

SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST

Elvin A. Kabat, Tai Te Wu, Howard Bilofsky. Margaret Reid-Miller, and Harold Perry

(1983)

Errata

‡ 7

Page;	#			Errata											
6;		Position -1	of 145 CL (precursor h	eavy chains)	should be Ph	e.								
15;	31 35	Pau and Pau	l are the sa	me protein.											
54;	204 205	The antibod light chain	y specificit s) should by	ies for 10Kl anti-p-azol	44-7A1 and Denzene arson	10K26-12A1 (mouse kappa								
65;	13 16	SAPC178 and and S176.	SAPC176 (mo) should be na	med as S178										
65;	4 5 6 16 17	References f chains) sho (1970) Natur	or HOPC1, Jould be Weige e, 228, 1045	r HOPC1, J698, H2061, S176, and H2020 (mouse lambda light ld be Weigert, M., Cesari, I.M., Yonkovich, S.J. & Cohn, M., 228, 1045-1047.											
65;	7 12	References for W3159 and MOPC511 (mouse lambda light chains) shou Cesari, I.M. & Weigert, M. (1973) Proc. Natl. Acad. Sci. U.S.A													
65;	2 3 13	558, XS104, and S178 (mouse lambda light chains) were sequenced ompletely, while HOPC1, J698, H2061, S176, H2020, W3159, and MOPC511 ompositions.													
	26 27	There is an additional reference to TEPC952 and MA8-13 (mouse lambda ight chains) i.e., Elliott, B.W., Jr., Steiner, L.A. & Eisen, H.N. 1981) Fed. Proc., 40, 1098.													
67;															
111; 2	23 F G	Positions 13 and 14 of CAM (human heavy chain subgroup III) should be													
168; 3															
168; 30 Position 171 of S43°CL (light constant chain) should be Asn. 168; 35 Positions 142 and 143 of MOPC315 (light constant chain) should be Ser and Gly respectively, based on the translation from nucleotide sequences (Bothwell, A.L.M., Paskind, M., Roth, M., Imanishi-Kari. T., Rajewsky, K. & Baltimore, D. (1982) Nature, 298, 380-382; Wu, G.E., Govindi, N., Hozumi, N. & Murialdo, H. (1982) Nucl. Acids Res., 10, 3831-3843). 185; 52 Positions 258 and 263 of MOPC173 (heavy constant chain) have been revised by the authors to Pro and Val respectively.															
, 52	re	vised by the	and 263 of authors to	MOPC173 (F	reavy consta	ant chain) h	ave been								
revised by the authors to Properly (heavy constant chain) have been 246; The position numbering for the codons of light chain variable region should read as 95, 95A, 95B, 95C, 95D, 95E, 95F, 96, and 97.															
The human kappa J-segments (Hieter, P.A., Maizel, J.V., Jr. & Leder, P. (1982) J. Biol. Chem., 257, 1516-1522) are as follows:															
		J1	<u>J2</u>	J 3	<u>J4</u>	<u>J5</u>									
	96 97 98 99 100 101 102 103 104 105 106 107	ACG THR TTC PHE GGC GLY GAA GLN GGG GLY ACC THR AAG LYS	TAC TYR ACT THR TTT PHE GGC GLY CAG GLN GGG GLY ACC THR AAG LYS CTG LEU GAG GLU ATC ILE AAA LYS	ACT THR TTC PHE GGC GLY CCT PRO GGG GLY ACC THR AAA LYS GTG VAL GAT ASP ATC ILE AAA LYS	CTC LEU ACT THR TTC PHE GGC GLY GGA GLY ACC THR AAG LYS GTG VAL GAG GLU ATC ILE AAAA LYS	ATC ILE ACC THR TTC PHE GGC GLY CAA GLN GGG GLY ACA THR CGA ARG CTG LEU GAG GLU ATT ILE AAA LYS									
193			CGT ARG	CGT ARG	CGT ARG	CGT ARG									

SEQUENCES OF PROTEINS OF IMMUNOLOGICAL INTEREST

Tabulation and Analysis of Amino Acid and Nucleic Acid Sequences of Precursors, V-Regions, C-Regions, J-Chain, β_2 -Microglobulins, Major Histocompatibility Antigens, Thy-1, Complement, C-Reactive Protein, Thymopoietin, Post-gamma Globulin, and α_2 -Macroglobulin

