig.
9.8c. For the mth—order interference maximum, m whole

wavelengths should fit ithepdistancef, - rz. Therefore,
from the triangle-:1}Sg_Sg'B,”.. in p. p p _ _

?mm%xmi* (Mm
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X - Y recorder

or A 6,,,~ m)»/a

The spacing of the fringes on the screen can be gotten read-
ily from Eq. (9.27). The difference in the positions of two con-
secutive maxima is

s s»

)’m+1 * ym ** 30% +0) '* ;m?\

or me~x (wm

Evidently; red fringes are broader than blue ones. .

Since this pattern is equivalent to that obtained for two

overlapping spherical waves (at least in the r1 ~ r2 region), we

can apply Eq. (9.:;1~7).~ Using the,pha's’e.difference

7

Eq. (9.17) can be rewritten as
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2 k(r1 —‘ r2)
2

provided, of course, that the two beams are coherent and have

equal irradiances 10. With

I = 410 cos

rrmrzzya/S

the resultant irradiance becomes

1 = 410 cos?-X93
s}l

(9.3 1)

As shown in Fig. 9.9, consecutive maxima are separated by

the Ay given in (9.30). Remember that we effectively

assumed that eachp»slit»,?was infiuitesimally wide, and so the

cosine—squared iiilliy an unattainable
idealization.* The actual“i:3atterri,~Frg=;9z3e, drops off with dis-
tance on either side of 0 because of diffraction.

 

The Effects of Finite Coherence Length

As P in Fig. 9.86 is taken farther above or below the axis, -.S.“1—§
(which is less than or equal to 315;) increases. If the primary
source has a short coherence length, as the optical path differ-

ence increases, identically paired wavegroups will no longer

be able to arrive at P exactly together. There will be an

increasing amount of overlap in portions of uncorrelated
wavegroups, and the contrast of the fringes will degrade. It is

' possible for Al,, to be less than In that case, insteadof two
correlated portions, of the same wavegroup arriving at P, only
segments of different wavegroups will overlap, and the fringes
will vanish. ' ’ y __ , _

As depicted in Fig. 9. 10a, when the path length difference

exceeds the coherence length, wavegroup~E1 from source S1

arrives at P with wavegroup—D2 from S2. There is interference,

but it lasts only a short time before the pattern shifts as wave-

group-D1 begins to overlap wavegroup—C2,— since the relative
phases are different. ‘If the coherence length was larger or the

path difference smaller, wavegroup-D1 would more or less
interact with its clone wavegroup-D2, and so on for each pair.

The phases would then be correlated, and the interference pat-

tern stable (Fig. 9.10b-). Since a whitelight source will have a
vtoayacInuoniuuuunnunnonuui ....... .-

*Modifications of this pattern arising as a result of increasing the width of

either the primary 3 or secondary-source slits will be considered in later
chapters (10 and 12). in the latter case, fringe contrast will beused as a

measure of the degree of coherence (Section 12.1). In the latter, diffrac-

tion effects become significant.

(a) l

I = 410 cos’ s).

Figure 9.9 (a) idealized irradiance versus distance curve. (b) The
fringe separation Ay varies inversely with the slit separation, as one

might expect from Fourier considerations; remember the inverse nature

of spatial intervals and spatial frequency intervals. (Reprinted from "Graphical
Representations of Fraunhofer Interference and Diffraction," Am. J. Phys 62, 6 (1994),

with permission of A.B. Bartlett, University of Colorado and B. Mechtly, Northeast

Missouri State University and the American Association of Physics Teachers.) « '

coherence length of less than about three wavelengths, it fol-

lows from Eq. (9.27) that only about three fringes will be seen
on either side of the central maximum.

Under white-light (or with broad bandwidth illumination),

all the constituent colors will arrive at y = 0 in‘—phase, having

traveled equal distances from each aperture. The zeroth-order

fringe will be essentially white, but all other higher order max-

ima will show a spread of wavelengths, since ym is a function

ofA, according to Eq. (9.27). Thus in white light we can think

of the mth maximum as the mth-order band of wavelengths——

a notion that will lead directly to the diffraction grating in the

next chapter. . ‘ ’ .

The fringe pattern can be observed by punching two small
pinholes in a thin card. The holes should be approximately the

size of the type symbol for a period on this page, and the sep—

aration between their centers about three radii. A street lamp,



car headlight, or traffic signalat night, located a few hundred

feet away, will serve as a plane-wave source. The card should

be positioned directly in front of and very close to the eye. The

fringes will appear perpendicular to the line of centers. The

pattern is much more readily seen with slits, as discussed in
Section 10.2.2, but you should give the pinholes a try. '

Microwaves, because of their long wavelength, also offer

an easy way to observe double-slit interference. Two slits

(e.g., A/2 wide by A long, separated by 2/\) cut in a piece of

sheet metal or foil will serve quite well as secondary sources

(Fig. 9.11). ' '

The Fourier Perspective

 
(a)

 
<b> ,

Figure 9.10 A schematic representation of how light, composed of a

progression of wavegroups with a coherence length Ala, produces inter-
ference when (a) the path length difference exceeds A1,, and (b) the

path length difference is less than A1,. ‘
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X Transmitter 
Figure 9.11 A microwave interferometer. 9

When the plane waves in Fig. 9.8b illuminated thefirst narrow

slit, light spilled out (i.e., diffracted) beyond the opaque screen

' - in a form resembling a cylindrical -wave; the narrower the slit,

the more nearly cylindrical the wave. Beyond the screen the

light spread over a very wide range of angles, or equivalently

a wide range of spatial frequencies. From a Fourier perspec-
, tive, this happened because an infinitesimally narrow source

(i.e., narrow in space) generates a light field that is infinitely

broad (i.e., broad in spatial fr’.equency)._The transform of a

point source, an ideal one-dimensional signal spike (known as
a Dirac delta function," p. 524),‘ is a continuous constant spec-
trum containing all spatial frequencies, aspherical wave. In

the same way, an ideal line source results in a cylindrical -
wave.

In practice, Young's Experiment usually’ consists of two in-,

phase slit sources arranged such that s >> a. As a rule, s is so

large that the resulting fringe ‘system corresponds to a Frann-
hofer diffraction pattern (p; 457). The two very thin slits re-
semble two line sources, two ideally narrow signal spikes, and

the transform of two delta functions is a cosine function——-we

saw that in Fig. 7.42. To the extent that the slits can be consid-
ered infinitesimally narrow, the amplitude of the electric field ’
in the diffraction pattern will be cosinusoidal, and the irradi-

ance-distribution will vary as the cosine squared, as in Fig. 9.9.

Several Other interferometers

The same physical and mathematical considerations applied to
'Young’s Experiment relate directly to a number of other

wavefront-splitting interferometers. Most common among
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these are Fresnel’s double mirror, Fresnel’s double prism, and

Lloyd’s mirror. .

Fresnel’s double mirror consists of two plane front-

silvered mirrors inclined to each other at a very small angle, as

shown in Fig. 9.12. One portion of the cylindrical wavefront
coming from slit S is reflected from the first mirror, and anoth-

' er portionof the wavefront is reflected from the second mirror.

An interference field eitists in space in the region where the
two reflected waves are superimposed. The images (S1 and S2)
of the slit S in the two mirrors can be considered as separate

coherent sources, placed at a distance aapart. It follows from

the Laws of Reflection, as illustrated in Fig. 9.l2a, that SA =

ST/landSl§ = S;-E30 that-SA’+X"I3= r1andS7§+ FF = r2.
The optical path length difference between the two rays is then

r1 - r2. The various maxima occur at r1 - r2 = m)t, as they do

with Young’s Interferometer. Again, the separation of the

fringes is given by - ‘

where s is the distance between the plane of the two virtual

sources (S1, S2) and the screen. The arrangement in Fig. 9.12

has been deliberately exaggerated to make the geometry some-

what clearer. The angle 9 between the mirrors must be quite

small if the electric-field vectors;“or eachof the two beams are
to be parallel, or nearly so. Let E1 and E2 represent the light-

waves emitted from the coherent virtual sources S1 and S2. At

any instant in time at the point P in space, each of these vec-

tors can be resolved into components_,’p_arallel and perpendic-
ular to the plane of the figure. With 1:1 and k2 parallel to .717

and F75, 1_r_espectiy)ely, it should be apparent that the compo-
nents of E1 and E2 in the plane of the figure will approach

being parallel only for small 0. As 9 decreases, at decreases

and the fringes broaden.

The Fresnel double prism or biprism consists of two thin

prisms joined at their bases, as shown in Fig. 9.13. A single

cylindrical wavefront impinges on both prisms. The top por-

‘ tion of the wavefront is refracted downward, and the lower
segment is refracted upward. In the region of superposition,

interference occurs. Here, again,rtwo virtual sources S1 and S2

Figure 9.12 (a) Fresne|’s double mirror.
(b) Two waves, one reflected from each mirror,
interfere. (c) These fringes were obtained at a

wavelength of only 13.9 nm using radiation

from the LURE synchrotron at Orsay, France.
(Photo courtesy D. Joyeux, Institut d’ Optique.)



  
  

exist, separated by a distance a, which can be expressed in

terms of the prism angle or (Problem 9.19), where s >> a.

The expression for the separation-of the fringes is the same as
before. . . ’

The last wavefront—splitting interferometer that we will

consider is Lloyd’s mirror, shown in Fig. 9.14. It consists of

a flat piece of either dielectric or metal that serves as a mirror,
from which is reflected a portion of the cylindrical wavefront _

coming from slit S. Another portion of the wavefront proceeds

directly from the slit to the screen. For the separation at,

between the two coherent sources, we take the distance

between the actual slit and its image S1 in the mirror. The

spacing of the fringes is once again given by (s/a))t. The dis—

tinguishing feature of this device is that at glancing incidence

(0; 2 77/2) the reflected beam undergoes a 180° phase shift.

(Recall that the amplitude—reflection coefficients are then both

equal to -1).) With an additionalphase shift of in,

8=k(r1-r2)i7r

and the irradiance becomes

1 = 410 sin?‘ SA
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-——~....._~ 
(b)

Figure 9.13 Fresnel’s biprism. (a) The biprism creates two image

sources. (b) With a slit source the fringes are bright bands.

(c) Interference fringes observed with an electron biprism arrangement

by G. Méllenstedt. Once again electrons behave like photons. (Photo from
Handbuch der Physik, edited by S. Fliigge, Springer-Verlag, Heidelberg.)

The fringe pattern for Lloyd's _mirror is complementary to

that of Young’s Interferometer; the maxima of one pattern

exist at values of y that correspond to minima in the other pat-

tern. The top edge‘ of the mirror is equivalent to y = 0 and will
be the center of a dark fringe rather than a bright one, as in

Young’s device. The lower half of the pattern will be ob-

structed by the presence of the mirror itself. Consider ‘what

max

min 
Figure 9.14 Lloyd's mirror.
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would happen if a thin sheet of transparent material were

placed in the path of the rays traveling directly. to the screen.
The transparent sheet would have the effect of increasing the

number of wavelengths in each direct ray. The entire pattern

wouldaccordingly move upward, where the reflected rays

would travel a bit farther before interfering. Because of the

obvious inherent simplicity of this device, it has been used
over a very wide region of the electromagnetic spectrum. The

actual reflecting surfaces have ranged from crystals for X-

rays, ordinary glass for light, and wire screening for

microwaves to a lake or even the Earth’s ionosphere for
radiowaves.*

All the above interferometers can be demonstrated quite

readily either using a laser or, for white light, something a bit

more old—fashioned like a discharge lamp or a carbon arc (Fig.

9.15). '

9.4 Ampllitucle-usiplitting _ -
  

Suppose that a lightwave is incident on a half—silvered mir-

rom‘ or simply. on a sheet of glass.__Pa_rt of the wave is trans-

mitted. and part refle_cted.', Both thetrainsmitted _and.reflected
waves have lower amplitudes than the original one. It can be
said figuratively that the amplitudeyhas been _“split.” .

If the two separate waves couldbe brought together again
at a detector, interference would result, as long as the origi-
nalhcoherence between the two had not been destroyed. If the
path lengths differed by a distance greaterthan that of the

wavegroup (i.e., the coherence length), the portions reunited

at the detector would correspond to different wavegroups.

No unique phase relationship would exist between them in

that Case, and the fringe pattern would be unstable to the

point of being unobservable.—We will get back to these ideas

when we consider coherence theory in more detail. For the

-“For a discussion~'ol.th.e effects of a finite slit width and a finite frequen-
cy bandwidth, see R. N. Wolfe and F. C. Eisen, “lrradiance Distribution in

a Lloyd Mirror Interference Pattern," J. Opt. Soc. Am. 38, 706 (1948).
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu no

TA half-silvered mirror is one that is semitransparent, because the metal-

lic coating is too thin to be opaque. You can look through it, and
at the same time you can see your reflection in it. Beamsplitters, as
devices of this kind are called, can also be madeof thin stretched
plastic films, known as pellicles, or even uncoated glass plate.

Fringe-producing
system

 Carbon
arc and lens

Figure 9.15 Bench setup to study wavefront-splitting arrangements
with a carbon arc source.The water cell is needed to keep things cool.

moment the discussion is restricted, for the mostjpart,-to '

those casesfor which the path difference is less than the
coherence length.

9.4.1 Dielectric Fi|ms——Double-Beam

Interference

Interference effects are observable in sheet transparent materi-
als, the thicknesses of which vary. over a very broad range,

from films less than the length of a lightwave (e.g._, for green

light A0 equals about the. thickness of this printed page) to “
plates several centimeters thick. A layer of material is referred

to as a thin film for a given wavelength of electromagnetic

radiation when its thickness is of the order of that wavelength.

Before the early 1940s, interference phenomena associated

with thin dielectric films, although well known, had fairly lim-

ited practical value. The rather spectacular color displays aris-

ing from oil slicks and soap films, however pleasing

aesthetically and theoretically, were mainly curiosities. .

With the advent of suitable vacuum deposition techniques

in the 1930s, precisely controlled coatings could be produced
on a commercial scale, and that, in turn,-. led to a rebirth of
interest in dielectric films, During the Second World War,

both sides were finding the enemy with a variety of coated .
optical devices, and by the 1960s multilayered coatings were

in widespread use.

Fringes of Equal lnciinatinn

 



Consider the simple case of a transparent parallel plate of

dielectric material having a thickness d (Fig. 9.16). Suppose

that the film is nonabsorbing and that the amplitude-reflection
coefficients at the interfaces are so low that only the first two

reflected beams E1, and E2, (both having undergone only one

reflection) need be considered (Fig. 9.17). In practice, the

amplitudes of the higher-order reflected beams (E3,, etc.) gen-

Figure 9.16 The wave and ray representationsof thin-film interference.
Light reflected from the top and bottom of the film interferes to create

a fringe pattern.
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Point
source

Figure 9.17.’ Fringes of equal inclination.

erally decrease very rapidly, as can be shown for the air—water ‘
and air-glass interfaces (Problem 9.25). For the moment, con-
sider S to be a monochromatic point source.

