Decidability of Model Checking for Infinite-State
Concurrent Systems *

Javier Esparza
Institut fiir Informatik
Technische Universitat Minchen
Arcisstr. 21 D-80290 Minchen, Germany

Abstract

We study the decidahbili
tirne logics, and two model
Parallel Processes.

ty of the model checking problem for linear and branching
s of concurrent computation, namely Pelri nets and Basic

1 Introduction

Most techniques for the verification ol concurrent systems p‘i‘f)(‘(‘(‘d by an exhaustive
traversal of the stale space. Therelore, they are inherently incapable of considering
systems with inlinitely many stales.

Recently, some new methods have been developed in order to at least palliate this
probler. Using them, several verification problems for some restricted inlinite-state
models have been shown to be decidable. These results can be classified into those
showing the decidability of equivalence relations [8, 9, 24, 26], and those showing the
decidability of model checking for different modal and temporal logics. In this paper,
we contribute to this second group.

The model checking problem has been studied so far for three infinite-state models:
context-lree processes, pushdown processes, and Petri nets. The firsl two are mod-
els of sequential computation, while the latter explicitely models concurrency. The
modal mu-caleulus, the most powerful of the modal and temporal logics commonly
used for verification, is known to be decidable for context-free processes and push-
down automata. The proof is a complicated reduction to the validity problem for 525
{monadic second order logic of two successors) [32, 13]. Simpler algorithms have been
given for the alternation-lree fragment of the mu-calculus [5, 21]. These results have
heen extended to context-free like processes in [22], and to pushdown processes in [6].

The model checking problem for Petri nets was lirst studied by Howell and Rosier
[19], who observed that a certain linear Llﬁ;o temporal logic is undecidable even for
conflict-free Petri nets, a fairly small class. This logic is interpreted on the infinite
oceurrence sequences of the net, and consists of atomic sentences, the usual boolean
connectives, and the operator F{eventually). The atomic sentences are of type ge(s, ¢)
{with intended meaning ‘at the current marking, the number of tokens on place ¢ is

*This work was mosily done while the author was at the University of Edinburgh.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

©
L

CKET
M

A R

greater than or equal to ¢) or of type fi{t) (with intended meaning 4 is the next
transition in the sequence’). A Petri net is said to satisly a formula if it has an inlinite
run that satisfies it.

In a subsequent paper [20], Howell, Rosier and Yen showed that the model checking
problem for the positive fragment of this logic {(in which negations are only applied to
atomic sentences) can he reduced to the reachability problem, and is thus decidable.
Janéar showed in [23] that the positive fragment with GF (infinitely often) as operator,
instead of F, is decidable as well.

Although some of these resulls are very deep, they are also rather fragmeniary,
The logics have been chosen in a rather ad-hoc way, because the main interest ol the
authors has been to study particular problems (the main goal of {20, 23] is to study
fairness problems), and not the logics themselves. In particular, branching time logics
have received very little attention. Also, the logics of [19, 20, 23] contain an ad-hoc set
of atomic sentences, and the impact on decidabilily of this or other particular choice
has not been cleaved up.

The goal of this paper is Lo offer a more systemalic and global piclure of the
decidahility issues concerning model checking infinite-state concurrent models for both
Binear titoe and branching time logics. For that, we recall some results recently oblained
by the author [15], and complement them with new ones.

We consider interleaving semantics and two different models: labelled Petri nets,
called just Petri nets in the rest of this section, and Basic Parallel Processes (BPPs) [7,

8]. Petri nets are a rather powerful model, which can be used to represent and analyse
a large variety of systems. No natural model of concurrent computation lyving strictly
between Petri nets and Turing machines seems to have been proposed so far (context
sensitive grammmars lie stricily between Petri nets and Turing Machines [33], but they
are not used as a model for concurrency). Therefore, decidability results for Petri
nels are very significant, because they cannot be easily generalized, but undecidability
resulls are not very conclusive, because a problem undecidable lor arbitrary Petri nets
could be decidable for relevant net classes. That is why we also study BPPs, which (in
interleaving semantics) can be seen as a small subclass of Petri nets. BPPs are a rather
weak process algebra, in which processes are buill oul of action prelix, nondeterministic
choice, parallel composition without commmunication, and recursion. It can be argued
that any reasonable infinite-state model of concurrency will have more computing power
than BPPs. Therefore, undecidabilily resulls for BPPs should be expected Lo be very
signilicant.

