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A general QSPR model (R2 ) 0.940,s ) 0.018) was developed for the prediction of the refractive index for
a diverse set of amorphous homopolymers with the CODESSA program. The five descriptors, involved in
the model, are calculated from the structure of the repeating unit of the polymer. The average prediction
error by this model is 0.9%.

INTRODUCTION

The refractive indexn is a basic optical property of
polymers that is directly related to other optical, electrical,
and magnetic properties. The refractive index is also widely
used in material science. The specific refractive index
increment (dn/dc) is an important parameter in light scattering
measurements of dilute polymer solutions, which can be used
for the determination of molecular weight, size, and shape.1

Importantly, the refractive index can indicate the potential
of a polymer for a specific purpose. A satisfactory quantita-
tive structure-property relationship (QSPR) that would allow
quantitative prediction of the refractive index of as yet
unsynthesized polymers would clearly be of significant
utility. In principle, combining the QSPR method with
pattern recognition techniques should make possible the
theoretical prediction of structures with desired property
values.

Theoretical methods for calculating the refractive indices
of polymers generally utilize equations formulated by (i)
Lorentz and Lorentz (eq 1) and (ii) Gladstone and Dale (eq
2). Both approaches require the availability (or theoretical
estimation) of molar refraction and molecular volume data.
A good summary of early attempts to estimate the molar
refraction of polymers using group contributions was pro-
vided by Krevelen.1 In a recent review, Askadskii2 proposed
several semiempirical equations for the calculation of various
physical properties of polymers and copolymers (with
accuracy usually within 3-5%). The calculation of refrac-
tive index is based on eq 1, where the molecular refraction
(RLL) is calculated as a sum of corresponding atom and bond
contributions, and the volume (V) is estimated as a van der
Waals volume of the compound divided by the average
coefficient of molecular packing.

The main advantage of using the group contributions
method is its simplicity. Prediction with reasonable accuracy

can be easily performed provided all the necessary incre-
ments are known from the experimental data for every
structural element. However, interactions between functional
groups can introduce significant errors in predicted refractive
index values. Agrawal and Jenekhe3 demonstrated that the
refractive index ofπ-conjugated polymers predicted by
existing group contribution methods can have deviations from
experimental values as high as 22%. The source of these
discrepancies is believed to be large optical dispersion and
π-electron delocalization effects in conjugated polymers. To
overcome this problem, Yang and Jenekhe4 developed new
Lorentz and Lorentz molar refraction group contributions for
24 functional groups commonly found in conjugated poly-
mers. They successfully used these newRLL data to calculate
the refractive indices of 33 conjugated polymers (with an
average error of 0.9%).4

Some of the shortcomings and limitations of group
contribution methods can be avoided by using the theoretical
QSPR approach. The quantum-chemical descriptors used
in this approach encode information about the electronic
structure of the molecule and thus implicitly account for the
cooperative effects between functional groups, charge re-
distribution, and possible hydrogen bonding in the polymer.
The only previously published QSPR relationship for the
prediction of refractive index was developed by Bicerano
(R2 ) 0.955) for a set of 183 polymers, with 10 descriptors
involved.5 These descriptors included three different topo-
logical indices, the total number of rotational degrees of
freedom (both of the polymer backbone and the side groups),
and several constitutional descriptors such as the number of
fluorine atoms, the number of chlorine atoms bonded to an
aromatic ring, the number of sulfur atoms, and the number
of hydrogen bonding moieties, etc. Alternative topological
descriptors for polymers have been developed in the frame-
work of the topological extrapolation method (TEM) by
Mekenyanet al.6 and used to calculate the refractive index
within a homologous series of polymers.

The QSPR method has already been applied in the
framework of the CODESSA program7 to predict success-
fully various physical properties of low molecular weight
compounds; early examples were summarized in our review,8

for later examples see refs 9-11. This approach was
extended to calculate appropriate descriptors for the repeating
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units of polymers which were subsequently used to develop
correlations for the glass transition temperatures of poly-
mers.12,13 For a set of 22 relatively low molecular weight
fluorinated polymers and copolymers, the glass transition
temperatures were correlated with four descriptors (R2 )
0.928).12 Glass transition temperatures for a structurally
diverse data set of 88 high molecular weight homopolymers
were described by a five descriptors model (R2 ) 0.946).13

The refractive indices of a diverse set of 125 common
low molecular weight organic compounds were successfully
correlated by the CODESSA approach in a general QSPR
relationship (R2 ) 0.945).14 Five descriptors were involved
in this model: HOMO-LUMO energy gap, quantum-
chemically (AM1 method) calculated lowest (absolute value)
electron-nucleus attraction energy for a carbon atom, total
charge-weighted partial positively charged surface area,
surface area of hydrogen donor atoms, and gravitation index
(calculated over all bonds). In the present study, a new
QSPR relationship is developed for the refractive indices of
a diverse set of polymers. The descriptors selected for this
polymer data set are then compared with the descriptors
selected in our previous study14 for correlation of the
refractive indices of low molecular weight compounds.

