RS
 UNITED STATES DEPAǨiMENT OF COMMERCE Patent and Trademark Office

Address: COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231
 APPLICATION NO. FILING DATE \quad FIRST NAMED INVENTOR

F| ATTORMEY ROCKET NO.

Please find below and/or attached an Office communication concerning this application or proceeding.

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance and Issue Fee Due or other appropriate communication will be mailed in due course.

X] This communication is responsive to Application papers filed
邓 The allowed claim(s) is/are 2-11, 13-56 (renumbered as 54) -.
\square The drawings filed on \qquad are acceptable.
\square Acknowledgement is made of a claim for foreign priority under 35 U.S.C. $\S 119(\mathrm{a})$-(d).All \square Some*None of the CERTIFIED copies of the priority documents have been \square received.received in Application No. (Series Code/Serial Number) \qquad .
[] received in this national stage application from the International Bureau (PCT Rule 17.2\{a)).
*Certified copies not received: \qquad .Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § $119(\mathrm{e})$.
A SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE "DATE MAILED" of this Office action. Failure to timely comply will result in ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CFR 1.136\{a).Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL APPLICATION, PTO-152, which discloses that the oath or declaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REQUIRED.

Applicant MUST submit NEW FORMAL DRAWINGS
\square because the originally filed drawings were declared by applicant to be informal.
\square including changes required by the Notice of Draftsperson's Patent Drawing Review, PTO-948, attached hereto or to Paper No. \qquad .
\square including changes required by the proposed drawing correction filed on \qquad , which has been approved by the examiner.including changes required by the attached Examiner's Amendment/Comment.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the reverse side of the drawings. The drawings should be filed as a separste paper with a transmittal lettter addressed to the Official Draftsperson.Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.
Any response to this letter should include, in the upper right hand corner, the APPLICATION NUMBER (SERIES
CODE/SERIAL NUMBER). If applicant has received a Notice of Allowance and Issue Fee Due, the ISSUE BATCH NUMBER and DATE of the NOTICE OF ALLOWANCE should also be included.

Attachment(s)
【 Notice of References Cited, PTO-892
Xi information Disclosure Statement(s), PTO-1449, Paper No(s). 5
\boxtimes Notice of Draftsperson's Patent Drawing Review, PTO-948
\square Notice of Informal Patent Application, PTO-152
\square Interview Summary, PTO-413
Examiner's Amendment/Comment
\square Examiner's Comment Regarding Requirement for Deposit of Biological Material
X Examiner's Statement of Reasons for Allowance

Art Unit: 2764

The following is an examiner's statement of reasons for allowance: Applicant has claimed uniquely distinct features in the instant invention which are not found in the prior art, either singularly or in combination. These features are illuminating a gemstone model using an illumination model, wherein said gemstone model defines the geometry and position of the gemstone facets, and wherein said illumination model produces a light beam; refracting said light beam into said gemstone model through a first facet of said gemstone model to produce a refracted light beam; reflecting said refracted light beam within said gemstone model from a second facet of said gemstone model to produce a reflected light beam; refracting said refracted and reflected light beams out of said gemstone model through a third facet of said gemstone model to produce an exiting light beam; and measuring said exiting light beam. These features are not found or suggested in the prior art.

Any comments considered necessary by applicant must be submitted no later than the payment of the issue fee and, to avoid processing delays, should preferably accompany the issue fee. Such submissions should be clearly labeled 'Comments on Statement of Reasons for Allowance."

Any response to this action should be mailed to:

Commissioner of Patents and Trademarks
Washington, D.C. 20231
or faxed to:
(703) 308-9051, (for formal communications intended for entry)

Or:
(703) 308-5356 (for informal or draft communications, please label "PROPOSED" or "DRAFT")

Hand-delivered responses should be brought to Crystal Park II, 2121 Crystal Drive, Arlington. VA., Sixth Floor (Receptionist).

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Mr. Thomas Peeso whose telephone number is (703) 305-9784. The examiner can normally be reached on Monday -Thursday from 7am to 5pm. The examiner can also be reached on alternate Fridays. If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Mr. Emanuel Voeltz, can be reached on (703) 305-9714.

Any inquiry of a general nature or relating to the status of this application should be directed to the Group receptionist whose telephone number is (703) 305-3800.

Thomas Peeso
Primary Examiner
Art Unit 2764
11 Sep 98

[^0]U. S. Patent and Trademark Office PTO-892 (Rev. 9-95)

Notice of References Cited.
Part of Paper No. 7

NOTICE OF DRAFTPERSON'S PATENT DRAWING REVIEW

The drawing filieg (insert date) $\frac{1}{} / 10$ not objected io by the
A. \qquad not objected to by the Draftperson under 37 FR $1: 84$ or $1: 1152$ drawings wee necessary. Corrected drawings must be submitted according to the instructions on the back of this notice

1. DRAWINGS: 37 CR 1.84 (a) : Acceptable categories of drawings Black ink. Color.
__Color drawing are not acceptable until petition is granted. Fig.(s) \qquad Pencil and non black ink is not permitted. Figs)
2. PHOTOGRAPHS. 37 CPR 1.84 (b)
___ Photographs are not acceptable until petition is granted,
___ 3 full-tone sets are required. Figs)
___ Photographs not properly mounted (must brystol board or photographic double-weight paper). Figs) \qquad Poor quailty (halftone). Figs)
3. TYPE OF PAPER. 37 CFR 1.84(e)
___ Paper not flexible, strong, white and durable. Fig.(s)
___ Erasures, alterations, overwritings, interlineations, folds, copy machine marks not acceptable. (too thin)
. Mylar, vellum paper is not acceptable (too thin). Fig (s)
4. SIZE OF PAPER. 37 CFR 1.84(F): Acceptable sizes:
_ 21.0 cm by 29.7 cm (DIN size A4)
21.6 cm by 27.9 cm ($81 / 2 \times 11$ inches)

All drawings sheets not the same size. Sheet (s) \qquad —
S. MARGINS. 37 CR $18.4(\mathrm{~g})$: Acceptable margins:

Top 2.5 cm Left 2.5 cm Right 1.5 cm Bottom 1.0 cm SIZE: A4 Size
\int Top 2.5 cm Left 2.5 cm Right 1.5 cm Bottom 1.0 cm
Size: $81 / 2 \times 11$

Margins
Right (R)
 Left (L)

6. VIEWS. CFR $1.84(\mathrm{~h})$ REMINDER: Specification may require revision to 30,410
correspond to drawing changes.
\qquad Views connected by projection lines or lead fines.
Fig.(s) \qquad
Partial views. 37 CFR 1.84(h)(2)

Fig.(s)____ Views not labe) ed separate $\left\{\begin{array}{l}3 A 4,13 A-15\end{array}\right.$

$19,20,2 \rightarrow 29$

7. SECTIONAL VIEWS. 37 CR 1.84 (h) (3)
___ Hatching not indicated for sectional portions of an object. Fig.(s)

- Sectional designation should be noted with Arabic or Roman numbers. Fig.'s) \qquad

8. ARRANGEMENT OF VIEWS. 37 CHR 1.84 (i)
___ Words do not appear on a horizontal, left-to-ight fashion when page is either upright or turned, so that the top becomes the right side, except for graphs. Fig (s) \qquad
\& Views not on the same plane on dạawing sheet. Fig.(s)
\qquad
9. SCALE. 37 CPR 1.84 (k)
___Scale not large enough to show. mechansim with crowding when drawing is reduced in size to two-thirds in reproduction. Fig .(s) \qquad 10. CHARACTER OF LINES, NUMBERS, \& LETTERS: 37 CTR 1.84 (l)
_L _Lines, numbers \& letters not uniformly thick and well defined, clean, durable and black (poor line quality). Fig.(s) \qquad
10. SHADING. 37.CFR 1.84(m)
__Solid black areas palè. Fig .(s) \qquad
__ Solid black shading not permitted. Fig.(s)
__Shade lines, pale, rough and blurred. Fig.(s)
12: NUMBERS, LETTERS, \& REFERENCE CHARACTERS.
37 CPR 1.48 (p)
___ Numbers and reference characters not plain and legible. Fig.(s)
Figure legends are poor. Fig.(s) \qquad Numbers and reference characters not oriented in the same direction as the view. $37 \mathrm{CFR}: 184$ (p)(3) Fig.(s) \qquad
34 Eng high alphabet not used. 37 GER 1.84 (p)(3) Fig.(s)
44 _Numbers, letters and reference characters must be at least $.32 \mathrm{~cm}(1 / 8 \mathrm{inch})$ in height. $37 \mathrm{CFR} 1.84(\mathrm{p})(3)$ Fig.(s) Dy IEAD LINES. 37 CFR 1.84(q)

I Lead lines cross each other. Fig.(s)

- Lead lines missing. Fig.(s)
\qquad

14:NUMBERING OF SHEETS OF DRAWiNGS. 37 CFR 1.48 (t)
___ Sheets not numbered consecutively, and in Ababic numerals beginning with number 1. Fig.(s) \qquad 15. NUMBERING OF VIEWS. 37 CR 1.84 (u) ____ Views not numbered consecutively, and in Abrabic numerals, beginning with number 1 . Fig.(s) \qquad 16. CORRECTIONS. 37 CFR 1.84(w)
__Corrections not made from PTO-948 dated

17. DESIGN DRAWINGS. 37 CR 1.152

___Surface shading shown not appropriate. Fig.(s)
___ Solid black shading not used for color contrast.

Page 241 of 390

NOTICE OF ALLOWANCE AND ISSUE FEE DUE

```
m%1%0016
GEWE NESGEF GMBSTENN & FGA
IOQ ME|
#1TE 60%
4A54THETOM क0 20005-3024
```

APPLICATION NO.	FILING DATE	TOTAL CLAIMS	EXAMINER AND GROUP ART UNIT		date mailed
प\%/92, 9	A1/10/97	154	FEFGO. T	2784	प\%/6/9
		F保			

TITLE OF INVENTION

SVETEM AHO WETHOW FOF OPTMCA EVALATION GW GMGTOWFG

the application identified above has been examined and is allowed for issuance as a patent. PROSECUTION ON THE MERITS IS CLOSED.
the issue fee must be paid within three months from the mailing date of this notice or this APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY. PERIOD CANNOT BE EXTENDED.

HOW TO RESPOND TO THIS NOTICE:
I. Review the SMALL ENTITY status shown above. If the SMALL ENTITY is shown as YES, verify your current SMALL ENTITY status:
A. If the status is changed, pay twice the amount of the FEE DUE shown above and notify the Patent and Trademark Office of the change in status, or
B. If the status is the same, pay the FEE DUE shown above.

If the SMALL ENTITY is shown as NO:
A. Pay FEE DUE shown above, or *
B. File verified statement of Small Entity Status before, or with, payment of $1 / 2$ the FEE DUE shown above.

If. Part B-Issue Fee Transmittal should be completed and returned to the Patent and Trademark Office (PTO) with your ISSUE FEE. Even if the ISSUE FEE has already been paid by charge to deposit account, Part B Issue Fee Transmittal should be completed and returned. If you are charging the ISSUE FEE to your deposit account, section "4b" of Part B-Issue Fee Transmittal should be completed and an extra copy of the form should be submitted.
III. All communications regarding this application must give application number and batch number.

Please direct all communications prior to issuance to Box ISSUE FEE unless advised to the contrary.
MPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. it is patentee's responsibility to ensure timely payment of maintenance. fees when due.

PATENT AND TRADEMARK OFFICE COPY
PTOL-85 (REV, 10-96) Approved for use through 06/30/99. (0651-0033)

NOTICE OF ABANDONMENT

This application is abandoned in view of:
[-] Applicant's failure to timely file a proper response to the Office letter mailed on \qquad $-$
\square A response (with a Certificate of Mailing or Transmission of \qquad) was received on , which is after the expiration of the period for response (including a total extension of time of
\qquad month(s)) which expired on \qquad —.A proposed response was received on \qquad but it does not constitute a proper response to the final rejection.
(A proper response to a final rejection consists only of: a timely filed amendment which places the application in condition for allowance; a Notice of Appeal; or the filing of a continuing application under 37 CFR 1.62 (FWC).

No response has been received.
7 Applicant's failure to timely pay the required issue fee within.the statutory period of three months from the mailing date of the Notice of Allowance.The issue fee (with a Certificate of Mailing or Transmission of \qquad) was received on \qquad .The submitted issue fee of $\$$ \qquad is insufficient. The issue fee required by 37 CFR 1.18 is $\$$ \qquad .

The issue fee has not been received.Applicant's failure to timety file new formal drawings as required in the Notice of Allowability.
\square Proposed new formal drawings (with a Certificate of Mailing or Transmission of \qquad were received on \qquad -.The proposed new formal drawings filed \qquad are not acceptable.No proposed new formal drawings have been received.The express abandonment under 37 CFR $1.62(\mathrm{~g})$ in favor of the FWC application filed on
The letter of express abandonment which is signed by the attomey or agent of record, the assignee of the entire interest, or all of the applicants.
\square The letter of express abandonment which is signed by an attorney or agent (acting in a representative capacity under 37 CFR 1.34(a) upon the filing of a continuing application.
\square The decision by the Board of Patent Appeals and Interferences rendered on \qquad and because the period for seeking court review of the decision has expired and there are no allowed claims.
[] The reason(s) below:
Diane Terry
Allowed Files Branch
703-305-8203
FORM PTO-1432 (REV. 10-95)

NOTICE OF RESCINDED ABANDONMENTIn response to your communication filed
Q Through inadvertence, a Notice of Abandonment was mailed in the above identified application. The Notice of Abandonment is hereby rescinded. The will be mailed withins six weeks:

Manager, Publishing Division Office of Publication and Dissemination

CONTINUED PROSECUTION APPLICATION (CPA) REQUEST TRANSMITTAL Submil an original, and a duplicate for fer processing, CHECK BOX if applicable: (Only for Consinuation or Divivional applications under 37 CFR § I.53(d)) DUPLICATE		
	Attorney Docket No. of Prior Application	CPA Application of 08/782,889
$\underline{V} T_{8}$ TRAD	First Named Inventor	Paul T. Shannon, Sr.
Box CPA	Examiner Name -	Peeso, T.
Washington, DC 20231	Group/Art Unit	2764
	Express Mail Label No.	

1.
 Enter the unentered amendment previously filed on \qquad under 37 CFR § 1.116 in the prior nonprovisional application.
2. A preiiminary amendment is enclosed.
3. This application is filed by fewer than all the inventors named in the prior application, 37 CFR § 1.53(d)(4)
a. \square
\square DELETE the following inventor(s) named in the prior nonprovisional application:
b.The inventor(s) to be deleted are set forth in a separate sheet attached hereto.
4. A new power of attorney or authorization of agent ($\mathrm{PTO} / \mathrm{SB} / 81$) is enclosed.
5. Information Disclosure Statement (IDS) is enclosed:
a. \squarePTO-1449
b. \square Copies of IDS citations

Burden Hour Statement: this form is estimated to take 0.4 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Tradematk Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box CPA, Washington, DC 20231 .

CLAMMS	(1) FOR	(2) NUMBER FILED	(3) NUMBER EXTRA	(4) RATE	(5) CALCULATIONS
	TOTAL CLAIMS (37 CFR \& 1.16 (c) or (j))	$74 \cdot 20^{*}=$	54	$\times 518.00=$	\$972.00
	INDEPENDENT CLAIMS (37 CFR \$ 1.16 (b) or (i))	12-3** $=$	9	$\times 578.00=\quad ;$	5702.00
	MUL TIPLE DEPENDENT CLAIMS (if applicabie) (37 CFR § 1.16(d))			x $\$ 260.00=$	\$ 0.00
	.			BASIC FEE (37 CFR §1.16)	\$ 760.00
			otal of above Calculations ${ }^{\text {- }}$		\$2,434.00
	Reduction by 50\% for filing by small entity (Note 37 CFR 88 1.9, 1.27, 1.28).				\$1,217.00
	* Reissue claims in excess of 20 and over original patent. **Reissuc independent claims over original patent.		TOTAL $=$	-	\$1,217.00

6. Small entity status:
a. $\square \quad$ A small entity statement is enclosed, if (b) and (c) do not apply.
b. A small entity statement was filed in the prior nonprovisional application and such status is still proper and desired.
c. \square Is no longer claimed.
7. The Commissioner is hereby authorized to credit overpayments or charge the following fees to Deposit Account No. 19-0036:
a. \square Fees required under 37 CFR $\S 1.16$.
b. Fees required under 37 CFR $\$ 1.17$.
c. \square Fees required under $37 \mathrm{CFR} \$ 1.18$.
8. SKGF Check No. 23313 in the amount of $\$ 1,217.00$ is enclosed.
9. \square New Attorney Docket Number, if desired \qquad Group 2700
[Prior application Attorncy Docket Number will cargwver to this CPA whfess a new Attomey Docket Number has heen provided herein.]
10. a. \square Receipt For Facsimile Transmitted CPA (PTO/SB/29A)
b. Return Receipt Postcard (Should be specificaliy itemized, See MPEP 503)
11. Other: Authorization To Treat A Reply As Incorporating An Extension Of Time Under 37 C.F.R. § 1.136 (a)(3) (in duplicate).

NOTE:
The prior application's correspondence address will carry over to this CPA UNLESS a new correspondence address is provided below.

13. SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED		
Name (Print/Type)	Edward J. Kess.	
Signature	25,688	
Registration No. Attorney/Agent)		
Date		

Sterne, Kessler, Goldstein \& Fox p.L.l.C.
attorneys atman
1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934
Facsimile Cover Sheet

Dear Ms. Terry:
As discussed in a phone conversation with my secretary, Adrian Wimmer, on February 19, 1999, enclosed is a copy of the return date stamped post card evidencing filing of the CPA on December 16, 1998, as well as the CPA Transmittal Form (Form PTO/SB/29).

If you have any questions or need additional information, please feel free to contact me (202) 371-2550 or my secretary (202) 371-2614 at the numbers provided. Thank you in advance for your attention to this matter.

I hereby certify that this paper is being facsimile transmitted to the Patent and Tradernark Office on the date shown \rightarrow Adria L. Wimmer-

Saxiar.Whaies
 Signature
 $$
\frac{2 / 1 / 999}{\text { Date }}
$$

please sign and return this page as acknowledgment of receipt

> This message is intended for the exclusive use of the individual or entity to which it is addressed. The message may contain information that is privileged, confidential, or otherwise exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution, copying or use of this communication in any way is strictly prohibited. If you have received this communication in error, please call us collect immediately, and return the original message to us at the above address via the U.S. Postal Service.

If any portion of this transmission is not received clearly or in full, contact us at any of the following numbers:

> TELEPHONE NUMBER
> (202) $371-2600$
FACSIMILE NUMBER
(202) 371-2540

STERNE, KESSLER, GOLDSTBIN \& FOX P.LL.C. I100 NEW YORK AVENUE, N.W. SUITE600

oupy

[^1]
NOTES

FIIING QULALIFICATIONS: The prior application Identified above mule be a nonprovitional application that is
 U.S.C. 371 . 1 Native rill be placed on a patent issuing from a C. PA. except for reissues and sued on a Crit and is subject to the noenty year tore provisions of 15 U.S.C. \$ 1.S4(a)(2). Therefore, the prior application of a
 under 37 CF 5 1.53(b).

EXPRESS AB.ANDONDENT OF PRIOR APPIVCATION: The filing of this CPA is a request to expressly abandon the prior uppliuation as of che filing date of the requat for s CP.4. 37 CFR § J. 53(b) must ha used in file a continuation divisional, or corifinuation-in-pari af an upplicutivn that is vol to be abandoned.
 application under 35 USS.C. 122 to the extent hat any member of the public who is enittied under the provisions of 37 CPR $\$ 1.1 /$ to access ta, copies of. or information namsernimg the prior abdication may be given similar access to, copies of, of similar information comerving, the other application or applications io the file jantant

35 U.S.C. I2D STATEMENT: In a CPA, nu refermitur to the price application is needed in the first sentenced of the spacflication and none should be submitted, if a sentence referencing the prior applfturlun is sulumitied, it will nor be entered. A request for a CPAA is the sbecijk reference readied by 55 U.S.C. 120 and to every appiagion astoria the appitcalion number ldenificed in zach seguat 37 C.FR § ! $7 R(0)$.

1. \square Enter the unculered aunendment previously filed on \qquad under 37 CFR § 1.116 in the prior nonprovisional application.
2. \boxtimes A preliminary amendment is enclosed.
3. This application is filed by fewer than all the inventors named in the prior application, 37 CR $\S 1.53$ (d)(4)
a. \square DELETE the following invenlut(s) waned in the prior nonprovisional application:
\qquad
b. \square The inventul(s) to be deleted are set forth in a separate sheet attsohed hereto. A lew power of attorney or authorization of agent (PTO/SB/81) is enclosed.
4. Information Disclosure Statement (IDS) is enclosed:
a. \square PTO-1449
b. \qquad Copies of IDS citations
[Page |a ff]

Burden Hour Statement: this Form is estimated wo lake 0.4 hours lo complete. Time will vary depending upon the needs of che ind lyidual case, Any comments on the amount of rime you ate required in complete this form should be sent to the Chieflnformetion Officer, Patent and Trademark: Office, Washington, 1 VC: 20231. DONOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO' Astistint Commissioner for Patents, Box CPA, Washington, DC 20231.

6. Small entity status:
c. A suall mitity ytatement is enelosed, if (b) and (c) ©o not 8poly.
b. 区 A mall entity ataternert was filed ia tie priur nonprovistonal application ano suela status is still proper and desited:
c. Is no longer ciaimed.
7. The Commissioner is hereby authorized to credit overpayments or charge the following fees to Deposit Account No. 19-0036.
a. \square Feac required under $37 \operatorname{CNR}$ \& 1.16
b. \square Fecs requited under 3 C CFR \& 1.17 .
c.l| Fees required under 37 CFR \S 1.It.
8. SKCH: Lheck No. 23313 in the amnint of $\$ 1,2 / 7.00$ is anelosed.
9. \square New Attorney Duckel Number, if desired

10. a. \square Reszipt Por Pacsimile Tmanmitued C'PA (YIONB29A)
b. \boxtimes Return Receipi Posteard ($\$$ linuld be specineally Itemized, See Mre'Y 503)

11, X Uther: Authorization Tn Treat AReply As Incorporating Aa Extension Of Time Undes 37 C.F.R. 8 1.136(a)(3) (in duplicate). belvem

Sterne, Messier, Golostein \& Fox plif.c.
attorneys at law
1100 NEW YORK AVENUE, NW., SUITE 600
WASHINGTON. D.C. 20005-3934
(202) 371-2600
ROBERT GAEENE STERNE
EDWARD J. MESSIER
JORGE A. GOLDSTEIN
SAMUEL L. FOX
DAVID K.S. CORNELL
ROBERT W. ESMOND
TRACY-GENE G. DURKIN
MICHELE A. CIcALA
MICHAEL B. RAY

FACSIMILE: (202) 371-2540: (202) 371-6566

Ralph P. Alerecht HEIDT L. Kraut. JEFFREY R. KUAIN. CARL 日. MASSEY. JR.* RAYMOND MILLIE* PATRICK D. O'BRIEN ${ }^{*}$ BRIAN S. ROSENBLOOM* Lawrence b. bugaisky EDWARD W. ME*

Donald j. Featherstone* KAREN R. Mabiowicz* GRant E. Reese'* SEAR E. JOG SUZANNE E. Ziska** Brian J. Del bueno" vineront l. Capuano* Donald r. Banowire: David P. Maivalo.:

- bar other than d.c. \because Registered patent agents
December 16, 1998

Assistant Commissioner for Patents Washington, D.C. 20231

RECEIVED

3LCLVEO INTERNET ADDRESS EKESSLER@SKGF.COM

DEC 211998
Box: CPA
Group 2700

Re: U.S. Utility Patent Application Request for Continued Prosecution Application (CPA) for Appl. No. 08/782,889 originally filed: January 10, 1997 CPA Filed: December 16, 1998 For: System And Method For Optical Evaluation Of GemMomesk/illowng Division Inventor: Paul T. Shannon, Sr. Our Ref: 1644.0010000

Sir:
Transmitted herewith for appropriate action are the following documents:

1. Fee Transmittal Form $\mathrm{PTO} / \mathrm{SB} / 17$ (in duplicate);
2. CPA Transmittal Form PTO/SB/29 (in duplicate);
3. Preliminary Amendment;
4. Authorization to Treat a Reply As Incorporating An Extension of Time Under 37 C.F.R. § 1.136(a)(3) (in duplicate);
5. SKGF Check No. 23313 in the amount of $\$ 1,217.00$ to cover:
$\$ 380.00$ Basic filing fee (37 C.F.R. § 1.16(a));
$\$ 486.00$ Additional Claims Over Twenty;
$\$ 351.00$ Additional Independent Claims Over Three; and
6. One (1) Return Postcard.

Assistant Commissioner for Patents

December 16, 1998
Page 2
It is respectfully requested that the attached postcard be stamped with the filing date of these documents and returned to our courier.

In the event that extensions of time are necessary to prevent abandonment of this patent application, then such extensions of time are hereby petitioned. The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036. A duplicate copy of this letter is enclosed.

Respectfully submitted,

EJK:alw
P:IUSERSNAWIMMERUEJK 196441001. cyt.wpd

FEE TRANSMITTAL Patent fees are subject to annual revision on October 1. These are the fees effective October 1, 1997. Small Entity payments must be supported by a small entity statement. othenwise large entity fees must be paid. See Forms PTO/SB/09-12. See 37 C.F.R. §§ 1.27 and 1.28.		Complete if Known	
		Application Number	CPA Application of Appin. No.: 08/782,889 originally filed January 10, 1997
		Filing Date	December 16, 1998
		First Named Inventor	Paul T. Shannon, Sr.
		Examiner Name	Peeso, T.
		Group / Art Unit	2764
TOTAL AMOUNT OF PAYMENT	(\$)1,217.00	Attorney Docket Number	1644.0010000

[^2]In re application of:
Paul T. Shannon, Sr.
Apple. No.: CPA Application of 08/782,889 originally filed January 10, 1997

Filed: December 16, 1998
For: System And Method For Optical Evaluation Of Gemstones

Art Unit: 2764
Examiner: Peso, T.

Atty. Docket: 1644.0010000

Authorization To Treat A Reply As Incorporating An Extension Of Time Under 37. C.F.R. § 1.136(a)(3)

Assistant Commissioner for Patents Washington, D.C: 20231

Sir:
The U.S. Patent and Trademark Office is hereby authorized to treat any concurrent or future reply that requires a petition for an extension of time under this paragraph for its timely submission, as incorporating a petition for extension of time for the appropriate length of time. The U.S. Patent and Trademark Office is hereby authorized to charge all required extension of time fees to our Deposit Account No. 19-0036, if such fees are not otherwise provided for in such reply. A duplicate copy of this authorization is enclosed.

Date: \qquad
Respectfully submitted,

1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934
(202) 371-2600

[^3]| | | |
| :---: | :---: | :---: |
| Address to:
 Assistant Commissioner for Patents Box CPA
 Washington, DC 20231 | Attorney Docket No. of Prior Application | CPA Application of 08/782,889 |
| | First Named Inventor | Paul T. Shannon, Sr. |
| | Examiner-Name | Peeso, T . |
| | Group/Art Unit | 2764 |
| | Express Mail Label No | |

[Page 1 of 2]

CLAIMS	(1) FOR	(2) NUMBER FILED	(3) NUMBER EXTRA	(4) RATE	(5) Calculations
	TOTAL CLAIMS (37 CFR \& 1.16 (c) or (j))	74-20* $=$	54	* $\$ 18.00=$	5972.00
	INDEPENDENT CLAIMS (37 CFR $\S 1.16$ (b) or (i))	12-3**	9	x $578.00=$	\$702.00
	MULTTPLE DEPENDENT CLAIMS (if applicable)(37 CFR \$1.16(d))			$\times 5260.00=$	S 0.00
				BASIC FEE (37.CFR §I.16)	\$ 760.00
			otal of above Calculations ${ }^{\text { }}$		\$2,434.00
	Reduction by 50% for filing by small entity (Note 37 CFR $551.9,1.27,1.28$				\$1,217.00
	- Reciswe claims in excesr of 20 and over original patent. - RRexisue indupicndent elaims over original patent.		TOTAL $=$		\$1,217.00

6. Small entity status:
a. \square A small entity statement is enclosed, if (b) and (c) do niot apply.

b.	A small entity statement was filed in the prior nonprovisional application and such status is still proper and desired.

c. \square Is no longer claimed.
7. The Commissioner is hereby authorized to credit overpayments or charge the following fees to Deposit Accounit No. 19.0036:
a. \square Fees required under 37 CFR $\$ 1.16$.
b. \square Fees required under 37 CFR $\$ 1.17$.
c. \square Fees required under 37 CFR § 1.18 :
8. SKGF Check No. 23313 in the amount of $\$ 1,217.00$ is enclosed.
9. \square New Attorney Docket Number, if desired \qquad
[Prior application Aflorney Docket Number will carryoier tö this CPA unlexx a new Atlorney Docket Number has becen provided herein.]
10. a. \square Receipt For Facsimile Transmitted CPA (PTO/SB/29A)
b. \boxtimes Retum Receipt Postcard (Should be specifically itemized, See MPEP 503)

11. \triangle Other:	Authorization To Treat A Reply As Incorporating An Extension Of Time Under 37 C.F.R. § 1.136(a)(3) (in duplicate).
NOTE:	The prior application's correspondence address will carcy over to this CPA UNLESS a new correspondence address is provided below.

12. NEW CORRESPONDENCE ADDRESS	
- Consomar Number or Par Coxtu Latel	

Sterne, Kessler, Goldstein \& Fox p.l.L.C.
attorneys at law
1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934

Facsimile Cover Sheet

| Urgent \square | return reply requested \square |
| :--- | :--- | original will be sent as confirmation \square

As requested in our phone conversation of April 8, 1999, enclosed is a copy of the Preliminary Amendment initially filed with the CPA filing on December 16, 1998.

This message is intendad for the exclusive use of the individual or entity to which it is addressed. The message may contajn information that is privileged, confidential, or otherwise exempt from disclosure under applicsble law. If the reader of this message is not the intended recipient, you are hereby notified that nay dissemination, distribution, copying or use of this communication in any way is strictly problbited. If you have received this communication in error, plesse call us collect immediately, and return the origizal message to us at the above address vja the U.S. Postal Service.

If any portion of this transmission is not received clearly or in full, contack us at any of the following nurabers:

TELEPHONE NUMBER
(202) 371-2600

FACSIMILE NUMBER
(202) 371-2540

In re application of:
Paul T. Shannon, Si,
Appl. No. CPA Application of 08/782,889 originally filed January 10, 1997

Filed: December 16, 1998
For: System And Method For Optical Evaluation of Gemstones

Art Unit: Peso, T.
Examiner: 2764

Atty. Docket: 1644.0010000

Preliminary Amendment

Assistant Commissioner for Patents
Washington, D.C. 20231
Sir:

Prior to examination, please add the following claims.

IN THE CLAIMS

55

A method for grading the cut of a gemstone, comprising the steps of:
illuminating a gernstone model with a light source, wherein said gemstone model defines the geometry and position of the gemstone facets;
refracting said light source into said gemstone model through a first facet of said gemstone model to produce a refracted light;
reflecting said refracted light within said gemstone model from a second facet of said gernstone model to produce a reflected light;
refracting said refracted and reflected lights out of said gemstone model through a third facet of said gemstone model to produce an exiting light; and
measuring said exiting light.
APR

$$
A ?
$$ The method of claim 5%, further comprising the step of generating said gemstone model for a gemstone to be graded, wherein said gemstone model comprises a data representation of the cut of the gemstone.

 defining said facet types and facet locations of the gemstone to be graded in a global coordinate system.

The method of claim $\$ 8$, further comprising the step of: defining said facet types and facet locations in a linked list data structure.

The method of claim 5 h,

55
generating said gemstone model to represent an existing cut or a proposed cut.

$$
55
$$

The method of claim 57 , further comprising the steps of:
illuminating said gemstone model using an illumination model, wherein said illumination model produces a light bean;
refracting said light beam into said gemstone model through a first facet of said gemstone model to produce a refracted light beam;
reflecting said refracted light beam within said gemstone model from a second facets of said gemstone model to produce a reflected light beam;
refracting said refracted and reflected light beams out of said gernstone model through a third facet of said gemstone model to produce an exiting light beans; and measuring attributes of said exiting light beam.
 A system for grading the cut of a gemstone, comprising:
means for illuminating a gemstone model with a light source, wherein said gemstone model defines the geometry and position of the gemstone facets; means for refracting said light into said gemstone model through a first facet of said gemstone model to produce a refracted light;
means for reflecting said refracted light within said gemstone model from a second facet of said gemstone model to produce a reflected light;
means for refracting at least one of said refracted and reflected light out of said gemstone model through a third facet of said gemstone model to produce an exiting light; and means for measuring said exiting light.

The system of claim 66 , further comprising:
means for generating data defining facet types and facet locations for the gernstone.

The system of claim $\$ 4$, fifirther comprising:
means for defining said facet types and facet locations in a global coordinate systern of the gemstone.

The system of claim 64 , further comprising: means for defining said facet types and facet locations in a linked list data structure.

means for defining a plurality of light sources arranged in an array above a crown of said gemstone model.

The system of claim
$\varphi 1$
φ
means for defining a light source to simulate specified lighting conditions for the gemstone to be evaluated.

In a system for grading the cut of a gemstone, a computer program product comprising a computer usable medium having computer readable program code means embodied in said medium for causing an application program to execute on a computer, said computer readable program code means comprising:
a first computer readable program code means for causing said computer to illuminate a gemstone model, wherein said gemstone model defines the geometry and position of the gemstone facets;
a second computer readable program code means for causing said computer to refract said light beam into said gemstone model through a first facet of said gemstone model to produce a refracted light;
a third computer readable program code means for causing said computer to reflect said refracted light bearn within said gernstone model from a second facet of said gernstone model to produce a reflected light;
a fourth computer readable program code means for causing said computer to refract at least one of said refracted and reflected light out of said gemstone model through a third facet of said gernstone model to produce an exiting light; and
a fifth computer readable program code means for causing said computer to measure said exiting light.
 program code,means further comprises:
a computer readable program code means for causing said computer to generate said gemstone model.
 program code means further comprises:
a computer readable program code means for causing said computer to generate data defining facet types and facet locations for the gemstone.

