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Abstract 

We study the decidability of the model checking problem for linear and branching 

time logics, <:wd two models of concurrent computation, nanwly Petri nets <:wd lhtsic 
Pa,raJ lei Processes. 

1 Introduction 

I'vlost techniques for the verification of concurrent systems proceed by <HI exh<uJstive 
traversaJ of the state sp<:u:e. Therefore, they <He inherently incaJ}<:tble of considering 

systems with infinitely many states. 
Recently, some new methods have been developed in order to at least palliate this 

problem. Using them, several verification problems for some restricted infinite-state 
models have been shown to be decidable. These results can be classified into those 

showing the decidability of equivalence relations [8, fl, 2'1, 26]. and those showing the 
decidability of model checking for different modal and temporal logics. In this paper, 

we contribute to this second group. 
The model checking problem has been studied so far for three infinite-state models: 

context-free processes, pushdown processes, <:wd Petri nets. The first two a,re mod
els of sequential computation, while the latter explicitely models concurrency. The 
modal mu-calculus, the most powerful of the modal and temporal logics commonly 

used for verification, is known to be decidable for context-free processes and push

down automata. The proof is a complicated reduction to the validity problem for S2S 

(monadic second order logic of two successors) [:32, 1:3]. Simpler algorithms have been 
given for the alternation-free fragment of the mu-calculus [5, 21]. These results have 

been extended to context-free like processes in [22], and to pushdown processes in [6]. 

The model checking problem for Petri nets was first studied by Ilowell and Rosier 

[HJ], who observed that a certain linear time temporal logic is undecidable even for 
conflict-free Petri nets, a fairly small class. This logic is interpreted on the infinite 

occurrence sequences of the net, a.nd consists of a.tomic sentences, the usua.l boolea.n 

connectives, and the operator r (eventually). The atomic sentences are of type ge( s, c) 

(with intended me<:uling 'at the current m<:Hking, the number of tokens on place .s is 

*This work wa,;; mostly done while the author wa,;; at the l:niversity of Edinhurgh. 
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greater than or equal to c') or of type fi(t) (with intended meaning 'I is the next 

transition in the sequence'). A Petri net is said to satisfy a formula if it has an infinite 
run that satisfies it. 

In a subsequent paper [20], !lowell, Rosier and Yen showed that the model checking 

problem for the positive fragment of this logic (in which negations are only applied to 

atomic sentences) can be reduced to the readmbility problem, and is thus decidable . 
.Jani:ar showed in [2:3] that the positive fragment with G/"(infinitely often) as operator, 
instead of/", is decidable as well. 

Although some of these results are very deep, they are also rather fragmentary. 
The logics have been chosen in a, rather <:ul-hoc way, bec<:wse the rn<:tin interest of the 
authors has been to study particular problems (the main goal of [20, 2:3] is to study 
fairness problems), and not the logics themselves. In particular, branching time logics 

have received very little attention. Also, the logics of [Hl, 20, 2:3] contain an ad-hoc set 
of atomic sentences, <:wd the irnp<:u:t on decida,bility of this or other p<Hticula,r choice 

ha,s not been cle<:Hed up. 

The goal of this paper is to offer a more systematic and global picture of the 
decidability issues concerning model checking infinite-state concurrent models for both 

linea,r time <Hid bra,nching time logics. For that, we recaJI some results recently obt<:tined 

by the author [15], and complement them with new ones. 
We consider interleaving semantics and two different models: labelled Petri nets, 

called just Petri nets in the rest of this section, and Basic Parallel Processes (BPI's) [7, 
8]. Petri nets <He a, rather powerful model, which e<Hl be used to represent <:wd a,naJyse 
a, I<Hge V<Hiety of systems. No naturaJ model of concurrent computation lying strictly 
between Petri nets <Hid Turing rmu:hines seems to have been proposed so fa,r (context 

sensitive grammars lie strictly between Petri nets and Turing Machines [:3:3], but they 

are not used as a model for concurrerH:y). Therefore, decidability results for Petri 

nets are very significant, because they cannot be easily generalized, but undecidability 

results <He not very conclusive, because a problem undecidable for arbitrary Petri nets 
could be decidable for relevant net classes. That is why we also study BPI's, which (in 
interleaving semantics) can be seen as a small subclass of Petri nets. BPPs are a rather 

weak process algebra, in which processes are built out of action prefix, nondeterministic 

choice, parallel composition without communication, and recursion. It can be argued 
that any reasonable infinite-state model of concurrency will have more computing power 

than BPI's. Therefore, undecidability results for BPI's should be expected to be very 
significant. 

The paper is organised as follows. In the first section, we define Petri nets and 
BPI's. Section 2 recalls the results of [15] on linear time logics. Section :3 deals with 
branching time logics. In these two sections we consider action-based logics without 

atomic sentences. Section :1 investigates how the results change when atomic sentences 

are added. 

