interactions, hydrogen bonds, dipole-dipole interactions, and steric interactions to achieve chiral recognition. To be resolved on a Type I column, analyte enantiomers must contain functionality complementary to that of the CSP so that the analyte undergoes essential interactions with the CSP. The sample should preferably contain one of the following functional groups: p-acid or p-base, hydrogen bond donor and/or acceptor, or an amide dipole. Derivatization is sometimes used to add the interactive sites to those compounds lacking them. The most common derivatives involve the formation of amides from amines and carboxylic acids.

The MetaChiral ODMTM is a type II CSP. The primary mechanisms for the formation of solute-CSP complexes is through attractive interactions, but inclusion complexes also play an important role. Hydrogen bonding, pi-pi, and dipole stacking are important for chiral resolution on the MetaChiralTM ODM. Derivatization is often necessary when the solute molecule does not contain the groups required for solute-column interactions. Derivatization, usually to benzylamides, is also required of some strongly polar molecules like amines and carboxylic acids, which would otherwise interact too strongly with the stationary phase through non-stereo-specific interactions.

The invention provides compounds of formula I as set forth above.

In certain embodiments, formula I set forth above may include a proviso that excludes compounds represented by the generic formula disclosed in US 6436964.

In certain embodiments, formula I set forth above may include a proviso that excludes compounds represented by the generic formula disclosed in US 5585374.

In certain embodiments, formula I set forth above may include a proviso that excludes compounds represented by the generic formulas disclosed in both US 6436964 and US 5585374.

Compounds of formula I can be separated into diastereomeric pairs by, for example, by separation by TLC. These diastereomeric pairs are referred to herein as diastereoisomer with upper TLC Rf; and diastereoisomer with lower TLC Rf. The diastereoisomers can further be enriched for a particular enantiomer or resolved into a single enantiomer using methods well known in the art, such as those described herein.

SYNTHESIS OF THE COMPOUNDS OF THE INVENTION

The compounds of the invention are generally prepared according to the following schemes:

Scheme 1

$$R_{1}$$
 R_{2}
 R_{3}
 R_{3}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{5}
 R_{4}
 R_{5}
 R_{5}

Group R is the same as $(R+R_1)$ as given in the general formula I. A, R_2 , R_3 , R_4 and R_5 have the same meanings as given in the general formula I and R_a is a lower alkyl group.

Starting material (1) is treated with a base, preferably potassium tert-butoxide, followed by alkylation with 2-bromoacetaldehyde dialkyl acetal or other carbonyl protected 2-haloacetaldehyde (e.g., the R_a alkyl groups can also be joined in a cycle to give a dioxolane or dioxane ring). Other alternative and appropriate bases to carry out the condensation include lithium amides, sodium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate, cesium carbonate and the like with the aid or not of phase transfer catalysts. The reaction is preferably carried out in a solvent such as dimethyl sulfoxide or toluene at a temperature of 0°C to reflux.

The use of 3-bromopropional dehyde dialkyl acetal or other carbonyl protected 3-halopropional dehyde allow to obtain, by following the same reaction conditions described above in Scheme 1, compound I having m = 2 as foreseen in the general formula.

Treatment of (2) with an acid, such as hydrochloric acid or p-toluenesulfonic acid or trifluoroacetic acid in a suitable organic solvent, achieves aldehyde (3). Generally, the reaction is conducted in a protic solvent, such a mixture of aqueous acid and acetone or tetrahydrofuran, at temperatures of 5°C to 75°C, preferably at ambient temperature. A preferred similar method consists of carrying out the reaction in a mixture of aqueous trifluoroacetic acid in a chlorinated solvent at r.t.

Aldehyde (3) is coupled with the desired amine (4) by reductive amination procedure to prepare (5). The reaction is preferably carried out at ambient temperature in

a chlorinated solvent such as dichloroethane or methylene chloride or chloroform in the presence of sodium triacetoxyborohydride and is substantially complete in one to 24 hours (see for example A. F. Abdel-Magid et al., *J. Org. Chem.*, <u>61</u>, 3849 (1996)) or can be carried out in a protic solvent (e.g., methanol) with the aid of sodium cyanoborohydride, optionally in the presence of molecular sieves.

Reduction of (5) to the alcohol (I) is readily accomplished using a reducing agent such as sodium borohydride or diisobutylaluminum hydride or other aluminum or boron hydride or other reduction method to carry out the conversion ketone to alcohol, well known to those skilled in the art, to prepare the hydroxy compound (I). The reaction is preferably carried out in an organic solvent such as methanol or methylene chloride or tetrahydrofuran at temperatures of -20°C to 0°C - ambient temperature.

Scheme 2

$$H_3C$$
 R_3
 R_3
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5
 R_7
 R_7

Starting material (1) is either commercially available or can be prepared by coupling the appropriate Weinreb amide (6) (See Nahm et al., *Tetrahedron Lett.*, 22, 3815, (1981)) with (7), as described in Scheme 2 above, where M is a metallic salt, such as lithium or magnesium halide. The reaction is preferably carried out under nitrogen atmosphere, in an aprotic solvent, such as tetrahydrofuran, at ambient or lower temperatures down to -78°C.

Alternatively, an ester of structure R₃COOalkyl can be treated with a substituted benzylmagnesium chloride or benzylmagnesium bromide or lithium derivative under standard conditions well known in the art to provide the ketone of structure (1).

An alternative route to obtain compounds (1) consists of reacting the appropriate arylaldehyde with an alkylnitro derivative in a nitroaldol fashion, dehydration of the nitro alcohol thus obtained, followed by double bond reduction afford a 2-nitro(2—Ak)phenethyl derivative, which can undergo Nef reaction to yield the wished keto derivative 1. This kind of pathway is well documented in the experimental part and in the literature.

A preferred similar way of synthesis of (1) is the palladium catalysed coupling of an acyl halide with a compound (7) where M is Zn halide. More specifically, the compounds of formula (5) can be prepared following the procedure described in Scheme

3. All substituents, unless otherwise indicated, are as defined previously. The reagents and starting materials are readily available to one of ordinary skill in the art.

In Scheme 3, step A, for example, cyclohexanecarbonyl chloride is added to a mixture of the suitable benzylzinc chloride(bromide) and an appropriate palladium catalyst, e.g., dichlorobis(triphenylphosphine)palladium (II) stirred at 0°C in a solvent such as tetrahydrofuran. Afterwards, stirring is continued at r.t. for 4-24 h. Then the reaction is quenched for example with an aqueous saturated solution of ammonium chloride. Typical work-up procedure by extraction provides the ketone (8). Ketone (8) can be purified by techniques well known in the art, such as flash chromatography on silica gel with a suitable eluent, such as ethyl acetate/hexane to provide the purified material. Alternatively, the crude ketone (8) can be used in step B without purification.

In Scheme 3, step B, ketone (8) is alkylated with bromoacetaldehyde diethyl acetal under conditions well known in the art to provide compound of structure (9). For example, ketone (8) is dissolved in a suitable organic solvent, such as dimethyl sulfoxide or toluene and treated with a slight excess of a suitable base, such as potassium tert-butoxide. The reaction is stirred for about 15 to 30 minutes at a temperature of between 0°C and the reflux temp. of the solvent and bromoacetaldehyde diethyl acetal is added dropwise to the reaction. One of ordinary skill in the art would readily appreciate that bromoacetaldehyde dimethyl acetal, bromoacetaldehyde ethylene acetal and the like may be used in place of the corresponding diethyl acetal.

In Scheme 3, step C, compound (9) is hydrolyzed under acidic conditions to provide aldehyde (10) in a manner analogous to the procedure described in Scheme 1. More specifically, for example, compound (9) is dissolved in a suitable organic solvent,

such as dichloromethane and treated with a suitable acid, such as aq. trifluoroacetic acid. The reaction mixture is stirred for about 1 to 6 hours at room temperature. The reaction mixture is then diluted with the same solvent, washed with brine; the organic layer is separated, dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to provide aldehyde (10). Aldehyde (10) can be purified by techniques well known in the art, such as flash chromatography on silica gel with a suitable eluent, such as ethyl acetate/hexane. Alternatively, crude aldehyde (10) can be used directly in step D.

In Scheme 3, step D, aldehyde (10) is reductively aminated, under conditions well known in the art, with amine (4) to provide the ketone (5) in a manner analogous to the procedure described in Scheme 1. More specifically, for example, aldehyde (10) is dissolved in a suitable organic solvent, such as methylene chloride. To this solution is added about 1.05 or more equivalents of amine (4). Acetic acid may optionally be added to aid in dissolution of the amine (4). Then about 1.4 to 1.5 equivalents of sodium triacetoxyborohydride is added and the reaction is stirred at room temperature for about 3 to 5 hours. The reaction is then quenched by addition of a suitable base, such as aqueous sodium carbonate or hydroxide to provide a pH from 8 to about 12. The quenched reaction is then extracted with a suitable organic solvent, such as methylene chloride. The organic extracts are combined, washed with brine, dried, filtered and concentrated under vacuum to provide the compound of formula (5). This material can then be purified by techniques well known in the art, such as flash chromatography on silica gel with a suitable eluent, such as ethyl acetate/petroleum ether or hexane.

Scheme 4

O

R

Step A

R

$$R_3$$
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_4
 R_5
 R

Alternatively, compounds of structure (5) can be prepared following the procedure described in Scheme 4. All substituents, unless otherwise indicated, are previously

defined. The reagents and starting materials are readily available to one of ordinary skill in the art.

In Scheme 4, step A, aldehyde (11) is combined with a suitable organometallic reagent (12) under conditions well known in the art to provide alcohol (13). Examples of suitable organometallic reagents include Grignard Reagents, alkyl lithium reagents, alkyl zinc reagents, and the like. Grignard Reagents are preferred. For examples of typical Grignard Reagents and reaction conditions, see J. March, "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 2nd Edition, McGraw-Hill, pages 836-841 (1977). More specifically, aldehyde (11) is dissolved in a suitable organic solvent, such as tetrahydrofuran or toluene, cooled to about -5°C and treated with about 1.1 to 1.2 equivalents of a Grignard reagent of formula (12) wherein M is MgCl or MgBr. The reaction is stirred for about 0.5 to 6 hours, then quenched, and alcohol (13) is isolated by well-known work-up procedure.

In Scheme 4, step B, alcohol (13) is oxidized under standard conditions well know in the art, such as those described by J. March, "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 2nd Edition, McGraw-Hill, pages 1082-1084 (1977), to provide ketone (1). (Ketone (1) is the starting material used in Scheme 1 above.)

For example, the above oxidation is also performed using standard Swern Oxidation conditions which are well known to one of ordinary skill in the art, or the alcohol (13) is dissolved in a suitable organic solvent, such as methylene chloride, the solution cooled with a wet ice-acetone bath, and treated with 2.5 to 3.0 equivalents of dimethyl sulfoxide. After stirring for about 30 minutes, the reaction is then treated with about 1.8 equivalents of P_2O_5 . The reaction is stirred for about 3 hours and then, preferably, treated over about 30 minutes with about 3.5 equivalents of a suitable amine, such as triethylamine. The cooling bath is then removed and the reaction is stirred for about 8 to 16 hours. The ketone (1) is then isolated by standard extraction techniques well known in the art.

In Scheme 4, step C, ketone (1) is treated with a suitable base followed by addition of the alkene (15), wherein X is a suitable leaving group, to provide compound (14). For example, ketone (1) is combined with an excess of alkene (15) in a suitable organic solvent, such as tetrahydrofuran, and cooled with a wet ice acetone bath. Examples of suitable leaving groups are Cl, Br, I, tosylate, mesylate, and the like. Preferred leaving groups are Cl and Br. About 1.1 equivalents of a suitable base are added and the reaction is allowed to stir for about 2 hours at room temperature. Examples of

suitable bases are potassium tert-butoxide, sodium hydride, NaN(Si(CH₃)₃)₂, LDA, KN(Si(CH₃)₃)₂, NaNH₂, sodium ethoxide, sodium methoxide and the like. Potassium tert-butoxide is the preferred suitable base. The reaction is then quenched with aqueous acid and compound (14) is isolated by usual work-up procedure.

In Scheme 4, step D, compound (14) is treated with a suitable oxidizing agent to provide aldehyde (3). (Aldehyde (3) is also prepared in Scheme 1.) Examples of suitable oxidizing agents are ozone, NaIO₄ /Osmium catalyst, and the like. Ozone is the preferred oxidizing agent. Examples of suitable oxidizing reagents and conditions are described by J. March, "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 2nd Edition, McGraw-Hill, pages 1090-1096 (1977).

For example, compound (14) is dissolved in a suitable organic solvent, such as methanol, a small amount of Sudan III is added, and the solution is cooled to about -20°C. Ozone is bubbled into the solution for about 4 hours until the pink color turns to a pale yellow color. Then a reducing agent such as Me₂S or tributylphosphine is added. Concentration provides the intermediate dimethyl acetal of aldehyde (3). This dimethyl acetal is readily hydrolyzed under standard acidic conditions to provide aldehyde (3). Alternatively, direct acidic work-up of the crude reaction mixture provides aldehyde (3). Alternatively, aldehyde (3) can be obtained directly by ozonolysis of (14) in a non-acetal forming solvent, such as methylene chloride.

In Scheme 4, step E, aldehyde (3) is reductively aminated under conditions analogous to those described above in Scheme 3, step D, to provide compound (5). (Compound 5 is also prepared in Scheme 1.)

Scheme 5

O
$$R_3$$

CHO

 $H-R_5-R_4$

R

(4)

Step B

O R_3

Step B

O R_3
 R_5
 R_4
 R_5

(16)

Scheme 5 provides an alternative synthesis for the preparation of ketone (5). All substituents, unless otherwise indicated, are previously defined. The reagents and starting materials are readily available to one of ordinary skill in the art.

In Scheme 5, step A, aldehyde (3) is condensed with amine (4) under standard conditions well known in the art to provide the enamine (16). For example, about 1.05 equivalents of aldehyde (3) dissolved in a suitable organic solvent, such as isopropyl

acetate or isopropanol, is added to neat amine (4), free base. Additional organic solvent is added to produce a slurry and the reaction is stirred for about 1 to 2 hours. The enamine (16) is then isolated by standard techniques, such as collection by filtration.

In Scheme 5, step B, the enamine (16) is hydrogenated under conditions well known to one of ordinary skill in the art to provide compound (5). For example, enamine (16) is combined with a suitable organic solvent, such as isopropyl alcohol and a catalytic amount of 5% palladium on carbon in a Parr bottle. The mixture is placed under 50 psi of hydrogen and shaken for about 2 days at room temperature. The slurry is then filtered to remove catalyst and the filtrate is concentrated to provide compound (5).

Scheme 6

For the synthesis of compounds I where R₂ is different than H, the method given in Scheme 6 is used. Intermediate ketone (2) is reduced with the same reduction methods used above in scheme 1 for compound (5) affording intermediate (17), which is etherified by reaction with a base, for example NaH or potassium tert-butoxide or NaNH₂ or LiNH₂ or others in a suitable solvent e.g. tetrahydrofuran, affording the alkoxide, which is then reacted in situ with the appropriate R₂-X with X leaving group (halogen or mesylate or tosylate) at a temperature of from 0°C to the reflux temperature. The so obtained compounds (18) can undergo the same reactions described in scheme 1 affording product I with R₂ is not H.

Alternatively, compounds of formula I where R_2 is not a hydrogen atom, can be obtained by alkylating compounds of formula I where $R_2 = H$ with the same methods described above for alkylating compound 17, limiting this procedure to the alkylation with very reactive halogenide or mesylate/tosylate (e.g., benzyl bromides) which can react under time/temperature controlled reaction condition, preferably at r.t.

Scheme 7 describes a double functionalization approach to the synthesis of Compound (I). This kind of approach can be useful for the synthesis of libraries of compounds (I) introducing different amine moieties and different R₃ goups at the same time.

Scheme 7

In scheme 7 R_a is a lower alkyl group or the two R_a groups are linked forming a 1,3-dioxolanyl or 1,3-dioxanyl group. An appropriate commercial benzyl derivative (with X = halogen or methanesulphonyloxy or p-toluenesulphonyloxy groups) can be reacted, as very well known to those skilled in the art, to afford the benzyl cyanide (20). These reactants can be converted following known alkylation methods into compounds

(21) or (27) respectively reacting them with allyl halogenides (or allyl mesylatese or tosylates) or haloalkylaldehydes in their carbonyl protected form (acetals or dioxolanyl derivatives or other).

These alkylation reactions can be carried out by the use of bases to generate the reactive benzyl carbanions. Example of used bases are lithium diisopropylamide (LDA) or tert-Butyl lithium or NaH or potassium tert-butoxide or sodium amide or potassium amide or others in an appropriate solvent such as THF or Et_2O or DMF or other at a temperature ranging from $-78^{\circ}C$ to the reflux temperature. A preferred method of alkylation include the use of hindered bases such as LDA in the presence of hexamethyl phosphorous triamide or DMPU at $-78^{\circ}C - r.t$.

Compounds (21) can be in turn reduced by the use of diisobutylaluminum hydride (DIBAL-H) in an appropriate solvent (toluene, DMF, CH₂Cl₂ or other) at a temperature ranging from -78°C to the reflux of the solvent. The so obtained aldehydes (22) are then carbonyl protected following methods very well known to those skilled in the art to give compounds (23), which can be catalytically osmilated (C. P. Forbes *J.C.S. Perkin Trans I* 1979, 906-910) or undergo ozonolysis to afford compounds (24). Compounds (24) can be reductively aminated as described above to afford compounds (25). Deprotection by common methods leads to the aldehydes (26).

Compounds (26) can be alternatively obtained from compounds (21) applying the osmilation or ozonolysis procedure on them. The so obtained cyanopropionaldehydes (27) are then reductively aminated to compound (28). Repeating the DIBAL-H reduction described above on these compounds affords the aldehydes (26).

Compounds (27) are also easily obtained from compounds (29) by simple deprotection of the carbonyl functionality. The reaction of R_3 -M (where M is a metallic salt, such as lithium or magnesium halide) with compounds (26) afford compounds (I). A large number of organometallics such as litium or magnesium derivatives are commercially available or easily prepared and can be reacted in an appropriate solvent such as THF or Et_2O or others at $-78^{\circ}C$ – reflux.

Stereochemistry

In Schemes 1, 6 and 7 compounds I are obtained in syn/anti mixture of diastereoisomers with ratio depending on the reaction condition used. The diastereoisomers can be separated by usual tecniques known to those skilled in the art

including fractional crystallization of the bases or their salts or chromatografic tecniques such as LC or flash chromatography. For both the diastereoisomers, the (+) enantiomer of formula Ia can be separated from the (-) enantiomer using techniques and procedures well known in the art, such as that described by J. Jacques, et al., "Enantiomers, Racemates, and Resolutions", John Wiley and Sons, Inc., 1981. For example, chiral chromatography with a suitable organic solvent, such as ethanol/acetonitrile and Chiralpak AD packing, 20 micron can also be utilized to effect separation of the enantiomers.

The free bases of formula I, their diastereoisomers or enantiomers can be converted to the corresponding pharmaceutically acceptable salts under standard conditions well known in the art. For example, the free base of formula I is dissolved in a suitable organic solvent, such as methanol, treated with one equivalent of maleic or oxalic acid for example, one or two equivalents of hydrochloric acid or methanesulphonic acid for example, and then concentrated under vacuum to provide the corresponding pharmaceutically acceptable salt. The residue can then be purified by recrystallization from a suitable organic solvent or organic solvent mixture, such as methanol/diethyl ether.

Combination treatments

In certain embodiments, disorders of the urinary tract are treated by administering a compound of formula I in combination with an additional 5-HT_{1A} antagonist or an antagonist of one or more additional class of receptors. In preferred embodiments a compound of formula I is administered in combination with an antagonist of an α 1-adrenergic, or muscarinic receptor.

In further embodiments, lower urinary tract disease is treated by administering a compound of formula I in combination with one or more inhibitor of the cyclooxygenase enzyme, which may inhibit both COX1 and COX2 isozymes or which may, alternatively, be selective for COX2 isozyme, and NO donor derivatives thereof.

Examples of antimuscarinic drugs for administration in combination with a compound of formula I are oxybutynin, tolterodine, darifenacin, and temiverine.

A compound of formula I may be administered in combination with α 1-adrenergic antagonists, for the therapy of lower urinary tract symptoms, whether or not these are associated with BPH. Preferred α 1-adrenergic antagonists suitable for administration in combination with a compound of formula I are, for example, prazosin, doxazosin,

terazosin, alfuzosin, and tamsulosin. Additional α1-adrenergic antagonists suitable for administration in combination with a compound of formula I are described in U.S. Patents No. 5,798,362, 5,990,114; 6,306,861; 6,365,591; 6,387,909; and 6,403,594.

Examples of 5-HT_{1A} antagonists that may be administered in combination with a compound of formula I are found in Leonardi et al., *J. Pharmacol. Exp. Ther.* **299**: 1027-1037, 2001 (e.g., Rec 15/3079), U.S. Patent No. 6,071,920, other phenylpiperazine derivatives described in WO 99/06383 and pending U.S. Patent Applications Serial No. 10/266,088 and 10/266,104 filed on October 7, 2002. Additional 5-HT_{1A} antagonists include DU-125530 and related compounds described in U.S. Patent No. 5,462,942 and robalzotan and related compounds described in WO 95/11891.

Examples of selective COX2 inhibitors that may be administered in combination with a compound of formula I are, without limitation, nimesulide, meloxicam, rofecoxib, celecoxib, parecoxib and valdecoxib. Additional examples of selective COX2 inhibitors are described, without limitation, in US 6,440,963. Examples of non-selective COX1-COX2 inhibitors are, without limitation, acetylsalicylic acid, niflumic acid, flufenamic acid, enfenamic acid, meclofenamic acid, tolfenamic acid, thiaprophenic acid, ibuprofen, naproxen, ketoprofen, flurbiprofen, furprofen, indomethacin, acemethacin, proglumethacin, ketorolac, diclofenac, etodolac, sulindac, fentiazac, tenoxicam, lornoxicam, cynnoxicam, ibuproxam, nabumetone, tolmetin, amtolmetin. Accordingly, each of the foregoing are non-limiting examples of COX inhibitors that may be administered in combination with a compound of formula I.

Examples of derivatives of COX inhibitors that may be administered in combination with a compound of formula I are derivatives of COX inhibitors bearing nitrate (nitrooxy) or nitrite groups, such as those given, for example, in WO 98/09948, able to release NO in vivo.

Pharmaceutical Compositions

The invention further provides pharmaceutical compositions comprising a compound of formula I or an enantiomer, diastereomer, N-oxide, crystalline form, hydrate, solvate, active metabolite or pharmaceutically acceptable salt of the compound. The pharmaceutical composition may also include optional additives, such as a pharmaceutically acceptable carrier or diluent, a flavouring, a sweetener, a preservative, a dye, a binder, a suspending agent, a dispersing agent, a colorant, a disintegrator, an excipient, a diluent, a lubricant, an absorption enhancer, a bactericide and the like, a

stabiliser, a plasticizer, an edible oil, or any combination of two or more of said additives.

Suitable pharmaceutically acceptable carriers or diluents include, but are not limited to, ethanol, water, glycerol, aloe vera gel, allantoin, glycerine, vitamin-A and E oils, mineral oil, phosphate buffered saline, PPG2 myristyl propionate, magnesium carbonate, potassium phosphate, vegetable oil, animal oil and solketal.

Suitable binders include, but are not limited to, starch, gelatine, natural sugars such as glucose, sucrose and lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, vegetable gum, sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes and the like.

Suitable disintegrators include, but are not limited to, starch such as corn starch, methyl cellulose, agar, bentonite, xanthan gum and the like.

Suitable lubricants include, but are not limited to, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride and the like.

Suitable suspending agents include, but are not limited to, bentonite.

Suitable dispersing and suspending agents include, but are not limited to, synthetic and natural gums such as vegetable gum, tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinylpyrrolidone and gelatine.

Suitable edible oils include, but are not limited to, cottonseed oil, sesame oil, coconut oil and peanut oil.

Examples of additional additives include, but are not limited to, sorbitol, talc, stearic acid and dicalcium phosphate.

Unit Dosage Forms

The pharmaceutical composition may be formulated as unit dosage forms, such as tablets, pills, capsules, boluses, powders, granules, sterile parenteral solutions, sterile parenteral suspensions, sterile parenteral emulsions, elixirs, tinctures, metered aerosol or liquid sprays, drops, ampoules, autoinjector devices or suppositories. The unit dosage forms may be used for oral, parenteral, intranasal, sublingual or rectal administration, or for administration by inhalation or insufflation, transdermal patches, and a lyophilized composition. In general, any delivery of active ingredients that results in systemic availability of such ingredients can be used. Preferably the unit dosage form is an oral dosage form, most preferably a solid oral dosage; therefore the preferred dosage forms are tablets, pills and capsules. However, parenteral preparations are preferred too.

Solid unit dosage forms may be prepared by mixing the active agents of the present invention with a pharmaceutically acceptable carrier and any other desired

additives as described above. The mixture is typically mixed until a homogeneous mixture of the active agents of the present invention is obtained and the carrier and any other desired additives are formed, i.e. the active agents are dispersed evenly throughout the composition. In this case, the composition can be formed as dry or moist granules.

Dosage forms can be formulated as, for example, "immediate release" dosage forms. "Immediate release" dosage forms are typically formulated as tablets that release at least 60%-90% of the active ingredient within 30-60 min when tested in a drug dissolution test, e.g., U.S. Pharmacopeia standard <711>. In a preferred embodiment, immediate dosage forms release at 75% of active ingredient within about 45 min.

Dosage forms can also be formulated as, for example, "controlled release" dosage forms. "Controlled," "sustained," "extended" or "time release" dosage forms are equivalent terms that describe the type of active agent delivery that occurs when the active agent is released from a delivery vehicle at an ascertainable and manipulatable rate over a period of time, which is generally on the order of minutes, hours or days, typically ranging from about sixty minutes to about 3 days, rather than being dispersed immediately upon entry into the digestive tract or upon contact with gastric fluid. A controlled release rate can vary as a function of a multiplicity of factors. Factors. influencing the rate of delivery in controlled release include the particle size, composition, porosity, charge structure, and degree of hydration of the delivery vehicle and the active ingredient(s), the acidity of the environment (either internal or external to the delivery vehicle), and the solubility of the active agent in the physiological environment, i.e., the particular location along the digestive tract. Typical parameters for dissolution test of controlled release forms are found in U.S. Pharmacopeia standard <724>.

Dosage forms can also be formulated to deliver active agent in multiphasic stages whereby a first fraction of an active ingredient is released at a first rate and at least a second fractions of active ingredient is released at a second rate. In a preferred embodiment, a dosage form can be formulated to deliver active agent in a biphasic manner, comprising a first "immediate release phase", wherein a fraction of active ingredient is delivered at a rate set forth above for immediate release dosage forms, and a second "controlled release phase," wherein the remainder of the active ingredient is released in a controlled release manner, as set forth above for controlled release dosage forms.

Tablets or pills can be coated or otherwise prepared so as to form a unit dosage

form that has delayed and/or sustained action, such as controlled release and delayed release unit dosage forms. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of a layer or envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release.

Biodegradable polymers for controlling the release of the active agents include, but are not limited to, polylactic acid, polyepsilon caprolactone, polyhydroxybutyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates and crosslinked or amphipathic block copolymers of hydrogels.

For liquid dosage forms, the active substances or their physiologically acceptable salts are dissolved, suspended or emulsified, optionally with the usually employed substances such as solubilizers, emulsifiers or other auxiliaries. Solvents for the active combinations and the corresponding physiologically acceptable salts can include water, physiological salt solutions or alcohols, e.g. ethanol, propanediol or glycerol. Additionally, sugar solutions such as glucose or mannitol solutions may be used. A mixture of the various solvents mentioned may be used in the present invention too.

A transdermal dosage form is contemplated by the present invention too.

Transdermal forms may be a diffusion transdermal system (transdermal patch) using either a fluid reservoir or a drug-in-adhesive matrix system. Other transdermal dosage forms include, but are not limited to, topical gels, lotions, ointments, transmucosal systems and devices, and iontophoretic (electrical diffusion) delivery systems.

Transdermal dosage forms may be used for delayed release and sustained release of the active agents of the present invention.

The pharmaceutical compositions and unit dosage forms of the present invention for parenteral administration, and in particular by injection, typically include a pharmaceutically acceptable carrier, as described above. A preferred liquid carrier is vegetable oil. Injection may be, for example, intravenous, epidural, intrathecal, intramuscular, intraluminal, intratracheal or subcutaneous.

The active agents can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.

The active agents of the present invention may also be coupled with soluble

polymers such as targetable drug carriers. Such polymers include, but are not limited to, polyvinylpyrrolidone, pyran copolymers, polyhydroxypropylmethacrylamidophenol, polyhydroxyethylaspartamidophenol, and polyethylenoxypolylysine substituted with palmitoyl residues.

Administration

The pharmaceutical composition or unit dosage forms of the present invention may be administered by a variety of routes, such as the oral and enteral, intravenous, intramuscular subcutaneous, transdermal, transmucosal (including rectal and buccal) and by inhalation routes. Oral or transdermal routes are preferred (e.g., solid or liquid formulations or skin patches, respectively).

The pharmaceutical composition or unit dosage forms comprising an effective amount of the present invention may be administered to an animal, preferably a human, in need of treatment of neuromuscular dysfunction of the lower urinary tract described by E. J. McGuire in "Campbell's UROLOGY", 5th Ed., 616-638, 1986, W.B. Saunders Company, and patients affected by any physiological dysfunction related to impairment of 5-HT_{1A} receptor function. Such dysfunctions include, without limitation, central-nervous-system disorders such as depression, anxiety, eating disorders, sexual dysfunction, addiction and related problems.

As used herein, the term "effective amount" refers to an amount that results in measurable amelioration of at least one symptom or parameter of a specific disorder. In a preferred embodiment, the compound treats disorders of the urinary tract, such as urinary urgency, overactive bladder, increased urinary frequency, reduced urinary compliance (reduced bladder storage capacity), cystitis (including interstitial cystitis), incontinence, urine leakage, enuresis, dysuria, urinary hesitancy and difficulty in emptying the bladder, or central nervous system disorders due to serotonergic dysfunction (such as anxiety, depression, hypertension, sleep/wake cycle disorders, feeding behaviour, sexual function and cognition disorders in mammals (particularly a human) associated to stroke, injury, dementia and due to neurological development, disorders from hyperactivity related to an attention deficit (ADHD), drug addiction, drug withdrawal, irritable bowel syndrome.

The pharmaceutical composition or unit dosage form of the present invention may be administered according to a dosage and administration regimen defined by routine testing in the light of the guidelines given above in order to obtain optimal activity while minimising toxicity or side effects for a particular patient. However, such fine tuning of the therapeutic regimen is routine in the light of the guidelines given herein.

The dosage of the active agents of the present invention may vary according to a variety of factors such as underlying disease conditions, the individual's condition, weight, sex and age, and the mode of administration. An effective amount for treating a disorder can easily be determined by empirical methods known to those of ordinary skill in the art, for example by establishing a matrix of dosages and frequencies of administration and comparing a group of experimental units or subjects at each point in the matrix. The exact amount to be administered to a patient will vary depending on the state and severity of the disorder and the physical condition of the patient. A measurable amelioration of any symptom or parameter can be determined by a person skilled in the art or reported by the patient to the physician. It will be understood that any clinically or statistically significant attenuation or amelioration of any symptom or parameter of urinary tract disorders is within the scope of the invention. Clinically significant attenuation or amelioration means perceptible to the patient and/or to the physician.

For example, a single patient may suffer from several symptoms of dysuria simultaneously, such as, for example, urgency and excessive frequency of urination or both, and these may be reduced using the methods of the present invention. In the case of incontinence, any reduction in the frequency or volume of unwanted passage of urine is considered a beneficial effect of the present method of treatment.

The amount of the agent to be administered can range between about 0.01 and about 25 mg/kg/day, preferably between about 0.1 and about 10 mg/kg/day and most preferably between 0.2 and about 5 mg/kg/day. It will be understood that the pharmaceutical formulations of the present invention need not necessarily contain the entire amount of the agent that is effective in treating the disorder, as such effective amounts can be reached by administration of a plurality of doses of such pharmaceutical formulations.

In a preferred embodiment of the present invention, the compounds are formulated in capsules or tablets, preferably containing 50 to 200 mg of the compounds of the invention, and are preferably administered to a patient at a total daily dose of 50 to 400 mg, preferably 150 to 250 mg and most preferably about 200 mg, for relief of urinary incontinence and dysfunctions under treatment with 5-HT_{1A} receptor ligand.

A pharmaceutical composition for parenteral administration contains from about 0.01% to about 100% by weight of the active agents of the present invention, based upon 100% weight of total pharmaceutical composition.

Generally, transdermal dosage forms contain from about 0.01% to about 100% by

weight of the active agents versus 100% total weight of the dosage form.

The pharmaceutical composition or unit dosage form may be administered in a single daily dose, or the total daily dosage may be administered in divided doses. In addition, co-administration or sequential administration of another compound for the treatment of the disorder may be desirable. For example, the compounds of the invention may be administered in combination with more antimuscarinic, α_1 -adrenergic antagonist, 5-HT_{1A} receptor antagonist, or COX inhibitors or NO releasing derivatives thereof, for the therapy of lower urinary tract symptoms. Examples of antimuscarinics, α_1 -adrenergic antagonists, 5-HT_{1A} receptor antagonist, COX inhibitors and NO releasing derivatives thereof are set forth above, without limitation.

For combination treatment where the compounds are in separate dosage formulations, the compounds can be administered concurrently, or each can be administered at separate staggered times. For example, the compound of the invention may be administered in the morning and the antimuscarinic compound may be administered in the evening, or vice versa. Additional compounds may be administered at specific intervals too. The order of administration will depend upon a variety of factors including age, weight, sex and medical condition of the patient; the severity and aetiology of the disorders to be treated, the route of administration, the renal and hepatic function of the patient, the treatment history of the patient, and the responsiveness of the patient. Determination of the order of administration may be fine-tuned and such fine-tuning is routine in the light of the guidelines given herein.

Uses-Methods for Treatment

Without wishing to be bound by theory, it is believed that administration of 5-HT_{1A} receptor antagonists prevents unwanted activity of the sacral reflex and/or cortical mechanisms that control micturition. Thus, it is contemplated that a wide range of neuromuscular dysfunctions of the lower urinary tract can be treated using the compounds of the present invention, including without limitation dysuria, incontinence and enuresis (overactive bladder). Dysuria includes urinary frequency, nocturia, urgency, reduced urinary compliance (reduced bladder storage capacity), difficulty in emptying the bladder, i.e. a suboptimal volume of urine is expelled during micturition. Incontinence syndromes include stress incontinence, urgency incontinence and enuresis incontinence, as well as mixed forms of incontinence. Enuresis refers to the involuntary passage of urine at night or during sleep.

The compounds of the present invention may also be useful for the treatment of central nervous system disorders due to serotonergic dysfunction.

The following examples represent typical syntheses of the compounds of formula I as described generally above. These examples are illustrative only and are not intended to limit the invention in any way. The reagents and starting materials are readily available to one of ordinary skill in the art.

Example 1

8-{N-[3-(2-Cyanophenyl)-4-cyclohexyl-4-oxobutyl]-N-methyl-2-aminoethoxy}-quinoline

2-(2-Cyclohexyl-2-oxoethyl)-benzonitrile (Compound 1a)

To a solution of 0.47 g of 2-tolunitrile in 4 ml of THF was added 0.535 ml of 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)pyrimidinone (DMPU) and the mixture was cooled at – 78°C; 2.22 ml of a 2M sol. of LDA in THF was then dropped during 5 min., then the reaction mixture was stirred at the same temperature for 15 min. followed by dropwise addition of 0.757 g of N-methyl-N-methoxycyclohexanecarboxamide in 4 ml of THF. After 1 h stirring at –78°C, the reaction mixture was quenched with a 10% aq. sol. of NH₄Cl. The temperature was allowed to rise at r.t. and the mixture was extracted with EtOAc (2x20ml), washed with 30 ml of brine, dried on Na₂SO₄ and evaporated to dryness in vacuo. The crude was purified by flash chromatography (PE – EtOAc 90:10) to afford 0.34 g of the title compound.

¹H-NMR (*CDCl*₃, δ): 1.10-2.05 (m, 10H); 2.45-2.60 (m, 1H); 4,00 (m, 2H); 7.20-7.43 (m, 2H); 7.48-7.70 (m, 2H);

3-(2-Cyanophenyl)-4-cyclohexyl-4-oxobutyraldehyde diethyl acetal (Compound 1b)
To a suspension of 414 mg of 60% NaH oil dispersion in 10 ml of anhydrous DMF was added drop wise during 6 min under a nitrogen stream, a solution of 1.84 g of compound 1a in 5 ml of DMF and the reaction mixture was stirred at r.t. for 1 h; then was added 2.15 g of 2-bromoacetaldehyde diethyl acetal (97 %) in 5 ml of DMF; the mixture was stirred at r.t. for 15', then at 80°C for 5.5 h. Afterwards, the mixture was diluted with H₂O (250 ml), acidified with 2 N HCl, extracted with Et₂O (3 x 50 ml), washed with H₂O (40 ml), dried (Na₂SO₄) ed evaporated in vacuo, affording a crude (brownish oil), which was

purified by flash chromatography (PE - EtOAc 90:10) to yield 1.91 g of compound 1b as a yellowish oil.

¹H-NMR (*CDCl*₃, δ): 1.09-1.26 (m, 6H); 1.27-1.39 (m, 4H); 1.46-1.57 (m, 1H); 1.59-1.74 (m, 3H); 1.77-1.88 (m, 1H); 1.93-2.08 (m, 2H); 2.38-2.50 (m, 2H); 3.39-3.51 (m, 2H); 3.54-3.72 (m, 2H); 4.30-4.34 (m, 1H); 4.53-4.61 (m, 1H); 7.33-7.44 (m, 2H); 7.51-7.61 (m, 1H); 7.66-7.72 (m, 1H).

3-(2-Cyanophenyl)-4-cyclohexyl-4-oxobutyraldehyde (Compound 1c)

A mixture of 1 g of the compound 1b, 9.5 ml of 50% aq. trifluoroacetic acid and 19 ml of CH_2Cl_2 was stirred for 2 h at r.t., then diluted with 8 ml of CH_2Cl_2 . The organic layer was separated, washed with brine (2 x 15 ml), dried (Na₂SO₄) and evaporated to dryness in vacuo to afford a crude (0.788 g), used in the next step without further purification.

¹H-NMR ($CDCl_3$, δ): 1.01-2.11 (m, 10H); 2.31-2.43 (m, 1H); 2.64 (dd, 1H); 3.29-3.41 (m, 1H); 4.78 (dd, 1H); 7.25-7.37 (m, 1H); 7.39-7.53 (m, 2H); 7.61-7.64 (m, 1H); 9.62-9.68 (m, 1H).

8- $\{N-[3-(2-Cyanophenyl)-4-cyclohexyl-4-oxobutyl]-N-methyl-2-aminoethoxy\}$ -quinoline A mixture of 0.197 g of the compound 1c, 0.177 g of 8- $\{N-methyl-2-aminoethoxy\}$ -quinoline, 0.31 g of sodium triacetoxyborohydride, 0.17 ml of AcOH and 6 ml of CH_2Cl_2 was stirred at r.t. for 1 h and alkalinised with 2 N NaOH. The organic layer was separated, washed with brine (2 x 15 ml), dried (Na₂SO₄) and evaporated to dryness in vacuo the give a crude which was purified by flash chromatography (CH_2Cl_2 - MeOH 95:5) affording the title compound (0.17 g; 52%).

¹H-NMR (*CDCl*₃, δ): 1.11-1.40 (m, 5H); 1.51-1.60 (m, 1H); 1.61-1.83 (m, 6H); 1.85-2.02 (m, 2H); 2.30-2.52 (m, 5H); 2.95-3.08 (m, 2H); 4.26-4.38 (m, 2H); 4.50-4.61 (m, 1H); 7.11 (d, 1H); 7.32-7.38 (m, 1H); 7.39-7.57 (m, 4H); 7.67 (d, 1H); 8.15 (d, 1H); 8.92-8.99 (m, 1H).

 $[M+H]^+ = 456.25$

Example 2

8-{N-[3-(2-Cyanophenyl)-4-cyclohexyl-4-hydroxybutyl]-N-methyl-2-aminoethoxy}-quinoline

To a solution of 0.17 g of Compound of Example 1 in MeOH (5 ml), cooled at 0°C, 21.2 mg of NaBH₄ were added; the resulting mixture was stirred at 0°C for 30', then 1 h at r.t. Afterwards, the solvent was evaporated in vacuo and the crude poured into H₂O (10 ml) and extracted with CH₂Cl₂ (3x10 ml). The organic layer was separated, dried (Na₂SO₄) and evaporated to dryness in vacuo. The crude was purified by flash chromatography (EtOAc – 2 N methanolic ammonia 97:3) affording the title compound (55 mg; 32%). $[M+H]^+$ = 458.42

Example 3

1-[3-(2-Cyanophenyl)-4-cyclohexyl-4-oxobutyl]-4-(2,6-dimethylphenyl)-piperidine

The title compound was obtained following the procedure described for the compound of Example 1, but using 4-(2,6-dimethylphenyl)-piperidine instead of 8-(N-methyl-2-aminoethoxy)-quinoline. Purification by flash chromatography (CH₂Cl₂ – MeOH 97:3) yielded the title compound (32.8%) as an oil.

¹H-NMR (*CDCl*₃, δ): 1.09-1.43 (m, 5H), 1.49-1.86 (m, 7H), 1.88-1.94 (m, 2H), 1.96-2.14 (m, 3H), 2.39-2.61 (m, 10H), 2.91-3.06 (m, 3H), 4.57-4.77 (m, 1H), 6.96-7.07 (m, 3H), 7.32-7.47 (m, 2H), 7.54-7.63 (m, 1H); 7.66-7.74 (m, 1H). [M+H]⁺ = 443.33

Example 4

1-[3-(2-Cyanophenyl)-4-cyclohexyl-4-hydroxybutyl]-4-(2,6-dimethylphenyl)-piperidine

Example 2, but using the compound of Example 3 as starting material instead of the compound of Example 1. Purification by flash chromatography (CH_2Cl_2 - MeOH / NH_3 97:3) yielded the title compound (20.9%) as an oil. 1H -NMR ($CDCl_3$, δ): 1.09-1.43 (m, 5H), 1.49-1.86 (m, 7H), 1.88-1.94 (m, 2H), 1.96-2.14 (m, 3H), 2.39-2.61 (m, 10H), 2.91-3.06 (m, 3H), 4.57-4.77 (m, 1H), 6.96-7.07 (m, 3H), 7.32-7.47 (m, 2H), 7.54-7.63 (m, 1H); 7.66-7.74 (m, 1H). $[M+H]^+$ = 445.44

The title compound was obtained following the procedure described for the compound of

Example 5

$1\hbox{-}[3\hbox{-}(2\hbox{-}Cyanophenyl)\hbox{-}4\hbox{-}cyclohexyl}\hbox{-}4\hbox{-}oxobutyl]\hbox{-}4\hbox{-}(4\hbox{-}fluoro\hbox{-}2\hbox{-}methoxyphenoxy)\hbox{-}piperidine}$

Example 1, but using 4-(4-fluoro-2-methoxyphenoxy)-piperidine instead of 8-(N-methyl-2-aminoethoxy)-quinoline. Purification by flash chromatography (EP - EtOAc - MeOH / NH₃ 7:3:0.2) yielded the title compound (12.3%)as an oil. 1 H-NMR (*CDCl*₃, δ): 1.06-1.33 (m, 5H), 1.41-2.90 (m, 16H), 2.58-2.76 (m, 2H), 3.74 (s, 3H); 3.98-4.11 (m, 1H), 4.89-4.54 (m, 1H), 6.43-6.52 (m, 1H); 6.54-6.60 (m, 1H); 6.73-6.81 (m, 1H); 7.22-7.33 (m, 1H); 7.35-7.53 (m, 2H); 7.57-7.69 (m, 1H). [M+H]⁺ = 479.29

The title compound was obtained following the procedure described for the compound of

Example 6 Radioligand binding to recombinant 5-HT_{1A} receptors A. Method:

A Genomic clone G-21 coding for the human 5HT_{1A}-serotonergic receptor is stably transfected in a human cell line (HeLa). HeLa cells are grown as monolayers in Dulbecco's modified Eagle medium (DMEM), containing 10% foetal bovine serum, gentamycin (0.1 mg/ml) and 5% carbon dioxide, at 37°C. The cells are detached from the growth flask at 95% confluence by a cell scraper and are lysed in cold 5 mM Tris and 5 mM EDTA buffer (pH 7.4). The homogenates are centrifuged at 40000 x g x 20 minutes and the pellets are resuspended in a small volume of cold 5 mM Tris and 5 mM EDTA buffer (pH 7.4) and immediately frozen and stored at –70°C until use. On the day of experiment, the cell membranes are resuspended in incubation buffer: 50 mM Tris HCl (pH 7.4), 2.5 mM MgCl₂, 10 mM pargyline (Fargin et al., *Nature* 335, 358-360, 1988). The membranes are incubated in a final volume of 1 ml for 30 minutes at 30°C with 1 nM [³H]8-OH-DPAT, in the absence or presence of the test compounds. Non-specific binding is determined in the presence of 10 μM 5-HT. Incubation is stopped by addition of cold Tris-HC1 buffer and rapid filtration through a 0.2%-polyethyleneimine-pretreated Whatman-GF/B or Schleicher-&-Schuell-GF52 filter.

B. Results

The affinity of the tested compounds is evaluated as inhibition of specific binding

of the radioligand to 5-HT_{1A} receptors (IC₅₀) by using the non-linear curve-fitting program Allfit (De Lean et al., *Am. J. Physiol.* 235, E97-E102 (1978). The IC₅₀ value is converted to an affinity constant (Ki) by the equation of Cheng & Prusoff (Cheng Y. C., et al., *Biochem. Pharmacol.* 22, 3099-3108 (1973)).

Example 7 Effects on rhythmic bladder-voiding contractions induced by bladder filling in anaesthetised rats

A. Method:

Female Sprague-Dawley rats weighing 225-275 g (Crl: CD® (SD) IGS BR. Charles River Italia) are used. The animals are housed with free access to food and water and maintained on a forced 12-hour alternating light-dark cycle at 22-24°C for at least one week, except during the experiment. The activity on rhythmic bladder voiding contractions is evaluated according to the method of Dray (Dray J., Pharmacol. Methods, 13:157, 1985), with some modifications as in Guarneri (Guarneri, *Pharmacol. Res.* 27:173, 1993). Briefly, the rats are anaesthetised by subcutaneous injection of 1.25 g/kg (5 ml/kg) urethane, after which the urinary bladder is catheterised via the urethra using PE 50 polyethylene tubing filled with physiological saline. The catheter is tied in place with a ligature around the external urethral orifice and is connected to conventional pressure transducers (Statham P23 ID/P23 XL). The intravesical pressure is displayed continuously on a chart recorder (Battaglia Rangoni KV 135 with DCI/TI amplifier). The bladder is then filled via the recording catheter by incremental volumes of warm (37°C) saline until reflex bladder-voiding contractions occurred (usually 0.8-1.5 ml). For intravenous injection of bioactive compounds, PE 50 polyethylene tubing filled with physiological saline is inserted into the jugular vein.

From the cystometrogram, the number of contractions recorded 15 minutes before (basal values) and after treatment, as well as the mean amplitude of these contractions (mean height of the peaks in mmHg), is evaluated.

Since most compounds produce an effect that is relatively rapid in onset and leads to a complete cessation of bladder contractions, bioactivity is conveniently estimated by measuring the duration of bladder quiescence (i.e., the length of the time during which no contractions occurred). The number of tested animals showing a reduction in the number of contractions higher than 30% of that observed in the basal period is also recorded.

To compare the potency of tested compounds for inhibiting the bladder voiding

WO 03/106421 -34- PCT/EP03/06290

contractions, equieffective doses which result in the disappearance of contractions for a time of 10 minutes (ED_{10min}) are computed by means of linear regression using the least square method. The extrapolated doses which induce a reduction in the number of contractions greater than 30% in 50% of the treated rats (ED_{50}) is evaluated by the method of Bliss (Bliss C. I., *Quart J. Pharm. Pharmacol.* 11, 192-216, 1938).

B. Results

The rapid distension of the urinary bladder in urethane-anaesthetised rats produces a series of rhythmic bladder-voiding contractions whose characteristics have been described (Maggi et al., *Brain Res.* 380:83, 1986; Maggi et al., *J. Pharmacol. Exp. Ther.*, 230: 500, 1984). The frequency of these contractions is related to the sensory afferent arm of reflex micturition and to the integrity of the micturition centre, while their amplitude depends on the function of the reflex efferent arm. In this model system, compounds that act mainly on the central nervous system (such as morphine) cause a block in voiding contractions, whereas drugs that act at the level of the detrusor muscle, such as oxybutynin, lower the amplitude of the bladder contractions.

Example 8 Effect on cystometric parameters in conscious rats after oral administration

A. Method:

Male Sprague-Dawley rats [Crl: CD® (SD) IGS BR] of 300-400 g supplied by Charles River Italia are used. The animals are housed with free access to food and water and maintained on a forced 12-hour-light/12-hour-dark cycle at 22-24°C of temperature, except during the experiment. To quantify urodynamic parameters in conscious rats, cystometrographic studies is performed according to the procedure previously reported (Guarneri et al., *Pharmacol. Res.* 24: 175, 1991).

Briefly, the rats are anaesthetised by intraperitoneal administration of 3 ml/kg of Equithensin solution (pentobarbital 30 mg/kg and chloral hydrate 125 mg/kg) and placed in a supine position. An approximately-10-mm-long midline incision is made in the shaved and cleaned abdominal wall. The urinary bladder is gently freed from adhering tissues, emptied and then cannulated via an incision in the bladder body, using a polyethylene cannula (0.58-mm internal diameter, 0.96-mm external diameter) which is permanently sutured with silk thread. The cannula is exteriorised through a subcutaneous

WO 03/106421 -35- PCT/EP03/06290

tunnel in the retroscapular area, where it is connected to a plastic adapter in order to avoid the risk of removal by the animal. For drug testing, the rats are utilised one day after implantation.

On the day of the experiment, rats are placed in modified Bollman cages, i.e., restraining cages, that are large enough to permit the rats to adopt a normal crouched posture, but narrow enough to prevent turning around. After a stabilisation period of about 20 minutes, the free tip of the bladder cannula is connected through a T-shaped tube to a pressure transducer (Statham P23XL) and to a peristaltic pump (Gilson minipuls 2) for continuos infusion of a warm (37°C) saline solution into the urinary bladder, at a constant rate of 0.1 ml/minute. The intraluminal-pressure signal during infusion of saline into the bladder is continuously recorded on a polygraph (Rectigraph-8K San-ei with BM614/2 amplifier from Biomedica Mangoni) .The cystometrogram is used to evaluate the urodynamic parameters of bladder volume capacity (BVC) and micturition pressure (MP). BVC (ml) is defined as the volume of saline infused into the bladder necessary to induce detrusor contraction followed by micturition. MP (mmHg) is defined as the maximal intravesical pressure caused by contraction during micturition. Basal BVC and MP values are evaluated as mean of the values observed in the cystometrograms recorded in an initial period of 30-60 minutes. Following determination of basal BVC and MP, the infusion is interrupted and the test compounds are administered orally by a stomach tube. Bladder infusion is resumed and changes in BVC and MP are evaluated from the mean values obtained in the cystometrograms observed during 1, 2, 3, 4 and 5 hours after treatment. Compounds are administered in a volume of 2 ml/kg and groups of control animals receive the same amount of vehicle (0.5% methocel in water) orally.

Statistical analysis

Data are expressed as mean \pm standard error. The percent changes of BVC and MP versus the basal values, as well as Δ values (difference in ml or mmHg) of BVC and MP (BVC or MP at time "x" minus basal value), are evaluated for each rat/time. Data are reported as % changes versus basal values.

Statistical analysis on BVC and MP values, as well as on Δ values, is performed by S.A.S./STAT software, version 6.12. The observed differences between vehicle (control) and test treatments are evaluated on Δ values of BVC and MP, whereas the differences between the values at different times *versus* basal values are analyzed on

original BVC and MP data.

Example 9 Inhibition of stereotypy (rhythmic forepaw treading) induced by 8-OH-DPAT in rats (post-synaptic antagonism)

A. Method:

The inhibitory effect of 5-HT_{1A}-receptor antagonists on stereotyped forepaw treading induced in rats by subcutaneous injection of 8-OH-DPAT is evaluated by the method of Tricklebank (Tricklebank et al., *Eur. J. Pharmacol.*, <u>117</u>: 15, 1985) with minor modifications as described below.

Male Sprague-Dawley rats [Crl: CD® (SD) IGS BR] weighing 150-175 g from Charles River Italia are used. The animals are housed with free access to food and water and maintained on a forced 12-hour-light/12-hour-dark cycle at 22-24°C of temperature. On the day of the experiment, the rats are placed singly in clear plastic containers, 10-15 minutes before administration of the vehicle or compounds to be tested. For evaluation of antagonistic activity after oral administration, the compounds are administered 1 and 4 hours before induction of stereotypy by 8-OH-DPAT (1 mg/kg subcutaneously). Observation sessions last 30 seconds and begin 3 min after 8-OH-DPAT treatment and were repeated every 3 minutes over a period of 15 minutes.

The appearance of the symptom induced by postsynaptic stimulation of 5-HT $_{1A}$ receptors is noted, and the intensity is scored using an intensity scale in which: 0 = absent, 1 = equivocal, 2 = present and 3 = intense. Behavioural scores for treated rats are accumulated throughout the observation time (5 observation periods) and expressed as mean values of 4 rats/dose. Change in mean values of treated animals in comparison with control (vehicle) group, expressed as per-cent inhibition, was used to quantify the antagonistic activity.

CLAIMS

1. A compound having the general formula I

$$R_1$$
 R_1
 R_5
 R_5
 R_6
 R_6

wherein

R represents a hydrogen atom or one or more halogen atoms or (C_1-C_6) -alkyl, (C_1-C_6) -alkyl, (C_1-C_6) -alkylthio, hydroxy, halo, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, (C_1-C_6) -haloalkyl, (C_1-C_6) -haloalkoxy, (C_1-C_6) -hydroxyalkyl, alkoxy- (C_1-C_6) -alkyl, nitro, amino, (C_1-C_6) -aminoalkyl, (C_1-C_6) -alkylamino, N- (C_1-C_6) -alkylamino- (C_1-C_6) -alkyl, N, N-di- (C_1-C_6) -alkylamino, acylamino, (C_1-C_6) -alkylsulphonylamino, aminosulphonyl, (C_1-C_6) -alkylaminosulphonyl, cyano, aminocarbonyl, N- (C_1-C_6) -alkylaminocarbonyl, N, N-di- (C_1-C_6) -alkylaminocarbonyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkylcarbonyl, alkanoyloxy- (C_1-C_6) -alkyl, (C_1-C_6) -alkylaminocarbonylamino, (C_1-C_6) -alkylsulphinyl, (C_1-C_6) -alkylsulphonyl, and N, N-di- (C_1-C_6) -alkylaminosulphonyl groups;

R₁ represents a hydrogen atom or a cycloalkyl, aryl, aryloxy, aralkyl, aralkoxy, heterocyclic, heterocycloxy, heterocycloalkyl or heterocycloalkoxy group, each group being optionally substituted with one or more substituent R as above defined;

Q represents a carbonyl or hydroxymethylene group or a group of the formula $-CH(OR_2)$ - where R_2 represents a (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl or cycloalkyl group, each of which is optionally substituted with one or more groups selected from R_8 and R_9 , where R_8 is selected from the group consisting of halo, (C_1-C_6) -alkoxy, (C_1-C_6) -haloalkoxy, cyano, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkylcarbonyl, alkoxyalkyl, aminocarbonyl, N- (C_1-C_6) -alkylaminocarbonyl, N, N-di- (C_1-C_6) -alkylaminocarbonyl groups and R_9 is selected from the group consisting of aryl, heteroaryl, aryloxy, heteroaryloxy, arylalkoxy, and heteroarylalkoxy groups, each optionally substituted with R, or R_2 represents -C(O)- (C_1-C_6) -alkyl, -C(O)O- (C_1-C_6) -

alkyl, $-C(O)NR_{10}R_{11}$ or $-C(S)NR_{10}R_{11}$ wherein each of R_{10} and R_{11} independently represents a hydrogen atom or a (C_1-C_6) -alkyl group;

 R_3 represents a (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl, cycloalkyl, aryl or heterocyclic group, each of which is optionally substituted with one or more substituent R or R_1 , defined as above;

R₄ represents an aryl or heterocyclic group, each of which is optionally substituted with one or more substituents R, defined as above;

A represents CH or N,

R₅ represents

$$-\left| - \right| - N$$
 or
$$- \left| - \right| - N$$

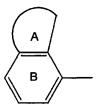
(where R₄ is bound to the right of each group)

m and n are independently 1 or 2,

R₆ represents H or alkyl,

R₇ represents O, S, NR₆ or CH₂;

B represents a bond, O, S, NR₆ or CH₂; and


represents a single or double bond,

with a proviso that the substituents of formula I are not such that simultaneously Q represents-C(O)- or -CH(OH)-; R represents a hydrogen atom or one or more substituents selected from the group consisting of alkyl, alkoxy, alkylthio, hydroxy, halo, haloalkyl, nitro, amino or cyano groups; R_1 represents a hydrogen atom or a phenyl or alkylphenyl group; R_3 represents a cycloalkyl, aryl or heterocycic group, each of which is optionally substituted with one or more substituent selected from the group consisting of $(C_1$ - $C_6)$ -alkyl, $(C_1$ - $C_6)$ -alkoxy, $(C_1$ - $C_6)$ -alkylthio, hydroxy, halo, $(C_1$ - $C_6)$ -haloalkyl, nitro, amino, cyano, unsubstituted phenyl, and alkylphenyl groups; R_5 represents group (i) wherein B represents a bond or CH_2 ; and R_4 represents the group

wherein X represents O, S, NH, N(C₁-C₆-alkyl), S(=O) or S(=O)₂, and R₁₂ and R₁₃ each represent one or more member selected independently from the group consisting of halo,

hydroxy, alkyl, alkoxy, haloalkyl, alkylthio, nitro, amino, cyano, N- $(C_1$ - C_6)-alkylamino, N, N-di- $(C_1$ - C_6)-alkylamino, aminocarbonyl, N- $(C_1$ - C_6)-alkylaminocarbonyl and acylamino groups, and

and further with the proviso that the substituents of formula I are not such that simultaneously Q represents-C(O)-; R represents a hydrogen atom or one or more substituents selected from the group consisting of alkyl, alkoxy, halo, haloalkyl, nitro, amino, alkylamino, N, N-di-alkylamino, aminocarbonyl, and alkoxycarbonyl groups; R₁ represents hydrogen; R₅ represents group (i) wherein B represents a bond or CH₂; R₄ represents an aryl or fully aromatic heteroaryl, each optionally substituted with one or more substituent selected from the group consisting of alkyl, alkoxy, halo, haloalkyl, nitro, amino, alkylamino, N, N-di-alkylamino, aminocarbonyl and alkoxycarbonyl groups, or R₄ represents a bicyclic heteroaryl radical of formula

wherein A is a saturated or unsaturated ring having one or more heteroatoms, where rings A and B are each independently substituted with one or more substituent selected from the group consisting of alkyl, halo, hydroxy, alkoxy, hydroxyalkyl, alkoxyalkyl, alkanoyloxyalkyl, alkylcarbonyl, alkylcarbonylalkyl,, amino, N-alkylamino and N,N,- dialkylamino; and R₃ represents a saturated heterocyclic ring comprising a nitrogen atom, through which said saturated heterocyclic ring is bonded to the adjacent carbonyl group at Q, and which may optionally include a further hetero atom, and which may also be optionally substituted with one or more substituent selected from the group consisting of alkyl, alkoxy, halo and haloalkyl groups,

or an enantiomer, optical isomer, diastereomer, N-oxide, crystalline form, hydrate, solvate or pharmaceutically acceptable salt thereof.

2. A compound having the general formula I wherein R, R_1 , R_3 , R_4 , R_5 , Q, A and m are as defined in claim 1, provided that, if Q represents a carbonyl or hydroxymethyl group and R_5 represents a group of formula

then R₃ is not a heterocyclic group attached to Q by a C-N bond and R₄ is not a substituted or unsubstituted 7-indolyl, 7-benzofuranyl or 7-benzothienyl group.

3. A compound according to claim 1 or claim 2 wherein R₅ represents

4. A compound according to claim 1 or claim 2 wherein R₅ represents

$$-\left|-\right|-R_{0}$$

$$R_{7}-\left|-\right|$$

- 5. A compound according to any of claims 1 to 4 wherein R_3 represents a hydrogen atom or a (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, (C_2-C_6) -alkynyl group, each group being optionally substituted with one or more substituent R or R_1 as defined in claim 1.
- 6. A compound according to claim 5 wherein R₃ represents a hydrogen atom or a methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t.butyl, vinyl, allyl, prop-1-enyl, 1-methylvinyl, 2-methylallyl, ethynyl or prop-1-ynyl group.
- 7. A compound according to any of claims 1 to 4 wherein R₃ represents a cyclohexyl or 2-thienyl group.
- 8. A compound according to any of claims 1 to 7 wherein R₄ represents an unsubstituted heterocyclic group or a phenyl group substituted with one or more halogen atoms or (C₁-C₆)-alkyl, (C₁-C₆)-alkoxy or (C₁-C₆)-haloalkoxy groups.
- 9. A compound according to claim 8 wherein R₄ represents a 5-(2,3-dihydro-1,4-benzodioxinyl), 4-indolyl, 8-quinolyl, 2-methoxyphenyl, 2,6-dimethylphenyl, 4-fluoro-2-

methoxyphenyl or 2-(2,2,2-trifluoroethoxy)-phenyl group.

- 10. A compound according to claim 1, being
- 8-{N-[3-(2-Cyanophenyl)-4-cyclohexyl-4-oxobutyl]-N-methyl-2-aminoethoxy}quinoline,
- 8-{N-[3-(2-Cyanophenyl)-4-cyclohexyl-4-hydroxybutyl]-N-methyl-2-aminoethoxy}quinoline,
- 1-[3-(2-Cyanophenyl)-4-cyclohexyl-4-oxobutyl]-4-(2,6-dimethylphenyl)-piperidine,
- 1-[3-(2-Cyanophenyl)-4-cyclohexyl-4-hydroxybutyl]-4-(2,6-dimethylphenyl)-piperidine or
- 1-[3-(2-Cyanophenyl)-4-cyclohexyl-4-oxobutyl]-4-(4-fluoro-2-methoxyphenoxy)-piperidine.
- 11. A pharmaceutical composition comprising a compound according to any of claims 1 to 10 or an enantiomer, optical isomer, diastereomer, N-oxide, crystalline form, hydrate, solvate or pharmaceutically acceptable salt of such a compound in admixture with a pharmaceutically acceptable diluent, excipient or carrier.
- 12. A method of reducing the frequency of urinary bladder contractions in a mammal in need of such treatment, the method comprising administering an effective amount of a compound according to any of claims 1 to 10 or of a composition according to claim 11 to said mammal.
- 13. A method of treating neuromuscular dysfunction of the lower urinary tract in a mammal in need of such treatment, the method comprising administering an effective amount of a compound according to any of claims 1 to 10 or of a composition according to claim 11 to said mammal.
- 14. A method according to claim 13 whereby one or more of the conditions or symptoms of urinary urgency, overactive bladder, increased urinary frequency, incontinence, mixed incontinence, urine leakage, enuresis, dysuria, urinary hesitancy and difficulty in emptying the urinary bladder is ameliorated.

- 15. A method according to any of claims 12 to 14 wherein said mammal is a human.
- 16. A method according to any of claims 12 to 15 wherein the compound or composition is administered by an oral, enteral, intravenous, intramuscular, subcutaneous, transmucosal, transdermal or by-inhalation route.
- 17. A method according to any of claims 12 to 16 wherein the compound or composition is administered in combination with an antimuscarinic or α_1 antagonist.
- 18. A method according to claim 17 wherein said antimuscarinic is oxybutynin, tolterodine, darifenacin or temiverine.
- 19. A method according to claim 17 wherein said α_1 antagonist is prazosin, doxazosin, terazosin, alfuzosin or tamsulosin.
- 20. A method for treating disorders of the central nervous system caused by serotonergic dysfunction, the method comprising delivering an effective amount of a compound according to any one of claims 1 to 10 or of a composition according to claim 11 to the environment of a 5-HT_{1A} serotonergic receptor.
- 21. A method according to claim 20 wherein said compound or composition is delivered via an extracorporeal route.
- 22. A method according to claim 21 wherein said compound or composition is delivered by administering the compound to a mammal possessing the 5-HT_{1A} serotonergic receptor.

(19) World Intellectual Property Organization

International Bureau

T DOTTO DERIODE TO COMPLETE COMPLICATION COMPLETE COMPLETE

(43) International Publication Date 24 December 2003 (24.12.2003)

PCT

(10) International Publication Number WO 2003/106421 A3

- (51) International Patent Classification7: C07D 211/14, 211/46, 215/26, A61K 31/445, 31/451, 31/47, A61P 13/00
- (21) International Application Number:

PCT/EP2003/006290

- (22) International Filing Date: 16 June 2003 (16.06.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: MI2002A001329

14 June 2002 (14.06.2002)

- (71) Applicant (for all designated States except IT): RECOR-DATI S.A. [CH/CH]; Piazza Boffalora 4, CH-6830 Chiasso (CH)
- (71) Applicant (for 1T only): RECORDATI INDUSTRIA CHIMICA E FARMACEUTICA SPA [IT/IT]; Via Matteo Civitali, 1, I-20148 Milano (IT).
- (72) Inventors: LEONARDI, Amedeo; Via Poliziano, 16, I-20154 Milano (IT). MOTTA, Glanni; Via Ungaretti, 10, I-20030 Barlassina (IT). RIVA, Carlo; Via Walder, 10, I-21100 Varese (IT). GUARNERI, Luciano; Via Canova, 18, I-20024 Garbagnate Milanese (IT).

- (74) Agent: SERJEANTS; 25 The Crescent, King Street, Leicester LE1 6RX (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

[Continued on next page]

(54) Title: PHENYLALKYLAMINES AND PYRIDYLALKYLAMINES WITH SEROTONINERGIC RECEPTOR AFFINITY

$$R_1$$
 R_1
 R_3
 R_5
 R_5
 R_4
 R_3
 R_5

(57) Abstract: Compounds of formula (I), (A is CH or N, R and R_1 are a wide range of substituents, Q is CO, CHOH or CHOR₂, R_2 is alkyl, alkenyl, alkynyl or cycloalkyl group, each of which is optionally substituted, or is alkanoyl, alkanoyoxy, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, aminothiocarbonyl, alkylaminothiocarbonyl or dialkylaminothiocarbonyl, R_3 is alkyl, alkenyl, alkynyl, cycloalkyl, aryl or heterocyclic group, each of which is optionally substituted, m is 1 or 2, R_4 is an aryl or heteroaryl group, either of which is optionally substituted, R_5 is either (II) or (III), wherein m is 1 or 2, R_6 is H or alkyl, R_7 is O, S, NR_6 or CH_2 , B is a bond, O, S, NR_6 or CH_2 and _______ represents a single or double bond) have affinity for serotoninergic receptors. These compounds and their enantiomers, diastereoisomers, N-piperazine oxides, polymorphs, solvates and pharmaceutically acceptable salts are useful in the treatment of patients with neuromuscular dysfunction of the lower urinary tract and diseases related to 5-HT_{1A} receptor activity.

(II)

(88) Date of publication of the international search report: 17 June 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

nal Application No

PCT/EP 03/06290 A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D211/14 C07D211/46 C07D215/26 A61K31/445 A61K31/451 A61K31/47 A61P13/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, CHEM ABS Data, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X BE 671 440 A (DR. KARL THOMAE GMBH) 1965 1,2,4-6Starting material 17 in the table on page 6 corresponding to formula III on page 5 X EP 0 680 962 A (ZENECA LTD) 1-3,118 November 1995 (1995-11-08) claims 1,3,6,9; examples 17,19,20,24,26,27,29 X US 5 585 374 A (CLIFFE IAN A ET AL) 1-22 17 December 1996 (1996-12-17) cited in the application claims; example 5 X WO 96 16961 A (AMERICAN HOME PROD) 1-22 6 June 1996 (1996-06-06) page 5, line 23 - line 32; claims; examples 2-5 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance 'E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to Involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means in the art. "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 1 April 2004 23/04/2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Hanisch, I

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Ir inal Application No PCT/EP 03/06290

		PCT/EP 03	3/00290
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
X	US 5 610 164 A (BAUDY REINHARDT B ET AL) 11 March 1997 (1997-03-11) column 3, line 11 - line 29; claims; example 2		1-22
X	EP 0 982 304 A (LILLY CO ELI) 1 March 2000 (2000-03-01) cited in the application claims 1-15,18-32; examples 1-52		1-22
X	US 5 610 295 A (CLIFFE IAN A ET AL) 11 March 1997 (1997-03-11) column 1, line 6 - line 13; claims 1-6,11,13		1-22
X	EP 0 924 205 A (LILLY CO ELI) 23 June 1999 (1999-06-23) paragraph '0010!; claims 1-16; examples 1-4,6-8		1-22
		:	
.			
	•		
	•		
	,		
	•		
	· .		
ĺ	·		
	•	. [

INTERNATIONAL SEARCH REPORT

national application No. PCT/EP 03/06290

Box I Observations where certa	ain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has no	ot been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	matter not required to be searched by this Authority, namely: MATION sheet PCT/ISA/210
Claims Nos.: because they relate to parts of an extent that no meaningful in	the International Application that do not comply with the prescribed requirements to such nternational Search can be carried out, specifically:
Claims Nos.: because they are dependent cl	claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity	y of Invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority fo	ound multiple inventions in this international application, as follows:
As all required additional searchable claims. .	ch fees were timely paid by the applicant, this International Search Report covers all
2. As all searchable claims could of any additional fee.	be searched without effort justifying an additional fee, this Authority did not invite payment
As only some of the required accovers only those claims for wh	additional search fees were timely paid by the applicant, this International Search Report hich fees were paid, specifically claims Nos.:
No required additional search for restricted to the invention first in	rees were timely paid by the applicant. Consequently, this International Search Report is mentioned in the claims; it is covered by claims Nos.:
Remark on Protest	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claims 12-22 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Continuation of Box I.1

Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy

INTERNATIONAL SEARCH REPORT

Int onal Application No
PCT/EP 03/06290

	atent document d in search report	.	Publication date		Patent family member(s)	Publication date
BE	671440	L A		NONE		· 1
£٢	0680962	Α	08-11-1995	DE	69531522 D1	25-09-2003
				EP	0680962 A2	08-11-1995
				JP	7304767 A	21-11-1995
				US	5635509 A	03-06-1997
				US	5739149 A	14-04-1998
US	5585374	Α	17-12-1996	AU	675964 B2	27-02-1997
				AU	4714593 A	03-03-1994
				CA	2141810 A1	17-02-1994
				EΡ	0664801 A1	02-08-1995
				FΙ	950486 A	03-02-1995
				WO	9403444 A1	17-02-1994
	•			HU	71899 A2	28-02-1996
				HU	9500599 A3	30-10-1995
				JP	8501287 T	13-02-1996
				ZA	9305543 A	30-01-1995
WO	9616961	Α	06-06-1996	US	5525600 A	11-06-1996
				AU	688186 B2	05-03-1998
	•			AU.	4244696 A	19-06-1996
				CA	2205584 A1	06-06-1996
			•	EP	0793663 A1	10-09-1997
	•			FI	972239 A	27-05-1997
			•	HU	78023 A2	28-05-1999
				JP	10509978 T	29-09-1998
				NZ	297312 A	24-09-1998
				WO	9616961 A1	06-06-1996
US	5610164	Α	11-03-1997	NONE		
ΕP	0982304	Α	01-03-2000	AT	225345 T	15-10-2002
				AU	4726699 A	17-01-2000
				CA	2336117 A1	06-01-2000
				DE	69903239 D1	07-11-2002
,	*.			DE	69903239 T2	11-09-2003
•				EP	1146045 Al	17-10-2001
				EP	0982304 A1	01-03-2000
	-			ES	2181366 T3	16-02-2003
				JP	2002519323 T	02-07-2002
			•	WO	0000198 A1	06-01-2000
			·	US	6436964 B1	20-08-2002
US	5610295	Α	11-03-1997	AT	154601 T	15-07-1997
				AU	6042094 A	26-09-1994
				DE	69403896 D1	24-07-1997
			•	DE	69403896 T2	29-01-1998
				DK	687257 T3	18-08-1997
				EP	0687257 A1	20-12-1995
				ES	2102837 T3	01-08-1997
	•			MO	9420481 A1	15-09-1994
				GR	3024587 T3	31-12-1997
				JP	3316214 B2	19-08-2002
			•	JP	8507512 T	13-08-1996
				ZA	9401334 A	25-08-1995
ΕP	0924205	A	23-06-1999	AU	747040 B2	09-05-2002

INTERNATIONAL SEARCH REPORT

Int onal Application No PCT/EP 03/06290

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
EP 0924205 A		AU	1808399 A	05-07-1999
		BR	9814280 A	30-10-2001
		CA	2315227 A1	24-06-1999
		CN	1290258 T	04-04-2001
		EA	3703 B1	28-08-2003
		EP	0924205 A1	23-06-1999
		HR	20000406 A1	31-12-2000
		HU	0004596 A2	28-11-2001
		ID	26930 A	22-02 - 2001
		JP	2002508364 T	19-03-2002
		NO	20003082 A	02-08-2000
		NZ	505220 A	26-11-2002
		PL	342170 A1	21-05-2001
		TR	200001727 T2	23-10-2000
		TW	520366 B	11-02-2003
•		US	2003027831 A1	06-02-2003
		US	2002169170 A1	14-11-2002
		WO	9931077 A1	24-06-1999
		US	2003008879 A1	09-01-2003
-		US	6239135 B1	29-05-2001
		US	2004044009 A1	04-03-2004
•		US	2004049083 A1	11-03-2004
	•	US	2001003749 A1	14-06-2001
		ZA	9811473 A	14-06-2000

Form PCT/ISA/210 (patent family annex) (January 2004)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 13 March 2003 (13.03.2003)

PCT

(10) International Publication Number WO 03/021271 A2

(51) International Patent Classification⁷: G01N 33/566, 33/50

Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

(21) International Application Number: PCT/IB02/03618

(74) Agents: HAYLES, James, R. et al.; Pfizer Limited, Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

(22) International Filing Date:

4 September 2002 (04.09.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0121440.2 60/323,973 4 September 2001 (04.09.2001) GB 20 September 2001 (20.09.2001) US

(71) Applicant (for GB only): PFIZER LIMITED [GB/GB]; Ramsgate Road, Sandwich, Kent CT13 9NJ (GB).

(71) Applicant (for all designated States except GB, US): PFIZER INC. [US/US]; 235 East 42nd Street, New York, NY 10017 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GREENGRASS, Pamela, May [GB/GB]; Pfizer Global Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ (GB). STEWART, Michael [GB/GB]; Pfizer Limited, U.K. Patent Department, Ramsgate Road, Sandwich, Kent CT13 9NJ (GB). WOOD, Claire, Margaret [GB/GB]; (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,

SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: ASSAY

(57) Abstract: The invention relates to an assay to establish the affinity of compounds at the "ether-a-go-go" (ERG) potassium (K+) channel, in particular the human ERG (hERG) potassium channel, using a labelled inwardly rectifying potassium channel (IKR) blocker. This assay is useful to identify compounds with undesirable effects on cardiac repolarisation in man, in particular the propensity to prolong the QT interval in the electrocardiogram.

Assay

The invention relates to an assay to establish the affinity of compounds at the "ether-a-go-go" (ERG) potassium (K⁺) channel, in particular the human ERG (hERG) potassium channel, using a labelled rapid delayed rectifying potassium channel (IKR) blocker, for example [³H]-dofetilide or [³H]-MK-499. This assay is useful to identify compounds with undesirable effects on cardiac repolarisation in man, in particular the propensity to prolong the QT interval in the electrocardiogram, which may lead to Torsades de 10 Pointes.

In recent years the development of some compounds proposed for therapeutic use has been abandoned in late phase drug development due to the detection of undesirable effects on cardiac repolarisation in man. The effects of these drugs are assessed in 15 terms of the QT interval in the electrocardiogram (ECG). The QT interval is the portion of an ECG that represents the time from the beginning of ventricular depolarization to the end of ventricular repolarisation. Because the QT interval can be affected by heart rate lengthening with a decrease in heart rate and shortening with an increase in heart rate, the QT is often "corrected" for heart rate, resulting in the QTc interval. In rare 20 cases the administration of some drug molecules results in a prolongation of the QT interval of the ECG in man. The ECGs of these patients resemble those of individuals suffering from an inherited disorder known as long QT syndrome. Drug-induced ventricular fibrillation, in these cases, can eventually lead to sudden death (Morganroth J et al. (1993) Am J Cardiol. 72, 26B-31B; De Ponti F. et al., (2000) Eur J. Clin. 25 Pharmacol. 56, 1-18). A number of drug molecules, including, E-4031, cisapride and terfenadine, are all known to prolong the QT interval of the electrocardiogram in man (Fuliki A, et al. (1994), Cardiovascular Pharmacol. 23: 374-378; Van Haarst AD et al., (1998) Clin Pharmacol. Ther. 64: 542-546; Honig P.K. et al. (1993) J.A.M.A. 269; 1513-1518).

30

The launch of new drugs with undetected potentially cardiotoxic side effects could have hazardous consequences and could trigger lethal cardiac dysrhythmias in patients. Late detection of QT prolongation, induced by compounds of pharmacological interest can impede drug discovery and development programs, and consequently have a

20

25

30

profound impact on the outcome of a program. It is desirable, therefore, to test for the potential cardiotoxic side effects of compounds at an early stage of drug development.

According to the invention there is provided an assay that comprises, or consists of, the 5 following steps:

- a) incubation of cells expressing ERG or membranes derived from cells expressing ERG or membranes derived from tissue expressing ERG with labelled IKR blocker in assay buffer in the presence or absence of different amounts of a test compound or a mixture of test compounds;
- b) determination of specifically bound labelled IKR blocker;
 - c) calculation of the inhibition of labelled IKR blocker binding by the test compound or mixture of test compounds.

The assay is useful as a preclinical predictive indicator for identification of compounds with a propensity to prolong the QT interval in man. The assay is a competitive binding 15 assay that measures the ability of a test compound or mixture of compounds to displace labelled IKR blocker from the ERG K+ channel (ether-a-go-go K+ channel, herein called ERG). The assay can be performed in a high throughput test system. In conjunction with structure-activity relationships (SAR), ligand binding assays using labelled IKR blockers can be used to assist in the design of new drugs devoid of, or with reduced affinity to ERG, in particular human ERG (hERG).

The assay buffer used is particularly important for optimising binding of the IKR blocker or test compound(s) to ERG. It has been found that optimal assay performance is achieved using a Tris based buffer (pH 7.2 to 7.6, preferably pH 7.4 at room temperature) containing potassium (K+) ions. Potassium ions in the assay buffer may be provided, for example as potassium choride (KCI). The concentration of potassium ions in the assay buffer determines the predictive value of the assay. Assays performed in assay buffer containing from 7.5 to 12.5mM KCI, preferably from 8.5 to 11.5mM KCl, most preferably 10mM KCl are particularly useful to provide an IC20 value predictive of onset of QT prolongation.

The assay buffer of the invention preferably comprises or consists of Tris.CI and KCI. Optionally, MgCl2 may be included in the assay buffer.

The concentration of Tris.CI in the assay buffer is preferably from 30mM to 100mM Tris.CI, more preferably from 30mM to 70mM Tris.CI, yet more preferably from 40mM to 60mM Tris.CI, further preferably from 45mM to 55 mM Tris.CI, most preferably 50mM Tris.CI.

5

The concentration of KCI in the assay buffer is preferably from 5 to 20mM KCI, more preferably from 6 to 15mM KCI, yet more preferably from 7.5 to 12.5mM KCI, further preferably from 8.5 to 11.5mM KCI, most preferably 10mM KCI.

In a particularly preferred embodiment, the assay buffer comprises or consists of from 30 to 100mM Tris.Cl and from 5 to 20mM KCl, preferably from 30 to 70mM or from 30 to 100mM Tris.Cl and from 6 to 15mM KCl, yet more preferably from 40 to 60mM Tris.Cl and from 7.5 to 12.5mM KCl, further preferably from 45 to 55mM Tris.Cl and from 8.5 to 11.5mM KCl.

15

MENTAL SECURITIONS

It is particularly preferred that the assay buffer comprise or consist of 50mM Tris.Cl and 10mM KCl.

If MgCl₂ is included in the assay buffer, the concentration of MgCl₂ is preferably from 0.6mM to 2.0mM MgCl₂, more preferably from 0.6mM to 1.6mM MgCl₂, yet more preferably from 0.8mM to 1.4mM MgCl₂, further preferably from 0.9mM to 1.3mM MgCl₂, yet further preferably from 1.0mM to 1.2mM MgCl₂, most preferably 1.0mM or 1.2mM MgCl₂.

25 i

30

1 35 F 3

In a preferred embodiment the assay buffer used comprises or consists of from 30 to 100mM Tris.Cl, from 5 to 20mM KCl, and from 0.6 to 2.0mM MgCl₂; preferably from 30 to 100mM Tris.Cl or from 30 to 70mM Tris.Cl, from 6 to 15mM KCl, and from 0.6 to 1.6mM MgCl₂; yet more preferably from 40 to 60mM Tris.Cl, from 7.5 to 12.5mM KCl and from 0.8 to 1.4mM MgCl₂; further preferably from 45 to 55mM Tris.Cl, from 8.5 to 11.5mM KCl and from 0.9 to 1.3mM MgCl₂ or from 1.0 to 1.2mM MgCl₂.

The assay buffer may comprise or consist of 50mM Tris.Cl, 10mM KCl and 1.0mM MgCl₂; or 50mM Tris.Cl, 10mM KCl and 1.2mM MgCl₂.

15

It is preferred that the assay buffer be at a pH between 7.2 and 7.6 at room temperature; it is particularly preferred that the assay buffer be at pH 7.4 at room temperature.

The ERG gene (cDNA) can be from a vertebrate or invertebrate source; for vertebrates the ERG gene may be from a mammalian source (e.g. human, simian, bovine, porcine, canine, rabbit, guinea pig, rat, or mouse) or an invertebrate source such as an insect source (e.g. drosophila). A prokaryotic homologue of mammalian ERG may be used. It is preferred that the ERG gene be mammalian ERG, in particular human ERG (hERG) or canine ERG (cERG).

The ERG gene may be expressed in a mammalian cell line e.g. HEK-293 (Human embryonic kidney) cells, CHO (Chinese hamster ovary) cells; CHL (Chinese hamster lung) cells, COS (monkey) cells; or in an insect cell line e.g. SF9. A baculovirus vector system can be used for expression of ERG in a compatible insect cell line. Alternatively, ERG may be expressed in yeast or bacterial cells. It is preferred that the ERG gene is hERG or cERG and is expressed in either HEK-293, CHO or CHL cells.

The assay may be performed using whole cells expressing ERG or membrane preparations derived from cells expressing ERG, or membrane preparations derived from tissue expressing ERG.

Dofetilide is an IKR blocker (selective inhibitor of the rapid component of the delayed rectifier potassium current), which prolongs the action potential duration and the effective refractory period in a concentration-dependent manner. Clinical studies have demonstrated that dofetilide is effective in treating patients with atrial as well as ventricular arrhythmias. Dofetilide has formula I below.

Formula I

Dofetilide is claimed and its preparation is described in European patent EP 0245997.

MK-499 (Merck) is methylsulphonamide antiarrhythmic drug that acts as an IKR blocker. MK-499 has formula II shown below.

5

20

Formula II

10 The IKR blocker used in the assay is labelled with a detectable label, for example a radiolabel or fluorescent tag. In a preferred embodiment of the invention, the labelled IKR blocker used in the assay is labelled dofetilide, preferably radiolabelled dofetilide, most preferably tritiated dofetilide ([³H]-dofetilide). In another embodiment of the invention, the labelled IKR blocker used in the assay is labelled MK-499, preferably radiolabelled MK-499, most preferably tritiated MK-499 ([³H]-MK-499).

Preferred assay formats include the filter binding technique, whereby bound and unbound labelled IKR blocker e.g. labelled dofetilide or labelled MK-499; preferably radiolabelled dofetilide or radiolabelled MK-499; most preferably [³H]-dofetilide or [³H]-MK-499, are separated by filtration. The assay can be performed utilising the scintillation proximity assay (SPA) technique, using radiolabelled IKR blocker e.g. radiolabelled dofetilide or radiolabelled MK-499, preferably [³H]-dofetilide or [³H]-MK-499.

In the filter binding technique, cells expressing ERG or membranes derived from cells expressing ERG or membranes derived from tissue expressing ERG are incubated in assay buffer with labelled IKR blocker e.g. [³H]-dofetilide or [³H]-MK-499, in the presence (test) or absence (control) of the test compound or mixture of test compounds. Incubations are preferably carried out at room temperature for from 60 to 120 minutes, preferably for 90 minutes. Non-specific binding is determined in the

presence of unlabelled IKR blocker, e.g. 10μM dofetilide or 10μM MK-499. Bound labelled IKR blocker is separated from unbound IKR blocker by filtration through filter mats, or onto multiwell filter plates. Filter mats or plates are washed to remove unbound labelled IKR blocker, bound labelled IKR blocker is quantified e.g. for tritiated IKR blocker such as [³H]-dofetilide or [³H]-MK-499 by scintillation spectroscopy using an appropriate counter for radioactivity.

In the scintillation proximity assay™ (SPA) system (Amersham Biosciences), beads are used to bind cells expressing ERG or membranes derived from cells expressing ERG or membranes derived from tissue expressing ERG. A variety of bead types are suitable for use in a SPA assay according to the invention, these include PVT wheat germ agglutinin, yttrium oxide polylysine beads, or yttrium silicate beads (YSi) (Amersham Biosciences) such as YSi polylysine or YSi wheat germ agglutinin. The optimum bead type for use in a SPA assay of the invention depends on the cells or cell membranes used; bead to cell or bead to membrane binding may be assessed to identify the optimum bead type for the cell or cell membrane used. Beads bound to ERG material (whole cell, cell membrane preparation or tissue membrane preparation) are incubated in assay buffer with labelled IKR blocker, e.g. [³H]-dofetilide or [³H]-MK-499 in the presence (test) or absence (control) of the test compound or mixture of test compounds. The ability of the test compound or mixture of test compounds to displace bound radiolabelled IKR blocker is determined by detecting light emissions, for example using standard counters that can be used with SPA technology.

15

20

The assay may also include one or more of the steps of: calculation of the concentration of the test compound(s) that gives 20% inhibition of dofetilide binding (IC₂₀), calculation of the concentration of the test compound(s) that gives 50% inhibition of dofetilide binding (IC₅₀), calculation of the compound affinity as Ki or calculation of the compound affinity as pKi.

The IC₂₀ values generated from competitive displacement of IKR blocker binding, e.g. [³H]-dofetilide binding, using the assay of the invention are comparable to the free drug concentration associated with QT prolongation in man. Thus the assay can be used to predict the concentration of a compound liable to cause undesirable cardiac side effects.

30

To assess whether a compound, or mixture of compounds, is likely to prolong the QT interval in the electrocardiogram in man, the following steps are carried out:

- a) An assay is carried out according to the invention.
- b) An IC₂₀ value is obtained; this indicates the real or predicted free drug concentration at which QT prolongation will occur in man;
- c) The IC₂₀ value is compared with the free drug concentration required for the desired therapeutic effect of the compound or mixture of compounds in vivo.

If the free drug concentration required for the desired therapeutic effect of the compound or mixture of compounds is within 10 to 30 fold of the IC₂₀ of the compound or mixture of compounds in the assay, the compound or mixture of compounds is likely to show QT interval prolongation in man.

The assay of the invention is a better predictor of *in vivo* QT prolongation effect of drug molecules than existing assays such as the HERG patch clamp assay.

List of Figures

Figure 1: Representative saturation curve data for [³H]-dofetilide binding to HERG in 20 (a) filter binding, (b) SPA 96 well format and (c) SPA 384 well format.

Figure 2: Correlation plots comparing pKi values obtained from filter binding and SPA binding assays: (a) correlation between 96 well hERG [³H] dofetilide SPA assay and radioligand binding assay, (b) correlation between 96 well and 384 well hERG [³H] dofetilide SPA assay.

Figure 3: Comparison of inhibition of [³H]-dofetilide binding to hERG, hERG patch clamp, and free drug concentration known to induce QT interval prolongation in man, for (a) E-4031, (b) dofetilide, (c) terfenadine and (d) cisapride.

Figure 4: Comparison of the dofetilide IC₅₀ in the dofetilide binding assay carried out in cell membranes from HEK-293 cells transfected with human ERG (hERG (\blacktriangle)) or with canine ERG (cERG (\blacksquare))

here transfected HeK-293 cell membranes

8

Figure 6: Comparison of E4031 IC₅₀ in the dofetilide binding assay in cERG or hERG 5 transfected cell HEK-293 membranes

Figure 7: Mean (n = 2) concentration effect curves for (a) defetilide and (b) terodiline in tritiated defetilide SPA assays using assay buffer 50mM Tris CI, 10mM KCI, at pH7.4.

10 Examples

Example 1: Preparation of membranes from HEK-293 cells expressing human or canine ERG

An adherent HEK-293 cell line expressing human ERG (Zhou, Z et al (1998) Biophys. J. 74, 230-241) was provided by Dr. Craig January, University of Wisconsin, USA; this cell line was designated the "January" cell line. An alternative adherent HEK-293 cell line, designated cell line 15 (293S-HERG clone 15) was produced by the method described in Zhou, Z et al (1998). Full length cDNA for human ERG was inserted downstream of the CMV promoter in pcDNA3.1 (Invitrogen), the vector also has a SV40 promoter that drives expression of a neomycin resistance gene. The construct was transfected into human embryonic kidney 293S (HEK-293) cells. Stable transformants were selected using G418 (Gibco). Although cell line 15 has slightly lower expression of hERG than the January cell line, it has improved growth characteristics.

25

Cell line 15 (293S-HERG (Clone 15)) was deposited on 26 June 2002 with the ECACC (CAMR Salisbury, Wiltshire, SP4 OJG, UK) in accordance with the terms of the Budapest Treaty 1977 under deposit accession number 02062678.

Adherent HEK-293 cells expressing human ERG, were grown in MEM Earles medium (Life Technologies) supplemented with 10% foetal calf serum (PAA Laboratories), 2 mM L-glutamine (Sigma), 1 mM sodium pyruvate (Sigma), 0.4 mg/ml G418 (Life Technologies) and an addition of 1x non-essential amino acids (Life Technologies). The cells were grown at 37°C in a humidified atmosphere with 5% CO₂ in T225 cm³ flasks.

15

20

25

30

The cells were split 1:3 to 1:5 after reaching 80% confluence using cell dissociation solution (Sigma, cat no: C5914 in 2001) and later seeded into 850 cm² CO₂ gassed roller bottles (Corning, cat no: 430849 in 2001) in the absence of G418.

5 For the preparation of membranes, cells were harvested from the roller bottles by scraping and resuspended in PBS (Life Technologies, cat no: 14190-094 in 2001). All cells were pelleted, washed twice with PBS and snap-frozen on dry ice prior to storage at -80°C until required.

A HEK-293 cell line expressing canine ERG was produced by transient transfection of HEK-293 cells. The complete coding sequence of cERG cDNA (Zehelein et al (2001). Pflugers Archiv. European Journal of Physiology. 442(2): 188 - 191) was provided in the pBluescript® vector (Stratagene) by Professor Zehelein University of Heidelberg, Germany. In the pBluescript construct, the cERG cDNA was flanked by BamHI Sites. Initial experiments indicated poor insertion efficiency for direct insertion of cERG BamHI fragment into the desired vector, pcDNA3.1. To overcome this, an indirect cloning method was devised using the cloning vector pSP73 (Promega). cERG/pBluescript construct and pSP73 vector were subjected to BamHI digestion, to reduce interference by the presence of pBluescript BamHI fragments in the ligation reaction, the cERG/pBluescript BamHI digested material was also subjected to Scal digestion to cleave pBluescript and ensure more effective separation of the cERG BamHI fragment on agarose gel. The restriction mixtures were subjected to agarose gel electrophoresis, bands containing the cERG and pSP73 BamHI fragments were visualized following staining with ethidium bromide and UV illumination. The cERG and pSP73 bands were excised and eluted from the gel using a QIAgen MinELute Gel extraction kit according to the manufacturers instructions. To prevent religation of the BamHI ends of the pSP73 DNA during the ligation reaction, the plasmid DNA fragments were subjected to CIP treatment using a standard protocol. The cERG BamHI fragments were ligated into the pSP73 BamHI fragments using a standard ligation protocol. After the reaction, the ligation mixture was transformed into cJM109 competent E. coli cells using a standard transformation protocol. Transformants were selected by plating on LB agar (Millers) containing ampicillin (50µg/ml) and incubated overnight at 37°C. Overnight cultures of the transformed cells were used to produce mini preparations of cERG/pSP73 DNA using a QIAgen Miniprep kit according to the

manufacturer's instructions. The resulting DNA was subjected to restriction digestion and agarose gel electrophoresis to identify positive clones.

The cERG cDNA was excised from cERG/pSP73 as an Xhol (5') EcoRl (3') fragment, 5 this fragment was ligated into an Xhol/EcoRI fragment of the reverse poly linker form of pcDNA3.1, pcDNA3.1(-) Xhol/EcoRI. In this instance the reverse polylinker form was used because the cERG/pSP73 clone selected contained the reverse orientation of cERG. After ligation into pcDNA3.1(-), the 5' end of cERG was located adjacent to the enhancer-promoter sequence from human cytomegalovirus (CMV). The ligation 10 mixture was transformed into cJM109 competent E. coli cells using a standard transformation protocol, transformants were selected via plating onto LB agar (Millers) containing ampicillin (50μg/ml) and incubating overnight at 37°C along with required Colonies picked at random from the cERG/pcDNA3.1(-) plates were controls. inoculated into 5ml of LB media containing ampicillin (50µg/ml) and incubated at 37°C, 200rpm overnight. These overnight cultures were subsequently used to produce minipreps of DNA using a QIAgen Miniprep Kit. The resulting DNA was subjected to a Xhol and EcoRI double digestion and analysis on 1% agarose gel. cERG/pcDNA3.1(-) clones were identified because of low insertion efficiency in the ligation reaction coupled with the fact that DNA from only a small number of clones was analysed using the mini prep method. A colony PCR method was thus used to screen a larger number of colonies for positive clones.

The colony PCR protocol permitted rapid detection of cERG/pcDNA3.1(-) clones. Three primers were designed and made for use in the PCR protocol:

Primer 1: 'CERG01' (SEQ ID NO: 1) which hybridises to cERG at nucleotide positions 601-620 of the coding sequence:

5'-ACCACATCCACCAGGCACAG-3'

15

20

25

Primer 2: 'NHE PCDNA3' (SEQ ID NO: 2) which hybridises to pcDNA3.1(-) at nucleotide positions 886-910 (within the multicloning site flanking the Nhe1 cloning site):

5'-CCCAAGCTGGCTAGCGTTTAAACGG-3'

25

Land State of the

Primer 3: 'T7 SP73' (SEQ ID NO: 3) which was used as a control and used against a colony known to produce cERG/pSP73. This hybridised to pSP73 at nucleotide positions 98-121, within the T7 polymerase promoter sequence:

5 5'-TAATACGACTCACTATAGGGAGA-3'

Ninety-five cJM109 colonies were picked from the LB agar transformation plates and transferred to a sterile deep well 96-well plate containing 1ml/well LB broth supplemented with ampicillin (50µg/ml). As a control, a colony known to contain the cERG/pSP73 plasmid was transferred to the final 96th well containing LB-amp broth. The plate was covered and incubated at 37°C overnight at 200rpm. An aliquot of 70µl of each mini-culture was transferred to a 96-well PCR plate (0.5ml/well) and placed in a Beckman Allegra 6R centrifuge for 2800rpm, room temperature for 10 minutes. The supernatant was discarded and the plate drained for 3 minutes. The PCR reaction mixes were set up and added to the PCR plate containing the bacterial pellets as follows:

Supplied to the first of the second	Test wells Control well of	ERG/pSP73
Taqman Gold buffer (X10)		
dNTPs (X10, 2mM/dNTP)	2.0µl 2µl	11 9.1. 4
Taqman Gold Polymerase (5u/μl)	0.5μl	Comment of the comment
CERG01 (primer 1-, 25μM)	$(2\mu l_{\perp}, l_{\perp})_{\mu}$, $(2\mu l_{\perp}, l_{\perp})_{\mu}$, $(2\mu l_{\perp}, l_{\perp})_{\mu}$, $(2\mu l_{\perp}, l_{\perp})_{\mu}$,	Appendix Open
NHE PODNA3 (primer 2- 25μM)	-2μle - Le la cesta d 'as catabaces	1. 1895 to 2.75
T7 SP73 (primer 3- 25μM)	_. - ்., ம். லெ. ம். ம் 2μ ்	erze a since
Nuclease free water	83.5µl 83.5µl	Maria de distribui

The bacterial pellet was resuspended in the PCR reaction mixture. The PCR reaction was performed as specified by the manufacturers protocol for the Taqman Gold PCR kit (Applied Biosystems, 1999 edition) thus:

The second of the second process of the second of the seco

	$(q_{i+1}, \dots, q_{i+1}) \in \mathcal{F}^{(i+1)}$	Temperature	Time	
30	Step 1 - hot start	95°C	6 minutes	4.77
	Step.2 - denaturation	95°C	1 minute	2
	Step 3 - annealing	60°C	1 minute	
	Step 4 - extension	72°C	1 minute	To step 2 for 35 cycles, then step 5.

WO 03/021271 PCT/IB02/03618

12

Step 5 - denaturation 95°C 45 secs Step 6 - annealing 60°C 45 secs 72°C Step 7 - extension 5 minutes

The PCR products for each well were then separated by electrophoresis on a 1.5% agarose gel using a 100bp DNA ladder marker at 100V for 25 minutes in 1X TAE buffer and visualised using UV light. Putative positive clones were identified and samples from these PCR reaction mixtures were run on a second separate 1.5% agarose gel at 100V for one hour to examine the sizes of the PCR products.

10

The mini-cultures which gave an amplified a PCR product were each seeded from the original deep-well 96-well plate into sterile tubes with 5ml LB broth containing 50µg/ml ampicillin and incubated at 37°C overnight at 200rpm. The overnight cultures were then used to produce mini-preps of DNA using a QIAgen Miniprep Kit. The resulting DNA 15 was subjected to an Xhol and EcoRl double digestion to check for the presence of cERG/pcDNA3.1(-). The restriction digest was analysed via a 1% agarose gel run for 1 hour at 100V with 1kb DNA ladder markers (20µl sample loading with 2µl gel loading solution). Further restriction digestion analysis was performed to confirm that the purified plasmids from the transformants were indeed cERG/pcDNA3.1(-).

20

25

Untransfected HEK-293 cells were routinely maintained in 50ml Minimum Essential Medium (MEM) supplemented with 10% (v/v) foetal calf serum (FCS), 2mM Lglutamine, 1mM sodium pyruvate and 1mM non-essential amino acids. Cells were seeded into 225cm² ventilated cap flasks and were maintained in a humidified atmosphere containing 5% CO₂. The HEK-293 cells used in this study were between passage numbers 39-48. Cells were passaged typically every three days in a ratio of 1:3 from a flask of 80-90% confluency; fresh medium was added after washing twice with 10ml PBS and dissociating from the flask using cell dissociation fluid.

30

The cERG/pcDNA3.1(-) construct was transfected into HEK-293 cells grown to 80-95% confluency in 225cm2 ventilated flasks using the following method. Endotoxin free cERG/pcDNA3.1(-) DNA (94µg) and Lipofectamine2000 (Gibco BRL) (94µg) were added to 2.25ml of OPTIMEM-I media (Gibco BRL) in sterile 10ml centrifuge tubes; mixing was carried out after incubation at room temperature for five minutes. The

Lipotectamine2000/DNA/OPTIMEM-I mix was then incubated at room temperature for twenty minutes before the addition of a further 10.5ml OPTIMEM-I. HEK-293 cells were washed with 10ml PBS and the Lipofectamine2000/DNA/OPTIMEM-I mixture added and incubated for 3.5 hours at 37°C in a humidified atmosphere containing 5% CO₂. 5 After incubation, 50ml of MEM (supplemented with 10% (v/v) FCS, 2mM L-glutamine, 1mM sodium pyruvate and 1mM non-essential amino acids) was added. The HEK-293 cells were incubated for 24 hours at 37°C. Transfected cells were harvested after 24 hours by washing with PBS, scraping the cells into 10ml PBS and centrifuging at 1000rpm for 5 minutes at room temperature. The resulting cERG/pcDNA3.1(-) 10 transfected HEK-293 cell pellet was stored at -80°C until required.

Preparation of membranes from HEK-293 cells expressing human or canine ERG

was selected the borner of the collection of the

Burnamental the transfer that the court of t

Cell membrane fractions were prepared from frozen aliquots of cells. All procedures 15 were carried out at 4°C unless otherwise stated. Frozen aliquots of cells were thawed at room temperature and resuspended in assay buffer (e.g. 50mM Tris.Cl, 10mM KCl, 1 to 1.2mM MgCl₂, pH7.4, or 50mM Tris.Cl, 10mM KCl, pH7.4). The cells were then disrupted by homogenisation in an Omni LabTek homogeniser at 20,000 rpm for 30 seconds. The homogenate was centrifuged for 20 minutes at 48,000xg (4°C, Sorvall RC5B centrifuge) and the supernatant removed. The resulting pellets were resuspended in assay buffer and homogenised as above for 10 seconds. The pellets were collected by centrifugation and the final pellet resuspended in assay buffer. Protein content was determined using a Coomassie Blue based protein assay kit. Aliquots were stored at -80°C until needed, when stored in these conditions, the binding ability of the cell membrane fractions proved to be stable for at least 4 months.

Section 1. The section of the section of the section of Example 2: Filter binding assay with [3H]-dofetilide

25

[3H]-dofetilide (80-83 Ci/mmol) was synthesized by catalytic tritiation (a custom service provided, for example, by Amersham Life Science). However, other detectable labels known to the skilled person can be used instead of ³H, e.g. fluorescent tags, other radiolabels, antibodies etc.

On the day of the assay, test compounds were dissolved at 1 mM in 50% DMSO or 100% DMSO, and then diluted to the desired concentrations (e.g. up to 100μM, or up to

13.

the boundaries of solubility for the compound) in assay buffer. The final DMSO concentration in assay incubations is preferably 1.0 to 1.5% or less for optimal assay conditions.

Incubations included membrane homogenate at 50μg/ml in assay buffer (50 mM Tris.Cl, 10mM KCl, 1.0mM to 1.2mM MgCl₂, pH7.4) unless otherwise indicated, [³H]-dofetilide (4 to 7nM) and test compound or mixture of test compounds or control vehicle. Filtration assays were incubated at room temperature for 90 minutes. Non-specific binding was determined in the presence of 10 μM dofetilide and was usually less than 15 % of total binding. Bound ligand was separated from free ligand by rapid filtration, through GF/B glass fibre filter mats using, for example, a Brandel cell harvester, or onto GF/B Unifilter 96-well filter plates (Packard) using a Packard Filtermate 96 harvester. Filter mats and plates were pre-soaked in 5% PEI (w/v) for 60 minutes and washed after harvesting with 3 x 1 ml washes of ice-cold assay buffer.

15 Unifilter plates were air dried for a minimum of 1.5 hours at 37°C prior to the addition of Microscint-0 (Packard). Bound [³H]-dofetilide was determined by liquid scintillation spectroscopy using an appropriate counter, for example in a Packard TopCount Scintillation Counter (NXT Counter) or Wallac Counter (Trilux) for Unifilter plates and in a Wallac Big Spot Counter when filter mats were used.

20

In each experiment, triplicate assays were routinely performed and the data were averaged. Specific binding was analysed by nonlinear regression fit using GraphPad Prism software (GraphPad, San Diego). IC₅₀ values were derived from a 4 parameter logistic fit using PRISM and converted to Ki values by use of the Cheng & Prusoff equation; IC₂₀ values were extrapolated from the graph.

Example 3: Scintillation proximity assay

engang talah Peresta

The scintillation proximity assay (SPA) was carried out in assay buffer consisting of 50mM Tris.Cl, 10mM KCl, 1.0mM to 1.2mM MgCl₂, pH7.4, or using assay buffer consisting of 50mM Tris base, 10mM KCl, pH7.4. Bead to membrane binding was assessed to determine the optimum bead type for the cell line used. YSi wheatgerm agglutinin beads were used with cell membranes derived from the January HEK-293 hERG expressing cell line; YSi polylysine beads were used in studies using membranes

PCT/IB02/03618

15 derived from Cell Line 15 (HEK-293 hERG expressing cell line). Conditions were optimised with respect to bead and cell membrane homogenate concentration, prior to characterising ERG pharmacology. The incubations (200 µl total per well for 96 well plates and 60 µl total per well for 384 well plates) included 25 µg of cell membrane homogenate per mg of bead. The membrane homogenate was precoupled with the YSi Wheatgerm Agglutinin or YSi polylysine bead suspension at 4°C on a roller shaker for approximately 2 hours. For competition binding assays, membrane homogenate bead suspension was incubated in white clear bottom 96 or 384 well plates with 5nM [3H]-dofetilide in the absence and presence of competitor i.e. the test compound or mixture of test compounds. The plates were incubated at room temperature and shaken for approximately 1 hour. Beads were allowed to settle for a minimum of 30 minutes before plates were counted for retained radioactivity on a TopCount NXT scintillation counter. Nonspecific binding i.e. background count, was determined by the addition of 10µM dofetilide. Background counts were usually less than 15% of the total binding. For saturation studies, specific binding of [3H]-dofetilide was determined over a

range of concentrations (5 to 500nM) in the absence or presence of cold (i.e.

化环状性 化二氯化丁二氯化二氯甲酚 电电影电影

20 Example 4: Assay optimisation

30

April 1900 Christian March 1990 Christian Christian

unlabelled) 10µM dofetilide.

a) Effect of Hepes- and Tris-based buffers on dofetilide blnding

thet exist on him as a few parts of the control of the control of the control of

To optimise the specific binding of dofetilide to homogenates of cell membranes containing ERG, the interaction of [³H]-dofetilide with the cell membrane preparation was examined in the presence of Hepes-based buffer (25mM Hepes, 135mM NaCl, 5mM KCl, 1mM MgSO₄, 50mM CaCl₂, pH7.4) and Tris-based buffer (50mM Tris.Cl, 10mM KCl, 1mM or 1.2mM MgCl₂). Comparison of the specific binding in these buffers revealed that percentage specific binding was similar in both Tris-based and Hepes-based buffers. However, as shown in Table 1, specific counts were twice as high in the presence of Tris-based buffer compared to those detected in Hepes-based buffer.

Table 1. Comparative effects of Tris-based and Hepes-based buffers on [³H]-dofetilide binding to cell membrane homogenate expressing hERG.

5	Buffer	25mM HEPES free acid 135mM NaCl, 5mM KCl 1mM MgSO ₄ , 50 μM CaCl ₂ pH 7.4 at room temp	50mM Tris 10mM KCI and 1.0 or 1.2mM MgCl₂ pH 7.4 at room temp
	Total Binding (ccpm)	8510 <u>+</u> 669	19627 <u>+</u> 1189
	Non-specific Binding (ccpm)	321 ± 27	315 ± 23
10	Specific Binding (ccpm)	8189	19312
	% Specific Binding	96	98

Total and non-specific binding data represent arithmetic mean ± standard error mean of 14 individual wells per buffer split over two assays, performed at a protein concentration of 75µg/ml and a mean [³H]-dofetilide concentration of 6.7nM. Incubation was carried out for 60 minutes at room temperature, ccpm=corrected counts per minute.

So that the maximum specific binding window could be achieved, the assay buffer used in Examples 1 to 8 was the Tris-based incubation buffer (50mM Tris.Cl, 10mM KCl, 1mM MgCl₂). Additionally, experiments were performed to optimise the cell membrane protein concentration and bead concentration for filter and SPA binding assays.

Mangeller genkaprobed die mat blir besteller blir bestellerer i man hill stock besteller

b) Saturation binding

the topics that the strops

25

Time courses were performed to determine optimal incubation time for binding activities. Incubation times were similar for both filter binding and SPA assays. The filter binding assay reached equilibrium in 90 minutes, SPA required 60 minutes. [3 H]-dofetilide binding to ERG in both filter binding and scintillation proximity assays was saturable with a K_D of 5.08 ± 1.0 nM for filter binding and K_D values of 8.9 ± 0.6 nM and 9.1 ± 1.8 nM for 96 and 384 format scintillation proximity assays respectively (Figure 1a-c, with Fig. 1a showing the results of the filter binding assay, Fig. 1b the results of the SPA in 96-well format, and Fig. 1c showing the results of the SPA in 384 well format). Non-linear curve fitting of this data indicated that binding was to a single site. A B_{max} of 7.4 ± 0.7 pmol/mg protein for [3 H]-dofetilide was obtained from filter binding (Figure 1). As scintillation proximity assays do not give an accurate determination of dpm (disintegrations per minute) values, a B_{max} is not quoted for SPA.

c) Comparison of SPA and filter binding techniques

A comparison of SPA and filter binding techniques revealed excellent concordance of results. Affinity values displayed excellent correlation between the two assay types and the rank order of compound affinity is identical, as is shown in Figure 2 (correlation plots comparing pKi values obtained from filter binding and SPA binding assays).

d) Competitive binding studies

- 10 A range of compounds, including hERG blockers known to prolong the QT interval in man, was examined for competitive displacement of [³H]-dofetilide. E4031, dofetilide, terfenadine, and cisapride produced complete inhibition of specific binding with a range of calculated affinity values that are summarised in Table 2.
- 15 Table 2. Affinity values for compounds tested against [3H]-dofetilide filter and SPA binding assays to HERG.

entral de la proposición de la companya del companya del companya de la companya

	Compound	Filter binding	SPA 96	SPA 384
		p <i>K</i> i	p <i>K</i> i	p <i>K</i> i
20	Dofetilide		8.05 ± 0.54	8.26 ± 0.12
	E4031	7.82 ± 0.03	7.81 ± 0.05	7.89 ± 0.11
	Terfenadine	•	7.75 ± 0.07	7.72 ± 0.41
		7.34 ± 0.05	7.15 <u>+</u> 0.04	7.55 ± 0.22
	Glibenclamide	< 5	< 5	< 5
25		< 5	< 5	< 5

Data expressed as pKi values (the negative logarithm of molar concentration of competing ligand to displace 50% of 5nM [3 H]-dofetilide binding). Data are the mean of at least n = 3 experiments.

WO 03/021271 PCT/IB02/03618

example 5: Prediction of QT interval prolongation effect of compounds in man

The IC₂₀ values generated from competitive displacement of [³H]-dofetilide binding using the assay of the invention are comparable to the free drug concentration associated with QT prolongation in man as is shown in Figure 3 for a range of compounds, including E-4031 (Figure 3a), dofetilide (Figure 3b), terfenadine (Figure 3c) and cisapride (Figure 3d). For each compound, the inhibition of dofetilide binding in the binding assay (filter binding technique), and in a hERG patch clamp assay is compared with the concentration of free drug associated with QT interval prolongation in man (Fuliki A, *et al.* (1994) Cardiovascular Pharmacol, 23: 374-378; Van Haarst AD et al. (1998) Clin Pharmacol. Ther. 64: 542-546; Honig PK, et al. (1993) J.A.M.A. 269: 1513-1518).

The ERG patch clamp assay provides a measure of the current through the ERG channel and indicates the number of ion channels present in a cell. However, due to the phenomena of state dependent block observed in patch clamp studies (Walker, B.D. et al (1999) British J. Pharmacol 128, 444-450) exhibited by a number of known hERG blockers with the propensity to prolong the QT interval *in vivo*, the ligand binding assay provides a better predictor of *in vivo* QT prolongation effect of a drug than the hERG patch clamp technique (Figure 3d).

The f_{ab} of a graph of the contract f_{ab} is f_{ab}

20

25

To assess whether a compound or mixture of compounds is likely to prolong the QT interval in the electrocardiogram in man, the following steps are carried out:

建聚性戊烯 体动物动脉 建物医基酚化物 医电气性动脉 不多的 网络马克斯马克斯

- A binding assay is carried out according to the invention, for example as as described in Example 2 or Example 3, to test the affinity of the compound or mixture of compounds for ERG, preferably hERG or cERG;
- b) The IC₂₀ is obtained, e.g. as described at the end of Example 2; the IC₂₀ being the real or predicted free drug concentration at which QT prolongation occurs in man:
- 30 c) The IC₂₀ value is compared with the free drug concentration required for the desired therapeutic effect of the compound in vivo.

If the free drug concentration required for the desired therapeutic effect of the compound is within 10 to 30 fold of the IC20 of the compound in the assay of the invention, the compound is highly likely to cause QT interval prolongation in man.

Example 6: Comparison of dofetilide binding assay carried out HEK-293 cells transfected with cERG or hERG.

The dofetilide binding assay was carried out as described Example 2 using HEK 293 cells transfected with either human ERG or canine ERG. The results are shown in 10 figure 4, from which it can be seen that the IC50 for dofetilide is similar for canine and human ERG, being 13.9nM and 15.6nM respectively. IC₂₀ values for dofetilide were 1,92nM and 2.15nM for canine and human ERG, respectively.

Example 7: Comparison of terfenadine competition assay using HEK-293 cells 15 transfected with cERG or hERG

Epiggraphic glavy on a resist of electric frequencies of the control of the gardinal control of the Co

ออกเกิดสามรูปสาห์ ค่าเป็น เดา 1 คือเรื่อ

grouping the second of the growing the control of the control of

particle of the control of the control of the control of

property and the contract of t

20

25

The dofetilide binding assay was carried out using terfenadine as the test compound. Transiently transfected cERG HEK-293 cell membranes (200µg/well), or stable hERG HEK-293 cell membranes (100µg/well) were incubated with twelve different concentrations of terfenadine and 5nM [3H]-dofetilide for 90 minutes at room temperature. Total and non-specific binding were measured by incubating with 10% DMSO and 10mM unlabelled dofetilide to a total assay volume of 200ml. membranes were harvested by filtration with a Packard Unifilter cell harvester and radioactivity (cpm) was measured. Two saturation experiments were carried out each for CERG and hERG expressing cell membrane samples. Each experiment was carried out in triplicate. Figure 5 shows the mean values of the experiments for each cell type (cERG or hERG transfected) and indicates that the IC50 for terfenadine is similar for cERG and hERG, being 77.2nM and 88.9nM respectively. IC₂₀ values for terfenadine 30 were 10.7nM and 12.3nM for canine and human ERG, respectively.

PCT/IB02/03618

Example 8: Comparison of E4031 competition assay in HEK-293 cells transfected with cERG or hERG

20

The dofetilide binding assay was carried out using E4031 as the test compound. Transiently transfected cERG HEK-293 cell membranes (200µg/well) or stable hERG HEK-293 cell membranes (100µg/well) were incubated with twelve different concentrations of E4031 and 5nM [3H]-dofetilide for 90 minutes at room temperature. Total and non-specific binding values were measured by incubation with 10% DMSO and 10µM unlabelled dofetilide in a total assay volume of 200µl. The membranes were 10 harvested by filtration with a Packard Unifilter cell harvester and radioactivity (cpm) was measured. Two saturation experiments were carried out each for cERG and hERG expressing cell membrane samples. Each experiment was carried out in triplicate. Figure 6 shows the mean values of the experiments for each cell membrane type (cERG or hERG transfected) and indicates that the IC50 for E4031 is similar for cERG 15 and hERG, being 27.3 nM and 35.4 nM respectively. IC₂₀ values for E4031 were 3.8 nM and 4.9 nM for canine and human ERG, respectively.

When IC₅₀ (or IC₂₀) values are compared for the compounds tested, they were found to be very similar for cERG and hERG. This indicates that either hERG or cERG can be used in the assay of the invention to predict the onset of QT prolongation in man.

· Mill StateMill 1 et l'Entrep E. Volume d'accepte 11

Example 9: Further assay optimisation studies

To further optimise the assay for specific binding of dofetilide to homogenates of cell membrane containing hERG, the interaction of [3H]-dofetilide with cell membrane preparations was examined in the SPA assay format using a Tris based buffer containing either KCl or MgCl₂. SPA assays were performed according to example 3 in 50mM Tris.Cl, 10mM KCl at pH7.4 or in 50mMTris.Cl, 1mM MgCl₂ at pH 7.4 as the assay buffer. Assays were performed using dofetilide or terodiline as the test compound. Comparison of specific binding detected in these buffer conditions revealed that specific binding was not observed when the assay buffer used was 50mMTris.Cl. 1mM MgCl₂ at pH 7.4; specific binding was observed in assay buffer consisting of 50mM Tris.Cl, 10mM KCl at pH7.4. For the assays carried out in 50mM Tris.Cl, 10mM KCI at pH7.4 as the assay buffer the IC₅₀ and IC₂₀ values were generated for each test

compound. The mean IC₅₀ value for dofetilide was 8.69 ± 0.45 nM, the mean IC₅₀ value for terodiline was $1.87\pm0.00~\mu$ M. The mean IC₂₀ value for dofetilide was 1.2nM, the mean IC₂₀ value for terodiline was 0.248μ M.

5 Sequence Listing Information

```
<110> Pfizer Inc (CA, EP except EP(GB), JP, US. Pfizer Ltd (EP(GB))
                  <120> Assay
  10
                  <130> PCS 22042
                 <150> GB 0121440.2
                15
                 <150> US 60/323973
                                                                                                 Color of the Color of the Color was a service for each
                  <f51>2001-09-20
                 <160>3
 20 Sautherns Listers have maken
                 <170> FastSEQ for Windows Version 4.0
                 210> 1 Transfer #14. Transage. Telephone to the control assertion to the control of the contr
                 <211>20
 25 <212> DNA
                <213> Canine
                 <400> 1
                accacateca ccaggeacag
                                                                                                                                                                                           20
30
                <210> 2
<211> 25
<212> DNA
                 <213> pcDNA3.1(-) vector
35
                 <400> 2
                cccaagetgg ctagegttta aaegg
                                                                                                                                                                                             25
                <210> 3,
40 <211>23
                <212> DNA
                <213> pSP73 vector
                <400> 3
45 taatacgact cactataggg aga
                                                                                                                                                                                          23
```

Claims

5

- 1. An assay comprising or consisting of the following steps:
 - (a) incubation of cells expressing ERG, or membranes derived from cells expressing ERG, or membranes derived from tissue expressing ERG, with labelled IKR blocker in assay buffer in the presence or absence of a test compound or a mixture of test compounds;
 - (b) determination of specifically bound labelled IKR blocker;
- (c) calculation of the inhibition of labelled IKR blocker binding by the test compound or mixture of test compounds.
- 2. An assay according to claim 1, wherein the assay buffer is a Tris based buffer containing KCl.
- An assay according to claim 2, wherein the assay buffer comprises or consists of from 30 to 100mM Tris.Cl, from 5 to 20mM KCl, and optionally from 0.6 to 2.0mM MgCl₂.
- An assay according to claim 2, wherein the assay buffer comprises or consists of from 30 to 70mM Tris.CI, from 6 to 15mM KCI, and optionally from 0.6 to 1.6mM MgCI₂.
- 5. An assay according to claim 2, wherein the assay buffer comprises or consists of from 40 to 60mM Tris.Cl, from 7.5 to 12.5mM KCl and optionally from 0.8 to 1,4mM MgCl₂.
 - 6. An assay according to claim 2, wherein the assay buffer comprises or consists of from 45 to 55mM Tris.Cl, from 8.5 to 11.5mM KCl and optionally from 0.9 to 1.3 mM MgCl₂ or from 1.0 to 1.2mM MgCl₂.
- An assay according to claim 2, wherein the assay buffer comprises or consists of 50mM Tris and 10mM KCI.
 - 8. An assay according to claim 2, wherein the assay buffer comprises or consists of 50mM Tris, 10mM KCl and 1.0mM MgCl₂, or 50mM Tris, 10mM KCl and 1.2 mM MgCl₂.
- 30 9. An assay according to any one of the preceding claims wherein the assay buffer is at a pH between pH7.2 and pH7.6 at room temperature.
 - 10. An assay according to claim 9, wherein the assay buffer is at pH7.4.
 - 11. An assay according to any one of the preceding claims wherein the ERG is human ERG.

- 12. An assay according to any one of the preceding claims, wherein the labelled IKR blocker is labelled dofetilide or labelled MK-499.
- An assay according to claim 12, wherein the labelled dofetilide or labelled MK-499 is radiolabelled.
- 5 14. An assay according to claim 13, wherein the radiolabel is tritium (3H).
 - 15. An assay according to any one of the preceding claims having the following additional step(s):
 - (d) calculation of the IC₂₀ for the test compound or mixture of test compounds, and optionally,
- (e) comparison of the IC_{20} value of the test compound or mixture of test compounds with the concentration required for the desired therapeutic effect of the compound in vivo.
 - 16. An assay according to any one of the preceding claims wherein the assay is performed as a filter binding assay.
- 15 17. An assay according to any one of claims 1 to 15 wherein the assay is performed as a scintillation proximity assay.

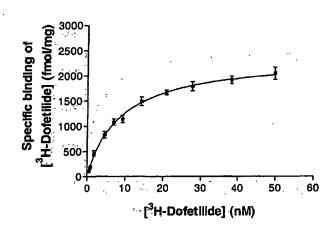

25

Figure 1

(b)

(c)

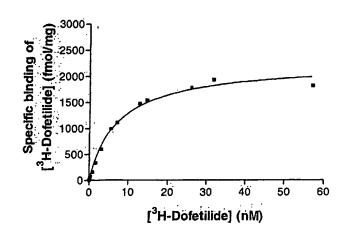
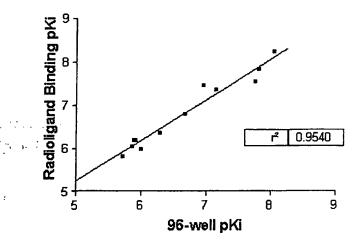



Figure 2

(a)

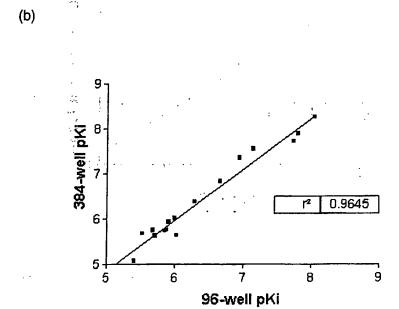
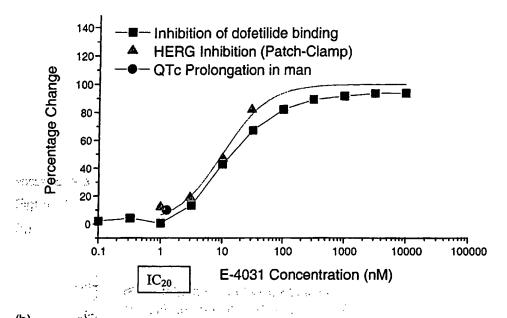



Figure 3

(a)

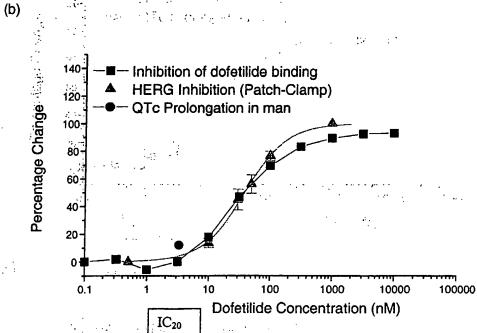
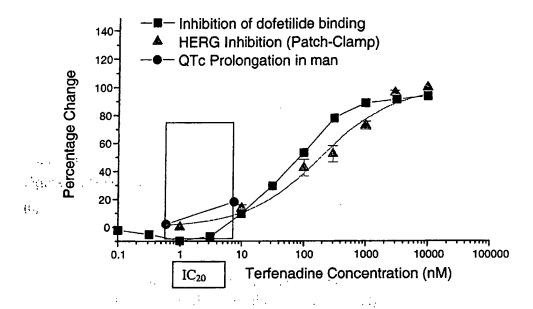
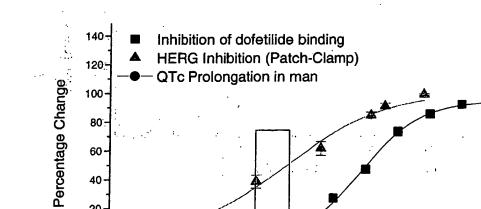


Figure 3 continued

(c)


(d)


20

0

0.01

0.1

 IC_{20}

100

Cisapride Concentration (nM)

1000

Figure 4

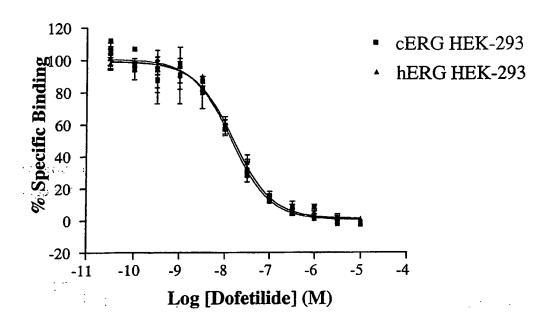


Figure 5

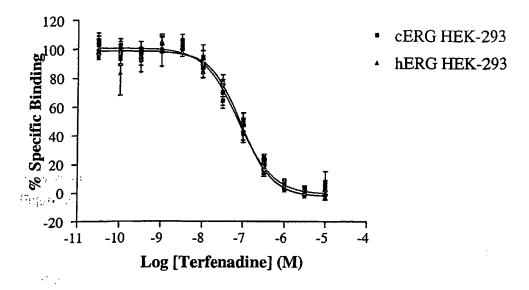
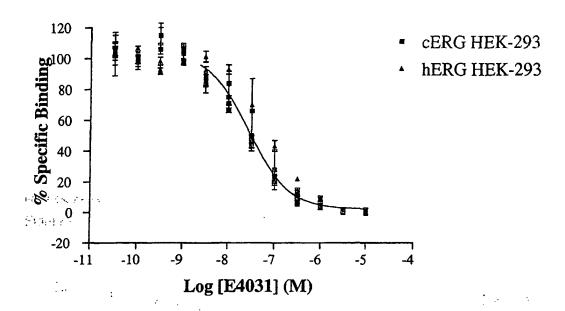
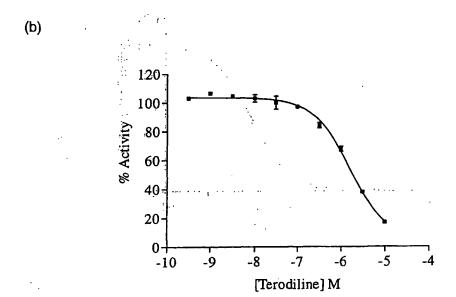




Figure 6



Figuere 7

(a)

 $\{\{\cdot\}\}$

PCS22042 SEQUENCE LISTING

<110> Pfizer Inc (CA, EP except EP(GB), JP, US.) Pfizer Ltd (EP(GB)). <120> Assay <130> PCS 22042 <150> GB 0121440.2 <151> 2001-09-04 <150> US 60/323973 <151> 2001-09-20 <160>3 <170> FastSEQ for Windows Version 4.0 <210>1 <211>20 <212> DNA <213> Canine <400> 1 20 accacatcca ccaggcacag <210>2 <211>25 <212> DNA <213> pcDNA3.1(-) vector <400>2 25 cccaagctgg ctagcgttta aacgg <210>3 <211>23 <212> DNA <213> pSP73 vector <400>3 23 taatacgact cactataggg aga

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 March 2004 (11.03.2004)

PCT

(10) International Publication Number WO 2004/019892 A3

(51) International Patent Classification7:

A61F 13/00

(21) International Application Number:

PCT/US2003/027409

(22) International Filing Date:

2 September 2003 (02.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/407,009

30 August 2002 (30.08.2002) US

(71) Applicant (for all designated States except US): WATSON PHARMACEUTICALS, INC. [US/US]; 311 Bonnie Circle, Corona, CA 92880 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): EBERT, Charles, D. [US/US]; 1912 East Lakewood Dr., Salt Lake City, UT 84117 (US).

