J. OF RECEPTOR & SIGNAL TRANSDUCTION RESEARCH, 17(1-3), 177-184 (1997)

CHARACTERISATION OF [³H]-DARIFENACIN AS A NOVEL RADIOLIGAND FOR THE STUDY OF MUSCARINIC M₃ RECEPTORS

Carolyn M. Smith * and Rob M. Wallis Discovery Biology, Pfizer Central Research, Sandwich, Kent CT13 9NJ, England.

ABSTRACT

Darifenacin, (S)-2-[1-[2,3-dihydrobenzofuran-5-yl]-3-pyrrolidinyl]-2,2-diphenylacetamide, is a novel muscarinic M_3 antagonist. In this study we have compared the binding of [³H]-darifenacin to the five cloned human muscarinic receptors ($m_1 - m_5$) expressed in CHO cells. [³H]-darifenacin binds with 6 fold higher affinity to m_3 ($K_D = 0.33$ nmol/l) over m_1 ($K_D = 1.6$ nmol/l) receptors. There was no specific binding of [³H]-darifenacin to m_2 receptors and specific binding to m_4 and m_5 receptors was insufficient to determine a K_D . Binding of [³H]-darifenacin to m_1 and m_3 was displaced by atropine ($m_1 pK_i = 9.36$, $m_3 pK_i = 9.4$), 4-DAMP ($m_1 pK_i = 9.04$, $m_3 pK_i = 9.19$), pirenzepine ($m_1 pK_i = 8.63$, $m_3 pK_i = 6.85$), methoctramine ($m_1 pK_i = 7.28$, $m_3 pK_i = 6.63$), and darifenacin ($m_1 pK_i = 8.36$, $m_3 pK_i = 9.14$), demonstrating that [³H]-darifenacin represents the first selective m_3 radioligand.

INTRODUCTION

DOCKET

Five subtypes of human muscarinic receptor, designated as m_1 , m_2 , m_3 , m_4 and m_5 , have been identified and cloned (1). The pharmacologically defined M_1 , M_2 , M_3 and M_4 receptors correspond to the cloned m_1 , m_2 , m_3 and m_4 receptors, however, the pharmacological M_5 receptor corresponding to the m_5 gene product has yet to be reported. Although a few muscarinic antagonists have proved useful in characterising muscarinic receptor subtypes, definitive pharmacological characterisation has been hampered by the lack of subtype-specific compounds. Most commonly used standard antagonists include pirenzepine (M_1 selective), AF-DX-116(11[[2-[dimethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-6][1,4] benzodiazepine-6-)one) and methoctramine (M_2 selective), 4-diphenylacetoxy-N-

LARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>

methylpiperadine methobromide (4-DAMP), hexahydrosiladiienidol (HHSiD) and p-fluoro-HHSiD (M_1/M_3 selective). Darifenacin is a novel muscarinic antagonist shown to be potent and selective for the M_3 receptor both in isolated tissue studies (2) and in radioligand binding studies to the cloned human muscarinic subtypes (3). In this study we have compared the binding of [³H]-darifenacin to the five cloned human muscarinic receptors expressed in CHO cells.

MATERIALS

[³H]-Darifenacin (Specific Activity 22Ci/mmol) was prepared by tritiation of the benzofuran ring to give 2,3-ditritiobenzofuran by Amersham International (Buckinghamshire, UK). Atropine, 4-DAMP, methoctramine and pirenzepine, were purchased from RBI (Natick, MA). Darifenacin was synthesised in our laboratories at Pfizer Central Research.

METHODS

Membrane Preparation.

The CHO-K1 cells stably expressing the human $m_1 - m_5$ receptors have been described previously (4) and were obtained from Dr. Tom Bonner (National Institute of Neurological Disorders and Stroke, Bethesda, MD). Transfected cells were grown to 80% confluency and washed twice in phosphate buffered saline (PBS) prior to harvesting by scraping. Scraped cells were resuspended in PBS, pelleted at 1000 xg for 10 min. and stored at -80°C until use. Thawed membranes were homogenised in ice cold HEPES buffer (20 mM pH 7.4) and washed twice by centrifugation at 38,000 x g for 20 min. The protein concentration of the resuspended membranes was determined using a Sigma protein assay kit. Membranes were stored in aliquots at -80°C before use.

Radioligand Binding Studies.

DOCKET

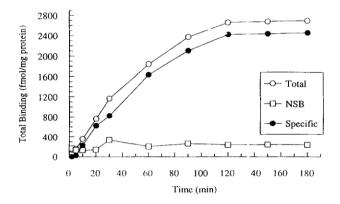
All membranes, drugs and radioligand solutions were made up in 20 mM HEPES buffer (pH 7.4 at 25°C). Final protein concentrations were 120 μ g/ml (m₁), 60 μ g/ml (m₃) and 400 μ g/ml (m₂, m₄, m₅). Assays were performed in a total volume of 500 μ l. Saturation analysis for [³H]-darifenacin binding to m₃ receptors was performed over the concentration range 0.1 - 10 nmol/l and for m₁, m₂, m₄ and m₅ over the range 0.1 - 25 nmol/l. For competition experiments, pK_i s were determined by displacement of [³H]-darifenacin (0.4 nmol/l for m₃ and

1 nmol/l for m_1) using 12 concentrations of antagonist. Time course experiments with the m_3 receptor were performed using 0.4nmol/l [³H]-darifenacin at various incubation times. Non specific binding (NSB) was defined using 1µM atropine. Incubations were initiated by the addition of [³H]-darifenacin and carried out at 25°C for 2 hr. Binding was terminated by rapid filtration through a Brandell cell harvester onto Whatman GF/B filters followed by 3 washings with ice-cold HEPES buffer. Each filter was dried and trapped radioactivity was measured by liquid scintillation counting using Meltilex solid scintillant and a Wallac 1204 Beta counter.

