
United States Patent [191

Golin et al.

lllllllllllllllllllllllllll||l|Il||||1|l||||l||llllllllllllllllIIIIIIIHIII
US005225904A

[11] Patent Number:

[45] Date of Patent:

5,225,904

Jul. 6, 1993 

[54] ADAPTIVE DIGITAL VIDEO
COMPRESSION SYSTEM

[75] Inventors: Stuart J. Golin, East Windsor; Allen
H. Simon, Belle Mead; Brian Astle,
Cranbury, all of N.J.; John M. Keith,
Washington Crossing, Pa.

[73} Assignee: Intel Corporation, Santa Clara. Calif.

[21] Appl. No.: 802,169

[22] Filed: Dec. 4, 1991

Related U.S. Application Date

[63} Continuation of Ser. No. 408.085, Sep. 15, 1989, Pat.
No. 5,079,630.

[511 Int. c1.= ............................................. .. new 7/12
[52} U.S. Cl. .................................. .. 358/133; 358/135;

358/13

[58] Field of Search ............... .. 358/133, 135, 12, 136.
358/13 ‘

[56] References Cited
U.S. PATENT DOCUMENTS

4,745,473 5/1988 Hall ................................... .. 358/133

Primary Examt’ner—Victor R. Kostak
Attorney, Agent. or Ft‘rm——Carl L. Silverman; William
H. Murray; Frank M. Linguiti

[57] ABSTRACT

A full motion color digital video signal is compressed,
formatted for transmission, recorded on compact disc

media and decoded at conventional video frame rates.

During compression. regions of a frame are individually
analyzed to select optimum fill coding methods specific
to each region. Region decoding time estimates are
made to optimize compression thresholds. Region de-
scriptive codes conveying the size and locations of the
regions are grouped together in a first segment of a data
stream. Region fill codes conveying pixel amplitude
indications for the regions are grouped together accord-
ing to fill code type and placed in other segments of the
data stream. The data stream segments are individually
variable length coded according to their respective
statistical distributions and formatted to form data

frames. The number of bytes per frame is dithered by
the addition of auxiliary data determined by a reverse
frame sequence analysis to provide an average number
selected to minimize pauses of the compact disc during
playback thereby avoiding unpredictable seek mode
latency periods characteristic of compact discs. A de-
coder includes a variable length decoder responsive to
statistical information in the code stream for separately

variable length decoding individual segments of the
data stream. Region location data is derived from re-
gion descriptive data and applied with region fill codes
to a plurality of region specific decoders selected by
detection of the fillcode type (e.g.. relative, absolute,
dyad and DPCM) and decoded region pixels are stored
in a bit map for subsequent display. ‘

37 Claims. 32 Drawing Sheets

Google Inc.

1 (3000 1006
IPR of US Pat. No. 7,974,339



US. Patent July 6, 1993 Sheet 1 of 32 5,225,904

 
 

 

 

 ENCODER

(FIG S. 2"47)

RECORDING SYSTEM S4 BIT-STREAM

‘-31.23! IO‘ BITS/SEC.

I-76.1

S20

 PROCESSOR

(FIGS. 48-63}



U.S. Patent July 6, 1993 Sheet 2 of 32 5,225,904

- VIDEO IN 206*‘ '

$2 S1 204 AUXIRATA 
 
 

 

 
  
  

PRE-COMPRESSION

PROCESS}?

(FIGS. I4-I5)

 
DIGITALVIDEOA

cormzsson 

 
 

234 -

S6 33 (Hes Is-47) m 1N -J

- MONITOR :

212 2 _ E
BUFFER cecooe I

232 - 1
1
I

s? 5,0 s3 5
1

Eucoogg FORMATIER °‘TT5J%%‘§fi”T
gs RECORDER I8
- Z5-O (FIGS. 8-13)