(74) Agents: OSBORNE, David, W. et al.; Thorpe North & Western LLP, P.O. Box 1219, Sandy, UT 84091-1219 (US). (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report:
 1 July 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DRUG DELIVERY SYSTEM FOR TREATING URINARY INCONTINENCE

(57) Abstract: Methods for the prevention or amelioration of urinary incontinence are disclosed and described. One method includes the coadministration of an anticholinergic agent with either an SSRI, or an SNRI, or both.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/27409

A. CLASSIFICATION OF SUBJECT MATTER				
IPC(7) : A61F 13/00 US CL : 424/449, 443				
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FTELDS SEARCHED				
Minimum documentation searched (classification system followed U.S.: 424/449, 443	by classification symbols)			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (nar Please See Continuation Sheet	ne of data base and, where practicable, so	earch terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category * Citation of document, with indication, where a	opropriate, of the relevant passages	Relevant to claim No.		
X US 2002/0010216 A1 (ROGOSKY et al.) 24 Januar 0012; page 3: 0033, 0035, 0037, 0039.	y 2002 (24.01.2002), abstract; page 1:	1-21, 23-32		
		-		
· · · · · · · · · · · · · · · · · · ·	F			
Further documents are listed in the continuation of Box C.	See patent family amex.			
Special categories of cited documents:	later document published after the inte date and not in conflict with the applic	ation but cited to understand the		
"A" document defining the general state of the art which is not considered to be of particular relevance	principle or theory underlying the invented of particular relevance; the			
"B" earlier application or patent published on or after the international filing date	considered govel or cannot be consider when the document is taken alone	red to involve an inventive step		
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (2s specified)	"Y? document of particular relevance; the considered to involve an inventive step combined with one or more other such	when the document is a documents, such combination		
"O" document referring to an oral disclosure, use, exhibition or other means	being obvious to a person skilled in the	e art		
"P" document published prior to the international filing date but later than the "&" document member of the same patent family priority date claimed				
Date of the actual completion of the international search 11 February 2004 (11.02.2004) Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450 Date of mailing of the international search report O4 MAY 2004 Authorized officer Isis Ghali Telephone No. (703)308-1235				
11 February 2004 (11.02.2004) Name and mailing address of the ISA/US Authorized officer				
Mail Stop PCT, Attn: ISA/US Commissioner for Patents P.O. Box 1450	Isis Ghali A. Roberts	o for		
P.O. Box 1450 Alexandria, Virginia 22313-1450 Facsimile No. (703) 305-3230	Telephone No. (703)308-1235	<i>U</i>		

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/27409

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:			
2. Claim Nos.: 22 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claim 22 depends on claim 20, which is reciting a transdermal patch; meanwhile the claim is directed to composition in the oral form.			
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).			
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)			
This International Searching Authority found multiple inventions in this international application, as follows:			
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.			
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.			
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:			
·			
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:			
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.			
OFF DETERMANDED Constitution of First Annual			

	PCT/US03/27409
INTERNATIONAL SEARCH REPORT	
~ · · · · · · · · · · · · · · · · · · ·	1
·	
•	
	i
·	
	1
	·
,	Ì
Continuation of B. FIELDS SEARCHED Item 3:	
WEST:ALL DATA BASES:	
Search terms: transdermal, oral, oxybatynin, tolterodine, fluoxetine, paroxetine.	
. , , , , , , , , , , , , , , , , , , ,	·
	ļ
	•
•	
•	
•	
	·
•	
	-
	ł

Form PCT/ISA/210 (second sheet) (July 1998)

(19) World Intellectual Property Organization International Bureau

. 1817 - 1818 - 1818 - 1818 - 1818 - 1818 - 1818 - 1818 - 1818 - 1818 - 1818 - 1818 - 1818 - 1818 - 1818 - 181

(43) International Publication Date 11 March 2004 (11.03.2004)

PCT

(10) International Publication Number WO 2004/019892 A2

(51) International Patent Classification7:

A61K

(21) International Application Number:

PCT/US2003/027409

(22) International Filing Date:

2 September 2003 (02.09.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/407,009

30 August 2002 (30.08.2002)

(71) Applicant (for all designated States except US): WATSON PHARMACEUTICALS, INC. [US/US]; 311 Bonnie Circle, Corona, CA 92880 (US).

(72) Inventor; and

- (75) Inventor/Applicant (for US only): EBERT, Charles, D. [US/US]; 1912 East Lakewood Dr., Salt Lake City, UT 84117 (US).
- (74) Agents: OSBORNE, David, W. et al.; Thorpe North & Western LLP, P.O. Box 1219, Sandy, UT 84091-1219 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: IMPROVED DRUG DELIVERY SYSTEM FOR TREATMENT OF URINARY INCONTINENCE

(57) Abstract: Methods for the prevention or amelioration of urinary incontinence are disclosed and described. One method includes the coadministration of an anticholinergic agent with either an SSRI, or an SNRI, or both.

20

25

30

IMPROVED DRUG DELIVERY SYSTEM FOR TREATMENT OF URINARY INCONTINENCE

PRIORITY DATA

This application claims priority to United States Provisional Patent Application Serial no. 60/407,009, filed on August 30, 2002, which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to coadministration of an anticholinergic agent with either a selective serotonin reuptake inhibitor (SSRI) or a selective norepinephrine reuptake inhibitor (SNRI), or both, for the treatment of urinary incontinence. Accordingly, this invention covers the fields of pharmaceutical sciences, medicine and other health sciences.

15 BACKGROUND OF THE INVENTION

Recently, an effective transdermal medication has been developed for the treatment of what has come to be known as overactive bladder which is ocassioned by an incontinence. Urge incontinence results from instability of the detrusor muscle, the muscle surrounding the bladder. The cholinergic receptors of the detrusor can be over-stimulated causing spasmodic contractions and a sensation of urgency to urinate, which may lead to an urgency to urinate, an increased micturation rate, and in extreme cases to incontinent episodes.

An oral sustained release technology is exemplified by Guittard et al., U.S. Patent 6,262,115 (Alza) discloses tablets of oxybutynin without any further pharmaceutical component which has hydroxypropylmethylcellulose present in a molecular weight of approximately 10,000 (herein: Guittard). An effective transdermal delivery system has been developed by Watson Pharmaceuticals, Inc., which comprises technology disclosed in Quan et al., U.S. Patent 5,834,010 (1998) (herein: "Quan"). Quan discloses transdermal technology for the delivery of oxybutynin. This application incorporates by reference in toto the complete disclosure of Quan. Quan teaches a transdermal medication that can be applied typically for twenty-four hours. It is recommended that such a transdermal medication be applied after a morning shower or bath, to thereby provide a twenty-four hour period of

15

20

25

30

protection against such overactive bladder condition until the following morning. Other attempts to provide a treatment in this area include Pharmacia PCT application 0162236 with U.S. priority of February 24, 2000, and Waki et al., European Patent Application 1174132 (2002). Waki et al. provide a recent time slice of the state of the art: "[T]he countermeasure for the bladder functional disorder such as urinary incontinence or pollakiuria associated with the increase in the population of the advanced age group is one of the most important question of vital interest in the medical treatment. Therefore, the development of the effective drugs in treating urinary incontinence or pollakiuria are to be desired, and various medicines in addition to oral drugs already available in the market are on their way to development. Oxybutynin hydrochloride used in the treatment of urinary incontinence and pollakiuria is well recognized as the excellent anticholinergic drug demonstrating its pharmacological effect through acetylcholine antagonism. An oral dosage form of the drug requires a comparatively small quantity of 2-3 mg per dose, but they have to be taken three times a day. In addition, the absorption of the drug through the intestinal tract is known to be good, but the higher hepatic metabolism is also reported (Pharmacopoeia 4 (5), 45-53, 1990). Regarding the routes of administration, the oral form has the advantage in not giving pain to patients as compared with the injection form, but it may not be easy to administer the medicine which has to be taken at the regular interval for the aged patients who may sometimes require the medical helper. Furthermore, the drug taken orally is inevitably absorbed into a hepatoportal vein through the intestinal tract, thereby being subjected to the first pass effect termed for the intense hepatic metabolism of the drug on its first passage and often leads to the marked decrease in biological availability in many cases. In order to maintain the effective concentration of the drug in the blood, it is necessary to administer a relatively large dose of drug, and as a result, an incidence in adverse effects naturally increases. From these standpoints, there is the urgent need for the development, of a preparation that is relatively easy to administer, long lasting in its effect, and yet with fewer adverse effects. In view of pharmacokinetics, a preparation that does not exhibit the behavior of a transitory drug concentration in the blood such that the blood concentration rapidly increases and then decreases as often observed in the general orally administrated preparation, but whose concentration increases gradually and its effective concentration in the blood can be continuously maintained over a long period of time is highly desired."

In an embodiment of the invention that utilizes the Quan technology, in such an embodiment, the matrix patch comprises about 0.1% to about 50% by weight triacetin, more preferably about 1% to about 40% by weight triacetin, and most preferably about 2% to about 20% by weight triacetin. The polymer layer is preferably an adhesive, but can also be laminated to an adhesive layer or used with an overlay adhesive. Suitable polymers include acrylics, vinyl acetates, natural and synthetic rubbers, ethylenevinylacetate copolymers, polysiloxanes, polyacrylates, polyurethanes, plasticized weight polyether block amide copolymers, plasticized styrene-rubber block copolymers, and mixtures thereof. Acrylic copolymer adhesives are preferred. The matrix patch can also contain diluents, excipients, emollients, plasticizers, skin irritation reducing agents, carriers, and mixtures thereof provided that such additives do not alter the basic characteristics of the matrix patch.

5

10

15

20

25

30

In aspects of the invention utilizing the Quan technology, suitable polymers that can be used in the biocompatible polymeric layer of the matrix patch include pressure-sensitive adhesives suitable for long-term contact with the skin. Such adhesives must be physically and chemically compatible with the drug and enhancer, and with any carriers and/or vehicles or other additives incorporated into the drug/enhancer composition. Suitable adhesives for use in the matrix patch include acrylic adhesives including cross-linked and uncross-linked acrylic copolymers; vinyl acetate adhesives; natural and synthetic rubbers including polyisobutylenes, neoprenes, polybutadienes, and polyisoprenes; ethylenevinylacetate copolymers; polysiloxanes; polyacrylates; polyurethanes; plasticized weight polyether block amide copolymers, and plasticized styrene-rubber block copolymers. Preferred contact adhesives for use in the matrix patch herein are acrylic adhesives, such as TSR (Sekisui Chemical Co., Osaka, Japan) and DuroTak. RTM. adhesives (National Starch & Chemical Co., Bridgewater, N.J.), and polyisobutylene adhesives such as ARcare.TM. Glen Rock, Pa.). MA-24 (Adhesives Research.

In use, the matrix patch contains a distal backing laminated on the polymer layer. The distal backing defines the side of the matrix patch that faces the environment, i.e., distal to the skin or mucosa. The backing layer functions to protect the matrix polymer layer and drug/enhancer composition and to provide an impenetrable layer that prevents loss of drug to the environment. Thus, the material chosen for the backing should be compatible with the polymer layer, drug, and enhancer, and should be minimally permeable to any components of the matrix patch.

Advantageously, the backing can be opaque to protect components of the matrix patch from degradation from exposure to ultraviolet light. Further, the backing should be capable of binding to and supporting the polymer layer, yet should be pliable to accommodate the movements of a person using the matrix patch. Suitable materials for the backing include metal foils, metalized polyfoils, composite foils or films containing polyester such as polyester terephthalate, polyester or aluminized polyester, polytetrafluoroethylene, polyether block amide copolymers, polyethylene methyl methacrylate block copolymers, polyurethanes, polyvinylidene chloride, nylon, silicone e lastomers, rubber-based polyisobutylene, styrene, styrene-butadiene and styrene- isoprene copolymers, polyethylene, and polypropylene. A thickness of about 0.0005 to 0.01 inch is preferred. The release liner c and b e m ade of the s ame materials as the backing, or o ther suitable films c oated w ith an appropriate r elease surface.

5

10

15

20

25

30

The matrix patch can further comprise various additives in addition to the polymer layer, basic drug, and triacetin-containing penetration enhancer that are the fundamental components of the transdermal drug delivery system. These additives are generally those pharmaceutically acceptable ingredients that are known in the art of drug delivery and, more particularly, in the art of transdermal drug delivery provided that such additive ingredients do not materially alter the basic and novel characteristics of the matrix patch. For example, suitable diluents can include mineral oil, low molecular weight polymers, plasticizers, and the like. Many transdermal drug delivery formulations have a tendency to cause skin irritation after prolonged exposure to the skin, thus addition of a skin irritation reducing agent aids in achieving a composition that is better tolerated by the skin. A preferred skin irritation reducing agent is glycerin, U.S. Pat. No. 4,855,294.

The matrix patch device containing a polymer layer, the drugs, and triacetincontaining penetration enhancer is brought in contact with the skin or mucosa at a selected application situs and is held in place by a suitable pressure-sensitive adhesive. Preferably, the polymer layer of the matrix patch is an adhesive, but the polymer layer can also be laminated to an adhesive layer or used with an overlay adhesive.

While Quan provides an excellent medication for cases of overactive bladder for most patients, an improvement is contemplated in the present invention for post-menopausal women.

10

15

20

25

30

SUMMARY OF THE INVENTION

Accordingly, the present invention provides an improvement in the method of providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with a greater resistance to active bladder reaction via the coadministration of a therapeutically effective amount of an anticholinergic agent with a therapeutically effective amount of an SSRI, or SNRI, or both. In one aspect, the anticholinergic agent may be oxybutynin and the SSRI may be fluoxitine.

There has thus been outlined, rather broadly, the more important features of the invention so that the detailed description thereof that follows may be better understood, and so that the present contribution to the art may be better appreciated. Other features of the present invention will become clearer from the following detailed description of the invention, taken with the accompanying claims, or may be learned by the practice of the invention.

DETAILED DESCRIPTION

Accordingly, there are several specific aspects of the present invention. In a first embodiment, there is provided an improvement in the method of providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with an improved resistance to active bladder reaction via the oral delivery of oxybutynin, the improvement which comprises the coadministration therewith of an effective amount of FLUOXETINE whereby there is an enhanced resistance to said active bladder reaction.

In an aspect of this first embodiment, said coadministration is provided orally. In a still further aspect, the oral administration is via a sustained release vehicle to provide a 24 hour period of relief from active bladder reaction. In a further aspect, said coadministration is from a transdermal patch.

In a second aspect of the invention, an improvement is provided in the method of providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with an improved resistance to active bladder reaction via the oral delivery of oxybutynin, the improvement which comprises the coadministration therewith of an effective amount of paroxetine whereby there is an enhanced resistance to said active bladder reaction. In an embodiment, said coadministration is

provided orally, and in a further embodiment thereunder, the oral administration is via a sustained release vehicle to provide a 24 hour period of relief from active bladder reaction. In an alternative embodiment of this aspect of the inventionsaid coadministration is from a transdermal patch.

5

10

15

20

25

30

In a third aspect of the invention, an improvement is provided in the method of providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with an improved resistance to active bladder reaction via the oral delivery of Tolterodine, the improvement which comprises the coadministration therewith of an effective amount of fluoxetine whereby there is an enhanced resistance to said active bladder reaction. In an aspect of this embodiment, said coadministration is provided orally. In a still further aspect, the oral administration is via a sustained release vehicle to provide a 24 hour period of relief from active bladder reaction. In a further aspect, said coadministration is from a transdermal patch.

In a fourth a spect of the invention there is provided an improvement in the method of providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with an improved resistance to active bladder reaction via the oral delivery of Tolterodine, the improvement which comprises the coadministration therewith of an effective amount of paroxetine whereby there is an enhanced resistance to said active bladder reaction. In an aspect of this embodiment, said coadministration is provided orally. In a still further aspect, the oral administration is via a sustained release vehicle to provide a 24 hour period of relief from active bladder reaction. In a further aspect, said coadministration is from a transdermal patch.

In further aspects of the invention, oral and transdermal delivery systems are provided for each of the aspects of the invention set forth above.

The range of drugs in the composition of the invention will vary within amounts necessary to provide the desired effect of a prophylaxis or treatment of urinary incontinence in post-menopausal women with weakened musculature in the area of the urinary tract.

In oral formulation embodiments of the invention with oxybutynin it is contemplated that oxybutynin will be used in the form of its hydrochloride.

In sustained release formulations with any of oxybutynin, Tolterodine, Fluoxetine and Paroxetine, it is contemplated that twice the dosage will be provided

vis a vis a regular (non-sustained release) tablet.

For Fluoxetine, the amount should vary from about 5 to about 120 mg. per dosage; in an embodiment, the range is 10 to 80 mg., and in an example the amount is 40 mg. A blood level that is continuously achieved for most of the period of delivery is to be achieved in accordance with the invention which should be from about 15 to 55 nanograms/ml;

For Paroxetine, the amount should vary from about 5 to 60 mg. per dosage unit; in an embodiment, the amount varies from about 10 to about 40 mg., and in a preferred embodiment the amount is 30 mg.

For oxybutynin or Tolterodine the amount is generally from about 2.5 to about 20 mg., and in an embodiment the amount is from about 5 to about 15 mg., whilst in an example the amount is 10 mg.

Hydroxypropylmethyl cellulose may be replaced with other sustained release vehicles. The amount and viscosity of each should be selected to provide a sustained release of the drug over a period of 24 hours.

The improvement of the invention in all aspects provides a post-menopausal woman with a protection against unwanted urination due to the frequent loss of muscle or sphinter control that accompanies the female aging process. A common example of this problem is leakage following a sneeze or a cough.

20

25

30

5

10

15

EXAMPLE I:

Using conventional tablet excipients and techniques, a rapidly dissolving tablet is provided which contains 3.9 mg. oxybutynin and 20 mg. fluoxetine.

The tablet provides a mature, post-menopausal woman with enhanced relief against incontinence vis a vis a tablet without the fluoxetine.

EXAMPLE II:

Using conventional tablet excipients and techniques, a rapidly dissolving tablet is provided which contains 3.9 mg. oxybutynin and 20 mg. paroxetine. The tablet provides a mature, post-menopausal woman with enhanced relief against incontinence vis a vis a tablet without the paroxetine.

EXAMPLES III-IV:

Oral sustained release technology is exemplified by Guitard Example 1 which

discloses "[a] therapeutic oxybutynin composition for administering to a patient *** prepared as follows: First, 103 grams of oxybutynin hydrochloride was dissolved in 1200 ml (milliliters) of anhydrous ethanol. Separately, 2,280 g of polyethylene oxide of 200,000 weight-average molecular weight, 150 g of hydroxypropylmethylcellulose of 9,200 average-number molecular weight and 450 g of sodium chloride were dry blended in a conventional blender for 10 minutes to yield a homogenous blend. Next, the oxybutynin ethanol solution was added slowly to the blend, with the blender continuously blending until all the ingredients were added to the three component dry blend, with the blending continued for another 8 to 10 minutes. The blended wet composition was passed through a 16 mesh screen and dried overnight at a room temperature of 72[deg] F. (22.2[deg]). Then, the dry granules were passed through a 20 mesh screen, 18 g of magnesium stearate was added, and all the ingredients blended again for 5 minutes. The fresh granules are ready for formulation into a therapeutic oxybutynin composition. The therapeutic composition comprises 3.4 wt % oxybutynin hydrochloride, 76 wt % polyethylene oxide of 200,000 weight-average molecular weight, 5 wt % of hydroxypropylmethylcellulose of 9,200 average-number molecular weight, 15 wt % sodium chloride, and 0.6 wt % magnesium stearate." In accordance with the present invention, a sustained release tablet is provided by doubling the amounts of the two drug ingredients of Example I and II and incorporating this combination of drugs in place of the oxybutynin of Example 1 of Guittard. Each of the two tablets provides a 24 hour period of relief for incontinence.

EXAMPLE V:

5

10

15

20

25

30

Using conventional tablet excipients and techniques, a rapidly dissolving tablet is provided which contains 4.0 mg. Tolterodine and 20 mg. fluoxetine.

The tablet provides a mature, post-menopausal woman with enhanced relief against incontinence vis a vis a tablet without the fluoxetine.

EXAMPLE VI:

Using conventional tablet excipients and techniques, a rapidly dissolving tablet is provided which contains 4.0 mg. Tolterodine and 20 mg. paroxetine.

The tablet provides a mature, post-menopausal woman with enhanced relief against incontinence vis a vis a tablet without the paroxetine.

10

15

20

25

30

EXAMPLES VII-VIII:

Using the sustained release technology of Examples III-IV, a sustained release tablet is provided by doubling the amounts of the two drug ingredients of Example V and VI and otherwise following the procedure used in Examples III-IV. Each of the two tablets provides a 24 hour period of relief for incontinence.

EXAMPLE IX:

As a control, Example 1 of Quan is set forth: "Oxybutynin free base, pKa=10.3, is a strongly basic drug administered transdermally for antispasmodic and anticholinergic therapy. Matrix patches containing varying amounts of oxybutynin free base and penetration enhancers were prepared and tested as described above. The matrix systems consisted of 5 to 20% by weight of oxybutynin free base and 0 to 20% by weight of the enhancer contained in a medical grade acrylic copolymer adhesive.

"The matrix formulations were prepared as follows. First, the solids content of the adhesive was determined by weighing a small amount of the adhesive solution in a preweighed aluminum dish. The solvent was evaporated by overnight drying in a convection oven maintained at 80. degree. C. and the weight of the residue (dry adhesive) and percent solid adhesive content of the solution were determined. Once the solids content was determined, a known weight of the acrylic copolymer adhesive solution was weighed into a glass bottle. From the weight of the adhesive solution and the percent solid adhesive content, the amount of adhesive in the solution was calculated. Oxybutynin free base and enhancer were added to the bottle in proportions to yield the selected final composition. The bottle was then tightly capped, sealed with laboratory film, and rotated overnight until all ingredients had completely dissolved clear. solution visually and the resultant

"Approximately 8 ml of the solution was then dispensed on a silanized polyester release liner and cast with a 10 mil gap casting knife. The casting was then dried in a convection oven at 70 degree. C. for 15 minutes to evaporate the solvent and to yield a dried film approximately 0.002 inch thick. A 0.003 inch thick polyethylene backing film was laminated onto the dried adhesive film with a rubber roller. These matrix laminates were then used to conduct in vitro skin flux studies that showed satisfactory results as explained in Table 1 of Quan.".

The transdermal matrix for the delivery of oxybutynin of Example 1 of Quan

WO 2004/019892 PCT/US2003/027409

is modified by incorporating therein 40 mg. of fluoxetine. C omparable results are achieved to those of Quan for patients other than post-menopausal women where the present invention provides a better retardation of active bladder response based upon weakened musculature.

5

10

15

20

25

30

EXAMPLE X:

The transdermal matrix for the delivery of oxybutynin of Example 1 of Quan is modified by incorporating therein 40 mg. of paroxetine. Comparable results are achieved to those of Quan for patients other than post-menopausal women where the present invention provides a better retardation of active bladder response based upon weakened musculature.

EXAMPLES XI-XII:

By replacing an equal amount of Tolterodine for the oxybutynin of Examples XIII and IX, a transdermal medication particularly suited for post-menopausal women is achieved that is designed to provide superior relief against active bladder caused by a weakened musculature.

EXAMPLES XIII:

The Waki et al. application discloses that "1.0 part of oxybutynin hydrochloride was dissolved in 200.0 parts of isoprapanol as the solvent, and then 20.0 parts of N-vinyl acetamide copolymer (PNVA GE167, a product of Showa Denko K.K.), 1.0 part of synthetic aluminum silicate and 1.0 part of borax were added and stir-mixed. The mixture solution containing 62.0 parts of glycerin and 15.0 parts of propylene glycol were added and continuously stirred.

"The solvent-type plaster with the desirable viscosity for the plaster is spread out over the non-woven fabric, then solvent is removed by heat drying (solvent drying) and the strippable film made of polyester was adhered. This was cut into the desirable size to obtain the transdermal absorption preparation containing oxybutynin hydrochloride."

By replacing the oxybutynin of the quoted Waki example with a combination of each of the drugs as set forth in Examples XIII-XI, a superior overall medication is contemplated for post-menopausal women with a weakened musculature.

CLAIMS

20

25

What is claimed is:

- 1. In the method of providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with an improved resistance to active bladder reaction via the oral delivery of oxybutynin, the improvement which comprises the coadministration therewith of an effective amount of FLUOXETINE whereby there is an enhanced resistance to said active bladder reaction.
- 10 2. The method of claim 1 wherein said coadministration is provided orally.
 - 3. The method of claim 2 wherein the oral administration is via a sustained release vehicle to provide a 24 hour period of relief from active bladder reaction.
- 15 4. The method of claim 1 wherein said coadministration is from a transdermal patch.
 - 5. In the method of providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with an improved resistance to active bladder reaction via the oral delivery of oxybutynin, the improvement which comprises the coadministration therewith of an effective amount of paroxetine whereby there is an enhanced resistance to said active bladder reaction.
 - 6. The method of claim 6 wherein said coadministration is provided orally.
 - 7. The method of claim 7 wherein the oral administration is via a sustained release vehicle to provide a 24 hour period of relief from active bladder reaction.
- 8. The method of claim 5 wherein said coadministration is from a transdermal patch.
 - 9 In the method of providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with an improved resistance to active bladder reaction via the oral delivery of Tolterodine, the improvement which

comprises the coadministration therewith of an effective amount of fluoxetine whereby there is an enhanced resistance to said active bladder reaction.

10. The method of claim 9 wherein said coadministration is provided orally.

5

- 11. The method of claim 10 wherein the oral administration is via a sustained release vehicle to provide a 24 hour period of relief from active bladder reaction.
- 12. The method of claim 11 wherein said coadministration is from a transdermal patch.
 - 13. In the method of providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with an improved resistance to active bladder reaction via the oral delivery of Tolterodine, the improvement which comprises the coadministration therewith of an effective amount of paroxetine whereby there is an enhanced resistance to said active bladder reaction.
 - 14. The method of claim 13 wherein said coadministration is provided orally.
- 20 15. The method of claim 14 wherein the oral administration is via a sustained release vehicle to provide a 24 hour period of relief from active bladder reaction.
 - 16. The method of claim 13 wherein said coadministration is from a transdermal patch.

25

30

15

- 17. A composition suitable for providing a post-menopausal female patient with a weakened musculature in the area of the urinary tract with an improved resistance to active bladder reaction via the oral delivery of oxybutynin, the improvement which comprises the providing a dosage form for the administration of an effective amount of paroxetine whereby there is an enhanced resistance to said active bladder reaction.
- 18. The composition of claim 17 in oral form.
- 19. The composition of claim 18 in a sustained release vehicle to provide a 24

of paroxetine whereby there is an enhanced resistance to said active bladder reaction.

- 30. The composition of claim 29 in oral form.
- 5 31. The composition of claim 29 in a sustained release vehicle to provide a 24 hour delivery to the patient.
 - 32. A transdermal patch containing the medication of claim 29.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
D BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
\square REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Vriginia 22313-1450 www.uspto.gov

APPLICATION NUMBER	FILING OR 371(c) DATE	FIRST NAMED APPLICANT	ATTY. DOCKET NO./TITLE
11/201,756	08/10/2005	Claus Meese	12961/46103

CONFIRMATION NO. 3812

26646 KENYON & KENYON LLP ONE BROADWAY NEW YORK, NY10004

Title: Novel derivatives of 3,3-diphenylpropylamines

Publication No. US-2006-0270738-A1

Publication Date: 11/30/2006

NOTICE OF PUBLICATION OF APPLICATION

The above-identified application will be electronically published as a patent application pursuant to 37 CFR 1.211, et seq. The patent application publication number and publication date are set forth above.

The publication may be accessed through the USPTO's publically available Searchable Databases via the Internet at www.uspto.gov. The direct link to access the publication is currently http://www.uspto.gov/patft/.

The publication process established by the Office does not provide for mailing a copy of the publication to applicant. A copy of the publication may be obtained from the Office upon payment of the appropriate fee set forth in 37 CFR 1.19(a)(1). Orders for copies of patent application publications are handled by the USPTO's Office of Public Records. The Office of Public Records can be reached by telephone at (703) 308-9726 or (800) 972-6382, by facsimile at (703) 305-8759, by mail addressed to the United States Patent and Trademark Office, Office of Public Records, Alexandria, VA 22313-1450 or via the Internet.

In addition, information on the status of the application, including the mailing date of Office actions and the dates of receipt of correspondence filed in the Office, may also be accessed via the Internet through the Patent Electronic Business Center at www.uspto.gov using the public side of the Patent Application Information and Retrieval (PAIR) system. The direct link to access this status information is currently http://pair.uspto.gov/. Prior to publication, such status information is confidential and may only be obtained by applicant using the private side of PAIR.

Further assistance in electronically accessing the publication, or about PAIR, is available by calling the Patent Electronic Business Center at 703-305-3028.

Pre-Grant Publication Division, 703-605-4283	

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	407	514/551 or 560/140	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/04/15 07:59
L2	√ 8	I1 and (diphenylpropylamines or tolterodine)	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2007/04/15 09:36
L3	1	("5382600").PN.	USPAT	OR	OFF	2007/04/15 08:21
L4	1	("6858650").PN.	USPAT	OR	OFF	2007/04/15 09:36

STN SEARCH TRANSCRIPT 11/201,756

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID:ssspta1623zct

FERMINAL (ENTER 1, 2, 3, OR ?):2

Welcome to STN International

"Ask CAS" for self-help around the clock CAACAplus pre-1967 chemical substance index entries enhanced with preparation role CAACAplus patent kind codes updated MARRAT to CA/CAplus accession number crossover limit increased Page URLs for STN Seminar Schedule - N. America DEC

NEWS

18 DEC NEWS NEWS

MEDLINE updated in preparation for 2007 reload CA/CAplus enhanced with more pre-1907 records CHEMLIST enhanced with New Zealand Inventory of Chemicals JAN JAN JAN

CA/CAplus Company Name Thesaurus enhanced and reloaded IPC version 2007.01 thesaurus available on STN WPIDS/WPINDEX/WPIX enhanced with IPC 8 reclassification data 18 227 008 116 122 222 229 229

CA/CAplus updated with revised CAS roles CA/CAplus enhanced with patent applications from India PHAR reloaded with new search and display fields CAS Registry Number crossover limit increased to 300,000 in multiple databases JAN JAN JAN 12 13 14 15 NEWS NEWS NEWS NEWS NEWS NEWS

PATDPASPC enhanced with Drug Approval numbers RUSSIAPAT enhanced with pre-1994 records KOREAPAT enhanced with IPC 8 features and functionality EMBASE enhanced with Clinical Trial Number field MEDLINE reloaded with enhancements 115 115 226 226 226 226 226 226 226 FEB FEB 16 117 119 119 22 23 23

TOXCENTER enhanced with reloaded MEDLINE IFICOB/IFIPAT/IFIUDB reloaded with enhancements CAS Registry Number crossover limit increased from 10,000 to 300,000 in multiple databases WPIDS/WPIX enhanced with new FRAGHITSTR display format CASREACT coverage extended FEB FEB NEWS NEWS NEWS NEWS NEWS NEWS NEWS

RDISCLOSURE reloaded with enhancements INPADOCDB will replace INPADOC on STN JICST-EPLUS removed from database clusters and STN now updated daily 15 20 22 30 30 02 MAR MAR MAR MAR MAR 24 25 25 26 27 27 28 29 30 NEWS NEWS NEWS NEWS NEWS NEWS NEWS

NOVEMBER 10 CURRENT WINDOWS VERSION IS V8.01c, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0Jc(JP), AND CURRENT DISCOVER FILE IS DATED 25 SEPTEMBER 2006. EXPRESS NEWS I

come Banner and News Items general information regarding STN implementation of IPC 8 STN Operating Hours Plus Help Desk Availability X.25 communication option no longer available HOURS LOGIN IPC8 NEWS X25

Enter NEWS followed by the item number or name to see news on that

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific

research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 09:29:30 ON 15 APR 2007

=> FILE REGISTRY
COST IN U.S. DOLLARS

SINCE FILE ENTRY 0.21 FULL ESTIMATED COST

TOTAL SESSION 0.21

FILE 'REGISTRY' ENTERED AT 09:29:46 ON 15 APR 2007
USE IS SUBJECT TO THE TERMS OF YOUR STR CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

HIGHEST RN 930268-90-9 HIGHEST RN 930268-90-9 13 APR 2007 13 APR 2007 DICTIONARY FILE UPDATES: STRUCTURE FILE UPDATES:

New CAS Information Use Policies, enter HELP USAGETERMS for details.

ISCA INFORMATION NOW CURRENT THROUGH December 2, 2006

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/ONLINE/UG/regprops.html

Uploading C:\Program Files\Stnexp\Queries\DIPHENYLPROPYLAMINES.str

146:281054
Pharmaceutical compositions comprising combinations of an antimuscarinic agent and an anticholinergic agent for the treatment of a patient suffering from overective bladder
Paborji, Mehdi 20060828 8 ANSWERS Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PP) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is DATE Effective October 17, 2005, revised CAS Information Use Policies apply. They are available for your review at: SESSION 174.56 TOTAL ENTRY 174.35 WO 2006-US33671 SINCE FILE APPLICATION NO. FILE 'CAPLUS' ENTERED AT 09:33:19 ON 15 APR 2007
USE IS SUBJECT TO THE TERMS OF YOUR STW CUSTOMER ACREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2007 AMERICAN CHEMICAL SOCIETY (ACS) L4 ANSWER 1 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2007:259675 CAPLUS 146:2810%A 81 TO ITERATE FILE COVERS 1907 - 15 Apr 2007 VOL 146 ISS 17 FILE LAST UPDATED: 13 Apr 2007 (20070413/ED) => S L1 SSS FULL FULL SEARCH INITIATED 09:33:14 FILE 'REGISTRY' FULL SCREEN SEARCH COMPLETED - 81 TO ITEI Theravida, LLC, USA PCT Int. Appl., 49pp. CODEN: PIXXD2 20070308 DATE 81 ITERATIONS http://www.cas.org/infopolicy.html Patent English 0 SEA SSS SAM L1 8 SEA SSS FUL L1 KIND A1 COUNT: 100.0% PROCESSED SEARCH TIME: 00.00.01 => FILE CAPLUS COST IN U.S. BOLLARS strictly prohibited. INVENTOR(S):
PATENT ASSIGNEE(S): FULL ESTIMATED COST FAMILY ACC. NUM. CC PATENT INFORMATION: WO 2007027675 17 L3 PATENT NO. DOCUMENT TYPE: SOURCE: => S L3 13 L4 10:CLASS 3-18 6-17 7-8 7-11 8-9 9-10 10-26 10-27 17-20 18-19 20-21 20-24 2 21-23 O ANSWERS Match level: Hatom 4:Atom 5:Atom 6:Atom 7:CLASS 8:CLASS 9:CLASS 11:Atom 12:Atom 13:Atom 14:Atom 15:Atom 16:Atom 7:CLASS 18:CLASS 20:CLASS 21:CLASS 23:CLASS 23:CLASS 24:CLASS 26:CLASS 27:CLASS Structure attributes must be viewed using STN Express query preparation. 1-7 3-18 7-8 7-11 8-9 9-10 10-26 10-27 20-21 21-22 21-23 normalized bonds: 1-2 1-6 2-3 3-4 4-5 5-6 11-12 11-16 12-13 13-14 14-15 15-16 ring bonds : 1-2 1-6 2-3 3-4 4-5 5-6 11-12 11-16 12-13 13-14 14-15 15-16 5 TO ITERATE => S L1 SAMPLE SEARCH INITIATED 09:33:10 FILE 'REGISTRY' SAMPLE SCREEN SEARCH COMPLETED - 5 TO ITE 234 **COMPLETE** 5 TO OT O 5 ITERATIONS 봅 끕 ONLINE BATCH STRUCTURE UPLOADED 17-20 18-19 20-24 isolated ring systems : containing 1 : 11 : FULL FILE PROJECTIONS: PROJECTED ITERATIONS: PROJECTED ANSWERS: 100.0% PROCESSED SEARCH TIME: 00.00.01 => D L1 L1 HAS NO ANSWERS L1 STR exact/norm bonds : exact bonds : 21-22 Ξ ይ

CODEN: NSAPCC; ISSN: 0028-1298 Springer DOUCNEENT TYPE: JOURNAL! General Review ABA deridenal: JOURNAL! Biglish Badish ABA deridenali, oxybutyin, propiverine, soliencalin, tolercoline, and attricentin, oxybutyin, propiverine, soliencalin, tolercoline, and thorse be the mainisty of the treatment of the overactive bladder syndrome. Fesotrecidine is a newer drug awaiting regulatory approval. The authors briefly review the pharmacol. activity of their metabolites and discuss how active metabolites may contribute to their efficacy and collerability in vio. Except for trospium, and penhaps solifenating telationships between pharmacokinetics and their presence and activity need to be taken into consideration when alucidating relationships between parmacokinetics and pharmacodynamics of these drugs. Moreover, the ratios between parent compost and matabolites may differ depending on genotype of the metabolizing enzymes, concomitant mediaction, and/or drug formulation. Differential generation of active metabolites of darifenal on the course of metabolites in an animacoved understanding of these drugs in a major way because the active metabolites exhibit a similar pharmacol. profile a the parent compound montrast, metabolites of cybutynin and propiverine may behave quant. or even qual. differently from their parent compos in the parent compound impact on the overall clin profile of these drugs in a major way because the active netabolites schibit a similar drug major way because the active metabolites contained the metabolites in an animacoved understanding of their cline effects of the major way because an animacoved understanding of their cline effects of the parent compounder impact on the overall clin profile of these drugs in a major way because the active contrast, metabolites of coybutynin and propiverine may behave quant. or even qual of directive bidder sylden drugs in the material of the compounder of the	HO HO FERENCE COUNT: 56 THERE ARE 56 RECORD. ALL C	L4 ANSWER 3 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2006:630212 CAPLUS DOCUMENT NUMBER: 145:110369 Injectable sustained release microspheric preparation of 3,3-diplemylpropylamine derivatives as muscarinic receptor antagonists Li, Youxin Peop. Rep. China SOUNCE: CODEN: PIXXD2 DOCUMENT TYPE: Patent PIXXD2
L, CB, CH, N, KP, N, KP	REFERENCES AVAILABLE FOR THIS TONS AVAILABLE IN THE RE FORMAT ON STN	CAPLUS he overactive bladder syndrome with eptor antagonists - a matter of C.; Hegde, Sharath S. Pharmacology & Pharmacotherapy, Academic , University of Amsterdam, Amsterdam, source ceberg's Archives of Pharmacology (2006), DOCUM
W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CR, GE, GE, GE, GE, GE, GE, GE, GE, GE, GE	HO HO HO THERE ARE RECORD. A L4 ANSWER 2 OF 17 CAPLUS COPYRIGHT 2	CESSION NUMBER: CUMENT NUMBER: TLE: THOR(S): RPORATE SOURCE:

BA, IN, TE, CAPLUS 20060126 20060126 DE, PL, GW, SL, 20060126 AZ, DK, IL, LV, PH, AU, LU, PG, CZ, NL, GO, SD, 2006:76147 English 1 AT, CY, GN, TM, Patent KIND CH, LU, GA, MZ, TJ, Al CAPLUS c AL, CR, LR, LLR, SY, SY, CM, RU, FAMILY ACC. NUM. COUNT: PATENT INFORMATION: PRIORITY APPLN. INFO.: ANSWER 4 OF 17 AE, AG, PATENT ASSIGNEE(S): AU 2005263883 CA 2573393 WO 2006008437 ACCESSION NUMBER: REFERENCE COUNT: DOCUMENT NUMBER: PATENT NO. DOCUMENT TYPE: RW: INVENTOR (S): LANGUAGE: SOURCE: TITLE: AB The invention relates to injectable sustained release microspheric preparation of 3,3-diphenylaphopylamine, its preparing process and application. The said sustained release microspheric preparation consists of 3,3-diphenylapropylamine of formula I as follows, its optical enantiomers or racemates and one or more medicinal biodegradable high-mol. auxiliary material and other medicinal auxiliary material, wherein the definition of R1, R2 R3 R4 and R5 sees the claims. The injectable sustained release microspheric preparation according to the invention is used for treatment or supplementary treatment of diseases related to the muscarinic receptor and unstable or CA, CH, GB, GD, KP, KR, MW, MX, SD, SE, UZ, VC, overactive bladder such as urgency or stress urinary incontinence, urge incontinence, urinary urgency or frequency, etc. 20041223 IE, BJ, GH, BY, HU, BF, BW, AZ, GR, TR, TG, ВΖ, Ą MK, RO, GB, SK, TD, ZW, CN 2004-10101721 CN 2004-10101721 BW, APPLICATION NO. SE, NE, UG, MD, PT, TZ, ES, RO, MR, TZ, BB, DZ, IS, LY, PH, TR, EE, PT, ML, SZ, BA, IN, IV, DK, PL, GW, SL, MARPAT 145:110309 NA, SD, TM TM 20060705 I W E DE, NL, GO, SD, 0060629 A2, DK, CZ, MC, Chinese 1 AT, CZ,

AM, CU, HR,

WO 2006066509

PATENT NO.

LANGUAGE: FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

LR, NH, SM, CH, CH, CM, RW,

LLK, NG, SL, ZA, ZA, LT, LT, LT, LS,

RW:

ø

CN 1795845 PRIORITY APPLN. INFO.: OTHER SOURCE(S):

CH, KZ, YU,

GE, SE, KG,

AB

(Properties); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (injectable sustained release microspheric preparation of 3.3-diphenylpropylamine derivs. as muscarinic receptor antagonists) 286930-02-7 CAPLUS

PAC (Pharmacological activity); PKT (Pharmacokinetics); PRP

286930-02-7

H

Propanoic acid, 2-methyl-, 2-{(1R}-3-{bis(1-methylethyl)amino}-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME)

286930-02-7

S S

Absolute stereochemistry. Rotation (+)

286930-02-7

RN

nor pretor NO OOF. GE S This invention relates to combination therapy for the treatment of beingn prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS) associated with or without BPH. The combination therapy comprises of lu adrenergic receptor (AR) subtype selective antagonist in combination with muscarinic receptor antagonist and optionally included Testosterone 5-reductase inhibitor for relief of LUTS in a subject with or THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT AAPLUS COPYRIGHT 2007 ACS on STN 2004:902168 CAPLUS 141:374727
Method using quaternary ammonium compounds for the treatment of irritable bowel syndrome Richards, Ivan Michael; Kolbasa, Karen Patrice Pharmacia & Upjohn Company, LLC, USA PCT Int. Appl., 37 pp. IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, CH, GD, LC, NI, SY, ZW W 20040322 20040405 RL: THU (Therapeutic use); BIOL (Biological study); USES (Uses) (combination therapy using adrenargic receptor antagonist in combination with muscarinic receptor antagonists and testosterone 5-reductase inhibitors for lower urinary tract symptoms) DETTE. ASSECTATED DATE to GOOD. Propanoic acid, 2-methyl-, 2-[(1R)-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME) DATE TS BZ, KR, MZ, SK, ZW, BW, KG, KG, VN, UG, APPLICATION NO. WO 2004-IB1218 WO 2004-IB842 RE, SD, VC, TZ, BG, JP, JP, WK, WK, UZ, BBB, DZ, IIS, MG, RU, US, SL, 20041028 20050414 AU, AZ, DE, DK, ID, IL, LV, MA, PL, PT, TZ, UA, MW, MZ, Absolute stereochemistry. Rotation (+). GR, HU, CF, CG, AT, CZ, HU, LU, PH, TT, English Patent KIND GB, BJ, A2 AM, CCU, HR, LT, PG, TR, CAPLUS FI, FR, TR, BF, I 286930-02-7 CAPLUS LANGUAGE:
FAMILY ACC. NUM. COUNT:
PATENT INFORMATION: PRIORITY APPLN. INFO.: AB This invention rel L4 ANSWER 6 OF 17 ACCESSION NUMBER: DOCUMENT NUMBER: AG, CO, CO, LR, NZ, TM, INVENTOR(S): PATENT ASSIGNEE(S): SOURCE: WO 2004091597 WO 2004091597 without BPH. 286930-02-7 REFERENCE COUNT: AE, CR, LK, NO, TJ, PATENT NO. DOCUMENT TYPE: RM: TITLE: i-Pr II S S THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT Combination therapy using adrenergic receptor antagonist in combination with muscarinic receptor antagonist in combination with muscarinic receptor antagonists and testosterone 5-reductase inhibitors for lower urinary tract symptoms Chugh, Anita; Tiwari, Atul Ranbayy Laboratories Limited, India Perlary, Laboratories Limited, India CODEN: PIXXD2 20040322 CA, CH, CB, CB, CB, CC, CB, CC, CB, CC, SC, SY, SC, SW, SW, AM, AZ, AM, AZ, DK, EE, SE, SI, NE, SE, NE, SE, Propanoic acid, 2-methyl-, 2-[(IR)-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME) GR, LT, BY, KKP, KKP, KYU, YU, YU, PT, ML, Æ, BY, ES, MX, MX, YU, YU, CZ, eperut FI, FR, SK, TR, MW, SE, VN, UG, CY, GW, BW, EG, KG, MW, SE, VN, CY, APPLICATION NO. EP 2004-722336 2004-IB866 2004-IB842 BR, KE, KE, KE, YC, TZ, SD, VC, TZ, CH, NL, GO, US COPYRIGHT 2007 ACS on STN 2005:1075634 CAPLUS ES, SI, JP, MK, SC, SC, SZ, SZ, GN, BG, JP, JP, SC, SC, SZ, BG, SE, BB, DZ, IS, MG, RU, US, SL, BB, DZ, IS, MG, RU, US, SL, LU, GA, ND, ND, NG, SD, CM, %, % BA, DM, CZ, DE, PL, PT, 20051006 Absolute stereochemistry. Rotation (+). 001200 20070131 AZ, DK, ID, LV, PL, MW, HU, CG, AU, DE, ID, LV, TZ, TZ,

Patent English

DOCUMENT TYPE:

INVENTOR(S): PATENT ASSIGNEE(S): SOURCE:

FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

WO 2005092341

PATENT NO.

S, E

CAPLUS

ANSWER 5 OF 17

L4 ANSWER 5 OF ACCESSION NUMBER:

DOCUMENT NUMBER: TITLE:

m

REFERENCE COUNT:

i-Pr

CS

CY;

ВĞ,

BE, LI,

AT,

.. .:

EP 1746998

WO 2005092342

AT, CZ, HU, LU, PH, TT, RU,

AG, CO, GH, LR, NZ, TM, GH,

AE, CN, LK, LK, NO, BW,

RM:

LU, PH, LLS, GR, CF,

GE, NO, NO, BW, TJ,

RW:

AM, TR, KE, KE, WD, BJ,

AL, CR, LS, TN, TN, FR,

TYPE: CODDEN: CODDEN	APPLICATION NO. APPLICATION NO. NO 2004-EP3567 BA, BB, BG, BW, BY, BZ, DW, DZ, EC, EE, EG, ES, FI, IN, IS, JP, KE, KG, KP, KR, MD, MG, MK, MN, MW, MX, MZ, RO, RU, SC, SD, SE, SG, SK, GG, US, UZ, VC, VN, YU, ZA, AT, BE, BG, CH, CY, CZ, DE, IT, LU, MC, NI, PL, PT, RO, IT, LU, MC, NI, PL, PT, RO,
ENT NO. 200409972 M. AE, AG, AL, AM, AT, CM, CO, CR, CO, CZ, GE, GH, CM, TR, HV, HU, LK, LR, LS, LT, LU, NO, NZ, OM, PG, PH, TJ, TY, TW, TW, TR, TT, TJ, TG, CM, CM, CM, CM, CM, CM, CM, CM, CM, CM	MO 2004-EP3567 BA, BB, BG, BR, BW, BY, BZ, CA, OM, DZ, EC, EG, ES, FI, GB, IN, IS, JP, KE, KG, KP, KR, KZ, MD, MG, MK, MN, MM, MX, MZ, NA, NG, NG, SD, SE, SG, SK, SL, CG, UG, UG, UZ, VC, VN, YU, ZA, ZM, SL, SL, SE, BG, CH, CY, CZ, DE, DK, AT, LU, MC, NL, PL, PT, NO, SE,
2004089972 W: AE, AG, AL, AM, AT, GE, GE, GH, GM, HK, HU, NO, NZ, NW, PW, FW, TJ, TW, TW, TW, TW, TW, TW, TW, TW, TW, TW	MO 2004-EP3567 200404 BA, BB, BG, BR, BW, BY, BZ, CA, DW, DZ, EC, EG, ES, FI, GB, ID, IS, JP, KE, KG, KP, KR, KZ, MD, MG, MK, MN, MX, MZ, NA, RO, RU, SC, SD, SE, SG, SK, SL, GG, US, UZ, VC, VN, YU, ZA, ZM, GG, US, UZ, VC, VN, YU, ZA, ZM, AT, SE, BG, CH, CY, CZ, DE, DK, IT, LU, MC, NL, PL, PT, RO, SE
H: AE, AG, AL, AM, AT, CA, CO, CR, CU, CZ, GE, GH, GH, CH, LU, LK, LR, LS, LT, LU, NO, NZ, OM, FG, PH, TJ, TW, TW, TR, TY, TW, TW, TW, TR, TY, ES, FT, FR, GB, GR, TD, TG BF, BC, CF, TD, TG BF, BJ, CF, TD, TG AT, TO, TG BF, BJ, CF, TD, TG AT, TO, TG AT,	BA, BB, BG, BR, BW, BY, BZ, CA, DM, DZ, EC, EE, EG, ES, FT, GB, IN, IS, JP, KE, KG, KP, KR, KZ, MD, MG, MK, MN, MX, MZ, NA, RO, SM, SC, SD, SE, SG, SK, SL, UG, US, UZ, VC, VN, YU, ZA, ZM, ST, EB, BG, CH, CY, CZ, DE, DK, AT, LU, MC, NL, Pt, PT, RO, SE,
CN, CO, CR, CU, CZ, GE, GH, HR, HU, LK, LB, LS, LT, LU, LY, LS, LT, LU, LY, TY, TH, TH, TK, TK, TH, TK, TK, TK, TK, TK, TK, TK, TK, TK, TK	DM, DZ, EC, EE, EG, ES, FI, GB, IN, IS, JP, KE, KG, KP, KR, KZ, MD, MG, MK, MM, MX, MZ, NA, NO, RU, SC, SD, SE, SG, SK, SL, UG, US, UZ, VC, VN, YU, ZA, ZM, SD, SL, ZZ, TZ, UG, ZM, ZM, AM, AT, BE, BG, CH, CY, CZ, DE, DK, IT, LU, MC, NL, PT, RO, SE,
GE, GH, GM, HR, HU, LK, LR, LS, LT, LU, NO, NZ, OM, PC, PH, TJ, TM, TN, TN, TT, TT, RW: BW, GH, GM, KE, LS, ES, FI, FR, GB, GR, SK, TR, BF, BJ, CF, TD, TG 10315917 A1 2004228163 A1	IN, IS, JP, KE, KG, KP, KR, KZ, MD, MG, MK, MN, MM, MX, MZ, NA, NA, NG, NO, SD, SE, SG, SK, SL, UG, US, UZ, VC, VN, YU, ZA, ZM, SD, SL, SZ, TZ, UG, ZM, ZM, AM, SE, BG, CH, CY, CZ, DE, DK, TT, LU, MC, NL, Pt, PT, NO, SE,
LK, LR, LS, LT, LU, NO, TM, ONE, OH, TJ, TM, TN, TR, TT, RW: BW, GH, CM, RE, LS, ES, FT, FR, GB, GR, TT, TR, BF, BJ, CF, TD, TG TM, TO, TG TM,	MD, MG, MK, MN, MW, MX, MZ, NA, MR, RN, RU, SO, SU, SE, SG, SK, SL, UG, US, UZ, VC, VN, YU, ZA, ZM, SL, SZ, SE, SG, CK, CK, CK, CK, CK, CK, CK, CK, CK, CK
NO, NZ, OM, PG, PH, TJ, TW, TH, TT, RW: BW, GH, KE, LS, BY, KG, RZ, MB, RU, ES, FT, RR, GB, GR, TM, TG, FR, BC, CF, TD, TG AIL 2004228163	RO, RU, SC, SD, SE, SG, SK, SL, UG, US, UZ, VC, VN, YU, ZA, ZM, SD, SL, SZ, TZ, UG, ZM, ZM, AM, ST, BE, BG, CH, CY, CZ, DE, DK, LT, LU, MC, NL, PL, PT, RO, SE,
TJ, TM, TN, FR, TT, RW: BW, GI, GM, KE, LS, BY, KG, KZ, MB, RU, ES, FI, FR, GB, GR, SK, TR, BF, BJ, CF, TD, TG 2004228163 Al	0G, 0S, 0Z, VC, VN, YU, ZA, ZM, SD, SL, SZ, TZ, UG, ZM, ZM, AM, AM, TB, BG, CH, CY, CZ, DE, DK, IT, LU, MC, NL, PL, PT, RO, SE,
RW: BW, GH, GM, KE, LS, BY, KG, KZ, BB, RU, ES, FI, FR, GB, GR, SK, TR, BF, BJ, CF, TD, TG A1 2004228163 A1	SD, SL, SZ, TZ, UG, ZM, ZW, AM, AT, BE, BG, CH, CY, CZ, DE, DK, IT, LU, MC, NL, PL, PT, RO, SE,
ES, FY, FK, MB, NU, ES, FY, FR, GB, GR, TR, BF, BJ, CF, TD, TG A1 10315917 A1 2004228163 A1	AI, BE, BG, CH, CY, CZ, DE, DK, IT, LU, MC, NL, PL, PT, RO, SE,
ES, FI, FK, GB, GK, TR, TR, BF, BJ, CF, TD, TG 10315917 A1 2004228163 A1	II, DO, MC, NE, PE, FI, KO, SE,
SK, TR, BF, BJ, CF, TD, TG A1 10315917 A1	
TD, TG 10315917 A1 2004228163 A1	, CM, GA, GN, GQ, GW, ML, MR, NE, SN,
10315917 A1 2004228163 A1	
2004228163 Al	DE 2003-10315917
0.010	AU 2004-228163
Z5U5848 AI	CA 2004-2505848
2004006221 A	BR 2004-6221
EP 1613584 A1 20060111	EP 2004-725610
BE, CH, DE, DK, ES,	GB, GR, IT, LI, LU, NL, SE, MC, PT,
, SI, LT, LV, FI,	CY, AL, TR, BG, CZ, EE, HU
Ą	CN 2004-80009224
758	JP
A1	# US 2005-532836
NO 2005005078 A 20051031	NO 2005-5078
PRIORITY APPLN. INFO.:	DE 2003-10315917 A 20030408 WO 2004-EP3567 W 20040403
OTHER SOURCE(S): MARPAT 141:370546	546
CI	

DE, DK, EE, RO, SE, SI, MR, NE, SN,

CZ, PT, ML,

CH, CY, NL, PL, GQ, GW,

MC,

TM, AT, BE, E IE, IT, LU, N CI, CM, GA, G

77, HU, CG,

MD, RU, GB, GR, BJ, CF,

BY, KG, KZ, N ES, FI, FR, C SK, TR, BF, E TD, TG

20040413

Д

US 2004-823944 US 2003-462921P

MARPAT 141:374727 20041104

A1

US 2004220224
PRIORITY APPLN. INFO.:
OTHER SOURCE(S):

The invention discloses a method for treating irritable bowel syndrome by administering quaternary ammonium compds. Compds. of the invention include e.g. If Rl = (un)substituted Cl-6 alkyl, (un)substituted CH2 (Cl-4 alkyl), (un)substituted CH2 (Cl-6 alkyl), a = anion of pharmaceutically acceptable acid). Preparation of selected compds., e.g. (3R)-3-(2-hydroxy-5-methyl)henyl)-N,N-diisopropyl-N-methyl-3-phenylpropan-l-aminium bromide, is included.

ΑB

Ľ

C Z

RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (quaternary amonium compds. for treatment of irritable bowel syndrome) 518360-93-5 CAPLUS (Benenepropanaminium, 5-(hydroxymethyl)-N-methyl-N,N-bis(l-methylethyl)-2-(2-methyl-l-oxopropoxy)-y-phenyl-, bromide, (YR)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

i-Pr

The invention relates to a compound of general formula (I) wherein A represents deuterium or hydrogen, R represents a group selected from Cl-6 alkyl, C3-IO cycloalkyl or Ph, which can be substituted by Cl-3 alkoxy, fluorine, chlorine, bromine, iodine, nitro, amino, hydroxyl, oxo, mercapto or deuterium. The C atom marked with a * (star) can be present in an (R) configuration, in an (S)-configuration or a mixture thereof. The invention AB

L4 ANSWER 7 OF 17 C ACCESSION NUMBER: DOCUMENT NUMBER: TITLE:

Br.

CAPLUS COPYRIGHT 2007 ACS on STN 2004;878361 CAPLUS 141:370546 Highly pure bases of 3,3-diphenyl propylamine

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT 20040413 20040405 20040405 CAPLUS COPYRIGHT 2007 ACS on STN 2004:878163 CAPLUS 141:36060 Combination therapies of asthma, COPD, allergic infectious rhimitis Richards, Ivan Michael; Manning, Robert Everett Pfizer Inc, USA U.S. Pat. Appl. Publ., 20 pp. NA, SL, ZM, AM, DK, SE, US 2004-824315 CA 2004-2522666 WO 2004-IB1170 BW, KG, KG, VN, VN, CY, GW, APPLICATION NO. N. S BG, JP, JP, JP, UZ, SZ, SZ, GN, BBB, DZ, IS, MG, RU, US, SL, LU, GA, RO, UG, SD, AT, IT, 20041021 20041028 20041028 20050407 AZ, DK, IL, MA, MZ, MZ, CIE, U.S. Pat. Appl CODEN: USXXCO Patent English AU, DE, LU, PH, LLS, CE, KIND A1 A2 A2 A3 AM, CU, HR, LT, TT, TR, KE, MD, GB, DOCUMENT TYPE: LANGUAGE: FAMILY ACC. NUM. COUNT: PATENT INFORMATION: L4 ANSWER 8 OF 17 ACCESSION NUMBER: DOCUMENT NUMBER: US 2004209916 CA 2522666 WO 2004091596 WO 2004091596 463-79-6 C H2 O3 INVENTOR(S): PATENT ASSIGNEE(S) SOURCE: BY, ES, SK, TD, EP 1620083 REFERENCE COUNT: PATENT NO. RM: 7 CRN HO-C-OH 5

RL: PRP (Properties); SPN (Synthetic preparation); THU (Therapeutic use);
BIOL (Biological study); PREP (Preparation); USES (Uses)
(highly pure bases of 3,3-di-Ph propylamine monoesters for use in transdermal delivery systems)

777075-72-6P

ΞI

777075-72-6 CAPLUS
Propanoic acid, 2-methyl-, 2-[(1R)-3-[bis(1-methylethyl)amino]-1phenylpropyl]-4-(hydroxymethyl)phenyl ester, carbonate (1:1) (salt) (9CI)
(CA INDEX NAME)

Z S

is characterized in that the above-mentioned compds. are free bases with a degree of purity of more than 97 wt %. The invention also relates to a method for the production of highly pure compds. of general formula [I] and to the use thereof in the production of medicaments. Thus (R)-2-[3-(Dissopropylamnoh)-1-phenylpropyll-4(hydroxymethyl)phenol was reacted with isobutyric acid chloride to form fesoterodine. Fesoterodine was purified via the formation of its fumaric acid salt. 1.5 G of the highly pure fesoterodine was mixed with 8.5 g silicone adhosive Bio-psA 7-4300 and applied to a foil in order to prepare a transdermal delivery system.

RL: PRP (Properties); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses) (highly pure bases of 3,3-di-Ph propylamine monoesters for use in transdermal delivery systems)

H

Propanoic acid, 2-methyl-, 2-[(1R}-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME)

286930-02-7 CAPLUS

Z Z

Absolute stereochemistry. Rotation (+).

i-Pr

Absolute stereochemistry. Rotation (+).

286930-02-7 C26 H37 N O3

CRN ξ

20040405

SE, NL,

EP 2004-725755

IT, HU,

GR, EE,

GB,

FR, BG,

ES, TR,

CY,

CH,

BE, SI,

AT, IE,

A2 DE, RO,

CH, GD, LC, LC, SY, SY, SM, SM, SI, SI, SI,

Therefore, new agents with improved safety and efficacy profiles are needed for a more effective treatment of overactive bladder. Fesoterodine is a novel bladder-selective muscarinic antagonist that has shown potent antimuscarinic activity in vitro and in vivo. In multiple investigations, the agent has been shown to be safe and well tolerated in subjects of different ethnic origin, age and gender; in poor and extensive CYP2D6 metabolizers; in subjects taking concomitant medication inhibiting CYP3A4; in fed or fasted states; and in those suffering from hepatic impairment. No clin. relevant changes in heart rate, blood pressure, ECG parameters or laboratory analyses have been seen with therapeutic doses of fesoterodine in these studies. Furthermore, in a phase II clin. trial in patients with OAB, fesoterodine demonstrated rapid and significant efficacy on a variety of endpoints. The results of this trial encouraged the manufacturer fesoterodine in THERE ARE 24 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT Breitenbach, Armin; Meese, Claus; Wolff, Hans-Michael; 20040403 ', CA, CH, ', GB, GD, 286930-02-7, Fesoterodine RL: ANV Adverse effect, including toxicity); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (advanced antimuscarinic fesoterodine for treatment of overactive to adverse events and/or insufficient efficacy. DATE Propanoic acid, 2-methyl-, 2-[(1R)-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME) BZ, FI, BY, ES, 141:337790 Transdermal administration of (R)-3,3-BW, EG, APPLICATION NO. WO 2004-EP3574 BR, EE, diphenylpropylamine monoesters COPYRIGHT 2007 ACS on STN BG, EC, BB, DZ, BA, Schwarz Pharma Ag, PCT Int. Appl., 68 CODEN: PIXXD2 AZ, DK, Absolute stereochemistry. Rotation (+). 20041021 Drews, Roland AT, AU, CZ, DE, DATE Patent German KIND CAPLUS AM, CU, 24 AL, CR, CAPLUS FAMILY ACC. NUM. COUNT: PATENT INFORMATION: ANSWER 10 OF 17 AE, AG, CN, CO, PATENT ASSIGNEE(S): WO 2004089346 fesoterodine. 286930-02-7 L4 ANSWER 10 OF ACCESSION NUMBER: REFERENCE COUNT: DOCUMENT NUMBER: PATENT NO. DOCUMENT TYPE: INVENTOR (S): LANGUAGE: SOURCE: i-Pr ΙŢ Z Z AAGE: A review. The pillars of pharmacotherapy for overactive bladder (OAB) are Benzenepropanaminium, 5-(hydroxymethyl)-N-methyl-N,N-bis(1-methylethyl)-2-[2-methyl-1-oxopropoxy)-y-phenyl-, bromide, (YR)- (9Cl) (CA TANDEY ADMET) antimuscarinic agents which inhibit bladder smooth muscle contractions through interference with acetylcholine action on muscarinic receptors of the detrusor smooth muscle. Despite the availability of different antimuscarinic compds., physicians and patients remain dissatisfied with Medical Information Dept., Prous Science, Barcelona, 08080, Spain Spain Churs of the Future (2004), 29(7), 715-720 CODEN: DRFUD4; ISSN: 0377-8282 20040405 20030418 20040405 Fesoterodine, an advanced antimuscarinic for the treatment of overactive bladder: a safety update (combination therapies of asthma, COPD, allergic and infectious RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) വ 3≤ BR 2004-9492 JP 2006-506483 US 2003-463975P WO 2004-IB1170 COPYRIGHT 2007 ACS on STN Journal; General Review 2004:875348 CAPLUS 142:147630 non-quaternized antimuscarinic compds MARPAT 141:360690 20060502 20061019 Cole, Patrick Prous Science CAPLUS **4** H Absolute stereochemistry. CAPLUS PRIORITY APPLN. INFO.: ANSWER 9 OF 17

rhinitis) 518360-93-5

N N

INDEX NAME)

518360-93-5

H

OTHER SOURCE(S):

æ

CORPORATE SOURCE:

AUTHOR(S):

DOCUMENT TYPE: LANGUAGE: AB A review.

PUBLISHER: SOURCE:

● Br⁻

ACCESSION NUMBER: DOCUMENT NUMBER:

THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT 141:254396
Festerodine a new effective and well-tolerated antimuscannic for the treatment of urgency-frequency syndrome: results of a phase 2 controlled study Chapple C1, Royal Hallamshire Hospital, UK Neurourology and Urodynamics (2004), 23(5/6), 598-599 (CODEN: NEUREM: ISSN: 0733-2467 (transdermal administration of (R)-3,3-diphenylpropylamine monoesters) 86990-02-7 GAPLUS Propanoic acid, 2-methyl-, 2-(1R)-3-[bis(1-methylethyl) amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME) RL: ADV (Adverse effect, including toxicity); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (antimuscarinic fesoterodine for treatment of urgency-frequency Fesoterodine as new effective and well-tolerated antimuscarinic for Propanoic acid, 2-methyl-, 2-[(1R)-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME) urgency-frequency syndrome is studied here. COPYRIGHT 2007 ACS on STN 2004:761399 CAPLUS Absolute stereochemistry. Rotation (+). Rotation (+). Journal English treatment of urgency-frequ 286930-02-7, Fesoterodine CAPLUS 9 Absolute stereochemistry. 286930-02-7 CAPLUS Propanoic acid, 2-me ANSWER 11 OF 17 ACCESSION NUMBER: DOCUMENT NUMBER: CORPORATE SOURCE: SOURCE: REFERENCE COUNT: DOCUMENT TYPE: PUBLISHER: LANGUAGE: S S ΑB C Z The invention relates to a device for transdermally administering a compound of formula (II, wherein A represents hydrogen or deuterium, R represents a group selected among C1-6 alkyl, C3-10 cycloalkyl, or Ph, each of which can be substituted by C1-3 alkvay. Houride, chlorine, bromine, iodine, nitro, amino, hydroxy, oxo, mercapto, or deuterium, the C atom marked by * (asterisk) being provided in the R configuration. The invention is characterized in that the compound of general formula (I) is provided in a polymer matrix and is released at a dose of 0.5 to 20 mg per day through human skin. The invention further relates to the use of said compose, of formula (I) for producing transdermal medicaments. Thus a silicone-based HR ozokeřite or ceresin was heated to 150°C for 20 min until a homogeneous melt was formed. 1.5 G fesoterodine were added to the melt; the mixture was kept for addnl. 5 min at 150°C; followed by application onto a preheated foil. 5 Cm2 samples were used for dissoln. studies. 20030408 20040403 20040403 20040403 SE, MC, PT, HU, PL, SK, I 20040403 20040403 20050401 LC, NI, SY, ZW AZ, EE, SI, 20050426 20051010 20040403 transdermal system was prepared by the hot-melt process. $\,$ 8.5 G of an adhesive mixture composed of BIO-PSA 7-4300 from Dow-Corning and 5 $\,$ 10/533 683 KR, MZ, SK, ZW, ZW, MR, KP, SG, YU, ZM, CZ, PT, Ĭ, EE, 2003-1644 2003-16315878 2004-EP3574 DE 2003-10315878 AU 2004-228927 CA 2004-2505780 EP 2004-725614 KG, MW, SE, VN, UG, CY, PL, GR, IT, LI, LU, AL, TR, BG, CZ, 2004-80009176 2003-10315878 KE, MN, SD, VC, VC, CH, CH, 2004-6212 JP, MK, UZ, SZ, SZ, MC, GN, IS, MG, RU, US, SL, LU, BR 원용 GB,

MARPAT 141:337790

PRIORITY APPLN. INFO.:

OTHER SOURCE(S):

G

BR 2004006212 CN 1767820 JP 2006522759 ZA 2005002681 US 2006029673 NO 2005004644

20041104 20041021 20041021 20050518 ES, FR, RO, MK,

IL, MA, PT, UA, MZ, TM, TE, ID, FP, FP, GG,

HU, LU, LI, LS, HR, LT, PG, KE, KE, MD, BJ,

GM, TIN, GM, FR,

GH, LER, NZ, TM, KG, FI, TG

20050816

DK, FI,

Ŧ

AT, BE, IE, SI,

A1 A1 DE, LV, A A A

AB

weight/weight%

286930-02-7P, Fesoterodine RL: BEP (Physical, engineering or chemical process); PRP (Properties); PYP (Physical, engineering or chemical process); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); PROC (Process); USES (Uses)

ΙI

(NOT PROOK ART GOTHER THERE ARE 9 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT The invention discloses the use of a combination of opioids (e.g. tramadol) with other active substances for producing a drug for the treatment of utinary urgency or urinary incontinence. The invention also relates to corresponding medicaments and to a method for treating urinary urgency or urinary incontinence.

286330-02-7, Fescherodine
RL: PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
(opioid combination with other active substances for treatment of DEPT. ASSTGATE, urinary incontinence)
86830-02-7 CARDUS
Propanoic acid, 2-methyl-, 2-[(1R]-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME) GB, GR, IT, LI, LU, NI CY, AL, TR, BG, CZ, EI 3 US 2004-998164 3 US 2005-545901 DE 2002-10224107 WO 2003-EP5529 DE 2002-10224107 AU 2003-240717 EP 2003-730120 APPLICATION NO. 2003-EP5529 COPYRIGHT 2007 ACS on STN ŢŸ, TZ, CH, NL, Ğ. SL, SZ, SZ, MC, PCT Int. Appl., 126 pp. CODEN: PIXXD2 Patent SK, ZM, SL, LU, GN, IS, JP, K MG, MK, M SE, SG, SG, YU, ZA, S TM, AT, E TM, AT, E TT, I CM, AT, E C031211 20031212 C05023 ES, FR, (RO, MK, (MARPAT 140:13084 Absolute stereochemistry. Rotation (+). 20031204 EI, German CAPLUS A1 A1 DE, LV, A1 σ CH, RU, KE, MD, CE, COUNT: PRIORITY APPLN. INFO.: ANSWER 14 OF 17 R: AT, BE, IE, SI, HR, HU,
LT, LU,
PT, RO,
OG, US,
KW: GH, GM,
KG, KZ,
FT, FT,
FT, FR,
DE 10224107
EP 1507520 RO, US, KZ, FR, US 2005137194 US 2006168942 LANGUAGE: FAMILY ACC. NUM. COPTENT INFORMATION WO 2003099268 OTHER SOURCE (S): REFERENCE COUNT: AE, PATENT NO. DOCUMENT TYPE: SOURCE: Ľ4 AB ΙŢ Z Z Areview. Urinary incontinence and overactive bladder are extremely common disorders affecting up to 12 and 20 million adults in the U.S., resp. Current pharmacotherapy includes peripherally acting compos. which modulate bladder smooth muscle contraction or centrally acting agents which modulate the neurol. control of urination. Anticholinergic agents inhibit bladder smooth muscle contraction through interference with acetylcholine action on muscarinic receptors on detrusor smooth muscle. However, the first anticholinergic agents were associated with a high rate of adverse events during agents and thus other organs. The search for novel, more THERE ARE 14 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT initiated. Fesoterodine is a novel selective muscarinic M3 receptor antagonist that has shown potent antimuscarinic activity in vitro and in vivo and has been selected for further development as a treatment for RL: DNA (Drug mechanism of action); PAC (Pharmacological activity); THU (Therapeutic use); BIOL (Biological study); USES (Uses) (fesoterodine treatment of urinary incontinence as muscarinic M3 140:13084 Combination of selected opioids with other active substances for use in the therapy of urinary subtypes and thus other organs. The search for novel, more bladder-selective antimuscarinic agents with better tolerability was 140:331551 Fesoterodine: Treatment of urinary incontinence 286930-02-7 CAPLUS Propanoic acid, 2-methyl-, 2-[(IR)-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME) muscarinic M3 antagonist Sorbera, L. A.; Gastaner, J.; Lesson, P. A. Prous Science, Barcelona, 08080, Spain Drugs of the Future (2003), 28(7), 647-651 CODEN: DRFUD4; ISSN: 0377-8282 COPYRIGHT 2007 ACS on STN LUS COPYRIGHT 2007 ACS on STN 2003:993805 CAPLUS Christoph, Thomas Grunenthal G.m.b.H., Germany urinary incontinence and overactive bladder. 286930-02-7, Fesoterodine Journal; General Review English Absolute stereochemistry. Rotation (+) Prous Science incontinence L4 ANSWER 12 OF 17 CAPLUS ACCESSION NUMBER: 2003. CAPLUS 14 ANSWER 13 OF 17 INVENTOR(S): PATENT ASSIGNEE(S): L4 ANSWER 13 OF ACCESSION NUMBER: DOCUMENT NUMBER: TITLE: AUTHOR(S): CORPORATE SOURCE: SOURCE: REFERENCE COUNT: DOCUMENT NUMBER: TITLE: DOCUMENT TYPE: LANGUAGE: AB A review. PUBLISHER: i-Pr $_{\rm II}$ 2 Z

20030527 20030527 20030527 , SE, MC, PT,

NL, EE,

7, AZ, BY, K, EE, ES, I, SK, TR, V, TD, TG 20020529

AM, DK, SI, SN,

ZW, DE, SE, NE,

ZM, CZ, RO, MR,

BZ, GD, LC, NZ, TR,

KZ, NO,

LR, PH, TZ,

20030527

RESTERIOR

no or

(un) substituted alkyl; X = anion of a pharmaceutically acceptable acid] were prepared for use as antimuscarinic agents. Thus, tolterodine tartrate was converted to the free base and quaternized with MeI to give (R1-5,2-Me(OH)(GGR3CHPGH2CH2CH2N+(CHMe2)2Me I- which has high affinity, but little selectivity for MI-M5 muscarinic receptors. IT 518360-93-5p WH (Synthetic preparation); USES (USes) (Prepn. of diarylpropylammonium salts as antimuscarinic agents) (RN 518360-93-5 GAPBUS CN Benzenepropanaminium, 5-(hydroxymethyl)-N-methyl-N,N-bis(1-methylethyl)-2- (2-methyl-1-oxopropoxy)-y-phenyl-, bromide, (yR)- (9CI) (CA INDEX NAME) Absolute stereochemistry.	i-Pr HO HO Br	REFERENCE COUNT: 1 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L4 ANSWER 15 OF 17 CAPLUS COPYRIGHT 2007 ACS on STN ACCESSION NUMBER: 2001449738 CAPLUS DOCUMENT NUMBER: 135:61141 FREDATALO OF STABLE SALTS of 2-(3-diisopropylamino-1-phenylphenyl esters. INVENTOR(S): Phenylpropyl)-4-hydroxymethylphenyl esters. PATENT ASSIGNEE(S): Schwarz Pharma AG., Germany SOURCE: COPEN: GWXXBX DOCUMENT TYPE: Patent LANGUAGE: COPEN: GWXXBX German FAMILY ACC. NUM. COUNT: 2 PATENT INFORMATION:	PATENT NO. KIND DATE APPLICATION NO. DATE 1 20010621 DE 1995-190 19991116 DE 29923134
2003:335062 CAPLUS 138:353732 Quaternary ammonium compounds and their use as antimuscarinic agents Richards, Ivan; Cammarata, Sue K.; Wegner, Craig D.; Ralay, Michael; Warchol, Mark P.; Kontny, Mark; Morozowich, Walter; Kolbasa, Karen P.; Moon, Malcolm W.; Bonafoux, Dominique; Wolfson, Sergey G.; Lennon, Patrick J. Pharmacia & Upjohn Company, USA PCT Int. Appl., 69 pp. CODEN: PlaxXD2 Patent English	KIND DATE APPLICATION NO. DATE A1 20030821 WO 2002—2834529 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CU, CZ, DE, DE, DE, DE, DE, EC, EE, ES, FI, GB, GD, GE, GH, CU, LV, MA, MD, MG, MK, MW, MX, MZ, MC, NC, NZ, LK, LR, LU, LV, MA, MD, MC, MK, MW, MX, MZ, MC, NC, NZ, LK, LK, LS, MW, MZ, SL, TU, TW, TW, TY, TZ, UA, CE, LS, MW, MZ, SL, TY, TW, TW, TR, TY, TZ, UA, MM, NZ, SL, SL, TY, TW, TW, TR, TY, TZ, UA, MM, NZ, SL, SL, SK, SL, TY, TZ, UG, ZM, ZW, AM, AZ, BY, MD, RU, PT, SE, SK, TK, BF, BJ, CF, CM, CR, CG, CM, CM, CG, CG, CM, CM, CG, CG, CG, CG, CG, CG, CG, CG, CG, CG	20040829 DK, EO, FR, GB, FI, RO, MK, CY, 20050818 20050875 20050707 20050707	R3 I I rammonium compds. I [R1-R3 = (un)substituted alkyl; NR1R2, Metacycylid; R4 = H, Metacyl, alkoxycarbonyl, Metacyl, NN1R2, NN42: R5-R7 = H, OMet. OH, CONH2, SOZNH2, F, C1, Br, I, CF3, NN42: R5-R7 = H, OMet. OH, CONH2, SOZNH2, F, C1, Br, I, CF3, NN42: R5-R7 = H, OMet. OH, CONH2, SOZNH2, F, C1, Br, I, CF3, NN42: R5-R7 = H, OMet. OH, CONH2, SOZNH2, F, C1, Br, I, CF3, NN42: R5-R7 = H, OMet. OH, CONH2, SOZNH2, F, C1, Br, I, CF3, NN42: R5-R7 = H, CF3, NN42

. E 5

R: AT, BE, CH,
TE, SI, LT,
JP 2005524605
NO 2003002938
US 2005148672
PRIORITY APPLN. INFO::

DOCUMENT TYPE: LANGUAGE: FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

PATENT NO.

PATENT ASSIGNEE(S): SOURCE:

ACCESSION NUMBER: DOCUMENT NUMBER: TITLE:

INVENTOR(S):

Novel quaternary ammonium compds. I $\{R1-R3=NR2R3$, NR1R3 = heterocyclic; R4 = H, Me,acyl, (un)substituted NH2; R5-R7 = H, OMe, OH, CONH AB

OTHER SOURCE(S): GI

RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of stable salts of 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl esters) 286930-03-8 CAPLUS Propanoic acid, 2-methyl-, 2-((IR)-3-[bis(1-methylethyl)amino]-1-phenylpropyl-4-(hydroxymethyl)phenyl ester, (2E)-2-butenedioate (1:1) (salt) (9C1) (CA INDEX NAME) hydroxymethylphenyl esters)
86950-02-7 CAPLWS
Propanoic acid, 2-methyl-, 2-((1R)-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester (CA INDEX NAME) Absolute stereochemistry. Rotation (+). Absolute stereochemistry. Rotation (+). 286930-03-8P 345663-07-2P CRN 286930-02-7 CMF C26 H37 N O3 Σ i-Pr C RN II C Z

AT 2000-989857 PT 2000-989857 ES 2000-989857 EP 2006-11207

AT PT ES EP EP

SE, MC, PT,

GR, IT, LI, LU, NL, AL, TR

DK, FI,

СН, ГТ,

AT, BE, IE, SI,

286872

HU 200204034 JP 2003514018 NZ 519230 EP 1481964 EP 1481964

IT, LI, LU, NL, SE, MC, PT, TR

, GR, IT, LL, LU, NL, S, AL, TR HU 2002-4034 JP 2001-537950 NZ 2000-519230 EP 2004-18487

ES, FR, (RO, MK, 20030328 20030415 20041126 20041201 20060823

ςχ,

DK, FI,

н, Ц

R: AT, BE, IE, SI,

20020425 20020425 20020514 20020515 20020905 20020905

2004-18487 2002-3315 2002-130214 2002-2314 2002-106545 2004-110231

GR, AL, AT 20 ZA 20 US 20 NO 20 HK 2 NO 2 DE 1

2005022

HK 1067114 NO 2006005380 PRIORITY APPLN. INFO.:

US 6858650 NO 2002002314 HR T045148

20060915 20030725

DK, FI,

Ξ,

R: AT, BE, (IE, SI,

1A A3 A3

2004-18487 2000-EP11309 2002-106545 1999-19955190

MARPAT 135:61141

OTHER SOURCE(S):

2000-989857

20061122

BE, CH, CY, SE, TR, BF, TG

AT, PT, TD,

, SZ, TZ, UG, ZW, P , IT, LU, MC, NL, F , ML, MR, NE, SN, 7 AU 2001-26667

SL, IE, GW,

KE, KE, CG,

CE,

YU, ZA, RW: GH, GM, DE, DK, BJ, CF, J 200126667 J 778132 R 2000015610

AU 200126667 AU 778132 BR 200001561 EP 1230209 EP 1230209

MW, MZ, SD, FR, GB, GR, CM, GA, GN, 20010530 20041118 20020730 20020814 20050112

20001115

20001115 20001115

BR 2000-15610 EP 2000-989857

SE, MC, PT,

US 685865 OD P. OVER

i-Pr

×

ΑB

Title compds. [I; R = alkyl, cycloalkyl, (substituted) Ph; X = residue of a physiol. acceptable (in)organic acid], were prepared Thus, (R)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl isobutyrate (II) (preparation given) in 2-butanone was treated with fumaric acid under warming to give 83.1% II.hydrogen fumarate. II

Double bond geometry as shown.

E C02H

CRN 110-17-8 CMF C4 H4 O4

0 Σ

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent) (Preparation of stable salts of 2-(3-diisopropylamino-1-phenylpropyl)-4-

Patent Owner, UCB Pharma GmbH - Exhibit 2007 - 2106

(CA Propanoic acid, 2-methyl-, 2-[(1R)-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester, hydrochloride (9CI) 345663-07-2 CAPLUS Z Z

Absolute stereochemistry. Rotation (+)

● HC1

133:155419 Stable salts of novel derivatives of 3,3-diphenylpropylamines Schwarz Pharma A.-G., Germany Ger. Gebrauchsmusterschrift, 37 pp. CODEN: GGXXFR CAPLUS COPYRIGHT 2007 ACS on STN 2000:533448 CAPLUS Patent German COUNT: ANSWER 16 OF 17 PATENT ASSIGNEE(S): FAMILY ACC. NUM. CC PATENT INFORMATION: L4 ANSWER 16 OF 1 ACCESSION NUMBER: DOCUMENT NUMBER: TITLE: DOCUMENT TYPE: LANGUAGE SOURCE:

20000803 KIND U1 A1 DE 29923134 DE 19955190 PATENT NO.

MARPAT 133:155419 PRIORITY APPLN. INFO.: OTHER SOURCE(S): GI

3,3-Diphenylpropylamine salts I (R1 = RCO2; R = C1-6 alkyl, C3-10 AB

reucutou,

acylation, and combination with HX. Thus, R-(-)-I-HCI (RI = PhCH2O, RZ =
CO2H) was esterified by refluxing in acidic MeOH, the ester was reduced
with LiAHH4, the resulting carbinol was reduced with Raney Ni/HZ, and the
product [R-(+)-I free base, R = CHMe2] was converted to its H fumarate
salt by heating with equimolar fumaric acid in 2-butanone; the salt was
crystallized by addition of cyclohexanone and cooling to 0°.

IT 286930-01-8P 286930-04-9P
RI: BAC (Biological activity or effector, except adverse); BSU (Biological
study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use);
BIOL (Biological study); PREP (Preparation); USES (Uses)
(stable salts of novel derivs. of diphenylpropylamines)
CN Propanoic acid, 2-methyl. 2-{(1R)-3-[bis(1-methylethyl)amino]-1phenylpropyl]-4-hydroxymethyl)phenyl ester, (2E)-2-butenedioate (1:1)
(salt) (9CI) (CA INDEX NAME) cycloalkyl, (substituted) Ph; R2 = CH2OH; X = inorg. or organic acid] are prepared for use as prodrugs of agents for treatment of urinary incontinence and other spasnegenic disorders. I show improved absorption through biol. membranes and improved metabolic patterns and are easily crystallized I are prepared from I free base (R1 = PhCH2O, R2 = CO2Me) by debenzylation, CRN 286930-02-7 CMF C26 H37 N O3 reduction, Σ Ħ CN

Absolute stereochemistry. Rotation (+).

₽

E,

DE 1999-29923134 DE 1999-19955190 DE 1999-19955190

DATE

APPLICATION NO.

NO 3.5. CASE!

110-17-8 C4 H4 O4 CRN

Double bond geometry as shown.

Propanoic acid, 2-methyl-, 2-[(1R)-3-[bis(1-methylethyl)amino]-1-phenylpropyl]-4-(hydroxymethyl)phenyl ester, hydrochloride, monohydrate (9C1) (CA INDEX NAME) 286930-04-9 CAPLUS Z Z

Rotation (+). Absolute stereochemistry.

000-548284 005-10070299 2001-700094 2004-766263 1999-806038 MARPAT 131:336818 20030216 20030227 20030102 20030102 20060412 20010305 20010305 20040330 20040330 20060923 20060130 PRIORITY APPLN. INFO.: ES 2181443 RU 2199525 TO 2199525 CN 1690041 CZ 296605 CA 2000005728 NO 200005669 US 2004186061 US 2004186061 US 2004186061 US 200418738 OTHER SOURCE(S): GI

20021030 20040127 20050810 20061018 19980512 19990511 19990511

19990511 20010102 20040127

19990511 19990511 19990511 19990511 20001017 20001110 20011102

Preparation of 3,3-diphenylpropylamines as antimuscarinic agents.
Sparf, Bengf; Meese, Claus O.
Schwarz Pharma AG, Germany
Eur. Pat. Appl., 27 pp.
CODEN: EPXXDW
Fatent
English

INVENTOR(S):
PATENT ASSIGNEE(S):
SOURCE:

1999:736261 CAPLUS 131:336818

L4 ANSWER 17 OF 17 CAPLUS C ACCESSION NUMBER: DOCUMENT NUMBER: TITLE:

● HCT

00P OVER 10/766263

19990511 19990511 CH, CN, CU, CZ, ID, IL, IN, IS, ILV, MD, MG, MK, SI, SK, SL, TJ,

8 CA 1999-E328920 8 NO 1999-E92212 GE, GH, BR, BY, CA, C GE, GH, GM, HR, HU, I LK, LK, LS, LT, LU, L NN, YU, ZA, ZW YN, YU, ZA, ZW SZ, UG, ZW, AT, BE, C LU, NC, NL, PT, SE, B NE, SN, TD, TG

AL, KE, KE, TR,

19980512 SE, MC, PT,

EP 1998-108608 GR, IT, LI, LU, NL,

, ES, FR, GB, C , RO 19991118 CA 19991118 WO 9991117

Ŗ,

£,

BE, SI,

APPLICATION NO.

LANGÙAGE: FAMILY ACC. NUM. COUNT: PATENT INFORMATION:

DOCUMENT TYPE:

PATENT NO.

DK, FI,

СН, LT,

BE, O

NZ P:T

200100779 200003319 220056 1254890 R: AT, BE 507487

TR AT EP

DK, FI,

R: AT, BE, CH, IE, SI, LT,

CH-CH2-CH2-N(Pr-i)2

THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

REFERENCE COUNT:

=> LOGHOLD
LOGHOLD IS NOT A RECOGNIZED COMMAND
The previous command name entered was not recognized by the system.
For a list of commands available to you in the current file, enter
"HELP COMMANDS" at an arrow prompt (=>)

TOTAL SESSION -13.26 TOTAL SESSION 264.62 SINCE FILE ENTRY ~13.26 SINCE FILE ENTRY 90.06 DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) => LOG HOLD COST IN U.S. DOLLARS CA SUBSCRIBER PRICE FULL ESTIMATED COST

SESSION WILL BE HELD FOR 120 MINUTES STN INTERNATIONAL SESSION SUSPENDED AT 09:33:43 ON 15 APR 2007

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
11/201,756 08/10/2005		08/10/2005 Claus Meese		3812
26646 759 KENYON & KEN	=		EXAM	IINER
ONE BROADWA	ΑY		TUCKER, Z	ACHARY C
NEW YORK, NY	10004		ART UNIT	PAPER NUMBER
	•	·	1624	
SHORTENED STATUTORY F	PERIOD OF RESPONSE	MAIL DATE	DELIVER	Y MODE
3 MONT	TUS	04/20/2007	PAI	PER

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

	Application No.	Applicant(s)	
	11/201,756	MEESE ET AL.	
Office Action Summary	Examiner	Art Unit	
	Zachary C. Tucker	1624	
The MAILING DATE of this communication a Period for Reply	appears on the cover sheet w	ith the correspondence address -	
A SHORTENED STATUTORY PERIOD FOR REF WHICHEVER IS LONGER, FROM THE MAILING - Extensions of time may be available under the provisions of 37 CFR after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory perior Failure to reply within the set or extended period for reply will, by star Any reply received by the Office later than three months after the may earned patent term adjustment. See 37 CFR 1.704(b).	DATE OF THIS COMMUNI 1.136(a). In no event, however, may a od will apply and will expire SIX (6) MO tute, cause the application to become A	CATION. reply be timely filed NTHS from the mailing date of this communica BANDONED (35 U.S.C. § 133).	
Status			
1) Responsive to communication(s) filed on	•		
2a) This action is FINAL . 2b) ⊠ T	his action is non-final.		
3) Since this application is in condition for allow	vance except for formal mat	ters, prosecution as to the merits	s is
closed in accordance with the practice unde	r <i>Ex par</i> te Quayle, 1935 C.I	D. 11, 453 O.G. 213.	
Disposition of Claims		,	
4) Claim(s) 28-34 is/are pending in the applica	tion.		
4a) Of the above claim(s) is/are withd			
5) Claim(s) is/are allowed.			
6)⊠ Claim(s) <u>28-34</u> is/are rejected.		•	
7) Claim(s) is/are objected to.			
8) Claim(s) are subject to restriction and	d/or election requirement.		
Application Papers			
9)⊠ The specification is objected to by the Exami	iner		
10) ☐ The drawing(s) filed on 10 August 2005 is/ar		hiected to by the Examiner	
Applicant may not request that any objection to the	· - · · · · · · · · · · · · · · · · · ·	•	
Replacement drawing sheet(s) including the corr			1(d)
11) The oath or declaration is objected to by the	· ·	• • •	
Priority under 35 U.S.C. § 119			
12)⊠ Acknowledgment is made of a claim for forei	an priority under 35 H S C	8 110(a)_(d) or (f)	
a)⊠ All b)□ Some * c)□ None of:	gn priority under 35 0.3.0.	g 119(a)-(d) 01 (1).	
1. Certified copies of the priority docume	ante have been received		
2. Certified copies of the priority docume		Application No. 09/700 094	
3. ☐ Copies of the certified copies of the p			
application from the International Bure	·	received in this realistic stage	
* See the attached detailed Office action for a l	. , ,	received	
Attachment(s)	 □	C.,,,,,,,,,,,,, (DTO 442)	
 Notice of References Cited (PTO-892) Notice of Draftsperson's Patent Drawing Review (PTO-948) 		Summary (PTO-413) (s)/Mail Date	
3) Information Disclosure Statement(s) (PTO/SB/08)	5) Notice of	Informal Patent Application	
Paper No(s)/Mail Date <u>10Aug05,13Nov06</u> .	6)	<u> </u>	

U.S. Patent and Trademark Office PTOL-326 (Rev. 08-06) Application/Control Number: 11/201,756

Art Unit: 1624

DETAILED ACTION

Page 2

Response to Amendment

The Substitute Specification filed 14 July 2006 and the Preliminary Amendment filed 11 October 2005 have been entered.

Double Patenting

The nonstatutory double patenting rejection is based on a judicially created doctrine grounded in public policy (a policy reflected in the statute) so as to prevent the unjustified or improper timewise extension of the "right to exclude" granted by a patent and to prevent possible harassment by multiple assignees. A nonstatutory obviousness-type double patenting rejection is appropriate where the conflicting claims are not identical, but at least one examined application claim is not patentably distinct from the reference claim(s) because the examined application claim is either anticipated by, or would have been obvious over, the reference claim(s). See, e.g., *In re Berg*, 140 F.3d 1428, 46 USPQ2d 1226 (Fed. Cir. 1998); *In re Goodman*, 11 F.3d 1046, 29 USPQ2d 2010 (Fed. Cir. 1993); *In re Longi*, 759 F.2d 887, 225 USPQ 645 (Fed. Cir. 1985); *In re Van Ornum*, 686 F.2d 937, 214 USPQ 761 (CCPA 1982); *In re Vogel*, 422 F.2d 438, 164 USPQ 619 (CCPA 1970); and *In re Thorington*, 418 F.2d 528, 163 USPQ 644 (CCPA 1969).

A timely filed terminal disclaimer in compliance with 37 CFR 1.321(c) or 1.321(d) may be used to overcome an actual or provisional rejection based on a nonstatutory double patenting ground provided the conflicting application or patent either is shown to be commonly owned with this application, or claims an invention made as a result of activities undertaken within the scope of a joint research agreement.

Effective January 1, 1994, a registered attorney or agent of record may sign a terminal disclaimer. A terminal disclaimer signed by the assignee must fully comply with 37 CFR 3.73(b).

Claims 28-34 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1, 2, 4 and 20-23 of U.S. Patent No. 6,713,464. Although the conflicting claims are not identical, they are not patentably distinct from each other because in claim 4 of the patent, the compound according to instant claim 28 is named – R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester. Claim 4 of the patent depends from claim 2 of the patent,

Application/Control Number: 11/201,756 Page 3

Art Unit: 1624

which in turn depends ultimately from claim 1 therein. So, claims 1, 2 and 4 fully embrace the subject matter of instant claim 1.

The patent teaches that compounds according to the invention disclosed therein are also in the form of salts with physiologically acceptable acids (col. 4, lines 25-31), in a pharmaceutical composition (col. 24, lines 16-36). A pharmaceutical composition of compounds according to the invention disclosed in the patent is specified in claim 20 thereof. Thus, the salts of compounds according to the invention disclosed in US 6,713,464 are contemplated as being components of a pharmaceutical composition and therefore instant claims 29 and 30, drawn to a salt of R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, with a physiologically acceptable acid, and a pharmaceutical composition comprised thereof, are rendered obvious by the claims of US 6,713,464, particularly claim 20.

Instant claims 31-34 are rendered obvious by claims 21-24 of US 6,713,464, because the compound according to instant claim 29 is within the scope of claim 1 of the patent (and is specifically claimed in claim 4 of the patent), and claims 21-24 of the patent depend ultimately from claim 1 thereof. Claims 21-24 of the patent correspond in language and format to instant claims 31-34.

Those portions of the specification which provide support for the patent claims may also be examined and considered when addressing the issue of whether a claim in the application defines an obvious variation of an invention claimed in the patent [*In re* Vogel, 422 F.2d 438, 441-42, 164 USPQ 619, 622 (CCPA 1970)]. So, the specification of US 6,713,464 was relied upon in making the determination that a salt of a compound according to the claims of the patent, with a physiologically acceptable acid, is

Page 4

Application/Control Number: 11/201,756

on, oon a on a on a on a on

Art Unit: 1624

contemplated by the claims of the patent, even though no salt of any of the compounds is explicitly recited in those claims. One of ordinary skill in the art of pharmacy would clearly find it obvious, in light of the disclosure of the invention, to incorporate a salt of a compound according to claim 1, 2 or 4 of the patent into a pharmaceutical composition comprised of one of those compounds.

Claims 28-34 are rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1, 3, 5 and 21-24 of U.S. Patent No. 6,858,650. Although the conflicting claims are not identical, they are not patentably distinct from each other because the compound named in instant claim 28 is named in claim 5 of the patent, in salt form with a physiologically acceptable acid. Claim 5 of the patent depend from claim 3 therein, which in turn depends ultimately from claim 1. Thus, claims 1 and 3 include the subject matter of instant claim 28 as well as claim 5 of that patent does.

Instant claims 31-34 correspond in language and form with claims 21-24 of the patent. Since the compound according to instant claim 28 is named in the claims of the patent, and is included in the broader generic claim 1 of the patent, the method-of-treatment claims 21-24 of the patent embrace the corresponding claims 31-34 of the instant application.

Claims 28 and 30-34 are provisionally rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 35, 39, 49 and 63-65 of copending Application No. 10/532,836. Although the conflicting claims are not

Application/Control Number: 11/201,756 Page 5

Art Unit: 1624

identical, they are not patentably distinct from each other because the compound named in instant claim 28 is also named in claim 39 of the copending application. Because claim 39 of the copending application depends from claim 35 thereof, claim 35 includes the subject matter of instant claim 28 as well. A pharmaceutical composition comprising a compound according to claim 35 of the copending application is claimed in claim 49 thereof, and that claim (claim 49) corresponds to instant claim 30, drawn to a pharmaceutical composition comprising a compound according to instant claim 28.

Claims 63-65 of the copending application are drawn to a method of treating urinary incontinence by administering a compound according to claim 35 thereof, to a human. Since claim 35 of the copending application includes the subject matter of instant claim 28, the method-of-treatment claims wherein a compound according to claim 35 is administered includes the subject matter of the corresponding method-of-treatment claims in the instant application, claims 31-34,

This is a <u>provisional</u> obviousness-type double patenting rejection because the conflicting claims have not in fact been patented.

Claims 28-34 are provisionally rejected on the ground of nonstatutory obviousness-type double patenting as being unpatentable over claims 1 and 30 of copending

Application No. 10/533,683. Although the conflicting claims are not identical, they are not patentably distinct from each other because a compound according to instant claim 28, in salt form with a physiologically acceptable acid is disclosed in the specification (page 14, lines 20-23) of the copending application, and is taught to be the especially preferred compound according to Formula I contained in the device according to claim 1 of that

Page 6

Application/Control Number: 11/201,756

Art Unit: 1624

application. Thus, subject matter of instant claims 28-30 is embraced in claim 1 of the copending application, when interpreted in light of the specification of that application. Claim 30 of the copending application is drawn to the treatment of incontinence comprising the administration of a device according to claim 1 of that application. Thus, subject matter of instant claims 31-34 is embraced in claim 30 of the copending application.

This is a <u>provisional</u> obviousness-type double patenting rejection because the conflicting claims have not in fact been patented.

Specification

The specification is objected to under 37 C.F.R. 1.77(b), for not setting out the proper sections in the following order:

Background of the invention,

Brief summary of the invention,

Brief description of the drawings,

Detailed description of the invention.

Appropriate correction is required.

The specification is also objected to under 37 C.F.R. 1.78(a)(5)(iii), for not including the continuity data, referencing the fact that the instant application is a continuation of application serial number 10/766,263, now allowed, which is a continuation of application serial number 09/700,094, now U.S. Patent Number 6,713,464.

Appropriate correction is required.

Application/Control Number: 11/201,756 Page 7

Art Unit: 1624

Allowable Subject Matter

If the obviousness-type double patenting rejections set forth in this Office action are overcome, by the filing of appropriate Terminal Disclaimers, and the objection to the specification is attended to by correcting the indicated deficiencies, claims 28-34 will be allowable.

Closest prior art is US 5,686,464 (Johansson et al).

Conclusion

Any inquiry concerning this communication should be directed to Zachary Tucker whose telephone number is (571) 272-0677. The examiner can normally be reached Monday to Friday from 9:00am to 5:00pm. If Attempts to reach the examiner are unsuccessful, contact the examiner's supervisor, James O. Wilson, at (571) 272-0661.

The fax number for the organization where this application or proceeding is assigned is (571) 273-8300.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is (571) 272-1600.

ZACHARY C. TUCKER PRIMARY EXAMINER

DISCLOSURE STATEMENT BY APPLICANT Form PTO-1449

ATTY. DOCKET NO. 12961/46103	APPLICATION NO. 11/201,756
APPLICANT Claus MEESE, et al.	
FILING DATE August 10, 2005	GROUP 1624

■ U. S. PATENT DOCUMENTS*

EXAMINER INITIAL	PATENT/PUBLICATION NUMBER	PATENT/PUBLICATION DATE	NAME	CLASS	SUBCLASS	FILING DATE
21	2,556,636	June 12, 1951	Nathan Sperber et al.			
2+	2,567,245	September 11, 1951	Nathan Sperber et al.			
21	2,676,964	April 27, 1954	Nathan Sperber et al.			
21	3,261,841	July 19, 1966	Bernard L. Zenitz			
2	3,446,901	May 27, 1969	G. J. Macclesfield		 ,	
21	4,988,730	January 29, 1991	Korbońits et al.			
21	5,382,600	January 17, 1995	Jonsson et al.	-		
ZT	5,559,269	September 24, 1996	Johansson et al.			<i>).</i>
3	5,922,914	July 13, 1999	Gage et al.			
ZT	6,517,864	February 11, 2003	Orup Jacobsen et al.			
ZT	6,310,248	October 30, 2001	Andersson et al.			
ZT	6,566,537	May 20, 2003	Andersson et al.		——	
21	6,630,162	October 7, 2003	Nilvebrant et al.		+	
ZT	6,689,916	February 10, 2004	Andersson et al.			
21	6,713,464	March 30, 2004	Meese et al.			
21	6,770,295	August 3, 2004	Kreilgard et al.			
7	6,783,769	August 31, 2004	Arth et al.			
西	6,809,214	October 26, 2004	Meese			
21	6,809,225	October 26, 2004	Donsbach et al.			
21	6,858,650	February 22, 2005	Meese			
2	6,890,920	May 10, 2005	Richards et al.			
25	6,911,217	June 28, 2005	Gren et al.			
2	2003/0124179	July 3, 2003	Jacobsen, Lene O. et al.			
2	2004/0186061	September 23, 2004	Meese, Claus et al.			
21	2005/0004223	January 6, 2005	Slatter, John G. et al.		-	
21	2003/0152624	August 14, 2003	Aldrich et al.			
21	2003/0158176	August 21, 2003	Richards et al.			
31	2004/064821	April 1, 2004	Rousselle		 	

oop.co	. .	O	 · ·	

EXAMINER	Tolh

DATE 14 APRIL 2007

NOV 1 3 2006

FOREIGN PATENT DOCUMENTS

		A COLUMNIA SE	FOREIGN PATENT DUCK	DIVIENTS				
ſ	EXAMINER INITIAL	COCHMINA	DATE	COUNTRY	CLASS	SUBCLASS	TRANSL	ATION
	INITIAL	Member						
	7-	925 468 (in German, with	March 21, 1955	DE				
Ĺ	ZT	English translation)					YES	
	21	1 216 318 (in German, with English translation)	May 12, 1966	DE		<u> </u>	VEC	
-		325 571	July 26, 1989	EP			YES	 -
	27	624 117					<u> </u>	<u> </u>
	<u>2</u> T		May 27, 1949	GB				<u> </u>
ŀ	21	627 139	July 29, 1949	GB				ļ
	21	667 852	August 23, 1995	EP			ļ	ļ
-	<u> </u>	685 696	January 07, 1953	GB			<u> </u>	
- 1	27	689 835	April 08, 1953	GB				
ļ	21	690 274	April 15, 1953	GB				<u> </u>
ļ	25	692 931	June 17, 1953	GB			VEC	<u> </u>
	21	766,207	December 22, 1952	DE			YES	<u> </u>
	21	831,799	June 7, 1996	EP			ļ	
ļ	25	830,193	February 04, 1952	DE		-	YES	
ļ	21	872,233	April 14, 1997	EP				ļ
	21	948,321*	December 10, 1997	EP				
]	ZT	957,073	May 12, 1998	EP				
	ZT	1 019 358	July 19, 2000	EP				<u> </u>
Į	21	1,025,041	February 24, 1964	GB				
Į	Z+	1 077 912	February 28, 2001	EP				<u> </u>
Į	2丁	1 128 819	September 05, 2001	EP]
L	2+	1 169 944	November 05, 1969	GB				
	21	1 169 945	November 05, 1969	GB				
[Zr	WO 93/23025	November 25, 1993	PCT				
[Z	WO 96/12477	May 02, 1996	PCT				
[27	WO 98/03067	January 29, 1998	PCT				
	2	WO 98/43942	October 8, 1998	PCT				
_ [ZT	WO 98/56359**	December 17, 1998	PCT			<u> </u>	
*	21	WO 99/58478	November 18, 1999	PCT				
[25	WO 00/12069	March 09, 2000	PCT				
	Z	WO 00/27364	May 18, 2000	PCT				
[ET	WO 01/34139	May 17, 2001	PCT				
Ī	ZT	WO 02/089773	November 14, 2002	PCT				
	21	WO 02/11702	February 14, 2002	PCT				
Ī	21	WO 03/002059	January 9, 2003	PCT				
Ī	21	WO 03/007918	January 30, 2003	PCT				
	21	WO 03/020241	March 13, 2003	PCT				
	ZT	WO 03/026564	April 3, 2003	PCT		,		
-	ZT	WO 03/035599	May 1, 2003	PCT				
Ì	ZT	WO 03/039464	May 15, 2003	PCT				
Ì	21	WO 03/063834	August 7, 2003	PCT				
İ	21	WO 03/099268**	December 4, 2003	PCT				
·				•				

EXAMINER ZEL

Page 2

DATE 14 APRIL 2007

EXAMINER INITIAL	DOCUMBER NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	TRANSLATION
21	WO 03/103637	December 18, 2003	PCT			
21	WO 03/106421	December 24, 2003	PCT			
21	WO 03/021271	March 13, 2003	PCT			
2	WO 04/019892	March 11, 2004	PCT		 	

OTHER DOCUMENTS

AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
Abrams et al., "Tolterodine, a new antimuscarinic agent: as effective but better tolerated than oxybutynin in patients with an overactive bladder," 1998, Br. J. Urol. 81:801-810
Abstracts from the 26 th Annual Meeting of the International Incontinence Society, August 27-30, 1996, Gillberg et al., abstract 33, Neurology and Urodynamics 15:308-309
Anderson et al., "Once daily controlled versus immediate release oxybutynin chloride for urge urinary incontinence," 1999, J. Urol. 161:1809-1812
Andersson et al., "Pharmacological treatment of urinary incontinence," in Abrams P., Khoury S., Wein A. (Eds), Incontinence, 2nd International Consultation on Incontinence, Plymouth, Plymbridge Distributors Ltd, UK, Plymouth, 2002, pp 479-511
Andersson, "Antimuscarinics for treatment of overactive bladder," 2004, Lancet Neurol. 3:46-53
Andersson & Hedlund, "Pharmacological perspective on the physiology of the lower urinay tract," 2002, Urology 60(Suppl. 5A):13-20
Andersson & Wein, "Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence," 2004, Pharmacol. Rev. 56:581-631
Appell et al., "Prospective randomized controlled trial of extended release oxybutynin chloride and tolterodine tartrate in the treatment of overactive bladder: results of the OBJECT study," 2001, Mayo Clinic Proceedings 76:358-363
Breidenbach et al., "Pharmacodynamic profiling of the novel antimuscarinic drug fesoterodine on rat bladder," 2002, Proceedings of the International Continence Society, 32:449
Brynne et al., "Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamics of tolterodine, 1998, Clin. Pharmacol. Thera. 63:529-539
Brynne et al., "Tolterodine does not affect the human in vivo metabolism of the probe drugs caffeine, debrisoquine, and omeprazole," 1999, Br. J. Clin. Pharmacol. 47:145-150
Brynne et al., "Fluoxetine inhibits the metabolism of tolterodine – pharmacokinetic implications and proposed clinical relevance," 1999, Br. J. Clin. Pharmacol. 48:553-563
Brynne et al., "Ketoconazole inhibits the metabolism of tolterodine in subjects with deficient CYP2D6 activity," 1999, Br. J. Clin. Pharmacol. 48:564-572
Cawello et al., "Multiple dose pharmacokinetics of fesoterodine in human subjects," 2002, Nauyn-Schmiedeberg's Arch. Pharmacol. 365 (Suppl. 1):428, 2002
Chancellor et al., "A comparison of the effects on saliva output of oxybutynin chloride and tolterodine tartrate," 2001, Clinical Therapeutics 23:753-760
Chapple & Udo, "Delay to maximum effect in overactive bladder patients treated with oxybutynin or tolterodine," 2000, European Urology 37(Suppl. 2):84, abstract 335 from the XVth Congress of the European Association of Urology, Brussels, Belgium, April 12-15, 2000
Chapple et al., "Fesoterodine a new effective and well-tolerated antimuscarinic for the treatment of urgency-frequency syndrome: results of a Phase II controlled study," 2004, Proceedings of the International Continence Society, 34:142
Clemett & Jarvis, "Tolterodine: a review of its use in the treatment of overactive bladder," 2001, Drugs & Aging 18:277-304

1	- 1	Diugs & Aging 10:277-304				
•	EXAMINER	Zellu_	Page 3	DATE	14 APRIL 2007	:

^{*-} English translation of claims provided
**- English translation of abstract provided

EXAMINER	AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
INITIAL	
27	Cole, "Fesoterodine, an advanced antimuscarinic for the treatment of overactive bladder: A safety update," 2004, Drugs of the Future 29:715-720
27	Committee for Proprietary Medicinal Products, "The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products," CPMP/986/96, December 17, 1997
Z	Detrol® package insert, Pharmacia & Upjohn Co., April, 2004
27	Diokno et al., "Tolterodine (Detrol®) improves incontinence and nocturia in urological based study," 1999 April, J. Urol. 161 (4 Suppl):256, abstract 987
27	Ekstrom et al., "Effects of tolterodine on bladder function in healthy volunteers," Journal of Urology 153(Suppl.):394A, abstract 662 from the 19 th Annual Meeting of the American Urological Association, Las Vegas, April 23-28, 1995
27	Gardner & Altman, "Confidence intervals rather than P values: estimation rather than hypothesis testing," 1986, Br. Med. J. 292:746-750
24	Gillberg et al., "Tolterodine, a new agent with tissue effect selectivity for urinary bladder," 1994, Neurourology and Urodynamics 13:435-436, abstract 60B from International Continence Society 24th Annual Meeting, Prague, Czech Republic, August 1994
3	Gillberg et al., "Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists," 1998, European Journal of Pharmacology 349: 285-292
31	Hills et al., "Tolterodine," 1998, Drugs 55:813-820
4	Jonas et al., "Efficacy and safety of two doses of tolterodine versus placebo in patients with detrusor overactivity and symptoms of frequency, urge incontinence, and urgency: urodynamic evaluation," 1997, World J. Urol. 15:144-151
31	Kang et al., "Cardiac ion channel effects of Tolterodine," 2004, J. Pharmacol. Exper. Thera. 308:935-940
25	Kershen & Hsieh, "Preview of new drugs for overactive bladder and incontinence: darifenacin, solifenacin, trospium, and duloxetine," Curr. Urol. Rep. 5:359-367
25	Klosa, "Eine Neue Synthesemethode der Darstellung von Diarylalkylaminen," 1966, Journal für Praktische Chemie 4:312-334 (in German) with English translation
21	Klosa, "Eine Neue Synthese von Diphenylisopropylaminen," 1966, Journal für Praktische Chemie 4:335-340 (in German, with English translation)
27	Larsson et al., "Tolterodine in the treatment of overactive bladder: analysis of the pooled phase II safety and efficacy data," 1999, Urology 53: 990-998
35	Lipinski, et al., "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings" Elsevier Advanced Drug Delivery Reviews Vol. 23, pp. 3-25, 1997
21	Millard et al., "Clinical efficacy and safety of tolterodine compared to placebo in detrusor overactivity," 1999, J. Urol. 161:1551-1555
25	Modiri et al., "Effect of muscarinic antagonists on micturition pressure measured by cystometry in normal, conscious rats," 2002, Urology 59:963-968
艺	Naerger et al., "Effect of tolterodine on electrically induced contractions of isolated human detrusor muscle from stable and unstable bladders," 1995, Neurourology and Urodynamics 14:524-526, abstract 76 from International Continence Society 25th Annual Meeting, Sydney, Australia, October 1995
27	Netzer, et al., "Screening lead compounds for QT interval prolongation" Drug Discovery Today Vol. 6, No. 2, pp.78-84, January 2001
27	Nilsson et al., "Comparison of a 10 mg controlled release oxybutynin tablet with a 5 mg oxybutynin tablet in urge incontinence patients," 1997, Neurourol. Urodyn. 16:533-542
27 27 27	Nilvebrant & Sparf, "Receptor binding profiles of some selective muscarinic antagonists," 1988, European Journal of Pharmacology 151:83-96
Zr	Nilvebrant & Sparf, "Differences between Binding Affinities of some Antimuscarinic Drugs in the parotid Gland and those in the Urinary Bladder and Ileum" Acta Pharmacol. et toxicol. Vol. 53, No. 4, pp. 304-313, October 1983

DATE 14 APRIL 2007 EXAMENER FOLLOW Page 4

EXAMINER INITIAL	AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.					
Z _r	Nilvebrant et al., "The in vitro pharmacological profile of tolterodine – a new agent for the treatment of urinary urge incontinence," 1994, Neurourology and Urodynamics 13:433-435, abstract 60A from International Continence Society 24 th Annual Meeting, Prague, Czech Republic, August 1994					
3	Nilvebrant et al., "Tolterodine is not subtype (m1-m5) selective but exhibits functional bladder selectivity in vivo," 1996, Neurourology and Urodynamics 15:310-311, abstract 34 from the 26th Annual Meeting of the International Continence Society, Athens, Greece, August 27-30, 1996					
Zr	Nilvebrant, "Tolterodine and terodiline – different pharmacological profiles," pages 141-142, abstract 181a, from the 27th Annual meeting of the International Continence Society, Yokohama, Japan, September 1997					
21	Nilvebrant et al "Tissue distribution of tolterodine and its metabolites: low penetration into the central nervous system," 2000, European Urology 37(Suppl. 2):84, abstract 333 from the XVth Congress of the European Association of Urology, Brussels, Belgium, April 12-15, 2000					
27	Nilvebrant, "The mechanism of action of tolterodine," 2000, Reviews in Contemporary Pharmacotherapy 11:13-27					
ZT	Olsson et al., "Food increases the bioavailability of tolterodine but not effective exposure," 2001, J. Clin. Pharmacol. 41:298-304					
36	Olsson & Szamosi, "Food does not influence the pharmacokinetics of a new extended release formulation of tolterodine for once daily treatment of patients with overactive bladder," 2001, Clinical Pharmacokinetics 40:135-143					
21	Olsson & Szamosi, "Multiple dose pharmacokinetics of a new once daily extended release formulation versus immediate release tolterodine," 2001, Clinical Pharmacokinetics 40:227-235					
25	Pharmacology/Toxicology Review from Application Number 21-518, Center for Drug Evaluation and Research, pp. 1-3.					
4	Rentzhog et al., "Efficacy and safety of tolterodine in patients with detrusor instability: a dose ranging study," 1998, Br. J. Urol. 81:42-48					
21	Roy, et al., "HERG, a Primary Human Ventricular Target of the Nonsedating Antihistamine Terfenadine" Circulation Vol. 94, No. 4, pp. 817-823, August 15, 1996					
21	Sachse et al., "Pharmacodynamics of multiple dose treatment with the novel antimuscarinic drug fesoterodine," 2002, Nauyn-Schmiedeberg's Arch. Pharmacol. 365 (Suppl. 1):413					
21	Sachse et al., "Safety and pharmacokinetics of the novel bladder-selective antimuscarinic drug fesoterodine in populations of different age or gender," 2002, Proceedings of the International Continence Society, 32:441					
3	Sachse et al., "Safety and pharmacokinetics of the novel bladder-selective antimuscarinic fesoterodine in populations of different ethnic origin," 2003, Proceedings of the International Continence Society, 33:377					
21	Sachse et al., "Dose-proportional pharmacokinetics of the new antimuscarinic fesoterodine," 2003, Nauyn-Schmiedeberg's Arch. Pharmacol. 367 (Suppl. 1):446					
4	Sachse et al., "Pharmacodynamics and pharmacokinetics of ascending multiple oral doses of the novel, bladder-selective antimuscarinic fesoterodine," 2003, Eur. Urol. Suppl 2:111					
21	Sachse et al., "Concomitant food intake does not significantly influence the pharmacokinetics of the novel, bladder-selective antimuscarinic fesoterodine," 2004, Proceedings of the International Continence Society, 34:580					
21	Sachse et al., "Safety, tolerability and pharmacokinetics of fesoterodine in patients with hepatic impairment," 2004, Proceedings of the International Continence Society, 34:585					
3	Sachse et al., "Safety, tolerability and pharmacokinetics of fesoterodine after co-treatment with the potent cytochrome P450 3A4 inhibitor ketoconazole," 2004, Proceedings of the International Continence Society, 34:586					
ट्रा	Sachse et al., "Clinical pharmacological aspects of the novel bladder-selective antimuscarinic fesoterodine," 2004, Progrès en Urologie, 14 (Suppl. 3):58					
21	Stahl et al., "Urodynamic and other effects of tolterodine: a novel antimuscarinic drug for the treatment of detrusor overactivity," 1995, Neurourol. Urodyn. 14:647-55					

EXAMINER _	Page	e 5 DATE	14 APRTL 2007		
21		Stahl et al., "Urodynamic and other effects of tolterodine: a novel antimuscarinic drug for the treatment of detrusor overactivity," 1995, Neurourol. Urodyn. 14:647-55			
27	Sachse et al., "Clinical pharmacologi fesoterodine," 2004, Progrès en Uro	cal aspects of the novel logie, 14 (Suppl. 3):58	bladder-selective antimuscarinic		
3	Sachse et al., "Safety, tolerability and pharmacokinetics of fesoterodine after co-treatment with the potent cytochrome P450 3A4 inhibitor ketoconazole," 2004, Proceedings of the International Continence Society, 34:586				
I	···•				

EXAMINER INITIAL	AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
3	Teuvo et al "Extended release tolterodine compared with immediate release tolterodine for the treatment of overactive bladder," 2000, European Urology 37(Suppl. 2):84, abstract 334 from the XVth Congress of the European Association of Urology, Brussels, Belgium, April 12-15, 2000
2	Van Kerrebroeck et al., "Tolterodine once daily: superior efficacy and tolerability in the treatment of the overactive bladder," 2001, Urology 57:414-421
21	Van Kerrebroeck et al., "Clinical efficacy and safety of tolterodine compared to oxybutynin in patients with overactive bladder," 1997, Neurourol. Urodyn. 16:478-479, abstract no. 91 from the 27th Annual meeting of the International Continence Society, Yokohama, Japan, September 1997
3	Versi et al., "Dry mouth with conventional and controlled release oxybutynin in urinary incontinence," 2000, Obstet. Gynecol. 95:718-721
21	Wefer et al., "Tolterodine: an overview," 2001, World Journal of Urology 19:312-318

EXAMINER AND	DATE CONSIDERED
EVANDED biddiff instrumental at the second size in	14 APRIL 2007
EXAMINER: Initial if citation considered, whether or not citation is in conformance with M.P.E.P. 60 not considered. Include copy of this form with next communication to applicant.	UY; draw line through citation if not in conformance and

INFORMATION DISCLOSURE STATEMENT BY APPLICANT	ATTY. DOCKET NO. 12961/46102	APPLICATION NO.
	APPLICANT Claus MEESE et al.	
	FILING DATE August 10, 2005	GROUP 1624

U. S. PATENT DOCUMENTS

EXAMINER INITIAL	PATENT NUMBER	PATENT DATE	NAME	CLASS	SUBCLASS	FILING DATE*
25	6,313,132	November 06, 2001	R. Johansson et al.			
21	-5,688,464-	November 11, 1997	R. Johansson et al.			

