

US008475832B2

(12) United States Patent

Myers et al.

(54) SUBLINGUAL AND BUCCAL FILM COMPOSITIONS

- (75) Inventors: Garry L. Myers, Kingsport, TN (US);
 Samuel D. Hilbert, Jonesboro, TN (US);
 Bill J. Boone, Johnson City, TN (US);
 Bradeep Sanghvi, Schererville, IN (US);
 Madhusudan Hariharan, Munster, IN (US)
- (73) Assignee: **RB Pharmaceuticals Limited**, Slough (GB)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 231 days.
- (21) Appl. No.: 12/537,571
- (22) Filed: Aug. 7, 2009

(65) Prior Publication Data

US 2011/0033541 A1 Feb. 10, 2011

- (51) Int. Cl. *A61F 13/00* (2006.01) *A61K 9/14* (2006.01) *A61K 31/44* (2006.01) (52) U.S. Cl.
 - USPC **424/435**; 424/422; 424/434; 424/484; 514/282
- (58) Field of Classification Search NoneSee application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

307,537 A	11/1884	Foulks
688,446 A	12/1901	Stempel
2,980,554 A	4/1961	Gentile et al.
3,007,848 A	11/1961	Stroop
3,249,109 A	5/1966	Maeth et al.
3,444,858 A	5/1969	Russell
3,536,809 A	10/1970	Applezweig
3,551,556 A	12/1970	Kliment et al.
3,598,122 A	8/1971	Zaffaroni
3,632,740 A	1/1972	Robinson et al.
3,640,741 A	2/1972	Etes
3,641,237 A	2/1972	Gould et al.
3,731,683 A	5/1973	Zaffaroni
3,753,732 A	8/1973	Boroshok
3,814,095 A	6/1974	Lubens
3,892,905 A	7/1975	Albert
3,911,099 A	10/1975	DeFoney et al.
3,972,995 A	8/1976	Tsuk et al.
3,996,934 A	12/1976	Zaffaroni
4,029,757 A	6/1977	Mlodozeniec et al.
4,029,758 A	6/1977	Mlodozeniec et al.
4,031,200 A	6/1977	Reif
4,123,592 A	10/1978	Rainer et al.
4,128,445 A	12/1978	Sturzenegger et al.
4,136,145 A	1/1979	Fuchs et al.
4,136,162 A	1/1979	Fuchs et al.
4,139,627 A	2/1979	Lane et al.

DOCKE

(10) Patent No.: US 8,475,832 B2

(45) **Date of Patent:** Jul. 2, 2013

4.292.299 A	9/1981	Suzuki et al.
4.294.820 A	10/1981	Keith et al.
4.302.465 A	11/1981	Ekenstam et al.
4.307.075 A	12/1981	Martin
4.325.855 A	4/1982	Dickmann et al.
4.373.036 A	2/1983	Chang et al.
4,406,708 A	9/1983	Hesselgren
4,432,975 A	2/1984	Libby
4,438,258 A	3/1984	Graham
4,460,562 A	7/1984	Keith et al.
4,466,973 A	8/1984	Rennie
4,503,070 A	3/1985	Eby, III
4,515,162 A	5/1985	Yamamoto et al.
4,517,173 A	5/1985	Kizawa et al.
4,529,601 A	7/1985	Broberg et al.
4,529,748 A	7/1985	Wienecke
4,562,020 A	12/1985	Hijiya et al.
4,569,837 A	2/1986	Suzuki et al.
4,582,835 A	4/1986	Lewis et al.
4,593,053 A	6/1986	Jevne et al.
4,608,249 A	8/1986	Otsuka et al.
4,615,697 A	10/1986	Robinson
4,623,394 A	11/1986	Nakamura et al.
4,631,837 A	12/1986	Magoon
4,652,060 A	3/1987	Miyake
4,659,714 A	4/1987	Watt-Smith
4,675,009 A	6/1987	Hymes et al.
4,695,465 A	9/1987	Kigasawa et al.
4,704,119 A	11/1987	Shaw et al.
4,713,239 A	12/1987	Babaian et al.
4,713,243 A	12/1987	Schiraldi et al.
4,722,761 A	2/1988	Cartmell et al.
4,740,365 A	4/1988	Yukimatsu et al.
4,748,022 A	5/1988	Busciglio
4,765,983 A	8/1988	Takayanagi et al.
4,772,470 A	9/1988	Inoue et al.
4,777,046 A	10/1988	Iwakura et al.
4,789,667 A	12/1988	Makino et al.
4,849,246 A	7/1989	Schmidt
4,860,754 A	8/1989	Sharik et al.
RE33,093 E	10/1989	Schiraldi et al.
4,876,092 A	10/1989	Mizobuchi et al.
4,876,970 A	10/1989	Bolduc
4,888,354 A	12/1989	Chang et al.

