

US007655296B2

(12) United States Patent

Haas et al.

(54) INK-RECEPTIVE FOAM ARTICLE

- (75) Inventors: Christopher K. Haas, Cottage Grove, MN (US); Robert D. Taylor, Stacy, MN (US); William B. Black, Eagan, MN (US); James M. Jonza, Woodbury, MN (US); Terrence E. Cooprider, Woodbury, MN (US)
- (73) Assignee: **3M Innovative Properties Company**, St. Paul, MN (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 361 days.
- (21) Appl. No.: 11/460,436
- (22) Filed: Jul. 27, 2006

(65) **Prior Publication Data**

US 2006/0257594 A1 Nov. 16, 2006

Related U.S. Application Data

- (63) Continuation-in-part of application No. 10/502,229, filed as application No. PCT/US03/11255 on Apr. 10, 2003, now abandoned.
- (51) **Int. Cl.**

B32B 27/00 (2006.01)

(56) **References Cited**

U.S. PATENT DOCUMENTS

3,782,870 A 1/1974 Schippers

(10) Patent No.: US 7,655,296 B2

(45) **Date of Patent:** Feb. 2, 2010

3,855,376 A	12/1974	Ono et al.
8,884,606 A	5/1975	Schrenk
3,889,270 A	6/1975	Hoffmann et al.
1,038,350 A	7/1977	Jaques
1.107.247 A	8/1978	Dukess

(Continued)

FOREIGN PATENT DOCUMENTS

AU 488652 4/1976

(Continued)

OTHER PUBLICATIONS

H. C. Lau et al., "Melt Strength of Polypropylene: Its Relevance to Thermoforming", Polymer Engineering and Science, (Nov. 1998), pp. 1915-1923, vol. 38, No. 11.

(Continued)

Primary Examiner—Betelhem Shewareged (74) Attorney, Agent, or Firm—Kent S. Kokko

(57) **ABSTRACT**

The present invention is directed an oriented, foamed article having an ink-receptive surface, and a method of making the article. The invention provides a printable substrate comprising at least one high melt-strength, oriented polypropylene foam layer having an ink-receptive surface. The high melt-strength polypropylene having a melt strength of 25 to 60 cN at 190° C. The ink-receptive surface may comprise and oxidizing treatment, such as corona or flame-treatment of the foam surface, or may comprise an ink-receptive coating, such as a primer coating, on the foam surface.

The oriented foam article is particularly useful in the preparation of printed security documents such as currency, stock and bond certificates, birth and death certificates, land titles and abstracts and the like.

24 Claims, 2 Drawing Sheets

Find authenticated court documents without watermarks at docketalarm.com.

U.S. PATENT DOCUMENTS

4 162 242			7/1070	Wilson at al
4,102,545	A		1/19/9	whete at at.
4,206,165	А		6/1980	Dukess
4,221,624	А		9/1980	Eslinger et al.
4,310,591	А		1/1982	Lee et al.
4.379.804	А		4/1983	Eisele et al.
4 503 111	Α		3/1985	laeger et al
4 518 557	A		5/1085	Wecker
4,518,557	A		9/1985	
4,536,016	A		8/1985	Solomon et al.
4,555,437	А		11/1985	lanck
4,564,560	А		1/1986	Tani et al.
4,613,525	А	×	9/1986	Miyamoto et al 427/256
4.657.811	А		4/1987	Boyd et al.
4714716	А		12/1987	Park
4 747 983	Δ		5/1088	Colombo
4761 256	A		8/1088	Hardenbrook et al
4,701,230	A		0/1900	Daria da la
4,773,394	A		10/1988	Desjariais
4,844,979	A		//1989	Strobel et al.
4,896,901	А		1/1990	Ekelund
4,916,198	А		4/1990	Scheve et al.
4,937,134	А		6/1990	Schrenk et al.
4,940,736	Α		7/1990	Alteepping et al.
5.089.318	А		2/1992	Shetty et al.
5 1 26 1 95	Δ		6/1992	Light
5 134 108	A		7/1002	Stofko Ir at al
5 109 206	A		2/1002	Storko, JI. et al.
5,198,500	A		5/1995	Kluse
5,215,691	A		6/1993	Bland et al.
5,234,729	А		8/1993	Wheatley et al.
5,240,767	А		8/1993	Umezu et al.
5,264,275	А		11/1993	Misuda et al.
5,342,688	Α		8/1994	Kitchin et al.
5.393.099	Α		2/1995	D'Amato
5,429,856	А		7/1995	Krueger et al.
5,449,200	A		9/1995	Andric et al.
5 489 471	Δ		2/1006	Inoue et al
5 536 468	Å		7/1006	L eese
5,550,408	A		2/1007	DeNiesle In et al
5,005,930	A		2/1997	Denicola, Jr. et al.
5,618,630	A		4/1997	Benoit et al.
5,660,919	А		8/1997	Vallee et al.
5,678,863	А		10/1997	Knight et al.
5,698,333	А		12/1997	Benoit et al.
5,716,695	А		2/1998	Benoit et al.
5.721.806	Α		2/1998	Lee
5.766.398	А		6/1998	Cahill et al.
5 824 400	Δ		10/1998	Petrakis et al
5 834 008	Å		11/1008	Kitamura et al
5,034,098	<u>л</u>		2/1000	Kitamura et al.
5,871,855	A		2/1999	nendo et al.
5,879,028	A		3/1999	Benoit
5,882,774	А		3/1999	Jonza et al.
5,935,696	А		8/1999	Benoit et al.
6,001,469	А		12/1999	Verardi et al.
6,008,286	Α		12/1999	Groves
6,045,894	А		4/2000	Jonza et al.
6.062.604	Ā		5/2000	Tavlor et al.
6.074 747	A		6/2000	Scholz et al.
6 006 247	Å		8/2000	Ulleh et al
6 006 460	A A	*	8/2000	Anderson et al 427/256
0,090,409	A	·	8/2000 0/2000	Anderson et al 42//250
0,114,022	A		9/2000	warner et al.
6,164,739	Α	W.	12/2000	Schulz et al 312/406
6,288,842	В1		9/2001	Florczak et al.

