
Limits of Static Analysis for Malware Detection

Andreas Moser, Christopher Kruegel, and Engin Kirda
Secure Systems Lab

Technical University Vienna
{andy,chris,ek}@seclab.tuwien.ac.at

Abstract

Malicious code is an increasingly important problem
that threatens the security of computer systems. The tradi-
tional line of defense against malware is composed of mal-
ware detectors such as virus and spyware scanners. Un-
fortunately, both researchers and malware authors have
demonstrated that these scanners, which use pattern match-
ing to identify malware, can be easily evaded by simple code
transformations. To address this shortcoming, more pow-
erful malware detectors have been proposed. These tools
rely on semantic signatures and employ static analysis tech-
niques such as model checking and theorem proving to per-
form detection. While it has been shown that these systems
are highly effective in identifying current malware, it is less
clear how successful they would be against adversaries that
take into account the novel detection mechanisms.

The goal of this paper is to explore the limits of static
analysis for the detection of malicious code. To this end,
we present a binary obfuscation scheme that relies on the
idea of opaque constants, which are primitives that allow
us to load a constant into a register such that an analysis
tool cannot determine its value. Based on opaque constants,
we build obfuscation transformations that obscure program
control flow, disguise access to local and global variables,
and interrupt tracking of values held in processor registers.
Using our proposed obfuscation approach, we were able
to show that advanced semantics-based malware detectors
can be evaded. Moreover, our opaque constant primitive
can be applied in a way such that is provably hard to an-
alyze for any static code analyzer. This demonstrates that
static analysis techniques alone might no longer be suffi-
cient to identify malware.

1 Introduction

Malicious code (or malware) is defined as software that
fulfills the harmful intent of an attacker. The damage caused
by malware has dramatically increased in the past few

years [8]. One reason is the rising popularity of the Internet
and the resulting increase in the number of available vulner-
able machines because of security-unaware users. Another
reason is the elevated sophistication of the malicious code
itself.

Current systems to detect malicious code (most promi-
nently, virus scanners) are largely based on syntactic signa-
tures. That is, these systems are equipped with a database
of regular expressions that specify byte or instruction se-
quences that are considered malicious. A program is de-
clared malware when one of the signatures is identified in
the program’s code.

Recent work [2] has demonstrated that techniques such
as polymorphism and metamorphism are successful in evad-
ing commercial virus scanners. The reason is that syntactic
signatures are ignorant of the semantics of instructions. To
address this problem, a novel class of semantics-aware mal-
ware detectors was proposed. These detectors [3, 10, 11]
operate with abstract models, or templates, that describe the
behavior of malicious code. Because the syntactic prop-
erties of code are (largely) ignored, these techniques are
(mostly) resilient against the evasion attempts discussed
above. The premise of semantics-aware malware detectors
is that semantic properties are more difficult to morph in an
automated fashion than syntactic properties. While this is
most likely true, the extent to which this is more difficult is
less obvious. On one hand, semantics-aware detection faces
the challenge that the problem of deciding whether a certain
piece of code exhibits a certain behavior is undecidable in
the general case. On the other hand, it is also not trivial for
an attacker to automatically generate semantically equiva-
lent code.

The question that we address in this paper is the follow-
ing: How difficult is it for an attacker to evade semantics-
based malware detectors that use powerful static analysis to
identify malicious code? We try to answer this question by
introducing a binary code obfuscation technique that makes
it difficult for an advanced, semantics-based malware de-
tector to properly determine the effect of a piece of code.
For this obfuscation process, we use a primitive known as

1

Blue Coat Systems - Exhibit 1056f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

opaque constant, which denotes a code sequence to load a
constant into a processor register whose value cannot be de-
termined statically. Based on opaque constants, we build a
number of obfuscation transformations that are difficult to
analyze statically.

Given our obfuscation scheme, the next question that
needs to be addressed is how these transformations should
be applied to a program. The easiest way, and the approach
chosen by most previous obfuscation approaches [6, 20], is
to work on the program’s source code. Applying obfusca-
tion at the source code level is the normal choice when the
distributor of a binary controls the source (e.g., to protect
intellectual property). For malware that is spreading in the
wild, source code is typically not available. Also, malware
authors are often reluctant to revealing their source code to
make analysis more difficult. Thus, to guard against objec-
tions that our presented threats are unrealistic, we present a
solution that operates directly on binaries.