METHODOLOGY

The refractive index data for 95 essentially amorphous
polymers, measured at room temperature (298 K), were taken
from a published compilation (Table 1).5 The polymers

chosen for the data set cover a wide range of refractive index
values and represent a diverse set of chemical structures.
The majority of the polymers fall into the classes of
homochain polymers (only carbon atoms in the main chain)
and polyoxides, but several polyamides and polycarbonates
were also included. The data set contained large subsets of
polyethylenes, polyacrylates, polymethacrylates, polysty-
renes, polyethers, and polyoxides. The entire set was
characterized by a high degree of structural variety; the
functionalities represented in the side chains include halides,
cyanides, carboxylates, acetates, amides, ethers, alcohols,
hydrocarbon chains, aromatic, and nonaromatic rings.

For high molecular weight polymers it is at best extremely
difficult to calculate descriptors directly. Instead, we used
the repeating unit end-capped by hydrogen atoms as the small
representative model structure. All polymer chains were
assumed to be terminated by a hydrogen atom.

The three-dimensional structure of the repeating unit for
each polymer was drawn and preoptimized using the PC-
MODEL program.15 The preoptimized structures were then
fully optimized with the semiempirical AM1 method16 using
the MOPAC 6.0 program17 to obtain the necessary quantum-
chemical descriptors for the further calculations. More than
800 constitutional, topological,18 geometrical, and quantum
chemical19 descriptors were calculated for the repeating unit
from the results of the semiempirical calculations using the
CODESSA (COmprehensive DEscriptors for Structural and
Statistical Analysis)7 program.

Figure 1. The plot of the best five parameter correlation for refractive index.
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Table 1. Experimental and Calculated Refractive Index Values

