
22

Computer Viruses

Theory and Experiments

Fred Cohen
Dept of Computer Science. and Electric Engineering, Lehigh
University, Bethlehem PA 1821.5, USA, and The Foundation for
Computer Integrity Research, Pittsburgh, PA 1.5217 USA

This paper introduces "computer viruses" and examines
their potential for causing widespread damage to computer
systems. Basic theoretical results are presented, and the infeasi­
bility of viral defense in large classes of systems is shown
Defensive schemes are presented and several experiments are
described

Keywords Computer Viruses, System Integrity, Data Integrity

Fred Cohen received a B.S. in Electri­
cal Engineering from Carnegie-Mellon
University in 1977, an MS in Informa­
tion Science from the University of
Pittsburgh in 1981 and a Ph.D. in
Electrical Engineering from the Uni­
versity of Southern California in 1986

He has worked as a freelance con­
sultant since 1977, and has designed
and implemented numerous devices
and systems. He is currently a profes­
sor of Computer ScienCe and Electri­
cal Engineering at lehigh University,

Chairman and Directdr of Engineering at the Foundation for
Computer Integrity Research, and President of Legal Software
Incorporated.

He is a member of the ACM, IEEE, and IACR. His current
research interests include computer viruses, information flow
model, adaptive systems theory, genetic models of computing,
and evolutionary systems

North-Holland
Computers & Security 6 (1987) 22-35

l. Introduction

Ibis paper defines a major computer security
problem called a virus. The virus is interesting
because of its ability to attach itself to other
programs and cause them to become viruses as
welL Given the widespread use of sharing in cur­
rent computer systems, the threat of a virus cany­
ing a Trojan horse [1,20] is significant Although a
considerable amount of work has been done in
implementing policies to protect against the illicit
dissemination of information [4, 7], and many sys­
tems have been implemented to provide protection
from this sort of attack [12,19,21,22], little work
has been done in the area of keeping information
entering an area from causing damage (5,18] There
are many types of information paths possible in
systems, some legitimate and authorized, and
others that may be covert (18], the most com­
monly ignored one being through the user We will
ignore covert information paths throughout this
paper.

The general facilities exist for providing prov­
ably correct protection schemes [9], but they de­
pend on a security policy that is effective against
the types of attacks being carried out Even some
quite simple protection systems cannot be proven
'safe' [14]. Protection from denial of services re­
quires the detection of halting programs which is
well known to be undecidable [11]. The problem
of precisely marking information flow within a
system (10] has been shown to be NP-complete.
The use of guards for the passing of untrustworthy
information [25] between users has been ex­
amined, but in general depends on the ability to
prove program couectness which is well known to
be NP-complete

The Xerox worm program [23] has demon­
strated the ability to propagate through a network,
and has even accidentally caused denial of services
In a later variation, the game of 'core wars' [8] was
invented to allow two programs to do battle with
one another Other variations on this theme have
been reported by many unpublished authors,
mostly in the context of nighttime games played
between programmers. The term virus has also
been used in conjunction with an augmentation to

016'7-4048/87 j$3 50© 198'7, Elsevier Science Publishers B V (North-Holland)

Blue Coat Systems - Exhibit 1044f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

F Cohen / Computa V'iruse~

APL in which the author places a generic call at the
beginning of each function which in turn invokes
a preprocessor to augment the default APL inter­
preter [13]

The potential threat of a widespread security
problem has been examined [15] and the potential
damage to government, financial, business, and
academic institutions is extreme. In addition, these
institutions tend to use ad hoc protection mecha­
nisms in response to specific threats rather than
sound theoretical techniques [16].. Current military
protection systems depend to a large degree on
isolationism [3]; however, new systems are being
developed to allow 'multilevel' usage [17]. None of
the published proposed systems defines or imple­
ments a policy which could stop a virus.

