
YM-905

Treatment of Urinary Incontinence Muscarinic M₃ Antagonist

YM-53705 (as monohydrochloride)

1(S)-Phenyl-1,2,3,4-tetrahydroisoquinoline-2-carboxylic acid 3(R)-quinuclidinyl ester monosuccinate

C23H26N2O2.C4H6O4

Mol wt: 480.5660

CAS: 180272-14-4 (undefined isomer, free base) CAS: 180272-15-5 (undefined isomer, oxalate) CAS: 180272-16-6 (undefined isomer, monohydrochloride) CAS: 180468-39-7 (as monohydrochloride)

EN: 249699

Synthesis

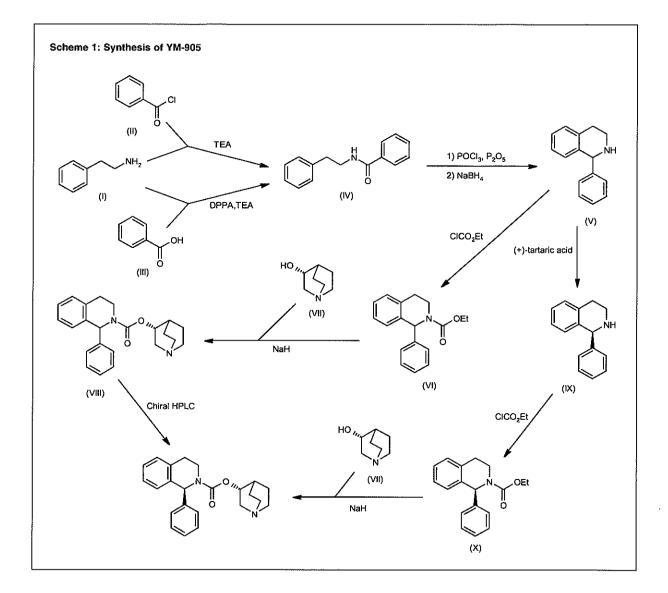
ΟΟΚΕ

YM-905 has been obtained by two related ways: Scheme 1.

1) The benzoylation of 2-phenylethylamine (I) with benzoyl chloride (II) and triethylamine in chloroform, or with benzoic acid (III), DPPA and triethylamine in DMF, gives the corresponding benzamide (IV), which is cyclized by means of POCl₃ and P_2O_5 in refluxing xylene and reduced with NaBH₄ in ethanol, yielding racemic 1-phenyl-1,2,3,4-tetrahydroisoquinoline (V). The reaction of (V) with ethyl chloroformate by means of K₂CO₃ in chloroform affords racemic 1-phenyl-1,2,3,4-tetrahydroisoquinoline-2-carboxylic acid ethyl ester (VI), which is transesterified with quinuclidine-3(*R*)-ol (VII) by means of NaH in refluxing toluene to provide the quinuclidinyl ester (VIII) as a diastereomeric mixture. This mixture is resolved by chiral HPLC, giving the target compound as a pure enantiomer (1).

2) The racemic 1-phenyl-1,2,3,4-tetrahydroisoquinoline (V) can also be submitted to optical resolution with (+)-tartaric acid to give 1(S)-phenyl-1,2,3,4-tetrahydroisoquinoline (IX) (1), which is condensed with ethyl chloroformate by means of K₂CO₃ in chloroform to afford 1(S)- phenyl-1,2,3,4-tetrahydroisoquinoline-2-carboxylic acid ethyl ester (VI). This compound is transesterified with quinuclidine-3(R)-ol (VII) by means of NaH in refluxing toluene to directly provide the pure enantiomer (1, 2).

Introduction


Urinary incontinence is uncontrolable and can be caused by various factors such as neurologic disease (*e.g.*, Alzheimer's disease) or weak pelvic muscles. Approximately 800,000 older Americans living at home are incontinent, which limits their daily activities. Several anticholinergic drugs are available for the treatment of urinary incontinence, including oxybutinin, propiverine and tolterodine. These drugs act by blocking the action of acetylcholine at postganglionic cholinergic sites, thereby increasing bladder capacity by reducing the number of motor impulses reaching the detrusor muscle. New therapeutic approaches under study for the treatment of urinary incontinence are shown in Table I.

In an attempt to develop more bladder-selective muscarinic M_3 receptor antagonists for use in the therapy of urinary incontinence, researchers at Yamanouchi prepared a series of 1,2,3,4-tetrahydro-2-isoquinolinecarboxylate derivatives. One compound in the series, YM-53705, exhibited high affinity for this receptor and good selectivity for inhibition of rhythmic bladder contractions versus salivary secretion (1). Pharmacological studies were subsequently conducted with the monosuccinate YM-905.

Pharmacological Actions

YM-905 exhibits high affinity for human muscarinic m_1 , m_2 and m_3 receptors, with respective K_i values of 25, 120 and 10 nM. The M₃ receptor-mediated, carbacholinduced increase in intracellular Ca²⁺ levels in mouse salivary gland cells was antagonized by YM-905, tolterodine,

N. Mealy, J. Castañer. Prous Science, P.O. Box 540, 08080 Barcelona, Spain.

oxybutynin and atropine, with pK_B values of 7.4, 9.3, 9.0 and 9.9, respectively, whereas the responses in guinea pig detrusor muscle cells were antagonized by YM-905, tolterodine and oxybutynin with pK_B values of 8.5, 8.9 and 8.6, respectively. Also, carbachol-evoked contractions of guinea pig detrusor muscle cells were antagonized by YM-905, tolterodine, oxybutynin and atropine with pA_2 values of 7.1, 8.1, 7.4 and 8.4, respectively. When tested in anesthetized mice, both YM-905 and oxybutynin potently inhibited carbachol-induced increases in baldder pressure at doses of 0.1-1 mg/kg i.v. in contrast, only oxybutynin was associated with potent inhibition of carbachol-stimulated salivation at these doses (3, 4).