DOCKET

Δ

6,316,120	B1	11/2001	Emslander
6,447,875	B1	9/2002	Norquist et al.
6,468,451	B1 *	10/2002	Perez et al 264/48
6,495,231	B2	12/2002	Benoit et al.
6,589,636	B2	7/2003	Emslander et al.
6,641,910	B1	11/2003	Bries et al.
6,808,657	B2	10/2004	Fansler et al.
2001/0000147	A1	4/2001	Benoit et al.
2001/0000236	A1	4/2001	Benoit et al.
2001/0021450	A1	9/2001	Ramesh
2002/0013399	A1	1/2002	Groves
2002/0051867	A1	5/2002	Hiraki et al.
2002/0054434	A1	5/2002	Florczak et al.
2003/0072931	A1	4/2003	Hebrink et al.
2004/0053044	A1	3/2004	Moreno et al.

FOREIGN PATENT DOCUMENTS

CA	948820	6/1974
EP	1 209 518 A2	5/2002
EP	1 209 519 A2	5/2002
GB	1 439 438	6/1976
WO	94/28077 A1	12/1994
WO	94/29119 A1	12/1994
WO	96/00146 A1	1/1996
WO	97/01438 A1	1/1997
WO	97/17493 A1	5/1997
WO	98/13211 A1	4/1998
WO	99/03929 A1	1/1999
WO	99/36466 A1	7/1999
WO	99/54148 A1	10/1999
WO	99/61520 A1	12/1999
WO	99/67092 A1	12/1999
WO	99/67093 A1	12/1999
WO	00/00520 A1	1/2000
WO	00/18575 A1	4/2000
WO	00/74936 A1	12/2000
WO	00/74948 A1	12/2000
WO	01/02192 A1	1/2001
WO	01/30570 A1	5/2001
WO	01/94124 A2	12/2001
WO	01/96125 A1	12/2001
WO	02/00412 A2	1/2002
WO	02/00412 A3	1/2002
WO	02/00982 A1	1/2002
WO	02/051867 A1	7/2002

OTHER PUBLICATIONS

J. I. Raukola, "A New Technology to Manufacture Polypropylene Foam Sheet and Bioaxially Oriented Foam Film", VTT Publications 361, Technical Research Center of Finland, (1998).

J. H. Schut, "Foamed Films Find New Niches", Plastics Technology, (Feb. 2002).

R. A. Ryntz, "The Effects of Solvent and Thermal History on the Adhesion of Coatings to Thermoplastic Olefins (TPOs)", Waterborne, High-Solids, and Powder Coatings Symposium, (Feb. 22-24, 1995), pp. 514-534, Symposium Sponsored by The University of Southern Mississippi, Department of Polymer Science, and Southern Society for Coatings Technology.

* cited by examiner

DOCKET A L A R M

FIG. 1

EIC. 7

LARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

DOCKET A L A R M

FIG. 3

FIG_4

429 µm

5

INK-RECEPTIVE FOAM ARTICLE

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. application Ser. No. 10/502,229, filed Jul. 21, 2004 now abandoned, which is a national stage filing under 35 U.S.C. 371 of International Application No. PCT/US03/11255, filed Apr. 10, 2003, which International Application was published the International Bureau in English on Dec. 24, 2003 as WO 03/106183, which in turn claims priority to U.S. application Ser. No. 10/175,020, filed Jun. 18, 2002, the disclosure of which is herein incorporated by reference.

FIELD OF THE INVENTION

The present invention is directed to an oriented, foamed article having an ink-receptive surface, and a method of making the article.

BACKGROUND

Many film materials, unlike paper, have no inherent capacity to absorb inks that are commonly used in printing processes. Paper however, is not a particularly durable substrate 25 and may be damaged by handling, environmental exposure and water.