In this paper, we open the new problem of
protection from computer viruses, First we ex­
amine the infection property of a virus and show
that the transitive closure of shared information
could potentially become infected When used in
conjunction with a Irqjan horse, it is clear that
this could cause widespread denial of services
and/ or unauthorized manipulation of data.. I he
results of several experiments with computer
viruses are used to demonstrate that viruses are a
formidable threat in both normal and high secur­
ity operating systems .. The paths of sharing, transi­
tivity of information flow, and generality of infor­
mation interpretation are identified as the key
properties in the protection from computer viruses,
and a case by case analysis of these properties is
shown. Analysis shows that the only systems with
potential for protection from a viral attack are
systems with limited transitivity and limited shar­
ing, systems with no sharing, and systems without
general interpretation of information (I uring ca­
pability).. Only the first case appears to be of
practical interest to current society. In general,
detection of a virus is shown to be undecidable
both by a-priori and runtime analysis, and without
detection, cure is likely to be difficult or impossi­
ble

Several proposed countermeasures are ex­
amined and shown to correspond to special cases
of the case by case analysis of viral properties
Limited transitivity systems are considered hope­
ful, but it is shown that precise implementation is
intractable, and imprecise policies are shown in
genera! to lead to less and less usable systems with
time.. The use of system-wide viral antibodies is

2 .. A Computer Vims

We define a computer 'virus' as a program that
can 'infect' other programs by modifying them to
include a possibly evolved copy of itself. With the
infection property, a virus can spread througho{.t
a computer system or network using the authori­
zations of every user using it to infect their pro­
grams Every program that gets infected may also
act as a virus and thus the infection grows.

The following pseudo-program shows how a
virus might be written in a pseudo-computer lan­
guage. The ' •~ ' symbol is used for definition, the
':' symbol labels a statement, the ';' Separates
statements, the ' = ' symbol is used for assignment
or comparison, the ' - ' symbol stands for not, the
'{'and')' symbols group sequences of statements
together, and the ' . . ' symbol is used to indicate
that an inelevant portion of code has been left
implicit.

This example virus (V) (Fig. 1) searches for an
uninfected executable file (E) by looking for ex­
ecutable files without the "1234567'' in the begin­
ning, and prepends V to E, turning it into an
infected file (I) V then checks to see if some

program virus
{1234567;

subroutine infect-executable ·=
{loop: file = random-execut~ble·
if first-line-of-file = 1234567•

'then goto loop;
prepend virus to file· } . .

subroutine do-damage :=
{whatever damage is desired}

subroutine trigger-pulled :
{return true on desired conditions}

main-p~ogram :=
{infect-executable·
if trigger-pulled fhen do-damage·
goto next; •
}

next:}

Fig 1 Simple virus 'V

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

24 F: Cohw /Computet Viruses

triggering condition is true, and does damage
Finally, V executes the rest of the program it was
prepended 1 to When the user attempts to execute
E, I is executed in its place; it infects another file
and then executes as if it were E. With the excep­
tion of a slight delay for infection, I appears to be
E until the triggering condition causes damage
We note that viruses need not prepend themselves
nor must they be restricted to a single infection
per use.

A common misconception of a virus relates it
to programs that simply propagate through net­
works. The worm program, 'core wars,' and other
similar programs have done this, but none of them
actually involve infection .. The key property of a
virus is its ability to infect other programs, thus
reaching the transitive closure of sharing between
users As an example, if V infected one of user
A's executables (E), and user B then ran E, V
could spread to user B 's files as well.

It should be pointed out that a virus need not
be used for evil purposes or be a Trojan horse. As
an example, a compression virus could be written
to find uninfected executables, compress them
upon the user's permission, and prepend it_self to
them Upon execution, the infected program de­
compresses itself and executes normally. Since it
always asks permission before performing services,
it is not a Trojan horse, but since it has the
infection property, it is still a virus Studies indi­
cate that such a virus could save over 50% of the
space taken up by executable files in an average
system The performance of infected programs
would decrease slightly as they are decompressed,
and thus the compression virus implements a par­
ticular time space tradeoff. A sample compression
virus could be written as in Fig .. 2.