FIG. 2



U.S. Patent July 6, 1993 Sheet 3 of 32 5,225,904

1-+——.o~E FRAME %—a-I
I . NTSC

5: FlE.D I 1 FIELD 2 S2 gamposngH 3 ' 7 worse

1%” osconso
F1574 _TAND

Iéjjij °'°‘T‘ZE°
737,230 ewes

no 5 Y SUB-SAMPLEIZ.)
' 255 x 240 __ YIO

sazzo arras

compacsssn

"G-6 mama»
>45oo awrzs °°°E°

VIDEO "STREAM" gum
: VARLENG COEED

He. 7 H a v nun
<45oo BYTES

 
Fnmsicoupnzssso: IIGITAL FORMATTED

F[(,‘_ 3 HEADERI DIGIEQL . r. DATA FRAME
E VID

FM FR“-ME? BITSTREAM,
FlG..9 W FRAMES DITHERED

29.97 FPS, 5l25.l2 AVERAGE



US. Patent July 6, 1993 Sheet 4 of 32 5,22§,904 _

FRAME F1 FRAME F2 FRAME F3 CNERSIZEI

FIG. I0@W

DDMPRESSPCN

575- 1/ $053 :§?:>°c> ‘§3oE3 lE‘£'3% ‘$353 ‘.”°“5‘55°

VIDEO ‘PAD VIDEO VIDEOHate 3000 «coo-

"BoRRowEo" mom
PREVIOUS FRAME

 S4 BIT'STRE-AM
OUT '11.‘!

I350 CD-ROM
REWRDER

Ia

DATA FROM I350

BUFFER 212



US. Patent July 6, 1993 Sheet 5 of 32 5,225,904

  

 
  

 
 

PROCESSOR
220 " S2 FROM SOURE I2‘

PROGRAMMABLE

GRAPHICS

WORK STATION  OPERATOR

TERMINAL

OUT TO SUB-FRAME

SELECTOR 224



U.S. Patent July 6, 1993 Sheet 6 of 32 5,225,904

% “ "'“°” °PE""PR IN mom LP runes I404-I4-08
TERMINAL 22

R ° ° azxasfia
502 I504 [505

' DIGITIZE
E N D 5:: I 480 PIXELS/FRAME

L529
“ " ' ‘ ‘ ' ' ' ' ' ' " ‘ SKIP ALTERNATE

FIELDS

TIMING
AND

CONTROL

I530 _ _ _ _g§__Ift_ ______" g|I‘<>:Eia-flsLTERNATE

R G B 256 X240 PDCE15/FRAME

M AT R I X

I516

Y I Q

ISIS

HOR HOR

I52

OUT TO VERT VERT 0 UNES/PETUREswmca 224 fiasm

Y I 0 22
m2 - - - -:~- — Sta? 3 OF 4 LINES

DISC

STORE 1‘.-E2
" ' ' - * " " SKIP SOF4 PIXELS

" ' 19:54 3: so cnch

Y: 256 x 240



U.S. Patent July 5, 1993 Sheet 7 of 32 5,22s,9o4_

IN FROM YIO [-‘R94 TH E3:-|o
SELECTOR SWITCH 224 ‘N c(NTR0LR233 LD

I6|0

  

 
  

REGION SPECIFIC

OODER

(FIGS I7-38) sn

 INTER-FRAME

REGION SPECIFIC

CODER

SIS (FIGS. 3943.81.32) I620

tnE-101:

 
 
 

  
 

 AREA DEPENDENT

ADAPTIVE QUANTIZER '

(FlGS.4~4. 45)

I630

STREAM SEGMENTED

- VAR. LENGTH OODER

OUT To (FIGS. 45, 47)

 

  
I640

DIGITAL VIDEO COMPRESSOR 3339

FIG. /6



U.S. Patent July 5, 1993 Sheet 3 of 32 5,225,904

I 6 2

.33
I720 I734 Y5 3735 3 03

W "° W
ANY SELECT

REGICINB REGQN

YES

ESTIMATE SP‘-‘T
ROUGNESS,R "W2 
 
 

no

N0 1725
I I

DETERMINEBI-LINEARFILL Dfiabhw
A=*3y*° I724

ENCCDEPIXELS
INDNIDUALLY

ao’Jr5§3é’x5§~o WITH or-cm



U.S. Patent July 6, 1993 Sheet 9 of 32 5,225,904

 



U.S. Patent July 6, 1993 Sheet 10 of 32 5,225,904 ,

N0 "SLOPE" OR GRADIENT

FlLL=Ax+ By + c
A‘-=0

B=O

@ @ cooE:c;§soo5 2
2:02

W 2, @ @ "~:::.':.:*3:;s:r2PE
. MI

(‘-3) @ © cone-$53104

2 02

on ' .

G 2 F © <9‘ ”“:=L".f;’ff'é,iL‘2“F7 . 2 @ @ @ A=0
a=-|

69 ® (9 cooE=iE§ O"! 6
2302

6) (9 ® ”"?;‘CTix*1°B’§; f‘e°’°E
F1623 @ @ @ 3:1!