*- if relevant 5,686,464

FOREIGN PATENT DOCUMENTS

EXAMINER INITIAL	DOCUMENT NUMBER	DATE	COUNTRY ,	CLASS	SUBCLASS	TRANSL	ATION
ZT	WO 89/06644	July 27, 1989	PCT		-	YES	NO
24	WO 94/11337	May 26, 1994	PCT				

OTHER DOCUMENTS

EXAMINER INITIAL	AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
21	Nilvebrant et al., European Journal of Pharmacology, 327(1997) pp. 195-207
27	Nilvebrant et al., Pharmacology and Toxicology, Vol. 81, pp. 169-172, 1997
27	Nilvebrant et al., Life Sciences, Vol. 60 (13/14), pp. 1129-1136, 1997
EX	Postlind et al., Drug Metabolism and Disposition, Vol. 26 (4), pp. 289-293, 1998
21	Andersson et al., Drug Metabolism and Disposition, Vol. 26 (6), pp. 528-535, 1998
21	Brynne et al., J. Clin. Pharm. Ther., Vol. 35 (7), pp. 287-295 1997

EXAMINER	alm	DATE SONSIDERED 2007

EXAMINER: Initial if citation considered, whether or not citation is in conformance with M.P.E.P. 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Application/Control No.	Applicant(s)/Patent under Reexamination
11/201,756	MEESE ET AL.
Examiner	Art Unit
Zachary C. Tucker	1624

	SEARCHED				
Class	Subclass	Date	Examiner		
	-				
	<u>'</u>				
,		*******			
	<u>.</u>	,			
	•				

INT	INTERFERENCE SEARCHED				
Class	Subclass	Date	Examiner		
EAST USPG- PUB		4/15/2007	ZT		
,	,				
,					
CROSS RE	560/140 FERENCED KT TERMS	AS SHOWN ON THE ATTACHED SEARCH HISTORY			

SEARCH NOTES (INCLUDING SEARCH STRATEGY)			
	DATE	EXMR	
PALM - INVENTORS' NAMES SEARCHED.	4/15/2007	ZT	
EAST - USPAT, USPG-PUB, EPO, JPO, DERWENT, FPRS			
CLASS/SUBCLASSES 514/551, 560/140 CROSS-REFERENCED WITH TEXT TERMS: ["DIPHENYLPROPYLAMINES" or "TOLTERODINE"]	4/15/2007	ZT	
OTH OTHER OF 1001			
STN - STRUCTURE SEARCH PERFORMED IN "REGISTRY" FILE, ANSWER SET CROSS- REFERENCED INTO "CAPLUS" FILE TRANSCRIPT ATTACHED	4/15/2007	ZΤ	

				ماء		~£	\sim	_:.						7	Арр	lica	atio	n/C	on	tro	No.			A	ppli	car	ıt(s)/P	ate	nt ı	under
		1 12811			ex (air.	ns																eexa						
														L	11/2	201	,75	6							EES		ET	<u> </u>	<u></u>		· · · · · · · · · · · · · · · · · · ·
								Ш						'	Exa	mır	ıer							Αı	rt Uı	nit					
								1111			l				Zac	har	γC). T	uck	ker				16	324						
			1	D 6	eject	- d				(Throu	ıgh n	ume	ral)] [N.		-1-	-4] .			Λ		-1				
				Ne	-jeci	.eu 					C	ance	led				N	N	on-r	=ie	cted		Α		ΑĻ	pe	aı				
			=	AI	low	<u>-</u>			÷			estric	tod					l.	<u> </u>		nce		0		Obj		- A				
									Ш			-50110			_		'	111	teri	ere	ilice				Obj		eu				
	Cla	im	Г			Dat	+0			_		aim				Date				_	<u> </u>	aim				<u> </u>	•				1
1	Cie		_			T	T	Т		-	Ci	Т —		Τ	Τ'	Jate	<u>;</u>	Т		\dashv	CI		Н	Т		Da	T	T			
	Final	Original	12007								Final	Original									Final	Original									
	Ē	Ö.	2								ΙĒ	ō									≔	Ö									
ŀ		1				+	+	\vdash		\dashv		51	_	+-	+		\dashv	-+	+	\dashv	-	101	Н	+	+	+	+	┢	\vdash		
		1				工						52		1								102									
		-}	Н			+	-	—	\sqcup	_		53	_	+	+	Н	-	4	\perp	4		103	\sqcup	-	_	_	┦—	-	_		
		7	\vdash	-		+	+	╁	\vdash	-	-	54 55		+	+	H	-+	+	+	\dashv		104	H	+	+	+	+	╁		Н	-
		6				土						56								j.		106	П			t					
ļ		1					↓_	<u> </u>	П			57		\bot		Ш	_	4				107									
ŀ		8		+	+	+	+	₩	\vdash	-		58 59	+	+	+	\vdash		-	-	\dashv		108 109	\vdash	+	-	+	-	-			
ŀ		10		\dashv	\dashv	+	+	t	H	_		60	\dashv	+			_	\dashv	+	1		110	H	+	+	+	+				
		11		\Box		Į	工	\Box				61	\blacksquare	I				\Box				111									
-		1 <u>2</u> 1 <u>3</u>	\vdash	-	+	+	+	₽	H	4	-	62 63	+	+	-			+	+	4	<u> </u>	112	\vdash	\dashv	+	+	+	┡			
ŀ		14	Н	\dashv	+	+	+	\vdash	\vdash	\dashv		64	-	╁	+		\dashv	\dashv	+	\dashv		113 114	H	+	+	+-	+	-		\vdash	
		15										65										115				T					
ŀ		16 17	\square	\dashv	+-	┿		ـــ	Н	_	ļ	66		\perp				_	_	4	ļ	116		_	_			<u> </u>			
		18	\vdash	+	+	+	+-	\vdash	H	\dashv	-	67 68	+	+	+	\vdash		+	+-	-		117 118	\vdash	\dashv	+	+	+	\vdash			
1		18 19										69		\dagger	1			_	+	_		119				\dagger					
[20			\perp	1	_					70			_							120	Ш]	\perp	I					
}		21 20				+-	╁	\vdash	$\vdash \vdash$	\dashv		71 72	+	╁	-		+	+	+	\dashv		121 122	╁╌╁	+	+	+	+	-			
ŀ		22 23	H	1	+	+	十	 		\dashv		73	\dashv	-	\vdash		+	\dashv	+	\dashv	-	123	\Box	$^{+}$	+	\dagger	+	H			
		2				\perp	I					74										124									
-		25 26	\vdash	-+		+	+	₩		-		75 76	_	-	+	Н	\dashv			4		125 126	\vdash	\dashv		4-		┼	_		
}		27		,	+-	+	+	 	\vdash	\dashv		77	+	+	+	Н	\dashv	\dashv	+	\dashv		127	 	\dashv	+	+	+	\vdash	\vdash	Н	
ļ		28	V		1	1	工					78										128									
		29 30			+	+	+	\vdash	\sqcup	_		79	+	+	 		\dashv	\bot	+	4	<u> </u>	129	\prod	\perp	_	+	1	_			
}		231	╁┼	\dashv	+	+-	+	\vdash	$\vdash \vdash$	\dashv	-	80 81	+	+	+	\vdash	+	\dashv		\dashv		130 131	 	\dashv		+-	+-	+	-	Н	
į		32	П									82		1				士	士			132	◩	_		İ					
[33	V	_[\bot	\perp	\Box	П			83	I	$oxed{L}$		Ш	\exists	\bot	\perp			133	П	\prod	Ţ	Γ	L				
ļ		34 35	V	-+	+	+	+	 				84 85			-	\dashv	-	+	+	4		134 135	\vdash	-	-	+	-	<u> </u>			
-		36	\Box	+		+			\vdash			86	-	╁	+	H	+	+	+	-	-	136	╁╌╁	+	+	╁	╁	┢		-	
		37				上	İ					87										137									
-		38	\sqcup	-4		+	₩	Ш				88					_	-	_ _	4		138	\sqcup	_	_	-	4-	ļ		\Box	
		39 40	\vdash	\dashv		┿	+	Н	\vdash			89 90	-	-	+		\dashv	+		\dashv		139 140	\vdash	+		-	╁		H		
ŀ		41				\pm						91		士	_	H	_	†		1		141			_	+	\dagger	t		H	
ļ		42	П			\perp	oxday					92	1	1			\Box	\perp	1.			142		1		L					
}		43 44	\vdash	-	+	+	\vdash	$\vdash \vdash$	\vdash	\dashv		93 94	+	+	+	\sqcup	\dashv	+	+	4		143	$\vdash \vdash$	\downarrow	+	+	\perp	\vdash	Н	\sqcup	
}		45	\vdash	+	+	+	+	\vdash	\vdash	\dashv		95	\dashv	+	+	$\vdash \vdash$	+	+	+	\dashv		144 145	\vdash	+	+-	+	+	┢	Н		
İ		46				上	匚					96		T				士				146				上					
		47	Щ	_	-	ـ	 	\sqcup		4		97	\downarrow	-	igspace		-	\bot		4		147	П	1	_	<u> </u>		L	Ц		
}		48 49	\vdash	\dashv	\dashv	+	+	$\vdash \vdash$	\vdash	\dashv	-	98 99		+	+	\dashv	\dashv	+	+	\dashv	-	148 149	┼┼	+	+	+	+	\vdash			
-		50	Н	\dashv	\dashv	\dagger	1	\vdash	\forall	\dashv		100	+	+	+		\dashv	+	+	1	-	150	\vdash	+	+	T	+	t	\vdash		

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Vignia 22313-1450 www.uspto.gov

Bib Data Sheet

CONFIRMATION NO. 3812

SERIAL NUMBER 11/201,756 FILING OR 371(c) DATE 08/10/2005 RULE			CLASS GROU			UNIT	D	ATTORNEY OCKET NO. 2961/46103	
	Monheim, GERMANY; Frangsund, SWEDEN;								
This application 6,713,464 Which is a 37	TA ************************************	3 01/27/2 /11/1999 ****	2004 which is a		of 09/70	00,094 0	11/02/2	2001 PAT	
IF REQUIRED, FOF ** 02/23/2006	REIGN FILING LICENSE	GRANTE	:D						
Foreign Priority claimed 35 USC 119 (a-d) conditi met Verified and Acknowledged	yes no no no Met af	ter Milais	STATE OR COUNTRY GERMANY	DRA	ETS WING	TOT CLAI 7	MS	INDEPENDENT CLAIMS 4	
ADDRESS 26646		•							
TITLE Novel derivatives of	3,3-diphenylpropylamine	S							
FILING FEE RECEIVED 1580 FEES: Authority has been given in Paper No to charge/credit DEPOSIT ACCOUNT No for following: All Fees 1.16 Fees (Filing 1.17 Fees (Processing Ext. of time 1.18 Fees (Issue									
Other Credit									

Docket No.: 12961/46103

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT

Meese et al.

SERIAL NO.

11/201,756

FILED

August 10, 2005

FOR

NOVEL DERIVATIVES OF 3,3-

DIPHENYLPROPYLAMINES

EXAMINER:

Tucker

GROUP ART UNIT:

1624

I hereby certify that this correspondence is being deposited with the

United States Postal Service with sufficient postage as first class mail

in an envelope addressed to:

Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 Mail Stop Amendues

Mail Stop Amendment

COMMISSIONER FOR PATENTS

P.O. BOX 1450

Alexandria, VA 22313-1450

Date: October 22, 2007 Signature: Chandra Seanon

AMENDMENT

SIR:

In response to the Office Action dated April 20, 2007, please consider the following amendments and remarks. Enclosed herewith are a Petition for the Extension of Time and four Terminal Disclaimers.

IN THE SPECIFICATION

At page 1, after the title, of the Substitute Specification filed July 10, 2006, please amend the specification by inserting the following:

This application is a continuation of U.S. Patent Application Serial No. 10/766,263, filed January 27, 2004, now U.S. Patent No. 7,230,030, which is a continuation of U.S. Patent Application Serial No. 09/700,094, filed January 2, 2001, now U.S. Patent No. 6,713,464, which is a 371 of PCT/EP99/03212, filed May 11, 1999.

At page 1, before the paragraph beginning "In man, normal urinary bladder contractions ...," of the Substitute Specification filed July 10, 2006, please amend the specification by inserting the following:

Background of the Invention

At page 3, before the paragraph beginning "It is an object of the present invention ...," of the Substitute Specification filed July 10, 2006, please amend the specification by inserting the following:

Brief Summary of the Invention

At page 8, before the paragraph beginning "In the compounds according to the present invention, the term "alkyl" preferably ...," of the Substitute Specification filed July 10, 2006, please amend the specification by inserting the following:

Detailed Description of the Invention

Remarks

Claims 28-34 are pending.

The double patenting rejections

Claims 28-34 were rejected for obviousness-type double patenting over claims 1, 2, 4, and 20-23 of U.S. Patent No. 6,713,464.

Enclosed herewith is a Terminal Disclaimer over U.S. Patent No. 6,713,464. In view of the this Terminal Disclaimer, it is respectfully requested that this rejection be withdrawn.

Claims 28-34 were rejected for obviousness-type double patenting over claims 1, 3, 5, and 21-24 of U.S. Patent No. 6,858,650.

Enclosed herewith is a Terminal Disclaimer over U.S. Patent No. 6,858,650. In view of the this Terminal Disclaimer, it is respectfully requested that this rejection be withdrawn.

Claims 28, and 30-34 were rejected for obviousness-type double patenting over claims 35, 39, 49, and 63-65 of U.S. Patent Application Serial No. 10/532,836.

Enclosed herewith is a Terminal Disclaimer over U.S. Patent Application Serial No. 10/532,836. In view of the this Terminal Disclaimer, it is respectfully requested that this rejection be withdrawn.

Claims 28, and 30-34 were rejected for obviousness-type double patenting over claims 1 and 30 of U.S. Patent Application Serial No. 10/533,683.

Enclosed herewith is a Terminal Disclaimer over U.S. Patent Application Serial No. 10/533,683. In view of the this Terminal Disclaimer, it is respectfully requested that this rejection be withdrawn.

Objections to the specification

The specification was objected to for not setting out the proper sections in the proper order.

The specification has been amended to insert section headings. The Applicants note that the Substitute Specification filed July 10, 2006 already contained a "Brief Description of the Drawing" section heading on page 8.

The specification was objected to for not including the continuity data.

The specification has been amended to insert the continuity data.

In view of the above, it is respectfully requested that these objections be withdrawn.

The time for responding to the Office Action was set for July 20, 2007. Enclosed herewith is a Petition for the Extension of Time under 37 C.F.R. § 1.136(a) for a period sufficient to permit the filing of this response. Please charge any corresponding fees for the Petition to Kenyon & Kenyon LLP's Deposit Account No. 11-0600.

The Applicants hereby make a Conditional Petition for any relief available to correct any defect seen in connection with this filing, or any defect seen to be remaining in this application after this filing.

Respectfully submitted,

Date: October 22, 2007

BY:

Joseph A. Coppola Reg. No. 38,413

KENYON & KENYON

One Broadway

New York, NY 10004

(212) 425-7200 (telephone)

(212) 425-5288 (facsimile)

02 FC:1814

PTO/SB/26 (04-07)

Approved for use through 09/30/2007. OMB 0551-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. Docket Number (Optional) TERMINAL DISCLAIMER TO OBVIATE A DOUBLE PATENTING 12961/46103 **REJECTION OVER A "PRIOR" PATENT** In re Application of: Claus MEESE, et al. Application No.: 11/201,756 Filed: August 10, 2005 FOR NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES percent interest in the instant application hereby disclaims, The owner*, <u>SCHWARZ PHARMA AG</u>, of <u>100</u> percent interest in the instant application hereby disclaims, except as provided below, the terminal part of the statutory term of any patent granted on the instant application which would extend beyond the expiration date of the full statutory term **prior patent** No. <u>6,858,650</u> as the term of said prior patent is defined in 35 U.S.C. 154 and 173, and as the term of said **prior patent** is presently shortened by any terminal disclaimer. The owner hereby agrees that any patent so granted on the Instant application shall be enforceable only for and during such period that it and the prior patent are commonly owned. This agreement runs with any patent granted on the instant application and is binding upon the grantee, its successors or assigns. In making the above disclaimer, the owner does not disclaim the terminal part of the term of any patent granted on the instant application that would extend to the expiration date of the full statutory term as defined in 35 U.S.C. 154 and 173 of the prior patent, "as the term of said prior patent is presently shortened by any terminal disclaimer," in the event that said prior patent later: expires for failure to pay a maintenance fee; is held unenforceable; is found invalid by a court of competent jurisdiction; is statutorily disclaimed in whole or terminally disclaimed under 37 CFR 1.321; has all claims canceled by a reexamination certificate; is reissued: or is in any manner terminated prior to the expiration of its full statutory term as presently shortened by any terminal disclaimer. Check either box 1 or 2 below, if appropriate. For submissions on behalf of a business/organization (e.g., corporation, partnership, university, government agency, etc.), the undersigned is empowered to act on behalf of the business/organization. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. The undersigned is an attorney or agent of record. Reg. No. 10/15/2007 Dr.F.Dreßen Senior Patent Counsel Typed or printed name 10/25/2007 CCHAU1 00000018 110600 11201756 130.00 DA 2173 481806 Telephone Number Terminal disclaimer fee under 37 CFR 1.20(d) included. WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038. *Statement under 37 CFR 3.73(b) is required if terminal disclaimer is signed by the assignee (owner). Form PTO/SB/96 may be used for making this certification. See MPEP § 324.

This collection of information is required by 37 CFR 1.321. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

PTO/SB/26 (04-07)

Approved for use through 09/30/2007. OMB 0651-0031 U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. Docket Number (Optional) TERMINAL DISCLAIMER TO OBVIATE A DOUBLE PATENTING 12961/46103 **REJECTION OVER A "PRIOR" PATENT** In re Application of: Claus MEESE, et al. Application No.: 11/201,756 Filed: August 10, 2005 For: NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES percent interest in the instant application hereby disclaims. The owner*, SCHWARZ PHARMA AG. , of ِ 100 except as provided below, the terminal part of the statutory term of any patent granted on the instant application which would extend beyond the expiration date of the full statutory term **prior patent** No. 6,713,464 as the term of said prior patent is defined in 35 U.S.C. 154 and 173, and as the term of said **prior patent** is presently shortened by any terminal disclaimer. The owner hereby agrees that any patent so granted on the instant application shall be enforceable only for and during such period that it and the prior patent are commonly owned. This agreement runs with any patent granted on the instant application and is binding upon the grantee, its successors or assigns. In making the above disclaimer, the owner does not disclaim the terminal part of the term of any patent granted on the instant application that would extend to the expiration date of the full statutory term as defined in 35 U.S.C. 154 and 173 of the prior patent, "as the term of said prior patent is presently shortened by any terminal disclaimer," in the event that said prior patent later: expires for failure to pay a maintenance fee; is held unenforceable; is found invalid by a court of competent jurisdiction; is statutorily disclaimed in whole or terminally disclaimed under 37 CFR 1.321; has all claims canceled by a reexamination certificate; is reissued; or is in any manner terminated prior to the expiration of its full statutory term as presently shortened by any terminal disclaimer. Check either box 1 or 2 below, if appropriate. 1. 🗸 For submissions on behalf of a business/organization (e.g., corporation, partnership, university, government agency, etc.), the undersigned is empowered to act on behalf of the business/organization. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. The undersigned is an attorney or agent of record. Reg. No. 10/15/2007 Dr. F. Dreßen Senior Patent Counsel Typed or printed name 10/25/2017 CCHAU1 00000018 110600 11201756 +49 2173 481806 03 FC:1814 130.00 DA Telephone Number Terminal disclaimer fee under 37 CFR 1.20(d) included. WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038. *Statement_under 37 CFR 3.73(b) is required if terminal disclaimer is signed by the assignee (owner).

This collection of information is required by 37 CFR 1.321. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time your require to complete this form and/or supposition for policing this burdon about the Chief Information Complete. on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Form PTO/SB/96 may be used for making this certification. See MPEP § 324.

OCT'2 5 2007 . W

PTO/SB/25 (07-08)
Approved for use through 09/30/2006. OMB 0651-0031
U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. TERMINAL DISCLAIMER TO OBVIATE A PROVISIONAL DOUBLE PATENTING Docket Number (Optional) 12961/46103

REJECTION OVER A PENDING "REFERENCE" APPLICATION In re Application of: Claus MEESE, et al. Application No.: 11/201,756 Filed: August 10, 2005 For: NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES The owner, SCHWARZ PHARMA AG , of 100 percent interest in the instant application hereby disclaims, except as provided below, the terminal part of the statutory term of any patent granted on the instant application which would extend beyond the expiration date of the full statutory term of any patent granted on pending reference Application Number 10/533,683 , as such term is defined in 35 U.S.C. 154 and 173, and as the term of any patent granted on said reference application may be shortened by any terminal disclaimer filed prior to the grant of any patent on the pending reference application. The owner hereby agrees that any patent so granted on the instant application shall be enforceable only for and during such period that it and any patent granted on the reference application are commonly owned. This agreement runs with any patent granted on the instant application and is binding upon the grantee, its successors or assigns. In making the above disclaimer, the owner does not disclaim the terminal part of any patent granted on the instant application that would extend to the expiration date of the full statutory term as defined in 35 U.S.C. 154 and 173 of any patent granted on said reference application, "as the term of any patent granted on said reference application may be shortened by any terminal disclaimer filed prior to the grant of any patent on the pending reference application," in the event that: any such patent: granted on the pending reference application: expires for failure to pay a maintenance fee, is held unenforceable, is found invalid by a court of competent jurisdiction, is statutorily disclaimed in whole or terminally disclaimed under 37 CFR 1.321, has all claims canceled by a reexamination certificate, is reissued, or is in any manner terminated prior to the expiration of its full statutory term as shortened by any terminal disclaimer filed prior to its grant. Check either box 1 or 2 below, if appropriate. 1. For submissions on behalf of a business/organization (e.g., corporation, partnership, university, government agency, etc.), the undersigned is empowered to act on behalf of the business/organization. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon. The undersigned is an attorney or agent of record. Reg. No. 10/15/2007 Dr.F.Dreßen Senior Patent Counsel Typed or printed name 10/25/2007 CCHAU1 00000018 110600 11201756 <u>2173 481806</u> Telephone Number 04 FC:1814 130.00 DA ▼ Terminal disclaimer fee under 37 CFR 1.20(d) is included. WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

Form PTO/SB/96 may be used for making this statement. See MPEP § 324.

This collection of information is required by 37 CFR 1.321. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

*Statement under 37 CFR 3.73(b) is required if terminal disclaimer is signed by the assignee (owner).

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

10/25/200 05 FC:181

Approved for use through 09/30/2006. OMB 0651-0031

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
der the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

MINAL DISCLAIMER TO ORVIATE A PROVISIONAL POLICY FOR THE PROVISIONAL POLICY

TERMINAL DISCLAIMER TO OBVIATE A PROVISIONAL DOUBLE PATENTING | Docket Number (Optional)

REJECTION OVER A PENDING "REFERENCE" APPLICATION	12961/46103							
In re Application of: Claus MEESE, et al.								
Application No.: 11/201,756								
Filed: August 10, 2005								
For: NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES								
The owner*, SCHWARZ PHARMA AG , of 100 percent interest in the instance except as provided below, the terminal part of the statutory term of any patent granted on the instant application date of the full statutory term of any patent granted on pending reference Application Number on April 26, 2005 , as such term is defined in 35 U.S.C. 154 and 173, and as the term of any application may be shortened by any terminal disclaimer filed prior to the grant of any patent on the pending hereby agrees that any patent so granted on the instant application shall be enforceable only for and during granted on the reference application are commonly owned. This agreement runs with any patent granted binding upon the grantee, its successors or assigns.	cation which would extend beyond r 10/532,836 , filed patent granted on said reference reference application. The owner such period that it and any patent							
In making the above disclaimer, the owner does not disclaim the terminal part of any patent granted on the instant application that would extend to the expiration date of the full statutory term as defined in 35 U.S.C. 154 and 173 of any patent granted on said reference application, "as the term of any patent granted on said reference application may be shortened by any terminal disclaimer filed prior to the grant of any patent on the pending reference application," in the event that: any such patent: granted on the pending reference application: expires for failure to pay a maintenance fee, is held unenforceable, is found invalid by a court of competent jurisdiction, is statutorily disclaimed in whole or terminally disclaimed under 37 CFR 1.321, has all claims canceled by a reexamination certificate, is reissued, or is in any manner eminated prior to the expiration of its full statutory term as shortened by any terminal disclaimer filed prior to its grant.								
Check either box 1 or 2 below, if appropriate.								
1. For submissions on behalf of a business/organization (e.g., corporation, partnership, university, govetc.), the undersigned is empowered to act on behalf of the business/organization.	ernment agency,							
I hereby declare that all statements made herein of my own knowledge are true and that all statements are believed to be true; and further that these statements were made with the knowledge that willful made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United State statements may jeopardize the validity of the application or any patent issued thereon.	Il false statements and the like so							
2. The undersigned is an attorney or agent of record. Reg. No.	·							
9. Dr.	10/15/2007							
Dr.F.Dreßen Signature	Date							
Senior Patent Counsel								
Typed or printed name								
+49	2173 481806 Telephone Number							
Terminal disclaimer fee under 37 CFR 1.20(d) is included.								
WARNING: Information on this form may become public. Credit card information be included on this form. Provide credit card information and authorization on	should not PTO-2038.							
CCHAU1 00000018 110600 11201756								
130.00 DA *Statement under 37 CFR 3.73(b) is required if terminal disclaimer is signed by the assignee (owner). Form PTO/SB/96 may be used for making this statement. See MPEP § 324.								

This collection of information is required by 37 CFR 1.321. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Meese et al.

SERIAL NO.

11/201,756

FILED

August 10, 2005

FOR

EXAMINER

Tucker

GROUP ART UNIT:

1624

Mail Stop Amendment Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Mail Stop Amendment, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

Date:

Øctober 22, 2007

NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES

Signature

TRANSMITTAL OF AMENDMENT, TERMINAL DISCLAIMERS AND EXTENSION OF TIME

SIR:

In response to the Office Action of April 20, 2007, Applicant submits herewith an Amendment in the above-identified application.

Applicant also submits four (4) Terminal Disclaimers to Obviate a Double Patenting Rejection Over a Prior Patent/Application for the following patents: 6,858,650; 6,713,464 and the following patent applications: 10/533,683; 10/532,836.

Applicant hereby requests a three-month extension of time for responding to this Office Action. The extended period for response expires on October 22, 2007 (as October 20, 2007 falls on a Saturday). The amount due with respect to the extension of time is calculated to be \$1,050.00.

Please charge the \$1,050.00 extension fee to Kenyon & Kenyon LLP Deposit Account No. 11-0600

The Commissioner is also authorized to charge any additional fees or credit any overpayment in connection with this paper to Deposit Account No. 11-0600. A copy of this form is enclosed for charging purposes.

Respectfully submitted,

KENYON & KENYON LLP

Dated: October 22, 2007

By: Joseph A. Coppell

(Registration No. 38,413)

One Broadway

New York, New York 10004

(212) 425-7200

CUSTOMER NO. 26646

UPDATED EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	, 0	(514/551OR560/140).CCLS.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	OFF	2007/11/02 14:44
L2	0	(514/551OR560/140).CCLS.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	OFF	2007/11/02 14:44
L3	0	(514/551OR560/140).CCLS.	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	. OFF	2007/11/02 14:44
L4	345	514/551 OR 560/140	USPAT	OR	OFF	2007/11/02 14:44
L5	6	L4 AND (TOLTERODINE OR DIPHENYLPROPYLAMINE)	USPAT	OR	ON	2007/11/02 14:45

Application Number	Applicatio		ntrol No.	Re	pplicant(s)/Patent (examination EESE ET AL.	under			
Document Code - DISQ		Internal Document – DO NOT MAIL							
TERMINAL DISCLAIMER] APPROVE	ED		⊠ DISAPP	ROVED				
Date Filed : 10/25/07		to a Te	ent is subject Ferminal claimer						
Approved/Disapproved by Janice Ford 6713464 (Disapproved/agent n									

Application Number	11/201,756	Re	pplicant(s)/Patent (eexamination EESE ET AL.	under				
Document Code - DISQ		Internal Doo	Document – DO NOT MAIL					
				·				
TERMINAL DISCLAIMER	☐ APPROVI	ED	⊠ DISAPP	ROVED				
Date Filed : 10/25/07	to a Te	t is subject erminal aimer						
Approved/Disapproved b	y:							
Janice Ford								
10/533683 (Disapproved/agent not of record)								
			·					

Application Number	11/201,756	ntrol No.	Applicant(s)/Patent Reexamination MEESE ET AL.	under						
Document Code - DISQ		Internal Document – DO NOT MAIL								
TERMINAL DISCLAIMER		ED	⊠ DISAPP	ROVED						
Date Filed : 10/25/07	to a Te	ent is subject Terminal sclaimer								
Approved/Disapproved by: Janice Ford 6858650 (Disapproved/agent not of record)										

> =

Application Number	11/201,756	Re	pplicant(s)/Patent userxamination	under							
Document Code - DISQ		Internal Do	al Document – DO NOT MAIL								
TERMINAL DISCLAIMER		ED	⊠ DISAPPI	ROVED							
Date Filed : 10/25/07	to a Te	t is subject erminal aimer									
Approved/Disapproved b											
Janice Ford		_									
10/532836 (Disapproved/agent	10/532836 (Disapproved/agent not of record)										

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.usplo.gov

NOTICE OF ALLOWANCE AND FEE(S) DUE

26646

7590

11/29/2007

KENYON & KENYON LLP ONE BROADWAY NEW YORK, NY 10004

EXA	MINER
TUCKER,	ZACHARY C
ART UNIT	PAPER NUMBER
1624	

DATE MAILED: 11/29/2007

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
11/201,756	08/10/2005	Claus Meese	12961/46103	3812

TITLE OF INVENTION: NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1440	\$300	\$0	\$1740	02/29/2008

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. <u>PROSECUTION ON THE MERITS IS CLOSED</u>. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:

- A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.
- B. If the status above is to be removed, check box 5b on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:

- A. Pay TOTAL FEE(S) DUE shown above, or
- B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and 1/2 the ISSUE FEE shown above.
- II. PART B FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section "4b" of Part B Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.
- III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page 1 of 3

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Stop ISSUE FEE Commissioner for Patents

P.O. Box 1450 Alexandria, Virginia 22313-1450

or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where

appropriate. All further indicated unless correcte maintenance fee notifical	correspondence includired below or directed oth	ig the Patent, a herwise in Bloc	dvance of k 1, by (a	rders and notification a) specifying a new c	of m orresp	aintenance fees woondence address;	rill be and/or	mailed to the current (b) indicating a separ	correspondence address as rate "FEE ADDRESS" for
***************************************	ENCE ADDRESS (Note: Use BI	ock I for any change	e of address)		Fee(s) Transmittal. Thirs. Each additional	s certif paper	icate cannot be used fo	domestic mailings of the or any other accompanying at or formal drawing, must
26646	7590 11/29	/2007			Have			-	
KENYON & K ONE BROADW NEW YORK, N	'AY				I here States addre transs	by certify that this	s Fce(s	of Mailing or Transmits) Transmittal is being ficient postage for first ISSUE FEE address at 273-2885, on the date	nission deposited with the United class mail in an envelope above, or being facsimile te indicated below.
	•								(Depositor's name)
•									(Signature)
									(Date)
APPLICATION NO.	FILING DATE		FIRST NAMED INVEN	TOR		АТТО	RNEY DOCKET NO.	CONFIRMATION NO.	
11/201,756		Claus Meese				12961/46103	3812		
TITLE OF INVENTION	HENYLP								
APPLN. TYPE	SMALL ENTITY	ISSUE FEE	DUE	PUBLICATION FEE D	OUE	PREV. PAID ISSUE	FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1440	0	· \$300		\$0		\$1740	02/29/2008
EXAMINER ART UNIT				CLASS-SUBCLASS	S				
TUCKER, Z.	ACHARY C	1624	,	514-551000					
1. Change of corresponde CFR 1.363).	ence address or indication	n of "Fee Addre	ess" (37	2. For printing on	•			1	
_ ′	ondence address (or Cha 3/122) attached.	nge of Correspo	ondence	(1) the names of u or agents OR, alter			t attorn	eys ¹	
PTO/SB/47; Rev 03-0 Number is required.	ication (or "Fee Address' 2 or more recent) attach	ed. Use of a C	ustomer	2 registered patent listed, no name wi	attor	neys or agents. If i	no nam	e is 3	
•	ND RESIDENCE DATA	A TO BE PRIN	TED ON	I THE PATENT (print o	or type				
				•		•	ee is id	lentified below, the do	cument has been filed for
(A) NAME OF ASSIC		detion of this to	orm is NO	(B) RESIDENCE: (C					
(1)				(-) 1 1 - 1 - 1 - 1					
					_	_			_
Please check the appropri	iate assignee category or	categories (wil	l not be pi	rinted on the patent):	Ш	Individual U Co	rporati	on or other private gro	up entity Government
4a. The following fee(s)	are submitted:		41	b. Payment of Fee(s): ((Pleas	e first reapply an	y prev	iously paid issue fee s	hown above)
Issue Fee		· •		A check is enclos		F PEO 2020			•
	lo small entity discount p # of Copies			Payment by credi	ereby	authorized to char	ge the i	equired fee(s), any def	iciency, or credit any
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	overpayment, to I	Depos	it Account Numbe	r	(enclose an	extra copy of this form).
	tus (from status indicated s SMALL ENTITY statu	•	1 27	. Dh. Annlicent is no	long	or alaiming SMAI	I END	TITY status. See 37 CF	D 1 27(a)(2)
• •				• •					e assignee or other party in
nterest as shown by the r	records of the United Sta	tes Patent and	rademark r	Office.					
Authorized Signature			•			Date			
Typed or printed name	e				Registration N	o			
This collection of inform	ation is required by 37 C	FR 1.311. The	informatio	on is required to obtain	n or re	tain a benefit by the	ne publ	ic which is to file (and	by the USPTO to process)
submitting the completed this form and/or suggesti	d application form to the ons for reducing this but	USPTO. Time	will vary	depending upon the in the Chief Information O	indivi Officer	dual case. Any co	mment Traden	s on the amount of time ark Office, U.S. Depa	by the USPTO to process, gathering, preparing, and to you require to complete the your following the your fo

Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILIN	NG DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
11/201,756	08/	10/2005	Claus Meese	12961/46103	3812
26646	7590	11/29/2007		EXAM	INER
KENYON & I	KENYON L	LLP		TUCKER, Z.	ACHARY C
ONE BROADV	VAY			ART UNIT	PAPER NUMBER
NEW YORK, N	IY_10004			1624 DATE MAILED: 11/29/200	7

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)

The Patent Term Adjustment to date is 156 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 156 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

		•
	Application No.	Applicant(s)
Notice of Allowability	11/201,756 Examiner	MEESE ET AL. Art Unit
•	Zachary C. Tucker	1624
The MAILING DATE of this communication application application application and All claims being allowable, PROSECUTION ON THE MERITS I herewith (or previously mailed), a Notice of Allowance (PTOL-8 NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT of the Office or upon petition by the applicant. See 37 CFR 1.3	S (OR REMAINS) CLOSED in this ap 5) or other appropriate communicatio RIGHTS. This application is subject	oplication. If not included on will be mailed in due course. THIS
1. This communication is responsive to <u>25 October 2007</u> .		
2. The allowed claim(s) is/are <u>28-34</u> .	,	
 3. Acknowledgment is made of a claim for foreign priority a) All b) Some* c) None of the: 1. Certified copies of the priority documents hat 2. Certified copies of the priority documents hat 3. Copies of the certified copies of the priority of International Bureau (PCT Rule 17.2(a)). * Certified copies not received: Applicant has THREE MONTHS FROM THE "MAILING DATE noted below. Failure to timely comply will result in ABANDON THIS THREE-MONTH PERIOD IS NOT EXTENDABLE. 4. A SUBSTITUTE OATH OR DECLARATION must be sub INFORMAL PATENT APPLICATION (PTO-152) which g 5. CORRECTED DRAWINGS (as "replacement sheets") m (a) including changes required by the Notice of Draftsper 	we been received. The been received in Application No. (a) The documents have been received in this documents have been received in this documents have been received in this documents have been received in this documents have been received in this documents have been received in this documents are ply and the community of this application. The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in Application No. (a) The been received in this documents have been rece	s national stage application from the y complying with the requirements R'S AMENDMENT or NOTICE OF ration is deficient.
1) hereto or 2) to Paper No./Mail Date		
(b) ☐ including changes required by the attached Examine Paper No./Mail Date Identifying indicia such as the application number (see 37 CFF)	R 1.84(c)) should be written on the draw	rings in the front (not the back) of
each sheet. Replacement sheet(s) should be labeled as such in 6. DEPOSIT OF and/or INFORMATION about the department attached Examiner's comment regarding REQUIREMEN	posit of BIOLOGICAL MATERIAL	must be submitted. Note the
Attachment(s) 1. ☐ Notice of References Cited (PTO-892) 2. ☐ Notice of Draftperson's Patent Drawing Review (PTO-948) 3. ☐ Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date 4. ☐ Examiner's Comment Regarding Requirement for Deposi of Biological Material	Paper No./Mail D 7.	y (PTO-413), ate

Application/Control Number: 11/201,756 Page 2

Art Unit: 1624

Response to Amendment

As requested by applicants in the correspondence filed 25 October 2007 (hereinafter "present amendment"), which is in reply to the Office action mailed 20 April 2007 (hereinafter "previous Office action"), the specification has been amended at pages 1, 3 and 8.

Terminal Disclaimers

The four Terminal Disclaimers which have been submitted 25 October 2007 have each been entered, recorded and are proper. The Terminal Disclaimers are over U.S. Patent Nos. 6,713,464 and 6858,560 and also over copending United States Patent Application Nos. 10/532,836 and 10/533,683.

Status of Double Patenting Rejections

In view of the Terminal Disclaimers filings noted immediately above, all Double

Patenting rejections which were set out in the previous Office action are hereby withdrawn.

Status of Objections to the Specification

In the previous Office action, objection to the specification was made based on the lack of proper headings for each of the sections prescribed by 37 C.F.R. 1.77(b) and for lack of continuity data on page one of the specification which is prescribed by 37 C.F.R. 1.78(a)(5)(iii).

In view of the present amendment, which adds the missing elements of the specification, the objections are all hereby withdrawn.

Allowable Subject Matter

Claims 28-34 are now allowed.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany

Application/Control Number: 11/201,756 Page 3

Art Unit: 1624

the issue fee. Such submissions should be clearly labeled "Comments on Statement of Reasons for Allowance."

Conclusion

All Post-Allowance Correspondence concerning this application must be mailed to:
Mail Stop Issue Fee
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Or you can fax them to the Office of Patent Publications at 703-872-9306, in order to expedite the handling of such correspondence as amendments under 37 CFR 1.312; information disclosure statements, and formal drawings. Sending Post-Allowance papers to Technology Center 1600 will only cause delays in matching papers with the case.

For information concerning status of correspondence sent after receipt of the Notice of Allowance, please contact the Correspondence Branch at (703) 305-8027. The Notice of Allowance also has an insert containing contact information on other items, including Issue Fees, receipt of formal drawings and the status of the application.

ZACHARY C.TUCKER PRIMARY EXAMINER

EXAMINER INITIAL	AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
21	Cole, "Fesoterodine, an advanced antimuscarinic for the treatment of overactive bladder: A safety update," 2004, Drugs of the Future 29:715-720
ZT	Committee for Proprietary Medicinal Products, "The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products," CPMP/986/96, December 17, 1997
Er	Detrol® package insert, Pharmacia & Upjohn Co., April, 2004
27	Diokno et al., "Tolterodine (Detrol®) improves incontinence and nocturia in urological based study," 1999 April, J. Urol. 161 (4 Suppl):256, abstract 987
ZT	Ekstrom et al., "Effects of tolterodine on bladder function in healthy volunteers," Journal of Urology 153(Suppl.):394A, abstract 662 from the 19 th Annual Meeting of the American Urological Association, Las Vegas, April 23-28, 1995
21	Gardner & Altman, "Confidence intervals rather than P values: estimation rather than hypothesis testing," 1986, Br. Med. J. 292:746-750
21	Gillberg et al., "Tolterodine, a new agent with tissue effect selectivity for urinary bladder," 1994, Neurourology and Urodynamics 13:435-436, abstract 60B from International Continence Society 24th Annual Meeting, Prague, Czech Republic, August 1994
37	Gillberg et al., "Comparison of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists," 1998, European Journal of Pharmacology 349: 285-292
31	Hills et al., "Tolterodine," 1998, Drugs 55:813-820
4	Jonas et al., "Efficacy and safety of two doses of tolterodine versus placebo in patients with detrusor overactivity and symptoms of frequency, urge incontinence, and urgency: urodynamic evaluation," 1997, World J. Urol. 15:144-151
31	Kang et al., "Cardiac ion channel effects of Tolterodine," 2004, J. Pharmacol. Exper. Thera. 308:935-940
25	Kershen & Hsieh, "Preview of new drugs for overactive bladder and incontinence: darifenacin, solifenacin, trospium, and duloxetine," Curr. Urol. Rep. 5:359-367 (2004)
35	Klosa, "Eine Neue Synthesemethode der Darstellung von Diarylalkylaminen," 1966, Journal für Praktische Chemie 4:312-334 (in German) with English translation
21	Klosa, "Eine Neue Synthese von Diphenylisopropylaminen," 1966, Journal für Praktische Chemie 4:335-340 (in German, with English translation)
27	Larsson et al., "Tolterodine in the treatment of overactive bladder: analysis of the pooled phase II safety and efficacy data," 1999, Urology 53: 990-998
31	Lipinski, et al., "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings" Elsevier Advanced Drug Delivery Reviews Vol. 23, pp. 3-25, 1997
21	Millard et al., "Clinical efficacy and safety of tolterodine compared to placebo in detrusor overactivity," 1999, J. Urol. 161:1551-1555
25	Modiri et al., "Effect of muscarinic antagonists on micturition pressure measured by cystometry in normal, conscious rats," 2002, Urology 59:963-968
长	Naerger et al., "Effect of tolterodine on electrically induced contractions of isolated human detrusor muscle from stable and unstable bladders," 1995, Neurourology and Urodynamics 14:524-526, abstract 76 from International Continence Society 25th Annual Meeting, Sydney, Australia, October 1995
27	Netzer, et al., "Screening lead compounds for QT interval prolongation" Drug Discovery Today Vol. 6, No. 2, pp.78-84, January 2001
21	Nilsson et al., "Comparison of a 10 mg controlled release oxybutynin tablet with a 5 mg oxybutynin tablet in urge incontinence patients," 1997, Neurourol. Urodyn. 16:533-542
25	Nilvebrant & Sparf, "Receptor binding profiles of some selective muscarinic antagonists," 1988, European Journal of Pharmacology 151:83-96
Zr	Nilvebrant & Sparf, "Differences between Binding Affinities of some Antimuscarinic Drugs in the parotid Gland and those in the Urinary Bladder and Ileum" Acta Pharmacol. et toxicol. Vol. 53, No. 4, pp. 304-313, October 1983

DATE 14 APRIL 2007

EXAMINER	AUTHOR TITLE OUTS DOTTING TO STORE
INITIAL	AUTHOR, TITLE, DATE, PERTINENT PAGES, ETC.
Z _r	Nilvebrant et al., "The in vitro pharmacological profile of tolterodine – a new agent for the treatment of urinary urge incontinence," 1994, Neurourology and Urodynamics 13:433-435, abstract 60A from International Continence Society 24 th Annual Meeting, Prague, Czech Republic, August 1994
34	Nilvebrant et al., "Tolterodine is not subtype (m1-m5) selective but exhibits functional bladder selectivity in vivo," 1996, Neurourology and Urodynamics 15:310-311, abstract 34 from the 26th Annual Meeting of the International Continence Society, Athens, Greece, August 27-30, 1996
Z	Nilvebrant, "Tolterodine and terodiline – different pharmacological profiles," pages 141-142, abstract 181a, from the 27th Annual meeting of the International Continence Society, Yokohama, Japan, September 1997
2	Nilvebrant et al "Tissue distribution of tolterodine and its metabolites: low penetration into the central nervous system," 2000, European Urology 37(Suppl. 2):84, abstract 333 from the XVth Congress of the European Association of Urology, Brussels, Belgium, April 12-15, 2000
2	Nilvebrant, "The mechanism of action of tolterodine," 2000, Reviews in Contemporary Pharmacotherapy 11:13-27
21	Olsson et al., "Food increases the bioavailability of tolterodine but not effective exposure," 2001, J. Clin. Pharmacol. 41:298-304
31	Olsson & Szamosi, "Food does not influence the pharmacokinetics of a new extended release formulation of tolterodine for once daily treatment of patients with overactive bladder," 2001, Clinical Pharmacokinetics 40:135-143
21	Olsson & Szamosi, "Multiple dose pharmacokinetics of a new once daily extended release formulation versus immediate release tolterodine," 2001, Clinical Pharmacokinetics 40:227-235
25	Pharmacology/Toxicology Review from Application Number 21-518, Center for Drug Evaluation and Research, pp. 1-3. (2001)
子	Rentzhog et al., "Efficacy and safety of tolterodine in patients with detrusor instability: a dose ranging study," 1998, Br. J. Urol. 81:42-48
2	Roy, et al., "HERG, a Primary Human Ventricular Target of the Nonsedating Antihistamine Terfenadine" Circulation Vol. 94, No. 4, pp. 817-823, August 15, 1996
Z	Sachse et al., "Pharmacodynamics of multiple dose treatment with the novel antimuscarinic drug fesoterodine," 2002, Nauyn-Schmiedeberg's Arch. Pharmacol. 365 (Suppl. 1):413
21	Sachse et al., "Safety and pharmacokinetics of the novel bladder-selective antimuscarinic drug fesoterodine in populations of different age or gender," 2002, Proceedings of the International Continence Society, 32:441
3	Sachse et al., "Safety and pharmacokinetics of the novel bladder-selective antimuscarinic fesoterodine in populations of different ethnic origin," 2003, Proceedings of the International Continence Society, 33:377
20	Sachse et al., "Dose-proportional pharmacokinetics of the new antimuscarinic fesoterodine," 2003, Nauyn-Schmiedeberg's Arch. Pharmacol. 367 (Suppl. 1):446
4	Sachse et al., "Pharmacodynamics and pharmacokinetics of ascending multiple oral doses of the novel, bladder-selective antimuscarinic fesoterodine," 2003, Eur. Urol. Suppl 2:111
3	Sachse et al., "Concomitant food intake does not significantly influence the pharmacokinetics of the novel, bladder-selective antimuscarinic fesoterodine," 2004, Proceedings of the International Continence Society, 34:580
21	Sachse et al., "Safety, tolerability and pharmacokinetics of fesoterodine in patients with hepatic impairment," 2004, Proceedings of the International Continence Society, 34:585
否	Sachse et al., "Safety, tolerability and pharmacokinetics of fesoterodine after co-treatment with the potent cytochrome P450 3A4 inhibitor ketoconazole," 2004, Proceedings of the International Continence Society, 34:586
27	Sachse et al., "Clinical pharmacological aspects of the novel bladder-selective antimuscarinic fesoterodine," 2004, Progrès en Urologie, 14 (Suppl. 3):58
25	Stahl et al., "Urodynamic and other effects of tolterodine: a novel antimuscarinic drug for the treatment of detrusor overactivity," 1995, Neurourol. Urodyn. 14:647-55

Sachse et al., "Clinical pharmacological aspects of the novel bladder-selective antimuscarinic fesoterodine," 2004, Progrès en Urologie, 14 (Suppl. 3):58

Stahl et al., "Urodynamic and other effects of tolterodine: a novel antimuscarinic drug for the treatment of detrusor overactivity," 1995, Neurourol. Urodyn. 14:647-55

EXAMINER

Page 5

DATE

14 APRIL 2007

Application/Control No.	Applicant(s)/Patent under Reexamination
11/201,756	MEESE ET AL.
Examiner	Art Unit
Zachary C. Tucker	1624

					IS	SUE C	LASSIF	ICATIO	N								
			ORIG	GINAL	SS REFERENC	E(S)											
	CLA	SS		SUBCLASS	CLASS	SUBCLASS (ONE SUBCLASS PER BLOCK)											
	51	4		551	560	140			,								
- 11	INTERNATIONAL CLASSIFICATION																
A	0	1	N	37/12													
A	0	1	2	37 144													
A	6	1	K	31/22													
C	0	7	D	69100													
				1													
		 (As	 śistan	t Examiner) (Date	e)	TA	On-	2 NOV	7 Total Claims Allowed: 7								
	6	M	MA A	40000	Tinn	Zachary C Tucker O.G. Print Claim(s)											
K			Ket AA	hents Examiner		(Pr	imary Examiner	·) (D:	. 1 aı	1							

\boxtimes c	laims	renun	nbere	d in th	e sam	e ord	er as p	resen	ted by	appli	cant	□с	PA		⊠ T.	D.		□ R.	1.47
Final	Original		Final	Original		Final	Original		Final	Original		Final	Original		Final	Original		Final	Original
	1		4	31			61			91			121			151			181
	2		5	32			62			92			122			152			182
	3		6	33			63			93			123			153			183
	4			34			64			94			124			154			184
	5			35			65			95	•		125			155			185
	6			36			66			96	,		126			156			186
	. 7		,	37			67			97			127			157			187
	8			38			68			98			128			158			188
	9			39			69			99			129			159			189
	10			40			70	1		100			130			160			190
	11			41			71			101			131			161			191
	12			42			72]		102			132			162			192
	13			43			73	1		103			133			163			193
	14			44			74			104			134			164			194
	15			45			75	1		105			135			165			195
	16			46			76	1		106			136			166			196
	17			47			77	1		107			137			167			197
	18			48			78	1		108			138			168	,		198
ļ	19			49			79	1		109			139			169			199
ļ	20			50			80	1		110			140	ı		170			200
	21			51			81	1		111			141			171			201
	22	1		52			82	1		112			142			172			202
	23	i		53			83	1		113			143			173			203
	24]		54			84	1		114			144			174			204
	25	}		55	}		85	1		115			145			175			205
	26			56			86]		116			146			176			206
	27]		57			87	1 .		117			147			177			207
	28	•	-	58			88	1		118			148			178			208
2	29			59			89	1		119		<u> </u>	149		·····	179			209
3	30			60]		90]		120	<u> </u>		150			180			210

										ns						A	ppl	ica	tio	n/C	ont	rol	No.			A R	ppl eex	ica an	nt(nin:	s)/ atio	Pat on	ent	under
																11	1/2	01,	75	6							IEE			T	۹L.	,	
																Examiner								Art Unit						i			
		111111	1 1131			111 00										Za	ach	ar	y C	<u>. T</u>	uck	er				10	624					<u>.</u>	
			1	R	eje	cte	ed			_	(Thro	ugh ance	nun	nera	al)		ſ	N	No	n-E	lec	ted		A		A	pp	eal		7		
			=	A	llo	we	d			+			estri							In	terfe	ne	nce	•	0		Ob	ie		d	-		
			L	L'						Ш								L	1														_
	Cla	-	_	1			Date	e	Γ	П		<u> </u>	laim	\vdash			D	ate				-	Cla	aim	H			- D	ate				
•	Final	Original	Loor/h	(//200								Final	Original										Final	Original									
		1									╛		51	†			士	\exists	\exists	+		1		101						\exists	\exists	+	
		2											52				4		\Box	4]		102		\Box	\Box	4		4	\Box	4] '
		1	_		H	H	<u> </u>	-	_	\vdash	\dashv	-	53 54	┼	Н	\dashv	\dashv	\dashv	\dashv	+	- -	$\frac{1}{2}$		103 104	-	-	\dashv	+	\dashv	+			-{
		\$											55				Ī	\exists		\top		_		105				\perp	\exists	_]
		6	L		_	_							56	L			_	\perp	\Box	4	1]		106	Ц			_		_]
		-	_				_	┝	-	Н	-	-	57 58	┼		-	╅	\dashv	-	-+	╬	$\left\{ \right.$	-	107 108	\vdash	\dashv		+	\dashv	+	+	-+	_
		4						-		\vdash	\dashv		59	+	\vdash	\dashv		一		\dashv	\dashv	1	-	109	\vdash	1	\dashv	-	\dashv	\dashv	\dashv	+	1 .
		10											60			\Box	\Box	\Box	\Box]		110		\Box		\Box		1]
	ļ	112		_		\vdash	_	┝	-	Н	\dashv	-	61 62	┼			-+	\dashv	+	-		┨		111		┥		-		+		+	1
		13	H	_	H				\vdash	\vdash	\dashv	-	63	\vdash	\vdash	\dashv	┰	-+	\dashv	+		┨	\vdash	113	\vdash	\dashv	┰	\dashv	-	╅	+	╁	-
		14									ゴ		64						I	\top		1		114						Ì	\perp]
		15								П			65	1			_		\perp	\Box	\perp]		115		\Box				\perp			
	-	16 17	-		-	 	-	-	-	Н	_	-	66 67	-		\dashv	-+	\dashv	\dashv	\dashv	+	-	-	116 117	\vdash	\dashv	\dashv	+	+	+	+	+	4
		18			\vdash		-	┢		H	\dashv	-	68	+	H	┪	寸	\dashv	-+	\dashv	+-	1		118		1	-+	\dashv	\dashv	\dashv	\forall	╅	1
		19											69					コ				1		119		\Box		コ				1.]
		2D 27 22	_		<u> </u>	_	_	ļ.,	<u> </u>				70	-	Ш	4	\dashv	4	4		\bot	4	<u> </u>	120	\vdash			\dashv	-	4	+		-{
		36	-	_	-		-	-	⊢	\vdash		-	71 72	+			\dashv	\dashv	+	+	+-	┨	-	121 122	╁╌┼	-	+	\dashv	-	+	\dashv		┥
		2B		-			H	-	┢	Н			73	+		\dashv	\dashv	\dashv	寸	\dashv	+	1		123	\vdash	_	1	\dashv	\dashv	7	1.	-	
		23 24											74]		124						\Box	1		
•		25 25	<u> </u>	L	ļ	ļ	L	_	<u> </u>	\vdash	_		75	╄	Ш	_	_	_	_	_		-		125		4	-	4	-	-+	\dashv		-
		2/2	\vdash		-			-	-	$\left - \right $	-	-	76 77	-	\vdash	-	\dashv	\dashv	\dashv	\dashv	+	1		126 127	-		+	+	+	\dashv	+		-
		28	V	Ξ	_								78	T		\dashv		_	\dashv	_	\top	1		128		T		╛		1			
		29)	1	Ŧ							\Box		79			\Box	\Box	\Box	\Box	\Box	\perp]		129			\Box	_			4	\bot	
	3	30)	╁	+	⊢			-	-		\dashv	-	80	+	\vdash	\dashv	+	-+	-	\dashv		-	-	130 131	\vdash		ᆉ	-+		+	+	+	4
	3	32	ft	+	\vdash	\vdash	\vdash	_	┪		_	-	82	+	Н	7	-	-	+	\dashv	+	1	\vdash	132	1-1	7	\dashv	┪	\dashv	寸	$^{+}$	╅	1.
	6	33	Y,	4									83	匚				コ			\perp]		133				\Box]
	1	34	V	7	L		L	L	<u> </u>		_	<u> </u>	84	╁	\vdash		_	-	+		\perp	-	<u> </u>	134		-	\dashv	\dashv	\dashv	4	\dashv	- -	. ·
•		35 36	F		\vdash	-	-	 		┝	\dashv	-	85 86	╁	H	\dashv	\dashv	\dashv	\dashv	-+	+-	┨	<u> </u>	135 136	╁┼	┥	-+	+	\dashv	+	+	╅	-
		37	 		-		\vdash	<u> </u>	\vdash	┪	_		87	\top		1	寸	1	┪	7	+	1		137		_	\dashv		一	1	7	1	1
		38											88			\Box						1		138						\Box]
		39		_	ļ	 	<u> </u>	_	-	\sqcup			89	-	\sqcup	\dashv	\dashv	\dashv	4	\dashv		-		139						+	\dashv		-
		40 41	H	Н	\vdash	-	\vdash	\vdash	\vdash	$\vdash \vdash$	\dashv	-	90 91	┪	├─┤	┰┤	+	-	\dashv	+		1	-	140 141	$\vdash \vdash$	\dashv	\dashv	+		-	+	\dashv	1
		42									\exists		92						\exists		上]		142			二		\exists]
		43				_	<u> </u>	<u> </u>	Ĺ		_	-	93	\perp		_		1	1	4		-		143		_	_	4		-	\perp	\perp	-
		44	-	<u> </u>	-	\vdash	\vdash	Ë	\vdash	\vdash	\dashv	-	94 95	+-	$\vdash \vdash$	+		\dashv	\dashv	+	+	-	<u> </u>	144 145	\vdash	-	+	-		\dashv	+	+	-
		46	-	_		Н	\vdash	-	\vdash	\vdash	\dashv		96	+	\vdash		\dashv	+	\dashv	\dashv	+	1	\vdash	146		-	\dashv	+	\dashv	+	+	\top	1
		47									\Box		97	工]		147			\Box	\Box	I	ightharpoons	#	\perp]
	<u> </u>	48	_	<u> </u>	<u> </u>		_		L	\sqcup	\dashv	-	98	+	\sqcup	\downarrow	\dashv	4	-	4		-	<u> </u>	148	 	4	\dashv			\dashv	+	+	4
		49 50	-	-	-		├	-	-	┝╌┤	\dashv	-	99	+-	\vdash	-	+	\dashv	\dashv	+	+	1	-	149 150	\vdash	\dashv	\dashv	\dashv	\dashv	+	+	+	1
				٠												1						_	L		لمبل								_

Se	arcn Notes	

Application/Control No.	Applicant(s)/Patent under Reexamination
11/201,756	MEESE ET AL.
Examiner	Art Unit
Zachary C. Tucker	1624

	SEARCHED												
Class	Subclass	Date	Examiner										
		: <u></u>											
:													
	-												
	•••••												
	-												

INTERFERENCE SEARCHED										
Class	Subclass	Date	Examiner							
EAST	USPG- PUB	11/2/2007	ZT							
AS SHOW SEARCH	nd 560/140, IN ON THE HISTORY TOUT									

SEARCH NOT (INCLUDING SEARCH)
	DATE	EXMR
PALM - INVENTORS' NAMES SEARCH UPDATED	11/2/2007	ZΊ
		·
EAST - USPAT, USPG-PUB, EPO, JPO, DERWENT, FPRS	7	
CLASS/SUBCLASSES 514/551 and 560/140, CROSS- REFERENCED WITH TEXT TERMS:	/11/2/0	77 (25)
["DIPHENYLPROPYLAMINE" or "TOLTERODINE"] SEARCH HISTORY PRINTOUT IS IN THE APPLICATION FILE WRAPPER		

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

	REQUEST FOR CONTIN	UED EXAMINATION (F	RCE)
	TRANSMITTAL FOR	RM (37 C,F.R. § 1.114)	
DOCKET NO.	APPLICATION SERIAL NO.	EXAMINER	ART UNIT
12961/46103	11/201,756	Tucker, Zachary C.	1624
INVENTOR(S): Meese e	et al.		
Mail Stop: RCE Commissioner for Pate P.O. Box 1450 Alexandria, VA 22313	ents -1450	United States Postal Service via	ndence is being deposited with the electronic filing addressed to: Mail ents, P.O. Box 1450, Alexandria, VA
	continued examination undendered to the continued examination under the continued examination		
Amendment Supplement Drawing Cha	ssion: Amendment dated	tatement	nibits A-H;

Please charge the required RCE and submission filing fee of \$810.00 (large entity) to the deposit account of Kenyon & Kenyon LLP, deposit account number 11–0600.

The Commissioner is authorized to charge payment of any additional fees required, associated with this communication or arising during the pendency of this application, or to credit any overpayment, to the deposit account of **Kenyon & Kenyon LLP**, deposit account number **11–0600**. A duplicate copy of this transmittal form is enclosed.

Dated: January 18, 2008

Respectfully submitted,

Joseph A. Coppola Reg. No. 38,413

KENYON & KENYON LLP

One Broadway

CUSTOMER NO. 26646 New York, New York 10004

(212) 425-7200 (telephone) (212) 425-5288 (facsimile)

Patent Owner, UCB Pharma GmbH – Exhibit 2007 - 2154

Docket No.: 12961/46103

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT : Meese et al.

SERIAL NO. : 11/201,756

FILED: August 10, 2005

FOR : NOVEL DERIVATIVES OF 3,3-

DIPHENYLPROPYLAMINES

EXAMINER: Tucker

GROUP ART UNIT: 1624

Mail Stop Amendment COMMISSIONER FOR PATENTS P.O. BOX 1450 Alexandria, VA 22313-1450

AMENDMENT

SIR:

Please consider the following amendments and remarks. Enclosed herewith

are:

- (1) a Request for Continued Examination,
- (2) Exhibits A-H; and
- (3) a Declaration under 37 C.F.R. §1.132 of Dr. Peter J.M. Ney.

Serial No. 11/201,756 Attorney Docket No. 12961/46103

CLAIM AMENDMENTS

This listing of claims will replace all prior versions and listings of claims in the application:

1-27. (canceled)

- 28. (previously presented) R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester.
- 29. (currently amended) A salt of R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester and with a physiologically acceptable acid.
- 30. (currently amended) A pharmaceutical composition comprising an effective amount of R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, its or a salt thereof with a physiologically acceptable acid, or its free base and a pharmaceutically acceptable carrier.
- 31. (currently amended) A method of antagonizing a muscarinic receptor <u>in a patient</u> in need thereof, the method comprising contacting the receptor with administering to the patient R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, its or a salt thereof with a physiologically acceptable acid, or its free base so as to result in contact of the muscarinic receptor with an effective amount of R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol.

- 32. (currently amended) A method of treating a disease in a mammal that is amenable to treatment by antagonizing muscarinic receptors in the mammal, the method comprising administering the to the mammal a pharmaceutical composition of claim 30 comprising an effective amount of R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester or a salt thereof with a physiologically acceptable acid.
- 33. (previously presented) The method according to claim 32 wherein the disease is urinary incontinence.
- 34. (currently amended) The method according to claim 32 33 wherein the mammal is a human.
- 35. (new) A compound selected from the group consisting of:
 acetic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
 n-butyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
 isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
 isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-isobutyryloxymethylphenyl
 ester,

n-butyric acid 4-n-butyryloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,

propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-propionyloxymethylphenyl ester,

propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

Serial No. 11/201,756

Attorney Docket No. 12961/46103

and

acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, including racemic mixtures and individual enantiomers of said compounds, and salts of said compounds with a physiologically acceptable acid.

36. (new) The compound of claim 35 where the compound is selected from the group consisting of:

n-butyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, and

acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, including racemic mixtures and individual enantiomers of said compounds, and salts of said compounds with a physiologically acceptable acid.

37. (new) A pharmaceutical composition comprising an effective amount of a compound selected from the group consisting of:

acetic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, n-butyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-isobutyryloxymethylphenyl ester,

n-butyric acid 4-n-butyryloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,

propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-propionyloxymethylphenyl

Serial No. 11/201,756

Attorney Docket No. 12961/46103

ester,

and

propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, including racemic mixtures and individual enantiomers of said compounds, and salts of said compounds with a physiologically acceptable acid, and a pharmaceutically acceptable carrier.

38. (new) The pharmaceutical composition of claim 37 where the compound is selected from the group consisting of:

n-butyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, and

acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, including racemic mixtures and individual enantiomers of said compounds, and salts of said compounds with a physiologically acceptable acid.

39. (new) A method of treating a disease or condition in a mammal that is amenable to treatment by antagonizing muscarinic receptors in the mammal, the method comprising administering to the mammal a pharmaceutical composition comprising an effective amount of a compound selected from the group consisting of:

acetic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,

n-butyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,

isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-isobutyryloxymethylphenyl ester,

n-butyric acid 4-n-butyryloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,

propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-propionyloxymethylphenyl ester,

propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, and

acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, including racemic mixtures and individual enantiomers of said compounds, and salts of said compounds with a physiologically acceptable acid.

40. (new) The method of claim 39 where the compound is selected from the group consisting of:

n-butyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, and

acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, including racemic mixtures and individual enantiomers of said compounds, and salts of said compounds with a physiologically acceptable acid.

41. (new) The method of claim 39 or 40 where the disease or condition is a spasmogenic condition that is caused by a muscarinic mechanism.

Serial No. 11/201,756 Attorney Docket No. 12961/46103

42. (new) The method of claim 39 or 40 where the disease or condition is urinary incontinence.

43. (new) The method of claim 42 where the mammal is a human.

Serial No. 11/201,756 Attorney Docket No. 12961/46103

Remarks

Prior to this Amendment, claims 28-34 were pending. By this Amendment, new claims 35-43 have been added. Accordingly, claims 28-43 are now pending.

Claim 30 has been amended to delete recitation of "free base" since this term was merely a harmless duplication of the subject matter expressed by the recited chemical name. Claim 31 has been similarly amended. Claim 30 has also been amended to recite "pharmaceutically acceptable carrier." Support for this recitation is found in the specification, at page 35, 3rd paragraph, lines 8-9.

Claim 31 has been amended to recite administering R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester or a salt thereof with a physiologically acceptable acid so as to result in contact of the muscarinic receptor with the active metabolite R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol. Support for this amendment can be found in the specification at page 91, line 24, to page 92, line 30.

Claim 32 has been amended to independent form.

New claims 35-43 have been added and are directed to compounds, compositions, and methods relating to the group of compounds disclosed in Figure 1.

Support for new claims 35, 37, and 39 is found in Figure 1 (recitation of individual compounds) and in the specification at page 6, 4th paragraph from bottom (racemic mixtures, individual enantiomers, and salts). The compounds in these claims may be in the form of a racemic mixture or as an individual enantiomer, and the

Attorney Docket No. 12961/46103

compounds (whether individual enantiomers or mixtures of enantiomers) may be in the form of salts.

New claims 36, 38, and 40 depend from new claims 35, 37, and 39, respectively, and recite the compounds of new claims 35, 37, and 39 that are phenolic monoesters. Support for new claims 36, 38, and 40 is found in Figure 1 and in the specification at pages 10-12, which teaches preferred compounds of the invention that are phenolic monoesters.

Support for new claims 41 and 42 is found in the specification at page 36, 3rd paragraph, 1st sentence.

Terminal Disclaimers

With the Amendment filed October 22, 2007, the Applicants filed four

Terminal Disclaimers. The Terminal Disclaimers were all signed by Dr. F. Dressen,
Senior Patent Counsel of the assignee, Schwarz Pharma AG.

The Applicants refer to reel 011443, frame 0478, of the assignment records of the U.S. Patent and Trademark Office, where an assignment of the entire right, title, and interests of the parent application, U.S. Patent Application Serial No. 09/700,094, as well as all its continuation and divisional applications, from the inventors to Schwarz Pharma AG is recorded. The present application is a continuation of a continuation of U.S. Patent Application Serial No. 09/700,094.

"ß."

Dr. Dressen, who is German, spelled his last name using the German symbol for double s, i.e.,

Dr. F. Dressen is empowered to sign terminal disclaimers on behalf of the assignee, Schwarz Pharma AG.

New claims

New claims 35-43 have been added and are directed to compounds, compositions, and methods relating to the group of compounds disclosed in Figure 1. The Applicants note that the third entry from the left in Table 1 is the compound isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester.

This group of compounds is patentable because, *inter alia*, it comprises compounds that are especially well cleaved by human liver S9 fraction to give good levels of 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol, while certain related compounds are not well cleaved. Exhibit A, to the attached Declaration of Dr. Peter Ney, shows a table of results for S9 cleavage for the compounds of new claims 35-43 as well as for other, related compounds. Exhibit A shows unexpectedly superior cleavage results for the claimed compounds.

Figure 1 of the present application was based on Exhibit A and thus Exhibit A was available as of the filing date of EP 98108608, filed on May 12, 1998.

Further evidence of the superior properties of the compounds of new claims 35-43 is provided by Ney Exhibit B. Exhibit B contains additional data with respect to the ability of certain compounds to be cleaved by the human S9 liver fraction. Exhibit B was available as of the filing dates of U.S. Patent Application Serial No. 10/766,263 (now U.S. Patent No. 7,230,030); U.S. Patent Application Serial No. 09/700,094 (now U.S. Patent No. 6,713,464); and International Patent Application PCT/EP99/03212.

The Applicants would like to point out a small inconsistency between the table at page 93 of the present application and data that were in the possession of the Applicants at the time of the May 11, 1999 filing date of International Patent Application PCT/EP99/03212 and that were used to prepare the table on page 93.

Ney Exhibit C shows the data that were used to prepare the table on page 93. Comparison of Exhibit C with the table shows that one entry in Exhibit C (SPM 6725, (+)-AcO/OBz x HCl) was omitted from the table on page 93. Also, the IC₅₀ value for the entry for (+)AcO-/-OiBut was mistakenly reported in the table on page 93 as 240 nM rather than the correct entry shown in Exhibit C, 35 nM. 240 nM is the correct entry for the omitted compound, (+)-AcO/OBz x HCl.

While the Applicants continue to believe that the skin permeation properties of isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester are excellent and that the table at page 94 of the present application is accurate, in the interests of complete disclosure, the Applicants submit Ney Exhibit D. Exhibit D shows data similar to the data of the table on page 94, but also shows data for the pivalate diester (fourth entry from top) indicating that the pivalate diester does not permeate through human skin. Exhibit D was available as of the May 11, 1999 filing date of International Patent Application PCT/EP99/03212.

Exhibit E is also being submitted in the interests of complete disclosure.

Exhibit E is an internal report generated by Schwarz Pharma AG, the assignee of the present application, that was prepared about April of 2002 that discusses various aspects of the permeation properties through mouse and human skin for certain compounds. Exhibit E became available during the pendency of International Patent

Serial No. 11/201,756

Attorney Docket No. 12961/46103

Application PCT/EP99/03212, U.S. Patent Application Serial No. 10/766,263, and

U.S. Patent Application Serial No. 09/700,094.

The enclosed Declaration under 37 C.F.R. §1.132 of Dr. Ney explains certain

aspects of the enclosed Exhibits A-D.

The Applicants attach to this Amendment copies of U.S. Patents Nos.

6,713,464, 6,858,650 and 7,230,030 (mentioned in the Terminal Disclaimers discussed

above) as Exhibits F, G and H, respectively, in order to enable the Examiner to easily

assess the Terminal Disclaimers and the claims in said patents compared with the

claims presented herein as well as the data in Exhibits A-E.

The Applicants hereby make a Conditional Petition for any relief available to

correct any defect seen in connection with this filing, or any defect seen to be

remaining in this application after this filing. The Commissioner is authorized to

charge Kenyon & Kenyon LLP's Deposit Account No. 11-0600 for the Petition fee

and any other fees required to effect this Conditional Petition.

The Examiner is invited to contact the undersigned should any question arise

concerning this Amendment or the accompanying Ney Declaration.

Respectfully submitted,

Date: JANUARY 18, 2008

BY:

Reg. No. 38,413

KENYON & KENYON

One Broadway

New York, NY 10004

(212) 425-7200 (telephone)

(212) 425-5288 (facsimile)

Attorney Docket No. 12961/46103

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANTS

Meese et al.

SERIAL NO.

11/201,756

FILING DATE

August 10, 2005

FOR

NOVEL DERIVATIVES OF 3,3-

DIPHENYLPROPYLAMINES

EXAMINER

Tucker

GROUP ART UNIT:

1624

COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, VA 22313-1450

DECLARATION OF DR. PETER J.M. NEY UNDER 37 C.F.R. § 1.132

I, Dr. Peter J.M. Ney, Ph.D., declare the following:

- 1. I am a German citizen residing at Kirchstrasse 71, 41517 Grevenbroich, Germany.
- 2. I am currently working as Associate Director Pharmacology at Schwarz BioSciences GmbH. Schwarz BioSciences GmbH is a wholly-owned subsidiary of Schwarz Pharma AG, the assignee of U.S. Patent Application Serial No. 11/201,756. I was employed by Schwarz Pharma AG and was the project team leader during the initial synthesis and investigation phase of the compounds claimed in U.S. Patent Application Serial No. 11/201,756.

NY01 1467513 v1

- 3. I have been provided with copies of documents that I am informed are to be filed in connection with the prosecution of U.S. Patent Application Serial No. 11/201,756. These documents are attached hereto as Exhibits A-D.
- 4. I have first hand knowledge of the information contained in Exhibits A-D through my work at Schwarz Pharma.
- 5. Exhibit A shows the amount of the racemic form of the active metabolite (R,S-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol, referred to as "SPM 7500") produced in human liver S9 incubated with the compounds (referred to as "prodrugs") listed along the bottom of Exhibit A.
- 6. The compounds listed along the bottom of Exhibit A can be represented as derivatives of the following general structure:

7. For the compounds listed at the bottom of Exhibit A,

AcO-/-OAc is the acetyl diester (i.e., both R¹ and R² are AcO);

HO-/-OBut is the phenolic butyryl ester (i.e., R¹ is OBut and R² is OH);

DECLARATION OF DR. PETER NEY Serial No. 11/201,756 Attorney Docket Number 12961/46103

HO-/OiBut is the phenolic isobutyryl ester (i.e. R¹ is OiBut and R² is OH) [R,S- isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester];

iButO-/-OiBut is the isobutyryl diester (i.e., both R1 and R2 are iButO);

ButO-/-OBut is the butyryl diester (i.e., both R1 and R2 are ButO);

PropO-/-OProp is the propionyl diester (i.e., both \mathbb{R}^1 and \mathbb{R}^2 are PropO);

HO-/-OProp is the phenolic propionyl ester (i.e., R^1 is OProp and R^2 is OH);

HO-/-OAc is the phenolic acetyl ester (i.e., R1 is OAc and R2 is OH);

HO-/-OPiv is the phenolic pivaloyl ester (i.e., R¹ is OPiv and R² is OH);

EtO-/-OHxMesylat is the mesylate salt of the benzylic ethyl ether (i.e., R^1 is OH and R^2 is EtO);

MeO-/-OH is the benzylic methyl ether (i.e., R^1 is OH and R^2 is MeO);

iButO-/-OBn is the benzylic isobutyryl ester/phenolic benzyl ether (i.e., R¹ is BnO and R² is iButO);

OH-/-OBn is the phenolic benzyl ether (i.e., R1 is BnO and R2 is OH);

AcO-/-OBn is the benzylic acetyl ester/phenolic benzyl ether (i.e., R¹ is BnO and R² is AcO);

EtO-CO-O-/-O-CO-OEt is the ethyl dicarbonate (i.e., both \mathbb{R}^1 and \mathbb{R}^2 are EtO-CO-O);

TBDMSiO-/-OH is the benzylic t-butyl dimethyl silyl ether (i.e., R¹ is OH and R² is TBDMSiO);

PivO-/-OPiv is the pivaloyl diester (i.e., both R1 and R2 are PivO);

BzO-/-OBn is the benzylic benzoyl ester/phenolic benzyl ether (i.e., R^1 is BnO and R^2 is BzO);

HO-/-OCONHEt is the phenolic ethyl carbamate (i.e., R^1 is OCONHEt and R^2 is OH); and EtNHCO-O-/-O-CONHEt is the ethyl dicarbamate (i.e., both R^1 and R^2 are EtNHCO-O);

8. Exhibit B shows additional data pertaining to the amount of the racemic form of the active metabolite produced in human liver S9 incubated with certain compounds. The second column from the right indicates the amount of the racemic form or of the respective enantiomer of the active metabolite produced by the various compounds. One asterisk

3

DECLARATION OF DR. PETER NEY Serial No. 11/201,756 Attorney Docket Number 12961/46103

indicates little amount of the racemic form of the active metabolite produced; three asterisks indicate a large amount of the racemic form of the active metabolite produced.

9. The English translations of the German phrases appearing in the rightmost column of Exhibit B are as follows:

"Nebenprodukte" = by-products

"fraglich, kein OH/OH" = questionable, no active metabolite

"wenig Umsatz" = little conversion, i.e., not much active metabolite produced

"enth. PhCOOH" = contains benzoic acid

"sehr instabil" = very unstable

"fragl., vermuti. instabil" = questionable, presumably unstable

Struktur fraglich = structure questionable

- 10. Exhibit C describes the results of studies to determine the binding of the indicated compounds to human M₂ and M₃ muscarinic receptors as well as the ability of those compounds to reduce / antagonize methacholine-induced contraction of the guinea pig ileum.
- 11. The compounds tested in Exhibit C were derivatives of the general structure shown in paragraph 6 above where:
- (+)-HO/OH x HCl is the hydrochloride salt of the active R-isomer of the metabolite (i.e., both R¹ and R² are OH);
- (-)-HO/OH x HCl is the hydrochloride salt of the less active S-isomer of the metabolite (i.e., both R^1 and R^2 are OH);
- (+)-BzO/OBz x HCl is the hydrochloride salt of the R-isomer of the benzoyl diester (i.e., both R^1 and R^2 are BzO);

4

DECLARATION OF DR. PETER NEY Serial No. 11/201,756 Attorney Docket Number 12961/46103

(+)-AcO/OBz x HCl is the hydrochloride salt of the R-isomer of the benzylic acetyl ester/phenolic benzoyl ester (i.e., \mathbb{R}^1 is BzO and \mathbb{R}^2 is AcO);

(+)-OH/OiBut x HCl is the hydrochloride salt of the R-isomer of the phenolic isobutyryl ester (i.e. R¹ is OiBut and R² is OH); [R-(+)- isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester];

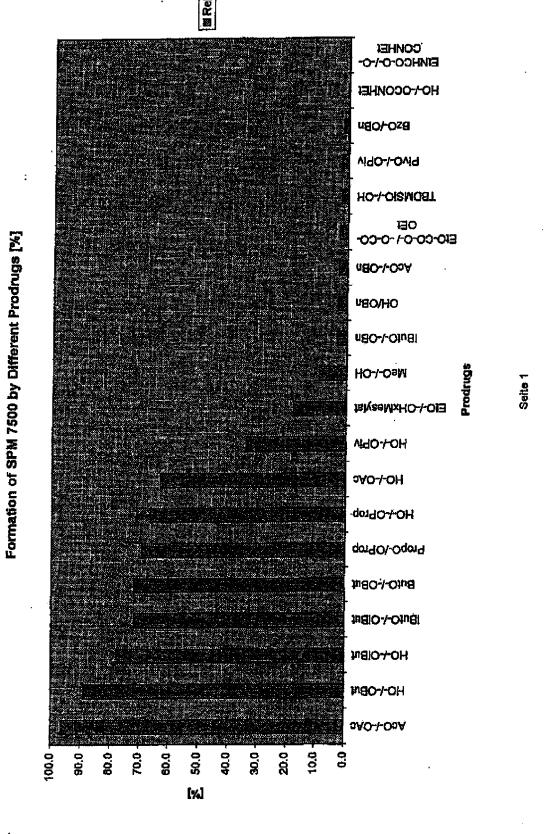
(+)-AcO/OiBut x HCl is the hydrochloride salt of the R-isomer of the benzylic acetyl ester/phenolic isobutyryl ester (i.e., R¹ is iButO and R² is AcO);

(+)-OH/OBz x HCl is the hydrochloride salt of the R-isomer of the phenolic benzoyl ester (i.e., R¹ is BzO and R² is OH);

(+)-(R)-H/OH x (L)-(+)-Tartrate is the L-tartrate salt of the R-isomer of tolterodine (INN).

12. In Exhibit D, the references to "Tolt." in the third column refer to tolterodine.

Statements herein based on my own knowledge are true. I acknowledge that willful false statements are punishable by fine or imprisonment as provided for by 18 U.S.C. § 1001 and may jeopardize the validity or enforceability of any patent that may mature from the present Application.


Signed January 18, 2008

Dr. Peter J.M. Ney

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 Novel Derivatives of 3,3-Diphenylpropylamines

EXHIBIT A

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 *Novel Derivatives of 3,3-Diphenylpropylamines*

EXHIBIT B

			Stabil)	7500 AC-8160
,					,	•		7500 AC-8140
					vorh.			7500 AC-8137
					5	341.5	HO-1-OH	7500 AC-8127
wentg Umsatz	*)	482.08	HO-I-OPWHCI	7497 RD-7487
wenig Umsatz	*	stabil	stabli .		1	425.62	HOOPW	7498 RD-7498
	**	stabil	stabil		•	453.63	L	7477 RD-7477
wenig Umsatz	*	Stabil	t 1/2 = 6.5 h			501.71	L	7472 RD-7472
wenig Umsetz		stabil	t 1/2 = 0.9 h			535,73	L	7471 RD-7471
						_		7488 AC-8129
								7488 AC-8125
								7488 AC-8124
_						431.62	HO-l-OBn	7466 RD-7468
					Youth.	339.53 yorh.	王仝	7461 RD-7461
Nebenprodukte	*	stabit	t 1/2 = 29.8 h		-	510.12	Ľ	6690 RK-6690
				1		368.55	HO-F-OEI	6681 RX-6681
fragi. kein OH/OH	7-	3		84,98		896.06	HOOCONHBUT-NOCOOH2HCI	6661 RK-6661
						406,01	_	6656 RK-6656/2
						391.99	/1 Meo-/-OHXHCI	6653 RK-6658/1
fragi. kelin OH/OH	-7			93,342		450.05	2 HO-LOCONHEXHCI	6652 RK-6652/2
Nebenprodukte	*	stabil	stabil	12		465.86	Ļ.,	0851 RX-6651/1
	****				vorh.	462.03 vorts,		6650 RK-6650/1
Nebenprodukte i						368.55	[EiO-J-OH	9648 RK-8648
fraglich, kein OH/OH	7-	stabil	stabil	2		412.5B	HO-FOCONHET	8647 RK-8847
[Nabenprodukte]	**					355.53	HO-FOM!	8845 RK-8845
	Plasma 11h	ber 24h/RT	Ober 24h/RT	[%]	Spektr.	ig/mot		
89-inkub, Bern. zu 89	H-6S TEMPORTS	0.c Hd tellidets	Stabilitation 7,4	HPLC-Gan 8	-SM	MM	Struktur	SPM Charge
					·	•	'	-
-					_		× آ.	
							Nomenklatur. (X-/-Y)	
					•			
							OF N- / SUDSTANZ-LISTO BUT SA	

SPM_Chargen

i

Sette 1

œ	814	814	8143	814	8132	8132	757	757	7569	756	752	752	752:	752	752	7520	7518	751:	7514	7512	7513	7512	7511	7504	7504	7504	7503	7503	7502	7502	7501	7501	7500	7500	OUC)
8146 AC-8146	8143 AC-8145	8143 AC-8144	3 AC-8143	8143 AC-8142	2 AC-8135	2 AC-8132	7570 AC-8198	7570 RD-7570	AC-8195	7569 RD-7569	7528 RD-7528	7527 RD-7527	7523 RD-7623	7522 RD-7522	7521 RD-7521	7520 RD-7520	7519 RD-7519	RD-7515	RD-7514	7513 FP-9063	RD-7513	RD-7512		FP-9088	7504 FP-9060	RD-7475	AC-8161		FP-9064	FP-9061	RK-8850	FK-6638/a	RD-7488	RD-7483	/SUDIAC-8191
ButO-1-OH	•		-	Aco-/-OH	•	AcO-/-OBn		HO-LOBZ		BzO-l-OBz	IButo OlBubd-ICI	HO-/-Olibubelici	PropO-/-OPropxHCI	ButO-7-OBubd+Cl	(HO-FOButxHCI	HO-1-OPropedICI	HO-/-OAcetIC!	Buto-/-OBut	PropO+OProp	HO-1-OAG	HO-LOAG	HO-f-OBut	HO-/-OProp	HO-1-OIBut	HO-Y-OIBut	HO-1-OIBut		PIVO-J-OPIV	IButO-/-OlBut	IButO-/-OiBut		AcO-I-OAc			
411.59 vom.		. 1	٧	383,54		473.66		445.81		549.72	518.14	448.05	490.06	518.14	448.05	434.02	420.00	481.68	453.63	363.54	383.54	411,59	397.56	411.58	. 411.59 vorh.			509.74 vorh.	481.68	481:68 vorh.	vorti.	425.57 vom.			
o n .	orti.		WORTH.																			,			-			m.)		.	TH.	n .			-
-						t1/2= 11.8 h		Stabil		t 1/2= 1.5 h							,	1 1/2 = 28.0 h	stabii		stabil	stabil	Stabili		stabil			1 1/2 = 8.3 h		t 1/2 = 41.3 h	stabil				
-						stabil		Stabil		Stabil								stabii	stabili		stabil	stabil	stabil		stabil			stabil		stabil	stabil				
		-							-																										
-	<u> </u>	 	H	۲	-	•	T		Г	1	1	I	1	ı	1	i	\$	1	ŧ	i	Γ	*	1		1	1		•		*		ı		Ι,	Ì

11/10/98~

1 400

Schwarz Pharma AG Vertraulich

Seite 2

sehr instabil

enth. Phococh

zjestun Bjusak

sehr instabil

Wenig Umsatz

wenig Umsatz

	9090	9089	8906	9087	9080	9085	9084	9082	9081		9078	9075	9070	8069	9062	9059	9058	9057	9056	9055	9053 i	9052 F		8193/	8193/	8193 /	8168 J	8163 <i>/</i>	8163 F	8163/	8151 A	8160 <i>A</i>	8150]/	ľ
	9090]FP-9090	9089 FP-9089	9088 FP-9088	9087 FP-9087	9808-43 9808	9085 FP-9085	9084 FP-9084	9082 FP-9082	FP-9081	FP-9080	9078 FP-9078	9075 FP-9075	9070 FP-9070	9069 FP-9069	9062 FP-9062	9059 FP-9059	9058 FP-9058	9057 FP-9057	9056 FP-9056/1	9055[FP- 9 055/1	FP-8053	FP-9052/1	AC-8202	AC-8194	AC-8193	AC-8192	8168 AC-8166	AC-8165	RD-7517	AC-8163	AC-8151	AC-8150	8150 AC-8152	01.00
	(S)-d4(?)-H-/-OH D-Tarbat	(R) H-/OH d4(7)	(S) H/-OH	Inac-HCH	(S) H-7-OH-D-Tartrat	((R)-d4(7)-H-/OH-L-Tartrat	rac d5- H-I-OH x HCl	(R)H-/-OBZ	(R) H-4-OAG	(R) H-4-OH	(R) HOH L-Tartret	(rac H-J-OH x HC)	HO-/-Of-b:Malati-D,L	HO+OHXTBITIRED,L	HO-/-OHxMandelat-D,L	Eto-CO-O+-O-CO-OEI	ENHCO-04-0-CONHET	EMHCO-O-/-OH	EINHCO-O-/-OTBDMS	HOOTBUNSI	TBDMSIO-FOH	TBOMSIO-FOTBUMBI	HO2C+OH			dz-HO-FOH	PivO-/-OPIVXHCI			[HO-FOHXHC]	PWO-FOH		IButO-1-OH	100 1 Ct 1
	479.81	329.5	325.5	325,5	475.58	479,61	386.88	429.61	367.54	325.5	475.59	361.96	475.59	491.59	493.65	483,63	483.06	412.58	626.84 yorh.	455.76	455.76 vorti.	570.03 vorh	355,46			343.51 vom.	546.19			377.96	425.62		411.59	
	-1	5 vorh.	5	5	9	1	8)	1	1	5		3	_		,	vorh.	vorh.	1	vom.		vorti.	Yorh.			vort.	vom.						vorh.		
																							·											
				-				(1/2 = 14.4 h	stabil					!			stabil							•						stabil	t 1/2 < 10 mbn			1 1/2 a talent and a state of the last
-1-F8								stabil	stabi								stabil													stabil	stabit	stabil		-
-						<u></u>		****	1		-				<u> </u>	7-	+		•	•	•	T					*				•			
								enth. PhCOOH								Struktur fraglich?	wenig Umsatz			wentg Unisatz	wenig Umsatz						wenig Umsatz				sehr instabil		sehr instabil	Conf. of the latest and the latest a

SPM_Chargen

SPM_Chargen

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 Novel Derivatives of 3,3-Diphenylpropylamines

EXHIBIT C

Data on NCE- Incontinence Substances (SPM007)

		M, recept	M ₂ receptor binding	M, recepto	M ₃ receptor binding	guines pig lleum antagonism	n antagonism
Substance	abbrev. name	(Cgo [nlM]	K (nM)	IC ₃₀ [nM]	K, [nM]	% at 30 µM	K. [uM]
SPM 5427	(+)-HO/OH x HCI	6.7	2.4	2.8	1.2	100	0.02
SPM 5428	(-)-HO/OH x HCI	66.7	23.7	1300	181.3	26	0.68
SPM 6723	(+)-BzO/OBz x HCi	594	211.4	2400	334.7	100	22:0
SPM 6725	(+)-AcO/OBz x HCI	1500	6,25,8	5400	753.1	100	0.24
SPM 8228	(+)-HO/OiBut x HCI	6.2	ढढं	159.3	22.2	100 1	. 290.0
SPM 8229	(+)-AcO/OiBut x HCi	664.5	236.5	0096	502.1	100	0,035
SPM 8230	(+)-HO/OBz x HCI	32.7	11.6	171.8	24	100	0.18
SPM 9078	(+)-(R)-H/OH x (L)-(+)-Tartrate	45.9	16.3	76.3	10.6	100	0.019

q:hptahrey/spmdata2.doc

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 **Novel Derivatives of 3,3-Diphenylpropylamines**

EXHIBIT D

Comparison of permeation through hairless mouse skin and human skin in-vitro with different active drugs of SPM 007

Batch	Drug	Active	Permeation through	Permeation through	Lag-time
Datoti	Code no.	Drug	hairless mouse sidn	human skin	
1			[µg/cm²/24 h]	[µg/cm²/24 h]	[b]
INZ 001	SPM 7514	DI-Prop	244	70	11,2
11220	SPM 7511	Mone-Prop		8 (s.c.)	9,2
	SPM 7680	Dt-OH	•	, , ,	
			<u> </u>		
INZ 002	SPM 7500	DI-OH	. 486	3	> 36
		i		2,1	17,2
H				25 (s.c.)	17,2
I					
INZ 003	SPM 7502	DI-leoBut	. 261	50	9,8
Į .	SPM 1504	Mono-ivoBut		5,8 (a.c.)	15,1
ļ.	SPN 7500	DHOH			_
					0
INZ 004	SPM 7503	DI-Piv	39	o	v ·
	SPM 7496	Mono-Plv			
	SPM 7500	DHOH		. '	
INZ DOS	SPM 7504	Mono-IsoBut	380	163,8	36
1172, 000	SPM 7500	. Di-cit	550	13	14,7
•	DESTRUCTION OF THE PROPERTY OF			37,4 (s.c.)	5
•	Ì			,-,-	_
INZ 906	SPM 9080	R(+) Tolt.	351	303,7	12,9 .
,					
			· i		<u>'</u>
INZ 007	SPM 9087	R,5 Tox.	429	507,9	14,1
		·		,	
			•		t
INZ 008	SPM 9094	R,S Tolt. scalat	418	158,1	9,7
i .	SPM 9087			1	
		•			
INZ 009	SPM 9095	N.S Toll, benz.	205	172,1	9,7
ţ :	SPM 9087				
				450.4	44.5
INZ 010	SPM 9096	R.S.Toll. 2-mapr.	418	150,4	11,8
	SPM 9087			į	
11 127 041	SPM 7501	N. Sandar	258	58,6	10,2
INZ 011	SPM /501	Di-Acetat	206	ים _ו ם :	. ro₁∡
			ļ	· "	
INZ 012	SPM 6648	Ethylether	438	328,9	29,5
1145 01%	2FR: 8048	Eniliania.	7-70		
		.			
INZ 013	SPM 9089	R(+) Tolt D4	572	7, 5	
				310,5	10,7
'					
OBU 44	Oxybutynin	i	232	122	4,7
OBU 55	Oxybutynin		171	150	11,4
				1	
					· · · · · · · · · · · · · · · · · · ·

Arm, PH A PG N 10.08.99, 15:56

Selie 1

PERUED_AXLS

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 Novel Derivatives of 3,3-Diphenylpropylamines

EXHIBIT E

	FORMULATION & TECHNOLOGY	Date	09.04.02
SCHWARZ BIOSCIENCES	REPORT	Project No. Incontinence	
į. !		Page 1	of 16
TLE TDS for the treatment of it Delivery of Fesoterodine r	ncontinence, part IV: elated prodrugs ONFIDENTIAL	Report No.	32

1. SUMMARY

1

The report describes in vitro skin permeation characteristics of transdermal delivery systems (TDS) containing Fesoterodine related prodrugs from the SPM907 series. Test samples were prepared by either lab-scale solvent coating or hot-melt processing. Patches were tested by means of flux rates across hairless mouse skin, selected samples were subsequently investigated in the LACDR human skin model.

Initial experiments were performed in 1998/99 with TDS containing racemic mixtures of different produgs. While good drug permeation across mouse skin was found, flux rates across human skin were surprisingly low.

Due to the availability of pure enantiomers some of the prodrugs were reinvestigated in this feasibility study to find out the reason for low human skin permeation. The old flux data across mouse skin could be confirmed and in some cases increased. The low human skin permeations were found to be caused by the LACDR skin model setup. In this model the fresh human skin has to be supported by an additional synthetic membrane. The fresh skin most probably led to partial drug hydrolysis and/or protonation, while the supportive silicone membrane used is known to be impermeable for charged molecules. Replacing this membrane with a dialysis membrane increased the measured flux rates across human skin by a factor of at least 4 to 6. Therefore, the change to the human skin-dialysis membrane composite represents a more realistic estimation of the potential in vivo performance.

Besides the already reported free base of Fesoterodine, the diacetic acid ester prodrug seems to be a suitable transdermal candidate based on these new in vitro flux data.

Distribution: Origin	al PH DOK		
F&T, PHA, TS,/TA	PH DOK PH REG, IPM (AS) D, PH TOX, BA, MOBI, SIL,	LF	
Summary only: PC	D, PR TOX, DA, MODILE		,
Key words:	ugo7 prodrugs, skin permeati	on in vitro, mouse skin, human skin	
Pesoteroune: o		Signature	54. -
	Name	Or Fretz Sals	19.08.02
Author Head of TS	Dr. A. Breitenbach	Jan MA	20.08.02
Reviewed by Head of TT	Dr. HM. Wolff	ALL Hamay	26.08.02
Approved by Head of F&T	M.C.F. Hannay		****

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date	09.04.02
SCHWARL BOUSLIENCES	REPORT	Project No	Incontinence
TITLE TDS for the treatment of i Delivery Fesoterodine rela		Page 2 Report No	of 16

CONTENTS

		PAGE
1.	SUMMARY	1
2.	INTRODUCTION AND OBJECTIVES	3
3.	MATERIALS AND METHODS	4
4.	RESULTS AND DISCUSSION	5
5.	CONCLUSION	16

APPENDIX A (Certificates of analysis)

APPENDIX B ()

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date Project No	09.04.02 Incontinence
TITLE TDS for the treatment of it Delivery Fesoterodine rela Co	ncontinence, part IV: ted prodrugs ONFIDENTIAL	Page 3 Report No.	of 16

2. INTRODUCTION AND OBJECTIVES

It is well known, that the hydroxy metabolite of Tolterodine is equipotent to the parent drug [1]. Therefore, several ester prodrugs of this metabolite, the SPM 907 series (scheme 1 and table 1) were synthesized by SIL [2] and subsequently tested for their ability to be delivered transdermally.

Scheme 1: SPM 907 series

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date 09.04.02 Project No. Incontinence	
	REPORT		
TITLE TDS for the treatment of in	Page 4	of 16	
Delivery Fesoterodine relat	ed prodrugs NFIDENTIAL	Report No.	32

Table 1: Assignment of some prodrugs of the SPM 907 series

R ¹	R²	R,S racemic mixture	R enantlomer
Н	H	SPM 7500	SPM 7605
Н	iBut	SPM 7504	fumarat salt = SPM 8272 = Fesoterodine
			SPM 8224 = free base of Fesoterodine
But	iBut	SPM 7502	SPM 7675
Ac	Ac	SPM 7501	SPM 8302

iBut → iso-butyric acid ester, Ac → acetic acid ester

Ĺ

Initial experiments performed in 1998/99 with racemic mixtures of the prodrugs revealed that they can be embedded into a solvent coated acrylic based TDS and that most of them possess the ability to permeate across hairless mouse skin with suitable flux rates. But, surprisingly, in many cases only low flux rates across human skin in the LACDR skin model [3] were found.

Due to the availability of pure enantiomers and a broader variety of patch compositions some of the prodrugs were re-investigated to find out the reason for low human skin permeation. Therefore, lab-scale batches of hot-melt and solvent coated patches were prepared and initially tested in a mouse skin model. Subsequently, some of the patches were investigated in the LACDR human skin model.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date 09.04.02 Project No. Incontinence	
TITLE TDS for the treatment of i Delivery Fesoterodine rela	Page 5 Report No.	of 16	

3. MATERIALS AND METHODS

For a detailed description of the experiments refer to the batch documentation.

Hot-melt patches (exemplary): 8 g of a preformed silicone adhesive were weighed into a beaker and tempered at 160°C for ca. 20 min to achieve a homogenous melt. 0.5 g of inner phase polymer (e.g. poly(ethylene oxide) and 1.5 g of drug were added. After tempering at 160°C for additional 5 min the mixture was homogenized manually and further processed on the pre-tempered Chill-Roll (120°C, 250 μm) for lamination.

5 cm² patches were isolated by manual punching followed by determination of the average patch weight (n=10). Finally, patches were sealed individually in pouches.

Mouse Skin Model (PHA): according to OBU0469.ABV100, rev. 00 (1998) with an active diffusion area of 2.55 cm², a phospate buffer acceptor phase at pH 6.2 and a temperature of 32°C, n=3

Human Skin Model (LACDR):

Ĺ

according to H. Tanojo et al., J. Control Rel. 45 (1997) 41-47.

skin from abdomen with a thickness of approx. 250 μ m, flux experiment: acceptor phase: PBS, pH= 6.2, temperature: 32 p C, diffusion cells with spiral groove (8 cells), groove area: 0.552 cm 2 , dialysis membrane used as separator between skin and acceptor phase flux: 5 ml/hour PBS, experiment runs for 72 hours, sampling cycle: 3 hours

Analytical Methods (PHA): refer to certificates of analysis

Data Analysis: sigmoidal Bolzmann and linear fit: Microcal Origin 6.0

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date Project No	09.04.02
TITLE TDS for the treatment of in Delivery Fesoterodine relat CO	continence, part IV: ed prodrugs DNFIDENTIAL	Page 6 Report No	of 16

4. RESULTS AND DISCUSSION

Racemic mixtures of the prodrugs (review of historic data)

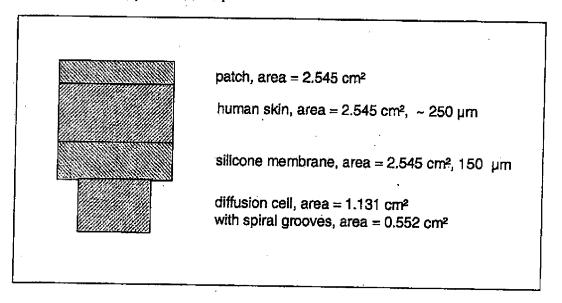
Thirteen patch batches containing different racemic prodrugs of the SPM907 series as well as Tolterodine and Tolterodine prodrugs were initially embedded into acrylic-type polymers by a lab-scale solvent coating procedure. Tributyl citrate was added as plasticizer. All patches were investigated in both, the internal hairless mouse skin model and the LACDR human skin model. Table 2 summarizes some of the <u>re-calculated</u> former data.

Table 2: Solvent coated patches (with a theoretical drug content of 15% (w/w))

No	Lot No	Lot No	Drug	Permeation 1)	Permeation 1,2)	Mouse : Human
	(Ch.B.)	(old)	(SPM Code)	Mouse Skin (n=4)	Human Skin	Skin Perm.
				[µg/(cm² 24h)]	[µg/(cm² 24h)]	Ratio
1	20002006	INZ 003	Di-iBut (7502)	155.54	43.64 / lag time ~14 h	3,56
2	20002008	INZ 005	iBut (7504)	496.87 ³⁾	193.31 / lag time ~34 h	2.57
3	20002005	INZ 002	Di-OH (7500)	689.21 ³⁾	5.96 / lag time ~38 h	115,64
4	20002014	INZ 011	Di-Ac (7501)	363.26 ³⁾	45.10 / lag time ~11 h	8.05

in case of SPM907 prodrugs re-calculated as permeation of active metabolite Di-OH (SPM 7500)

The observed permeation rates for most of the SPM907 prodrugs across mouse skin were suitably high. In case of the di-iso-butyric acid ester (No 1, table 2) steric hindrance most probably caused a lower value.


The flux rates across human skin decreased in the following order: iBut >> DiAc, DiBut >> DiOH. While the very low flux rate of SPM7500 (DiOH) could be caused by the hydrophilicity of this molecule, the low flux rates of SPM7501/2 (DiAc/DiBut) were surprising. To get a better understanding of these human skin permeation results a more detailed knowledge of the LACDR human skin model is necessary. In this model the skin is not in direct contact with the acceptor medium, since it has to be stabilized with an additional membran. A silastic sheeting (silicone membrane) was used in the oder experiments described above to support the skin (compare scheme 2).

²⁾ in case of SPM907 prodrugs calculated without consideration of the (low) amounts of hydrolysis products

non-linear release kinetics, calculated from the linear part in the period of 0-30 h

SCHWARZ BIOSCIENCES	Formulation & Technology	Date 09.04.02 Project No. Incontinence	
SCHWARE DIOSCIENCES	REPORT		
TITLE TDS for the treatment of in	Page 7	of 16	
Delivery Fesoterodine related prodrugs CONFIDENTIAL		Report No.	32

Scheme 2: LACDR experimental setup

Due to this setup always two experiments have to be performed: one to determine the flux of the active across the supportive membrane and a second one to determine the flux across the 'composite' of human skin and supportive membrane. The obtained values of the barrier properties of the supportive membrane are used to correct the values of the second experiment.

In all experiments acceptable high flux rates for the SPM907 prodrugs across the supportive membrane were found (comp. Annex), although the permeability of the silicone membrane decreased in the following ranking order: Di-But > iBut > DiAc > Di-OH, possibly due to increasing hydrophilicity. Nevertheless, all values were high enough and therefore, acceptable for the determination of the barrier properties of the silastic sheeting.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date 09.04.02		
SCHWARZ BIOSCIENCES	REPORT	Project No	Incontinence	
TITLE TDS for the treatment of incontinence, part IV:		Page 8	of 16	
Delivery Fesoterodine related prodrugs CONFIDENTIAL		Report No.		

From the data obtained in the experiments with the human skin - supportive membrane composite it can be stated, that a) the flux of the active metabolite (DiOH, No 3 table 2) was generally quite low and b) the flux of the racemic free base of Fesoterodine (iBut, No 2 table 2) would theoretically enable the delivery of nearly 4 mg/24 h from a 20 cm² patch across human skin.

Nevertheless, the partially extremely low flux rates found for the ester prodrugs indicate secondary processes taking place. Since in the LACDR model fresh human skin is used, it is likely that metabolic/enzymatic activity is still present. Thereby induced ester hydrolysis will immediately generate charged molecules, which are no longer able to permeate across the supportive membrane (compare next paragraph). In conclusion, these older data do not assess the human skin permeation of all SPM907 (pro)drugs accurately.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date 09.04.02		
# The state of the	REPORT	Project No	Incontinence	
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs		Page 9	of 16	
	ed prodrugs ONFIDENTIAL	Report No	32	

R-enantiomers

As already reported [4] Fesoterodine and some of the prodrug enantiomers were investigated by controlled melt embedding (temperature range of 25-150°C) to assess the drug excipient compatibility under hot-melt conditions. 1:1 mixtures of drug and excipient showed no signs of degradation under the test conditions enabling patch preparation by hot melt techniques.

SPM7605 (DIOH)

SPM7605 is the main hydrolysis product and active metabolite of Fesoterodine and related prodrugs from the SPM907 series. The colorless powder is characterized by a melting point in the range of ~101-102°C and a purity or more than 99%. More than 10 lab-scale batches of hot-melt patches were prepared without encountering any difficulties. Table 3 summarizes some of the results obtained in the mouse skin model.

Table 3: SPM7605 hot melt patches

No	Lot No. (Ch.B.)	PSA	Theo. Drug Loading [% w/w]	Mouse Skin Perm. [µg/(cm² 24 h)]
1	20008029	SxS	10	261.55 17
2	20008030	SxS	10	274.32.1)
3	20106045	EVA	15	220.87 1)
4	20106043	BioPSA/PEO	15	384.04 1)

¹⁾ non-linear release linetics, calculated from the linear part in the period of 0-30 h

BioPSA/PEO = slikcone pressure sensitive adhesive containing additional 5% poly(ethylene oxide)

From these data it can be concluded that the flux rates of the pure enantiomer SPM7605 across mouse skin were still in a suitable range, although the observed values were generally lower than those obtained with the racemic mixture, SPM7500 (No 3 table 2). The most likely explanation is the difference of the patch compositions used.

SxS: styrene-block-copolymer, EVA = ethylene vinyl acetate copolymer,

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date 09.04.02		
		Project No.	Incontinence	
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs CONFIDENTIAL		Page 10	of 16	
		Report No.	32	

No 4 (table 3) was investigated in the LACDR human skin model (for flux data comp. Annex). Already the flux across the supportive silastic sheeting was lower than across mouse skin, therefore, the flux across the composite of human skin plus membrane was negligible. The corrected value for human skin was found to be 2.3 µg/(cm² 24 h), again an approx. 95 times lower value compared to mouse skin, which is comparable to the former investigation (No. 3, table 2). With this experimental setup it was not possible to determine the flux of SPM7605 across human skin accurately. Due to a lack of capacity, no experiments with different supportive membranes were performed.

SPM8272 (OiBut/Fum; Fesoterodine) and SPM8224 (OiBut, free base of Fesoterodine)

The experiments with patches containing either Fesoterodine or the free base of Fesoterodine were already reported [5,6]. While the passive transdermal delivery of Fesoterotine seemed to be not suitable, very high flux rates of the free base of Fesoterodine across human skin make SPM8224 a very promising candidate for the transdermal treatment of overactive bladder.

SPM7675 (DiBut, di-iso-bytyric acid ester)

SPM7675, the di-iso-butyric acid ester of SPM7605 (DiOH = active metabolite of Fesoterodine), is an oil with a purity of approx. 95%. Due to low amounts of drug available, a lack of capacity and generally lower permeation rates only five patch batches were prepared and investigated by means of drug permeation across hairless mouse skin. In accordance with the former data obtained for the racemic micture, permeation rates in the range of 120 to 150 µg/(cm² 24h) were observed (data not shown). Since these in vitro mouse skin data were not in the therapeutic range, no further studies with SPM7675 were performed.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date 09.04.02		
	REPORT	Project No. Incontinence		
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs CONFIDENTIAL		Page 11	of 16	
		Report No.	32	

SPM8302 (DiAc, dl-acetic acid ester)

Ĺ

SPM8302, the di-acetic acid ester of SPM7605 (DiOH = active metabolite of Fesoterodine) is an oil with a purity of approx. 95%. More than 25 different lab scale patch batches were prepared (comp. Annex). The drug could be incorporated into the complete range of available pressure sensitive adhesives covering silicones, acrylates, ethylene vinyl acetate copolymers as well as styrene-block-copolymers (comp. Annex). Fig. 1 gives an example of the obtained flux rates across mouse skin.

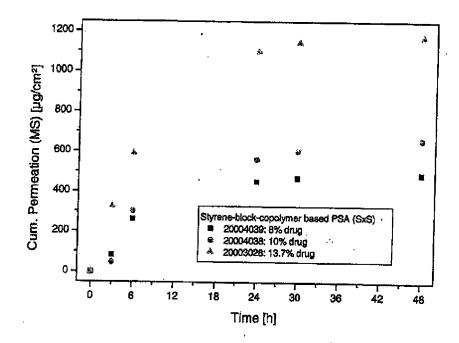


Fig. 1a: Skin permeation across mouse skin (calculated as release of active metabolite), batches prepared by lab scale hot melt processing by incorporating 8, 10 and 13.7% (w/w) SPM8302 into Dermagel 10127-113-3, a styrene-block-co-polymer based adhesive from National Starch & Chemical.

Very high flux rates, increasing with increasing drug loading, were observed (fig. 1a).

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date 09.04.02		
SCIT HARL BIOSCIENCES	REPORT	Project No.	Incontinence	
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs CONFIDENTIAL		Page 12 Report No.	of 16	

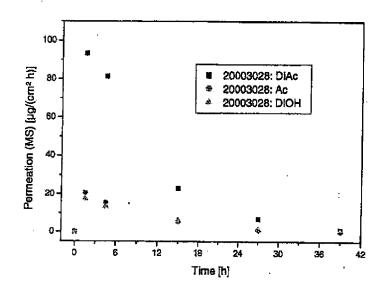
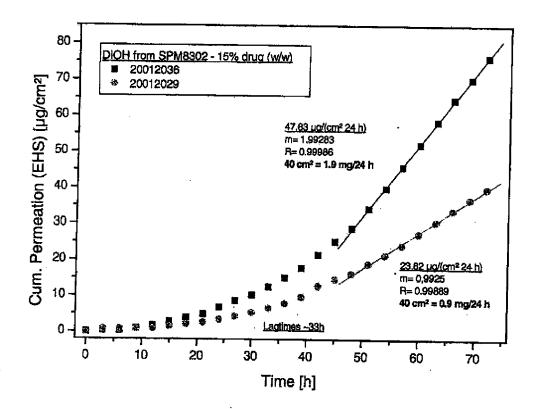



Fig. 1b: Differiential skin permeation as a function of different hydrolysis products

As outlined in fig. 1b initially ca. 20% of the drug were detected as monoester and additional 20% as active metabolite in the aceptor medium indicating the rapid hydrolysis of the prodrug once in contact with skin and/or water.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	O9.04.02		
SCITTARE		Project No.	Incontinence	
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs CONFIDENTIAL		Page 13	of 16	
		Report No.	32	

Two different samples were investigated in the LACDR human skin model. Fig. 2 outlines the initial permeation results which were in accordance with the former evaluation.

(

Fig. 2: Cumulative permeation across excised human skin (values corrected with the flux barrier of the supportive silastic sheeting), batches prepared by lab scale solvent coating (20012036: 15% (w/w) drug in acrylic type adhesive, National Starch & Chemical Duro Tak 387-4287) and hot melt processing (20012029: 15% (w/w) drug in silicone based adhesive (BioPSA, Dow Corning) plus additional inner phase polymer (10% (w/w) Vinapas = poly(viny acetate)))

Due to the very high permeation results across mouse skin, the flux rates across human skin seemed to be too low. Since always fresh human skin is used in the LACDR model, a likely explanation could be that remaining enzymatic activity in the skin led to fast drug hydrolysis and the generation of charged molecules. Unfortunately, the skin supporting silastic sheeting

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date 09.04.02		
		Project No.	Incontinence	
TITLE TDS for the treatment of incontinence, part IV:		Page 14	of 16	
Delivery Fesoterodine related prodrugs CONFIDENTIAL		Report No.	32	

is impermeable to charged molecules. This effect will of course only be visible in the experiment with the composite of human skin supported by the silastic sheeting, which explains, why always high permeation rates were found when testing the synthetic membrane alone.

An experimental change by replacing the supportive membrane with a dialysis membrane which is not impermeable to charge moleculaes, significantly improved the results as outlined in fig. 3.

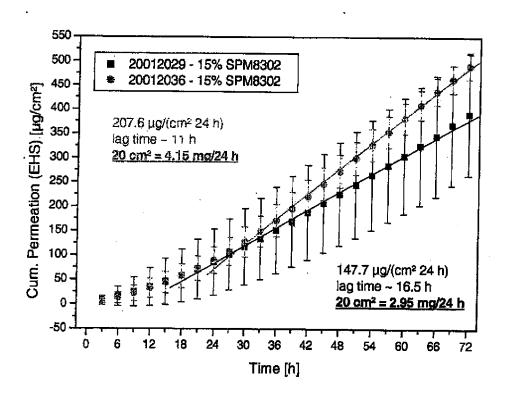


Fig. 3: Cumulative permeation across excised human skin (plus dialysis membrane, calculated as permeation of active metabolite)

Four to six times higher fux rates indicated that this experimental setup represented a more reasonable assessment of the flux across human skin. Moreover, the values found for batch 20012036 indicated the promising potential of SPM8302 to be used for the treatment of

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date 09.04.02	
	REPORT	Project No	Incontinence
TDS for the treatment of incontinence, part IV:		Page 15	of 16
Delivery Fesoterodine relat	ed prodrugs ONFIDENTIAL	Report No.	32

overactive bladder. Patches with sizes in the range of 20 to 40 cm² could theoretically deliver 4 to 8 mg/24 h which is the current range of the oral Fesoterodine formulation.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date 09.04.02		
SCIT WARE BIOSOIENCES	REPORT	Project No. Incontinence		
TITLE TDS for the treatment of incontinence, part IV:		Page 16	of 16	
Delivery Fesoterodine relat	ed prodrugs NFIDENTIAL	Report No.	32	

CONCLUSIONS

After having already demonstrated the promising transdermal potential of SPM8224, the free base of Fesoterodine, here the alternative use of several different Fesoterodine related prodrugs from the SPM907 series was investigated.

Based on the results obtained, only SPM8302 could be used as alternative since its flux rates across human skin were found to be sufficient for the treatment of overactive bladder with patch sizes in the range of 20 to 40 cm² (equal to delivery of ca. 4 to 8 mg in 24 h). These data have to be confirmed in vivo.

ANNEX 1

Copies of the Certificates of Analysis

(signed originals stored at PH DOK)

```
        Ch.B.
        <th
```

Ĺ

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-LM-TDS

Ch.-B.:

INZ 002

Sollgehalt:

7,50 mg

TDS-Fläche:

5 cm²

Analysen-Nr:

IN004A-M

Analysendatum: 06.-09.07.98

ABV vom:

Bemerkungen:

8 Wochen lebend 8 Wochen TK-Schrank SKH-10

1=160μm R; 2=146μm R 34,3; 3=147μm R, 4=149μm R 30,7g

Temperatur 32°C, Puffer pH 6.2 nach K.T. Die Proben wurden nicht aufkonzentriert

Tabelle der kumulierten Freisetzung in µg/5 cm²

Zeit	,		di-O)	I-Base	_		A TOP OF
[h]	I	2	3	4	MW	sd	r Tad
3	518,7	326,5	306,7	686,2	459,5	178,8	45925
6	753,0	549,2	483,2	648,5	608,4	117,9	1068.0
24	2868,5	2501,4	2287,0	2634,6	2572,9	243,6	3640.9
30	778,9	685,1	677,4	742,6	721,0	48,3	4361.8
48	1641,8	1542,4	1593,5	1524,1	1575,4	53,1	-5937.3
54	421,0	429,9	457,6	385,8	423,5	29,6	6360,8
72	896,7	1013,1	1153,2	851,3	978,6	134,9	7839.4

MW = Mittelwert

(

SD = Standardabweichung

Achsenabschnitt (b)=	971,5	μg
Regressionskoeffizient (m) =	2,3	μg/հ
Korrelationskoeffizient (r.) =	0.0744	

 $Q = t \cdot m + b$ Q = Preisetzung in $\mu g/5 \text{cm}^2$ t = Zeit in h (3h - 72h)

19.08.02

Datum/PH-A

Sachbearbeiter(in)

Projektgruppenleiter

Q:\TS\TS-TTS\INZ\MHP\002_1.DOC

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-LM-TDS

Ch.-B.:

INZ003

Sollgehalt:

7,50 mg

TDS-Fläche: 5 cm²

Analysen-Nr:

IN006A-F

Analysendatum: 13.-17.07.98

ABV vom:

Bemerkungen:

8 Wochen lebend 1 Woche TK-Schrank SKH-1&

1=117μm R; 2=115μm; 3=124μm R, 4=113μm R 33,4g

Temperatur 32°C, Puffer pH 6.2 nach K.T. Die Proben wurden nicht aufkonzentriert

Zusammensetzung: SPM 7502; SPM 7504; SPM 7500

Tabelle der kumullerten Freisetzung in µg / 5 cm²

Zeit	•		SPM	7502	_		SPM	7504	SPM	7500	Suning	
[h]	1	2	.3	4	MW	SD	MW	SD	MW	SD		kumu.
3	41,3	63,8	55,1	77,3	59,4	15,1	75,3	8,4	15,3	1,4		149,9
6	128,8	141,2	143,3	162,9	144,0	14,1	75,3	10,6	10,4	0,7	2.5	379,7
24	638,5	47,2	576,7	754,6	504,2	313,5	336,7	81,5	68,8	32,5		1289,5
30	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	8,5	0,9	20.5	1297,9
48	603,9	828,4	654,7	676,6	690,9	96,6	115,4	16,0	49,5	5,5		2153,7
54	198,0	231,0	223,8	218,6	217,8	14,2	30,0	9,3	11,2	1,7		2412,8
72	515.7	566.3	559.5	559.4	550.2	23.2	86.4	6.1	39.8	4.0		3069.2

MW = Mittelwert

SD = Standardabweichung

μg

MW = Mittelwert

SD = Standardabweichu

Achsenabschnitt (b)= 244,6 Regressionskoeffizient (m 5,7

Korrelationskoeffizient (r) 0,4029

Q≈t $Q = t \cdot m + b$ Q = Freisetzung in $\mu g/5cm^2$ t = Zeit in h (3h - 72h)

19.08.02

Datum/PH-A

Sachbearbeiter(in)

Projektgruppenleiter

Q:\TS\TS-TTS\INZ\MHP\003_1.DOC

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-LM-TDS

Ch.-B.:

INZ005

Sollgehalt:

 $7,50 \, \mathrm{mg}$

TDS-Fläche:

 $5 \, \text{cm}^2$

Analysen-Nr:

IN008A-F

Analysendatum: 13.-17.07.98

ABV vom:

Bemerkungen:

8 Wochen lebend 1 Woche TK-Schrank SKH-13

 $1=109\mu m~R$; $2=116\mu m$; R 26,9; $3=147\mu m~R$, $4=136\mu m~R$ 25,1g

Temperatur 32°C, Puffer pH 6.2 nach K.T. Die Proben wurden nicht aufkonzentriert Zusammensetzung: SPM 7504; SPM 7500

Tabelle der kumulierten Freisetzung in µg / 5 cm²

Zeit	SPM 7504					SPM	7500	Summe		
[h]	1	2	3	4	МW	SD	MW	_ SD	MW	kama.
3	506,3	587,1	692,3	374,7	540,1	134,0	29,8	5,4	- 569,8	569,8
6	617,1	621,9	654,8	472,7	591,6	81,0	24,6	2,0	2616.2	1186,1
24	2244,7	2178,9	2340,2	2040,9	2201,2	125,7	125,6	10,4	2326,7	3512,8
3.0	499,6	520,7	500,9	510,6	507,9	9,8	30,2	2,6	538,1	4051,0
48	948,9	1058,0	911,8	1027,1	986,5	67,7	89,4	10,0	1075,8	5126,8
54	231,8	288,4	213,7	271,2	251,3	'34,5	24,2	3,0	275.5	5402,3
72	476,0	675,3	414,7	591,3	539,3	116,5	50,6	7,7	589,9	5992,2

MW = Mittelwert

SD = Standardabweichung

Achsenabschnitt (b)=

999,2 μg -4,2 μg/h

Regressionskoeffizient (m)= Korrelationskoeffizient (r) =

-0,1562

O≈t $\mathbf{O} = \mathbf{t} \cdot \mathbf{m} + \mathbf{b}$ Q = Freisetzung in µg/5cm² t = Zeit in h (3h - 72h)

19.08.02

Datum/PH-A

Sachbearbeiter(in)

Projektgruppenleiter

Q:\TS\TS-TTS\INZ\MHP\005_1,DOC

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-LM-TDS

Ch.-B.:

INZ 011

Sollgehalt:

7,50 mg

TDS-Fläche:

5 cm²

Analysen-Nr:

IN031A-C

Analysendatum: 04.12.98

ABV vom:

analog OBU 0469.100

Bemerkungen:

10 Wochen lebend 5 Wochen TK-Schrank SKH-1&

 $1=130\mu m~R$; $2=128\mu m~R$ 32,1; $3=149\mu m~R$, $4=154\mu m~R$ 31,8g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

Tabelle der kumulierten Freisetzung in µg/5 cm²

Zeit			SPM		7500 zu _7501	MW			
[h]	1	2	3	4	MW	SD	MW	SD	add.
3	363	582	237	624	452	183	25	7	476
6	765	1046	615	1235	915	278	43	9	959
24	2240	2658	2106	3086	2523	443	189	21	2711
30	2638	3065	2531	3539	2943	459	212	21	3155
48	2857	3277	2770	3768	3168	457	295	19	3463
54	3200	3564	3124	4014	3476	407	327	18	3802
72	3721	3989	3635	4317	3916	307	386	17	4302

MW = Mittelwert

SD = Standardabweichung

Achsenabschnitt (b)=

848,3

Regressionskoeffizient (m)=

48,3 μg/h

Korrelationskoeffizient (r) =

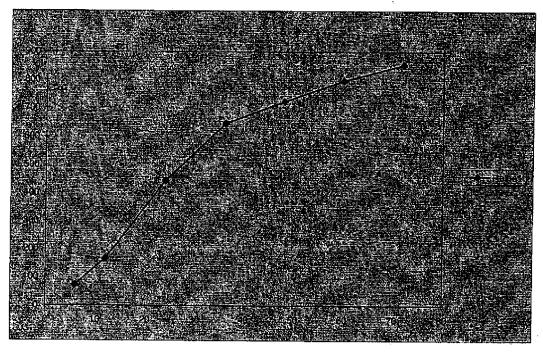
0,9403

$$Q \approx t$$
 $Q = t \cdot m + b$
 $Q = \text{Freisetzung in } \mu g / \text{Scm}^2$ $t = \text{Zeit in } h (3h - 72h)$

μg

19.08.02

Datum/PH-A

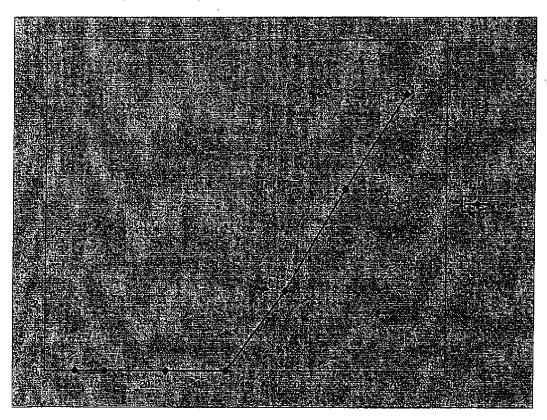

Sachbearbeiter(in)

Projektgruppenleiter

Q:\TS\TS-TTS\INZ\MHP\011_I.DOC

Auswertung Wirkstoff SPM 7500

		Haut + SIL		Haut + SIL ku	muliert	
Zeit [h]	mean	SD	VC	mean		
6	0,00	0,00	0,00	0,00		
12	0,00	0,00	0,00	0,00		
24	0,00	0,00	0,00	0,00		
36	0,00	0,00	0,00	0,00		
48	2,39	0,51	21,41	2,39		
6 0	3,04	0,70	23,09	5,43		
72	2,85	2,24	78 <u>,</u> 81	8,27		
		SIL		1 :	SIL kumulleri	t
Zeit [h]	mean	SD	VÇ	mean	SD	VÇ
6	72,52	0,00	0,00	72,52	0,00	0,00
12	93,11	0,00	0,00	165,63	0,00	0,00
24	279,19	0,00	0,00	444,82	0.00	0.00
36	200,90	0,00	0,00	645,72	0,00	0,00
48	76,57	0,00	0,00	722,28	0,00	0,00
60	74,45	0,00	0,00	796,73	0,00	0,00
72	56,92	0,00	0,00	853,65	0,00	0,00


für SIL kumuliert linearer Bereich von 6-24 h lineare Regression r² 0,994665 m 19,65

b

19,65 [µg/cm²*h] -51,03 [µg/cm²] für ein 6 h Intervall ergibt sich ein mittlerer Wert von 117,91

für ein 12 h Intervall ergibt sich ein mittlerer Wert von 235,82

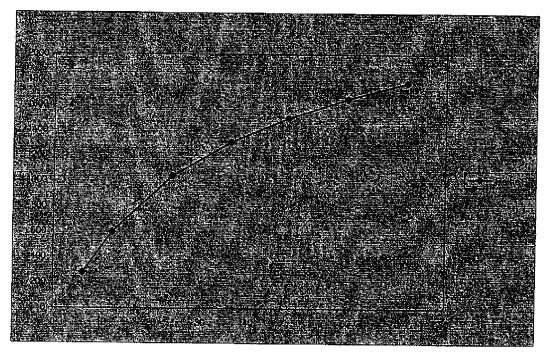
	Haut	Haut kumuliert
Zeit [h]	mean	mean
6	0,00	0,00
12	0,00	0,00
24	0,00	0,00
36	0,00	0,00
48	2,41	2,41
60	3,08	5,49
72	2,88	8,37

Hautpermeation des Wirkstoffs SPM 9080

linearer Bereich von 48-72h

lineare Regression

0,999632


0,25 [µg/cm²*h] m -9,47 [µg/cm²]

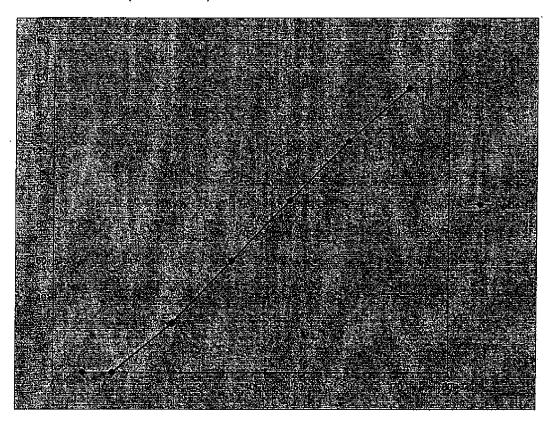
Somit ergibt sich eine mittlere Freisetzungsrate an SPM 9080 über 24 h von: 5.96 ug/cm 24 h

38,1 h lag-time:

Auswertung Wirkstoff SPM 7502

		Haut + SIL		Haut + SIL ku	ımuliert	
Zeit [h]	mean	SD	VC	mean		
6	2,30	0,00	0,00	2,30		•
12	7,04	0,00	0,00	9,34		
24	25,23	0,00	0.00	34,57		
36	31,47	0,00	0,00	66,04		
48	31,07	0,00	0.00	97.11		
60	30,40	0,00	0,00	127,50		
72	27,08	0,00	0,00	154,58		
	•	SIL		1	SiL kumulieri	ł
Zeit [h]	mean	SD	VC	mean	SD	VC
6	276,75	66,89	24,17	276.75	66,89	24,17
12	320,76	32,52	10,14	597.51	99,41	16,64
24	440,59	26,58	6,03	1038,09	72.83	7,02
36	268,02	8,75	3,26	1306,12	81,58	6,25
48	192,03	35,40	18,44	1498,15	46,17	3,08
60	153,48	19,27	12,56	1651,64	26,90	1,63
72	126,51	7,68	6,07	1778,14	19,22	1,08

für SIL kümuliertIlnearer Bereich von 6-72 h
Ilneare Regression
r² 0,931582
m 41,50


(

m 41,50 [µg/cm²*h] b 56,46 [µg/cm²]

für ein 6 h Intervall ergibt sich ein mittlerer Wert von 249,00

für ein 12 h intervall ergibt sich ein mittlerer Wert von 497,99

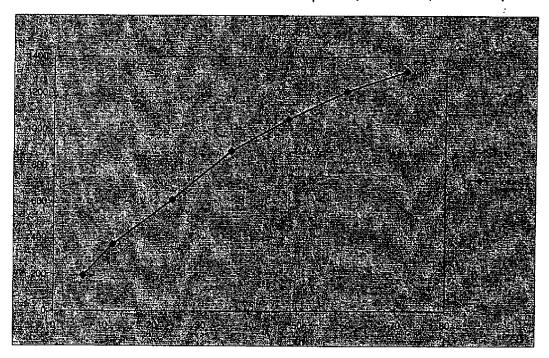
	Haut	Haut kumuliert
Zeit [h]	mean	mean
6	0,00	0,00
12	0,00	0,00
24	26,58	26,58
36	33,59	60,17
48	33,14	93,31
60	32,37	125,68
72	28,63	154,32

Hautpermeation des Wirkstoffs SPM 7502

linearer Bereich von 24-72h

lineare Regression

r² 0,999095


2,67 [µg/cm^{2*}h] m -36,38 [µg/cm²] b

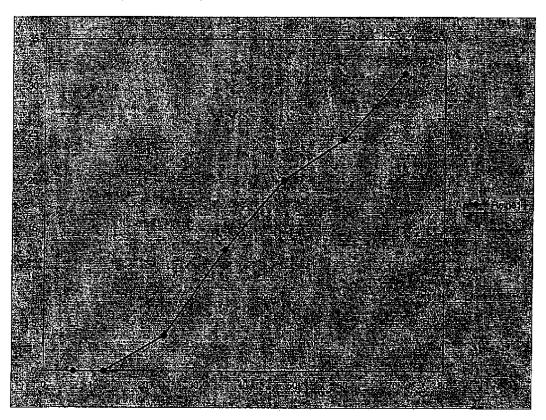
Somit ergibt sich eine mittlere Freisetzungsrate an SPM 7502 über 24 h von:

lag-time: 13,6 h

Auswertung Wirkstoff SPM 7504

		Haut + SIL		Hau	ıt + SIL kumu	liert
Zeit [h]	mean	SD	VC	mean		
6	0,00	0,00	0,00	0,00		
12	0,00	0,00	0,00	0,00		
24	3,73	0,00	0,00	3,73		
36	8,73	0,00	0,00	12,46		
48	7,16	0,00	0,00	19,62		
60	4,22	0,00	0,00	23,84		
72	6,77	0,00	. 0,00	30,62		
		SIL		i	SiL kumuliert	; .
Zeit [h]	mean	SD	VC	mean	SD	VC
6	195,02	80,08	41.06	195,02	80,08	41,06
12	170,12	53,21	31,28	365,13	133,30	36,51
24	248,29	68,26	27,49	613,43	201,56	32,86
36	267,65	82,65	30,88	881,08	284,21	32,26
48	174,81	11,33	6,48	1055,89	295,54	27,99
60	154,31	28,40	18,40	1210,19	323,94	26,77
. 72	109,97	66,64	60,59	1320,17	390,58	29,59

für SIL kumuliert linearer Bereich von 6-72 h lineare Regression ř² 0,975393


22,88 [µg/cm²*h]

m 70,87 [µg/cm²] .b

für ein 6 h Intervall ergibt sich ein mittlerer Wert von 137,28

· für ein 12 h Intervall ergibt sich ein mittlerer Wert von

Zeit [h]	Haut mean	Haut kumuliert mean
6	0,00	0,00
12	0,00	0,00
24	3,79	3,79
36	9,01	12,80
48	7,35	20,15
60	4,29	24,44
72	6,94	31,38

Hautpermeation des Wirkstoffs SPM 7504

linearer Bereich von 24-72h

lineare Regression

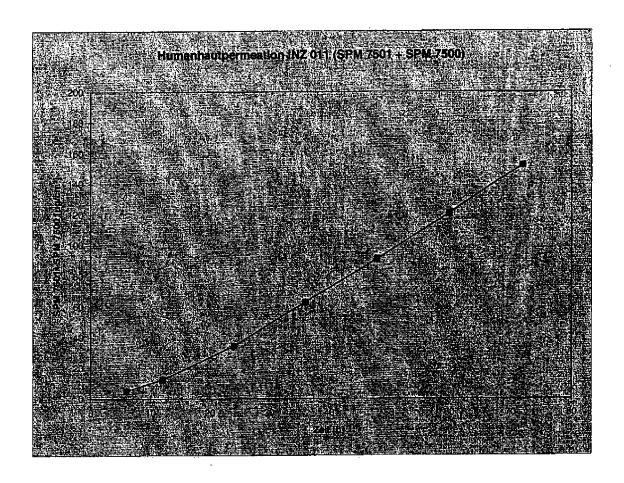
r2 0,986107

0,56 [µg/cm2*h] m -8,22 [µg/cm²] þ

Somit ergibt sich eine mittlere Freisetzungsrate an SPM 7504 über 24 h von:

lag-time: 14,8 h

INZ011 Zusammenfasung


	Wirkst	off SPM 7501	Metabolit SPM 7500		
	Haut	Haut kumuliert	Haut	Haut kumuliert	
Zeit [h]	mean	mean	mean	mean	
6	3,82	3,82	1,07	1,07	
12	6,30	10,12	0,83	1,90	
24	20,00	30,11	1,54	3,43	
36	26,57	56,69	1,69	5,12	
48	25,52	82,21	2,01	7,13	
60	27,13	109,33	1,94	9,07	
72	29.24	138.57	1.83	10.90	

Metabolit SPM 7500 umgerechnet in Wirkstoff SPM 7501

		Haut	Haut kumuliert
Zeit [h]		mean	mean
6		1,33	1,33
12		1,03	2,36
24		1,92	4,28
36		2,11	6,39
48	•	2,51	8,89
60		2,41	11,30
.72		2,28	13,58

Summe aus Wirkstoff SPM 7501 und Metabolit 7500

	Haut	Haut kumuller
Zeit [h]	mean	mean
6	5,15	5,15
12	7,33	12,48
24	21,91	34,39
36	28,68	63,07
48	28,03	91,10
60	29,54	120,64
72	31.52	152 15

Hautpermeation von SPM 7501 + SPM 7500

linearer Bereich von 24-72 h

r² 0,999484959

m 2,442 [µg/cm²*h]

b -24,964 [µg/cm²]

Somit ergibt sich eine mittiere Freisetzungsrate an SPM 7501 + SPM 7500 über 24 h von:

58.6 µg/cm²/24 h

lag-time 10,2 h

Arth, PH A 19.08.02, 12:33

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-TDS SPM7605

Ch.-B.:

20008029

Sollgehalt:

TDS-Fläche:

5 cm²

Analysen-Nr:

IB0773_MHP

Analysendatum: 17.08.2000

ABV vom:

analog OBU 0469.100

Bemerkungen:

8 Wochen lebend, 4 Wochen TK-Schrank; SKH-13

1=170; 2=162 3=164, 30,3g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VT 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		mg DIOH / 5cm²						
Zeit [h]	1	2 .	3	MW	SD			
3	0,34	0,17	0,28	0,26	0,09			
6	0,64	0,44	0,56	0,55	0,10			
24	1,60	1,53	1,56	1,56	0,04			
30	1,83	1,78	1,81	1,81	0,02			
48	2,27	2,30	2,34	2,30	0,03			

Achsenabschnitt (b)= 0,28 mg Regressionskoeffizient (m) = 0,05 mg/h Korrelationskoeffizient (r) = 0,98122

 $Q = t \cdot m + b$ Q = Freisetzung in mg/5cm² t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

L:\Projekte\Proj-gr4\INZ\MHP\20008029_1.DOC

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Prăparat:

INZ-TDS SPM7605

Ch.-B.:

20008030

Sollgehalt:

TDS-Fläche:

5 cm²

Analysen-Nr: ABV vom:

IB0773_MHP

Analysendatum: 17.08.2000

analog OBU 0469.100

Bemerkungen:

8 Wochen lebend, 4 Wochen TK-Schrank; SKH-1&

1=148µm; 2=154µm 3=165µm, 30,1g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VTWasser 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

	mg DIQH / 5cm²						
Zeit [h]	1	2	3	MW	SD		
3	0,24	0,36	0,39	0,33	0,08		
6	0,34	0,42	0,45	0,40	0,06		
24	1,46	1,52	1,56	1,51	0,05		
30	1.75	1,80	1,84	1,79	0,05		
48	2,33	2,38	2,43	2,38	0,05		

0,22 Achsenabschnitt (b)= mg Regressionskoeffizient (m) = 0,05 mg/h Korrelationskoeffizient (r) = 0,98876

 $Q = t \cdot m + b$ Q = Freisetzung in $mg/5cm^2$ t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

SPM 907 TDS

SPM 7605

Ch.-B.:

20106045

TDS-Fläche:

5 cm²

Sollgehalt:

15%

Analysen-Nr:

20106043_6044_6045_6061_AA_MHP_01 + 02

Analysendatum: 09.07.2001

ABV vom:

analog OBU 0469.10

Bemerkungen:

8 Wochen lebend, 4 Wochen TK-Schrank; SKH-13

1=160µm; 2=168µm 3=148µm, 34,7g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

Ausgangsanalyse

Tabelle der kumulierten Freisetzung in mg / 5 cm²

	mg DIOH / 5cm²					
Zeit [h]	1	2	3	MW	SD	
3	0,09	0,09	0,09	0,09	0,00	
6	0,35	0,36	0,43	0,38	0,05	
24	1,16	1,16	1,21	1,18	0,03	
30	1,36	1,35	1,39	1,37	0,02	
48	1,83	1,77	1,83	1,81	0,04	

Achsenabschnitt (b)= 0,12 mg Regressionskoeffizient (m) = 0,04 mg/h Korrelationskoeffizient (r) = 0,98181

Q≈t $Q = t \cdot m + b$ Q = Freisetzung in $mg/5cm^2$ t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenieiter, PGIII

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

SPM 907 TDS

SPM 7605

Ch.-B.:

20106043

TDS-Fläche:

5 cm²

Soligehalt:

15%

Analysen-Nr:

20106043_6044_6045_6061_AA_MHP_01 + 02

Analysendatum: 09.07.2001

ABV vom:

analog OBU 0469.10

Bemerkungen:

8 Wochen lebend, 4 Wochen TK-Schrank; SKH-13

1=174µm; 2=179µm 3=168µm, 31,7g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

Ausgangsanalyse

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		mg	J DIOH / 50	m-	
Zeit [h]	1	2	3	MW	SD
3	0,07	0,27	0,08	0,14	0,11
6	0,38	0,76	0,37	0,50	0,22
24	1,59	2,45	1,47	1,84	0,54
30	1,98	2,94	1,82	2,25	0,61
48	3,00	4,10	2.63	3,24	0,77

Achsenabschnitt (b)= 0.07 mg Regressionskoeffizient (m) = 0,07 mg/h Korrelationskoeffizient (r) = 0,99521

 $Q = t \cdot m + b$ Q = Freisetzung in mg/5cm² t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

Diffusion experiment with SPM 907 patches on silastic sheeting

Purpose of the study:

To investigate the influence of four formulations on the release rate of SPM 907 patches. The present study has been performed without skin in the cells in order to measure the initial release rate of active ingredient from the formulations through the used membrane. The four following experiments will be performed with skin from four different donors.