70 The computer program product of claim 71 , wherein said computer readable program code means further comprises:
a computer readable program code mears for causing said computer to define said facet types and facet locations in a global coordinate system of the gemstone.
5.

CPA Application of Apple. No.: 08/782,889
Paul T. Shannon, Sr.
 program code means further comprises:
a computer readable program code means for causing said computer to define said facet types and facet locations in a linked list data structure.

The computer program product of claim 67 , wherein said computer readable program code means further comprises:
a computer readable program code means for causing said computer to generate an illumination model to illuminate said gemstone model with a light beam.

The computer program product of claim $7 / 4$, wherein said computer readable program code means further comprises:
a computer readable program code means for causing said computer to define a plurality of light sources arranged in an array above a crown of said gemstone model.

The computer program product of claim 66 , wherein said computer readable program code means further comprises:
a computer readable program code means for causing said computer to define a light source to simulate specified lighting conditions for the gemstone to be evaluated.--

CPA Application of Appl. No.: 08/782,889
Paul T. Shannon, Sr.

REMARKS

Claims 2-11 and 13-76 are presented for consideration. Claims 2-11 and 13-56 have previously been allowed. Claims 57-76 are added to further define features of this invention. Prompt and favorable action on this application is respectfully requested.

Respectfully submitted,

Date: $12 / 16 / 98$

1100 New York Avenue, N.W. Suite 600
Washington, D.C. 20005-3934
(202) 371-2600

EKKiNlw
P:UUSERSGWIMMERIEJKU16d41001.pa,wpd

Address: COMMISSIONER OF PATENTS AND TRADEMARKS Washington, D.C. 20231

Please find below and/or attached an Office communication concerning this application or proceeding.

Commissioner of Patents and Trademarks

Notice of Al/owabi/ity	Application No. 08/782,889	Applicant(s) Shannon					
	Thomas Peeso		$\begin{gathered} \text { Group Art Unit } \\ 2764 \end{gathered}$	fin			

All claims being allowable, PROSECUTION ON THE MERITS IS (OR REMAINS) CLOSED in this application. If not included herewith (or previously mailed), a Notice of Allowance and Issue Fee Due or other appropriate communication will be mailed in due course.

X This communication is responsive to amendment fiied on 16 Dec 98 .
$\boxed{\square}$ The allowed claim(s) is/are $1-74$ (renumbered)
\square The drawings filed on \qquad are acceptable.
\square Acknowledgement is made of a claim for foreign priority under 35 U.S.C. $\S 119(\mathrm{a})$-(d).\square Some*None of the CERTIFIED copies of the priority documents have been \square received.
\square received in Application No. (Series Code/Serial Number) \qquad -
\square received in this national stage application from the International Bureau \{PCT Rule 17.2(a)).
*Certified copies not received: \qquad _.
\square Acknowledgement is made of a claim for domestic priority under 35 U.S.C. § 119(e).
A SHORTENED STATUTORY PERIOD FOR RESPONSE to comply with the requirements noted below is set to EXPIRE THREE MONTHS FROM THE "DATE MAILED" of this Office action. Failure to timely comply will result in ABANDONMENT of this application. Extensions of time may be obtained under the provisions of 37 CFR 1.136(a).
\square Note the attached EXAMINER'S AMENDMENT or NOTICE OF INFORMAL APPLICATION, PTO-152, which discloses that the oath or declaration is deficient. A SUBSTITUTE OATH OR DECLARATION IS REQUIRED.

X Applicant MUST submit NEW FORMAL DRAWINGSbecause the originally filed drawings were declared by applicant to be informal.
X including changes required by the Notice of Draftsperson's Patent Drawing Review, PTO-948, attached hereto or to Paper No \qquad 7.including changes required by the proposed drawing correction filed on \qquad which has been approved by the examiner.
\square including changes required by the attached Examiner's Amendment/Comment.
Identifying indicia such as the application number (see 37 CFR 1.84(c)) should be written on the reverse side of the drawings. The drawings should be filed as a separate paper with a transmittal lettter addressed to the Official Draftsperson.
[.] Note the attached Examiner's comment regarding REQUIREMENT FOR THE DEPOSIT OF BIOLOGICAL MATERIAL.
Any response to this letter should include, in the upper right hand corner, the APPLICATION NUMBER (SERIES CODE/SERIAL NUMBER). If applicant has received a Notice of Allowance and Issue Fee Due, the ISSUE BATCH NUMBER and DATE of the NOTICE OF ALLOWANCE should also be included.

Attachment(s)
\square Notice of References Cited, PTO-892Information Disclosure Statement(s), PTO-1449, Paper No(s).Notice of Draftsperson's Patent Drawing Review, PTO-948Notice of Informal Patent Application, PTO-152
\square Interview Summary, PTO-413Examiner's Amendment/CommentExaminer's Comment Regarding Requirement for Deposit of Biological MaterialExaminer's Statement of Reasons for Allowance

1

NOTICE OF ALLOWANCE AND ISSUE FEE DUE

1.ME1/013

-11TE 6BO

APPLICATION NO.	FILING DATE	TOTAL CLAIMS		EXAMINER AND GROUP ART UNIT		DATE MAILED
日¢ \%\%, 5	景 $10 / 37$	1274	PEESO.		276	18.736
Frat Named SHAndith, Applicant						

THE APPLICATION IDENTIFIED ABOVE HAS BEEN EXAMINED AND IS ALLOWED FOR ISSUANCE AS A PATENT. PROSECUTION ON THE MERITS IS CLOSED.
the issue fee must be paid within three months from the mailing date of this notice or this APPLICATION SHALL BE REGARDED AS ABANDONED. THIS STATUTORY PERIOD CANNOT BE EXTENDED.

HOW TO RESPOND TO THIS NOTICE:

I. Review the SMALL ENTITY status shown above. If the SMALL ENTITY is shown as. YES, verify your current SMALL ENTITY status:
A. If the status is changed, pay twice the amount of the FEE DUE shown above and notify the Patent and Trademark Office of the change in status, or
B. If the status is the same, pay the FEE DUE shown above.

If the SMALL ENTITY is shown as NO:
A. Pay FEE DUE shown above, or
B. File verified statement of Small Entity Status before, or with, payment of $1 / 2$ the FEE DUE shown above.
II. Part B-Issue Fee Transmittal should be completed and returned to the Patent and Trademark Office (PTO) with your ISSUE FEE. Even if the ISSUE FEE has already been paid by charge to deposit account, Part B Issue Fee Transmittal should be completed and returned. If you are charging the ISSUE FEE to your deposit account, section " 4 b " of Part B-Issue Fee Transmittal should be completed and an extra copy of the form should be submitted.
III. All communications regarding this application must give application number and batch number. Please direct all communications prior to issuance to Box ISSUE FEE unless advised to the contrary.

```
MMPORTANT REMINDER: Utility patents issuing on applications filed on or after Dec. 12, 1980 may require payment of maintenance fees. It is patentee's responsibilify to ensure timely payment of maintenance fees when due.
PATENT AND TRADEMARK OFFICE COPY
PTOL-85 (REV. 10-96) Approved for use through 06/30/99. (0651-0033)
```

In re application of:
Paul T. Shannon, Sr.
Appl. No. 008/782,889
Filed: January 10, 1997
For: System and Method for Computerize Evaluation of Gemstones (Amended)

Art Unit: 2764
Examiner: T. Peeso
Atty. Docket: 1644.0010000
Batch No. R81

Letter to PTO Draftsman: Submission of Formal Drawings
Assistant Commissioner for Patents
Washington, D.C. 20231

$$
f
$$

Sir:

$$
1111151999
$$

 to the informal drawings submitted with the above-captioned application. The application number, group art unit and attorney docket number appear on the back of each sheet. Acknowledgment of the receipt, approval, and entry of these formal drawings into this application is respectfully requested.

It is believed that all corrections required by the Official Draftsperson have been accommodated. If any further changes are required, it is requested that the Draftsperson contact the undersigned at the telephone number below.

It is not believed that an extension of time is required, other than any already provided herewith. However, if an extension of time is needed to prevent abandonment of the application, then such extension of time is hereby petitioned. The U.S. Patent and Trademark Office is hereby authorized to charge any fee deficiency, or credit any overpayment, to our Deposit Account No. 19-0036. A duplicate copy of this Letter is enclosed.

Respectfully submitted,

Date: July 13, 1999
1100 New York Avenue, N.W.
Suite 600
Washington, D.C. 20005-3934
(202) 371-2600

5966673

FIG. 1

9906-35.vsd/1

FIG. 2

FIG. 3(a)

FIG. 3(b)

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

9906-35.vsd/12

FIG. 12

FIG. 13(b)

FIG. 14

9906-35.vsd/17

FIG. 16

FIG. 17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

FIG. 25

FIG. 26

FIG. 27

FIG. 28

29(b)

FIG. 29

FIG. 30

FIG. 31

FIG. 32

FIG. 33

FIG. 34

9906-35.vsd/35

FIG. 35

FIG. 36

FIG. 40

FIG. 37

FIG. 38

FIG. 39

FIG. 41

FIG. 42

FIG. 43

FIG. 44

FIG. 45

FIG. 46

FIG. 47

FIG. 48

FIG. 49

FIG. 50

FIG. 51

FIG. 52

FIG. 53

FIG. 54

FIG. 55

FIG. 56

PART' B-ISSUE FEE TRANSMITTAL

MALLING INSTAUCTONS: This form should be used for transmitting the ISSUE FEE. Blocks 1 through 4 should be completed where appropriate. All further correspondence including the issue Fee Receipt, the Patent, advance orders and notification of maintenance fees will be mailed to the current correspondence address as indicated unless corrected below or directed otherwise in Block 1, by (a) specifying a new correspondence address; and/or (b) indicating a separate "FEE ADDRESS" for specifying a new corresponde
maintenance fee notifications.
CURRENT CORRESPONDENCE ADDRESS (Note: Legldy mark-up with ary corrections or use Block 1)

Note: The certificate of malling below can only be used for domestic malings of the Issue Fee Transmittal. This certificate cannot be used for any other accompanying papers: Each additional paper, such as an assignment or formal drawing, must have its own cerificate of mailing.

Certlficate of Mailing

I hereby certlfy that this Issue Fee Transmittal is being deposited. with the United States Postal Sevvice with suficient postage for first class mais in an envelope addrossed to the Boxissue Fee address above on the date indicated below.
3. ASSIGNEE NAME AND RESIDENCE DATA TO BE PRINTED ON THE PATENT (print or type) PLEASE NOTE: Unless an assignee is identified below, no assignes data will appear on the patent. Inclusion ot assignee data is only appropiate when an assignment has been previously submitted to the PTO or is being submitted under separate cover. Complation of this form is NOT a subsititue for filing an assignment.
(A) NAME OF ASSIGNEE

Diamond Technoloqies, Inc.
(B) RESIDENCE: (CITY \& STATE OR COUNTRY), Macon, Georgia

Please check the appropriate assignee category indicated below (will not be printed on the patent) \square Individual \square corporation or other private group entily \square govemment

PTOL-85B (REV, 10-96) Approved for use through 06/30/99. OMB 0651-0033
Patent and Trademark Offica; U.S. DEPARTMENT OF COMMERCE

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:
Paul T. Shannon, Sr.
Appl. No. 08/782,889
Filed: January 10, 1997

For: System And Method For Computerized Evaluation of Gemstones (Amended)

Art Unit: 2764
Examiner: Tom Peeso
Atty..Docket: 1644.0010000
Batch No. R81

Amendment Under 37 C.F.R. § 1.312(a)

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Attn: Box Issue Fee

Submitted herein is an Amendment Under 37 C.F.R. § 1.312(a). As payment of the issue fee has not yet been made or is filed herewith, Applicant respectfully submit that filing under paragraph (a) of 37 C.F.R. § 1.312 is proper. (M.P.E.P. § 714.16.)

It is believed that extensions of time are not required beyond those that may otherwise be provided for in documents accompanying this Amendment. However, if additional extensions of time are necessary to prevent abandonment of this application, then such extensions of time are hereby petitioned under 37 C.F.R. § $1.136(a)$, and any fees required therefor are hereby authorized to be charged to our Deposit Account No. 19-0036.

Please enter the following Amendment:
In the Title:

System And Method For Computerized Evaluation of Gemstones

Remarks

The foregoing Amendment adds no new matter. The amendment is submitted to correspond the title more closely to the claimed invention. Accordingly, Applicant respectfully requests that this Amendment be entered.
Respectfully submitted,

1100 New York Avenue, N.W.
Suite 600
Washington, D:C. 20005-3934
(202) 371-2600

EK: nh
P:UUSERSINHARRISLegrouplEjki1644,0010000amendment

Diamond Grading Technologies LLC
 6136 Frisco Square Blvd, Suite 385 Frisco, TX 75034

April 12, 2011
U.S. PATENT AND TRADEMARK OFFICE
P. O. Box 1450

Alexandria, VA 22313-1450

Re: Notice of Loss of Entitlement to Small Entity Status
U. S. Patent No. 5966673

To Whom It May Concern:
Pursuant to 37 CFR 1.27 and 1.33 (b), please consider this letter Notification of Loss of Entitlement to Small Entity Status for the above referenced patents.

Matthew Vella
Registration No. 50,204

MAINTENANCE FEE TRANSMITTAL FORM

(Do not submit this form electronically via EFS-Wèb)

Address to:
U.S. Patent and Trademark Office
P.O. Box 979070
St. Louls, MO $63197-9000$
\quad - OR -
Fax to: $571-273-6500$

I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient-pastage as first class mail in an envelope addressed to "United States Patent and Trademark Office, P.O. Box 979070,

Signature

Enclosed herewith is the payment of the maintenance fee(s) for the listed patent(s).

A check for the amount of $\$ 2,055.00$ surcharge is enclosed.
2.Payment by credit card. Form PTO-2038 is enclosed.
3.The Director is hereby authorized to charge \$ \qquad to cover he paym LBX Operationgbelow to Deposit Account No.

The Director is hereby authorized to charge any deficiency in the payment of the required fee(s) or credit any overpayment to Deposit Account No. \qquad .

- Information required by 37 CFR 1.366 (c) (columns-1 \& 2). Information requested under 37 CFR 1.366 (d) (columns 3, 4. \& 5)

Item	Patent Number* Column 1	U.S. Application Number* [e.0., 06/555,555] Columin 2	Maintenance Fee Amount (37 CFR 1.20 (e) (g)) Column 3	Surchaige Amount (37 CFR 1.20(h)) - Column 4	Payment Year (select one below) Column 5		
					3.5 yrs	7.5 yrs	11.5 yrs
1	5966673	08/782889	2,055.00				
2							
3		THIS IS AN ADDITIONAL PAYMIENT FOR SMALL ENTITY RATE PREVIOUSLY PAID.			RGE	Y.	
5							
					\qquad additional sheets attached for listing additional patents.		

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on Form PTO-2038.

Respecifully submitted, **
Customer's Signature: \qquad
Customer's Name: \qquad Registration Number, if applicable:

Telephone: \qquad Fax: \qquad
Note: All correspondence will be forwarded to the "Fee Address" or to the "Correspondence Address" if no "Fee Address" has been provided. See 37 CFR 1.363.
Payment of small entity fee is appropriate if small entity status still exists, see 37 CFR $9.27(\mathrm{~g})$. To establish small entity status or to change status from small to large entity, a wifter assertion is requifed. See 37 CFR 1.27 and 1.33 (b).

* WHERE MAINTENANCE FEE PAYMENTS ARE TO BE MADE BY AUTHORIZATION TO CHARGE A DEPOSIT ACCOUNT, BOTH THE NAME AND S!GNATURE OF AN AUTHORIZED USER ARE REQUIRED.
This colfection of information is required by 37 CFR 1.366. The information is required to obtain or retain a benefit by the public which is to fite (and by the USPTO Thiscess) an epptication. Confidertiality is govemed by 35 US.C. 122 and 37 CFR 1.11 and 1.14 . Thls collection is estimated to take 5 minutes to complete, o process) an eppication. Coniceniaitry (s) govemed by ass a.S.C. 122 and the USPTO. Time will vary depenting upon the indjuddual case. Any comments on including gathering, preparing, and submiting the completed application torm to the USPTO. ITme wil vary depending upon the indimdual case. Any comments on Trademark Office, U.S. Department of Commerce. P.O. Box 1450. Alexandria, VA. 223i3-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS SEND TO: Untted S'tates Patent and Trademark Office, P.O. Box 979070, St Louis, MO 63197-9000.

If you need assistante in completing the form, call 1-800-PTO-9199 and select option 2.
STERNE KESSLER GOLDSTEIN \& FOX
1100 NEW YORK AVENUE NW
SUITE 600
WASHINGTON DC 20005-3934

In re Patent No. 5,966,673
Issued: October 12,1999
Application No.: 08/782,889
Filed: January 10, 1997
Attomey Docket No: 1644.0010000

This is a notice regarding your request for acceptance of a fee deficiency submission under 37 CFR 1.28. On September 1, 1998, the Court of Appeals for the Federal Circuit held that 37 CFR 1.28 (c) is the sole provision governing the time for correction of the erroneous payment of the issue fee as a small entity. See DH Technology v. Synergystex International, Inc. 154 F.3d 1333, 47 USPQ2d 1865 (Fed. Cir. Sept. 1, 1998).