- The film serves as an amplitude-splitting device, so that E1,

and E2, may be considered as arising from two coherent virtu—

al sources lying behind. the film; that is, the two images of S

formedby reflection at the first and second interfaces. The
reflected rays are parallel on leaving the film and can be

brought together at a point P on the focal plane of a telescope

objective or on the retina of the eye when focused at infinity.
From Fig. 9.17, the optical path length difference for the first
two reflected beams is given ‘by ’ ‘ '

A = 'nf[(K§): +_(3'_C'9] 9% MD‘)

and since (Z-B‘) = (E5) = d/cos 0,,

A: 3% ~ n1<‘?fi>‘> ,
cos 6, p

Now, to find an expression for (X5), write



. [maxima]
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(795) = (X5)Sin 9;-

Using Snell’s Law, this becomes

where ____ A
(AC) = 2d tan 6, (9.32)

The expression for A now becomes

2n d ,

A = CO: at (1— sinz 9,)
or finally _

A 2 Znfd cos 9, (9.33)

The corresponding phase difference associated with the_
optical path length difference is then just the product of the
free—space propagation number and A, that is, k0A. If the film

is immersed in" a single medium, the index of refraction can

simply be written as n, = n2 = n. Realize that a may be less

than nf, as in the case of a soap film in air, or greater than nf,
as with an air film between two sheets of glass. In either case

there will be an additionalphase shift arisingfrom the reflec-

tiohs themselves. Recall that for incident angles up to about
30°, regardless of the polarization of the incoming light, the

two beams, one internally and one externally reflected, will

u experience a relative phase shift of 77 radians (Fig. 4.44 and

Section 4.3). Accordingly,

5 = k0A i ‘IT.

and more explicitly

4
5 = We cos 9, : 77 (9.34)

A0 ,

4 d

or g . 8 = -X1 (n2 — n2 sinz 0,-)1/2 i 72' (9.35)o

The signiof the phase shift is immaterial, so we will choose the

negative sign to make the equations a bit simpler. In reflected

light an interference maximum," a bright spot, appears at P

when 8 = 2m7r~—in other words, an even multiple of 77. In that

case Eq. (9.34) can be rearranged to yield

=.<2m + 1) r
 
 

  

light. Interference minima in reflected light (maxima in trans-

mitted light) result when 8 = (Zm : l)7r, that is, odd multiples
of 77. For such cases Eq. (9.34) yields '

dcos A9, = -/E4, . (9.37)
[minima]

The appearanceof giiidand even‘ .mult_i"ple's: of /\f/4 in .Eqs.
(9.36) and (9.37) is significant", aswewill see presently. We

could, of course, have a situation in which It, > Hf > rt, or

in < nf < n2, as with a fluoride film deposited on an optical
element of glass immersed in air. The 17 phase shift would

then not be present, and the above equations would simply be ’

modified appropriately.

If the lens used to focus the rays has a small aperture, inter-

ference fringes will appear on a small portion of the film. Only

the rays leaving the point source that arereflected directly inte
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‘~\\’\-~.._xExtended source

Figure 9.19 Fringes seen one large region of the film.

the lens will be seen (Fig. 9.18). For an extended source, light A
will reach the lens from various directions, and the fringe pat-
tern will spread out over a large area of the film (Fig. 9.19).

The angle 0, or equivalently 0,, determined by the position

of P, will in turn control 8. The fringes appearing at points P1

and P2 in Fig. 9.20 are known as fringes of equal inclination.

- (Problem 9.30 discusses some easy ways to see these fringes.)
Keep in mind that each source point on the extended source is

incoherent with respect to the others. When the image of the

extended source is reflected in the surface, it will be seen to be

banded with bright and dark fringes. Each of these is an arc of
a circle centered on the intersection of a perpendicular drop-

ped from the eye to the film. "V

As the film becomes thicker, the separation K5 between
E1, and E2, also increases, since

7. : 2d tan 0, [932]

When only one of the two rays is able to enter the pupil of the
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eye, the interference pattern will disappear. The larger lens of

a telescope can then be used to gather in both rays, once again

. making the pattern visible. The separation can also be reduced

by reducing 9, and therefore 9,, that is, by viewing the film at

nearly normal incidence. The equal-inclination fringes that are

seen in this manner for thick plates are known as Haidinger
fringes, after the Austrian physicist Wilhelm Karl Haidinger

(1795-1871). With an extended source, the symmetry of the

setup requires that the interference pattern consists of a series

of concentric circular bands centered on the perpendicular

drawn from the eye to the film (Fig. 9.21). As the observer

moves, the interference pattern follows along.

Haidinger fringes can be seen in the ordinary window glass

of a store front. Find one with a neon sign in the window and

look out at the street, at night, very close to the glowing tube.

You’ll see circular fringes centered on your eye floating off in
the distance.

Extended source

‘Figure 9.20 All rays inclined at the same angle arrive at the same ’
point. ‘ -
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Circular fringes

  
 
 

"Viewing

I screen (retina. ground glass)

Dielectric film '

Frtnges of Equal Thickness

A whole class of interference fringes exists for which the opti-

cal thickness, nfd, is the dominant parameter rather than 9,-.
These are referred to as fringes of equal thickness. Under

white-light illumination the iridescence of soap bubbles, oil

slicks (a few wavelengths thick), and even oxidized metal sur-
faces is the result of variations in film thickness. Interference

bands of this kind are analogous to the constant—height contour 4
lines of a topographical map. Each fringe is the locusof all
points in the film for which the optical thickness is a constant.

In general, nf does not Vary, so that the fringes correspond to

Extended source

Black background V I

Figure 9.21_ Circular Haldinger fringes cen-
tered on the lens axis. A

regions‘ of constant film thickness. As such, they can ‘be quite
useful in determining the surface features "of optical elements

(lenses, prisms, etc.). For example, a surfaceto be examined
may be put into contact with an opticalflat.* The air in the
space between the two generates a thin~f1l'm interference pat’
uuuuuuunounnu-nnuouunun:-anunu

*A surface is said to be optically flat when it deviates by not more

than about 9»/4 from a perfect plane. In the past, the best flats were

made of clear fused quartz.‘ New glasséceramic materials (eg., CERVIT)
having extremely small thermal coefficients, of expansion (about one-
sixth that otquartz) are available. lndividual flats of 7t/200 or a bit‘
better can be made.



tern. If the test surface is flat, a series of straight, equally

spaced bands indicates a wedge-shaped air -film, usually
resulting from dust between-the flats. Two pieces of plate

glass separated at one end by a strip of paper will form a satis-

factory wedge with which to observe these bands; '

When -viewed at nearly normal incidence in the manner

illustrated in Fig. 9.22, the contours arising from a nonuniform

film are called Fizeau fringes." For a thin wedge of"small angle

01, -the optical path length difference between two reflected

rays may be approximated by Eq. (9.33), where d is the thick-

ness at a Particular point, that is, '
 

 

 

d = xa (9.38)

For small values of 6,- the condition for an interference maxi-
mum becomes '

(m 3"" Zflfdm

  Axtended T’ t - .
5°“’°° ’ Beam-splitter

 
I

_ ElrE2r

Figure 9.22 Frlnges from a wedge-shaped film.
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or (m + §))to =_= Zorxmnf

Since nf == A0//\f, xm may be written as

_“ m + 1/2

Xm -- 2a , V

Maxima occur at distances from the apex given by Af /4oz,
3)tf/4a, and so on, and consecutive fringes are separated by a
distance Ax, given by ’

 

(9.39)

Ax = if/2a (9.40)

Notice that the difference in film thickness between adjacent
maxima is simply‘/if /2. Since the beam reflected from the

V lower surface traverses the film twice (6,- ~ 9, ~ 0), adjacent

maxima differ in optical path length by Af. Note, too, that the
film thickness at the various maxima is given by

dm = (m + 3%‘ (9.41)
which is ‘an odd multiple of a quarter wavelength. Traversing
the‘ filmtwice yieldsa phase shift of ii, which, when added to
the shift of Ti‘ resulting from reflection, puts the two rays back
in—phase. ' l ' ' ‘i T " T V '

The accompanying photo shows a soap film held vertically
so that it settlesinto a wedge" shape under’ the influence of

gravity. When illuminated with white light, the band_s are var-
ious colors .' The black region at the top is a portion where the

film is less than /if /4 thick. Twice this, plusan additional
shift of A,/2 due to the reflection, is less than a whole wave-
length. The reflected rays are therefore out-of-phase. As the

thicknessgdecreases still further, the total phase difference
approaches‘ 71'. The irradiance at the observer g_oesp_ to a mini~

 
A wedgeshaped film made of liquid dislnlvashing soap’; (Photo by E..H.) ' I
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Fringes created by an air film between two“ microscope slides.
(Photo by E. H.)

mum (Eq. 9.16), and the film appears black in reflected
light.* \

Press two well-cleaned microscope slides together. The

enclosed air film will usually not be_uniforrn. In ordinary room

light a series of irregular, colored bands (fringes of equal ‘
thickness) will be clearly visible across the surface. The thin
glass slides distort under pressure, and the fringes move and

change accordingly. Tape two slides together with transparent

(matt~surfaced) tape. Itwill scatter light and make the reflect-

ed fringes more easily seen. _

If the two pieces of glass are forced together at a point, as

might be done by pressing on them with a sharp pencil, a

Newton’s rings with two microscope slides. The thin film of air. between
the slides creates the interference pattern. (Photo by E. H.)

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu .-

*The relative phase shift of ‘rr between internal and.external reflection is
required if the reflected flux density is to go toyzero smoothly, as the
film gets thinner and finally disappears.

series of concentric, nearly circular, fringes is formed. about

that point. Known as Nev-/ton’s rings*, this pattern is more

precisely examined with the arrangement of Fig. 9.23. Here a
lens is placed on an optical flat and illuminated at normal inci-
dence with quasimonochromatic light. The amount of unifor-

mity in the concentric circular pattern is a measure of the

degree of perfection in the shape of the lens, With R as the
radius of curvature of the convex lens, -the relation between the

distance x and the film thickness dis given by

x2=R2_(R_d)2

  Quasimonochromatic

point source

 
-------------------------------------------- --

*Robert Hooke (1635-1703) and Isaac Newton independently studied 3

whole range of thin-film phenomena, from soap bubbles to the air film
between lenses. Quoting from Newton’s Opticlrs:

i took two Object-glasses, the one a Planoconvex for a fourteen
Foot Telescope, and the other a large double Convex for one of
about fifty Foot; and upon this, laying the other with its plane side
downwards, I pressed them slowly together to make the Colours
successfully emerge in the middle of the Circles.



‘interference from the thin air film between a convex lens and the flat

sheet of glass it rests on. The illumination was quasimonochromatic.

These fringes were first studied in depth by Newton and are known as

Newton's rings. (Photo by E.H.)

or more simply by

x2 ’= 2Rd — dz

Since R >> d, this becomes

x2 = 2Rd

Assume that we need only examine the first two reflected

beams E1, and E2,. The mth-order interference maximum will

occur in the thin film when its thickness is in accord with the

relationship

’ Znfdm = (m + %)/to

The radius of the mth bright ring is therefore found by com-

bining the last two expressions to yield

[brightring] x,,, = [(m + %)/\fR]1/2 (9.42)

Similarly, the radius of the mth dark ring is

[dark ring] x,,, = (m/\fR)1/2 (9.43) '

If the two pieces of glass are in good contact (no dust), the
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central fringe at that point (x0 = 0) will clearly .be a minimum

in irradiance, an understandable result §ince.d goes to zero at

that point. In transmitted light, the observed pattern will be the

complement of the reflected one-discussed above, so that the

center will now appear bright.

Newton’s rings, which are Fizeau fringes, can be distin-

guished from thecircular pattern of Haidinger’ s fringes by the

manner in which the diameters of the rings vary with the order

m. The central region in the Haidinger pattern corresponds to

the maximum value of m (Problem 9.29), whereas just the

opposite applies to Newton’srings. '

An optical. shop, in the business of making lenses, will have

V a set of precision spherical test plates or gauges. A designer
can specify the surface accuracy ofa new lens in terms of the

number and regularity of the Newton rings that will be seen

with a particular test gauge. The use of test plates in the man-

ufacture of high~quality lenses, however, is giving way to far

more sophisticated techniques involving laser interferometers

(Section 9.8.2). ‘

9.4.2 Mirrored interferometers

There are a good number of amplitude-splitting interferome- I
ters that utilize arrangements of mirrors and beamsplitters. By

far the best known and historically the most important of these

is the Michelson Interferometer. Its configuration is illus-

trated in Fig. 9.24. An extended source (e.g., a diffusing

ground-glass plate illuminated by a discharge lamp) emits a

wave, part of which travels to the right.‘ The beamsplitter at 0

divides the wave into two, one segment traveling to the right

and one up into the background. The two waves are reflected

by mirrors M1 and M2 and return to the beamsplitter. Part of

the wave coming from M2 passes through the beamsplitter

going downward, and part of the wave coming from M1 is

deflected by the beamsplitter toward the detector. The two

waves are united, and interference can be expected.

Notice that one beam passes through 0 three times, where-

as the other traverses it only once. Consequently, each beam

will pass through equal thicknesses of glass only when a com~

pensatorplate C is inserted in the arm OM1. The compensator

is an exact duplicate of the beamsplitter, with the exception of
any possible silvering or thin film coating on the beamsplitter.
It is positioned at an angle of 45°, so_ that 0 and C are parallel

to each other. With the compensator in place, any optical path

difference arises from the actual path difference, In addition,
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because of the dispersion ofthe beamsplitter, the optical path
is a: function of xi. Accordingly, for quantitative work, the

interferometer without the compensator-plate can be used

only with a quasimonochromatic source. The inclusion of a

compensator negates the effect of. dispersion, so that even a

source with a very broad bandwidth willgenerate discernible

fringes. ' - ‘I . ‘ ‘ ’

To understand -how fringes are formed, refer to the con-

struction shown in "Fig. 9.25, where the physical components

are represented more as mathematical surfaces. An-observer at

the position of the detector will simultaneously see both.mir—

’ rors M1 and Mzalong with the source 2 in the beamsplitter._
We can redraw the interferometer as if all the elements were -in

a straight line. Here M1’-corresponds to the image of mirror M1

in the beamsplitter, and 2 has been swung over in line with 0

and-M2. ‘The positions of -these elementsin the diagram depend

on their relative distances from 0 (e.g., Mf -can be in front of,

behind, or coincident with Mgand can even pass through it).

The surfaces 21 and 22 are the images of the source 2 in mir-

(a)

Detector

Figure 9.24 The Michelson interferometer. (a) Circular fringes are cen-
tered on the lens. (b) Top view of the interferometer showing the path
of the light. (c) A wedge fflflge pattern was distorted when the tip of a
hot soldering iron was placed in one arm. Observe the interesting per- .
ceptual phenomenon whereby the V6850” Wtesponding to the iron's tip
appears faintly yellow. (Photo by E. H.)

