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Abstract

Executing untrusted code while preserving security re-
quires enforcement of memory and control-flow safety
policies: untrusted code must be prevented from modi-
fying memory or executing code except as explicitly al-
lowed. Software-based fault isolation (SFI) or “sandbox-
ing” enforces those policies by rewriting the untrusted
code at the level of individual instructions. However, the
original sandboxing technique of Wahbe et al. is applica-
ble only to RISC architectures, and other previous work is
either insecure, or has been not described in enough detail
to give confidence in its security properties. We present
a novel technique that allows sandboxing to be easily ap-
plied to a CISC architecture like the IA-32. The technique
can be verified to have been applied at load time, so that
neither the rewriting tool nor the compiler needs to be
trusted. We describe a prototype implementation which
provides a robust security guarantee, is scalable to pro-
grams of any size, and has low runtime overheads. Fur-
ther, we give a machine-checked proof that any program
approved by the verification algorithm is guaranteed to re-
spect the desired safety property.
Keywords: Software fault isolation, control-flow isola-

tion, binary translation, C, C++, mobile code, inlined ref-
erence monitors, separate verification, 386, x86, instruc-
tion alignment, formal methods, security proof, ACL2,
MiSFIT, PittSFIeld

1 Introduction

A key requirement for many kinds of secure systems is
to execute code from an untrusted or less trusted source,
while enforcing some policy to constrain the code’s ac-
tions. The code might come directly from a malicious
author, or it might have bugs that allow its execution to
be subverted by maliciously chosen inputs. Typically, the
system designer chooses some set of legal interfaces for
interaction with the code, and the challenge is to ensure
that the code’s interaction with the rest of the system is
limited to those interfaces.
The most common technique for isolating untrusted

code is the use of hardware virtual memory protection in
the form of an operating system process. Code in one
process is restricted to accessing memory only in its ad-
dress space, and its interaction with the rest of a system
is limited to a predefined system call interface. The en-
forcement of these restrictions is robust and has a low
overhead because of the use of dedicated hardware mech-
anisms such as TLBs; very few restrictions are placed on
what the untrusted code can try to do. A disadvantage of
hardware protection, however, is that interaction across a
process boundary (i.e., via system calls) is course-grained
and relatively expensive. Because of this inefficiency and
inconvenience, it is still most common for even large ap-
plications, servers, and operating system kernels to be
constructed to run in a single address space.

A very different technique is to require that the un-
trusted code be written in a type-safe language such as
Java. The language’s type discipline limits the memory
usage and control flow of the code to well-behaved pat-
terns. This fine-grained restriction makes sharing data be-
tween trusted and untrusted components much easier, and
has other software engineering benefits. However, type
systems have some limitations as a security mechanism.
First, they are not directly applicable to code written in
unsafe languages, such as C and C++. Second, conven-
tional type systems describe high-level program actions
like method calls and field accesses. It is much more dif-
ficult to use a type system to constrain code at the same
level of abstraction as individualmachine instructions; but
since it is the actual instructions that will be executed,
only a safety property in terms of them would be really
convincing.

This paper investigates a code isolation technique that
lies between the approaches mentioned above, one that
enforces a security policy similar to an operating system,
but with ahead-of-time code verification more like a type
system. This effect is achieved by rewriting the machine
instructions of code after compilation to directly enforce
limits on memory access and control flow. This class of
techniques is known as “software-based fault isolation”
(SFI for short) or “sandboxing” [WLAG93]; it is also sim-
ilar to the mechanism of inlined reference monitors for
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machine code [ES99]. Previous SFI techniques were ap-
plicable only to RISC architectures, or gave faulty, incom-
plete, or undisclosed attention to key security issues. For
instance, Section 5 describes how memory protection in
a previous system can be easily violated because of mis-
placed trust in a C compiler. (Concurrently with the re-
search described here, Abadi et al. [ABEL05a] developed
a CISC-compatible binary rewriting with some SFI-like
features and a rigorous security analysis; see Section 9.3
for discussion.)
In this paper, we describe a novel technique directly ap-