1983

Elvin A. Kabat*, Tai Te Wu[†], Howard Bilofsky [‡], Margaret Reid-Miller[‡], and Harold Perry[‡]

*Depts. of Microbiology, Human Genetics and Development, and Neurology, Cancer Center/ Institute of Cancer Research, College of Physicians and Surgeons, Columbia University, New York, NY 10032 and the National Institute of Allergy and Infectious Diseases, Bethesda, MD 20205

† Depts. of Biochemistry, Molecular Biology, and Cell Biology, and Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60201 and the Cancer Center, Northwestern University Medical School, Chicago, IL 60611

‡Bolt Beranek and Newman Inc., Cambridge, MA 02238

The collection and maintenance of this data base is sponsored through Contract N01-RR-8-2118 by the following components of the National Institutes of Health, Bethesda, MD 20205:

Division of Research Resources
National Cancer Institute
National Institute of Allergy and Infectious Diseases
National Institute of Arthritis, Diabetes, Digestive and Kidney Diseases
National Institute of General Medical Sciences

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

Public Health Service National Institutes of Health

Our listing of sequences will be kept up to date. Investigators are invited to send additional sequence data when accepted for publication. Send two copies of the manuscript together with a letter of acceptance from a journal to:

Dr. E.A. Kabat National Institutes of Health Building 4, Room 337 9000 Rockville Pike Bethesda, Maryland 20205

If a computer tape is available, please send it to facilitate entering sequences.

When published, three reprints should be provided.

If any published sequences have been overlooked or if any errors are found, please bring them to our attention.