 

rors M1 and M2, respectively. Now consider a_s_ingle‘ point S on

the source emitting light in all directionsg.-‘let’s follow the
course of one emerging ray. In actuality a wave; from S will be
split at 0, and its segments will thereafter be reflected by M1
and M2. In our schematic diagram we represent this by reflect-

ing the ray off both M2 and M1’. To an observer at D, the two

reflected rays will appear to have come from the image points
S1 and S2. [Note that all rays shown in (a) and (b) of Fig. 9.25

share a common plane-of-incidence] For all practical purpos-

es, S1 and S2 are coherent point sources, and we can anticipate

a flux-density distribution obeying Eq. (9.14).

As the figure shows, the optical path difference for these

rays is nearly 2d cos 9, which represents a phase difference of

k02d cos 0. There is an additional phase term arising from the

fact that the wave traversing the arm OM; is internally reflect-

ed in the beamsplitter, whereas the OM1—wave is externally

reflected at 0. If the beamsplitter is simply an uncoated glass

plate, the relative phase shift resulting from the two reflections
will be it radians. Destructive, rather than constructive, inter-

  reflection ———--f

  
Ghost

 
 



(b)

ference will then exist when »

2d cos 6,,,- =‘m)to (9.44)

where m is an integer. If this condition is fulfilled for the point

S, then it will be equally well fulfilled for any point on 2 that
lies on the circle of radius 0’S, where 0’ is located on the axis

of the detector. Asillustrated in Fig. 9.26, an observer will see

a circular fringesystem concentric with the central axis of her

eye’s lens. Because of the small aperture of the eye, the ob-

server will not be able to see the entire pattern without the use

of a large lens near the beamsplitter to collect most of the

emergent light. ‘ -

If we use a source containing a number of frequency com-

ponents (e.g., a mercury discharge lamp), the dependence of

6,” on A0 in Eq. (9.44) requires that each such component gen-

b erate a fringe system of its own. Note, too, that since

2d cos Gm must be less than the coherence length of the source,
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Figure" 9.25 ‘A conceptual»

rearrangement of the Michelson

Interferometer.

it followsthat laser light willbe particularly easy to‘ use in

dernonstrating the interferometer (see Section 9.5). This point

would be made strikingly evident were we to compare the

fringes produced by laser light with those generated by
“white” light from an ordin'ary'tungsten- bulb or a candle. In

the latter case, the path difference must be very nearly zero, if

we are_ to see any fringes at all, whereas in the former instance

a difference of 10 cm has little noticeable effect.

An interference pattern in quasimonochromatic light typi-

cally consists of a large number of alternatively bright and
dark rings. A particular ring corresponds to a fixed order m.

AsM2 is moved toward M{, d decreases-,,and according to Eq.
(9.44), cos Hm increases while Om therefore decreases. The

rings shrink toward the center, with the highest-order one dis~

appearing whenever d decreases by )r0/:2. Each remaining ring

broadens as more and more fringes vanish at the ‘center, until

only a few fill the whole screen. By the time d = O has been

reached, the central fringe will have spread out, filling the
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Figure 9.26 Formation of circular fringes.

entire field of view. With a phase shift of 71 resulting from

reflection off the beamsplitter, the whole screen will then be

an interference minimum. (Lack of perfection in the optical

elements can render this unobservable.) Moving M2 still far-

ther causes the fringes to reappear at the center and move
outward.

Notice that a central dark fringe for which 19m = 0 in Eq.

(9.44) can be represented by

2d = mo/lo (9.45)

(Keep in mind that this is a special case. The central region

might correspond to neither a maximum nor a minimum.)
Even if d is 10 cm, which is fairly modest in laser light, and

A0 = 500 nm, mo will be quite large, namely, 400000. At a

fixed value of d, successive dark rings will satisfy the expres-
sions

2d cos 91 = (mg -' 1)/\o

2d cos 92 = (mo - 2))t0

2d cos 0,, = (mg - p))t0 (9.46)

The angular position of any ring, for example, the pth ring, is-

determined by combining Eqs. (9.45) and (9.46) to yield

2d(l - cos 6,) = plto (9.47)

Since 9m 5 Hp, both-are just the half-angle subtended at the
detector by the particular ring, and since m '= mo — p, Eq.

(9.47) is equivalent to Eq. (9.44). The- new form is somewhat

more convenient, since (using the same example as above)

with d = 10 cm, the sixth dark ring can be specified by stating

that p = 6, or in terms of the order of the pth ring, that m =

399 994. If 01, is small,

0%
c0s0p=1--2-—

9 = (r_A_g)“21’ d

for the angular radius of the pth fringe.‘

The constructionof Fig. 9.25 represents one possible con-
figuration, the one in which we consider only pairs of parallel

emerging rays. Since these rays do not actually meet, they can-

not form an image without a condensing lens of s0me'~'sort.

Indeed, that lens is most often provided by the observer’s eye

focused at infinity. The resulting fringes of equal inclination

(9,,, = constant) located at infinity are also Haidingerfringes.

A comparison of Figs. 9.25b and 9.3a, both showing two

coherent point sources, suggests that in addition to these (vir-

tual) fringes at infinity, there might also be (real) fringes

formed by converging rays. These fringes do in fact exist.

Hence, if you illuminate the interferometer with a broad

source and shield out all extraneous light, you can easily see

the projected pattern on a screen in a darkened room (see Sec-

tion 9.5). The fringes will appear in the space in front of the

interferometer (i.e., where the detector is shown), and their

size will increase with increasing distance from the beamsplit-

ter. We will consider the (real) fringes arising from point-
source illumination a little later on. .

When the mirrors of the interferometer are inclined with
respect to each other, making a small angle (i.e., when M1 and
M2 are not quite perpendicular), Fizeau fringes are observed.
The resultant wedge-shaped air film between M2 and M1’ cre-

ates a pattern of straight parallel fringes. The interfering rays

appear to diverge from a point behind the mirrors. The eye
would have to focus on this point in order to make these local:
izedfringes observable. It can be shown analytically* that by
appropriate adjustment of the orientation of the mirrors M1
and M2, fringes can be produced that are straight, circular,
elliptical, parabolic, or hyperbolic-——this holds as well for the
real and virtual fringes.

and Eq. (9.47) yields

(9.48)

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu to

*See, for example, Valasek, Optics, p.135.



The Michelson Interferometer can be used to make

extremely accurate length measurements. As the moveable

mirror is displaced by A0/2, each fringe will move to the posi-

tion previously occupied by an adjacent fringe. Using a micro-

scope arrangement, one need only count the number of fringes

N, or portions thereof, that have moved pasta reference point

to determine the distance traveled by the mirror Ad, that is,

Ad =~= N(/\0/2)

Nowadays this can be done fairly easily by electronic means.

Michelson used the method to measure the number of wave-

lengths of the red cadmium line corresponding to the standard
meter in Sevres near Paris.* '

The Michelson Interferometer can be used along with a few

polaroid filters to verify the Fresnel~Arago Laws. A polarizer
inserted in each arm will allow the optical path length differ-

ence to remain fairlyrconstant, while the vector field directions

of the two beams are easily changed.

A microwave Michelson Interferometer can be constructed

with sheet-metal mirrors and a chicken-wire beamsplitter.

With the detector located at the central fringe, it can easily
measure shifts from maxima to minima as one of the mirrors is

moved, thereby determining A. A few sheets of plywood, plas—

tic, or glass inserted in one arm will change the central fringe.

Counting the number of fringe shifts yields a value forthe

'9 index of refraction, and from that we can compute the dielec-
tric constant of the material. .

The Mavch-Zelmder Interferometer is another amplitude-
splitting device. As shown in Fig. 9.27, it consists of two

beamsplitters and two totally reflecting mirrors. The two

waves within the apparatus travel along separate paths. A dif-

ference between the optical paths can be introduced by a slight

tilt of one of the beamsplitters. Since the two paths are sepa-

rated, the interferometer is relatively difficult to align. For the

same reason, however, the interferometer finds myriad appli—

cations. It has even been used, in a somewhat altered yet con-

ceptually similar form, to obtain electron interference

fringesrl V

*A discussion of the procedure he used to avoid counting the 3106327

fringes directly can be found in Strong, Concepts of Classical Optics, p.

238, or Williams, Applications of interferometry, p. 51.

on-cad -------- no‘ooooooooooooooooooooooo :0

TL. Marton, J. Arol Simpson, and J‘. A. Suddeth, Rev. Sci. Instr. 25,
1099 (1954), and Phys; Rev. 90, 490 (1953).
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Extended *_ p m

SOUTCC splitter

Figure 9.27 The Mach—Zehnder interferometer.

An object interposed in one beam‘ will alter the optical path

length difference, thereby changing the fringe pattern. A com-
mon application of the device is to observe the density Varia-

tions in gas-flow patterns within research chambers (wind

tunnels, shock tubes, etc.). One beam passes through the opti-

cally flat windows of the test chamber, while thefother beam

traverses appropriate compensator plates; The beam within the
chamber will ‘propagate through regionshaving afspatially

Scylla iv, an early setup for studying plasma. (Courtesy of University of
California, Lawrence Livermore National Laboratory, and the Department of Energy.)
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Figure 9.28 Schematic of Scylla IV.

varying index of refraction. The resulting distortions in the
wavefront generate the fringe contours. A particularly. nice
application is shown in Fig. 9.28, which depicts the magnetic
comp_ression- device-known as Scylla IV. It wasused to study
controlled therrnonuclearreactions _at the Los.Alamos Scien-
tific,Laboratory. In this case, the Mach.-—'Zehnder Interferome-
ter appears in the -formof. a parallelogram. The two ruby laser
interferograms, as these photographs are called, show the
background pattern without a plasma in the tube and the den-
sity contours within the plasma during a reaction. '

Another amplitude-splitting device, whichdiffers from the

lnterferogr-am without plasma (Photo courtesy Los Alamos National Laboratory.)

 

lnterferogram with plasma, (Photo courtesy Los.AIamos'National Laboratory.)

  

previousinstrument in many respects, is the Sagnac Interfer-
ometer. It is very easy to align and quite stable. Aninteresting
application ofthe device is discussed in the last section of this
chapter, where we‘ consider itsuse as a gyroscope. One form
of theSagnac Interferometer isshown in Fig. 9.29a and anoth-
er in -Fig. 9.2917; still others are possible. Notice that the main
feature of the device is that there are two identical but oppo-

sitely 1-directed paths takenby the beams-and that both form
closed‘ loops before they are united to produce interference; «A
deliberate slight shift in the orientation of one of the mirrors
will produce a path length differenceand a resulting fringe
pattern. Since the beams are ‘superimposed and therefore
inseparable, the interferometer cannot be put to any of the con-
ventional uses. These in general depend on the possibility of

imposing variations on only one of -the constituent beams.

 
 

  

Rea! Fringes

Before we examine the‘ creation of real; as opposed to virtual,

fringes,-let’s first consider another amplitude-‘splitting inter-
ferometric device, the Pohl fringe-producing system,‘ illus-
trated in Fig. 9.30. It is simply a thin transparent film !
illuminated by the light coming from a point source. In this *
case, the fringes -are real and can accordingly be intercepted on
a screen placed anywhere in the vicinity of the interferometer *
without a condensing-lens system. A convenient light source
to use is a-mercury lamp covered with a shield having a Small ;
hole (.~%; inch diameter) in_it. As a thin film, use a piece of i
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De - b ’

Detector _ (a) teem ()

Figure 9.29 (a) A Sagnac Interferometer. (b) Another variation of the Sagnac interferometer. .»

\ Small diverging
: quasimonochromaticsource

Figure 9.30 The Pohl Interferometer.
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Figure 9.31 Point-source illumination of parallel surfaces.

ordinary mica taped to a dark-colored book cover, which
serves as an opaque backing. If"you have a laser, its remark-

able coherence length and high flux density will allow you to
perform this same experiment with almost anything smooth

and transparent. Expand the beam to about an inch or two in

diameter by passing it through a lens (a focal length of 50 to

100 mm will do). Then just reflect the beam off the surface of

a glass plate (e.g., a microscope slide), and the fringes will be

evident within the illuminated disk wherever it strikes a
screen. A

The underlying physical principle involved with point-

source illumination for all four of the interferometric devices

considered above can be appreciated with the help of a con-

struction, variations of which are shown in Figs. 9.31 and

9.32.* The two vertical lines in Fig. 9.31, or the inclined ones

in Fig. 9.32, represent either the positions of the mirrors or the
two sides of the thin sheet in the Pohl Interferometer. Let’s

assume that point P in the surroundingmedium is a point at

 
uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

*A. Zajac, H. Sadowski, and S. Licht, “The Real Fringes in the Sagnac
and the Michelson interferometers,” Am. J. Phys. 29, 669 (1961).

 
Real Michelson fringes using He—Ne laser light. (Photo by E. H.)

which there is constructive interference. A screen placed at

that point would intercept this maximum, as well as a whole

fringe pattern, without any condensing system. The coherent

virtual sources emitting the interfering beams are mirror image

es S1 and S2 of the actual point source S. It should be noted that

this kind of real fringe pattern can be observed with both the

Michelson and Sagnac Interferometers. If either device is illu-

minated with an expanded laserbeam, a real fringe pattern will
be generated directly by the emerging waves. This is an

extremely simple and beautiful demonstration. V

9.5 Types and Localization

  

Often it is important to know where the fringes produced in a

given interferometric system will be located, since that is the

region where we need to focus our detector (eye, camera, tele— ,
scope). In general, the problem of locating fringes is charac-

teristic of a given interferometer; that is, it has to be solved for
each individual device.

Fringes can be classified, first, as either real or virtual and,

second, as either nonlocalized or localized.’ Real fringes are
those that can be seen on a screen without the use of an addi-

tional focusing system. The rays forming these fringes con-

verge to the point of observation, all by themselves. Virtual



fringes cannot be projected onto a screen without a focusing

system. In this case the rays obviously do not converge.
- Nonlocalized fringes are real and exist everywhere within

an extended (three—dimensiona1) region of space. The pattern

is literally nonlocalized, in that it is not restrictedto some

small region. Young’s Experiment, as illustrated in Fig. 9.8,

fills the space beyond the secondary sources with a whole

array of real fringes. Nonlocalized fringes of this sort are gen-

erally produced by small sources, that is, point or line sources,

be they real or virtual. In contrast, localized fringes are clearly

observable only over a particular surface. The pattern is liter-

ally localized, whether near a thin film or at infinity. This type

of fringe will always result from the use of extended sources

but can be generated with a point source as well. ‘

The Pohl Interferometer (Fig. 9.30) is particularly useful in

illustrating these principles, sincewith a point source it will
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produce both real nonlocalized and virtual localized fringes.

The real nonlocalized fringes (Fig. 9.33, upper half) can be

intercepted on a screen almost anywhere in front of the mica
film.

