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compression of astronomical images because even though the sky is nearly constant, the noise in the sky
ensures that only very short runs of equal pixels occur. The obvious way to make run-length coding more
e�ective is to force the sky to be exactly constant by setting all pixels below a threshold (chosen to be just
above the sky) to the mean sky value. However, then one has lost any information about objects close
to the detection limit. One has also lost information about local variations in the sky brightness, which
severely limits the accuracy of photometry and astrometry on faint objects. Worse, there may be extended,
low surface brightness objects that are not detectable in a single pixel but that are easily detected when
the image is smoothed over a number of pixels; such faint structures are irretrievably lost when the image
is thresholded to improve compression.

This paper describes an image compression algorithm that is well-suited to astronomical images. The
method has 3 steps: (1) an intensity mapping to generate an image that has roughly constant noise in
each pixel, (2) an orthonormal wavelet transform, and (3) quadtree coding of the bit-planes of the wavelet
coe�cients. The quadtree values may be further compressed by any standard compression technique, such
as Hu�man or arithmetic coding. This method is much better than techniques that keep only the wavelet
coe�cients with the largest amplitudes.

If the 2-D Haar transform is used as the wavelet transform, the calculations can be carried out
using integer arithmetic, and the method can be used for both lossy and lossless compression. The Haar
transform basis function are well-suited to most astronomical images because they are highly localized, and
it is possible to adjust the coe�cients during decompression to reduce the blockiness that comes from using
such functions. The performance of the algorithm using smoother, longer range wavelets is also shown;
they can give slightly better lossy compression, but they are not e�ective for lossless compression using
this scheme.

This method is being used by the Space Telescope Science Institute to compress digitized versions
of the Palomar and ESO Sky Survey plates for distribution on CD-ROM. Images compressed to about
1.5 bits/pixel are equivalent to the original images under both visual inspection and quantitative analysis.
Images compressed to 0.2 bits/pixel are still useful, though some of the faintest objects are lost at such
high compression factors.

This technique has also been used as the basis of a progressive image transmission system that can
be used for either remote observing or access to remote image archives. After less than 1% of the data
have been received, the image is visually similar to the original, so it is possible to assess the quality of
images very quickly. If necessary, the entire compressed data set can be sent so that the original image
is recovered exactly. It is also possible to speed the transmission even further by transmitting �rst only
enough information to construct a version of the image that has been binned in blocks of 2� 2 pixels; this
is a natural feature of wavelet-based schemes.

2. THE H-TRANSFORM

The 2-dimensional Haar transform1 (also known as the H-transform or the S-transform) can be used as
the basis of an e�ective compression method for astronomical images2�5. The H-transform is calculated
for an image of size 2N � 2N as follows:

� Divide the image up into blocks of 2� 2 pixels. Call the 4 pixels in a block a00, a10, a01, and a11.

� For each block compute 4 coe�cients:

h0 = (a11 + a10 + a01 + a00)=2
hx = (a11 + a10 � a01 � a00)=2
hy = (a11 � a10 + a01 � a00)=2
hc = (a11 � a10 � a01 + a00)=2

(1)

� Construct a 2N�1 � 2N�1 image from the h0 values for each 2� 2 block. Divide that image up into
2 � 2 blocks and repeat the above calculation. Repeat this process N times, reducing the image in
size by a factor of 2 at each step, until only one h0 value remains.
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This calculation can be easily inverted to recover the original image from its transform. The transform
is exactly reversible using integer arithmetic if one is careful with the low-order bits of the coe�cients5.
It is straightforward to extend the de�nition of the transform so that it can be computed for non-square
images that do not have sides that are powers of 2; the most e�ective way to do this is to assume re
ected
boundary conditions at the edges of the image. The H-transform can be performed in place in memory
and is very fast to compute, requiring about 16M2=3 (integer) additions for a M �M image.

The H-transform can be derived from the 1-dimensional Haar transform, which involves taking sums
and di�erences of pairs of adjacent elements in a vector. Apply a single sum/di�erence step of the 1-D
transform along the rows of the images, then along the columns of the transformed image. Repeat this
row/column transform, using only the sum coe�cients (1/4 of the original image) as input. Repeat until
only a single element remains.

2.1. Other wavelet transforms

The H-transform is a simple 2-dimensional discrete wavelet transform. The compression scheme described
here is easily adapted for use with other wavelet transforms. Any 1-dimensional discrete wavelet transform
can be converted to a 2-D transform as outlined in the last section, and the coe�cients of that 2-D
transform can be e�ciently coded using the schemes described below. In this paper, compression results
are also shown for an algorithm based on the Daubechies D4 wavelet transform6. The D4 transform has
been modi�ed so that it uses re
ected boundary conditions rather than periodic boundary conditions.