The capture of the image-forming ink on polymeric substrates presents a technical challenge because plastic film is substantially impervious to liquids. Hydrophilic coatings, ³⁰ applied to film materials, are known to provide receptor layers for inkjet images. Receptor layers of this type may be porous for absorbing ink droplets via capillary action. Such coatings are described, for example, in U.S. Pat. No. 5,264,275. An alternative type of absorbent inkjet receptive coating comprises polymers that swell while absorbing image forming ink droplets. Such coatings include those described in U.S. Pat. Nos. 3,889,270, 4,503,111, 4,564,560, 4,555,437, 4,379,804, 5,134,198 and 5,342,688. Hydrophilic inkjet-receptive coatings may also include multilayer coatings as described in U.S. Pat. No. 4,379,804.

For many applications however, polymeric films do not provide the same texture and handling characteristics of paper substrates. Polymeric security documents offer several benefits over their paper counterparts. In particular, polymeric banknotes can offer greatly increased durability and resistance to counterfeiting through the incorporation of security features. A requirement for polymeric banknotes is that certain physical properties are similar to the more commonly used paper banknotes. Those properties relate to tactile feel, strength, tear resistance, handling, folding, and crumple resistance.

U.S. Pat. No. 4,536,016 teaches the use of a laminate for banknotes having biaxially oriented polymeric film and a non-printed window for the incorporation of a security feature. However, U.S. Pat. Nos. 5,698,333 and 5,935,696 discuss the shortcomings of banknotes based on the '016 teachings and offers a substrate construction primarily based on a polyolefin laminate which offers improved physical properties. U.S. Pat. Nos. 5,393,099 and 5,449,200 offer yet another alternative to '016, in which a banknote is described that includes outer layers of paper laminated to a polymeric core ⁶⁰ as a way to include paper-like properties.

Polymeric banknotes offer unique opportunities to incorporate security features that are designed to discourage counterfeiting. Many patents relating to banknotes, including those cited above, mention the possibility of a transparent ⁶⁵

copying techniques. In most cases, the security feature must be added as a separate component with an additional process step.

U.S. Pat. No. 5,234,729 teaches polymeric laminates having a large number of layers and exhibiting optically unique properties. The '729 patent even suggests that the subject of that patent could be formed into plastic currency but fails to address the physical properties required for that application. See additional references U.S. Pat. Nos. 4,162,343, 4,937, 134, and 5,089,318. U.S. Pat. No. 6,045,894 teaches multilayered optical films with unique optical properties that can be used as security features on certain documents of value but also fails to teach the necessary embodiments for such a film to be useful as a banknote, particularly having those physical properties required of a banknote.

SUMMARY OF THE INVENTION

The invention provides a printable substrate comprising at least one oriented, high melt-strength polypropylene foam ²⁰ layer having an ink-receptive surface. The ink-receptive surface may comprise an oxidizing treatment, such as corona or flame-treatment of the foam surface, or may comprise an ink-receptive coating, such as a primer coating, on the foam surface, or may comprise a laminated or coextruded polymer ²⁵ film that is ink-receptive.

The invention further provides a multilayer article comprising at least one oriented, high melt strength foam layer and at least one non-foam layer. Preferably the non-foam layer is a thermoplastic film layer. In such multilayer article constructions comprising foam and thermoplastic film layer(s), either the foam layer or the film layer may have an ink-receptive surface thereon. Preferably, the multilayer construction comprises two oriented, high melt strength polypropylene foam layers. More preferably, the thermoplastic film layer comprises a thermoplastic polymer that imparts stiffness to the multilayer article.

The invention further provides a method of making the printable substrate by the steps of providing an oriented, high melt-strength polypropylene foam, and providing an ink-receptive surface on at least one major surface of the foam

The present invention also provides a method of preparing an ink-receptive, multilayer article comprising at least one high-melt strength polypropylene foam layer and at least one thermoplastic film layer. Either the foam layer or the film layer may have an ink-receptive surface thereon. The multilayer article may be prepared by separately preparing the foam and film layers, and laminating, bonding or otherwise affixing them together, or the separate layers may be coextruded into a multilayer article. If the film layer(s) constitute an outermost layer, as in a film/foam/film construction, the film layer(s) may be treated to render them ink-receptive such as by corona or an ink-receptive coating, or the thermoplastic film layer may be inherently ink-receptive.

The oriented foam article is particularly useful in the preparation of printed security documents such as currency, stock and bond certificates, birth and death certificates, checks, titles and abstracts and the like.

Polymeric documents offer several benefits over their paper counterparts. In particular, polymeric security documents can offer greatly increased durability and resistance to counterfeiting through the incorporation of security features. A requirement for some polymeric security documents is that certain physical properties are similar to the more commonly used paper banknotes. Those properties relate to tactile feel, strength, tear resistance, handling, folding, and crumple resistance.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