For the nonconverging rays, realize that since the aperture

of the eye is quite small, it will intercept only those rays that

are directed almost exactly at it. For this small pencil of rays,
the eye, at a particular position, sees either a bright or dark

spotbut not much more. To perceive an extended fringe pat-
tern formed by parallel rays of the type shown in the bottom‘

half of Fig. 9.33, a large lens will have to be used to. gather in

light entering at other orientations. In practice, however, the

source is usually somewhat extended, and fringes can general-

ly be seen by looking into the film with the eye focused at

infinity. These virtual fringes are localized at infinity and are

equivalent to the equal-inclinationfringes of Section 9.4. Sim-

 
Figure 9.33 A parallel film. The rays are

drawn neglecting refraction.
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' Region of
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(virtual fringes)

Figure 9.34 Fringes formed by a wedge-shaped film.

ilarly, if the mirrors M1_‘a'nd M2 in the Michelson Interferome-
ter are paral1el,'the usual circular, virtual, equal-inclination
fringes localized at infinity will be seen. We can imagine a

thin air film between the surfaces of the mirrors M2 and M5
acting to generate these fringes. As with the configuration of

Fig. 9.30 for the Pohl device, real nonlocalized fringes will

also be present. A
The geometry of the fringe pattern seen in reflected light

from a transparent wedge of small angle ct is shown in Fig.

9.34. The fringe location P will be determined by the direction

of incidence of the incoming light. Newton’s rings have this
same kind of localization, as do the Michelson, Sagnac, and

other interferometers for which the equivalent interference

system consists of two reflecting planes inclined slightly to-
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Region of 0-4:.‘ __
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Figure 9.35 Fringes in the Mach—Zehnder Interferometer.

eachother. The wedge setup of the Mach—Zehnder Interfer-

ometer is dis_tir_1ctive in that by rotating‘ the mirrors, one can
localize,-the resulting virtual fringes onvany plane withinthe

region generally.occupied by the test chamber (Fig. 9.35.).

  

Thus far we have examined a-number of situations inwhich

two coherent beams are combined under diverse conditions to

produce interference patterns.-_There are, however, circum-
stances underwhich a much largernumber of mutually coher-
ent waves are made to interfere. In fact, whenever the ampli-

tude-reflection coefficients, the r’s, for the parallel plate illus-

trated inHFig. 9.17 are not small, lasgwaspreviously the case,
the higher-order reflected waves E3,, E4,,. .. become quite
significant. A glass plate, slightly silvered on both sides so
that the r’s approach unity, will generate a large number of
multiply internally reflected rays. For the moment, we will
consider only situations in which the film, substrate, and sur-
rounding medium are transparentdielectrics. This avoids the
more complicated phase changes resulting from metal-coated
surfaces.

To begin the analysis as simply as possible, let the film. be
nonabsorbing and let n1 3 n2. The notation will be in accord
with that of Section‘4.l0; the amplitude-transmission coeffi-

cients are represented by t, the fraction of the amplitude of a
wave transmitted on entering- into the film, and t’, the fraction

transmitted when a wave leaves the film. The rays are actual-

ly lines drawnperpendicular to the wavefror_Lts and therefore
are also perpendicular to the optical fields Em R2,, and so
forth; Since the rays will remain nearly parallel, the scalar the-

ory will suffice as long as we are careful to account for any
possible phase shifts. I

As showp in Iiig. 9._3>6, the scalar amplitudes of the reflect-
ed waves Em E2,-, E3,,. . ., are respectively Eor, E0tr’t’,

Eotr’3t’,. . ., where E0 is the amplitude of the initial incoming
wave and r = -r’ via Eq. (4.89). The minus sign indicates a

phase shift, whi_gh we wil_l>consider later. Similarly, the trans-
mitted waves E1,, E2,, E3,,. .. will have amplitudes Eon’,

E0tr'2t', E0tr’4t’ ,. . .. Consider the_ set of parallel reflected rays.
Each ray bears a fixed phase relationship to all the other
reflected rays. The phase differences arise from a combination

of optical path length differences and‘ phase shifts occurring at
the various reflections. Nonetheless, the waves are mutually



coherent, and if they are collected andibrought to focus at "a"

point P by a lens, they will all interfere. The resultant irradi-

ance expression has a particularly simpleform for two special
cases. ‘

_ The difference in optical path length between ‘adjacent rays
isgivenby T 4 T ’ 4 "

' I A ='2nfd cos 9,

All the waves except for the first, Er, undergo an odd-number
of reflections within the film. It follows from Fig. 4.44 that at

each internal reflection the component of the field-parallel to

the plane—of-incidence changes phase by either 0 or 77, de-

pending on the internal incident angle 9,-' < 0,, The component

of the field perpendicular to the plane-of~incidence suffers no

change in-phase on internal reflection when 9,- < 00. Clearly

then, no relative change in-phase among these waves results

from an odd number of such reflections (Fig. 9.37). As thefirst

special case, if A = m/\, the second, third, fourth; and succes-
sivewaves will all be in—phase at P. The wave Em however,

because of its reflection atthe top surface of the film, will be
out—of—phase by 180° with respect to all the other waves. The

[933]
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in liigure 9.36 Multiple-beam interference from a parallel film.

Figure 9.37 Phase shifts arising purely from thereflections
(internal 0, < 6,3).
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phase shift is embodied in the fact that r = -~r’ and r’ occurs

only in odd powers. The sum of the scalar amplitudes, that is,

the total reflected amplitude at point P, is then

E0, = Eor — (E0trt’ + Eotrgt’ it E0tr5t’ + - - -)

or E0, = E0} — E0tr't’(1 + r2 + r4 + - - -)

where since A = m)», we’ve just replaced r’ by -r. The geo-

metric series in parentheses converges to the finite sum

1/(1 — r2) as long as r2 <1, so that

Eotrt’

(1 “ F2)
E0, = E07’ ”"

It was shown in Section 4.10, when we considered Stokes’s

treatment of the principle of reversibility (Eq. 4.86), that It’ =

1 - r2, and it follows that ’ '

E0,-=0

Thus when A = m)t the second, third, fourth, and successive

waves exactly cancel the first reflected wave, as shown in Fig.

9.38. In this case no light is reflected; all the incoming energy

is transmitted. The second special case arises when A = (m +

§)/\. Now the first and second rays are in~phase, and all other

adjacent waves are /\/2 out~of-phase; that is, the second is out-

of-phase with the third, the third is out-of—phase with the

fourth, and so on. The resultant scalar amplitude is then

V E0, = Eor + Eotrt’ — E0tr3t’ + E0tr5t’ — -

or E0, = Eor + E0rtt’(l - r2 -_l- r4 — ---)

E0, = 0 (Resultant amplitude)

Figure 9.38 Phasor diagram.

(9.49) p

(Resultantamplitude) E0,

Figure 9.39 Phasor diagram.

The series in parentheses is equal to 1/(1 + r2), in which case

tt’

E0, = E0r|:l +
Again, tt’ = 1 - r2; therefore, as illustrated in Fig, 9.39,

2r

(1 + r2)
E0r = E0

Since this particular arrangement results in the addition of the

first and second waves, which have relatively large ampli-

tudes, it should yield a large reflected flux density. The irradi-

ance is proportional to E3,/2, so from Eq. (3.44)

'1 4% E3
’” (1+r2)2 2

That this is in fact the maximum, (I,)m,x, will be shown later.

We will now consider the problem of multiple—bearnp inter-
ference in a more general fashion, making use of the complex

representation..Again let 211 = n2, thereby avoiding the need to

introduce different reflection and transmission coefficients at

each interface. The optical fields at point P are given by

t9.50)

E1, = Eoreiwt

E2, : E0tr’t’ei(a"_@

E3, = E0t7'l3t,€i(~wt~2&

Eivr __: Eotr/(ZN-3)t/ei[aJt—(N—1)6]

where Eoew” is the incident wave.



The terms 8, 28,..., (N ~ 1):’? are the contributions to the

phase arising from an optical path length difference between

adjacent rays (6 = k0A). There is an additional phase contri-

bution arising from the optical distance traversed in reaching

point P, but this is common to each ray and has been omitted.

The relative phase shift undergone by the first ray as a result ‘of
the reflection is embodied in the quantity r’. The resultant

reflected scalar wave is_then

E,.=E~‘1,.+E2,-+E;3,.+ "' +EN,«,,

or upon substitution (Fig. 9.40)~

E, = Eorem” + E0tr’t’ei(””_5) -5- ~ ' - + E0tr’(2N'"3)t'

X -ei[wt~(N—1)6]

This can be rewritten as

E, = E0ei“”{r + r’tt e—i5[l + (r’2e7i6)

+ (I,/2e—i5)2 + _ _ . + (r/2e~‘i5)N"2:”

If |r’2e"i6| < 1, and if the number of terms in the series
approaches infinity, the series converges. The resultant wave _
becomes

~ I r/tt/e—i5 -

‘ E, = E0e“"’[r + A (9.51)
In the case of zero absorption, no energy being taken out of the
waves, we can use the relations r = -r’ and tr’ = 1 - r2 -to

rewrite Eq. (9.51) as 5

 
Figure 9.40 Phasor diagram.
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The reflected flux density at P is then I, = 173, 13"?‘ /2, that is,

2 E(2)r2(l ~ ef"3)(1 — e+"_5)

which can be transformed into

I/-2r2(1 -5 cos 6)
I, = 1,.--——-———~—-————~— 9.52_ (1 + r4) — 2r2cos 5 ( )

The symbol I,- = E3/2 represents the incident flux density,
since, of course, E0 was the amplitude of the incident wave.

Similarly, the amplitudes‘ of the transmitted waves given by

El, : E0tt’ei‘°’

1732, = E0tt’r’2ei(“”“6’ I

Est ____. E0”/r,/4ei(wt~2b)

1731;” = E0”, r/2(1v— 1)ei[a>~(Né 1)6]

can be added to yield

El; E0ei(ot[ 9 (9.53)
(Because we are interested in the irradiance, a common factor

of e”“5/2, arising from the transmission through the film, was
omitted. It contributes to the fact that there is a phase differ-

ence of 77/2 between the reflected and transmitted waves, but
that is of no concern here.)

Multiplying Eq. (9.53) by its complex conjugate yields

(Problem 9.39) the irradiance-of the transmitted beam

I.-(rt’)2

1' = (1 + r4) —- 2r2 cos 6 (9.54)

Using the trigonometric identity cos 8 = 1 - 2 sin2 (6/2),

Eqs. (9.52) and (9.54) become ‘

[Zr/(1 ~ r2)]2sin2(5/2)

It = Iii + [Zr/(1 — r2)]2 sin2(5/2) (9.55)

l

‘956’and I,

where energy is not absorbed, that is, tt’ + r2 = 1. If indeed



420 Chapter‘9 interference

none of the incident energy is absorbed,~the flux density of the
incoming wave should exactly equal the sum of the flux den-
sity reflected off the film and the total transmitted flux density
emerging from the film. It follows from Eqs. (9.55) and (9.56)
that this is indeed the case, namely, .

‘gt=r+L am)

This will not be true, however, if the dielectric film is coated

with a thin layer of semitransparent metal. Surface currents
induced.in -the. metal will dissipatea portion of the incident

electromagnetic energy.-. , . .-. _ _ . . 4
r Consider the transmitted waves as described by Eq. (9.54).

A maximum will exist when the denominator is as small as

possible, that is, when cos 8 : 1, in which case 8 = Zarm and

‘ (It)niax = 1:

Under these conditions, Eq. (9.52) indicates that

<1. ...... = 0 5

as we would expect from Eq. (9.57). Again, from (9.54) it
is, clear that a minimum ‘transmitted, flux _density will exist
when the denominator is a maximum, that is, when cos 6 =

-l. In that case 3 = (2m + 1)’/r and ‘

(1. ‘min ,_j'.= (9.58)

I The corresponding -maximumin‘ the reflected flux density is

_ I _ 4r-2 6 9 .
“max = i <9”

Notice that the constant-inclination fringe pattern has its max-

ima when 5 2 (2m + 1)7r or -

:1-7-T-fldcos 9, = (2m +1)m_'
A0 - -

which is the same as the result wearrived at previously, in Eq.

(9.36), by using only the first two reflected waves. Note, too,
that Eq. (9.59) verifies that Eq. (9.50) was indeed a maximum.

The form of Eqs. (9.55) and (9.56) suggests that we intro-

duce a new quantity, the. coefficient offinesse F, such that

21*) 2
FE (mi

whereup0f1 these equations can be vvritten as

(9.60)
 

 
-Figure 9.41 Airy function.

 

1. Fsin2(8/2)
r"1+Fmflwm 9“)

L i
d ~= .an . . 1,. 1+ Fsin2(6/2) (9 62)»

The term [1 + F sin2 (8/2)]‘1 E .s2¢(9) is known as the Airy

function. It represents the transmitted flux-density distribu-
tion and is plottedin Fig. 9.41. The ‘complementary function

[1 f- .sz¢(9)], that is, Eq. (9.61), is plotted as well, in Fig. 9.42.
When 6/2 = mat, the Airy function is equal to unity for all
values of F and therefore r. When r approaches 1, the trans-

mitted flux density is very small, except within the sharp

spikes centered about the points 8/2 = mar. Multiple-beam
interference has resulted in a redistribution of the energy den-

sity in comparison to the sinusoidal two-beam pattern (of

 
——21r -1r 0 fr 211 3n-

Figure 9.42 One minus the Airy function.



which the curves corresponding to a small reflectance are rem-
iniscent). This effect will be further demonstrated when we

consider the diffraction grating. At that time we will see this

same peaking effect, resulting from an increased number of

coherent sources contributing to the interference pattern.

Remember that the Airy function is, in fact, a function of 0, or

9, by way of its dependence on 8, which follows from Eqs.

(9.34) and (9.35), ergo the notation .s2¢(9). Each spike in the

flux-density curve corresponds to a particular 6 and therefore

a particular 6,-. For a plane-parallel plate, the fringes, in trans-

mitted light, will consist of a series of narrow bright rings on

an almost completely dark background. In reflected light, the

fringes will be narrow and dark on -an almost uniformly bright

background. V

Constant-thickness fringes can also be made sharp and nar-
row by applying a light silver coating to the relevant reflecting

surfaces to produce multiple-beam interference. ‘

9.6.1 The Fabry—Perot Interferometer

The multiple-beam interferometer, first constructed by Charles

Fabry and Alfred Perot in the late, 1800s, is of considerable
contemporary interest. Besides being a spectroscopic device of

extremely high resolving power, it serves as the basic laser res-

onant cavity. In principle,the device consists of two plane, par-
allel, highly reflecting surfaces separated by some distance d.

This is the simplest configuration, and as we shall see, other
forms are also widely in use. In practice, two semisilvered or

aluminized glass optical flats form the reflecting boundary sur-
faces. The enclosed air gap generally ranges from several mil-

limeters to several centimeters when the apparatus is used
interferometrically, and often to considerably greater lengths
when it serves as a laser resonant cavity. If the gap can be

mechanically varied by moving one of the mirrors, it’ s referred
to as an interferometer. When the mirrors are held fixed and

adjusted for parallelism by screwing down on some sort of

spacer (invar or quartz is commonly used), it’s said to be an

etalon (although it is still an interferometer in the broad sense).

If the two surfaces of a single quartz plate are appropriately

, polished and silvered, it too will serve as an etalon; the gap

need not be air. The unsilvered sides of the plates are often

made to have a slight Wedge shape (a few minutes of arc) to

reduce the interference pattern arising from reflections off
these sides.