The Office no longer investigates or rejects original or reissue applications under 37 CFR 1.56. 1098 Off. Gaz. Pat. Office 502 (January 3, 1989). Therefore, nothing in this Notice is intended to imply that an investigation was done.

Your fee deficiency submission under 37 CFR 1.28 is hereby ACCEPTED.
This application is no longer entitled to small entity status. Accordingly, all future fees paid in this application must be paid at the large entity rate.

Inquiries related to this communication should be directed to the undersigned at (571) 272-3222.
/Kenya A. McLaughlin/
Kenya A. McLaughlin
Petitions Attorney
Office of Petitions
cc:
Matthew Vella
Diamond Grading Technologies, LLC
6136 Frisco Square Blvd.
Suite 385
Frisco, TX 75034

Document No. AR1
Appl. No. 08/782,889

OPRSEALERESEARCHAASSOCIATES

The Standard

CODE V is the most comprehensive optical design and analysis program in the world and has set the standard for programs of its type for many years. Hundreds of organizations around the world use it to design and analyze optical systems for countiess applications. These applications range from laser printers to satellite reconnaissance systems, from intrared sensors to complex ultraviolet optical systems for integrated circuil fabrication.

Consider the following good reasons why so many engineers and scientists have selected CODE V as their performance standard.

Innovation \& Quality

innovative concepts and quality execution are two primary reasons COOE V users are so successful. Innovation has brought them such industry-leading features as:

- Zoom/multi-configuration optimization and analysis
- Environmental analysis
- MTF and RMS wavefront-based tolerancing
- User-defined constraints in optimization
a Comprehensive holographic/diffractive optical element modeling
- Optional menu-driven (mouse/keyboard) interface
a Solids modeling (including full-color smooth shaded solids)
- Interterometric interface and closed-loop computer-aided alignment
- Non-sequential surfaces for segmented, multi-path, and other unusual systems
e "Black box" lens modules for modeling systems based on measured properties
- Vector diffraction calculations including polarization effects and surface coatings
a Global Synthesis ${ }^{(®)}$, the first practical global optimization method for optical design

While we are proud of these and many other innovative features, we are prouder still of the quality, depth, and usefuiness of CODE V's capabilities. We know our customers need to develop world-class products, so quality and reliability are the highest priorities in CODE V development and support.

Superior Productivity

Optical design software should help you to achieve better results than you could otherwise attain. It should provide the fastest possible response to your customers' needs. That's what "productivity" means. All of the features of CODE V are designed with this fundamental objective in mind.
Ease of Use - CODE V's assumptions, structure, and commands are designed to be fast and "natural" to the engineer or scientist using it on a regular basis. To make its manyfeatures accessible to new or occasional users, CODE V also includes a modern, menu-driven graphical user interface (GUI). With this advanced GU1 interface, pull-down menus and buttons help you quickly navigate through the program, using the mouse or keyboard. Fill in a few values in the input window to define your calculation and click the GO button - it's that easy. Special "quick menuṡ" let you do frequent tasks with just a single click. Multiple windows for input, output, and graphics (with full $200 \mathrm{~m} /$ pan control) help you organize and control your work. Switch modes anytime to directly access the power of CODE V's commands and Macro-PLUS ${ }^{\text {tM }}$ programming language.

Database/Modeling Features - All the data used in modeling your lens - from radii and glass names to coatings, decenters, tolerance values, polarization parameters, and more - are referred to as the "lens database." The top level of CODE V is the "lens data manager" (LDM),

which gives you full control over the contents of this lens modeling database. Editing this database is as easy as filling in the cells of a spreadsheet.

One of CODE V's most powerful teatures is non-sequential surface (NSS) modeling. In NSS models, optical elements are defined in global coordinates and ray path sequences are determined by COOE V . Segmented windows, corner cube reflectors, prisms, optical fibers, and light pipes are a few examples of systems that can be modeled with NSS.

Optical Calculations - Once the lens data is defined, you can use any of over 40 specialized program modules to analyze, optimize, tolerance, and prepare your optics for fabrication. The block diagram shows the scope of what's
available - everything from aberration curves to lens cost data, MTF to Gaussian beams, paraxial ray trace to automatic testplate fitting. Three of the most powerful features are:

Oplimization - With a library of patent-derived starting points, simple default operation, and pre-defined constraints, new users cian get useful optimization results in minutes. And thanks to a remarkably versatile default error function and exact constraint control, such a simple run can often produce a reasonable design. But we also supply powerful user-defined constraints and user-defined error function features that give unlimited flexibility to the experienced user.
ORA's optimization research combines mathematical sophisti-- cation with extensive design

CODE V major teatures summary (space does not permit the inclusion of mãny capabilities and importand details).

Interactive, ray-based MFF tolerancing is a powerful simulation fool that allows you to quickly refini your tolerance budget. Changes in tolerance values: are evaluated Instantly to show the effect on your. System penormanee you save time and money by addressing production problems before production begins: \%.
experience to make such advanced features as polychromatic diffraction MTF optimization practical, powerful, and easy to use. And CODE V also includes Global Synthesis (GS), the first global optimization tool for lens design that can handle constrained optimization problems of 60 variables or more. GS is a practical tool - not a research project - that helps you find real solutions to real design problems, better and faster. And GS is easy to use - a single commarid turns a standard optimization run into a global run.
Tolerancing-ORA's technical leadership in optical tolerancing saves your company money by minimizing your optical fabrication costs. CODE V's tolerance method is based on measurable performance qualities (MTF, RMS wavefront error, distortion), and it even simulates compensating adjustments done during assembly. Automatic error budgeting and powertul statistical analysis help to make often massive data more manageable. The happy result: production problems are solved before you go into the shop.

Interferogram Interface - ORA's interferogram interface is a major contribution to optical fabrication support. It allows measured surface or wavefront data to be used as part of a CODE V lens model. Wavefront data can also guide the alignment of an already-built optical system. CODE V predicts the needed alignment parameter changes even without knowing what the errors are in the system.

Graphic Features - CODE V was one of the first optical programs to include extensive graphics. "Report-ready" graphics have always been one of its hallmarks. Another first was our use of solid modeling techniques (color "smooth shaded" 3-D solid views are particularly effective in presentations). CODE V has a variety of lens picture display methods to help you in visualizing complex systems. Automatic lens pictures let you instantly see changes made in interactive lens editing or during optimization.

Connectivity and Open Architecture - CODE V, the most powerful optics program available, is also able to communicate with other systems to meet a variety of special needs. Connectivity refers to its ability to transfer and accept information. For example, you can export 3-D lens pictures to CAD programs via IGES files, or export any program graphic in DXF or Encapsulated PostScript formats. Measured interferometric data (from Zygo or WYKO interferometers, as well as NASTRAN-simulated surface deformation data) can be imported through INT files.
Open architecture gives CODE V users flexibility. Using the built-in Macro-PLUS ${ }^{\text {m }}$ language, users can extend or customize CODE V calculations. Macro-PLUS is a high-level programming language that offers full access to the lens database as well as such programming constructs as variables, expressions, loops, tests, input/output, spreadsheet-like Worksheet Buffer ${ }^{\text {tM }}$, and file handling. Applications range from simple lists of commands to automated control of CODE V options to completely new calculations and graphical outputs. ORA also supplies a large library of ready-to-use standard macros.
Other user-definable features include surface equations, index gradients, optimization error functions, and graphics drivers. Building on these features, ORA is committed to making CODE V even more versatile in the future.

First-Class Support and Updates

Optimum engineering solutions require more than a program installed on your computer. You should expect first-class technical support when you need it - plus regular program updates, instaliation assistance, training options, and documentation that is both complete and useful.
This support should not be an afterthought or a secondary, part-time activity for an otherwise busy programmer. Your time is too valuabie

Macro-PLUS programming allows you to extend CODE V's capabilities,"ORA supplies over a hundred macros with CODE V. Showi are-the:DIST. macro to plot the full field distortion of a lens (in this case a laser scanining lens) and the SEARCH macro lor finding the manutacturer's catalog lens most closey fittind. Specilied requitements for focal length and diametior. .
to rely on a program with marginal or nonexistent support. That's why every CODE V license includes these essential services:

Technical Support and Training - "First-class" is not just a slogan at ORA. Technical support is critically important, so we offer a toll-free support "hot line" (U.S. and Canada) and a full-time technical support staff, alf with optical design experience, to help you when questions arise. If you are overseas, we can respond overnight via fax or e-mail. On-site installation help is available (though seldom needed). Several forms of training are offered, including regular seminars several times a year in the U.S., with additional seminars in Europe and Japan. On-site seminars are also available.

Program Updates - Extensive program updates are issued approximately once a year to add major new features such as interferometric analysis and MTF optimization. Other updates are issued as needed to make minor improvements and to fix customer-reported problems. All updates are provided free of charge as a standard part of the license.

Getting Access to CODE V

CODE V License - Because continuing customer service and regular program updates are such important parts of our product, CODE V is not sold - it is pravided under several ticense forms, all of which include monthly or annual license fees, or on a "pay as you go" network service. CODE V can be installed in yourfacility on 486 or Pentiumbased PCS (Windows 3.1 or later), on Sun SPARCstations, or on any of Digitai Equipment Corp.'s VAX/VMS workstations and computers. See our price sheet and platform-specific data sheets for more details.

ORA Network - When the need for CODE V is moderate or occasional, ORA's Network Service may be the ideal solution. An international data communications network allows local telephone access from nearly anywhere. Only a modem and terminal (or PC/Macintosh with terminal emulator) are required.
Call or Write ORA Today - Find out how CODE V, the world standard in optical design and engineering software, can start working for you.

coder

Corporate Headquarters: 3280 East Foothill Boulevard, Pasadena, California 91107
(818) 795-9101 FAX (818) 795-9102 E-mail: service@opticalres.com

East Coast Office: 945 Concord Street, Framingham, Massachusetts 01701

CODEV r non-sequential surtace, (NSS) capability gieatly extends the range of systems that can be modeded. The NSS ray trace dynamically determines the rayp
 comer cubes; and segmented windows can be modeled éficiently and effectivety

One of ORA's most important strengths is the synergistic interplay be tween our design and software development efforts. Our engineers provide ideas, guidance, testing, and feedback for the development of CODE V. In turn, CODE V provides them with the tools to solve an incredible volume and variety of design and engineering problems routinely and cost-effectively.
As an engineer or scientist, you may face a wide variety of optical design or analysis problems and challenges. You need a correspondingly diverse range of software capabilities to meet those challenges. It takes a sottware supplier who understands the problems you face to effectively develop those capabilities.
Our engineers have proven CODE V's abilities on a large variety of optical systems in production or in use today. A few examples:

- Optical disc lenses (audio, video, memory)
- 35 mm and video camera optics
- Laser scanner systems (bar code, laser printers, and others)
- Holographic head-up and heimet-mounted displays
- FL!R and other infrared systems

CODE V graphical output makes effecitive use of color workstations and terminals. Thi many optical systems' the 'use of color heilops you visuadize yóur optical system ánd lipht paths more 'clearty?

- Simulators
- Microlithography optical systems

Thanks to ORA's extensive design and engineering experience, we can fully appreciate the problems you face. As a result, we have created in CODE V a tool that meets these challenges head-on. The concept: an integrated package of optical programs, built on a common database and user interface, that addresses the full range of your optical needs. You shouldn't settle for less!
Commitment - We have long recognized that if you succeed, we succeed. Since our founding in 1963, ORA has consistently worked to make this happen. This commitment to customer success has helped us grow to be the largest optical consulting firm and the largest supplier of optical design software in the world. Our success has not dimmed our vision or reduced our determination to provide the best services and products possible. Given the expanding importance of optical technologies, we see a growing market for the skills and productivity tools we provide.

COMPUTERS AND SOFTWARE

World

Three-dimensional modeling program simplifies optomechanical design

Optical engineers can construct and analyze systems of optical components as well as mechanical structures with LightTools, a three-dimensional (3-D) modeling program from Optical Research Associates (ORA, Pasadena, CA). Unlike traditional optical-design software in which systems are entered and evaluated as a series of surfaces, each system component is specified as a 3-D object that can then be manipulated in space through simple drag and drop operations. Nonsequential ray-tracing capabilities, including refraction, reflection, and amplitude splitting at each surface, allow the designer to introduce user-defined ray patterns into the system at any point and observe how the light is propagated. Currently the software runs on SUN Sparcstations; a version for Microsoft Windows is planned for mid-1995 release.
Components are either specified through the use of an icon toplbox containing common optical shapes or drawn using mouse-based, mechanical CAD-style operations. Mechanical and optical surfaces can be given refractive or reflective characteristics. They can also be specified as binary optics or diffraction gratings, requiring the software to simulate scattered light from surfaces.
Because each object in the program is a complete 3-D shape, the program is able to analyze the interaction of light with the entire component. For example, by making a lens edge reflective, the user can quickly determine if light reflected from that edge propagates through the system. This technique can be applied to the mechanical elements of the system such as lens barrels, retaining rings, or screw heads, allowing designers to assess their contributions to sys-tem-obscuration or stray light.

Fast track to real world solutions

John Tamkin of Polyscạn inc. (Tucson, $A Z$) worked with LightTools in the optomechanical design of his company's laser-based direct-imaging equipment, which is used to manufacture printed-

Both three-dimensional model of binoculars with light paths and cutaway of mechanical structure can be manipulated with LightTools; glass map in corner allows interactive graphical glass seiection.
circuit boards, multichip modules, and flat-panel displays. As in many industrial applications, space is critical in Polyscan's products, and designers frequently resort to complex folded optical paths in order to minimize system size. Using LightTools to model these systems, Tamkin has been able to quickly identify mechanical interferences in the ray path (see figure). Such obstructions can be difficult to visualize with traditional optical-design programs.

Once a rough optomechanical design is achieved by the optical designers, it is imported to AutoCad for refinement by mechanical engineers. Tamkin likes the capability of LightTools to transfer data to AutoCad through the DXF file format as a useful asset, although he would like to see this function further developed to include more sophisticated model parameters.
The ability to fully model both mechanical and optical structures of
system prototypes allows designers to converge quickly on a real-world solution. "The software allows an opticaldesign team to explore mechanical constructs before turning the design over to the mechanical engineers," says Tamkin. Optical designers are thus able to come up with system configurations that the mechanical designers can use more readily.

Object-oriented approach
Researchers at the MIT Artificial Inteldigence Laboratory (Cambridge, MA) have used LightTools in the design of eye-glass-mounted virtual-reality displays. Project member Phillip Alvelda was able to model the complete environment in which the system would operate, including the wearer's face and mechanical elements of the eyeglasses such as hinge screws. The program allowed him to analyze optical obscurations caused by facial features and pinpoint potential

Copyright 1995 by PennWell Publishing Company
sources of glare or stray light. In Alvelda's opinion, no other currently available software would provide this capability while remaining easy to use.
Alvelda believes that the utility of the package stems from its object-oriented approach "LightTools reflects how you work with real elements," he says. "Using it is just like constructing an actual prototype. It really allows you to

spot potential problems in manufacturing, assembly, and operation before they occur." The MIT group may also use the program as a teaching tool, helping students visualize optical systems and understand how reshaping and adjusting elements affects system performance.

Probing for stray light

LightTools helped engineers at Ball Aerospace (Boulder, CO) design the Near-IR Camera Multi-Object Spectrometer (NICMOS) destined for use in the Hubble Space Telescope. Project engineer Michael Kaplan created the original optical design in ORA's CODE V design program. The file was then imported to LightTools, where mechanical structures were added to the model.
Stray light is a major concern in this tightly packaged, multipath system. Using the software, Kaplan introduced various ray sets to probe for potential
stray light problems and test the effectiveness of different baffle designs. He found the ability to arbitrarily specify the reflectivity of any surface highly useful in identifying potential problems with specular reflection.
To improve the software in future releases, Kaplan suggests that ORA add the capability for importing objects that already exist in other CAD packages. By adding this feature and further refining the interface between LightTools and CODE V, he says, ORA could create a seamless development environment for optomechanical design.

Kristin Lewotsky
Assoc. Editor/Technology Laser Focus World

OPTICAL RESEARCH ASSOCIATES
3280. East Foothill Boulevard, Pasadena, California 91107

Telephone: (818) 795-9101 FAX: (818) 795-9102 E-mail: service@opticalres.com

A Building-Block Approach to Optical-Design Software

by Michael Hayford and David Brown

espite advances in both the power and ease-of-use of commercial optical-design software over the past few years. the basic way in which systems are mathematically modeled in these programs remains fundamentally unchanged. This has largely limited their use to the traditional areas of optical-element design and optimization.

Here we ll examine a new approach that provides for three-dimensional system modeling and allows nonsequential ray tracing. Specifically, we'll describe how this type of program helps designers analyze nonimaging optics, such as illumination systems, as well as examine the effects of mounts and optomechanical components in traditional lens designs.

Stuck in the past

The conventional approach to optical design is to designate a system as a collection of surfaces separated by breaks of various indexes of refraction, and then to trace rays that propagate sequentially through the system from one surface to the next. There has been a general trend among optical-design software providers to allow for ever more

flow sensor.
having both optical and nonoptical surfaces, such as edges, flanges, mounting holes and so forth. Additionally. more mechanical structures such as retainer rings, lens mounts, spacers and barrels can be included. Model construction is aided by a toolbox of commonly required shapes and the ability to stretch and resize components or surfaces with a mouse.

