
Decidability of Model Checking for Infinite-State
Concurrent Systems *

.J aviPr Esparza
Institnt fiir Informatik

TP< ·lmis< ·lw 1._; ni vPrsi tiit :VI iill(·lwn
Arcisstr. 21 D-80290 :Vliindwn, GPrmany

Abstract

We study the decidability of the model checking problem for linear and branching

time logics, <:wd two models of concurrent computation, nanwly Petri nets <:wd lhtsic
Pa,raJ lei Processes.

1 Introduction

I'vlost techniques for the verification of concurrent systems proceed by <HI exh<uJstive
traversaJ of the state sp<:u:e. Therefore, they <He inherently incaJ}<:tble of considering

systems with infinitely many states.
Recently, some new methods have been developed in order to at least palliate this

problem. Using them, several verification problems for some restricted infinite-state
models have been shown to be decidable. These results can be classified into those

showing the decidability of equivalence relations [8, fl, 2'1, 26]. and those showing the
decidability of model checking for different modal and temporal logics. In this paper,

we contribute to this second group.
The model checking problem has been studied so far for three infinite-state models:

context-free processes, pushdown processes, <:wd Petri nets. The first two a,re mod
els of sequential computation, while the latter explicitely models concurrency. The
modal mu-calculus, the most powerful of the modal and temporal logics commonly

used for verification, is known to be decidable for context-free processes and push

down automata. The proof is a complicated reduction to the validity problem for S2S

(monadic second order logic of two successors) [:32, 1:3]. Simpler algorithms have been
given for the alternation-free fragment of the mu-calculus [5, 21]. These results have

been extended to context-free like processes in [22], and to pushdown processes in [6].

The model checking problem for Petri nets was first studied by Ilowell and Rosier

[HJ], who observed that a certain linear time temporal logic is undecidable even for
conflict-free Petri nets, a fairly small class. This logic is interpreted on the infinite

occurrence sequences of the net, a.nd consists of a.tomic sentences, the usua.l boolea.n

connectives, and the operator r (eventually). The atomic sentences are of type ge(s, c)

(with intended me<:uling 'at the current m<:Hking, the number of tokens on place .s is

*This work wa,;; mostly done while the author wa,;; at the l:niversity of Edinhurgh.

1

Blue Coat Systems - Exhibit 1061f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

greater than or equal to c') or of type fi(t) (with intended meaning 'I is the next

transition in the sequence'). A Petri net is said to satisfy a formula if it has an infinite
run that satisfies it.

In a subsequent paper [20], !lowell, Rosier and Yen showed that the model checking

problem for the positive fragment of this logic (in which negations are only applied to

atomic sentences) can be reduced to the readmbility problem, and is thus decidable .
.Jani:ar showed in [2:3] that the positive fragment with G/"(infinitely often) as operator,
instead of/", is decidable as well.

Although some of these results are very deep, they are also rather fragmentary.
The logics have been chosen in a, rather <:ul-hoc way, bec<:wse the rn<:tin interest of the
authors has been to study particular problems (the main goal of [20, 2:3] is to study
fairness problems), and not the logics themselves. In particular, branching time logics

have received very little attention. Also, the logics of [Hl, 20, 2:3] contain an ad-hoc set
of atomic sentences, <:wd the irnp<:u:t on decida,bility of this or other p<Hticula,r choice

ha,s not been cle<:Hed up.

The goal of this paper is to offer a more systematic and global picture of the
decidability issues concerning model checking infinite-state concurrent models for both

linea,r time <Hid bra,nching time logics. For that, we recaJI some results recently obt<:tined

by the author [15], and complement them with new ones.
We consider interleaving semantics and two different models: labelled Petri nets,

called just Petri nets in the rest of this section, and Basic Parallel Processes (BPI's) [7,
8]. Petri nets <He a, rather powerful model, which e<Hl be used to represent <:wd a,naJyse
a, I<Hge V<Hiety of systems. No naturaJ model of concurrent computation lying strictly
between Petri nets <Hid Turing rmu:hines seems to have been proposed so fa,r (context

sensitive grammars lie strictly between Petri nets and Turing Machines [:3:3], but they

are not used as a model for concurrerH:y). Therefore, decidability results for Petri

nets are very significant, because they cannot be easily generalized, but undecidability

results <He not very conclusive, because a problem undecidable for arbitrary Petri nets
could be decidable for relevant net classes. That is why we also study BPI's, which (in
interleaving semantics) can be seen as a small subclass of Petri nets. BPPs are a rather

weak process algebra, in which processes are built out of action prefix, nondeterministic

choice, parallel composition without communication, and recursion. It can be argued
that any reasonable infinite-state model of concurrency will have more computing power

than BPI's. Therefore, undecidability results for BPI's should be expected to be very
significant.