Patch:

Active Ingredient: SPM 907

Batch numbers: 20012029, 20012036, 20106043 and 20106061

Patch area: (variable)

Active ingredient content: app. 15% m/m

Diffusion experiment:

Date: 7 to 10 Sept. 2001

Used cells:

diffusion cells with spiral groove (n=8); groove area: 0.552 cm².

Separator between acceptor phase and skin/patch)

Silicone sheeting (Silastic sheeting); implant grade elastomer non-sterile; non-reinforced;

Manufacturer: Nagor limited, P.O. Box 21, Douglas, Island of Man

Cat. nr. NA 500-1, Thickness 0.125 mm, Lot nr. 14603/1

No special pretreatment, other than cleaning, applied

Diameter of separator and patch punch-outs: 1.8 cm:

Setup diffusion cells:

	Celli			3atch
	1.8	2.6	20	012029
all Tillian have t	3 &		20	012036
	58		· 20	106043
		3件、胡桃(株)	20	106061

Acceptor phase: PBS bH=6.2 Measured temperature waterbath: 32.0 °C

Flux of acceptor phase: 5 ml/hour

Total duration of the experiment: 72 hours, samples are collected in 3 hour periods.

Observations during dermatomisation; cell assembly, disassembly, etc.

Some sample from cell 5 was lost at 69 and 72 hours due to a titled tube holder in the fraction collector. Use a higher volume for the corresponding fractionsfor calculations (see Volume fractions tab).

Mass and volume data on the collected fractions

measured density of the used acceptor phase: 1,010

1,812

Faktor zur Umrechnung sull on?

Fux time		mass lub		e (g) : fractions	8272		Fraction		DIOH		FractionxF		Discellat		FractionsF	
(hours)	cell nr	emply	in)	(III)	T Mul	sug/mission restant Mittelwed sug/mission	TE-1,812	Mitterword	- Im/gr	ng/fræctlör	ig/cm² Mittelwert	Mittelwer		pomi poment	Jug/cm² Wittehwert	Watterwert
		17,152	33,385	16,074					0,44	7,073	12,815		17,44	280,328	207,955	
	2	16,972	32,800	15,673		_			0,45	7,053	12,780	12,798			466,883	487,419
	3	17,146	33,037	15,735		••			0,42	8,609	11,975				521,774	
C	*	16,884	32,889	15,848		·			6,73	11,569	883	16,469			637,512	579,643
כ	2	17,191	33,293	15,944					0,39	6,218	11,267					
	6	17,144	32,870	16,572					025	3,893	7,054	9,16				
	7	17,129	32,663	15,382	0,30	4,615	8,362		0,11	1,692	3,088					
	8	16,997	32,554	15,404	0,33	5,083	9,211	8,786	0,11	1,694	3,070	3,068	-			
	ļ .	16,790	33,002	18,053		ļ -			0,34	5,459	9,890		14,49	232,809	421,488	
	ø	17,018	32,890	15,716		•			0,48		13,670	11,780			414,072	417,780
	3	16,932	32,870	15,782	-				0,38		10,867		•		414,650	
Œ	4	17,137	33,168	15,874					43,0		15,532	13,199		261,601	474,021	444,336
>	2	17,140	33,322	16,023		···			1,02		29,615					
	9	17,215	33,036	15,666					0,86	-	24,412	27,014				
	7	16,946	32,586	15,487	0,49	7,59	13,750		0,15		4,200		_			
	8	17,071	32,807	15,582	0,44	6,86	12,423	13,087	0,12		3,388	3,799				
	-	17,177	33,387	16,051					6,0	4,82	8,725		10,18	Ľ.	296,081	
	7	17,100	32,962	15,707					0,38		10,815	9,770		162,72	294,848	295,464
	3	17,125	33,070	15,789					0,27	4,26	7,724		11,23	177,31	321,280	
σ	4	17,160	33,197	15,880					0,32	5,08	9,208	8,466		200,40	363,130	342,205
•	۵	16,994	33,152	16,000	~				0,86	_	24,938					
	9	16,963	32,738	15,618		-			0,77	12,03	21,781	23,362	A)			
	7	17,074	32,691	15,464	0,37	5,72	10,368		0,13		3,643					
	8	17,217	32,949	15,578	0,32	4,98	9,033	9,700	0,1		2,823	3,233				
	1	17,202	33,391	16,030					0,27	_	7,843	l		122.63	222,208	
	8	16,912	32,768	15,701					0,27		7.681	7.762			-	221,204
	ဇ	17,114	33,033	15,763			,		0,33		9,428			139,97		
Ç	+	17,089	33,104	15,858					0,35		10,057	9,741	9,82			267,905
7	ĸ	17,143	33,302	16,001			•		0,72	_	20,875					
	9	17,146	32,922	15,621					0,63		17,833	19,354	-			
	7	17,192	32,846	15,501	0,25	3,88			o,		2,809					
	80	17,224	32,837	15,559	0.23		6,484	6.753	90.0	1.24	2.255	2.532	-			

_		1/4,322		224,406						143,567		185,820			-	Ĭ		123,409		157,551						106.909		126 034	20,00			
COO OLL	200	2,5,010	0	43/,304				1	45,246	141,888	5,5	177,623		,	•		756,937	121,885	148,759	166,344		-		•	108,650	105,168	127.201	144 467	ì			
102.40	o c	2 5	0,00	98,08					80,16	800	70,701	26,05 20,05					8	67.27	82,10	9,180			•		29,96	20,88	70.20	2	<u> </u>			
900	000	8 6	2 6	6	•			1	5 8	3 8	0 0	2				1	N.	8	5,22	5,81					3,76	3,71	4.47	R.	}			
	0.00	† 6 7		o o o	***	5	Ş	ş V		5	L	0 0 0	14 454	į.	900	000		9,439		5,714		12,289		1,403		3,574		5.422	[10.586	3	0,979
4.641	44.7	2 8	100	- 0	3 4	0000	2 6	7 6	200	0000	2 4	001.0	2 64	000	9 6	100	3	3,118	5,415	6,012	12,721	11,856	÷. 8	1,406	9, 7,	3,969	5,122	5.721	10.694	10.418		0,842
2.58	000	100	200	2 6	2 0	6	3 8	27.0	1 6	1 6	2,0	8 C	7.40	2 6	2 6	200	į į	7,72	8 2	3,32	7,0	6,54	0,77	0,78	1,75	2,18	2,83	3.16	9	7.5	6	0,46
0.16	, C	20	4	2 6	3 4	3 8	3 6	2 5	, C	2 6	910	2 64	9	900	2 2	3 5	3 3	E o	6,79	, S	4	0,42	9	8	0,1	0.14	0,18	0.2	0.37	0.37	700	0,03
							4 490								2.5	1							-	2,865								2,100
						4.473	4.508							3.36	3.663				_				0 ·	7,617							1.955	2,245
_						2.47	2.49				, ·		-	1.85	202		_							ş							90,	1,24
						0,16	0.16		•					0.12	0.13				-	_		- 5	3 5	2							0,07	90'0
16,007	16,691	15,774	15,855	15.990	15.808	15,429	15,548	18,000	15,661	15,746	15,836	15,976	15,598	15,457	15,551	15,960	15,843	15.797	15 801	900	2 4	0.00	10.0	0,0,0	10,347	5	9,70	15,788	15,951	15,536	15,410	15,488
33,503	32,787	33,082	33,043	33,304	32,889	32,723	32,906	33,216	32,996	33,061	33,135	33,387	32,932	32,740	32,906	33,180	32,775	30 807	3	20.00%	2000	200,000	20 000	20 450	30 050	3000	8	33,032	S	32,839	32,662	32,683
17,338	16,941	17,152	12,031	17,156	17,126	17,141	17,204	17,058	17,180	17,159	17,142	17,253	17,180	17,130	17,201	17,062	16.977	8 944	17.145	17 130	17.000	17 107	17.953	+	†	Ť	+	_	-	17,149	17,099	17,042
-	2	တ	4	5	9	7	8	-	5	ю	#	5	9	7	8	-	cv	6	4	- 2	, "	^		,		,	3	4	2	9		8
			4	2							ă	2					_		č	, N		•	.,					7	!	,	1	

-	,	86. 24.		318,463						<u>}</u>	105,040	N C					74 074	i de	90, 70	<u> </u>		•		T	20003	0000	Ş	O, III			
000	32,000	30,020	20,40	20.				001	00/00	200	707					75 974	74.067	000	3 8	100				58 247	20.4.03	07-000	0 0	20,01			
70	6 6	, G	9 0	n n	•			47.00	A5.74	20.00	1 2			_		41.87	40.04	A B BA	3 2	2				32.15	92.00	07.07	0.00	į			
200	3 6	9 0		*				1000	ğ ö	4	6	5				283	6	1	070					202	Ç	1 0	7	ì			
	0000	20,0	4 000	107	0 1 10	n - 0	0.078	2	9.498]	4418		7.580		000	2	3.142	!	700 6	2	120	}	0.699	200	9715	ì	2 840	1	F 430	<u>}</u>	0,699
Cre V	000	3 704	1 0 6	0 0	27.0	1 116	0.841	0000	547	4.261	4.575	7	7,328	838	2 6	3	3.110	3.416	4.573	9	, r.	0.83	0.560	2,884	2.547	7	9 007	780	2070	7837	0,560
2 30	à	5 5	890	3 2	40.7	0 62	0.46	101	1 4	235	2.52	8	2	0.46		15	2	1.89	200	8	8	4	0.31	85	141	200	6	, e	280	0.48	0,31
0 15	2 0	0.13	410	200	3 6	000	0.03	800	000	0,15	0.16	0.27	0.26	0.03		0.11	0	0.12	0.16	2	0.21	0	0.0	6	60.0	0	7 7	C	0.18	0.03	800
							1.678								1.398		•						1,119								1,118
						1.674	885				*****			1.397	1,400							1,117	1,121					•		1,117	1.120
			•			0,92	860							0,77	0.77							0,82	0,62							0,62	0.68
						90'0	900							0,05	90'0							0,0	0,04							0,0	90,0
15,838	15,605	15,723	15,781	15,916	15,538	15,398	15,468	15,931	15,616	15,678	15,779	15,927	15,554	15,414	15,454	15,921	15,602	15,708	15,770	15,935	15,518	15,408	15,460	15,913	15,615	15,713	15,757	15,919	15,545	15,404	15,452
33,256	32,657	33,069	32,981	33.041	32,652	32,750	32,679	33,255	32,950	33,134	32,984	33,243	32,814	32,852	32,736	33,169	32,891	33,026	32,953	33,300	32,704	32,677	32,780	33,086	33,093	32,883	33,044	33,219	32,865	32,428	32,568
17,160	16,898	17,190	17,044	16,967	16,960	17,200	17,058	17,166	17,179	17,301	17,049	17,158	17,106	17,285	17,129	17,090	17,135	17,162	17,027	17,207	17,032	17,116	17,167	17,015	17,323	17,024	17,131	17,142	17,168	16,871	16,963
	2	3	4	30	9	7	8	_	2	6	4	5	٥	7	.8	-	7	က	4	ō.	€	7	80		01	8	4	ĸ	Φ	7	В
			2,0	V							30	3							8	3	,						36	3			

-	220 02	9	230, 51	3				Ţ	62 278	07700	400	004.00				7	40 8R3	2	E7 964	#00° 10					46 495	2	000	50,70			
100 134	000	68.360	78.172	2			_	000 00	97.75	000	200,00	77,107				EV 642	40.04	10000	400	t.0.10			•	46.573	44 907	190 00	0 0	200			
80.00	00000	3 6	49.14	<u>!</u>				200 245	9 8	3 8	2 6	2.0				27.05	27.0	8	9 2	ŝ	_	_		25.70	24.45	9	3 6	2000			
9 69	100	1 0	7.4	ì				1 04	, d	5 4	0.0	ľ				1 32	1.74	9	6 c	<u>.</u>				1,60	12		2 90		•		
-	3 985		4.264		4 414	F	0.070	2	3.420	2	4 197	ì	3.847	:	O EER		4.564		2 0.00	9	S. S.	}	A08.		3 277	į	2 606	5	0.070	ì	0.557
3.741	4 220	3.971	4.565	4.893	30.0	88	5,0	2 452	3 387	3 62	4.276	5 5	3.374	0.555	925	2 2	3,940	3 601	280.4	247	3.37	0.837	988	3,450	3,104	3 408	2 6	2 6	8	9	0.559
2.06	23	2.39	250	2,70	2 1 7	0.77	0	5	78	8	23	3 8	1.86	0.31	Č	288	2.18	2	1 0	1 6	- 1	0	E 0	- 8	1.71	8	2 6	8	; -	60	0.31
0.13	0.15	0.14	0.16	0.17	4	900	8	0.00	0	0.14	0.15	0.15	0.12	000	0.02	0.18	0.14	0.13	0 15	0.33	0.12	0.03	000	0,12	0.11	0.12	41.0	0	5.0	0.00	0.02
•							0.837								0.837								0.837					-	•		0,557
****						0.836	0.838							0.835	0.839							0.837	0,836						_	. 0,556	0,559
					·	0,46	0.46							0,48	0,46		-			-	_	0,46	0,46							0,31	0,31
						0,03	80,0							0,03	600							0,03	εο'o	-						0,02	0,02
15,880	15,560	15,654	15,745	15,884	15,509	15,373	15,414	15,882	15,575	15,682	15,732	15,896	15,518	15,355	15,428	15,880	15,568	15,671	15,746	15,904	15,502	15,394	15,408	15,866	15,571	15,664	15,714	15,872	15,486	15,348	15,415
33,239	32,896	32,828	33,135	33,314	32,773	32,627	32,718	32,820	32,853	32,794	32,937	33,334	32,840	32,563	32,637	33,449	32,546	32,898	33,024	33,294	32,963	32,651	32,338	33,192	32,865	32,874	33,008	33,186	32,883	32,519	32,778
17,202	17,182	17,019	17,234	17,273	17,110	17,102	17,151	16,781	17,124	16,957	17,049	17,281	17,168	17,056	17,056	17,412	16,824	17,072	17,122	17,233	17,308	17,105	16,777	\neg	\Box	17,055	17,138	17,157	17,224	17,019	17,210
	2	က	4	2	9		. 8	1	2	က	4	5	9	7	8	-	~	က	*	5	9	7	8	-	2	3	4	2	9	7	8
		•	Q.	3							42	J F	,						Υ.	?				,			αν	?			

(

		40,230 230	_	48,500						34,986		4,051					-	29,653		40,761						25,402		37,641			
	36,206	44,254	45,998	51,002		•			30,723	39,208	40,268	47,834		•	,		25,550	33,766	36,547	44,976				500	, ,	8,408	31,783	43,519		•	
-	19,98	4 1	25,39	28,15					96'9	21,64	22,22	9 8		1			14,10	18,63	8,1	28,82				40.00	001	15,68	17,53	24,02		_	
-	ę i	ò	2	- 79					70,	3	- - - - -	8				1	68,0	<u> </u>	8	<u></u>				0 70	2,0	0.	1,12	- E3			
-	Č	, 200, 100, 100, 100, 100, 100, 100, 100		2,418	4	3,137		0.418	,	2		2,416	6	Z,040		1200		1,846	:	2,414	6	100'3	0,70	9	i i	3	į	2,273		2,276	0.418
								8/X/S	5 6	200	R I	200	2 6	S C C	200	200	7	50	2,700	N C	270	1 0	026	1707	000	,000	000	20 1	7,580	40.	0,278
•	3 5	2 5	2 !	, C	20.7	2, 4	2 0	2 :	- 5	3 5	Q v	+ 1	0.5		5 6	1000	D (5 6	3	4,	Š č	, F	ָהָ בְּי	2 0	000	2 4	2 ;	- :	<u>.</u> 5	3 6	0,15
1000	3 6	3 6	5 6	2 6	2 6	3 8	2 6		3 6	3 8	9 6	2 .	50	8	2 5	3 6	3 6	ò	5 6	5 5	2 2	8 8	6 6	900	8	3 6	3 6	3 8	3 2	3 6	0,02
							0.567	3							0.567	3							0.567								0,567
						0.657	0.557	3	,					O KKR	9 6					•	•	0.557	0.557							0	0,558
						6	2 6							0.31	3 6							0.31	0.31							0.31	0,31
_						000	000							0.00	000							0,02	0,02							000	0,0
15,858	15,556	15,670	15 724	15.905	15.498	15.360	15,381	15.846	15,567	15.650	15.713	15.874	15,506	15,351	15,412	15.843	16.524	15,635	15.709	15.883	15,482	15,360	15,382	15,846	16,522	15,651	15.688	15.860	15.487	15,358	15,396
33,013	32,667	33,025	32.762	33.097	32.688	32.544	32,466	33,127	32,852	32,950	32.424	33,093	32,731	32,588	32,730	32,921	32.799	32,890	33.100	33,051	32,916	32,552	32,483	33,061	32,464	32,898	32,888	33,161	32,787	32,488	32,857
16,998	16,957	17,200	16.882	17,035	17,037	17,032	16,933	17,124	17,131	17,145	16,555	17,062	17,071	17,085	17,135	16,921	17,121	17,100	17,235	17,011	17,281	17,040	16,959	17,058	16,788	17,092	17,035	7.	17,147	16,978	17,109
-	2	3	4	9	9	_	8	-	2	8	4	2	9	7	8	-	2	8	4	22	9	7	82		N	8	4	5	9	7	88
			ų	5							1	<u>5</u>							57	<u> </u>							G	3		_	

(

-		20,03	010	PCS./S			•	T	500	2007	1	47,037	_	•	-			6		90,180					3	20,02		1/0 1/0			
Coap vo	3	2 2	000	45,234				2000	40,77	0000	26,430	30,00				100	200	5	22.5	5/,118		-		18 630	2 6	000	19,2/4	990			,
42 78	1 4	7/1/	000	00.00				0.7	2,1	3 2	200	10.00				40.45	9 6	, and	12,83	S S				91.0	5 6	2 :	3 8	3			
l/s	7		ŝ	<u>y</u>				1	3 -	2 0	000	6				000	8 8	1	N 6	Š.		_		C AR	3 5	3 6	8 ;	<u>.</u>	_		
	0.000	2000	101	-	5	26.	0.020	0.570	1 075	į	1000	Ę	Š	ŝ	02.0	2,1	7	<u>.</u>	8	5	1 848	5	0.070	0,270	1 375	9	907 +	<u>.</u>	4 0.40	Ę	0,278
0.861	D. S. A.F.	2 6	Ş	100	/ K. 5	0000	0 0 0	288	404	7		0	3 5	0.00	2 0	1777	9	5	5 6	2 6	27.6	2.00 C	92.6	0.881	1 1080	3 0	5 5	2 5	1 676	200	0,278
0.48	0.47	4	, c	700	ğ 6	2 5	2, C	200	6	6	-	3 6	į 8	3 5	2,5	2 2	2 6	3 0	3 4	9 -	6	12	, c	0.47	C	2 5	, C	· ·	8	1 4	0,15
0.03	8	8 8	0	800	0	3 5	6	88	90	0	200	2	8 6	8 8	000	200	6	000	5 6	3 6	900	00	0	8	900	8	2 5	2 0	Š	3 6	0,0
					-		0.558								0.418								0.417								0,278
						0.657	0.559							0.556	0.279							0.556	0.278							0.279	0,278
						0.31	0.31							0.31	0,15			-				0,31	0.15							0,15	0,15
						0.02	0.00				,			20,0	0,0							0,02	00							10'0	100
15,838	15,542	15,654	15,697	15,845	15,480	15,357	15,417	15,813	15,563	15,642	15,664	15,865	15,446	15,350	15,394	15,829	15,548	15.642	15,683	12,712	15,441	15,343	15,342	15,831	15,531	15,642	15,700	14,891	15,413	15,371	15,367
33,211	32,651	32,856	32,367	820'68	30,341	32,519	32,720	33,181	33,060	32,961	32,692	33,153	32,650	32,586	32,588	33,015	32,894	32,807	33,100	29,984	32,778	32,657	32,471	32,776	32,671	32,910	33,058	32,175	-32,396	32,574	32,743
17,216	16,955	17,047	16,515	17,071		17,010	17,150	17,211		17,164	16,873	17,131		П	17,042	17,029	17,192	17,010	17,262	17,146	17,184	17,162	18,977	16,788	16,986	17,113		17,137	16,830	17,051	17,224
	2	m	4	us.	θ	7	æ	•	cv	9	4	ທ	ę	7	8	,	2	ო	4	2	9	_	8	-	CV.	9	4	.c	9	7	89
			23	3							99	3				_			9	3							2	Į			

Diffusion experiment with SPM 907 patches on full human skin

Experiment number: 907DF002

Purpose of the study:

To investigate the release rate of SPM 907 from four different formulations of patches. The present experiment is the first in a series of four in which the flux from the four formulations through skin from four different donors is measured. The fluxes through the supportive membrane have been investigated in a previous experiment.

Patch:

Active Ingredient: SPM 907

Batch numbers: 20012029, 20012036, 20106043 and 20106061

Patch area; (variable)

Active ingredient content: app. 15% m/m

Skin donor:

Birth date: 06.12.1983

... Sex. female

Skin from: breast

Thickness of dermatomised skin: approximately 290 µm, skin in cell 8 was app. 350 µm.

Diffusion experiment:

Date: 10 to 13 october 2001

Used cells:

diffusion cells with spiral groove (n=8); groove area: 0.552 cm2

Separator between acceptor phase and skin/patch:

Sillcone sheeting (Silastic sheeting), implant grade elastomer non sterile, non-reinforced;

Manufacturer: Nagor limited, P.O. Box 21, Douglas, Island of Man

Cat: nr. NA 500-1, Thickness 0.125 mm, Lot nr. 11603/1/

No special pretreatment, other than cleaning, applied.

Diameter of separator, skin and patch punch-outs: 1.8 cm.

Setup diffusion cells:

Cell nr. Batch 1 & 2 20012029 3 & 4 20012036 5 & 6 20108043					5 N 7 T 2
-3 & 4 20012036 5 & 6 20106043		Cell nr.	hajariji (A)	Batch	
5 & 6 20106043	and the state of t	1 & 2		2001202	9
보내가 되는데 나는 그렇게 하는 사람들은 사람들은 그 살이 한 하는데 되었다. 사람의 본 이 후 45년 일본 영화를 했다다.		384	the second second second second	1 3 Th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		5&6	**** W.S. Office 55***	2010604 2010606	÷1

Acceptor phase:

PBS pH=6.2

Measured temperature waterbath: 32,0 °C Flux of acceptor phase: 5 ml/hour.

Total duration of the experiment: 72 hours, samples are collected in 3 hour periods

Observations during dermatomisation, cell assembly, disassembly, etc.

No special observations.

1 of 6

Diffusionexperiment907DF002_B.xls

ctions	g/mi
cted fra	1,008
fass and volume data on the collected fractions	acceptor phase:
ata on t	measured density of the used acceptor
lume d	ured density of the L
and vo	asured d
Mass	me

(

1,812

Faktor zur Umrechnung auf cm*-

		SERVICE POLICE OF COLUMNS OF THE PROPERTY OF T		3	000						0000		0,145						}	0.870						0.145			2,5		
- Englishmen	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TI UQCIT	0000							0000			0,290							200						286					
新教科技会		Oliver of the Coliver								0.000	000	0000	0,160				0	150							8	0,160	0800	36.0	3		
Diametor			-		. 0					0	0	•	о <u>,</u>					2	200	000	<u>.</u>					0.0	900	3 6	3		
民 经 教徒	Alche Marchine	INTERCEMENT	0.580		0.290		0.289		0.284												•										
Fractions	4 97	_اك											0000	200	3 6	2000	0000	0000	0000	0000	0.000	0000	0000	0.000	0000	000	0.000	0000	0000	0000	000
20 - 10 mg - 1 mg	Trans.	0000			0,160	0,162	0,157	0.156	0.157	Ŀ	0	0	0	o c	o c	_	٥		_	0		· 6	· 6	0	C		ō	0	0	0	0
HOIG	- JEVEN	000	5 6	000	0,0	0,0	10,0	0,01	0,01	00'0	0,0	00,	0 0		200	000	000	000	0.00	000	00.0	000	000	000	00.00	8,6	00.0	000	8	0,0	00.0
	Mittelwort																														
Fraction	AF-21-849					-																									
	uomi uorracijor Feet 812 Mittelwer							0,000	0,000						0000	000							0000	0,000							000
8272	novm!							0	0						٥	a		٠					0	0							0
volume	fraction	16,075	15,951	15,959	16,014	16,212	15,709	15,606	15,725	16,115	16,026	15,993	16,240	15.789	15,597	15,781	16,092	16,007	15,995	16,007	16,248	15,760	15,608	15,778	16,067	16,003	15,998	15,993	16,231	15,774	15,618
. A . T.		33,268	33,311	33,225	33,212	33,501	32,990	32,997	32,889	33,218	83,123	92,047	33.511	33,188	32,921	33,052	33,261	33,200	33,343	33,172	33,553	32,965	32,796	33,061	33,469	33,364	33,359	33,169	33,626	33,089	32,813
mass tubes (g)	empty	17,083	17,231	17,137	12,069	17,158	17,154	17,265	17,037	16,973	200	17.253	17.140	17,272	17,198	17,144	17,039	17,064	17,219	17,036	17,174	17,078	17,062	17,156	17,272	17,232	17,232	17,047	17.264	17,188	200
が、主人	cell nr.	-	7	8	4	2	9	^	8	- (N	٥٩	2	9	7	8	-	2	က	4	2	9	7	8	-	2	m	4	20	9 1	
Flux time	(hours)				m)	5				-4-	(٥	<u> </u>						Ø)				<u>t</u>		_!,	5			r e.l.

•		0,435		305				_		18	_	- 386 - 366					<u>-</u>	1		86				_		S S		82			
_		0,4		-	_					0,435		<u>-</u>						0,577		1,298						0,865		2,018			
		0,869						-	000'0	0,869	2,319	0,290					000'0	1,154	2,019	0,577					0520	4,40	2,882	1,153	,-		
1	0000	0,480	1,277	0,160					000	0,480	1,280	0 160		•			000'0	0.637	1,114	0,318					0,160	0,795	- - - - - - -	0,637			
-		0,03	0,08	0,01					0	ဗ ဝ	8 0 0	0,0					ō	<u>\$</u>	0,07	0,02					00	9	0,10	8			
-		0,291		0,145		0,290		0,141	;	0,290		000		0,143		0,428		000		000		0,147		0,141,		2, 4 \	-	0,288		94.	
1000	אלאלים	0,290	692,0	000'0	0,294	0,285	0,283	3	0,291	200	3 6	2000	200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200	0,572	000	0000	000	000	0,293	000	200	200	3 8	0000	22.0	788	0,293	2 6	7 000
4	0 0	09.0	20	000	9	0,158	200	2000	191.0	2 6	3 6	3 8	3 .	2 2	5,0	0,316	000	000	000	00,0	2 6	3 1	0 0		2 0	2 1	2 0	60,10	200	3 1	2 c
500	5 6	5 6	5 6	0 0	5 6	5 6	5 6	200	5 6	5 8	3 6	3 8	3 6	5 6	5 6	N C	3 6	9 6	8 6	3 6	5 6	3 6	5 6	3 5	3 5	2 6	2 6	5 6	5 6	3 6	5 6
-																+								+	_	_					
-	_							 							·	+							-		_			_			
_				•			2 2		•					Č	· c	,						_						_		_	0
						2	0000							0.00	000	5	•			•		0.00	0000							000	000'0
						C	0		•					0	0							0	0							0	0
16,093	15,989	15.966	15.978	16 238	15 756	15,610	15,797	16,071	15.990	16,000	16,003	16.224	15,750	15,615	15.790	15,994	15.025	15.919	15.92	16.174	15,695	15,533	15,707	15,998	15,897	15,906	15.915	16.164	15,664	15,545	15,721
33,356	33,339	33,254	33,187	33,513	32 833	32.849	1	╀	╁╌	ļ. 1	33,251	33,332	32,968	⊢	Ι.	32.677	Ļ	33.238	} -	누	<u> </u>	_	_	32,906	33,307	-	L	<u> </u>	-	<u> </u>	33,151
17,133	17,221	17,159	17.080	17.144	16.950		⊢	17,087	16,704	16,880	-	!	17,091	16,910	16,902	-	╁	┿-	١	-	17,098	17,147	17,063	16,779	Н	17,038	<u> </u>	16,955	Н	17,089	17,303
-	Ø	က	4	r.	9		8		2	3	4	ည		7	8	_	2	က	4	ιΩ	9	7	8			8	4	2			8
			Ţ	2							α	2					L .	!	2	7					l		22	† †		_ [

	_	3,865		2,017						152		1,872					Γ	296		Ŝ		<u></u>		7		<u>z</u>		88		-	
	-											£,						7		2,442						1,294		2,588			
	0,290	1,441	2,592	1,44					0,578	1,726	2,016	1,727			-		0,868	1,724	2,299	2,586					0,865	1,723	2,301	2,874			•
	0,160	0,795	1,431	0,795					0,319	0,952	1,112	0,953					0,479	0,952	1,269	1,427					0,478	0,951	1,270	1,586			
-	0,01	0,05	60,0	0,05	•				0,0	90,0	000	90,0					0,03	900	0,08	60'0					၉၀၀	000	800	0,			
-		0,145		0,288		000				0,145		0,144	i	0,288		0,283		0,288	••••	0,431		0,288		0,140 T	000	2,768		0,575		0,288	0
	0,290	000'0	0,288	0,288	000,	000,0	0,26	3 6	0,289	000,0	200	0,288	0,282	0,283	0,282	0,284	0,289	0,287	0,287	0,575	282	2 6		3 8	200	1970	0,863	0,287	0,292	0,283	20,20
	0,160	000	6,159	861.0	2 6	3 1	000	3	2 6	3 6	3 5	200	בי קילי	90	8	0,157	6 8	0,159	0,159	0,317	5 5	2 4	8 8	3 5	200	0 (0,4/6	0,100	0,161	0,156	0,135
200	0,0	0,0	5 6	5 6	3 8	3 8	5 6	3 2	5 6	3 8	3 8	5 6	5 6	5 6	5 6	500	0,0	5.0	0,0	20,0	2 6	5 6	5 6	3 6	5 6	5 6	200	5 6	5 6	- 5 &	0 0
-																+		_						1.							
-		-						+				<u> </u>				+			<u></u>			-									-,-
_						0000	0000			· · · · · ·				200	3 6	3						0.000	0000	L						- 1000 0	0000
_			•		_	-	0	-		-				-	-	}				-			0							6	
	100	Jin	iro	. _		Ī			ا ا	J	<u></u>	ı.	1	I.	1.		.T.	J.	T	. .	1_	T	T	_	T	1 .	i	1	1	_	
15.987	15.908	15.895	15.906	16.154	15,669	15,508	15,704	15.949	15,872	15,891	15,889	16.137	15.636	16 537	15 677	15 985	15,880	15,857	15.855	16.114	15,640	15,505	15,688	15,922	15,844	15.874	15,863	16.121	15,616	15,509	15,655
33,272	33,213	33,345	33,189	33,108	32,893	32,719	32,877	33,305	33,126	33,142	33,119	33,400	32,962	32.765	32.812	33,103	33.175	33.152	33,041	33,221	32,996	32,737	32,994	33,461	33,025	32,897	33.262	33,482	32,931	32,777	32,718
17,156	17,177	17,322	17,155	16,824	17,098	17,086	17,046	17,22,71	17,126	17,123	17,102	17,133	17,200	17,103	+	┢	┾	17.167		╄	17,230	Η,	17,179	Н		16,895	17,271	<u> </u>	17,189	17,143	16,937
	2	က	4	5	မ	7	8	-	2	က	4	9	9	7	æ	-	~	8	4	S	9	7	8	-		တ	4	D.	9		80
			07	7					!	!	,	3					1	· <u> </u>	ç	3	,						36	3		i	

•		1,565		2,556			•			,565	•	3,551					_	1,849		3,979						1,848	-	3,835		***	
	143	1,987	2,270	2,842				!	1,142	1,988	2,842	4,260			•		1,427	2,271	3,410	4,547				I	1,427	2,270	2,841	4,830			•
	0,631	980	1,253	1,568					000	1,097	, 568 1,568	2,351	-				0,788	1,253	1,882	2,509					0,787	1,253	-,568	2,665			
4	40,0	70,0	3 7	r.	-	-		,	5 6 5 8)))	0,10	c.'o					0,05	90'0	0,12	0,16				- 1	SO, O	90,0	0.0	0,17			
_	i c	200,0	ř	01/0	Š	7284	02.0	8/3/0	2	200,	i c	709'0		0,284	!	0,278		0,427		0,710		0,284 405,0		6/2/6		242		0,568		0,284	0 220
7	1,000	000	000	000	2000	3070	7750	000	0070	A 6	000,	2,130	27.00	8/2/0	077,9	1870	 	987	0,568	0,852	882,0	0000	0,7,0	5 6 5 6	3 6	40,40	200	0,852	0.7.0	0,279	0,2/8
246	2 6	200	2,0	2 0	20,00	2 4	, c	3 0	0.00	2 6	2 6	7 0	2,0		2 .	2,5	0,315	0,157	0,314	0,470	2 0	2 6	20,00		2 4	2 .) ci 'o	0,470	20.0	2, c	5 to
1000	2 5	N 6	2 0	200	5 6	2 6	200	200	5 6	3 5	2 2	5 6	5 6	2 6	2 6	2 6	יי מי	500	o'o	3 6	2 6	5 6	5 6	200	5	2 6	5 6	500	5 6	5 6 5 6	000
_					-											1	_				•			†	,			_			•
					•	••		ĺ				_							-									••			
•	•					0000	0000				-			0000	000	200						0.00	000			÷				0000	0,000
						0	0				•			0	· C							ō	0			-	-	•		_	0
15,767	15,662	15,662	15,682	15,934	15,442	15,307	15,462	15,760	15,671	15,684	15.673	15,918	15,410	15.319	15.491	15.754	15 668	15.684	5 682	15.931	15,452	15,322	15,489	15,750	15,660	15.679	15.678	15.923	15,417	15.329	15,495
32,874	32,706	32,769	32,801	33,025	32,812	32,609	32,765	33,013	32,716	33,113	33,036	33,294	30,240	32,612	32.824	32.857	32 733	32.886	32,755	33,125	32,829	31,911	32,688	32,888	33,150	32,987	32.889	33,075	+	+-	32,806
16,980	16,918	16,981	16,992	16,962	17,245	17,178	17,178	17,126	16,919	17,302	17,237	17,248	14,706	17,169	17,208	16.976	16,941	17.075	╁	╁	-	16,465	17,074	17,011	17,364	17,181	17,084	├-	17,106	├	17,186
+	2	3	4	5	9	7	8	-	2	က	4	2	9	7	80	_	2	က	4	က	9	7	8	-	2	က	4	2	9	7	89
			30	3		. J					42	<u>.</u>						<u>. </u>	, L	7	· · · ·			!			Q.) }		<u></u>	

_	200	70/17	000 3	200					0	000'		0			•			, 20 20 20 20 20 20 20 20 20 20 20 20 20	•	5,855				٠	ç	504.0	,	744			
2 28E	1 6	5 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	200	2				7000	0 0	40,4	1,000	9 3					7,281	2,835	4,535	7,376				1 200 0	107,4	0 t	701,0	5/5,			
1 261	707	0 6.F.F.	200, 6	3				1 250	55.5	200	3 6	ر ا ا				0.0	PCN I	8	2,503	4,0/1				1 250	3 0	20,0	Z,018	A 20,4			
0.08	0.11	2	200	- 1			_	900	3 6	2 5	- U	3				8	5 6	2 (0,16	9				80.0	3 4	2 0	<u>0</u> 6	07.0			
_	0.580	}	0.852		786	5	0.979	<u> </u>	1670	, i	6000	26.0	786.0	5 0 0 0	- 020		- 000	2000		1,54		# N	020	77.0	0 5.60	2	4 4 9E	3	7000	£ 07.5	6220
0.571	0.567	568	35	0.288	0 280	278	283	0.570	283	86	1 410	9 BC	2000	27.00	0000	200	2000	2000	200	* C	0070	27.0	080	0.570	0 567	200	2 5	000	026	170	0.280
																															0.154
													•			۱						•	•								0,0
		•			·			-		_						1		_													_
					_																			_					•		
			<u>-</u>		Harve	000	0000		·					80	0.000		••••						0000							000	0,000
		- .	_				0 0	L							0								0							<u>0</u>	
											1	i	1				7	1		·	_					r		_			
15,764	15,650	15,678	15,668	15,911	15,430	15,323	15,488	15,736	15,640	15,667	15,664	15,905	15,435	15,306	15,478	15,735	15,644	15.641	15,657	15.918	15,389	15,305	15,470	15,738	15,644	15,659	15,660	15.908	15,399	15,307	15,434
32,899	32,784	32,858	32,846	33,113	32,645	32,368	32,801	32,887	32,909	32,999	32,902	33,057	32,589	32,427	32,487	33,077	32,949	32,917	32.944	33,386	32,634	32,589	32,656	33,031	32,868	32,654	32,800	33,174	32,701	32,401	32,725
17,008	17,008	17,053	17,052	17,074	17,090	16,921	17,188	17,024	17,143	17,206	17,112	17,024	17,029			17,215	17,179	17,150	17.161	17,340	17,121	17,160	17,061	17,166	17,098	16,869	17,014	17,138	17,178	16,970	17,166
-	Z	6	4	5	ပ	7	8	-	2	ဗ	4	ıo	9	7	8	1	2	3	4	i,	မွ	7	8		7	ဗ	4	rΩ	9	7	8
ļ		i_	بر ا	•			1	!			77	<u>-</u> !	!				ا ا	_	E 1	ò	l			1				3	· [!	
<u> </u>						-									_,		_		-												┙

-	,	0,40g	000	700,0					0	2,404	000	005,0						3,264		660'9				Ĭ		رة 1 <u>5</u>	1	6,522	· · · ·		
000	7,207,	4,030	2,092	5.					277.0	4,4	7,00	700					2,280	4,248	5,392	6,807				1	7700	000	0/9'6	5/5'/			
1000	2024	2,000	2,970	P F				7	2,0	7,0	L'814	ţ.					, 150 100 100 100 100 100 100 100 100 100	7,344	2,976	3,756	-	•		020	60,0	60,100	20.0	4,00V	•		
Poor	5 6	2 0	5 0	2	•	•		90,0	2 0	2, 5	2 6	0,40		,		3	5 6	5	0,19	0,24		••	•	200	2 5	<u> </u>	S C	9 5			
	0 5.00	8	1 134		1900	toy'o	0.417	t.	084	2	000	2000	4000	0	0	5/N		2000		0,851		402,0	0.970	77.0	0 50	200	0		C	2020	0.070
																															200
0.315	2 6	0.470	0,782	0.159	0 154	908	0.155	0.314	0.00	0,470	0.827	0,0	200	5 6		200	2 6	0.00	0,313	0,626	2 4	100	2 5	0.315	2 6	2 6	5.00	2,00	2 7	0.55	2, C
80	0	000	000	0.0	100	0 0	0.0	200	200	600	0.00	000	5	5 6	5 6	5 5	3 5	200	O, 0	3 6	5 6	5 6	5 6	8	0	0	2 2	2 5	2 6	500	000
																											•				
				-	•	-				•															•						
						0000	0000							0.000	0000	2			•			0000	000				•		-	0000	000
						0	0								C	,						O	0							0	O
15,745	15,641	15,661	15,647	15,895	15,417	15,291	15,477	15,703	15,630	15,653	15,670	15,900	15,401	15,321	15,465	15,730	15,630	15 663	15,650	15,915	15.379	15,298	15,461	15,730	15,634	15,647	15,651	15,889	15,394	16,282	15,471
33,066	32,724	32,829	32,896	33,179	32,563	32,542	32,764	32,343	32,752	32,829	32,400	33,230	32,800	32,630	32,776	32,920	32,936	32,926	30 871	33.192	32,616	32,569	32,631	33,058	32,832	32,826	32,981	33,009	32,564	32,549	32,628
17,194	16,957	17,042	17,123	17,156	17,022	17,128	17,162	16,513	16,996	17,050	16,604	17,202	17,275	17,185	17,186	17,063	17,180	17 137	17,093	17.149	17,113	17,148	17,045	17,201	17,072	17,053	17,204	16,992	17,046	17,144	17,032
-	2	6	4	2	9	7	8	+	2	6	4	2	ဖ	7	80	_	2	6	4	S	9	7	8		N	3	4	5	9	7	8
			8	}							ű	3							ç	20				•			72	1			

Analysenzertifikat in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-TDS SPM8302

Ch.-B.:

20003028

28.03.2000

Soligehalt:

4,0 mg

TDS-Fläche: Analysendatum: 5 cm²

Analysen-Nr: ABV vom :

IN168A-B analog OBU 0469.100

Bemerkungen:

9 Wochen lebend, 4 Wochen TK-Schrank; SKH-1&

1=170 μm; 2=175 μm; 3=148 μm, 33,3g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VT 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		m (Discetat / 5c	m²		mg Monoacetat/5cm2**
Zeit (h)	1	2	3	MW	SD	MW
3	1,15	0,81	2,25	1,40	0,76	0,31
6	2,15	1,95	3,76	2,62	0,99	0,54
24	4,13	4,78	5,19	4,70	0,54	0.99
30	4,30	5,19	6,23	4,91	0,53	1,02
48	4,42	5,40	5,25	5,02	0,53	1,03

**Da für Monoacetat keine Standardsubstanz vorliegt, wurde der auftretende Peak bei RT 6,8 ohne Berücksichtigung des MG in Discetat umgerechnet. SD = Standardabweichung MW = Mittelwert

Achsenabschnitt (b)= Regressionskoeffizient (m) =

1,98 0,08

m g mg/h

Korrelationskoeffizient (r) =

0,88839

			ig DIOH / Scn) ²	
Zelt [h]	1	2	3	MW	SD
3	0,26	0,20	0,32	0,26	0,06
6	0,47	0,39	0,62	0,46	0,07
24	1,07	1,05	0,93	1,02	0.07
30	1,13	1,10	0,96	1,06	0.08
48	1,19	1,15	88,0	1,10	0,11

Achsenabschnitt (b)= Regressionskoeffizient (m) = Korrelationskoeffizient (r) =

0,35 0,02 0,90552

mg mg/h

 $Q = t \cdot m + b$ $Q = Freisetzung in \mu g/5cm^2$ t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(In), PHA

Projektgruppenleiter, PGIV

L:\Projekte\Proj-gr4\INZ\MHP\20003028_1.DQC

Analysenzertifikat in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-TDS SPM8302

Ch.-B.:

20004038

Soligehalt:

Analysen-Nr:

IN189 A.B

TDS-Fläche: Analysendatum: 5 cm² 17.04.2000

ABV vom:

analog OBU 0469.100

Bemerkungen:

7 Wochen lebend, 2 Wochen TK-Schrank; SKH-13

1=159 µm; 2=165 µm; 3=146 µm, 31,9 g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VT 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

	· 	mç	Discatet / Sc	m²		mg Monoacetat/5cm2-1
Zeit [h]	1	2	3	MW	SD	MW
3	0,14	0,15	0,20	0,18	0,03	0,04
6	1,21	1,17	1,28	1,22	0,06	0,22
24	2,27	2,17	2,35	2,27	0,09	0,41
30	2,48	2,37	2,54	2,46	0.09	0,43
48	2,75	2,63	2,75	2,71	0,07	0,46

**Da für Monoacetat keine Standardsubstanz vorliegt, wurde der auftretende Peak bei RT 6,8 ohne Berücksichtigung des MG in Diacetat umgerechnet. SD = Standardabweichung MW = Mittelwert

Achsenabschnitt (b)= Regressionskoeffizient (m) = 0,62 mg 0,05 mg/h

Korrelationskoelfizient (r) =

0.89901

Zelt [h]	1	2	3	MW	SD
3	0,07	0,07	0,08	0,07	0,01
6	0,38	0,39	0,37	0,38	0,01
24	0,71	0,72	69,0	0,71	0,02
30	0,77	0,77	0,72	0,75	0,03
48	0,83	0,83	0,77	0.81	0,03

Achsenabschnitt (b)≈ Regressionskoeffizient (m) = Korrelationskoeffizient (r) =

0,21 0.02 mg/h 0,89243

mg

 $Q = t \cdot m + b$ Q = Freisetzung in µg/5cm2 t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

L:\Projekte\Proj-gr4\INZ\MHP\20004038_1.DOC

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-TDS SPM8302

Ch.-B.:

20004039

Sollgehalt:

TDS-Fläche: Analysendatum: 5 cm² 17.04.2000

Analysen-Nr.

IN189 A.B

ABV vom:

analog OBU 0469.100

Bemerkungen:

7 Wochen lebend, 2 Wochen TK-Schrank; SKH-1&

1=180 μm; 2=165 μm; 3=143 μm, 34,0 g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VT 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		mg	Diacetat / 5c	m²		mg Monoacetat/5cm²
Zelt [h]	1	2	3	MW	SD	MW
3	0,11	0,25	0,59	0,32	0,25	0.09
6	0,90	1,04	1,17	1,03	0,13	0,22
24	1,71	1,82	1,74	1,76	0,05	0,37
30	1,84	1,92	1,78	1,85	0,07	0,38
48	1,97	1.99	1.81	1.92	0.10	0.39

"Da für Monoacetat keine Standardsubstanz verliegt, wurde der auftrelende Peak bei RT 8.8 ohne Berücksichtigung des MG in Discetat umgerechnet. MW = Mittelwert SD = Standardabweichung

Achsenabschnitt (b)= Regressionskoeffizient (m) = 0,65 mg 0,03 mg/h

Korrelationskoeffizient (r) =

0,87148

		Ţ	ig DIOH / 5cm	ŋ.ż	
Zelt [h]	1	2	3	MW	SD
3	0,08	0,08	0,13	0,09	0,04
6	0,32	0,33	0,34	0,33	0,01
24	0,60	0,58	0,55	0,58	0,02
30	0,84	0,60	0,57	0,60	0,03
48	0,68	0,63	0.58	0,63	0,05

Achsenabschnitt (b)= Regressionskoeffizient (m) = Korrelationskoeffizient (r) =

0,20 0,01 0,87353 mg

 $Q = f \cdot m + b$ Q = Freisetzung in μ g/5cm² t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

L:\Projekte\Proj-gr4\INZ\MHP\20004039_1.DOC

Diffusion experiment with SPM 907 patches on full human skin

Experiment number: 907DF003

Purpose of the study:

To investigate the release rate of SPM 907 from four different formulations of patches. The present experiment is the second in a series of four in which the flux from the four formulations through skin from four different donors is measured. Because of low flux values in the first experiment in this series, the silastic sheeting supportive: membrane has been replaced with dialysis membrane.

Patch:

Active ingredient: SPM 907

Batch numbers: 20012029, 20012036 and 20106061

Patch area: (venable)

Active ingredient content: app. 15%-m/m

Skin donor:

Birth date: 1969

Sex: female

Skin from: abdomen (belly)

Thickness of dermatomised skin; approximately 240 µm -

Diffusion experiment:

Date: 15 to 18 november 2001

Used cells:

diffusion cells with spiral groove (n=6); groove area: 0.552 cm²s.

Separator between acceptor phase and skin/patch:

Diachema dialysis membrane, type 10:14, supplied by Dianorm, München, Germany.

Manufactured from neutral cellulose, molar weight cut-off: 5000, thickness (dry): 25 µm.

Pretreated according to the manufacturer's recommendations:

Diameter of separator, skin and patch punch-outs: 1.8 cm.

Setup diffusion cells:

	Cell nr.		Batch
	182		20106061
	1 2 de -	31.77 Land 1.00	20. 10. 12. 1
	586	The of the	DED ALL OF P. 1771
2,700,000,000	3 & b	Land of the state of	20012036

Acceptor phase: PBS pH=6.2-

Measured temperature waterbath: 31,9 °C Flux of acceptor phase: 5 ml/bour

Total duration of the experiment: 72 hours, samples are collected in 3 hour periods.

Observations during dermatomisation, cell assembly, disassembly, etc.

- 1.) The total area of good quality skin on the delivered pieces allowed the punch-out of no more than six disks for use in the experiment. Therefore, only three of the four batches were tested.
- 2.) The skin disk in cell 1 contained a thinner area on one side.
- 3.) The skin disk in cell 6 was thinner on the whole area.
- 4.) The skin disks in cells 2, 3, 4 and 6 showed spots from the blue marker used to mark unusable areas on the skin pieces. Traces of the blue dye might be found in the corresponding diffusion samples.

fractions
he collected
a on t
data
volume
ass and vo

(

	7Y				(:n			ဖ						6							12							Ļ	<u>.</u>					5	2		
	aix	Mittellwart				8.217	;	5.538				8.769	;	8008	2000			8.998	2	6.808	2			8.778	1	7.522				9.191	•	8,626		•		9.193		9,338
	FractionxE	linkema			15.873	0.562	0.582	10.515			17,258	0.281	1.404	10.788	22		46.118	0.562	0 507	11 089			16.151	1.405	3.656	11,389			15,571	2,811	4.785	12.468			14.790	3.597	6.097	12,580
	進	Pol De			8.760	0,310	0.310	5.803			9,524	0,155	0.775	1905			200	0.310	200	6.120			8.913	0,775	2.017	6285			8,593	1,552	2,640	6.881			8.162	1.985	3365	6,942
	FrectionXF	ino/mi			0.56	0.02	0	0.38			0.61	0	0.08	98.0	25/5		0 57	<u> </u>	900	9.0			0,57	0,05	0.13	14.0			0,55	0,10	0.17	0.45			0.53	0.13	ឧ	0,46
		locen* Mittelwer luc/m		0,718		0.848		1,111		0,863		1,554		2,508		1 295		2.256		3,629		1.582	<u> </u>	2.964	•	4,477		1,869		3,811		4.477		2.123	•	4,588		5,787
	ractionxF	Llacent	0.870	0,586	1.134	0.562	0.562	1.660	1.161	0,566	2,546	0,561	2,526	2,490	1 741	0.848	2 827	1,685	069.6	3,327	2.033	1,132	3,400	2,528	5,343	3,611	2,322	1,415	4,530	3,093	5,629	3,325	2.572	1.675	5,302	3,874	6,651	4,923
1,812		Official	0.480	0,312	0,626	0.310	0.310	0,916	0,641	0,312	1,405	0,310	1,394	1,374	198	0.468	1,580	0.930	2,169	1,838	1.122	0,625	1,876	1,385	2,949	1,993	1,281	0,781	2,500	1,707	3,106	1,835	1,419	0.924	2,926	2,138	3,671	2,717
	POR	=	1	0,02	900	0,02	0.02	90'0	90	0,02	60'0	200	60'0	0.00	900	000	Ö	900	41.0	0,12	20'0	8	0,12	60'0	0,19	0,13	90'O	0,05	0,16	0,11	2,0	0,12	60'0	90'0	0,19	0,14	0,24	0,18
aufcm³≖		Wittelwert		0,145						0,145						0.145	ļ					0,432						0,577		•		-		0,851				
Faktor zur Umrechriung auf cm³≃	Fraction			0000					0,290	0000					0.290	000					0,581	0,283				-	0,871	0,283					1,143	0,558				
aktor zur Ur	MINING.	Johnachon	I	0,000					0,160	0000					0.160	0000					0,321	0,156	•				0,481	0,156					0,631	908,0				
g/ml	8272	Juyot	0,01	0					0,01	0	,				0,01				•		20'0	0,0					000	6 0	-,				0,04	0,02	, 1		<u> </u>	
1,007	Volume	fractions (mi)	16,005	15,594	15,642	15,494	15,494	15,271	16,017	15,615	15,614	15,487	15,491	15,266	16,013	15,604	15,603	15,496	15,493	15,300	16,026	15,821	15,837	15,502	15,519	15,330	16,019	15,619	15,624	15,515	15,532	15,291	15,770	15,407	15,400	15,270	15,295	15,092
d acceptor phase:	(b) seq		33,097	23.862	32,718	32,573	32,635	32,350	33,289	32,907	33,00g	32,767	32,717	32,548	33,002	32,988	32,743	32,838	32,426	32,434	33,253	32,781	32,896	32,342	32,908	32,391	33,365	32,870	β,/gΕ	32,700	32,590	32,608	33,094	32,564	32,502	32,564	28,562	32,369
measured density of the used acceptor		empty	16,976	17,155	16,962	16,966	17,028	16,968	17,156	17,179	17,281	17,157	17,113	17,171	16,873	17,271	17,027	17,229	16,820	17,023	17,111	17,046	17,145	18,727	17,278	16,950	17,230	17,138	200	17,072	16,945	17,206	17,209	17,045	16,990	17,183	17,156	17,167
red densit		cell nr.	-	2	က	4	S	9	-	2	8	4,	2	9	1	2	3	4	. 5	ဖ	-	2	60	4	2	9		N	,	4	9	9	-	2	6	4	6	9
measu	Flux time	(hours)	က						Œ	•	φ										2						15						8	?		_		

			2					,	24					j	27						ဥ္က	-				(99						9		
L.			0	, ,	19 949	2			10.844	5	12 774				11 537		13,500	2000			20 038		15,110	2			12 784		16 485	1	-		13.766	<u>.</u>	17 A74
		16,000	200	300	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200	2006	55 AGO	5,813	0.434	18,118			16 160	8015	10.00	200			18 7.37	7.799	12.475	17.744			16 000	8 577	14 139	18.832	3006		17.863	9.670	15.798	19 949
		462	2,400	100,0	7.243	<u>}</u>		A 75A	8 6	200	8,895			8.00	9 8 6	F 063	900	2		9.236	4.271	5.885	2,793	25		9.376	4 733	7 790	508.01	and a		9.858	5.337	8,719	11,009
		95	7 0	÷ ;	. Q			0.57	<u>ہ</u> ج	7 C	0.50			0.55 85	18	90	80			9.0	0.08	0.45	0.65			0.61	0	0.53	8	3		0.64	0.35	0,57	0.73
	007.0	Ž,	A 148	į	5.783		2.401	į	5.554	5	6.615		2.545	}	6.385		7 298		2396		6.110	<u>:</u>	7.709		2.399	ì	6.246	<u>}</u>	7.845	2	2.397		6,388		8.282
2 857	200	7 ARK	200.4	900	5.469	2.852	949	6.125	4.983	7.767	5.464	2,859	2,230	6.408	6.361	8.310	6.284	2.566	2 225	6.416	5,804	8,594	6.825	2,569	2.228	6.406	6.087	8.867	6.823	2,589	2.228	969.9	6,078	9,146	7,378
157	92.0	20.0	2 746	200	3018	1.574	1076	3.380	2,750	4.286	3,015	1,578	1.23	3.537	3,511	4.587	3.468	1.416	1,228	3,541	3,203	4.743	3,766	1.418	1.230	3,535	3,359	4.894	3,766	1.418	1.228	3,697	3,354	5,048	4,072
0.10	500	\$ K	ξ. α	000	200	9	0.07	220	0.18	0.28	(2)	0,10	80.0	200	0.23	0.30	0.23	60'0	0.08	0.23	0,21	0,31	0,25	60'0	0,0	0,23	0.22	0.32		60.0	80.0	0,24	0,22	0,33	0,27
•	0.050	2					0.991			_								-	0.988						0,989			_	-		0,849				
1.143	0 557	2				1,426	0.557	ļ				1,430	0,836	•				1,141	0,835	•				1,142	0,836					1,142	0,556				
0.631	0.307		,			0,787	0,307					0,789	0,462	•				0,629	0,461					0,630	0,461					0,630	0,307				
9.04	000	1				0,05	0,02					0,05	0,03					0,04	90'0					0,04	60,03					0,04	20'0				
15,768	15.368	15,387	15.257	15,293	15,090	15,741	15,366	15,364	15,277	15,308	15,076	15,778	15,384	15,376	15,264	15,290	15,077	15,737	15,352	15,394	15,253	15,300	15,066	15,753	15,371	15,371	15,269	15,293	15,063	15,753	15,355	15,403	15,247	15,296	15,081
32,790	32.448	32,616	32,410	32,458	32,398	32,728	32,545	31,559	32,284	32,631	32,326	33,073	32,549	32,652	32,038	32,418	32,159	32,918	32,361	32,729	32,201	32,469	32,341	32,950	32,658	32,576	32,542	32,604	32,348	32,840	32,615	32,522	32,488	32,497	32,123
16,907	16.968	┼	17,042	17,054	17,198		17,067	16,083	16,896	-	Н	┥		Н	16,663		Н	ᅥ	16,897	-	┥	\dashv	\dashv	\dashv	17,175	-	-	\dashv		-		-	+		16,932
<u>ب</u>	2	က	4	ro.	9		C)	3	4	5	9	-	~	က	4	2	9	7	2	3	4	က	9	-	2	6	┩	ιO	9	-	2	တ	4	20	9
	24							!	27							98						33						38	<u> </u>						

	 _	 	1	, , , , , , , , , , , , , , , , , , , 	т
36	54	45	84	51	. 42
15,532	16,080	16,508	16,778	17,310	17,874
20,026 11,039 18,819	19,736 12,424 20,205	20,313 12,703 21,596	20,302 13,249 22,383	8,52,83 8,52,83 8,52,63 8,53,63	21,127 14,620 24,057 25,650
11,052 6,092 10,386	10,892 6,857 11,151	11,210 7,011 11,918	11,204 7,312 12,353	11,497 7,608 12,831	11,660 8,068 13,276
0,72	2,00 17,00 18,00 1	0,48 0,73 0,78 0,78	0,73 84,0 12,0 12,0	0,75 0,50 0,84	0,76 0,53 78,0
5,818	2,112 5,679 7,495	1,968	5,541	1,686	1,685 5,280 7,141
2,278 1,944 5,841 5,785 8,579	5,279 1,945 5,559 5,798 8,580	1,992 1,946 5,769 8,306 6,270	1,994 1,942 5,562 5,521 6,843	1,707 1,665 5,000 5,514 8,303 6,995	1,705 1,664 5,004 5,517 8,019
1,257 1,073 3,223 3,196 4,735	1,258 1,074 3,068 3,200 4,735 4,60	1,099 1,073 3,071 3,200 4,584 3,461	1,100 1,071 3,070 3,047 4,880	0,942 0,919 2,759 3,043 4,583 3,308	0,941 0,918 2,761 8,045 4,425 3,457
0.00 0.07 1.5.00	0,09 0,27 0,27 1,52 2,33 1,53 1,53 1,53 1,53 1,53 1,53 1,53 1	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8
0,705	0,705	0,705	0,562	0,582	0,562
0,854	0,855 0,556	0,854 0,556	0,555	0,569	0,568
0,306	0,307	0,307.	0,306	0,314 0,306	0,306
0.03	50,0 50,0	80°0 80°0	20'0 20'0	20°0 20°0	0,02 0,02
15,715 15,325 15,349 15,230 15,273 15,054	15,721 15,337 15,237 15,237 15,275 16,043	15,702 16,333 15,356 15,240 15,280 15,046	15,721 15,307 15,348 15,233 15,250 15,052	15,701 15,318 15,330 15,216 15,275 15,039	15,687 15,308 15,342 15,223 15,280
32,444 32,409 32,555 32,398 32,071	32,737 32,531 32,588 32,590 32,455 32,295	32,843 32,684 32,480 32,480 31,943 32,200	32,969 32,473 32,418 32,593 32,504 32,249	32,717 32,484 32,602 32,291 32,640 32,640	32,456 32,557 32,600 32,534 32,534 32,534
	16,962 17,083 17,216 17,242 17,069			─┤┤┤┤ ┤	16,655 17,147 17,147 17,200 17,145
- 22 63 42 69	- 0 0 4 r 0	- 2 6 4 6 6	- 01 60 44 rv rb	- 01 to 4 to 00	-08489
66	42	45	84	<u>ro</u>	42

	F.7					_	9	3					2	3					99	3					08	3	•				7.0	Ų		
		18,277		25,403			•	18,696	,	26,088				19,388		25,971			,	19,276		27 060				21,717		24,830				20,385		27.231
	21,390	15,16 <u>4</u>	24,907	25,898			21,387	16,005	25,441	26,735			22,507	16,270	26,046	25,896			21,989	16,563	27,660	26,459	i		22,486	20,948	23,236	26,424			22,814	17,956	27,439	27,022
	11,805	8,368	13,746	14,292			11,803	8,833	14,040	14,754			12,421	8,979	14,374	14,291			12,135	9,141	15,265	14,602			12,410	11,561	12,823	14,583			12,591	606'6	15,143	14,913
	0,77	0,55	06,0	0,95			7,70	0,58	0,92	0,98			0,81	0,59	0,94	0,95			67,0	09'0	00,	0,97			0,81	9,76	0,84	0,97			0,82	0,65	66 , 0	0,99
1,686		5,119		6,873		1,685		5,121		6,598		1,544		4,844		8,741		404,1		4,849		6,737		1,405		5,253		5,905		404		4,851		6,058
1,707	9,000	5,238	7,749	5,997	1,706	-,66 <u>4</u>	5,000	5,243	7,466	5,729	1,423	1,665	4,724	4,964	7,758	5,724	1,422	1,387	4,454	5,245	7,745	5,728	1,423	1,387	4,442	6,064	6,362	5,448	4.22	1,386	4,730	4,972	6,929	5,186
0,942	2,760	2,891	4,276	3,310	0,942	0,918	2,759	2,894	4,120	3,162	0,785	0,919	2,607	2,739	4,282	3,159	0,785	0,765	2,458	2,895	4,274	3,161	0,785	0,765	2,451	3,347	3,511	3,007	0,784	0,765	2,610	2,744	3,824	2,862
90,0	0,18	0,19	0,28	0,22	90'0	90'0	0,18	0,19	0,27	0,21	90,0	90'0	0,17	0,18	0,28	0,21	0,05	0,05	0,16	0,19	0,28	0,21	0,05	90'0	0,16	0,22	0,23	0,2	90,0	50,0	0,17.	81.0	97.0	0,19
0,423	-					0,281	•		•			0,281						0,281						0,281						0,281	•			
0,569					0,284	0,277					0,285	0,277					0,284	0,277					0,285	0,277					0,284	0,277				
0,314					0,157	0,153					0,157	0,153					0,157	0,153					0,157	0,153					0,157	0,153				
0,02					10,0	10,0					0,01	0,01					10,0	0,01					10,0	0,0					0,01	0,01		_		
15,697	15,331	15,215	15,273	15,045	15,694	15,307	15,329	15,229	15,261	15,056	15,701	15,312	15,335	15,218	15,292	15,044	15,696	15,306	15,361	15,234	15,265	15,054	15,701	15,309	15,321	15,211	15,266	15,034	15,690	15,301	15,354	15,245	15,296	15,064
32,284	32,765	32,489	32,549	32,131	32,393	32,683	32,380	32,375	32,433	32,396	32,942	32,633	32,621	32,553	32,105	32.242	32,643	32,577	32,588	32,485	32,573	32,307	32,988	32,510	32,564	32,494	32,442	32,215	32,921	32,533	32,585	32,497	32,612	32,246
16,473	┝	Н	_	<u> </u>	۱	<u>-</u>	Н	17,035		-	17,127	_			16,702	17,089	16,633	47,160	17,115	17,140	17,197	17,144	17,173	17,090	17,132	17,172	17,065	17,072	17.117	17,121	17,119	17,141	17,205	17.073
- 2	3	4		9	ŀ	CV.	8	4	5	9	1	2	3	4	2	9	-	24	m	4	10	9	+	2	3	4	2	9	-	~	60	4	ĸ	ဖ
		09								ď	63					22	2					Ç	3					2,	7					

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 Novel Derivatives of 3,3-Diphenylpropylamines

EXHIBIT F

(12) United States Patent

Meese et al.

(10) Patent No.:

US 6,713,464 B1

(45) Date of Patent:

Mar. 30, 2004

DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES

Inventors: Claus Meese, Monheim (DE); Bengt

Sparf, Trangsund (SE)

(73) Assignee: Schwarz Pharma AG, Monheim (DE)

Subject to any disclaimer, the term of this (*) Notice: patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.:

09/700,094

(22) PCT Filed:

May 11, 1999

(86) PCT No.:

PCT/EP99/03212

§ 371 (c)(1),

(2), (4) Date:

Jan. 2, 2001

(87) PCT Pub. No.: WO99/58478

PCT Pub. Date: Nov. 18, 1999

(30)Foreign Application Priority Data

May 12, 1998 (EP) 98108608

(51) Int. Cl.⁷ A61K 31/215; A61K 31/22; A61K 31/225; A01N 37/08; A01N 37/02 U.S. Cl. 514/175; 514/529; 514/530;

514/546; 514/547; 514/548; 549/269; 560/140; 560/255; 564/316

(58) Field of Search 560/110, 108, 560/121, 123, 124, 138, 140, 142, 255;

514/530, 531, 532, 533, 534, 544, 547, 548, 551, 175, 529; 549/269; 564/316

(56)References Cited

U.S. PATENT DOCUMENTS

6,313,132 Bi 11/2001 Johansson et al. 514/277 FOREIGN PATENT DOCUMENTS

wo WO 89/06644 7/1989 wo WO 94/11337 5/1994

OTHER PUBLICATIONS

Nilvebrant et al, "Antimuscarinic Potency and Bladder Selectivity of PNU-200577, a Major Metabolite of Tolterodine" Pharmacology and Toxicology, vol. 81, pp. 169-172 (1997).*

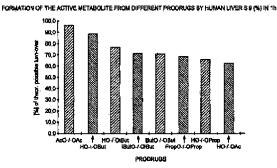
Nilvebrant et al, "Tolterodine-A New Bladder Selective Muscarinic Receptor Antagonist: Preclinical Pharmacological and Clinical Data" Life Sciences, vol. 60(13/14), pp. 1129-1136 (1997).*

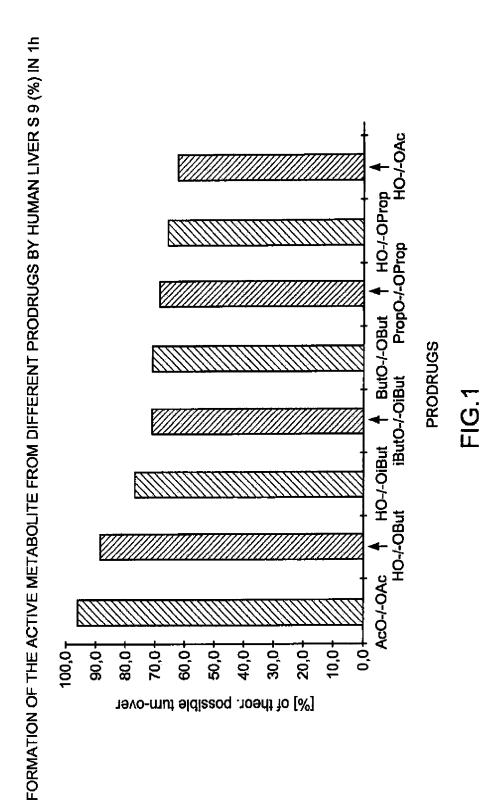
Postlind et al, "Tolterodine, A New Muscarinic Receptor Antagonist, is Metabolized by Cytochromes P450 and 3A in Human Liver Microsomes" Drug Metabolism and Disposition, vol. 26(4), pp. 289-293 (1998).*

Andersson et al, "Biotransformation of Tolterodine, A New Muscarinic Receptor Antagonist, in Mice, Rats, and Dogs" Drug Metabolism and Disposition, vol. 26(6), pp. 528-535 (1998).*

Brynne et al, "Pharmacokinetics and pharmacodynamics of tolterodine in man: a new drug for the treatment of urinary bladder overactivity" J. Clin. Pharm. Ther. vol. 35(7), pp. 287-295 (1997).*

Nilvebrant et al., European Journal of Pharmacology, 327(1997) pp. 195-207.


* cited by examiner


Primary Examiner-John M. Ford Assistant Examiner-Zachary C. Tucker (74) Attorney, Agent, or Firm-Edwards & Angell, LLP; Peter F. Corless; Christine C. O'Day

(57)ABSTRACT

The invention concerns novel derivatives of 3,3diphenylpropylamines, methods for their preparation, pharmaceutical compositions containing the novel compounds, and the use of the compounds for preparing drugs, More particularly, the invention relates to novel prodrugs of antimuscarinic agents with superior pharmacokinetic properties compared to existing drugs such as oxybutynin and tolterodine, methods for their preparation, pharmaceutical compositions containing them, a method of using said compounds and compositions for the treatment of urinary incontinence, gastrointestinal hyperactivity (irritable bowel syndrome) and other smooth muscle contractile conditions.

26 Claims, 1 Drawing Sheet

DERIVATIVES OF 3.3-DIPHENYLPROPYLAMINES

BACKGROUND OF THE INVENTION

The present invention relates to novel derivatives of 3,3-diphenylpropylamines, methods for their preparation, pharmaceutical compositions containing the novel compounds, and the use of the compounds for preparing drugs.

In man, normal urinary bladder contractions are mediated mainly through cholinergic muscarinic receptor stimulation. There is reason to believe that muscarinic receptors mediate not only normal bladder contractions, but also the main part symptoms such as urinary frequency, Urgency and urge incontinence. For this reason, antimuscarinic drugs have been proposed for the treatment of bladder overactivity.

Among the antimuscarinic drugs available on the market, oxybutynin is currently regarded as the gold standard for pharmacological treatment of urge incontinence and other symptoms related to bladder overactivity. The effectiveness of oxybutynin has been demonstrated in several clinical studies, but the clinical usefulness of oxybutynin is limited due to antimuscarinic side effects. Dryness of the mouth is the most common experienced side effect which may be severe enough to result in poor compliance or discontinuation of Treatment (Andersson, K.-E., 1988, Current concepts in the treatment of disorders of micturition, Drugs 35, 477-494; Kelleher et al. 1994).

Tolterodine is a new, potent and competitive, muscarinic receptor antagonist intended for the treatment of urinary urge incontinence and detrusor hyperactivity. Preclinical pharmacological data show that telterodine exhibits a 35 favourable tissue selectivity in vivo for the urinary bladder over the effect on the salivation (Nilvebrant et al., 1997, Tolterodine---a new bladder-selective antimuscarinic agent, Eur. J. Pharmacol. 327 (1997), 195-207), whereas oxybutynin exhibits the reversed selectivity. Tolterodine is equipotent to oxybutynin at urinary bladder muscarinic receptors and the favourable tissue selectivity of tolterodine demonstrated in the preclinical studies has been confirmed in clinical studies. Thus a good clinical efficacy has been combined with a very low number of incidences of dry 45 mouth and antimuscarinic side effects.

A major metabolite of tolterodine, the 5-hydroxymethyl derivative is also a potent muscarinic receptor antagonist and the pharmacological in vitro and in vivo profiles of this metabolite are almost identical to those of tolterodine 50 (Nilvebrant et al., 1997, Eur. J. Pharmacol. 327 (1997), 195-207). Combined pharmacological and pharmacokinetic data indicate that it is most likely that the metabolite gives a major contribution to the clinical effect in most patients.

WO 94/11337 proposes the active metabolite of toltero- 55 dine as a new drug for urge incontinence. Administration of the active metabolite directly to patients has the advantage compared to tolterodine that only one active principle (compound) has to be handled by the patient which normally should result in a lower variation in efficacy and side effects 60 between patients and lower risk of interaction with other drugs.

However, the introduction of an additional hydroxy group in the tolterodine results in an increased hydrophilic property of the new compounds (3,3-diphenylpropylamines) 65 compared to the parent compounds which normally results in a lower absorption/bioavailability, leading to pre-systemic

side effects or interactions due to non-absorbed antimuscarinic drug. In a method to circumvent this disadvantage, different prodrugs of the metabolite have been synthesized and tested for their antimuscarinic activity, potential absorption through biological membranes and enzymatic cleavage.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide novel of the contractions in the overactive bladder resulting in 15 derivatives of 3,3-diphenylpropylamines. It is a further object of the present invention to provide new derivatives of 3,3-diphenylpropylamines which will be more useful as prodrugs for treatment of urinary incontinence and other spasmogenic conditions that are caused by muscarinic mechanisms while avoiding the disadvantage of a too low absorption through biological membranes of the drugs or an unfavourable metabolism.

> A further object of the invention is to provide novel prodrugs of antimuscarinic agents with superior pharmacokinetic properties compared to present drugs as oxybutynin and tolterodine, methods for preparing thereof, pharmaceutical compositions containing them, a method of using said compounds and compositions for the treatment of urinary incontinence, gastrointestinal hyperactivity (irritable bowel syndrome) and other smooth muscle contractile conditions.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the formation of the active metabolite from different prodrugs by human liver S 9(%) in 1 hour.

DETAILED DESCRIPTION OF THE INVENTION

According to the present invention, novel 3,3diphenylpropyl amines are provided, which are represented by the general formulae I and VII'

X represents a tertiary amino group of formula Ia

Formula VII'

wherein R and R' are independently selected from

- a) hydrogen, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, substituted or unsubstituted benzyl, allyl or carbohydrate; 30 or
- b) formyl, C₁-C₆ alkylcarbonyl, eyeloalkylcarbonyl, substituted or unsubstituted arylcarbonyl, preferably benzoyl; or
- c) C₁-C₆ alkoxycarbonyl, substituted or unsubstituted aryloxycarbonyl, benzoylacyl, benzoylglycyl, a substituted or unsubstituted amino acid residue; or

wherein R⁴ and R⁵ independently represent hydrogen, C₁-C₆ alkyl, substituted or unsubstituted aryl, preferably substituted or unsubstituted phenyl, benzyl or phenoxyalkyl wherein the alkyl residue has 1 to 4 carbon atoms and wherein R⁴ and R⁵ may form a ring together with the amine nitrogen; or

Testenty preferably preferably preferably substituted the following groups a) to h):

55

wherein R^6 and R^7 independently represent C_1 – C_6 alkyl, substituted or unsubstituted aryl, preferably substituted or unsubstituted phenyl, benzyl or phenoxyalkyl wherein the alkyl residue has 1 to 6 carbon atoms; or

f) an ester moiety of inorganic acids,

g) —SiR_aR_bR_c, wherein R_a, R_b, R_c are independently selected from C₁—C₄ alkyl or aryl, preferably phenyl, 65 with the proviso that R' is not hydrogen, methyl or benzyl if R is hydrogen,

Formula Ia

wherein R⁸ and R⁹ represent non-aromatic hydrocaryl groups, which may be the same or different and which together contain at least three carbon atoms, and wherein R⁸ and R⁹ may form a ring together with the amine nitrogen,

Y and Z independently represent a single bond between the (CH₂)_n, group and the carbonyl group, O, S or NH, A represents hydrogen (¹H) or deuterium (²H),

n is 0 to 12 and

20 their salts with physiologically acceptable acids, their free bases and, when the compounds can be in the form of optical isomers, the racemic mixture and the individual enantiomers.

The aforementioned compounds can form salts with physiologically acceptable organic and inorganic acids. Furthermore, the aforementioned compounds comprise the free bases as well as the salts thereof. Examples of such acid addition salts include the hydrochloride, hydrobromide and the like.

When the novel compounds are in the form of optical isomers, the invention comprises the racemic mixture as well as the individual isomers as such.

Preferably each of R⁸ and R⁹ independently signifies a saturated hydrocarbyl group, especially saturated aliphatic hydrocarbyl groups such as C₁₋₈-alkyl, especially C₁₋₅-alkyl, or adamantyl, R⁸ and R⁹ together comprising at least three, preferably at least four carbon atoms.

According to another embodiment of the invention, at least one of \mathbb{R}^{2} and \mathbb{R}^{9} comprises a branched carbon chain.

Presently preferred tertiary amino groups X in formula I include the following groups a) to h):

25

5

-continued

$$-N$$

Group a) is particularly preferred.

The aforementioned tertiary amino groups X are described in WO 94/11337 and the compounds according to the present invention can be obtained by using the corresponding starting compounds.

In the compounds according to the present invention, the term "alkyl" preferably represents a straight-chain or branched-chain hydrocarbon group having 1 to 6 carbon 35 atoms. Such hydrocarbon groups may be selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl and hexyl. The term "cycloalkyl" denotes a cyclic hydrocarbon group having 3 to 10 carbon atoms which may be substituted conveniently.

The term "substituted or unsubstituted benzyl" denotes a benyl group $-CH_2-C_6H_5$ which is optionally substituted by one or more substituents on the phenyl ring. Suitable substituents are selected from alkyl, alkoxy, halogen, nitro and the like. Suitable halogen atoms are fluorine, chlorine and iodine atoms. Preferred substituted benzyl groups are 4-methylbenzyl, 2-methylbenzyl, 4-methoxybenzyl, 2-methoxybenzyl, 4-nitrobenzyl, 2-nitrobenzyl, 4-chlorobenzyl and 2-chlorobenzyl, and 2-chlorobenzyl and 2-chlorobenzyl.

In the compounds according to the present invention the 50 term " C_1 – C_6 alkylcarbonyl" denotes a group R—C(=0)— wherein R is an alkyl group as defined hereinbefore. Preferred C_1 – C_6 alkylcarbonyl groups are selected from acetyl, propionyl, isobutyryl, butyryl, valeroyl and pivaloyl. The term "cycloalkylcarbonyl" denotes a group R—C(=0)—55 wherein R is a cyclic hydrocarbon group as defined hereinbefore. The same counts to the selected carbonyl groups.

The term "aryl" denotes an aromatic hydrocarbon group such as phenyl-(C_6H_5 —), naphthyl-($C_{10}H_{2}$ —), anthryl-($C_{14}H_{9}$ —), etc. Preferred aryl groups according to the 60 present invention are phenyl and naphthyl with phenyl being particularly preferred.

The term "benzoyl" denotes an acyl group of the formula —CO—C₆H₅ wherein the phenyl ring may have one or more substituents.

Preferred substituents of the aryl group and in particular of the phenyl group are selected from alkyl, alkoxy, halogen 6

and nitro. As substituted benzoyl groups 4-methylbenzoyl, 2-methylbenzoyl, 4-methoxybenzoyl, 2-methoxybenzoyl, 4-chlorobenzoyl, 2-chlorobenzoyl, 4-nitrobenzoyl and 2-nitrobenzoyl may be mentioned.

The term "C₁-C₆ alkoxycarbonyl" refers to a group ROC(=0)— wherein R is an alkyl group as defined hereinbefore. Preferred C₁-C₆ alkoxycarbonyl groups are 10 selected from CH₃OC(=0)—, C₂H₅—OC(=0)—, C₃H₇OC(=0)— and (CH₃)₃COC(=0)— and alicyclic alkyloxycarbonyl.

The term "amino acid residue" denotes the residue of a naturally occurring or synthetic amino acid. Particularly preferred amino acid residues are selected from the group consisting of glycyl, valyl, leucyl, isoleucyl, phenylalanyl, prolyl, seryl, threonyl, methionyl, hydroxyprolyl,

The amino acid residue may be substituted by a suitable group and as substituted amino acid residues, benzoylglycyl and N-acetylglycyl may be mentioned.

The term "carbohydrate" denotes the residue of a polyhydroxy aldehyde or polyhydroxy ketone of the formula $C_nH_{2n}O_n$, or $C_n(H_2O)_n$ and corresponding carbohydrate groups are, for example, described in Aspinal, The Polysaccharides, New York: Academic Press 1982, 1983. A preferred carbohydrate group in the compounds according to the present invention is a glucuronosyl group, in particular a 1β -D-glucuronosyl group.

The term "LG" as used herein denotes a leaving group selected from halogenides, carboxylates, imidazolides and the like.

The term "Bn" as used herein denotes a benzyl group.

substituents are selected from alkyl, alkoxy, halogen, nitro and the like. Suitable halogen atoms are fluorine, chlorine and indine atoms. Perferred substituted heavyl course are

Preferred compounds according to the present invention are:

 A) Phenolic monoesters represented by the genera formulae II and II¹

Pormula II

35

50

7

-continued

Formula II'

wherein R¹ represents hydrogen, C₂-C₆ alkyl or phenyl. Particularly preferred phenolic monoesters are listed clow.

- (±)-formic acid 2-(3-diisopropylamino-1-phenylpropyl)- 30 4-hydroxymethylphenyl ester,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl ester,
- (±)-propionic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-n-butyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- R-(+)-isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2,2-dimethylpropionic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-acetamidoacetic acid 2-(3-diisopropylamino-1- 45 phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-cyclopentanecarboxylic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-cyclohexanecarboxylic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- R-(+)-benzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-methylbenzoic acid 2-(3-diisopropylamino-1- 55 phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-methylbenzoic acid 2-(3-diisopropylamino-1-
- phenylpropyl)-4-hydroxymethylphenyl ester, (±)-2-acetoxybenzoic acid 2-(3-diisopropylamino-1-60
- phenylpropyl)-4-hydroxymethylphenyl ester, (±)-1-naphthoic acid 2-(3-diisopropylamino-1-
- phenylpropyl)-4-hydroxymethylphenyl ester, (±)-2-naphthoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-chlorobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,

8

- (±)-4-methoxybenzoic acid 2-(3-diisopropylamino-1phonylpropyl)-4-hydroxymethylphonyl ester,
- (±)-2-methoxybenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-nitrobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-nitrobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-malonic acid bis-[2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethyl-phenyl]ester,
- (±)-succinic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester,
- (±)-pentancdioic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester,
- (±)-hexanedioic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyllester.
- B) Identical diesters represented by the general formula

Formula III

wherein R1 is as defined above.

Particularly preferred identical diesters are listed below:

- (±)-formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,
- (±)-acetic acid 4-acetoxy-3-(3-diisopropylamino-1phenylpropyl)-benzyl ester,
- (±)-propionic acid 2-(3-diisopropylamino-1phenylpropyl)-4-propionyloxymethylphenyl ester,
- (±)-n-butyric acid 4-n-butyryloxymethyl-2-(3disopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-isobutyryloxymethylphenyl ester,
- (±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1phenylpropyl)-4-(2,2-dimethyl-propionyloxy)-benzyl ester,
- (±)-benzoic acid 4-benzoyloxymethyl-2-(3-disopropylamino-1-phenylpropyl)-phenyl ester,
- R-(+)-benzoic acid 4-benzoyloxymethyl-2-(3-disopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-pent-4-enoic acid 2-(3-disopropylamino-1phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl ester,

cyclic oct-4-ene-1,8-dioate of Intermediate B, cyclic octane-1,8-dioate of Intermediate B, poly-co-DL-lactides of Intermediate B.

Formula IV

wherein R1 is as defined above and

R represents hydrogen, C_1 - C_6 alkyl or phenyl with the proviso that R^1 and R^2 are not identical.

Particularly preferred mixed diesters are listed below:

- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4formyloxymethylphenyl ester,
- (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,
- $\begin{tabular}{ll} (\pm)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-\\ 4-acetoxymethylphenyl ester, \end{tabular}$
- R-(+)-benzoic acid 2-(3-diisopropylamine-1phenylpropyl)-4-acetoxymethylphenyl ester,
- (±)-isobutyric acid 4-acctoxymethyl-2-(3-disopropylamino-1-phenylpropyl)-phenyl ester,
- R-(+)-isobutyric acid 4-acetoxymethyl-2-(3-disopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-2,2-dimethylpropionic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-2,2-dimethylpropionic acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1phenylpropyl)-benzyl ester.
- D) Benzylic monoesters represented by the general formula 40

Formula V

wherein R1 is as defined above.

Particularly preferred benzylic monoesters are listed

- (±)-formic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
- (±)-acetic acid 3-(3-diisopropylamino-1-phenylpropyl)-4- 60
- hydroxybenzyl ester, (±)-propionic acid 3-(3-diisopropylamino-1phenylpropyl)-4-hydroxybenzyl ester,
- (±)-butyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,
- (±)-isobutyric acid 3-(3-diisopropylamino-1phenylpropyl)-4-hydroxybenzyl ester,

10

(±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1phenylpropyl)-4-hydroxybenzyl ester,

(±)-benzoic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester.

5 E) Ethers and silyl ethers represented by the general formula
VI

Formula VI

wherein at least one of R¹⁰ and R¹¹ is selected from C₁-C₆ alkyl, benzyl or —SiR_eR_eR_e as defined above and the other one of R¹⁰ and R¹¹ may additionally represent hydrogen, C₁-C₆ alkylcarbonyl or benzoyl.

Particularly preferred ethers and silyl ethers are listed below:

- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4methoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4ethoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4propoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4isopropoxymethylphenol,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4butoxymethylphenol,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4methoxymethylphenyl ester,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4ethoxymethylphenyl ester,
- (±)-2-(3-diisopropylamino-1-phenylpropyl)-4trimethylsilanyloxymethylphenol,
- (±)-diisopropyl-[3-phenyl-3-(2-trimethylsilanyloxy-5trimethylsilanyloxymethylphenyl)-propyl]-amine,
- (±)-[3-(3-diisopropylamino-1-phenylpropyl)-4trimethylsilanyloxyphenyl]-methanol,
- (±)-diisopropyl-[3-(5-methoxymethyl-2trimehylsilanyloxyphenyl)-3-phenylpropylamine,
- (±)-diisopropyl-[3-(5-ethoxymethyl-2trimethylsilanyloxyphenyl)-3-phenylpropylamine,
- (±)-[4-(tert.-butyl-dimethylsilanyloxy)-3-(3diisopropylamino-1-phenylpropyl)-phenyl]-methanol,
- (±)-acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-3-(3diisopropylamino-1-phenylpropyl)-benzyl ester,
- (±)-4-(tert.-butyl-dimethylsilanyloxy)-3-(3diisopropylamino-1-phenylpropyl)-phenol,
- (±)-acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-2-(3-disopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-{3-[2-(tert.-butyl-dimethylsilanyloxy)-5-(tert.-butyl-dimethylsilanyloxymethyl)-phenyl]-3-phenylpropyl}-diisopropylamine,
- (±)-[4-(tert.-butyl-diphenylsilanyloxy)-3-(3disopropylamino-1-phenylpropyl)-phenyl]-methanol,
- (±)-acetic acid 4-(tert.-butyl-diphenylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,

- (±)-4-(tert.-butyl-diphenylsilanyloxymethyl)-2-(3diisopropylamino-1-phenylpropyl)-phenol,
- (±)-{3-[2-(tert.-butyl-diphenylsilanyloxy)-5-(tert.-butyldiphenylsilanyloxymethyl)-phenyl]-2-phenylpropyl}diisopropylamine,
- phenylpropyl)-benzyl ester,
- (±)-benzoic acid 4-benzyloxy-3-(3-d4isopropylamino-1phenylpropyl)-henzyl ester,
- (±)-isobutyric acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester,
- F) Carbonates and carbamates represented by the general 15 formulae VII and VIII

(±)-acetic acid 4-benzyloxy-3-(3-diisopropylamino-1-

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4-(1β-Dglucuronosyloxymethyl)-phenol.

- Formula VII 20 25

Formula VIII

35

50

55

65

wherein Y, Z and n are as defined above and wherein R¹² and R¹³ represent a C₁-C₆ alkoxycarbonyl group or

wherein R4 and R5 are as defined above.

- (±)-N-ethylcarbamic acid 2-(3-diisopropylamino-1
 - phenylpropyl)-4-hydroxymethylphenyl ester, (±)-N,N-dimethylcarbamic acid 2-(3-diisopropylamino-
 - 1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-N,N-diethylcarbamic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-N-phenylcarbamic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-[2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethyl-phenoxycarbonylamino]acetic acid ethyl ester hydrochloride,
- (±)-N-ethylcarbamic acid 3-(3-diisopropylamino-1phenylpropyl)-4-N-ethylcarbamoyloxybenzyl ester,
- (±)-N,N-dimethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-dimethylcarbamoyloxybenzyl
- (±)-N,N-diethylcarbamic acid 3-(3-diisopropylamino-1-
- (±)-N-phenylcarbamic acid 3-(3-diisopropylamino-1phenylpropyl)-4-N-phenylcarbamoyloxybenzyl ester,
- hydroxymethylphenoxycarbonylamino]-butyl}carbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-carbonic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester ethyl
- (±)-carbonic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester phenyl
- (±)-carbonic acid 2-(3-diisopropylamino-1phenylpropyl)-4-ethoxycarbonyloxymethylphenyl ester ethyl ester,
- (±)-carbonic acid 2-(3-diisopropylamino-1phenylpropyl)-4-phenoxycarbonyloxymethylphenyl ester phenyl ester.
- G) 3,3-Diphenylpropylamines selected from
 - (i) compounds of the formulae IX and IX

Formula IX

15

-continued

wherein o and p are the same or different and represent the number of methylene units -(CH2) and may 20 range from 0 to 6,

- (ii) (±)-Benzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-sulphooxymethyl-phenyl ester
- Poly-co-DL-lactides diisopropylaminophenylpropyl)-4-hydroxymethyl- 25
- (iv) (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-(1β-D-glucuronosyloxymethyl)-phenol having the formula

and

their salts with physiologically acceptable acids, their free bases and, when the compounds can be in the form of optical isomers, the racemic mixture and the individual enanti-

The present invention, moreover, relates to processes for 45 the preparation of the aforementioned compounds. In particular, according to the present invention, he following processes are provided:

A process for the production of phenolic monoesters 50 represented by the general formula H

as defined above, which comprises treatment of a compound of the formula

14

with an equivalent of an acylating agent selected from

wherein LG represents a leaving group selected from halogenide, carboxylate and imidazolide and R1 is as defined above, in an inert solvent in the presence of a condensating agent.

Preferably, the acylating agent is selected from

wherein Hal represents a halogen atom, preferably a chlorine atom, and R1 is a defined above.

A process for the production of phenolic monoesters represented by the general formula I'

Formula II'

as defined above, which comprises treatment of two equivalents of a compound of the formula

15

25

30

50

55

60

65

-continued

with an acylating agent selected from

wherein Hal represents a halogen atom, preferably a chlorine atom.

Hence, in these processes, an Intermediate B having the

is treated with an equivalent of an acylating agent (e.g. an acyl halogenite or acyl anhydride) in an inert solvent and in the presence of a condensating agent (e.g. 40 amine) to provide phenolic monoesters of formula II or formula II' (wherein n is 0-12), respectively, if polyfunctional acylating agents (e.g. acid halides, preferably acid chlorides of dicarboxylic acids) are used.

The Intermediate B as used in the processes for the 45 production of the 3,3-diphenylpropylamines according to the present invention can be in the form of a racemic mixture or of optically active compounds in accordance with the formulae shown below:

Alternatively, structures of formula II or II' may be obtained by regioselective deprotection of a protected benzylic hydroxy group (chemically or enzymatically: T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Schemistry", 2nd Ed., J. Wily & Sons, New York 1991).

The identical diesters represented by the general formula

Formula III

as defined above can be prepared by a process which comprises treatment of a compound of the formula

with at least two equivalents of the acylating agent R²—C(=O)—LG as defined above.

Thus, the aforementioned di-acyl compounds are readily accessible if an at least two-molar excess of an acylating agent is used in the above-mentioned conversion of Intermediate B or, more general, on treatment of compounds of formula I with acylating agents in the presence of suitable catalysts. In the above process, the following Intermediate A

conveniently and in only one step if Intermediate B is treated at room temperature and under anhydrous conditions with activated esters (e.g. vinyl acylates, isopropenyl acylates) in the presence of enzymes such as lipases or esterases.

The mixed diesters represented by the general formula IV

wherein R' denotes a benzyl group can be used instead of Intermediate B. The Intermediate A can be used in the form of a racemic mixture or of optically active compounds (similar to Intermediate B).

Benzylic monoestes represented by the general formula V

Formula V

25

wherein R¹ is as defined above can be prepared by a process which comprises treatment of a compound of the formula

at room temperature and under anhydrous conditions 55 with activated esters in the presence of enzymes selected from lipases or esterases.

Hence, this process relates to the preparation of phenols with para acyloxymethyl substituents (cf. formula V). These compounds can be prepared in several chemical steps from intermediates such as formula I, where R represents hydrogen and R' is hydrogen or any suitable protective group which can, be removed by known methods (T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Chemistry", 2nd Ed., J. Wily & Sons, New York 1991) in the presence of the newly introduced substituent R¹CO. It was found, however, that the benzylic substituent R¹CO can be introduced more

wherein R¹ and R² are as defined above can be precared by a process which comprises acylation of the abovementioned benzylic monoester represented by the general formula V

wherein R¹ is as defined above or of a phenolic monoester benzylic represented by the general formula !!

as defined hereinbefore.

In general, mixed diesters of formula IV can be obtained by acylation of compounds of the general formula I wherein R and R' are different substituents selected from the group consisting of hydrogen, acyl residues or protecting groups that are cleavable under the acylation reaction conditions.

Ethers represented by the general formula VI

Pormula VI 5

as defined hereinbefore wherein R¹¹ is hydrogen can be prepared by a process which comprises reacting a compound of the formula

with an alcohol R¹⁰—OH in the presence of an esterification catalyst.

A further process for the preparation of ethers represented by the general formula VI

wherein R¹⁰ and R¹¹ are as defined hereinbefore, comprises acid or base treatment of free benzylic alcohols selected from

-continued

Formula II

Formula VI

wherein R10 is hydrogen and R11 is as defined above or

wherein R^{12} is hydrogen and R^{13} represents a C_1 - C_6 alkoxycarbonyl group or

wherein R4 and R5 are as defined above

Formula III

Formula IV

Formula V

40

wherein R¹ and R² are as defined hereinbefore in the presence of suitable hydroxy reagents.

Finally, ethers of formula VI can be prepared by a process which comprises treating a compound of the formula

wherein R¹⁰ is as defined above with an alkylating agent selected from alkyl halogenides, alkyl sulphates and 60 alkyl triflates, said alkyl group having 1 to 6 carbon atoms.

In summary, regioselective modification of the benzylic hydroxy groups is achieved either by acid or base treatment of benzylic acylates in the presence of suitable hydroxy 65 reagents (e.g. alcohols) or by catalytic ether formation as described in the literature for other benzylic substrates (J. M.

Saa, A. Llobera, A. Garcia-Raso, A. Costa, P. M. Deya; J. Org. Chem. 53: 4263-4273 [1988]). Both free benzylic alcohols such as Intermediates A and B or compounds of formulas II or VI (in which R¹⁰ is hydrogen) or formula VII (in which R¹² is hydrogen) as well as benzylic acylates such as formulae III, IV, V may serve as starting materials for the preparation of benzylic ethers (B. Loubinoux, J. Miazimbakana, P. Gerardin; Tetrahedron Lett. 30: 1939-1942 [1989]).

Likewise the phenolic hydroxy groups are readily transformed into phenyl ethers (R¹¹-alkyl) using alkylating agents such as e.g. alkyl halogenides, alkyl sulphates, alkyl triflates or employing Mitsunobu type reaction conditions (Synthesis 1981, 1-28). Similarly, both phenolic and alcoholic monosilyl ethers are obtained by regioselective silylation or by desilylation of bis-silyl ethers of Intermediate B as described for other compounds in the literature (J. Paladino, C. Guyard, C. Thuricau, J.-L. Fauchere, Helv. Chim. Acta 76: 2465-2472 [1993]; Y. Kawazoe, M. Nomura, Y. Kondo, K. Kohda, Tetrahedron Lett. 26: 4307-4310 [1987]).

Carbonates and carbamates represented by the general 25 formulae VII and VIII

Formula VII

Formula VIII

as defined hereinbefore can be prepared by a process which comprises reacting a compound selected from the group consisting of Formula II'

wherein R¹ is defined as above, n is 0 to 12, Bn is benzyl, R¹⁰ or R¹¹ is hydrogen with activated carbonyl compounds or carbonyl precursor reagents selected from haloformates, ketenes, activated esters, mixed anhydrides of organic or inorganic acids, isocyanates and isothiocyanates.

The coupling reactions can be carried out in inert solvents 65 over periods of several hours at temperatures from -10° C. to the refluxing temperature of the solvent or reagent used to

provide compounds of the general formula VII where R¹² represents hydrogen, alkyl, aliphatic or aromatic acyl, or carbamoyl, and R¹³ represents —C(==0)—Y—R³, wherein Y and R³ represent O, S, NH and alkyl or aryl, respectively. Polyfunctional reagents give the corresponding derivatives. For example, disocyanates or di-carbonylchlorides provide compounds of formula VIII where X, Y have the meaning of O, S, or NH and n is zero to twelve.

The invention, moreover, relates to pharmaceutical compositions comprising one or more of the aforementioned
3,3-diphenylpropylamines. In other words, the compounds
according to the present invention can be used as pharmaceutically active substances, especially as antimuscarinic
agents.

They can be used for preparing pharmaceutical formulations containing at least one of said compounds.

The compounds according to the present invention in the form of free bases or salts with physiologically acceptable acids, can be brought into suitable galenic forms, such as compositions for oral use, for injection, for nasal spray administration or the like, in accordance with accepted pharmaceutical procedures. Such pharmaceutical compositions according to the invention comprise an effective amount of the compounds of claims 1 to 15 in association with compatible pharmaceutically acceptable carrier materials, or diluents, as is well known in the art. The carriers may be any inert material, organic or inorganic, suitable for enteral, percutaneous or parenteral administration, such as water, gelatine, gum arabicum, lactose, microcrystalline cellulose starch, sodium starch glycolate, calcium hydrogen phosphae, magnesium stearate, talcum, colloidal silicon dioxide, and the like. Such compositions may also contain other pharmaceutically active agents, and conventional additives, such as stabilizers, wetting agents, emulsifiers, flavouring agents, buffers, and the like.

The composition according to the invention can e.g. be made up in solid or liquid form for oral administration, such as tablets, capsules, powders, syrups, elixirs and the like, in the form of sterile solutions, suspensions or emulsions for parenteral administration, and the like.

The compounds according to the invention may be used in a patch formulation. The compounds can be administered transdermally with a reduced incidence of side effects and improved individual compliance.

The compounds and compositions can, as mentioned above, be used for the treatment of urinary incontinence and other spasmogenic conditions that are caused by muscarinic mechanisms. The dosage of the specific compound will vary depending on its potency, the mode of administration, the age and weight of the patient and the severity of the condition to be treated. The daily dosage may, for example, range from about 0.01 mg to about 5 mg, adminstered singly or multiply in doses e.g. from about 0.05 mg to about 50 g each.

The invention will be further illustrated by the following non-limiting examples and pharmacological tests.

1. Experimental

1. General

All compounds were fully characterized by ¹H and ¹³C NMR spectroscopy (Bruker DPX 200). The chemical shifts reported for ¹³C NMR spectra (50 MHz, ppm values given) refer to the solvents CDCl₃ (77.10 ppm), dideuterio dichloromethane (CD₂Cl₂, 53.8 ppm), CD₃OD (49.00 ppm) or hexadeuterio dimethylsulphoxide (DMSO-d₆, 39.70 ppm), respectively. ¹H NMR data (200 MHz, ppm) refer to internal tetramethylsilane). Thin-layer chromatography (tlc, R_f val-

ues reported) was conducted on precoated 5x10 cm E. Merck silica gel plates (60F254), spots were visualized by fluorescence quenching or spaying with alkaline potassium permanganate solution.

Solvent systems: (1), ethyl acetate/n-hexane (30/70, v/v- s %); (2), toluene/acetone/methanol/acetic acid (70/5/20/5, v/v-%); (3), n-hexane/acetone/diethylamine (70/20/10, v/v-%); (4), n-hexane/acetone/triethylamine (70/20/10, v/v-%); (5), ethyl acetate/n-hexane/2-propanol/triethylamine (60/40) 20/1, v/v-%); (6), ethyl acetate/triethylamine (90/10, v/v-%); 10 (7), cyclohexane/acetone/acetic acid (80/20/0.5, v/v-%).

Optical rotations were measured at 589.3 nm and room temperature on a Perkin Elmer Polarimeter Type 241.

Melting points (mp) reported are uncorrected and were determined on a Mettler FP 1 instrument.

IR spectra were taken from a Perkin-Elmer FTIR spectrometer Series 1610, resolution 4 cm⁻¹

Gas chromatography-mass spectrometry (GC-MS): spectra (m/z values and relative abundance (%) reported) were recorded on a Finnigan TSQ 700 triple mass spectrometer in 20 the positive (P-CI) or negative (N-CI) chemical ionization mode using methane or ammonia as reactant gas, Hydroxylic compounds were analyzed as their trimethylsilyl ether derivatives. Combined liquid chromatography-mass spectrometry (LC-MS): Waters Integrety System, Thermabeam 25 Mass Detector (EI, 70 eV), m/z values and relative abundance reported.

2. Synthesis of Intermediates A and B

3-Phenylacrylic Acid 4-Bromophenyl Ester

An ice-cooled solution of 4-bromophenol (69.2 g) and 30 cinnamoyl chloride (66.8 g) in dichloromethane (150 ml) was treated with triethylamine (40.6 g). After stirring for 18 hrs at room temperature the mixture was washed with water (250 ml), 1 M aqueous HCl, and dried over anhydrous 3-phenylacrylic acid 4-bromophenyl ester (121.0 g, 99.8% yield), m.p. 113.3° C., tlc: (1) 0.83. NMR (CDCl₃): 116.85, 118.87, 123.49, 128.38, 129.06, 130.90, 132.49, 134.02, 147.07, 149.84, 165.06.

(±)-6-Bromo-4-phenylchroman-2-one

A portion of the ester (60.0 g) was dissolved in a mixture of acetic acid (60 ml) and concentrated sulphuric acid (18 ml) and refluxed for 2 hrs. After cooling, the reaction mixture was poured into ice water and the product was isolated by extraction with ethylacetate. Evaporation of the 45 solvent and recrystallization of the residue from boiling ethanol (150 ml) yielded 26.3 g (43.8% yield) of pure, crystalline (±)-6-bromo-4-phenylchroman-2-one, m.p. 117.8° C., tlc: (1) 0.67. NMR (CDCl₂): 36.56, 40.51, 117.29, 118.87, 127.47, 127.89, 128.33, 129.32, 131.07, 131.79, 50 139.42, 150.76, 166.84.

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic Acid Methyl Ester

A suspension consisting of (±)-6-bromo-4phenylchroman-2-one (85.0 g), anhydrous potassium car- 55 bonate (46.7 g), sodium iodide (20.5 g) and benzyl chloride (40.6 g) in methanol (350 ml) and acetone (350 ml) was refluxed for 3 hrs. After evaporation of the solvents the residue was extracted with diethyl ether (2×300 ml) and the extract was washed with water (2×200 ml) and aqueous 60 sodium carbonate. Drying (Na2SO4) and rotoevaporation teft 121.8 g (102.1% crude yield) of (±)-3-(2-benzyloxy-5bromophenyl)-3-phenylpropionic acid methyl ester as a light yellow oil, tlc: (1) 0.77; NMR (CDCl₃): 39,22, 40.53, 51.63, 70.16, 113.10, 113.77, 126.46, 126.92, 127.88, 65 128.08, 128.34, 128.45, 130.31, 130.55, 134.41, 136.44, 142.37, 154.94, 172.08.

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic Acid

A solution of (±)-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionic acid methyl ester (0,391 g, 0,92 mmol) in ethanol (5 ml) was treated at 50° C. with excess aqueous sodium hydroxide solution until the milky emulsion became clear. The reaction mixture was then acidified (pH 3), evaporated and extracted with dichloromethane. The organic extract was evaporated and the remaining oil was redissolved in a minimum of boiling ethanol. The precipitation formed after 18 hrs at 4° C. was filtered off and dried in vacuo to yield 0.27 g (71.4%) of (±)-3-(2-Benzyloxy)-5bromophenyl)-3-phenylpropionic acid, colourless crystals, m.p. 124.9° C.; tlc: (1) 0.15 starting material methyl ester 0.75); NMR (CDCl₃): 39.15, 40.26, 70.25, 113.21, 113.90, 126.62, 127.27, 127.98, 128.17, 128.47, 128.54, 130.46, 130.68, 134.34, 136.45, 142.16, 154.95, 177.65. LC-MS: 412/410 (14/11%, M*), 394/392 (15/13%), 321/319 (17/ 22%), 304/302 (17/21%), 259 (24%), 194 (22%), 178 (21%), 167 (65%), 152 (49%), 92 (100%). IR (KBr): 3434, 3030, 1708, 1485, 1452, 1403, 1289, 1243, 1126, 1018, 804, 735, 698, 649. Calculated for C22H19BrO3 (mol-wgt. 411.30): C, 64.25%, H, 4.66%, Br, 19.43%, O, 11.67%; found: C, 63.72%, H, 4.70%, Br, 19.75%, O, 11.80%.

Alternatively, the crude reaction mixture from the above described synthesis of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid methyl ester was evaporated, redissolved in warm ethanol, and treated with excess aqueous potassium hydroxide solution. Acidification to pH 3 (conc. hydrochloric acid) and cooling to 4° C. resulted in the formation of a solid, which was filtered off after 18 hrs, washed repeatedly with water and dried to yield (±)-3-(2benzyloxy-5-bromophenyl)-3-phenylpropionic acid in 82%

sodium sulphate. Evaporation in vacuum left solid 35 a) Resolution of 3-(2-Benzyloxy-5-bromophenyl)-3phenylpropionic Acid

> R-(-)-3-(2-Benzyloxy-5-bromophenyl)-3phenylpropionic Acid

Warm solutions of (±)-3-(2-benzyloxy-5-bromophenyl)-40 3-phenylpropionic acid (815.6 g, 1.85 mol) and 1S,2R-(+)ephedrine hemihydrate (232.1 g, 1.85 mol) in 2000 ml and 700 ml, respectively, of absolute ethanol were combined and then allowed to cool to 0° C. The precipitate formed was collected, washed with cold ethanol and dried in vacuum to give 553.2 g or the ephedrinium salt of the title compound (m.p. 153° C., c.e. 65% as determined by NMR and IIPLC). The salt was recrystallized twice from boiling ethanol to give R-(-)-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionic acid 7S,2R-(+)-ephedrinium salt in 75% yield, colourless crystalls, m.p. 158.6° C., e.e. 97.6% (HPLC). NMR (CDCL): 9.53, 30.90, 41.54, 42.83, 61.45, 70.15, 70.42, 113.05, 113.68, 125.89, 126.03, 127.33, 127.85, 128.19, 128.28, 128.45, 129.86, 130.70, 135.91, 136.65, 140.40, 144.09, 155.20, 178.94.

1.2 g (2.0 mmol) of the ephedrinium salt were dissolved in a mixture of acetone (5 ml) and ethanol (10 ml). After treatment with water (0.4 ml) and conc. (37%) aqueous hydrochloric acid (0.34 ml), the solution was evaporated in vacuum, and the residue was redissolved in 1M aqueous hydrochloric acid (2 ml) and dichloromethane (10 ml). The organic phase was separated, washed twice with water (2 ml), and evaporated to dryness to give R-(-)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid as a colourless oil which slowly solidified (0.4 g, 98% yield), m.p. 105.6° C. (from ethyl acetate/n-heptane); tlc: (7) 0.21; $[\alpha]_0^{20}$ =-21.1 (c=1.0, ethanol), e.e. 99.9% (HPLC). NMR: identical with the racemtic acid.

S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3phenylpropionic Acid

The combined mother liquids from the above resolution and recrystallizations were treated under stirring and cooling (18° C.) with excess conc. aqueous hydrochloric acid. The precipitate (ephedrinium hydrochloride) was filtered off, and the filtrate was evaporated to dryness. The residue was redissolved in dichloromethane (1.5 liter) and then washed with several portions of 1 M aqueous hydrochloric acid followed by water. After drying (Na₂SO₄), filtration, and 10 evaporation 479 g of crude S-(+)-3-(2-benzyloxy-5bromophenyl)-3-phenylpropionic acid were obtained as a yellow viscous oil. The pure S-(+)enantiomeric acid was converted into the 1R,2S-(-)-ephedrine salt as described above for the R-(-) acid. Two recrystallizations from boiling 15 cthanol provided colourless crystals of S-(+)-3-(2benzyloxy-5-bromophenyl)-3-phenylpropionic acid 1R,2S-(-)-ephedrinium salt in 83% yield, m.p. 158.7° C., e.e. 97.8% (IIPLC). NMR (CDCl₂): 9.47, 30.85, 41.54, 42.92, 61.48, 70.13, 70.30, 113.04, 113.66, 125.89, 126.01, 127.32, 20 127.84, 128.18, 128.44, 129.83, 130.68, 135.94, 136.63, 140.44, 144.13, 155.19, 178.94.

S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3phenylpropionic acid was obtained in quantitative yield from this ephedrinium salt by the method described above 25 for the R-(-) acid, tlc: (7) 0.20, e.e. (NMR) >99%, mp 105.5° C.; $[\alpha]_{D}^{20}$ =+22.6 (c=1.0, ethanol); NMR: identical with the racemic acid.

b) Enantioselective Synthesis of R-(-)- and S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic Acid

was collected by suction and recrystallized from a minimum of boiling methanol.

3-[3-(2-Benzyloxy-5-bromophenyl)-acryloyl]-(4R)-4phenyloxazolidin-2-one

Pivaloylchloride (7 g) was added dropwise at -30° C, to a stirred solution of 3-(2-benzyloxy-5-bromophenyl)-acrylic acid (50.0 mmol) and triethylamine (15.0 ml) in 200 ml of tetrahydrofuran. After an additional hour the temperature was lowered to -50° C. and (R)-2-phenyloxazolidin-2-one (9.0 g) and lithium chloride (2.5 g) were added in one portion. The cooling bath was then removed and stirring was continued over 18 hrs. The reaction was diluted with water and 3-[3-(2-benzyloxy-5-bromophenyl)-acryloyl]-(4R)-4phenyloxazolidin-2-one was isolated by extraction with ethyl acetate.

3-[3-(2-Benzyloxy-5-bromophenyl)-(3S)-3-

phenylpropionyl]-(4R)-4-phenyloxazolidin-2-one To a precooled (-30° C.) mixture of copper-(I) chloride (21.0 g) and dimethylsulfide (45 ml) in dry tetrahydrofuran (150 ml) was added dropwise an ethereal solution of phenylmagnesiumbromide (0.3 mol). The mixture was stirred 20 min at the same temperature and then cooled to -40° C. A solution of 3-[3-(2-Benzyloxy-5-bromophenyl)-acryloyl]-(4R)-4-phenyloxazolidin-2-one (50.0 mmol) in dry tetrahydrofuran (150 ml) was added during 10 min. The cooling bath was removed and stirring was continued for 18 hrs. The mixture was quenched with half-saturated aqueous ammonium chloride solution and the product was isolated by extraction with ethyl acetate.

S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3phenylpropionic Acid

2-Benzyloxy-5-bromobenzaldehyde

To a solution of 0.1 mol of 5-bromo-2-benzaldehyde in THF (150 ml) was added 0.1 mol of K2CO3 and 0.11 mol of benzyl bromide. The mixture was refluxed for 2 hrs and water (500 ml) was added. After addition of ethyl acetate (400 ml) and stirring the organic layer was washed with water, dried (sodium sulphate) and evaporated to dryness. The resulting slightly yellow solid of pure (tic) 2-benzyloxy-5-bromo-benzaldehyde was used as such in the next step.

3-(2-Benzyloxy-5-bromophenyl)-acrylic Acid

A mixture of 2-benzyloxy-5-bromobenzaldehyde (0.10 mol), malonic acid (15.0 g), and piperidine (2.0 ml) in 150 ml of pyridine was first heated at 90° C. for 90 min and subsequently refluxed for 0.5 hrs. After cooling to room temperature, the reaction was poured on a mixture of ice (1 65 kg) and concentrated aqueous hydrochloric acid (250 ml). The solid material that precipitated after stirring for 2 hrs.

A solution of the above described 3-[3-(2-benzyloxy-5bromophenyl)-(3S)-3-phenylpropionyl]-(4R)-4phenyloxazolidin-2-one in tetrahydrofuran (300 ml) and water (100 ml) was cooled to 0° C. and then treated with 30% aqueous hydrogen peroxide (20 ml) followed by solid lithium hydroxide (4.3 g). Water was added after 2 hrs and the chiral auxiliary was removed by extraction with ethyl acetate. The aqueous phase was acidified with aqueous hydrochloric acid (10%) and crude S-(+)-3-(2-benzyloxy-5bromophenyl)-3-phenylpropionic acid was extracted with tert.-butyl-methylether,

HPLC analysis (Chiralpak AD, mobile phase hexane/2propanol/trifluoro acetic acid [92:8:0.1, vol/vol-%); flow 1.0 ml/min, detection 285 nm) indicated an enantiomeric ratio 93:7 (retention times 14.8 min and 11.5 min, respectively). The e.e. of 86% of the S-(+)enantiomer can be improved to >98.5% by recrystallization of the diastereomeric salts using "nitromix" (Angew. Chem. Int. Ed. Engl. 1998, Vol. 37, p. 2349) or (1R,2S)-(-)-ephedrine hemihydrate as described above. The S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid was isolated after acidification of aqueous solutions of the diastereomeric salts. It forms colourless crystals which gave an optical rotation of $[\alpha]_D^{22}$ =+21.6 (c=0.5, MeOII).

R-(-)-3-(2-Benzyloxy-5-bromophenyl)-3phenylpropionic Acid

Conjugate organocuprate addition of phenylmagnesium-bromide to 3-[3-(2-benzyloxy-5-bromophenyl)-acryloyl]-(48)-4-phenoyloxazolidin-2-one as described above for the S-(+)enantiomer gave crystalline R-(-)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid in an e.e. of 99.6% after two recrystallizations, $[\alpha]_D^{22} = -21.7$ (c=0.5, MeOH). 15 c) Synthesis of the R- and S-Enantiomers of Intermediate B (i) Phenylpropanol Route

(\pm)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropan-1-ol

A solution of the methyl(±)-propionate (121.0 g) in 350 ml of dry tetrahydrofuran was slowly added under an atmosphere of nitrogen to a suspension of lithium aluminium hydride (7.9 g) in tetrahydrofuran (350 ml). After stirring at room temperature for 18 hrs, 20% aqueous HCI was added dropwise and the product was isolated by repeated extraction with diethyl ether. The combined extracts were gradually washed with hydrochloric acid, 65 sodium hydroxide solution, distilled water, and then dried (Na₂SO₄) to give a light yellow viscous oil (108.8 g, 96.3%

yield) after evaporation which gradually crystallized, m.p. 73.8° C., tle: (1) 0.47, (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropan-1-ol. NMR (CDCl₃): 37.52, 39.52, 60.84, 70.54, 113.54, 113.83, 126.29, 127.30, 127.51, 129.99, 128.24, 128.38, 129.99, 130.88, 135.69, 136.40, 143.53, 155.12.

The same product was obtained after reduction of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid with lithium aluminium hydride in tetrahydrofuran (30 min, 25° C.), 31% yield.