® @ © O0DE= Pl 5

 



5,225,904US. Patent



US. Patent July 6, 1993 Sheet '12 of 32 5,225,904

2Il ZI4 ZIB

 
 

  
55 BY"TE Lffdfl‘
lN ( 256 J

ALDO

EST 25 COMSFESSOR

FIG. 25

Fla 26
2604 2605

 
QUAD-TREE

REG IONALIZATI ON



U.S. Patent July 6, 1993 Sheet 13 of 32 5,225,904_

 27%

SPLIT 3 SPLIT 2

TREE CODING TREE CODING
usms N005 vgwgs , USING NODE DIFFERENCES

SPLIT 1(122'l28= '6)

  
FIG. 30 FIG. 3/

sPI_IT/ FILL sI=I.JT/ I-‘ILL
TREE cons TREE CODE

I-IF I41 VHF 90 F 93 F I12 3. ‘-§;l_r-é*I§_vF§I68 ‘S1186!-;__F;:
H: HORIZONTAL SPLJT ACTION '
v.- VERTICAL SPLl'T ACTION °' '2? 75 F535 5 '5 F”
P: FILL ACTION s-sImpIa SPLIT )A-Aliernoie SPLIT



U.S. Patent July 6, 1993 Sheet 14 of 32 5,225,904



U.S. Patent July 6, 1993 Sheet 15 of 32 5,225,904

DETECT EDGES ‘ MULVPD’
m QUADRANT5 VF=H N13 - V24

CF REGION - HF=W'HI2' H34

FIG. 33A

FI6‘. 338

16



US. Patent July 6, 1993 Sheet 16 of 32

"SIMPLE" SPLITS

r---““——fi
3402 340

I

H
W>H H>W

SPLIT SPL|'|'
VERTICAL HORIZ.

FIG. 34A

FIG‘. 348

'hLTERN ATE" SPLITS

T 

3405 3408

W

"
W>H H>W

SPLIT SPLTT

HORIZ. VERTICAL

5,22s,904_

 



U.S. Patent July 6, 1993 Sheet 17 of 32 5,225,904

 
 

 

PIXEL mo .

FTSNEAR FILTER
uarsnsons wasms

® ® G) Q) G) G)
3502

® 1:: © 3503 ® 6) ®
C9 G) G) @ 0

FIG 3544 FIG.35B

onnn-212:0 VALUES

“H 1 11° ? *f””%f”°”§”‘*f *1
35o4{1 2 1 2 1 2 2 5 1

35oe{1I 5/\5 9 1o'1o 11 121313 1 17%
wara-rrzo MEDIAN (FILTER oLm=-UT)

wsnewreo onpsaso muss

H6350

FIG. 355
3510

® ® ® EXEMFMRY
wznemsron

® ® <9
G9 G) G)



U.S. Patent July 6, 1993 Sheet 13 of 32 5,225,904

 
I-76. 363

I

2/3

PING FACTOR. D

P. . 3 g 0 O o 2‘

' ‘I00 “.30 O 50 E00 255

DIFFERENCE SIGNAL

 



U.S. Patent

 

July 6, 1993 Sheet 19 of 32

VERI-.FLT_ _
702

Yv

EGION

WITHOUT

EDGES

- - -I I

I Y I

I

I I HDRIZ.
I FIT

FI6‘. 37
I Ax-i-C I

 
  

 

  

MEASURE HORIZ

FIT OF AX4-C

TO YH DATA '

FIG‘. 38

MEASURE VERT

FIT OF ay+c
TO Yv DATA

20

5,225,904



U.S. Patent July 6, 1993 Sheet 20 of 32 5,225,904

 RTE no moons
3929 XoYo

3910 ES



US. Patent "July 6, 1993 Sheet 21 of 32 5,225,904

 

 

4002

I HOVEMENTi-vo_:" " ,
FIG: 40? P'°°§£EFo?.°3?'“°

"" PREVICIJS FRAME.C

REGION or-'
CURRENT FRAME

{TA.RGET.T)

LU RU

BEST L RDIR FIG. 4/

NEXT D RD

FIG. 42

 
 

  

 
  
  

  

TEST UPTO B

DIRECTIONS

FOR BEST DIR.