The paper is organised as follows. In the first section, we define Petri nets and
BPI's. Section 2 recalls the results of [15] on linear time logics. Section :3 deals with
branching time logics. In these two sections we consider action-based logics without

atomic sentences. Section :1 investigates how the results change when atomic sentences

are added.

2 Models: notations and basic definitions

We introduce Petri nets and Basic Parallel Processes, the two models we study. Before
that, we need a few notions about transition systems.

2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.1 Thansition systems

A (labdledj lmnsilion syslem T over a set of actions Ad consists of a set of states S
and a relation _"_,t;;; S x S for each action a E Ad. A palh ofT is either an infinite

a, f' . an-1 t t t sequence .s1 ·'2 -~ ·'3 ... or a, Hllte sequence .s1 ... ~ ·'n sucn tnat ·'n ll<:ts
no successors.

A transition system is rooted if it has a d.istinguished initial state. A run of a rooted

transition system Tis a path which starts at the initial state; a state is reachable if
it <:tppea,rs in some run. The language ofT is the set of sequences of <:u:tions obt<:tined

by dropping the states in the runs ofT (so the language may contain both finite and
infinite words).

In some proofs we have to consider the states of a, tnu1sition system up to strong
bisimulation. A relation ll t;;; S x Sis a slmng bisimulalion if whenever ·'1 /l.s2 then,
for every a E A cl,

'f a I t a I r I • t I I' I • 1 .s1 -~ .s1 tnen .s 2 -~ .s 2 tor some .s 2 w1t11 .s1 L .s 2 ;

'f a I t a I r I • t I I' I • 1 ·'2 -~ .s2 tnen ·'1 -~ .s1 tor some .s1 w1t11 .s2 L .s1 .

Two states .s1 <Hid .s2 <He strongly bisirnilar, denoted by .s1 "'"' .s2 , if there is a, strong
bisimulation ll such that .s1 /l.s2. This definition can be extended to states of different

tnu1sition systems, by putting them 'side by side', <Hid considering them as one single

transition system.

2.2 Petri Nets

A labelled nfl N is a fourtuple (S,T, W,l), where

• SandT are two disjoint, finite sets,

• W: (S x T) U (T x S) ~ LV is a weight function, and

• I is a surjective mapping T ~ Ad, where Act is a set of actions (surjectivity is

assumed for convenience).

The elements of Sand Tare called places and lmnsilions, respectively. Places and

transitions are generically called nodes.
A marking of N is a mapping lvl: S ~ N. A marking lvl enables a transition l

if lH(.s) :> W(.s,l) for every place .s. If lis enabled at lvl, then it can (X:cur, and its
occurrence leads to the successor marking iv/ 1 which is defined for every place .s by

ivt'(.s) = lVI(.s) + L(W(t,.s)- W(.s,t))
tET

A marking lvl is called dead if it enables no transition of N.
A (labdledj Fflri nfl is a pair L; = (N, iV/0) where N is a labelled net and lV/0 is a

marking of N. The rooted transition system of~ has all the markings of N as states
and lV/0 as initial state. For each action a E Acl, we define lv/1 _a_, lv/2 if lv/1 enables
some transition l labelled by a, and the marking reached by the occurrence of lis lv/ 2 •

The language of a Petri net is the language of its transition system.

Unlabelled Petri nets are obtained from labelled ones by dropping the labelling
function. l';quivalently, one can think of unlabelled Petri nets as labelled Petri nets in

which the labelling function assigns to a transition its own name. VVith this convention,

the deli nition of transition system and language of a Petri net carries over to unlabelled
Petri nets.

3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.3 Basic and Very Basic Parallel Processes

The class of Basic Parallel Process (BPP) expressions is defined by the following ab

stract syntax [7, 8]:
0
X
a. 1·.·

1·.' + 1·.'

1·: II 1·:

(inaction)
(process variable)

(action prefix)
(choice)

(merge)

where a belongs to a, set Act of <:u:tions. The BPP expressions conta,ining no occurrence
of the choice operator+ are called Very Basic Parallel Process (VBPP) expressions.

A BPP is a family of recursive equations

where the .:ri a,re distinct <Hid the l·.'i <He BPP expressions at most cont<:urung the

V<Hi<:tbles {.\" 1 , ••• , .\"11j. VVe further <:tssurne that every V<Hi<:tble occurrence in the ex

pressions 1·.', is guarded, that is, appears within the scope of an action prefix. The

variable X 1 is singled out as the leading variable and X 1 ~
1

1·.'1 is called the leading

equal ion.