					350							240										
СО	DONS	OF VAR 1 HK101	2	3	MOPC 21	5	6 MOPC 149	7 K2A	8 MPC 11	9 MOPC 173B	10 S107 B	11 T1	12 L6	13 T2	14 L7	15 PKAPPA (11)24	16 IG99 LAMBDA	17 IG13 LAMBDA	18 IG303 LAMBDA	19 \$43	20 MOPC 315	21 PLAI -13
_	0 1 2	GAC ATC	GAC ATC	GAC ATC	ĀĀC	GAT ATT	GAC ATC	GAC	GAC ATT	GAC ATC	GAA AAT	GAC ATC	GAC ATC	GAC ATC	GAC ATC	GGA GAC ATT	CAG GCT	CAG GCT	CAG	CAG GCT	CAG	
3 4	3 4	ATG	ATG	ATG	GT A ATG	GTG ATA	CAG ATG	CAG ATG	GTG CTG	ATG	GTG	AAG	AAG ATG	CTG	CTG	GTG ATG	GTT GTG	GTT GTG	GTT GTG	GTT GTG	GTT GTG	
	6 7 8	ACC CAG TCT CCA	CAG TCT	ACC CAG TCT CCA	ACC CAA TCT CCC	ACC CAG GAT GAA	ACT CAG TCT CCA	ACT CAG TCT CCA	ACC CAA TCT CCG	ACC CAG TCT CCA	ACC CAG TCT CCA	ACC CAG TCT CCA	ACC CAG TCT CCA	ACT CAG TCT CCA	ACT CAG TCT CCA	ACC CAG TCT CAC	ACT CAG GAA TCT	ACT CAG GAA TCT	ACT CAG GAA TCT	ACT CAG GAA TCT	ACT CAG GAA TCT	тст
	9 10	TCA	ACC	TCC	TCC ATG	TCC	GCC	GCC	GCT	TCC	GCA	TCT	TCC	GCC	GCC	TTC	GCA CTC	GCA	GCA	GCA	GCA	GCA
ki.	11 12 13 14	CTG TCT GCA TCT	CTG TCT GCA TCT	TTA TCT GCC TCT	TCC ATG TCA	AAT CCT GTC ACT	CTA TCT GCA TCT	CTA TCT GCA TCT	TTG GCT GTG TCT	TTA TCT GCC TCT	ATG GCT GCC TCT	ATG TAT GCA TCT	ATG TAT GCA TCT	CTG TCT GTG AGT	CTG TCT GTG AGT	ATG TCC ACA TCA	ACC ACA TCA	CTC ACC ACA TCA	ACC ACA TCA	ACC ACA TCA	ACC ACA TCA	ACC ACA TCA
	15 16 17	GTA	GTA GGA	CTG	GT A GGA GAG	TCT GGA GAA	GTG GGT GAA	GTG GGT GAA	CTA GGG CAG	CTG GGA GAA	CTG GGG CAG	CTA	CTA GGA	CCA	CCA GGA	GTA GGA	CCT GGT	CCT GGT GGA	CCT GGT GAA	CCT	CCT GGT GGA	CCT GGT GAA
	18 19	GAC AGA GTC	GAC AGA GTC	GAA AGA GTC	AGG GTC	TAC GTT	ACT GTC	ACT GTC	AGG GCC	AGA GTC	AAG GTC	GAG AGA GTC	GAG AGA GTC	GAA AGA GTC	GAA AGA GTC	GAC AGG GTC	GAA ACA GTC	ACA GTC	ACA GTC	GAA ACA GTC	GTC	GTC
	20 21 22 23	ACC ATC ACT TGT	ACC ACT TGC	AGT CTC ACT TGT	ACC TTG ACC TGC	TCC ATC TCG TGC	ACC ACA TGT	ACC ATC ACA TGT	ACC ATA TCC TGC	AGT CTC ACT TGC	ACC ACC TGC	ACT ATC TCT TGC	ACT ACT TGC	AGT TTC TCC TGC	AGT TTC TCC TGC	AGC ATC ACC TGC	ACA CTC ACT TGT	ATA CTC ACT TGT	ACA CTC ACT TGT	ACA CTC ACT TGT	ATA CTC ACT TGT	ACA CTC ACT TGT
	24 25 26	CGG GCG AGG	CGG GCC AGT	CGG GCA AGT	AAG GCC AGT		GGA GCA AGT	GGA GCA AGT	AGA GCC	GGA AGT	AGT GCC AGC		AAG GCG AGT		AGG GCC AGT	AAG GCC AGT	CGC TCA AGT	CGC TCA AGT	CGC TCA ACT	CGC TCA AGT	CGC TCA AGT	CGC TCA AGT
	27 27A 27B	CAG	CAG	CAG	GAG		GGG	GGG	AGT GAA AGT GTT	CAG	TCA	CAG	CAG		CAG	CAG	ACT	ACT	ACT	ACT	ACT	ACT
	27C 27D 27E			===					GAT AGT		===		===		===		GGG GCT	GGG GCT	GGG GCT	GGG GCT	GGG	GCT
	27F 28 29	GGT	AGT ATT	GAC	AAT GTG		ĀĀĪ	AAT	TAT	GAC	ĀĢT GTA	GAC	GAC	AGC ATT	AGC ATT	GAT	GTT ACA ACT	GTT ACA ACT	GTT ACA ACT	GTT ACA ACT	GTT ACA ACT	GTT ACA ACT