(Continued)

FOREIGN PATENT DOCUMENTS

AU	741362 B2	7/1998
DE	2432925 B2	1/1976

(Continued)

OTHER PUBLICATIONS

Lazaridou et al., "Thermophysical proprties of chitosan, chitosanstarch and chitosan-pullulan films near the glass transition," Carbohydrate Polymers 48: 179-190 (2002).

(Continued)

Primary Examiner — Janet Epps-Smith (74) Attorney, Agent, or Firm — Hoffmann & Baron, LLP

(57) **ABSTRACT**

The present invention relates to products and methods for treatment of narcotic dependence in a user. The invention more particularly relates to self-supporting dosage forms which provide an active agent for treating narcotic dependence while providing sufficient buccal adhesion of the dosage form.

Find authenticated court documents without watermarks at docketalarm.com.

U.S. PATENT DOCUMENTS

0.51		Decements
4,894,232 A	1/1990	Reül et al.
4,900,552 A	2/1990	Sanvordeker et al.
4.900.554 A	2/1990	Yanagibashi et al.
4 900 556 A	2/1990	Wheatley et al
4 910 247 A	3/1000	Haldar et al
4 015 050 4	4/1000	Miranda at al
4,915,950 A	4/1990	Nillanda et al.
4,925,670 A	5/1990	Schmidt
4,927,634 A	5/1990	Sorrentino et al.
4,927,636 A	5/1990	Hijiya et al.
4,937,078 A	6/1990	Mezei et al.
4,940,587 A	7/1990	Jenkins et al.
4.948.580 A	8/1990	Browning
4.958.580 A	9/1990	Asaba et al.
4 978 531 A	12/1990	Yamazaki et al
4 981 693 A	1/1001	Higashi et al
1 081 875 A	1/1001	Louspor et al
5 023 082 A	6/1001	Eriodmon et al
5,025,082 A	6/1001	Desmander al.
5,024,701 A	0/1991	Desmarais
5,028,632 A	//1991	Fuisz
5,045,445 A	9/1991	Schultz
5,047,244 A	9/1991	Sanvordeker et al.
5,064,717 A	11/1991	Suzuki et al.
5,089,307 A	2/1992	Ninomiya et al.
5,118,508 A	6/1992	Kikuchi et al.
5,158,825 A	10/1992	Altwirth
5.166.233 A	11/1992	Kurova et al.
5.186.938 A	2/1993	Sablotsky et al.
5 229 164 A	7/1993	Pins et al
5 234 957 A	8/1003	Mantelle
5,254,957 A	12/1003	Cleary et al
5 272 101 A	12/1993	Threaking of al
5,272,191 A	12/1993	Ibranim et al.
5,346,701 A	9/1994	Heiber et al.
5,393,528 A	2/1995	Staab
5,411,945 A	5/1995	Ozaki et al.
5,413,792 A	5/1995	Ninomiya et al.
5,433,960 A	7/1995	Meyers
5,455,043 A	10/1995	Fischel-Ghodsian
5.462.749 A	10/1995	Rencher
5.472.704 A	12/1995	Santus et al.
5.518.902 A	5/1996	Ozaki et al.
5 567 431 A	10/1996	Vert et al
5,605,696 A	2/1997	Furv et al
5 620 757 A	4/1997	Ninomiya et al
5,620,003 A	5/1007	Horstmann et al
5,029,003 A	10/1007	Morton et el
5,081,875 A	10/1997	Discolution et al.
5,700,478 A	12/1997	Biegajski et al.
5,700,479 A	12/1997	Lundgren
5,766,332 A	6/1998	Graves et al.
5,766,620 A	6/1998	Heiber et al.
5,766,839 A	6/1998	Johnson et al.
5,800,832 A	9/1998	Tapolsky et al.
5,806,284 A	9/1998	Gifford
5,891,461 A	4/1999	Jona et al.
5,900,247 A	5/1999	Rault et al.
5,948,430 A	9/1999	Zerbe et al.
6.072.100 A	6/2000	Moonev et al.
6.103.266 A	8/2000	Tapolsky et al.
6 153 210 A	11/2000	Roberts et al
6 1 59 4 98 A	12/2000	Tapolsky et al
6 177 006 B1	1/2001	Zerbe et al
6 221 057 D1	5/2001	Zerbe et al.
0,231,937 DI	3/2001	Zerbe et al.
6,204,981 BI	7/2001	Znang et al.
6,284,264 BI	9/2001	Zerbe et al.
0,375,963 BI	4/2002	керка et al.
6,503,532 B1	1/2003	Murty et al.
6,667,060 B1	12/2003	Vandecruys et al.
6,800,329 B2	10/2004	Horstmann et al.
6,824,829 B2	11/2004	Berry et al.
7,005,142 B2	2/2006	Leon
7,579.019 B2	8/2009	Tapolsky et al.
2001/0006677 A1	7/2001	McGinity et al.
2001/0022964 A1	9/2001	Leung et al.
2001/0046511 41	11/2001	Zerhe et al
2003/0060263 41	4/2003	Breder et al
2003/01071/0 A1	6/2003	Vana et al
2003/010/149 AI	0/2003	Tally CLal.
2005/01241/0 AI	112003	1150 Ct al.