The etalon in Fig. 9.43 is shown illuminated by a broad

9.6 Multiple Beam Interference, 421

» source, which might be a mercury are or a He—Ne laserbeam

spread out in diameter to several centimeters. This can be done

rather nicely by sending the beam into the back end of a tele-

scope focused at infinity. The light can then be made diffuse

bypassing it through a sheet of ground glass. Only one ray
emitted from some point S1 on the source is traced through the

etalon. Entering by way of the partially silvered plate, it is

multiply reflected within the gap. The transmitted rays are col-
lected by a lens‘ and brought to a focus on a screen, where they
interfere to form either a bright ordark spot. Consider this par- .

ticular plane~of-incidence, which contains all the reflected

rays. Any other ray emitted from a different point S2, parallel

to the original ray and in that plane—of-incidence, will form a

spot at the same point P on the screen. As we shall see, the dis-

cussion of the previous section is again applicable, so that Eq.

(9.54) determines_the transmitted flux density 1,.

The multiple waves generated in the cavity, arriving at P
from either S1-or'S2, are coherentfafnong themselves. But the
rays arising from S1 are completely.__i_ncoherent with respect to
those from S2, so that there is nol"susjtained mutual interfer-
ence. The contribution to the irradi_ance—‘I, at P is just the sum
of the two irradiance contributions." ‘»_'

All the rays incident on the gap"ati.l-aigiven angle will result
in a single‘ circular fringe of uniform:-irradiance (Fig. 9.44).
With a broad diffuse source, ‘interference bands will be
narrow concentric rings, corresponding to the multiple-beam
transmission pattern.‘ I ' I - ' '

The fringe system can be observed visually by looking

directly into the etalon, while focusing at infinity. The job of
the focusing lens, which is no longer needed, is donebynthe
eye. At large values of d, the rings will be close together, and
a telescope might be needed to magnify the pattern. A rela-

tively inexpensive monocular will serve the same purpose and

will allow for photographing the fringes localized at‘ infinity.

 
SOUTC6

Figure.9.43 Fabry—Perotetalon.
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As might be expected from the considerations of Section 9.5,
it is possible to produce real nonlocalized fringes using a
bright point source.

The partially transparent metal films that are often usedto
increase the reflectance (R = r2) will absorb a fractionA of the
flux density; this fraction is referred to as the absorptance.

The expression ’

H’ + r2 = 1

or V T + R = 1 [4.60]

where T is the transmittance, must now be rewritten as

T+R+A==1 (9.63)

One further complication introduced by the metallic films is
an additional phase shift ¢(9,-), which can differ from either
zero or In-. The phase difference between two successively
transmitted waves is then

I

Figure 9.44 (a) Fabry—Perot etalon, (b) The axially symmetric T _
fringes seen looking into the etalon. (Photo by E. H.)

5 =55-°7—’3fdcos e,+ 2¢A0 4 _ (9.64)
For the present conditions, 9, is small and <15 may be consid-
ered to be constant. In general, d is so large, and A0 so small,
that (12 can be neglected. We can now express Eq. (9.54) as

I, T2

.1: l+R2—2Rcos6

 

or equivalently

 I, _ T 2 1 965"zfli-12) 1+[4R/(1-R)2]sin2(5/2) (' )
Making use of Eq. (9.63) and the definition of the Airy func-
tion, we obtain '

2

I, A sane)___=1__._

2 (1"*R)

 
(9.66)



as compared with the equation for zero absorption

-gt.“ = s2¢(9) [9.62]
Inasmuch as the absorbed portion A is never zero, the trans-

mitted flux-‘density maxima (I,)m,,x will always be somewhat

less than I,-. [Recall that for (I,)m,X, sz€(6) = 1.]

Accordingly, the peak transmission is defined as (I,/I,-)m,,:

<I.......__1 A 2
I. ” "r1——R>

A silver film 50 nm thick would be approaching its maximum

value of R (e.g.,- about 0.94), while T and A might be, respec-

tively, 0.01 and 0.05. In this case, the peak transmission will

be down to Therelative irradiance of the fringe pattern will

still be determined by the Airy function, since '

It

(9.67)

= .s2¢(0) (9.68)
(L max

A measure of the sharpness of the fringes, that is, how

rapidly the irradiance drops off on either side of the maximum,

is given by the ha1f—width 3/. Shown in Fig. 9.45, y is the width

of the peak, in radians, when I, = (I,)maX‘/2. ‘

Peaks in the transmission occur at specific values of the

phase difference Smax = 271-m. Accordingly, the irradiance

will drop to half its maximum value [i.e., .s2¢(0) = §] whenever

8 w Smax i 51/2. Inasmuch as

.s2¢(0) : [1 -Al-IF sin2(8/2)]"‘

1.0

  
5",“ 3 27"" am” :1 21:0” +

I .

6 = ‘sum: "" at/2 6 ” amt: + 61/2

Figure 9.45 Fabry-Perot fringes.
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then when

I '[1 + Fsin2(81'/2/2)]‘1 ==;

it follows that .

51,, =- 2 sin‘1(1/\/17")

Since F is generally rather large, sin‘1 (1 /\/ii‘) -~ 1/\/F, and.
therefore the half-width, y = 261/2, becomes

y = 4/\/F (9.69)

Recall that F = 4R/(l - R)2, so that the larger R is, the sharp-

er the transmission peaks will be. . .

Another quantity of particular interest isthejratio of the

separation of(‘adjacent maxima to the half—width. Known as the

finesse, 947 E 277‘/y or, from Eq. (9.69),

_ WW‘
2 (9.70)347

Over the visible spectrum, the finesse of most ordinary Fab-
ry-Perot instruments is about 30. The physical limitation on %

is set by deviations in the mirrors from plane parallelism.
Keep in mind that as the finesse increases, the half—width

4 decreases, but so too does the peak transmission. Incidentally,
a finesse of about 1000 is attainable with curved-mirror sys-

tems using dielectric thin—film coatingsfl‘

Fabry-Perot Spectroscopy

The .Fabry~Perot Interferometer is frequently used to examine

the detailed structure of spectral lines.‘ We will not attempt a
complete treatment of interference spectroscopy, but rather

will define the relevant terminology, briefly outlining appro-

priate derivations.T A

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuun

*The paper “Multiple Beam Interferometry," by H. D. Polster, Appl. Opt.
8, 522 (1969), should be of interest. Also look at “The Optical

Computer,” E. Abraham, C. Seaton, and S. Smith, Sci. Am. (Feb. 1983),

p. 85, for a discussion of the use of theFabry—Perot Interferometer as
— an optical transistor.

-------------------------------------------- --

TA more complete treatment can befound in Born and .Wolf, Principles
of Optics, and in W. E. Williams, Applications of Interferometry, to name

only two. ~
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As we have seen, a hypothetical, purely monochromatic

lightwave generates a particular circular fringe system. But 8
is a function of A0, so that if the source were made upof two
such monochromatic components, two superimposed ring sys-
tems would result. When the individual fringes partially over-

lap, at certain amount of ambiguity exists in deciding when the
two systems are individually discernible, that is, when they are
said to be resolved. Lord Rayleigh’s* criterion for resolving

two equal-irradiance overlapping slit images is well accepted,
even if somewhat arbitrarily in-the present application. Its use,

however, will allow a comparison with prism or grating instru-
ments. Theessential feature of this -criterion’ is that the fringes

are just resolvable when the combined irradiance of both
fringes -at.the"center, or saddle point, of the resultant broad
fringe ‘i-s~8/qr-2 times -the maximum irradiance. This simply
means that one would see a broad bright fringe with a grey

central region. To be a bit more analytic about it, examine Fig.
9.46, keeping in mind the "previous derivation of the half-
width. Consider the case in which the two constituent fringes .

have equal irradiances, (I,,)max = (Ib)max. The peaks in the
resultant,:occurringp'at_5 % 6,, and 6 ’= 5;, will haveequal
irradiances,’ I ‘" "A “ H" ‘V ' , ' 7

7 .(I,),,,,,, §=:(1,,),,,,,. + 1' ' t (9.71)

At the saddle point, the ‘irradiance (8/7r2)(I,),,,,,x is the sum of

V4/64)... 
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

*The criterion will be reconsidered with respect to diffraction in the next
chapter (see Fig. 10.26): ‘ — ~ . .

the two constituent irradiances, so that, recalling Eq. (9.68),

(It)max

(Ia)max

 

(3/772) = [~9¢(9)la=s,,+Aa/2 + ['-Q¢(9)]5=5b+A5/2-

_ 9 (9.72)

Using (1, max given by Eq. (9.71), along with the ‘fact that
I! » .

(Ia)max

we can solve Eq. (9.72) for A8. For large values of F,

4.2

\/F.

This then represents the smallest phase increment, (A8),,,;,,,

separating two resolvable fringes. It can be related to equiva-
lent minimum increments in wavelength (A)t-0)mi,,, frequency

(Av)mi,,, and wave number (Ak)mj,,. From Eq. (9.64), for 8 =

Zrrm, we have

7-" l-9¢(9)l5=a,,+A6

(Ad) ~ (9.73)

2,
r m}to = Znfd cos 9, + -‘-L9 (9.74)77

Dropping the term gblto/7r, which is clearly negligible, and
then differentiating, yields ' .. 3- .

m(.A).io) +Ao<Am)=o  

V /\0 m . ml 7
(Mo) 7 7 (Am)

The minus will be omitted, since it means only that the order

increases when no decreases. When 8 changes by 27r, m

changes by 1, V

01‘

 

.31 - _..._1
(A8 (Am)

K /\0 277m
d h = ————-— _an t us (M0) (A6) (9 75)

The ratio of A0 to the least resolvable wavelength difference,
(A)t0)m,,,, is known as the chromatic resolvingpower Qt of any

spectroscope. At" nearly normal incidence” 4

9i 5 .
(A’\0)min " A0. *

 

(9.76)

or I 9R~.%n

For a wavelength of 500 nm, nfd = 10 mm, and R = 90%, the

7‘:



resolving power is well over a million, a range achieved by the
finest diffraction gratings. It follows as well, in-this example,

that (A)l0),,,,-,, isless than a millionth of A0. In terms of fre-

quency, .the minimum resolvable bandwidth is

 

(Av)... = mfd (9.77)
inasmuch as |Av| = '|cA/\0/A31.

As the two components present in the source become

increasingly differentin wavelength, the peaks shown over-

lapping in Fig. 9.46 separate. As the wavelength difference

increases, the mth-order fringe forone wavelength )to will

approach the (m + .1)th-order “for the other wavelength

(A0 -' A/\o). The particular wavelength difference at which

overlapping takes place, (A)l0)f‘,,, is known as thefree spectral

range. From Eq. (9.75), a change in 6 of 217 corresponds to

(A)l0)f,, = /\o/m, or at near normal incidence,

(Molar “ A3/Znfd (9-78)

and similarly

(AV)fsr "5" c/Znfd

Continuing with the above example (i.e., A0 =.500 nm and

nfd =2 10 mm), (A)\())f5r = 0.0125 nm. If we attempt to

increase the resolving power by merely increasing d, the free

spectral range will decrease, bringing with it the resulting con-
fusion from the overlapping of orders. What is needed is that

(A/\0)m,-m be as small as possible and (Az\o)fs, be as large as

possible. But 10 and behold,

(A)‘0)fsr __ g~
ans... “‘ ‘?”’ ‘9"‘°’

This result should not be too surprising in view of the original
definition of 9/7. ’

Both the applications and configurations of the Fabry~Per-

ot Interferometer are numerous indeed. Etalons have been

arranged in series with other etalons, as well as with grating

and prism spectroscopes, and multilayer dielectric films have

been used to replace the metallic mirror coatings.

Scanning techniques are now widely in use. These take

advantage of the superior linearity of photoelectric detectors

over photographic plates, to obtain more reliable flux~density

measurements. The basic setup for central-spot scanning is

illustrated in Fig. 9.47. Scanning is accomplished by varying

5, by changing nf or d rather than cos 9,. In some arrange-
ments, nf is smoothly varied by altering the air pressure with-

- determines the mirror motion.
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Detector

@Source a

Pinhole
screen

Etalon

Pinhole
screen

Figure 9.47 Central spot scanning.

in the etalon. Alternatively, mechanical vibration of one mir-
ror with a displacement of A0/2 will be enough to scan the free

spectral range, corresponding as it does to A6 = 277. A popu-

lar technique for accomplishing_'thi_s utilizes a piezoelectric
mirror mount. This kind of material will change its length, and

therefore d, as a voltage is-applied to it. The. voltage profile

’ Instead of photographically recordingirradiance over. a

large -region in space, at a single point in time, this method

‘records ir-radiance over a large region in time, at a single point

inspace.» _ ‘ . ‘ « -'- .. .

The actual configuration of the etalon itself has also under-

gone some significant variations. Pierre Comes in 1956 first

described the spherical-mirror Fabry-Pe»ro‘ti Interfizrometer.

Since then, curvedemirror systems have become prominentas

laser cavities and are also finding-increasing use -as spectrum

analyzers. ' - ' l -

9.7 Applications of Single and
  

The optical uses to which coatings of thin dielectric films have

been put in recent times are many indeed. Coatings to elimi-

nate unwanted reflections off a diversity of surfaces, from

showcase glass to-high-quality camera lenses, are now com-
monplace (see photo on page 426). Multilayer, nonabsorbing
beamsplitters and dichroic mirrors (color-selective beamsplit—

ters that transmit and reflect particular wavelengths) can be

purchased commercially. ' 1

Figure 9.48 is a segmented diagram illustrating the use of a

cold mirror in combination with a heat reflector to channel
infrared radiation to the rear of a motion~picture,projector. The
intense unwanted infrared radiation emitted_ by the source is
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This glass disk has an antireflectionpcoating in the shape of a circle '
applied to the central region of both its sides. (Photo by E. H.)

removed from the beam to avoid heating problems at the pho-

tographic film. The top half. of Fig. 9.48 is an ordinary back-

silvered mirror shown for comparison. Solar cells, which are

one of the prime power—supply» systems for space vehicles, and

even the astronauts’ helmets and visors, are shielded with sim—

ilar heat control coverings. . . ‘

Multilayer broad and narrow band—pass filters thattransmit
only over a specific spectral range can be made to span the

region frominfrared to ultraviolet. In the visible, for example,

they play an important part in splitting up the image in color

television cameras, and in the infrared they’re used inmissile

guidance systems, CO2 lasers, and satellite horizon sensors.

The applications of thin-film devices are manifold, as are their

  
  

 

Visible and IR

Heat reflector

Figure 9.48 A composite drawing showing an ordinary system in the
top half and a coated one in the bottom.

structures, which extend from the simplest single coatings to

intricate arrangements of one hundred or more layers.