	30 31 32	AGC AGC TGG	AGT AGC TGG	GGT AGT AGC	GTT ACT TAT		CAC AAT TAT	CAC	AAT AGT TTT	CAT	AGT TCC AGT	AAT AGC TAT	AAT AGC TAT	GGC ACA AGC	GGC ACA AGC	AGT ACT ACT	AGT AAC TAT	AGT AAC TAT	GGT AAC TAT	AGT AAC TAT	AGT AAC TAT	
	33 34 35	GCC TGG	GCC TGG	AAC TGG	TC TGG		GCA TGG	TTA GCA TGG	CAC TGG	TAT TTA AAC TTG	TAC TTG CAC	TTA ACC TGG	AGC TGG	CAC TGG	CAC TGG	GTG GCC TGG	GCC AAC TGG	GCC AAC TGG	GCC AAC TGG	GCC AAC TGG	GCC AAC TGG	
	36 37 38	TAT CAG CAG	TAT CAG CAG	CTT	TAT CAA CAG		TAT CAG CAG	TAT	TAC CAG CAG	TTT CAG CAG	TGG TAC CAG	CAG	TTC CAG CAG	T AT C AG	TAT	TAT CAG CAG	GTC CAA GAA	GTT CAA GAA	GTC CAA GAA	GTC CAA GAA	ATC CAA GAA	===
	39 40 41	AAA CCA GAG	AAA CCA GGG	GAA CCA GAT	AAA CCA GAG		AAA CAG GGA	AAA CAG GGA	AAA CCA GGA	AAA CCA GGT	CAG AAG TCA	AAA CCA	AAA CCA GGG	AGA ACA	AGA ACA AAT	AAA CCA GGG	AAA CCA GAT	AAA CCA GAT	AAA CCA GAT	AAA CCA GAT	AAA CCA GAT	
	42 43 44	AAA GCC CCT	GCC CCT	GGA ACT ATT	CAA		AAA TCT CCT	AAA TCT CCT	CAG	GAA ACT ATT	GGC GCT TCC	AAG TCT	AAA TCT CCT	GGT	GGT TCT CCA	CAA TCT CCT	CAT TTA TTC	CAT TTA TTC	CAT TTA TTC	CAT	CAT	
	45 46 47	AAG TCC CTG	AAG CTC CTG	AAA CGC CTG	AAA CTC TTA		CAG	CAG	AAA CTC	AAA CAC CTG	CCC	AAG	AAG ACC CTG	AGG	AGG CTT CTC	AAA CTA CTG	ACT GGT CTA	ACT GGT CTA	ACT GGT CTA	ACT GGT CTA	ACT GGT CTA	
	48 49 50	TAT GCT	TAT	T AC GCC	TAC GGG		TAT AAT	GTC	TAT	TAT	TTG ATT	TAT	TAT	AT A AAG	ATA AAG	TAT TCG	AT A GGT	ATA GGT	AT A GGT	ATA GGT	ATC GGT	
	51 52 53	GCA TCC AGT	GAT GCC TCC AGT	ACA TCC AGT	GCC TCC AAC		GCA AAA ACC	GCA AAA ACC	CGT GCA TCC AAC	GAA ACA TCC AAT	CAT AGG ACA TCC	CGT GCA AAC AGA	GCA AAC AGA	TCT	TAT GCT TCT GAG	GCA TCC TAC	GGT ACC AAC AAC	GGT ACC AGC AAC	GGT ACC AAC AAC	ACC AAC AAC	ACC AGC AAC	
	54 55 56	TTG CAA AGT	TTG GAA AGT	TTA GAT TCT	CGG TAC ACT		TTA GCA GAT	TTA GCA GAT	CTA GAA TCT	TTA GAT TCT	AAC CTG GCT	TTG GTA GAT	TTG GTA GAT	TCC ATC TCT	TCT ATC TCT	CGG TAC ACT	CGA GCT CCA	CGA GCT CCA	CGA GCT .CCA	CGA GCT CCA	CGA GCT CCA	
	57 58	GGG GTC CCA	GGG GTC CCA	GGT GTC CCC	GGG GTC CCC		GGT GTG	GGT GTG	GGG ATC	GGT GTC	TCT GGA	GGG GTC	GGG GTC	GGG ATC	GGG ATC	GGA GTC	GGT GTT	GGT GTT	GGT GTT	GGT GTT	GGT GTT	===
59 60 61	60	TCA AGG TTC	TCA AGG TTC	AAA AGG TTC	GAT CGC TTC		CCA TCA AGG TTC	TCA AGG TTC	GCC AGG TTC	CCA AAA AGG TTC	GTC CCA GCT CGC	TCA AGG	TCA AGG	AGG	CCT TCC AGG TTT	CCC GAT CGC TTC	CCT GCC AGA TTC	CCT GTC AGA TTC	CCT GCC AGA TTC	GCC AGA TTC	GTC AGA TTC	
	63 64 65	AGC GGC AGT	AGC GGC AGT	AGT GGC AGT	ACA GGT AGT		AGT GGC AGT	AGT	AGT GGC AGT	AGT GGC AGT	AGT GGC	AGT GGC	AGT GGC	AGT GGC	AGT GGC AGT	AC GGC AGT	TCA GGC TCC	TCA GGC TCC	TCA GGC TCC	GGC TCC	GGC TCC	