DOCKE

Δ

2005/0	048102	Al	3/2	005	Tapolsky et al.
2005/0	118217	A1	6/2	005	Barnhart et al.
2005/0	147658	A1	7/2	005	Tapolsky et al.
2005/0	192309	A1	9/2	005	Palermo et al.
2006/0	210610	A1	9/2	006	Davidson et al.
2006/0	281775	A1	12/2	006	Kelly, II et al.
2007/0	087036	A1	4/2	007	Durschlag et al.
2007/0	148097	A1	6/2	007	Finn et al.
2008/0	254105	Al	10/2	800	Tapolsky et al.
2010/0	015128	Al	1/2	010	Lee et al.
2010/0	087470	A1 $*$	4/2	010	Oksche et al 514/279
2011/0	189259	A1	8/2	011	Vasisht et al.
2011/0	262522	Al	10/2	011	Finn et al.
	FO	REIG	NP	ATE	ENT DOCUMENTS
DE		2449	865	B2	4/1976
DE		3630)603	C2	3/1988
EP		0219	9762	B1	12/1990
EP		0259	9749	B1	8/1991
EP		0200)508	B1	10/1991
EP		0241	178	B1	1/1992
EP		0273	3069	B1	10/1992
EP		0250)187	B1	9/1993
EP		0452	2446	B1	12/1993
EP		0381	194	Bl	8/1994
EP		0440)462	BI	12/1994
EP		0514	1691	BI	3/1996
EP		0598	3606	BI	6/1999
EP		0949	925	BI	10/1999
EP		1110	1546	AL	6/2001
EP		1897	016	AI	3/2008
GB m		2447	010	А	9/2008
JP D		02120	930		0/1987
JP ID		02203	7140		6/1002
л		03147	0010		12/1005
JF ID	20	07522	2012		12/1993
WO	20	0105	540	A 1	5/1001
wo		910.	3280	Δ1	9/1997
wo		9505	5416	A2	2/1995
wo		9518	3046	AI	7/1995
WO		9817	251		4/1998
WO		9955	5312		11/1999
WO		0018	3365	A2	4/2000
WO		0042	2992	A2	7/2000
WO		0170)194	A1	9/2001
WO		0191	721	A2	12/2001
WO		03/030)882	A1	4/2003
WO		03030)883	A1	4/2003
WO	20	007070)632	A2	6/2007
WO	20	008011	194	A2	1/2008
WO	WO 20	008025	5791	A1	* 3/2008

OTHER PUBLICATIONS

Repka et al., "Bioadhesive Properties of hydroxypropylcellulose topical films produced by hot melt extrusion," Journal of Controlled Release, 70: 341-351 (2001).

Repka et al., "Influence of Vitamin E TPGS on the properties of hydrophilic films produced by hot melt extrusion", International Journal of Pharmaceutics 202: 63-70 (2000).