compound representative structure exp.n calcdn ∆n

poly(ethylene) HCH2CH2H 1.4760 1.4714 0.0046
poly(acrylic acid) HCH2CH(COOH)H 1.5270 1.4927 0.0343
poly(methyl acrylate) HCH2CH(COOMe)H 1.4790 1.4852 0.0062
poly(ethyl acrylate) HCH2CH(COOEt)H 1.4685 1.4830 -0.0145
poly(vinyl alcohol) HCH2CH(OH)H 1.5000 1.4731 0.0269
poly(vinyl chloride) HCH2CH(Cl)H 1.539 1.5353 0.0037
poly(acrylonitrile) HCH2CH(CN)H 1.5200 1.5405 -0.0205
poly(vinyl acetate) HCH2CH(OCOMe)H 1.4670 1.5001 -0.0331
poly(styrene) HCH2CH(C6H5)H 1.5920 1.5988 -0.0068
poly(2-chlorostyrene) HCH2CH(C6H4Cl)H 1.6098 1.6184 -0.0086
poly(2-methylstyrene) HCH2CH(C6H4Me)H 1.5874 1.5946 -0.0072
poly(propylene) HCH2CH(Me)H 1.4735 1.4791 -0.0056
poly(ethoxyethylene) HCH2CH(OEt)H 1.4540 1.4818 -0.0278
poly(n-butyl acrylate) HCH2CH(COOC4H9)H 1.4660 1.4760 -0.0100
poly(vinyl hexyl ether) HCH2CH(OC6H13)H 1.4591 1.4670 -0.0079
poly(1,1-dimethylethylene) HCH2C(Me)2H 1.5050 1.4738 0.0312
poly(methyl methacrylate) HCH2C(Me)(COOMe)H 1.4893 1.4852 0.0041
poly(ethyl methacrylate) HCH2C(Me)(COOEt)H 1.4850 1.4811 0.0039
poly(isopropyl methacrylate) HCH2C(Me)(COOCH(Me)2)H 1.4728 1.4804 -0.0076
poly(2-chloroethyl methacrylate) HCH2C(Me)(COOC2H4Cl)H 1.5170 1.5093 0.0077
poly(phenyl methacrylate) HCH2C(Me)(COOC6H5)H 1.5706 1.5779 -0.0073
poly(tetrafluoroethylene) HCF2CF2H 1.3500 1.3379 0.0121
poly(chlorotrifluoroethylene) HCFClCF2H 1.3900 1.4249 -0.0349
poly(oxymethylene) HOCH2H 1.4800 1.4730 0.0070
poly(oxyethylene) HOCH2CH2H 1.4563 1.4752 -0.0189
poly(ε-caprolactam) H(CH2)5C(O)NHH 1.5300 1.5112 0.0188
poly(ethylene terephthalate) H(CH2)2OC(O)C6H4COOH 1.5750 1.5621 0.0129
poly(vinyl n-octyl ether) HCH2CH(OC8H17)H 1.4613 1.4598 0.0015
poly(vinyl n-decyl ether) HCH2CH(OC10H21)H 1.4628 1.4516 0.0112
poly(vinyl n-pentyl ether) HCH2CH(OC5H11)H 1.4590 1.4689 -0.0099
poly(vinyl 2-ethylhexyl ether) HCH2CH(OCH2CH (Et)(C4H9))H 1.4626 1.4630 -0.0004
poly(vinyl n-butyl ether) HCH2CH(OC4H9)H 1.4563 1.4746 -0.0183
poly(vinyl isobutyl ether) HCH2CH(OCH2CH(Me)2)H 1.4507 1.4736 -0.0229
poly(vinyl sec-butyl ether) HCH2CH(OCH(Me)(Et))H 1.4740 1.4783 -0.0043
poly(isobutyl methacrylate) HCH2C(Me)(COOCH2CH(Me)2)H 1.4770 1.4927 -0.0157
poly(n-hexyl methacrylate) HCH2C(Me)(COOC6H13)H 1.4813 1.4664 0.0149
poly(n-butyl methacrylate) HCH2C(Me)(COOC4H9)H 1.4830 1.4740 0.0090
poly(4-methyl-1-pentene) HCH2C(CH2CH(Me)2)H 1.4650 1.4724 -0.0074
poly(vinyl chloroacetate) HCH2CH(OC(O)CH2Cl)H 1.5130 1.5251 -0.0121
poly(n-propyl methacrylate) HCH2C(Me)(COOC3H7)H 1.4840 1.4757 0.0083
poly[oxy(2,6-dimethyl-1,4-phenylene)] HOC6H2(Me)2H 1.5750 1.5961 -0.0211
poly(p-xylylene) HCHdCHC6H4H 1.6690 1.6486 0.0204
poly(vinyl butyral) HCH2CH(OC(O)C3H7)H 1.4850 1.5104 -0.0254
poly(vinyl benzoate) HCH2CH(OC(O)C6H5)H 1.5775 1.5786 -0.0011
poly(N-vinylpyrrolidone) HCH2CH(NC4OH6)H 1.5300 1.5361 -0.0061
poly[oxy(methylphenylsilylene)] HOSi(Me)(C6H5)H 1.5330 1.5827 -0.0497
poly(vinylidene fluoride) HCH2CF2H 1.4200 1.4023 0.0177
poly(trifluoroethyl acrylate) HCH2CH(COOCH2CF3)H 1.4070 1.4061 0.0009
poly(2,2,2-trifluoro-1-methylethyl methacrylate) HCH2CH(Me)(COOCH(Me)CF3)H 1.4185 1.4069 0.0116
poly(trifluoroethyl methacrylate) HCH2C(Me)(COOCH2CF3)H 1.4370 1.4104 0.0266
poly(N-methyl methacrylamide) HCH2C(Me)(CONMe)H 1.5398 1.5211 0.0187
poly(N-vinylcarbazole) HCH2CH(NC12H8)H 1.6830 1.6816 0.0014
poly(R-vinylnaphthalene) HCH2CH(C10H9)H 1.6818 1.6500 0.0318
poly(styrene sulfide) HSCH2CH(C6H5)H 1.6568 1.6337 0.0231
poly(pentabromophenyl methacrylate) HCH2C(Me)(C6Br5)H 1.7100 1.7009 0.0091
poly(phenylR-bromoacrylate) HCH2C(Br)(COOC6H5)H 1.6120 1.6271 -0.0151
poly(2,6-dichlorostyrene) HCH2CH(C6H3Cl2)H 1.6248 1.6206 0.0042
poly(chloro-p-xylylene) HCHdCHC6H4ClH 1.6290 1.6208 0.0082
poly(â-naphthyl methacrylate) HCH2C(Me)(COOC10H9)H 1.6298 1.6274 0.0024
poly(sec-butylR-bromoacrylate) HCH2C(Br)(COOCH(Me)(Et))H 1.5420 1.5311 0.0109
poly(2-bromoethyl ethacrylate) HCH2C(Et)(COOC2H4Br)H 1.5426 1.5300 0.0126
poly(methylR-bromoacrylate) HCH2C(Br)(COOMe)H 1.5672 1.5400 0.0272
poly(ethylmercaptyl methacrylate) HCH2C(Me)(COSEt)H 1.5470 1.5525 -0.0055
poly(benzyl methacrylate) HCH2C(Me)(COOCH2C6H5)H 1.5679 1.5702 -0.0023
poly[oxy(methyl-n-hexylsilylene)] HOSi(Me)(C6H13)H 1.4450 1.4779 0.0249
poly(propylene oxide) HOCH(Me)CH2H 1.4570 1.4736 -0.0166
poly(3-butoxypropylene oxide) HOCH(CH2OC4H9)CH2H 1.4580 1.4548 0.0032
poly(3-hexoxypropylene oxide) HOCH(CH2OC6H13)CH2H 1.4590 1.4562 0.0028
poly(4-fluoro-2-trifluoromethylstyrene) HCH2CH(C6H3F(CF3))H 1.4600 1.4825 -0.0225
poly(propylene sulfide) HSCH(Me)CH2H 1.5960 1.5674 0.0286
poly(p-bromophenyl methacrylate) HCH2C(Me)(COOC6H4Br)H 1.5964 1.6024 -0.0060
poly(vinylidene chloride) HCH2CCl2H 1.6000 1.5688 0.0312
poly(pentachlorophenyl methacrylate) HCH2C(Me)(COOC6Cl5)H 1.6080 1.6555 -0.0475
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The QSPR models were developed using both theheuristic
and thebest multilinear regression analysismethods avail-
able in the framework of the CODESSA program.9 In both
cases, a preselection of descriptors was carried out, by
removing descriptors having an essentially constant value
for all structures. The final QSPR model was selected on
the basis of the highest correlation coefficient (R2), the lowest
standard error, and the relevance of involved descriptors to
refractive index as a physical phenomena. Another important
criteria for the model selection was the intercept value, since
the refractive index in a vacuum is unity. Assuming that
all the descriptors involved in the QSPR model have zero
values in a vacuum, the intercept of the respective (multi)-
linear relationship should be determined by the refractive
index of a vacuum. Therefore, we also used a modifiedbest
multilinear regression analysisprogram that fixed the
intercept value to one during regression analysis. The
stability of every potential model was tested against the cross-
validated correlation coefficient (RCV