The treatment of multilayer film theory used here will deal

with the total electric and magnetic fields and their boundary

conditions in the various regions. This is a far more.practical

approach for many-layered systems than is the multiple~wave

technique used earlier.*

9.7.1 Mathematical Treatment

Consider the linearly polarized wave shown in Fig. 9.49,

impinging on athin dielectric film between two semi-infinite

transparent media. In practice, this might correspond to a

dielectric layer a fraction of a wavelength thick, deposited on

_ Figure 9.49 Fields at the boundaries.

cannonnunnu-ano--In-on0nuuuu--

*For a very readable nonmathematical discussion, see P. Baumeister
and G. Pincus, “Optical interference Coatings,” Sci. Amer. 223, 59
(December 1970).



the surface of a lens, a mirror, or a prism. One point mustbe

made clear at the outset: each wave E,1, Lu, Em, and so forth,

represents the resultant of all possible waves traveling in that

direction, at that point in the medium. The summation process

is therefore built in. As discussed in Section 4.6.2, the bound-

ary conditio1_1_>s require that the_tange_1>itial components of both
the electric (E) and magnetic (H = B//.1) fields be continuous

across the boundaries (i.e., equal on both sides). At boundary I

E, = Eil + E.. = E... + Es. (9.81)

and H, = 5"-(E,-1 ~ E,1)n0 cos 9,,
I10

H. = f,-°—<E.1 - Esonl cos an (9.82)0

where use is made of the fact that E and II in nonmagnetic
media are related through the index of refraction and the unit
propagation vector: '

-II: /-59- fxxfi
luon

At boundary II 1

_ 9 E11 "“'* Em + Ern = Ear (9-83)
and ' 9 ' 4

H11 = ‘E:(EiII V.“ r11)7l1 005 9:11

H11 = ”E:E¢11ns 00$ 9:11 (9-84)
the substrate having an index ns. In accord with Eq. (9.33), a
wave that traverses the film once undergoes a shift in-phase of

k0(2n1d cos 9,-H)/2, which will be denoted by koh, so that

Em = E,,e‘ik°h (9.85)

and E,,, = E;He+”‘°h (9.86)

Equations (9.83) and (9.84) can now be written as

13,, = E,,e“”9’* + E;ne+”‘°h (9.87)

and H11 7': (E,1e'“''k°h " E§H’e+ik°h) ‘Elf)‘T'l1 COS 0,11 . 8

These last two equations can be solved for E1 and En, which

when substituted into Eqs. (9.81) and (9.82) yield
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E1 :7 E11 COS koh + H11(i Sln

and H1 = E11Y1i Slll koh ‘l’ H11 COS koh

/ 50
=-“ EH1 COS 0111

When I4? is in the plane-of—incidence, the above calculations
result in similar equations, provided that now

(9.90)

where

9 __ 6,,»

Y1 = ’fi(;I’l1/COS 9111

In matrix notation, the above linear relations take the form

E1 = C05 koh (i Sin koh)/Y1 E11 (9 91)
H1 Slfl koh COS k0h H11 .

E1 2 E1:

The characteristic matrix ./ti; relates the fields at the two adja-

cent boundaries. It follows, therefore, that if two overlaying

films are deposited on the substrate, there will be three bound-

aries or interfaces, and now

(9.92)

' (92-.93)

Multiplying both sides of this expression by M1, we obtain

EI _____ _ EIIIll-ll l-ml
In general, ifp is the number of layers, each with a particu-

lar value of n and h, then the first and the last boundaries are

related by

E: __ E<p+1>[HI] —— ./(£1./tin mp [H(p+1)] (9.95)
The characteristic matrix of the entire system is the resultant

of the product (in the proper sequence) of the individual
2 X 2 matrices, that is,

(9.94)

mm "122I)“ _/“P/an . . Vflp __: [mil 11112] (9.96)
To see how all this fits together, we will derive expressions

for the amplitude coefficients of reflection and transmission

' using the above scheme. By reformulating Eq. (9.92) in terms

of the boundary conditions [(9.8l), (9.82), and (9.84)} and
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setting

and Y3‘ = £9 n, cos 0,11/10

we obtain

(En + Err) Ezn
= Jfll .

(En ‘ ErI)Y0 Etllys

When. the matrices are expanded, the last relation becomes

1 '+‘ 7' m11t + m12YSt

and p '.‘,7‘)Y() 3 m21t+ m22YSt
inasmuch as i

r ‘Err/E11 and 1‘ = Eur/En

Consequently, ' --

_ Yomll + Y0Ysml2 " W21 “:Ysm22r us»

Yomll + YOYW12 + 77121 + Ysm22
(9.97)

__ 2Y0

Yomii + Ycysmiz +'m21 + Ysm22

 
and t . (9.98)

To find either r or for any, configuration of films, we need
only compute the characteristic matrices for each film, multi-

ply them, and then substitute the resulting matrix elements
into the above equations.

9.7.2 Antireflection Coatings.
Now consider the extremely important case of normal inci-
dence, that is, ‘

9:1“: 9:11: 9:11 = 0

which in addition to. being the simplest, is also quite frequent-

ly approximated in practical situations. If we put a subscript on

r to indicate the number of layers present, the reflection coef-

ficient for a single film becomes

~_ n1(n0 - n,) cos koh + i(no-ns ~ nzi“) sin koh
u'n1(n0 + ns) cos koh + i(n0ns.+ n§)sin koh (999)V1

Multiplying r1 by its complex conjugate leads to the re-
flectance - ' ~ - '

_ n%(n0- - n,)2 cos2 koh + (non, + n§)2 sinz kg}: (9100)R1” n%(n0 + h,)2 cosz koh ‘+ (non, + sin?‘ ko

This formula becomes particularly simple when koh = 32-77,
which is equivalent to saying that the optical thickness h of the

film is an odd multiple of %/\0. In this case at = ;‘,—2.,, and

__ (non, -— nbz
R — . .l0l1 ("ens + nhz (9 I :’

which, quite remarkably, will equal zero when

n? = non, ‘ (9102)

Generally, d is chosen so that h equals filo in the yellow—g_r_een
portion of the visible spectrum, where the eyeis mostsensi-
tive. Cryolite (n = 1.35), a sodium aluminum fluoride com-
pound, and magnesium fluoride (n = 1.38) are common
low-index films. Since MgF2 is by far‘ the more durable, it is

used more frequently. On a glass substrate, (Ii, e= 1,5), both
these films have indices that are still somewhat too large to
satisfy Eq. (9.102). Nonetheless, a single §)t0 layer of MgF2
will reduce the reflectance of glass from about 4% to a bit

more than 1%, over the‘ visible. spectrum. It is now common-

practiceto apply antireflection coatings to the elements of
optical instruments. On camera lenses, such coatings produce
a decrease in the haziness caused by stray internally scattered
light, as well as a marked increase in image brightness. At
wavelengths on either side of the central yellow-green region,
R- increases and the lens surface will appear b1ue—red- in re-

flected light. « ‘ A

For a double-layer, quarter-wavelength antireflection

coating, ’
J“ 7* J“1./“11

or more specifically i i

l» ‘ 0.‘Hi/Y1 ‘ i/Y2. -
= . . 9.103““ [N1 0 “iv, 0 ( ) ,

At normal incidence this becomes

“"2/"1 0
,/ti = ‘ — . » (9.104. [ I O “‘f'l1_/n2“| )



Substituting the appropriate matrix elements into Eq. (9.97)

yields 72, which, when squared, leads to the reflectance

2' 2 2
”2”o‘“7ls”1

R2= —----~*-----~ ’ 9.105.
nino + nsni ' ( )

For R2 to be exactly zero at aparticular wavelength, we need

i *2

‘ I52. ..flS_~

"711 710
(9.106)

This kind of film is referred to as ‘la double-quarter, single-
minimum coating. When n1 and 122 are as small as possible, the

reflectance will have its single broadest minimum equal to

zero at the chosenfrequency. It should‘ be clear from Eq.

(9.106) that 112 > n1; accordingly, it is now common practice

‘ to designate a (glass)-(high index)‘-(low index)~—(air) system

as gHLa. Zirconium dioxide (n = 2.1), titanium dioxide (n =

2.40), and zinc_sulfide (n = 2.32) are commonly used for

H—layers, and magnesium fluoride (n = l.38) and cerium flu-
oride (n = 1.63) often serve ‘as‘L—layers.

Other double- and triple-layer schemes can be designed to

satisfy specific requirements for spectral response, incident

angle, cost, and so on. The .accompanying photo is a scene

photographed through a 15-element zoom lens, with a l50—W
lamp pointing directly‘i'nto the} camera. The lens elements

were covered with a_single-layer of MgF2. When a triple-layer
antireflection coating is used "(see‘ photo), the improved con-'
trast and glare reduction are apparent. 9 i ’ ' '

 
Lens elements coated with a single layer of MgF2. (Photo courtesy Optical
Coating Laboratory, Inc. Santa Rosa, CA.)
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Lens elements coated with a ‘multilayer film structure. (Photo courtesy
Optical Coating Laboratory, incl, Santa Rosa, CA.) " ‘

 

  

 

9.7.3 Multilayer Periodic Systems,

The simplest kind of periodic systemvis the quarter-wave

stack, which is made up of a number of quarter-wave layers.

The periodic structure of alternately ‘high? and low-index

materials, illustrated in Fig. 9.50, is designated by

g(HL)3a

Figure 9.51 illustrates the general form of a portion of the
spectral reflectance for a few multilayer filters. The width of

Air

  
Glass substrate Glass substrate "a

gHL'a I gHLHLHLa

9(HL )’a « »

Double-quarter . Quarter-wave stack

Figure 9.50 A periodic structure. Refraction hasbeen omitted for
simplicity.



430 Chapter9 interference

Reflectance 
Wavelength (nm)

Figure 9.51 Reflectance and transmittance for several periodic
structures.

the high-reflectance central zone increases with increasing
values of the index ratio nH/nL, and its height increases with
the number of layers. Note that the maximum reflectance of a
periodic structure such as g(HL)”‘a can be increased further by
adding another H~layer, so that it has the form g(HL)’”Ha.
Mirror surfaces with very high reflectance can be produced

using this arrangement. ‘
The small peak on the short—wavelength side of the central

zone can be decreased by adding an eighth-wave low—index
film to both ends of the stack," in which case the whole

arrangement will be denoted by

g (O.5L)(HL)’"H(0.5L) a

This has the effect of increasing the short-wavelength high-
frequency transmittance and is therefore known as a high-pass
filter. Similarly, thestructure

g(0.5.H)L(HL)"'(0.5H)a
merely corresponds to the case in which the end H-layers are
7&0/8 thick. It has a higher transmittance at the long-wave-
length, low-frequency range and serves as a low-passfilter.

At nonnormal incidence, up to about 30°, there is quite fre-

quently little degradation in the response of thin-film coatings.
' In general, the effect of increasing the incident angle is a shift

in the whole reflectance curve down to slightly shorter wave-

lengths. This kind of behavior is evidenced by several natural-
ly occurring periodic structures, for example, peacock and
hummingbird feathers, butterfly wings, and the backs of sev-
eral varieties of beetles.

The last multilayer system to be considered is the interfer-

ence, or more precisely the Fabry—Perot, filter. If the separa-

tion between the plates of an etalon is of the order of A, the
' transmission peaks will be widely separated in wavelength.- It
will then be possible to block all the peaks but one by using
absorbing filters of colored glass or gelatin. The transmitted
light corresponds to a single sharp peak, and the etalon serves
as a narrow band-pass filter. Such devices can be fabricated by

depositing a semitransparent metal film onto a glass support,
followed by a MgF2 spacer and another metal coating.

All—dielectric, essentially nonabsorbing Fabry—Perot filters

have an analogous structure, two possible examples of which
are

g HLH LL HLH a

and _ g HLHL HH LHLH a

The characteristic matrix for the first of these is _

./ll = nHnLnHn,nLnHnLnH 9

but from Eq. (9.104)

‘ —1 0.

‘/“L‘/“.14.: [ 0 -1] .

_or ./flL,./l2lL.= 9-!

where J is the unity or identity matrix. The central double ‘
layer, corresponding to the Fabry—Perot cavity, is a half~
wavelength thick;(d = -;-hf). It therefore has no effect on the

‘ reflectance at the particular wavelength under consideration.
Thus, it is said to be an absentee layer, and as a consequence,

J“ '3 "'./“H./“L./“H./“H./“L./“H

The same" conditions prevail over and over again at the center

and will finally result in

rrléil
At the special frequency for which the filter was designed, r at
normal incidence, according to Eq. (9.97), reduces to

710- ns r27

n0+n,

the value for the uncoated substrate. In particular, for glass

(n, = 1.5), in air (no = 1) the theoretical peak transmission is
.\



 
 
96% (neglecting reflections from the back surface of the sub-

strate, as well as losses in both the blocking filter and the films
themselves).

 

There have been many physical applications" of the principles
of interferometry. Some of these-are only of historical or ped-

agogical significance, whereas others are now being used

extensively. The advent of the laser and the resultant avail-

ability of highly coherent quasimonochromatic light have

made itparticularly easy to create new interferometer config-
urations. ' '

9.8.1 Scattered-Light interference
Probably the earliest recorded study of interference fringes

arising from scattered light is to be found in Sir Isaac New-

ton’s Optiks (1704, Book Two, Part IV). Our present interest

in this phenomenon is twofold. First, it provides an extremely

easy way to see some rather beautiful colored interference

fringes. Second, it is the basis for a remarkably simple and

highly useful interferometer.

To see the fringes, lightly rub a thin layer of ordinary tal-
cum powder onto the surface of any common back-silvered

mirror (dew will do as well). Neither the thickness nor the uni-

formity of the coating is particularly important. The use of a

bright point source, however, is crucial. A satisfactory source

can be made by taping a heavy piece of cardboard.having a

hole about :1; inch in diameter over a good flashlight. Initially,
stand back from the mirror about 3 or 4 feet; the fringes will be

too fine and closely spaced to see if you stand much nearer.
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In Fig. 9.16 the optical path length

difference depends on A (i.e., the

color of the light) and on the viewing
angle. in a similar way the ink used

to print the denominations on U.S.

currency now contains structured

particles that produce interference

colors. The ink is infused with tiny
flakes all oriented in the same direc-

tion. Each flake is a multilayered
interference filter. Here the number

20 changes from black to green as

the viewing angle changes.

Hold the flashlight alongside your cheek and illuminate the

mirror so that you can see the brightest reflection of the bulb in

it. The fringes will then be clearly seen as a number of alter-

nately bright and dark bands.

In Fig. 9.52 two coherent rays leaving the point source are

shown arriving at point P after traveling different routes. One
ray is reflected from the mirror and then scattered by a single
transparent talcum grain toward P. The second ray is first scat-

tered downward by the grain, after which it crosses the mirror

\ /I’:>int

. x\souroe

 

. Silvered ’
surface

Figure 9.52 interference of scattered light.
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‘S Quasimonochromatic
point source

  
_ _ ‘Camera Beam‘.

' -‘lens’ L-2 splitter.

Image

plane

and is reflected back toward P. The resulting optical path

length difference determines the interference at P. At normal
incidence, the pattern is a series of concentric rings of radius*

~ nm}ta2b2 1/2.
p (12 _ bl)

Now consider a related device, which_is very useful in test-

ing optical systems. Known as a scatter plate, it generally
consists of a slightly rough-surfaced, transparent sheet. In an
arrangement such as the one shown in Fig. 9.53, it serves as an
amplitude—sp1itting element. In this application it must have a ‘
center of symmetry; that is, each scattering site is required to
have a duplicate, symmetrically located about a central point.