2 Models: notations and basic definitions 

We introduce Petri nets and Basic Parallel Processes, the two models we study. Before 
that, we need a few notions about transition systems. 
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2.1 Thansition systems 

A (labdledj lmnsilion syslem T over a set of actions Ad consists of a set of states S 
and a relation _"_,t;;; S x S for each action a E Ad. A palh ofT is either an infinite 

a, f' . an-1 t t t sequence .s1 ·'2 -~ ·'3 ... or a, Hllte sequence .s1 ... ~ ·'n sucn tnat ·'n ll<:ts 
no successors. 

A transition system is rooted if it has a d.istinguished initial state. A run of a rooted 

transition system Tis a path which starts at the initial state; a state is reachable if 
it <:tppea,rs in some run. The language ofT is the set of sequences of <:u:tions obt<:tined 

by dropping the states in the runs ofT (so the language may contain both finite and 
infinite words). 

In some proofs we have to consider the states of a, tnu1sition system up to strong 
bisimulation. A relation ll t;;; S x Sis a slmng bisimulalion if whenever ·'1 /l.s2 then, 
for every a E A cl, 

'f a I t a I r I • t I I' I • 1 .s1 -~ .s1 tnen .s 2 -~ .s 2 tor some .s 2 w1t11 .s1 L .s 2 ; 

'f a I t a I r I • t I I' I • 1 ·'2 -~ .s2 tnen ·'1 -~ .s1 tor some .s1 w1t11 .s2 L .s1 . 

Two states .s1 <Hid .s2 <He strongly bisirnilar, denoted by .s1 "'"' .s2 , if there is a, strong 
bisimulation ll such that .s1 /l.s2. This definition can be extended to states of different 

tnu1sition systems, by putting them 'side by side', <Hid considering them as one single 

transition system. 

2.2 Petri Nets 

A labelled nfl N is a fourtuple (S,T, W,l), where 

• SandT are two disjoint, finite sets, 

• W: (S x T) U (T x S) ~ LV is a weight function, and 

• I is a surjective mapping T ~ Ad, where Act is a set of actions (surjectivity is 

assumed for convenience). 

The elements of Sand Tare called places and lmnsilions, respectively. Places and 

transitions are generically called nodes. 
A marking of N is a mapping lvl: S ~ N. A marking lvl enables a transition l 

if lH(.s) :> W(.s,l) for every place .s. If lis enabled at lvl, then it can (X:cur, and its 
occurrence leads to the successor marking iv/ 1 which is defined for every place .s by 

ivt'(.s) = lVI(.s) + L(W(t,.s)- W(.s,t)) 
tET 

A marking lvl is called dead if it enables no transition of N. 
A (labdledj Fflri nfl is a pair L; = ( N, iV/0 ) where N is a labelled net and lV/0 is a 

marking of N. The rooted transition system of~ has all the markings of N as states 
and lV/0 as initial state. For each action a E Acl, we define lv/1 _a_, lv/2 if lv/1 enables 
some transition l labelled by a, and the marking reached by the occurrence of lis lv/ 2 • 

The language of a Petri net is the language of its transition system. 

Unlabelled Petri nets are obtained from labelled ones by dropping the labelling 
function. l';quivalently, one can think of unlabelled Petri nets as labelled Petri nets in 

which the labelling function assigns to a transition its own name. VVith this convention, 

the deli nition of transition system and language of a Petri net carries over to unlabelled 
Petri nets. 
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2.3 Basic and Very Basic Parallel Processes 

The class of Basic Parallel Process (BPP) expressions is defined by the following ab

stract syntax [7, 8]: 
0 
X 
a. 1·.· 

1·.' + 1·.' 

1·: II 1·: 

(inaction) 
(process variable) 

(action prefix) 
(choice) 

(merge) 

where a belongs to a, set Act of <:u:tions. The BPP expressions conta,ining no occurrence 
of the choice operator+ are called Very Basic Parallel Process (VBPP) expressions. 

A BPP is a family of recursive equations 

where the .:ri a,re distinct <Hid the l·.'i <He BPP expressions at most cont<:urung the 

V<Hi<:tbles {.\" 1 , ••• , .\"11j. VVe further <:tssurne that every V<Hi<:tble occurrence in the ex

pressions 1·.', is guarded, that is, appears within the scope of an action prefix. The 

variable X 1 is singled out as the leading variable and X 1 ~
1 

1·.'1 is called the leading 

equal ion. 