The paper is organised as follows. In the first section, we deline Petri nets and
BPPs. Section 2 recalls the results of [15] on linear time logics. Section 3 deals with
branching time logics. In these two seclions we consider action-based logics without

atomic sentences, Section 4 investigates how the results change when atomic sentences
are added.

2 Models: notations and basic definitions

We introduce Petri nets and Basic Parallel Processes, the two models we study. Before
that, we need a few notions about transition systems.

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.1 Transition systems

A (labelled) transilion system T over a set of actions Acl consists of a set of states §
and a relation ——=C 8§ x 8 for each action a € Acl. A path of T is either an infinite
sequence s sy 22 sa . or a finite sequence s L $n such that s, has
110 SULCOSSOTE.

A transition system is rocled if it has a distinguished initial state. A run of a rooted
transition system 7 is a path which starts at the initial state; a state is reachabie if
it appears in some run. The Innguage of T 13 the set of sequences of actions obtained
by dropping the states in the runs of 7 (so the language may contain both finite and
infinite words).

In somne proofs we have to consider the stales of a Lransition system up Lo slrong
bisimulation. A relation B C & x 8 is a sirony bisimulaiion if whenever sy £ s then,
for every a € Aet,

? ?

- 42 i i x
o if &3 — 8] then 83 — & for some & with & # &);

1
< & @ «
o if 33 — sb then 5y — s} for some s} with &, # 5.
Two stales 83 and 82 ave sivongly bisimilar, denoted by 83, ~ 8,5, if there is a strong
bisimulation £ such that sy £ 5. This definition can be extended to states of dilferent
transition systems, by putting them ‘side by side’, and considering them as one single
{ransition systern.

2.2 Petri Nets
A dabelled net N is a fourtuple (5,7, W, 1), where
« 5 and 7 are two disjoint, finite sels,
o Wi (S5 T)u{lx5)— INis a weight function, and

o [is a surjective mapping T — Acl, where Aci is a set of actions {(surjectivity is
assumed for convenience).

The elements of § and T are called places and ransilions, respectively. Places and
transitions are generically called nodes.

A marking of N is a mapping M: 5 — IN. A marking M enables a transition £
il M{s) > Wi(s,1) for every place s. If ¢ is enabled at M, then it can occur, and its
occurrence leads to the successor marking M’ which is defined for every place & by

M(s) = M{s)+ > (W(l,s)— W(s.1))
T

A marking M is called dead if it enables no transition of &,

A {flabelled) Pelri nelis a pair ¥ = (N, Mp) where N is a labelled net and M, is a
marking of &, The rooted transition system of X has all the markings of & as states
and My as initial state. Tor each action a € Aect, we define My —— M, if My enables
some Lransition ¢ labelled by a, and the marking reached by the ocourrence of Lis M.
The language ol a Peiri netl is the language of ils transition systenm.

Unlabelled Pelri neis are obtained from labelled ones by dropping the labelling
function. Equivalently, one can think of unlabelled Petri nets as labelled Petri nets in
which the labelling function assigns to a transition its own name. With this convention,
the delinition of transition system and language of a Petri net carries over to unlabelled

Pelri nets.

DOCKET
ALARM

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.3 Basic and Very Basic Parallel Processes

The class of Basic Parallel Process (BPP) expressions is defined by the following ab-
stract syntax [7, 8|

E == 0 {inaction)
| X {process variable)
| a-F {action prefix}
| 4+ B {choice)
| E B (merge)

where a belongs to a sel Acl of aclions. The BPP expressions rtﬁrlt&;‘nir]g; 1o occurrence
of the choice operator + are called Very Basic Parallel Process (VBPP) expressions.
A BPP is a family of recursive equalions

- def o,
{X;Z E |1 <i<a}
where the X; are distinet and the F; are BPP expressions at most containing the

variables {X,...,. X.}. We lurther assume that every variable occurrence in the ex-
pressions £y is guam’m’ thal is, appears within the %(f}po Gf an action prefix. The

variable Xy is singled out as the leading variable and X1 13 is called the leading
equalion.