plicable to CISC architectures like the Intel IA-32 (x86).
We explain how using separate verification, the security
properties of the rewriting depend on a minimal trusted
base (on the order of a thousand lines of code), rather
than on tools consisting of hundreds of thousands of lines
(Section 5). We give a machine-checked proof of the
soundness of our rewriting technique to provide further
evidence that it is simple and trustworthy (Section 6). Fi-
nally, we discuss a prototype implementation of the tech-
nique, which is as fast as and often faster than previous
unsound tools, and scales easily to large and realistically-
complex applications (Sections 7 and 8). We refer to our
implementation as the Prototype IA-32 Transformation
Tool for Software-based Fault Isolation Enabling Load-
time Determinations (of safety), or PittSFIeld1.
Our implementation is publicly available, as are the

formal model and lemmas used in the machine-checked
proof, and the programs used in our experiments. They
can be downloaded from http://pag.csail.mit.

edu/˜smcc/projects/pittsfield/.

2 Classic SFI

The basic task for any SFI implementation is to prevent
certain potentially unsafe instructions (such as memory
writes) from being executed with improper arguments
(such as an effective address outside an allowed data
area). The key challenges are to perform these checks
efficiently, and in such a way that they cannot be by-
passed by carefully chosen input code. The first approach
to solve these challenges was the original SFI technique
(called “sandboxing”) of Wahbe, Lucco, Anderson, and
Graham [WLAG93].
In order to efficiently isolate pointers to dedicated code

and data regions, Wahbe et al. suggest choosing memory
regions whose size is a power of two, and whose starting
location is aligned to that same power. For instance, we

1Pittsfield, Massachusetts, population 45,793, is the seat of Berkshire
county and a leading center of plastics manufacturing. Our appropriation
of its name, however, was motivated only by spelling.

might choose a data region starting at 0xda000000 and
extending 16 megabytes to 0xdaffffff. With such a
choice, an address can be efficiently checked to point in-
side the region by bitwise operations. In this case, we
could check whether the bitwise AND of an address and
the constant 0xff000000 was equal to 0xda000000.
We’ll use the term tag to refer to the portion of the ad-
dress that’s the same for every address in a region, such as
0xda above.

The second challenge, assuring that checks cannot be
bypassed, is more subtle. Naively, one might insert
a checking instruction sequence directly before a po-
tentially unsafe operation; then a sequential execution
couldn’t reach the dangerous operation without passing
through the check. However, it isn’t practical to restrict
code to execute sequentially: realistic code requires jump
and branch instructions, and with them comes the danger
that execution will jump directly to an dangerous instruc-
tion, bypassing a check. Direct branches, ones in which
the target of the branch is specified directly in the instruc-
tion, are not problematic: a tool can easily check their
destinations before execution. The crux of the problem is
indirect jump instructions, ones where the target address
comes from a register at runtime. They are required by
procedure returns, switch statements, function pointers,
and object dispatch tables, among other language features.
Indirect jumps must also be checked to see that their tar-
get address is in the allowed code region, but how can we
also exclude the addresses of unsafe instructions, while
allowing safe instruction addresses?

The key contribution of Wahbe et al. was to show that
by directing all unsafe operations through a dedicated reg-
ister, a jump to any instruction in the code region could be
safe. For instance, suppose we dedicate the register %rs
for writes to the data area introduced above. Then we
maintain that throughout the code’s execution, the value
in %rs always contains a value whose high bits are 0xda.
Code can only be allowed to store an arbitrary value into
%rs if it immediately guarantees that the stored value re-
ally is appropriate. If we know that this invariant holds
whenever the code jumps, we can see that even if the code
jumps directly to an instruction that stores to the address
in %rs, all that will occur is a write to the data region,
which is safe (allowed by the security policy). Of course,
there’s no reason why a correct program would jump di-
rectly to an unsafe store instruction; it is incorrect or ma-
liciously designed programs we worry about.