The core contributions of our paper are as follows:

• We present a binary obfuscation scheme based on the
idea of opaque constants. This scheme allows us to
demonstrate that static analysis of advanced malware
detectors can be thwarted by scrambling control flow
and hiding data locations and usage.

• We introduce a binary rewriting tool that allows us
to obfuscate Windows and Linux binary programs for
which no source code or debug information is avail-
able.

• We present experimental results that demonstrate that
semantics-aware malware detectors can be evaded suc-
cessfully. In addition, we show that our binary trans-
formations are robust, allowing us to run real-world
obfuscated binaries under both Linux and Windows.

The code obfuscation scheme introduced in this paper
provides a strong indication that static analysis alone might
not be sufficient to detect malicious code. In particular, we
introduce an obfuscation scheme that is provably hard to an-
alyze statically. Because of the many ways in which code
can be obfuscated and the fundamental limits in what can
be decided statically, we firmly believe that dynamic analy-
sis is a necessary complement to static detection techniques.
The reason is that dynamic techniques can monitor the in-
structions that are actually executed by a program and thus,
are immune to many code obfuscating transformations.

2 Code Obfuscation

In this section, we present the concepts of the transfor-
mations that we apply to make the code of a binary difficult
to analyze statically. As with most obfuscation approaches,

the basic idea behind our transformations is that either some
instructions of the original code are replaced by program
fragments that are semantically equivalent but more diffi-
cult to analyze, or that additional instructions are added to
the program that do not change its behavior.

2.1 Opaque Constants

Constant values are ubiquitous in binary code, be it as the
target of a control flow instruction, the address of a variable,
or an immediate operand of an arithmetic instruction. In its
simplest form, a constant is loaded into a register (expressed
by a move constant, $register instruction). An im-
portant obfuscation technique that we present in this paper
is based on the idea of replacing this load operation with a
set of semantically equivalent instructions that are difficult
to analyze statically. That is, we generate a code sequence
that always produces the same result (i.e., a given constant),
although this fact would be difficult to detect from static
analysis.i n t z e r o [3 2] = { z _ 3 1 , z _ 3 0 , . . . , z _ 0 } ;i n t o n e [3 2] = { o _ 3 1 , o _ 3 0 , . . . , o _ 0 } ;i n t u n k n o w n = l o a d _ f r o m _ r a n d o m _ a d d r e s s () ;i n t c o n s t a n t = 0 ;f o r (i = 0 ; i < 3 2 ; + + i) {i f (b i t _ a t _ p o s i t i o n (u n k n o w n , i) = = 0)c o n s t a n t = c o n s t a n t x o r z e r o [i] ;e l s ec o n s t a n t = c o n s t a n t x o r o n e [i] ;}c o n s t a n t = c o n s t a n t o r s e t _ o n e s ;c o n s t a n t = c o n s t a n t a n d s e t _ z e r o s ;

Figure 1. Opaque constant calculation

Simple Opaque Constant Calculation Figure 1 shows
one approach to create a code sequence that makes use
of random input and different intermediate variable values
on different branches. In this code sequence, the value
unknown is a random value loaded during runtime. To
prepare the opaque constant calculation, the bits of the con-
stant that we aim to create have to be randomly partitioned
into two groups. The values of the arrays zero and one
are crafted such that after the for loop, all bits of the first
group have the correct, final value, while those of the sec-
ond group depend on the random input (and thus, are un-
known). Then, using the appropriate values for set ones
and set zeros, all bits of the second group are forced to

2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

_ _ _ _b o o l e a n v 1 , . . . , v m , v 1 , . . . , v m ;b o o l e a n * V 1 1 , * V 1 2 , * V 1 3 ;. . .b o o l e a n * V n 1 , * V n 2 , * V n 3 ;c o n s t a n t = 1 ;f o r (i = 0 ; i < n ; + + i)i f ! (* V i 1) & & ! (* V i 2) & & ! (* V i 3)c o n s t a n t = 0 ;
Figure 2. Opaque constant based on 3SAT

their correct values (while those of the first group are left
unchanged). The result is that all bits of constant hold
the desired value at the end of the execution of the code.