The effects of YM-905 on colonic function have also been investigated *in vitro* and *in vivo*. The compound potently inhibited carbachol-induced guinea pig colon contractions in a competitive manner ($pA_2 = 7.5$). Inhibition of defecation induced by bethanechol, neostigmine and nicotine in rats was observed at oral doses of YM-905 of 1-30 mg/kg. Title compound was also able to inhibit restraint stress-induced defecation ($ED_{50} = 4.0$ mg/kg p.o.) and diarrhea, a model of irritable bowel syndrome (IBS). As above (3, 4), YM-905 was shown to inhibit M₃ receptor-mediated intracellular Ca²⁺ mobilization in guinea pig colonic longitudinal muscle cells ($pK_B = 8.4$) to a significantly greater extent than in mouse salivary gland cells ($pK_B = 7.4$). The results from these latter studies indicate that YM-905 may also be useful in the treatment of colonic motor dysfunction such as in IBS (5, 6).

YM-905 is currently in phase II trials in the U.S. and Europe for the treatment of urinary incontinence (7).

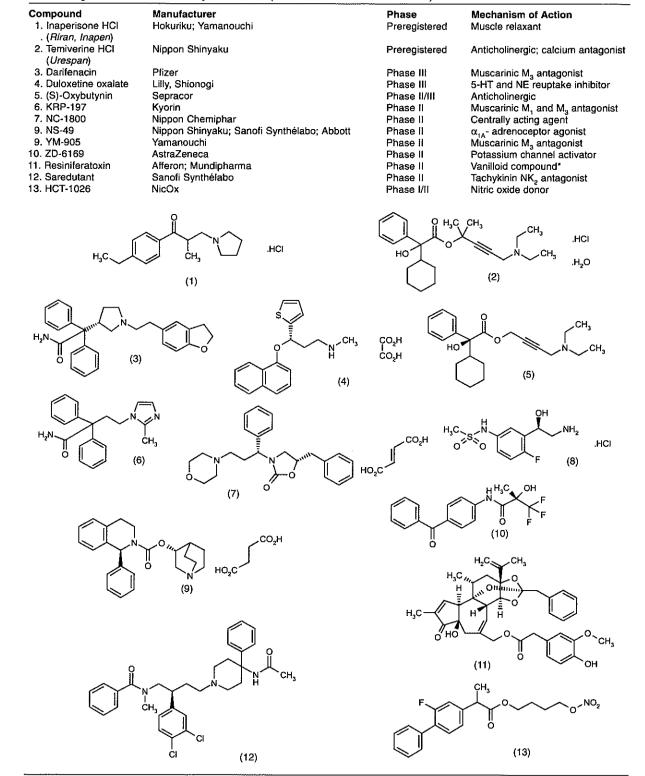


Table I: Drugs in clinical trials for urinary incontinence (Prous Science Ensemble database).

*Desensitizer of overactive afferent neurones

Δ

R

Μ

Δ

Manufacturer

Yamanouchi Pharmaceutical Co., Ltd. (JP).

References

1. Takeuchi, M., Naito, R., Yonetoku, Y., Ikeda, K., Isomura, Y. 1,2,3,4-Tetrahydro-2-isoquinolinecarboxylate derivatives: A novel class of selective muscarinic antagonists. III. 213th ACS Natl Meet (April 13-17, San Francisco) 1997, Abst MEDI 046.

2. Takeuchi, M., Naito, R., Hayakawa, M. et al. (Yamanouchi Pharmaceutical Co. Ltd.). *Novel quinuclidine derivs. and medicinal compsn. thereof.* EP 801067, WO 9620194.

3. Ikeda, K., Kobayashi, S., Suzuki, M., Miyata, K., Takeuchi, M., Yamada, T., Honda, K. *Effect of YM905, a novel muscarinic* receptor antagonist, on salivary gland and bladder. Jpn J Pharmacol 1998, 76(Suppl. 1): Abst P-442. 4. Ikeda, K., Suzuki, M., Kobayashi, S., Takeuchi, M., Miyata, K., Yamada, T., Honda, K. *YM905, a novel antimuscarinic agent displays tissue preference for the urinary bladder* M_3 *receptor.* FASEB J 1999, 13(4, Part 1): Abst 157.8.

5. Suzuki, M., Ikeda, K., Kobayashi, S., Miyata, K., Takeuchi, M., Yamada, T., Honda, K. *Preventive effect of YM905 on stressinduced defecation and diarrhea in rats through the muscarinic receptor antagonism.* Jpn J Pharmacol 1998, 76(Suppl. 1): Abst P-443.

6. Kobayashi, S., Ikeda, K., Suzuki, M., Miyata, K., Yamada, T., Honda, K. Antagonist profiles of the novel antimuscarinic agents YM905 and darifenacin in the digestive tract. FASEB J 1999, 13(5, Part 2): Abst 626.4.

7. YM-905 development status. Yamanouchi Pharmaceutical Co., Ltd. Company Communication July 8, 1999.