This program (C) finds an uninfected executa­
ble (E), compresses it, and prepends C to form an
infected executable (I) It then uncompresses the
rest of itself into a temporary file and executes
normally When I is run, it will seek out and
compress another executable before decom­
pressing E into a temporary file and executing it
The effect is to spread through the system com­
pressing executable files, decompressing them as
they are to be executed. Users will experience

1 The term 'prepend' is used in a technical sense in this paper
to mean 'attach at the beginning'

program compression-virus
{01234567;

subroutine infect-executable .
{loop: file = random-executable;
if first-line-of-file = 01234567

then goto loop;
compress file;
prepend compression-virus to file;
}

main-program :=

}

{if ask-permission
then infect-executable;

uncompress the-rest-of-this-file
into tmpfile;

run tmpfile;
}

Fig 2 Compression virus 'C'

significant delays as their executables are decom­
pressed before being run

As a more threatening example, let us suppose
that we modify the program V by specifying
trigger-pulled as true after a given date and time,
and specifying do-damage as an infinite loop
With the level of sharing in most modem systems,
the entire system would likely become unusable as
of the specified date and time .. A great deal of
work might be required to undo the damage of
such a virus. This modification is shown in Fig .. 3.

As an analogy to a computer virus, consider a
biological disease that is 100% infectious, spreads
whenever animals communicate, kills all infected
animals instantly at a given moment, and has no
detectable side effects until that moment. If a
delay of even one week were used between the
introduction of the disease and its effect, it would
be very likely to leave only a few remote villages
alive, and would certainly wipe out the vast major­
ity of modem society. If a computer virus of this
type could spread through the computers of the
world, it would likely stop most computer use for
a significant period of time, and wreak havoc on
modern government, financial, business, and
academic institutions

subroutine do-damage :=
{loop: goto loop;}

subroutine trigger-pulled :
{if year > 1984 then return(true)

otherwise return (false);

Fig. 3 A denial of services virus

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

F: Cohen I Computer Viruse~ 25

3 .. Prevention of Computer Viruses

We have introduced the concept of viruses to the
reader, and actual viruses to systems. Having
planted the seeds of a potentially devastating at­
tack, it is appropriate to examine protection mech­
anisms which might help defend against it We
examine here prevention of computer viruses

3.1 Basic Limitations

In order for users of a system to be able to share
information, there must be a path through which
infOrmation can flow from one user to another
We make no differentiation between a user and a
program acting as a sunogate for that user since a
program always acts as a sunogate for a user in
any computer use and we are ignoring the covert
channel tlu ough the user. Assuming a I ming
machine model for computation, we can prove
that if information can be read by a user with
I ming capability, then it can be copied, and the
copy can then be treated as data on a I ming
machine tape

Given a general purpose system in which users
are capable of using information in theii possession
as they wish, and passing such information as they
see fit to others, it should be clear that the ability
to share information is transitive That is, if there
is a path from user A to user B, and there is a
path from user B to user C, then there is a path
from user A to user C with the witting or unwit­
ting cooperation of user B.

Finally, there is no fundamental distinction be­
tween information that can be used as data, and
information that can be used as program. This can
be clearly seen in the case of an interpreter that
takes information edited as data, and interprets it
as a program In effect, information only has
meaning in its interpretation

In a system where information can be interpre­
ted as a program by its recipient, that interpreta­
tion can result in infection as shown above If
there is sharing, infection can spread tlu ough the
interpretation of shared information If there is no
restriction on the transitivity of information flow,
then the information can reach the transitive
closure of information flow starting at any source
Sharing, transitivity of information flow, and gen­
erality of interpretation thus allow a virus to spread
to the transitive closure of information flow start­
ing at any given source

Clearly, if there is no sharing, there can be no
dissemination of information across information
boundaries, and thus no external information can
be interpreted, and a virus cannot spread outside a
single partition. Ihis is called 'isolationism' Just
as clearly, a system in which no program can be
altered and information cannot be used to make
decisions cannot be infected since infection re­
quires the modification of interpreted informa­
tion. We call this a 'fixed first order functionality'
system We should note that virtually any system
with real usefulness in a scientific or development
environment will require generality of interpreta­
tion, and that isolationism is unacceptable if we
wish to benefit from the work of others Neverthe­
less, these are solutions to the problem of viruses
which may be applicable in limited situations.