An important question is how the arrays zero and one
can be prepared such that all bits of the first group are guar-
anteed to hold their correct value. This can be accom-
plished by ensuring that, for each i, all bits that belong
to the first group have the same value for the two array
elements zero[i] and one[i]. Thus, independent of
whether zero[i] or one[i] is used in the xor opera-
tion with constant, the values of all bits in the first group
are known after each loop iteration. Of course, the bits
that belong to the second group can be randomly chosen
for all elements zero[i] and one[i]. Thus, the value
of constant itself is different after each loop iteration.
Because a static analyzer cannot determine the exact path
that will be chosen during execution, the number of pos-
sible constant values doubles after each loop iteration. In
such a case, the static analyzer would likely have to resort
to approximation, in which case the exact knowledge of the
constant is lost.

This problem could be addressed for example by intro-
ducing a more complex encoding for the constant. If we
use for instance the relationship between two bits to repre-
sent one bit of actual information, we avoid the problem that
single bits have the same value on every path. In this case,
off-the-shelf static analyzers can no longer track the precise
value of any variable.

Of course, given the knowledge of our scheme, the de-
fender has always the option to adapt the analysis such that
the used encoding is taken into account. Similar to be-
fore, it would be possible to keep the exact values for those
variables that encode the same value after each loop itera-
tion. However, this would require special treatment of the
particular encoding scheme in use. Our experimental re-

sults demonstrate that the simple opaque constant calcula-
tion is already sufficient to thwart current malware detec-
tors. However, we also explored the design space of opaque
constants to identify primitives for which stronger guaran-
tees with regard to robustness against static analysis can be
provided. In the following paragraphs, we discuss a prim-
itive that relies on the NP-hardness of the 3-satisfiability
problem.

NP-Hard Opaque Constant Calculation The idea of the
following opaque constant is that we encode the instance of
an NP-hard problem into a code sequence that calculates
our desired constant. That is, we create an opaque constant
such that the generation of an algorithm to precisely deter-
mine the result of the code sequence would be equivalent to
finding an algorithm to solve an NP-hard problem. For our
primitive, we have chosen the 3-satisfiability problem (typ-
ically abbreviated as 3SAT) as a problem that is known to
be hard to solve. The 3SAT problem is a decision problem
where a formula in Boolean logic is given in the following
form: ∧n

i=1(Vi1 ∨ Vi2 ∨ Vi3)

where Vij ∈ {v1, ..., vm} and v1, ..., vm are Boolean vari-
ables whose value can be either true or false. The task is
now to determine if there exists an assignment for the vari-
ables vk such that the given formula is satisfied (i.e., the
formula evaluates to true). 3SAT has been proven to be NP-
complete in [9].

Consider the code sequence in Figure 2. In this primi-
tive, we define m boolean variables v1 . . . vm, which corre-
spond directly to the variables in the given 3SAT formula.
By v1 . . . vm, we denote their negations. The pointers V11

to Vn3 refer to the variables used in the various clauses of
the formula. In other words, the pointers V11 to Vn3 encode
a 3SAT problem based on the variables v1 . . . vm. The loop
simply evaluates the encoded 3SAT formula on the input.
If the assignment of variables v1 . . . vm does not satisfy the
formula, there will always be at least one clause i that evalu-
ates to false. When the check in the loop is evaluated for that
specific clause, the result will always be true (as the check
is performed against the negate of the clause). Therefore,
the opaque constant will be set to 0. On the other hand, if
the assignment satisfies the encoded formula, the check per-
formed in the loop will never be true. Therefore, the value
of the opaque constant is not overwritten and remains 1.

In the opaque constant presented in Figure 2, the 3SAT
problem (that is, the pointers V11 to Vn3) is prepared by the
obfuscator. However, the actual assignment of boolean val-
ues to the variables v1 . . . vm is randomly performed during
runtime. Therefore, the analyzer cannot immediately evalu-
ate the formula. The trick of our opaque constant is that the

3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3SAT problem is prepared such that the formula is not sat-
isfiable. Thus, independent of the actual input, the constant
will always evaluate to 0. Of course, when a constant value
of 1 should be generated, we can simply invert the result of
the satisfiability test. Note that it is possible to efficiently
generate 3SAT instances that are not satisfiable with a high
probability [16]. A static analyzer that aims to exactly de-
termine the possible values of our opaque constant has to
solve the instance of the 3SAT problem. Thus, 3SAT is re-
ducible in polynomial time to the problem of exact static
analysis of the value of the given opaque constant.