2 ). The RCV
2 describes

the stability of a regression model obtained by focusing on
the sensitivity of the model to the elimination of any single
data point.

RESULTS AND DISCUSSION

The final QSPR model with a correlation coefficient of
0.940 was developed from a preselected pool of more than
655 CODESSA descriptors. The model consisted of four
quantum-chemical descriptors and one constitutional descrip-
tor as follows: (i) HOMO-LUMO energy gap, (ii) AM1
calculated heat of formation, (iii) maximum nuclear repulsion

for a C-H bond, (iv) partial negative surface area (PNSA)
calculated from Zefirov’s partial charges, and (v) the relative
number of F atoms (for details, see Table 2).

The HOMO-LUMO energy gap is defined as the energy
difference between highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO). The refractive index and the HOMO-LUMO
energy gap are both related to the polarizability of the
molecule. A small difference between HOMO and LUMO
energies usually means that the molecule is easily polarized.
This particular descriptor was also involved in our previous
QSPR treatment of low molecular organic compounds.
Herve et al. showed that an empirical relationship exists
between the refractive index and the energy gap in semi-
conductors.20

The AM1 calculated heat of formation reflects the
thermodynamic stability of the polymer. Its emergence in
the correlation equation for the refractive index is possibly
connected with the “looseness” of the electrons in the
molecule that is interacting with the electromagnetic radia-
tion. The positive value of the corresponding regression
coefficient (cf. Table 2) indicates that the compounds that
are less stable (higher heats of formation) possess higher
refractive indices. Apparently, the electronic distribution in
these molecules is, on average, more flexible to interact with
light.