 REPR ESENTATIVE
PIXEL C-OORDINATES

STEP IN BEST

DIRECTKJN

LNTIL N0

IMPROVEMENT

22



U.S. Patent July 6, 1993 Sheet 22 of 32 5,22S,904_

RELATIVE FILL CODE: A + B + C -4- 76+ Yo

EXAMPLE I, “I, 0, Kb, Yo

23



U.S. Patent July 6, 1993 Sheet 23 of 32 5,225,904

REGION QUANTIZATION

A¥¥f§ uHT3}

FIG. 45

4518

5 BITS

OUANTIZE

4 BITS4502

was oummza

sans

’ 45:5

<3»

 
No 4528

QUAN'11ZE

3 BITS

4530

N0 LA S1DRE
" EGIO mm

YES 4510

C33

24



U.S. Patent July 6, 1993 Sheet 24 of 32 5,225,904

FIG. 46

1542 - SI4 IN FROM
OUANTIZER I530

DYAD FILL

 

 
 

 

VAR. LENGTH GDER 1640

BUFFER 232
n—.———.a-— -an 1

RELATIVE

FILLC-u——-pun-

TREE
DE$RiPT|ON

FIG. 47

FIXED LENGTH GDDED

VAR LENGTH CDDED WITH IMPLICIT TABLE

VAR. LENGTH CODED W1TH COL.2 TABLES

CODE THE RELATIVE ABSOLUTE DPCM DYAD

TABLES DESCR. DATA DATA DATA DATA_

 

 
STREAM FORMAT FOR EACH OF ‘(,1 AND O

SUBFRAMES

25



U.S. Patent July 6, 1993 Sheet 25 of 32 5,22$,904_

FIG. 48

AND

MATRIX

26



U.S. Patent July 6, 1993 Sheet 26 of 32 5,225,904

‘‘%'%'=‘%’‘‘1 cm we

X0 Y0 (REL OR

DYAD REGIONS)

  

FIG: 52

*— " " ' ' ' ' ' " " ' ' ' "".v,;gg,o
4826 4323 5202 ---- a 4329 1

§_ Jkadezo
DECODING PREV. GRAPHICS ""“‘"""*“"* ON

IMAGE IMAGE BUFFER PIPELJNE BUF. DISPLAY

27



U.S. Patent July 6, 1993 Sheet 27 of 32 5,225,904

 
P(1C.yJ=P'(X.5)+Ax+B_y+C T

RELATIVE FILL DEC-ODER £55
AREA

mu:-’?1’E 3
am FROM 547° 3 @ fig;
MAP4822

DE-QUAN1’. F1!-L

5472 PROCESS -- @

LOCATION
FROM

REG ION
TABLE 4824

LATC H

5402  
28



U.S. Patent July 6, 1993 Sheet 23 of 32 5,225,904.

 
P(x,y)=Ax 4- By -1- C

HG. 55

AREA ABSOLUTE FflJ.DECODER 4854

3331?? 5606 8 ® 5610 _Afi
FROM MAP

48mg NU. BW
DEQUANT- ® sees WLOGIC

5572 PROCESSOR 4326

IIC II
DATA

FROM ADDRESS
REGION LATCH
TABLE courmaas

4334 5502 X.Y.H.W 5504

FIG. 56‘

29



U.S. Patent July 6, 1993 Sheet 29 of 32 5,225,904

 
FIG 58

DPCM FflJ.DECODER 4852

DPCM

DATA

  
5803CONSTANT

(:23)

FROM

REGKN
‘M313

4824

30



U.S. Patent July 6, 1993 Sheet 30 of 32 5,225,904

   
nu. DATA IN W-“E5

BOIO

BIT

SHIFTER

FILL DATA OUT



U.S. Patent July 6, 1993 Sheet 31 of 32 5,225,904 _

|<— x.——».! FIG‘. 6‘! C

 
TABLE LOOK-UP (CODE; )= R,;, -

A,;--C; + R; B;-= D..;+ S;

32



U.S. Patent July 6, 1993 Sheet 32 of 32 5,225,904

DYAD FILL
ozcooea

4355

 

  

 

ADDRESS

GEN

x,v,H,w,x.:r.
FROM REGION

TABLE4B24

33



5,225,904
1

ADAPTIVE DIGITAL VIDEO COMPRESSION
SYSTEM

This is a continuation of copending application Ser.
No. 07/403,085 filed on Sep. 15, 1989 now U.S. Pat. No.
5,079,630.