In the system under consideration, a point source of quasi-

monochromatic light S is imaged, by means of lens "L1 on the
surface, at pointA of the mirror being tested. A portion of the
light coming from the source is scattered by the scatter plate

and thereafter illuminates the entire surface of the mirror. The
mirror, in turn, reflects light back to the scatter plate. This

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu uunn

- *For more of the details, see A. J. dewittef “Interference in Scattered
Light,” Am. J. Phys. 35, 301 (1967).

 
Figure 9.53 ' Scatter plate setup. Adapted

Test mirror from R. M. Scott, Appl. Opt. 8, 531 (1969).

wave, as well as thelight forming the image of. the pinhole at

point A, passes throughvthe scatter plate again and finally
reaches the image p1ane.(either on a screen or in a camera).

Fringes are formed on this latter plane. The interference
process, which is manifest in the formation of these fringes,
occurs because each point in the final image plane is illumi-

nated by light arriving via two dissimilar routes, one originat— *
ing at A and the other at some :point B, which reflects scattered
light. Indeed, as strange as they may look at first sight, well-
defined fringes do result (see photo). ‘

Examining the passage of light through the system in a bit .
more detail, consider the light initially incident on the scatter

plate and assume that the wave is" planar, as shown in Fig.
9.54. After it pa_s_>ses through the scatter plate, the incident
plane_wavefront E,- will be distorted into atransmitted wave-
front ET. We envision this wave, in turn, split into a series of

Fourier components consisting of plane waves, that is,

iiT=-Iii, +i'3,+ (9.107)

Two of these constituents are shown in Fig. 9.54a. Now sup-

pose)we attach a specific meaning to these components; name-
ly, E1 is taken tp represent the light traveling to the point A in
Fig’. 9.53, and E2" that traveling toward B. The analysis of the



Fringes in scattered light. ,

stages that follow could be continued in the same way. Let the

portion of the wavefront returningfrom Ache represented by
the wavefront EA in Fig, 9.54b. The scatter plate wi1l_'t’.rans-
form it into an irregular transmitted wave, denoted by EAT.in
the same figure. This again corresponds to a complicated con-

figuration, but it can be split into Fourier components consist-

ing; of plane waves, asiii the above case. In Fig, 9,.54b,. two of
these component wavefrontsv‘ have been drawn, one traveling
to. the left, and the other inclined at. an angle 0. The latter
wavefront, which is denoted by EM, is focused by lens L2 _at

the point P on the_screen (Fig. 9.53). . T I I

 
Figure 9.54 Wavefronts passing through the scatter plate.»
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The wavefront returning from B to the scatter plate is
denoted by E3 in Fig. 9.54c. Upop traversing the scatter plate,
it will be reshaped into the wave EBT. O_r_1)e of the Fourier com-
ponents of this wavefront, denoted by E39, is inclined at the

angle 9 and will therefore be focused at the same point P on

the-Vscreenzi , _.
Someiof the waves arriving at P will be coherent in the

sense that ‘interference occurs. To obtain the resultant irradi-

ance Ip,_’first add the amplitudes of all the waves arriving at P,
that is, Ep, and then square and time average Ep.

In the discussion above, only two point sources at the mir-

ror were considered. Actually, of course, the whole surface of

the mirror is illuminated by the ongoing light, and every point

of it willserve as a secondary source of returning waves. All

the waves will be deformed by the scatter plate, and these, in
turn, can be split into _pIane—wave components. In each series
of component waves, there will be one inclined at an angle 9,
and all of these will be focusedeat the same point P on the

‘ — screen. The resultant amplitude will then have the-form

‘E15 = EAo'+~-E39 +"'

i The light reaching the image plane .can.be.Venvisioned as
made up in part of two optical fields of special interest. One of

these results from_light_ that was scattered only .on its. passage
through the plate toward the mirror, and the other results from

light that was scattered only on the way toward the image

plane. The former broadly illuminates the test Irlirror. and ulti-
mately resultsin an image of it on thescreen. The latter, which
was initially focused to the region about A, scatters-.a diffuse
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blur across the screen. The pointA is chosen so that the small
area in the vicinity of it is free of aberrations. In that case, the
wave reflected from it serves as a reference with which to

compare the wavefront corresponding to the entire mirror sur-

face. The interference pattern willshow, as a series of contour

fringes, any deviations from perfection in the mirror surfacef“

9.8.2’ The Twyman-Green interferometer

The Twyman-Green is essentially a variation of the Michel-

son Interferometer. It’s an instrument of great importance in

the domain of modern optical testing. Among its distinguish-

ing physical characteristics (illustrated in Fig. 9.55) are a qua-
simonochromatic point source and lens L1, to provide a

source of incoming plane waves, and a lens L2, which permits
all the light from the aperture to enter the eye so that the entire

field can be seen, that is, any portion of M1 and M2. A contin-

uous laser serves as a superior source in that it provides the

u‘ uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu --

*For further discussion of the scatter plate, the reader might consult the

rather succinct papers by J. M. Burch, Nature 171, 889 (1953), and J.
Opt. Soc. Am. 52, 600 (1962). Reference should be made to J. Strong,

Concepts of Classical Optics, mp. 383. Also see R. M. Scott, “Scatter
Plate lnterferometry,” Appl. Opt. 8, 531 (1969), and J. B. Houston, Jr.,
“How to Make and Use a Scatterplate interferometer,” Optical Spectra

(June 1970), p. 32.

Figure 9.55 The Twyman-Green
interferometer. (Photo by E.H.)

convenience of long path length differences and, in addition,

short photographic exposure times. These tend to minimize
unwanted vibration effects. Laser versions of the

Twyman~Gr'een are among the most" effective testing tools in

Optics. As shown in the figure, the device is set up to examine

a lens.‘ The spherical mirror M2 has its center of curvature
coincident with the focal point of the lens. If the lens being

tested is free of aberrations, the emerging reflected light

returningto the beamsplitter will again be a plane wave. If,

however, astigmatism, coma, or spherical aberration deforms

the wavefront, a fringe pattern clearly manifesting these dis-

tortions can be seen and photographed. When M2 is replaced

by a plane mirror, a number of other elements (prisms, optical

flats, etc.) can be tested equally well. The optician interpret-

ing the fringe pattern can then mark the surface for further

polishing to correct high or low spots. In the fabrication of the

finest optical systems, telescopes, high—altitude cameras, and

so forth, the interferograms may even be scanned electroni-
cally, and the resulting data analyzed by computer. Com-

~. puter-controlled plotters can then automatically produce sur-

face contour maps or perspective “three—dimensional” draw-

ings of the distorted wavefront generated by the element

being tested. These procedures can be used throughout the

fabrication process to ensure the highest quality optical

instruments. Complex systems with wavefront aberrations in

the fractional—wavelength range are the result of what might

be called the new technology.



9.8.3 The Rotating Sagnac Interferometer

The Sagnac Interferometer is widely used to measure rotation-

al speed. In particular, the ring laser, which is essentially a

Sagnac Interferometer containing a laser in one or more of its

arms, was designed specifically for that purpose. The first ring

laser gyroscope was introduced in 1963, and work is continu-

ing on various devices of this sort (see photo). The initial .

experiments that gave impetus to these efforts were performed

by Sagnac in 1911. At that time he rotated the entire interfer-

ometer, mirrors, source, and detector, about a perpendicular

axis passing through its center (Fig. 9.56). Recall, from Sec-

tion 9.4.2, that two overlapping beams traverse the interfer-

ometer, one clockwise, the other counterclockwise. The

rotation effectively shortens the path taken by one beam in

comparison to that of the other. In the interferometer, the

result is a fringe shift proportional to the angular speed of rota-

‘ tion to. In the ring laser, it is a frequency difference between

the two beams that is proportional to co. .

Consider the arrangement depicted in Fig. 9.56. The corner

A (and everyother corner) moves with a linear speed 0 = Ra),

where R is half the diagonal of the square. Using classical rea-

soning, we find that the time of travel of light along AB is

,
AB c-'0/\/$2-

 
An early ring laser gyro. (Photo courtesy Autonetics, avDivision of Boeing North
America, Inc.)
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Figure-9.56 The rotating Sagnac Interferometer. Originally it was
1 m X 1 m with to = 120 rev/min.

or ‘ t — ZR ' ‘ '
— AB Vic -* wR '

The time of travel of the light from A-to D is T

A” \/Ea + arr -_

The total time for counterclockwise and clockwise travel is
given respectively by 9 '

,0 = -__.__g:___
\/_2—c + aiR

and t9 = —-—83—
\/EC - coR

For QR << c the difference between thesetwo intervals is

At = :9 — t®

or, using the Binomial Series, ,

_ snzw
Ar

C2

This can be expressed in terms of area A = 2R2 of the square
' formed by the beams of light as

'4/la)
A = ———-

t C2
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Let the period of the monochromatic light used be 7 = A/c;
then the fractional displacement of the fringes, given by

AN = is

a result that has been verified experimentally. In particular,

Michelson and Gale* used this method to determine the angu-

lar velocity of the Earth. "

The preceding classical treatment is obviously lacking,

inasmuch',_as_ it assumes speeds inexcess of c, anassumption
that is contrary to the dictates of Special Relativity. Further-

more, it would appear that since the system is accelerating,

General Relativity would prevail. In fact, these formalisms

yield the same results.

9.8.4 Ra_dar_lnterferometry 9

In February 2000 the Space Shuttle Endeavour completed a

mission to create a “three-dimensional” map of the Earth cov-

ering ll9 million square kilometers. The feat was accom-

plished using syntheticaperture radar (SAR). In general, the

larger the aperture of a viewing system, the greater the resolu-

tion (p. 471) and the more details one can see. SAR is a tech-
nique for using the motion of anairplane or spacecraft along
with signal processing ,methodsto simulate a large antenna.

Using a phased array antenna (p. 98), the Shuttle swept a
radar beam back and forth perpendicular to" its line" of motion
painting a 225-km wide swath over the Earth’s surface (Fig;
9.57). Orbiting upside-down, Endeavour extended a 60-m

mast with two receiving antennas at its end (Fig. 9.58). The

SAR then sent out a stream of about 1700 high-powered elec-

tromagnetic pulses per second from its main antenna in the

cargo bay, which was both a transmitter and receiver. Actual-
ly, the mission utilized two different radars: a C-bandisystem

operating at a wavelength of 5.6 cm that provided most” of the

coverage, and a higher resolution X-band 3-cm system that

gave a detailed view of a narrow 50-km swath (Fig. 9.57). A

radar image is made up~of countless tiny uniform dots known

as pixels (p. 473). The pixel is the smallest bit of information

in the picture-—nothing can be seen that’s smaller than a single

pixel. For the main C-band system, each pixel is about 12.5 m

in diameter, and the smallest object that can be resolved is
about 30 m across.

*Michelson and Gale, Astrophys. J. 61, 140 (1925).

  
High resolution
X-band swath

Figure 9.57 As the Shuttle orbited, its two radar systems swept out .a
swath across the surface of the Earth. ‘

. Ordinarily, a radar system sends out a pulse (with a

pulsewidth of 10-50 us), and then, picking up the backseat-

tered wave, it records both the amplitude and round~trip time.

That gives a rough idea of the size and location of the target.

However, in order to gather data about the elevation of surface

features on the Earth, the Shuttle Radar Topography Mission

(SRTM) utilized interferometry--in a way that suggests

  

 
 

C-band.
outboard
antenna

main antenna .

main antenna

Figure 9.58 The Shuttle Endeavour carried themain C_-band transmit-

ter-receiver antenna in its cargo bay and a second receiver at the end of

a 60-m long mast. *



Figure 9.59 A radar pulse emitted from the Shuttle strikes the ground

and reflects back. The echo is picked up by both the outboard and
inboard antennas. '

Young’s Experiment run backwards (p. 393). In any event,
similar interferometric techniques are of growing importance

in radio and optical astronomy.

The SAR is a coherent imaging system, and it retains infor-

mation about both the amplitude and phase of the radar echo

during data acquisitionand processing. A signal is emitted
from the Shuttle (much like the flash from an ordinary camera

but spectrally more controlled); it strikes the ground (Fig.
9.59) and returns to the two antennas, one in the cargo bay

(P1), the other on the boom (P2 ). These are separated by a 60-
in baseline a. The two radar echoes. are converted into digital

data which are recorded for later processing and display as an

~ image. It’s left foreProb1em 48 (Fig. 9.60) to show that the
topography in the form of the function z(x) can be expressed in

terms of the altitude h, the look angle of the radar 0, and mea-

sured phase angle difference, or interferometric phase cf)
between the two signals; ' ’

owmtf
““=h“5ZEEF757GE55 cos 6 (9.108)

‘ back; to the Shuttle. Points P, and P2 correspond to the two_receivers,
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0

Figure 9.60 The basic geometry of the SAR interferometer. The
source point 3 is the spot on the ground that reflects the radar pulse

one on the mast and the other in the cargo bay ofthe Shbttie... ~ 3 — -

Synthetic aperture radar was used to produce this interferogram arising
from the June 1992 earthquake in Landers, California, Images taken by
the ERS-1 satellite before and after the quake were combined to gener-
ate this fringe pattern which reveals the shift in the ground that took
place.The picture covers an area of about 125 by 175 km. (Photo courtesy
Dldier Massonnet, Centre National d'Etudes Spatiales, France).
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An interferometer of this sort measures gb, the difference in

phase between the signals arriving at the ends of its baseline.

It does this by analytically interfering those signals using a

process called cross correlation (p. 545). When the two sepa-

rate data sets, one from each antenna, are combined on the

ground the first thing produced is an interferogram or fringe

map (see photo) which encodes the topography. The interfer-

ograrn corresponds to a collection of “fringes of equal height,”

or if you will, contours of equal height. But the information

needs further refining; the elevations of the contours are

unknown. Based on accurate knowledge of the mast length

and orientation, the height of each contour, z(x), is determined,

essentially via triangulation. Data collected over the oceans

provides a sea—level reference for all elevations. After a con-

siderable amount of computation, pixel by pixel, a 3-D topo-

graphical map is finally created (see photo).

 
These are radar images

_ of San Andreas, Califor-

nia taken by the Space
Shuttle Endeavour in

2000. The picture on
the left (which looks a lot

better in color) shows an

interferogram overlaying

the terrain; the picture

on the right is the corre-

sponding "three-dlmen-

sional” map that results

from the analysis of all
of the data.

 

 

Complete solutions to all problems—except those with an asterisk-
can be found in the back of the book.

9.1 Returning to Section 9.1, let

E10’, 2:) = E1(F)e_‘“’

and A Ezra 2) =1":z(?)e""'”’

where the wavefront shapes are not explicitly specified, and E1 and

E2 are complex vectors depending on space and initial phase angle.

Show that the interference term is then given by

112 = tr E1-E: +E";- in (9.109)

You will have to evaluate terms of the form

t+T V

(E1. E2e*2iwt )T = (E1 . e—2iwt’dt/
for T >> 7 (take another look at Problem 3.10). Show that Eq.