(±)-Toluene-4-sulphonic Acid 3-(2-Benzyloxy-5bromophenyl)-3-phenylpropyl Ester

A cooled (5° C.) solution of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropan-1-ol (108.0 g) in dichlo15 romethane (300 ml) was treated with pyridine (79.4 ml) and then p-toluenesulphonyl chloride (60.6 g) in dichloromethane (200 ml). After 18 hrs. at room temperature the solvent was removed in vacuum and the residue was extracted with diethyl ether. The extract was washed with hydrochloric acid, water, and dried over anhydrous sodium sulphate to give (±)-toluene-4-sulphonic acid 3-(2-benzyloxy-5-bromophenyl)-3-phenylpropyl ester as a light yellow oil after concentration under reduced pressure (140.3 g, 93.6% yield), tlc: (1) 0.66. NMR (CDCl₃): 21.67, 33.67, 25 39.69, 68.58, 70.28, 113.21, 113.76, 126.47, 127.84, 128.10, 128.25, 128.41, 128.51, 129.81, 130.26, 130.42, 132.91, 134.39, 136.41, 142.16, 155.07.

(±)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]diisopropylamine

A solution of the (±)-toluenesulphonate ((±)-toluene-4sulphonic acid 3-(2-benzyloxy-5-bromophenyl)-3phenylpropyl ester, 139.3 g) in acctonitrile (230 ml) and N,N-diisopropylamine (256 g) was refluxed for 97 hrs. The reaction mixture was then evaporated to dryness and the 35 residue thus formed was partitioned between diethyl ether (500 ml) and aqueous sodium hydroxide (2 M, 240 ml). The organic phase was washed twice with water (250 ml) and then extracted with 1 M sulphuric acid. The aqueous phase was adjusted to about pH 12-13 and reextracted with ether 40 (500 ml). The organic phase was washed with water, dried (Na₂SO₄) and evaporated to provide (±)-[3-(2-benzyloxy-5-bromophenyl)-3-phenylpropyl]-diisopropylamine as a brown and viscous syrup (94.5 g, 77.9% yield), tlc: (2) 0.49. NMR (CDCl₃): 20.65, 20.70, 36.70, 41.58, 43.78, 48.77, 70.24, 113.52, 126.02, 127.96, 128.20, 128.36, 129.82, 130.69, 136.34, 136.76, 144.20, 155.15.

(ii) Phenylpropionamide Route

50

S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3phenylpropionyl Chloride

Thionylchleride (4.5 g, 2.8 ml, 37.8 mmol) and some drops of dimethylformamide were added to a solution of S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid (10.3 g, 25 mmol) in ethyl acetate (60 ml). The mixture 30 was refluxed until the control indicated complete consumption of the starting material (2 hrs). Evaporation in vacuum gave the acid chloride as a light yellow liquid in almost quantitative yield (10.7 g). Conversion of an aliquot to the methyl ester showed a single spot in the (R, 0.54, solvent 35 system (7)).

S-(+)-N,N-Diisopropyl-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionamide

A solution of S-(+)-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionyl chloride (9.6 g, 22.3 mmol) in ethyl acetate 40 (40 ml) was added dropwise to a stirred and cooled (3° C.) solution of diisopropylamine (6.4 g, 49.0 mmol) in 60 ml of ethyl acetate. The reaction was stirred for 18 hrs at room temperature and then washed with water, aqueous hydrochloric acid (1 M) and half saturated brine. The organic 45 phase was dried (sodium sulphate) and evaporated to dryness. The colourless oily residue (10.7 g, 97% yield) of S-(+)-N,N-diisopropyl-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionamide showed a single spot on tle: (R, 0.70 (4)). NMR (CDCl₃): 18.42, 20.46, 20.63, 20.98, 39.51, 50 phenylpropyl)-phenyl]-methanol 41.44, 45.76, 48.63, 70.00, 112.84, 113.64, 126.10, 126.45, 127.34, 127.78, 128.20, 128.36, 129.93, 130.59, 135.18, 136.52, 143.52, 155.17, 69.61.

(±)-N,N-Diisopropyl-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionamide

The amide was prepared from duisopropylamine and the racemic acid chloride as described above for the S-(+) enantiomer. The viscous colourless oil was dissolved in ethanol and the solution stored at -30° C. From this solution colourless crystals were obtained, m.p. 101.8° C.

(±)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]diisopropylamine

To a stirred solution of (±)-N,N-diisopropyl-3-(2benzyloxy-5-bromophenyl)-3-phenylpropionamide (11.8 g) in 40 ml of dry tetrahydrofuran was added 1 M lithium 65 aluminium hydride/tetrahydrofuran (36 ml). The reaction was refluxed for 4 hrs and then quenched with the dropwise

addition of water. After removal of the precipitate the solvent was evaporated and the oily residue dissolved in diluted sulphuric acid. The aqueous phase was washed several times with diethyl ether, adjusted to pH 10-12 5 (aqueous NaOH), and extracted with diethyl ether. The extract was dried (sodium sulphate), filtered and evaporated to dryness in vacuum to leave 8.1 g (76.7%) of the title compound as a viscous colourless oil, the: (4) 0.86. The NMR spectrum corresponds to the product, obtained from 10 the tosylate precursor (see above).

S-(+)-13-(2-Benzyloxy-5-bromophenyl)-3phenylpropyl]-diisopropylamine

Repetition of the reaction sequence by using S-(+)-3-(2benzyloxy-5-bromophenyl)-3-phenylpropionic acid as the starting material gave S-(+)-[3-(2-Benzyloxy-5bromophenyl)-3-phenylpropyl]-diisopropylamine as a viscous colourless oil, $[\alpha]_D^{22}$ =+18.5 (c=10.0, ethanol), e.e. of a representative batch 99.4%.

R-(-)-[3-(2-Benzyloxy-5-bromophenyl)-3phenylpropyl]-diisopropylamine

Repetition of the reaction sequence by using R-(-)-3-(2benzyloxy-5-bromophenyl)-3-phenylpropionic acid as the starting material gave R-(--)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]-disopropylamine as a viscous colourless oil, $\left[\alpha\right]_{D}^{22}$ =-17.3 (c=10.0, ethanol), e.e. of a representative batch 98.3%.

The optical purities were determined by chiral HPLC using Chiralpak OD columns.

(±)-4-Benzyloxy-3-(3-diisopropylamino-1phenylpropyl)-benzoic Acid Hydrochloride

An ethereal Grignard solution, prepared from the above (±)-amine (22.8 g), ethyl bromide (17.4 g) and magnesium (6.1 g) under an atmosphere of nitrogen was diluted with dry tetrahydrofuran (200 ml) and then cooled to -60° C. Powdered solid carbon dioxide (ca. 50 g) was then added in small portions and the green reaction mixture was warmed to room temperature. After the addition of an aqueous solution of ammonium chloride (200 ml, 10%) and adjustment of the aqueous phase to pH 0.95, a white solid was recovered by filtration to provide (±)-4-benzyloxy-3-(3diisopropylamino-1-phenylpropyl)-benzoic acid hydrochloride (14.7 g, 64.3% yield), m.p. 140° C. (dec.), tlc: (2) 0.33. NMR (CD₃OD): 17.07, 18.77, 33.55, 43.27, 56.50, 71.50, 112.89, 124.10, 127.94, 129.07, 129.25, 129.34, 129.59, 129.66, 130.18, 131.60, 132.78, 137.60, 143.30, 161.11,

(±)-[4-Benzyloxy-3-(3-diisopropylamino-1-

Intermediate A (n=1)

The (±)-hydrochloride was converted into its methyl ester (MeOH, trace sulphuric acid, 6 h reflux) and the free oily base thus obtained (28 g; tlc (2): R_f 0.46) was dissolved in dry diethyl ether (230 ml). This solution was slowly (2 h) dropped under a nitrogen atmosphere to a suspension of lithium aluminium hydride (1.8 g) in ether (140 ml). After stirring for 18 hrs, the reaction was quenched by the addition of water (4.7 ml). The organic phase was dried over anhydrous sodium sulphate, filtered and evaporated to dryness to provide (±)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol (26 g, 98.9% yield), as an oil which gradually crystallized, m.p. 86.4° C., tlc: (2) 0.32. NMR (CDCl₃): 20.53, 20.61, 36.87, 41.65, 44.14, 48.82, 65.12, 70.09, 111.80, 125.77, 125.97, 126.94, 127.55, 128.08, 128.37, 128.44, 133.27, 134.05, 134.27, 137.21, 144.84.

(±)-[4-Benzyloxy-3-(3-diisopropylamino-1phenylpropyl)-phenyl]-[C2H]methanol

Intermediate d₂-A (n=2)

Repetition of the above described reduction of the methylester of (±)-4-benzyloxy-3-(3-diisopropylamino-1phenylpropyl)-benzoic acid by the use of lithium aluminium deuteride gave (±)-[4-benzyloxy-3-(3-diisopropylamino-1phenylpropyi)-phenyl]-[C²H]methanol, colourless amorphous solid in 77% yield; tle: (2) 0.33. NMR (CDCl₃): 20.46, 20.55, 36.77, 41.62, 44.09, 48.77, multiplett centered at 64.96, 70.05, 111.76, 125.72, 127.34, 128.03, 128.32, 128.38, 133.15, 133.99, 137.17, 144.80, 155.52.

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol

Intermediate B (n=1)

was hydrogenated over Raneynickel (4.5 g) under ambient conditions. After 5 hrs thin layer chromatography indicated complete hydrogenolysis. The catalyst was filtered off and the solution evaporated to dryness to leave an oil (6.95 g, 35 96.5% yield) which gradually solidified, (±)-2-(3diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol, m.p. 50° C., tle: (2) 0.15. NMR (CDCl₃): 19.42, 19.83, 33.22, 39.62, 42.27, 48.27, 65.19, 40 118.32, 126.23, 126.55, 127.47, 128.33, 132.50, 144.47, 155.38. Hydrochloride: colourless crystalls, m.p. 187-190° C. (with decomposition).

S-(-)-2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol

Hydrogenolysis of S-(-)-[4-benzyloxy-3-(3diisopropylamino-1-phenylpropyl)-phenyl]-methanol 60 (prepared from S-(+)-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionic acid as described for the racemic series) gave the title compound in 85% yield, colourless solid; m.p. >50° C., [α]_D²² =-19.8 (c=1.0, ethanol); NMR (CDCl₃): 65 19.58, 19.96, 33.30, 39.52, 42.10, 48.00, 65.40, 118.58, 126.31, 126.57, 127.16, 127.54, 128.57, 132.63, 132.83,

144.55, 155.52. S-(+)hydrochloride: colourless, nonhygroscopic solid, m.p. 186.4° C. (dec.); $[\alpha]_{D}^{22}$ =+6.6 (c=0.5, water). NMR (DMSO-d₆): 16.58, 18.17, 31.62, 41.37, 45.90, 54.02, 63.07, 115.18, 126.05, 126.37, 128.03, 128.45, 129.04, 133.12, 143.88, 153.77.

R-(+)-2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol

Hydrogenolysis of R-(+)-[4-benzyloxy-3-(3diisopropylamino-1-phenylpropyl)-phenyl]-methanol (prepared from R-(-)-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionic acid as described for the racemic series) gave the title compound in 87% yield, colourless solid; m.p. $\geq 50^{\circ}$ C., $[\alpha]_{D}^{22}$ =+21.3 (c=1.0, ethanol). R-(-) hydrochloride: colourless, non-hygroscopic solid, m.p. 179.8° C. (dec.); $[\alpha]_{D}^{22}$ =-7.2 (c=0.5, water); NMR (DMSO-d₆): 16.59, 18.19, 31.64, 41.38, 45.92, 54.07, 63.08, 115.19, 126.07, 126.39, 128.04, 128.46, 129.05, 133.13, 143.89, 153.79. R-(+)-mandelate: m.p. 139.7° C., $[\alpha]_0^{21}$ =+38.3 (c=1.0, ethanol).

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy-25 [2H2]methyl-phenol

Intermediate d2-B (n=2)

A stirred suspension of lithium aluminium deuteride (0.1 g, 2.38 mmol) in 5 ml of dry diethyl ether was treated during A solution of Intermediate A (9.1 g) in methanol (100 ml) 30 min at room temperature under an atmosphere of dry nitrogen with a solution of (\pm) -4-benzyloxy-3-(3diisopropylamino-1-phenylpropyl)-benzoic acid methyl ester (1.0 g, 2.17 mmol) in dry diethyl ether (5 ml). After an additional stirring at room temperature for 18 hrs the reaction was quenched by the dropwise addition of 0.17 ml of ²H₂O. The resultant precipitation was filtered off, washed with small portions of ether, and the combined organic phases were evaporated to dryness in vacuum to leave (±)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)phenyl]-[2H,]methanol as slightly yellow, viscous oil which gradually crystallized, m.p. 84.1° C.; tlc: (2) 0.33 (starting material 0.46), 0.725 g, 77.2% yield. NMR (CDCl.): 20.46, 20.55, 36.77, 41.62, 44.09, 48.77, multiplett centered at 64.30, 70.05, 111.76, 125.72, 125.94, 126.92, 127.34, 127.71, 128.03, 128.32, 128.38, 133.15, 133.99, 137.17, 144.80, 155.52.

A solution of the above (±)-[4-benzyloxy-3-(3diisopropylamino-1-phenylpropyl)-phenyl]-[2II₂]methanol (0.129 g, 0.29 mmol) in a suspension of methanol (5 ml) and wet Rancy-Nickel (0.1-0.2 g) was stirred at room tempera-55 ture under an atmosphere of deuterium gas (2 H₂). After 1 hr tle indicated complete disappearance of the starting material. The mixture was filtered, evaporated and the residue was redissolved in diethyl ether (5 ml). The solution was washed with water (2x5 ml), dried over sodium sulphate, filtered and evaporated to dryness to leave a pale yellow oil, 76.3 mg, in 74.6% yield, which gradually solidified to give a colourless solid of a m.p. range of 46-49° C. Tlc: (4) 0.57 (starting material 0.77). NMR (CDCl₃): 19.57, 19,94, 33.33, 39.56, 42.18, 48.07, 48.43, multiplett centred at 64.61, 118.47, 126.29, 126.58, 127.55, 127.94, 128.38, 132.53, 144.53,

155.37. GC-MS (P-CI, ammonia, TMS derivative): 488.43 (100%), 489.56 (70%), 490.56 (31%), 491.57 (8%).

Intermediate d₂-B

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy- $[^2H_2]$ methyl-phenol

Intermediate d2-B

n = 2, deuterioro

(iii) Heck-Cuprate-Route to Intermediate B

(benzonitrile)-palladium-II chloride (1.5 mol %), and 20 ml of N-methyl-2-pyrrolidinone was heated at 130° C. until no starting material could be detected by tlc (starting material methyl 3-bromo-4-methoxybenzoate: R_f 0.73; N,N-5 diisopropylacrylamide: R_f 0.46; solvent system (1)). After cooling to room temperature 50 ml of an aqueous 2N HCl solution was added. The reaction was diluted with dichloromethane (50 ml) and the precipitated grey palladium metal was filtered off. The organic phase was washed with five portions (50 ml each) of 2N aqueous hydrochloric acid, dried (MgSO₄) and evaporated to dryness. The remaining off-white solid was recrystallized from ethyl acetate/n-bexane to give 4.40 g (E)-N,N-diisopropyl-3-(2-methoxy-5-methoxycarbonylphenyl)-acrylamide in 69% yield, m.p. 139-140° C., tlc: (1) R, 0.40. NMR (CD₂Cl₂): 21.22, 22.10, 46.39, 48.87, 52.59, 56.61, 111.42, 123.39, 123.78, 125.54, 130.32, 132.53, 135.07. MS (EI, DI, 105° C.): 319 (M*, 22), 304 (6%), 276 (8%), 219 (100%), 187 (18%), 160 (7%). (±)-N,N-Diisopropyl-3-(2-methoxy-5-

methoxycarbonylphenyl)-3-phenylpropionamide ((±)-3-(2-Diisopropylcarbamoyl-1-phenylethyl)-4methoxybenzoic Acid Methyl Ester)

The reaction was carried out under an atmosphere of dry and oxygen-free nitrogen gas. All solvents and reagents were dried before use.

N,N-Diisopropyl-acrylamide

A solution of acroyl chloride (42.2 g, 40.6 ml, 0.467 mol) in 125 ml of dichloromethane was slowly added to a cooled (0-5° C.) solution of N,N-diisopropylamine in dichloromethane (500 ml). After 2 hrs the precipitated ammonium 50 salt was filtered off and the filtrate was washed with 1M hydrochloric acid (3×100 ml), dried (sodium sulphate), and evaporated to dryness. N,N-diisopropyl-acrylamide was obtained as a slight yellow liquid in 48% yield and ca. 99% purity. NMR (CDCl₃): 20.54, 21.25, 45.66, 48.10, 125.62, 55 130.70, 166.17.

(E)-N, N-Diisopropyl-3-(2-methoxy-5methoxycarbonylphenyl)-acrylamide

((E)-3-(2-Diisopropylcarbamoyl-vinyl)-4methoxybenzoic Acid Methyl Ester)

The reaction was carried out under an atmosphere of dry and oxygen-free nitrogen gas. All solvents and reagents were dried before use.

A stirred suspension consisting of N,N-dimethylglycine (6.0 mmol), anhydrous sodium acetate (40 mmol), methyl 65 3-bromo-4-methoxybenzoate (20 mmol, 4.90 g), N,N-diisopropylacrylamide (24 mmol, 3.72 g), bis-

A dark green solution of lithium diphenylcuprate was prepared by addition of phenyllithium solution (12 ml, 24 mmol, cyclohexane/diethyl ether) to a cooled (0° C.) and stirred suspension of copper-I bromide dimethylsulphide adduct (2.71 g, 13 mmol) in diethyl ether (40 ml). This solution was cooled to -78° C. and then subsequently solutions were added of trimethylchlorosilane (1.5 ml, 12 mmol) in diethyl ether (5 ml) followed by the above cinnamide (3.19 g, 10.0 mmol, (E)-N,N-diisopropyl-3-(2methoxy-5-methoxycarbonylphenyl)-acrylamide) in 10 ml of tetrahydrofuran. The reaction was stirred for one hour at -78° C., warmed to room temperature and then quenched by the addition of 150 ml of a saturated aqueous solution of ammonium chloride. After 90 min the organic phase was washed with two portions (100 ml) of half saturated aqueous sodium chloride, dried (MgSO₄) and evaporated to dryness. The yellow oily residue was dissolved in a minimum of ethyl acetate and purified by column chromatography on silica gel (mobile phase (1)). Evaporation of the combined fractions of the title compound gave (±)-N,N-diisopropyl-3-(2-methoxy-5-methoxycarbonylphenyl)-3-phenylpropionamide as a viscous slightly yellow syrup (1.8 g, 44% yield). NMR

(CD₂Cl₂): 19.45, 19.56, 19.74, 38.86, 44.87, 47.92, 50.80, 54.76, 109.41, 121.32, 125.53, 128.10, 128.43, 128.78, 132.03, 143.20, 159.95, 165.95, 168.87. MS (EI, DI, 105° C.): 397 (M⁺, 41%), 366 (5%), 322 (2%), 269 (3%), 255 (14%), 237 (7%), 165 (5%), 128 (12%), 91 (43%), 58 5 (100%)

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol

A solution of (±)-N,N-diisopropyl-3-(2-methoxy-5methoxycarbonylphenyl)-3-phenylpropionamide (0.79 g, 2.0 mmol) in 20 ml of tetrahydrofuran was cooled to 5° C. and then treated with 2.5 ml of IM LiAlH /THF. After stirring at room temperature for 18 hrs. finely powdered aluminium chloride (0.3 g) was added and stirring was continued for additional 4 hrs. The reaction was quenched at 15 5° C. by the dropwise addition of water followed by aqueous sodium hydroxide solution. The mixture was diluted with diethyl ether (150 ml) and the organic phase was washed with half saturated brine, dried (sodium sulphate), and evaporated to dryness to give the title compound as a solid 20 off-white foam. Tic (2) 0.16, m.p. 48-51° C. A portion of the material was converted into the hydrochloride (ethereal hydrochloric acid), m.p. 186-189° C. (dec.).

Hydrogenolytic Deoxygenation of S-(-)-2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol

A mixture of S-(-)-2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenol (683 mg, 2.0 mmol, $[\alpha]_0^{22}$ =+19.8 (c=1.0, ethanol)), platinium-on-carbon catalyst (120 mg) and acetic acid (1.0 ml) was diluted with ethyl acctate (50 ml) and then hydrogenated at room temperature under a pressure of 4 bar hydrogen gas for 5 hrs. The catalyst was filtered off and the filtrate was evaporated to leave an oil. The residue was redissolved in dichloromethane (25 ml) and the solution was washed with aqueous sodium hydrogenearbonate solution. The organic phase was concentrated to dryness and the oily residue taken up in ethanol (7 ml). Addition of D-(-)-tartaric acid (300 mg) and storage of the clear solution at -25° C. gave colourless crystals (310 mg) of S-(-)-2-(3-diisopropylamino-1-phenylpropyl)-4methylphenol D-(-)hydrogentartrate in 33% yield, tle: (4): 0.66 (starting material 0.31), $\left[\alpha\right]_D^{22}$ =-26.7 (c=1.0, methanol). NMR (CD₃OD): 17.98, 18.37, 20.69, 33.68, 43.12, 56.33, 74.17, 116.31, 127.51, 129.11, 129.50, 129.70, 129.89, 130.41, 144.57, 153.67, 176.88.

A portion of the tartrate was treated with aqueous sodium hydrogenearbonate solution and the free base was isolated in quantitative yield as a colourless oil by extraction with ethyl acetate and evaporation of the extract. $[\alpha]_D^{22}$ =-26.3 (c=1.0, 50 methanol).

Preferred intermediates in the processes for the preparation of the 3,3-diphenylpropylamines according to the present invention are:

- acid and its salts,
- R-(-)-(2-Benzyloxy-5-bromophenyl)-3-phenylpropanoic acid and its salts,
- S-(+)-(2-Benzyloxy-5-bromophenyl)-3-phenylpropanoic acid and its salts,
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy-[C2H2]methyl-phenol,
- S-(-)-2-(3-Dlisopropylamino-1-phenylpropyl)-4hydroxy-[C2H2]methyl-phenol,
- R-(+)-2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxy-[C2H2]methyl-phenol and their salts.

3. Example

a) Phenolic Monoesters

aa) General Procedure

Eaters of Carboxylic Acids

A stirred solution of (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol (Intermediate B, 1.71 g, 5.01 mmol) and acid chloride (5.00 mmol carboxylic acid monochloride for compounds of formula II, 2.50 mmol for compounds of formula II') in 60 ml of dichloromethane was cooled to 0° C. and then triethylamine (0.502 g, 4.96 mmol for compounds of formula II, 1.05 g, 9.92 mmol for compounds of formula II'), dissolved in 10 ml of dichleromethane, was added dropwise during 5-10 min. Stirring was continued for 18 hrs at room temperature, and then the mixture was washed successively with water (25 ml), aqueous sodium hydrogen carbonate (5%, 25 ml), and water (25 ml). The organic phase was then dried (sodium sulphate) and evaporated under reduced pressure and at low temperature. The oily residues thus formed were finally exposed to high vacuum (2-4 hrs.) to remove traces of residual solvents

The esters of formula II or II' were obtained as colourless to light yellow solids or viscous syrups in puritees between 90% and 99% (tlc, HPLC, NMR).

Esters of N-Acylamino Acids

Phenolic Monoesters

To a solution of the respective amino acid (2.0 mmol) in 0.7 ml to 5 ml of N,N-dimethylformamide and 0.5 ml of triethylamine was added at 5° C. in one portion methyl chloroformate (2.0 mmol, 288 mg). After stirring for 2 hrs. at the same temperature the cooling bath was removed and a solution of Intermediate B (2.0 mmol, 682 mg) in 5 ml of dichloromethane and triethylamine (0.5 ml) was added. The reaction was allowed to stir for 2-8 hrs and then diluted with diethyl ether (70 ml). Solid precipitates were filtered off and the mixture was washed with aqueous sodium hydrogen sulphate solution (5%) and water. After drying (sodium sulphate), filtration and evaporation in vacuum the residue was purified by flash chromatography on silica gel (eluent: solvent system (4)). N-acylamino acid esters were obtained as viscous oils or waxy solids in yields between 24% and

bb) Salt Formation (Example hydrochloride)

A cooled (0° C.) solution of 4.94 mmol amino base in 30 ml of dry diethyl ether was treated under an atmosphere of nitrogen with 4.70 mmol (monoamines of formula II) or 9.4 mmol (diamines of formula II') ethereal (1 M) hydrochloric acid. The oily precipitation was washed repeatedly with dry ether and then evaporated in high vacuum. The residual product solidificated in most cases as an amorphous foam. The highly hygroscopic solids show a wide melting range above 100° C. (with decomposition).

The following compounds were prepared according to the method described above and their analytical data are listed below:

- (±)-Acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropanoic 55 4-hydroxymethylphenyl ester, tlc: R_f 0.47 (4), NMR (CDCl₂): 20.36, 20.68, 20.97, 36.59, 42.35, 43.83, 48.76, 64.58, 122.69, 125.61, 126.22, 126.71, 127.96, 128.34, 136.82, 138.97, 143.73, 147.77, 169.24; GC-MS/P-CI (ammonia, trimethylsilyl derivative): 456.8 (100%), 398.4 (4%).
 - (±)-Propionic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R, 0.52 (4); NMR (CDCl₄): 20.44, 20.64, 27.67, 36.67, 42.21, 43.87, 48.78, 64.70, 122.71, 125.62, 126.52, 126.78, 127.97, 128.53, 136.86, 138.82, 143.82, 147.86, 172.68; GC-MS/P-CI (ammonia, trimethylsilyl derivative): 470.38 (100%), 398.4 (4%).

(±)-n-Butyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester, tle: R, 0.43 (4); NMR (CDCl₃): 13.77, 18.40, 20.43, 20.51, 20.59, 36.15, 36.82, 42.16, 43.90, 48.83, 49.20, 64.58, 122.66, 125.98, 126.17, 126.74, 127.33, 127.94, 128.33, 136.79, 138.91, 143.82, 171.88; GC-MS/N-CI (methane, trimethylsilyl derivative): 482.3 (20%), 412.3 (100%), 340.1 (33%), 298.1 (89%), 234.7 (15%); GC-MS/P-CI (methane, trimethylsilyl derivative): 484.5 (100%), 468.4 (62%), 394.3 (22%); GC-MS/P-CI (ammonia, trimethylsilyl derivative): 484.4 10 phenylpropyl)-4-hydroxymethylphenyl Ester (100%), 398.4 (3%).

(±)-Isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R, 0.43 (4); NMR (CDCl₃): 18.99, 19.11, 20.54, 34.21, 36.88, 41.84, 43.91, 48.78, 64.61, 122.54, 125.57, 126.14, 126.81, 127.94, 15 128.34, 136.84, 138.84, 143.89, 147.85, 175.36.

R-(+)-Isobutyric Acid 2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl Ester

Tic: R_f 0.38 (4), starting material: 0.26; colourless oil (yield 95%); NMR (CDCl₃): 19.02, 19.14, 19.96, 20.61, 34.26, 36.92, 41.87, 43.90, 48.80, 64.84, 122.63, 122.63, 125.64, 126.19, 126.92, 127.98, 128.39, 136.96, 138,76, 143.93, 147.97, 175.39. Hydrochloride: colourless hygroscopic solid; $[\alpha]_D^{20}$ =+5.5 (c=1.0, chloroform); NMR (CDCl₄): 17.03, 17.53, 18.30, 18.52, 18.95, 19.12, 31.23, 34.10, 41.69, 45.40, 54.22, 54.47, 64.00, 122.32, 126.62, 126.81, 127.40, 128.06, 128.70, 133.88, 140.64, 142.25,

(±)-2,2-Dimethylpropionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R, 0.49 (1); NMR (CDCl₃): 20.46, 20.66, 26.53, 27.34, 37.12, 39.21, 41.46, 43.98, 48.81, 64.65, 122.42, 125.58, 126.16, 126.92, 128.37, 134.27, 136.92, 138.82, 143.97, 148.02, 176.97; GC-MS/P-CI (ammonia, trimethylsilyl derivative): 498.8 35 (100%), 482.5 (10%), 398.4 (4%).

(±)-2-Acetamidoacetic Acid 2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl Ester

((±)-2-[Diisopropylamino)-1-phenylpropyl]-4-(hydroxymethyl)phenyl 2-(acetylamino)acetate)

NMR (CD₃OD): 20.33, 20.61, 22.17, 30.54, 42.39, 48.62, 51.04, 64.88, 117.99, 124.73, 125.51, 127.01, 127.75, 129.31, 131.63, 137.33, 146.67, 147.43, 171.47, 173,82.

(±)-Cyclopentanecarboxylic Acid 2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl Ester

The: R_f 0.66 (4), starting material Intermediate B 3 (0.50), colourless oil, yield: 82%. NMR (CDCl₃): 20.42, 25.87, 30.25, 36.57, 41.89, 43.97, 47.15, 49.02, 64.63, 122.56, 125.60, 126.16, 126.81, 127.60, 127.94, 128.35, 128.77, 136.74, 138.88, 143.85, 147.92, 175.05.

(±)-Cyclohexanecarboxylic Acid 2-(3-Diisopropylamina-1-phenylpropyl)-4-hydroxymethylphenyl Ester

Tic: R_f 0.67 (4), starting material Intermediate B 3 (0.50) 55 colourless oil, yield: 93%. NMR (CDCl₃): 20.27, 25.40, 25.74, 29.03, 29.16, 36.29, 41.82, 43.31, 44.08, 49.36, 64.62, 122.56, 125.68, 126.22, 126.92, 127.92, 128.38, 136.65, 139.00, 143.72, 147.86, 174.40.

(±)-Benzoic Acid 2-(3-Diisopropylamino-1-60 phenylpropyl)-4-hydroxymethylphenyl Ester

Tic: R_f 0.31 (4); colourless syrup (99% yield, purity >95%); gradually crystallized upon refrigeration; NMR (CDCl₃): 20.41, 20.51, 36.65, 42.42, 43.85, 48.79, 64.70, 122.79, 125.74, 126.17, 126.83, 128.13, 128.28, 128.58, 65 129.48, 130.25, 133.62, 137.21, 139.10, 143.67, 148.00, 164.99.

R-(+)-Benzoic Acid 2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl Ester

tlc R_f 0.30 (4); colourless syrup; Hydrochloride: colourless amorphous solid; [a]_p²⁰ =+14.9 (c=1.0, chloroform); NMR (CDCl₃): 17.06, 17.53, 18.25, 18.61, 31.23, 42.19, 45.49, 54.26, 54.53, 64.09, 122.55, 126.77, 127.13, 127.8, 128.10, 128.50, 128.72, 128.78, 129.02, 130.17, 133.96, 34.27, 140.81, 142.13, 147.91, 165.40.

(±)-4-Methylbenzoic Acid 2-(3-Diisopropylamino-1-

Tic: R_f 0.30 (4), starting material Intermediate B: 0.24; yield: quantitative, viscous light yellow oil; NMR (CDCl₃): 20.32, 20.50, 21.78, 36.13, 42.35, 43.98, 49.29, 64.66, 122.79, 125.81, 126.19, 126.70, 127.04, 128.30, 129.32, 129.76, 130.29, 136.94, 139.20, 143.61, 144.46, 148.04, 165.07. LC-MS: 459 (M+, 3.5%), 444 (17%), 223 (2.5%), 195 (2%), 119 (48%), 114 (100%).

(±)-2-Methylbenzoic Acid 2-(3-Diisopropylamino-1-

phenylpropyl)-4-hydroxymethylphenyl Ester

viscous colourless oil, tlc: (4) 0.64 (starting material R, 0.51), yield 84%. NMR (CDCl₃): 20.44, 20.53, 21.86, 22.01, 36.74, 42.36, 43.87, 48.81, 64.76, 122.93, 123.11, 125.71, 126.12, 126.88, 128.10, 128.48, 130.76, 131.26, 131.70, 132.03, 132.79, 137.28, 139.00, 141,73, 143.72, 148.04, 165.25. LC-MS: 459 (M*, 21%), 444 (100%), 326 (1%), 223 (10%), 213 (6%), 195 (9%), 165 (14%), 115 (94%), 91 (99%).

(±)-2-Acetoxybenzoic Acid 2-(3-Diisopropylamino-1-

phenylpropyl) 4-hydroxymethylphenyl Ester

colourless syrup, tlc: (4) 0.47 (starting material R₇ 0.51), yield 82% NMR (CDCl₃): 20.39, 20.57, 20.96, 36.92, 42.29, 43.88, 48.87, 64.64, 122.39, 122.64, 124.05, 125.80, 126.11, 126.75, 128.09, 128.32, 132.23, 134.66, 137.27, 139.32, 143.64, 147.63, 151.37, 162.72, 169.73. LC-MS: 503 (M⁺, 7%), 488 (59%), 446 (6%), 326 (22%), 223 (9%), 213 (9%), 195 (9%), 163 (14%), 121 (100%), 114 (88%).

(±)-1-Naphthoic Acid 2-(3-Diisopropylamino-1-

phenylpropyl)-4-hydroxymethylphenyl Ester

colourless viscous oil, tlc: (4) 0.57 (starting material R 0.51), yield 82%. NMR (CDCl₃): 20.46, 20.58, 36.82, 42.46, 43.89, 48.76, 64.81, 122.98, 124.51, 125.64, 125.79, 125.98, 126.15, 126.44, 126.94, 128.12, 128.36, 128.65, 131.37, 131.82, 133.98, 134.45, 137.44, 139.08, 143.73, 148.13, 165.49. LC-MS: 495 (M+, 8%), 480 (100%), 213 (7%), 165 (8%), 155 (95%), 127 (100%), 114 (90%).

(±)-2-Naphthoic Acid 2-(3-Diisopropylamino-1-

phenylpropyl)-4-hydroxymethylphenyl Ester

colourless slightly yellow viscous oil, tlc: (4) 0.57 (starting material R_r0.51), yield 71%. NMR (CDCl₂): 20.47, 20.59, 36.71, 42.59, 43.85, 48.81, 64.82, 122.89, 126.89, 127.89, 128.19, 128.41, 128.68, 129.50, 132.03, 132.55, 135.87, 137.22, 139.08, 143.83, 148.20, 165.14. LC-MS: 495 (M*, 7%), 480 (98%), 223 (8%), 213 (6%), 195 (6%), 165 (8%), 155 (96%), 127 (100%), 114 (81%).

(±)-4-Chlorobenzoic Acid 2-(3-Diisopropylamino-1-

phenylpropyl)-4-hydroxymethylphenyl Ester

Tlc: R_c 0.54 (4), starting material Intermediate B: 0.44; yield: quantitative, viscous light yellow oil; NMR (CDCl₂): 20.34, 20.50, 36.41, 42.51, 43.84, 48.93, 64.66, 122.72, 125.82, 126.88, 127.27, 128.06, 128.56, 128.96, 131.60, 133.80, 136.95, 139.30, 140.16, 143.60, 147.87, 164.10. LC-MS: 479 (M+, 1.5%), 464 (10%), 223 (2%), 195 (2%), 165 (1.5%), 139 (25%), 114 (100%).

(±)-4-Methoxybenzoic Acid 2-(3-Diisopropylamino-7phenylpropyl)-4-hydroxymethylphenyl Ester

Tic: R, 0.47 (4), starting material Intermediate B: 0.42; yield: 89%, viscous light yellow oil; NMR (CDCl₃): 20.31, 20.47, 36.43, 42.39, 43.90, 48.97, 55.53, 64.71, 121.79, 122.86, 125.72, 126.14, 126.79, 128.11, 128.27, 131.27,

131.77, 132.36, 132.84, 137.15, 139.01, 143.74, 148.08, 163.92, 164.71. LC-MS: 475 (M+, 3.5%), 460 (20%), 223 (2%), 195 (2%), 135 (48%), 114 (100%).

(±)-2-Methoxybenzoic Acid 2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl Ester

Tlc: R_f 0.40 (4), starting material Intermediate B: 0.42; yield: 98%, viscous light yellow oil; NMR (CDCl₃): 20.29, 20.42, 36.50, 41.92, 44.02, 49.09, 55.95, 64.72, 119.10, 120.20, 122.86, 125.64, 126.10, 126.82, 128.06, 128.30, 164.40. LC-MS: 475 (M*, 3.5%), 460 (18%), 223 (1%), 195 (1%), 135 (49%), 114 (100%).

(±)-4-Nitrobenzoic Acid 2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl Ester

TIc: R, 0.44 (4), starting material Intermediate B: 0.42; 15 yield: 78%, viscous yellow oil which slowly solidified; m.p. 123.6° C.; NMR (CDCl₃): 20.47, 20.62, 36.52, 42.66, 43.70, 48.75, 64.69, 122.61, 123.72, 125.91, 126.33, 127.04, 128.02, 128.37, 131.32, 134.86, 136.83, 139.55, 143.56, 147.75, 150.93, 163.04. L.C-MS: 490 (M*, 1.5%), 475 20 134.41, 135.49, 142.68, 148.20, 169.32, 170.42. (15%), 327 (0.8%), 223 (3%), 195 (3%), 150 (15%), 114 (100%).

(±)-2-Nitrobenzoic Acid 2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl Ester

Tic: R_f 0.32 (4), starting material Intermediate B: 0.42; 25 yield: 92%, viscous yellow oil which slowly solidified; NMR (CDCl₃): 20.39, 20.50, 36.74, 42.14, 43.89, 48.71, 48.92, 64.59, 122.15, 123.95, 124.18, 125.89, 126.25, 127.23, 127.99, 128.39, 129.95, 132.95, 133.08, 136.72, 139.62, 143.64, 147.63, 148.15, 163.90. LC-MS: 490 (M+, 30 1%), 475 (11%), 327 (2.5%), 223 (2.5%), 195 (3%), 165 (3%), 150 (7%), 114 (100%).

(*)-N-Acetylglycine 2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl Ester/(±)-2-Acetamidoacetic Acid 2-(3-diisopropylamino-1- 35 phenylpropyl)-4-hydroxymethylphenyl Ester

((±)-2-[Diisopropylamino-1-phenylpropyl]-4-(hydroxymethyl)phenyl 2-(Acetylamino)acetate)

NMR (CD₃OD): 20.33, 20.61, 22.17, 30.54, 42.39, 48.62 51.04, 64.88, 117.99, 124.73, 125.51, 127.01, 127.75, 129.31, 131.63, 137.33, 146.67, 147.43, 171,47, 173.82.

(±)-Malonic Acid bis-[2-(3-Diisopropylamino-1phonylpropyl)-4-hydroxymethylphonyl]ester, tle: R, 0.38 (4), NMR (CDCl₃): 20.52, 20.62, 20.69, 36.95, 41.84, 42.82, 43.89, 48.23, 64.83, 123.37, 127.36, 127.97, 128.42, 128.38, 45 129.06, 131.55, 137.50, 138.90, 148.23, 148.32, 160.54.

(±)-Succinic acid bis-[2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester, tic: R, 0.40 (4); NMR (CDCl₄): 20.54, 20.63, 20.73, 30.69, 36.91, 41.80, 43.92, 48.20, 64.81, 122.60, 127.41, 127.93, 128.39, 129.31, 50 131.80, 136.73, 138.92, 143.82, 148.17, 168.01.

(±)-Pentanedioic acid bis-[2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: R_f 0.43; NMR (CDCl₃): 20.47, 20.60, 32.87, 36.93, 41.82, 43.90, 48.22, 64.81, 64.83, 122.85, 127.39, 127.99, 128.35, 129.31, 55 136.38, 137.66, 143.82, 148.95, 164.77, 166.60. 131.84, 136.98, 138.94, 143.80, 147.40, 169.05.

(±)-Hexanedioic acid bis-[2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: R, 0.43; NMR (CDCl₃): 20.64, 23.40, 34.37, 36.95, 41.84, 43.88, 48.25, 64.87, 122.88, 127.34, 127.97, 128.39, 129.33, 60 121.80, 136.99, 138.94, 143.82, 147.65, 168.72.

b) Identical Diesters

(±)-Identical diesters (formula III) were prepared and worked up as described above with the exception that 2.4 were used. The physical properties were similar to the bases and salts described above.

Diesters of N-acylaminoacids were prepared as described for phenolic monoesters with the exception that an additional molar equivalent of acylating agent (mixed acid anhydride) was used.

In particular, the following compounds were prepared and their analytical data are given below:

(±)-Formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester, tlc: R_r0.65 (4). This diester was prepared from mixed formic acetic anhydride and 132.38, 134.32, 137.11, 139.01, 143.87, 148.00, 159.82, 10 Intermediate B as described for other substrates previously (F. Reber, A. Lardon, T. Reichstein, Helv. Chim. Acta 37: 45-58 [1954]).

> (±)-Acetic acid 4-acetoxy-3-(3-diisopropylamino-1phenylpropyl)-benzyl ester, tlc: R, 0.76 (4); GC-MS/P-CI (ammonia): 426.3 (100%), 368.3 (22%); GC-MS/P-CI (methane, trimethylsilyl derivative): 426.4 (64%), 410.3 (16%), 366.3 (100%); hydrochloride, NMR (DMSOd₆): 16.50, 16.76, 18.05, 20.94, 21.04, 27.02, 31.39, 41.28, 45.26, 53.80, 65.21, 123.39, 126.84, 127.61, 127.85, 128.70,

> (±)-Propionic acid 2-(3-diisopropylamino-1phenylpropyl)-4-propionyloxymethylphenyl ester, tlc: R_f 0.82 (4); NMR (CDCl₂): 20.53, 20.73, 21.14, 27.66, 36.73, 42.10, 43.68, 48.65, 65.75, 122.65, 126.10, 127.01, 127.70, 128.34, 128.78, 133.73, 136.81, 143.76, 148.45, 172.45, 174.21; GC-MS/P-CI (ammonia): 454.8 (100%), 438.5 (9%), 382.4 (27%).

(±)-n-Butyric acid 4-n-butyryloxymethyl-2-(3diisopropylamino-1-phenylpropyl)-phenyl ester, tlc: R, 0.86 (4); NMR (CDCl₃): 13.70, 13.76, 18.44, 20.53, 20.69, 21.13, 36.14, 36.76, 37.09, 42.08, 43.73, 48.71, 65.64, 122.81, 125.97, 126.97, 127.92, 128.35, 128.77, 133.78, 136.99, 143.76, 148.41, 171.68, 173.40; GC-MS/P-CI (ammonia): 482.8 (100%), 396.4 (67%).

(±)-Isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-isobutyryloxymethylphenyl ester, tlc: R, 0.83 (4), NMR (CDCl₃): 18.97, 19.10, 20.64, 20.67, 34.01, 34.23, 36.98, 41.72, 43.70, 48.65, 65.61, 122.50, 126.18, 126.73, 127.92, 128.13, 128.36, 133.90, 137.01, 143.85, 148.41, 175.17, 176.81; GC-MS/N-CI (methane): 480.3 (15%); GC-MS/P-CI (methane): 482.5 (63%), 466.4 (18%), 394.3 (100%).

(±)-2,2-Dimethylpropionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-(2,2-dimethylpropionyloxy)-benzyl ester, Tic: R, 0.96 (4); NMR (CDCl₃): 20.44, 20.75, 27.09, 27.24, 37.18, 38.68, 39.15, 41.25, 43.66, 48.20, 65.50, 122.36, 126.32, 127.22, 127.48, 127.83, 128.29, 133.99, 136.98, 143.87, 148.37, 176.70, 178.10; GC-MS/P-CI (methane): 510.5 (76%), 494.5 (21%), 408.4 (100%).

(±)-Benzoic acid 4-benzoyloxymethyl-2-(3diisopropylamino-1-phenylpropyl)-phenyl ester, tlc: R, 0.80 (4); NMR (CDCl₃): 20.62, 36.95, 41.72, 43.89, 48.23, 66.76, 122.22, 125.33, 127.36, 127.62, 127.89, 127.89, 127.97, 128.38, 129.49, 130.52, 130.64, 131.15, 131.22, 131.98,

(±)-Benzoic Acid 4-Benzoyloxymethyl-2-(3diisopropylamino-1-phenylpropyl)-phenyl Ester

Hydrochloride: colourless solid; tlc: (4) 0.70, $[\alpha]_D^{20}$ +24.2 (c=1.0, chloroform). NMR (DMSO-d₆): 16.52, 17.99, 18.06, 26.99, 31.32, 53.94, 65.98, 123.58, 127.65, 127.98, 128.62, 128.90, 129.02, 129.45, 129.71, 130.10, 133.64, 134.32, 134.55, 135.60, 142.52, 148.37, 164.53, 165.76.

c) Mixed Diesters

Mixed diesters (formula IV) were prepared by acylation mmol of both triethylamine and acyl chloride (R1-COCI) 65 of the respective benzylic or phenolic monoesters. Working up and physical properties corresponded to the bases and salts described above.

In particular, the following compounds were prepared and their analytical data are given below:

- (±)-Acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester, tlc: R_f 0.76 (4); NMR (CDCl₃): 20.62, 20.91, 33.25, 42.20, 42.28, 48.23, 70.70, 5 122.96, 127.36, 127.97, 128.38, 128.73, 132.02, 135.41, 137.11, 143.81, 149.35, 161.34, 168.95.
- (±)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester, tlc: R_f 0.74 (4); NMR (CDCl₃): 20.60, 36.93, 41.72, 43.89, 48.23, 70.71, 10 122.50, 125.33, 127.30, 127.89, 127.97, 128.36, 129.57, 130.65, 131.13, 132.05, 135.41, 136.66, 143.80, 149.15, 161.35, 164.78.
- (±)-Benzoic Acid 2-(3-Diisopropylamino-1phenylpropyl)-4-acetoxymethylphenyl Ester

Viscous colourless oil, tle: R, 0.70 (4); NMR (CDCl₃): identical with R-(+)enantiomer, see below.

R-(+)-Benzoic Acid 2-(3-Diisopropylamino-1phenylpropyl)-4-acetoxymethylphenyl Ester

- tlc: R_f 0.70 (4); Hydrochloride: colourless non-20 hygroscopic solid $[\alpha]_{...}^{20}$ =+27.1 (c=1.0, chloroform). NMR (CDCl₃): 17.14, 18.53, 21.04, 31.51, 42.25, 46.27, 54.74, 65.58, 123.18, 127.07, 127.55, 127.61, 127.99, 128.80, 130.22, 134.14, 134.81, 135.27, 141.44, 148.54, 165.19, 170.81.
- (\pm)-Isobutyric acid 4-acetoxymethyl-2-(3-disopropylamino-1-phenylpropyl)-phenyl ester, tlc: R_f 0.77 (4); NMR (CDCl₃): 18.99, 19.12, 20.65, 21.05, 34.24, 37.02, 41.79, 43.79, 48.72, 65.98, 122.75, 126.76, 127.14, 127.94, 128.39, 128.84, 133.55, 137.04, 143.84, 148.56, 170.84, 30 175.18
- (±)-Isobutyric acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl Ester

colourless oil; Hydrochloride: colourless hygroscopic solid; $[\alpha]_D^{20}$ =+14.6 (c=1.0, chloroform); NMR (CDCl₃): 35 16.89, 17.04, 18.31, 18.54, 18.92, 19.06, 20.95, 31.49, 34.07, 41.64, 46.17, 54.55, 65.49, 122.91, 126.93, 127.48, 127.83, 128.74, 134.50, 134.88, 141.61, 148.44, 170.67, 175.63.

- (±)-2,2-Dimethylpropionic acid 4-acetoxy-3-(3-40 disopropylamino-1-phenylpropyl)-benzyl ester, tle: R_f 0.80 (4); NMR (CDCl₃): 20.63, 20.93, 27.19, 33.25, 37.49, 42.21, 42.25, 48.22, 67.37, 123.18, 127.36, 127.84, 128.39, 131.16, 137.34, 143.84, 148.29, 168.93, 178.40.
- (\pm) -2,2-Dimethylpropionic acid 4-acetoxymethyl-2-(3-45 diisopropylamino-1-phenylpropyl)-phenyl ester, tlc: R_f 0.81 (4); NMR (CDCl₃): 20.60, 20.79, 27.09, 36.93, 37.35, 41.85, 42.29, 48.25, 65.91, 122.36, 127.37, 127.99, 128.39, 129.38, 132.69, 136.00, 136.85, 143.80, 170.45, 176.60.

d) Benzylic Monoesters

A mixture consisting of Intermediate B (80 mg, 0.23 mmol), vinyl ester (0.4 ml), tert.-butyl methylether (18 ml), and lipase enzyme (1.0 9) was gently shaken at room temperature. Benzylic formate, acetate, and n-butyrate were prepared from the corresponding vinyl ester donors using 55 SAM I lipase (Amano Pharmaceutical Co.). Benzoylation was achieved with vinyl benzoate in the presence of Lipozym IM 20 (Novo Nordisk), whereas pivalates and isobutyrates were obtained from the corresponding vinyl esters under catalysis of Novozym SP 435 (Novo Nordisk). 60 Tlc analysis indicated after 2–24 hrs complete disappearence of the starting material (R,=0.45 (3)). The mixture was filtered and then evaporated under high vacuum (<40° C.) to give the carboxylic acid (R¹—CO₂H) salts of the respective benzylic monoesters as colourless to light yellow oils.

In particular, the following compounds were prepared and their analytical data are given below: (±)-Formic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f 0.25 (2); NMR (CDCl₃): 19.43, 33.24, 39.61, 42.25, 48.21, 68.44, 118.09, 127.34, 127.66, 128.31, 128.39, 133.97, 144.47, 156.63, 161.32.

(±)-Acetic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tle: R, 0.26 (2); NMR (CDCl₃): 19.45, 20.96, 33.26, 39.63, 42.27, 48.23, 63.59, 118.00, 127.36, 128.33, 128.48, 128.53, 129.13, 131.59, 133.88, 144.49, 155.74, 170.44.

(±)-Propionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R, 0.45 (2); NMR (CDCl₃): 19.02, 19.43, 27.58, 33.20, 39.61, 42.25, 48.21, 64.08, 118.30, 125.30, 127.03, 127.39, 128.31, 130.12, 134.22, 144.51, 155.64, 173.22.

(2)-Butyric acid 3-(3-diisopropylamino-1-phenylpropyl)15 4-hydroxybenzyl ester, tlc: R, 0.54 (2); NMR (CDCl₃):
13.58, 18.40, 19.45, 33.29, 35.88, 39.65, 42.23, 48.25,
63.96, 118.32, 124.55, 126.20, 127.35, 128.32, 129.91,
134.22, 144.50, 155.60, 169.05.

(±)-Isobutyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R, 0.56 (4); NMR (CD)CO₃): 19.09, 19.45, 33.28, 33.59, 39.65, 42.29, 48.25, 64.63, 118.35, 125.35, 127.03, 127.38, 128.35, 128.49, 129.79, 134.22, 144.52, 155.65, 175.48.

(±)-2,2-Dimethylpropionic acid 3-(3-diisopropylamino-25 1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R, 0.61 (4); NMR (CDCl₃): 19.41, 27.15, 33.24, 37.46, 39.61, 42.25, 48.21, 65.10, 118.30, 125.32, 127.00, 127.34, 128.31, 129.42, 134.18, 144.47, 155.61, 178.39.

(±)-Benzoic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f0.77 (4); NMR (CDCl₃): 18.01, 19.40, 33.24, 39.60, 42.40, 48.20, 66.93, 117.13, 127.18, 127.81, 128.33, 129.98, 130.17, 132.96, 133.58, 142.33, 156.95, 166.60.

e) Ethers and Silyl Ethers

A mixture of Intermediate B (3.4 g, 10 mmol), methane-sulphonic acid (2 ml, 31 mmol)/ and alcohol R¹⁰—OH (50–150 ml) was stirred at room temperature until no starting material was detectable (2–24 hrs). After evaporation to dryness (<35° C.) the residue was redissolved in acueous sodium hydrogen carbonate solution (100–200 ml, 5%, w/v) and the solution was extracted with ethyl acetate (75 ml). The organic phase was separated, dried (Na₂SO₄), filtered and evaporated to give bases of formula VI (R¹¹=H) as colourless to light yellow oils.

Mixed ester ether derivatives, e.g. of Intermediate A, were prepared by benzylic acylation of phenolic ethers, such as Intermediate A, according to the procedure described for examples of the structure of formula IV.

Hydrochlorides:

Molar equivalents of bases of formula VI (R¹¹=H), dissolved in tert.-butyl methylether, and ethereal hydrochloric acid were combined at room temperature oily precipitates were separated and dried in vacuum, crystalline hydrochlorides were isolated and recrystallized from accionitrile or acetone to give colourless crystalline material.

In particular, the following compounds were prepared and their analytical data are given below:

- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-methoxymethylphenol, tlc: R_f 0.61 (4); GC-MS/P-CI (methane, trimethylsilyl derivative): 428.4 (100%), 412.3 (49%), 396.3 (52%); hydrochloride: amorphous hygroscopic colourless solid; m.p. 161° C.; NMR (CD₃OD): 17.39/18.75 (broad signals), 33.79, 43.13, 56.47, 58.00, 75.59, 116.19, 120.79, 127.62, 129.04, 129.14, 129.42, 129.55, 130.43, 65 144.32, 155.85.
 - (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenol, tlc: R, 0.72 (4); GC-MS/P-CI

(ammonia, triethylsilyl derivative): 444.8 (100%), 398.4 (6%); hydrochloride: colourless non-hygroscopic crystals, m.p. 158–161° C., NMR (CD₃OD) 15.43, 17.12, 18.82, 33.80, 56.49, 66.49, 73.62, 116.19, 127.63, 128.99, 129.13, 129.36, 129.55, 130.58, 130.75, 144.32, 155.77.

- (\pm) -2-(3-Diisopropylamino-1-phenylpropyl)-4-propoxymethylphenol, NMR (CDCl₃): 18.62, 19.44, 23.10, 33.24, 39.61, 42.26, 48.22, 71.87, 73.94, 117.78, 124.95, 127.35, 127.57, 128.32, 128.47, 133.66, 134.23, 144.48, 155.25.
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-isopronoxymethylphenol, NMR (CDCl₃): 19.44, 22.32, 33.27, 39.65, 42.29, 48.25, 69.28, 72.10, 117.90, 127.38, 128.03, 128.41, 131.10, 133.76, 134.37, 144.51, 154.65. Ilydrochloride: colourless crystals, m.p. 140.400, tlc (4) 0.61. LC-MS: 383 (6%, [M-HCl]*), 368 (11%), 324 (1%), 223 (6%), 195 (3%), 165 (2%), 155 (5%), 114 (100%). NMR (DMSO-d₈): 16.57, 18.09, 18.19, 22.29, 31.58, 41.25, 45.87, 53.97, 69.26, 69.92, 115.28, 126.34, 127.08, 127.25, 127.96, 128.45, 129.07, 129.70, 132.31, 143.88, 154.22.
- (*)-2-(3-Diisopropylamino-1-phenylpropyl)-4-butoxymethylphenol, NMR (CDCl₃): 13.75, 19.44, 19.75, 32.24, 33.28, 39.60, 42.20, 48.20, 72.45, 117.87, 125.50, 127.29, 128.39, 133.70, 134.30, 144.47, 155.36.
- (±)-Acetic acid 2-(3-Diisopropylamino-1-phenylpropyl)-4-methoxymethylphenyl ester, NMR (CDCl₃): 19.99, 20.62, 25 20.90, 33.33, 42.30, 48.21, 58.41, 75.94, 122.92, 127.37, 127.95, 128.35 131.85, 136.99, 138.81, 143.88, 147.88, 168.95.
- (±)-Acetic acid 2-(3-Diisopropylamino-1-phenylpropyl)-4-cthoxymethylphenyl ester, NMR (CDCl₃): 15.49, 19.94, 20.95, 33.23, 42.25, 48.25, 65.70, 73.73, 122.63, 127.46, 127.95, 128.36, 131.65, 136.79, 139.71, 143.80, 147.66, 168.99.
- (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4trimethylsilanyloxymethylphenol, NMR (CDCl₃): 0.10, 35 19.40, 19.43, 33.25, 39.65, 42.25, 48.20, 64.93, 117.90, 124.90, 126.60, 127.35, 128.35, 128.48, 133.80, 137.15, 144.49, 155.28.
- (±)-Diisopropyl-[3-phenyl-3-(2-trimethylsilanyloxy-5-trimethylsilanyloxymethylphenyl)-propyl]amine, NMR 40 (CDCl₃): 0.10, 0.29, 19.40, 19.53, 33.28, 41.19, 42.27, 48.25, 66.40, 121.37, 127.36, 128.25, 128.50, 136.42, 144.10, 154.98.
- (±)-[3-(3-Diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxyphenyl]methanol, NMR (CDCl₃): 0.29, 45 0.33, 19.40, 19.53, 33.27, 41.16, 42.27, 48.23, 65.22, 118.04, 124.99, 126.52, 127.30, 128.25, 134.16, 136.80, 144.14, 155.06.
- (±)-Diisopropyl-[3-(5-methoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenylpropyl]amine, NMR so (CDCl₃): 0.28, 0.32, 19.39, 19.43, 33.28, 41.22, 42.33, 48.19, 58.40, 75.95, 117.68, 124.92, 126.60, 127.35, 128.25, 128.55, 134.00, 136.47, 144.16, 155.09.
- (±) Diisopropyl-[3-(5-ethoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenylpropyl]amine, NMR ss (CDCl₃): 0.28, 0.31, 15.50, 19.42, 19.58, 33.29, 41.17, 42.25, 48.20, 65.70, 72.48, 117.50, 124.75, 126.39, 127.39, 128.25, 128.50, 134.99, 136.28, 144.19, 154.28.
- (±)-[4-(tert.-Butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]methanol, R_f 60 0.65 (3).
- (±)-Acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, NMR (CDCl₃): -4.92, -5.00, 19.40, 19.49, 20.40, 20.83, 23.49, 33.25, 41.22, 42.25, 48.25, 72.55, 81.55, 121.24, 124.88, 65 127.40, 128.26, 128.44, 128.48, 133.37, 135.74, 144.11, 155.20.

- (±)-4-(tert.-Butyl-dimethylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)-phenol, tlc: R_f 0.70 (3); GC-MS/N-CI (methane, trimethylsilyl derivative): 526.5 (59%), 454.3 (100%), 412.2 (14%), 340.1 (42%); GC-MS/P-CI (methane, trimethylsilyl derivative): 528.6 (100%), 512.5 (85%), 470.43 (10%), 396.3 (31%).
- (±)-Acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, NMR (CDCl₃): -4.77, -4.88, 19.15, 20.65, 20.93, 24.77, 33.25, 42.20, 48.20, 67.90, 122.79, 125.15, 127.44, 127.90, 128.41, 136.99, 140.55, 143.85, 147.86, 168.95.
- (±)-{3-[2-(tert.-Butyl-dimethylsilanyloxy)-5-(tert.-butyl-dimethylsilanyloxymethyl)-phenyl]-3-phenylpropyl}-diisopropylamine, tlc: R_f 0.94 (3); GC-MS/N-CI (methane): 568.6 (62%), 454.3 (100%), 438.2 (10%), 340.2 (58%), 324.8 (16%), 234.7 (78%); GC-MS/P-CI (methane): 570.6 (70%), 554.5 (52%), 512.5 (18%), 438.4 (24%).
- (±)-Acetic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R_f 0.56 (5); GC-MS/P-CI (ammonia): 474.4 (100%), 416.4 (54%); NMR (CDCI₃): 20.44, 20.56, 21.07, 36.73, 41.53, 44.01, 48.79, 66.43, 70.00, 111.61, 125.75, 127.34, 127.55, 127.76, 127.90, 128.03, 128.27, 128.39, 133.98, 136.98, 144.63, 156.05, 170.94.
- (±)-Benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R_f 0.87 (4); NMR (CDCl₃): 20.54, 20.60, 36.80, 41.51, 43.95, 48.67, 66.83, 70.04, 111.66, 125.76, 127.35, 127.45, 127.78, 128.06, 128.27, 128.30, 128.42, 128.85, 129.66, 130.55, 132.86, 134.05, 137.03, 144.75, 156.08, 166.46; GC-MS/P-Cl (ammonia): 536.5 (100%), 416.4 (42%).
- (±)-Isobutyric acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tic: R_f 0.77 (4); NMR (CDCl₃): 19.01, 20.62, 20.65, 34.04, 36.85, 41.54, 43.97, 48.71, 66.15, 70.06, 111.62, 125.79, 125.96, 126.97, 127.24, 127.55, 127.81, 128.08, 128.34, 128.45, 134.05, 137.10, 144.79, 156.00, 177.01; GC-MS/P-CI (ammonia): 502.4 (100%), 416.4 (49%).

f) Carbamates and Carbonates

Mono N-substituted Carbamates

A solution of 4.0 mmol of Intermediate B, benzylic ether (formula VI, R¹¹=H) or monoester of formula II in dichloromethane (20 ml) was treated at room temperature for 16 hrs with isocyanate (4.8 mmol) or diisocyanaze (2.2 mmol). After washing with 10 ml aqueous sodium hydrogen carbonate (5%, w/v), drying (Na₂SO₄) and evaporation oily residues or colourless solids of the free bases were obtained.

N-disubstituted carbamates

N,N-dialkyl-carbamoylchloride (4.4 mmol) was dissolved in dichloromethane and dropped into a cooled (0° C.) and stirred mixture consisting of Intermediate B (4.0 mmol), dichloromethane (30 ml) and triethylamine (7.0 mmol, 0.71 mg, 1 ml). Stirring was continued for 6 hrs. The mixture was then washed with 5 portions (10 ml) of aqueous sodium hydrogen carbonate, dried (sodium sulphate), filtered and evaporated to give the carbamates as colourless oils or solids.

Bis-carbamates were prepared in like manner using intermediate B and excess isocyanate (4.8 mmol) and toluene as solvent at 65° C. over 18 hrs.

Carbonates were prepared and worked-up according to the methods described for the preparation of compounds of formulae II to IV. Alkyl chloroformates were used as acylation reagents.

Hydrochlorides:

The oils or solids were redissolved in tetrahydrofuran (10 ml). Addition of ethereal hydrochloric acid and evaporation

to dryness in high vacuum gave crystalline or amorphous carbamate hydrochlorides.

In particular, the following compounds were prepared and their analytical data are given below:

(±)-N-Ethylcarbamic acid 2-(3-diisopropylamino-1-5 phenylpropyl)-4-hydroxymethylphenyl ester, tic: R_f 0.38 (4); GC-MS/P-CI (ammonia, trimethylsilyl derivative): 486.8 (100%), 413.4 (5%), 398.4 (6%); hydrochloride: m.p. 64° C. (with decomposition); NMR (DMSO-d₆): 15.16, 16.68, 18.05, 18.13, 25.33, 31.26, 35.46, 53.94, 62.65, 106.22, 123.04, 125.70, 126.72, 127.86, 128.67, 135.42, 136.02, 140.07, 142.98, 147.53, 154.52.

(±)-N,N-Dimethylcarbamic Acid 2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl Ester

NMR (CDCl₂): 20.34, 20.66, 30.51, 36.33, 36.77, 42.00, ¹⁵ 48.28, 50.21, 65.65, 119.83, 123.44, 125.19, 126.60, 127.38, 127.54, 129.31, 136.62, 143.33, 150.99, 155.67.

(±)-N,N-Diethylcarbamic Acid 2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl Ester

NMR (CDCl₃): 20.54, 20.66, 30.49, 35.61, 42.42, 48.31, 50.20, 65.56, 119.43, 123.40, 125.33, 126.66, 126.99, 127.05, 136.30, 143.27, 149.13, 154.97.

(±)-N-Phenylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester; NMR 25 (CDCl₃): 20.52, 20.61, 36.91, 39.44, 42.25, 48.22, 62.66, 118.36, 119.46, 123.50, 125.32, 127.11, 127.99, 130.15, 132.63, 139.65, 141.33, 145.16, 152.21, 156.00.

(±)-[2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenoxycarbonylamino)acetic Acid Ethyl 30 Ester Hydrochloride

Tlc: R, 0.14 (4); m.p. colourless crystals (from acetone, 21% yield); NMR (CDCl₃): 16.76, 16.86, 18.45, 20.96, 31.37, 42.20, 46.13, 54.56, 65.50, 123.10, 126.98, 127.66, 128.72, 130.14, 134.05, 134.72, 135.22, 141.37, 148.47, 35 165.12, 170.71.

(±)-N-Ethylcarbamic acid 3-(3-diisopropylamino-1-phenyl-propyl)-4-N-ethylcarbamoyloxybenzyl ester, tlc: R_f 0.36 (3); NMR (CDCl₃): 15.00, 19.23, 19.40, 33.26, 36.00, 39.62, 42.35, 48.12, 65.95, 118.30, 125.45, 127.08, 128.33, 40 130.37, 134.24, 144.44, 155.44, 157.74.

(±)-N,N-Dimethylcarbamic Acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-dimethylcarbamoyloxybenzyl Ester NMR (CDCl₃): 20.59, 20.66, 30.59, 35.96, 36.40, 36.74, 36.98, 42.03, 48.26, 50.09, 67.09, 119.04, 123.23, 123.49, 125.01, 126.67, 127.72, 129.33, 133.65, 143.43, 150.99,

(±)-N,N-Diethylcarbamic Acid 3-(3-Diisopropylamino-1phenylpropyl)-4-N,N-diethylcarbamoyloxybenzyl Ester

NMR (CDCl₃): 13.31, 13.64, 13.89, 20.33, 20.71, 31.57, ⁵⁰ 37.97, 41.55, 42.37, 48.46, 51.00, 67.23, 120.00, 123.39, 124.82, 126.31, 126.95, 127.33, 150.36, 157.18, 158.97.

(±)-{4-C2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethyl-phenoxycarbonylamino]-butyl}-carbamic Acid 2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl Ester

(formula VII', X=Y=NH, n=4) tle: R_f 0.60 (6); dihydro-chloride m.p. 142.5-145.6° C.

(±)-Carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester ethyl ester, R_f. 0.67 (4).

(±)-Carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxycarbonyloxymethylphenyl ester ethyl ester, R_r 0.87 (4).

g) Intramolecular Cyclic Diesters Via Ring Closing Metathesis (RCM)

(CH₂))
(CH₂))
(CH₂))
(CH₂))
(CH₂))
(CH₂))
(CH₂))
(CH₂))

Example:

(±)-Pent-4-enoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl Ester (x=y=2)

A cooled (4° C.) mixture of pent-4-enoic acid, isobutyl chloroformate, and triethylamine (each 5.84 mmol) in 10 ml of dichloromethane was stirred 5 hrs under an atmosphere of dry nitrogen gas. The cooling bath was then removed and both triethylamine (1.46 mmol) and 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol (1.46 mmol) were added in one portion. After 18 hrs the mixture was diluted with dichloromethane 30 ml), washed several times with water and finally aqueous 5% sodium hydrogen carbonate solution. After drying (sodium sulphate), filtration and evaporation the oily residue was re-dissolved in a small volume of a solvent mixture consisting of ethyl acetate/ heptane/triethylamine (65/30/5, vol.-%) and applied on a silica gel flash chromatography column. Elution of the column with the same solvent mixture, collection of the appropriate fractions, and evaporation of the combined fractions gave (±)-pent-4-enoic acid 2-(3-diisopropyl amino-1-phenylpropyl)-4-(pent-4-encyloxymethyl)-phenyl ester as a pale yellow syrupy oil (50% yield), tlc: (4) 0.75. NMR (CDCl₃): 18.95, 20.77, 27.75, 28.87, 33.58, 36.83, 65 42.13, 43.72, 48.71, 65.85, 70.55, 115.47, 115.99, 122.45, 126.26, 127.08, 127.96, 128.11, 128.83, 133.73, 136.38, 136.79, 137.04, 143.77, 148.46, 171.11, 172.78.

Intramolecular Cyclic Diesters of 1, ω-Dioic Acids and Intermediate B Example:

Intramolecular cyclic diester of octane-1,8-dioic acid and 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl- 5 phenol Grubbs catalyst (benzylidene-bis-(tricyclohexylphosphine)dichlororuthenium, 16 mg, 0.002 mmol, 2 mol-%) was added to a solution of (±)-pent-4-enoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4encyloxymethyl)-phenyl ester (483 mg, 0.96 mmol) in 10 dichloromethane (150 ml) and the mixture was refluxed for 96 hrs. under an atmosphere of nitrogen gas, after which all of the starting material was consumed as indicated by tlc. The mixture was filtered through a short pad of basic alumina, and the solvent was removed an vacuum. Flash 15 chromatography (solvent system (4)) afforded the intermediate intramolecular cyclic diester of oct-4-ene-1,8-dioic acid and 2-(3-diisopropylamino)-1-(phenylpropyl)-4hydroxymethyl-phenol (324 mg) as a colourless syrup (tlc: (4) R_f 0.68) in 71% yield, mixture of two geometrical 20 isomers. NMR (CDCl₃, major isomer): 19.24, 20.61, 23.11, 25.62, 30.55, 33.53, 35.02, 42.41, 48.29, 50.20, 65.30, 114.46, 124.33, 125.58, 127.15, 128.70, 129.29, 131.10, 132.46, 139.54, 146.76, 147.98, 173.76, 174.39.

acetate (10 ml) and hydrogenated at room temperature in the presence of palladium-on carbon catalyst to afford the intramolecular cyclic diester of octane-1,8-dioic acid and 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphonol in essentially quantitative yield, 139 mg, colourless 30 oil, tlc: (4) 0.71.

NMR (CDCl₃): 19.36, 20.73, 24.84, 25.28, 28.90, 29.70, 30.57, 33.72, 34.37, 42.39, 48.26, 50.20, 65.26, 114.45, 124.37, 127.11, 128.67, 129.29, 131.18, 132.45, 139.52, 146.77, 147.69, 173.90, 174.15.

Poly-co-DL-Lactides of Intermediate B

All reagents were dried over P2O5 in vacuum (>1 mbar) and at room temperature. The reactions were carried out at room temperature in an atmosphere of dry, oxygen-free

Low Molecular Weight Copolymer

A 15% solution of n-butyllithium (0.36 ml) was injected through a rubber septum into a stirred solution of 2-(3diisopropylamino-phenylpropyl)-4-hydroxymethyl-phenöl (100 mg, Intermediate B) and DL-dilactide (1.5 g) in 15 ml 45 of dry toluene. The polymerization was allowed to proceed for 4 days at room temperature. Distilled water (10 ml), was then added in order to terminate the polymerization. The organic phase was separated and slowly dropped into 200 ml of methanol. The precipitated colourless oil was treated with 50 water (100 ml) and then dried in high vacuum for 48 hrs.

The copolymer was obtained in 72.7% yield. NMR analysis (see below) indicated an average molecular weight range of M., 2000-4000 and a weight content of Intermediate B of about 8.4% (NMR). Tlc analysis showed the absence of 55 monomeric Intermediate B. Gel permeation chromatography (GPC) analysis showed a Mw of 1108 and a Mn of 702. High Molecular Weight Copolymer

The high molecular weight copolymer was prepared as described above with the exception that 3.0 g of 60 DL-dilactide was used. Precipitation by methanol gave a fluffy white solid which was carefully washed with water and then dried as described to give the copolymer in 81% yield, NMR analysis (see below) indicated an average molecular weight range of M_n 4000-8000 and a weight 65 content of Intermediate B of about 2.0%. Tlc analysis showed the absence of monomeric Intermediate B. Gel

permeation chromatography (GPC) showed a Mw of 9347 and a Mn or 6981. Differential scanning calorimetry (DSC) provided a Tg of 42.5° C. NMR Analysis

The ¹H NMR resonance signals of the poly-lactyl chain were clearly separated from the copolymeric part of Intermediate B (solvent CDCl₂):

CH₃ resonances of the poly-lactyl chain: 1.30-1.60 ppm CH resonances of the poly-lactyl chain: 5.10-5.30 ppm CH resonances of the connecting lactyl units with the two hydroxy groups of Intermediate B: 4.8-5.0 ppm and 5.5-5.7 ppm.

Polymer bound Intermediate B: 1.06-1.11 (CH₃), 2.20-2.30 (CH₂CH₂), 2.40-2.80 (NCH₂), 3.30-3.50 (NCH), 4.45-4.55 (CHCH₂), 4.70-4.80 (CH₂-OCO-lactyi), 6.70-7.30 (aryl CH).

h) Inorganic Ester Example:

(±)-Benzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-sulphooxymethyl-phenyl Ester Hydrochloride

To a stirred solution of chlorosulphonic acid (116 mg, 1.0 mmol) in 5 ml of dry diethyl ether was slowly added at 0° C. a solution of (±)-benzoic acid 2-(3-diisopropylamino-1-A portion of this material (140 mg) was dissolved in ethyl 25 phenylpropyl)-4-hydroxymethylphenyl ester (445.6 mg, 1.0 mmol) in 3 ml of dry diethyl ether. The gel formed Immediately during the addition was stirred at room temperature until it became a crystalline consistency (ca. 1 hr). The precipitate was washed several times with diethyl ether and then dried in vacuum to give 0.52 g (46% yield) colourless crystals, m.p. 63-65° C. NMR (CDCl₃): 16.85, 17.03, 18.32, 18.49, 32.01, 42.29, 46.23, 55.23, 55.50, 69.24, 122.52, 126.94, 127.15, 129.04, 129.76, 130.25, 133.89, 134.93, 136.85, 141.87, 147.80, 165.19.

i) Benzylic 1-O-β-D-glucuronide of 2-(3diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol ((±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-(1β-Dglucuronosyloxymethyl)-phenol)

A solution of methyl 2,3,4-triacetyl-1-α-D-glucuronosylbromide (2.07 g, 4.64 mmol) in 24 ml of dry toluene was cooled to -25° C. under an atmosphere of nitrogen and then treated with a solution of (±)-benzoic acid 2-(3diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester in 7 ml of toluene. To this mixture was added dropwise with stirring and under protection from light a solution of silver triflate in 14 ml of toluene (immediate formation of a white precipitate). The cooling bath was removed after 15 min and pyridine (0.38 ml) was added. The mixture was diluted with ethyl acetate (200 ml), filtered and the clear yellow filtrae was washed sequentially with aqueous solutions of sodium thiosulphate (5%), sodium hydrogen carbonate (5%), and sodium chloride (20%). The solution was dried with solid sodium sulphate, treated with charcoal, filtered and evaporated to dryness. The waxy residue was re-dissolved in a small volume of a solvent mixture consisting of ethyl acetate/heptane/triethylamine (65/30/5, vol.-

%) and applied on a silica gel flash chromatography column. Elution of the column with the same solvent mixture, collection of the appropriate fractions, and evaporation of the combined fractions cave (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(2,3,4-triacetyl-1β-D-5 glucuronosyloxymethyl)-phenyl ester, colourless syrup, tic (4) 0.70 (starting amine: 0.31, bromo glycoside: 0.23), yield 14%

NMR (CDCl₃, mixture of diastercomers): 20.41, 20.51, 10 20.60, 20.65, 20.84, 36.49, 42.44, 43.65, 48.73, 52.91, 69.46, 70.43, 71.12, 72.11, 72.60, 73.99, 99.19, 122.91, 126.23, 126.38, 126.54, 127.60, 127.92, 128.06, 128.09, 128.31, 128.59, 129.38, 130.22, 133.67, 134.31, 137.41, 143.52, 148.46, 164.82, 167.26, 169.21, 169.39, 170.07.

A portion (350 mg) of the above described material was dissolved and hydrolyzed in a solvent mixture consisting of tetrahydrofuran/methanol/aqueous potassium hydroxide (excess, 12 hrs, 22° C.). The mixture was evaporated, 20 re-dissolved in 5 ml of water and the pH was adjusted to 8.3. This solution was applied to a chromatography column charged with prewashed XAD 2 resin (50 g). The column was washed with water (ca. 250 ml) and then eluted with methanol. Collection of the appropriate methanol fractions, and evaporation of the combined fractions in vacuum gave 111 mg of (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-(1β-D-glucuronosyloxymethyl)-phenol, sodium salt, amorphous colourless solid, m.p. #110-124° C. (dec.), tlc (4) 0.12. NMR (CD₃OD, major isomer): 19.43, 19.67, 33.26, 39.63, 42.27, 48.23, 69.76, 73.55, 74.70, 75.95, 78.03, 107.64, 117.95, 125.51, 127.36, 128.33, 133.83, 134.77, 144.49, 155.36, 176.76.

II. Incubations of Different Compounds of the Invention With Human Liver S 9-Fraction

a) incubation of Unlabelled Substrates

A pooled human liver S 9-preparation was used to show the in-vitro metabolism of different compounds of the invention and to prove the generation of the active metabolite by enzymatic process.

The pooled human liver S 9-preparation was delivered by 45 Gentest, Woburn, Mass., USA.

In a routine assay, 25 μ L of pooled human liver S 9 (20 mg protein/mL, H961, Gentest, Woburn, Mass., USA) was incubated for 2 hrs at 37° C. with 40 μ M substrate in a 0.01 M potassium phosphate buffer in the presence of NADPH (1 mM). The reaction was quenched by the addition of concentrated perchioric acid and precipitating protein was removed by centrifugation. The supernatant was adjusted to pH 3 with concentrated potassium phosphate solution, 55 centrifuged, and injected into the HPLC for analysis of the respective products.

The analysis of the non-deuterated compounds was performed by a routine High Pressure Liquid Chromatography (HPLC) method with UV-detection.

The incubation results expressed in (%) of theoretical turnover are presented in FIG. 1.

They ranged from 96 to 63.2%. The formation of the 65 active metabolite is dependent on the substituents both at the benzylic and phenolic side of the respective compounds.

Explanation:

The prodrugs introduced in the assay show the following chemical structure:

	chemical structure X-/-Y			
_	AcO-/-QAc	means	acetate	
	HO-/-OBut	means	hydroxy and n-butyrate	
	HO-/-OiBut	means	hydroxy and iso-butyrate	
	iButO-/-OiBut	means	iso-butyrate	
	ButO-/-OBut	means	n-butyrate	
	Propo-/-OProp	means	proprionate	
	HO-/-OProp	means	hydroxy and proprionate	
	HO-/-OAc	means	hydroxy and acetate	
	BzO-/-OBz	means	benzoate and benzoate	
	AcO-/-OiBut	means	acetate and isobutyrate	
	AcO-/-OBz	means	acetate and benzoate	

b) Incubation of Labelled Substrates

The metabolic degradation of the unlabelled hydroxymetabolite (i.e. Intermediate B) and the deuteriated hydroxymetabolite (Intermediate d₂B) were compared in vitro. Used were the respective enantiomers and the racemates.

The hydroxy metabolite and the deuteriated hydroxy-35 metabolite expressed significant differences in the rate to produce the corresponding carboxylic acid.

The measurement was performed with an incubation time of 3 hrs at 37.0° C. in a concentration of 40 μ M. The formation of the carboxylic acid from the deuteriated hydroxy-metabolite showed a significantly decreased velocity of 10%.

These in-vitro experiments indicate a reduced metabolic turnover of the deuteriated compound in vitro, which may result in higher plasma levels.

c) Receptor Binding Study

WO 94/11337 discloses that the active metabolite has high affinity to muscarinic receptors in the guinea-pig bladder. Different compounds of the present invention were tested in a well established standardized assay, measuring the binding of [3H]-methylscopolamine to recombinant human M3 receptors BSR-M3H cells transfected with a plasmid encoding the human muscarinic M3 receptor were used to prepare membranes in modified Tris-HCl pH 7.4 buffer using standard techniques. An aliquot of the membrane preparation was incubated with [3H]methylscopolamine in the presence or absence of different concentrations of several compounds of the invention for 60 minutes a 25° C. Nonspecific binding was estimated in the presence of 1 µM atropine. Membranes were filtered and washed three times and the filters were counted to determine the amount of [3H]-methylscopolamine specifically bound. The following table shows the IC₅₀ values of several compounds of the invention in the M3 receptor binding assay.

10

Interaction with human M3 receptors in vitro		
Prodrug	IC _{so} [nM]	
(+)HO-/-OH	8.7	
(-)HO-/-OH	1300	
(+)HO-/-OiBut	159	
(+)HO-/-OBz	172	
BzO-/-OBz	2400	
AcO-/-OiBut	3600	
AcO-/-OBz	5400	

These data clearly showed that derivatization at the phenotic hydroxyl moiety results in an about 20 times less potent binding. If both functionalities are derivatized, the binding is even more dramatically reduced. Furthermore, it is demonstrated that the enantiomers of the active metabolite exhibit a marked difference in the binding characteristics to human M3 receptors.

The compounds were tested for their anticholineruic activity in a standard tissue assay, the guinea-pig ileum. A 25 segment of ileum was obtained from Duncan Hartley guinea-pigs which were sacrified by cervical dislocation. The tissue was placed under 1 g tension in a 10 ml bath containing Krebs, solution (pH 7.4, 32° C.) and the concentration-dependent ability of different compounds to reduce the methacholine-induced (0.6 μ M) contractile response was recorded. The IC₅₀ values for the different substances were calculated and examples are presented in the following table.

Prodrug	ICso [nM]	
(+)HO-/-OH	20	
(-)HO-/-OH	680	
(+)HO-/-OiBut	57	
(+)HO-/-OBz	180	
(+)BzO-/-OBz	220	
(+)HzO-/-OBz (+)AcO-/-OiBet	240	

These data confirm the results obtained in the receptor binding assays and demonstrate that the anticholinergic 50 activity of the compounds decreases with increased derivatization.

d) Biological Membranes

Different compounds of the invention were tested or their ability to penetrate the human skin (200 µm thick) in the "Flow through cell" at 32° C. according to Tiemessen et al. (Acta Pharm. Technol. 1998; 34:99-101). Phosphate buffer (pH 6.2) was used as the acceptor medium. Samples were drawn at different time points and analysed by RP-HPLC with UV detection 220 nm). Permeation profiles were plotted and mean flux rates of different substances were calculated by linear regression analysis. The data obtained for 65 different compounds oft the invention are summarized in the following table.

Penetration through human skin			
Prodrug	Flux rate [<i>µg/</i> cm²/24 hrs]		
но-/-он	3		
HO-/-OiBut	150		
iButO-/-OiBut	60		
PropQ-/-OProp	70		

Disubstitution of the hydroxy group of HO-/-OH leads to a ≥20-fold increase in skin permeation in relation to the parent HO-/-OH. Suprisingly monosubstitution of the penolic hydroxy group resulted in even higher 50-fold penetration rate through human skin.

Taken together, these biological data clearly demonstrate that the compounds of the invention have a reduced affinity to bind to human muscarinic M3 receptors. They exhibit an increased penetration through biological membranes, e.g. the human skin, and they are rapidly transformed to the active metabolite, once they have entered the systemic circulation as shown by the in vitro metabolism by the human liver S 9 preparation.

Thus, the antimuscarinic prodrugs according to this invention showed a profile that defines excellent prodrugs.

What is claimed is:

1. A 3,3-Diphenylpropylamine of the general formula I:

wherein R and R' are independently

a) hydrogen; or

55

 b) formyl, C₁-C₆ alkylcarbonyl, cycloalkylcarbonyl, substituted or unsubstitited arylcarbonyl;

with the proviso that R' is not hydrogen, methyl or benzyl when R is hydrogen, and R is not ethyl when R' is hydrogen,

X represents a tertiary amino group of formula la

wherein R⁸ and R⁹ represent C₁-C₆ alkyl groups, which may be the same or different and which together contain at least three carbon atoms, or R⁸ and R⁵ may form a ring together with the amine nitrogen,

A represents hydrogen (1H) or deuterium (2H), and their salts with physiologically acceptable acids, their free bases and, when the compounds are in the form of optical isomers, the racemic mixture and the individual enanti2. The 3,3-Diphenylpropylamine as claimed in claim 1, wherein X is

The 3,3-Diphenylpropylamine as claimed in claim 2 selected from phenolic monoesters represented by the general formula II

Formula II' 25

35

40

45

wherein R¹ represents hydrogen, C₁-C₆ alkyl or phenyl.
4. The 3,3-Diphenylpropylamine as claimed in claim 2 selected from:

- (±)-formic acid 2-(3diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl ester,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4- 55 hydroxymethylphenyl ester,
- (±)-propionic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-n-butyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- R-(+)-isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2,2methylpropionic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,

- (±)-cyclopentanecarboxylic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-cyclohexanecarboxylic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- R-(+)-benzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-methylbenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-methylbenzoic acid 2-(3-diisopropylamino-1phenylpropyl)hydroxymethylphenyl ester,
- (±)-2-acetoxybenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-1-naphthoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-naphthoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-chlorobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-methoxybenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-methoxybenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-nitrobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester, and
- (±)-2-nitrobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester.
- 5. The 3,3-Diphenylpropylamine as claimed in claim 2 represented by the general formula III

Formula III

wherein R¹ is hydrogen, C₁-C₆ alkyl or phenyl.

- 6. The 3,3-Diphenylpropylamine as claimed in claim 5 selected from:
 - (±)-formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,
- (±)-acetic acid 4-acetoxy-3-(3-diisopropylamino-1phenylpropyl)-benzyl ester,
- (±)-propionic acid 2-(3-diisopropylamine-1phenylpropyl)-4-propionyloxymethylphenyl ester,
- (±)-n-butyric acid 4-n-butyryloxymethyl-2-(3disopropylamino-1-phenylpropyl)-phenyl ester,
- (±)-isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-isobutyryloxymethylphenyl ester,
- (±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1phenylpropyl)-4-(2,2-dimethylpropionyloxy)-benzyl ester.

20

(±)-benzoic acid 4-benzoyloxymethyl-2-(3-disopropylamino-1-phenylpropyl)-phenyl ester,

R-(+)-benzoic acid 4-benzoyloxymethyl-2-(3disopropylamino-1-phenylpropyl)-phenyl ester,

(±)-pent-4-enoic acid 2-(3-diisopropylamino-1-5 phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl ester.

cyclic oct-4-ene-1,8-dioate of Intermediate B, cyclic octane-1,8-dioate of Intermediate B, and poly-co-DL-lactides of Intermediate B, said Intermediate B having the formula

7. The 3,3-Diphenylpropylamine as claimed in claim 2 selected from mixed diesters represented by the general formula IV

wherein R^1 is hydrogen, C_1 - C_6 alkyl or phenyl, and R^2 represents hydrogen, C_1 - C_6 alkyl or phenyl with the proviso that R^1 and R^2 are not identical.

8. The 3,3-Diphenylpropylamine as claimed in claim 7 selected from:

(±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4- 50 formyloxymethylphenyl ester,

(±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester,

(±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)4-acetoxymethylphenyl ester, R-(+)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4acetoxymethylphenyl ester,

(±)-isobutyric acid 4-acetoxymethyl-2-(3-disopropylamino-1-phenylpropyl)-phenyl ester,

R-(+)-isobutyric acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,

(±)-2,2-dimethylpropionic acid 4-acetoxy-3-(3diisopropylamino-1-phenylpropyl)-benzyl ester,

(±)-2,2-dimethylpropionic acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, and

(±)-benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester.

 The 3,3-Diphenylpropylamine as claimed in claim 2 selected from benzylic monoesters represented by the general formula V

wherein R1 is hydrogen, C1-C6 alkyl or phenyl.

10. The 3,3-Diphenyl propylamine as claimed in claim 9 $_{\rm 25}$ selected from:

(±)-formic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,

(±)-acetic acid 3-(3-diisopropylamino-1-phenylpropyl)-4hydroxybenzyl ester,

(±)-propionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester.

(±)-butyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,

(±)-isobutyric acid 3-(3-diisopropylamino-1phenylpropyl)-4-hydroxybenzyl ester,

(±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1phenylpropyl)-4-hydroxybenzyl ester, and

(±)-benzoic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester.

A 3,3-Diphenylpropylamine selected from

(i) compounds of the formulae IX and IX'

Formula IX

10

15

35

45

55

-continued

Formula IX

wherein o and p are the same or different and range from 0 to 6.

(ii) Poly-co-DL-lactides of 2-(3-diisopropylaminophenylpropyl)-4-hydroxymethylphenol and their salts with physiologically acceptable acids, their free bases and, when the compounds are in the form of optical isomers, the racemic mixture and the individual enantiomers.

12. A process for the production of phenolic monoesters according to claim 3, which comprises treatment of a compound of the formula

with an equivalent of an acylating agent of formula

wherein LG represents a leaving group selected from halide, carboxylate and imidazolide in an inert solvent in the presence of a condensing agent.

13. A process for the production of identical diesters according to claim 5, which comprises treatment of a compound of the formula

with at least two equivalents of the acylating agent of formula

P!—C—16

wherein LG represents a leaving group selected from halide, carboxylate and imidazolide in an inert solvent in the presence of a condensing agent.

14. A process for the preparation of benzylic monoesters according to claim 9, which comprises treatment of a compound of the formula

at room temperature and under anhydrous conditions with activated esters in the presence of enzymes selected from lipases or esterases.

15. A process for the preparation of mixed diesters according to claim 7, which comprises acylation of a benzylic monoester represented by the general formula V

Formula V

or of a phenolic monoester represented by the formula II

Formula II

R

O

H₃C

CH₃

CH₃.

35

16. A 3,3-Diphenylpropylamine of the general formula VII':

wherein R is

- a) hydrogen; or
- b) formyl, C1-C6 alkylcarbonyl, cycloalkylcarbonyl, substituted or unsubstituted arylcarbonyl;

X represents a tertiary amino group of formula Ia

wherein R⁸ and R⁹ represent non-aromatic hydrocarbyl groups, which may be the same or different and which together contain at least three carbon atoms, and wherein R⁸ and R⁹ may form a ring together with the amine nitrogen,

Y and Z independently represent a single bond between the (CH2), group and the carbonyl group, O, S or NH,

A represents hydrogen (1H) or deuterium (2H),

n is 0 to 12, and

their salts with physiologically acceptable acids, their free bases and, when the compounds are in the form of optical isomers, the racemic mixture and the individual enanti-

17. The 3,3-Diphenylpropylamines as claimed in claim 16, wherein X is

18. The 3,3-Diphenylpropylamine as claimed in claim 17, 65 selected from phenolic monoesters represented by the general formula II'

Formula II'

19. A process for the production of phenolic monoesters according to claim 18, which comprises treatment of two equivalents of a compound of the formula

with an acylating agent of formula

wherein Hal represents a halogen atom.

- 20. A pharmaceutical composition comprising a 3,3diphenylpropylamine according to any one of claims 1-10, 11 and 16-18 and a pharmaceutically acceptable carrier.
- 21. A method of antagonizing a muscarinic receptor, the method comprising contacting the receptor with a compound according to any one of claims 1-10, 11 and 16-18.
- 22. A method of treating a disease in a mammal that is amenable to treatment by antagonizing muscarinic receptors in the mammal, the method comprising administering an amount of a composition according to claim 20 effective to 60 diminish or eliminate symptoms of the disease.
 - 23. The method according to claim 22 wherein the disease is urinary incontinence.
 - 24. The method according to claim 23 wherein the mammal is a human.
 - 25. A 3,3-Diphenylpropylamine selected from:
 - (±)-malonic acid bis-[2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,

- (±)-succinic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester,
- (±)-pentanedioic acid bis-[2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethyl-phenyl]ester, and
- (±)-hexanedioic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl]ester.

64

26. The 3,3-Diphenylpropylamine of claim 2, wherein the 3,3-Diphenylpropylamine is R-(+)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester or a pharmaceutically acceptable salt thereof.

* * * * :

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

DATED

PATENT NO. : 6,713,464 B1

: March 30, 2004

INVENTOR(S) : Claus Meese and Bengt Sparf

Page 1 of 3

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 4,

Line 9, delete "hydrocaryl" and insert therefor -- hydrocarbyl --. Line 43, delete "R⁸ and R⁹" and insert therefore -- R⁸ and R⁹ --.

Column 8,

Line 21, after "formula" add -- III --.

Column 9,

Line 18, delete "R" and insert therefor - R² --.

Column 10,

Line 49, delete "2-trimehylsilanyl" and insert therefor -- 2-trimethylsilanyl --.

Column 11,

Line 9, delete "3-d4isopropyl" and insert therefor -- 3-diisopropyl --.

Column 13,

Line 47, delete "he" and insert therefor - the --.

Column 14,

Line 38, after "formula" delete "I" and insert therefor -- II' --.

Column 17,

Line 64, delete "can, be" and insert therefor -- can be --.

Line 23, delete "precared" and insert therefor -- prepared --.

Column 24,

Line 31, delete "phosphae" and insert therefor -- phosphate --.

Column 26,

Line 49, delete "7S,2R" and insert therefor -- 1S,2R --.

Column 31.

Line 53, delete "69.61" and insert therefore -- 169.61 --.

Line 56, delete "duisopropylamine" and insert therefor -- diisopropylamine --.

Column 32,

Line 11, delete "13-(2" insert -- [3-(2 --.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 6,713,464 B1 DATED

: March 30, 2004

INVENTOR(S) : Claus Meese and Bengt Sparf

Page 2 of 3

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 34,

Line 21, delete "R-(+)" and insert therefor -- S-(+) --.

Column 38,

Line 4, delete "Eaters" and insert therefor -- Esters --.

Column 39.

Lines 47 and 55, delete "Intermediate B 3 (0.50)" and insert therefor -- Intermediate B (0.50) --.

Column 40,

Line 6, delete "127.8" and insert therefor -- 127.58 --.

Line 8, delete "34.27" and insert therefor -- 134.27 --.

Line 62, delete "Diisopropylamino-7-phenyl" and insert therefor

-- Diisopropylamino-l-phenyl --.

Column 41,

Line 61, delete "121.80" and insert therefor -- 131.80 --.

Column 45,

Line 11, delete "isopronoxymethylphenol" and insert therefor

-- isopropoxymethylphenol --.

Line 14, delete "140.400" and insert therefor -- 140.4 °C --.

Line 44, delete "diisocyanaze" and insert therefor -- diisocyanate --.

Column 47,

Line 30, delete "amino)acetic" and insert therefor -- amino]acetic --.

Line 53, delete "4-C2-" and insert therefor -- 4-[2- --.

Column 51,

Line 4, delete "cave" and insert therefor -- gave --.

Line 53, delete "perchioric" and insert therefor -- perchloric --.

Column 52,

Line 21, delete "Propo-/" and insert therefor -- PropO-/ --

Line 54, delete "receptors" and insert therefor -- receptors. --

Column 53,

Line 56, delete "tested or" and insert therefor -- tested for --.

Line 66, delete "oft he" and insert therefor -- of the --.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 6,713,464 B1 DATED

: March 30, 2004

INVENTOR(S) : Claus Meese and Bengt Sparf

Page 3 of 3

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 55,

Lines 25-48, delete formula II.

Line 53, delete "3diisopropyl" and insert therefor -- 3-diisopropyl --.

Line 66, delete "2,2-methylpropionic" and insert therefor

-- 2,2-dimethylpropionic --.

Column 56,

Line 13, delete "propyl)hydroxyl" and insert therefor -- propyl)-4-hydroxy --.

Lines 54-58, insert a line break before the compound "R-(+)- benzoic acid 2-(3diisopropylamino-1-phenylpropyl)-4-acetoxymethylphenyl ester".

Signed and Sealed this

Thirty-first Day of May, 2005

JON W. DUDAS Director of the United States Patent and Trademark Office

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 *Novel Derivatives of 3,3-Diphenylpropylamines*

EXHIBIT G

US006858650B1

(12) United States Patent

Meese

(10) Patent No.:

US 6.858.650 B1

(45) Date of Patent:

Feb. 22, 2005

(54) STABLE SALTS OF NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES

(75) Inventor: Claus Meese, Monheim (DE)

(73) Assignee: Schwarz Pharma AG (DE)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 10/130,214

(22) PCT Filed: Nov. 15, 2000

(86) PCT No.: PCT/EP00/11309

§ 371 (c)(1),

(2), (4) Date: May 14, 2002

(87) PCT Pub. No.: WO01/35957

PCT Pub. Date: May 25, 2001

(30) Foreign Application Priority Data

(56) References Cited

U.S. PATENT DOCUMENTS

5,686,464 A 11/1997 Johansson et al. 514/315

FOREIGN PATENT DOCUMENTS

DE	693 17 898 T2	10/1998	C07C/217/62
EP	0 667 852 B1	4/1998	C07C/217/62
EP	0 957 073 A1	11/1999	C07C/1/00
wo	9411337	5/1994	

WO 9843942 10/1998 WO 9958478 11/1999

OTHER PUBLICATIONS

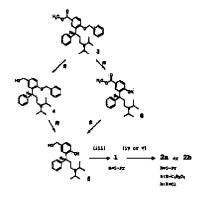
Nilvebrant et al, "Antimuscarinic Potency and Bladder Selectivity of PNU-200577, a Major Metabolite of Toltero-dine" Pharmacology and Toxicology. vol. 81, pp. 169-172 (1997).*

L. Palmer, L. Andersson, T. Andersson, U. Stenberg: Determination of tolterodine and the 5-hydroxymethly metabolite in plasma, serum and urine using gas chromatographymass spectrometry; Journal of Pharmaceutical and Biomedical Analysis; Jan. 20, 1997; pp. 155-165.

* cited by examiner

Primary Examiner—Richard L. Raymond
Assistant Examiner—Zachary C. Tucker
(74) Attorney, Agent, or Firm—Peter F. Corless; Christine
C. O'Day; Edwards & Angell, LLP

(57) ABSTRACT


The present invention concerns highly pure, crystalline, stable compounds of novel derivatives of 3,3-diphenylpropylamines in the form of their salts, a method for the manufacture and highly pure, stable intermediate products.

The method is in particular characterized by regio- and chemoselectivity and high yield. Salts of phenolic monoesters of 3,3-diphenylpropylamines are provided, that are particularly well-suited for use in pharmaceutical formulations. Preferred compounds are R-(+)-2-(3-diisopropylamino-1-phenyl-propyl)-4-hydroxymethylphenylisobutyrate ester hydrogen fumarate and R-(+)-2-(3diisopropylamino-1-phenylpropyl)-4hydroxymethylphenylisobutyrate ester hydrochloride. hydrate. Furthermore, stable, crystalline intermediate products that are essential for obtaining the abovementioned salts are provided. A preferred intermediate product is R-(-)-3-(3-diisopropylamino-phenyl-propyl)-4-hydroxy-benzoic acid methyl ester.

24 Claims, 1 Drawing Sheet

hesetion distran 1

(1), (11), (111), (10), (0) stend for: (1), MARNA, (11), Remey mickel/Eq. (111), Major-Deth. Styl. (10), fumeric soid, (1), Major-Deth. (10), Major-Deth.

Figure 1

Reaction diagram 1

(i), (ii), (iii), (iv), (v) stand for: (i), LiAlH₄, (ii), Raney nickel/H₂, (iii), Me₂CH-CoCl, Et₃N, (iv), fumaric acid, (v), hydrochloric acids; R stands for isopropyl (iPr)

35

40

STABLE SALTS OF NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES

This application was filed under 35 U.S.C. 371, and is the U.S. National Stage of PCT/EP00/11309, filed 5 Nov. 2000. 5

This patent application claims the benefit of priority under 35 U.S.C. §119 of German Patent Application No. 199 55 190.1, filed Nov. 16, 1999. German Patent Application No. 199 55 190.1 is incorporated herein in its entirety by

The present invention concerns highly pure, crystalline, 10 stable compounds of novel derivatives of 3,3diphenylpropylamines in the form of their salts, a method for manufacturing these and highly pure, stable, intermediate

From document PCT/EP99/03212 novel derivatives of 15 3,3-diphenylproprylamines are known.

These are valuable prodrugn for the treatment of urinary incontinence and other spasmodic complaints, which overcome the disadvantage of the active substances available to date, namely inadequate absorption of the active substance by biological membranes or the unfavourale metabolism of

Furthermore these novel prodrugs have improved pharmacokinetic characteristics compared with Oxybutynin and Tolterodin.

derivatives of 3,3-diphenylpropylarines are esters of aliphatic or aromatic carboxylic acids with the general formula A referred to below

in which R denotes C1-C6-alkyl, C3-C10-cycloalkyl or unsubstituted or substituted phenyl. These can occur in their optical isomers form as racemic mixtures and in the form of 45 their individual enantiomers.

Compounds with the structure of formula A do, however, have low solubility in water. This restricts their oral bioavailability.

Finally, monoesters of the structure, as shown in formula 50 A, have a tendency towards intermolecular transesterification. During long periods of storage, therefore, as the content of the compounds with the structure of general formula A drops an increase in diesters and free diol can be detected.

Basically salts of the compounds of general formula Acan be obtained if solutions of the compounds of formula A (base component) are purified with solutions of acids in suitable solvents, but the salts obtained in the form of solid matter can prove to be altogether amorphous and/or hygroscopic and cannot be directly crystallized from the normal solvents either. Such salts have inadequate chemical stability to be 60 galenically processed as valuable pharmaceutically active substances.

Surprisingly, it has now been found that the abovementioned disadvantages can be avoided if compounds with the structure of general formula A, once they have been pre- 65 pared under a special reaction process, are converted with a physiologically compatible inorganic or organic acid with

general formula H-X, in which "X represents the respective acid residue, into their respective salt with general formula

The problem for the present invention is therefore to provide highly pure, crystalline, stable compounds of novel derivatives of 3,3-diphenylpropylamines in the form of their salts, that avoid the stated disadvantages and are well suited to use in pharmaceutical-technical formulations and can be processed into these.

A further problem for the present invention is to provide a method for manufacturing such highly pure, crystalline, Preferred compounds from the group of these novel 25 stable compounds in the form of their salts, as well as highly

The final problem for the invention is to provide a method for manufacturing the abovementioned compounds with which a high yield of the products of the process and the respective intermediate products can be obtained chemo- or regioselectively.

This problem is solved in that highly pure, crystalline, stable compounds of the 3,3-diphenylpropylamines in the form of their salts with general formula I are provided,

in which R denotes C_1 - C_6 -alkyl, C_3 - C_{10} -cycloalkyl, substituted or unsubstituted phenyl and X^- is the acid residue of a physiologically compatible inorganic or organic acid.

In accordance with a design of the invention the salts of general formula I can contain the respective acid residue Xof the acids mentioned below:

hydrochloric acid, hydrobromic acid, phosphoric acid, sulphuric acid, nitric acid, acetic acid, propionic acid, palmitic acid, stearic acid, maleic acid, fumaric acid, oxalic acid, succinic acid, DL-malic acid, L-(-)-malic acid, D-(+)-malic acid, DL-tartaric acid, L-(+)-tartaric acid, D-(-)-tartaric acid, citric acid, L-aspartic acid, L-(+)-ascorbic acid, D-(+)-glucuronic acid, 2-oxopropionic acid (pyruvic acid), furan-2-carboxylic acid (mucic acid), benzoic acid, 4-hydroxybenzoic acid, salicyclic acid, vanillic acid, 4-hydroxycinammic acid, gallic acid, hippuric acid (N-benzoyl-glycine), aceturic acid (N-acctylglycine), phloretinic acid (3-(4hydroxyphenyl)-propionic acid), phthalic acid, methanesulfonic acid or orotic acid.

In accordance with a further design form of the invention R-configured compounds with general formula 2 are provided

in which R denotes C₁-C₆-alkyl, C₃-C₁₀-cycloalkyl, substituted or unsubstituted phenyl and X⁻ is the acid residue of a physiologically compatible inorganic or organic acid.

In accordance with an advantageous design form of the invention the compounds in the form of their salts of general formula 2 can contain the respective acid residue X of the acids mentioned below:

hydrochloric acid, hydrobromic acid, phosphoric acid, sulphuric acid, nitric acid, acetic acid, propionic acid, palmitic acid, stearic acid, maleic acid, fumaric acid, oxalic acid, succinic acid, DL-malic acid, L-(-)-malic acid, D-(+)-malic acid, DL-tartaric acid, L-(+)-tartaric acid, D-(-)-tartaric acid, L-(+)-ascorbic acid, citric acid, L-aspartic acid, 2-oxopropionic acid (pyruvic acid), furan-2-carboxylic acid (mucic acid), benzoic acid, 4-hydroxybenzoic acid, salicyclic acid, vanillic acid, 4-hydroxycinammic acid, gallic acid, hippuric acid (N-benzoyl-glycine), aceturic acid (N-acetylglycine), phloretinic acid (3-(4-hydroxyphenyl)-propionic acid), phthalic acid, methanesulfonic acid or orotic acid.

Preferred compounds of the present invention are the salts R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylisobutyrate ester hydrogen fumarate and

R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenylisobutyrate ester hydrochloride hydrate.

Furthermore, compounds are preferred in which R stands for cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-(1-cyclo-propyl-methanoyloxy)-phenyl, 4-(1-cyclohexyl-methanoyloxy)-phenyl, 4-(1-cyclohexyl-methanoyloxy)-phenyl or 4-(2,2-dimethyl-propanoyloxy)-phenyl and X 50 denotes chloride,

Particular preference is for [(R)-3-(2-{1-[4-(1-cyclopropyl-methanoyloxy)-phenyl]-methanoyloxy}-5-hydroxymethyl-phenyl)-3-phenyl-propyl]-diisopropyl-ammonium chloride, [(R)-3-(2-{1-[4-(1-cyclobutyl-methanoyloxy)-phenyl]-methanoyloxy)-5-hydroxymethyl-phenyl)-3-phenyl-propyl]-diisopropyl-ammonium chloride, [(R)-3-(2-{1-[4-(1-cyclohexyl-methanoyloxy)-phenyl]-methanoyloxy}-5-hydroxymethyl-phenyl)-3-phenyl-propyl]-diisopropyl-ammonium chloride, [(R)-3-(2-{1-[4-(2,2-dimethyl-propanoyloxy)-phenyl]-methanoyloxy}-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-propyl}-diisopropyl-ammonium chloride, {(R)-3-[2-(1-cyclopentyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-propyl}-diisopropyl-ammonium chloride, {(R)-3-[2-(1-cyclopentyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-propyl}-diisopropyl-ammonium chloride, {(R)-3-[2-(1-cyclopentyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-methanoyloxy)-5-hydroxymethyl-phenyl-

4

3-phenyl-propyl}-diisopropyl-ammonium chloride and {(R)-3-[2-(1-cyclohexyl-methanoyloxy)-5-hydroxymethyl-phenyl]-3-phenyl-propyl}-diisopropyl-ammonium chloride.

Formula 2 5 In the compounds of the present invention the expression "alkyl" preferably stands for a straight-chain or branched-chain hydrogen group with between 1 and 6 C-atoms. Special preference is for methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl and hexyl. The expression "cycloalkyl" designates cyclical hydrogen groups, that have between 3 and 10 hydrogen atoms, that may also contain suitable substitutes in place of the hydrogen atoms.

The expression "phenyl" designates a —C₆H₅-group that may be substituted or unsubstituted. Suitable substitutes can be, for example, alkyl, alkoxy, halogen, nitro and amine. The expression "alkoxy" has, with respect to the alkyl component, the same meaning as already given above for "alkyl". Suitable halogens are fluorine, chlorine, bromine and iodine atoms

The present invention also includes methods for manufacturing the compounds in accordance with the invention of general formula I as well as valuable intermediate products.

The method is characterised by chemo- and regioselectivity.

Compounds of General Formula I

Pormula I

in which R denotes C_1 - C_6 -alkyl, C_3 - C_{10} -cycloalkyl, substituted or unsubstituted phenyl and X^- is the acid residue of a physiologically compatible inorganic or organic acid, are that

a) a compound of formula III

45

Formula III

is split with a hydrogenation agent to form a compound of formula V

Pormula I

whereupon

b) the compound of formula V so obtained is converted with agent, in order to give a compound of formula VI

in which R denotes C1-C6-alkyl, C3-C10-cycloalkyl, unsub-²⁰ stituted or substituted phenyl and X- is the acid residue of a physiologically compatible inorganic or organic acid.

In accordance with the invention, for the manufacture of 25 the compounds of general formula I hydrochloric acid, hydrobromic acid, phosphoric acid, sulphuric acid, nitric acid, acetic acid, propionic acid, palmitic acid, stearic acid, maleic acid, fumaric acid, oxalic acid, succinic acid, DL-malic acid, L-(-)-malic acid, D-(+)-malic acid, DL-tartaric acid, L-(+)-tartaric acid, D-(-)-tartaric acid, citric acid, L-aspartic acid, L-(+)-ascorbic acid, D-(+)glucuronic acid, 2-oxopropionic acid (pyruvic acid), furan-2-carboxylic acid (mucic acid), benzoic acid, 35 4-hydroxybenzoic acid, salicyclic acid, vanillic acid, 4-hydroxycinammic acid, gallic acid, hippuric acid (N-benzoyl-glycine), aceturic acid (N-aectylglycine), phloretinic acid (3-(4-hydroxyphenyl)-propionic acid), phthalic acid, methanesulfonic acid or orotic acid are used.

which

c) is converted with an acylation agent, in order to obtain of formula A

In accordance with an advantageous further development of the invention a method for the manufacture of R-configured compounds of the general formula 2 is 45 described,

60

in which R has the significance stated above, which d) is 65 stituted or unsubstituted phenyl and X is the acid residue of converted with a physiologically compatible inorganic or organic acid to form a compound of formula I

in which R denotes C1-C6-alkyl, C3-C10-cycloalkyl, suba physiologically compatible inorganic or organic acid, in

25

30

Formula 1

a) a compound of formula 3

15 in which R has the significance stated above, which

d) is converted with a physiologically compatible inorganic or organic acid to form a compound of formula

is split with a hydrogenation agent to form a compound of $_{20}$ formula 5

whereupon

b) the compound of formula 5 so obtained is converted with a reducing agent, in order to give a compound of formula 6

which

 c) is converted with an acylation agent, in order to obtain a compound of formula 1 HOO R
NH

35 in which R denotes C₁-C₆-alkyl, C₃-C₁₀-cycloalkyl, unsubstituted or substituted phenyl and X- is the acid residue of a physiologically compatible inorganic or organic acid.

Advantageously in order to obtain compounds of general formula 2, in accordance with the method hydrochloric acid, hydrobromic acid, phosphoric acid, sulphuric acid, nitric acid, acetic acid, propionic acid, palmitic acid, stearic acid, maleic acid, fumaric acid, oxalic acid, succinic acid, DL-malic acid, L-(-)-malic acid, D-(+)-malic acid, DL-tartaric acid, L-(+)-tartaric acid, D-(-)-tartaric acid, citric acid, L-aspartic acid, L-(+)-ascorbic acid, D-(+)-glucuronic acid, 2-oxopropionic acid (pyruvic acid), furan-2-carboxylic acid (mucic acid), benzoic acid, 4-hydroxylic acid, salicyclic acid, vanillic acid, 4-hydroxycinammic acid, gallic acid, hippuric acid (N-benzoyl-glycine), aceturic acid (N-acetylglycine), phloretinic acid (3-(4-hydroxyphenyl)-propionic acid), phthalic acid, methanesulfonic acid or orotic acid are used.

Particular advantageously, on the basis of the crystalline R-(-)-4-benzyloxy-3-(3-diisopropylamino-1-phenyl-propyl)benzoic acid methyl ester, the highly pure, crystalline intermediate product R-(-)-3-(3-diisopropylamino-phenyl-propyl)-4-hydroxy-benzoic acid methyl ester is prepared, which is reduced to R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol, is finally acylated in a suitable manner and is then converted with a physiologically compatible inorganic or organic acid under spontaneous crystallization to the respective highly pure, crystalline, stable salt.

Depending on the acid chloride used, compounds of general formula 1 are obtained,

Formula 1

in which R denotes C1-C6-alkyl, in particular isopropyl, 15 C₃-C₁₀-cycloalkyl or unsubstituted or substituted phenyl.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to obtain the compounds in accordance with the invention in the form of their salts the special reaction process via particular intermediate stages and individually identifiable intermediate products is crucial.

This is explained using reaction diagram 1 (see FIG. 1), 25 in which the conversions with R-configured compounds are described, but without this being restrictive.

In this:

- 3=R-(-)-4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzoic acid-methyl ester
- 4=R-(+)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol
- 5=R-(-)-3-(3-diisopropylamino-phenyl-propyl)-4- 35 hydroxy-benzoic acid methyl ester
- 6=R-(+)-2-(3-disopropylamino-1-phenylpropyl)-4hydroxymethylphenol
- 1=R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4- 40 hydroxymethylphenyl-isobutyrate ester
- 2a=R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl-isobutyrate ester hydrogen fumarate
- 2b=R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl-isobutyrate ester hydrochloride

In accordance with the reaction process explained in the embodiment the preliminary stage 3 (R-(-)-4-benzyloxy-3- 50 (3-diisopropylamino-1-phenyl-propyl)-benzoic acidmethylester) is prepared in crystalline, pure form.

Using normal methods—such as BBr3, AlCl3—but preferably by means of hydrogen gas via Raney nickel in methanol as the solvent at room temperature (RT), prelimi- 55 nary stage 3 is split into 5 (R-(-)-3-(3-disopropylaminophenyl-propyl)-4-hydroxy-benzoic acid methylester. This develops in highly pure, crystalline form (melting point

Finally, using a suitable reducing agent—such as NaBH₄/ 60 EtOH-preferably LiAlH₄ 5 is reduced into an inert solvent at low temperature (-78° C. to +10° C.) and the compound 6 (R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol) is obtained. The compound 6 is obtained in a highly pure state and can be crystallised from 65 a suitable solvent such as ethyl acetate. The colourless, compact grained material has a melting point of 102.3° C.

This is surprising in that the compound 6 in the state of the art is described as an amorphous solid.

Compound 6 is now acylated with very good yield and regio- and chemoselectivity, into a phenolic ester. This reaction is performed at RT or low temperatures with an equivalent acid chloride in the presence of a base in a suitable solvent. Suitable solvents are ethyl acetate, dichloromethane, tetrahydrofurane, acetonitrile or toluene.

The reaction is preferably performed with isobutyrylchloride as the acid chloride and triethylamine as the base at the abovementioned temperatures. The 1 (R-(+)-2-(3diisopropylamino-1-phenylpropyl)-4hydroxymethylphenylisobutyrate ester) then obtained, occurs with such purity that with solutions of the fumaric acid in suitable solvents spontaneous crystallisation starts with the formation of the hydrogen fumarate salt 2a.

This salt has a high melting point of 103° C., is stable at RT, is non-hygroscopic and does not contain crystallose agents. It can be recrystallised as often as desired.

If instead of fumaric acid anhydrous hydrochloric acid is used—for example as an etheric solution—salt formation also takes place with the crystalline product 2b (R-(+)-2-(3diisopropylamino-1-phenylpropyl)-4-

hydroxymethylphenyl-isobutyrate ester hydrochloride hydrate being obtained.

Following a further recrystallisation the product 2b has a melting point range of 97-106° C.

Finally the product 2b can particularly advantageously be obtained by the following variants of the inverse reaction process, starting with the compound 6 of reaction diagram 1. The product 2b can thus be obtained without the addition of an external acid-intercepting base, as explained in the following.

Solutions of 6 (R-(+)-2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenol) are dripped into solutions of isobutyrate chloride, so that under suitable polarity conditions the anhydrous product 2b rapidly crystallises out. 2b is very hygroscopic.

If the abovementioned reaction is carried out in a humid solvent, that contains at least one mole equivalent of water, a stable and crystalline, hydrate-containing product 2b is obtained, that has the abovementioned melting characteristics,

The compounds in accordance with the invention of general formulae 1 and 2 are suited to bulk material.

Of particular advantage are the highly pure compounds of general formulas III, V, VI, 3, 5, 6 and 7 which can be

Compound of Formula III

Formula III

Compound of Formula V

Compound of Formula VI

Compound of Formula 3

Compound of Formula 5

Compound of formula 6

Formula V

Formula 6

Formula 6

10

Compound of Formula 7

25 CI.

Formula 7

[(R)-3-(2-{1-[4-(2,2-dimethyl-propanoyloxy)-phenyl]-methane-oyloxy}-5-{1-[4-(2,2-dimethyl-propanoyloxy)-phenyl]-methane-oyloxymethyl}-phenyl)-3-phenyl-propyl]-diisopropyl-ammonium-chloride.

propyl]-diisopropyl-ammonium-chloride.

The abovementioned compounds III, V, VI, 3, 5, 6 and 7 are particularly suited to use in each case as a highly pure, crystalline, stable intermediate product in the manufacture of pharmaceutically useful compounds.

Of particular advantage are compounds for use as an intermediate product in the manufacture of R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylisobutyrate ester hydrogen fumarate and R -(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylisobutyrate ester hydrochloride

Finally, the method can be carried out in a particularly advantageous way by converting a compound of general formula 6 (see reaction diagram 1) with an equivalent isobutyryl chloride in the presence of triethylamine using one of the respective solvents ethylacetate, dichloromethane, tetrahydrofurane, acetonitrile or toluene regio- and chemoselectively into R-(+)-2-(3-disopropylamino-1-phenylpropyl)-4-hydroxymethylphenylisobutyrate ester.

hydroxymethylphenylisobutyrate ester.

In accordance with the invention R-(+)-2-(3-disopropylamino-1-phenylpropyl)-4-hydroxymethylphenylisobutyrate ester is particularly suited to conversion with fumaric acid or hydrochloric acid with the formation of the respective salt.

The following embodiments explain the invention.

60 Experimental

I. General

Formula S

All compounds have been fully characterised by ¹H and ¹³C NMR-spectroscopy (Bruker DPX 200). The stated chemical displacements in the ¹³C-NMR-spectra (50 MHz, ppm values stated) refer to the solvent resonances of CDCl₃ (77.10 ppm) ¹H NMR data (CDCl₃; 200 MHz, ppm) refer to internal tetramethylsilane).

Thin layer chromatography (DC, R_f given) was carried out on 5×10 cm E. Merck silica gel films (60F254), and the stains were revealed by fluorescence erasure or by spraying with alkaline potassium permanganate solution.

with alkaline potassium permanganate solution.

Absorbent systems were: (1), n-hexane/acetone/
triethylamine (70/20/10, v/v-%); (2), toluene/acetone/
methanol/acetic acid (70/5/20/5, v/v-%).

The optical rotations were measured at a wavelength of 589.3 nm (sodium D-line), at room temperature using ethanol as a solvent (apparatus: Perkin Elmer Polarimeter Type 241), melting points (in ° C.) are uncorrected and were 10 determined on the Mettler FP apparatus, or by differential thermoanalysis (DSC) on the Perkin Elmer Model DSC7, using "Pyris" evaluation software.

UV/VIS measurements were carried out on the spectrophotometer model Lambda 7 (Perkin-Elmer) with a layer thickness of 1 cm. The specific absorption stated is for a 1% solution (A^{1 %}....)

solution (A¹ %_{1 cm})

IR spectra were recorded on a Perkin-Elmer FTIR spectrometer Series 1610 (resolution 4 cm⁻¹).

Gas chromatography mass spectrometry (GC-MS, m/z values and relative intensity with reference to the base ion (%) was carried out with a Finnigan TSQ 700 Triple Mass Spectrometer in positive (P-CI) or negative (N-CI) chemical ionization measurement mode with methane or ammonium as a reactant gas or via electron impact ionisation. Hydroxy compounds were measured as trimethylsilylether- 25 derivatives.

Coupled liquid chromatography-mass spectrometry (L.C-MS): Waters Integrity System, Thermabeam Mass Detector (EI, 70 eV), m/z-values and relative intensity (%) are given over a quantity range of 50-500 a.m.u. II. Embodiments

The Arabic numerals in brackets (3), (4), (5), (6) refer to the identical designations in reaction diagram 1.

Preparation of Re(a)-A-benezulovy-3-(3-

1. Preparation of R-(-)-4-benzyloxy-3-(3-disopropylamino-1-phenyl-propyl)-benzoic acid methylester (3)

A solution of R-(-)-4-benzyloxy-3-(3-diisopropylamino-1-phenyl-propyl)-benzoic acid hydrochloride (2.30 kg, 4.77 Mol) in 26.4 litres of methanol and 0.25 litre of concentrated sulphuric acid is heated for 16 hours with recycling. Then a third of the solvent is distilled off, cooled and under agitation mixed with 5 kg ice and 2.5 litres 25% aqueous sodium carbonate solution. The deposit is first extracted with 15 litres and then again with 5 litres of dichloromethane. The organic phases are purified and concentrated on the rotary evaporator until dry. 1.99 kg (90.7% of theoretical) dark yellow oil with a purity of approximately 90% (DC, NMR) are obtained.

DC (1): 0.58

¹³C-NMR (CDCl₃): 20.55, 20.65, 36.83, 41.84, 43.63, 51.82, 70.12, 111.09, 122.46, 125.28, 127.49, 128.02, 65 128.35, 128.50, 129.22,129.49, 133.20, 136.39, 144.51, 159.87, 167.09.

Recrystallisation 69.0 oily raw material is dissolved in 150 ml boiling methanol. Following the addition of 15 ml distilled water it is left at 0° C., whereupon colourless crystals precipitate. These are filtered off, washed with a little cold methanol and vacuum-dried. Yield: 41.8 g (60.6% of theoretical) colourless crystals, melting point 89.8° C.; $[I]_D^{20}=-30.7$ (c=1.0, ethanol).

2. Preparation of R-(+)-[4-benzyloxy-3-(3-diisopropylamino-1-phenyl-propyl)-phenyl]-methanol (4)

Raw product (3) (28 g) is dissolved in 230 ml pure diethylether and under agitation is dripped into a suspension of 1.8 g lithium-aluminium hydride in diethylether (140 ml). After 18 hours of agitation at room temperature, 4.7 ml of water are added in drop form. The organic phase is separated off, dried with anhydrous sodium sulphate, filtered and concentrated on the rotary evaporator until dry. 26 g (98.9% of theoretical) R-(+)-[4-benzyloxy-3-(3-diisopropylamino-1-phenyl-propyl)-phenyl]-methanol (4) are obtained as a colourless oil.

DC (2): 0.32; [I]₀²⁰=+6.3 (c=1.0, ethanol). ¹³C-NMR (CDCl₃): 20.53, 20.61, 36.87, 41.65, 44.14, 48.82, 65.12, 70.09, 111.80, 125.77, 125.97, 126.94, 127.55,

128.08, 128.37, 128.44, 133.27, 134.05, 134.27, 137.21, 144.84.

40

45

50

3. Preparation of R-(-)-3-(3-diisopropylamino-phenylpropyl)-4-hydroxy-benzoic acid methyl ester (5)

To an agitated suspension of 5 g Raney nickel (washed with water, then with methanol) in 200 ml methanol, 10 g (21.8 mmol) R-(-)-4-benzyloxy-3-(3-diisopropylamino-1-phenyl-propyl)-benzoic acid methyl ester (3) are added. Following brief heating, in order to dissolve all (3) completely, the apparatus is placed under a hydrogen gas atmosphere. After three hours of agitation at normal pressure and room temperature, the thin layer chromatography demonstrates complete conversion. The deposit is rinsed with nitrogen gas and following addition of some active charcoal is filtered. Following concentration of the methanolic solution on the rotary evaporator 6.0 g (75% of theoretical) R-(-)-3-(3-diisopropylaminophenyl-propyl)-4-hydroxy-benzoic acid methyl ester (5) remains in the form of colourless crystals with a purity of 99.6% (HPLC).

15

Melting point 143.7° C.; DSC 144.7° C.

[1]₂²⁰=-26.6 (c=0.93, ethanol).

13 C-NMR (CDCl₃): 18.74, 19.21, 19.62, 33.12, 39.68, 42.36, 48.64, 51.42, 117.99, 120.32, 126.23, 127.81, 128.85, 129.39, 130.26, 132.21, 144.06, 162.43, 167.35. 4. Preparation of R-(+)-2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenol (6)

a) Starting from the intermediate stage (4), R-(+)-[4benzyloxy-3-(3-diisopropylamino-1-phenyl-propyl)phenyl]-methanol

R-(+)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-methanol (19.7 g, 45.7 mmol) are dissolved 25 in 220 ml methanol and Raney nickel (5 g). The apparatus is rinsed with hydrogen gas and the deposit is agitated for two days at room temperature. Following the addition of a further 5 g Raney nickel, agitation for a further two days at room temperature takes place under a hydrogen gas atmosphere, followed by filtration off from the catalyser and concentration until dry on the rotary evaporator. The oily, pale yellow residue is dissolved in 100 ml diethylether, washed twice with 100 ml water each time, dried via sodium sulphate, filtered and concentrated until dry. 14.1 g (90.4% of theoretical) R-(+)-2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenol are obtained in the form of a cream-coloured, amorphous, solid. For recrystallisation see under c).

 b) Starting from the intermediate stage (5); R-(-)-3-(3diisopropylamino-phenyl-propyl)-4-hydroxy-benzoic acid 40 methyl ester

A solution of 370 mg (1.0 mmol) R-(-)-3-(3diisopropylamino-phenyl-propyl)-4-hydroxy-benzoic acid methyl ester in 20 ml anhydrous tetrahydrofurane is slowly and at room temperature dropped into an agitated mixture of 45 dried tetrahydrofurane (10 ml) and a 1M solution of lithiumaluminium hydride in tetrahydrofurane (3 ml) (under a nitrogen protective gas atmosphere). Excess hydride is decomposed by the dropped addition of a saturated sodium carbonate solution. Following separation of the organic 50 phase this is concentrated on the rotary evaporator and then dried in the high-vacuum. 274 mg (74% of theoretical) pale yellow oil is obtained, that slowly solidifies into an amorphous mass.

c) Recrystallisation

Raw product 6 (1.0 g) is dissolved in ethyl acetate and again concentrated on the rotary evaporator. The diol released in this way from foreign solvents (diethyl ether or tetrahydrofurane, see above) has 1.5 ml ethyl acetate added with slight heating. Agitation takes place until a clear solution results, followed by cooling at room temperature and addition of a few seed crystals. These are obtained by purifying raw 6 via HPLC, collecting the main fraction, concentrating this and drying the residue for a number of hours in the high-vacuum. Once clear crystallisation has definitely started, it is left at -10° C. The crystals are sucked off in the cold and dried in the vacuum. Colourless crystals with a yield of 84% are obtained.