Note that the method presented above only generates one
bit of opaque information but can be easily extended to cre-
ate arbitrarily long constants.

Basic Block Chaining One practical drawback of the
3SAT primitive presented above is that its output has to be
the same for all executions, regardless of the actual input.
As a result, one can conceive an analysis technique that
evaluates the opaque constant function for a few concrete
inputs. When all output values are equal, one can assume
that this output is the opaque value encoded. To counter this
analysis, we introduce a method that we denote basic block
chaining.

With basic block chaining, the input for the 3SAT
problems is not always selected randomly during runtime.
Moreover, we do not always generate unsatisfiable 3SAT
instances, but occasionally insert also satisfiable instances.
In addition, we ensure that the input that solves a satisfiable
formula is provided during runtime. To this end, the input
variables v1 . . . vm to the various 3SAT formulas are real-
ized as global variables. At the end of every basic block,
these global variables are set in one of the three following
ways: (1) to static random values, (2) to random values gen-
erated at runtime, or (3), to values specially crafted such that
they satisfy a solvable formula used to calculate the opaque
constant in the next basic block in the control flow graph.

To analyze a program that is obfuscated with basic block
chaining, the analyzer cannot rely on the fact that the en-
coded formula is always unsatisfiable. Also, when ran-
domly executing a few sample inputs, it is unlikely that
the analyzer chooses values that solve a satisfiable formula.
The only way to dissect an opaque constant would be to
first identify the basic block(s) that precede a certain for-
mula and then determine whether the input values stored in
this block satisfy the 3SAT problem. However, finding these
blocks is not trivial, as the control flow of the program is ob-
fuscated to make this task difficult (see the following Sec-
tion 2.2 for more details). Thus, the analysis would have
to start at the program entry point and either execute the
program dynamically or resort to an approach similar to
whole program simulation in which different branches are
followed from the start, resolving opaque constants as the

analysis progresses. Obviously, our obfuscation techniques
fail against such methods, and indeed, this is consistent with
an important point that we intend to make in this paper: dy-
namic analysis techniques are a promising and powerful ap-
proach to deal with obfuscated binaries.

2.2 Obfuscating Transformations

Using opaque constants, we possess a mechanism to load
a constant value into a register without the static analyzer
knowing its value. This mechanism can be expanded to per-
form a number of transformations that obfuscate the control
flow, data locations, and data usage of a program.

2.2.1 Control Flow Obfuscation

A central prerequisite for the ability to carry out advanced
program analysis is the availability of a control flow graph.
A Control Flow Graph (CFG) is defined as a directed graph
G = (V,E) in which the vertices u, v ∈ V represent basic
blocks and an edge e ∈ E : u → v represents a possible
flow of control from u to v. A basic block describes a se-
quence of instructions without any jumps or jump targets in
the middle. More formally, a basic block is defined as a se-
quence of instructions where the instruction in each position
dominates, or always executes before, all those in later po-
sitions. Furthermore, no other instruction executes between
two instructions in the same sequence. Directed edges be-
tween blocks represent jumps in the control flow, which are
caused by control transfer instructions (CTI) such as calls,
conditional jumps, and unconditional jumps.

The idea to obfuscate the control flow is to replace un-
conditional jump and call instructions with a sequence of
instructions that do not alter the control flow, but make it
difficult to determine the target of control transfer instruc-
tions. In other words, we attempt to make it as difficult
as possible for an analysis tool to identify the edges in the
control flow graph. Jump and call instructions exist as di-
rect and indirect variants. In case of a direct control trans-
fer instruction, the target address is provided as a constant
operand. To obfuscate such an instruction, it is replaced
with a code sequence that does not immediately reveal the
value of the jump target to an analyst. To this end, the sub-
stituted code first calculates the desired target address using
an opaque constant. Then, this value is saved on the stack
(along with a return address, in case the substituted instruc-
tion was a call). Finally, a x86 ret(urn) operation is
performed, which transfers control to the address stored on
top of the stack (i.e., the address that is pointed to by the
stack pointer). Because the target address was previously
pushed there, this instruction is equivalent to the original
jump or call operation.