Data Analysis.

Results are expressed as mean values \pm the standard deviation of *n* experiments. The maximal number of binding sites (B_{max}) and the equilibrium dissociation constant (K_D) were determined from direct analysis of the saturation binding data using Grafit. Hill coefficients and IC₅₀ values were obtained from competition experiments by the method of Hill (5) using an in-house data fitting programme. K_i values were derived from IC₅₀ values using the Cheng-Prussoff IC₅₀ correction (6).

RESULTS


DOCKET

Kinetics of [3H]-Darifenacin Binding.

Specific binding of [³H]-darifenacin to m_1 and m_3 receptors (which was >80% of total binding) was time-dependent and reached equilibrium at 25°C after 2 h. A representative association time-curve for [³H]-darifenacin binding to the m_3 receptor is shown in Figure 1.

Representative saturation curves for specific binding of $[{}^{3}H]$ -darifenacin to m_{1} and m_{3} receptors are shown in Figure 2. The linear representation of the data following Scatchard transformation indicates the presence of a single homogeneous population of sites in each cell line. The equilibrium binding parameters K_{D} and B_{max} for m_{1} and m_{3} are shown in Table 1.

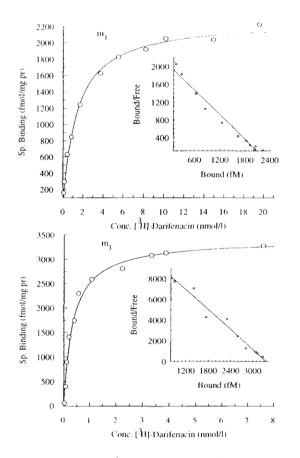
It was not possible to determine K_D and B_{max} for [³H]-darifenacin binding to the m_2 receptor as there was no specific binding of [³H]-darifenacin even at concentrations as high as 25 nmol/l. Similarly, binding of [³H]-darifenacin to m_4 and m_5 receptors was not sufficient to allow accurate determination of K_D and B_{max} . When the same membrane preparations of m_2 , m_4 and m_5 used to investigate [³H]-darifenacin binding were incubated with the non-selective antagonist [³H]- N-methyl scopolamine ([³H]-NMS) (0.1nmol/l), high levels of specific binding (> 80% of total binding) were observed (data not shown) indicating that muscarinic receptors were present in these preparations.

FIG. 1 Time course of association of $[{}^{3}H]$ -darifenacin binding to the cloned human m₃ receptor. Membranes expressing m₃ receptor (60 µg protein / ml) were incubated at 25 °C with 0.4 nmol/l $[{}^{3}H]$ -darifenacin for the times indicated. Each data point is the mean of 6 determinations from 1 representative experiment. NSB = non-specific binding

[³H]-Darifenacin Displacement Experiments.

Table 2 shows the selectivity of standard muscarinic antagonists at displacing $[{}^{3}H]$ -darifenacin from m₁ and m₃ receptors. None of the Hill coefficients were significantly different from unity (range 0.8 - 1.1), consistent with the presence of a single population of receptors in each cell line. Representative binding curves to show displacement of $[{}^{3}H]$ -darifenacin from the m₃ receptor are shown in Figure 3.

Darifenacin was 6-fold selective for m_3 over m_1 . Atropine and 4-DAMP had similar affinities towards m_1 and m_3 . Pirenzepine was 60-fold more selective for m_1 over m_3 and methoctramine was 4-fold more selective for m_1 over m_3 .


DISCUSSION

DOCKE

Α

RM

The number of m_1 and m_3 binding sites labelled by [³H]-darifenacin was consistent with those we have obtained previously using the non-selective muscarinic antagonists [³H]quinuclidinyl benzilate ([³H]-QNB) (3) and [³H]-NMS (*data not shown*). Similarly, the binding affinity and receptor selectivities of standard muscarinic antagonists (atropine, 4-DAMP, methoctramine and pirenzepine) at m_1 and m_3 receptors were similar to that reported for [³H]-NMS (4,7). However, the potencies of compounds in this stucly were consistently 0.5 - 1 log unit greater than we have previous reported for the same compounds against [³H]-QNB. Our

FIG. 2 Saturation isotherms of specific [³H]-darifenacin binding to the cloned human m_1 and m_3 receptors. Membranes expressing m_1 (120 µg protein / ml) (*upper figure*) and m_3 receptor (60 µg protein / ml) (*lower figure*) were incubated at 25 °C for 2 h over the range of [³H]-darifenacin concentrations indicated. Data shown are taken from representative experiments carried out in duplicate. Scatchard analysis of the data is shown in the insets. Values for K_D and B_{MAX} are given in Table 1.

TABLE 1.

Equilibrium Binding Parameters (K_D and B_{MAX}) for [³H]-Darifenacin Binding to the Cloned Human Muscarinic Receptor Subtypes

Parameter	m ₁	m ₂	m ₃	m_4	m ₅
K _D (nmol/l)	1.6 ± 0.8	insufficient specific	0.33 ± 0.1	insufficient specific	insufficient specific
B _{MAX} (fmol/mg protein)	1980 ± 500	binding to determine K _D	2780 ± 590	binding to determine K _D	binding to determine K _D

The estimates of K_D and B_{max} were obtained from saturation experiments as shown in Fig. 2. Data are expressed as the mean \pm S.D. from 4-6 experiments.

Find authenticated court documents without watermarks at docketalarm.com.

Δ

R

М

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.