Once the model is built, the program can perform nonsequential ray tracing. Arbitrary bundles of rays can be introduced into the optical system at any point or orientation and their propagation through the system stuclied.
This approach can be useful in analyzing stray light, flare. ghost imaging and obstructions in the image path because it considers the optical effects of all system objects. In addition, the program can trace rays regardless of the order in which they encounter surfaces.

The attractive alternative

For very high-volume production. molded plastic optics can offer an attractive economic alternative to glass. Furthermore, the manufac-

Reprinted from the May 1996 issue of PHOTONICS SPECTRA® Laurin Publishing Co., Inc:
turing process lends itself to producing complex part geometries where mechanical functionality can be included along with optical surfaces. However; this same part complexity can make such systems difficult to analyze rigorously because light can propagate through what are intended to be purely mechanical features as easily as it can through those meant to be optical.

A molded-plastic fluid-flow sensor is an example of just such a product. The LightTools model of one possible design is shown in Figure 1. In a single unit, it includes a cylindrical aspheric lens for focusing a light source. a 45°-fold total-internal-reflection mirror, through holes for mounting and mechanical features for detector mounting. This fairly complex geom-

pipe design
starting point.

Three stages in design of an automated light pipe.

etry is quickly built up by employing a library of common shapes, together with the ability to perform Boolean operations (intersection, subtract, union, etc.) on surfaces.

Changing the focus

In operation, when liquid is present in the flow chamber. total internal reflection is defeated and the source is focused onto the second detector. This is modeled by changing the refractive index of the cavity.

Simply tracing rays through the system quickly establishes the sensitivity of the system to manufacturing and assembly tolerances. For ex-
ample, when the source is displaced from its nominal position. light no longer reaches the correct detector and some is even directed to the

detectors - is a valuable tool to determine the system's sensitivity to stray light. Possible paths for stray light from external sources that can enter the system and prop-

wrong detector.

Tracing fans of rays through the system backwards - that is, starting rather than ending at each of the
agate through to the detectors can easity be seen by using this method. Thick plastic waveguides (light pipes) are frequently used to pipe

ORTICATDESIGN
light from a source to an output surface. such as a button or graphic, in automotive interiors. This technique minimizes the number and cost of sources. The goal is typically to provide

There has been a uniform illumination, but it is complicated by the geometry of the system, which may require the light to travel around PC boards and wiring contacts and may necessitate illuminating movable objects such as gauges or sliding switches.
John Van Derlofske, David Lamb and Lloyd Hillman at the University of Alabama in Huntsville are inves-
which the part is constructed and its performance accurately modeled only on the computer, thus reducing the time and expense of the prototype cycle.

Two bulbs, four buttons

Figure 2 shows the start ing point in the design of a light pipe intended to use two bulbs to illuminate four buttons on a car radio; the first three buttons contain a single character, and the final button requires that four characters be illuminated. The bulbs are placed so that other pipes can be positioned near them to take light to other parts of the instrument
The initial design essentially consists of three 45°-fold mirrors for the

tigating approaches for illuminating the in-dash display systems of Chrysler automobiles. In the past. design of such systems required the construction and testing of actual working prototypes. The design would then be modified and the cycle repeated until satisfactory results were obtained. This process is both expensive and time-consuming. The group found LightTools effective for producing "virtual prototypes," in
single-character graphics, and one 30°-fold mirror for the multicharacter graphic. The larger mirror is set at a shallower angle to minimize the height of the light pipe and the graphic's greater length. In each case, to direct light impinging upon the surface in the desired direction, total internal reflection is used.
To analyze this system, the bulbs were modeled as objects with the same shape as the outer envelope of
the actual bulb; ray fans with 129 rays each were then traced from several different starting points on the bulbs' surfaces. While this is in no way a rigorous, radiometric analysis. it still allows the designer to examine the basic characteristics that the system will display when it is actually operating.

A series of subsequent analyses of ray traces showed that light was unevenly distributed because the lighting was not uniform. Using the program to add components and change their orientation eventually resulted in an optimal design.

While further analysis and refinement of the design will be required using software that provides more accurate radiometric analysis, the process to this point took only a few hours and did not require the construction of any actual prototypes. Several weeks might have been needed to produce and test actual prototype units if the program had not been used.

An added dimension

The program adds another dimension of capability to the area considered probably the most traditional domain of optical design camera lens design - in which LightTools can be used to analyze the optical effects of mechanical mounting structures within a lens and to probe for ghost images.

Lestie Foo of Nikon Precision has used the program as an adjunct to CODE V, which is used to design and optimize the basic optical system. After design with CODE V is completed, the system is imported to LightTools, where various mechanical mounting structures are added.

Foo uses the program's ability to automatically generate a $2-\mathrm{D}$ grid of ray fans to probe for stray light and ghost images. The system is traced backwards, from the focal plane through the lens, to determine what parts of the mount can be "seen" at the film plane. During this process. various parts of the lens structure can be "turned on or off," i.e., their reflectivity can be altered to assess the contribution of each surface or

feature to the stray light reaching the focal surface. Once again, the nonsequential ray-tracing ability of LightTools is necessary to follow rays that undergo multiple reflections within the lens.

Higher level of confidence
While precise, quantitative analysis of ghost images and stray light still need to be performed using other software. Foo has found that the program provides an additional level of confidence in a design before bringing it to the physical prototyping stage. Foo also commented that its ability to produce presentation-qual-
ity 3-D graphics can be useful in presenting design concepts to nontechnical personnel.

We believe that our new software has already made an impact on optical design. providing an easier method to input complex optical and optomechanical structures for further analysis as well as allowing nonsequential ray tracing for analysis of nonimaging systems and stray light. The result is a streamlined optomechanical design process with greatly reduced prototyping costs. More capabilities to enhance its use as a quantitative analysis tool are planned.

Meet the authors

Michael Hayford is LightTools product manager at Optical Research Associates in Pasadena, Calif., and one of the product's developers. He has a BS and an MS in optics from the University of Rochester.
David Brown is director of marketing and customer service at Optical Research Associates. He has a BA from UCLA and an MBA from the University of La Verne.

OPTICAL RESEARCH ASSOCIATES
3280 East Foothill Boulevard, Pasadena, California 91107
Telephone: (818) 795-9101 FAX: (818) 795-9102
E-mail: service@opticalres.com Internet Home Page: www.opticalres.com

Snapshot: Abernathy

provides a history of illumination
software, discusses several
applications, and describes the

ating imagery using raytracing. In this method a ray was traced backwards from the detector, through the simulated scene, and ultimately to a light source. This is possible because Fresnel equations work the same way following a ray backwards and forwards.

The trick, however, was not in calculating the light paths at refractive or reflective surfaces, but rather in managing the formation of secondary (ghost) rays at surfaces. Imagine a system of two flat mirrors facing each other, with a glass plate between them, and a ray starting between them, normal to the faces. The ray would bounce back and forth. Each time it passes through the glass, ghost rays would be generated. First one ray creating two, which create four, and so on, generating ray segments, until the computer: (which has to keep track of each segment) ran out of memory. So, sophisticated adap-
 tive techniques were developed that ailowed the user to manage the formation of ray segments by controlling parameters such as the maximum number of ray seg. ments, maximum number of ghost rays, and minimum transmittance. We implemented this technology as the OPTICAD ${ }^{*}$ program, and for the last decade it has found an ever increasing variety of applications.

In the intervening years, non-sequential raytracing has been used to describe a variety of systems: However, our use of the term refers to programs that automatically trace rays through a design space, based strictly on the physical size optical characteristics, and location of the component objects in space. The user does not have to coax the program into non-sequential raytracing by setting up "regions" with input and output apertures. A true nonsequential raytrace program must beable to trace a 4π steradian bundie of rays at once, as shown in Figure 1.

For the illumination engineer, non-sequential raytracing technology has been a tremendous time and money saver It permits analysis of complex parts like automobile
dash panel lightpipes-predicting a part's lighting performance before the part is even built. Prior to the advent of these technologies, lightpipe designers (and other illumination engineers) found themselves designing a part, having to build and test the part in the lab, and then improving the design. This was slow and inefficient-but non-sequential raytracing changed that by allowing the designer to create a part in a CAD program, then import it for analysis to see how well light would travel through
it. Where did the light escape? Where did it concentrate? Where is the best location for a bulb? The design was thus refined before the first lightpipe was built. This tool proved to be a quantum leap in lighting system design.

Monte Carlo raytracing

So far we have talked about specular reflection and transmittance but much of lighting design is concerned with diffuse light. Diffuse light occurs. when a light ray strikes a surface that does not produce one reflected and one transmitted ray segment, but rather produces a statistical.distribution of possible ray paths. For example, a light ray striking sand-blasted glass may reflect and transmit in any number of directions. So how can we use raytracing to model a statistical distribution of light rays?

An effectiye solution is Monte Carlo simulation. Taken from the statistical technique of the same name Monte Carlo raytracing uses a statistically significant number of rays, and analyzes system performance by random surface normal realizations at each diffuse surface Surfaces can be modified to permit Lambertian, Gaussian, and x - y power law statistical surface normal distributions at each diffuse component. The process many seem computationally intensive, but modern desktop computers easily perform the task. Thus nonsequential raytracing was adapted to meet the challenge of diffuse reflection and transmittance.

The interface revolution

"All evolution in thought and conduct must at first appear as heresy and misconduct," said George Bernard Shaw and so it was in optical software interface design. Many of the major raytracing codes in the early.1980s were written in FORTRAN and were the legacy of gov-: erment development contracts, university research, and specific optical design projects. They were (and are) powerful, but each had its own uniique interface, which was typically a command or script language that the user typed in. Plots-could be sent to plotters. Output tables were sent to the terminal or line printer. Most software was expensive, leased rather than sold, and a short course was really required for a user to learn how to use the software. But that was about to change.
In 1989, when a young University of Arizona graduate named Xen Moore devroped TEMAX ${ }^{\text {™ }}$, he designed it from the ground up with the goals of being extremety easy to use, reliable, and affordable Moore believed that software, even optical design software, should be easy to learn-like the commeircial spreadsheets and word processors available on posonal computers He created a user interface that combined graphical output with a handy spreadsbeet-like data inpui He made the program truly interactive so that a user could make a design change and immediately see the result.
Moore continued to improve the interface and usability of ZEMAX ${ }^{\text {nx }}$, and it seems his insights about ease-ofuse have paid off. ZEMAXTM raised the bar several notches for optical engineering software, and user's expectations for both usability and the quality of user interface were going to be higher, henceforth, because they had seen what was possible. Illumination software would have to follow suit, and we developed a Windows ${ }^{\text {TM }}$ version of OPTICAD ${ }^{*}$ that aimed at superior user interface.

The challenges

With the advent of non-sequential raytracing, the illumination engineer was now equiped with a tool which could be used to address three major challenges: - Predicting design lighting efficiency performance, - Predicting design lighting uniformity performance, and

- Scattering prediction and stray light control.

Simple lighting efficiency is a basic challenge for many iltamination engineers. Consider the engineers

Flgure 2. Two lightpipe designs are tested in this pseutdocolor.intensity mas. Note superior uniformity on the lower sign design.

Figure 3. Ghast foci above laser beam paṭ. whodesign-lighting for undersea search equipment, or engineers designing ra. diative heaters for semiconductor drying. They must be concerned with efficient delivery of light to a particular region of space. Non-sequential raytrace tools were ideally suited to this because they could follow a ray striking a reflector, once or perhaps bouncing several times, and compute the transmittance losses due to absorption at the surfaces and in the media (volume absorption) along the path.

Eighting uniformity is a major goal for the illumination engineer. Figure 2 shows two designs for an illuminated sign, which uses a lightpipe. What the designer needs to know, in addition to how bright the sign will be, is how evenly or uniformly illuminated it will be. Anyone who has tried to read a digital watch in the dark can relate. The deft half of the watch display is extremely bright and the right half is too dim to read. Modern tools provide a mechanism to quantify this problem and solve it in the design stage. The upper sign in Figure 2 is not evenly illuminated-too much of the light is concentrated in the center, and people are likely to have difficulty reading the sign (as evidenced by the variation in pseudocolors representing intensity levels). Armed with awareness of this problem, the illumination engineer concludes that the light should be diffused, and elects to
frost the back of the plastic lightpipe. The result is shown in the bottom sign, which is much more evenly illuminated. The software can show the result either as naturally polychromatically shaded as black and white, or use pseudo color to enhance subtle changes across the field.
Too much light in the wrong place can beas undesirable as having too lit tle. As a result, stray light analysis: is an important-furiction of lighting software.

Telescope and celestial instruments are often designed with baffles to control the movement of stray light, as ghost rays can completely eclipse the signal the instrument is intended to collect. These ghost rays can form as Fresnel reflections from refractive surfaces, or simple reflections from interior surfaces of the instrument. Laser systems are also good. candidates for stray light analysis. Figure 3 shows a case, analyzed by William Swantner, in which a ghost focus occuirred just above a CO_{2} laser. This focus still possessed enough: energy to cause harm to a person standing: in the wrong place::

Applications

Maximizing the efficiency of a lamp reflector is often desirable. Figure 4 shows a desk lamp with rays traced. Note that some of the rays strike the surface multiple times and others do not. A polar plot from the desk lamp (See Fig. 5) is extremely useful because it shows how light is distributed in angle space, and in this case the design produces strong lobes just off the Z-axis, which might be desirable for its application. As is often the case, it is desirable to ensure that the design places light in a particular angular distribution.

The automobile industry is highly competitive and cost-consciousnesp is part of every engineering decision, If a part, like a headlamp, can be made even a few cents less expensively while still meeting design performance, the manufacturer becomes more competitive in the marke tplace by mproving the désign.
Here's how the process works. First, for a given application, figures of merit are established - in this case the engineer deter: mines from specifications exactly how much energy should be deposited on the. surface in front of the car and in angle space. The basic design for the part (in this case a bulb/ reflector assembly) arrives, usually in an auto company specific CAD format. The designer converts it to an exportable form-typically IGES. This design is then imported into the illumination software for analysis. A performance profile (probably consisting of the polar plot and intensity map) is built for the system, which becomes the baseline: The engineer then modifies the design; either to reduce cost, increase performance, or both, and re-evaluates the design. This iteration occurs until design goals are met. The modified design is made into a prototype, tested, and then sent to production.

The market

The illumination software market is an emerging market, because easy-to-use software tools have become available only in the last few years. Unlike other areas such as lens design, there are relatively few specialists, but many general engineers who find themselves analyzing and improving illumination system performance. My experience with OPTICAD* has introduced appli-

cations I would never have expected-starting with a German engineer working on an improved bread toaster for a large consumer appliance manufacturer. Here are just a few of the other application areas that are beginning to make use of non-sequential raytracing technology:

- Highway retro-reflectors used for lane separation;
- Lighting display panels in consumer products;
- Heads-up displays in aircraft;
- Outdoor lighting for sidewalks, runways, and heliports;
- Light movement analysis in carpet fibers;
- Lightpipes to illuminate controls in cellular phones and radios;
- Airport beacon lens design;
- Optical flow cell instruments used in biology and medical diagnostics; and
- Laser optics for diode-pumped solid-state lasers.

The future of lighting design software

The future of lighting design software is, forgive the pun, very bright indeed. Users expect to see an ever increasing level of integration between lighting software and other applications. Already, better software products are offering a high degree of document export and import capability. Technologies like Object Linking and Embedding (OLE) offer an approach for a higher degree of integration between software applications, which is desirable. OLE is a means of allowing programs, and the data within programs, to interact in a useful way. A simple example is the ability to place a spreadsheet in a word processor's document, and yet retain the calculational capabilities of the spreadsheet program within the new compound document. There are, however, other approaches to integration. The technology is still maturing, but holds promise.
A subtle, but important advantage, for Windows ${ }^{\text {™ }}$
users, is that a good Windows ${ }^{514}$ interface follows the Microsoft guidelines for Windows ${ }^{\text {tu }}$ Interface-things like what happens when the File Open menu item is sefected, and what functions are assigned to the left.and right mouse buttons. By adhering to the Windows ${ }^{\text {Tx }}$ interface, programs are much more user friendly. Every day more fighting software becomes available under Windows ${ }^{\text {ma }}$. While it is true that some of these programs are simply using a bolt-on front-end to their command driven program, others are truly integrated Windows ${ }^{\text {n4, }}$ products, supporting all standard Windows ${ }^{\text {mm }}$ functionality. The easy way to judge the quality of software interface is to "Fly it before you buy it," by obtaining a demo copy of the software either from Internet homepages or requesting by mail. The most useful demos are actually working models of the software that permit users to test features of the code, albeit in a restricted way, so you can see what it is like to actually use the code.

For 3-D model interchange, IGES has been a defacto standard for the past few years. However, it is a redundant standard, and most vendors do not support all of the hundreds of IGES entities. STEP will eventually replace this standard, depending on how rapidly mechanical CAD manufacturers accept and implement it. Other proprietary standards offer their own advantages, but broad acceptance would require industry-wide input and accessibility. The Non-Uniform Rational Bicubic Spline (NURBS) is seen as a good hope for a single, unified entity for general 3-D surfaces within other standards like IGES, however, support is still spotty.

This article has presented a discussion of lighting design software, based on the author's experience. However, there are other good software tools offered by many companies including Lambda Research, Breault Research Organization, Optical Research Associates, and others. All in all, look for more features, better integration, and improved price-performance, as market competition works to the benefit of the end user. Finally, you should expect to be able to buy a digital watch that you can actually read in the dark! .