The major advantage of the H-transform over the Daubechies and similar wavelet transforms is that the
H-transform can be performed entirely with integer arithmetic, making it exactly reversible. Consequently
it can be used for either lossless or lossy compression (as indicated below) and one does not need a special
technique for the case of lossless compression (as was required, e.g., , for the JPEG compression standard
and by FITSPRESS7.) However, the smoothness a�orded by higher-order transforms can be advantageous.

3. QUANTIZATION

If the image is nearly noiseless, the H-transform is somewhat easier to compress than the original image
because the di�erences of adjacent pixels (as computed in the H-transform) tend to be smaller than the
original pixel values for smooth images. Consequently fewer bits are required to store the values of the
H-transform coe�cients than are required for the original image. For very smooth images the pixel values
may be constant over large regions, leading to transform coe�cients that are zero over large areas.

Noisy images still do not compress well when transformed, though. Suppose there is noise � in each
pixel of the original image. Then from propagation of errors, the noise in each of the H-transform coe�cients
is also �. To compress noisy images, divide each coe�cient by S�, where S � 1 is chosen according to how
much loss is acceptable. This reduces the noise in the transform to 0:5=S (because the largest error is 1/2
the least signi�cant bit of the quotient), so that large portions of the transform are zero (or nearly zero)
and the transform is highly compressible.

Why is this better than simply quantizing the original image? As discussed above, if we divide the
image by � then we lose all information on objects that are within 0:5� of sky in a single pixel, but that
are detectable by averaging a block of pixels. On the other hand, in dividing the H-transform by �, we
preserve the information on any object that is detectable by summing a block of pixels! The quantized
H-transform preserves the mean of the image for every block of pixels having a mean signi�cantly di�erent
than that of neighboring blocks of pixels.

If the noise is not constant across the image then this quantization method must be modi�ed. The best
approach we have found is to �rst scale the data to force the noise to be approximately constant in each
pixel, and then to apply the H-transform and quantization described above. For CCD data, for example,
the noise is a combination of Poisson counting statistics and readout noise. If we replace the input image

Iij by a scaled image Uij = 2
q
Iij +N2, where N is the readout noise in each pixel, then the image Uij

has noise �U ' 1 in each pixel. U can then be compressed e�ciently using the method described in this
paper. Unfortunately, the use of this method for lossless compression is rather messy because considerable
e�ort is required to make the square root transformation exactly reversible.

3 f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Original

Figure 1. 256� 256 pixel section of image from digitized Palomar Sky Survey E-plate of Coma
galaxy cluster. Image has 16-bits; a logarithmic gray scale is used to make the noise near the sky
brightness level visible.

4. QUADTREE CODING

The quantized H-transform has a rather peculiar structure. Not only are large areas of the transform image
zero, but the non-zero values are strongly concentrated in the lower-order coe�cients. The best approach
we have found to code the coe�cient values e�ciently is quadtree coding of each bit-plane of the transform
array. Quadtree coding has been used for many purposes8; the particular form we are using was suggested
by Huang and Bijaoui9 for image compression.

� Divide the bit-plane up into 4 quadrants. For each quadrant code a `1' if there are any 1-bits in the
quadrant, else code a `0'.

� Subdivide each quadrant that is not all zero into 4 more pieces and code them similarly. Continue
until one is down to the level of individual pixels.

This coding (which Huang and Bijauoi call \hierarchic 4-bit one" coding) is obviously very well suited
to the H-transform image because successively lower orders of the H-transform coe�cients are located in
successively divided quadrants of the image.

We follow the quadtree coding with a �xed Hu�man coding that uses 3 bits for quadtree values that
are common (e.g., 0001, 0010, 0100, and 1000) and uses 4 or 5 bits for less common values. This reduces
the �nal compressed �le size by about 10% at little computational cost. Slightly better compression can be
achieved by following quadtree coding with arithmetic coding10, but the CPU costs of arithmetic coding
are not, in our application, justi�ed for 3{4% better compression. We have also tried using arithmetic
coding directly on the H-transform, with various contexts of neighboring pixels, but �nd it to be both
computationally ine�cient and not signi�cantly better than quadtree coding.

For completely random bit-planes, quadtree coding can actually use more storage than simply writing
the bit-plane directly; in that case we just dump the bit-plane with no coding.
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0.16 bits/pixel 0.32 bits/pixel

0.81 bits/pixel 1.79 bits/pixel

Figure 2. E�ect of compression by H-transform and quadtree coding scheme described in this
paper. This is also a sequence of images using the progressive transmission scheme; each image
is the result of coding and transmitting another bit-plane from the H-transform.
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