Wahbe et al. implemented their technique for two RISC
architectures, the MIPS and the Alpha. Because separate
dedicated registers are required for the code and data re-
gions, and because constants used in the sandboxing oper-
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Figure 1: Illustration of the instruction alignment enforced by our technique. Black filled rectangles represent instruc-
tions of various lengths present in the original program. Gray outline rectangles represent added no-op instructions.
¡Instructions are not packed as tightly as possible into chunks because jump targets must be aligned, and because the
rewriter cannot always predict the length of an instruction. Call instructions (gray filled box) go at the end of chunks,
so that the addresses following them can be aligned.

ation also need to be stored in registers, a total of 5 regis-
ters are required; out of a total of 32, the performance cost
of their loss was negligible. Wahbe et al. evaluated their
implementation by using it to isolate faults in an exten-
sion to a database server. While fault isolation decreases
the performance of the extension itself, the total effect is
small, significantly less than the overhead of having the
extension run in a separate process, because communica-
tion between the extension and the main server is inexpen-
sive. As their choice of the term “fault isolation” implies,
Wahbe et al. were primarily interested in isolating mod-
ules that potentially contained inadvertent errors, rather
than intentionally designed attacks.

3 CISC architectures

The approach of Wahbe et al. is not immediately appli-
cable to CISC architectures like the Intel IA-32 (i386 or
“x86”), which feature variable-length instructions. (The
IA-32’s smaller number of registers also makes dedicat-
ing several registers undesirable, though its 32-bit imme-
diates mean that only 2 would be needed.) Implicit in
the previous discussion of Wahbe et al.’s technique was
that jumps were restricted to a single stream of instruc-
tions (each 4-byte aligned, in a typical RISC architecture).
By contrast, the x86 has variable-length instructions that
might start at any byte. Typically code has a single stream
of intended instructions, each following directly after the
last, but by starting at a byte in the middle of an intended
instruction, the processor can read an alternate stream of
instructions, generally nonsensical. If code were allowed
to jump to any byte offset, the SFI implementation would
need to check the safety of all of these alternate instruc-
tion streams; but this would be infeasible. The identity
of the hidden instructions is a seemingly random function
of the precise encodings of the intended ones (including
for instance the eventual absolute addresses of forward
jump targets), and most modifications to hidden instruc-
tions would garble the real ones.

To avoid this problem, our PittSFIeld tool artificially
enforces its own alignment constraints on the x86 archi-
tecture. Conceptually, we divide memory into segments
we call chunks whose size and location is a power of
two, say 16, bytes. PittSFIeld inserts no-op instructions
as padding so that no instruction crosses a chunk bound-
ary; every 16-byte aligned address holds a valid instruc-
tion. Instructions that are targets of jumps are put at the
beginning of chunks; call instructions go at the ends
of chunks, because the instructions after them are the tar-
gets of returns. This alignment is illustrated schematically
in Figure 1. Furthermore, jump instructions are checked
so that their target addresses always have their low 4 bits
zero. This transformation means that each chunk is an
atomic unit of execution with respect to incoming jumps:
it is impossible to execute the second instruction of a
chunk without executing the first. Thus, PittSFIeld needs
no dedicated registers: it simply puts an otherwise unsafe
operation and the check of its operand in the same chunk.
(In general, one scratch register is still required to hold
the effective address while it is being checked, but it isn’t
necessary for the same register to be used consistently, or
for other uses of the register to be prohibited.)