The rooted transition system of a BPP {Xi ~1 
1·.', 11 <:: i <:: n} has the BPP expres

Sions over V<Hi<:tbles .\"1, ... ,.\"n <:ts states; the le<:uling V<Hi<:tble is the initiaJ state. For 
every a E Ad, the transition relation _a_, is the least relation satisfying the following 

rules: 
1·.' 

a I·:' 1·.' 
a I·:' a -~ -~ 

a 1·.' -~ 1·.' a a 
1·.' + "' -~ I·:' 1·.' II "' -~ I·:' II "' 

1·.' 
a I·:' "' 

a V' "' 
a V' -~ 

(X 
def 

1·.') 
-~ -~ 

X 
a I·:' 1·.' + "' 

a V' 1·.' II "' 
a 

1·.' II V' -~ -~ -~ 

I. 1 f . F 1 I . [{ . I r· I u a •or a, su }Set o <:u:t10ns r\, t 1e re at1on ~ IS < e me< <ts aEl{ - ............ 

A BPP is in normal form if every expression 1·.', on the right hand side of an equation 
is of the form a 1 • n 1 + ... +an · O'n, where for e<:u:h i the expression O'i is a, merge of 

process variables. It is shown in [7] that every BBP is strongly bisimilar to a BPP in 

normal form (i.e., the leading variables are strongly bisimilar). 
)•;very BPP in normal form can be translated into a labelled Petri net. The transla

tion is graphically illustrated by means of an example in Figure 1. The net has a place 
for each variable .:ri. For each subexpression aJ · O!J in the defining equation of l·.'i, a 

transition is added having the place .:ri in its preset, and the v<u·iables that appear in 
O!J in its post set. If a v<u·iable appears n times in O'J, then the arc leading to it is given 

weight n. Finally, a token is put on the place corresponding to the leading variable. 

It is e<:tsy to see that there exists an isomorphism between the reachable parts of the 

transition systems of a BPP in normal form and its associated Petri net. 
Also, it follows easily from this translation that: 

• the transitions of Petri nets correspond.ing to BPPs in normal form have exactly 
one input place, 

• the places of VBPPs in normal form have at most one output transition, and 

• all the arcs leading from places to transitions have weight 1. 
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X~ a (X II Y) + b ( Y II Y) 
y ~ b (X II y) 

Fig. 1 A BPP and its corresponding Petri net 

3 Linear Time Logics 

The contents of this section are taken from [15]. We show that the model checking 
problem for Petri nets and closed formulas of the linear time mu-calculus is decidable. 

The linear time mu-calculus is a powerful linear time logic, in which all the usual linear 
time operators like 'aJways', 'eventuaJiy', <:wd 'until' e<Hl be expressed. VVe describe it 
briefly, and refer the reader to [11] for more information. 

The linear time mu-calculus has the following syntax 

4> ::= z I I 4> A 4> I (a )4> I v z .</> 

where a r<:tnges over a, set Act of <:u:tions, <:wd Z over a, set of propositionaJ V<Hi<:tbles. 
Free <Hid bound occurrences of v<:Hi<:tbles <He defined <:ts usuaL A formula, is dosed if no 

V<Hi<:tble occurs free in it. 
Forrnula,s <He built out of this gnunrn<H, subject to the rnonotonicity cond.ition that 

aJI free occurrences of a, V<Hi<:tble Z lie in the scope of <HI even number of negations. 

Let Act*, Acl~ be the set of finite and infinite words on Ad, and let Ac(" = 

Act* U Acl~. A valuation V of the logic assigns to each variable Z a set of words V(Z) 
in Ac(". We denote by V[W/Z] the valuation V' which agrees with V except on Z, 
where V'(Z) = W. Given a word a= a1 a2 • •• on Ac(", a(1) denotes the first action 

of a, i.e., a 1 , <Hid a 1 denotes the word a2 a3 .... VVith these notations, the denotation 
II<PIIv of a formula 4> is the set of words of Ac(" inductively defined by the following 

rules: 

IIZIIv 
IHIIv 

114> A <PIIv 
ll(a)4>llv 
llvZ.</>IIv 

V(Z) 

Ad" - II<PIIv 
II<PIIv n II<PIIv 
{a E Ad" I a(1) =a!\ a' E II<PIIv} 
U{W t;;; Act" I W t;;; II<PIIv[wjzJ} 

Therefore, llvZ.</>IIv is the greatest fixpoint of the function which assigns to a set 

W of words the set II<PIIv[W/Z]· 
The denotation of a closed formula 4> is independent of the valuation; we then use 

the symbol 114>11-
A rooted tnu1sition system T satisfies a, closed formula, cP of the linea,r time mu

calculus if every run ofT satisfies Accordingly, a Petri net L; satisfies 4> if f,(L;) t;;; 
114>11, where f,(L;) denotes the language of its transition system. Notice that, with this 

definition of satisfaction, it can be the case that ~ satisfies neither a formula nor its 
negation. 
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