Peh and Wong, Polymeric Films as Vehicle for Buccal Delivery: Swelling, Mechanical, and Bioadhesive Properties, J Pharm Pharmaceut Sci (www.ualberta.ca/~csps) 2 (2):53-61, 1999.

Bodmeier. Pharmaceutical Research, vol. 6, No. 8, 1989.

"Suboxone Subligualtabletten" In: Verlag Rote Liste Service GmbH: "Rote Liste 2008" 2008, Verlag Rote Liste Service GmbH, Frankfurt/ Main, XP002624986, p. 39018, the whole document.

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the

Written Opinion of the International Searing Authority for International Application No. PCT/US2010/044488 dated Apr. 11, 2011. Abeer M. Al-Ghananeem et al., "Effect of pH on Sublingual Absorption of Oxycodone Hydrochloride." AAPS PharmSciTech 2006; 7(1) Article 23 (http://www.aapspharmscitech.org). Mahmood et al., "A limited sampling method for the estimation of AUC and Cmax of carbamazepine and carbamazepine epoxide following a single and multiple dose of a sustained-release product." BrJ Clin Pharmacol 1998; 45: pp. 241-246.

* cited by examiner

15

SUBLINGUAL AND BUCCAL FILM **COMPOSITIONS**

FIELD OF THE INVENTION

The present invention relates to compositions, methods of manufacture, products and methods of use relating to films containing therapeutic actives. The invention more particularly relates to self-supporting film dosage forms which provide a therapeutically effective dosage, essentially matching that of currently-marketed tablets containing the same active. Such compositions are particularly useful for treating narcotic dependence while providing sufficient buccal adhesion of the dosage form.

BACKGROUND OF THE RELATED TECHNOLOGY

Oral administration of two therapeutic actives in a single 20 dosage form can be complex if the intention is to have one active absorbed into the body and the other active remain substantially unabsorbed. For example, one active may be relatively soluble in the mouth at one pH, and the other active may be relatively insoluble at the same pH. Moreover, the 25 absorption kinetics of each therapeutic agent may be substantially different due to differing absorption of the charged and uncharged species. These factors represent some of the challenges in appropriately co-administering therapeutic agents.

Co-administration of therapeutic agents has many applications. Among such areas of treatment include treating individuals who suffer from narcotic dependence. Such individuals have a tendency to suffer from serious physical dependence on the narcotic, resulting in potentially dangerous withdrawal effects when the narcotic is not administered to the individual. In order to help individuals addicted to narcotics, it is known to provide a reduced level of a drug, which provides an effect of satisfying the body's urge for the narcotic, but does not provide the "high" that is provided by 4∩ the misuse of the narcotic. The drug provided may be an agonist or a partial agonist, which provides a reduced sensation and may help lower dependence on the drug. However, even though these drugs provide only a low level of euphoric effect, they are capable of being abused by the individuals 45 parenterally. In such cases, it is desirable to provide a combination of the drug with a second drug, which may decrease the likelihood of diversion and abuse of the first drug. For example, it is known to provide a dosage of an antagonist in combination with the agonist or partial agonist. The narcotic 50 antagonist binds to a receptor in the brain to block the receptor, thus reducing the effect of the agonist.

One such combination of drugs has been marketed under the trade name Suboxone® as an orally ingestible tablet. However, such combinations in tablet form have the potential 55 for abuse. In some instances, the patient who has been provided the drug may store the tablet in his mouth without swallowing the tablet, then later extract the agonist from the tablet and inject the drug into an individual's body. Although certain antagonists (such as highly water-soluble antagonists) 60 may be used to help reduce the ability to separate the agonist, the potential for abuse still exists. It is desired to provide a dosage that cannot be easily removed from the mouth once it has been administered.

the mouth, rendering it difficult to remove once placed in the mouth, thereby making abuse of the agonist difficult.

SUMMARY OF THE INVENTION

In one embodiment of the present invention, there is provided a film dosage composition including: a polymeric carrier matrix; a therapeutically effective amount of buprenorphine or a pharmaceutically acceptable salt thereof, a therapeutically effective amount of naloxone or a pharmaceutically acceptable salt thereof; and a buffer in an amount to provide a pH of the composition of a value sufficient to optimize absorption of the buprenorphine.