4 Optimizations

The basic technique described in Section 3 ensures the
memory and control-flow safety properties we desire, but
as described it imposes a large performance penalty. This
section describes five optimizations that reduce the over-
head of the rewriting process, at the expense of making
it somewhat more complex. The first three optimizations
were described by Wahbe et al., and are well known; the
last two have, as far as we know, not previously been ap-
plied to SFI implementations.
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4.1 Special registers

One obvious way to reduce the overhead of sandboxing
checks is to avoid applying them repeatedly to the same
value. For instance, the register %ebp (the ‘frame pointer’
or ‘base pointer’) is often used to access local variables
stored on the stack, part of the data region. This motivates
treating %ebp differently from other general purpose reg-
isters: rather than allowing %ebp to contain any value,
and checking each time the code uses it, we can instead
arrange that it always be a valid pointer to the data region.
With this approach, it is changes to %ebp, rather than

uses of it, that need to be checked; since it is usually set
once at the beginning of a function and then never mod-
ified, this reduces the total amount of checking. In fact,
it isn’t necessary to check %ebp immediately after it is
modified, but it must be checked before it is used, and
before a jump, because the instructions at the jump tar-
get would expect it to be valid. This policy about %ebp
could be described as treating it as ‘usually-sandboxed’,
rather than ‘usually-unsandboxed’. Note that because of
the relatively unrestricted possibilities for jumps, such a
decision has to be made globally for the entire code re-
gion.

4.2 Guard regions

The technique described in the previous subsection for op-
timizing the use of %ebpwould be effective if %ebpwere
only dereferenced directly, but in fact %ebp is often used
with a small constant offset to access the variables in a
function’s stack frame. Usually, if %ebp is in the data re-
gion, then so is %ebp + 10, but this would not be the
case if %ebp were already near the end of the data re-
gion. To handle this case efficiently, we follow Wahbe et
al. in using guard regions, areas in the address space di-
rectly before and after the data region that are also safe for
the sandboxed code to attempt to write to. An access at a
small offset from a sandboxed data address will be sure to
fall either in the data region or in one of the guard regions,
and thus be safe.
If we further assume that accesses to the guard region

can be efficiently trapped (such as by leaving them un-
mapped in the page table), we can optimize the use of the
stack pointer %esp in a similar way. The stack pointer is
similar to %ebp in that it generally points to the stack and
is accessed at small offsets, but unlike the frame pointer,
it is frequently modified; in particular, it is frequently in-
cremented and decremented as items are pushed onto and
popped off the stack. Even if each individual change is
small, each must be checked to make sure that it isn’t the
change that pushes %esp past the end of the allowable

region. However, if attempts to access the guard regions
are trapped, every use of %esp can also serve as a check
of the new value. One important point is that we must be
careful of modifications of %esp that do not also use it;
this danger will be illustrated in Section 5.

4.3 Ensure, don’t check

A final optimization that was included in the work of
Wahbe et al. has to do with the basic philosophy of the
safety policy that the rewriting enforces. The most impor-
tant aspect of the policy is that the untrusted code should
not be able to perform any action that is unsafe. We could
also ask, what should happen when the untrusted code
attempts an unsafe action? For instance, one possibility
would be to terminate the untrusted code with an error re-
port. Another possibility, however, would be to simply
require that when an unsafe action is attempted, some ac-
tion consistent with the security policy occurs instead. For
example, instead of a jump to a forbidden area causing an
exception, it might instead cause a jump to some arbitrary
other location in the code region. To follow this policy, it
isn’t necessary to check whether an address is legal, and
branch to an error handler if not; the code can simply set
the bits of the address appropriately and use it. If the ad-
dress was originally illegal, it will ‘wrap around’ to some
legal, though likely not meaningful, location.
At first blush, this approach of substituting seemingly

arbitrary values might seem reckless, and there are cer-
tainly applications (e.g., debugging) where it would be
unhelpful. However, it is reasonable to optimize a security
mechanism for the convenience of legitimate code, rather
than of illegal code. Attempted jumps to an illegal address
should not be expected to occur frequently in practice: it
is the responsibility of the code producer (and her com-
piler), not the code user, to avoid them. The performance
effects of this tradeoff are shown in Section 8.