3.2 Partition Models

I wo limits on the paths of information flow can
be distinguished, those that partition users into
closed proper subsets under transitivity, and those
that do not. Flow restrictions that result in closed
subsets can be viewed as partitions of a system
into isolated subsystems.. These limit each infec­
tion to one partition. This is a viable means of
preventing complete viral takeover at the expense
of limited isolationism, and is equivalent to giving
each partition its own computer

Ihe integrity model [5] is an example of a
policy that can be used to partition systems into
closed subsets under transitivity. In the Biba
model, an integrity level is associated with all
information .. Ihe strict integrity properties are the
dual of the Bell-LaPadula properties; no user at a
given integrity level can read an object of lower
integrity or write an object of higher integrity In
Biba's original model, a distinction was made be­
tween read and execute access, but this cannot be
enforced without restricting the generality of in­
formation interpretation since a high integrity
program can write a low integrity object, make
low integrity copies of itself, and then read low
integrity input and produce low integrity output

If the integrity model and the Bell-LaPadula
model coexist, a form of limited isolationism re­
sults which divides the space into closed subsets
under transitivity .. If the same divisions are used
for both mechanisms (higher integrity corresponds
to higher security), isolationism results since infor-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

26 F: Cohen / Computer Viruse.s

mation moving up security levels also moves up
integrity levels, and this is not permitted. When
the Biba model has boundaries within the Bell­
LaPadula boundaries, infection can only spread
from the higher integrity levels to lower ones
within a given security level Finally, when the
Bell-LaPadula boundaries are within the Biba
boundaries, infection can only spread from lower
security levels to higher security levels within a
given integrity level. There are actually nine cases
corresponding to all pairings of lower boundaries
with upper boundaries, but the three shown
graphically in Fig. 4 are sufficient for understand­
ing.

Biba's work also included two other integrity
policies, the 'low water mark' policy which makes
output the lowest integrity of any input, and the
'ring' policy in which users cannot invoke every­
thing they can read The former policy tends to
move all information towards lower integrity
levels, while the latter attempts to make a distinc-

Biba B-L Result

Bib a B-L Result

Fig. 4. Pairings of lower boundaries with upper boundaries
Top: Biba within B-L; middle: B-1 within Biba; bottom: same
divisions \\ cannot write; // cannot read; X X no access;
\+f~x

tion that cannot be made with generalized infor­
mation interpretation

Just as systems based on the Bell-LaPadula
model tend to cause all information to move to­
wards higher levels of security by always increas­
ing the level to meet the highest level user, the
Biba model tends to move all information towards
lower integrity levels by always reducing the in­
tegrity of results to that of the lowest incoming
integrity. We also know that a precise system for
integrity is NP-complete (just as its dual is NP­
complete)

The most trusted programmer is (by definition)
the programmer that can write programs execut­
able by the most users .. In order to maintain the
Beli-LaPadula policy, high level users cannot write
programs used by lower level users. This means
that the most ttusted programmers must be those
at the lowest security leveL This seems contradic­
tory. When we mix the Biba and Beli-LaPadula
models, we find that the resulting isolationism
secures us from viruses, but does not permit any
user to write programs that can be used throughout
the system. Somehow, just as we allow encryption
or declassification of data to move it from higher
security levels to lower ones, we should be able to
use program testing and verification to move in­
formation from lower integrity levels to higher
ones

Another commonly used policy that partitions
systems into closed subsets is the compartment
policy used in typical military applications This
policy partitions users into compartments, with
each user only able to access information required
for their duties .. If every user has access to only
one compartment at a time, the system is secw·e
from viral attack across compartment boundaries
because they are isolated. Unfortunately, in cur­
rent systems, users may have simultaneous access
to multiple compartments. In this case, infection
can spread across these boundaries to the transi­
tive closure of information flow

3 3 Flow Model.s

In policies that do not parutwn systems into
closed proper subsets under transitivity, it is possi­
ble to limit the extent over which a virus can
spread. The 'flow distance' policy implements a
distance metric by keeping track of the distance
(number of sharings) over which data has flowed

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