FIELD OF THE INVENTION

This invention relates to video signal processing gen-
erally and particularly to systems for reducing the
amount of digital data required to represent a digital
video signal to facilitate uses. for example, such as the
transmission, recording and reproduction of the digital
video signal.

BACKGROUND OF THE INVENTION

The need for compression to facilitate recording of a
digital video signal on relatively narrow-band media,
such as a compact disc (CD), has been recognized. In a
system proposed by Taltahashi et al. in U.S. Pat. No.
4,520,401, a digital video signal is encoded using differ-
ential pulse code modulation (DPCM) for recording on
a digital audio disc. In the known system, luminance (Y)
and chromirtance (R-Y, B-Y) components of a video
frame are separately compressed using DPCM. A cir-
cuit divides the components into picture element data
groups of a specific number of rows or columns which
are adjacent on a screen. A header signal is provided
having a synchronizing signal, a picture mode identifi-
cation signal and a picture information quantity identifi-
cation code. The header signal is added to the beginning
position of each of the divided picture eiement data
groups to produce a digital video output signal having a
signal format in which the digital luminance, the two
kinds of digital color difference signal and the header
signal are time sequentially multiplexed and recorded.

In an example of the Takahashi et at. system still
frames of digital video are recorded and updated at a
rate of about four seconds per frame. The division of the
compressed data into groups of lines with each group
containing complete color information provides a psue-
do-motion effect in that the line groups may be sequen-
tially updated awhile displaying the previous frame
thereby providing a partially moving picture.

SUMMARY OF THE INVENTION

The present invention is directed to meeting the need
for a compression system for providing a compressed
digital video signal representative of a full motion color
video signal. which is suitable for recording or transmis-
sion using relatively narrow band media and which may

be decompressed at speeds at least equal to conven-
tional video frame rates. In a specific embodiment de-
scribed herein over one-hour of recording time has been
achieved for compact disc read only memory (CD-
ROM) recording media for 30 frame-per-second full
motion color digital video recording.

In accordance with an aspect of the invention. the
first and second frames of a digital motion video signal
are compressed using diflerent compression methods
and an output signal is fortned including an identifica-
tion code signifying each compression method.

In accordance with another aspect of the invention,
each frame of a digital video signal is divided to form a
plurality of regions and each region is separately ana-
lyzed and encoded by a selected one of several com-

5

10

15

20

25

30

35

45

50

55

65

34

2

pression procedures to providing an optimum coding
specific to the characteristics of the region being coded.

In accordance with another aspect of the invention, a
digital motion video signal is compressed using com-
pression thresholds controlled as a function of the num-
ber of bytes per frame and an estimate of the decoding
time per frame of the compressed signal.

In accordance with yet another aspect of the inven-
tion, a video frame is split repeatedly to provide a plu-
rality of regions to be individually encoded, and the
split direction, vertical or horizontal, is determined by a
comparison of distributions of_._pixel parameters associ-
ated with the regions.

BRIEF DESCRIPTION OF THE DRAWING

The foregoing and further features of the invention
are shown in the accompanying drawing in which like
elements are denoted by like reference designators and
in which:

FIG. 1 is a block diagram ofa digital video interac-
tive system embodying the invention providing record-
ing and reproduction of full-motion video, multi-cItan-
nel digital audio and auxiliary (e.g., interactive) data
using a compact disc read-only memory {CD-ROM} as
the recording media; -

FIG. 2 is a block diagram of a digital video encoder
used in a recording portion of the system of FIG. 1;

FIGS. 3-9 are diagrams illustrating digital video
signal formats at various stages of processing in the
encoder of FIG. 2;

FIGS. 10-12 are diagrams illustrating two methods of

processing "oversized“ frames in the encoder of FIG. 2;
FIG. 13 is a block diagram of a forrnatter providing

padding and dithering for use in the encoder of FIG. 2;
FIG. 14 is a block diagram of a pre-compression

processor used in the encoder of FIG. 2;
FIG. 15 is a block diagram illustrating details of a

portion of the processor of FIG. 14;
FIG. 16 is a block diagram ofa digital video compres-

sor used in the encoder of FIG. 2 providing intra-frame
and inter-frame region-specific coding, quantization by
region area and frame-segmented variable length cod-
3113;

FIG. 17 is a flow chart illustrating operation of an
intra-frame coder used in the compressor of FIG. 16 for
compressing still video frames and the first frame of a
motion video sequence;