4.4 One-instruction address operations

For an arbitrarily chosen code or data region, the sandbox-
ing instruction must check (or, according to the optimiza-
tion of Section 4.3, ensure) that certain bits of an address
are set, and others are clear. This requires two instruc-
tions: an AND instruction and a comparison for a check,
or an AND instruction and an OR instruction to modify
the appropriate bits. By further restricting the locations
of the sandbox regions, however, the number of instruc-
tions can be reduced to one. We choose the code and data
regions so that their tags have only a single bit set, and
then reserve from use the region of the same size starting
at address 0, which we call the zero-tag region (because
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it corresponds to a tag of 0). With this change, bits in the
address only need to be clear (or cleared) and not also set.
PittSFIeld uses a code region starting at 0x10000000

and a data region starting at 0x20000000. The code
sequences to verify an address in %ebx for the data region
are then as follows:

• If we are checking addresses:2:

test $0xdf000000, %ebx
jz ok
int3

ok:

The test instruction checks if the tag is 0x20 by
AND-ing %ebx with a mask made of the comple-
ment of the tag; if the result is zero, control continues
at ok, otherwise it falls through to int3, a one-byte
instruction that causes a trap.

• If we are modifying addresses:

and $0x20ffffff, %ebx

This instruction turns off all of the bits in the tag ex-
cept possibly the third from the top, so the address
will be either in the data region or the zero-tag re-
gion.

We chose both sequences to minimize the number of in-
struction bytes required, 9 for the check sequence and 6
for the direct modification. Taking into account the other
instructions that must fit in a single chunk, direct modifi-
cation can be used with 16-byte chunks, while checking
requires 32-byte chunks.
On large examples like those in Section 8.2, disabling

this optimization increases PittSFIeld’s overhead by about
10% (e.g., from 50% to 55%). 16-byte chunks use less
space overall, and our original intuition had been that this
would also improve performance by having fewer no-op
instructions and better cache density. It turns out how-
ever that some programs run faster with 32-byte chunks,
perhaps because of reduced fragmentation in inner loops.

4.5 Efficient returns

A final optimization helps PittSFIeld take advantage of
the predictive features of modern processors. Indirect
jumps are potentially expensive for processors if their tar-
gets cannot be accurately predicted. For general indirect
jumps, processors typically keep a cache, called a ‘branch

2Assembly language examples use the GAS, or ‘AT&T’, syntax stan-
dard on Unix-like x86-based systems, which puts the destination last.

target buffer’, of the most recent target for a jump instruc-
tion. A particularly common kind of indirect jump is a
procedure return, which on the x86 reads a return address
from the stack. A naive implementation would treat a re-
turn as a pop followed by a standard indirect jump; for
instance, an early version of PittSFIeld translated a ret
instruction into:

popl %ebx
and $0x10fffff0, %ebx
jmp *%ebx

However, if a procedure is called from multiple locations,
the single buffer slot will not be effective at predicting
the return address, and performance will suffer. In order
to deal more efficiently with returns, modern x86 proces-
sors keep a shadow stack of return addresses in a separate
cache, and use this to predict the destinations of returns.
To allow the processor to use this cache, we would like
PittSFIeld to return from procedures using a real ret in-
struction. Thus PittSFIeld modifies the return address and
writes it back to the stack before using a regular ret. In
fact, this can be done without a scratch register:

and $0x10fffff0, (%esp)
ret

On a worst case example, like the recursive Fibonacci
function mentioned in Section 8.1, this optimization
makes an enormous difference, reducing 95% overhead
to 40%. In realistic examples, the difference is around 5%
of the total overhead.

5 Trust

In order for a rewriting technique like ours to enhance the
security of a system, careful consideration must be given
to the system architecture and the trust relationships be-
tween the production, checking, and execution of code.
Specifically, we advocate an arrangement in which the
compilation and the rewriting of the code are performed
by the untrusted code producer, and the safety policy is
enforced by a separate verification tool. This architec-
ture is familiar to users of Java: the code producer writes
source code and compiles it to Java byte code using the
compiler of her choice, but before the code user executes
an applet he checks it using a separate byte code veri-
fier. (One difference from Java is that once checked, our
code is executed more or less directly; there is no trusted
interpreter as complex as a Java just-in-time compiler.)
The importance of having a small, trusted verifier is also
stressed in work on proof-carrying code [NL96].
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