In another embodiment of the present invention, there is provided a film dosage composition including: a polymeric carrier matrix; a therapeutically effective amount of buprenorphine or a pharmaceutically acceptable salt thereof, a therapeutically effective amount of naloxone or a pharmaceutically acceptable salt thereof; and a buffer in an amount sufficient to inhibit the absorption of the naloxone when administered orally.

In still other embodiments, there may be provided a film dosage composition including: a polymeric carrier matrix; a therapeutically effective amount of buprenorphine or a pharmaceutically acceptable salt thereof, a therapeutically effective amount of naloxone or a pharmaceutically acceptable salt thereof; and a buffering system; where the buffering system includes a buffer capacity sufficient to maintain the ionization of naloxone during the time which the composition is in the oral cavity of a user.

In another embodiment of the invention, there is provided a method of treating narcotic dependence of a user, including the steps of: providing a composition including: a polymeric carrier matrix; a therapeutically effective amount of buprenorphine or a pharmaceutically acceptable salt thereof, a therapeutically effective amount of naloxone or a pharmaceutically acceptable salt thereof, and a buffer in an amount to provide a pH of the composition of a value sufficient to optimize absorption of the buprenorphine; and administering the composition to the oral cavity of a user.

In still another embodiment of the invention, there is provided a process of forming a film dosage composition including the steps of: casting a film-forming composition, the film-forming composition including: a polymeric carrier matrix; a therapeutically effective amount of buprenorphine or a pharmaceutically acceptable salt thereof, a therapeutically effective amount of naloxone or a pharmaceutically acceptable salt thereof, and a buffer in an amount to provide a pH of the composition of a value sufficient to optimize absorption of the buprenorphine and drying the film-forming composition to form a self-supporting film dosage composition.

In another embodiment, there is provided a film dosage composition including a therapeutically sufficient amount of buprenorphine or a pharmaceutically acceptable salt thereof and a therapeutically sufficient amount of naloxone or a pharmaceutically acceptable salt thereof, the film dosage composition having a bioequivalent release profile as compared to a Suboxone® tablet containing about 2 times the amount of buprenorphine or a pharmaceutically acceptable salt thereof.

Still other embodiments of the present invention provide an orally dissolving film formulation including buprenorphine There is currently a need for an orally dissolvable film 65 and naloxone, where the formulation provides an in-vivo

Find authenticated court documents without watermarks at docketalarm.com.

5

15

plasma profile having a Cmax of between about 41.04 pg/ml to about 323.75 pg/ml for naloxone.

DETAILED DESCRIPTION OF THE PREFERRED **EMBODIMENTS**

Definitions

As used herein, the term Cmax refers to the mean maximum plasma concentration after administration of the composition to a human subject. As also used herein, the term AUC refers to the mean area under the plasma concentrationtime curve value after administration of the compositions formed herein. As will be set forth in more detail below, the term "optimizing the absorption" does not refer to reaching the maximum absorption of the composition, and rather refers to reaching the optimum level of absorption at a pH of about 2 to about 4. The "optimum" absorption may be, for example, a level that provides a bioequivalent absorption as adminis- 20 tration of the currently available Suboxone® tablet. An "optimum" Cmax of buprenorphine is about 0.67 to about 5.36 mg/ml at dosages of from 2-16 mg buprenorphine at a given pH. Similarly, an "optimum" AUC of buprenorphine may be about 7.43 to about 59.46 hr*ng/ml at dosages of from 2-16 25 mg buprenorphine at a given pH. As will be described in more detail below, it has been surprisingly discovered that the absorption of one particular agonist, buprenorphine, can provide an optimum absorption at a pH of about 2-4 as well as about 5.5-6.5. Thus, one may "optimize" the absorption of 30 buprenorphine by providing a pH of about 2-4 or about 5.5-6.5.

"Maximizing the absorption" refers to the maximum in vivo absorption values achieved at a pH of about 4 to about 9.

The term "local pH" refers to the pH of the region of the 35 carrier matrix immediately surrounding the active agent as the matrix hydrates and/or dissolves, for example, in the mouth of the user.

By "inhibiting" the absorption of an active, it is meant achieving as complete an ionization state of the active as 40 possible, such that little to none of the active is measurably absorbable. For example, at a pH of 3-3.5, the Cmax of an active such as naloxone for dosage of 0.5 mg to 4.0 mg ranges from 32.5 to 260 pg/ml, and an AUC of naloxone for dosage of 0.5 mg to 4.0 mg ranges from 90.55 to 724.4 hr*pg/ml. It 45 is understood that at a pH lower than 3.0, further ionization would be expected and thus result in lower absorption.