References

1. X. Brockschmidt, Inside OLE, 2nd ed., (Microsoft Press, Redmond, Wash., 1995) pp.5-6.
2. W. Elmer, The Optical Design of Reflectors, (T.L.A, Inc., Salem, Mass., 1989) pp. 31-35.
3. C. Galceran, "CAD Program Analyzes Unconventional Optical Systems," Laser Focus World, (September 1988).
4. Microsoft Corp., The Windows Interface: An Application Design Guide, (Microsoft Press, Redmond, Wash., 1992), pp. 21-48.
5. K. Moors, ZEMAX User's Guide, (Focus Software Inc., Tueson, Ariz., 1995), pp. 1-1 to 1-4.
6. B. Smith et al, Initial Graphics Exchange Specification (IGES) Version 4.0 (National Bureau of Standards, Gaithersburg, Md., 198B), pp. I-6.
7. T. Whilted, "An improved model for shaded display," Comm. ACM 6, pp. 343-349 (1980).

Michael Abernarhy is co-founder of OPTICAD Corp., and principal author of the OPTICAD ${ }^{\oplus}$ optical analysis program.

These significant benefits are accomplished by accurately representing the combined mechanical and optical system, then analyzing and clearly communicating the effect on light propagating through it. Real models, "sculpted" in software, interact with non-sequential (NSS) systems.
In addition to the ability to quickly create and analyze design
prototypes, LightTools allows users to visualize the end result with
photographic quality graphics that can be zoomed or rotated in three dimensional space. Complex areas can be viewed in detail while simultaneously viewing the entire system. Up to four "ports" or viewpoints of any system can be displayed simultaneously.
LightTools has a large number of features and capabilities to facilitate the design and analysis of many different types of illumination systems. Complex light pipes, for a variety of applications including the back lighting of vehicle dashboards, are one type of system that requires complex modeling coupled with flexible analysis capabilities. Systems that LightTools Illumination Module can assist in designing include projection systems, flat panel displays, interior vehicle lighting, segmented mirrors, sign lighting, machine vision systems, medical optics illumination, luminaires, and many others.
The LightTools Illumination module allows for a wide variety of
illumination analysis, can output the data in a several different formats, permits very complex volume and surface emitting sources, scattering surfaces. Optical and mechanical elements can be formed by complex Bool
operations (union, subtraction, intersection) on basic LightTools primitives. Other shapes can be formed from revolving sweeps of profile shapes or by importing complex surface or solid data from other CAD software packages.
LightTools Illumination Module is a powerful new tool that will lead to many new, creative, and high-quality illumination systems.

Overview

The LightTools ${ }^{\oplus}$ product line from Optical Research Associates is being extended to specifically address the illumination design and
nalysis needs ortical and inmate in the second quarter of 1997. Beta Test begins in January 1997. This document describes the capabilities of this new product.

Topics included in this document

LightTools (llumination Module Introduction

Description of some benefits of using the Illumination Module
A listing of Illumination Module features
The LightTools product line
LightTools hardware requirements
Optical Research Associates software licensing policy
Optical Research Associates company overview
LightTools Illumination Module Introduction
The LightTools Illumination Module runs in conjunction with the
 have been made specifically with illumination design requirements in mind.

The LightTools Illumination Module can save companies design time ickly explore and analyze the functional and performance trade-offs altemative design forms. It can increase the quality of the end product. It can decrease the lead time from need identification to market introduction of a new product.

LightTools Illumination Module: Benefits
LightTools facilitates the design and engineering of illumination systems by providing state-of-the-art interactive solid modeling user interface whereby users can quickly create complex optical systems in three dimensional space. Mechanical and optical components (including sources, receivers, light pipes, reflectors, lenses, diffusers, prisms, beam splitters, diffractive and binary optical elements, etc.) all share the same database and ability to interactively propagate light optics.

The LightTools Illumination module calculates the illuminance photometric spatial distribution) on one or more surfaces simultaneously. The intensity (far field distribution) from all of the selected surfaces is also calculated. With both illuminance and/or intensity information, Lightools results can be compared with typical photometric measurements. The units can also be changed to
radiometric for cases where the human eye response is not necessary
Monte Carlo ray tracing, essential for many illumination design problems, is efficiently and uniquely implemented. Analysis output updates at user-defined periods throughout the Monte Carlo simulation. Users have the ability to stop, then change the graphical data displays, and restart the Monte Carlo ray trace. The data display modifications include changing the size of the receiver data collection area, the number of rays changing the resolution of the receiver

"buckets", color mapping, and data smoothing.

The Monte Carlo ray trace can also be'restarted after the completion of a previous Monte Carlo run. "Aim directions" can be defined that determine the direction of the rays to maximize the efficiency of the ray trace and calculations derived from it. A user option enables the path of a fraction of the traced rays to be displayed graphically during the Monte Carlo ray trace. The Monte Carlo based ray tracing features

> | E. | Surface emittance from either/both sides |
| :--- | :--- |
| F. | Control emittance of individual surfaces -- apodization |
| G. | Polychromatic analysis |
| H. | Starter library of sources |
| I. | $\begin{array}{l}\text { Saving source data after it has been traced to the } \\ \text { lamp surface(s). }\end{array}$ |
| II. | Ray Tracing |
| A. | Monte Carlo ray trace |
| B. | Non-sequential ray trace (C) |
| C. | Scattering with 1 ray in, 1 ray out |
| D. | Scattering with 1 ray in, multiple rays out |
| E. | Scattering in reflection and/or transmission |
| | L. \quad Gambertian scatterer |
| 3. Cosine to the Nth scatterer | |
| F. | Control and display of which elements are ray traced |
| G. | Aim Direction |
| H. | Ray restarting from end point of previous simulation |
| I. | Specular transmission, reflection, and diffraction (C) |
| J. | DRAT (Diffract, Reflect, Absorb, Transmit) (C) |
| K. | Simple R, T, A loss model (C) |
| L. | Amplitude beam splitting (C) |
| M. | Ray trace tracks ray intensity (C) |
| N. | Optical coating support including Fresnel losses (C) |

LightTools Illumination Module: Features
The outline below includes primarily those features found in the Illumination Module, but also includes some features that are illumination-related in the LightTools Core Module. Those features in the LightTools Core Module are denoted by a "(C)". Note that the LightTools Core Module has many times more features than those listed here. For a more complete list of LightTools Core Module features, please request a copy of the LightTools Technical Description.

I. Source Definition

A. Multiple sources (including setting the flux)
B. Volume Emitting Shapes
~~்
Surface Emitting Shapes:
Disk
Rectangle
Sphere
Cylinde
Any Booleaned solid
D. Surface Emitter Angular Distributions:

1. Lambertian
2. Gaussian
3. user defined

Optical Research Associates

I.	Tabular displays of 1D and 2D data
J.	Adjustable binning of irradiance/illuminance distributions
K.	Display of Monte Carlo traced rays in Design views
L.	Combining data from different runs using the same receiver
M.	Overlay of line plots from different runs
N.	Labeling with radiometric/photometric units
O.	Tab-delimited file import/export of illumination data
V.	System Modeling (Core Module)
A.	Spheres, Cylinders, Blocks (C)
B.	Toroid (C)
C.	Swept surfaces (C) D.
Linearly Extruded Polygons (C)	

Autocalculated DRAT (C)

Absorption coefficient tied to materials data base (C)
III. Analysis and Calculations
A. Irradiance/Illuminance on a surface
B. Luminous Intensity of a source
C. Average Luminance (for use with encircled energy)

Source luminous intensity over a full sphere

Radial and planar symmetry data smoothing
Statistics for the ray data (average, std-dev., max)
H. Summary data of ray termination points
IV. Output Display
A. 2D Line plots - rectangular and polar

Raster psuedo color/greyscale plots
Candela plots
Iso-illuminance Contour plots
Smoothing of ray trace data
3D surface plots -- rectangular and polar
Sm
"Spot diagram" display of Monte Carlo rays on receiver surface
H. Encircled energy plots

successfully completed over 3500 projects for government, commercial, and consumer clients. Optical Research Associates has w Opntributions to the field of has won manards for its outstanding awards from NASA, have been for our optical engineering such as contributions to key national projects. Others, such as recen
contributions to key national projects. Others, such as recent awards
by industry magazines like Photonics Spectra, Laser Focus World, and Lasers and Optronics, have been for product breakthroughs and innovations breakthrougls in the field of optical design software

Optical Research Associates is committed to our customers' success. We maintain a staff of experienced optical engineers that are available full time to assist our customers in using our software to accomplish their jobs in the best and most efficient manner.

Optical Research Associates has three offices in the United States in Pasadena, California (near Los Angeles), in Lynhurst, Ohio (near Cleveland) and in Framingham, Massachusetts (near Boston). We also have distributors in Japan, Korea, Taiwan, People's Republic of China, Germany and France. By contacting our corporate office in Pasadena via one of the means provided below, we can either assist you directly or put you in contact with one of our offices or
distributors. Picase do not hesitate to call or write us if we may assist you in any way.

(818) 795-9101 (818) 795-0184

service@opticalres.com
http://www.opticalres.com/
Optical Rescarch Associates 3280 East Foothill Boulevard, Pasadena, Califomia
91107

Optical Research Associates

Optical Research Associates ("ORA ${ }^{\oplus י ?}$) is a leader in the optics industry both as the largest independent optical engineering services organization and as the developer of the world's leading optical design software packages, CODE V^{\circledR} and LightTools.

Founded in 1963, ORA has experienced continual growth by focusing its technical leadership in the single area of optical design and through an unwavering commitment to its customers' success. ORA employs over forty engineers among its sixty employees including members of a dedicated technical support staff available to all users of its software
products. We have customers in over twenty countries.

CODE V is used for the dcsign, analysis and tolerancing of imageforming optical systems. Its many unique capabilities include Global Synthesis ${ }^{(\omega)}$, MTF-based tolerancing, environmental analysis, partial coherence analysis, gradient index and DOE/HOE support, polarization ray tracing, and lens cost appraisal. It is unmatched in function, quality, accuracy, ease-of-use and technical support.

Lightools is three dimensional interactive solid modeling software that provides state-of-the-art means for directly and simultaneously representing optical and mechanical structures as well as point-andshoot interactive ray tracing. LightTools is ideal for setting up complex lens systems, illumination design and analysis, opto-
mechanical design, stray light investigations, and proposal work.

ORA's Engineering Services group provides imaginative cost-

 effective solutions across the entire spectrum of optical design from X-ray telescopes through IR communication systems, from microoptics for surgery to proposed large deployable adaptive systems, and in environments ranging from commercial to cryogenic to high energylasers. Since 1963, ORA's pre-eminent Engineering Services staff has lasers. Since 1963, ORA's pre-eminent Engineering Services staff has

LightTools Hardware Requirements

LightTools supports two different hardware platforms: the IBM-
compatible personal computer, and SUN Microsystems'
SPARCstation.
Lightiools runs on any IBM or IBM compatible PENTIUM or
PENTIUM PRO PC with a 90 MHz or faster processor. We
recommend the faster personal computers (120 MHz), especially those
based on the PENTIUM PRO processor in order to improve the speed
of large Monte Carlo based illumination calculations. A 17" monitor
running at a minimum resolution of 1024×768 with 256 colors is
 disk space depending on the options chosen.

LightTools runs on any SUN SPARCstation 5 or faster. We recommend the UltraSPARC processors in order to improve the speed of large Monte Carlo based illumination calculations. The minimum

 of disk space per LightTools process.

Licensing Software from ORA

customers have the latest software and documentation, and rapid turnaround on technical questions. And, after an initial six month period, if customers are ever dissatisfied with the benefits of using the software, the license and payments may be terminated with thirty days notice. Because of this, our company's success is predicated on on-going value. If an investment in ORA software is not achieving the expected return, you have not purchased software that will then go unused.

The LightTools Product Line

Lightools is a software product for the design and analysis of optical systems. It is based on a three dimensional interactive solid modeling system with optical accuracy that provides state-of-the-art means for directly representing lenses, mirrors, sources and receivers, diffractive
optics, prisms, Fresnel lenses, mechanical structures, and light paths.

Lightools provides a variety of ways to represent and interact with
the opto-mechanical model. Users directly interact with the 2D, 3D wireframe, and 3D shaded solid views. Straightforward interactive creation and modification capabilities include graphical place, move, otate, copy, and scale of aņy individual or group of components. either with the interactivity of mouse input or precise keyboard input.

With its "point and shoot" or Monte Carlo non-sequential ray tracing combined with the integration of optical and mechanical components in a single system, LightTools is ideal for the design and management of complex systems, illumination design and analysis, optonechanical design, stray light investigations, conceptual design, and for marketing or proposal work.

Lightools is a modular software offering. The primary module is the Core Module which is a prerequisite for all other modules and can support many applications with no additional modules. The Image Path Module allows the creation of sequential ray tracing and performs some basic analysis for image forming systems. folded lens system designs or those that contain irregularly shaped or prism elements.

Other modules under development, that will be released concurrently with the Illumination Module, include Data Transfer Modules for shortly thereafter.

What Tolkowsky Really Said

By AL GILEERTSON with research by CRAIG WALTERS

This is the second of a three-part series re-examining how the diamond cut is measured, judged and graded.

1n the first part of this series. we examined Tolkowsky's writing on the effects of girdle thickness and pavilion angles on the brilliant-cut diamond's reflection and refraction. In Part It. we look at the meaning behind Tolkowsky's work.
Having reviewed what Tolkowsky said, we now turn our attention to what he meant, and nowhere is it clearer than in his final pages. Tolkowsky was living in a world where diamonds were cut to no standard at all. He was trying to show why certain diamonds had more beauty. and how cutting to certain "standards" would produce a more beautiful diamond. His heading "Best Proportions of a Brilliant" is illustrated by a figure that shows the girdle facets on the paviljon only reaching barely past halfway to the culet and a culet that would be large by today's standards. The stars are smailer and the girdle facets taller, which causes the lines from the stars to bow out, rather than in, as in our modern "idealcut* diamonds (see figure 1 above). The iilustration is clearly not how we view the "ideal" cuts today.
In the final three pages he discusses a group of diamonds that he compares to his theoretical ideals: "In the course of his connection with the diamond cutting industry, the author has assisted in the control of the manufacture of some million pounds' worth of diamonds. which were all cut regardless of loss of weight, the only aim being to obtain the liveliest fire and the greatest brilliancy. The most briltiant larger stones were measured and the measures noted. It is interesting to note how remarkably close these measures. which are based on empirical ameSioration and rule of thumb correction, come to the calculated values." His re-

Top and bottom views of a round brilliant diamond.
sults can be seen in the accompanying table below.
Note that total depth is from 55.4 to 64.4 percent, crown height is from 13.3 to 18.6 percent, etc. He doesn't even report table sizes. Why not? He concludes, stating, "The very slight difference between the theoretical and the measured values is due to the introduction of a tiny facet, the collet. at the apex of the pavilions. This facet is introduced to avoid a sharp point which might cause a split or breakage of the diamond." He simply sees the above figures as very slightly different from his calculations and so close that he feels comfortable using them as examples. His defense about their variation is due the culet. which he has not defined for size in his text at all.

When we think of the sample diagram he provided, the fact that his calculations are
based on a knife-edge girdle, that there is no clear mathematical basis for the angles for girdle facets or star facess and now see his table of illustrations which he deems to have "very slight differences" we suddenly realize that he was speaking to a world that viewed diamond cutting differently than today. We can conclude that he was merely attempting to bring the cutting world close to where we see most diamonds now cut, but he did not have all the answers, nor did he claim to. This is why he made the statement "based on empirical amelioration and rule of thumb correction." He is telling us that while some of his calculations are empirical, some of the numbers he gives us are based on "rule of thumb"-what he deems to "look good." What Tolkowsky really did for us was to make us realize that diamonds could consis-
(continued on page 37)

TOLKOWSKY PROPORTION TABLE

Stone Numbers	\#1	\#2	\#3	\#4	\#5
Pavilion Angle	40.75	40.75	40	41	41
Crown Angle	35	35	34.5	33	33
Depth Percentage	58.7	61.4	55.4	58.5	58.9
Crown Height Percentage	15.7	18.6	13.3	15.7	17.8
Pavilion Depth Percentage	43.0	42.8	42.1	42.8	42.6

What Tolkowsky Really Said (conitinued from page 3.5)
tendly be cut to be very beautiful and by doing so set us on a quest to find the true ideal. Modern science and technology are now bringing us closer to discovering that true ideal.

GIA has been researching "ray tracing," attempting to understand what really creates the most brilliance and fire in a diamond. More groups are realizing that certain diamonds look better and are becoming more sensitive to cut grading. Price guides base their prices on a certain quality of cut. Given that Tolkowsky
introduced us to the concept of defining a well cut diamond, what will it take to finish the definition? Tolkowsky knew that there have to be two factors considered in defining bow well a diamond is cut. He spoke about them when he said. "we conclude that the correct value for pavilion angle is 40 degrees 45^{\prime} and gives the most vivid fire and greatest brilliancy , and that although a greater angie would give better reflection, this would not compensate for the loss due to the corresponding reduction in dispersion." There has to be a balance of both maximum reflection and maximum dispersion. Can one have no leakage of light through the pavilion and achieve maxi-
mum dispersion? Is some leakage through the pavilion required to have maximum dispersion? Tolkowsky gave us his opinion and defended it mathemarically in a limited fashion. The answers may be just around the comer.