FIG. 18 is a region diagram illustrating image edge
analysis used in the compressor of FIG. 16;

FIG. 19 is a block diagram of a roughness estimator
providing split/fill decisions for use in the compressor

of FIG. 16; ' _
FIGS. 20-23 are region diagrams illustrating bi-linear

absolute fill coding used in the compressor of FIG. 16;
FIG. 24 is a region diagram illustrating measurement

of boundary errors;
FIG. 25 is a block diagram of an audio compressor

used in the encoder of FIG. 2;
FIG. 26 is a diagram illustrating quad-tree regional-

ization;
FIG. 27 is a diagram illustrating binary tree regional-

ization of an image in the compressor of FIG. 16;
FIGS. 28 and 29 are examples of split/fill coding

diagrams for the regionalized image of FIG. 27;
FIGS. 30 and 31 are examples of "tree" codes for the

coding diagrams of FIGS. 28 and 29, respectively;



5,225,904
3

FIGS. 32A—.I are region diagrams illustrating edge
distribution analysis for determining a most favorable
region split direction;

FIG. 3A is a flow chart for computer apparatus for
determining a most favorable split direction in the com- S
pressor of FIG. 16 by analysis of the distribution of
horizontal and vertical edges in a region;

FIG. 33B is _a table listing of parameters for the appa-
ratus of FIG. 3A;

FIGS. 34A and 34B are diagrams illustrating two
forms of region splitting in the compressor of FIG. 16;

FIGS. 35A—35E are diagrams illustrating weighted
median filtering in the compressor of FIG. 16;

FIGS. 36A-36C are diagrams illustrating non-linear
low-pass filtering for use in the encoder of FIG. 16;

FIG. 37 is a diagram illustrating finding a most favor-
able split direction by polynomial fit comparisons;

FIG. 38 is a flow chart for computer apparatus imple-
menting the split direction method of FIG. 3‘.-';

FIG. 39 is a flow chart illustrating operation of an
inter-frame coder used in the compressor of FIG. 16 for
coding the second frame and all subsequent frames of a
motion video sequence;

FIG. 40 is a diagram illustrating region translation in
the inter-frame coder of FIG. 39;

FIGS. 41 and 42 are vector and flow chart diagrams,
respectively, illustrating selection of a best region
search direction in the inter-frame coder of FIG. 39;

FIG. 43 is a diagram illustrating region translation
and relative coding used in the inter-frame coder of 30
FIG. 39;

FIG. 4-4 is a table illustrating region area dependent
adaptive quantization used in the compressor of FIG.
16;

FIG. 45 is a flow chart illustrating operation of the 35
apparatus in FIG. 16 providing area dependent quanti-
zation of FIG. 44;

FIG. 4-6 is a block diagram of a stream segmented
variable length coder for use in the compressor of FIG.
16;

FIG. 47 is a diagram illustrating the format of data
‘‘streams‘’ provided by the compressor of FIG. 16;

FIG. 48 is block diagram of a compressed digital

video signal decoder used in the playback system 8 of
FIG. 1;

FIGS. 49, 50 and 51 are examples of table listings of
data stored in a region location memory of the decoder
of FIG. 48 for absolute, relative, dyad and DPCM
coded regions of FIG. 48;

FIG. 52 is a block diagram illustrating a memory 50
organization for use in the decoder of FIG. 4-8;

FIG. 53 is a diagram illustrating relative region de-
coding ofan inter-frame coded region by the decoder of
FIG. 48;

FIG. 54 is a block diagram ofapparatus providing the 55
relative decoding of FIG. 53;

FIG. 55 is a diagram illustrating absolute region de-
coding in the decoder of FIG. 48 of an intra-frame
coded region;

FIG. 56 is block diagram of apparatus providing the 60
absolute decoding of FIG. 55;

FIG. 57 is a diagram illustrating DPCM decoding of
a region in the decoder of FIG. 48;

FIG. 53 is block diagram of apparatus providing the
region DPCM decoding of FIG. 57;

FIG. 59 is a table listing of area dependent adaptive
quantization values for "dequantizing" pixel data in the
decoder of FIG. -I-8;

IO

15

20

25

40

45

65

35

4

FIG. 60 is a block diagram ofapparatus for providing
area dependent dequantization in the decoder of FIG.
43;

FIGS. 61 and 62 are diagrams illustrating dyad de-
coding in the decoder of FIG. 4-8; and '