Melting point 102.3° C.
DC (1): 0.57
[I]₀²⁰=+21.3 (c=1.0, ethanol).

¹³C-NMR (CDCl₃): 19.58, 19.96, 33.30, 39.52, 42.10, 48.00, 65.40, 118.58, 126.31, 126.57, 127.16, 127.54, 128.57, 132.63, 132.83, 144.55, 155.52. 5. Preparation of R-(+)-2-(3-diisopropylamino-1-

phenylpropyl)-4-hydroxymethylphenolisobutyrate ester (1)

A solution of R-(+)-2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenol (6) (65.0 g, 190.3 mmol) and triethylamine (20.4 g, 201.7 mmol) in 750 ml dichloromethane has a solution of isobutyrate chloride (23.4 g, 201.7 mmol) in 250 ml dichloromethane added under agitation and cooling. Following addition agitation takes place for a further 15 minutes at 0° C., then for 30 minutes at room temperature and then one after another washing with water (250 ml) and 5% aqueous sodium hydrogen carbonate solution. The organic phase is separated and concentrated on the rotary evaporator until dry. The ester R-(+)-2-(3diisopropylamino-1-phenylpropyl)-4hydroxymethylphenylisobutyrate ester is obtained as a

olourless, viscous oil; yield: 77.1 g (98.4% of theoretical). DC (1): 0.26; [I]₀²²+2.7 (c=1.0, ethanol).

¹³C-NMR (CDCl₃): 19.01, 19.95, 20.59, 21.12, 34.28, 36.89, 41.88, 42.32, 43.90, 48.78, 64.68, 122.57, 125:59, 126.16, 126.86, 127.96, 128.54, 136.88, 138.82, 143.92, 147.09, 127.09. 147.90, 175.96.

6. Preparation of R-(+)-2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethyl-phenylisobutyrate ester hydrogen fumarate.

A solution of 41.87 g (102 mmol) R-(+)-2-(3diisopropylamino-1-phenylpropyl)-4hydroxymethylphenylisobutyrate ester in 90 ml 2-butanone has fumaric acid (11.81 g, 102 mmol) added while heating. Following dissolution of the acid, cyclohexane (20-30 ml) is slowly added under agitation until the onset of turbidity. The colourless, homogenous deposit is initially left for 18 hours at room temperature, and then for several hours at 0° C. The colourless crystals that have precipitated are sucked off, washed with a little cyclohexane/2-butanone (90:10, vol.-%)and dried in the vacuum at 30° C. 44.6 g (83.1% of theoretical) hydrogen furate salt of R-(+)-2-(3diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl-isobutyrate ester in the form of colourless flakes are obtained.

Melting point 98.8° C., a second crystallisation from the same solvent mixture provides a product with a melting point of 103° C.

 $[I]_D^{20=+6.0}$ (c=1.0, ethanol).

Elementary analysis: Calculated for $C_{30}H_{41}NO_{7}$ (molecular weight 527.66) C 68.29%, H 7.83%, N 2.65%, O 21.2%; found C, 68.29%; H, 7.90%; N, 2.72%; O, 21.0%.

UV/VIS at Σ in nm (A^{1 %}_{1 cm}): 191 (1306), 193 (1305), 10 200 (1143), 220 (456).

IR: 3380, 2978, 2939, 2878, 2692, 2514, 1756, 1702, 1680, 1618, 1496, 1468, 1226, 1040, 1019, 806,

¹H-NMR (CDCl₃): 1.198, 1.285, 1.287 (CH₃); 2.541 (CHC=O); 3.589 (NCH); 4.585 (CH₂OH); 6.832 (=-CH, ¹⁵ fumarate); 6.84-7.62 (aryl, =CH).

¹³C-NMR (CDCl₃): 17.79, 18.95, 19.16 (CH₃); 31.63 (CHCH₂); 34.09 (CH—C=O); 41.87 (CHCH₂); 45.83 (NCH₂); 54.29 (NCH); 63.78 (OCH₂); 122.23, 126.48, 126.77, 127.56, 140.46, 140.52, 142.35, 147.54 (Aryl CH); 20 135.54 (=CH, fumarate); 170.48 (C=O, fumarate); 175.62 (i-Pr---C=-0)

Ms in the direct inlet, m/z (%): 411 (1), 396 (9), 380 (1), 223 (2), 165 (2), 114 (100), 98 (4), 91 (3), 84 (3), 72 (10), 56 (7).

7. Preparation of R-(+)-2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethyl-phenylisobutyrate ester hydrochloride hydrate

A solution of R-(+)-2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenylisobutyrate ester (8.54 g, 25.0 mmol) in 50 ml dichloromethane is slowly dropped at 0° C. into an agitated solution of isobutyrate chloride (2.66 g, 25.0 mmol) in 100 ml dichloromethane. After an hour the cooling is removed and re-agitation takes place for an additional hour. Following the drawing off of the volatile components in the vacuum on the rotary evaporator a colourless, amorphous-solid foam remains. This residue is dissolved in acetone (17 ml), with 0.45 to 0.50 g water and diethyl ether is added (approx. 20-25 ml) until there is a definite onset of turbidity. Following brief treatment with ultrasound crystallisation starts spontaneously and under agitation a further 80 ml of diethyl ether are 55 slowly added. The precipitated colourless crystals are sucked off and dried overnight in the vacuum via phosphorous pentoxide. 10.5 g (93.7% of theoretical) colourless crystalline R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenylisobutyrate ester hydrochloride 60. hydrate with a purity of 97.0% (HPLC) are obtained.

Melting point 97.1° C.

 $[I]_{\mathcal{O}}^{20\to4}.3$ (c=1.03, ethanol)

¹³C-NMR (CDCl₃): 16.94, 17.35, 18.24, 18.40, 18.87, 19.05, 31.20, 33.99, 41.64, 45.41, 54.18, 54.42, 63.83, 65 122.25, 126.50, 126.70, 126.96, 127.34, 128.60, 133.80, 140.55, 142.17, 147.68, 175.79.

8. Phenolic Monoester

General Work Specification for the Manufacture of Phenolic Monoesters

Into a solution of 120.3 mg (0.352 mmol)R-(+)-2-(3diisopropylamino-1-phenylpropyl)-4-hydroxyphenol (6) in 5 ml dichloromethane, under agitation at 0° C., a solution of acid chloride (0.352 mmol) in 2 ml dichloromethane is dropped. Then triethylamine-dichloromethane (49.1 µl/0.353 mmol-2 ml) is added. After 18 hours at room temperature the thin layer chromatography shows that conversion is complete. The deposit is washed successively with 5 ml water, aqueous 0.1N-hydrochloric acid, 5 ml 5% aqueous sodium-hydrogen carbonate solution, 5 ml water, dried via sodium sulphate and following filtration concentrated until dry. Then it is dried in the high-vacuum until

constant weight. The following compounds are, by way of example, manufactured using this method:

R=CH₂CH (CH₃)₂

R-(+)-3-methylbutyric acid-2-(3-diisopropylamino-1phenyl-propyl)-4-hydroxymethylphenyl-ester

Colourless oil with 70% yield and >95% purity (NMR). ¹³C-NMR (CDCl₃): 20.45, 20.59, 22.54, 25.70, 36,74, 42.18, 43.27, 43.96, 48.90, 64.67, 122.66, 125.60, 126.20, 126.79, 127.95, 128.37, 136.83, 138.86, 143.83, 147.82,

DC (1): 0.76.

R=CH₂C(CH₃)₃

R-(+)-3.3-dimethylbutyric acid-2-(3-diisopropylamino-1phenyl-propyl)-4-hydroxymethylphenyl-ester, free base

Colourless oil with 69.7% yield and >95% purity (NMR). ³C-NMR (CDCl₃): 20.40, 20.53, 29.73, 30.99, 36.62, 42.17, 44.01, 47.60, 49.01, 64.65, 122.64, 125.60, 126.20, 126.80, 127.96, 128.36, 136.85, 138.90, 143.80, 147.82, 170.55.

DC (1): 0.75.

 $R = (C\dot{H}_3)_3 C$

R-(+)-3-pivalic acid-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl-ester hydrochloride.

Colourless crystals, melting point 165-6° C.

13C-NMR (DMSO-d₆=39.7 ppm): 16.52, 16.68, 17.98, 18.11, 26.87, 31.46, 41.71, 45.33, 53.89, 53.98, 62.65, 122.61, 122.97, 125.94, 126.09, 126.57, 126.75, 127.87, 128.58, 131.80, 134.94, 141.02, 142.69, 147.17, 155.32, 163.92, 176.21.

R=c-C₃H₅

R-(+)-cyclopropane carboxylic acid-2-(3-diisopropylamino-1-phenyl-propyl)-4-hydroxymethylphenyl-ester hydrochlo-

Colourless, waxy substance.

13C-NMR (DMSO-d₆=39.7 ppm): 173.02, 172.49, 172.37, 153.10, 147.12, 142.72, 142.03, 140.78, 136.60, 134.79, 134.35, 129.55, 129.13, 128.80, 128.67, 127.87, 126.96, 126.74, 125.94, 125.84, 124.37, 123.71, 122.80, 62.64, 53.92, 45.34, 41.65, 31.44, 18.05, 16.66, 12.84, 9.58, 9.28, 8.49, 7.89. R=c-C₄H₇

R-(+)-cyclobutane carboxylic acid-2-(3-diisopropylamino-1-phenyl-propyl)-4-hydroxymethylphenyl-ester hydrochlo-

Colourless, waxy substance. 13 C-NMR (DMSO-d₆=39.7 ppm): 173.53, 147.12, 142.81, 140.74, 134.77, 128.65, 127.81, 126.74, 125.99, 125.87, 122.75, 62.63, 53.92, 45.34, 41.42, 37.38, 31.54, 25.04, 24.92, 18.03, 16.68, 16.61. R=c-C₅H_o

R-(+)-cyclopentane carboxylic acid-2-(3-diisopropylamino-1-phenyl-propyl)-4-hydroxymethylphenyl-ester hydro-

Colourless, waxy substance.

13C-NMR (DMSO-d₆=39.7 ppm): 174.80, 147.22, 126.04 142.86, 140.76, 134.72, 128.66, 127.80, 126.73, 126.04, 125.88, 122.71, 62.62, 53.94, 45.37, 43.24, 41.39, 31.54, 29.78, 29.59, 25.64, 25.59, 18.07, 16.64.

R-(+)-cyclohexane carboxylic acid-2-(3-diisopropylamino-1-phenyl-propyl)-4-hydroxymethylphenyl-ester hydrochlo- 30 2×CH(CH3)2, 2×cyclopropyl-CH2).

Colourless, waxy substance.

13 C-NMR (DMSO-d₆=39.7 ppm): 174.08, 147.15, 142.85, 140.77, 134.78, 128.66, 127.77, 126.74, 126.06, 125.87, 122.69, 62.61, 53.91, 45.36, 42.26, 41.24, 31.53, 35 28.74, 28.62, 25.48, 25.04, 24.98, 18.05, 16.67, 16.60. $R=4-(C_2H_5CO_2)-C_6H_4$

R-(+)-4-ethylcarbonyloxy-benzoic acid-2-(3diisopropylamino-1-phenyl-propyl)-4hydroxymethylphenyl-ester hydrochloride

Colourless crystals, melting point 195-8° C.

¹H-NMR (DMSO-d₆): 9.87 (s, 1H can be substituted with D₂O, NH), 8.19-8.12 (m, 2H, Phenyl-H), 7.55 (d, J=1.0 Hz, 1H, Phenyl-H3), 7.41-7.13 (m, 9H, Phenyl-H), 5.28 (br s, 1H can be substituted with D₂O, OH), 4.53 (s, 2H, CH₂), 4.23 (t, J=7.6 Hz, 1H, CH), 3.61-3.50 (m, 2H, 2×C H(CH₃)₂), 2.97-2.74 (m, 2H, CH₂), 2.67 (q, J=7.4 Hz, 2H, CH_2), 2.56–2.43 (m, 2H, CH_2), 1.23–1.13 (m, 15H, 2 × $CH(CH_3)_2$, CH_3).

R=4-(i-C₃H₇CO₂)---C₆H₄

R-(+)-4-(isopropylcarbonyloxy)-benzoic acid-2-(3-50 diisopropylamino-1-phenyl-propyl)-4hydroxymethylphenyl-ester hydrochloride

Colourless crystals, melting point 202-4° C.

 1 H-NMR (DMSO-d_o): 9.73 (s, 1H can be substituted with D_{2} O, NH), 8.19–8.12 (m, 2H, Phenyl-H), 7.55 (d, J=1.4 Hz, 1H, Phenyl-H₃), 7.42-7.14 (m, 9H, Phenyl-H), 5.27 (br s, 1H can be substituted with D₂O, OH), 4.53 (s, 2H, CH₂), 4.23 (t, J=7.5 Hz, 1H, CH), 3.61–3.50 (m, 2H, 2×C H(CH₃)₂), 2.99–2.78 (m, 3H, CH₂, CH(CH₃)₂), 2.54–2.47 (m, 2H, CH₂), 1.29–1.13 (m, 18H, 3×CH(CH₃)₂) $R=4-(t-C_4H_0CO_2)-C_6H_4$

R-(+)-4-(t-butylearbonyloxy)-benzoic acid-2-(3diisopropylamino-1-phenyl-propyl)-4hydroxymethylphenyl-ester, free base.

Colourless oil.

¹H-NMR (DMSO-d₆): 8.19-8.12 (m, 2H, phenyl-H), 7.45-7.33 (m, 311, phenyl-H), 7.25-7.09 (m, 711, phenyl-H),

5.20 (t, J=5.6 Hz, 1H, OH), 4.50 (d, J=5.6 Hz, 2H, CH2), 4.20 (t, J=7.5 Hz, 1H, CH), 2.95-2.80 (m, 2H, 2×C $H(CH_3)_2$), 2.38-2.25 (m, 2H, CH_2), 2.09-2.03 (m, 2H, CH₂), 1.33 (s, 9H, (CH₂)₂), 0.82-0.76 (m, 12H, 2×CH(C $H_3)_2$).

Hydrochloride: colourless crystals, melting point 165-6° C.

¹H-NMR (CDCl₃): 8.22-8.16 (m, 2H, phenyl-H), 8.02 (d, 10 J=1.8 Hz, 1H, phenyl-H), 7.27-7.02 (m, 9H, phenyl-H), 4.83-4.60 ('m', 2H, CH₂), 4.01-3.94 (m, 1H, CH), 3.66-3.54 (m, 2H), 3.18-2.80 (m, 3H), 2.53-2.44 (m, 1H) $(2\times CH_2, 2\times CH(CH_3)_2), 1.43-1.25$ (m, 21H, $(CH_3)_3$, $2\times CH(CH_3)_2$.

 $R=4-(c-C_3H_5CO_2)-C_6H_4$

R-(+)-4-(cyclopropylearbonyloxy)-benzoic acid-2-(3diisopropylamino-1-phenyl-propyl)-4hydroxymethylphenyl-ester hydrochloride

Colourless crystals, melting point 208-213° C.

¹H-NMR (DMSO-d₆): 9.04 (s, 1H can be substituted with D₂O, NH), 8.15-8.09 (m, 2H, phenyl-H), 7.53 ('d', 1H, phenyl-H3), 7.42-7.13 (m, 9H, phenyl-H), 5.25 (br s, 1H can be substituted with D2O, OH), 4.52 (s, 2H, CH2), 4.23 (t, J=7.5 Hz, 1H, CH), 3.62-3.53 (m, 2H, 2×CH(CH3)2), 3.05-2.70 (m, 2II, CII2), 2.51-2.37 (m, 2II, CII2), 2.01-1.89 (m, 1H, cyclopropyl-CH), 1.20-1.05 (m, 16H,

¹³C-NMR (DMSO-d₆=39.7 ppm): 172.71, 163.93, 154.92, 147.16, 142.69, 141.03, 134.97, 131.76, 128.60, 127.86, 126.76, 126.56, 126.06, 125.94, 122.95, 122.65, 62.65, 54.00, 53.89, 45.33, 41.63, 31.49, 18.10, 17.98, 16.69, 16.51, 12.86, 9.52.

 $R=4-(c-C_4H_7CO_2)-C_6H_4$

R-(+)-4-(cyclobutylcarbonyloxy)-benzoic acid-2-(3diisopropylamino-1-phenyl-propyl)-4hydroxymethylphenyl-ester hydrochloride

Colourless crystals, melting point 201-6° C.

¹H-NMR (DMSO-d₀): 9.50 (s, 1H can be substituted with D₂O, NH), 8.17-8.12 (m, 2H, phenyl-H), 7.54 (d, J=1.4 Hz, 1H, phenyl-H3), 7.42-7.14 (m, 9H, phenyl-H), 5.25 (br s, 1H can be substituted with D₂O, OH), 4.52 (s, 2H, CH₂), 4.23 (t, J=7.5 Hz, 1H, CH), 3.62-3.47 (m, 3H, cyclobutyl-CH), 2×CH(CH₃)₂), 3.00-2.70 (m, 2H, CH₂), 2.51-2.26 (m, 6H, CH₂, 2xcyclobutyl-CH₂), 2.10-1.85 (m, 2H, cyclobutyl-CH₂), 1.22-1.12 (m, 12H, 2xCH(CH₃)₂).

 $R=4-(c-C_6H_{11}CO_2)-C_6H_4$

R-(+)-4-(cyclohexylcarbonyloxy)-benzoic acid-2-(3-55 diisopropylamino-1-phenyl-propyl)-4hydroxymethylphenyl-ester hydrochloride

Colourless crystals, melting point 212-217° C.

¹H-NMR (DMSO-d₆): 9.34 (s, 1H, can be substituted 60 with D₂O, NH), 8.16-8.12 (m, 2H, phenyl-H), 7.54 (d, J=1.4 Hz, 1H, phenyl-H3), 7.39-7.14 (m, 9H, Phenyl-H), 5.26 ('t', 1H, can be substituted with D₂O), 4.53 (d, J=4.2 Hz, 2H, CH_2), 4.22 (t, J=7.5 Hz, 1H, CH), 3.62–3.48 (m, 2H, 2×C $H(CH_3)_2$), 3.00-2.60 (m, 3H, cyclohexyl-CH), CH_2), 2.51-2.40 (m, 2H, CH₂), 2.07-1.98 (m, 2H, cyclohexyl-CH₂), 1.80-1.11 (m, 20H, 4xcyclohexyl-CH₂), 2xCH(C $H_3)_2$

9. Identical Diesters

General Work Specification for the Manufacture of Identical Diesters

Into a solution of 7.30 g (21.4 mmol)R-(+)-2-(3diisopropylamino-1-phenylpropyl)-4-hydroxyphenol (6) in 100 ml dichloromethane, under agitation at 0° C., a solution of acid chloride (49.2 mmol) in 50 ml dichloromethane is dropped. Then triethylamine-dichloromethane (6.86 ml/49.2 mmol-50 ml) is added. After 1-3 hours at room temperature the thin layer chromatography shows that conversion is 35 complete. The deposit is washed successively with respectively 100 ml water, aqueous 0.1N-hydrochloric acid, 5 ml 5% aqueous sodium-hydrogen carbonate solution, 5 ml water, dried via, sodium sulphate and following filtration concentrated until dry. Then it is dried in the high-vacuum 40 until constant weight.

The following compounds are, by way of example, manufactured using this method: R-Methyl

R-(-)-acetic acid-2-(3-diisopropylamino-1-phenyl-propyl)- 45 4-acetoxymethyl-phenyl-ester, free base

Pale yellow oil, purity (HPLC): 95.2%.

13C-NMR (CDCl₃): 20.36, 20.69, 20.94, 20.99, 36.41, 42.27, 43.69, 48.79, 65.89, 122.89, 126.28, 127.17, 127.92, 128.36, 133.69, 136.95, 143.61, 148.46, 168.97, 170.76. LC-MS: 425 (15%, M*), 410 (97%), 382 (4%), 308 (3%), 266 (7%), 223 (27%), 195 (13%), 165 (8%), 114 (100%). [\alpha]_2^{20} = 33.1 (c=1, CH_3CN).

DC (1): 0.79.

R=Cyclohexyl

R-(+)-cyclohexane carboxylic acid-2-(3-diisopropylamino-1-phenyl-propyl)-4-cyclohexylcarbonyloxymethyl-phenylester

Pale yellow oil, purity (NMR): >95%.

¹³C-NMR (CDCl₃): 20.30, 25.17, 25.58, 25.73, 28.97, 29.12, 41.70, 43.15, 44.03, 48.64, 65.37, 122.67, 125.88, 126.24, 127.06, 127.31, 127.90, 128.37, 134,03, 136.85, 143.55, 148.33, 174.20, 175.72.

DC (1): 0.96.

R-Isopropyl

R-(+)-isobutyrate-2-(3-diisopropylamino-1-phenyl-propyl)- 65 4-isobutyryloxymethyl-phenyl-ester

Free base: pale yellow oil, purity (HPLC): 95.6%.

¹³C-NMR (CDCl₃): 18.96, 19.08, 20.59, 33.98, 34.20, 36.86, 41.72, 43.72, 48.72, 65.58, 122.65, 126.19, 126.73, 127.91, 128.11, 128.36, 133.91, 136.96, 143.81, 148.41, 175.15, 176.77. DC (1): 0.74.

Hydrogen fumarate salt: colourless syrup, 94.4% HPLC

purity.

¹³C-NMR (CDCl₃): 17.89, 18.07, 18.94, 18.97, 19.07, 31.22, 33.93, 34.13, 41.78, 45.62, 53.93, 65.33, 122.93, 126.82, 127.45, 127.53, 127.91, 128.75, 134.74, 135.29, 10 135.42, 142.04, 148.44, 170.24, 175.71, 176.79.

 $R=4-(t-C_4H_0CO_2)-C_6H_4$

R-4-(t-butylcarbonyloxy)-benzoic acid-2-(3diisopropylamino-1-phenyl-propyl)-4-(4-tbutylcarbonyloxymethyl-benzoic acid)-phenyl-ester hydro-15 chloride

Colourless crystals, melting point 105-7° C.

¹³C-NMR (DMSO-d_o): 16.49, 16.71, 17.97, 18.06, 26.84, 31.36, 38.45, 41.70, 45.24, 53.79, 53.96, 55.09, 66.11, 122.47, 122.62, 123.59, 126.42, 126.83, 127.21, 127.70, 127.88, 128.02, 128.62, 131.17, 131.86, 134.48, 135.64, 142.52, 148.35, 154.86, 155.39, 163.80, 165.09, 176.14, 176.19.

Mixed Diesters

R' is not equal to R'

General Work Specification for the Manufacture of Mixed Diesters

Into a solution of 5.30 mmol phenolic monoester of general formula A in 40 ml dichloromethane under agitation at 0° C. a solution of acid chloride (5.83 mmol) in 15 ml dichloromethane is dropped. Then triethylamine-dichloromethane (0.589 g/5.82 mmol-15 ml) is added. After 18 hours at room temperature the thin layer chromatography shows that conversion is complete. The deposit is washed successively with respectively 50 ml water, aqueous 0.1Nhydrochloric acid, 5 ml 5% aqueous sodium-hydrogen carbonate solution, 5 ml water, dried via sodium sulphate and following filtration concentrated until dry. Then it is dried in the high-vacuum until constant weight.

The following example is manufactured using this method:

 $R'=CH(CH_3)_2$

 $R'=CH_3$

R-(+)-isobutyrate-2-(3-diisopropylamino-1-phenyl-propyl)-4-acetoxymethyl-phenyl-ester

Colourless oil.

DC (1): 0.56

¹³C-NMR (CDCl₃): 19.12, 20.65, 21.05, 34.24, 37.02, 41.79, 43.79, 48.72, 65.98, 122.75, 125.98, 126.22, 127.94, 128.39, 128.84, 133.55, 137.04, 143.84, 148.58, 170.84,

Hydrochloride: colourless crystals ¹³C-NMR (CDCl₃): 16.89, 17.04, 18.31, 18.92, 20.95, 31.49, 34.07, 41,64, 46.17, 54.55, 65.49, 122.91, 126.61, 126.93, 127.48, 127.83, 128.74, 134.50, 134.88, 141.61, 148.44, 170.67, 175.63. [α]_D²⁰=14.6 (c=1, CHCl₃).

What is claimed is:

1. Compounds of general formula I

Formula I

X-

in which R denotes C_1 – C_6 -alkyl, C_3 – C_{10} -cycloalkyl, sub- 30 stituted or unsubstituted phenyl and X is the acid residue of a physiologically compatible inorganic or organic acid.

2. Compounds in accordance with claim 1, characterised in that X⁻ in each case is an acid ester of hydrochloric acid. hydrobromic acid, phosphoric acid, sulphuric acid, nitric 35 acid, acetic acid, propionic acid, palmitic acid, stearic acid, maleic acid, fumaric acid, oxalic acid, succinic acid, DL-malic acid, L-(-)-malic acid, D-(+)-malic acid, DL-tartaric acid, L-(+) -tartaric acid, D-(-)-tartaric acid, citric acid, L-aspartic acid, L-(+)-ascorbic acid, D-(+)glucuronic acid, 2-oxopropionic acid (pyruvic acid), furan-2-carboxylic acid (mucic acid), benzoic acid, 4-hydroxybenzoic acid, salicyclic acid, vanillic acid, 4-hydroxycinammic acid, gallic acid, hippuric acid (N-benzoyl-glycine), aceturic acid (N-aectylglycine), phloretinic acid (3-(4-hydroxyphenyl)-propionic acid), phthalic acid, methanesulfonic acid or orotic acid.

3. Compounds in accordance with claims 1, characterised in that they have general formula 2:

in which R denotes C₁-C₆-alkyl, C₃-C₁₀-cycloalkyl, substituted or unsubstituted phenyl and X is the acid residue of a physiologically compatible inorganic or organic acid.

4. Compounds in accordance with claim 3, characterised in that X in each case is an acid ester of hydrochloric acid,

hydrobromic acid, phosphoric acid, sulphuric acid, nitric acid, acetic acid, propionic acid, palmitic acid, stearic acid, maleic acid, fumaric acid, exalic acid, succinic acid, DL-malic acid, L-(-)-malic acid, D-(+)-malic acid, DL-tartaric acid, L-(+)-tartaric acid, D-(-)-tartaric acid, citric acid, L-aspartic acid, L-(+)-ascorbic acid, D-(+)glucuronic acid, 2-exopropionic acid (pyruvic acid), furan-2-carboxylic acid (mucic acid), benzoic acid, 4-hydroxybenzoic acid, salicyclic acid, vanillic acid, 4-hydroxycinammic acid, gallic acid, hippuric acid (N-benzoyl-glycine), aceturic acid (N-aectylglycine), phloretinic acid (3-(4-hydroxyphenyl)-propionic acid), phthalic acid, methanesulfonic acid or orotic acid.

5. Compounds in accordance with claims 3, characterised in that they are R-(+)-2-(3-(diisopropylamino-1phenylpropyl)-4-hydroxymethyl -phenylisobutyrate ester hydrogen fumarate, R-(+)-2-(3-(diisopropylamino-1phenylpropyl)-4-hydroxymethylphenylisobutyrate ester-20 hydrochloride hydrate.

6. Compounds in accordance with claims 3, characterised in that R stands for cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-(1-cyclopropyl-methanoyloxy)-phenyl, 4-(1cyclobutyl-methanoyloxy)-phenyl, 4-(1-cyclohexylmethanoyloxy)-phenyl or 4-(2,2-dimethyl-propanoyloxy)phenyl and X- denotes chloride.

7. Method for manufacturing compounds of general formula I

Formula I

in which R denotes C1-C6-alkyl, C3-C10-cycloalkyl, substituted or unsubstituted phenyl and X- is the acid residue of a physicologically compatible inorganic or organic acid, characterised in that

a) a compound of formula III

is split with a hydrogenation agent to form a compound of Formula V

35

40

45

55

Formula A

HO

Formula I

Formula V

whereupon

b) the compoud of formula V so obtained is converted with a reducing agent, in order to give a compound of formula VI

which

c) is converted with an acylation agent, in order to obtain a compound of formula A

in which R has the significance stated above, which

d) is converted with a physiologically compatible inorganic or organic acid to form a compound of formula 65

15 in which R denotes C₁-C₆-alkyl, C₃-C₁₀-cycloalkyl, unsubstituted or substituted phenyl and X- is the acid residue of a physiologically compatible inorganic or organic acid.

8. Method in accordance with claim 7, characterised in that for the manufacture of the compounds of general formula I hydrochloric acid, hydrobromic acid, phosphoric 20 acid, sulphuric acid, nitric acid, acetic acid, propionic acid, palmitic acid, stearic acid, maleic acid, fumaric acid, oxalic acid, succinic acid, DL-malic acid, L-(-)-malic acid, DL-tartaric acid, L-(+)-tartaric acid, D-(-)-tartaric acid, citric acid, L-aspartic acid, L-(+)-ascorbic acid, D-(+)-glucuronic acid, 2-oxopropionic acid (pyruvic acid),

Formula VI 25 furan-2-carboxylic acid (mucic acid), benzoic acid,
4-hydroxybenzoic acid, salicyclic acid, vanillic acid,
4-hydroxycinammic acid, gallic acid, hippuric acid (N-benzoyl-glycine), aceturic acid (N-aectylglycine), phloretinic acid (3-(4-hydroxyphenyl)-propionic acid), phthalic acid, methanesulfonic acid or orotic acid are used.

9. Method for manufacturing compounds of general formula 2

in which R denotes C_1 – C_6 -alkyl, C_2 – C_{10} -cycloalkyl, substituted or unsubstituted phenyl and X– is the acid residue of a physiologically compatible inorganic or organic acid, 50 characterised in that

a) a compound of the formula 3

Formula 2

10

27

s split with a hydrogenation agent to form a compound of

whereupon

formula 5

 b) the compound formula 5 so obtained is converted with a reducing agent, in order to give a compound of formula 6

which

 c) is converted with an acylation agent, in order to obtain a compound of formula 1

in which R has the significance stated above, which

d) is converted with a physiologically compatible inor- 65 ganic or organic acid to form a compound of formula

28

Formula 2

in which R denotes C₁-C₆-alkyl, C₃-C₁₀-cycloalkyl, unsubstituted or substituted phonyl and X- is the acid residue of a physiologically compatible inorganic or organic acid.

Method in accordance with claim 9, characterised in
 that for the manufacture of the compounds of general formula 2 hydrochloric acid, hydrobromic acid, phosphoric acid, sulphuric acid, nitric acid, acetic acid, propionic acid, palmitic acid, stearic acid, maleic acid, fumaric acid, oxalic acid, succinic acid, DL-malic acid, L-(-)-malic acid, D-(+)-malic acid, DL-tartaric acid, L-(+)-tartaric acid, D-(-)-tartaric acid, citric acid, L-aspartic acid, L-(+)-ascorbic acid, D-(+)-glucuronic acid, 2-oxopropionic acid (pyruvic acid), furan-2-carboxylic acid (mucic acid), benzoic acid, 4-hydroxybenzoic acid, salicyclic acid, vanillic acid, 4-hydroxycinammic acid, gallic acid, hippuric acid (N-benzoyl-glycine), aceturic acid (N-aectylglycine), phloretinic acid (3-(4-hydroxyphenyl)-propionic acid), phthalic acid, methanesulfonic acid or orotic acid are used.

- 11. Method in accordance with claims 7, characterised in that as the hydrogenation agent, Raney nickel/H₂ in methanol is preferably used as the solvent.
- Method in accordance with claims 7, characterised in that for the reducing agent NaBH₄EtOH, preferably LiAlH₄/
 THF, is used.
 - 13. Method in accordance with claims 7, characterised in that for the acylation agent isobutyrylchloride and for the base triethylamine are used.
- 14. Method in accordance with claims 9, characterised in that a compound of general formula 6 is converted with an equivalent isobutyryl chloride in the presence of triethylamine using one of the respective solvents ethylacetate, dichloromethane, tetrahydrofurane, acetonitrile or toluene regio- and chemoselectively into R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylisobutyrate.

15. Method in accordance with claims 9, characterised in that R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenylisobutyrate ester and fumaric acid or hydrochloric acid are converted with the formation of the respective salt.

16. Method in accordance with claims 9 for the manufacture of R-(+)-2-(3-diisopropylamino-1-phenyl-propyl)-4-hydroxy-methylphenylisobutyrate ester hydrochloride hydrate, characterised in that the phenolic esterification of R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxy-methylphenol (6) is carried out without the addition of an external base, in that solutions of (6) are dropped into solutions of isobutyryl chloride, that contain at least 1 mole equivalent of water, in order to directly obtain a corresponding stable, hydrate-containing hydrochloride.

Formula 1

Pormula 2

17. Compound of formula 7

Formula 7

18. A method of manufacture of phenolic monoesters of general formula 1

wherein the method comprises the steps of:

providing a compound of claim 17;

depretecting the hydroxyl residues of the 4-hydroxybenzyl alcohol residue; and

acylating the phenol residue.

19. A method of manufacture of salts of phenolic monoesters of general formula 2:

15 in which R denotes C_1 – C_6 -alkyl, C_2 – C_{10} -cycloalkyl, substituted or unsubstituted phenyl and X is the acid residue of a physicologically compatible inorganic or organic acid, wherein the method comprises the steps of:

providing a compound of claim 17; deprotecting the hydroxyl residues of the 4-hydroxybenzyl alcohol residue; and

acylating the phenol residue, and acylating the phenol residue.

20. A method of manufacture of R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylisobutyrate ester hydrogen fumarate or R-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenylisobutyrate ester hydrochloride hydrate, the method comprising the steps of; providing a compound of claim 17; deprotecting the hydroxyl residues of the 4-hydroxyl

deprotecting the hydroxyl residues of the 4-hydroxy-benzyl alcohol residue; and

acylating the phenol residue.

21. A method of treating a patient suffering from urinary incontinence, which method comprises the step of administering to said patient an effective amount of a compound

according to claim 1.

22. A method of treating a patient suffering from urinary incontinence, which method comprises the step of administering to said patient an effective amount of a compound

according to claim 3.

23. A method of treating a patient suffering from urinary incontinence, which method comprises the step of administering to said patient an effective amount of a compound according to claim 5.

24. The method of any one of claims 21-23, wherein the urinary incontinence disorder is urge incontinence.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 6,858,650 B1 DATED : February 22, 2005

50 B1 Page 1 of 2

INVENTOR(S) : Meese

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 1,

Line 17, please correct "prodrugn" to -- prodrugs --

Line 26, please correct "3,3-diphenylpropylarines" to -- 3,3-diphenylpropylamines --

Column 3,

Line 50, please correct "and X" to -- and X' --

Column 4,

Lines 45-46, please correct "are that" to -- are manufactured in that --

Column 5,

Line 24, please correct "with agent" to -- with a reducing agent --

Column 13,

Line 14, please correct "photometer. model" to -- photometer model --

Line 64, please correct "43.63" to -- 43.83 --

Column 15,

Line 37, please correct "amorphous. solid" to -- amorphous solid --

Column 16,

Line 37, please correct "125:59" to -- 125.59 --

Column 17,

Line 6, please correct " $[I]_D^{20=+6.0}$ " to -- $[I]_D^{20}=+6.0$ --

Line 23, please correct "Ms" to -- MS --

Column 23,

Line 13, please correct "=14.6" to -- = +14.6 --

Line 47, "please correct "claims" to -- claim --

Column 24,

Lines 15 and 21, please correct "claims" to -- claim --

Line 46, please correct "physicologically" to -- physiologically --

UNITED STATES PATENT AND TRADEMARK OFFICE **CERTIFICATE OF CORRECTION**

DATED

PATENT NO. : 6,858,650 B1

: February 22, 2005

INVENTOR(S) : Meese

Page 2 of 2

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 28,

Lines 35, 38, 41, 45, 53 and 58, please correct "claims" to -- claim --

Column 30,

Line 17, please correct "physicologically" to -- physiologically --

Signed and Sealed this

Ninth Day of August, 2005

JON W. DUDAS Director of the United States Patent and Trademark Office

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 *Novel Derivatives of 3,3-Diphenylpropylamines*

EXHIBIT H

US007230030B2

(12) United States Patent Meese et al.

(10) Patent No.:

US 7,230,030 B2

(45) Date of Patent:

Jun. 12, 2007

(54) DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES

(75) Inventors: Claus Meese, Monheim (DE); Bengt Sparf, Trangsund (SE)

(73) Assignee: Schwarz Pharma AG, Monheim (DE)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 94 days.

(21) Appl. No.; 10/766,263

(22) Filed: Jan. 27, 2004

(65) Prior Publication Data

US 2004/0186061 A1 Sep. 23, 2004

Related U.S. Application Data

(63) Continuation of application No. 09/700,094, filed as application No. PCT/EP99/03212 on May 11, 1999, now Pat. No. 6,713,464.

(30) Foreign Application Priority Data

May 12, 1998 (EP) 98108608

(51) Int. Cl.

A01N 37/02 (2006.01)

A01N 37/06 (2006.01)

A61K 31/225 (2006.01)

C07C 69/34 (2006.01)

C07C 211/00 (2006.01)

(52) U.S. Cl. 514/548; 514/648; 560/194; 564/316

(56) References Cited

U.S. PATENT DOCUMENTS

2,556,636 A 6/1951 Sperber et al. 260/247.1

2,567,245 A 9/1951 Sperber at al. 260/296 2,676,964 A 4/1954 Sperber et al. 260/256.4

(Continued)

FOREIGN PATENT DOCUMENTS

DE	830193	2/1952	
DE	766207	12/1952	
DE	925 468	3/1955	

(Continued)

OTHER PUBLICATIONS

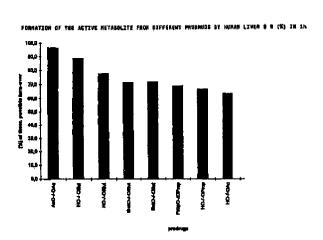
Nilvebrant et al., European Journal of Pharmacology, 327(1997) pp. 195-207.

Nilvebrant et al., Pharmacology and Toxicology, vol. 81, pp. 169-172, 1997.

Nilvebrant et al., Life Sciences. vol. 60 (13/14), pp. 1129-1136, 1997.

Postlind et al., Drug Metabolism and Disposition, vol. 26 (4), pp. 289-293, 1998.

Andersson et al., Drug Metabolism and Disposition, vol. 26 (6), pp. 528-535, 1998.


(Continued)

Primary Examiner—Zachary C. Tucker (74) Attorney, Agent, or Firm—Kenyon & Kenyon LLP

(57) ABSTRACT

The invention concerns novel derivatives of 3,3-diphenylpropylamines, methods for their preparation, pharmaceutical compositions containing the novel compounds, and the use of the compounds for preparing drugs. More particularly, the invention relates to novel prodrugs of antimuscarinic agents with superior pharmacokinetic properties compared to existing drugs such as oxybutynin and tolterodine, methods for their preparation, pharmaceutical compositions containing them, a method of using said compounds and compositions for the treatment of urinary incontinence, gastrointestinal hyperactivity (irritable bowel syndrome) and other smooth muscle contractile conditions.

14 Claims, 1 Drawing Sheet

	U.S. PATENT	DOCUMENTS	WO WO 03/099268 12/2003 WO WO 03/103637 12/2003
3.2	61,841 A 7/1966	Zenitz 260/292	WO WO 03/10303/ 12/2003 WO WO 03/106421 12/2003
	•	Macclesfield	WO WO 04/019892 3/2004
		Korbonits et al.	
		Jonsson et al.	OTHER PUBLICATIONS
		Johansson et al.	
		Johansson et al 514/315	Brynne et al., J. Clin. Pharm. Ther., vol. 35 (7), pp.
5,9		Gage et al.	287–295, 1997.
6,3	10,248 B2 10/2001	Andersson et al.	Lipinski, et al., "Experimental and computational
6,3	13,132 B1 11/2001	Johansson et al 514/277	approaches to estimate solubility and permeability in drug
6,5		Orup Jacobsen et al.	discovery and development settings" Elsevier Advanced
	**	Andersson et al.	Drug Delivery Reviews vol. 23, pp. 3-25, 1997.
		Nilvebrant et al.	
		Andersson et al.	Netzer, et al., "Screening lead compounds for QT interval
		Meese et al.	prolongation" Drug Discovery Today vol. 6, No. 2, pp.
		Kreilgard et al.	78-84, Jan. 2001.
		Arth et al.	Nilvebrant & Sparf, "Differences between Binding Affinities
	09,214 B2 10/2004		of some Antimuscarinic Drugs in the parotid Gland and
		Donsbach et al. Meese	those in the Urinary Bladder and Ileum" Acta Pharmacol. et
		Richards et al.	toxicol. vol. 53, No. 4, pp. 304-313, Oct. 1983.
	•	Gren et al.	Pharmacology/Toxicology Review from Application No.
		Jacobsen et al.	21–518, Center for Drug Evaluation and Research, pp. 1–3.
		Aldrich et al.	
	·	Richards et al.	(2004).
		Rousselle	Roy, et al., "HERG, a Primary Human Ventricular Target of
		Claus et al.	the Nonsedating Antihistamine Terfenadine" Circulation
		Slatter et al.	vol. 94, No. 4, pp. 817–823, Aug. 15, 1996.
			Abrams et al., "Tolterodine, a new antimuscarinic agent: as
	FOREIGN PATE	NT DOCUMENTS	effective but better tolerated than oxybutynin in patients
		alana.	with an overactive bladder," 1998, Br. J. Urol. 81:801-810.
DE	1 216 318	5/1966	Anderson et al., "Once daily controlled versus immediate
EP	325 571	7/1989	release oxybutynin chloride for urge urinary incontinence,"
EP EP	667 852 821700	8/1995	1999, J. Urol. 161:1809–1812.
EP	831799 872233	6/1996 4/1997	
EP	948321	12/1997	Andersson et al., "Pharmacological treatment of urinary
EP	957073	5/1998	incontinence," in Abrams P., Khoury S., Wein A. (Eds),
EP	1 019 358	7/2000	Incontinence, 2nd International Consultation on Inconti-
EP	1 077 912	2/2001	nence, Plymouth, Plymbridge Distributors Ltd, UK, Ply-
EP	1 128 819	9/2001	mouth, 2002, pp. 479-511.
GB	624 117	5/1949	Andersson, "Antimuscarinics for treatment of overactive
GB	627 139	7/1949	bladder," 2004, Lancet Neurol, 3:46-53.
GB	685 696	1/1953	Andersson & Wein, "Pharmacology of the lower urinary
GB	689 835	4/1953	tract: basis for current and future treatments of urinary
GB	690 274	4/1953	incontinence," 2004, Pharmacol. Rev. 56:581-631.
GB	692 931	6/1953	Appell et al., "Prospective randomized controlled trial of
GB	1025041	2/1964	
GB	1 169 944	11/1969	extended release explutynin chloride and tolterodine tar-
GB	1 169 945	11/1969	trate in the treatment of overactive bladder, results of the
wo wo	WO 89/06644 WO 93/23025	7/1989 11/1993	OBJECT study," 2001, Mayo Clinic Proceedings
WO	WO 94/11337	5/1994	76:358–363.
wo	WO 96/12477	5/1996	Breidenbach et al., "Pharmacodynamic profiling of the novel
wo	WO 98/03067	1/1998	antimuscarinic drug fesoterodine on rat bladder," 2002,
WO	WO 98/43942	10/1998	Proceedings of the International Continence Society,
wo	WO 98/56359	12/1998	32:449.
wo	WO 99/58478	11/1999	Brynne et al., Influence of CYP2D6 polymorphism on the
wo	WO 00/12069	3/2000	pharmacokinetics and pharmacodynamics of tolterodine,
WO	WO 00/27364	5/2000	1998, Clin. Pharmacol Thera. 63:529-539.
WO	WO 01/34139	5/2001	Brynne et al., "Tolterodine does not Affect the human in vivo
WO	WO 02/11702	2/2002	metabolism of the probe drugs caffeine, debrisoquine, and
WO	WO 02/089773	11/2002	omeprazole," 1999, Br. J. Clin. Pharmacol. 47:145-150.
WO	WO 03/002059	1/2003	
WO	WO 03/007918	1/2003	Brynne et al., "Fluoxetine inhibits the metabolism of toltero-
WO WO	WO 03/020241	3/2003 3/2003	dine -pharmacokinetic implications and proposed clinical
wo wo	WO 03/021271 WO 03/026564	4/2003.	relevance," 1999, Br. J. Clin. Pharmacol. 48:553-563.
wo	WO 03/035599	5/2003	Brynne et al., "Ketoconazole inhibits the metabolism of
wo	WO 03/039464	5/2003	tolterodine in subjects with deficient CYP2D6 activity,"
wo	WO 03/063834	8/2003	1999, Br. J. Clin. Pharmacol. 48:564-572.
		•	•

Cawello et al., "Multiple dose pharmacokinetics of fesoterodine in human subjects," 2002, Nauyn-Schmiedeberg's Arch. Pharmacol. 365 (Suppl. 1):428, 2002.

Chancellor et al., "A comparsion of the effects on saliva output of oxybutynin chloride and tolterodine tartrate," 2001, Clinical Therapeutics 23:753-760.

Chapple & Udo, "Delay to maximum effect in overactive bladder patients treated with oxybutynin tolterodine tartrate with oxybutynin or tolterodine," 2000, European Urology 37(Suppl. 2):84, abstract 335 from the XVth Congress of the European Association of Urology, Brussels, Belgium, Apr. 12–15, 2000.

Chapple et al., "Fesoterdine a new effective and well-tolerated antimuscarinic for the treatment of urgency-frequency syndrome: results of a Phase II controlled study," 2004, Proceedings of the International Continence Society, 34:142.

Clemett & Jarvis, "Tolterodine: a review of its use in the treatment of overactive bladder," 2001, Drugs & Aging 18:277-304.

Cole, "Fesoterodine, an advanced antimuscarinic for the treatment of overactive bladder: A safety update," 2004, Drugs of the Future 29:715-720.

Detrol® package insert, Pharmacia & Upjohn Co., Apr. 2004.

Diokno et al., "Tolterodine (Detrol®) improves incontinence and nocturia in urological based study," Apr. 1999, J. Urol. 161 (4 Suppl.):256, abstract 987.

Ekstrom et al., "Effects of tolterodine on bladder function in healthy volunteers," Journal of Urology 153(Suppl.):394A, abstract 662 from the 19th Annual Meeting of the American Urological Association, Las Vegas, Apr. 23-28, 1995.

Gillberg et al., "Tolterodine, a new agent with tissue effect selectivity for urinary bladder," 1994, Neurourology and Urodynamics 13:435–436, abstract 60B from International Continence Society 24th Annual Meeting, Prague, Czech Republic, Aug. 1994.

Gillberg et al., "Comparsion of the in vitro and in vivo profiles of tolterodine with those of subtype-selective muscarinic receptor antagonists," 1998, European Journal of Pharmacology 349:285-292.

Hills et al., "Tolterodine," 1998, Drugs 55:813-820.

Jonas et al., "Efficacy and safety of two doses of tolterodine versus placebo in patients with detrusor overactivity and symptoms of frequency, urge incontinence, and urgency: urodynamic evaluation," 1997, World J. Urol. 15:144–151.

Kershen & Hsieh, "Preview of new drugs for overactive bladder and incontinence: darifenacin, solifenacin, trospium, and duloxetine," Curr. Urol. Rep. 5:359–367.

Klosa, "Eine Neue Synthese von Diphenylisopropylaminen," 1966, Journal für Praktische Chemie 4:335–340 (in German, with English translation).

Larsson et al., "Tolterodine in the treatment of overactive bladder: analysis of the pooled phase II safety and efficacy data," 1999, Urology 53: 990–998.

Millard et al., "Clinical efficacy and safety of tolterodine compared to placebo in detrusor overactivity," 1999, J. Urol. 161:1551-1555.

Modiri et al., "Effect of muscarinic antagonists on micturition pressure measured by cystometry in normal, conscious rats," 2002, Urology 59:963-968.

Naerger et al., "Effect of tolterodine on electrically induced contractions of isolated human detrusor muscle from stable and unstable bladders," 1995, Neurourology and Urodynamics 14:524–526, abstract 76 from International Continence Society 25th Annual Meeting, Sydney, Australia, Oct. 1995. Nilsson et al., "Comparison of a 10 mg controlled release oxybutynin tablet with a 5 mg oxybutynin tablet in urge incontinence patients," 1997, Neurourol, Urodyn. 16:533–542.

Nilvebrant & Sparf, "Receptor binding profiles of some selective muscarinic antagonists," 1988, European Journal of Pharmacology 151:83–96.

Nilvebrant et al., "The in vitro pharmacological profile of tolterodine -a new agent for the treatment of urinary urge incontinence," 1994, Neurourology and Urodynamics 13:433-435, abstract 60A from International Continence Society 24th Annual Meeting, Prague, Czech Republic, Aug. 1994.

Nilvebrant et al., "Tolterodine is not subtype (m1-m5) selective but exhibits functional bladder selectivity in vivo," 1996, Neurourology and Urodynamics 15:310-311, abstract 34 from the 26th Annual Meeting of the International Continence Society, Athens, Greece, Aug. 27-30, 1996.

Nilvebrant, "Tolterodine and terodiline -different pharmacological profiles," pp. 141-142, abstract 181a, from the 27th Annual meeting of the International Continence Society, Yokohama, Japan, Sep. 1997.

Nilvebrant et al "Tissue distribution of tolterodine and its metabolites: low penetration into the central nervous system," 2000, European Urology 37(Suppl. 2):84, abstract 333 from the XVth Congress of the European Association of Urology, Brussels, Belgium, Apr. 12–15, 2000.

Nilvebrant, "The mechanism of action of tolterodine," 2000, Reviews in Contemporary Pharmacotherapy 11:13–27.

Olsson et al., "Food increases the bioavailability of tolterodine but not effective exposure," 2001, J. Clin. Pharmacol. 41:298-304.

Olsson & Szamosi, "Food does not influence the pharmacokinetics of a new extended release formulation of tolterodine for once daily treatment of patients with overactive bladder," 2001, Clinical Pharmacokinetics 40:135-143.

Olsson & Szamosi, "Multiple dose pharmacokinetics of a new once daily extended release formulation versus immediate release tolterodine," 2001, Clinical Pharmacokinetics 40:227–235.

Rentzhog et al., "Efficacy and safety of tolterodine in patients with detrusor instability: a dose ranging study," 1998, Br. J. Urol. 81:42-48.

Sachse et al., "Pharmacodynamics of multiple dose treatment with the novel antimuscarinic drug fesoterodine," 2002, Nauyn-Schmiedeberg's Arch. Pharmacol. 365 (Suppl. 1):413.

Sachse et al., "Safety and pharmacokinetics of the novel bladder-selective antimuscarinic drug fesoterodine in populations of different age or gender," 2002, Proceedings of the International Continence Society, 32:441.

Sachse et al., "Safety and pharmacokinetics of the novel bladder-selective antimuscarinic fesoterodine in populations of different ethnic origin," 2003, Proceedings of the International Continence Society, 33:377.

Sachse et al., "Dose-proportional pharmacokinetics of the new antimusscarinic fesoterodine," 2003, Nauyn-Schmiedeberg's Arch. Pharmacol. 367 (Suppl. 1):446.

Sachse et al., "Pharmacodynamics and pharmacokinetics of ascending multiple oral doses of the novel, bladder-selective antimuscarinic fesoterodine," 2003, Eur. Urol. Suppl 2:111.

Sachse et al., "Concomitant food intake does not significantly influence the pharmacokinetics of the novel, bladderselective antimuscarinic fesoterodine," 2004, Proceedings of the International Continence Society, 34:580.

Sachse et al., "Safety, tolerability and pharmacokinetics of fesoterodine in patients with hepatic impairment," 2004, Proceedings of the International Continence Society, 34:585.

Sachse et al., "Safety, tolerability and pharmacokinetics of fesoterodine after co-treatment with the potent cytochrome P450 3A4 inhibitor ketoconazole," 2004, Proceedings of the International Continence Society, 34:586.

Sachse et al., "Clinical pharmacological aspects of the novel bladder-selective antimuscarinic fesoterodine," 2004, Progrès en Urologie, 14 (Suppl. 3):58.

Stahl et al., "Urodynamic and other effects of tolterodine: a novel antimuscarinic drug for the treatment of detrusor overactivity," 1995, Neurourol, Urodyn. 14:647-55.
Teuvo et al "Extended release tolterodine compared with

Teuvo et al "Extended release tolterodine compared with immediate release tolterodine for the treatment of overactive bladder," 2000, European Urology 37(Suppl. 2):84, abstract 334 from the XVth Congress of the European Association of Urology, Brussels, Belgium, Apr. 12–15, 2000.

Van Kerrebroeck et al., "Tolterodine once daily: superior efficacy and tolerability in the treatment of the overactive bladder," 2001, Urology 57:414-421.

Van Kerrebroeck et al., "Clinical efficacy and safety of tolterodine compared to oxybutynin in patients with overactive bladder," 1997, Neurourol. Urodyn. 16:478–479, abstract No. 91 from the 27th Annual meeting of the International Continence Society, Yokohama, Japan, Sep. 1997

Versi et al., "Dry mouth with conventional and controlled release oxybutynin in urinary incontinence," 2000, Obstet. Gynecol. 95:718-721.

Wefer et al., "Tolterodine: an overview," 2001, World Journal of Urology 19:312-318.

Abstracts from the 26th Annual Meeting of the International Incontinence Society, Aug. 27-30, 1996, Gillberg et al., abstract 33, Neurology and Urodynamics 15:308-309.

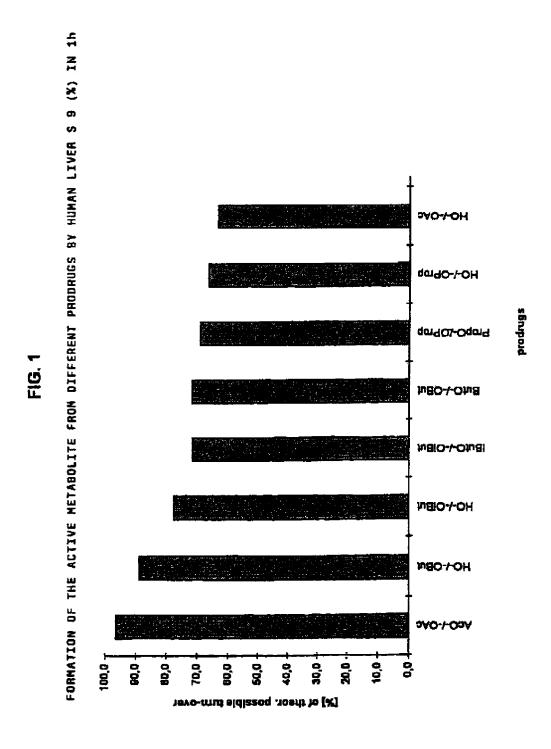
Andersson & Hedlund, "Pharmacological perspective on the physiology of the lower urinary tract," 2002, Urology 60(Suppl. 5A):13-20.

Committee for Proprietary Medicinal Products, "The assessment of the potential for QT Interval prolongation by non-cardiovascular medicinal products," CPMP/986/96, Dec. 17, 1997.

Gardner & Altman, "Confidence intervals rather than P values: estimation rather than hypothesis testing," 1986, Br. Med. J. 292:746-750.

Kang et al., "Cardiac ion channel effects of Tolterodine," J. Pharmacol. Exper. Thera. 308:935-940.

Klosa, "Eine Neue Synthesemethode der Darstellung von Diarylalkylaminen," 1966, Journal Praktische Chemie 4:312–334 (in German) with English translation.


Lipinsky et al., "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings," 1997, adv. Drug Deliv. Rev. 23:3–25.

Netzer et al., "Screening lead compounds for QT interval prolongation," 2001, Drug Discovery Today 6:78-84.

Nilvebrant et al., "Differences between binding affinities of some antimuscarinic drugs in the parotid gland an those in the urinary bladder and ileum," 1983, Acta Pharmacol. et Toxicol. 53:304–313.

Pharmacology/Toxicology Review from Application No. 21-518, Center for Drug Evaluation and Research, pp. 1-3 (2004).

Roy et al., "HERG, a primary human ventricular target of the nonsedating antihistamine terfenadine," 1996, 94:817-823.

BACKGROUND OF THE INVENTION

The present invention relates to novel derivatives of 3,3-diphenylpropylamines, methods for their preparation, pharmaceutical compositions containing the novel compounds, and the use of the compounds for preparing drugs.

In man, normal urinary bladder contractions are mediated mainly through cholinergic muscarinic receptor stimulation. There is reason to believe that muscarinic receptors mediate not only normal bladder contractions, but also the main part of the contractions in the overactive bladder resulting in symptoms such as urinary frequency, urgency and urge incontinence. For this reason, antimuscarinic drugs have been proposed for the treatment of bladder overactivity.

Among the antimuscarinic drugs available on the market, oxybutynin is currently regarded as the gold standard for pharmacological treatment of urge incontinence and other symptoms related to bladder overactivity. The effectiveness of oxybutynin has been demonstrated in several clinical studies, but the clinical usefulness of oxybutynin is limited due to antimuscarinic side effects. Dryness of the mouth is the most common experienced side effect which may be severe enough to result in poor compliance or discontinuation of treatment (Andersson, K.-E., 1988, Current concepts in the treatment of disorders of micturition, Drugs 35, 477–494; Kelleher et al. 1994).

Tolterodine is a new, potent and competitive, muscarinic receptor antagonist intended for the treatment of urinary urge incontinence and detrusor hyperactivity. Preclinical pharmacological data show that tolterodine exhibits a favourable tissue selectivity in vivo for the urinary bladder over the effect on the salivation (Nilvebrant et al., 1997, Tolterodine—a new bladder-selective antimuscarinic agent, Eur. J. Pharmacol. 327 (1997), 195–207), whereas oxybutynin exhibits the reversed selectivity. Tolterodine is equipotent to oxybutynin at urinary bladder muscarinic receptors and the favourable tissue selectivity of tolterodine demonstrated in the preclinical studies has been confirmed in clinical studies. Thus a good clinical efficacy has been combined with a very low number of incidences of dry mouth and antimuscarinic side effects.

A major metabolite of tolterodine, the 5-hydroxymethyl 50 derivative is also a potent muscarinic receptor antagonist and the pharmacological in vitro and in vivo profiles of this metabolite are almost identical to those of tolterodine (Nilvebrant et al., 1997, Eur. J. Pharmacol. 327 (1997), 195–207). Combined pharmacological and pharmacokinetic data indicate that it is most likely that the metabolite gives a major contribution to the clinical effect in most patients.

WO 94/11337 proposes the active metabolite of tolterodine as a new drug for urge incontinence, Administration of the active metabolite directly to patients has the advantage 60 compared to tolterodine that only one active principle (compound) has to be handled by the patient which normally should result in a lower variation in efficacy and side effects between patients and lower risk of interaction with other drugs.

However, the introduction of an additional hydroxy group in the tolterodine results in an increased hydrophilic prop2

erty of the new compounds (3,3-diphenylpropylamines) compared to the parent compounds which normally results in a lower absorption/bioavailability, leading to pre-systemic side effects or interactions due to non-absorbed antimuscarinic drug. In a method to circumvent this disadvantage, different prodrugs of the metabolite have been synthesized and tested for their antimuscarinic activity, potential absorption through biological membranes and enzymatic cleavage.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide novel derivatives of 3,3-diphenylpropylamines. It is a further object of the present invention to provide new derivatives of 3,3-diphenylpropylamines which will be more useful as prodrugs for treatment of urinary incontinence and other spasmogenic conditions that are caused by muscarinic mechanisms while avoiding the disadvantage of a too low absorption through biological membranes of the drugs or an unfavourable metabolism.

A further object of the invention is to provide novel prodrugs of antimuscarinic agents with superior pharmaco-kinetic properties compared to present drugs as oxybutynin and tolterodine, methods for preparing thereof, pharmaceutical compositions containing them, a method of using said compounds and compositions for the treatment of urinary incontinence, gastrointestinal hyperactivity (irritable bowel syndrome) and other smooth muscle contractile conditions.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 shows the formation of the active metabolite from different prodrugs by human liver S 9(%) in 1 hour.

DETAILED DESCRIPTION OF THE INVENTION

According to the present invention, novel 3,3diphenylpropylamines are provided, which are represented by the general formulae I and VII

X represents a tertiary amino group of formula la

Formula VII

wherein R and R' are independently selected from

- unsubstituted benzyl, allyl or carbohydrate; or
- b) formyl, C1-C6 alkylcarbonyl, cycloalkylcarbonyl, substituted or unsubstituted arylcarbonyl, preferably benzoyl;
- c) C1-C6 alkoxycarbonyl, substituted or unsubstituted 35 aryloxycarbonyl, benzoylacyl, benzoylglycyl, a substituted or unsubstituted amino acid residue; or

wherein R4 and R5 independently represent hydrogen, C1-C6 alkyl, substituted or unsubstituted aryl, preferably substituted or unsubstituted phenyl, benzyl or phenoxyalkyl wherein the alkyl residue has I to 4 carbon atoms and wherein R4 and R5 may form a ring together with the amine nitrogen; or

wherein R⁶ and R⁷ independently represent C₁-C₆ alkyl, substituted or unsubstituted aryl, preferably substituted or 60 unsubstituted phenyl, benzyl or phenoxyalkyl wherein the alkyl residue has 1 to 6 carbon atoms; or

f) an ester moiety of inorganic acids,

g) -SiR_aR_bR_c, wherein R_a, R_b, R_c are independently selected from C₁-C₄ alkyl or aryl, preferably phenyl, with the proviso that R' is not hydrogen, methyl or benzyl if R is hydrogen,

Fonnula Ia

wherein R8 and R9 represent non-aromatic hydrocarbyl groups, which may be the same or different and which together contain at least three carbon atoms, and wherein R⁸ and R⁹ may form a ring together with the amine

15 Y and Z independently represent a single bond between the (CH2), group and the carbonyl group, O, S or NH,

A represents hydrogen (1H) or deuterium (2H),

 $_{20}$ and

their salts with physiologically acceptable acids, their free bases and, when the compounds can be in the form of optical isomers, the racemic mixture and the individual enantiomers.

The aforementioned compounds can form salts with physiologically acceptable organic and inorganic acids. Furthermore, the aforementioned compounds comprise the free bases as well as the salts thereof. Examples of such acid a) hydrogen, C_1 - C_6 alkyl, C_3 - C_{10} cycloalkyl, substituted or 30 addition salts include the hydrochloride, hydrobromide and the like.

> When the novel compounds are in the form of optical isomers, the invention comprises the racemic mixture as well as the individual isomers as such.

Preferably each of R8 and R9 independently signifies a saturated hydrocarbyl group, especially saturated aliphatic hydrocarbyl groups such as C_{1-8} -alkyl, especially C_{1-6} -alkyl, or adamantyl, R8 and R9 together comprising at least three, 40 preferably at least four carbon atoms.

According to another embodiment of the invention, at least one of R8 and R9 comprises a branched carbon chain.

Presently preferred tertiary amino groups X in formula I include the following groups a) to h):

-continued

Group a) is particularly preferred.

The aforementioned tertiary amino groups X are described in WO 94/11337 and the compounds according to the present invention can be obtained by using the corresponding starting compounds.

In the compounds according to the present invention, the term "alkyl" preferably represents a straight-chain or branched-chain hydrocarbon group having 1 to 6 carbon 30 atoms. Such hydrocarbon groups may be selected from methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl and hexyl. The term "cycloalkyl" denotes a cyclic hydrocarbon group having 3 to 10 carbon atoms which may be substituted conveniently.

The term "substituted or unsubstituted benzyl" denotes a benyl group -CH2-C6H5 which is optionally substituted by one or more substituents on the phenyl ring. Suitable substituents are selected from alkyl, alkoxy, halogen, nitro and the like. Suitable halogen atoms are fluorine, chlorine and iodine atoms. Preferred substituted benzyl groups are 4-methylbenzyl, 2-methylbenzyl, 4-methoxybenzyl, 2-methoxybenzyl, 4-nitrobenzyl, 2-nitrobenzyl, 4-chlorobenzyl and 2-chlorobenzyl.

In the compounds according to the present invention the term " C_1 - C_6 alkylcarbonyl" denotes a group R-C(=0)wherein R is an alkyl group as defined hereinbefore. Preferred C1-C6 alkylcarbonyl groups are selected from acetyl, propionyl, isobutyryl, butyryl, valeroyl and pivaloyl. The term "cycloalkylcarbonyl" denotes a group R-C(=O)wherein R is a cyclic hydrocarbon group as defined hereinbefore. The same counts to the selected carbonyl groups.

The term "aryl" denotes an aromatic hydrocarbon group such as phenyl-(C₆H₅--), naphthyl-(C₁₀H₇--), anthryl-(C14H9-), etc. Preferred aryl groups according to the present invention are phenyl and naphthyl with phenyl being 55 particularly preferred.

The term "benzoyl" denotes an acyl group of the formula —CO—C_oH₅ wherein the phenyl ring may have one or more substituents.

Preferred substituents of the aryl group and in particular of the phenyl group are selected from alkyl, alkoxy, halogen 60 and nitro. As substituted benzoyl groups 4-methylbenzoyl, 2-methylbenzoyl, 4-methoxybenzoyl, 2-methoxybenzoyl, 4-chlorobenzoyl, 2-chlorobenzoyl, 4-nitrobenzoyl and 2-nitrobenzoyl may be mentioned.

The term "C1 C6 alkoxycarbonyl" refers to a group 65 ROC(=0)— wherein R is an alkyl group as defined hereinbefore. Preferred C1-C6 alkoxycarbonyl groups are

selected from CH₃OC(=O)-, C₂H₅-OC(=O)-, C₃H₂OC(=O)— and (CH₃)₃COC(=O)— and alicyclic alkyloxycarbonyl.

The term "amino acid residue" denotes the residue of a 5 naturally occurring or synthetic amino acid. Particularly preferred amino acid residues are selected from the group consisting of glycyl, valyl, leucyl, isoleucyl, phenylalanyl, prolyl, seryl, threonyl, methionyl, hydroxyprolyl.

The amino acid residue may be substituted by a suitable 10 group and as substituted amino acid residues, benzoylglycyl and N-acetylglycyl may be mentioned.

The term "carbohydrate" denotes the residue of a polyhydroxy aldehyde or polyhydroxy ketone of the formula $C_nH_{2n}O_n$ or $C_n(H_2O)_n$ and correponding carbohydrate groups are, for example, described in Aspinal, The Polysaccharides, New York: Academic Press 1982, 1983. A preferred carbohydrate group in the compounds according to the present invention is a glucuronosyl group, in particular a 1β-D-glucuronosyl group.

The term "LG" as used herein denotes a leaving group selected from halogenides, carboxylates, imidazolides and the like.

The term "Bn" as used herein denotes a benzyl group. Suitable ester moleties of inorganic acids may be derived from inorganic acids such as sulfuric acid and phosphoric

Preferred compounds according to the present invention

A) Phenolic monoesters represented by the general formulae II and II'

Formula II

Formula II'

wherein R1 represents hydrogen, C1-C6 alkyl or phenyl.

Particularly preferred phenolic monoesters are listed below:

- (±)-formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl ester,
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl ester,
- (±)-propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-n-butyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- R-(+)-isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2,2-dimethylpropionic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-acetamidoacetic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-cyclopentanecarboxylic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-cyclohexanecarboxylic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl ester,
- R-(+)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-4-methylbenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-methylbenzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-acetoxybenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-1-naphthoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-naphthoic acid 2-(3-diisopropylamino-1-
- phenylpropyl)-4-hydroxymethylphenyl ester, (±)-4-chlorobenzoic acid 2-(3-diisopropylamino-1-
- phenylpropyl)-4-hydroxymethylphenyl ester, (±)-4-methoxybenzoic acid 2-(3-diisopropylamino-1-
- phenylpropyl)-4-hydroxymethylphenyl ester,
 (±)-2-methoxybenzoic acid 2-(3-diisopropylamino-1-
- phenylpropyl)-4-hydroxymethylphenyl ester, (±)-4-nitrobenzoic acid 2-(3-diisopropylamino-1-
- (±)-4-nitrobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-2-nitrobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-malonic acid bis-[2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethyl-phenyl]ester,
- (±)-succinic acid bis-[2-(3-dilsopropylamino-1phenylpropyl)-4-hydroxymethyl-phenyl]ester,
- (±)-pentanedioic acid bis-[2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenyl]ester,
- (±)-hexanedioic acid bis-[2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethyl-phenyl]ester.

B) Identical diesters represented by the general formula III

Formula III

wherein R1 is as defined above.

Particularly preferred identical diesters are listed below: (±)-formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-

- formyloxymethylphenyl ester, (±)-acetic acid 4-acetoxy-3-(3-diisopropylamino-1-
- phenylpropyl)-benzyl ester, (±)-propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-
- 4-propionyloxymethylphenyl ester, 25 (±)-n-butyric acid 4-n-butyryloxymethyl-2-(3
 - disopropylamino-1-phenylpropyl)-phenyl ester,
 - (±)-isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-isobutyryloxymethylphenyl ester,
 - (±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1phenylpropyl)-4-(2,2-dimethyl-propionyloxy)-benzyl ester.
 - (±)-benzoic acid 4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
 - R-(+)-benzoic acid 4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,
 - (±)-pent-4-enoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl ester, cyclic oct-4-ene-1,8-dioate of Intermediate B, cyclic octane-1,8-dioate of Intermediate B,
 - poly-co-DL-lactides of Intermediate B.
 - C) Mixed diesters represented by the general formula IV

Formula IV

wherein R1 is as defined above

and

55

 R^2 represents hydrogen, C_1 - C_6 alkyl or phenyl 60 with the provise that R^1 and R^2 are not identical.

- Particularly preferred mixed diesters are listed below:
- (±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4formyloxymethylphenyl ester,
- (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4formyloxymethylphenyl ester,
- (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyi)-4acetoxymethylphenyl ester,

R-(+)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-acetoxymethylphenyl ester,

(±)-isobutyric acid 4-acetoxymethyl-2-(3diisopropylamino-1-phenylpropyl)-phenyl ester,

R-(+)-isobutyric acid 4-acetoxymethyl-2-(3-d- 5 isopropylamino-1-phenylpropyl)-phenyl ester,

(±)-2,2-dimethylpropionic acid 4-acetoxy-3-(3diisopropylamino-1-phenylpropyl)-benzyl ester,

(±)-2,2-dimethylpropionic acid 4-acetoxymethyl-2-(3diisopropylamino-1-phenylpropyl)-phenyl ester,

(±)-benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1phenylpropyl)-benzyl ester.

D) Benzylic monoesters represented by the general formula

Formula V

wherein R1 is as defined above.

Particularly preferred benzylic monoesters are listed

(±)-formic acid 3-(3-diisopropylamino-1-phenylpropyl)-4hydroxybenzyl ester,

(±)-acetic acid 3-(3-diisopropylamino-1-phenylpropyl)-4hydroxybenzyl ester,

(±)-propionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,

(±)-butyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4hydroxybenzyl ester,

(±)-isobutyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester,

(±)-2,2-dimethylpropionic acid 3-(3-diisopropylamino-1-

phenylpropyl)-4-hydroxybenzyl ester, (±)-benzoic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-

hydroxybenzyl ester. E) Ethers and silyl ethers represented by the general formula

Formula VI

55

wherein at least one of R^{10} and R^{11} is selected from C_1 - C_6 60 alkyl, benzyl or $-\text{SiR}_a R_b R_c$ as defined above and the other one of R^{10} and R^{11} may additionally represent hydrogen, C₁-C₆ alkylcarbonyl or benzoyl.

Particularly preferred ethers and silyl ethers are listed

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4methoxymethylphenol,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4ethoxymethylphenol,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4propoxymethylphenol,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4isopropoxymethylphenol,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4butoxymethylphenol,

(±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4methoxymethylphenyl ester,

(±)-acetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4ethoxymethylphenyl ester,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4trimethylsilanyloxymethylphenol,

(±)-diisopropyl-[3-phenyl-3-(2-trimethylsilanyloxy-5trimethylsilanyloxymethylphenyl)-propyl]-amine,

(±)-[3-(3-diisopropylamino-1-phenylpropyl)-4trimethylsilanyloxyphenyl]-methanol,

20 (±)-diisopropyl-[3-(5-methoxymethyl-2trimethylsilanyloxyphenyl)-3-phenylpropylamine,

(±)-diisopropyl-[3-(5-ethoxymethyl-2trimethylsilanyloxyphenyl)-3-phenylpropylamine,

(±)-[4-(tert.-butyl-dimethylsilanyloxy)-3-(3diisopropylamino-1-phenylpropyl)-phenyl]-methanol,

(±)-acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-3-(3diisopropylamino-1-phenylpropyl)-benzyl ester,

(±)-4-(tert.-butyl-dimethylsilanyloxy)-3-(3diisopropylamino-1-phenylpropyl)-phenol,

(±)-acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-2-(3diisopropylamino-1-phenylpropyl)-phenyl ester,

(±)-{3-[2-(tert.-butyl-dimethylsilanyloxy)-5-(tert.-butyldimethylsilanyloxymethyl)-phenyl]-3-phenylpropyl}diisopropylamine,

(±)-[4-(tert.-butyl-diphenylsilanyloxy)-3-(3diisopropylamino-1-phenylpropyl)-phenyl]-methanol,

(±)-acetic acid 4-(tert.-butyl-diphenylsilanyloxy-methyl)-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester,

40 (±)-4-(tert.-butyl-diphenylsilanyloxymethyl)-2-(3diisopropylamino-1-phenylpropyl)-phenol,

(±)-{3-[2-(tert.-butyl-diphenylsilanyloxy)-5-(tert.-butyldiphenylsilanyloxymethyl)-phenyl]-2-phenylpropyl}diisopropylamine,

45 (±)-acetic acid 4-benzyloxy-3-(3-diisopropylamino-1phenylpropyl)-benzyl ester,

(±)-benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1phenylpropyl)-benzyl ester,

(±)-isobutyric acid 4-benzyloxy-3-(3-diisopropylamino-Iphenylpropyl)-benzyl ester,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4-(1β-Dglucuronosyloxymethyl)-phenol.

F) Carbonates and carbamates represented by the general formulae VII and VIII

Formula VII

35

55

Formula VIII

wherein Y, Z and n are as defined above and wherein R12 and R13 represent a C1-C6 alkoxycarbonyl group or

wherein R4 and R5 are as defined above.

Particularly preferred carbonates and carbamates are listed below:

- (±)-N-ethylcarbamic acid 2-(3-diisopropylamino-1- 40 phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-N,N-dimethylcarbamic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-N,N-diethylcarbamic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-N-phenylcarbamic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester,
- (±)-[2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethyl-phenoxycarbonylamino]acetic acid ethyl ester hydrochloride,
- (±)-N-ethylcarbamic acid 3-(3-diisopropylamino-1phenylpropyl)-4-N-ethylcarbamoyloxybenzyl ester,
- (±)-N,N-dimethylcarbamic acid 3-(3-diisopropylamino-1phenylpropyl)-4-N,N-dimethylcarbamoyloxybenzyl ester,
- (±)-N,N-diethylcarbamic acid 3-(3-diisopropylamino-1phenylpropyl)-4-N,N-diethylcarbamoyloxybenzyl ester,
- (±)-N-phenylcarbamic acid 3-(3-diisopropylamino-1phenylpropyl)-4-N-phenylcarbamoyloxybenzyl ester,
- (±)-{4-[2-(3-diisopropylamino-1-phenylpropyl)-4- 60 hydroxymethylphenoxycarbonylamino]-butyl}-carbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl ester,
- (±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester ethyl ester,
- (±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester phenyl ester,

12

(±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxycarbonyloxymethylphenyl ester ethyl ester,

(±)-carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-phenoxycarbonyloxymethylphenyl ester phenyl ester.

⁵ G) 3,3-Diphenylpropylamines selected from

(i) compounds of the formulae IX and IX'

Formula IX

wherein o and p are the same or different and represent the number of methylene units -(CH2-) and may range from 0 to 6,

- (ii) (±)-Benzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-sulphooxymethyl-phenyl ester
- (iii) Poly-co-DL-lactides of 2-(3-diisopropylaminophenylpropyl)-4-hydroxymethyl-phenol
- (iv) (±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-(1β-D-glucuronosyloxymethyl)-phenol having the formula

their salts with physiologically acceptable acids, their free bases and, when the compounds can be in the form of optical isomers, the racemic mixture and the individual enantiomers.

The present invention, moreover, relates to processes for the preparation of the aforementioned compounds. In particular, according to the present invention, the following processes are provided:

A process for the production of phenolic monoesters represented by the general formula II

as defined above, which comprises treatment of a compound of the formula

with an equivalent of an acylating agent selected from

wherein LG represents a leaving group selected from halogenide, carboxylate and imidazolide and R^1 is as 50 defined above, in an inert solvent in the presence of a condensating agent.

Preferably, the acylating agent is selected from

wherein Hal represents a halogen atom, preferably a chlorine atom, and \mathbb{R}^1 is as defined above.

A process for the production of phenolic monoesters represented by the general formula IF

Formula II

as defined above, which comprises treatment of two equivalents of a compound of the formula

with an acylating agent selected from

$$H_{al}$$
 — C — $(CH_2)_n$ — C — H_{al} or C — $(CH_2)_n$ — C

wherein Hal represents a halogen atom, preferably a chlorine atom.

Hence, in these processes, an Intermediate B having the formula

is treated with an equivalent of an acylating agent (e.g. an acyl halogenite or acyl anhydride) in an inert solvent and in the presence of a condensating agent (e.g. amine) to provide phenolic monoesters of formula II or formula II (wherein n is 0-12), respectively, if polyfunctional acylating agents (e.g. acid halides, preferably acid chlorides of dicarboxylic acids) are used

25

55

The Intermediate B as used in the processes for the production of the 3,3-diphenylpropylamines according to the present invention can be in the form of a racemic mixture or of optically active compounds in accordance with the formulae shown below:

Alternatively, structures of formula II or II may be obtained by regioselective deprotection of a protected ben- 45 zylic hydroxy group (chemically or enzymatically: T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Chemistry", 2nd Ed., J. Wily & Sons, New York 1991).

The identical diesters represented by the general formula

as defined above can be prepared by a process comprises treatment of a compound of the formula

with at least two equivalents of the acylating agent R1-C (=O)-LG as defined above.

Thus, the aforementioned di-acyl compounds are readily 15 accessible if an at least two-molar excess of an acylating agent is used in the above-mentioned conversion of Intermediate B or, more general, on treatment of compounds of formula I with acylating agents in the presence of suitable catalysts. In the above process, the following Intermediate A

wherein R' denotes a benzyl group can be used instead of Intermediate B. The Intermediate A can be used in the form of a racemic mixture or of optically active compounds (similar to Intermediate B).

Benzylic monoestes represented by the general formula V

wherein R1 is as defined above can be prepared by a process which comprises treatment of a compound of the formula

at room temperature and under anhydrous conditions with activated esters in the presence of enzymes selected from lipases or esterases.

Hence, this process relates to the preparation of phenols 65 with para acyloxymethyl substituents (cf. formula V). These compounds can be prepared in several chemical steps from intermediates such as formula I, where R represents hydrogen and R' is hydrogen or, any suitable protective group which can be removed by known methods (T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Chemistry", 2nd Ed., J. Wily & Sons, New York 1991) in the presence of the newly introduced substituent R¹CO. It was found, however, that the benzylic substituent R¹CO can be introduced more conveniently and in only one step if Intermediate B is treated at room temperature and under anhydrous conditions with activated esters (e.g. vinyl acylates, isopropenyl acylates) in 10 the presence of enzymes such as lipases or esterases.

The mixed diesters represented by the general formula IV

25

40

50

Formula II

$$\mathbb{R}^{1}$$
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{1}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

wherein R¹ and R² are as defined above can be prepared by a process which comprises acylation of the above-mentioned ³⁰ benzylic monoester represented by the general formula V

wherein $R^{\, 1}$ is as defined above or of a phenolic monoester represented by the general formula Π

as defined hereinbefore.

In general, mixed diesters of formula IV can be obtained by acylation of compounds of the general formula I wherein R and R' are different substituents selected from the group 65 consisting of hydrogen, acyl residues or protecting groups that are cleavable under the acylation reaction conditions. Ethers represented by the general formula VI

as defined hereinbefore wherein R¹¹ is hydrogen can be prepared by a process which comprises reacting a compound of the formula

with an alcohol R¹⁰—OH in the presence of an esterification catalyst.

A further process for the preparation of ethers represented by the general formula VI

wherein R¹⁰ and R¹¹ are as defined hereinbefore, comprises 55 acid or base treatment of free benzylic alcohols selected from

15

20

35

45

50

55

-continued

wherein R^{10} is hydrogen and R^{11} is as defined above or

wherein $\rm R^{12}$ is hydrogen and $\rm R^{13}$ represents a $\rm C_1\text{--}C_6$ alkoxy-carbonyl group or

wherein R4 and R5 are as defined above

or of benzylic acylates selected from

$$\mathbb{R}^{2}$$
 \mathbb{R}^{2}
 \mathbb{R}^{2}
 \mathbb{R}^{2}

40 wherein R¹ and R² are as defined hereinbefore in the presence of suitable hydroxy reagents.

Finally, ethers of formula VI can be prepared by a process which comprises treating a compound of the formula

wherein R¹⁰ is as defined above with an alkylating agent selected from alkyl halogenides, alkyl sulphates and alkyl triflates, said alkyl group having 1 to 6 carbon atoms.

In summary, regioselective modification of the benzylic hydroxy groups is achieved either by acid or base treatment of benzylic acylates in the presence of suitable hydroxy reagents (e.g. alcohols) or by catalytic ether formation as described in the literature for other benzylic substrates (J. M. Saa, A. Llobera, A. Garcia-Raso, A. Costa, P. M. Deya; J. Org. Chem. 53: 4263-4273 [1988]). Both free benzylic

45

50

alcohols such as Intermediates A and B or compounds of formulas II or VI (in which R^{10} is hydrogen) or formula VII (in which R^{12} is hydrogen) as well as benzylic acylates such as formulae III, IV, V may serve as starting materials for the preparation of benzylic ethers (B. Loubinoux, J. Miazimbakana, P. Gerardin; Tetrahedron Lett. 30: 1939 1942 [1989]).

Likewise the phenolic hydroxy groups are readily transformed into phenyl ethers (R¹¹-alkyl) using alkylating agents such as e.g. alkyl halogenides, alkyl sulphates, alkyl triflates or employing Mitsunobu type reaction conditions (Synthesis 1981, 1-28). Similarly, both phenolic and alcoholic monosilyl ethers are obtained by regioselective silylation or by desilylation of bis-silyl ethers of Intermediate 3 as described for other compounds in the literature (J. Paladino, C. Guyard, C. Thurieau, J.-L. Fauchere, Helv. Chim. Acta 76: 2465-2472 [1993]); Y. Kawazoe, M. Nomura, Y. Kondo, K. Kohda, Tetrahedron Lett. 26: 20 4307-4310 [1987]).

Carbonates and carbamates represented by the general formulae VII and VIII

as defined hereinbefore can be prepared by a process which 65 comprises reacting a compound selected from the group consisting of

55 wherein R¹ is defined as above, n is 0 to 12, Bn is benzyl, R¹O or R¹¹ is hydrogen with activated carbonyl compounds or carbonyl precursor reagents selected from haloformates, ketenes, activated esters, mixed anhydrides of organic or inorganic acids, isocyanates and isothiocyanates.

The coupling reactions can be carried out in inert solvents over periods of several hours at temperatures from -10° C. to the refluxing temperature of the solvent or reagent used to provide compounds of the general formula VII where R¹² represents hydrogen, alkyl, aliphatic or aromatic acyl, or carbamoyl, and R¹³ represents —C(—O)—Y—R³, wherein Y and R³ represent O, S, NH and alkyl or aryl, respectively. Polyfunctional reagents give the corresponding derivatives.

For example, diisocyanates or di-carbonylchlorides provide compounds of formula VIII where X, Y have the meaning of O, S, or NH and n is zero to twelve.

The invention, moreover, relates to pharmaceutical compositions comprising one or more of the aforementioned 3,3-diphenylpropylamines. In other words, the compounds according to the present invention can be used as pharmaceutically active substances, especially as antimuscarinic agents.

They can be used for preparing pharmaceutical formulations containing at least one of said compounds.

The compounds according to the present invention in the form of free bases or salts with physiologically acceptable acids, can be brought into suitable galenic forms, such as compositions for oral use, for injection, for nasal spray administration or the like, in accordance with accepted pharmaceutical procedures. Such pharmaceutical compositions according to the invention comprise an effective amount of the compounds of claims 1 to 15 in association with compatible pharmaceutically acceptable carrier materials, or diluents, as is well known in the art. The carriers may be any inert material, organic or inorganic, suitable for enteral, percutaneous or parenteral administration, such as water, gelatine, gum arabicum, lactose, microcrystalline cellulose starch, sodium starch glycolate, calcium hydrogen phosphate, magnesium stearate, talcum, colloidal silicon dioxide, and the like. Such compositions may also contain other pharmaceutically active agents, and conventional additives, such as stabilizers, wetting agents, emulsifiers, flavouring agents, 30 buffers, and the like.

The composition according to the invention can e.g. be made up in solid or liquid form for oral administration, such as tablets, capsules, powders, syrups, elixirs and the like, in the form of sterile solutions, suspensions or emulsions for parenteral administration, and the like.

The compounds according to the invention may be used in a patch formulation. The compounds can be administered transdermally with a reduced incidence of side effects and improved individual compliance.

The compounds and compositions can, as mentioned above, be used for the treatment of urinary incontinence and other spasmogenic conditions that are caused by muscarinic mechanisms. The dosage of the specific compound will vary depending on its potency, the mode of administration, the age and weight of the patient and the severity of the condition to be treated. The daily dosage may, for example, range from about 0.01 mg to about 5 mg, adminstered singly or multiply in doses e.g. from about 0.05 mg to about 50 g

The invention will be further illustrated by the following non-limiting examples and pharmacological tests.

I. EXPERIMENTAL

1. General

All compounds were fully characterized by ¹H and ¹³C NMR spectroscopy (Bruker DPX 200). The chemical shifts reported for ¹³C NMR spectra (50 MHz, ppm values given) refer to the solvents CDCl₃ (77.10 ppm), dideuterio dichlohexadeuterio dimethylsulphoxide (DMSO-d₆, 39.70 ppm), respectively. 1H NMR data (200 MHz, ppm) refer to internal tetramethylsilane).

Thin-layer chromatography (tlc, R_f values reported) was conducted on precoated 5×10 cm E. Merck silica gel plates 65 (60F254), spots were visualized by fluorescence quenching or spaying with alkaline potassium permanganate solution.

Solvent systems: (1), ethyl acetate/n-hexane (30/70, v/v-%); (2), toluene/acetone/methanol/acetic acid (70/5/20/5, v/v-%); (3), n-hexane/acetone/diethylamine (70/20/10, v/v-%); (4), n-hexane/acetone/triethylamine (70/20/10, v/v-%); (5), ethyl acetate/n-hexane/2-propanol/triethylamine (60/40/ 20/1, v/v-%); (6), ethyl acetate/triethylamine (90/10, v/v-%); (7), cyclohexane/acetone/acetic acid (80/20/0.5, v/v-%).

Optical rotations were measured at 589.3 nm and room temperature on a Perkin Elmer Polarimeter Type 241.

Melting points (mp) reported are uncorrected and were determined on a Mettler FP 1 instrument.

IR spectra were taken from a Perkin-Elmer FTIR spectrometer Series 1610, resolution 4 cm⁻¹.

Gas chromatography-mass spectrometry (GC-MS): spectra (m/z values and relative abundance (%) reported) were recorded on a Finnigan TSQ 700 triple mass spectrometer in the positive (P-CI) or negative (N-CI) chemical ionization mode using methane or ammonia as reactant gas. Hydroxylic compounds were analyzed as their trimethylsilyl ether derivatives.

Combined liquid chromatography-mass spectrometry (LC-MS): Waters Integrety System, Thermabeam Mass Detector (EI, 70 eV), m/z values and relative abundance

2. Synthesis of Intermediates A and B

3-Phenylacrylic acid 4-bromophenyl ester

An ice-cooled solution of 4-bromophenol (69.2 g) and cinnamoyl chloride (66.8 g) in dichloromethane (150 ml) was treated with triethylamine (40.6 g). After stirring for 18 hrs at room temperature the mixture was washed with water (250 ml), 1 M aqueous HCl, and dried over anhydrous sodium sulphate. Evaporation in vacuum left solid 3-phenylacrylic acid 4-bromophenyl ester (121.0 g, 99.8% yield), m.p. 113.3° C., tlc: (1) 0.83. NMR(CDCl₃): 116.85, 118.87, 123.49, 128.38, 129.06, 130.90, 132.49, 134.02, 147.07, 149.84, 165.06.

40 (±)-6-Bromo-4-phenylchroman-2-one

A portion of the ester (60.0 g) was dissolved in a mixture of acetic acid (60 ml) and concentrated sulphuric acid (18 ml) and refluxed for 2 hrs. After cooling, the reaction mixture was poured into ice water and the product was isolated by extraction with ethylacetate. Evaporation of the solvent and recrystallization of the residue from boiling ethanol (150 ml) yielded 26.3 g (43.8% yield) of pure, crystalline (±)-6-bromo-4-phenylchroman-2-one, m.p. 117.8° C., tlc: (1) 0.67. NMR (CDCl₃): 36.56, 40.51, 117.29, 118.87, 127.47, 127.89, 128.33, 129.32, 131.07, 131.79, 139.42, 150.76, 166.84.

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid methyl ester

A suspension consisting of (±)-6-bromo-4phenylchroman-2-one (85.0 g), anhydrous potassium carbonate (46.7 g), sodium iodide (20.5 g) and benzyl chloride (40.6 g) in methanol (350 ml) and acetone (350 ml) was refluxed for 3 hrs. After evaporation of the solvents the residue was extracted with diethyl ether (2x300 ml) and the romethane (CD₂Cl₂, 53.8 ppm), CD₃OD (49.00 ppm) or 60 extract was washed with water (2×200 ml) and aqueous sodium carbonate. Drying (Na2SO4) and rotoevaporation left 121.8 g (102.1% crude yield) of (±)-3-(2-benzyloxy-5bromophenyl)-3-phenylpropionic acid methyl ester as a light yellow oil, tlc: (1) 0.77; NMR (CDCl₃): 39.22, 40.53, 51.63, 70.16, 113.10, 113.77, 126.46, 126.92, 127.88, 128.08, 128.34, 128.45, 130.31, 130.55, 134.41, 136.44, 142.37, 154.94, 172.08.

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid

A solution of (±)-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionic acid methyl ester (0.391 g, 0.92 mmol) in ethanol (5 ml) was treated at 50° C, with excess aqueous sodium hydroxide solution until the milky emulsion became clear. The reaction mixture was then acidified (pH 3). evaporated and extracted with dichloromethane. The organic extract was evaporated and the remaining oil was redissolved in a minimum of boiling ethanol. The precipitation formed after 18 hrs at 4° C. was filtered off and dried in vacuo to yield 0.27 g (71.4%) of (±)-3-(2-Benzyloxy)-5bromophenyl)-3-phenylpropionic acid, colourless crystals, m.p. 124.9° C.; tlc: (1) 0.15 (starting material methyl ester 15 0.75); NMR (CDCl₃): 39.15, 40.26, 70.25, 113.21, 113.90, 126.62, 127.27, 127.98, 128.17, 128.47, 128.54, 130.46, 130.68, 134.34, 136.45, 142.16, 154.95, 177.65. LC-MS: 412/410 (14/11%, M+), 394/392 (15/13%), 321/319 (17/ 22%), 304/302 (17/21%), 259 (24%), 194 (22%), 178 (21%), 167 (65%), 152 (49%), 92 (100%). IR (KBr): 3434, 3030, 1708, 1485, 1452, 1403, 1289, 1243, 1126, 1018, 804, 735, 698, 649. Calculated for C22H19BrO3 (mol-wgt. 411.30): C, 64.25%, H, 4.66%, Br, 19.43%, O, 11.67%; 25 found: C, 63.72%, H, 4.70%, Br, 19.75%, O, 11.80%.

Alternatively, the crude reaction mixture from the above described synthesis of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid methyl ester was evaporated, redissolved in warm ethanol, and treated with excess aqueous potassium hydroxide solution. Acidification to pH 3 (conc. hydrochloric acid) and cooling to 4° C. resulted in the formation of a solid, which was filtered off after 18 hrs, washed repeatedly with water and dried to yield (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid in 82% 35 yield

 a) Resolution of 3-(2-benzyloxy-5-bromophenyl)-3phenylpropionic acid
 R-(-)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic

acid
Warm solutions of (±)-3-(2-benzyloxy-5-bromophenyl)3-phenylpropionic acid (815.6 g, 1.85 mol), and 1S,2R-(+)ephedrine hemihydrate (232.1 g, 1.85 mol) in 2000 ml and
700 ml, respectively, of absolute ethanol were combined and
then allowed to cool to 0° C. The precipitate formed was
collected, washed with cold ethanol and dried in vacuum to
give 553.2 g of the ephedrinium salt of the title compound
(m.p. 153° C., e.e. 65% as determined by NMR and HPLC).
The salt was recrystallized twice from boiling ethanol to
give R-(-)-3-(2-benzyloxy-5-bromophenyl)-3-

phenylpropionic acid 1S,2R-(±)-ephedrinium salt in 75% yield, colourless crystalls, m.p. 158.6° C., e.e. 97.6% (HPLC). NMR (CDCl₃): 9.53, 30.90, 41.54, 42.83, 61.45, 70.15, 70.42, 113.05, 113.68, 125.89, 126.03, 127.33, 127.85, 128.19, 128.28, 128.45, 129.86, 130.70, 135.91, 136.65, 140.40, 144.09, 155.20, 178.94.

1.2 g (2.0 mmol) of the ephedrinium salt were dissolved in a mixture of acetone (5 ml) and ethanol (10 ml). After treatment with water (0.4 ml) and conc. (37%) aqueous hydrochloric acid (0.34 ml), the solution was evaporated in vacuum, and the residue was redissolved in 1M aqueous hydrochloric acid (2 ml) and dichlotomethane (10 ml). The organic phase was separated, washed twice with water (2 ml), and evaporated to dryness to give R-(-)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid as a colourless oil which slowly solidified (0.4 g, 98% yield), m.p. 105.6° C. (from ethyl acetate/n-heptane); tlc: (7) 0.21; [a]_D²⁰=-21.1 (c=1.0, ethanol), e.e. 99.9% (HPLC). NMR: identical with the racemic acid.

S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid

The combined mother liquids from the above resolution and recrystallizations were treated under stirring and cooling (18° C.) with excess conc. aqueous hydrochloric acid. The precipitate (ephedrinium hydrochloride) was filtered off, and the filtrate was evaporated to dryness. The residue was redissolved in dichloromethane (1.5 liter) and then washed with several portions of 1 M aqueous hydrochloric acid followed by water. After drying (Na2SO4), filtration, and evaporation 479 g of crude S-(+)-3-(2-benzyloxy-5bromophenyl)-3-phenylpropionic acid were obtained as a yellow viscous oil. The pure S-(±) enantiomeric acid was converted into the 1R,2S-(-)-ephedrine salt as described above for the R-(-) acid. Two recrystallizations from boiling ethanol provided colourless crystals of S-(+)-3-(2benzyloxy-5-bromophenyl)-3-phenylpropionic acid 1R,2S-(-)-ephedrinium salt in 83% yield, m.p. 158.7° C., c.c. 97.8% (HPLC). NMR (CDCl.): 9.47, 30.85, 41.54, 42.92, 61.48, 70.13, 70.30, 113.04, 113.66, 125.89, 126.01, 127.32, 127.84, 128.18, 128.44, 129.83, 130.68, 135.94, 136.63, 140.44, 144.13, 155.19, 178.94.

45 S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid was obtained in quantitative yield from this ephedrinium salt by the method described above for the R-(-) acid, tlc: (7) 0.20, e.e. (NMR)>99%, mp 105.5° C.; [α]_D²⁰=+ 22.6 (c 1.0, ethanol); NMR: identical with the racemic acid.

b) Enantioselective Synthesis of R-(-)- and S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid

2-Benzyloxy-5-bromobenzaldehyde

To a solution of 0.1 mol of 5-bromo-2-benzaldehyde in THF (150 ml) was added 0.1 mol of K2CO3 and 0.11 mol of 15 benzyl bromide. The mixture was refluxed for 2 hrs and water (500 ml) was added. After addition of ethyl acetate (400 ml) and stirring the organic layer was washed with 5-bromobenzaldehyde was used as such in the next step. 3-(2-Benzyloxy-5-bromophenyl)-acrylic acid

A mixture of 2-benzyloxy-5-bromobenzaldehyde (0.10 mol), malonic acid (15.0 g), and piperidine (2.0 ml) in 150 ml of pyridine was first heated at 90° C. for 90 min and 25 subsequently refluxed for 0.5 hrs. After cooling to room temperature, the reaction was poured on a mixture of ice (1 kg) and concentrated aqueous hydrochloric acid (250 ml). The solid material that precipitated after stirring for 2 hrs. was collected by suction and recrystallized from a minimum 30 of boiling methanol.

3-[3-(2-Benzyloxy-5-bromophenyl)-acryloyl]-(4R)-4phenyloxazolidin-2-one

Pivaloylchloride (7 g) was added dropwise at -30° C. to a stirred solution of 3-(2-benzyloxy-5-bromophenyl)-acrylic 35 acid (50.0 mmol) and triethylamine (15.0 ml) in 200 ml of tetrahydrofuran. After an additional hour the temperature was lowered to -50° C, and (R)-2-phenyloxazolidin-2-one (9.0 g) and lithium chloride (2.5 g) were added in one portion. The cooling bath was then removed and stirring was 40 continued over 18 hrs. The reaction was diluted with water and 3-[3-(2-benzyloxy-5-bromophenyl)-acryloyl]-(4R)-4phenyloxazolidin-2-one was isolated by extraction with ethyl acetate.

3-[3-(2-Benzyloxy-5-bromophenyl)-(3S)-3- 45 B phenylpropionyl]-(4R)-4-phenyloxazolidin-2-one

To a precooled (-30° C.) mixture of copper-(I) chloride (21.0 g) and dimethylsulfide (45 ml) in dry tetraydrofuran (150 ml) was added dropwise an ethereal solution of phenylmagnesiumbromide (0.3 mol). The mixture was stirred 50 20 min at the same temperature and then cooled to -40° C. A solution of 3-[3-(2-Benzyloxy-5-bromophenyl)-acryloyl]-(4R)-4-phenyloxazolidin-2-one (50.0 mmol) in dry tetrahydrofuran (150 ml) was added during 10 min. The cooling bath was removed and stirring was continued for 18 hrs. The 55 mixture was quenched with half-saturated aqueous ammonium chloride solution and the product was isolated by extraction with ethyl acetate.

S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic acid

A solution of the above described 3-[3-(2-benzyloxy-5bromophenyl)-(3S)-3-phenylpropionyl]-(4R)-4phenyloxazolidin-2-one in tetrahydrofuran (300 ml) and water (100 ml) was cooled to 0° C, and then treated with 30% aqueous hydrogen peroxide (20 ml) followed by solid 65 lithium hydroxide (4.3 g). Water was added after 2 hrs and the chiral auxiliary was removed by extraction with ethyl

acetate. The aqueous phase was acidified with aqueous hydrochloric acid (10%) and crude S-(+)-3-(2-benzyloxy-5bromophenyl)-3-phenylpropionic acid was extracted with tert.-butyl-methylether.

HPLC analysis (Chiralpak AD, mobile phase hexane/2-The resulting slightly yellow solid of pure (tlc) 2-benzyloxy
propanol/trifluoro acetic acid [92:8:0.1, vol/vol-%); flow 1.0 ml/min, detection 285 nm) indicated an enantiomeric ratio 93:7 (retention times 14.8 min and 11.5 min, respectively). The e.e. of 86% of the S-(+) enantiomer can be improved to >98.5% by recrystallization of the diastereomeric salts using "nitromix" (Angew. Chem. Int. Ed. Engl. 1998, Vol. 37, p. 2349) or (1R,2S)-(-)-ephedrine hemihydrate as described above. The S-(+)-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionic acid was isolated after acidification of aqueous solutions of the diastereomeric salts. It forms colourless crystals which gave an optical rotation of $[\alpha]_D^{22}$ =+21.6 (c=0.5, MeOH).

R-(-)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionic

Conjugate organocuprate addition of phenylmagnesiumbromide to 3-[3-(2-benzyloxy-5-bromophenyl)-acryloyl]-(4S)-4-phenoyloxazolidin-2-one as described above for the S-(+) enantiomer gave crystalline R-(-)-3-(2-benzyloxy-5bromophenyl)-3-phenylpropionic acid in an e.e. of 99.6% after two recrystallizations, $[\alpha]_D^{22}$ =-21.7 (c=0.5, MeOH).

c) Synthesis of the R- and S-Enantiomers of Intermediate

(i) Phenylpropanol Route

20

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropan-1-ol

A solution of the methyl(±)-propionate (121.0 g) in 350 ml of dry tetrahydrofuran was slowly added under an atmosphere of nitrogen to a suspension of lithium aluminiumhydride (7.9 g) in tetrahydrofuran (350 ml). After stirring at room temperature for 18 hrs, 20% aqueous HCl was added dropwise and the product was isolated by repeated extraction with diethyl ether. The combined extracts were gradually washed with hydrochloric acid, sodium hydroxide solution, distilled water, and then dried (Na₂SO₄) to give a light yellow viscous oil (108.8 g, 96.3% yield) after evaporation which gradually crystallized, m.p. 73.8° C., tlc: (1) 0.47, (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropantol. NMR (CDCl₃): 37.52; 39.52, 60.84, 70.54, 113.54, 113.83, 126.29, 127.30, 127.51, 129.99, 128.24, 128.38, 35 129.99, 130.88, 135.69, 136.40, 143.53, 155.12.

The same product was obtained after reduction of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid with lithium aluminium hydride in tetrahydrofuran (30 min, 25° C.), 31% yield.

(±)-Toluene-4-sulphonic acid 3-(2-benzyloxy-5-bromophenyl)-3-phenylpropyl ester

A cooled (5° C.) solution of (±)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropan-1-ol (108.0 g) in dichloromethane (300 ml) was treated with pyridine (79.4 ml) and then p-toluenesulphonyl chloride (60.6 g) in dichloromethane (200 ml). After 18 hrs. at room temperature the solvent was removed in vacuum and the residue was extracted with diethyl ether. The extract was washed with hydrochloric acid, water, and dried over anhydrous sodium sulphate to give (±)-toluene-4-sulphonic acid 3-(2-benzyloxy-5-bromophenyl)-3-phenylpropyl ester as a light yellow oil after concentration under reduced pressure (140.3 g, 93.6% yield), tlc: (1) 0.66. NMR (CDCl₃): 21.67, 33.67, 39.69, 68.58, 70.28, 113.21, 113.76, 126.47, 127.84, 128.10, 55 128.25, 128.41, 128.51, 129.81, 130.26, 130.42, 132.91, 134.39, 136.41, 142.16, 155.07.

(±)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]diisopropylamine

A solution of the (±)-toluenesulphonate ((±)-toluene-4sulphonic acid 3-(2-benzyloxy-5-bromophenyl)-3phenylpropyl ester, 139.3 g) in acetonitrile (230 ml) and N,N-diisopropylamine (256 g) was refluxed for 97 hrs. The reaction mixture was then evaporated to dryness and the residue thus formed was partitioned between diethyl ether 65 (500 ml) and aqueous sodium hydroxide (2 M, 240 ml). The organic phase was washed twice with water (250 ml) and

then extracted with 1 M sulphuric acid. The aqueous phase was adjusted to about pH 12–13 and reextracted with ether (500 ml). The organic phase was washed with water, dried (Na_2SO_4) and evaporated to provide (\pm)-[3-(2-benzyloxy-5-bromophenyl)-3-phenylpropyl]-diisopropylamine as brown and viscous syrup (94.5 g, 77.9% yield), tlc: (2) 0.49. NMR (CDCl₂): 20.65, 20.70, 36.70, 41.58, 43.78, 48.77, 70.24, 113.52, 126.02, 127.96, 128.20, 128.36, 129.82, 130.69, 136.34, 136.76, 144.20, 155.15.

(ii) Phenylpropionamide Route

S-(+)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropionyl chloride

Thionylchloride (4.5 g, 2.8 ml, 37.8 mmol) and some drops of dimethylformamide were added to a solution of S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid (10.3 g, 25 mmol) in ethyl acetate (60 ml). The mixture was refluxed until the control indicated complete consumption of the starting material (2 hrs). Evaporation in vacuum gave the acid chloride as a light yellow liquid in almost quantitative yield (10.7 g). Conversion of an aliquot to the methyl ester showed a single spot in the (R_f 0.54, solvent system (7)).

S-(+)-N,N-Diisopropyl-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionamide

A solution of S-(+)-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionyl chloride (9.6 g, 22.3 mmol) in ethyl acetate (40 ml) was added dropwise to a stirred and cooled (3° C.) solution of diisopropylamine (6.4 g, 49.0 mmol) in 60 ml of ethyl acetate. The reaction was stirred for 18 hrs at room temperature and then washed with water, aqueous hydrochloric acid (1 M) and half saturated brine. The organic 5 phase was dried (sodium sulphate) and evaporated to dryness. The colourless oily residue (10.7 g, 97% yield) of S-(+)-N,N-diisopropyl-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionamide showed a single spot on tlc: (R, 0.70 (4)). NMR (CDCl₃): 18.42, 20.46, 20.63, 20.98, 39.51, 10 Intermediate A (n=1) 41.44, 45.76, 48.63, 70.00, 112.84, 113.64, 126.10, 126.45, 127.34, 127.78, 128.20, 128.36, 129.93, 130.59, 135.18, 136.52, 143.52, 155.17, 169.61.

(±)-N,N-Diisopropyl-3-(2-benzyloxy-5-bromophenyl)-3phenylpropionamide

The amide was prepared from disopropylamine and the racemic acid chloride as described above for the S-(+) enantiomer. The viscous colourless oil was dissolved in ethanol and the solution stored at -30° C. From this solution colourless crystals were obtained, m.p. 101.8° C. (±)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]diisopropylamine

To a stirred solution of (±)-N,N-diisopropyl-3-(2benzyloxy-5-bromophenyl)-3-phenylpropionamide (11.8 g) in 40 ml of dry tetrahydrofuran was added 1 M lithium 25 aluminium hydride/tetrahydrofuran (36 ml). The reaction was refluxed for 4 hrs and then quenched with the dropwise addition of water. After removal of the precipitate the solvent was evaporated and the oily residue dissolved in diluted sulphuric acid. The aqueous phase was washed 30 several times with diethyl ether, adjusted to pH 10-12 (aqueous NaOH), and extracted with diethyl ether. The extract was dried (sodium sulphate), filtered and evaporated to dryness in vacuum to leave 8.1 g (76.7%) of the title compound as a viscous colourless oil, tlc: (4) 0.86. The 35 NMR spectrum corresponds to the product, obtained from the tosylate precursor (see above).

S-(+)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]diisopropylamine

benzyloxy-5-bromophenyl)-3-phenylpropionic acid as the starting material gave S-(±)-[3-(2-Benzyloxy-5bromophenyl) -3-phenylpropyl]-diisopropylamine as a viscous colourless oil, $\left[\alpha\right]_{0}^{22}$ =+18.5 (c=10.0, ethanol), e.e. of a representative batch 99.4%

R-(-)-[3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropyl]diisopropylamine

Repetition of the reaction sequence by using R-(-)-3-(2benzyloxy-5-bromophenyl)-3-phenylpropionic acid as the starting material gave R-(-)-[3-(2-Benzyloxy-5- 50 bromophenyl)-3-phenylpropyl]-diisopropylamine as a viscous colourless oil, $[\alpha]_D^{22} = -17.3$ (c=10.0, ethanol), e.e. of a representative batch 98.3%.

The optical purities were determined by chiral HPLC using Chiralpak OD columns. (±)-4-Benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)benzoic acid hydrochloride

An ethereal Grignard solution, prepared from the above (±)-amine (22.8 g), ethyl bromide (17.4 g) and magnesium (6.1 g) under an atmosphere of nitrogen was diluted with dry 60 tetrahydrofuran (200 ml) and then cooled to -60° C. Powdered solid carbon dioxide (ca. 50 g) was then added in small portions and the green reaction mixture was warmed to room temperature. After the addition of an aqueous solution of ammonium chloride (200 ml, 10%) and adjustment of the 65 aqueous phase to pH 0.95, a white solid was recovered by filtration to provide (±)-4-benzyloxy-3-(3-

diisopropylamino-1-phenylpropyl)-benzoic acid hydrochloride (14.7 g, 64.3% yield), m.p. 140° C. (dec.), tlc: (2) 0.33. NMR (CD₃OD): 17.07, 18.77, 33.55, 43.27, 56.50, 71.50, 112.89, 124.10, 127.94, 129.07, 129.25, 129.34, 129.59, 129.66, 130.18, 131.60, 132.78, 137.60, 143.30, 161.11, 169.70.

(±)-[4-Benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)phenyl]-methanol

The (±)-hydrochloride was converted into its methyl ester (MeOH, trace sulphuric acid, 6h reflux) and the free oily base thus obtained (28 g; tlc (2): R, 0.46) was dissolved in dry diethyl ether (230 ml). This solution was slowly (2 h) dropped under a nitrogen atmosphere to a suspension of lithium aluminium hydride (1.8 g) in ether (140 ml). After stirring for 18 hrs, the reaction was quenched by the addition of water (4.7 ml). The organic phase was dried over anhydrous sodium sulphate, filtered and evaporated to dryness to provide (±)-[4-benzyloxy-3-(3-diisopropylamino-7phenylpropyl)-phenyl]-methanol (26 g, 98.9% yield), as an oil which gradually crystallized, m.p. 86.4° C., tlc: (2) 0.32. NMR (CDCl₃): 20.53, 20.61, 36.87, 41.65, 44.14, 48.82, 65.12, 70.09, 111.80, 125.77, 125.97, 126.94, 127.55, 128.08, 128.37, 128.44, 133.27, 134.05, 134.27, 137.21, 144.84.

Intermediate A

Repetition of the reaction sequence by using S-(+)-3-(2- 40 (±)-[4-Benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)phenyl]-[C2H]methanol

Intermediate d₂-A (n=2)

Repetition of the above described reduction of the methyl ester of (±)-4-benzyloxy-3-(3-diisopropylamino-1phenylpropyl)-benzoic acid by the use of lithium aluminium deuteride gave (±)-[4-benzyloxy-3-(3-diisopropylamino-1phenylpropyl)-phenyl]-[C2H]methanol, colourless amorphous solid in 77% yield; tlc: (2) 0.33. NMR (CDCl₃): 20.46, 20.55, 36.77, 41.62, 44.09, 48.77, multiplett centred at 64.96, 70.05, 111.76, 125.72, 127.34, 128.03, 128.32, 128.38, 133.15, 133.99, 137.17, 144.80, 155.52.

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol

55 Intermediate B (n=1)

A solution of Intermediate A (9.1 g) in methanol (100 ml) was hydrogenated over Raneynickel (4.5 g) under ambient conditions. After 5 hrs thin layer chromatography indicated complete hydrogenolysis. The catalyst was filtered off and the solution evaporated to dryness to leave an oil (6.95 g, 96.5% yield) which gradually solidified, (±)-2-(3diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol, m.p. 50° C., tlc: (2) 0.15. NMR (CDCl₃): 19.42, 19.83, 33.22, 39.62, 42.27, 48.27, 65.19, 118.32, 126.23, 126.55, 127.47, 128.33, 132.50, 144.47, 155.38.

Hydrochloride: colourless crystalls, m.p. 187-190° C. (with decomposition)

S-(-)-2-(3-Diisopropylamino-1-phenylpropyl)-4- 15 hydroxymethylphenol

Hydrogenolysis of S-(-)-[4-benzyloxy-3-(3-disopropylamino -1-phenylpropyl)-phenyl]-methanol (prepared from S-(+)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid as described for the racemic series) gave the title compound in 85% yield, colourless solid; m.p. $\geq 50^{\circ}$ C., $\lceil \alpha \rceil_D^{22} = -19.8$ (c=1.0, ethanol); NMR (CDCl₃): 19.58, 19.96, 33.30, 39.52, 42.10, 48.00, 65.40, 118.58, 126.31, 126.57, 127.16, 127.54, 128.57, 132.63, 132.83, 144.55, 155.52.

S-(+) hydrochloride: colourless, non-hygroscopic solid, 25 m.p. 186.4° C. (dec.); $[\alpha]_D^{22}$ +6.6 (c=0.5, water). NMR (DMSO-d₆): 16.58, 18.17, 31.62, 41.37, 45.90, 54.02, 63.07, 115.18, 126.05, 126.37, 128.03, 128.45, 129.04, 133.12, 143.88, 153.77.

R-(+)-2-(3-Diisopropylamino-1-phenylpropyl)-4- 30 hydroxymethylphenol

Hydrogenolysis of R-(+)-[4-benzyloxy-3-(3-disopropylamino-1-phenylpropyl)-phenyl]-methanol (prepared from R-(-)-3-(2-benzyloxy-5-bromophenyl)-3-phenylpropionic acid as described for the racemic series) 35 gave the title compound in 87% yield, colourless solid; m.p. $\geq 50^{\circ}$ C., $\lceil \alpha \rceil_D^{22} = +21.3$ (c=1.0, ethanol).

R-(-) hydrochloride: colourless, non-hygroscopic solid, m.p. 179.8° C. (dec.); $[\alpha]_2^{-22}$ =-7.2 (c=0.5, water); NMR (DMSO-d_o): 16.59, 18.19, 31.64, 41.38, 45.92, 54.07, 63.08, 115.19, 126.07, 126.39, 128.04, 128.46, 129.05, 133.13, 143.89, 153.79.

S-(+)-mandelate: m.p. 139.7° C., $[\alpha]_D^{21} = +38.3$ (c 1.0, ethanol)

(\pm)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy- ⁴⁵ [2 H₂]methyl-phenol

Intermediate d₂-B (n=2)

A stirred suspension of lithium aluminium deuteride (0.1 g, 2.38 mmol) in 5 ml of dry diethyl ether was treated during 30 min at room temperature under an atmosphere of dry nitrogen with a solution of (±)-4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzoic acid methyl ester (1.0 g, 2.17 mmol) in dry diethyl ether (5 ml). After an

additional stirring at room temperature for 18 hrs the reaction was quenched by the dropwise addition of 0.17 ml of $^2\mathrm{H}_2\mathrm{O}$. The resultant precipitation was filtered off, washed with small portions of ether, and the combined organic phases were evaporated to dryness in vacuum to leave

(±)-[4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]-[²H₂]methanol

as slightly yellow, viscous oil which gradually crystallized, m.p. 84.1° C.; tlc: (2) 0.33 (starting material 0.46), 0.725 g, 77.2% yield. NMR (CDCl₃): 20.46, 20.55, 36.77, 41.62, 44.09, 48.77, multiplett centred at 64.30, 70.05, 111.76, 125.72, 125.94, 126.92, 127.34, 127.71, 128.03, 128.32, 128.38, 133.15, 133.99, 137.17, 144.80, 155.52.

A solution of the above (±)-[4-benzyloxy-3-(3diisopropylamino-1-phenylpropyl)-phenyl]-[2H2]methanol (0.129 g, 0.29 mmol) in a suspension of methanol (5 ml) and wet Raney-Nickel (0.1-0.2 g) was stirred at room temperature under an atmosphere of deuterium gas (2H2). After 1 hr tle indicated complete disappearance of the starting material. The mixture was filtered, evaporated and the residue was redissolved in diethyl ether (5 ml). The solution was washed with water (2×5 ml), dried over sodium sulphate, filtered and evaporated to dryness to leave a pale yellow oil, 76.3 mg, in 74.6% yield, which gradually solidified to give a colourless solid of a m.p. range of 46-49° C. Tlc: (4) 0.57 (starting material 0.77). NMR (CDCl₃): 19.57, 19, 94, 33.33, 39.56, 42.18, 48.07, 48.43, multiplett centred at 64.61, 118.47, 126.29, 126.58, 127.55, 127.94, 128.38, 132.53, 144.53, 155.37. GC-MS (P-CI, ammonia, TMS derivative): 488.43 (100%), 489.56 (70%), 490.56 (31%), 491.57 (8%).

Intermediate d2-B

n=2, deuterium

(±)-2-(3-Diisopropylamino-1-phenyl
propyl)-4-hydroxy- $[^2\mathrm{H}_2]$ methyl-phenol

Intermediate d2-B

(iii) Heck-Cuprate-Route to Intermediate B

Intermediate B

N,N-Diisopropyl-acrylamide

A solution of acroyl chloride (42.2 g, 40.6 ml, 0.467 mol) in 125 ml of dichloromethane was slowly added to a cooled (0-5° C.) solution of N,N-diisopropylamine in dichloromethane (500 ml). After 2 hrs the precipitated ammonium salt was filtered off and the filtrate was washed with 1M 20 hydrochloric acid (3×100 ml), dried (sodium sulphate), and evaporated to dryness. N.N-diisopropyl-acrylamide was obtained as a slight yellow liquid in 48% yield and ca. 99% purity. NMR (CDCl₃): 20.54, 21.25, 45.66, 48.10, 125.62, 130.70, 166.17.

(E)-N,N-Diisopropyl-3-(2-methoxy-5methoxycarbonylphenyl)-acrylamide

((E)-3-(2-Diisopropylcarbamoyl-vinyl)-4-methoxybenzoic acid methyl ester)

The reaction was carried out under an atmosphere of dry 30 and oxygen-free nitrogen gas. All solvents and reagents were dried before use.

A stirred suspension consisting of N,N-dimethylglycine (6.0 mmol), anhydrous sodium acetate (40 mmol), methyl diisopropylacrylamide (24 mmol, 3.72 g), bis-(benzonitrile)-palladium-II chloride (1.5 mol %), and 20 ml of N-methyl-2-pyrrolidinone was heated at 130° C. until no starting material could be detected by tlc (starting material methyl 3-bromo-4-methoxybenzoate: R, 0.73; N,N- 40 diisopropylacrylamide: R, 0.46; solvent system (1)). After cooling to room temperature 50 ml of an aqueous 2N HCl solution was added. The reaction was diluted with dichloromethane (50 ml) and the precipitated grey palladium metal was filtered off. The organic phase was washed with five 45 portions (50 ml each) of 2N aqueous hydrochloric acid, dried (MgSO₄) and evaporated to dryness. The remaining off-white solid was recrystallized from ethyl acetate/nhexane to give 4.40 g (E)-N,N-diisopropyl-3-(2-methoxy-5-methoxycarbonylphenyl)-acrylamide in 69% yield, m.p. 50 139-140° C., tle: (1) R₂0.40. NMR (CD₂Cl₂): 21.22, 22.10, 46.39, 48.87, 52.59, 56.61, 111.42, 123.39, 123.78, 125.54, 130.32, 132.53, 35.07. MS (EI, DI, 105° C.): 319 (M+, 22), 304 (6%), 276 (8%), 219 (100%), 187 (18%), 160 (7%). (±)-N,N-Diisopropy1-3-(2-methoxy-5methoxycarbonylphenyl)-3-phenylpropionamide ((±)-3-(2-Diisopropylcarbamoyl-1-phenylethyl)-4methoxybenzoic acid methyl ester)

The reaction was carried out under an atmosphere of dry and oxygen-free nitrogen gas. All solvents and reagents 60 were dried before use.

A dark green solution of lithium diphenylcuprate was prepared by addition of phenyllithium solution (12 ml, 24 mmol, cyclohexane/diethyl ether) to a cooled (0° C.) and stirred suspension of copper-I bromide dimethylsulphide 65 adduct (2.71 g, 13 mmol) in diethyl ether (40 ml). This solution was cooled to -78° C. and then subsequently

solutions were added of trimethylchlorosilane (1.5 ml, 12 mmol) in diethyl ether (5 ml) followed by the above cinnamide (3.19 g, 10.0 mmol, (E)-N,N-diisopropyl-3-(2methoxy-5-methoxycarbonylphenyl)-acrylamide) in 10 ml of tetrahydrofuran. The reaction was stirred for one hour at -78° C., warmed to room temperature and then quenched by the addition of 150 ml of a saturated aqueous solution of ammonium chloride. After 90 min the organic phase was washed with two portions (100 ml) of half saturated aqueous sodium chloride, dried (MgSO₄) and evaporated to dryness. The yellow oily residue was dissolved in a minimum of ethyl acetate and purified by column chromatography on silica gel (mobile phase (1)). Evaporation of the combined fractions of the title compound gave

(±)-N, N-diisopropyl-3-(2-methoxy-5methoxycarbonylphenyl)-3-phenylpropionamide

as a viscous slightly yellow syrup (1.8 g, 44% yield). NMR (CD₂Cl₂): 19.45, 19.56, 19.74, 38.86, 44.87, 47.92, 50.80, 54.76, 109.41, 121.32, 125.53, 128.10, 128.43, 128.78, 132.03, 143.20, 159.95, 165.95, 168.87, MS (EI, DI, 3-bromo-4-methoxybenzoate (20 mmol, 4.90 g), N,N- 35 105° C.): 397 (M+, 41%), 366 (5%), 322 (2%), 269 (3%), 255 (14%), 237 (7%), 165 (5%), 128 (12%), 91 (43%), 58 (100%).

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol

A solution of (±)-N,N-diisopropyl-3-(2-methoxy-5methoxycarbonylphenyl)-3-phenylpropionamide (0.79 g, 2.0 mmol) in 20 ml of tetrahydrofuran was cooled to 5° C. and then treated with 2.5 ml of 1M LiAlH /THF. After stirring at room temperature for 18 hrs. finely powdered aluminium chloride (0.3 g) was added and stirring was continued for additional 4 hrs. The reaction was quenched at 5° C, by the dropwise addition of water followed by aqueous sodium hydroxide solution. The mixture was diluted with diethyl ether (150 ml) and the organic phase was washed with half saturated brine, dried (sodium sulphate), and evaporated to dryness to give the title compound as a solid off-white foam. Tic (2) 0.16, m.p. 48-51° C. A portion of the material was converted into the hydrochloride (ethereal hydrochloric acid), m.p. 186-189° C. (dec.).

Hydrogenolytic Deoxygenation of S-(-)-2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol

A mixture of S-(-)-2-(3-Diisopropylamino-1phenylpropyl)-4-hydroxymethylphenol (683 mg, 2.0 mmol, 2=-19.8 (c=1.0, ethanol)), platinium-on-carbon catalyst (120 mg) and acetic acid (1.0 ml) was diluted with ethyl acetate (50 ml) and then hydrogenated at room temperature under a pressure of 4 bar hydrogen gas for 5 hrs. The catalyst was filtered off and the filtrate was evaporated to leave an oil. The residue was redissolved in dichloromethane (25 ml) and the solution was washed with aqueous sodium hydrogencarbonate solution. The organic phase was concentrated to dryness and the oily residue taken up in ethanol (7 ml). Addition of D-(-)-tartaric acid (300 mg) and storage of the clear solution at -25° C. gave colourless crystals (310 mg) of

S-(+)-2-(3-diisopropylamino-1-phenylpropyl)-4- 5 methylphenol D-(-) hydrogentartrate

in 33% yield, tlc: (4): 0.66 (starting material 0.31), $[\alpha]_D^{22}$ =-26.7 (c=1.0, methanol). NMR (CD₃OD): 17.98, 18.37, 20.69, 33.68, 43.12, 56.33, 74.17, 116.31, 127.51, 129.11, 129.50, 129.70, 129.89, 130.41, 144.57, 153.67, 10 176.88.

A portion of the tartrate was treated with aqueous sodium hydrogenearbonate solution and the free base was isolated in quantitative yield as a colourless oil by extraction with ethyl acetate and evaporation of the extract. $[\alpha]_D^{22}$ =-26.3 (c=1.0, 15 methanol).

Preferred intermediates in the processes for the preparation of the 3,3-diphenylpropylamines according to the present invention are:

(±)-3-(2-Benzyloxy-5-bromophenyl)-3-phenylpropanoic 20 acid and its salts,

R-(-)-(2-Benzyloxy-5-bromophenyl)-3-phenylpropanoic acid and its salts,

S-(+)-(2-Benzyloxy-5-bromophenyl)-3-phenylpropanoic acid and its salts,

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy-[C²H₂]methyl-phenol,

S-(-)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy-[C²H₂]methyl-phenol,

R-(+)-2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxy- 30 [C²H₂]methyl-phenol and their salts.