In the next, final part of this series, we will look at other variables in measuring a diamonds beauty, and new technology for accomplishing the task.

A1 Gilbertson authored part one of this series using research funded by Craig Walters.

CERT FEATURES BRILLIANCE GRADE

Diamond Profile seeks to offer a grading report that breaks new ground. Its features include:

- Brilliance measurement: Computer imaging provides a map of light's path through the stone, allowing leakage to be measured. Various ranges receive different brilliance grades.
- Dimensions: Exact proportions are measured with Sarin's Dia-Mension. However, there is no cut grade buyers assess the information according to their own needs.
- Color: Three master sets are used to determine color. An imaging photospectometer is also employed, but final grades are determined by eye.
- Microphotography: This provides buyers with an easy-to-identify record of a stone's identifying characterists.
- Reference information: Additional information on the cover and back of the report reinforce consumers' understanding of grading standards.
- Supplement: For buyers using the Diamond Profile primarily for brilliance measurement and stone idenification, the Supplement includes information trom GIA or EGL certificates already issued on a stone.

DAMOND PROFILE:

Fax Todayl See page 62.

General Laser Analysis and Design Software

What is GLAD?

GLAD represents the state-of-the-art in laser and physical optics analysis. GLAD can model almost any type of laser or physical optics system with a complete end-to-end analysis, including full diffraction propagation, detailed treatment of laser gain, and many other laser and physical optics effects:

GLAD is a product of Applied Optics Research (AOR), the leading company in laser modeling with 20 years of experience in developing physical optics design and analysis software, and is distributed by Focus Software, inc. GLAD is the only commercially available program designed to be a comprehensive physical optics tool and is by far the most widely used program for optical and laser analysis. It is used in hundreds of industrial companies and national laboratories, worldwide.

GLAD uses a complex amplitude description of the wavefront which allows modeling of diffraction throughout the propagation path of the optical beam. Conventional geometric ray tracing programs are fine for traditional lens design for imaging applications, but are unable to treat general diffraction, laser gain, nonlinear optics, coherent and incoherent interactions, and other physical optics effects at which GLAD excels.

GLAD is available in two levels: GLAD and GLAD Pro. Glad Pro includes all the features found in GLAD plus advanced features as described in this brochure.

Applications for GLAD

Everyone who works with coherent (or partially coherent) light can benefit from the program. GLAD has been applied to a wide variety of the most advanced physical optics modeling applications including commercial laser design, laser research experiments, stable and unstable resonator design, transient laser response, photolithography, high performance phase plates for beam control, diffraction effects, and single and multiple mode waveguides.

This screen capture illustrates GLAD performing a calculation for an unstable resonator with tilt misalignment; including near-field and far-field intensity diagrams. Also shown is a plot of eigenvalues as a function of iteration cycles to indicate progress towards mode convergence.

This. plot demonstrates the advanced 3D color graphics capability of GLAD. Shown is the intensity profile of a Hermite Gaússian TEM $(2,2)$ mode using a combined isometric and contour display.

An overview of GLAD

GLAD is highly flexible and powerful and yet is simple to learn and use. With GLAD, the user stable to model both simple optical systems and highly complicated, multiple laser configurations. The code is, designed to analyze all types of beam trains and lase devices including the effects of diffraction, active. media, apertures, lenses and mirrors, and abeirations,

In GLAD, optical beams are represented using rectangular computer arrays of complex valued amplitude. The complex representation accounts for both the beam intensity and the phase of the electric field as the beam propagates. This is the most general and powerful technique available. Simpler methods; such as ray tracing, Gaussian ray propagation, ABCD methods, and rotationally symmetric propagation methods can not compare in power, accuracy, or versatility.

The input to GLAD is a simple text command script, which defines the initial beam parameters, the thumber of beams, wavelengths, and other data. The seript uses the GLAD command language to define events'that occur as the beam propagates, interacts with gain:media, diffracts at apertures, reflects or refracts through conventional optics, or other events. 2. The command script supports user defined varitables, subroutines, loops, in-line equations, and other . Figh level language constructs.

GLAD Capabilities

Gode Architecture:
Fülly 32 -Bit
Multithireaded for fast response; dual CPU support User Interface.

Interactive command structure
Mültiple output windows
Simpletext command scripts
Graphical Displays:
Isometrićs profiles, polarization, contour plots
Windows súpport for Postscript, metafiles (*.wimf)
DOS' suppport for Postscript, HPGL, and HP Laser Jet Macros of Commands:

Algebraice expressions
User-definted variables in commands
Interface with user programs for pre/post-processing
Comprehensive Documentation:
GLAD Theoretical Description
GLAD Command Description
GLAD Examples Manual
Supplementary Examples Manual
Extensive Examples:
More than 90 complete examples
A wide variety of systems are included for illustration

An isometric plot of the near-field intensity of a Q-switch laser, 40 nanoseconds after start. The speckle size indicates the instantaneous beam quality.

This isometric plot shows the image simulation capability of GLAD. Here is the partially coherent image of two different seven bar targets.

GLAD Features:

Integrated design environment (IDE)
. Simple or complex multiple laser beam trains
Coherent and incoherent interactions
Nonlinear laser gain models
Lenses and mirrors: spherical, toroidal or cylindrical
General aperture shapes
Near- and far-field diffraction propagation
Stable and unstable resonator modeling
Spécial features for resonator design
Seidel, Zernike, and phạse grating aberrations
Smoothed random wavefront aberrations
Lensand mirror arrays
Variable size arrays to 1024×1024 and beyond
Rectangular arrays and separable diffraction theory Propagation of multiple, independent laser beam trains Automatic propagation techinique control Gain sheets
Global cöordinate system - A Arbitrary mirror locations and rotations.

Geometrical aberrations
Whigh Fresnel numbers
Zonal adaptive optics model:
Phase conjugation
Polarization modeling
Partiaily coherent modeling
$A B C D$ propagators
Fiber optics and 3-D waveguides
Binary optics and gratings
Vector diffraction for high NA objective ênses:
M-squared characterization
Finite-element thermal modeling
Phase retrieval optimization Simulatè annealing optimization

GLAD Pro Additional Features:

Nonlinear optics:

R Raman amplification, Four-wave mixing
Frequency doubling
Self-focusing effects
Laser effects:
Rate, equation gain
Laser startup and Q-switching
Optimization:

Least squares optimization of any configuration User defined merit functions:
Any system parameters may be optimized
Geometrical optics:
Exact sürface by surface raytracing Lens groups maybe defined and analyzed
Atmosphẹric effects:
Kolmogorov turbuience
Thermal blooming

Documentation

Comprehensive documentation is provided in several volumes. The GLAD Theoretical Déscription describes in detail the theoretical and numerical basis of the program. The GLAD Command Description is a comprehensive description of all commands, with detailed explanations of GLAD syntax and comniand options and use.

Command files for over 90 examples are distributed with the program. These may be used as provided or modified as required for new applications. The GLAD Examples Manual describes in detail the most commonly used examples with the remainder being described in the Supplementary Examples Manual.

Supported Platforms

GLAD is available for IBM PC computers running Windows 3.1, Windows 95 , or Windows NT. See the current price list for version numbers appropriate for eactioperating system.

- GLAD is also available for many Unix-workstations including Sun, HP 700, and Cray computers: Under Unix GLAD provides multiple graphic displays through X-Windows. A client/server architecture allows GLAD to be run on a remote computer.

Technical Support

Fiee technical support on the use of GLAD is provided directly by $A O R$ for one full year from the date of purchase. Technical support is offered via telephone, fax, or e-mail: For international customers fax and e-mail allow quick and convenient support because of GLAD's text-based command format.

- Additional technical support beyond the first year is available through the purchase of either a technical support contract or a version upgrade. One full.year warranty is provided with purchase. Any reported defects will be repaired at no cost.

Evaluation Kit

The Evaluation Kit provides an exact "test drive" of GLAD so you can try the program before buying. The kit includes the complete GLAD documentation as well as a fully working copy of GLAD for up to 30 hours use. The price of the evaluation kit is fully credited toward the purchase of GLAD.

For more information...

For more information on GLAD, or on othèr Focus Software inc. optical engineering products, call, fax, or visit our web site at http://www.focus-software.com, or e-mail any questions to sales@focus-software.com.

An isometric plot of a randomly generated and smoothed phase aberration Arbitranyopháseberrations may be added to the beam trainst any point.

The intensity of a focusing beam shown as a through-focus plot. Note the full diffraction intensity is displayed as the energy propagates through focus.

Over 9,000 optical designs on CD ROMI

What is Lens VIEW?

LensVIEW is a database of most of the opticals designs found in the United States Patent literatiues More than 9,000 complete optical 'designs withminitiple examples and zoompositions for eacheratentarev included. With data from the ate 800 s throughte latestoptical designs, LensyEWiswithout peewa kits scope The extensive LensVEW databas incures not only the optical prescription datavit complete. inventor information, abstract data, sangle claimstext references, U.S. andintenational claśsification data and more. LensVIEWalso generatestseveral Koeration plots for a quick diägnosis of the eens, and generatees a cross-sectional drawng of the gesign. Complete search capability

LensVIEW has a very powerful search engine which permits searching through the more than 9,000 optical designs (about 15,000 including zoom posi:tions) using simple or complex queries. LensVIEW supports searches using numericalaperture, fiéld of view, magnification, number of elements, wavelength, and much more; there are 57 searchable parameters in all! Searches may inclúde ranges on the patent number, the inventor(s) name, and may use Boolean operators to look for certain keywords in the abstract.

LensVIEW exports to ZEMAX!

Best of all,LensVIEW exports allithese patented designs in ZEMAX formatl At the click of a butto , you can generate a ZEMAX format lens file. If you also have ZEMAX, then yô can load up the file and bego in modification of the lens for your specific requirenents. The extensive data base of LensVIEW. couplediwith the powerful search engine and ZEMAX file format. export capability, makê LensVIEW an invaluable. productivity enhancer for every optical designer and technical patent researcher: LensVIEW also exports data in CODE V .SEQ andother lens design program formats.

The Lens view usenjnterace ssimple to earnand use. There are windows for sembebig the data abse, listing lens - a data, drawing graphics sand moré.

Eocust Software, Incorporated
PO.Box 18228
tucson, Arizonna 85731 USA
Tel (520) 7 33 -0130Fax: (520) 733-0135
Exailsales@focus-software.com
http:/l/www foéus-software com

LensVIEW: The indispensawle resource

Every optical designer should have a cobyof LensVIEW: Using LensVIEW to do the background research on existing optical desigñs can savéceantless hours of frustration and wasted effort. Using. LensVIEW to search for designs which are similar to the design you need takes only minutes, and gives yot a great source of starting points for optical désign. Once you have found a candidate design, expófing the lens to a ZEMAX format file is quick and easy. Once in ZEMAX, the design may be modified to suit the specific requirements at a hand. LensVIEW will likely pay for itself the very first time you use it, and will prove to be an invaluable resource for every optical design project.

Intuitive graphical interface

The intuitive interface supports multiple graphic windows, including cross-sectional layouts, aberration plots, and numerou's dialog boxes and text display windows. The aberration plots inclưde longitưdinal spherical aberration offense against the sinecondition, sagittal and tangential astigmatism, and distortion W Lens VIEW:displays multiple text windows, including optical prescription data, optical system data,; LensVIEWClassification data, bibliographic data, references ited; inventors, abstract text, sample claims, and application data. There are also windows which display user-defined data, so that notes may be added toe each lens for future reference, and windows Which provide online help, and a complete reference of the USand LensVIEW classification systems.

LensVIEW: always up to date

Th LensVIEW is updated quarterly, and the initial purchase priceincludes the first year of updates. The frequent upgrades keep you current as to developments in optical design technology, to help keep you ahead of yourcompetition!

System requirements

Lens yIEW rins under Windows 3.1 or Windows 95 LensVEW requires 8 Mb ofRAM, a CD ROM player, and 20 Mb of free hard disk space. A separate lens designorogram, such as ZEMAX, is helpfulbut not requíred

For more information...

Lens VIEW is a product of Optical Data Solutions, Inc̀., and is distributed worldwide by Focus Software, Inc. For more information on LeensVIEW, or on other Focus Software optical engineering products, call, fax, or visit our web site at http://www.focus-software:com, ore-mail any questions to sales@focus-software.com

OPTICAL RESEARCHASSOCIATES OPTICAL SYSTEMAND:MODELING SOFTWARE

Opto-mechanical Design

With LighTonds, designers can lay tout optical and siructural elements while simultaneously considering the optical effects of all systems parts.

The design ol balifles. structures, mounts, and flexures all benefil from immediate access to the location and exact shape of the optical elements and the light proparating through the system. Using the same Lishimoois teatures. commands, and user interface as the lens ele ments. optu-mechamical designers. lens designers, and optical engineers can easily share data and perform cross-functional "what-if" desjgu trade-offs.

Lishtorads allows the packaging to be a part of the same model as the oplical systen. designed simultaneously with the oplical system. of as inpul criteria not to be violuted by the optical design. Lighthods provides took for handling the complexity of irsegular or folded three dimensional envelopes as a physical boundary condition for complex optics systems

Complex Optical System Setup

LighToo's is particularly useful in the set-up and visualizaion of mulii-path or folded lens systems, or syscems with prisms ns' irregularly shaped oplical elements. With LighToohs, problems with sign conventions, complex tabalar modeling of prisms, nonmodeled structural elemens, ind simplified lensfoplical shapes are a thing of the past.

Once a basic hayout is in Lightords. lens designers can use the opli cal calcudator lunction to manalilly itcrate on element-specific shapes or local lengit objectives. Data con be passed to CODE V for comprebensive sestem-wide oplimization and onalysis.

A system optimized in CODE V can be Iransferred into LishTools for integration with the structural elements for final visual check.

Stray Light Investigations

Stray light. energy trackibg, and ghost imige investigations are easy and straighforward using Lightomis. This is because every surface in
Lightimbl has optical characteristics such as refract. reflect, absorb. or split (with defined splis percenages). For example, a lens edge or even a relaining rine can be made fellective and light riys striking the edge will reflect and continue propagaing through the system.

Ray paterns can be defined anywhere in the system at any point
to nbserve how the light propagates. Lightools will automaically generate any required multiple ray "branches" and track the percent of energy remaining with each ray.

A grid footprimt plot. combined with tabular data specilying energy percentilges al each point where a ray passes
inrough a specified surface, provides quantitalive information.
This data can be viewed directly or passed via a tab-delimit-
ed file in a spreadsheet or to mathematical software for fur-
ther manipulation.

In a competitive environment. business is usuatly won by the company that best communicates its vision. For developers describing ideas, methodologies and end products to potential customers, the benefits of a complete. accurate. and exciting visual description of the solution cannot be overemphasized. Only Lishitools provides these benelits in the oplical design arena.

Optical engineers con quickly trade off aliernative oplical syslem approaches in the carly design phase. incorporating inputs from other engineering disciplines. Potenlial problems are discovered and corrected early, avoiding cosily downstream changes.

Lightools has many powerful interactive features which empower the user to work in the mosi efficient manner possible. The guiding philosophy in Lightools development is to produce a software tool that allows the user to concentrate on the design task, rather than on how to use the software. Output Includes encapsulated PosIScript, DXF, IGES, CODE V lens dala, CODE V plot file, LighiITools script, and tab-delimited spreadsheet formats:
Table view Provides unprecedented ease of access to an interactive solids system database which defines the entire model via a user-expandable, outline-form spreadsheet for system investigation or modification.

Construction tools Layers, grid support, local and global coordinate systems, sketch options for common optical shapes, and . standard CAD manipulation features give unprecedented ease-of-use for the creation and . modification of opical systems.
Boolean operations Union, intersect, and subtract operations allow for foul creation and editing of solids. All element types are suppored. Cutaways can be made to show internal details of oplical elements or structure.

Non-sequential ray trace

Physical representation of light propogation sup-
porings split rays. amplitudefenergy racking of
individual rays. grid fonprimt and labulas representations of energy inerscec iny a sur-

Diffractive surfaces Any sur.

User interface State-of-the-str interface includes a toolbar. puil-down menus. diabog boxes. console panel. on- Iine help including me-line prompl. and ican palene. Each icon contains explanatery siphers.
Dynamic feedback Dymic
"ruhberband" stre feedback during copverune funzions wia silhouene image "altath" no sekted elemen (s) to the curnor
No data limits LishTouk
has essenuaily tiv data limiss. For
insliance. it supports an enimited
number of suricees elements. wanelenghs. refernce ruts, orid fiedth. Aperture sops ate werimable al ans wation. All elemens and rays:
 fice can be specified is diffencives and the light propagales appropriately itrough andior off of the surface. An unlmited number ol inultiple arders cun be concurzenly urated.
Viewing View options include 3D. 3D
fwiretrame. hiddea line, silkoueste. solid. arimstu ceno). Field point. glase map, and tahular datal Jcp resentations with interative realdine simulane. ous uphoiting of all vitws.
Windowing Miximm lexibility with predelined ard user definable vicu angles. includiae retaion of the iD mokel: the wo. and tour pants!allowing mulkipte riewin! alletes and masinifiation factorn for a single models.

Imaging Path Module

An Imaging Path Module may be licensed for use with LightTools. It allows the creation of a sequential sur-face-based definition for lens design and analysis, for use directly in LighiTools, or in conjunction with CODE V.