The rooted transition system of a BPP {Xi ~1
1·.', 11 <:: i <:: n} has the BPP expres

Sions over V<Hi<:tbles .\"1, ... ,.\"n <:ts states; the le<:uling V<Hi<:tble is the initiaJ state. For
every a E Ad, the transition relation _a_, is the least relation satisfying the following

rules:
1·.'

a I·:' 1·.'
a I·:' a -~ -~

a 1·.' -~ 1·.' a a
1·.' + "' -~ I·:' 1·.' II "' -~ I·:' II "'

1·.'
a I·:' "'

a V' "'
a V' -~

(X
def

1·.')
-~ -~

X
a I·:' 1·.' + "'

a V' 1·.' II "'
a

1·.' II V' -~ -~ -~

I. 1 f . F 1 I . [{ . I r· I u a •or a, su }Set o <:u:t10ns r\, t 1e re at1on ~ IS < e me< <ts aEl{ -

A BPP is in normal form if every expression 1·.', on the right hand side of an equation
is of the form a 1 • n 1 + ... +an · O'n, where for e<:u:h i the expression O'i is a, merge of

process variables. It is shown in [7] that every BBP is strongly bisimilar to a BPP in

normal form (i.e., the leading variables are strongly bisimilar).
)•;very BPP in normal form can be translated into a labelled Petri net. The transla

tion is graphically illustrated by means of an example in Figure 1. The net has a place
for each variable .:ri. For each subexpression aJ · O!J in the defining equation of l·.'i, a

transition is added having the place .:ri in its preset, and the v<u·iables that appear in
O!J in its post set. If a v<u·iable appears n times in O'J, then the arc leading to it is given

weight n. Finally, a token is put on the place corresponding to the leading variable.

It is e<:tsy to see that there exists an isomorphism between the reachable parts of the

transition systems of a BPP in normal form and its associated Petri net.
Also, it follows easily from this translation that:

• the transitions of Petri nets correspond.ing to BPPs in normal form have exactly
one input place,

• the places of VBPPs in normal form have at most one output transition, and

• all the arcs leading from places to transitions have weight 1.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

X~ a (X II Y) + b (Y II Y)
y ~ b (X II y)

Fig. 1 A BPP and its corresponding Petri net

3 Linear Time Logics

The contents of this section are taken from [15]. We show that the model checking
problem for Petri nets and closed formulas of the linear time mu-calculus is decidable.

The linear time mu-calculus is a powerful linear time logic, in which all the usual linear
time operators like 'aJways', 'eventuaJiy', <:wd 'until' e<Hl be expressed. VVe describe it
briefly, and refer the reader to [11] for more information.

The linear time mu-calculus has the following syntax

4> ::= z I I 4> A 4> I (a)4> I v z .</>

where a r<:tnges over a, set Act of <:u:tions, <:wd Z over a, set of propositionaJ V<Hi<:tbles.
Free <Hid bound occurrences of v<:Hi<:tbles <He defined <:ts usuaL A formula, is dosed if no

V<Hi<:tble occurs free in it.
Forrnula,s <He built out of this gnunrn<H, subject to the rnonotonicity cond.ition that

aJI free occurrences of a, V<Hi<:tble Z lie in the scope of <HI even number of negations.

Let Act*, Acl~ be the set of finite and infinite words on Ad, and let Ac(" =

Act* U Acl~. A valuation V of the logic assigns to each variable Z a set of words V(Z)
in Ac(". We denote by V[W/Z] the valuation V' which agrees with V except on Z,
where V'(Z) = W. Given a word a= a1 a2 • •• on Ac(", a(1) denotes the first action

of a, i.e., a 1 , <Hid a 1 denotes the word a2 a3 VVith these notations, the denotation
II<PIIv of a formula 4> is the set of words of Ac(" inductively defined by the following

rules:

IIZIIv
IHIIv

114> A <PIIv
ll(a)4>llv
llvZ.</>IIv

V(Z)

Ad" - II<PIIv
II<PIIv n II<PIIv
{a E Ad" I a(1) =a!\ a' E II<PIIv}
U{W t;;; Act" I W t;;; II<PIIv[wjzJ}

Therefore, llvZ.</>IIv is the greatest fixpoint of the function which assigns to a set

W of words the set II<PIIv[W/Z]·
The denotation of a closed formula 4> is independent of the valuation; we then use

the symbol 114>11-
A rooted tnu1sition system T satisfies a, closed formula, cP of the linea,r time mu

calculus if every run ofT satisfies Accordingly, a Petri net L; satisfies 4> if f,(L;) t;;;
114>11, where f,(L;) denotes the language of its transition system. Notice that, with this

definition of satisfaction, it can be the case that ~ satisfies neither a formula nor its
negation.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