3. EXAMPLES

a) Phenolic Monoesters

aa) General Procedure

Esters of Carboxylic Acids

A stirred solution of (±)-2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenol (Intermediate B, 1.71 g, 5.01 mmol) and acid chloride (5.00 mmol carboxylic acid monochloride for compounds of formula II, 2.50 mmol 40 for compounds of formula II') in 60 ml of dichloromethane was cooled to 0° C, and then triethylamine (0.502 g, 4.96 mmol for compounds of formula II, 1.05 g, 9.92 mmol for compounds of formula II'), dissolved in 10 ml of dichloromethane, was added dropwise during 5-10 min. 45 Stirring was continued for 18 hrs at room temperature, and then the mixture was washed successively with water (25 ml), aqueous sodium hydrogen carbonate (5%, 25 ml), and water (25 ml). The organic phase was then dried (sodium sulphate) and evaporated under reduced pressure and at low 50 temperature. The oily residues thus formed were finally exposed to high vacuum (2-4 hrs.) to remove traces of residual solvents.

The esters of formula II or II' were obtained as colourless to light yellow solids or viscous syrups in purifies between 55 90% and 99% (tlc, IIPLC, NMR).

Esters of N-Acylamino Acids

Phenolic Monoesters

To a solution of the respective amino acid (2.0 mmol) in 0.7 ml to 5 ml of N,N-dimethylformamide and 0.5 ml of 60 triethylamine was added at 5° C. in one portion methyl chloroformate (2.0 mmol, 288 mg). After stirring for 2 hrs. at the same temperature the cooling bath was removed and a solution of Intermediate B (2.0 mmol, 682 mg) in 5 ml of dichloromethane and triethylamine (0.5 ml) was added. The 65 reaction was allowed to stir for 2–8 hrs and then diluted with diethyl ether (70 ml). Solid precipitates were filtered off and

the mixture was washed with aqueous sodium hydrogen sulphate solution (5%) and water. After drying (sodium sulphate), filtration and evaporation in vacuum the residue was purified by flash chromatography on silica gel (eluent: solvent system (4)). N-acylamino acid esters were obtained as viscous oils or waxy solids in yields between 24% and 73%.

bb) Sait Formation (Example Hydrochloride)

A cooled (0° C.) solution of 4.94 mmol amino base in 30 ml of dry diethyl ether was treated under an atmosphere of nitrogen with 4.70 mmol (monoamines of formula II) or 9.4 mmol (diamines of formula II) ethereal (1 M) hydrochloric acid. The oily precipitation was washed repeatedly with dry ether and then evaporated in high vacuum. The residual product solidificated in most cases as an amorphous foam. The highly hygroscopic solids show a wide melting range above 100° C. (with decomposition).

The following compounds were prepared according to the method described above and their analytical data are listed below:

(±)-Acetic acid 2-(3-diisopropylamino-1-phenylpropyl)4-hydroxymethylphenyl ester, tle: R_f 0.47 (4), NMR (CDCl₃): 20.36, 20.68, 20.97, 36.59, 42.35, 43.83, 48.76, 64.58, 122.69, 125.61, 126.22, 126.71, 127.96, 128.34, 136.82, 138.97, 143.73, 147.77, 169.24; GC-MS/P-CI (ammonia, trimethylsilyl derivative): 456.8 (100%), 398.4 (4%)

(±)-Propionic acid 2-(3-diisopropylamino-7-phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R_f 0.52 (4); NMR (CDCl₃): 20.44, 20.64, 27.67, 36.67, 42.21, 43.87, 48.78, 64.70, 122.71, 125.62, 126.52, 126.78, 127.97, 128.53, 136.86, 138.82, 143.82, 147.86, 172.68; GC-MS/P-CI (ammonia, trimethylsilyl derivative): 470.38 (100%), 398.4 (4%)

(±)-n-Butyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R_f 0.43 (4); NMR (CDCl₃): 13.77, 18.40, 20.43, 20.51, 20.59, 36.15, 36.82, 42.16, 43.90, 48.83, 49.20, 64.58, 122.66, 125.98, 126.17, 126.74, 127.33, 127.94, 128.33, 136.79, 138.91, 143.82, 171.88; GC-MS/N—Cl (methane, trimethylsilyl derivative): 482.3 (20%), 412.3 (100%), 340.1 (33%), 298.1 (89%), 234.7 (15%); GC-MS/P-Cl (methane, trimethylsilyl derivative): 484.5 (100%), 468.4 (62%), 394.3 (22%); GC-MS/P-Cl (ammonia, trimethylsilyl derivative): 484.4 (100%), 398.4 (3%)

(±)-Isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R, 0.43 (4); NMR (CDCl₃): 18.99, 19.11, 20.54, 34.21, 36.88, 41.84, 43.91, 48.78, 64.61, 122.54, 125.57, 126.14, 126.81, 127.94, 128.34, 136.84, 138.84, 143.89, 147.85, 175.36

R-(+)-Isobutyric acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

Tle: R, 0.38 (4), starting material: 0.26; colourless oil (yield 95%); NMR (CDCI₃): 19.02, 19.14, 19.96, 20.61, 34.26, 36.92, 41.87, 43.90, 48.80, 64.84, 122.63, 122.63, 125.64, 126.19, 126.92, 127.98, 128.39, 136.96, 138,76, 143.93, 147.97, 175.39.

Hydrochloride: colourless hygroscopic solid; $[\alpha]_D^{20}$ =+5.5 (c=1.0, chloroform); NMR (CDCl₃): 17.03, 17.53, 18.30, 18.52, 18.95, 19.12, 31.23, 34.10, 41.69, 45.40, 54.22, 54.47, 64.00, 122.32, 126.62, 126.81, 127.40, 128.06, 128.70, 133.88, 140.64, 142.25, 147.81, 175.89.

(±)-2,2-Dimethylpropionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R_f 0.49 (1); NMR (CDCl₃): 20.46, 20.66, 26.53, 27.34, 37.12, 39.21, 41.46, 43.98, 48.81, 64.65, 122.42, 125.58, 126.16, 126.92, 128.37, 134.27, 136.92, 138.82, 143.97, 148.02, 176.97;

GC-MS/P-CI (ammonia, trimethylsilyl derivative): 498.8 (100%), 482.5 (10%), 398.4 (4%)

(±)-2-Acetamidoacetic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

((±)-2-[Diisopropylamino)-1-phenylpropyl]-4- 5 (hydroxymethyl)phenyl 2-(acetylamino)acetate)

NMR (CD₃OD): 20.33, 20.61, 22.17, 30.54, 42.39, 48.62, 51.04, 64.88, 117.99, 124.73, 125.51, 127.01, 127.75, 129.31, 131.63, 137.33, 146.67, 147.43, 171.47, 173.82

(±)-Cyclopentanecarboxylic acid 2-(3-diisopropylamino- 10 1-phenylpropyl)-4-hydroxymethylphenyl ester

Tlc: R_f 0.66 (4), starting material Intermediate B (0.50) colourless oil, yield: 82%. NMR (CDCl₃): 20.42, 25.87, 30.25, 36.57, 41.89, 43.97, 47.15, 49.02, 64.63, 122.56, 125.60, 126.16, 126.81, 127.60, 127.94, 128.35, 128.77, 15 136.74, 138.88, 143.85, 147.92, 175.05.

(±)-Cyclohexanecarboxylic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester

Tlc: R, 0.67 (4), starting material Intermediate B (0.50), colourless oil, yield: 93%. NMR (CDCl₃): 20.27, 25.40, 20 25.74, 29.03, 29.16, 36.29, 41.82, 43.31, 44.08, 49.36, 64.62, 122.56, 125.68, 126.22, 126.92, 127.92, 128.38, 136.65, 139.00, 143.72, 147.86, 174.40.

(±)-Benzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

Tlc: R_f 0.31 (4); colourless syrup (99% yield, purity>95%); gradually crystallized upon refrigeration; NMR (CDCl₃): 20.41, 20.51, 36.65, 42.42, 43.85, 48.79, 64.70, 122.79, 125.74, 126.17, 126.83, 128.13, 128.28, 128.58, 129.48, 130.25, 133.62, 137.21, 139.10, 143.67, 30 148.00, 164.99.

R-(+)-Benzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester tlc R₇0.30 (4); colourless symp

Hydrochloride: colourless amorphous solid; $[\alpha]_D$ ²⁰=+ 35 14.9 (c=1.0, chloroform);

NMR (CDCl₃): 17.06, 17.53, 18.25, 18.61, 31.23, 42.19, 45.49, 54.26, 54.53, 64.09, 122.55, 126.77, 127.13, 127.58, 128.10, 128.50, 128.72, 128.78, 129.02, 130.17, 133.96, 134.27, 140.81, 142.13, 147.91, 165.40.

(±)-4-Methylbenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

Tle: R_f 0.30 (4), starting material Intermediate B: 0.24; yield: quantitative, viscous light yellow oil; NMR (CDCl₃): 122.79, 125.81, 126.19, 126.70, 127.04, 128.30, 129.32, 129.76, 130.29, 136.94, 139.20, 143.61, 144.46, 148.04, 165.07.

LC-MS: 459 (M+, 3.5%), 444 (17%), 223 (2.5%), 195 (2%), 119 (48%), 114 (100%).

(±)-2-Methylbenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

viscous colourless oil, tlc: (4) 0.64 (starting material R, 0.51), yield 84%. NMR (CDCl₃) 20.44, 20.53, 21.86, 22.01, 36.74, 42.36, 43.87, 48.81, 64.76, 122.93, 123.11, 125.71, 55 126.12, 126.88, 128.10, 128.48, 130.76, 131.26, 131.70, 132.03, 132.79, 137.28, 139.00, 141.73, 143.72, 148.04, 165.25. LC-MS: 459 (M+, 21%), 444 (100%), 326 (1%), 223 (10%), 213 (6%), 195 (9%), 165 (14%), 115 (94%), 91

(±)-2-Acetoxybenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

colourless syrup, tlc: (4) 0.47 (starting material R, 0.51), yield 82%. NMR (CDCl₃): 20.39, 20.57, 20.96, 36.92, 42.29, 43.88, 48.87, 64.64, 122.39, 122.64, 124.05, 125.80, 126:11, 126:75, 128:09, 128:32, 132:23, 134:66, 137:27, 139.32, 143.64, 147.63, 151.37, 162.72, 169.73. LC-MS:

503 (M+, 7%), 488 (59%), 446 (6%), 326 (22%), 223 (9%), 213 (9%), 195 (9%), 163 (14%), 121 (100%), 114 (88%).

(±)-1-Naphthoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

colourless viscous oil, tlc: (4) 0.57 (starting material R, 0.51), yield 82%. NMR (CDCl₃): 20.46, 20.58, 36.82, 42.46, 43.89, 48.76, 64.81, 122.98, 124.51, 125.64, 125.79, 125.98, 126.15, 126.44, 126.94, 128.12, 128.36, 128.65, 131.37, 131.82, 133.98, 134.45, 137.44, 139.08, 143.73, 148.13, 165.49. LC-MS: 495 (M+, 8%), 480 (100%), 213 (7%), 165 (8%), 155 (95%), 127 (100%), 114 (90%).

(±)-2-Naphthoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

colourless slightly yellow viscous oil, tlc: (4) 0.57 (starting material R₂0.51), yield 71%. NMR (CDCl₃): 20.47, 20.59, 36.71, 42.59, 43.85, 48.81, 64.82, 122.89, 126.89, 127.89, 128.19, 128.41, 128.68, 129.50, 132.03, 132.55, 135.87, 137.22, 139.08, 143.83, 148.20, 165.14. LC-MS: 495 (M+, 7%), 480 (98%), 223 (8%), 213 (6%), 195 (6%), 165 (8%), 155 (96%), 127 (100%), 114 (81%).

(±)-4-Chlorobenzoic acid 2-(3-diisopropylamino-1phenylpropyi)-4-hydroxymethylphenyl ester

Tlc: R, 0.54 (4), starting material Intermediate B: 0.44; yield: quantitative, viscous light yellow oil; NMR (CDCl₃): 20.34, 20.50, 36.41, 42.51, 43.84, 48.93, 64.66, 122.72, 125.82, 126.88, 127.27, 128.06, 128.56, 128.96, 131.60, 133.80, 136.95, 139.30, 140.16, 143.60, 147.87, 164.10. LC-MS: 479 (M*, 1.5%), 464 (10%), 223 (2%)), 195 (2%), 165 (1.5%), 139 (25%), 114 (100%).

(±)-4-Methoxybenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

Tic: R_f 0.47 (4), starting material Intermediate B: 0.42; yield: 89%, viscous light yellow oil; NMR (CDCl₃): 20.31, 20.47, 36.43, 42.39, 43.90, 48.97, 55.53, 64.71, 121.79, 122.86, 125.72, 126.14, 126.79, 128.11, 128.27, 131.27, 131.77, 132.36, 132.84, 137.15, 139.01, 143.74, 148.08, 163.92, 164.71. LC-MS: 475 (M+, 3.5%), 460 (20%), 223 (2%), 195 (2%), 135 (48%), 114 (100%).

(±)-2-Methoxybenzoic acid 2-(3-diisopropylamino-1-40 phenylpropyl)-4-hydroxymethylphenyl ester

Tic: R_f 0.40 (4), starting material Intermediate B: 0.42; yield: 98%, viscous light yellow oil; NMR (CDCl₃): 20.29, 20.42, 36.50, 41.92, 44.02, 49.09, 55.95, 64.72, 119.10, 120.20, 122.86, 125.64, 126.10, 126.82, 128.06, 128.30, 20.32, 20.50, 21.78, 36.13, 42.35, 43.98, 49.29, 4.66, 45 132.38, 134.32, 137.11, 139.01, 143.87, 148.00, 159.82, 164.40. LC-MS: 475 (M+, 3.5%), 460 (18%), 223 (1%), 195 (1%), 135 (49%), 114 (100%).

(±)-4-Nitrobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

Tic: R, 0.44 (4), starting material Intermediate B: 0.42; yield: 78%, viscous yellow oil which slowly solidified; m.p. 123.6° C.; NMR (CDCl₃): 20.47, 20.62, 36.52, 42.66, 43.70, 48.75, 64.69, 122.61, 123.72, 125.91, 126.33, 127.04, 128.02, 128.37, 131.32, 134.86, 136.83, 139.55, 143.56, 147.75, 150.93, 163.04. LC-MS: 490 (M+, 1.5%), 475 (15%), 327 (0.8%), 223 (3%), 195 (3%), 150 (15%), 114 (100%).

(±)-2-Nitrobenzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

Tlc: R_c 0.32 (4), starting material Intermediate B: 0.42; yield: 92%, viscous yellow oil which slowly solidified; NMR (CDCl₃): 20.39, 20.50, 36.74, 42.14, 43.89, 48.71, 48.92, 64.59, 122.15, 123.95, 124.18, 125.89, 126.25, 127.23, 127.99, 128.39, 129.95, 132.95, 133.08, 136.72, 139.62, 143.64, 147.63, 148.15, 163.90. LC-MS: 490 (M* 1%), 475 (11%), 327 (2.5%), 223 (2.5%), 195 (3%), 165 (3%), 150 (7%), 114 (100%).

(±)-N-Acetylglycine 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester/(±)-2-Acetamidoacetic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester

((±)-2-(Diisopropylamino-1-phenylpropyl]-4- 5 (hydroxymethyl)-phenyl 2-(acetylamino)acetate)

NMR (CD₃OD): 20.33, 20.61, 22.17, 30.54, 42.3.9, 48.62, 51.04, 64.88, 117.99, 124.73, 125.51, 127.01, 127.75, 129.31, 131.63, 137.33, 146.67, 147.43, 171.47, 173.82.

- (±)-Malonic acid bis-[2-(3-diisopropylamino-1- 10 phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: R_f 0.38 (4); NMR (CDCl₃): 20.52, 20.62, 20.69, 36.95, 41.84, 42.82, 43.89, 48.23, 64.83, 123.37, 127.36, 127.97, 128.42, 128.38, 129.06, 131.55, 137.50, 138.90, 148.23, 148.32, 160.54
- (±)-Succinic acid bis-[2-(3-diisopropylamino-1- 15 phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: R_f 0.40 (4); NMR (CDCl₃): 20.54, 20.63, 20.73, 30.69, 36.91, 41.80, 43.92, 48.20, 64.81, 122.60, 127.41, 127.93, 128.39, 129.31, 131.80, 136.73, 138.92, 143.82, 148.17, 168.01
- (\pm)-Pentanedioic acid bis-[2-(3-diisopropylamino-1-20 phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: R_f 0.43; NMR (CDCl₃): 20.47, 20.60, 32.87, 36.93, 41.82, 43.90, 48.22, 64.81, 64.83, 122.85, 127.39, 127.99, 128.35, 129.31, 131.84, 136.98, 138.94, 143.80, 147.40, 169.05
- (±)-Hexanedioic acid bis-[2-(3-diisopropylamino-1-25 phenylpropyl)-4-hydroxymethylphenyl]ester, tlc: R_f 0.43; NMR (CDCl₃): 20.64, 23.40, 34.37, 36.95, 41.84, 43.88, 48.25, 64.87, 122.88, 127.34, 127.97, 128.39, 129.33, 131.80, 136.99, 138.94, 143.82, 147.65, 168.72

b) Identical Diesters

(±)-Identical diesters (formula III) were prepared and worked up as described above with the exception that, 2.4 mmol of both triethylamine and acyl chloride (R¹—COCl) were used. The physical properties were similar to the bases 35 and salts described above.

Diesters of N-acylaminoacids were prepared as described for phenolic monoesters with the exception that an additional molar equivalent of acylating agent (mixed acid anhydride) was used.

In particular, the following compounds were prepared and their analytical data are given below:

- (±)-Formic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester, tlc: R_f 0.65 (4). This diester was prepared from mixed formic acetic anhydride and Intermediate B as described for other substrates previously (F. Reber, A. Lardon, T. Reichstein, *Helv. Chim. Acta* 37: 45-58 [1954])
- (\pm)-Acetic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R_f 0.76 (4); GC-MS/P-CI (ammonia): 426.3 (100%), 368.3 (22%); GC-MS/P-CI (methane, trimethylsilyl derivative): 426.4 (64%), 410.3 (16%), 366.3 (100%); hydrochloride, NMR (DMSOd₆)-16.50, 16.76, 18.05, 20.94, 21.04, 27.02, 31.39, 41.28, 55 45.26, 53.80, 65.21, 123.39, 126.84, 127.61, 127.85, 128.70, 134.41, 135.49, 142.68, 148.20, 169.32, 170.42
- (±)-Propionic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-propionyloxymethylphenyl ester, tlc: R_f 0.82 (4); NMR (CDCl₃): 20.53, 20.73, 21.14, 27.66, 36.73, 60 42.10, 43.68, 48.65, 65.75, 122.65, 126.10, 127.01, 127.70, 128.34, 128.78, 133.73, 136.81, 143.76, 148.45, 172.45, 174.21; GC-MS/P-CI (ammonia): 454.8 (100%), 438.5 (9%), 382.4 (27%)
- (±)-n-Butyric acid 4-n-butyryloxymethyl-2-(3- 65 diisopropylamino-1-phenylpropyl)-phenyl ester, tlc: R_f 0.86 (4); NMR (CDCl₃): 13.70, 13.76, 18.44, 20.53, 20.69, 21.13,

36.14, 36.76, 37.09, 42.08, 43.73, 48.71, 65.64, 122.81, 125.97, 126.97, 127.92, 128.35, 128.77, 133.78, 136.99, 143.76, 148.41, 171.68, 173.40; GC-MS/P-CI (ammonia): 482.8 (100%), 396.4 (67%)

(±)-Isobutyric acid 2-(3-diisopropylamino-1-phenylpropyl)-4-isobutyryloxymethylphenyl ester, tlc: R_f 0.83 (4), NMR (CDCl₃): 18.97, 19.10, 20.64, 20.67, 34.01, 34.23, 36.98, 41.72, 43.70, 48.65, 65.61, 122.50, 126.18, 126.73, 127.92, 128.13, 128.36, 133.90, 137.01, 143.85, 148.41, 175.17, 176.81; GC-MS/N-CI (methane): 480.3 (15%); GC-MS/P-CI (methane): 482.5 (63%), 466.4 (18%), 394.3 (100%)

(±)-2,2-Dimethylpropionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-(2,2-dimethylpropionyloxy)-benzyl ester, Tlc: R₂0.96 (4); NMR (CDCl₃): 20.44, 20.75, 27.09, 27.24, 37.18, 38.68, 39.15, 41.25, 43.66, 48.20, 65.50, 122.36, 126.32, 127.22, 127.48, 127.83, 128.29, 133.99, 136.98, 143.87, 148.37, 176.70, 178.10; GC-MS/P-CI (methane): 510.5 (76%), 494.5 (21%), 408.4 (100%)

(±)-Benzoic acid 4-benzoyloxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, tic: R₂0.80 (4); NMR (CDCl₃): 20.62, 36.95, 41.72, 43.89, 48.23, 66.76, 122.22, 125.33, 127.36, 127.62, 127.89, 127.89, 127.97, 128.38, 129.49, 130.52, 130.64, 131.15, 131.22, 131.98, 136.38, 137.66, 143.82, 148.95, 164.77, 166.60

(±)-Benzoic acid 4-benzoyloxyznethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester

Hydrochloride: colourless solid; tlc: (4) 0.70, [α]_D²⁰=+ 30 24.2 (c=1.0, chloroform). NMR (DMSO-d₆): 16.52, 17.99, 18.06, 26.99, 31.32, 53.94, 65.98, 123.58, 127.65, 127.98, 128.62, 128.90, 129.02, 129.45, 129.71, 130.10, 133.64, 134.32, 134.55, 135.60, 142.52, 148.37, 164.53, 165.76.

c) Mixed Diesters

Mixed diesters (formula IV) were prepared by acylation of the respective benzylic or phenolic monoesters. Working up and physical properties corresponded to the bases and salts described above.

In particular, the following compounds were prepared and their analytical data are given below:

- (±)-Acetic acid 2-(3-diisopropylamino-1-phenylpropyl)4-formyloxymethylphenyl ester, tlc: R_f 0.76 (4); NMR (CDCl₃): 20.62, 20.91, 33.25, 42.20, 42.28, 48.23, 70.70, 45 122.96, 127.36, 127.97, 128.38, 128.73, 132.02, 135.41, 137.11, 143.81, 149.35, 161.34, 168.95
 - (\pm)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-formyloxymethylphenyl ester, tlc: R, 0.74 (4); NMR (CDCl₃): 20.60, 36.93, 41.72, 43.89, 48.23, 70.71, 122.50, 125.33, 127.30, 127.89, 127.97, 128.36, 129.57, 130.65, 131.13, 132.05, 135.41, 136.66, 143.80, 149.15, 161.35, 164.78
 - (±)-Benzoic acid 2-(3-diisopropylamino-7phenylpropyl)-4-acetoxymethylphenyl ester

Viscous colourless oil, tlc: R_f 0.70 (4); NMR (CDCl₃): identical with R-(+) enantiomer, see below.

R-(±)-Benzoic acid 2-(3-disopropylamino-1phenylpropyl)-4-acetoxymethylphenyl ester

tic: R, 0.70 (4)

Hydrochloride: colourless non-hygroscopic solid $[\alpha]$, 20 =+27.1 (c=1.0, chloroform). NMR (CIXI₃): 17.14, 18.53, 21.04, 31.51, 42.25, 46.27, 54.74, 65.58, 123.18, 127.07, 127.55, 127.61, 127.99, 128.80, 130.22, 134.14, 134.81, 135.27, 141.44, 148.54, 165.19, 170.81.

(±)-Isobutyric acid 4-acetoxymethy1-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, tic: R_f0.77

(4); NMR (CDCl₃): 18.99, 19.12, 20.65, 21.05, 34.24, 37.02, 41.79, 43.79, 48.72, 65.98, 122.75, 126.76, 127.14, 127.94, 128.39, 128.84, 133.55, 137.04, 143.84, 148.56, 170.84, 175.18

(+)-Isobutyric acid 4-acetoxymethyl-2-(3-5 diisopropylamino-1-phenylpropyl)-phenyl ester colourless oil

Hydrochloride: colourless hygroscopic solid; $\left[\alpha\right]_0^{20}$ =+ 14.6 (c=1.0, chloroform); NMR (CDCl₃): 16.89, 17.04, 18.31, 18.54, 18.92, 19.06, 20.95, 31.49, 34.07, 41.64, 46.17, 54.55, 65.49, 122.91, 126.93, 127.48, 127.83, 128.74, 134.50, 134.88, 141.61, 148.44, 170.67, 175.63.

(±)-2,2-Dimethylpropionic acid 4-acetoxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R₇0.80 (4); NMR (CDCl₃): 20.63, 20.93, 27.19, 33.25, 37.49, 42.21, 42.25, 48.22, 67.37, 123.18, 127.36, 127.84, 128.39, 131.16, 137.34, 143.84, 148.29, 168.93, 178.40

(\pm)-2,2-Dimethylpropionic acid 4-acetoxymethyl-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, tlc: R_f 0.81 (4); NMR (CDCl₃): 20.60, 20.79, 27.09, 36.93, 37.35, 41.85, 42.29, 48.25, 65.91, 122.36, 127.37, 127.99, 128.39, 129.38, 132.69, 136.00, 136.85, 143.80, 170.45, 176.60

d) Benzylic Monoesters

A mixture consisting of Intermediate B (80 mg, 0.23 mmol), vinyl ester (0.4 ml), tert.-butyl methylether (18 ml), and lipase enzyme (1.0 g) was gently shaken at room temperature. Benzylic formate, acetate, and n-butyrate were prepared from the corresponding vinyl ester donors using 30 SAM I lipase (Amano Pharmaceutical Co.). Benzoylation was achieved with vinyl benzoate in the presence of Lipozym IM 20 (Novo Nordisk), whereas pivalates and isobutyrates were obtained from the corresponding vinyl esters under catalysis of Novozym SP 435 (Novo Nordisk). 35 Tle analysis indicated after 2–24 hrs complete disappearence of the starting material (R_j=0.45 (3)). The mixture was filtered and then evaporated under high vacuum (<40° C.) to give the carboxylic acid (R¹—CO₂H) salts of the respective benzylic monoesters as colourless to light yellow oils.

In particular, the following compounds were prepared and their analytical data are given below:

- (±)-Formic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f 0.25 (2); NMR (CDCl₃): 19.43, 33.24, 39.61, 42.25, 48.21, 68.44, 118.09, 127.34, 127.66, 128.31, 128.39, 133.97, 144.47, 156.63, 161.32
- (±)-Acetic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f 0.26 (2); NMR (CDCl₃): 19.45, 20.96, 33.26, 39.63, 42.27, 48.23, 63.59, 118.00, 127.36, 128.33, 128.48, 128.53, 129.13, 131.59, 133.88, 144.49, 155.74, 170.44
- (\pm) -Propionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tle: R_f 0.45 (2); NMR (CDCl₃): 19.02, 19.43, 27.58, 33.20, 39.61, 42.25, 48.21, 64.08, 118.30, 125.30, 127.03, 127.39, 128.31, 130.12, 134.22, 144.51, 155.64, 173.22
- (±)-Butyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f 0.54 (2); NMR (CDCl₃): 13.58, 18.40, 19.45, 33.29, 35.88, 39.65, 42.23, 48.25, 69 63.96, 118.32, 124.55, 126.20, 127.35, 128.32, 129.91, 134.22, 144.50, 155.60, 169.05
- (\pm) -Isobutyric acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_F 0.56 (4); NMR (CDCl₃): 19.09, 19.45, 33.28, 33.59, 39.65, 42.29, 48.25, 64.63, 118.35, 125.35, 127.03, 127.38, 128.35, 128.49, 129.79, 134.22, 144.52, 155.65, 175.48

(±)-2,2-Dimethylpropionic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R, 0.61 (4); NMR (CDCl₃): 19.41, 27.15, 33.24, 37.46, 39.61, 42.25, 48.21, 65.10, 118.30, 125.32, 127.00, 127.34, 128.31, 129.42, 134.18, 144.47, 155.61, 178.39

(\pm)-Benzoic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-hydroxybenzyl ester, tlc: R_f0.77 (4); NMR (CDCl₃): 18.01, 19.40, 33.24, 39.60, 42.40, 48.20, 66.93, 117.13, 127.18, 127.81, 128.33, 129.98, 130.17, 132.96, 133.58, 142.33, 156.95, 166.60

e) Ethers and Silyl Ethers

A mixture of Intermediate B (3.4 g, 10 mmol), methane-sulphonic acid (2 ml, 31 mmol), and alcohol R¹⁰—OH (50–150 ml) was stirred at room temperature until no starting material was detectable (2–24 hrs). After evaporation to dryness (<35° C.) the residue was redissolved in aqueous sodium hydrogen carbonate solution (100–200 ml, 5%, w/v) and the solution was extracted with ethyl accetate (75 ml). The organic phase was separated, dried (Na₂SO₄), filtered and evaporated to give bases of formula VI (R¹¹=H) as colourless to light yellow oils.

Mixed ester ether derivatives, e.g. of Intermediate A, were prepared by benzylic acylation of phenolic ethers, such as intermediate A, according to the procedure described for examples of the structure of formula IV.

Hydrochlorides:

Molar equivalents of bases of formula VI (R¹¹=H), dissolved in tert.-butyl methylether, and ethereal hydrochloric acid were combined at room temperature. Oily precipitates were separated and dried in vacuum, crystalline hydrochlorides were isolated and recrystallized from acetonitrile or acetone to give colourless crystalline material.

In particular, the following compounds were prepared and their analytical data are given below:

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-methoxymethylphenol, tle: R_f 0.61 (4); GC-MS/P-CI (methane, trimethylsilyl derivative): 428.4 (100%), 412.3 (49%), 396.3 (52%); hydrochloride: amorphous hygroscopic colourless solid; m.p. 161° C.; NMR (CD₃OD): 17.39/18.75 (broad signals), 33.79, 43.13, 56.47, 58.00, 75.59, 116.19, 120.79, 127.62, 129.04, 129.14, 129.42, 129.55, 130.43, 144.32, 155.85

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4ethoxymethylphenol, tlc: R_f 0.72 (4); GC-MS/P-CI (ammonia, trimethylsilyl derivative): 444.8 (100%), 398.4 (6%);

hydrochloride: colourless non-hygroscopic crystals, m.p. 158–161° C., NMR (CD₃OD): 15.43, 17.12, 18.82, 33.80, 56.49, 66.49, 73.62, 116.19, 127.63, 128.99, 129.13, 129.36, 50 129.55, 130.58, 130.75, 144.32, 155.77

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4-propoxymethylphenol, NMR (CDCl₃): 18.62, 19.44, 23.10, 33.24, 39.61, 42.26, 48.22, 71.87, 73.94, 117.78, 124.95, 127.35, 127.57, 128.32, 128.47, 133.66, 134.23, 144.48, 55 155.25

(±)-2-(3-Diisopropylamino-1-phenylpropyl)-4isopropoxymethylphenol, NMR (CDCl₃): 19.44, 22.32, 33.27, 39.65, 42.29, 48.25, 69.28, 72.10, 117.90, 127.38, 128.03, 128.41, 131.10, 133.76, 134.37, 144.51, 154.65.

Hydrochloride: colourless crystals, m.p. 140.4° C., tlc (4) 0.61. LC-MS: 383 (6%, [M-HCl]+), 368 (11%), 324 (1%), 223 (6%), 195 (3%), 165 (2%), 155 (5%), 114 (100%). NMR (DMSO-d₆): 16.57, 18.09, 18.19, 22.29, 31.58, 41.25, 45.87, 53.97, 69.26, 69.92, 115.28, 126.34, 127.08, 127.25, 127.96, 128.45, 129.07, 129.70, 132.31, 143.88, 154.22.

(±)-22-(3-Diisopropylamino-1-phenylpropyl)-4-butoxymethylphenol, NMR (CDCl₃): 13.75, 19.44, 19.75,

32.24, 33.28, 39.60, 42.20, 48.20, 72.45, 117.87, 125.50, 127.29, 128.39, 133.70, 134.30, 144.47, 155.36

(±)-Acetic acid 2-(3-Diisopropylamino-1-phenylpropyl)-4-methoxymethylphenyl ester, NMR (CDCl₃): 19.99, 20.62, 20.90, 33.33, 42.30, 48.21, 58.41, 75.94, 122.92, 127.37, 127.95, 128.35, 131.85, 136.99, 138.81, 143.88, 147.88, 168.95

(±)-Acetic acid 2-(3-Diisopropylamino-1-phenylpropyl)-4-ethoxymethylphenyl ester, NMR (CDCl₃): 15.49, 19.94, 20.95, 33.23, 42.25, 48.25, 65.70, 73.73, 122.63, 127.46, 10 127.95, 128.36, 131.65, 136.79, 139.71, 143.80, 147.66, 168.99

(±)-2-(3-Diisopropylamino-7-phenylpropyl)-4-trimethylsilanyloxymethylphenol, NMR (CDCl₃): 0.10, 19.40, 19.43, 33.25, 39.65, 42.25, 48.20, 64.93, 117.90, 15 124.90, 126.60, 127.35, 128.35, 128.48, 133.80, 137.15, 144.49, 155.28

(±)-Diisopropyl-[3-phenyl-3-(2-trimethylsilanyloxy-5-trimethylsilanyloxymethylphenyl)-propyl]amine, NMR (CDCl₃): 0.10, 0.29, 19.40, 19.53, 33.28, 41.19, 42.27, 20 48.25, 66.40, 121.37, 127.36, 128.25, 128.50, 136.42, 144.10, 154.98

(±)-[3-(3-Diisopropylamino-1-phenylpropyl)-4-trimethylsilanyloxyphenyl]methanol, NMR (CDCl₃): 0.29, 0.33, 19.40, 19.53, 33.27, 41.16, 42.27, 48.23, 65.22, 25 118.04, 124.99, 126.52, 127.30, 128.25, 134.16, 136.80, 144.14, 155.06

 (\pm) -Diisopropyl-[3-(5-methoxymethyl-2-trimethylsilanyloxyphenyl)-3-phenylpropyl]amine, NMR (CDCl₃): 0.28, 0.32, 19.39, 19.43, 33.28, 41.22, 42.33, 48.19, 58.40, 75.95, 117.68, 124.92, 126.60, 127.35, 128.25, 128.55, 134.00, 136.47, 144.16, 155.09

(±)-Diisopropyl-[3-(5-ethoxymethyl-2trimethylsilanyloxyphenyl)-3-phenylpropyl]amine, NMR (CDCl₃): 0.28, 0.31, 15.50, 19.42, 19.58, 33.29, 41.17, 35 solids. 42.25, 48.20, 65.70, 72.48, 117.50, 124.75, 126.39, 127.39, 128.25, 128.50, 134.99, 136.28, 144.19, 154.28 mediat

(\pm)-[4-(tert.-Butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-phenyl]methanol, R_f 0.65 (3).

(±)-Acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, NMR (CDCl₃): -4.92, -5.00, 19.40, 19.49, 20.40, 20.83, 23.49, 33.25, 41.22, 42.25, 48.25, 72.55, 81.55, 121.24, 124.88, 127.40, 128.26, 128.44, 128.48, 133.37, 135.74, 144.11, 155.20

(±)-4-(tert.-Butyl-dimethylsilanyloxymethyl)-2-(3-diisopropylamino-1-phenylpropyl)-phenol, tle: R_f 0.70 (3); GC-MS/N-CI (methane, trimethylsilyl derivative): 526.5 (59%), 454.3 (100%), 412.2 (14%), 340.1 (42%); GC-MS/ 50 P-CI (methane, trimethylsilyl derivative): 528.6 (100%), 512.5 (85%), 470.43 (10%), 396.3 (31%)

(±)-Acetic acid 4-(tert.-butyl-dimethylsilanyloxy)-2-(3-diisopropylamino-1-phenylpropyl)-phenyl ester, NMR (CDCl₃): -4.77, -4.88, 19.15, 20.65, 20.93, 24.77, 33.25, 55 42.20, 48.20, 67.90, 122.79, 125.15, 127.44, 127.90, 128.41, 136.99, 140.55, 143.85, 147.86, 168.95

(±)-{3-[2-(tert.-Butyl-dimethylsilanyloxy)-5-(tert.-butyl-dimethylsilanyloxymethyl)-phenyl]-3-phenylpropyl}-diisopropylamine, tlc: R_f 0.94 (3); GC-MS/N-CI (methane): 60 568.6 (62%), 454.3 (100%), 438.2 (10%), 340.2 (58%), 324.8 (16%), 234.7 (78%); GC-MS/P-CI (methane): 570.6 (70%), 554.5 (52%), 512.5 (18%), 438.4 (24%)

(±)-Acetic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R₂ 0.56 (5); GC-MS/P-Cl 65 (ammonia): 474.4 (100%), 416.4 (54%); NMR (CDCl₃): 20.44, 20.56, 21.07, 36.73, 41.53, 44.01, 48.79, 66.43,

70.00, 111.61, 125.75, 127.34, 127.55, 127.76, 127.90, 128.03, 128.27, 128.39, 133.98, 136.98, 144.63, 156.05, 170.94

(±)-Benzoic acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tlc: R,0.87 (4); NMR (CDCl₃): 20.54, 20.60, 36.80, 41.51, 43.95, 48.67, 66.83, 70.04, 111.66, 125.76, 127.35, 127.45, 127.78, 128.06, 128.27, 128.30, 128.42, 128.85, 129.66, 130.55, 132.86, 134.05, 137.03, 144.75, 156.08, 166.46; GC-MS/P-CI (ammonia): 536.5 (100%), 416.4 (42%)

(±)-Isobutyric acid 4-benzyloxy-3-(3-diisopropylamino-1-phenylpropyl)-benzyl ester, tle: R, 0.77 (4); NMR (CDCl₃): 19.01, 20.62, 20.65, 34.04, 36.85, 41.54, 43.97, 48.71, 66.15, 70.06, 111.62, 125.79, 125.96, 126.97, 127.24, 127.55, 127.81, 128.08, 128.34, 128.45, 134.05, 137.10, 144.79, 156.00, 177.01; GC-MS/P-CI (ammonia): 502.4 (100%), 416.4 (49%)

f) Carbamates and Carbonates

Mono N-substituted Carbamates

A solution of 4.0 mmol of Intermediate B, benzylic ether (formula VI, R¹¹=H) or monoester of formula II in dichloromethane (20 ml) was treated at room temperature for 16 hrs with isocyanate (4.8 mmol) or diisocyanate (2.2 mmol). After washing with 10 ml aqueous sodium hydrogen carbonate (5%, w/v), drying (Na₂SO₄) and evaporation oily residues or colourless solids of the free bases were obtained. N-disubstituted Carbamates

N,N-dialkyl-carbamoylchloride (4.4 mmol) was dissolved in dichloromethane and dropped into a cooled (0° C.) and stirred mixture consisting of Intermediate B (4.0 mmol), dichloromethane (30 ml) and triethylamine (7.0 mmol, 0.71 mg, 1 ml). Stirring was continued for 6 hrs. The mixture was then washed with 5 portions (10 ml) of aqueous sodium hydrogen carbonate, dried (sodium sulphate), filtered and evaporated to give the carbamates as colourless oils or solids.

Bis-carbamates were prepared in like manner using Intermediate B and excess isocyanate (4.8 mmol) and toluene as solvent at 65° C. over 18 hrs.

Carbonates were prepared and worked-up according to the methods described for the preparation of compounds of formulae II to IV. Alkyl chloroformates were used as acylation reagents. Hydrochlorides:

33.25, 41.22, 42.25, 48.25, 72.55, 81.55, 121.24, 124.88, 127.40, 128.26, 128.44, 128.48, 133.37, 135.74, 144.11, 45 ml). Addition of ethereal hydrochloric acid and evaporation to dryness in high vacuum gave crystalline or amorphous carbamate hydrochlorides.

In particular, the following compounds were prepared and their analytical data are given below:

(±)-N-Ethylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester, tlc: R_f 0.38 (4); GC-MS/P-CI (ammonia, trimethylsilyl derivative): 486.8 (100%), 413.4 (5%), 398.4 (6%); hydrochloride: m.p. 64° C. (with decomposition); NMR (DMSO-d_o): 15.16, 16.68, 18.05, 18.13, 25.33, 31.26, 35.46, 53.94, 62.65, 67.22, 123.04, 125.70, 126.72, 127.86, 128.67, 135.42, 136.02, 140.07, 142.98, 147.53, 154.52

(±)-N,N-Dimethylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester

NMR (CDCl₃): 20.34, 20.66, 30.51, 36.33, 36.77, 42.00, 48.28, 50.21, 65.65, 119.83, 123.44, 125.19, 126.60, 127.38, 127.54, 129.31, 136.62, 143.33, 150.99, 155.67.

(±)-N,N-Diethylcarbamic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester

NMR (CDCl₃); 20.54, 20.66, 30.49, 35.61, 42.42, 48.31, 50.20, 65.56, 119.43, 123.40, 125.33, 126.66, 126.99, 127.05, 136.30, 143.27, 149.13, 154.97

15

(±)-N-Phenylcarbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester; NMR (CDCl₃): 20.52, 20.61, 36.91, 39.44, 42.25, 48.22, 62.66, 118.36, 119.46, 123.50, 125.32, 127.11, 127.99, 130.15, 132.63, 139.65, 141.33, 145.16, 152.21, 156.00

(±)-[2-(3-Diisopropylamino-1-phenylpropyl)-4hydroxymethylphenoxycarbonylamino]acetic acid ethyl ester hydrochloride

Tlc: R_f 0.14 (4); m.p. colourless crystals (from acetone, 21% yield); NMR (CDCl₃): 16.76, 16.86, 18.45, 20.96, 31.37, 42.20, 46.13, 54.56, 65.50, 123.10, 126.98, 127.66, 128.72, 130.14, 134.05, 134.72, 135.22, 141.37, 148.47, 65.12, 170.71

(±)-N-Ethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N-ethylcarbamoyloxybenzyl ester, tlc: R_f 0.36 (3);

NMR (CDCl₃): 15.00, 19.23, 19.40, 33.2.6, 36.00, 39.62, ²⁰ 42.35, 48.12, 65.95, 118.30, 125.45, 127.08, 128.33, 130.37, 134.24, 144.44, 155.44, 157.74

(±)-N,N-Dimethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-dimethylcarbamoyloxybenzyl ester 25

NMR (CDCl₃): 20.59, 20.66, 30.59, 35.96, 36.40, 36.74, 36.98, 42.03, 48.26, 50.09, 67.09, 119.04, 123.23, 123.49, 125.01, 126.67, 127.72, 129.33, 133.65, 143.43, 150.99, 155.63

(±)-N,N-Diethylcarbamic acid 3-(3-diisopropylamino-1-phenylpropyl)-4-N,N-diethylcarbamoyloxybenzyl ester

NMR (CDCl₃): 13.31, 13.64, 13.89, 20.33, 20.71, 31.57, 37.97, 41.55, 42.37, 48.46, 51.00, 67.23, 120.00, 123.39, 124.82, 126.31, 126.95, 127.33, 150.36, 157.18, 158.97.

(±)-{4-[2-(3-Diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenoxycarbonylamino]-butyl}-carbamic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenyl ester (formula VII', X=Y=NH, n=4) 40 tlc: R_f 0.60 (6); dihydrochloride m.p. 142.5-145.6° C.

(±)-Carbonic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester ethyl ester, R, 0.67 (4)

(\pm)-Carbonic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-ethoxycarbonyloxymethylphenyl ester ethyl ester, R_c 0.87 (4)

g) Intramolecular Cyclic Diesters Via Ring Closing Metathesis (RCM)

-continued

N(i-Pr)2

N(i-Pr)2

EXAMPLE

(±)-Pent-4-enoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl ester (x=y=2)

A cooled (4° C.) mixture of pent-4-enoic acid, isobutyl chloroformate, and triethylamine (each 5.84 mmol) in 10 ml of dichloromethane was stirred 5 hrs under an atmosphere of dry nitrogen gas. The cooling bath was then removed and both triethylamine (1.46 mmol) and 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol (1.46 mmol) were added in one portion. After 18 hrs the mixture was diluted with dichloromethane (30 ml), washed several times with water and finally aqueous 5% sodium hydrogen carbonate solution. After drying (sodium sulphate), filtration and evaporation the oily residue was re-dissolved in a small volume of a solvent mixture consisting of ethyl acetate/ heptane/triethylamine (65/30/5, vol.-%) and applied on a silica gel flash chromatography column. Elution of the column with the same solvent mixture, collection of the appropriate fractions, and evaporation of the combined fractions gave (±)-pent-4-enoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4-encyloxymethyl)-phenyl ester as a pale yellow syrupy oil (50% yield), tlc: (4) 0.75. NMR (CDCl₃): 18.95, 20.77, 27.75, 28.87, 33.58, 36.83, 42.13, 43.72, 48.71, 65.85, 70.55, 115.47, 115.99, 122.45, 126.26, 55 127.08, 127.96, 128.11, 128.83, 133.73, 1–36.38, 136.79, 137.04, 143.77, 148.46, 171.11, 172.78. Intramolecular Cyclic Diesters of 1,ω-dioic Acids and Inter-

EXAMPLE

mediate B

Intramolecular cyclic diester of octane-1,8-dioic acid and 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethylphenol Grubbs catalyst (benzylidene-bis-(tricyclohexylphosphine)-dichlororuthenium, 16 mg, 0.002 mmol, 2 mol-%) was added to a solution of (±)-pent-4-enoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4-(pent-4-enoyloxymethyl)-phenyl ester (483 mg, 0.96 mmol) in

dichloromethane (150 ml) and the mixture was refluxed for 96 hrs. under an atmosphere of nitrogen gas, after which all of the starting material was consumed as indicated by tlc. The mixture was filtered through a short pad of basic alumina, and the solvent was removed in vacuum. Flash 5 chromatography (solvent system (4)) afforded the intermediate intramolecular cyclic diester of oct-4-ene-1,8-dioic acid and 2-(3-diisopropylamino)-1-(phenylpropyl)-4hydroxymethyl-phenol (324 mg) as a colourless syrup (tlc: (4) R_f 0.68) in 71% yield, mixture of two geometrical $_{10}$ isomers.

NMR (CDCl₃, major isomer): 19.24, 20.61, 23.11, 25.62, 30.55, 33.53, 35.02, 42.41, 48.29, 50.20, 65.30, 114.46, 124.33, 125.58, 127.15, 128.70, 129.29, 131.10, 132.46, 139.54, 146.76, 147.98, 173.76, 174.39.

A portion of this material (140 mg) was dissolved in ethylacetate (10 ml) and hydrogenated at room temperature in the presence of palladium-on carbon catalyst to afford the intramolecular cyclic diester of octane-1,8-dioic acid and 2-(3-diisopropylamino-1-phenylpropyl)-4-hydroxymethyl- 20 phenol in essentially quantitative yield, 139 mg, colourless oil, tlc: (4) 0.71.

NMR (CDCl₃); 19.36, 20.73, 24.84, 25.28, 28.90, 29.70, 30.57, 33.72, 34.37, 42.39, 48.26, 50.20, 65.26, 114.45, 124.37, 127.11, 128.67, 129.29, 131.18, 132.45, 139.52, 25 146.77, 147.69, 173.90, 174.15.

Poly-co-DL-Lactides of Intermediate B

All reagents were dried over P2O5 in vacuum (<1 mbar) and at room temperature. The reactions were carried out at room temperature in an atmosphere of dry, oxygen-free 30 nitrogen.

Low Molecular Weight Copolymer

A 15% solution of n-butyllithium (0.36 ml) was injected through a rubber septum into a stirred solution of 2-(3diisopropylamino-phenylpropyl)-4-hydroxymethylphenol 35 (100 mg, Intermediate B) and DL-dilactide (1.5 g) in 15 ml of dry toluene. The polymerization was allowed to proceed for 4 days at room temperature. Distilled water (10 ml) was then added in order to terminate the polymerization. The organic phase was separated and slowly dropped into 200 ml 40 of methanol. The precipitated colourless oil was treated with water (100 ml) and then dried in high vacuum for 48 hrs.

The copolymer was obtained in 72.7% yield. NMR analysis (see below) indicated an average molecular weight range about 8.4% (NMR). Tlc analysis showed the absence of monomeric Intermediate B. Gel permeation chromatography (GPC) analysis showed a Mw of 1108 and a Mn of 702. High Molecular Weight Copolymer

The high molecular weight copolymer was prepared as 50 described above with the exception that 3.0 g of DL-dilactide was used. Precipitation by methanol gave a fluffy white solid which was carefully washed with water and then dried as desribed to give the copolymer in 81% yield. NMR analysis (see below) indicated an average molecular weight range of M, 4000-8000 and a weight content of Intermediate B of about 2.0%. Tic analysis showed the absence of monomeric Intermediate B. Gel permeation chromatography (GPC) showed a Mw of 9347 and a Mn of 6981. Differential scanning calorimetry (DSC) 60 provided a Tg of 42.5° C. **NMR** Analysis

The ¹H NMR resonance signals of the poly-lactyl chain were clearly separated from the copolymeric part of Intermediate B (solvent CDCl₃):

CH₃ resonances of the poly-lactyl chain: 1.30-1.60 ppm CH resonances of the poly-lactyl chain: 5.10-5.30 ppm

CH resonances of the connecting lactyl units with the two hydroxy groups of Intermediate B: 4.8-5.0 ppm and 5.5-5.7 ppm.

Polymer bound Intermediate B: 1.06-1.11 (CH₃), 2.20-2.30 (CH₂CH₂), 2.40-2.80 (NCH₂), 3.30-3.50 (NCH), 4.45-4.55 (CHCH₂), 4.70-4.80 (CH₂-OCO-lactyl), 6.70-7.30 (aryl CH).

h) Inorganic Ester

EXAMPLE

(±)-Benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4sulphooxymethylphenyl ester Hydrochloride

To a stirred solution of chlorosulphonic acid (116 mg, 1.0 mmol) in 5 ml of dry diethyl ether was slowly added at 0° C. a solution of (±)-benzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-hydroxymethylphenyl ester (445.6 mg, 1.0 mmol) in 3 ml of dry diethyl ether. The gel formed immediately during the addition was stirred at room temperature until it became a crystalline consistency (ca. 1 hr). The precipitate was washed several times with diethyl ether and then dried in vacuum to give 0.52 g (46% yield) colourless crystals, m.p. 63-65° C. NMR (CDCl₃): 16.85, 17.03, 18.32, 18.49, 32.01, 42.29, 46.23, 55.23, 55.50, 69.24, 122.52, 126.94, 127.15, 129.04, 129.76, 130.25, 133.89, 134.93, 136.85, 141.87, 147.80, 165.19.

> i) Benzylic 1-O-β-D-glucuronide of 2-(3diisopropylamino-1-phenylpropyl)-4hydroxymethylphenol

((±)-2-(3-Diisopropylamino-I-phenylpropyl)-4-(1β-Dglucuronosyloxymethyl)-phenol)

A solution of methyl 2,3,4-triacetyl-1-a-Dof M, 2000-4000 and a weight content of Intermediate B of 45 glucuronosylbromide (2.07 g, 4.64 mmol) in 24 ml of dry toluene was cooled to -25° C. under an atmosphere of nitrogen and then treated with a solution of (±)-benzoic acid 2-(3-diisopropylamino-1-phenylpropyl)-4hydroxymethylphenyl ester in 7 ml of toluene. To this mixture was added dropwise with stirring and under projection from light a solution of silver triflate in 14 ml of toluene (immediate formation of a white precipitate). The cooling bath was removed after 15 min and pyridine (0.38 ml) was added. The mixture was diluted with ethyl acetate (200 ml), filtered and the clear yellow filtrate was washed sequentially with aqueous solutions of sodium thiosulphate (5%), sodium hydrogen carbonate (5%), and sodium chloride (20%). The solution was dried with solid sodium sulphate, treated with charcoal, filtered and evaporated to dryness. The waxy residue was re-dissolved in a small volume of a solvent mixture consisting of ethyl acetate/ heptane/triethylamine (65/30/5, vol.-%) and applied on a silica gel flash chromatography column. Elution of the column with the same solvent mixture, collection of the appropriate fractions, and evaporation of the combined fractions gave (±)-benzoic acid 2-(3-diisopropylamino-1phenylpropyl)-4-(2,3,4-triacetyl-1β-D-

glucuronosyloxymethyl)-phenyl ester, colourless syrup, tlc (4) 0.70 (starting amine: 0.31, bromo glycoside: 0.23), yield 14%.

NMR (CDCl₃, mixture of diastereomers): 20.41, 20.50, 5 20.60, 20.65, 20.84, 36.49, 42.44, 43.65, 48.73, 52.91, 69.46, 70.43, 71.12, 72.11, 72.60, 73.99, 99.19, 122.91, 126.23, 126.38, 126.54, 127.60, 127.92, 128.06, 128.09, 128.31, 128.59, 129.38, 130.22, 133.67, 134.31, 137.41, 143.52, 148.46, 164.82, 167.26, 169.21, 169.39, 170.07.

A portion (350 mg) of the above described material was dissolved and hydrolyzed in a solvent mixture consisting of tetrahydrofuran/methanol/aqueous potassium hydroxide (excess, 12 hrs, 22° C.). The mixture was evaporated, 15 re-dissolved in 5 ml of water and the pH was adjusted to 8.3. This solution was applied to a chromatography column charged with prewashed XAD 2 resin (50 g). The column was washed with water (ca. 250 ml) and then eluted with methanol. Collection of the appropriate methanol fractions, and evaporation of the combined fractions in vacuum gave 111 mg of (±)-2-(3-diisopropylamino-1-phenylpropyl)-4-(1β-D-glucuronosyloxymethyl)-phenol, sodium salt, amorphous colourless solid, m.p. ≈110-124° C. (dec.), tlc (4) 0.12. NMR (CD₃OD, major isomer): 19.43, 19.67, 33.26, 39.63, 42.27, 48.23, 69.76, 73.55, 74.70, 75.95, 78.03, 107.64, 117.95, 125.51, 127.36, 128.33, 133.83, 134.77, 144,49, 155.36, 176.76.

II. Incubations of Different Compounds of the Invention with Human Liver S 9-fraction

a) Incubation of Unlabelled Substrates

A pooled human liver S 9-preparation was used to show the in-vitro metabolism of different compounds of the invention and to prove the generation of the active metabolite by enzymatic process.

The pooled human liver S 9-preparation was delivered by 40 Gentest, Woburn, Mass., USA.

In a routine assay, $25\,\mu\text{L}$ of pooled human liver S9 (20 mg protein/mL, H961, Gentest, Woburn, Mass., USA) was incubated for 2 hrs at 37° C. with 40 μM substrate in a 0.01 M potassium phosphate buffer in the presence of NADPH (1 mM). The reaction was quenched by the addition of concentrated perchloric acid and precipitating protein was removed by centrifugation. The supernatant was adjusted to pH 3 with concentrated potassium phosphate solution, 50 centrifuged, and injected into the HPLC for analysis of the respective products.

The analysis of the non-deuterated compounds was performed by a routine High Pressure Liquid Chromatography 55 (HPLC) method with UV-detection.

The incubation results expressed in (%) of theoretical turnover are presented in FIG. 1.

They ranged from 96 to 63,2%. The formation of the active metabolite is dependent on the substituents both at the benzylic and phenolic side of the respective compounds.

Explanation:

The prodrugs introduced in the assay show the following chemical structure:

chemical structure X-/--Y

b) Incubation of Labelled Substrates

The metabolic degradation of the unlabelled hydroxy metabolite (i.e. Intermediate B) and the deuteriated hydroxy-metabolite (Intermediate d₂B) were compared in vitro. Used were the respective enantiomers and the racemates.

The hydroxy metabolite and the deuteriated hydroxymetabolite expressed significant differences in the rate to produce the corresponding carboxylic acid.

The measurement was performed with an incubation time of 3 hrs at 37.0° C. in a concentration of 40 µM. The formation of the carboxylic acid from the deuteriated hydroxy-metabolite showed a significantly decreased velocity of 10%.

These in-vitro experiments indicate a reduced metabolic turnover of the deuteriated compound in vitro, which may result in higher plasma levels.

c) Receptor Binding Study

WO 94/11337 discloses that the active metabolite has high affinity to muscarinic receptors in the guinea-pig bladder. Different compounds of the present invention were tested in a well established standardized assay, measuring the binding of [3H]-methylscopolamine to recombinant human M3 receptors. BSR-M3H cells transfected with a plasmid encoding the human muscarinic M3 receptor were used to prepare membranes in modified Tris-HCl pH 7.4 buffer using standard techniques. An aliquot of the membrane preparation was incubated with [3H]methylscopolamine in the presence or absence of different concentrations of several compounds of the invention for 60 minutes at 25° C. Nonspecific binding was estimated in the presence of 1 µM atropine. Membranes were filtered and washed three times and the filters were counted to determine the amount of [3H]-methylscopolamine specifically bound. The following table shows the IC₅₀ values of several compounds of the invention in the M3 receptor binding assay.

Interaction with Human M3 Receptors in vitro

Prodrug	IC ₅₀ [BM]		
(+) HO—/—OH	8.7		
(-) HO- +-OH	1300		
(+) HO/OiBut	159		
(+) HO—/—OBz	172		
BzO-/OBz	2400		
AcO/OiBut	3600		
AcO-/OBz	5400		

These data clearly showed that derivatization at the phenolic hydroxyl moiety results in an about 20 times less

45

potent binding. If both functionalities are derivatized, the binding is even more dramatically reduced. Furthermore, it is demonstrated that the enantiomers of the active metabolite exhibit a marked difference in the binding characteristics to human M3 receptors.

The compounds were tested for their anticholinergic activity in a standard tissue assay, the guinea-pig ileum. A segment of ileum was obtained from Duncan Hartley guinea-pigs which were sacrified by cervical dislocation. The tissue was placed under 1 g tension in a 10 ml bath containing Krebs' solution (pH 7.4, 32° C.) and the concentration-dependent ability of different compounds to reduce the methacholine-induced (0.6 $\mu \rm M$) contractile response was recorded. The IC50 values for the different substances were calculated and examples are presented in the following table.

Anticholinergic Activity in Guinea-pig Ileum in vitro

Prodrug	ICso [nM]	20
(+) HO/OH	20	
(-) HO/OH	680	
(+) HQ /—OiBut	57	
(+) HO/QBz	180	
(+) B2O/OB2	220	25
(+) AcO-/OiBut	240	

These data confirm the results obtained in the receptor binding assays and demonstrate that the anticholinergic activity of the compounds decreases with increased derivatization.

d) Biological Membranes

Different compounds of the invention were tested for their ability to penetrate the human skin (200 µm thick) in the "Flow through cell" at 32° C. according to Tiemessen et al. (Acta Pharm. Technol. 1998; 34:99–101). Phosphate buffer (pH 6.2) was used as the acceptor medium. Samples were drawn at different time points and analysed by RP-HPLC with UV detection (220 nm). Permeation profiles were plotted and mean flux rates of different substances were valculated by linear regression analysis. The data obtained for different compounds of the invention are summarized in the following table.

Penetration Through Human Skin

Prodrug	Flux rate [µg/cm²/24 hrs]	
но/он	3	50
HO/OiBut	150	
iButO/QiBut	60	
PropO√—OProp	70	

Disubstitution of the hydroxy group of HO—/—OH leads 55 to a ≥20-fold increase in skin permeation in relation to the parent HO—/—OH. Suprisingly monosubstitution of the penolic hydroxy group resulted in even higher 50-fold penetration rate through human skin.

Taken together, these biological data clearly demonstrate 60 that the compounds of the invention have a reduced affinity to bind to human muscarinic M3 receptors. They exhibit an increased penetration through biological membranes, e.g. the human skin, and they are rapidly transformed to the active metabolite, once they have entered the systemic 65 circulation as shown by the in vitro metabolism by the human liver S9 preparation.

Thus, the antimuscarinic prodrugs according to this invention showed a profile that defines excellent prodrugs. What is claimed is:

1. A 3,3-Diphenylpropylamine having the formula I:

wherein R and R' are independently

hydrogen, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, substituted or unsubstituted benzyl, or allyl;

with the proviso that at least one of R' and R is not hydrogen, and the proviso that R' is not methyl or benzyl when R is hydrogen, and R is not ethyl when R' is hydrogen.

X represents a tertiary amino group of formula Ia

wherein R^3 and R^9 represent $C_1 - C_5$ alkyl groups, which may be the same or different and which together contain at least three carbon atoms, or R^8 and R^9 may form a ring together with the amine nitrogen,

A represents hydrogen (¹H) or deuterium (²H), and their salts with physiologically acceptable acids, their free bases and, when the compounds are in the form of optical isomers, the racemic mixture and the individual enantiomers.

2. The 3,3-Diphenylpropylamine of claim 1, wherein X is

3. A 3,3-Diphenylpropylamine having the formula VI:

wherein A represents hydrogen (H) or deuterium (²H), and their salts with physiologically acceptable acids, their free bases and, when the compounds are in the form of optical isomers, the racemic mixture and the individual enantiomers, and wherein one of R10 or R11 is selected from C1-C6 alkyl, allyl, or benzyl, and the other represents hydrogen, with the proviso that R11 is not methyl or benzyl when R10 is hydrogen, and R¹⁰ is not ethyl when R¹¹ is hydrogen.

4. The 3,3-Diphenylpropylamine of claim 3 selected from 5 the group consisting of:

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4methoxymethyl-phenol,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4ethoxymethyl-phenol,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4propoxymethyl-phenol,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4isopropoxy-methylphenol,

(±)-2-(3-diisopropylamino-1-phenylpropyl)-4butoxymethyl-phenoi.

A 3,3-Diphenylpropylamine having the formula VII:

25

30

40

wherein R is C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, substituted or unsubstituted benzyl, or allyl;

X represents a tertiary amino group of formula la

wherein R⁸ and R⁹ represent non-aromatic hydrocarbyl groups, which may be the same or different and which together contain at least three carbon atoms, and wherein R⁸ and R9 may form a ring together with the amine nitrogen,

Y and Z independently represent O, S or NH,

A represents hydrogen (1H) or deuterium (2H),

n is 0 to 12, and

their salts with physiologically acceptable acids, their free bases and, when the compounds are in the form of 65 optical isomers, the racemic mixture and the individual enantiomers.

6. The 3.3-Diphenylpropylamines of claim 5, wherein X

7. A pharmaceutical composition comprising a 3,3diphenylpropylamine according to any one of claims 1-6 and a pharmaceutically acceptable carrier.

8. A process for the production of ethers according to claim 3, wherein R11 is hydrogen, which comprises reacting 15 a compound of the formula

with an alcohol R10-OH in the presence of a catalyst.

9. A process for the preparation of ethers of formula VI:

Formula VI

wherein A represents hydrogen (1H) or deuterium (2H), and

their salts with physiologically acceptable acids, their free bases and, when the compounds are in the form of optical isomers, the racemic mixture and the individual enantiomers, and

wherein one of R10 or R11 is selected from C1-C6 alkyl, allyl, or benzyl, and the other represents hydrogen,

with the proviso that R^{11} is not methyl or benzyl when R^{10} is hydrogen, and R^{10} is not ethyl when R^{11} is hydrogen;

wherein the process comprises acid or base treatment, in the presence of at least one alcohol selected from R¹⁰OH and R¹¹OH, of a compound selected from

10

15

20

35

50

-continued

wherein R10 is hydrogen,

wherein R^{12} is hydrogen and R^{13} represents a C_1 - C_6 alkoxycarbonyl group or

wherein R4 and R5 independently represent hydrogen, C1-C6 alkyl, substituted or unsubstituted aryl, benzyl or phenoxyalkyl wherein the alkyl residue has 1 to 4 carbon 65 atoms or R4 and R5 form a ring together with the amine nitrogen, and

(f) benzylic acylates selected from

Formula III

$$\mathbb{R}^{\frac{1}{2}}$$
 $\mathbb{R}^{\frac{1}{2}}$ \mathbb{R}

wherein R¹ is hydrogen, C₁-C₆ alkyl or phenyl, and R² represents hydrogen, C₁-C₆ alkyl or phenyl, with the proviso that R¹ and R² are not identical.

10. A process for the preparation of ethers of formula VI Formula VII 40 according to claim 3, which comprises treating a compound of the formula

with an alkylating agent selected from alkyl halides, alkyl sulphates and alkyl triflates, said alkyl group having 1 to 6

- 11. A method of antagonizing a muscarinic receptor, the method comprising contacting the receptor with a compound according to any one of claims 1-6.
- 12. A method of treating a disease in a mammal that is amenable to treatment by antagonizing muscarinic receptors 60 in the mammal, the method comprising administering an amount of a composition according to claim 7 effective to diminish or eliminate symptoms of the disease.
 - 13. The method according to claim 12 wherein the disease is urinary incontinence.
 - 14. The method according to claim 13 wherein the mammal is a human.

Electronic Patent Application Fee Transmittal								
Application Number:	11	201756						
Filing Date:	10	-Aug-2005						
Title of Invention:	NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES							
First Named Inventor/Applicant Name:	Cl	aus Meese						
Filer:	W	illem deWeerd/The	eresa Doonan					
Attorney Docket Number:	12	961/46103						
Filed as Large Entity								
Utility Filing Fees								
Description		Fee Code	Quantity	Amount	Sub-Total in USD(\$)			
Basic Filing:								
Pages:								
Claims:								
Miscellaneous-Filing:								
Petition:								
Patent-Appeals-and-Interference:								
Post-Allowance-and-Post-Issuance:								
Extension-of-Time:								

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)		
Miscellaneous:						
Request for continued examination	1801	1	810	810		
	Total in USD (\$) 810					

Electronic Ac	Electronic Acknowledgement Receipt						
EFS ID:	2739649						
Application Number:	11201756						
International Application Number:							
Confirmation Number:	3812						
Title of Invention:	NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES						
First Named Inventor/Applicant Name:	Claus Meese						
Customer Number:	26646						
Filer:	Willem deWeerd/Theresa Doonan						
Filer Authorized By:	Willem deWeerd						
Attorney Docket Number:	12961/46103						
Receipt Date:	18-JAN-2008						
Filing Date:	10-AUG-2005						
Time Stamp:	16:24:13						
Application Type:	Utility under 35 USC 111(a)						

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	\$810
RAM confirmation Number	2765
Deposit Account	110600
Authorized User	

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

File Listing:

Document Number	Document Description	File Name	File Size(Bytes) /Message Digest						
1	Request for Continued Examination	equest for Continued Examination 12961_46103_RCE_Dec_Ex		no	180				
'	(RCE)	hibits.pdf	20ff12f1c6fa994391306bad68570403f3 80a253	110	100				
Warnings:	Warnings:								
This is not a U	SPTO supplied RCE SB30 form.								
Information:									
2	Fee Worksheet (PTO-06)	fee-info.pdf	8178	no	2				
۷	2 Tee Worksheet (TTO-00) Tee-IIIIO.pdf I13fd66c469051b725atbfa0td94868a5 3a953d7 I10 Z								
Warnings:									
Information:									

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

Total Files Size (in bytes):

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

7581918

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

PATENT APPLICATION FEE DETERMINATION RECORD Substitute for Form PTO-875							Application or Docket Number Filing Date 11/201,756 08/10/2005			To be Mailed	
APPLICATION AS FILED – PART I (Column 1) (Column 2)							SMALL	ENTITY	OR		HER THAN
	FOR		JMBER FIL	<u> </u>	NUMBER EXTRA		RATE (\$)	FEE (\$)	<u> </u>	RATE (\$)	FEE (\$)
	BASIC FEE (37 CFR 1.16(a), (b),		N/A		N/A		N/A	. == (+)	1	N/A	. == (+)
	SEARCH FEE (37 CFR 1.16(k), (i), (i)		N/A		N/A		N/A		1	N/A	
	EXAMINATION FE (37 CFR 1.16(o), (p),	ΞE	N/A		N/A		N/A		1	N/A	
	TAL CLAIMS CFR 1.16(i))		mir	us 20 = *		1	x \$ =		OR	x \$ =	
IND	EPENDENT CLAIM CFR 1.16(h))	IS	m	inus 3 = *		1	x \$ =		1	x \$ =	
	APPLICATION SIZE 37 CFR 1.16(s))	shee is \$2 addit	If the specification and drawings exceed 100 sheets of paper, the application size fee due is \$250 (\$125 for small entity) for each additional 50 sheets or fraction thereof. See 35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s).								
	MULTIPLE DEPEN	IDENT CLAIM PR	ESENT (3	7 CFR 1.16(j))							
* If 1	he difference in colu	umn 1 is less than	zero, ente	r "0" in column 2	2.		TOTAL			TOTAL	
	APP	LICATION AS (Column 1)	AMEND	(Column 2)	(Column 3)		SMAL	L ENTITY	OR		ER THAN ALL ENTITY
AMENDMENT	01/18/2008	CLAIMS REMAINING AFTER AMENDMENT		HIGHEST NUMBER PREVIOUSLY PAID FOR	PRESENT EXTRA		RATE (\$)	ADDITIONAL FEE (\$)		RATE (\$)	ADDITIONAL FEE (\$)
ME	Total (37 CFR 1.16(i))	* 22	Minus	** 20	= 2		x \$ =		OR	X \$50=	100
I H	Independent (37 CFR 1.16(h))	* 7	Minus	***4	= 3		x \$ =		OR	X \$210=	630
√ME	Application S	ize Fee (37 CFR 1	.16(s))								
_	FIRST PRESEN	NTATION OF MULTIF	LE DEPEN	DENT CLAIM (37 (CFR 1.16(j))				OR		370
							TOTAL ADD'L FEE		OR	TOTAL ADD'L FEE	1100
		(Column 1)		(Column 2)	(Column 3)						
L		CLAIMS REMAINING AFTER AMENDMENT		HIGHEST NUMBER PREVIOUSLY PAID FOR	PRESENT Y EXTRA		RATE (\$)	ADDITIONAL FEE (\$)		RATE (\$)	ADDITIONAL FEE (\$)
Z Z	Total (37 CFR 1.16(i))	*	Minus	**	=		x \$ =		OR	x \$ =	
AMENDMENT	Independent (37 CFR 1.16(h))	*	Minus	***	=		x \$ =		OR	x \$ =	
Ш	Application S	ize Fee (37 CFR 1	.16(s))						1		
AM	FIRST PRESEN	NTATION OF MULTIF	LE DEPEN	DENT CLAIM (37 (CFR 1.16(j))				OR		
							TOTAL ADD'L FEE		OR	TOTAL ADD'L FEE	
** If	f the "Highest Numb	er Previously Paid oer Previously Paid	For" IN TH I For" IN T	HIS SPACE is le HIS SPACE is le	in column 3. ss than 20, enter "20' ess than 3, enter "3". the highest number		/PAUL	nstrument Ex M. STANBACI opriate box in colu	K/	er:	

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Document code: WFEE

United States Patent and Trademark Office Sales Receipt for Accounting Date: 03/17/2008

PSTANBAC SALE #00000003 Mailroom Dt: 01/18/2008 110600 11201756

01 FC:1202 100.00 DA 02 FC:1201 630.00 DA 03 FC:1203 370.00 DA Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number

PATENT APPLICATION FEE DETERMINATION RECORD Substitute for Form PTO-875							Application or Docket Number 11/201,756 Filing Date 08/10/2005			To be Mailed	
APPLICATION AS FILED – PART I (Column 1) (Column 2)							SMALL	ENTITY \Box	OR		HER THAN
FOR NUMBER FILED NUMBER EXTRA						RATE (\$)	FEE (\$)		RATE (\$)	FEE (\$)	
BASIC FEE (37 CFR 1.16(a), (b), or (c))				N/A	1	N/A		1	N/A	, ,	
	SEARCH FEE (37 CFR 1.16(k), (i), (i)		N/A		N/A		N/A		1	N/A	
	EXAMINATION FE (37 CFR 1.16(o), (p),	Ε	N/A		N/A	1	N/A		1	N/A	
	TAL CLAIMS CFR 1.16(i))		mir	nus 20 = *		1	x \$ =		OR	x \$ =	
IND	DEPENDENT CLAIM CFR 1.16(h))	IS	m	inus 3 = *		1	x \$ =		1	x \$ =	
	APPLICATION SIZE (37 CFR 1.16(s))	shee is \$2 addit	If the specification and drawings exceed 100 sheets of paper, the application size fee due is \$250 (\$125 for small entity) for each additional 50 sheets or fraction thereof. See 35 U.S.C. 41(a)(1)(G) and 37 CFR 1.16(s).								
\boxtimes	MULTIPLE DEPEN	NDENT CLAIM PR	ESENT (3	7 CFR 1.16(j))							360
* If t	the difference in colu	umn 1 is less than	zero, ente	r "0" in column 2	2.		TOTAL			TOTAL	360
APPLICATION AS AMENDED – PART II (Column 1) (Column 2) (Column 3)							SMAL	L ENTITY	OR		ER THAN ALL ENTITY
AMENDMENT	01/18/2008	CLAIMS REMAINING AFTER AMENDMENT		HIGHEST NUMBER PREVIOUSLY PAID FOR	PRESENT Y EXTRA		RATE (\$)	ADDITIONAL FEE (\$)		RATE (\$)	ADDITIONAL FEE (\$)
ME	Total (37 CFR 1.16(i))	* 18	Minus	** 22	= 0		x \$ =		OR	X \$50=	0
볾	Independent (37 CFR 1.16(h))	* 8	Minus	***7	= 1		x \$ =		OR	X \$210=	210
۸MI	Application Si	ize Fee (37 CFR 1	.16(s))								
	FIRST PRESEN	NTATION OF MULTIF	PLE DEPEN	DENT CLAIM (37	CFR 1.16(j))				OR		
							TOTAL ADD'L FEE		OR	TOTAL ADD'L FEE	210
		(Column 1)		(Column 2)	(Column 3)				_		
		CLAIMS REMAINING AFTER AMENDMENT		HIGHEST NUMBER PREVIOUSL' PAID FOR	PRESENT Y EXTRA		RATE (\$)	ADDITIONAL FEE (\$)		RATE (\$)	ADDITIONAL FEE (\$)
Z U	Total (37 CFR 1.16(i))	*	Minus	**	=		x \$ =		OR	x \$ =	
AMENDMENT	Independent (37 CFR 1.16(h))	*	Minus	***	=		x \$ =		OR	x \$ =	
	Application Si	ize Fee (37 CFR 1	.16(s))								
AM	FIRST PRESEN	NTATION OF MULTIF	PLE DEPEN	DENT CLAIM (37	CFR 1.16(j))				OR		
							TOTAL ADD'L FEE		OR	TOTAL ADD'L FEE	
** If	If the "Highest Numb	er Previously Paid oer Previously Paid	For" IN TH	HIS SPACE is le THIS SPACE is le	in column 3. ess than 20, enter "20' ess than 3, enter "3". the highest number		/WILLIA	nstrument Ex AM N. PHILLIF opriate box in colu	PS/	er:	

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS

ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

	Application No.	Applicant(s)		
Interview Summary	11/201,756	MEESE ET AL.		
merview Summary	Examiner	Art Unit		
	Zachary C. Tucker	1624		
All participants (applicant, applicant's representative, PTC	personnel):			
(1) Zachary C. Tucker.	(3) <u>Steve Lee</u>			
(2) <u>Joe Coppolla</u> .	(4)			
Date of Interview: <u>11 February 2008</u> .				
Type: a)☐ Telephonic b)☐ Video Conference c)☒ Personal [copy given to: 1)☐ applicant	2) applicant's representative	e]		
Exhibit shown or demonstration conducted: d) Yes If Yes, brief description:	e)⊠ No.			
Claim(s) discussed: <u>none</u> .				
Identification of prior art discussed: none.				
Agreement with respect to the claims f) was reached.	g)⊡ was not reached. h)⊠ N	I/A.		
Substance of Interview including description of the general reached, or any other comments: <u>See Continuation Sheet</u>		if an agreement was		
(A fuller description, if necessary, and a copy of the amendallowable, if available, must be attached. Also, where no allowable is available, a summary thereof must be attached.	copy of the amendments that w			
THE FORMAL WRITTEN REPLY TO THE LAST OFFICE INTERVIEW. (See MPEP Section 713.04). If a reply to the GIVEN A NON-EXTENDABLE PERIOD OF THE LONGER INTERVIEW DATE, OR THE MAILING DATE OF THIS INTERVIEW DATE, OF THE SUBSTANCE OF THE INTERQUIREMENTS ON REVERSE SIDE OF ON Attached sheet.	e last Office action has already OF ONE MONTH OR THIRTY FERVIEW SUMMARY FORM,	been filed, APPLICANT IS ODAYS FROM THIS WHICHEVER IS LATER, TO		
	7.4			
	/Zachary C. Tucker/ Primary Examiner, Art Unit 16	624		
Examiner Note: You must sign this form unless it is an	Examiner's signature, if requi			

Attachment to a signed Office action.
U.S Patent and Trademark Office
PTOL-413 (Rev. 04-03)

Interview Summary

Paper No. 20080211

Application No. 11/201,756

Continuation of Substance of Interview including description of the general nature of what was agreed to if an agreement was reached, or any other comments: The issue of the disapproved Terminal Disclaimers was discussed, and applicants' coiunsel agreed to submit new Terminal Disclaimers signed by attorneys of record. Examiner Tucker asked if compounds covered in new claims 35-43 were claimed or covered by any copending applications or parent patents, and Mrs. Ccppolla and Lee indicated that they were covered by US 6,713,464, which will be one of the newly filed Terminal Disclaimers filed over the instant application.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT Meese et al.

SERIAL NO. 11/201,756

FILED August 10, 2005

FOR **NOVEL DERIVATIVES OF 3,3-**

DIPHENYLPROPYLAMINES

EXAMINER Tucker

1624 GROUP ART UNIT: I hereby certify that this correspondence is being deposited with

the United States Postal Service as first class mail in an envelope addressed to: Mail Stop Amendment, Commissioner for Patents,

P.O. Box 1450, Alexandria, VA 22313-1450

Mail Stop Amendment Date: February 19, 2008 Commissioner for Patents

P.O. Box 1450

Signature: /Theresa A.E. Doonan/ Theresa A.E. Doonan Alexandria, VA 22313-1450

TRANSMITTAL OF RESPONSE TO EXAMINER'S INTERVIEW SUMMARY

SIR:

In response to the Examiner's Interview of February 11, 2008, Applicant encloses herewith:

- 1. Examiner's Interview Summary:
- 2. Four (4) Terminal Disclaimers to Obviate a Double Patenting Rejection Over a Prior Patent/Application for the following patents: 6,858,650; 6,713,464 and the following patent applications: 10/533,683; 10/532,836;
- 3. A new copy of Exhibit A and Exhibit E, as filed January 18, 2008, as requested by the Examiner due to poor image quality.

No fees are believed due. In the event a determination is made that fees are due, the Commissioner is authorized to charge any such fees or credit any overpayment in connection with this paper to Deposit Account No. 11-0600. A copy of this form is enclosed for charging purposes.

Respectfully submitted,

KENYON & KENYON LLP

Dated: February 19, 2008 Bv:

∕Joseph A. Coppeila (Registration No. 38,413)

One Broadway New York, New York 10004

(212) 425-7200

CUSTOMER NO. 26646

Docket No.: 12961/46103

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANT : Meese et al.

SERIAL NO. : 11/201,756

FILED : August 10, 2005

FOR : NOVEL DERIVATIVES OF 3,3-

DIPHENYLPROPYLAMINES

EXAMINER: Tucker

GROUP ART UNIT: 1624

Mail Stop Amendment COMMISSIONER FOR PATENTS P.O. BOX 1450 Alexandria, VA 22313-1450

EXAMINER INTERVIEW SUMMARY

The Applicants thank the Examiner for the in-person interview extended to the Applicants' representatives Steven J. Lee and the undersigned on February 11, 2008. The interview included a discussion of the Terminal Disclaimers that were previously submitted in this application. The Applicants' representatives agreed to re-submit the Terminal Disclaimers under the signature of an attorney of record.

Accordingly, enclosed herewith are four Terminal Disclaimers. The four Terminal Disclaimers are the same as the Terminal Disclaimers previously submitted except that they are signed by the undersigned rather than by Dr. Dressen.

The pending claims were also discussed at the interview. In answer to the Examiner's question, the Applicants' representatives stated that the compounds recited in new claims 35-43 filed January 18, 2008 were within the scope of some of the claims of U.S. Patent 6,713,464.

The Examiner requested new copies of Exhibits A and E filed January 18, 2008 since the copies scanned into the USPTO's records appear to have dark sections which make them difficult to read. Accordingly, enclosed herewith are new copies of Exhibits A and E.

Respectfully submitted,

Date: FEBRUARY 19, 2008

BY:

Joseph A. Coppose Reg. No. 38,413

KENYON & KENYON

One Broadway

New York, NY 10004

(212) 425-7200 (telephone)

(212) 425-5288 (facsimile)

U.S. Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE
Under the Pagentor's Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information u	
TERMINAL DISCLAIMER TO OBVIATE A DOUBLE PATENTING	Docket Number (Optional)
REJECTION OVER A "PRIOR" PATENT	12961/46103
In re Application of: Claus MEESE, et al.	
Application No.: 11/201,756	
Filed: August 10, 2005	
For: NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES	
except as provided below, the terminal part of the statutory term of any patent granted on the instant at the expiration date of the full statutory term prior patent No. 6,858,650 as the term of said and 173, and as the term of said prior patent is presently shortened by any terminal disclaimer. The originated on the instant application shall be enforceable only for and during such period that it and the programment runs with any patent granted on the instant application and is binding upon the grantee, its said the programment runs with any patent granted on the instant application and is binding upon the grantee.	I prior patent is defined in 35 U.S.C. 154 owner hereby agrees that any patent so prior patent are commonly owned. This successors or assigns.
In making the above disclaimer, the owner does not disclaim the terminal part of the term of any patent would extend to the expiration date of the full statutory term as defined in 35 U.S.C. 154 and 173 of the patent is presently shortened by any terminal disclaimer," in the event that said prior patent later: expires for failure to pay a maintenance fee; is held unenforceable; is found invalid by a court of competent jurisdiction; is statutorily disclaimed in whole or terminally disclaimed under 37 CFR 1.321;	t granted on the instant application that prior patent, "as the term of said prior
has all claims canceled by a reexamination certificate; is reissued; or is in any manner terminated prior to the expiration of its full statutory term as presently shortened be	oy any terminal disclaimer.
Check either box 1 or 2 below, if appropriate.	
1. For submissions on behalf of a business/organization (e.g., corporation, partnership, university, etc.), the undersigned is empowered to act on behalf of the business/organization.	, government agency,
I hereby declare that all statements made herein of my own knowledge are true and that all belief are believed to be true; and further that these statements were made with the knowledge that made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United Statements may jeopardize the validity of the application or any patent issued thereon.	willful false statements and the like so
2. The undersigned is an attorney or agent of record. Reg. No. 38,413	
Inal a Comba	February 19, 2008
Stghature Stghature	Date
- I to the Dan No DD 440	
Joseph A. Coppola, Reg. No. 38,413 Typed or printed name	
• 1984 - F	
	(212) 425-7200
	Telephone Number
Terminal disclaimer fee under 37 CFR 1.20(d) included.	
WARNING: Information on this form may become public. Credit card information on this form. Provide credit card information and authorization of	ation should not on PTC-2038.
*Statement under 37 CFR 3.73(b) is required if terminal disclaimer is signed by the assignee (owner).	

This collection of information is required by 37 CFR 1.321. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Form PTO/SB/96 may be used for making this certification. See MPEP § 324.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OM8 control number.

TERMINAL DISCLAIMER TO OBVIATE A DOUB REJECTION OVER A "PRIOR" PAT		Docket Number (Optional) 12961/46103
In re Application of: Claus MEESE, et al.		
Application No.: 11/201,756		
Filed: August 10, 2005		
For: NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES		
The owner*, <u>SCHWARZ PHARMA AG</u> , of except as provided below, the terminal part of the statutory term of any the expiration date of the full statutory term prior patent No. <u>6,713,464</u> and 173, and as the term of said prior patent is presently shortened by granted on the instant application shall be enforceable only for and duri agreement runs with any patent granted on the instant application and is	patent granted on the instant a as the term of said any terminal disclaimer. The o ng such period that it and the p	prior patent is defined in 35 U.S.C. 154 wher hereby agrees that any patent so rior patent are commonly owned. This
In making the above disclaimer, the owner does not disclaim the termin would extend to the expiration date of the full statutory term as defined in patent is presently shortened by any terminal disclaimer," in the event the expires for failure to pay a maintenance fee; is held unenforceable; is found invalid by a court of competent jurisdiction; is statutorily disclaimed in whole or terminally disclaimed under 37 has all claims canceled by a reexamination certificate; is reissued; or is in any manner terminated prior to the expiration of its full statutor.	n 35 U.S.C. 154 and 173 of the nat said prior patent later: CFR 1.321;	prior patent, "as the term of said prior
Check either box 1 or 2 below, if appropriate.		
For submissions on behalf of a business/organization (e.g., corpetc.), the undersigned is empowered to act on behalf of the bus I hereby declare that all statements made herein of my own in the light of the business.	iness/organization, (nowledge are true and that all	statements made on information and
belief are believed to be true; and further that these statements were made are punishable by fine or imprisonment, or both, under Section statements may jeopardize the validity of the application or any patent is	1001 of Title 18 of the United S	States Code and that such willful false
2. The undersigned is an attorney or agent of record. Reg. No	38,413	
Jung Q C	garla te	February 19, 2008
Joseph	A. Coppola, Reg. No. 38,413	
	Typed or printed name	
	-	(212) 425-7200 Telephone Number
▼ Terminal disclaimer fee under 37 CFR 1.20(d) included.		
WARNING: Information on this form may become be included on this form. Provide credit card in	ne public. Credit card informa formation and authorization o	tion should not on PTO-2038.
*Statement under 37 CFR 3.73(b) is required if terminal disclaimer is sig Form PTO/SB/96 may be used for making this certification. See MPEP §		

This collection of information is required by 37 CFR 1.321. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it	displays a valid OMB control number. Docket Number (Optional)
TERMINAL DISCLAIMER TO OBVIATE A PROVISIONAL DOUBLE PATENTING REJECTION OVER A PENDING "REFERENCE" APPLICATION	12961/46103
In the Application of Claus MECOT and	
In re Application of: Claus MEESE, et al.	
Application No.: 11/201,756	
Filed: August 10, 2005	
For: NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES	
The owner*, SCHWARZ PHARMA AG , of 100 percent interest in the instate except as provided below, the terminal part of the statutory term of any patent granted on the instant application date of the full statutory term of any patent granted on pending reference Application Number on April 26, 2005 , as such term is defined in 35 U.S.C. 154 and 173, and as the term of any papilication may be shortened by any terminal disclaimer filed prior to the grant of any patent on the pending reference application are commonly owned. This agreement runs with any patent granted binding upon the grantee, its successors or assigns.	ation which would extend beyond 10/533,683 filed atent granted on said reference reference application. The owner such period that it and any patent
In making the above disclaimer, the owner does not disclaim the terminal part of any patent granted on the extend to the expiration date of the full statutory term as defined in 35 U.S.C. 154 and 173 of any patent granted on said reference application may be shortened by any terminant of any patent on the pending reference application," in the event that: any such patent: granted on the pexpires for failure to pay a maintenance fee, is held unenforceable, is found invalid by a court of competent jurn in whole or terminally disclaimed under 37 CFR 1.321, has all claims canceled by a reexamination certificate, terminated prior to the expiration of its full statutory term as shortened by any terminal disclaimer filed prior to	tent granted on said reference minal disclaimer filed prior to the lending reference application: risdiction, is statutorily disclaimed , is reissued, or is in any manner
Check either box 1 or 2 below, if appropriate.	
1. For submissions on behalf of a business/organization (e.g., corporation, partnership, university, governor,), the undersigned is empowered to act on behalf of the business/organization.	nment agency,
I hereby declare that all statements made herein of my own knowledge are true and that all state belief are believed to be true, and further that these statements were made with the knowledge that willful made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States statements may jeopardize the validity of the application or any patent issued thereon.	false statements and the like so
2. The undersigned is an attorney or agent of record. Reg. No. 38,413	
Signature Joseph A. Coppola, Reg. No. 38,413 Typed or printed name	February 19, 2008 Date
Types of printed famile	(040) 40E 7000
	(212) 425-7200 Telephone Number
✓ Terminal disclaimer fee under 37 CFR 1.20(d) is included.	
WARNING: Information on this form may become public. Credit card information s be included on this form. Provide credit card information and authorization on P	hould not FO-2038.

This collection of information is required by 37 CFR 1.321. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 36 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

*Statement under 37 CFR 3.73(b) is required if terminal disclaimer is signed by the assignee (owner).

Form PTO/SB/96 may be used for making this statement. See MPEP § 324.

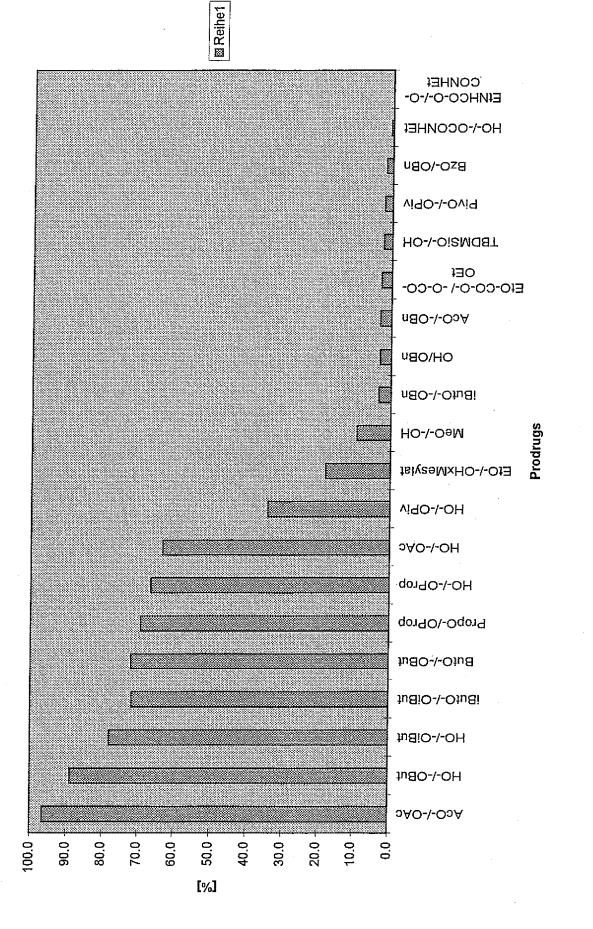
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it disptays a valid OMB control number.

TERMINAL DISCLAIMER TO OBVIATE A PROVISIONAL DOUBLE PATENTING	Docket Number (Optional)
REJECTION OVER A PENDING "REFERENCE" APPLICATION	12961/46103
In re Application of: Claus MEESE, et al.	
Application No.: 11/201,756	
Filed: August 10, 2005	
For: NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES	
The owner*, <u>schwarz Pharma as</u> , of	ation which would extend beyond 10/532,836 filed atent granted on said reference reference application. The owner such period that it and any patent
In making the above disclaimer, the owner does not disclaim the terminal part of any patent granted on the extend to the expiration date of the full statutory term as defined in 35 U.S.C. 154 and 173 of any patent application, "as the term of any patent granted on said reference application may be shortened by any terming grant of any patent on the pending reference application," in the event that: any such patent: granted on the preximes for failure to pay a maintenance fee, is held unenforceable, is found invalid by a court of competent juri in whole or terminally disclaimed under 37 CFR 1.321, has all claims canceled by a reexamination certificate, terminated prior to the expiration of its full statutory term as shortened by any terminal disclaimer filed prior to its	tent granted on said reference minal disclaimer filed prior to the rending reference application: risdiction, is statutorily disclaimed , is reissued, or is in any manner
Check either box 1 or 2 below, if appropriate.	
1. For submissions on behalf of a business/organization (e.g., corporation, partnership, university, gover etc.), the undersigned is empowered to act on behalf of the business/organization.	nment agency,
I hereby declare that all statements made herein of my own knowledge are true and that all statements belief are believed to be true; and further that these statements were made with the knowledge that willful the made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States statements may jeopardize the validity of the application or any patent issued thereon.	false statements and the like so
2. The undersigned is an attorney or agent of record. Reg. No. 38,413	
0 10 Cm	
Je-seg! A Spinoting	February 19, 2008
Signature//	Date
Joseph A. Coppola, Reg. No. 38,413 Typed or printed name	
	(212) 425-7200
	Telephone Number
Terminal disclaimer fee under 37 CFR 1.20(d) is included.	
WARNING: Information on this form may become public. Credit card information si be included on this form. Provide credit card information and authorization on PT	
*Statement under 37 CFR 3 73/h) is required if terminal disclaimer is signed by the assignee (owner)	

This collection of information is required by 37 CFR 1.321. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Form PTO/SB/96 may be used for making this statement. See MPEP § 324.


If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 Novel Derivatives of 3,3-Diphenylpropylamines

EXHIBIT A

Formation of SPM 7500 by Different Prodrugs [%]

Patent Owner, UCB Pharma GmbH - Exhibit 2007 - 2351

ATTORNEY DOCKET NO. 12961/46103

US PATENT APPLICATION NO. 11/201,756 Novel Derivatives of 3,3-Diphenylpropylamines

EXHIBIT E

	e Trounology	Date	09.04.02
SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Project No.	ncontinence
The state of the s		Page 1	of 16
TDS for the treatment of in Delivery of Fesoterodine r	ncontinence, part IV: elated prodrugs ONFIDENTIAL	Report No.	32

1. SUMMARY

The report describes in vitro skin permeation characteristics of transdermal delivery systems (TDS) containing Fesoterodine related prodrugs from the SPM907 series. Test samples were prepared by either lab-scale solvent coating or hot-melt processing. Patches were tested by means of flux rates across hairless mouse skin, selected samples were subsequently investigated in the LACDR human skin model.

Initial experiments were performed in 1998/99 with TDS containing racemic mixtures of different produgs. While good drug permeation across mouse skin was found, flux rates across human skin were surprisingly low.

Due to the availability of pure enantiomers some of the prodrugs were reinvestigated in this feasibility study to find out the reason for low human skin permeation. The old flux data across mouse skin could be confirmed and in some cases increased. The low human skin permeations were found to be caused by the LACDR skin model setup. In this model the fresh human skin has to be supported by an additional synthetic membrane. The fresh skin most probably led to partial drug hydrolysis and/or protonation, while the supportive silicone membrane used is known to be impermeable for charged molecules. Replacing this membrane with a dialysis membrane increased the measured flux rates across human skin by a factor of at least 4 to 6. Therefore, the change to the human skin-dialysis membrane composite represents a more realistic estimation of the potential in vivo performance.

Besides the already reported free base of Fesoterodine, the diacetic acid ester prodrug seems to be a suitable transdermal candidate based on these new in vitro flux data.

		 _
PH DOK		
H REG, IPM (AS)	n E	
PH TOX, BA, MOBI, SIL,	<u>LF</u>	
	on in vitro, mouse skin, human skin	
07 prodrugs, skin permeau	011 111 1111 1111	Date
	Signature	
Name	1 7-7 Co.S.	19.08.02
nr A Breitenbach	Or Arthur	******
Dr. A. Bronding	/ Wish/l.	20.08.02
Dr. HM. Wolff	11157 1	26 NO 07
	Put A Munay	26.08.02
M.C.F. Hannay		
	07 prodrugs, skin permeati Name Dr. A. Breitenbach Dr. HM. Wolff	PH TOX, BA, MOBI, SIL, ILF 07 prodrugs, skin permeation in vitro, mouse skin, human skin Name Dr. A. Breitenbach Dr. HM. Wolff

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date Project No	09.04.02 Incontinence
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs CONFIDENTIAL		Page 2 Report No	of 16

CONTENTS

		PAGE
1.	SUMMARY	1
2.	INTRODUCTION AND OBJECTIVES	3
3.	MATERIALS AND METHODS	4
4.	RESULTS AND DISCUSSION	5
5.	CONCLUSION	16

APPENDIX A (Certificates of analysis)

APPENDIX B ()

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date 09.04.02	
		Project No	Incontinence
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs CONFIDENTIAL		Page 3	of 16
		Report No	. 32

2. INTRODUCTION AND OBJECTIVES

It is well known, that the hydroxy metabolite of Tolterodine is equipotent to the parent drug [1]. Therefore, several ester prodrugs of this metabolite, the SPM 907 series (scheme 1 and table 1) were synthesized by SIL [2] and subsequently tested for their ability to be delivered transdermally.

Scheme 1: SPM 907 series

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT		Date 09.04.02 Project No. Incontinence	
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs		Page 4	of 16	
	ONFIDENTIAL	Report No	32	

Table 1: Assignment of some prodrugs of the SPM 907 series

R ¹	R²	R,S racemic mixture	R enantiomer
Н	Н	SPM 7500	SPM 7605
Н	iBut	SPM 7504	fumarat salt = SPM 8272 = Fesoterodine
			SPM 8224 = free base of Fesoterodine
iBut	iBut	SPM 7502	SPM 7675
Ac	Ac	SPM 7501	SPM 8302

iBut ightarrow iso-butyric acid ester, Ac ightarrow acetic acid ester

Initial experiments performed in 1998/99 with racemic mixtures of the prodrugs revealed that they can be embedded into a solvent coated acrylic based TDS and that most of them possess the ability to permeate across hairless mouse skin with suitable flux rates. But, surprisingly, in many cases only low flux rates across human skin in the LACDR skin model [3] were found.

Due to the availability of pure enantiomers and a broader variety of patch compositions some of the prodrugs were re-investigated to find out the reason for low human skin permeation. Therefore, lab-scale batches of hot-melt and solvent coated patches were prepared and initially tested in a mouse skin model. Subsequently, some of the patches were investigated in the LACDR human skin model.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date 09.04.02		
		Project No	Incontinence	
TITLE TDS for the treatment of in	acontinence, part IV:	Page 5	of 16	
Delivery Fesoterodine related prodrugs CONFIDENTIAL		Report No	32	

3. MATERIALS AND METHODS

For a detailed description of the experiments refer to the batch documentation.

Hot-melt patches (exemplary): 8 g of a preformed silicone adhesive were weighed into a beaker and tempered at 160°C for ca. 20 min to achieve a homogenous melt. 0.5 g of inner phase polymer (e.g. poly(ethylene oxide) and 1.5 g of drug were added. After tempering at 160°C for additional 5 min the mixture was homogenized manually and further processed on the pre-tempered Chill-Roll (120°C, 250 μm) for lamination.

5 cm² patches were isolated by manual punching followed by determination of the average patch weight (n=10). Finally, patches were sealed individually in pouches.

Mouse Skin Model (PHA): according to OBU0469.ABV100, rev. 00 (1998) with an active diffusion area of 2.55 cm², a phospate buffer acceptor phase at pH 6.2 and a temperature of 32°C, n=3

Human Skin Model (LACDR):

according to H. Tanojo et al., J. Control Rel. 45 (1997) 41-47.

skin from abdomen with a thickness of approx. 250 μ m, flux experiment: acceptor phase: PBS, pH= 6.2, temperature: 32 9 C, diffusion cells with spiral groove (8 cells), groove area: 0.552 cm², dialysis membrane used as separator between skin and acceptor phase flux: 5 ml/hour PBS, experiment runs for 72 hours, sampling cycle: 3 hours

Analytical Methods (PHA): refer to certificates of analysis

Data Analysis: sigmoidal Bolzmann and linear fit: Microcal Origin 6.0

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date Project No	09.04.02
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs			of 16
CONFIDENTIAL		Report No	٠.

4. RESULTS AND DISCUSSION

Racemic mixtures of the prodrugs (review of historic data)

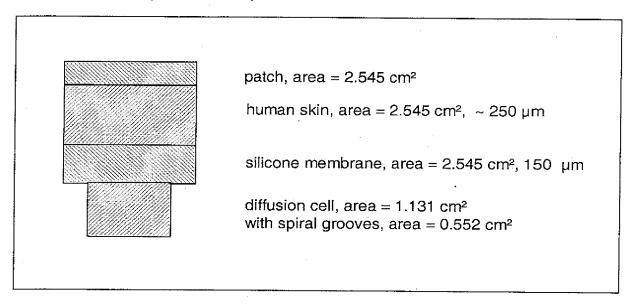
Thirteen patch batches containing different racemic prodrugs of the SPM907 series as well as Tolterodine and Tolterodine prodrugs were initially embedded into acrylic-type polymers by a lab-scale solvent coating procedure. Tributyl citrate was added as plasticizer. All patches were investigated in both, the internal hairless mouse skin model and the LACDR human skin model. Table 2 summarizes some of the <u>re-calculated</u> former data.

Table 2: Solvent coated patches (with a theoretical drug content of 15% (w/w))

No	Lot No	Lot No	Drug	Permeation 1)	Permeation 1,2)	Mouse : Human
	(Ch.B.)	(old)	(SPM Code)	Mouse Skin (n=4)	Human Skin	Skin Perm.
				[µg/(cm² 24h)]	[µg/(cm² 24h)]	Ratio
1	20002006	INZ 003	Di-iBut (7502)	155.54	43.64 / lag time ~14 h	3.56
2	20002008	INZ 005	iBut (7504)	496.87 ³⁾	193.31 / lag time ~34 h	2.57
3	20002005	INZ 002	Di-OH (7500)	689.21 ³⁾	5.96 / lag time ~38 h	115.64
4	20002014	INZ 011	Di-Ac (7501)	363.26 ³⁾	45.10 / lag time ~11 h	8.05

¹⁾ in case of SPM907 prodrugs re-calculated as permeation of active metabolite Di-OH (SPM 7500)

The observed permeation rates for most of the SPM907 prodrugs across mouse skin were suitably high. In case of the di-iso-butyric acid ester (No 1, table 2) steric hindrance most probably caused a lower value.


The flux rates across human skin decreased in the following order: iBut >> DiAc, DiBut >> DiOH. While the very low flux rate of SPM7500 (DiOH) could be caused by the hydrophilicity of this molecule, the low flux rates of SPM7501/2 (DiAc/DiBut) were surprising. To get a better understanding of these human skin permeation results a more detailed knowledge of the LACDR human skin model is necessary. In this model the skin is not in direct contact with the acceptor medium, since it has to be stabilized with an additional membran. A silastic sheeting (silicone membrane) was used in the oder experiments described above to support the skin (compare scheme 2).

²⁾ in case of SPM907 prodrugs calculated without consideration of the (low) amounts of hydrolysis products

³⁾ non-linear release kinetics, calculated from the linear part in the period of 0-30 h

FORMULATION & TECHNOLOGY REPORT	Date Project No	09.04.02 Incontinence
TITLE TDS for the treatment of incontinence, part IV: Delivery Fesoterodine related prodrugs		
	REPORT ncontinence, part IV:	FORMULATION & TECHNOLOGY REPORT Page ncontinence, part IV: ted prodrugs Froject No.

Scheme 2: LACDR experimental setup

Due to this setup always two experiments have to be performed: one to determine the flux of the active across the supportive membrane and a second one to determine the flux across the 'composite' of human skin and supportive membrane. The obtained values of the barrier properties of the supportive membrane are used to correct the values of the second experiment.

In all experiments acceptable high flux rates for the SPM907 prodrugs across the supportive membrane were found (comp. Annex), although the permeability of the silicone membrane decreased in the following ranking order: Di-But > iBut > DiAc > Di-OH, possibly due to increasing hydrophilicity. Nevertheless, all values were high enough and therefore, acceptable for the determination of the barrier properties of the silastic sheeting.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date 09.04.02	
JOSEPH AND A STATE OF THE STATE	REPORT	Project No	Incontinence
TITLE TDS for the treatment of in		Page 8	of 16
Delivery Fesoterodine related prodrugs CONFIDENTIAL		Report No.	

From the data obtained in the experiments with the human skin - supportive membrane composite it can be stated, that a) the flux of the active metabolite (DiOH, No 3 table 2) was generally quite low and b) the flux of the racemic free base of Fesoterodine (iBut, No 2 table 2) would theoretically enable the delivery of nearly 4 mg/24 h from a 20 cm² patch across human skin.

Nevertheless, the partially extremely low flux rates found for the ester prodrugs indicate secondary processes taking place. Since in the LACDR model fresh human skin is used, it is likely that metabolic/enzymatic activity is still present. Thereby induced ester hydrolysis will immediately generate charged molecules, which are no longer able to permeate across the supportive membrane (compare next paragraph). In conclusion, these older data do not assess the human skin permeation of all SPM907 (pro)drugs accurately.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date 09.04.02 Project No. Incontinence		
TITLE TDS for the treatment of it		Page 9	of 16	
Delivery Fesoterodine related prodrugs CONFIDENTIAL		Report No.		

R-enantiomers

As already reported [4] Fesoterodine and some of the prodrug enantiomers were investigated by controlled melt embedding (temperature range of 25-150°C) to assess the drug excipient compatibility under hot-melt conditions. 1:1 mixtures of drug and excipient showed no signs of degradation under the test conditions enabling patch preparation by hot melt techniques.

SPM7605 (DiOH)

SPM7605 is the main hydrolysis product and active metabolite of Fesoterodine and related prodrugs from the SPM907 series. The colorless powder is characterized by a melting point in the range of ~101-102°C and a purity or more than 99%. More than 10 lab-scale batches of hot-melt patches were prepared without encountering any difficulties. Table 3 summarizes some of the results obtained in the mouse skin model.

Table 3: SPM7605 hot melt patches

No	Lot No. (Ch.B.)	PSA	Theo. Drug Loading	Mouse Skin Perm.
			[% w/w]	[µg/(cm² 24 h)]
1	20008029	SxS	10	261.55 ¹⁾
2	20008030	SxS	10	274.32 ¹⁾
3	20106045	EVA	15	220.87 1)
4	20106043	BioPSA/PEO	15	384.04 ¹⁾

¹⁾ non-linear release linetics, calculated from the linear part in the period of 0-30 h

SxS: styrene-block-copolymer, EVA = ethylene vinyi acetate copolymer,

BioPSA/PEO = silicone pressure sensitive adhesive containing additional 5% poly(ethylene oxide)

From these data it can be concluded that the flux rates of the pure enantiomer SPM7605 across mouse skin were still in a suitable range, although the observed values were generally lower than those obtained with the racemic mixture, SPM7500 (No 3 table 2). The most likely explanation is the difference of the patch compositions used.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date Project No.	09.04.02
TITLE TDS for the treatment of in	Incontinence Page of 10 16		
Delivery Fesoterodine relat CO	Report No.		

No 4 (table 3) was investigated in the LACDR human skin model (for flux data comp. Annex). Already the flux across the supportive silastic sheeting was lower than across mouse skin, therefore, the flux across the composite of human skin plus membrane was negligible. The corrected value for human skin was found to be 2.3 µg/(cm² 24 h), again an approx. 95 times lower value compared to mouse skin, which is comparable to the former investigation (No. 3, table 2). With this experimental setup it was not possible to determine the flux of SPM7605 across human skin accurately. Due to a lack of capacity, no experiments with different supportive membranes were performed.

SPM8272 (OiBut/Fum; Fesoterodine) and SPM8224 (OiBut, free base of Fesoterodine)

The experiments with patches containing either Fesoterodine or the free base of Fesoterodine were already reported [5,6]. While the passive transdermal delivery of Fesoterotine seemed to be not suitable, very high flux rates of the free base of Fesoterodine across human skin make SPM8224 a very promising candidate for the transdermal treatment of overactive bladder.

SPM7675 (DiBut, di-iso-bytyric acid ester)

SPM7675, the di-iso-butyric acid ester of SPM7605 (DiOH = active metabolite of Fesoterodine), is an oil with a purity of approx. 95%. Due to low amounts of drug available, a lack of capacity and generally lower permeation rates only five patch batches were prepared and investigated by means of drug permeation across hairless mouse skin. In accordance with the former data obtained for the racemic micture, permeation rates in the range of 120 to $150 \,\mu g/(cm^2 \, 24h)$ were observed (data not shown). Since these in vitro mouse skin data were not in the therapeutic range, no further studies with SPM7675 were performed.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date	09.04.02	
	REPORT	Project No. Incontiner		
TITLE TDS for the treatment of in	Page 11	of 16		
Delivery Fesoterodine related prodrugs CONFIDENTIAL		Report No.		

SPM8302 (DiAc, di-acetic acid ester)

SPM8302, the di-acetic acid ester of SPM7605 (DiOH = active metabolite of Fesoterodine) is an oil with a purity of approx. 95%. More than 25 different lab scale patch batches were prepared (comp. Annex). The drug could be incorporated into the complete range of available pressure sensitive adhesives covering silicones, acrylates, ethylene vinyl acetate copolymers as well as styrene-block-copolymers (comp. Annex). Fig. 1 gives an example of the obtained flux rates across mouse skin.

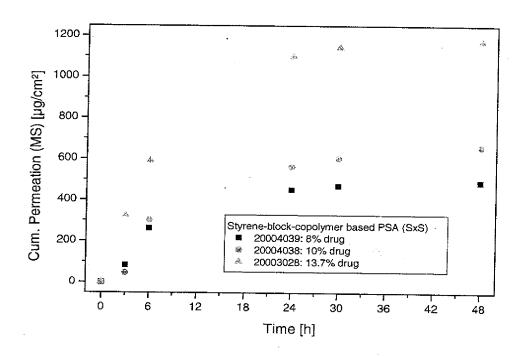


Fig. 1a: Skin permeation across mouse skin (calculated as release of active metabolite), batches prepared by lab scale hot melt processing by incorporating 8, 10 and 13.7% (w/w) SPM8302 into Dermagel 10127-113-3, a styrene-block-co-polymer based adhesive from National Starch & Chemical.

Very high flux rates, increasing with increasing drug loading, were observed (fig. 1a).

SCHWARZ BIOSCIENCES REPORT	FORMULATION & TECHNOLOGY	Date 09.04.02 Project No. Incontinence		
SCHWARD BIOSOILNOLS	REPORT			
TITLE TDS for the treatment of in		Page 12	of 16	
Delivery Fesoterodine relat	Report No.			

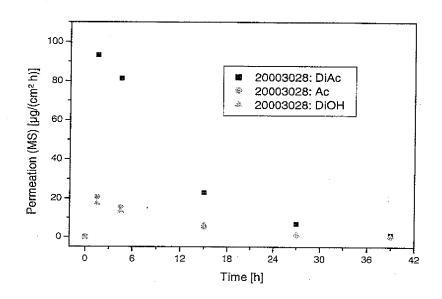


Fig. 1b: Differiential skin permeation as a function of different hydrolysis products

As outlined in fig. 1b initially ca. 20% of the drug were detected as monoester and additional 20% as active metabolite in the aceptor medium indicating the rapid hydrolysis of the prodrug once in contact with skin and/or water.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date	09.04.02	
SCIT MARKE BIOSDIENCES	REPORT	Project No. Incontinence		
TITLE TDS for the treatment of in	TITLE TDS for the treatment of incontinence, part IV:			
Delivery Fesoterodine related prodrugs CONFIDENTIAL		Report No.		

Two different samples were investigated in the LACDR human skin model. Fig. 2 outlines the initial permeation results which were in accordance with the former evaluation.

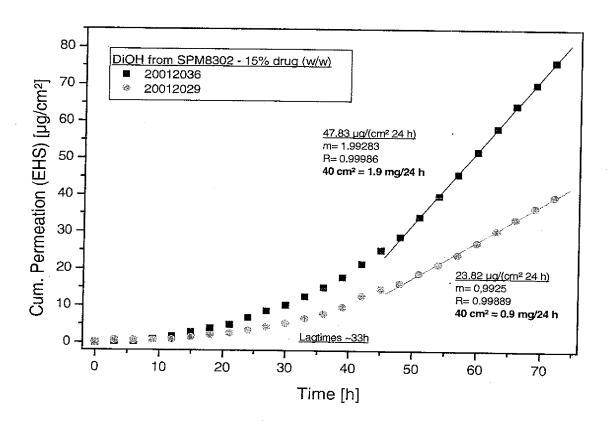


Fig. 2: Cumulative permeation across excised human skin (values corrected with the flux barrier of the supportive silastic sheeting), batches prepared by lab scale solvent coating (20012036: 15% (w/w) drug in acrylic type adhesive, National Starch & Chemical Duro Tak 387-4287) and hot melt processing (20012029: 15% (w/w) drug in silicone based adhesive (BioPSA, Dow Corning) plus additional inner phase polymer (10% (w/w) Vinapas = poly(viny acetate)))

Due to the very high permeation results across mouse skin, the flux rates across human skin seemed to be too low. Since always fresh human skin is used in the LACDR model, a likely explanation could be that remaining enzymatic activity in the skin led to fast drug hydrolysis and the generation of charged molecules. Unfortunately, the skin supporting silastic sheeting

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date Project No.	09.04.02 Incontinence
TITLE TDS for the treatment of in Delivery Fesoterodine relate		Page 14 Report No.	of 16

is impermeable to charged molecules. This effect will of course only be visible in the experiment with the composite of human skin supported by the silastic sheeting, which explains, why always high permeation rates were found when testing the synthetic membrane alone.

An experimental change by replacing the supportive membrane with a dialysis membrane which is not impermeable to charge moleculaes, significantly improved the results as outlined in fig. 3.

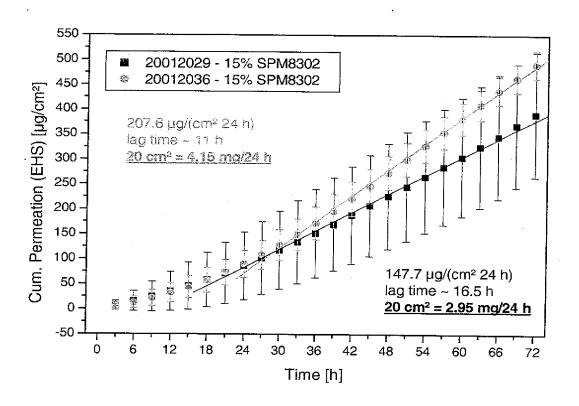


Fig. 3: Cumulative permeation across excised human skin (plus dialysis membrane, calculated as permeation of active metabolite)

Four to six times higher fux rates indicated that this experimental setup represented a more reasonable assessment of the flux across human skin. Moreover, the values found for batch 20012036 indicated the promising potential of SPM8302 to be used for the treatment of

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY	Date	09.04.02		
Į.	REPORT	Project No.	Incontinence		
TITLE TDS for the treatment of in Delivery Fesoterodine relat	ncontinence, part IV:	Page 15	of 16		
	ONFIDENTIAL	Report No.	32		

overactive bladder. Patches with sizes in the range of 20 to 40 cm² could theoretically deliver 4 to 8 mg/24 h which is the current range of the oral Fesoterodine formulation.

SCHWARZ BIOSCIENCES	FORMULATION & TECHNOLOGY REPORT	Date 09.04.02 Project No. Incontinence		
TITLE TDS for the treatment of in Delivery Fesoterodine relat	ncontinence, part IV: ted prodrugs DNFIDENTIAL	Page 16 Report No.	of 16	

CONCLUSIONS

After having already demonstrated the promising transdermal potential of SPM8224, the free base of Fesoterodine, here the alternative use of several different Fesoterodine related prodrugs from the SPM907 series was investigated.

Based on the results obtained, only SPM8302 could be used as alternative since its flux rates across human skin were found to be sufficient for the treatment of overactive bladder with patch sizes in the range of 20 to 40 cm² (equal to delivery of ca. 4 to 8 mg in 24 h). These data have to be confirmed in vivo.