The rooted transition system of a BPP {X] 5 %11 <4 < n} has the BPP expres-
sions over variables X4,..., X, as states; the lm;rimgz, variable is the initial state. For
every ¢ € Act, the transition relation WL i5 the least relation satislving the following
rules: .

a k- L
B4 P — Fl
-2 B y def [
x g T H g 4+ F o E

. - . K. . a
For a subset of actions &, the relation — is defined as |), o5 —.

A BPP is in nermal form il every expression £; on the right hand side of an equation
is of the form ay - oq + ...+ @y, - 0, where for each 7 the expression «; is a merge of
process variables. 1t is shown in [7] that every BBP is strongly bisimilar to a BPP in
normal form (ie., the leading variables are strongly bisimilar).

Every BPP in n(}lﬁ.}.@l formn can be (ranslated inlo a labelled Petri net. The transla-
tion is graphically illustrated by means of an example in Figure 1. The net has a place
for each variable X;. Tor each subexpression «; - «; in the defining equation of £, a
transition is added having the place X, in its preset, and the variables that appear i in
«; in its postset. If a variable appears n times in «;, then the arc leading to it is given
weight n. Finally, a token is put on the place corresponding to the leading variable.
It is easy to see that there exists an isomorphism between the reachable parts of the
transition systems of & BPP in normal form and its associated Petri net.

Also, il follows easily from this translation that:

s the transitions of Peiri nets corresponding to BPPs in normal form have exactly
one input place,

s the places of VBPPs in normal form have at most one ocutput transition, and

¢ all the arcs leading from places to transitions have weight 1.

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

I et
[b]

Fig. 1 A BPT and its corresponding Petri net

3 Linear Time Logics

The contents of this section are taken from {15]. We show that the model checking
problem for Petri nets and closed formulas of the linear time mu-caleulus is decidable,
The linear time mu-calculus is a powerful linear time logic, in which all the usual Enear
thme operators like ‘always’, ‘eventually’, and ‘until’ can be expressed. We describe it
briefly, and refer the reader to [11] for more information.

The linear thoe mu-calculus has the following syntax

pu=2Z-plend|l{a)p|vie

whete ¢ ranges over a set Aci of actions, and Z over a sel of propositional variables.
Free and dound occurrences of variables are defined as usual. A formula is closed il no
variable occurs free in it.

Formmulas are built out of this grammar, subject to the monotonicity condition that
all [ree occurrences of a variable Z lie in the scope of an even nummber of negalions.

Let Aci*, Aci® be the set of finite and infinite words on Acf, and let 4™ =
Acl® U Acl . A valualion V ol the logic assigns to each variable Z a set of words V{Z)
in Aci™. We denote by VIW/Z] the valuation V' which ag,w:\% with V except on 7,
where V'(Z) = W. Given aword o = ¢y az...on Acl™, (1) denotes the first action
of o, ie., o, and o1 denotes the word as as With these notati ions, the denotation
il 1™ inductively defined by the following

v of a formula ¢ is the set of words of Act
rules:

Zlly = viz)

-2y = Act™ —|9llv
e rwllv = llgllvnilwiy
la)dlly = {oedct™ |o(l)=a r o' €l|g|v}

bZally = W{W S Ac™ | W C éllvarsz}

Therefore, |[vZ.¢||y is the greatest fixpoint of the function which assigns to a set
W ol words the set ||#|lvim/z)-

The denotation of a closed formula 4 is independent of the valuation; we then use
the sybol {|2]].

A rooted transition system 7 satisfies a closed fm‘mula ¢ of the linear time mu-
calculus if every run of 7 satislies ¢. Accordingly, a Petri net Y satisfies ¢ if £(X) C
|@|], where L{X) denotes the language of its transition system. Notice that, wi ith this
delinition of ﬁa.tlsf(z,(,w}n, it can be the case that X satislies neither a formula nor its
negation,

DOC KET

A R M Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Nsights

Real-Time Litigation Alerts

g Keep your litigation team up-to-date with real-time
alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm’s cloud-native
O docket research platform finds what other services can't.
‘ Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips

° Learn what happened the last time a particular judge,

/ . o
Py ,0‘ opposing counsel or company faced cases similar to yours.

o ®
Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

-xplore Litigation

Docket Alarm provides insights to develop a more
informed litigation strategy and the peace of mind of

knowing you're on top of things.

API

Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND

LEGAL VENDORS

Sync your system to PACER to
automate legal marketing.

WHAT WILL YOU BUILD? @ sales@docketalarm.com 1-866-77-FASTCASE