The maximum nuclear repulsion for a C-H bond is the
maximal nuclear repulsion energy (Enn) between a pair of
bonded carbon and hydrogen nuclei. This nuclear repulsion
energy is calculated by eq 3, whereZ is the nuclear (core)

Table 1 (Continued)

compound representative structure exp.n calcdn ∆n

poly(N-benzyl methacrylamide) HCH2C(Me)(CONHCH2C6H5) 1.5965 1.5918 0.0047
poly(trifluorovinyl acetate) HCF2CF(OC(O)Me)H 1.3750 1.3891 -0.0141
poly(tert-butyl-methacrylate) HCH2C(Me)(COOC(Me)3)H 1.4638 1.4773 -0.0135
poly(vinyl methyl ether) HCH2CH(OMe)H 1.4670 1.4816 -0.0146
poly(3,3,5-trimethylcyclohexyl methacrylate) HCH2C(Me)(COOC9H17)H 1.4850 1.4810 0.0040
poly(3-methylcyclohexyl methacrylate) HCH2C(Me)(COOC7H13)H 1.4947 1.4804 0.0143
poly(4-methylcyclohexyl methacrylate) HCH2C(Me)(COOC7H13)H 1.4975 1.4815 0.0160
poly(ethyl R-chloroacrylate) HCH2C(Cl)(COOEt)H 1.5020 1.5184 -0.0164
poly(N-methylmethacrylamide) HCH2C(Me)(CONMe)H 1.5135 1.5119 0.0016
poly(methylR-chloroacrylate) HCH2C(Cl)(COOMe)H 1.5170 1.5222 -0.0052
poly(1,3-dichloropropyl methacrylate) HCH2C(Me)(COOC3H5Cl2)H 1.5270 1.5343 -0.0073
poly(cyclohexylR-bromoacrylate) HCH2C(Br)(COOC6H11)H 1.5420 1.5331 0.0089
poly(1-phenylethyl methacrylate) HCH2C(Me)(COOCH(C6H4)Me)H 1.5487 1.5596 -0.0109
poly(2,3-dibromopropyl methacrylate) HCH2C(Me)(COOC3H5Br2)H 1.5739 1.5618 0.0121
poly(o-chlorobenzyl methacrylate) HCH2C(Me)(COOCH2C6H4Cl)H 1.5823 1.5810 0.0013
poly(o-methoxystyrene) HCH2CH(C6H4OMe)H 1.5932 1.5821 0.0111
poly(p-methoxystyrene) HCH2CH(C6H4OMe)H 1.5967 1.5881 0.0086
poly(ethylene succinate) HCH2CH(OC(O)C2H4COOH)H 1.4744 1.4670 0.0074
poly(vinyl formate) HCH2CH(OC(O)H)H 1.4757 1.4962 -0.0205
poly(2-fluoroethyl methacrylate) HCH2C(Me)(COOC2H4F)H 1.4768 1.4582 0.0186
poly(cyclohexylR-chloroacrylate) HCH2C(Cl)(COOC6H11)H 1.5320 1.5085 0.0235
poly(2-bromoethyl methacrylate) HCH2C(Me)(COOC2H4Br)H 1.5426 1.5280 0.0146

Table 2. Best Five Parameter Correlation for Refractive Indexa

X ∆X t-test descriptor

1.000 intercept
0.118E-01 0.154E-02 -7.682 HOMO-LUMO energy gap
0.574E-03 0.362E-04 15.881 AM1 heat of formation
0.167E-01 0.513E-03 32.556 max nuclear repulsion for a C-H bond
0.477E-03 0.480E-04 9.939 partial negative surface area [Zefirov’s PC]
-0.260 0.298E-01 -8.740 relative number of F atoms

a (R2 ) 0.940,F ) 282.13, ands2 ) 0.000 313).
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charge and theR is the distance between the carbon and
hydrogen atoms. This descriptor depends on the reciprocal
of the C-H bond length and thus possibly encodes the
information about the hybridization of the carbon atoms,
since the carbon-hydrogen bond length varies depending
whether the carbon atom is in the sp3, sp2, or sp hybridization
state.

The partial negative surface area (PNSA) is an electro-
statical descriptor calculated from the Zefirov’s partial
charges and is defined as a sum over the surface areas of
the negatively charged atoms. This descriptor encodes
information about the charge distribution in the repeating
unit. The PNSA is dependent on the size of the repeating
unit; the squared correlation coefficient of 0.735 shows a
moderate intercorrelation between PNSA and the molecular
weight of repeating unit. Thus PNSA also describes mo-
lecular size related bulk properties of repeating units linked
into the polymer chain.