ANNEX 1

Copies of the Certificates of Analysis

(signed originals stored at PH DOK)

```
        Ch.B.
        Ch.B.
        Ch.B.
        Ch.B.
        SPM 76075
        SPM 8202
        SPM 8202
        SPM 8202
        SPM 8202
        Ch.B.
        Ch.B.<
```

Analysenzertifikat in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-LM-TDS

Ch.-B.:

INZ 002

Sollgehalt:

7,50 mg

TDS-Fläche:

 5 cm^2

Analysen-Nr:

IN004A-M

Analysendatum: 06.-09.07.98

ABV vom:

Bemerkungen:

8 Wochen lebend 8 Wochen TK-Schrank SKH-10

 $1=160\mu m R$; $2=146\mu m R$ 34,3; $3=147\mu m R$, $4=149\mu m R$ 30,7g

Temperatur 32°C, Puffer pH 6.2 nach K.T. Die Proben wurden nicht aufkonzentriert

Tabelle der kumulierten Freisetzung in µg / 5 cm2

Zeit		di-OH-Base						
[h]	. 1	2	3	4	MW	SD	add.	
3	518,7	326,5	306,7	686,2	459,5	178,8	459,5	
6	753,0	549,2	483,2	648,5	608,4	117,9	-1068,0	
24	2868,5	2501,4	2287,0	2634,6	2572,9	243,6	3640,9	
30	778,9	685,1	677,4	742,6	721,0	48,3	4361,8	
48	1641,8	1542,4	1593,5	1524,1	1575,4	53,1	5937,3	
54	421,0	429,9	457,6	385,8	423,5	29,6	6360,8	
72	896,7	1013,1	1153,2	851,3	978,6	134,9	7339,4	

MW = Mittelwert

SD = Standardabweichung

Achsenabschnitt (b)=					
D					

971,5 2,3

μg μg/h

Regressionskoeffizient (m)= Korrelationskoeffizient (r) =

0,0744

 $\mathbf{Q} = \mathbf{t} \cdot \mathbf{m} + \mathbf{b}$ Q = Freisetzung in $\mu g/5 \text{cm}^2$ t = Zeit in h (3h - 72h)

19.08.02

Datum/PH-A

Sachbearbeiter(in)

Projektgruppenleiter

Q:\TS\TS-TTS\INZ\MHP\002_1.DOC

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-LM-TDS

Ch.-B.:

INZ003

Sollgehalt:

7,50 mg

TDS-Fläche: 5 cm²

Analysen-Nr:

IN006A-F

Analysendatum: 13.-17.07.98

ABV vom:

Bemerkungen:

8 Wochen lebend 1 Woche TK-Schrank SKH-1♂

1=117μm R; 2=115μm; 3=124μm R, 4=113μm R 33,4g

Temperatur 32°C, Puffer pH 6.2 nach K.T. Die Proben wurden nicht aufkonzentriert

Zusammensetzung: SPM 7502; SPM 7504; SPM 7500

Tabelle der kumulierten Freisetzung in µg / 5 cm²

Zeit			SPM	7502			SPM	7504	SPM	7500	Summe	
[h]	1	2	.3	4	MW	SD	MW	SD	мw	SD	MW	kumu.
3	41,3	63,8	55,1	77,3	59,4	15,1	75,3	8,4	15,3	1,4	149,9	149,9
6	128,8	141,2	143,3	162,9	144,0	14,1	75,3	10,6	10,4	0,7	229,7	379,7
24	638,5	47,2	576,7	754,6	504,2	313,5	336,7	81,5	68,8	32,5	909,8	1289,5
30	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	8,5	0,9	8,5	1297,9
48	603,9	828,4	654,7	676,6	690,9	96,6	115,4	16,0	49,5	5,5	855,8	2153,7
54	198,0	231,0	223,8	218,6	217,8	14,2	30,0	9,3	11,2	1,7	259,1	2412,8
72	515,7	566,3	559,5	559,4	550,2	23,2	66,4	6,1	39,8	4,0	656,5	3069,2

MW = Mittelwert

SD = Standardabweichung

μg

μg/h

MW = Mittelwert

SD = Standardabweichu

Achsenabschnitt (b)= Regressionskoeffizient (m 5,7

Korrelationskoeffizient (r) 0,4029

Q ≈ t

 $Q = t \cdot m + b$

Q \simeq Freisetzung in μ g/5cm² t = Zeit in h (3h - 72h)

19.08.02

Datum/PH-A

Sachbearbeiter(in)

Projektgruppenleiter

Q:\TS\TS-TTS\INZ\MHP\003_1.DOC

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-LM-TDS

Ch.-B.:

INZ005

Sollgehalt:

 $7,50 \, \text{mg}$

TDS-Fläche:

 5 cm^2

Analysen-Nr:

IN008A-F

Analysendatum: 13.-17.07.98

ABV vom:

Bemerkungen:

8 Wochen lebend 1 Woche TK-Schrank SKH-1&

 $1=109\mu m R$; $2=116\mu m$; R 26,9; $3=147\mu m R$, $4=136\mu m R$ 25,1g

Temperatur 32°C, Puffer pH 6.2 nach K.T. Die Proben wurden nicht aufkonzentriert Zusammensetzung: SPM 7504; SPM 7500

Tabelle der kumulierten Freisetzung in µg / 5 cm²

Zeit			SPM	7504			SPM	7500	Summe	
[h]	_1	2	3	4	MW	SD	ΜW	SD	MW	kumu.
3	506,3	587,1	692,3	374,7	540,1	134,0	29,8	5,4	- 569,8	569,8
6	617,1	621,9	654,8	472,7	591,6	81,0	24,6	2,0	616,2	1186,1
24	2244,7	2178,9	2340,2	2040,9	2201,2	125,7	125,6	10,4	2326,7	3512,8
30	499,6	520,7	500,9	510,6	507,9	9,8	30,2	2,6	538,1	4051,0
48	948,9	1058,0	911,8	1027,1	986,5	67,7	89,4	10,0	1075,8	5126,8
54	231,8	288,4	213,7	271,2	251,3	⁴ 34,5	24,2	3,0	275,5	5402,3
72	476.0	675.3	414,7	591,3	539,3	116,5	50,6	7,7	589,9	5992,2

SD = Standardabweichung

Achsenabschnitt (b)=

999,2 μg

Regressionskoeffizient (m)=

-4,2 $\mu g/h$

Korrelationskoeffizient (r) =

-0,1562

 $\mathbf{O} = \mathbf{t} \cdot \mathbf{m} + \mathbf{b}$

Q = Freisetzung in μ g/5cm² t = Zeit in h (3h - 72h)

19.08.02

Datum/PH-A

Sachbearbeiter(in)

Projektgruppenleiter

Q:\TS\TS-TTS\INZ\MHP\005_1.DOC

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-LM-TDS

Ch.-B.:

INZ 011

Sollgehalt:

7,50 mg

TDS-Fläche:

 5 cm^2

Analysen-Nr:

IN031A-C

Analysendatum: 04.12.98

ABV vom:

analog OBU 0469.100

Bemerkungen:

10 Wochen lebend 5 Wochen TK-Schrank SKH-1♂

 $1=130\mu m R$; $2=128\mu m R$ 32,1; $3=149\mu m R$, $4=154\mu m R$ 31,8g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

Tabelle der kumulierten Freisetzung in μg / 5 cm²

Zeit			SPM	_7501			1	7500 zu _7501	MW
[h]	. 1	2	3	4	MW	SD	MW	SD	add.
3	363	582	237	624	452	183	25	7	476
6	765	1046	615	1235	915	278	43	9	959
24	2240	2658	2106	3086	2523	443	189	21	2711
30	2638	3065	2531	3539	2943	459	212	21	3155
48	2857	3277	2770	3768	3168	457	295	19	3463
54	3200	3564	3124	4014	3476	407	327	18	3802
72	3721	3989	3635	4317	3916	307	386	17	4302

MW = Mittelwert

SD = Standardabweichung

Achsenabschnitt (b)=

848,3

 μg

Regressionskoeffizient (m)=

48,3 μg/h

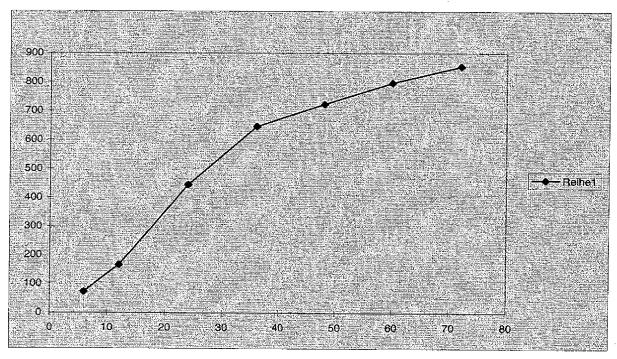
Korrelationskoeffizient (r) =

0,9403

 $Q = t \cdot m + b$ Q = Freisetzung in $\mu g/5cm^2$ t = Zeit in h (3h - 72h)

19.08.02

Datum/PH-A

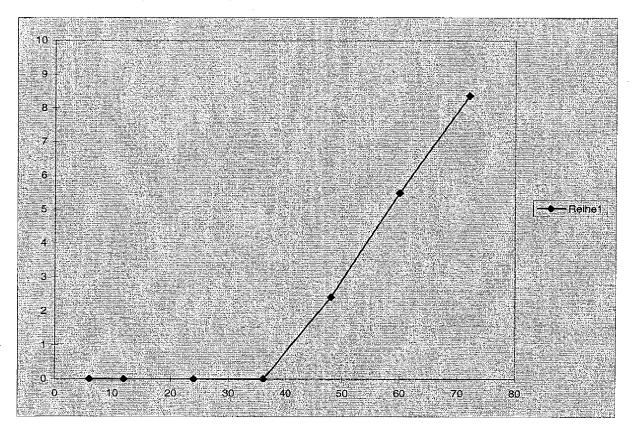

Sachbearbeiter(in)

Projektgruppenleiter

Q:\TS\TS-TT\$\INZ\MHP\011_1.DOC

Auswertung Wirkstoff SPM 7500

		Haut + SIL		Haut + SIL ku	muliert	
Zeit [h]	mean	SD	VC	mean		
6	0,00	0,00	0,00	0,00		
12	0,00	0,00	0,00	0,00		
24	0,00	0,00	0,00	0,00		
36	0,00	0,00	0,00	0,00		
48	2,39	0,51	21,41	2,39		
60	3,04	0,70	23,09	5,43		
72	2,85	2,24	78,81	8,27		
		SIL			SIL kumulieri	t
Zeit [h]	mean	SD	VC	mean	SD	VC
6	72,52	0,00	0,00	72,52	0,00	0,00
12	93,11	0,00	0,00	165,63	0,00	0,00
24	279,19	0,00	0,00	444,82	0,00	0,00
36	200,90	0,00	0,00	645,72	0,00	0,00
48	76,57	0,00	0,00	722,28	0,00	0,00
60	74,45	0,00	0,00	796,73	0,00	0,00
72	56,92	0,00	0,00	853,65	0,00	0,00


für SIL kumuliert linearer Bereich von 6-24 h lineare Regression

 $\begin{array}{cccc} r^2 & 0,994665 \\ m & 19,65 & [\mu g/cm^2*h] \\ b & -51,03 & [\mu g/cm^2] \end{array}$

für ein 6 h Intervall ergibt sich ein mittlerer Wert von 117,91

für ein 12 h Intervall ergibt sich ein mittlerer Wert von 235,82

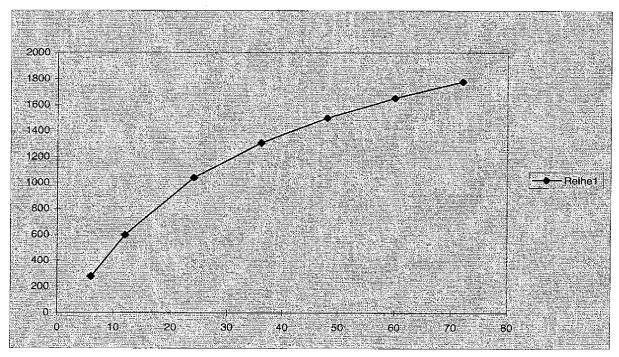
	Haut	Haut kumuliert
Zeit [h]	mean	mean
6	0,00	0,00
12	0,00	0,00
24	0,00	0,00
36	0,00	0,00
48	2,41	2,41
60	3,08	5,49
72	2,88	8,37

Hautpermeation des Wirkstoffs SPM 9080

linearer Bereich von 48-72h

lineare Regression

 r^2 0,999632


[µg/cm^{2*}h] 0,25 m [µg/cm²] -9,47 b

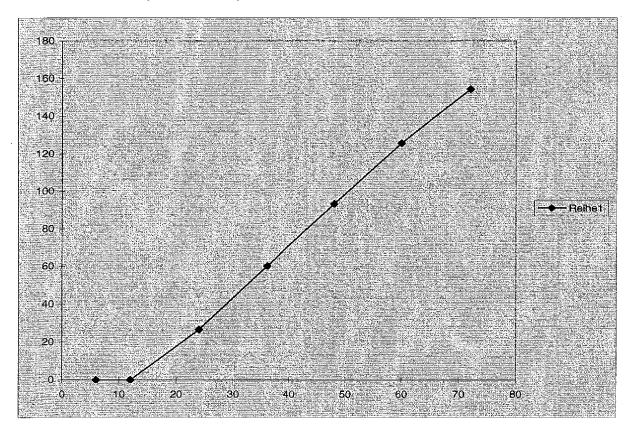
Somit ergibt sich eine mittlere Freisetzungsrate an SPM 9080 über 24 h von: 5,96 µg/cm²*24 h

lag-time: 38,1 h

Auswertung Wirkstoff SPM 7502

		Haut + SIL		Haut + SIL ku	muliert	
Zeit [h]	mean	SD	VC	mean		
6	2,30	0,00	0,00	2,30		
12	7,04	0,00	0,00	9,34		
24	25,23	0,00	0,00	34,57		
36	31,47	0,00	0,00	66,04		
48	31,07	0,00	0,00	97,11		
60	30,40	0,00	0,00	127,50		
72	27,08	0,00	0,00	154,58		
	•	SIL				L
7 - 14 Fl-1		-	1/0	l .	SIL kumuliert	
Zeit [h]	mean	SD	VÇ	mean	SD	VC
6	276,75	66,89	24,17	276,75	66,89	24,17
12	320,76	32,52	10,14	597,51	99,41	16,64
24	440,59	26,58	6,03	1038,09	72,83	7,02
36	268,02	8,75	3,26	1306,12	81,58	6,25
48	192,03	35,40	18,44	1498,15	46,17	3,08
60	153,48	19,27	12,56	1651,64	26,90	1,63
72	126,51	7,68	6,07	1778,14	19,22	1,08

für SIL kumuliert


linearer Bereich von 6-72 h lineare Regression

 $\begin{array}{cccc} r^2 & 0,931582 \\ m & 41,50 & [\mu g/cm^2*h] \\ b & 56,46 & [\mu g/cm^2] \end{array}$

für ein 6 h Intervall ergibt sich ein mittlerer Wert von 249,00

für ein 12 h Intervall ergibt sich ein mittlerer Wert von 497,99

	Haut	Haut kumuliert
Zeit [h]	mean	mean
6	0,00	0,00
12	0,00	0,00
24	26,58	26,58
36	33,59	60,17
48	33,14	93,31
60	32,37	125,68
72	28,63	154,32

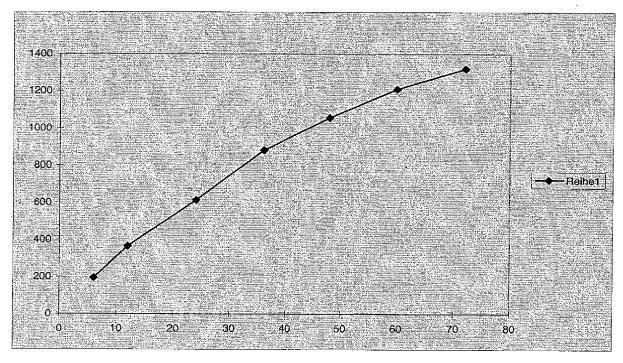
Hautpermeation des Wirkstoffs SPM 7502

linearer Bereich von 24-72h

lineare Regression

r² 0,999095

m 2,67 [μ g/cm²*h] b -36,38 [μ g/cm²]


Somit ergibt sich eine mittlere Freisetzungsrate an SPM 7502 über 24 h von:

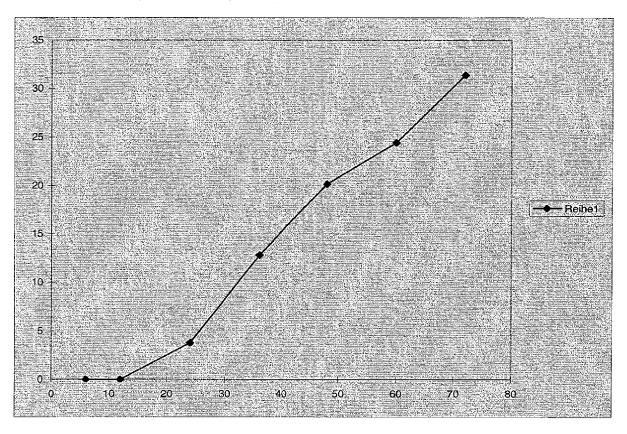
64,20 µg/cm²*24 h

lag-time: 13,6 h

Auswertung Wirkstoff SPM 7504

		Haut + SIL		Hau	ıt + SIL kumul	liert
Zeit [h]	mean	\$D	VC	mean		
6	0,00	0,00	0,00	0,00		
12	0,00	0,00	0,00	0,00		
24	3,73	0,00	0,00	3,73		
36	8,73	0,00	0,00	12,46		
48	7,16	0,00	0,00	19,62		
60	4,22	0,00	0,00	23,84		
72	6,77	0,00	0,00	30,62		
		SIL			SIL kumuliert	
Zeit [h]	mean	SD	VC	mean	SD	VC
6	195,02	80,08	41,06	195,02	80,08	41,06
12	170,12	53,21	31,28	365,13	133,30	36,51
24	248,29	68,26	27,49	613,43	201,56	32,86
36	267,65	82,65	30,88	881,08	284,21	32,26
48	174,81	11,33	6,48	1055,89	295,54	27,99
60	154,31	28,40	18,40	1210,19	323,94	26,77
72	109,97	66,64	60,59	1320,17	390,58	29,59

für SIL kumuliert


linearer Bereich von 6-72 h lineare Regression

 $\begin{array}{cccc} r^2 & 0,975393 \\ m & 22,88 & [\mu g/cm^2*h] \\ b & 70,87 & [\mu g/cm^2] \end{array}$

für ein 6 h Intervall ergibt sich ein mittlerer Wert von 137,28

für ein 12 h Intervall ergibt sich ein mittlerer Wert von 274,56

	Haut	Haut kumuliert
Zeit [h]	mean	mean
6	0,00	0,00
12	0,00	0,00
24	3,79	3,79
36	9,01	12,80
48	7,35	20,15
60	4,29	24,44
72	6,94	31,38

Hautpermeation des Wirkstoffs SPM 7504

linearer Bereich von 24-72h

lineare Regression

r² 0,986107

m 0,56 [μ g/cm²*h] b -8,22 [μ g/cm²]

Somit ergibt sich eine mittlere Freisetzungsrate an SPM 7504 über 24 h von:

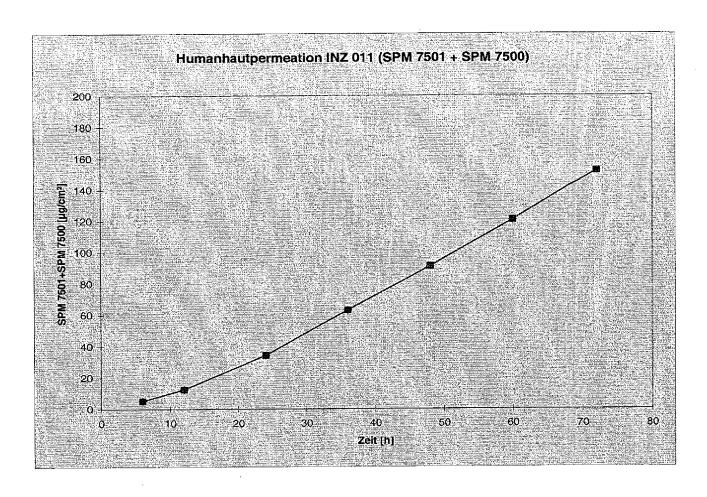
13,37 µg/cm²*24 h

lag-time: 14,8 h

INZ011 Zusammenfasung

Wirkstoff SPM 7501

Metabolit SPM 7500


	Haut	Haut kumuliert	Haut	Haut kumuliert
Zeit [h]	mean	mean	mean	mean
6	3,82	3,82	1,07	1,07
12	6,30	10,12	0,83	1,90
24	20,00	30,11	1,54	3,43
36	26,57	56,69	1,69	5,12
48	25,52	82,21	2,01	7,13
60	27,13	109,33	1,94	9,07
72	29,24	138,57	1,83	10,90

Metabolit SPM 7500 umgerechnet in Wirkstoff SPM 7501

	1	Haut Haut	t kumuliert
Zeit [h]	r	nean	mean
6		1,33	1,33
12		1,03	2,36
24		1,92	4,28
36		2,11	6,39
48	•	2,51	8,89
60		2,41	11,30
72	;	2,28	13,58

Summe aus Wirkstoff SPM 7501 und Metabolit 7500

	Haut	Haut kumuliert
Zeit [h]	mean	mean
6	5,15	5,15
12	7,33	12,48
24	21,91	34,39
36	28,68	63,07
48	28,03	91,10
60	29,54	120,64
72	31.52	152 15

Hautpermeation von SPM 7501 + SPM 7500

linearer Bereich von 24-72 h

r² 0,999484959

m 2,442 [μ g/cm²*h] b -24,964 [μ g/cm²]

Somit ergibt sich eine mittlere Freisetzungsrate an SPM 7501 + SPM 7500 über 24 h von:

58,6 μg/cm²/24 h

lag-time 10,2 h

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-TDS SPM7605

Ch.-B.:

20008029

Sollgehalt:

IB0773_MHP

TDS-Fläche:

5 cm²

Analysen-Nr: ABV vom:

analog OBU 0469.100

Analysendatum: 17.08.2000

Bemerkungen:

8 Wochen lebend, 4 Wochen TK-Schrank; SKH-1♂

1=170; 2=162 3=164, 30,3g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VT 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

	mg DIOH / 5cm²								
Zeit [h]	1	2	3	MW	SD				
3	0,34	0,17	0,28	0,26	0,09				
6	0,64	0,44	0,56	0,55	0,10				
24	1,60	1,53	1,56	1,56	0,04				
30	1,83	1,78	1,81	1,81	0,02				
48	2,27	2,30	2,34	2,30	0,03				
MW = M	MW = Mittelwert SD = Standardabweichung								

Achsenabschnitt (b)=	0,28	mg
Regressionskoeffizient (m) =	0,05	mg/h
Korrelationskoeffizient (r) =	0,98122	

$$\mathbf{Q} \approx \mathbf{t}$$
 $\mathbf{Q} = \mathbf{t} \cdot \mathbf{m} + \mathbf{b}$
 $\mathbf{Q} = \text{Freisetzung in mg/5cm}^2$ $\mathbf{t} = \text{Zeit in h}$ (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

L:\Projekte\Proj-gr4\INZ\MHP\20008029_1.DOC

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-TDS SPM7605

Ch.-B.:

20008030

Sollgehalt:

IB0773_MHP

TDS-Fläche:

5 cm² Analysendatum: 17.08.2000

Analysen-Nr: ABV vom:

analog OBU 0469.100

Bemerkungen:

8 Wochen lebend, 4 Wochen TK-Schrank; SKH-1♂

1=148µm; 2=154µm 3=165µm, 30,1g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VTWasser 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		m (DIOH / 5c	m²	
Zeit [h]	1	2	3	MW	SD
3	0,24	0,36	0,39	0,33	0,08
6	0,34	0,42	0,45	0,40	0,06
24	1,46	1,52	1,56	1,51	0,05
30	1,75	1,80	1,84	1,79	0,05
48	2,33	2,38	2,43	2,38	0,05
MW = M	ittelwert	SD = Star	ndardabwei	chung	

m g Achsenabschnitt (b)= 0,22 Regressionskoeffizient (m) = 0,05 mg/h Korrelationskoeffizient (r) = 0,98876

Q≈t $Q = t \cdot m + b$ Q = Freisetzung in mg/5cm² t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

SPM 907 TDS

SPM 7605

Ch.-B.:

20106045

TDS-Fläche:

5 cm²

Sollgehalt:

15%

Analysen-Nr:

20106043_6044_6045_6061_AA_MHP_01 + 02

Analysendatum: 09.07.2001

ABV vom:

analog OBU 0469.10

Bemerkungen:

8 Wochen lebend, 4 Wochen TK-Schrank; SKH-1♂

1=160µm; 2=168µm 3=148µm, 34,7g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

Ausgangsanalyse

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		mg	DIOH / 50	m²	
Zeit [h]	1	2	3	MW	SD
3	0,09	0,09	0,09	0,09	0,00
6	0,35	0,36	0,43	0,38	0,05
24	1,16	1,16	1,21	1,18	0,03
30	1,36	1,35	1,39	1,37	0,02
48	1,83	1,77	1,83	1,81	0,04
	91.1	00 0		. ,	
MW = M	ittelwert	SD = Star	ndardabwe	ichuna	

Achsenabschnitt (b)=	0.12	ma
Regressionskoeffizient (m) =	0.04	ma/h
Korrelationskoeffizient (r) =	0.98181	3

$$\mathbf{Q} \approx \mathbf{t}$$
 $\mathbf{Q} = \mathbf{t} \cdot \mathbf{m} + \mathbf{b}$
Q = Freisetzung in mg/5cm² $t = Zeit$ in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIII

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

SPM 907 TDS

SPM 7605

Ch.-B.:

20106043

TDS- Fläche:

5 cm²

Sollgehalt:

15%

Analysen-Nr:

20106043_6044_6045_6061_AA_MHP_01 + 02

Analysendatum: 09.07.2001

ABV vom:

analog OBU 0469.10

Bemerkungen:

8 Wochen lebend, 4 Wochen TK-Schrank; SKH-1♂

1=174µm; 2=179µm 3=168µm, 31,7g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

Ausgangsanalyse

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		m g	DIOH / 5c	m²	
Zeit [h]	1	2	3	MW	SD
3	0,07	0,27	0,08	0,14	0,11
6	0,38	0,76	0,37	0,50	0,22
24	1,59	2,45	1,47	1,84	0,54
30	1,98	2,94	1,82	2,25	0,61
48	3,00	4,10	2,63	3,24	0,77
MW = M	ittelwert	SD = Sta	ndardabwei	ichung	

Achsenabschnitt (b)=	•	0,07	m g
Regressionskoeffizient (m) =		0,07	mg/h
Korrelationskoeffizient (r) =		0.99521	

 $Q = t \cdot m + b$ Q≈t Q = Freisetzung in $mg/5cm^2$ t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

Diffusion experiment with SPM 907 patches on silastic sheeting

Purpose of the study:

To investigate the influence of four formulations on the release rate of SPM 907 patches. The present study has been performed without skin in the cells in order to measure the initial release rate of active ingredient from the formulations through the used membrane. The four following experiments will be performed with skin from four different donors.

Patch:

Active ingredient: SPM 907

Batch numbers: 20012029, 20012036, 20106043 and 20106061

Patch area: (variable) Active ingredient content: app. 15% m/m

Diffusion experiment:

Date: 7 to 10 Sept. 2001

Used cells:

diffusion cells with spiral groove (n=8); groove area: 0.552 cm².

Separator between acceptor phase and skin/patch:

Silicone sheeting (Silastic sheeting), implant grade elastomer non sterile, non-reinforced;

Manufacturer: Nagor limited, P.O. Box 21, Douglas, Island of Man

Cat. nr. NA 500-1, Thickness 0.125 mm, Lot nr. 11603/1 No special pretreatment, other than cleaning, applied.

Diameter of separator and patch punch-outs: 1.8 cm.

Setup diffusion cells:

12	Cel	lnr.	Batch
	3 { 5 {	\$ 2 \$ 4 \$ 6 \$ 8	20012029 20012036 20106043 20106061

Acceptor phase: PBS pH=6.2

Measured temperature waterbath: 32.0 °C

Flux of acceptor phase: 5 ml/hour

Total duration of the experiment: 72 hours, samples are collected in 3 hour periods.

Observations during dermatomisation, cell assembly, disassembly, etc.

Some sample from cell 5 was lost at 69 and 72 hours due to a tilted tube holder in the fraction collector. Use a higher volume for the corresponding fractionsfor calculations (see Volume fractions tab).

Mass and volume data on the collected fractions

measured density of the used acceptor
phase: 1,010 g/ml

	Faktor zur Umrechnung auf cm²
	g/m/
	1,010
son accopica	phase:

1,812

Flux time		mass tubes	Э	fractions	8272		Fraction		НОЮ		FractionxF		Diacetat		FractionxF	
(hours)	cell nr.	empty	Įm.	(m)	ug/ml	g/fraction	ug/ml _ug/fraction *F≕1.812 Mittelwert		ug/ml	ug/ml ug/fraction	µg/cm² Mittelwert	Wittelwert	ng/m	ug/fraction ug/cm²	ug/cm²	Mittelwert
	-	17,152	33,385	16,074					0,44	7,073	12,815		17,44	280,328	207,955	
	2	16,972	32,800	15,673					0,45	7,053	12,780	12,798	16,44	257,661	466,883	487,419
	က	17,146	33,037	15,735	,				0,42	609'9	11,975	•	18,30	287,955	521,774	
C	4	16,884	32,889	15,848					0,73	11,569	20,963	16,469	22,20	351,828	637,512	579,643
ာ	2	17,191	33,293	15,944			-		0,39	6,218	11,267					
	9	17,144	32,870	15,572					0,25	3,893	7,054	9,161			•	-
	7	17,129	32,663	15,382	0,30	4,615	8,362		0,11	1,692	3,066					
	8	16,997	32,554	15,404	0,33	5,083	9,211	8,786	0,11	1,694	3,070	3,068				
	١	16,790	33,002	16,053					0,34	5,458	0,890		14,49	232,609	421,488	
	~	17,018	32,890	15,716					0,48	7,544	13,670	11,780	14,54	228,517	414,072	417,780
	6	16,932	32,870	15,782				_	0,38	5,997	10,867	·	14,5	228,836	414,650	•
U	4	17,137	33,168	15,874					0,54	8,572	15,532	13,199	16,48	261,601	474,021	444,336
0	2	17,140	33,322	16,023					1,02	16,344	29,615					
	9	17,215	33,036	15,666			•		0,86	13,473	24,412	27,014				
	7	16,946	32,586	15,487	0,49	7,59	13,750		0,15	2,323	4,209					
	æ	17,071	32,807	15,582	0,44	98'9		13,087	0,12	1,870	3,388	3,799				
	-	17,177	33,387	16,051					6,0	4,82	8,725		10,18	٠.	296,081	
	7	17,100	32,962	15,707	•			_	0,38		10,815	9,770	10,36		294,848	295,464
	က	17,125	33,070	15,789					0,27		7,724		11,23	177,31	321,280	
c	4	17,160	33,197	15,880		•			0,32		9,208	8,466	12,62	200,40	363,130	342,205
2)	ည	16,994	33,152	16,000					0,86		24,933					
	9	16,963	32,736	15,618					0,77	_	21,791	23,362				-
	7	17,074	32,691	15,464	0,37	5,72	10,368		0,13		3,643					
	80	17,217	32,949	15,578	0,32	4,98	9,033	9,700	0,1		2,823	3,233				
	٦	17,202	33,391	16,030					0,27	4,33	7,843		7,65			-
	2	16,912	32,768	15,701			~~~		0,27	4,24	7,681	7,762	7,74			221,204
	က	17,114	33,033	15,763					0,33	5,20	9,456		8,88		253,635	
15	4	17,089	33,104	15,858					0,35	5,55	10,057	9,741	9,82	155,73	282,175	267,905
7	ស	17,143	33,302	16,001	*****				0,72	11,52	20,875					
	9	17,146	32,922	15,621					0,63	9,84	17,833	19,354				
	7	17,192	32,846	15,501	0,25	3,88	7,022		, O	1,56	2,809					
	8	17,224	32,937	15,559	0,23			6,753	0,08	1,24	2,255	2,532				

_	174.322		1 224,406					15	143.567		185,820						123.409		157,551						106,909		135.834				
		211.508				_		145.246	141,888	194,017	177,623					ł	121,885							1	105,168						
97.48	94,93	116,73	130,96					80.16	78,30	107,07	98,03					68.95	67,27	82,10	91,80					59,96	58,04	70.20	79.73				
60.9	6.05	7.40	8,26	=				5.01	5,00	08'9	6,19					4,32	4,30	5,22	5,81	:				3,76	3,71	4.47	5.05				
	4.879		6,016		16,904		2,104		4,309		5,864		14,454		1.686		3,439		5,714		12.289		1,403	-	3,574		5.422		10,555		0.979
4.641	5,118	098'9	5,171	18,253	15,555	2,237	1,972	4.929	3,689	6,562	5,165	15,343	13,566	1,680	1,691	3.760	3,118	5,415	6,012	12,721	11,856	1,400	1,406	3,179	3,969	5,122	5,721	10,694	10.416	1,117	0.842
2.56	2,82	3,79	2,85	10,07	8,58	1.23	1,09	2.72	2,04	3,62	2,85	8,47	7,49	0,93	0.93	2.07	1,72	2,99	3,32	7,02	6,54	0,77	0,78	1,75	2,19	2,83	3,16	5,90	5,75	0,62	0.46
0.16	0,18	0,24	0,18	0,63	0,55	0,08	20,0	0,17	0,13	0,23	0,18	0,53	0,48	90'0	90'0	0,13	0,11	0,19	0,21	0,44	0,42	0,05	0,05	0,11	0,14	0,18	0,2	0,37	0,37	0,0	0.03
							4,490								3,512								2,665			•					2,100
						4,473	4,508							3,361	3,663							2,519	2,811							1,955	2,245
_						2,47	2,49							1,85	2,02						-	1,39	1,55						<u></u>	1,08	1,24
						0,16	0,16							0,12	0,13							0,09	0,10							70,0	80'0
16,007	15,691	15,774	15,855	15,990	15,608	15,429	15,548	16,000	15,661	15,746	15,836	15,976	15,598	15,457	15,551	15,960	15,643	15,727	15,801	15,956	15,579	15,449	15,515	15,947	15,644	15,705	15,788	15,951	15,536	15,410	15,488
33,503	32,787	33,082	33,043	33,304	32,889	32,723	32,906	33,216	32,996	33,061	33,135	33,387	32,932	32,740	32,906	33,180	32,775	32,827	33,102	33,244	32,962	32,789	32,922	33,153	32,956	32,881	33,032	33,301	32,839	32,662	32,683
17,338		17,152	一	T					-	17,159	\rightarrow	一		17,130	_	17,062	-	-i	一	 i		T	17,253			17,021	17,088	T	i	17,099	17,042
-	2	က	4	5	9	7	8		7	8	4	5	9	7	8	-	2	3	4	2	9	_	8	-	2	က	4	വ	9	7	∞
			ינ	2							č	2	- 1	. 1					2]	1	•		. '			7 76	<u>'</u>	!	'	

_	93.443	<u>.</u>	119,463						84,040		105,042						74.971		94.125	-				Ţ-	58.833	:	73 425) ()			
93,860	93.026	112.823	126,103					85.736	82,344	98,292	111,791					75.874	74,067	88,522	99,727	i -				58.247	59,420	68.619	78,232		•		
51,80	51,34	62,26	69,59	-				47.32	45,44	54,25	61,70					41.87	40,88	48,85	55,04			-		32,15	32,79	37.87	43.17	<u> </u>			
3,25	3,29	3,96	4,41					2.97	2,91	3,46	3,91		•			2.63	2,62	3,11	3,49					2.02	2.10	2.41	2.74	Ī			
	3,863		4,282		9,119		0,978		2,428		4,418,		7,560		0.699		3.142		3,994		6,129		0.699		2,715		3.849		5.420		669'0
4,332	3,393	3,704	4,861	9,229	9,010	1,116	0,841	2,309	2,547	4,261	4,575	7,792	7,328	0,838	0.560	3.173	3,110	3,416	4.572	6,352	5,905	0,838	0,560	2,884	2,547	3,701	3.997	5.769	5.070	0.837	0,560
2,39	1,87	2,04	2,68	5,09	4,97	0,62	0,46	1,27	1,41	2,35	2,52	4,30	404	0,46	0,31	1,75	1,72	1,89	2,52	3,51	3,26	0,46	0,31	1,59	1,41	2,04	2.21	3,18	2,80	0,46	0,31
0,15	0,12	0,13	0,17	0,32	0,32	0,04	0,03	0,08	60,0	0,15	0,16	0,27	0,26	0,03	0,02	0,111	0,11	0,12	0,16	0,22	0,21	0,03		0,1	60,0	0,13	0,14	0.5	0,18	0,03	0,02
						-	1,678								1,398								1,119					•			1,118
						1,674	1,682					******		1,397	1,400							1,117	1,121							1,117	1,120
		···				0,92	0,93							0,77	0,77							0,62	0,62							0,62	0,62
						90'0	90'0							0,05	0,05							0,04	0,04				_			0,04	0,04
15,938	15,605	15,723		15,916		15,398	15,468	15,931		15,678	i	15,927	15,554	15,414	15,454	15,921	1		15,770		15,518	1	15,460	15,913	15,615	15,713	15,757	15,919	15,545	15,404	15,452
33,256	32,657	33,069	32,981	33,041	32,652	32,750	32,679	33,255	32,950	33,134	32,984	33,243	32,814	32,852	32,736	33,169	32,891	33,026	32,953	33,300	32,704	32,677	32,780	33,086	33,093	32,893	33,044	33,219	32,865	32,428	32,568
17,160	16,898	17,190	17,044	16,967	16,960	17,200	17,058	17,166	17,179	17,301	17,049	17,158	17,106	17,285	17,129	17,090	17,135	17,162	17,027	17,207	17,032	17,116	17,167	17,015	17,323	17,024	17,131	17,142	17,166	16,871	16,963
-	2	က	4	2	9	7	8	-	2	3	4	ß	9	7	ဆ	-	Ŋ	3	4	ഹ	g.	7	æ	-	7	3	4	5	9	7	8
			27	ĵ							30	3							2,2	3							36	3			

	58,666		73,266						53,278		65,468	-		•			49,863		57,364				-		45,435		52,031				
58.124	59,209	68,360	78,173					52,088	54,468	60,809	70,127					50,643	49,084	53,384	61,344				-	46,573	44,297	48.251	55,810	-			
32,08	32.68	37,73	43,14					28.75	30,06	33,56	38,70					27,95	27,09	29,46	33,85			-		25,70	24,45	26,63	30,80				
2,02	2,10	2,41	2,74					1.81	1,93	2,14	2.46					1,76	1,74	1,88	2,15					1,62	1,57	1,70	1.96				
	3,985	,	4,268		4,414		976,0		3,420		4,127		3,847		0.558		4,564		3,986		3,558		969'0	-	3,277		3,696		3.272		0,557
3,741	4,229	3,971	4,565	4,893	3,934	1,393	0,559	3,453	3,387	3,978	4,276	4,320	3,374	0,556	0,559	5,179	3,949	3,691	4,280	3,746	3,371	0,837	0,558	3,450	3,104	3,406	3,986	3,739	2,806	0.556	0,559
2,06	2,33	2,19	2,52	2,70	2,17	0,77	0,31	1,91	1,87	2,20	2,36	2,38	1,86	0,31	0,31	2,86	2,18	2,04	2,36	2,07	1,86	0,46	0,31	06,1	1,71	1,88	2,20	2,06	1,55	0,31	0,31
0,13	0,15	0,14	0,16	0,17	0,14	0,05	0,02	0,12	0,12	0,14	0,15	0,15	0,12	0,02	0,02	0,18	0,14	0,13	0,15	0,13	0,12	0,03	0,02	0,12	0,11	0,12	0,14	0,13	0,10	0,02	0,02
							0,837								0,837								0,837					•			0,557
						0,836	0,838							0,835	0,839		<u></u>					0,837	0,838							0,556	0,559
						0,46	0,46							0,46	0,46							0,46	0,46							0,31	0,31
						0,03	0,03				-			0,03	0,03						••	0,03	0,03							0,02	0,02
15,880	15,560	15,654	15,745	15,884	15,509	15,373	15,414	15,882	15,575	15,682	15,732	15,896	15,518	15,355	15,428	15,880	15,568	15,671	15,746	15,904	15,502	15,394	15,408	15,866	15,571	15,664	15,714	15,872	15,486	15,348	15,415
33,239	32,896	32,828	33,135	33,314	32,773	32,627	32,718	32,820	32,853	32,794	32,937	33,334	32,840	32,563	32,637	33,449	32,546	32,898	33,024	33,294	32,963	32,651	32,338	33,192	32,865	32,874	33,008	33,186	32,863	32,519	32,778
17,202	17,182	17,019	17,234	17,273	17,110	17,102	17.151	16,781	17,124	16,957	17,049	17,281	17,168	17,056	17,056	17,412	16,824	17,072	17,122	17,233	17,308	17,105	16,777	17,169	17,140	17,055	17,138	17,157	17,224	17,019	17,210
-	7	က	4	5	9	7	8	-	2	3	4	ď	9		8	-	2	က	4	വ	9	7	8	-	7	က	4	5	9	7	8
			30	3							42	J							45	?							48	P	·		

				200,0					0,09	1,43	2,586		1,26	19,98	36,206	
	2	16,957	32,667	15,556					60'0	04,1	2,537	2,561	1,57	24,42	44.254	40,230
- 1	3	17,200	33,025	15,670					0,07	1,10	1,988		1,62	25,39	45,998	
	4	16,882	32,762	15,724			-		0,10	1,57	2,849	2,418	1,79	28.15	51,002	48.500
	2	17,035	33,097	15,905			•		0,13	2.07	3,746				}	2
	9	17,037	32,688	15,498					0.09	1,39	2.527	3.137				
i	7	17,032	32,544	15,360	0,02	0,31	0,557		0,02	0,31	0.557	 				
	8	16,933	32,466	15,381	0,02	0,31	0,557	0,557	0.01	0,15	0.279	0.418		-		
ļ		17,124	33,127	15,846					0.07	11	2.010		107	16.96	30 723	
	2	17,131	32,852	15,567	•				0,08	1,25	2,257	2,133	8	21.64	39.208	34.966
	က	17,145	32,950	15,650					0,08	1,25	2,269		1.42	22.22	40.268	2
- P4	4	16,555	32,424	15,713					60'0	141	2,563	2,416	1.68	26.40	47.834	44 051
!	5	17,062	33,093	15,874					0,11	1,75	3,164	<u>'</u>	2	<u> </u>	2	3
	9	17,071	32,731	15,506		-			0,09	4,40	2,529	2,846				
ĺ	7	17,085	32,588	15,351	0,02	0,31	0,556		0,02	0,31	0,556					
	8	17,135	32,700	15,412	0,02	0,31	0,559	0,557	0,02	0,31	0,559	0.557				
	-	16,921	32,921	15,843	-				90'0	0.95	1,722		0.89	14.10	25.550	
	7	17,121	32,799	15,524					0,07	1,09	1,969	1,846	1,20	18.63	33,756	29.653
	က	17,100	32,890	15,635					0,08	1,25	2,266		1,29	20,17	36,547	
	4	17,235	33,100	15,709					60'0	1,41	2,562	2,414	1.58	24.82	44.976	40.761
<u>i</u>	ည	17,011	33,051	15,883					0,10	1,59	2,878					-
	9	17,281	32,916	15,482					0,08	1,24	2,244	2,561				
	7	17,040	32,552	15,360	0,02	0,31	0,557		0,02	0,31	0,557					-
\dashv	8	16,959	32,493	15,382	0,02	0,31	0,557	0,557	0,01	0,15	0,279	0.418				~
	- -	17,058	33,061	15,846					90'0	0,95	1,723		0,78	12,36	22,396	
1	2	16,788	32,464	15,522					90'0	0,93	1,688	1,705	1,01	15,68	28,408	25,402
	က	17,092	32,898	15,651			_		70,0	1:10	1,985		1.12	17,53	31,763	
<u></u>	4	17,035		15,698					60'0	1,41	2,560	2,273	53	24.02	43,519	37.641
	2	17,144	33,161	15,860					60'0	1,43	2,586					
	9	17,147	32,787	15,487					20'0	1,08	1,964	2,275				
	7	16,978	32,488	15,358	0,02	0,31	0,557		0,02	0,31	0,557					
\dashv	8	17,109	32,657	15,396	0,02	0,31	0,558	0,557	0,01	0,15	0.279	0.418				

17,216 33,211 15,838 16,955 32,651 15,542 17,047 32,856 15,6542 17,047 32,367 15,845 17,071 33,073 15,845 17,071 33,073 15,845 17,010 32,519 15,853 17,150 32,720 15,417 0,02 17,151 33,181 15,864 17,151 33,181 15,642 17,131 33,153 15,865 17,042 32,894 15,349 17,042 32,894 15,548 17,042 32,894 15,548 17,042 32,894 15,548 17,042 32,894 15,548 17,042 32,894 15,548 17,146 29,984 12,712 17,146 29,984 12,712 17,146 29,984 12,712 17,146 29,984 12,712 17,146 32,657 15,343 <t< th=""><th> </th><th>0.03 0.47 0.863 0.853 1.14 1.770 52.105</th><th>0.47 0.851 1.11 1.38</th><th>0,78 1,422 1.137 1.52 23.86</th><th>1.27</th><th>66'0</th><th>0.01 0.15 0.278</th><th></th><th>0.03 0.47 0.860 0.77 12.18</th><th>0.93</th><th>0,63 1,134 0.97 15.17</th><th>1.10 1.987 1.560 2.35 36.81</th><th>0000 1231</th><th>0.93</th><th>0,15 0,278</th><th>0,418 0,01 0,15</th><th>0.63 1.147 0.66 10.45</th><th>0,93</th><th>0,63 1,134, 0,82 12,83</th><th>1,25 2,273 1,704 2,01 31.52</th><th>1,11</th><th>0,93</th><th>0,15 0,278</th><th>0,417 0.01 0.15</th><th>0,03 0,47 0,861 0,58 9.18</th><th>0,93</th><th>0.47 0.850 0.68 10.64</th><th>0.78 1.422 1.136 1.76 27.63</th><th>1,11. 2,017</th><th>0,92</th><th>0.15 0.279</th><th>2000</th></t<>		0.03 0.47 0.863 0.853 1.14 1.770 52.105	0.47 0.851 1.11 1.38	0,78 1,422 1.137 1.52 23.86	1.27	66'0	0.01 0.15 0.278		0.03 0.47 0.860 0.77 12.18	0.93	0,63 1,134 0.97 15.17	1.10 1.987 1.560 2.35 36.81	0000 1231	0.93	0,15 0,278	0,418 0,01 0,15	0.63 1.147 0.66 10.45	0,93	0,63 1,134, 0,82 12,83	1,25 2,273 1,704 2,01 31.52	1,11	0,93	0,15 0,278	0,417 0.01 0.15	0,03 0,47 0,861 0,58 9.18	0,93	0.47 0.850 0.68 10.64	0.78 1.422 1.136 1.76 27.63	1,11. 2,017	0,92	0.15 0.279	2000
17,216 33,211 16,955 32,651 17,047 32,856 16,515 32,367 17,071 33,073 14,708 30,341 17,150 32,720 17,150 32,720 17,154 32,961 17,164 32,961 17,083 32,692 17,083 32,692 17,083 32,894 17,092 33,100 17,192 32,888 17,042 32,886 17,042 32,886 17,042 32,886 17,083 32,807 17,184 32,778 17,184 32,910 17,183 32,910 17,193 32,910 17,203 33,058 17,203 33,058 17,203 33,058 17,203 33,058 17,203 33,058 17,203 32,396							0,31	0,31							0,31	0,15							0,31	0,15							0,15	0.15
	}_	<u> </u>												!			_	- !		_					Ш				_			_
2 2 4 5 9 7 8 T 2 8 4 5 9 7 8 T 2 8 7 8 7 8 9 7 8 8 T 2 8 8 7 8 9 7 8 8 T 2 8 8 7 8 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 9 9	1 17,216					į					-				1	1			-					1						215		

Diffusion experiment with SPM 907 patches on full human skin

Experiment number: 907DF002

Purpose of the study:

To investigate the release rate of SPM 907 from four different formulations of patches. The present experiment is the first in a series of four in which the flux from the four formulations through skin from four different donors is measured. The fluxes through the supportive membrane have been investigated in a previous experiment.

Patch:

Active ingredient: SPM 907

Batch numbers: 20012029, 20012036, 20106043 and 20106061

Patch area: (variable) Active ingredient content: app. 15% m/m

Skin donor:

Birth date: 06.12.1983 Sex: female Skin from: breast

Thickness of dermatomised skin: approximately 290 µm, skin in cell 8 was app. 350 µm.

Diffusion experiment:

Date: 10 to 13 october 2001

Used cells:

diffusion cells with spiral groove (n=8); groove area: 0.552 cm².

Separator between acceptor phase and skin/patch:

Silicone sheeting (Silastic sheeting), implant grade elastomer non sterile, non-reinforced;

Manufacturer: Nagor limited, P.O. Box 21, Douglas, Island of Man

Cat. nr. NA 500-1, Thickness 0.125 mm, Lot nr. 11603/1

No special pretreatment, other than cleaning, applied.

Diameter of separator, skin and patch punch-outs: 1.8 cm.

Setup diffusion cells:

Cell nr.	Batch
1 & 2	20012029
3 & 4	20012036
5 & 6	20106043
7 & 8	20106061

Acceptor phase:

PBS pH=6.2

Measured temperature waterbath:

32,0 °C 5 ml/hour

Flux of acceptor phase:

Total duration of the experiment: 72 hours, samples are collected in 3 hour periods

Observations during dermatomisation, cell assembly, disassembly, etc. No special observations.

Mass and volume data on the collected fractions

	g/ml
-	1,008
measured density of the used acceptor	:osedd

1.00cm² Mittelwert 0,000 0,000 0,000 0,000

FractionxF

1,812

Faktor zur Umrechnung auf cm³=

000,0

0,000

<u>lī</u>		┸																															
	ud/ml ud/fraction	O	-								0000				•			0000	0,160		0,160					0000	0.160		0,160				
Diacetat				0						0	0		0.01	5				0	0,01	0,05	0.01						0.01	0.06	0.01				-
	ug/cm² Mittelwert		0.580		0,290		0.289		0.284																								
FractionxE	ug/cm²	0,583	0,578	0,289	0,290	0,294	0,285	0,283	0,285	0,000	0,000	0.00	000.0	0000	0.000	0.000	0.000	0.00	000'0	000'0	000'0	0,000	0,000	0,000	0,000	0.00	0,000	000'0	0000	0000	0,00	0,000	0,000
	ug/fraction	0,322	0,319	0,160	0,160	0,162	0,157	0,156	0,157	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	0	0	0	0	0	Ö	0	0	0
DIOH) Im/gr	0,02	0,02	0,01	0,01	0,01	0,01	0,0	0,01	00'0	0,00	00.0	0,00	0.00	0.00	0.00	00.0	00'0	0,00	0,00	00'0	00'0	0,00	0,00	0,00	00'0	0,00	0,00	00'0	00'0	00'0	0,0	0,00
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mittelwert				·															•	•												
Fraction	F=1.812						****										•																
3,333 3,33 3,33 3,333 3,333 3,333 3,333 3,333 3,333 3,333 3,333 3,333 3,	ug/ml _ug/fractior *F≒1.812 Mittelwert			•				0000	0,000		•					000'0	0,000							0,000	000'0				· · ·			0,000	0,000
8272	_lm/grl							0	O			•				0	0							0	0	•						0	0
volume	fraction	16,075	15,951	15,959	16,014	16,212	15,709	15,606	15,725	16,115	16,026	15,993	16,009	16,240	15,789	15,597	15,781	16,092	16,007	15,995	16,007	16,248	15,760	15,608	15,778	16,067	16,003	15,998	15,993	16,231	15,774	15,618	15,777
bes (g)	full	33,268	33,311	33,225	33,212	33,501	32,990	32,997	32,889	33,218	33,123	33,047	33,391	33,511	33,188	32,921	33,052	33,261	33,200	33,343	33,172	33,553	32,965	32,796	33,061	33,469	33,364	33,359	33,169	33,626	33,089	32,813	33,066
mass tubes	empty	17,063	17,231	17,137	17,069	17,158	17,154	17,265	17,037	16,973	16,968	16,925	17,253	17,140	17,272	17,198	17,144	17,039	17,064	17,219	17,036	17,174	17,078	17,062	17,156	17,272	17,232	17,232	17,047	17,264	17,188	17,069	17,162
	cell nr.	-	7	9	4	5	9	_	8	-	2	က	4	5	9	7	8	-	2	m .	4	5	9	7	8		2	က	4	D.	9		8
Flux time	(hours)		!		cr.	<u> </u>					!	<u>. l</u> .	Œ	>		!		<u>'</u>			σ.	, ,		- 1		!		1.	<u></u>	-	!_		

0,145

0,000 0,290 1,449 0,290

0,870

0,145

0,000 0,290 1,739 0,290

1,015

0,145

0,000

0,000 0,000 0,000 0,290

_		n		J.				-	,	<u> </u>	,							_		~							-				
		C,430	1 300						6	υ, υ,	7	coe,-					i	//c'n		1,298				-	0	0,865	0	2,018			
0000	000	0,000	0.290	2,0				000	000,0	0,00	2,519	0,230			•	0	0,000	401,1	2,019	0,577				0	0,230	0440	7,887	1,153			
0000	00,0	7,700	0 160	5			•	000	00,0	7,400	- 6	,		•	•	0	0,000	7500	1,114	0,318				0	0,100	0,7	6,0	0,837			
_	0 0	800	0.0	- 5					2 0	20,0	3 5	2,				-	5	2, 0),o,	0,02				5	2,0	2, 5	5 6	-to'o			
	0.201	2,0	0.145		0.000	2,0	0 141	<u></u>	0000	7,0	000	5	0.173	<u>-</u>	0.428)		20,0		000'0	0 147	<u>-</u>	- 171	<u>+</u> 5	0 144	<u></u> ,	000	007,0	0 146	 - - - -	0.083
0.292	0.000	0,100	000.0	0.294	0.285	0,500	0,400	0,000	000	0000	0000	000	0,000	2,00	0,100		200	2000	200,0	000,0	0,000	200,00	0,00	900	0,000	202,0	0000	0,700	0,630	0,000	0,285
0,161	0.160	0,160	0,000	0.162	0.158	0,156	0000	0 161	18.	0.00	0000	0000	0.157	0.156	0.316	000	000	000,0	20,0	0,000	200	1,00	00,0		0,000	1,0	7,00	7,00	000	0.155	0.157
0,01	0.01	0.01	0,0	0.01	0.01	500	0.00	0.01		00.0	00.0	00.0	0.01	0.01	000	000	80	200	3 6	90,0	0,0	0,0	00,0	200	0.0	2,0	5 6	500	2,0	0.01	0.01
																				4.1741.					<u>.</u>				·-		
																							_								
						000.0	000'0		-		 .			000'0	0,000							000'0	0,000			•				000	0,000
							0								0	_							0								0
16,093	15,989	15,966	15,978	16,238	15,756	15,610	15,797	16,071	15,990	16,000	16,003	16,224	15,750	15,615	15,790	15,994	15,925	15,919	15.921	16,174	15,695	15,533	15,707	15,998	15,897	15,906	15,915	16,164	15,664	15,545	15,721
33,356	33,339	33,254	33,187	33,513	32,833	32,849	32,855	33,288	32,823	33,009	33,251	33,332	32,968	32,651	32,819	32,677	33,082	33,238	33.231	33,395	32,920	32,805	32,897	32,906	33,307	33,072	33,100	33,249	32,951	32,759	33,151
17,133	17,221	17,159	I I	- 1		17,113	\dashv	17,087	16,704		17,119	16,977	17,091	16,910	16,902	16,554	17,028	17,191	17,182	<u> </u>	17,098	17,147	17,063	16,779		17,038	17,057	16,955	17,161		17,303
-	2	က	4	3	9		8	-	2	i		-	9	j	1	-	2		4	<u> </u>	9			-	. 7		4				8
			157	<u> </u>					!		72	2	_	<u> </u>		100		1	7	- V	.						24	1 - 		A PARTY COLUMN TO THE PART	

_											_					_															
	O RGE	200,0	2 017]					1 152		1.872						1 296	} !	0 440	1					1 294	- 1,	0 588	2,000			
0.290	1 441	2,592	1,004	-				0.578	1,726	2.016	1,727	i :				0 868	1,724	2000	2 586	,				0.865	1 723	30.0	2 874	<u>)</u>			
0.160	0.795	1.431	0,795	}				0.319	0.952	1,112	0.953	1		•		0.479	0.952	1 269	1 427	į		•		0.478	0.951	1 2 7 0	1586	-			
0.01	0,00	000	0.05	}				0 0	0,06	0.07	0.0					0 03	90.0	0.08	000	}				0.03	0.06	80 0	0,10	5		_	
	0.145	<u>}</u>	0.288		0.00)))	0.141	1	0.145		0.144		0.288		0.283		0.288		0.431		0.288	<u></u>	0.140	<u> </u>	0.288		0.575)	0.288	!	0.282
0.290	0.00	0.288	0.288	0.000	0.000	0.281	0,00	0.289	000	0,000	0,288	0.292	0,283	0.282	0.284	0.289	0,287	0.287	0.575	0 202	0.283	0.281	0.00	0,288	0,287	0.863	0.287	200.0	0.283	0,281	0.284
0,160	0.000	0.159	0,159	0000	0.00	0.155	0,000	0.159	0,000	0,000	0,159	0,161	0,156	0,155	0.157	0.160	0.159	0.159	0.317	0.161	0,156	0,155	0,000	0,159	0,158	0.476	0,159	0.161	0,156	0,155	0,157
0,01	00.0	0,01	0,01	00,0	000	0,01	0,00	0.01	00'0	0,00	0,01	0,01	0,01	0,01	0,01	0.01	0,01	0.01	0.02	0.01	0,0	0,01	00.0	10,0	0,01	0,03	0,01	0.01	0,01	0,01	0,01
	••	-									•																				
-																						-									
					<u>.</u>	0000	0,000							0,000	0,000				•			0,000	0,000,0							0000	0,000
						0				•				0								0								<u> </u>	
15,987	15,908	15,895	15,906	16,154	15,669	15,508	15,704	15,949	15,872	15,891	15,889	16,137	15,636	15,537	15,677	15,965	15,860	15,857	15,855	16,114	15,640	15,505	15,688	15,922	15,844	15,874	15,863	16,121	15,616	15,509	15,655
33,272	33,213	33,345	33,189	33,108	32,893	32,719	32,877	33,305	33,126	33,142	33,119	33,400	32,962	32,765	32,812	33,103	33,175	33,152	33,041	33,221	32,996	32,737	32,994	33,461	33,025	32,897	33,262	33,482	32,931	32,777	32,718
17,156	17,177	17,322	17,155	16,824	17,098	17,086	17,046	17,227	17,126	17,123	17,102	17,133	17,200	17,103	17,008	17,009	17,187	17,167	17,058	16,977			17,179			D.	_		-		16,937
-	2	3	4	5	9	7	8	-!					9	+	80		1	က		5			œ			-				7	1
1			27	Ĭ				_ !	1	ļ	30)							33	3		-			YYYYaa	Ĺ	36	}			

	1,565	000	4,000					4	COC.	2 55.4	200					1 040	, o. 1	0.00	3,979					1 2/2	0,-	2000	000			
1,143	1,987	2,270	2,046				- T	1,142	000,-	7,0,1	7,4				4 407	0.071	77,7	0,410	7,54,		•		1 427	0.070	2,67	7,04) f	1		
0,631	1,096	, L	00,-				0.630	200,0	, co, t	9.35.1	3,	•			087.0	1,700	3, 1	200,0	60c ¹ 2				0.787	1.053	1 L	2000	20,4			
0,04	0,07	5 5	<u>-</u>				0.00	2,0	5,0	2,0	5				0.05	800	2 6	2 0	<u>o</u>				0.05	80,0	5 0	0.12	5	_		
	0,569	0.710	2	0.284		0.279	i i	7,563	2	0.852	1	0.284	<u>.</u>	0.279		0.427	1	0 74 0	? ;	0.284		0 270	į	0.142	Į	0.568	}	0 284))	0,279
0,571	0,568	0,000	0,00	080	0,222	0.280	0.286	2 840	0.568	1.136	0.288	0.279	0,278	0.281	0.571	0.284	0,10	0,0	0,00,0	0.280	0.278	0.284	0000	0.284	0.284	0.852	0.280	0.279	0.278	0,281
0,315	0,313	0,510	0.159	0.154	0.153	0.155	0.158	1.567	0.314	0,627	0,159	0.154	0,153	0,155	0.315	0.157	0.314	0.470	0.150	0.155	0.153	0.155	000'0	0.157	. 0.157	0.470	0.159	0.154	0.153	0,155
0,02	0,02	0.03	0.01	0.01	0.01	0.01	0.01	0,10	0.02	40.0	0.01	0.01	0,01	0.01	0.02	0.01	0.0	0 03	0.0	0,01	0,0	0.01	0	0,01	0.01	0.03	0.01	0.01	0,01	0,0
										•		<u>-</u>											-							
		**																												
-					0,000	0,000							000'0	000'0							000,0	000'0							0,000	0,000
					0	0							0	0	-						Ö	0							0	0
15,767	15,662	15,682	15,934	15,442	15,307	15,462	15,760	15,671	15,684	15,673	15,918	15,410	15,319	15,491	15,754	15,666	15,684	15,682	15,931	15,452	15,322	15,489	15,750	15,660	15,679	5,678	15,923	15,417	15,329	15,495
32,874	32,769	32,801	33,025	32,812	32,609	32,765	33,013		33,113	33,036			[_	32,857		32,886	32,755	33,125		.	32,688	1		-	32,889	33,075		[32,806
16,980	1	16,992	16,962			17,178	17,126	16,919			-		- !	\dashv	16,976		17,075	16,946	17,065	-		17,074	_					<u> </u>	1	17,186
-	3 6		5		7	8	-	7	က					∞	1	2		!				8	-			1	-			8
		30	3							42]		<u> </u>					45) }	ļ			_			48	2	a por Ca		

0.085	3 110 0 700	2,119 2,702 4 830	6.530 5.680					2 281	2.834 2.558	4,826	7.096 5.961				-	2 281	2,535 2,558		7.376 5.055					2 284	4.535 3.408		7.378 6.242				_
1 261	107,1	2,72	3 604					1 250	1.564	2.663	3,916					1 250	1,564	2,503	4.071	·			·	1.259	2,503	2,819	4,072				_
, d		0,17				<u></u>				0,17							0,00								0,16						
	0.569		3 0.852		0.284		0,279		0.427		0.993		0.284		0.279		0.569		1.134		0.284		0.279		0,569		1,135		0.284		
																									3 0,567						
																						•			2 0,313		_				
0	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0,0	0,0	0,0	0.0	00	00	0.0	000	00	00	0.0	0.0	0,0	0,0	0,0	0,02	0,0	90,0	0,0	0,0	0.0	
			·															•													
_						_	0							_	_								_							_	
							0,000							00000								000'0						-		000'0	
	,						0															0	0							0	
] 15,764	15,650	15,678	15,668	15,911	15,430	15,323	15,488	15,736	15,640	15,667	15,664	15,905	15,435	15,306	15,478	15,735	15,644	15,641	15,657	15,918	15,389	15,305	15,470	15,738	15,644	15,659	15,660	15,908	15,399	15,307	
32,899	32,784	32,858	32,846	33,113	32,645	32,368	32,801	32,887	32,909	32,999	32,902	33,057	32,589	32,427	32,487	33,077	32,949	32,917	32,944	33,386	32,634	32,589	32,656	33,031	32,868	32,654	32,800	33,174	32,701	32,401	
17,008	17,008	17,053	17,052	17,074	17,090	16,921	17,188	17,024	17,143	17,206	17,112	17,024	17,029	16,997	16,884	17,215	17,179	17,150	17,161	17,340	17,121	17,160	17,061	17,166	17,098	16,869	17,014	17,138	17,178	16,970	
_	2	က	4	ιΩ	ဖ	7	8	-	2	က	4	Ŋ	9	7	8	-	2	က	4	5	9	7	œ	-	2	es	4	2	9	7	
			7	-							54	-							77	5			THE STATE OF THE S				9)			

_	-															_															
	3.408	5	6.382						3.262	 	6.386						3.264	i I	6009	,					3.123	<u>;</u>	6.522				
2,282	4.535	5.392	7,371					2.276	4 248	5.389	7,382			•		2.280	4.248	5.392	6.807	5		•		2.280	3.966	5.670	7.373				
1.260	2,503	2.976	4,068					1.256	2,344	2.974	4.074				•	1.258	2.344	2,976	3,756	}				1.258	2.189	3,129	4.069				
0.08	0.16	0,19	0,26					0.08	0.15	0,19	0.26					0.08	0.15	0.19	0.24	<u></u>				0.08	0.14	0.20	0.26				
	0.569	3	1,134		0.284	· · · · · · · · · · · · · · · · · · ·	0.417	<u>L</u>	0.568		0.993		0.284		0.279	<u> </u>	0,568		0.851		0.284		0.279	L	0.568		0.851		0,283		0.279
0.571	0.567	0,851	1,418	0,288	0.279	0.554	0,280	0.569	0.566	0,851	1,136	0,288	0.279	0,278	0.280	0,570	0,566	0,568	1.134	0.288	0.279	0.277	0.280	0,570	0,567	0,567	1,134	0.288	0,279	0,277	0.280
0.315	0.313	0,470	0,782	0,159	0.154	0,306	0,155	0.314	0.313	0,470	0,627	0,159	0,154	0,153	0,155	0.315	0,313	0,313	0.626	0.159	0.154	0,153	0,155	0,315	0,313	0,313	0,626	0,159	0,154	0,153	0.155
0,02	0,02	0,03	0,05	0,04	0.01	0,02	0,01	0,02	0,02	0,03	0,04	0,01	0,01	0,01	0,01	0,02	0,02	0,02	0.04	0.01	0.01	0,01	0,01	0,02	0,02	0,02	0,0	0.01	0,01	0,01	0.01
						<u> </u>									•	_									w						
																							••								
_						000	000'0							000	000'0			-				000	0,000	ļ						0,000	000
																														о́ 	Ó
						0	0								0							0	0							0	0
15,745	15,641	15,661	15,647	15,895	15,417	15,291	15,477	15,703	15,630	15,653	15,670	15,900	15,401	15,321	15,465	15,730	15,630	15,663	15,652	15,915	15,379	15,298	15,461	15,730	15,634	15,647	15,651	15,889	15,394	15,282	15,471
33,066	32,724	32,829	32,896	33,179	32,563	32,542	32,764	32,343	32,752	32,829	32,400	33,230	32,800	32,630	32,776	32,920	32,936	32,926	32,871	33,192	32,616	32,569	32,631	33,058	32,832	32,826	32,981	33,009	32,564	32,549	32,628
17,194	16,957	-	17,123	<u>-</u>	17,022	17,128	17,162	16,513	16,996	17,050	16,604	17,202	17,275	17,185	17,186		!	_	17,093	17,149	17,113	17,148	17,045	17,201		_	17,204	16,992			17,032
-	2	ဇ	4	2	9	7	8	-	. 7	က	4	5	9	7	8			ဗ	4	2	9	7	8	-	2			5	9		8
		: :	83	3	- 1	7000				Ī	99	3		!			!	. 1	09	3					1	_ [72]			

Schwarz Pharma AG

Analysenzertifikat

in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-TDS SPM8302

Ch.-B.:

20003028

Soligehalt:

4,0 mg

TDS-Fläche:

5 cm²

Analysen-Nr:

IN168A-B

ABV vom :

analog OBU 0469.100

Analysendatum:

28.03.2000

Bemerkungen:

9 Wochen lebend, 4 Wochen TK-Schrank; SKH-13

1=170 µm; 2=175 µm; 3=148 µm, 33,3g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VT 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		mg	Diacetat / 5c	m²		mg Monoacetat/5cm2**
Zeit [h]	1	2	3	MW	SD	MW
3	1,15	0,81	2,25	1,40	0,76	0,31
6	2,15	1,95	3,76	2,62	0,99	0.54
24	4,13	4,78	5,19	4,70	0,54	0,99
30	4,30	5,19	5,23	4,91	0,53	1,02
48	4,42	5,40	5,25	5,02	0,53	1,03

**Da für Monoacetat keine Standardsubstanz vorliegt, wurde der auftretende Peak bei RT 6,8 ohne Berücksichtigung des MG in Diacetat umgerechnet. MW = Mittelwert SD = Standardabweichung

Achsenabschnitt (b)= Regressionskoeffizient (m) =

1,99 m g 80.0 mg/h

Korrelationskoeffizient (r) =

0,88839

Zeit [h]	1	2	3	MW	SD
3	0,26	0,20	0,32	0,26	0,06
6	0,47	0,39	0,52	0,46	0,07
24	1,07	1,05	0,93	1,02	0,07
30	1,13	1,10	0,96	1,06	0,09
48	1,19	1,15	0,98	1,10	0,11

Achsenabschnitt (b)= Regressionskoeffizient (m) = Korrelationskoeffizient (r) =

0,35 0,02 0,90552

m.g

mg/h

Q ≈ t $Q = t \cdot m + b$ Q = Freisetzung in μ g/5cm² t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

L:\Projekte\Proj-gr4\INZ\MHP\20003028_1.DOC

Schwarz Pharma AG

Analysenzertifikat in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-TDS SPM8302

Ch.-B.:

20004038

Soligehalt:

IN189 A.B

TDS-Fläche:

5 cm²

Analysen-Nr: ABV vom :

analog OBU 0469.100

Analysendatum:

17.04.2000

Bemerkungen:

7 Wochen lebend, 2 Wochen TK-Schrank; SKH-13

1=159 µm; 2=165 µm; 3=146 µm, 31,9 g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VT 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		m	Diacetat / 5c	m²		mg Monoacetat/5cm2**
Zeit [h]	1	2	3	MW	SD	MW
3	0,14	0,15	0,20	0,16	0,03	0,04
6	1,21	1,17	1,28	1,22	0,06	0,22
24	2,27	2,17	2,35	2,27	0,09	0,41
30	2,48	2,37	2,54	2,46	0,09	0,43
48	2,75	2,63	2,75	2,71	0,07	0,46

**Da für Monoacetat keine Standardsubstanz vorliegt, wurde der auftretende Peak bei RT 6,8 ohne Berücksichtigung des MG in Diacetat umgerechnet. SD = Standardabweichung MW = Mittelwert

Achsenabschnitt (b)= Regressionskoeffizient (m) = 0,62 0,05

mg

mg/h

Korrelationskoeffizient (r) =

0,89901

mg DIOH / 5cm² Zeit [h] MW SD 0,07 0,07 0.08 0.07 0.01 6 0,38 0,39 0,37 0,38 0,01 24 0,71 0,72 0,68 0,71 0,02 30 0,77 0,77 0,72 0,75 0.03 48 0.83 0,83 0.77 0,81 0.03

MW = Mittelwert SD = Standardabweichung

Achsenabschnitt (b)=

0,21 0,02 mg/h

Regressionskoeffizient (m) = Korrelationskoeffizient (r) =

0,89243

Q≈t $Q = t \cdot m + b$ $Q = Freisetzung in \mu g/5cm^2 t = Zeit in h (3h-48h)$

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

L:\Projekte\Proj-gr4\INZ\MHP\20004038_1.DOC

Schwarz Pharma AG

Analysenzertifikat in vitro Freisetzung durch Mäusehaut

Präparat:

INZ-TDS SPM8302

Ch.-B.:

20004039

Sollgehalt:

IN189 A,B

TDS-Fläche:

5 cm² 17.04.2000

Analysen-Nr:

ABV vom:

analog OBU 0469.100

Analysendatum:

Bemerkungen:

7 Wochen lebend, 2 Wochen TK-Schrank; SKH-13

1=180 μm ; 2=165 μm ; 3=143 μm , 34,0 g

Die Proben wurden nicht aufkonzentriert und nicht filtriert

HPLC: 4VT Acetonitril / 6VT 0,1% TFA; Spherisorb 5CN 25cm; 35°C

Tabelle der kumulierten Freisetzung in mg / 5 cm²

		m g	Diacetat / 5c	m²		mg Moncacetat/5cm2**
Zeit [h]	1	2	3	MW	SD	MW
3	0,11	0,25	0,59	0,32	0,25	0,09
6	0,90	1,04	1,17	1,03	0,13	0,22
24	1,71	1,82	1,74	1,76	0,05	0,37
30	1,84	1,92	1,78	1,85	0,07	0,38
48	1,97	1,99	1,81	1,92	0,10	0,39

**Da für Monoacetat keine Standardsubstanz vorliegt, wurde der auftrelende Peak bei RT 6,8 ohne Berücksichtigung des MG in Diacetat umgerechnet. MW = Mittelwert SD = Standardabweichung

Achsenabschnitt (b)= Regressionskoeffizient (m) = 0,65 0,03

Korrelationskoeffizient (r) =

0,87148

mg mg/h

		n	ng DIOH / 5cn	U S	
Zeit [h]	1	2	3	MW	SD
3	0,06	0,08	0,13	0,09	0,04
6	0,32	0,33	0,34	0,33	0,01
24	0,60	0,58	0,55	0,58	0,02
30	0,64	0,60	0,57	0,60	0,03
48	0,68	0,63	0.58	0,63	0.05

Achsenabschnitt (b)= Regressionskoeffizient (m) = Korrelationskoeffizient (r) =

0,20 0,01 0,87353

m g mg/h

Q≈t $Q = t \cdot m + b$ Q = Freisetzung in μ g/5cm² t = Zeit in h (3h-48h)

Datum

Sachbearbeiter(in), PHA

Projektgruppenleiter, PGIV

L:\Projekte\Proj-gr4\INZ\MHP\20004039_1.DOC

Diffusion experiment with SPM 907 patches on full human skin

Experiment number: 907DF003

Purpose of the study:

To investigate the release rate of SPM 907 from four different formulations of patches. The present experiment is the second in a series of four in which the flux from the four formulations through skin from four different donors is measured. Because of low flux values in the first experiment in this series, the silastic sheeting supportive membrane has been replaced with dialysis membrane.

Patch:

Active ingredient: SPM 907

Batch numbers: 20012029, 20012036 and 20106061

Patch area: (variable) Active ingredient content: app. 15% m/m

Skin donor:

Birth date: 1969

Sex: female

Skin from: abdomen (belly)

Thickness of dermatomised skin: approximately 240 µm

Diffusion experiment:

Date: 15 to 18 november 2001

Used cells:

diffusion cells with spiral groove (n=6); groove area: 0.552 cm²;

Separator between acceptor phase and skin/patch:

Diachema dialysis membrane, type 10.14, supplied by Dianorm, München, Germany.

Manufactured from neutral cellulose, molar weight cut-off: 5000, thickness (dry): 25 µm.

Pretreated according to the manufacturer's recommendations.

Diameter of separator, skin and patch punch-outs: 1.8 cm.

Setup diffusion cells:

Cell nr.	Batch	1
[2017] :	20106061	-
 Programme And Angelong Control of the	20012029 20012036	

Acceptor phase:

PBS pH=6.2

Measured temperature waterbath:

31,9 °C

Flux of acceptor phase:

5 ml/hour

Total duration of the experiment: 72 hours, samples are collected in 3 hour periods.

Observations during dermatomisation, cell assembly, disassembly, etc.

- 1.) The total area of good quality skin on the delivered pieces allowed the punch-out of no more than six disks for use in the experiment. Therefore, only three of the four batches were tested.
- 2.) The skin disk in cell 1 contained a thinner area on one side.
- 3.) The skin disk in cell 6 was thinner on the whole area.
- 4.) The skin disks in cells 2, 3, 4 and 6 showed spots from the blue marker used to mark unusable greas on the skin pieces. Traces of the blue dye might be found in the corresponding diffusion samples.

Mass and volume data on the collected fractions

ed density of the used acceptor 1,007 g/mi Faktor zur Umrechnung auf cm³=		1,812
sed acceptor 1,007 c		Faktor zur Umrechriung auf cm³=
sed acceptor phase: 1,0		g/mi
ed density of the used acceptor phase:	****	0,1
measul	ured density of the u	phase:

				c	ာ				•	G	0	•				c	ກ					ç	7					Li T	<u>.</u>		-			9	<u>o</u>		
	Mittelwert				8,217		5,538				8,769		960'9				8,338		6,808				8,778		7,522				9,191		8,626				9,193		9,338
FractionxF	ug/cm² ∧	11		15,873	0,562	0,562	10,515			17,258	0,281	1,404	10,788			16,115	0,562	2,527	11,089			16,151	1,405	3,656	11,389			15,571	2,811	4,785	12,468	5.		14,790	3,597	6,097	12,580
	ug/fraction			8,760	0,310	0,310	5,803			9,524	0,155	0,775	5,954			8,893	0,310	1,394	6,120			8,913	0,775	2,017	6,285			8,593	1,552	2,640	6,881			8,162	1,985	3,365	6,942
Diacetat	ug/ml u			0,56	0,02	0,02	0,38			0,61	0,01	0,05	0,39			0,57	0,02	60'0	0,40			0,57	0,05	0,13	0,41			0,55	0,10	0,17	0,45			0,53	0,13	0,22	0,46
	Mittelwert		0,718		0,848		1,111		0,863		1,554		2,508		1,295		2,256		3,629		1,582		2,964		4,477		1,869		3,811		4,477		2,123		4,588		5,787
FractionxF	ug/cm² h	0,870	0,565	1,134	0,562	0,562	1,660	1,161	0,566	2,546	0,561	2,526	2,490	1,741	0,848	2,827	1,685	3,930	3,327	2,033	1,132	3,400	2,528	5,343	3,611	2,322	1,415	4,530	3,093	5,629	3,325	2,572	1,675	5,302	3,874	6,651	4,923
	ug/fraction	0,480	0,312	0,626	0,310	0,310	0,916	0,641	0,312	1,405	0,310	1,394	1,374	0,961	0,468	1,560	0,930	2,169	1,836	1,122	0,625	1,876	1,395	2,949	1,993	1,281	0,781	2,500	1,707	3,106	1,835	1,419	0,924	2,926	2,138	3,671	2,717
PiOH	ug/ml u	60,0	0,02	0,04	0,02	0,02	90'0	0,04	0,02	60'0	0,02	60'0	0,09	90'0	0,03	0,1	90'0	0,14	0,12	20'0	0,04	0,12	60'0	0,19	0,13	90'0	0,05	0,16	0,11	0,2	0,12	60'0	90'0	0,19	0,14	0,24	0,18
	Mittelwert		0,145						0,145						0,145						0,432						0,577						0,851				
Fraction	*F=1.812	0,290005	000'0					0,290	000'0					0,290	0,000					0,581	0,283					0,871	0,283					1,143	0,558				
	g/fraction	∥	000'0					0,160	0,000					0,160	000'0					0,321	0,156					0,481	0,156					0,631	0,308				
8272	n Jm/gri	0,01	0					0,01	0					10,0	0					0,02	0,01					0,03	0,01					0,04	0,02				
volume	fractions (ml)	16,005	15,594	15,642	15,494	15,494	15,271	16,017	15,615	15,614	15,487	15,491	15,266	16,013	15,604	15,603	15,496	15,493	15,300	16,026	15,621	15,637	15,502	15,519	15,330	16,019	15,619	15,624	15,515	15,532	15,291	15,770	15,407	15,400	15,270	15,295	15,092
(g) səqr	full	33,097	32,862	32,718	32,573	32,635	32,350	33,289	32,907	33,008	32,757	32,717	32,548	33,002	32,988	32,743	32,838	32,426	32,434	33,253	32,781	32,896	32,342	32,908	32,391	33,365	32,870	32,780	32,700	32,590	32,608	33,094	32,564	32,502	32,564	32,562	32,369
mass tubes (g	empty	16,976	17,155	16,962	16,966	17,028	16,968	17,156	17,179	17,281	17,157	17,113	17,171	16,873	17,271	17,027	17,229	16,820	17,023	17,111	17,046	17,145	16,727	17,276	16,950	17,230	17,138	17,042	17,072	16,945	17,206	17,209	17,045	16,990	17,183	17,156	17,167
	cell nr.	-	2	က	4	S	9		2	က	4	z,	9		۵	က	4	2	9	-	ત્ય	က	4	5	9	-	2	က	4	ນ	9	-	23	9	4	5	9
Flux time	(hours)	e e					Ľ)					o	ס					10	1					<u>ተ</u>	2					18	2					

Γ			_	_						+					_	_											~				-			
			2						Č						7.0		_				20			ļ			C C						26	
				10,017		12,243				10,841		12,774				11,537		13,599				12,238		15,110		, e		12,784		16,482				
			15,335	4,700	11,361	13,125	000'0		15,869	5,813	9,431	16,118			16,160	6,915	10,805	16,392			16,737	7,739	12,475	17,744			16,990	8,577	14,132	18,832			17,863	
			8,463	2,594	6,270	7,243			8,758	3,208	5,205	8,895			8,918	3,816	5,963	9,046			9,236	4,271	6,885	9,793			9,376	4,733	7,799	10,393			9,858	
			0,55	0,17	0,41	0,48			0,57	0,21	0,34	0,59			0,58	0,25	0,39	09,0			9'0	0,28	0,45	0,65			0,61	0,31	0,51	69'0			0,64	
		2,403		5,416		5,783		2,401		5,554		6,615		2,545		6,385		7,298		2,396		6,110		7,709		2,399		6,246	•	7,845		2,397		
- [/5,857	1,949	5,855	4,976	960'9	5,469	2,852	1,949	6,125	4,983	7,767	5,464	2,859	2,230	6,408	6,361	8,312	6,284	2,566	2,225	6,416	5,804	8,594	6,825	2,569	2,228	6,406	6,087	8,867	6,823	2,569	2,226	6,698	
- [1,4,1	1,076	3,231	2,746	3,364	3,018	1,574	1,076	3,380	2,750	4,286	3,015	1,578	1,231	3,537	3,511	4,587	3,468	1,416	1,228	3,541	3,203	4,743	3,766	1,418	1,230	3,535	3,359	4,894	3,766	1,418	1,228	3,697	
(0,10	0,07	0,21	0,18	0,22	0,20	0,10	20,0	22,0	0,18	0,28	0,20	0,10	80'0	0,23	0,23	08'0	0,23	60'0	80,0	0,23	0,21	0,31	0,25	60,0	90'0	0,23	0,22	0,32	0,25	60'0	90'0	0,24	
-		0,850						0,991												0,988		•				0,989						0,849	,	
	1,143	0,557					1,426	0,557					1,430	988'0					1,141	0,835					1,142	0,836					1,142	0,556		
	0,631	0,307					0,787	0,307					0,789	0,462					0,629	0,461					0,630	0,461				,	0,630	0,307		
	0,04	0,02					0,05	0,02					0,05	0,03					0,04	0,03					0,04	0,03					0,04	0,02		
	15,768	15,368	15,387	15,257	15,293	15,090	15,741	15,366	15,364	15,277	15,308	15,076	15,778	15,384	15,376	15,264	15,290	15,077	15,737	15,352	15,394	15,253	15,300	15,066	15,753	15,371	15,371	15,269	15,293	15,063	15,753	15,355	15,403	
0 100	32,790	32,448	32,616	32,410	32,458	12,398	32,728	32,545	31,559	32,284	32,631	12,326	33,073	32,549	32,652	32,038	12,418	32,159	32,918	32,361	32,729	12,201	32,469	32,341	32,950	32,658	32,576	12,542	32,604	32,348	32,840	32,615	32,522	
\vdash	+		-	17,042 3			16,873 3	<u>. </u>	<u> </u>	16,896	17,212 3	-		17,053 3	17,164 3	16,663 3		1			17,223 3	<u> </u>		17,166 3	17,083 3	17,175 3		17,162 3	<u>! </u>	17,176		17,148 3	1	
֧֓֟֟֝֟֝֟֝֟֝֟֝֓֓֓֓֓֟֟֝֟֝֟֝֟֝֟֝֟֝֟֜֟֝֟֝֟֝֝֟֝֝֟֝֝		+					1	2	3	4		9	1	2 1	3			9	-	2	3	4	5				3 1		5	6 1	,-	7		
	212							T APPLANT	2	1					07						06	<u> </u>	<u> </u>				23	3					36	2

		30	3					72	J					7	2					α	 P					7	5					7	5		
-		_	15,532		20,866				16,080		21,960		•		16,508		22,930				16,776		23,737				17,310		24,160				17,874		24,828
		20,026	11,039	18,819	22,913			19,736	12,424	20,205	23,714			20,313	12,703	21,596	24,264			20,302	13,249	22,383	25,092			20,833	13,786	23,250	25,070			21,127	14,620	24,057	25,600
		11,052	6,092	10,386	12,645			10,892	6,857	11,151	13,087			11,210	7,011	11,918	13,391			11,204	7,312	12,353	13,847			11,497	7,608	12,831	13,836			11,660	8,068	13,276	14,128
		0,72	0,40	99'0	0,84			0,71	0,45	0,73	0,87			0,73	0,46	0,78	0,89			0,73	0,48	0,81	0,92			0,75	0,50	0,84	0,92			9/'0	0,53	0,87	0,94
	2,111		5,818		7,563		2,112		5,679		7,425		1,968		5,682		7,288		1,968	-	5,541		7,558		1,686		5,257		7,149		1,685		5,260		7,141
2,278	1,944	5,841	5,795	8,579	6,547	2,279	1,945	5,559	5,798	8,580	6,269	1,992	1,945	5,565	5,799	8,306	6,270	1,994	1,942	5,562	5,521	8,843	6,273	1,707	1,665	5,000	5,514	8,303	5,995	1,705	1,664	5,004	5,517	8,019	6,264
1,257	1,073	3,223	3,198	4,735	3,613	1,258	1,074	3,068	3,200	4,735	3,460	1,099	1,073	3,071	3,200	4,584	3,461	1,100	1,071	3,070	3,047	4,880	3,462	0,942	0,919	2,759	3,043	4,583	3,309	0,941	0,918	2,761	3,045	4,425	3,457
90,0	20,0	0,21	0,21	0,31	0,24	80,0	0,07	0,20	0,21	0,31	0,23	70,0	0,07	0,20	0,21	0,30	0,23	70,0	0,07	0,20	0,20	0,32	0,23	90'0	90'0	0,18	0,20	0,30	0,22	90'0	90'0	0,18	0,20	0,29	0,23
	0,705						0,705			•			0,705				-		0,562						0,562					-	0,562				
0,854	0,555					0,855	0,556					0,854	0,556					0,570	0,555					0,569	0,555					0,568	0,555				
0,471	906'0					0,472	0,307					0,471	0,307				•	0,314	0,306					0,314	0,306					0,314	906,0				
£0,0	0,02					0,03	0,02					0,03	0,02					0,02	0,02					0,02	0,02					0,02	0,02				
15,715	15,325	15,349	15,230	15,273	15,054	15,721	15,337	15,341	15,237	15,275	15,043	15,702	15,333	15,356	15,240	15,280	15,046	15,721	15,307	15,348	15,233	15,250	15,052	15,701	15,318	15,330	15,216	15,275	15,039	15,687	15,308	15,342	15,223	15,260	15,030
32,975	32,444	32,409	32,555	32,398	32,071	32,797	32,531	32,668	32,590	32,455	32,295	32,843	32,654	32,480	32,371	31,943	32,200	32,969	32,473	32,418	32,593	32,504	32,249	32,717	32,484	32,602	32,291	32,640	32,175	32,456	32,557	32,600	32,534	32,516	32,180
17,146	17,008		17,214	17,014	16,908	16,962	17,083	17,216	17,242	17,069	17,143	17,027	17,210	17,012	17,020	16,552	17,045	17,134	17,055	16,958	17,249	17,143	17,088	16,902	17,055	17,161	16,964	17,254	17,027	16,655	17,138	17,147	17,200	17,145	17,041
-	2	ဗ	4	2	9		2	ო	4	ıc	6	1	7	က	4	ະດ	9	,	α	ო	4	ശ	စ	-	N	3	4	2	ဖ		2	3	4	.S	9
	39			ı	70	7					77	?	-	· .			70	t O	•				ŭ	5	·				77						

	57	5					09	,					63						99)					69	ı !					72	 ! ·		
		18,277		25,403	•		4	18,696		000,00				385,81		25,971			0	9,2,6	000	27,060			7	21,/17	0	24,830				20,385	7	27,231
	21,390	15,164	24,907	25,898			21,387	16,005	25,441	ZD,/30		0	/0c,22	16,270	26,046	25,896			21,989	16,563	27,660	26,459		9	22,486	20,948	23,236	26,424			22,814	17,956	27,439	27,022
	11,805	8,368	13,746	14,292			11,803	8,833	14,040	14,/54		3	12,421	8,979	14,374	14,291		:	12,135	9,141	15,265	14,602		6	12,410	11,561	12,823	14,583			12,591	606'6	15,143	14,913
	0,77	0,55	06'0	0,95			0,77	0,58	0,92	86'0		č	0,81	0,59	0,94	0,95			0,79	0,0	1,00	0,97		,	0,81	0,76	0,84	0,97			0,82	0,65	66'0	66,0
1,686		5,119		6,873		1,685		5,121		865,8		1,544		4,844		6,741		1,404		4,849		6,737	1	1,405		5,253		5,905		1,404		4,851		6,058
1,707 1,666	5,000	5,238	7,749	5,997	1,706	1,664	2,000	5,243	7,466	5,729	1,423	1,665	4,724	4,964	7,758	5,724	1,422	1,387	4,454	5,245	7,745	5,728	1,423	1,387	4,442	6,064	6,362	5,448	1,422	1,386	4,730	4,972	6,929	5,186
0,942	2,760	2,891	4,276	3,310	0,942	0,918	2,759	2,894	4,120	3,162	0,785	0,919	2,607	2,739	4,282	3,159	0,785	0,765	2,458	2,895	4,274	3,161	0,785	0,765	2,451	3,347	3,511	3,007	0,784	0,765	2,610	2,744	3,824	2,862
90,0	0,18	0,19	0,28	0,22	90'0	90,0	0,18	0,19	0,27	0,21	0,05	90,0	0,17	0,18	0,28	0,21	0,05	0,05	0,16	0,19	0,28	0,21	0,05	0,05	0,16	0,22	0,23	0,2	0,05	0,05	0,17	0,18	0,25	0.19
0,423						0,281						0,281						0,281			-			0,281						0,281	•			
0,569					0,284	0,277					0,285	0,277					0,284	0,277					0,285	0,277					0,284	0,277				
0,314					0,157	0,153					0,157	0,153					0,157	0,153					0,157	0,153					0,157	0,153				
0,02	:				0,01	0,01				-	0,01	0,01					0,01	0,01					0,01	0,01					0,01	0,01				
15,697	15,331	15,215	15.273	15,045	15,694	15,307	15,329	15,229	15,261	15,056	15,701	15,312	15,335	15,218	15,292	15,044	15,696	15,306	15,361	15,234	15,265	15,054	15,701	15,309	15,321	15,211	15,266	15,034	15,690	15,301	15,354	15,245	15,296	15.064
32,284	32 765	32,489	32.549	32,131	32,393	32,683	32,380	32,375	32,433	32,396	32,942	32,633	32,621	32,553	32,105	32.242	32,643	32,577	32,588	32,485	32,573	32,307	32,988	32,510	32,564	32,494	32,442	32,215	32,921	32,533	32,585	32,497	32,612	20.046
16,473	1	17.163	╀	1	+	┼-	1	<u> </u>	l İ	17,231		17,210	17,175	17,224	16.702	17,089	16,833	17,160	17,115	17,140	17,197	17.144	17,173	17,090	17,132	17,172	17,065	17,072	17,117	17,121	17,119	17,141	17,205	47.079
- 0	<u> </u>	<u> </u>	<u> </u>	9	-	2	m	4	2	9	-	2	3	4	5	9	-	2	3	4	2	9	-	2	3	4	r2	9	-	2	60	4	D.	9
!	57					<u>. </u>		20					ć	၁၀	•	•			Ç	00		-			0	0				_	1	7/		

Electronic Ac	knowledgement Receipt
EFS ID:	2879111
Application Number:	11201756
International Application Number:	
Confirmation Number:	3812
Title of Invention:	NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES
First Named Inventor/Applicant Name:	Claus Meese
Customer Number:	26646
Filer:	Willem deWeerd/Theresa Doonan
Filer Authorized By:	Willem deWeerd
Attorney Docket Number:	12961/46103
Receipt Date:	19-FEB-2008
Filing Date:	10-AUG-2005
Time Stamp:	16:06:41
Application Type:	Utility under 35 USC 111(a)
Payment information:	•

Payment information:

Submitted with Payment	
Submitted with Fayment	no

File Listing:

Document Number	Document Description	File Name	File Size(Bytes) /Message Digest	Multi Part /.zip	Pages (if appl.)
1	Applicant summary of interview with	12961_46103_Response_to	4121841	no	67
'	examiner	_Examiners_Interview.pdf	130099759af492b2591c1f10cf2974232 5cc33fb	110	
Warnings:					

Warnings:

Information:

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Document code: WFEE

United States Patent and Trademark Office Sales Receipt for Accounting Date: 03/13/2008

PSTANBAC	SALE	#0000	00001	Mailroom Dt:	02/19/2008	110600	11201756
		01	FC:18	14	130.00 DA		

01 FG: 1814 02 FC: 1814 03 FC: 1814 04 FC: 1814 130.00 DA

Application Number	11/201,756		Applicant(s)/Patent (Reexamination MEESE ET AL.	under
Document Code - DISQ		Internal Do	ocument – DC	NOT MAIL
TERMINAL DISCLAIMER	⊠ APPROV	ED	☐ DISAPP	ROVED
Date Filed : 19 FEB 2008	to a Te	t is subject erminal aimer		
Approved/Disapproved b	y:			
JAB 10/533,683				

Application Number	Application/Co		Applicant(s)/Patent Reexamination MEESE ET AL.	under
Document Code - DISQ		Internal Do	ocument – DC	NOT MAIL
				·
TERMINAL DISCLAIMER	⊠ APPROV	ED	☐ DISAPP	ROVED
Date Filed : 19 FEB 2008	to a Te	t is subject erminal aimer		
A		-	· · · · · · · · · · · · · · · · · · ·	
Approved/Disapproved b	<u> </u>			
JAB 6,858,650				
·				

Application Number	11/201,756	R	pplicant(s)/Patent (eexamination IEESE ET AL.	under
Document Code - DISQ		Internal Do	cument – DC	NOT MAIL
TERMINAL DISCLAIMER	⊠ APPROV	ED	☐ DISAPP	ROVED
Date Filed : 19 FEB 2008	to a Te	t is subject erminal aimer		
Approved/Disapproved b	y:			
JAB 10/532,836				

Application Number	11/201,756	R	pplicant(s)/Patent (eexamination IEESE ET AL	under
Document Code - DISQ		Internal Do	cument – DC	NOT MAIL
TERMINAL DISCLAIMER	⊠ APPROVI	ED	☐ DISAPP	ROVED
Date Filed : 19 FEB 2008	to a Te	t is subject erminal aimer		
Annayod/Disannroyod k				
Approved/Disapproved b	· · · · · · · · · · · · · · · · · · ·			
JAB 6,713,464				
·				·

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

NOTICE OF ALLOWANCE AND FEE(S) DUE

26646

7590

03/26/2008

KENYON & KENYON LLP ONE BROADWAY NEW YORK, NY 10004 EXAMINER

TUCKER, ZACHARY C

ART UNIT PAPER NUMBER

1624 DATE MAILED: 03/26/2008

APPLICATION NO. FILING DATE FIRST NAMED 1		FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
11/201.756	08/10/2005	Claus Meese	12961/46103	3812

TITLE OF INVENTION: NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES

APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1440	\$300	\$0	\$1740	06/26/2008

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED. THIS NOTICE OF ALLOWANCE IS NOT A GRANT OF PATENT RIGHTS. THIS APPLICATION IS SUBJECT TO WITHDRAWAL FROM ISSUE AT THE INITIATIVE OF THE OFFICE OR UPON PETITION BY THE APPLICANT. SEE 37 CFR 1.313 AND MPEP 1308.

THE ISSUE FEE AND PUBLICATION FEE (IF REQUIRED) MUST BE PAID WITHIN THREE MONTHS FROM THE MAILING DATE OF THIS NOTICE OR THIS APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED. SEE 35 U.S.C. 151. THE ISSUE FEE DUE INDICATED ABOVE DOES NOT REFLECT A CREDIT FOR ANY PREVIOUSLY PAID ISSUE FEE IN THIS APPLICATION. IF AN ISSUE FEE HAS PREVIOUSLY BEEN PAID IN THIS APPLICATION (AS SHOWN ABOVE), THE RETURN OF PART B OF THIS FORM WILL BE CONSIDERED A REQUEST TO REAPPLY THE PREVIOUSLY PAID ISSUE FEE TOWARD THE ISSUE FEE NOW DUE.

HOW TO REPLY TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above.

If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:

A. If the status is the same, pay the TOTAL FEE(S) DUE shown above.

B. If the status above is to be removed, check box 5b on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and twice the amount of the ISSUE FEE shown above, or

If the SMALL ENTITY is shown as NO:

A. Pay TOTAL FEE(S) DUE shown above, or

B. If applicant claimed SMALL ENTITY status before, or is now claiming SMALL ENTITY status, check box 5a on Part B - Fee(s) Transmittal and pay the PUBLICATION FEE (if required) and 1/2 the ISSUE FEE shown above.

II. PART B - FEE(S) TRANSMITTAL, or its equivalent, must be completed and returned to the United States Patent and Trademark Office (USPTO) with your ISSUE FEE and PUBLICATION FEE (if required). If you are charging the fee(s) to your deposit account, section "4b" of Part B - Fee(s) Transmittal should be completed and an extra copy of the form should be submitted. If an equivalent of Part B is filed, a request to reapply a previously paid issue fee must be clearly made, and delays in processing may occur due to the difficulty in recognizing the paper as an equivalent of Part B.

III. All communications regarding this application must give the application number. Please direct all communications prior to issuance to Mail Stop ISSUE FEE unless advised to the contrary.

IMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibility to ensure timely payment of maintenance fees when due.

Page 1 of 3

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE

Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450

or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where

appropriate. All further indicated unless correcte maintenance fee notificate	correspondence includired below or directed oth tions.	ng the Patent, advance on erwise in Block 1, by (orders and notification of a) specifying a new corn	maintenance fees weespondence address;	ill be and/or	mailed to the current (b) indicating a sepa	correspondence address as rate "FEE ADDRESS" for
CURRENT CORRESPOND	ENCE ADDRESS (Note: Use Bl	ock 1 for any change of address)	Fe	e(s) Transmittal. Thi	s certif I paper	icate cannot be used fo , such as an assignmen	r domestic mailings of the or any other accompanying nt or formal drawing, must
26646	7590 03/26	/2008		Cor	tificate	of Mailing or Trans	nission
KENYON & K ONE BROADW NEW YORK, N	'AY		I Si ac tra	nereby certify that the ates Postal Service we dressed to the Mail ansmitted to the USP	is Fee(s th suf Stop ΓΟ (57	s) Transmittal is being ficient postage for firs ISSUE FEE address 1) 273-2885, on the da	deposited with the United t class mail in an envelope above, or being facsimile ate indicated below.
							(Depositor's name)
			-				(Signature)
	_		L				(Date)
APPLICATION NO.	FILING DATE		FIRST NAMED INVENTO	PR	ATTO	RNEY DOCKET NO.	CONFIRMATION NO.
11/201,756	08/10/2005		Claus Meese			12961/46103	3812
FITLE OF INVENTION	: NOVEL DERIVATIVI	ES OF 3,3-DIPHENYLP	ROPYLAMINES				
APPLN. TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUI	E PREV. PAID ISSUI	E FEE	TOTAL FEE(S) DUE	DATE DUE
nonprovisional	NO	\$1440	\$300	\$0		\$1740	06/26/2008
EXAM	INER	ART UNIT	CLASS-SUBCLASS	7			
TUCKER, Z	ACHARY C	1624	514-551000	_			
1. Change of corresponde CFR 1.363).	ence address or indication	n of "Fee Address" (37	2. For printing on the			1	
	ondence address (or Cha 3/122) attached.	nge of Correspondence	(1) the names of up or agents OR, alterna		t attorn	ieys ¹	
"Fee Address" ind	ication (or "Fee Address") 2 or more recent) attach	" Indication form	registered attorney or agent) and the names of up to				
3. ASSIGNEE NAME A	ND RESIDENCE DATA	A TO BE PRINTED ON	THE PATENT (print or t	ype)			
PLEASE NOTE: Unl	less an assignee is ident h in 37 CFR 3.11. Comp	ified below, no assignee oletion of this form is NC	data will appear on the of a substitute for filing a	patent. If an assign n assignment.	ee is id	lentified below, the do	ocument has been filed for
(A) NAME OF ASSIG			(B) RESIDENCE: (CIT				
Please check the appropr	iate assignee category or	categories (will not be p	rinted on the patent):	Individual 🖵 Co	rporati	on or other private gro	up entity 🚨 Government
4a. The following fee(s)	are submitted:	4	b. Payment of Fee(s): (Pl		ıy prev	iously paid issue fee s	shown above)
Issue Fee	No small entity discount p	pormitted)	A check is enclosed Payment by credit of		ic atta	ahad	
	# of Copies		The Director is here	by authorized to char	ge the	required fee(s), any def	
5 Change in Entity Stat	tus (from status indicated	d abova)	overpayment, to De	posit Account Numbe	er	(enclose ar	n extra copy of this form).
	s SMALL ENTITY statu		☐ b. Applicant is no le	onger claiming SMAI	L EN	ΓΙΤΥ status. See 37 CF	FR 1.27(g)(2).
NOTE: The Issue Fee and interest as shown by the i	d Publication Fee (if requeecords of the United Sta	uired) will not be accepte tes Patent and Trademarl	ed from anyone other than k Office.	the applicant; a regi	stered a	nttorney or agent; or th	e assignee or other party in
Authorized Signature				Date			
Typed or printed name	e						
This collection of inform an application. Confident submitting the completed his form and/or suggesti	ation is required by 37 C tiality is governed by 35 d application form to the lons for reducing this bu	CFR 1.311. The informati U.S.C. 122 and 37 CFR USPTO. Time will vary rden, should be sent to the	on is required to obtain o 1.14. This collection is on y depending upon the inc the Chief Information Off	r retain a benefit by t estimated to take 12 i ividual case. Any co cer, U.S. Patent and	he publ ninutes mment Traden	ic which is to file (and to complete, includin s on the amount of tin nark Office, U.S. Depa	by the USPTO to process) g gathering, preparing, and ne you require to complete urtment of Commerce, P.O.

Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450

P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.	
11/201,756 08/10/2005		Claus Meese	12961/46103	3812	
26646 7.	590 03/26/2008		EXAM	INER	
KENYON & KE	NYON LLP	TUCKER, ZACHARY C			
ONE BROADWA	_		ART UNIT	PAPER NUMBER	
NEW YORK, NY	10004		1624		
			DATE MAILED: 03/26/200	8	

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)

The Patent Term Adjustment to date is 156 day(s). If the issue fee is paid on the date that is three months after the mailing date of this notice and the patent issues on the Tuesday before the date that is 28 weeks (six and a half months) after the mailing date of this notice, the Patent Term Adjustment will be 156 day(s).

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at 1-(888)-786-0101 or (571)-272-4200.

	Application No.	Applicant(s)				
	11/201,756	MEESE ET AL.				
Notice of Allowability	Examiner	Art Unit				
	Zachary C. Tucker	1624				
The MAILING DATE of this communication appeal claims being allowable, PROSECUTION ON THE MERITS IS herewith (or previously mailed), a Notice of Allowance (PTOL-85) NOTICE OF ALLOWABILITY IS NOT A GRANT OF PATENT RIOF of the Office or upon petition by the applicant. See 37 CFR 1.313	(OR REMAINS) CLOSED in this app or other appropriate communication IGHTS. This application is subject to	olication. If not included will be mailed in due course. THIS				
1. 🔀 This communication is responsive to 18January 2008 and	<u>19 February 2008</u> .					
2. ☑ The allowed claim(s) is/are <u>28-43</u> .						
 3. Acknowledgment is made of a claim for foreign priority ur a) All b) Some* c) None of the: 1. Certified copies of the priority documents have 						
2. Certified copies of the priority documents have	been received in Application No. <u>09</u>	<u> 0/700,094</u> .				
3. Copies of the certified copies of the priority do	cuments have been received in this i	national stage application from the				
International Bureau (PCT Rule 17.2(a)).		•				
* Certified copies not received:						
	Applicant has THREE MONTHS FROM THE "MAILING DATE" of this communication to file a reply complying with the requirements noted below. Failure to timely comply will result in ABANDONMENT of this application. THIS THREE-MONTH PERIOD IS NOT EXTENDABLE.					
4. A SUBSTITUTE OATH OR DECLARATION must be subm INFORMAL PATENT APPLICATION (PTO-152) which give						
5. CORRECTED DRAWINGS (as "replacement sheets") mus	st be submitted.					
(a) ☐ including changes required by the Notice of Draftspers	on's Patent Drawing Review(PTO-	948) attached				
1) 🔲 hereto or 2) 🔲 to Paper No./Mail Date						
(b) ☐ including changes required by the attached Examiner's Paper No./Mail Date	s Amendment / Comment or in the C	ffice action of				
Identifying indicia such as the application number (see 37 CFR 1 each sheet. Replacement sheet(s) should be labeled as such in t						
6. DEPOSIT OF and/or INFORMATION about the depo attached Examiner's comment regarding REQUIREMENT	sit of BIOLOGICAL MATERIAL n FOR THE DEPOSIT OF BIOLOGIC	nust be submitted. Note the AL MATERIAL.				
Attachment(s)	5 					
1. Notice of References Cited (PTO-892)	5. ☐ Notice of Informal P	• •				
2. Notice of Draftperson's Patent Drawing Review (PTO-948)	6.					
3. Information Disclosure Statements (PTO/SB/08), Paper No./Mail Date	7. 🔲 Examiner's Amendn	nent/Comment				
4. Examiner's Comment Regarding Requirement for Deposit	8. 🗌 Examiner's Stateme	nt of Reasons for Allowance				
of Biological Material	9.					
	/Zachary C. Tucker/ Primary Examiner, Art Unit	1624				

Issue Classification

|--|--|

Application/Control No.	Applicant(s)/Patent Under Reexamination
11201756	MEESE ET AL.
Examiner	Art Unit
Zachary C Tucker	1624

ORIGINAL				INTERNATIONAL CLASSIFICATION											
	CLASS		5	UBCLASS					С	LAIMED			N	ON-	CLAIMED
514			551			Α	0	1	N	37 / 12 (2006.01	.01)				
	CD		DENCE/	21		Α	0	1	N	37 / 44 (2006.01	.01)				
CROSS REFERENCE(S)		>)		Α	6	1	К	31 / 22 (2006.01	.01)						
CLASS	SUB	CLASS (ONE	SUBCLAS	S PER BLO	CK)	С	0	7	С	69 / 00 (2006.01	.01)				
560	140														
		_													_
NONE										Tot	al Cla	aims	Allowed:		

NONE		Total Claims Al	lowed:
(Assistant Examiner) (Date)		16	
/Zachary C Tucker/ (Primary Examiner)	14March08 (Date)	O.G. Print Claim(s) 1 and 3	O.G. Print Figure

Search Notes

Application/Control No.	Applicant(s)/Patent Under Reexamination
11201756	MEESE ET AL.
Examiner	Art Unit

1624

SEARCHED							
Class	Subclass	Date	Examiner				
514	551	3/14/2008	ZT				
560	140	3/14/2008	ZT				

Zachary C Tucker

SEARCH NOTES		
Search Notes	Date	Examiner
CLASS/SUBCLASSES AS INDICATED ON THIS SHEET, CROSS- REFERENCED WITH "TOLTERODINE" OR "FESOTERODINE" OR "MUSCARINIC"	3/14/2008	ZT

		INTERFERENCE SEARCH		
Class		Subclass	Date	Examiner
514	551		3/14/2008	ZT
560	140		3/14/2008	ZT

U.S. Patent and Trademark Office Part of Paper No.: 20080314

EAST Search History

Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	418	560/140 or 514/551	US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	OFF	2008/03/14 13:32
L2	23		US-PGPUB; USPAT; USOCR; FPRS; EPO; JPO; DERWENT	OR	ON	2008/03/14 13:33

3/14/08 1:43:01 PM

C:\ Documents and Settings\ ztucker\ My Documents\ EAST\ Workspaces \ DI PHENYLPROPYLAMI NES CON.wsp

	Application/Control No.	Applicant(s)/Patent Under Reexamination
Index of Claims	11201756	MEESE ET AL.
	Examiner	Art Unit
	Zachary C Tucker	1624

✓	Rejected	-	Cancelled	N	Non-Elected	Α	Appeal
=	Allowed	÷	Restricted	I	Interference	0	Objected

	renumbered									
CL	AIM	DATE								
Final	Original	03/14/2008								
	1									
	2									
	3									
	4									
	5									
	6									
	7									
	8									
	9									
	10									
	11									
	12									
	13									
	14									
	15									
	16									
	17									
	18									
	19									
	20									
	21									
	22									
	23									
	24									
	25									
	26									
	27									
	28	=								
	29	=								
	30	=								
	31	=								
	32	=								
	33	=								
	34	=								
	35	=								
	36	=			1			i e	1	1

Patent Owner, UCB Pharma GmbH – Exhibit 2007 - 2424

Part of Paper No.: 20080314

	Application/Control No.	Applicant(s)/Patent Under Reexamination
Index of Claims	11201756	MEESE ET AL.
	Examiner	Art Unit
	Zachary C Tucker	1624

✓	✓ Rejected = Allowed			-	Can	celled		N	Non-El	ected	Α	Ар	peal
=				÷	Res	tricted		I	Interference O		Objected		
⊠ c	☑ Claims renumbered in the same order as presented by applicant ☐ CPA ☐ T.D. ☐ R.1.47												
	CLA	IM							DATE				
Fir	nal	Original	03/14/20	800									
		37	=										
		38	=										
		39	=										
	40		=		·			·		·			
		41	=										
		42	=										

43

U.S. Patent and Trademark Office Part of Paper No.: 20080314

12961/46103 ISSUE FEE

CERTIFICATE OF ELECTRONIC TRANSMISSION

I hereby certify that this correspondence is being electronically transmitted to the United States Patent and Trademark Office via the Office electronic filing system on <u>April 14, 2008</u>

Signature:

Theresa A.E. Doonan

PART B - FEE(S) TRANSMITTAL

Complete and send this form, together with applicable fee(s), to: Mail Mail Stop ISSUE FEE

o: Mail Mail Stop ISSUE FEE.
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450
or Fax (571)-273-2885

INSTRUCTIONS: This form should be used for transmitting the ISSUE FEE and PUBLICATION FEE (if required). Blocks 1 through 5 should be completed where appropriate. All further correspondence including the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for maintenance fee notifications.

CURRENT CORRESPONDENCE ADDRESS (Note: Use Block 1 for any change of address)

Note: A certificate of mailing can only be used for domestic mailings of the Fee(s) Transmittal. This certificate cannot be used for any other accompanying papers. Each additional paper, such as an assignment or formal drawing, must have its own certificate of mailing or transmission.

KENYON & KENYON ONE BROADWAY NEW YORK, NY 10004 Certificate of Mailing or Transmission

I hereby certify that this Fee(s) Transmittal is being deposited with the United States Postal Service with sufficient postage for first class mail in an envelope addressed to the Mail Stop ISSUE FEE address above, or being facsimile transmitted to the USPTO (571) 273-2885, on the date indicated below.

- 4		
I	Theresa A.E. Doonan	(Depositor's name)
I	/Theresa A.E. Doonan/	(Signature)
	April 14, 2008	(Date)

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
11/201,756	08/10/2005	Claus Meese	12961/46103	3812

TITLE OF INVENTION:

NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES

		_				
APPLN, TYPE	SMALL ENTITY	ISSUE FEE DUE	PUBLICATION FEE DUE	PREV. PAID ISSUE FEE	TOTAL FEE(S) DUE	DATE DUE
Nonprovisional	NO	\$1440.00	\$300.	\$0	\$1740.00	06/26/2008
EXAM	INER	ART UNIT	CLASS-SUBCLASS	1		
TUCKER, ZACH	ARY C.	1624	514-551000	•		
Address form PTO/Si "Fee Address" ind PTO/SB/47; Rev 03-0 Number is required. 3. ASSIGNEE NAME A PLEASE NOTE: Uni recordation as set fort (A) NAME OF ASSIGNEE OF ASSIG	ondence address (or Cha B/122) attached. ication (or "Fee Address 12 or more recent) attack ND RESIDENCE DATA less an assignee is ident h in 37 CFR 3.11. Com GNEE	ange of Correspondence "Indication form hed. Use of a Customer A TO BE PRINTED ON	or agents OR, alternative (2) the name of a single registered attorney or a registered patent attor listed, no name will be the PATENT (print or tyledata will appear on the part of the p	o 3 registered patent attorn vely, le firm (having as a memb agent) and the names of u meys or agents. If no nam printed. pe) atent. If an assignee is ic assignment.	er a 2p to le is 3lentified below, the docu	
	are submitted: No small entity discount # of Copies10	permitted)	X The Director is hereby	ase first reapply any prevent. Form PTO-2038 is atta y authorized to charge the sist Account Number 11.	iched. required fee(s), any defic	
NOTE: The Issue Fee an	s SMALL ENTITY stated Publication Fee (if required)	us. See 37 CFR 1.27.	d from anyone other than t	ger claiming SMALL EN		
Authorized Signature Typed or printed nam	-)	1a Cyre	<u></u>	Date APRIL 14 Registration No.	<u></u>	

This collection of information is required by 37 CFR 1.311. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, Virginia 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, Virginia 22313-1450.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Electronic Patent A	pp	lication Fe	e Transı	mittal			
Application Number:	112	201756					
Filing Date:	10-	Aug-2005					
Title of Invention:	NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES						
First Named Inventor/Applicant Name:	Claus Meese						
Filer:	Filer: Clifford A. Ulrich/Theresa Doonan						
Attorney Docket Number:	129	961/46103					
Filed as Large Entity							
Utility Filing Fees							
Description		Fee Code	Quantity	Amount	Sub-Total in USD(\$)		
Basic Filing:							
Pages:							
Claims:							
Miscellaneous-Filing:							
Petition:							
Patent-Appeals-and-Interference:							
Post-Allowance-and-Post-Issuance:							
Utility Appl issue fee		1501	1	1440	1440		
Publ. Fee- early, voluntary, or normal		1504	1	300	300		

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Extension-of-Time:				
Miscellaneous:				
	Tota	al in USE	O (\$)	1740

Electronic Acknowledgement Receipt					
EFS ID:	3148421				
Application Number:	11201756				
International Application Number:					
Confirmation Number:	3812				
Title of Invention:	NOVEL DERIVATIVES OF 3,3-DIPHENYLPROPYLAMINES				
First Named Inventor/Applicant Name:	Claus Meese				
Customer Number:	26646				
Filer:	Clifford A. Ulrich/Theresa Doonan				
Filer Authorized By:	Clifford A. Ulrich				
Attorney Docket Number:	12961/46103				
Receipt Date:	14-APR-2008				
Filing Date:	10-AUG-2005				
Time Stamp:	15:47:47				
Application Type:	Utility under 35 USC 111(a)				

Payment information:

Submitted with Payment	yes
Payment Type	Deposit Account
Payment was successfully received in RAM	\$1740
RAM confirmation Number	1044
Deposit Account	110600
Authorized User	

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

File Listing:

Document Number	Document Description	File Name	File Size(Bytes) /Message Digest	Multi Part /.zip	Pages (if appl.)			
1	Issue Fee Payment (PTO-85B)	12961_46103_lssue_Fee.pd f	80874	no	2			
1			44b331519bca94d24932a3f5740e8cac 3754e754					
Warnings:								
Information:								
2	Fee Worksheet (PTO-06)	fee-info.pdf	8292	no	2			
			2be88cfa76f78a3f991f4a5ec19f588058 c429fa					
Warnings:								
Information	:							
Total Files Size (in bytes):			8	9166				

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

26646

United States Patent and Trademark Office

05/21/2008

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450

Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	ISSUE DATE	PATENT NO.	ATTORNEY DOCKET NO.	CONFIRMATION NO.
11/201,756	06/10/2008	7384980	12961/46103	3812

7590

KENYON & KENYON LLP ONE BROADWAY NEW YORK, NY 10004

ISSUE NOTIFICATION

The projected patent number and issue date are specified above.

Determination of Patent Term Adjustment under 35 U.S.C. 154 (b)

(application filed on or after May 29, 2000)

The Patent Term Adjustment is 156 day(s). Any patent to issue from the above-identified application will include an indication of the adjustment on the front page.

If a Continued Prosecution Application (CPA) was filed in the above-identified application, the filing date that determines Patent Term Adjustment is the filing date of the most recent CPA.

Applicant will be able to obtain more detailed information by accessing the Patent Application Information Retrieval (PAIR) WEB site (http://pair.uspto.gov).

Any questions regarding the Patent Term Extension or Adjustment determination should be directed to the Office of Patent Legal Administration at (571)-272-7702. Questions relating to issue and publication fee payments should be directed to the Customer Service Center of the Office of Patent Publication at (571)-272-4200.

APPLICANT(s) (Please see PAIR WEB site http://pair.uspto.gov for additional applicants):

Claus Meese, Monheim, GERMANY; Bengt Sparf, Trangsund, SWEDEN;

Kenyon & Kenyon One Broadway New York, NY 10004

July 28, 2008

Mail Stop 16
Director of the US Patent and Trademark Office
P.O. Box 1450
Alexandria, VA 22313-1450

To Whom It May Concern,

I have been assigned to reconcile the USPTO's Deposit Account against Kenyon and Kenyon's records. Below are charges that are inconsistent with what we believe is true. I would respectfully ask that you reimburse Kenyon and Kenyon's Deposit Account 110600 for these fees listed below. If there is any other information you need, please feel free to contact me at Iduffy@kenyon.com.

D -4-	N	mber	Client/Matter	Code	Amount	IPSS Date	This Equals	Exb!s Entry	Notes
Date	NU	IIIDai .	CHENTHAROL		-			<u> </u>	This is not valid.
	1	1						1	There are 19 total
					\			 	claims after the
		Ì			1				amendment. 8
ì	İ			ŀ	†		ļ	i	Independent, plus
1	1			ļ.					another 5, plus
	1								another 6 (multiple).
								}	That totals 19. This
17- Mar 3	3 11	201756	12961/46103	(1202)	\$100.00	JKD	1	l .	not valid

Thank You,

Judy Duffy

Document code: WFEE

United States Patent and Trademark Office Sales Receipt for Accounting Date: 03/17/2008

PSTANBAC SALE #00000003 Mailroom Dt: 01/18/2008 110600 11201756

01 FC: 1202 100.00 DA 02 FC: 1201 630.00 DA 03 FC: 1203 370.00 DA

Adjustment date: 07/30/2008 HDESTA1 03/17/2008 PSTANBAC 00000003 110600 11201756 01 FC:1202 100.00 CR

AO 120 (Rev 08/10) REPORT ON THE Mail Stop 8 TO: FILING OR DETERMINATION OF AN Director of the U.S. Patent and Trademark Office **ACTION REGARDING A PATENT OR** P.O. Box 1450 TRADEMARK Alexandria, VA 22313-1450 In Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 you are hereby advised that a court action has been on the following for the District of Delaware filed in the U.S. District Court ☐ Patents. (☐ the patent action involves 35 U.S.C. § 292.): Trademarks or DATE FILED U.S. DISTRICT COURT DOCKET NO. for the District of Delaware 6/21/2013 DEFENDANT PLAINTIFF ACCORD HEALTHCARE INC., USA PFIZER INC. and UCB PHARMA GMBH PATENT OR DATE OF PATENT HOLDER OF PATENT OR TRADEMARK OR TRADEMARK TRADEMARK NO. UCB Pharma GmbH 1 6,858,650 B1 2/22/2005 UCB Pharma GmbH 6/10/2008 2 7,384,980 B2 UCB Pharma GmbH 3 7,855,230 B2 12/21/2010 UCB Pharma GmbH 7/26/2011 4 7,985,772 B2 UCB Pharma GmbH 12/25/2012 5 8,338,478 B2 In the above—entitled case, the following patent(s)/ trademark(s) have been included: **INCLUDED BY** DATE INCLUDED Cross Bill Other Pleading ☐ Answer Amendment DATE OF PATENT PATENT OR HOLDER OF PATENT OR TRADEMARK OR TRADEMARK TRADEMARK NO. 2 3 4 5 In the above—entitled case, the following decision has been rendered or judgement issued: **DECISION/JUDGEMENT** DATE (BY) DEPUTY CLERK CLERK

	Mail Stop 8 .S. Patent and Trademark O P.O. Box 1450 ndria, VA 22313-1450	REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK		
filed in the U.S. Dis		5 U.S.C. § 1116 you are hereby advised that a court action has been for the District of Delaware on the following on involves 35 U.S.C. § 292.):		
OOCKET NO.	DATE FILED 6/21/2013	U.S. DISTRICT COURT for the District of Delaware		
LAINTIFF PFIZER INC. and UCB	PHARMA GMBH	DEFENDANT AMERIGEN PHARMACEUTICALS, INC. and AMERIGEN PHARMACEUTICALS LTD.		
PATENT OR TRADEMARK NO,	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK		
1 6,858,650 B1	2/22/2005	UCB Pharma GmbH		
2 7,384,980 B2	6/10/2008	UCB Pharma GmbH		
3 7,855,230 B2	12/21/2010	UCB Pharma GmbH		
4 7,985,772 B2	7/26/2011	UCB Pharma GmbH		
5 8,338,478 B2	12/25/2012	UCB Pharma GmbH		
DATE INCLUDED	INCLUDED BY	e following patent(s)/ trademark(s) have been included:		
PATENT OR	DATE OF PATENT	endment Answer Cross Bill Other Pleading HOLDER OF PATENT OR TRADEMARK		
TRADEMARK NO.	OR TRADEMARK	10222.01		
1				
2				
3				
4				
5 In the abo	ove—entitled case, the following d	decision has been rendered or judgement issued:		
5	ove—entitled case, the following d	decision has been rendered or judgement issued:		

AO 120 (Rev 08/10) REPORT ON THE Mail Stop 8 TO: FILING OR DETERMINATION OF AN Director of the U.S. Patent and Trademark Office ACTION REGARDING A PATENT OR P.O. Box 1450 TRADEMARK Alexandria, VA 22313-1450 In Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 you are hereby advised that a court action has been for the District of Delaware on the following filed in the U.S. District Court ☑ Patents. (☐ the patent action involves 35 U.S.C. § 292.): Trademarks or U.S. DISTRICT COURT DOCKET NO. DATE FILED for the District of Delaware 6/21/2013 PLAINTIFF DEFENDANT IMPAX LABORATORIES, INC. PFIZER INC. and UCB PHARMA GMBH DATE OF PATENT PATENT OR HOLDER OF PATENT OR TRADEMARK OR TRADEMARK TRADEMARK NO. UCB Pharma GmbH 2/22/2005 1 6,858,650 B1 UCB Pharma GmbH 6/10/2008 2 7,384,980 B2 12/21/2010 UCB Pharma GmbH 3 7,855,230 B2 UCB Pharma GmbH 7/26/2011 4 7,985,772 B2 UCB Pharma GmbH 12/25/2012 5 8,338,478 B2 In the above—entitled case, the following patent(s)/ trademark(s) have been included: INCLUDED BY DATE INCLUDED Other Pleading Cross Bill ☐ Amendment ☐ Answer DATE OF PATENT PATENT OR HOLDER OF PATENT OR TRADEMARK TRADEMARK NO. OR TRADEMARK 2 3 4 In the above—entitled case, the following decision has been rendered or judgement issued: DECISION/JUDGEMENT DATE (BY) DEPUTY CLERK CLERK

Mail Stop 8

REPORT ON THE

	Nan Stop o S. Patent and Trademar P.O. Box 1450 ndria, VA 22313-1450	k Office	FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK			
In Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 you are hereby advised that a court action has been filed in the U.S. District Court for the District of Delaware on the following ☐ Trademarks or ☑ Patents. (☐ the patent action involves 35 U.S.C. § 292.):						
DOCKET NO.	DATE FILED 6/28/2013	U.S. DI	DISTRICT COURT for the District of Delaware			
PLAINTIFF	<u> </u>	<u> </u>	DEFENDANT			
PFIZER INC. and UCB PHARMA GMBH			LUPIN LTD.			
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK		HOLDER OF PATENT OR TRADEMARK			
1 US 6,858,650 B1	2/22/2005	UCE	B Pharma GmbH			
2 US 7,384,980 B2	6/10/2008	UCE	B Pharma GmbH			
3 US 7,855,230 B2	12/21/2010	UCE	UCB Pharma GmbH			
4 US 7,985,772 B2	7/26/2011	UCE	UCB Pharma GmbH			
5 US 8,338,478 B2	12/25/2012	UCE	B Pharma GmbH			
	In the above—entitled case,	, the following	ng patent(s)/ trademark(s) have been included:			
DATE INCLUDED	INCLUDED BY	Amendment	☐ Answer ☐ Cross Bill ☐ Other Pleading			
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK		HOLDER OF PATENT OR TRADEMARK			
1						
2						
3						
4						
5						
In the abo	ve-entitled case, the follow	ing decision h	has been rendered or judgement issued:			
DECISION/JUDGEMENT						
CLERK		(BY) DEPUT	TY CLERK DATE			

AO 120 (Rev. 08/10) REPORT ON THE Mail Stop 8 TO: FILING OR DETERMINATION OF AN Director of the U.S. Patent and Trademark Office **ACTION REGARDING A PATENT OR** P.O. Box 1450 Alexandria, VA 22313-1450 TRADEMARK In Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 you are hereby advised that a court action has been for the District of Delaware on the following filed in the U.S. District Court ☑ Patents. (☐ the patent action involves 35 U.S.C. § 292.); ☐ Trademarks or U.S. DISTRICT COURT DOCKET NO. DATE FILED 6/21/2013 for the District of Delaware DEFENDANT PLAINTIFF AMNEAL PHARMACEUTICALS, LLC PFIZER INC. and UCB PHARMA GMBH DATE OF PATENT PATENT OR HOLDER OF PATENT OR TRADEMARK OR TRADEMARK TRADEMARK NO. 2/22/2005 UCB Pharma GmbH i 6,858,650 B1 UCB Pharma GmbH 6/10/2008 2 7,384,980 B2 UCB Pharma GmbH 12/21/2010 3 7,855,230 B2 7/26/2011 UCB Pharma GmbH 4 7,985,772 B2 12/25/2012 UCB Pharma GmbH 5 8,338,478 B2 In the above—entitled case, the following patent(s)/ trademark(s) have been included: INCLUDED BY DATE INCLUDED Cross Bill Other Pleading □ Amendment ☐ Answer DATE OF PATENT PATENT OR HOLDER OF PATENT OR TRADEMARK TRADEMARK NO. OR TRADEMARK 2 3 In the above-entitled case, the following decision has been rendered or judgement issued: DECISION/JUDGEMENT (BY) DEPUTY CLERK DATE CLERK

REPORT ON THE

	Nan Stop o S. Patent and Trademar P.O. Box 1450 ndria, VA 22313-1450	k Office	FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK				
filed in the U.S. Dist		for the	District of Delaware on the following on				
DOCKET NO.	DATE FILED 6/21/2013	U.S. DI	DISTRICT COURT for the District of Delaware				
PLAINTIFF PFIZER INC. and UCB PHARMA GMBH			DEFENDANT SANDOZ INC.				
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK		HOLDER OF PATENT OR TRADEMARK				
1 6,858,650 B1	2/22/2005	uci	3 Pharma GmbH				
2 7,384,980 B2	6/10/2008	uci	UCB Pharma GmbH				
3 7,855,230 B2	12/21/2010	UCI	UCB Pharma GmbH				
4 7,985,772 B2	7/26/2011	UC	UCB Pharma GmbH				
5 8,338,478 B2	12/25/2012 UCB Pharma GmbH						
	In the above—entitled case.	, the following	g patent(s)/ trademark(s) have been included:				
DATE INCLUDED	INCLUDED BY	Amendment	☐ Answer ☐ Cross Bill ☐ Other Pleading				
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK		HOLDER OF PATENT OR TRADEMARK				
2							
3							
4							
5							
In the abo	ove—entitled case, the follow	ving decision	has been rendered or judgement issued:				
DECISION/JUDGEMENT							
CLEDY		(BY) DEPUT	Y CLERK DATE				
CLERK		(3.) 35.0.					

TO:

Mail Stop 8 Director of the U.S. Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

	P.O. Box 1450 idria, VA 22313-1450	ACTION REGARDING A PATENT OR TRADEMARK				
In Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 you are hereby advised that a court action has been filed in the U.S. District Court on the following						
	Patents. (the patent ac					
DOCKET NO. 13-1110-GMS	DATE FILED 6/21/2013	U.S. DI	U.S. DISTRICT COURT of Delaware			
PLAINTIFF			DEFENDANT			
Pfizer Inc. and UCB Pha	rma GmbH		Alkem Laboratories Ltd.			
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK		HOLDER OF PATENT OR TRADEMARK			
1 US 6,858,650 B1	2/22/2005	UCB	PHarma GmbH			
2 US 7,384,980 B2	6/10/2008	UCB	PHarma GmbH			
3 US 7,855,230 B2	12/21/2010	UCB	UCB PHarma GmbH			
4 US 7,985,772 B2	7/26/2011	UCB	UCB PHarma GmbH			
5 US 8,338,478 B2	12/25/2012	UCB	UCB PHarma GmbH			
	In the above—entitled case, th	e following	patent(s)/ trademark(s) have been included:			
DATE INCLUDED 7/15/2013 INCLUDED BY Amendment Answer Cross Bill Other Pleading						
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK		HOLDER OF PATENT OR TRADEMARK			
1 US 7,807,715 B2	10/5/2010	UCB	PHarma GmbH			
² US 8,088,398 B2	1/3/2012	UCB	UCB PHarma GmbH			
3						
4						
5						
In the above	e—entitled case, the following	decision ha	s been rendered or judgement issued:			
DECISION/JUDGEMENT						
CI EDIZ	Ton	O DEDIVEY	CV EDV			
CLERK	(BY	/) DEPUTY	CLERK DATE			

TO:

Mail Stop 8 Director of the U.S. Patent and Trademark Office

REPORT ON THE FILING OR DETERMINATION OF AN

	P.O. Box 1450 adria, VA 22313-1450	ACTION REGARDING A PATENT OR TRADEMARK			
filed in the U.S. Dist		for the	§ 1116 you are hereby advised that a court action has been a District of Delaware on the following yes 35 U.S.C. § 292.):		
OCKET NO. DATE FILED U.S. DISTRICT COURT for the District of Delaware					
12/11/2013 for the District of Delaware PLAINTIFF DEFENDANT					
PFIZER INC. and UCB I	PHARMA GMBH		HETERO USA INC. and HETERO LABS LIMITED		
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK		HOLDER OF PATENT OR TRADEMARK		
1 6,858,650 B1	2/22/2005	UCI	CB Pharma GmbH		
2 7,384,980 B2	6/10/2008	UCI	CB Pharma GmbH		
3 7,855,230 B2	12/21/2010	UCB Pharma GmbH			
4 7,985,772 B2	7/26/2011	UCB Pharma GmbH			
5 8,338,478 B2	12/25/2012	CB Pharma GmbH			
		followin	ng patent(s)/ trademark(s) have been included:		
DATE INCLUDED	INCLUDED BY Amendment Answer Cross Bill Other Pleading				
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK			
1					
2					
3		-			
4		-			
5					
In the abo	ove-entitled case, the following	decision	n has been rendered or judgement issued:		
DECISION/JUDGEMENT					
CLERK	CLERK (BY) DEPUTY CLERK DATE				
·					

AO 120 (Rev. 08/10) REPORT ON THE Mail Stop 8 FILING OR DETERMINATION OF AN TO: Director of the U.S. Patent and Trademark Office ACTION REGARDING A PATENT OR P.O. Box 1450 TRADEMARK Alexandria, VA 22313-1450 In Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 you are hereby advised that a court action has been on the following for the District of Delaware filed in the U.S. District Court ☑ Patents. (☐ the patent action involves 35 U.S.C. § 292.): ☐ Trademarks or U.S. DISTRICT COURT DATE FILED for the District of Delaware DOCKET NO. 12/11/2013 DEFENDANT PLAINTIFF APOTEX INC. PFIZER INC. and UCB PHARMA GMBH HOLDER OF PATENT OR TRADEMARK DATE OF PATENT PATENT OR OR TRADEMARK TRADEMARK NO. UCB Pharma GmbH 2/22/2005 1 6,858,650 B1 **UCB Pharma GmbH** 6/10/2008 2 7,384,980 B2 **UCB Pharma GmbH** 12/21/2010 3 7,855,230 B2 UCB Pharma GmbH 7/26/2011 4 7,985,772 B2 UCB Pharma GmbH 12/25/2012 5 8,338,478 B2 In the above-entitled case, the following patent(s)/ trademark(s) have been included: INCLUDED BY DATE INCLUDED Other Pleading ☐ Cross Bill ☐ Answer Amendment DATE OF PATENT HOLDER OF PATENT OR TRADEMARK PATENT OR OR TRADEMARK TRADEMARK NO. 3 In the above—entitled case, the following decision has been rendered or judgement issued: DECISION/JUDGEMENT

Copy 1—Upon initiation of action, mail this copy to Director Copy 3—Upon termination of action, mail this copy to Director Copy 2—Upon filing document adding patent(s), mail this copy to Director Copy 4—Case file copy

(BY) DEPUTY CLERK

CLERK

DATE

TO:

Mail Stop 8 Director of the U.S. Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

REPORT ON THE FILING OR DETERMINATION OF AN ACTION REGARDING A PATENT OR TRADEMARK

In Compliance with 35 U.S.C. § 290 and/or 15 U.S.C. § 1116 you are hereby advised that a court action has been filed in the U.S. District Court District of Delaware						
OCCKET NO. DATE FILED U.S. DISTRICT COURT COURT District of Delaware						
PLAINTIFF PFIZER INC. and UCB F	PHARMA GMBH	DEFENDANT APOTEX INC.				
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATENT OR TRADEMARK				
1 6,858,650 B1	2/22/2005	UCB Pharma GmbH				
2 7,384,980 B2	6/10/2008	UCB Pharma GmbH				
3 7,855,230 B2	12/21/2010	UCB Pharma GmbH				
4 7,985,772 B2	7/26/2011	UCB Pharma GmbH				
5 8,338,478 B2	12/25/2012	UCB Pharma GmbH				
	In the above—entitled case, the f	following patent(s)/ trademark(s) have bee	n included:			
DATE INCLUDED 2/3/2014	INCLUDED BY ☐ Amen	dment ☑ Answer ☐ Cross	Bill Other Pleading			
PATENT OR TRADEMARK NO.	DATE OF PATENT OR TRADEMARK	HOLDER OF PATE	NT OR TRADEMARK			
1 7,807,715 B2	10/5/2010	UCB Pharma GmbH				
2 8,088,398 B2	1/3/2012	UCB Pharma GmbH				
3 8,501,723 B2	8/6/2013	UCB Pharma GmbH				
4						
5						
In the above—entitled case, the following decision has been rendered or judgement issued:						
DECISION/JUDGEMENT						
CLERK	(BY)	DEPUTY CLERK	DATE			
CLLRIX						
L						