	66 67 68	GGA TCT GGG	GGA TCT GGG	AGG TCT GGG	GGA TCT GCA		GGA TCA GGA	GGA TCA GGA	GGG TCT AGG	AGG TCT GGG	AGT GGG TCT	GG A TCT	GGA TCT	GGA TCA	GGA TCA GGG	GGA TCT GGG	CTG ATT GGA	CTG ATT GGA	CTĞ ATT GGA	CTG ATT GGA	CTG ATT GGA	
	69 70 71	ACA GAT TTC	ACA GAA TTC	TCA GAT TAT	ACA GAT TTC		ACA CAA TAT	ACA CAA TAT	ACA	TCA GAT TAT	GGG ACC TCT	GAT	GAT	GAT	ACA GAT TTT	ACG GAT TTC	GAC AAG GCT	GAC AAG GCT	GAC AAG GCT	GAC AAG GCT	GAC AAG GCT	
	72 73 74	ACT CTC ACC	ACT CTC ACC	TCT CTC ACC	ACT CTG ACC		CTC AAG	CTC	CTC ACC	CTC ATT	TAC	CTC	CTC	ACT CCT	ACT CTT AGC	ACT TTC ACC	GCC CTC ACC	GCC CTC ACC	GCC CTC ACC	GCC CTC ACC	GCC CTC ACC	
	75 76 77	ATC AGC AGC	ATC AGC AGC	ATC AGC AGC	ATT AGT AGT		ATC AAC AGC	ATC AAC AGC	ATT AAT CCT	ATC GGC AGC CTT	ACA	ATC AGC AGC	ATC AGC	ATC AAC AGT	ATC AAC AGT	ATC AGC AGT	ATC ACA GGG	ATC ACA GGG	ATC ACA GGG	ATC ACA GGG	ATC ACA GGG	
	78 79 80	CTG CAG CCT	CTG CAG CCT	GAG TCT	GTG CAA GCT		CAG		GTG GAG GCT	GAG TCT	AGC GTG GAG	GAG	GAG	GAG	GTG GAG TCT	GTG CAG GCT	GCA CAG ACT	GCA CAG ACT	GCA CAG ACT	ACA CAG ACT	GCA CAG ACT	
	81 82 83	GAA GAT TTT	GAT GAT TTT	GAA GAT TTT	GAA GAC CTT		GAA GAT TTT	GAA	GAT GAT GTT	GAA GAT TTT	GCT GAA GAT	GAA GAT	GAA GAT	GAA GAT	GAA GAT ATT	GAA GAC CTA	GAG GAT GAG	GAG GAT GAT	GAG	GAG GAT GAG	GAG GAT GAT	===
	84 85 86 87	GC A ACT T AT T AC	GCA ACT TAT TAC	GTA GAC TAT TAC	GCA GAT TAT CAC		GGG AGT TAT TAC	GGG AGT TAT TAC	GCA ACC TAT TAC	GCA GAC TAT TAC	GAT GCA ACT TAT	TAT	TAT	GAA	GCA GAT TAT TAC	GCA GTT TAT TAC	GCA ATA TAT TTC	GCA ATG TAT TTC	GCA ATA TAT TTC	GCA ATG TAT TTC	GCA ATG TAT TTC	
_	88 89 90	CAA CAG	CAA CAG	CTA CAA	GGA CAG		CAA CAT	CAA CAT	CAG CAA	CTA CAA	TAC TGC CAG	CTT	TGT CTA CAG	CAA CAA	TGT CAA CAA	CAG CAA	GCT CTA	GCT CTA	GCT CTA	GCT CTA	GCT CTA	===
	91 92 93	TAT AAT AGT	TAT AAT AGT	GCT AGT	GGT TAC AGC		TTT TGG AGT	TGG AGT	AGT AAT GAG	GCT AGT	TGG AGT	GAT GAG	GAT GAG	TAT AGG	AGT AAT AGC	CAT TAT AGT	TGG TAC AGC	TGG TAC AGC	TGG TAC AGC	TGG TAC AGC	TGG TTC AGA	
	94 95 96	CCT	TAT	TCT CCG TGG	TAT CCG TAC		ACT CCT		GAT	CCT	TAC	CCG	CCG	CCA	TGG CCA	ACT CCT CCC	CAT	CAT	AAC CAT TGG	AAC CAT TGG	CAT TTT	
	97 97A 97B			ACG	ACG		555									ACG	222		GTG 	GTG	GTT	===
	97C 97D 97E				===					===	===			===							·===	===
	97F 98 99			TTC	TTC	,	111				TTC GGC	GGT				TTC GGA				TTC GGT	TTC	==
	100 101 102			GGA GGC ACC	GGG GGG ACC					===	TCG GGG ACA	GGG ACC				GGG GGG ACC			ACC	GGA GGT ACC	GGT GGA ACC	===
	103 104 105 106			AAG CTG GAA ATC	AAG CTG GAA ATA				==		TTG GAA	CTG GAG				AAG CTG GAA		===	AAA CTG ACT GTC	AAA CTG ACT GTC	AAG GTC ACT GTC	===
	106A 107			AAA	AAA		222				ATA AAA	AAA				ATA AAA			CTA	CTA GGC	CTA	
	108			CGT							CGT	CGT				CGG						

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