(9.109) leads to Eq. (9.11) for plane waves.

9.2, In Section 9.1 we considered the spatial distribution of energy
for two point sources. We mentioned that for the case in which the

separation a >> A, 112 spatially averages to zero. Why is this true?

What happens when a is much less than )t?

93* Return to Fig. 2.22 and prove that if two electromagnetic plane

waves making an angle (9 have the same amplitude, E9, the resulting

interference pattern on the yx-plane is a cosine-squared irradiance

distribution given by '

I(y) = 4E3 cosz y sin 6)‘
Locate the zeros of irradiance. What is the value of the fringe separa-

tion? What happens to the separation as 9 increases? Compare your

analysis with that leading to Eq. (9.17). [Hintz Begin with the wave

expressions given in Section 2.7, which have the proper phases

already worked out, and write them as exponentials.]

9.4 Will we get an interference pattern in Young’s Experiment (Fig.

9.8) if we replace the source slit S by a single long-filament light-

bulb? What would occur if we replaced the slits S1 and S; by these

same bulbs?

9.5”‘ Figure P.9.5 shows an output pattern that was measured by_ a

tiny microphone when two small piezo-loudspeakers separated by 15
cm were pointed toward the microphone at a distance of 1.5 m away.

Given that the speed of sound at 20°C is 343 m/s, determine the

approximate frequency at which the speakers were driven. Discuss

the nature of the pattern and explain why it has a central minimum.
‘a



Figure P.9.5 (Data courtesy'of- CENCO.)

 
 

 
A200 ,

{H1 11 ,ki’!,.ll _li:. 1--.: . ...J ‘ 0 l i. -.. _.,l-53 fr“ 4 .'r"‘Hfi~ lrT- ‘_ 2
M .‘ I in ‘ . ..,.l......L.%.E. ,1, WVJfl_i>‘l VI T,;_,%,_,,g..!,.4. in
'§ 1.40 N-‘ " i-J,.:.‘.1§.u. +1-i-11-rt /P»-L. Tiuli 4»; M-‘"i~+..\/ 1; l_ -= E 1 ti 4' all," it 1 g

_‘§1.2o ‘ -'- - ::1;*«;. " 1
81,00 : _ .3_z_i..'_ 5.1+. ii Mi ,i.i:.t..3...i.. 1.. ,. =

..'<§ i~ "; 1:: 1:. 1’2 0,30 1 .'Lt:., ..3.l;.‘_
a t 1" ~' =_ -‘ .121‘; 1 i. .‘

‘ 1 ; ‘I 1 - g ,i 1 I i L i 3 . l

€0.60 '§E_«.fi.i; it E 44,-! Er-r 3 +4.1 ,7‘?
3 Q40‘ ,1» }.-L.l,.t.ir ii.‘ ... 1-,..,:..i .t..,..,J5: . ‘lat. at i in ' I
E ()_20 -- ‘-17l;—‘E: l,.i:,.
80.00 1 -!"‘iiti%‘«:2= i‘ 1 ’ ‘I

20 30 50 70 80 90

  
Position of Microphone (cm, zero-point arbitrary)

9.6”‘ Two 1.0-MHz radio antennas emitting in-phase are separated

by 600 m along a nortl'1~south line. A radio receiver placed 2.0 km

east-is equidistant from both transmitting antennas and picks up a

fairly strong signal. How far north should that receiver be moved if it

is again to detect a signal nearly as strong?

9.7 An expanded beam of red light from a He—Ne laser (A0 % _o32.8
nm) is incident on a screen containing two very narrow horizontal
slits separated by 0.200 mm. A fringe pattern appears on a white -

screen held 1.00 m away.

(a) How far (in radians and millimeters) above and below the central
axis are the first zeros of irradiance?

(b) How far (in mm) from the axis is the fifth bright band?

(c) Compare these two results.

9.8* Red plane [waves from a rubylaser (A0 = 694.3 nm) in air
impinge on two parallel slits in an opaque screen. A fringe pattern

forms on a distant wall, and we see the fourth bright band 10’ above

the central axis. Kindly calculate the separation between the slits.

9.9* A 3 X 5 card containing two pinholes, 0.08 mm in diameter
and separated center to center by 0.10 mm, is illuminated by parallel

rays of blue light from an argon ion laser (A0 = 487.99 nm). If the "

fringes on an observing screen are to be 10 mm apart, how far away
should the screen be?

9.10* White light falling on two long narrow slits emerges and is
observed on a distant screen. If red light (A0 = 780 nm) in the first- ,

order fringe -overlaps violet inthe second-order fringe, what is the lat-
ter’s wavelength? '
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9.11 * Considering the double-slit experiment, derive an equation

for the distance y,,,: from the central axis to the m’th irradiance mini-

mum, such that the first dark bands on either side of the central max-

imum correspond to m’ = i 1. Identify and justify all your

approximations.

9.12* 0 With regard to Young’s Experiment, derive a general ex-
pression for the shift in the vertical position of the mth maximum as a

result of placing a thin parallel sheet of glass of index ‘n and thickness

d directly over one of the slits. Identify your assumptions.

9.13* ‘Plane waves of monochromatic light impinge at an angle 0,-

on a screen containing two narrow slits separated by a distance a.

Derive an equation _for the angle measured from the central axis
which locates the mth maximum. ‘

9.14* Sunlight incident on a screen containing two long narrow slits

0.20 mm apart casts a pattern on a white sheet of paper 2.0 m beyond.

What is the distance separating the violet (A0 = 400 nm) in the first-

order band from the red (A0 = 600 nm) in the second-order band?

9.15 To examine the conditions under which the approximations of

Eq. (923) are valid:

(a) Apply the law of cosines to triangle S1S2P in Fig. 9.8c to get

. 21/2

V1 7'1 7'1-9-~[1~ 2(1) sin 9+ (31) j
(b) Expand this in a Maclaurin series yielding

. . a2
r2= r1-asin6+-—cos26+ - --

2Y1

(c) In light of Eq. (9.17), show that if (r1 — r2) is to equal a sin 9, it is
required that r1 >> a2/A.

9.16 A stream of electrons, each having an energy of 0.5 eV, im- '

pinges on a pair of extremely thin slits separated by 104 mm. What

is the distance between adjacent minima on a screen'20 In behind the

's1its?(me = 9.108 x 10*“ kg, 1 eV = 1.602 x 10-19 J.)

9.17* It is our intention to produce interference fringes by illumi-

nating some sort of arrangement (Young’s Experiment, a thin film,

the Michelson Interferometer, etc.) with light at a mean wavelength

of 500 nm, having a-linewidth of 2.5 X 10-3 nm. At approximately

what optical path length difference can you expect the fringes to van-

ish? [Hint: Think about the coherence length and revisit Problem

7.39.]

9.18* Imagine that you have an opaque screen with three horizontal

very narrow parallel slits in it. The second slit is a center-to-center
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distance a beneath the -first; and the third i-s a distance Sa/-2 beneath

the first. (a) Write "a complex exponential expression in terms. of '5 for

the amplitude. of the electric field at some point P at an elevation 6 on
a distant screen where 6 = ka sin 0. Prove that

1(0) 21(0)
p 1(e)=——+3 -3-(cos 6 + cos 38/2 + cos 58/2)

Verify that at e = 0,1('a)«= 1(0):

A 9.19* 2 Show that a for the Fresnel biprism of Fig; is given by in
= 2d(n - l)cx.

9.20* In the Fresneldouble mirror s = 2 m, A0 = 589 nm, andthe

separation of the fringes was found to be" 0.5 mm. What is the‘ angle

of inclination of themirrors, if the perpendicular distance of the actu-

al point source to the intersection of the two mirrors is 1 m? ”

. 9.21*‘ The Fresnel biprism is used to obtain fringes from a point
source that is placed 2 m from the screen, and the prism is midway

between the source and the screen. Let the wavelength of the light be

A0 = 500 nm and the index of refraction of the glass be-n = 1.5.

What is the prism angle, if the separation of the fringes is 0.5 mm?

9.22 What is the general expression for the separation of the fringes
of a Fresnel biprism of index n immersed in a medium having an
index of refraction n’? ' ' ‘ ' ' ' H

9.23 Using Lloyd’s mirror, X-ray fringes were observed, the spac-

ing of which was found to be 0.002 5 cm. The _wav_e_1ength used was
8.33 A. If the source-screen distance was 3 in, how high above the

mirror plane was the point source of X—ray_s placed? '

9.24 Imagine that we have an antenna at the edge of a lake picking

up a signal from a distant radio star (Fig. P.9.24), which is just com-

ing up above the horizon. Write expressions for 8 and for the angular

position of the star when the antenna detects its first maximum.

Figure P.9.24

2
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9.25* If the plate in Fig. 9.17 is glass in air, ‘show that the ampli-

tudes of E1,,,E2r. and E3, are respectively 0.2Eo,-, 0.1_92_E0,-, and

0.008Eo,~, where E0, is the incident amplitude. Make use of the Fres-

nel coefficients at normal incidence, assuming no absorption. You

might repeat the calculation for a water film in air.

9.26 A soap film surrounded by air has an index of refraction of

1.34. If a region of the film appears bright red (A0 = 633 nm). in nor-
mally reflected light, what is its minimum thickness there?

9.27* A thin film of ethyl alcohol (n: 1.36) spread on a flat glass

plate and illuminated with white light shows a color pattern in reflec-
tion. If a region of the film reflects only green light (500 nm) strong-
ly, how thiék is it? I ‘ 1 V

9.28* ‘A soap film bf index’ 1.34 has a region where it is";550.0,nm —
thick. Determine the vacuum wavelengths of the radiation that is not
reflected when the film is illuminated from above with sunlight.

‘ 9.29 Consider the circular pattern of Haidinger’s~fringes resulting
from a film with a thickness of 2 mm and an index of refraction of

1.5. For monochromatic illumination of A0 = 600 nm, find the value

of m for the central fringe (9, = 0). Will it be bright or dark?

9.309 Illuminate .a microscope slide (or even better, a thin co.Ver—glass

slide). Colored fringes can easily be seen .with an ordinary fluorescent

lamp (although some of the newer versions don’t work well at.all)

serving as a broad source or a mercury street light as a point source.

Describe the fringes. Now rotate the glass. Does the pattern change?

Duplicate the ‘conditions shown in 1'=igs;‘9. l8'and 9.19. Try it again
with a sheet of plasticfood wrap stretched across the top of a cup.

9.31 Figure P.9.31 illustrates a setup used for testing lenses. Show
that ' - '. . . ‘

d ’‘ x2(R2 ‘ R1)/2R1R2

when d1 and d2 are ‘negligible in comparison with 2R1 and 2R2,

respectively. (Recall the theorem from plane geometry that relates the

products of thesegments of intersecting chords.) Prove that the radius

of the mth dark fringe is then

x... = rR1R2mA,«/(R2 — Roi‘/2

How does this relate to Eq. (9.43)?

9.32* Newton rings are observed on a film with quasimonochro-

matic light that has a wavelength of 500 run. If the 20th bright ring

has-a radius of 1 cm,.what is the radius of curvature of the lens form-

ing one part of the interfering system?

9.33 Fringes are observed when a.parallel.beam.of light of wave-

length 500 nm is incident perpendicularly onto a wedge-shaped film

with an index of refraction of 1.5. What is the angleof the wedge if

the fringe separation is cm?



Figure P.'9.31"

9.34* Suppose a wedge-shaped air film is made between two sheets

of glass, with a piece of paper 7.618 X 105 in thick used as the spac-

er at their very ends. If light of wavelength 500 um comes down from

directly above, determine the number of bright fringes that will be

seen across the wedge.

9.35 A Michelson Interferometer is illuminated with monochromat-

ic light. One of its mirrors is then moved 2.53 X 10‘5 m, and it is

observed that 92 fringe—pairs, bright and dark, pass by in the process.

Determine the wavelength of the incident beam.

936* One of the mirrors of a Michelson Interferometer is moved,

and 1000 fringe—pairs shift past the hairline in a viewing telescope

during the process. If the device is illuminated with 500-nm light,
how far was the mirror moved? 4 9

9.37* Suppose we place a chamber 10.0 cm long with flat parallel

windows in one arm of a Michelson Interferometer that is being illu-

minated by 600-nm light. If the refractive index of air is 1.000 29 and

-all the air is pumped out of the cell, how many fringe-pairs will shift

by in the process?

938* A form of the Jamin Interferometer is illustrated in Fig.

P.9.38._How does it work? To what use might it be put?

9.39 Starting with Eq. (9.53) for the transmitted wave, compute the

flux density, that is, Eq. (9.54).

9.40 Given that the mirrors of a Fabry—Perot Interferometer have an

I Figure P.9.36
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amplitude reflection coefficient of r = 0.894 4, find

. (a) the coefficient of finesse,

(b) the half—width,

(c) the finesse, and,

(d) the contrastfactor defined by

_ (It/Ii)ma_x
C .<I./1.1)....

9.41 To fill in some of the details in the derivation of the smallest

phase increment separating two resolvable Fabry—Perot fringes, that
IS,

(A5) —-» 4.2/\/F‘ (9.731

satisfy yourself that

[~9¢(9)]s = 6a:A8/2 = I-5Z¢(9)]5=As/2

Show that Eq. (9.72) can be rewritten as

t2[-9¢(0)]6=A5/2 = 0-81{1 + [-5?¢(9)]s=A5}

When F is large 7/ is small, and sin (A6) = A6. Prove that Eq. (9.73)
then follows.

9.42 Consider the interference pattern of the Michelson Interferom-

eter as arising from two beams of equal flux density. Using Eq.
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(9.17), compute the half-width. What is the separation, in 8, between

adjacent maxima? What then is the finesse?

9.43* Satisfy yourselfof the fact that a film of thickness )tf/4 and

index n1 will always reduce the reflectance of the substrate on which

it is deposited, as long‘ as no > n1 > no. Consider the simplest case of

normal incidence and no = l. Show that this is equivalent to saying

that the waves reflected back from the two interfaces cancel one

another.

9.44 .Verify that the reflectance of a substrate can be increased by

coating it with a /\f/4, high-index layer, that is, n; > no. Show that the
reflected waves interfere constructively. The quarter-wave stack

g(HL)”‘Ha can be thought of as .a series of such structures.

9.45 Determine the refractive index and thickness of a film to be

deposited on a glass surface (ng =' 1.54) such that no normally inci-
dent light of wavelength 540 nm is reflected.

9.46 A glass microscope lens having an index of 1.55 is to be coat-

ed with a magnesium fluoride film to increase the transmission of

‘normally incident yellow light (Ito = 550 nm). What minimum thick

ness should be deposited on the lens?

9.47* A glass camera lens with an index of l.55 is to be coated with

a cryolite film (n ~ 1.30) to decrease the reflection of normally inci-

dent green light (/\o = 500 nm). What thickness should be deposited
on the lens?

9.48* Using Fig. 9.60, which depicts the geometry of the Shuttle

radar interferometer, show that

z(x) = h ~ rl cos 6

Then_use the Law of Cosines to establish that Eq. (9.'lO8) is correct.