The term "bioequivalent" means obtaining 80% to 125% of the Cmax and AUC values for a given active in a different product. For example, assuming Cmax and AUC values of 50 buprenorphine for a commercially-available Suboxone® tablet (containing 2 mg buprenorphine and 0.5 mg naloxone) are 0.780 ng/ml and 6.789 hr*ng/ml, respectively, a bioequivalent product would have a Cmax of buprenorphine in the range of 0.624-0.975 ng/ml, and an AUC value of buprenor- 55 phine of 5.431-8.486 hr*ng/ml.

It will be understood that the term "film" includes thin films and sheets, in any shape, including rectangular, square, or other desired shape. The films described herein may be any desired thickness and size such that it may be placed into the 60 oral cavity of the user. For example, the films may have a relatively thin thickness of from about 0.1 to about 10 mils, or they may have a somewhat thicker thickness of from about 10 to about 30 mils. For some films, the thickness may be even larger, i.e., greater than about 30 mils. Films may be in a 65 removed and it should form a gel like structure when admin-

Oral dissolving films generally fall into three main classes: fast dissolving, moderate dissolving and slow dissolving. Fast dissolving films generally dissolve in about 1 second to about 30 seconds in the mouth. Moderate dissolving films generally dissolve in about 1 to about 30 minutes in the mouth, and slow dissolving films generally dissolve in more than 30 minutes in the mouth. Fast dissolving films may consist of low molecular weight hydrophilic polymers (i.e., polymers having a molecular weight between about 1,000 to 9,000, or polymers having a molecular weight up to 200,000). In contrast, slow dissolving films generally have high molecular weight polymers (i.e., having a molecular weight in the millions).

Moderate dissolving films tend to fall in between the fast and slow dissolving films. Moderate dissolving films dissolve rather quickly, but also have a good level of mucoadhesion. Moderate dissolving films are also flexible, quickly wettable, and are typically non-irritating to the user. For the instant invention, it is preferable to use films that fall between the categories of fast dissolving and moderate dissolving. Such moderate dissolving films provide a quick enough dissolution rate, most desirably between about 1 minute and about 20 minutes, while providing an acceptable mucoadhesion level such that the film is not easily removable once it is placed in the oral cavity of the user.

Inventive films described herein may include one or more agonists or partial agonists used for the treatment of drug addiction. As used herein, the term "agonist" refers to a chemical substance that is capable of providing a physiological response or activity in the body of the user. The films described herein may further include one or more antagonists. As used herein, the term "antagonist" refers to any chemical substance that acts within the body of the user to reduce the physiological activity of another chemical substance. In some embodiments, an antagonist used herein may act to reduce and/or block the physiological activity of the agonist. The actives may be water-soluble, or they may be water-insoluble. As used herein, the term "water-soluble" refers to substances that are at least partially dissolvable in a solvent, including but not limited to water. The term "water-soluble" does not necessarily mean that the substance is 100% dissolvable in the solvent. The term "water-insoluble" refers to substances that are not dissolvable in a solvent, including but not limited to water. Solvents may include water, or alternatively may include other polar solvents by themselves or in combination with water.

Inventive Films

The present invention relates to methods of treating narcotic dependence in an individual. More desirably, the invention relates to the treatment of opioid dependence in an individual, while using a formulation and delivery that hinders misuse of the narcotic. Currently, treatment of opioid dependence is aided by administration of Suboxone®, which is an orally dissolvable tablet. This tablet which provides a combination of buprenorphine (an opioid agonist) and naloxone (an opioid antagonist). Therefore, the present invention provides a method of treating narcotic dependence by providing an orally dissolvable film dosage, which provides a bioequivalent effect to Suboxone®. The film dosage preferably provides buccal adhesion while it is in the user's mouth, rendering it difficult to remove after placement.

The film dosage composition preferably includes a polymeric carrier matrix. Any desired polymeric carrier matrix may be used, provided that it is orally dissolvable. Desirably, the dosage should have enough bioadhesion to not be easily

Find authenticated court documents without watermarks at docketalarm.com.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