Typically, this measure is enough to effectively avoid the
reconstruction of the CFG. In addition, we can also use ob-

4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

fuscation for the return address. When we apply this more
complex variant to calls, they become practically indistin-
guishable from jumps, which makes the analysis of the re-
sulting binary even harder because calls are often treated
differently during analysis.

2.2.2 Data Location Obfuscation

The location of a data element is often specified by provid-
ing a constant, absolute address or a constant offset relative
to a particular register. In both cases, the task of a static an-
alyzer can be complicated if the actual data element that is
accessed is hidden.

When accessing a global data element, the compiler typ-
ically generates an operation that uses the constant address
of this element. To obfuscate this access, we first generate
code that uses an opaque constant to store the element’s ad-
dress in a register. In a second step, the original operation
is replaced by an equivalent one that uses the address in
the register instead of directly addressing the data element.
Accesses to local variables can be obfuscated in a similar
fashion. Local variable access is typically achieved by us-
ing a constant offset that is added to the value of the base
pointer register, or by subtracting a constant offset from the
stack pointer. In both cases, this offset can be loaded into
a register by means of an opaque constant primitive. Then,
the now unknown value (from the point of view of the static
analyzer) is used as offset to the base or stack pointer.

Another opportunity to apply data location obfuscation
are indirect function calls and indirect jumps. Modern op-
erating systems make heavy use of the concept of dynami-
cally linked libraries. With dynamically linked libraries, a
program specifies a set of library functions that are required
during execution. At program start-up, the dynamic linker
maps these requested functions into the address space of the
running process. The linker then populates a table (called
import table or procedure linkage table) with the addresses
of the loaded functions. The only thing a program has to
do to access a library function during runtime is to jump to
the corresponding address stored in the import table. This
“jump” is typically realized as an indirect function call in
which the actual target address of the library routine is taken
from a statically known address, which corresponds to the
appropriate table entry for this function.

Because the address of the import table entry is encoded
as a constant in the program code, dynamic library calls
yield information on what library functions a program ac-
tively uses. Furthermore, such calls also reveal the impor-
tant information of where these functions are called from.
Therefore, we decided to obfuscate import table entry ad-
dresses as well. To this end, the import table entry address
is first loaded into a register using an opaque constant. After
this step, a register-indirect call is performed.

2.2.3 Data Usage Obfuscation

With data location obfuscation, we can obfuscate memory
access to local and global variables. However, once values
are loaded into processor registers, they can be precisely
tracked. For example, when a function returns a value, this
return value is typically passed through a register. When the
value remains in the register and is later used as an argument
to another function call, the static analyzer can establish this
relationship. The problem from the point of view of the
obfuscator is that a static analysis tool can identify define-
use-chains for values in registers. That is, the analyzer can
identify when a value is loaded into a register and when it
is used later.

To make the identification of define-use chains more dif-
ficult, we obfuscate the presence of values in registers. To
this end, we insert code that temporarily spills register con-
tent to an obfuscated memory location and later reloads it.
This task is accomplished by first calculating the address of
a temporary storage location in memory using an opaque
constant. We then save the register to that memory location
and delete its content. Some time later, before the content of
the register is needed again, we use another opaque constant
primitive to construct the same address and reload the regis-
ter. For this process, unused sections of the stack are chosen
as temporary storage locations for spilled register values.

After this obfuscation mechanism is applied, a static
analysis can only identify two unrelated memory accesses.
Thus, this approach effectively introduces the uncertainty of
memory access to values held in registers.

3 Binary Transformation

To verify the effectiveness and robustness of the pre-
sented code obfuscation methods on real-world binaries,
it was necessary to implement a binary rewriting tool that
is capable of changing the code of arbitrary binaries with-
out assuming access to source code or program information
(such as relocation or debug information).

We did consider implementing our obfuscation tech-
niques as part of the compiler tool-chain. This task would
have been easier than rewriting existing binaries, as the
compiler has full knowledge about the code and data com-
ponents of a program and could insert obfuscation prim-
itives during code generation. Unfortunately, using a
compiler-based approach would have meant that it would
not have been possible to apply our code transformations to
real-world malware (except the few for which source code
is available on the net). Also, the ability to carry out trans-
formations directly on binary programs highlights the threat
that code obfuscation techniques pose to static analyzers.
When a modified compiler is required for obfuscation, a
typical argument that is brought forward is that the threat

5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