Analysis of the imaging properties of optical systems requires identification of a specific sequence of surfaces along which paraxial and real rays are traced. LightTools lets you designate any number of these surface sequences, called imaging paihs, for which paraxial properties and solves, ray aberration curves, and other quantitative measures of optical perfomance can be: calculated.

Lightools automatically ensures that complex systems involving muliaple passes through surfaces and beamsplitters are correctly and consistently modeled.

The sequential surface definition in the imaging path docs not sipport multiple light paths in the same imaging path, but instead creates a distinct imaging path at each split. The definition of these image paths can be either automatic via using a "point and shoot" technique where a non-sequential ray is propagated through the system, or userdefinable via surface-by-surface selection:

Optical Research Associates

Optical Research Associates (ORA ${ }^{\circ}$) is a We are dedicated to setting the standard
leader in the optics industry both as the largest independent optical engineering sevvices organization and as the developer
 softwaré package
Founded in 1963; ORA has expenienced continual growth by combining optical design and engineering leadership with an unwaver-
 ing commitmentio us customer dusuccess Technical Supporthy Wheremomm Hegh ersymativircw tomer with high quathy sofuare withstate
of the-art functionality But this s s not an end
in and of itself: Our ultimate goal is to assist our isers in achieving geeater, productivity, shorter lead tipes rand superoopioducts

provided by a full time teamof highy yskiled
technical experts - trained not only in the use
of our software, but having backgroudds in
of our software, but having backgrounds in $\%$
in the field for the timeliness of our response and the technical completeness and accuracy of our assistance to all users:
Documentation, Training
Useriand installation documimination is supplied with cach copy of LighiTools
Regular manual updates and quarterly newsletters help keep you knowledge up to-date Training is available either through regularly scheduled classes or on-sie training Otw 2

Licensing Lightrools

- Lighrools is licensed on lease basis

This ensures that a il of our customers have
the latest software and documentation. And; afteran initilisix month period if customers are veer dissatistied with the benefils of using
 LishTooss the licenseand payments may be teminated with hinty days notice Because of dicated on this, our company: success is predicated o providing our customers with on-going valiee.

4ght jom

Call or write ORA today

 Corporate Headquarters 2280 E East Foothill Boulevard, Pasadena, California 9107 (818) 795-9101 FAX (818) 795-9102 EMail service @ opticalres.comEast Coast Office: 945 Concord Street, Framingham, Massachusetts 01701 CODE V and ORA are registered trademorks, and \dot{L} hitTools is a trademark of Optical Research Associazes From cover helmee mounted display system based on Hंone ywell palent number: U.S. 4,854,688

What is OPTICAD？

OPTICAD is a flexible，easy to usenon－sequential stray．light，and illumination opticalisystem modeling program for Windows．OPTICADCan perform analysis on arbitrarily placed optical components，with the capability to do unconstrained ray tracing，reflection， refraction，scatteritg，and iliumination modeling． I OPTICAD supportslenses，migors，light pipes， prisms，geometric shapes；and other optical compo－ hentso Sources may be modeled as points，lines，or sưffaces Sources maybe diverging orcollimated；and muiltiple sources may be placedatany faces maybe refractive or reflective，and be diffuse， specular，or a mixture of both．
\qquad
\qquad ．Arbitrary shapes，including arbitrary light pipes，
prisms and user－definedgeométrical objects may be created uísing the powerful polynet modeling capability． Ehtire system models may be created and modified using either macro like scripts or by using stock parts S seléeted from pull－down menus．

Applications for OPTICAD

Parabolie or arbiffarily shaped concentrators
Tight pipes of any shape or complexity
Automo ion instrumentand display panel lighting
dlumination systems，headights；taillights
Conventional optics，fociuding lenses andmirrors
Systems with prisms or beam splitters
Kaptopomputer displays
Side and television projectors
thow－cells，and other bio－medical instruments
Uniformiluminatión reflectors
Stray ight analysis，baffle．design， 1
Optical scanners：
Flashlamp and diode pumped lasers．
Grazing incidenceconics x－ray telescopes
Reflectivè highway márkers，solar collectors
－Axiconalkoptics
Fiberóptical design and multimode fibers

This screan capture ellustrates O PTiCAD performing a non－ sequential ray trace of an Abbe prism．Note the collimated beam entering from the left Ihe beam passesthrough a beam expander and then through an Abbe prism with an internalifoof，and then finally through ă beam reducer．

This plotdemonstrates how OPTIGAD can easily handle筞 sources which radiate in a full spherical pattern．All the rays exiting the source point are collected by the elliptical reflector and imaged to the other focal point．

Focus Software，Incorporated
P．O．Box 18228
Tucson，Arizona 85731 USA
Tel：（520）733－0130 Fax：（520）733－0135
E－Mail：sales＠focus－software．com
http：／／www．focus－software．com

An Overview of OPTICAD

OPTICAD uses a smple windows itterfacedo define, manipulate, and analyze arbitrancoptical systems. Userinput maybe va the pull downmenu system, or by exterhally defined macros

Macros are generally used to define complex parts, such as light pipes, faceted surfaces, or prisms, The macros are written ing simple ASCII script:

The polynet macro commands are used to define arbitrary objects which are composed of multiple: facets. Groups of polynet defined objects may b̄e used to implementsystems of arbitrary complexity.

Once the optical components are defined, sources may be located, also via direct placementor macro script. Sources may be collimated or divergent O Qtions allow sources to illuminate in a valiety of distribu tion functions, including cones, squares, Gaussiahtor Lambertian profiles, and more.

Ray densities may be selected, andithen OPTICAD will draw the rays propagating throughthe system. OPTICAD determines where the rays gotonce the geometry is defined. Rays may intersect components in an arbitrary ordet. There is no need to define the sequence of ray intersections as is the case with conventional ray trace códes.

Finally, OPTICAD produces 3-D isometric views of the optical system and rays, as well as wireframes and (optionally) solid shaded models: Illumination distribu-

- tions on arbitrary surfaces are also available.

OPTICADCapabilities

Code Architecture:
Fülly 32-Bit Windows code
User Intếrace:
Pull down menus
Toolbarfor frequently used functions
Poweifful macro scripts
Fuill 3:Dimensional CAD format
Exportiges and HPGL line work files.
Outtstariding interactive graphical interface Online help
Graphical Displays:
Isometric and arbitrary angle 3-D view
3-D ray trace view
Spot diagrams
Energy plots
2-D Intensity maps
Optional 3-D solid display
3-D Global coordinate system
Documentation:
Users Manual
Application Notes
More than a dozen completée examples

The incredible flexibility and power, of OPTICADiallows. definition of very general shapes, incituong this biockof

OPTLCAD Features

EHe Edit Yiew Design Modily gnalyze Options Window Help

ay artou tlecthing ar ar. Positian $=0.500000$, hasd sist : 4.000000

Here is a sample of a verygenerationtppe modeled with OPTICAD. Complétely arbitrary shípes may be modëled

WNTICAD fatures a true point and shoot non-sequential Tay trace enginesunlike some so-called non-sequential ray thace programs whichiadd on ton-sequential ray tracing as anf afterthought OPTICAD does not require the use of entry\% and "ext"ports; simply place the sources anywhere at all in a true 30 space, and OPTICAD determines automatically where the rays go!

OPTICAD incorporates all of these powerful features:
Raytracing a w
Diverging of cólimated ray bundles
True nonsequential ray trace
Muftiple independent ray paths
Adtomatic ray branching:
Muitiplepoint soúrces may be placedtanywhere
Total internal reflection, and Fresnel reflection
When Engy distribution and radiometric analysis
Diffuse scattering at any surface:
Lambertian, Gaussian, Power Law, X-Y exponential
Monte Carlo simúlation.
Volume absorption (Beets law)
Mirrors
Full and pattial: spheres, llipsoids, cylinders
On- and off-axis parabolas
Elliptical and parabolic troughs
Arbitrary 3:D faceted reflectors
Import from CAD programs via optional IGES translator
Cones and conics
Compound Parabolic Concentrators (CPC)
Winston collectors
Diffraction gratings
Lenses
Spherical:
\because Cylindrical
Aspherics
Atorics
Rods Finsnel Lenses:
Wiffraction
Gratings 3D Faceted Soligs Simple and complex prisms Whomerabes: - Airbitrary 30 surfaces

Import from CAB programs via optional IGES translator 4 Arbitrary light pipes-
Apertures of finite extent
In addition to a wide variety of conventional components, OPFICAD can model unusual, complex, user-defined solids and faceted surfaces using the powerful polynet model. Complex geometries and structures may also be defined in an external CAD program, then impoited into OPTICAD using the optional IGES translator.

Optional Features

Two optional OPTICAD features are available:
The 3D Solid Mode display option adds the capability to render arbitrary optical systems using a shaded polygon model. This feature greatly enhances the visualization of the optical system. The shading may be made partially transparent so that the ray paths within the solid optics may be observed.

The Opti-IGES CAB.translator option permits. translation between OPTICAD and IGES format files. This permits IGES standard CAD files to be impoited into OPTICAD for further non-sequential and illumination analysis. OPTICAD can export to IGES files without this option.

System Requirements

OPTICAD is available for IBM Pe computers running Windows 3.1, Windows 95 or Windows NTT.

System Requirements:
i486, Pentium, or Pentium Pro CPU
Minimum 8 Megabytes RAM
10 Megabytes of free hard disk space

Technical Support

OPTICAB comes with 90 days of technical support. Additional technical support and upgrades are sold by the year.

For More Information....

OPTICAD is a product of the OPTICAD Corporation, and is distributed by Focus Software, Inc.

For mere information on OPTICAD, or on other Focus Sớftware optical engineering products, call, fax, or visit our web site at http://www.focus-software.com, or e-mail any questions to sales@focus-software.com.

Arbitrary masks may be placed over illumination distributions, which permits analysis of instrument lighting.

fore deactivated.

T.This figure illustrates the non-sequential nature of OPTICAD. Note that rays which do not strike the lens pass . undeviated beyond the lens apertures.

This image was created by OPTICAD to illustrate rays. passing through a lens mounted inside of a barret Note some of the rays reflect off the inside of the barrelprior to being refracted through the lens.

The powerful polynet feature allows easy definition of general component shapes, including this prism.

\title{

Now starting from only \$795! OSLO LyAt

OSLO Light really shines in optical systems design. It handles more types of systems than programs that cost three times as much, and gives you SCP macro optimization, which provides the power to "optimize anything!" Call for details, or ask about OSLO LT, our free trial version.

OSLO PRO

OSLO PRO

OSLO PRO has established a well-deserved leadership position in contemporory lens design. It provides the new capabilities you need, such as gradient index and diffractive optics, the best Windows interface of any optical design program, plus a new command interface for maximum speed and power.

OSLO SIX

OSLO SIX provides the power and accuracy of the FORTRAN legacy programs, but uses new software technology to provide more speed and usability, at a much lower cost. It's based on 40 years of optics experience and 20 years of PC experience. If you're looking for the best in optical design software, check it out!

Sinclair Optics

6780 Palmyra Road Fairport, NY 14450 tel 716-425-4380 fax 716-425-4382

Celebrating 20 years of optical design on desktop computers

U.S., Europe	Israel	Korea	Taiwan	Japan
Sinclair Optics tel 716-425-4380 fax 716-425-4382	Rosh Electroptics tel 09.627401/3 1ax 09-616185	Modern Tech Ltd, tel 02-786-0447 fax 02-786-08\|4	Advanced Optek tel 02.537-3389 120 02-561-6999	Matsushim Inter-Techno tel 03-3779-8686 \}ax 03.3779.8690

fax 716-425-4382

Available for Windows, Windows NT, and UNIX workstations. Please write or call for more information.
Fax Today. See page 62.

ZEMAX STATE OF THE M. OPTIEALDESGGN:

SOURCETYRES

ZEMAX suppontseseveratoifferenntypes of sources to accurate model heoptical system Gonventiona point sourcesweravaiabe and field points may be detined cusing ang les objectulightso

 wave engthand asitions

 Gausian onuifom noistiaution

APERTURESANDOBSEUPITIONS

ZEMAXHas severalikifferenty woesiof aperturesp firsththere is as shsw itemaperturewhich oefines the size fofthebeamtraveling through k

 Win we wang or fast ootica systems vignetigetactor arealsovo
 finction,
 who
 spider shapedapeturesodscutan sare theoomplemen to aper

SURFACE TYPES

ZEMAX supports many differentatypes of süfacés Different su face types are combinedto mode wirtualy anyopical system.

Typa	Description
Standard	Includes planes, spheres, and conics
Even aspheric	A polynomial asphere up to 16th power
Odd aspheric	A polynomial asphere using odd powers
Paraxial lens	A perfect thin lens
Paraxial cylinder	A perfect thin cylinder tens
Toroidal	Cylindrical aspheres and toroids
Foroidal grating	A toroid with a grating superimposed
Toroidal hologram	A toroid with a hologram superimposed
Cubic spline	A spline of arbitrary shape
Irregular	For modeling fabrication erfors
Hologram	Two point optically fabricated hologram
Diffraction grating	Straight line grating, standard substrate
Coordinate break	For tilts and decenters of element groups
Folynomial	Nonsymmetric polynomial asphere
Fresnel	Fresnel zone aspheric
A8CD	Paraxial ABCD for "black box" optics
Alternate	Alternate surface intersection surface
Conjugate	Two point perfect image surface
Gradient index	Multiple iypes, including axial, radial, traverse,
Zernike	spherical, and dispersive gradients
Zernike phase	Sag defined by Zernike polynomials
Extended polynomial	Zernike terms used to define phase profile
Binary optic	Up to 65 term polynomial term asphere phase profile polynomial
Extended asphere	Up to 198th power rolational asphere
Extended spline	Up to 98 arbitrary sag points to define sag
VLS grating	Variable line space grating
Elliptical grating	Elliptical grating geometry
Super conic	A unique aspheric expansion
User defined	A user defined refractive or diffractive surface

GLASS, LENS, AND TESTM A HETCATADES

 provided Additonal catalogs ace cieplied which include vintared

 theima and othe wota
 siock ens catalogs include componentsavaíabletrom Spindie and
 Optics For Researe

ZEMAX suppoits automatic testypate iftjing This feature automatl

ZOOM AND MULI LCOM L, URATIONS

ZEMAX supportszoom lens nalysis and designas a special case of the more general multi-configuration conceptyirtually any parameter in ZEMAX, such as a wavelength; aperture value, field position, radiusthickess, glass, fype, orother dataway take on multip) e
 terent anameeters
 This teatide canjeevsed to designconventionalizoom lenses scan

 ealsystens bsinutaneous optimizingovexarang oftenperay

SOLVES

Solves aredusdotoactively adist surface datato maintaina specific
 have the esane valueas anothe parametery withan optional scaling factorappliedthe solves aresumarized mo following table.

Curvature solves	Marginal ray angle, normal Chief ray angle, normal Pick up, aplanatic
Thickness solves	Marginal, chief ray height Edge thickness OPD Position Pick up
Glass, Diameter, Conic, etc.	Pick up
Multi-configuration	Pick up, thermal pick up

MAGRO LANGUGE GPABLUTH

ZEMAX has huditds of teatures that coverthe vastmajority of userneeds or opticaldesignandanalysiswhowever, no mater how many features a program has, there always sems to beetrie need

 Eanguager 7 PE ,

 and GOTO and alsowads new keywords such as RAYIAACE and GETMTF that can be used to extract data compóted by ZEMAX.

ZPL Supponsinilieituctioncallsuserdeinedaray, numene and

 (a)

avaly sis carabieitics

ZEMAX suppoits a．w wide vaijety onaysis tools Al have extensive options which can be set tocustomize the method of calculation or presentatiof Defailts are used by the software to provide usefuld data quicklyzzEMAX inclodesitheifollowinganalysistools way

\rightarrow Layouts

20：crossisiection
3Diperspective with opotation
Wiriefram a 30witheotatio Manazzom

今Fans

今 Diffactionanalysis

Why SquateaveMTE
Wh veins piead finction worss section

螢 Encicliedeniopy

GLOBAL OPTIMIZATIDN:

THERMAL ANALSSS

 at tempenaus difterentifom the stancaid doidegrees Celsius 76 quireconsidention othemacfectsontheindex of refraction and
 mode notasinple dodtappiximationtw

 coéficiento fexpansiow
 Which reflecse peiformance at a aious use didefined tomperatures

 mance changeswithtemerater

POLARIZATIONBAY THCCNE

 sis capability iny inptepolazatonstatemayse defifid and the

 2k Wh

悭多

FEATURESUMMARY

Optical Design Software

[^0]: * A copy of this reference is not being furnished with this Office action
 |Sye Manual of Patemt Examining Procedure, Section $707.05(a) \mid$.)

[^1]: his is a request for a continuation ordivisional application under 37 CR $£ 1.53(\mathrm{~d})$. (eanrinited prosecution application (CYA)) of the prior application number 08782,889, Filed un January 10, 1997a entitled: System And Method For Optical Evaluation Or Gemstones.

[^2]: Burden Hout Statement: This form is estimaled to take 0.2 hours ta complete. Time will vary dopending upon the needs of the individual case. Any commants on the amount of time you are

[^3]: EJK:alw
 P:UUSERSUAWIMMERLEJKU6441001.eot.wpd