The relative number of F atoms is defined as a ratio
between the number of fluorine atoms and the total number
of atoms in the repeating unit. This descriptor is required
due to the extraordinary chemical nature of the fluorine.
Fluorine containing polymers have usually very low refrac-
tive index values, and the negative slope for the relative
number of fluorine atoms is in good agreement with this
trend. The use of quantum-chemical descriptors alone
appears to overestimate the refractive index for this set of
polymers.

The model as described above shows a standard error of
0.018. The average prediction error is 0.9%, and the highest
prediction error is 3.2%. The cross-validated correlation
coefficient (RCV

2 ) 0.934) shows the stability of the model.
An alternative method for cross-validation was also used to
test the stability of the model. The data set of experimental
refractive indices was divided into three subsets according
to their magnitude. When two of the subsets were combined
and the QSPR model recalculated using the same descriptors
but newly optimized regression coefficients, the predicted
refractive indices for the third subset gave a squared
correlation coefficient of 0.906. We applied similar proce-
dures to calculate the squared correlation coefficients (0.959
and 0.951) for the other two subsets. The average correlation
coefficient for the three subsets was 0.938, and the descriptor
coefficients were essentially constant (see Table 3).

A comparison between the QSPR model developed in the
present paper for polymers with the model previously found14

for low molecular weight organic compounds shows that the
HUMO-LUMO energy gap is a common descriptor for both
data sets. Several of the other descriptors describe similar

types of physicochemical interactions. Thus, both QSPR
models include electrostatic descriptors which describe the
charge distribution in the molecule or repeating unit of the
polymer (partial negative surface area for low molecular
weight organic compounds, partial positive surface area, and
hydrogen donor dependent surface area for polymers). Also,
the lowest E-N attraction for a C atom (for low molecular
weight organic compounds) and the strongest nuclear repul-
sion for a C-H bond (for polymers) are both descriptors
that can be related to the hybridization of the carbon atoms.
The differences in the descriptors selected for the low and
high molecular weight models may in part be done to the
variation of physical interactions in different media, e.g., solid
phase versus liquid phase.

Bicerano’s QSPR model consisted of 10 topological and
constitutional descriptors;5 our QSPR model is quite distinct
as it comprises four general quantum-chemical descriptors,
augmented by one constitutional descriptor. Bicerano’s
model implies that the refractive index for a vacuum should
be 1.885. The comparison of statistical parameters shows
better statistical quality in Bicerano’s model (R2 ) 0.955
versusR2 ) 0.940,s ) 0.0157 versuss ) 0.0177), but this
is not surprising in view of the fact that the number of
descriptors involved in this correlation equation is twice as
large (10 instead of five) as in our equation. We have also
attempted to correlate topological and constitutional descrip-
tors with the refractive index and verified that results
comparable with Bicerano’s QSPR model5 can be reproduced
if a sufficient number of topological and constitutional
descriptors is used. On the other hand, improvement of
results by increasing the number of descriptors in the
correlation equation should be considered with care, since
overfitting and chance correlations may in part be due to
such an approach.

CONCLUSION

It is evident that the QSPR approach can be applied to
develop successful QSPR models for polymers. The five-
parameter QSPR model, proposed in present study, can
predict the refractive index values of structurally diverse
polymers with a significant degree of confidence (the average
prediction error is 0.9%). The model employs only theoreti-
cal descriptors calculated from structure of repeating units
and is thus applicable to not yet synthesized polymers.
Therefore, this QSPR model should be useful in development
of new polymeric materials.
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Table 3. Descriptor Coefficients Calculated for Three Subsets

sets I, II sets II, III sets I, III descriptor

1.000 1.000 1.000 intercept
-0.120E-01 -0.118E-01 -0.127E-01 HOMO-LUMO energy gap
0.586E-03 0.570E-03 0.548E-03 AM1 heat of formation
0.168E-01 0.165E-01 0.170E-01 max nuclear repulsion for a C-H bond
0.458E-03 0.484E-03 0.431E-03 partial negative surface area [Zefirov’s PC]
-0.2320 -0.255 -0.2471 relative number of F atoms

Enm(CH) )
ZCZH

RCH
(3)
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	� Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights
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WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