FIG. 63 is a block diagram of a dyad decoder for use
in the decoder of FIG. 48;

I DETAILED DESCRIPTION
The digital video interactive system of FIG. 1 com~

prises a recording system 6 and a playback system 8.
The recording system includes sources 10, 12 and 14
which provide, respectively, a multi-channel sound
signal SI, a color motion video signal 52 and an auxil-
iary data signal 53. An encoder I6 encodes and com-
bines signals 51. S2 and S3 to form a digital recording
signal S4 (hereinafter, "bit-stream") that is recorded on
a compact disc read-only memory (CD-ROM} disc 20
by means of a CD-ROM recorder 18. Auxiliary data
signal 83 may comprise interactive data associated with
the video or audio signals or some other type of digital
data which may be independent of the audio or video
data. '

The average data rate of the bit-stream S4 is con-
trolled by a selection of encoding parameters to equal-
the standard CD«-ROM record/playback bit-rate of
about 1.2 mega-bits per second. The parameters are
selected, as will be explained, so as to enable recording
of up to one hour of full-motion digitally encoded color
video, multi-channel digital audio and auxiliary data on
CD-ROM disc 20.

The encoding of the digital full-motion color video
portion of the recording signal to meet the relatively
low channel capacity of the CD-ROM disc player re-
quires very substantial data reduction. In a specific
example to be described. this data reduction is on the
order of about 150:1 for an exemplary video frame rate
of 30 FPS (frames per second). To meet this critical
requirement, while avoiding visible "artifacts" associ-
ated with conventional video compression techniques,
encoder 16 converts the video signal S2 to a color frame
sequential component form and separately subjects each
frame of each component to a number of specially
adapted processes as will be described. Briefly listed,
these include variable sub-sampling, variable irtter-
frame and intra-frame compression employing what
will herein be tenned "region-specific” encoding, area
dependent adaptive quantization, "segmented" variable
length coding, reverse frame sequence reformatting,
padding and frame dithering. -

The selection of the individual processes, the selec-
tion of the share of data reduction provided by each and
the selection of variable compression parameters (e.g.,
thresholds, operating modes and, particularly, when to
quit compressing) represents critical choices in meeting
the objective of encoding full motion color video for
storage on CD-ROM digital audio tape (DAT) or other
bandwidth limited media. Such choices depend on more
than merely the channel capacity of the CD-ROM me-
dia. They depend as well on variables such as the video
frame rate, the desired spatial resolution, certain spe-
cific characteristics of the video image content and on
parameters of the decoder that is ultimately used for
reconstituting the image. As will be explained, each
individual video frame is converted to a component
fonn and each component is divided to form a number

of blocks (herqafter “regions") of picture eletnents
(“pixels"). Each region is then individually “custom"



5,225,904
5

encoded. This process is hereafter referred to as "re-
gion-specific" coding. The coding for each region is
selected from a group of codes to enable the video
decoder in playback system 8 to meet the strict require-
ment of completing all decoding tasks assigned to it in
“real time", that is, within one video frame interval (a.
variable).

The foregoing and other aspects of recording system
6 are discussed in detail with reference to FIGS. 2-47

and 61, 62. Details of playback system 8 are discussed
later with reference to FIGS. 48-63.

Encoder 16. in FIG. 2. includes input terminals 202,
204 and 206 for receiving audio signal S] from source
10, video signal 52 from source 12 and auxiliary data
signal 53 from source 14, respectively. As an overview
of the audio processing, signal S] is subjected to chan-
nel selection and analog-to-digital (A/D) conversion,
compressed with provisions for preventing fran'fe-to-
frame propogation of errors and stored for later recov-
ery as blocks of audio data to be included in each video
frame of bit stream 54 thereby providing audio/video
synchronization.

In detail, audio signal S1 is applied to a channel selec-
tor and analog-to-digital (A/D) converter unit 208
which includes operator controls (not shown) for se-
lecting the number of channels to be encoded and the
channel sampling rate. One channel is selected for
monophonic recording. two for stereo. four for stereo/—
bilingual. etc. The sampling rate currently used for high
quality audio recording is 31.25 KHZ which supports a.
15 KHZ audio bandwidth. The rate may be halved for
standard quality or quartered for voice grade audio
applications.

The data rate of the digitized audio signal 55 is re-
duced for recording by means of an adaptive differential
pulse code modulation (ADPCM) encoder 210 which
encodes the sample-to-sample differences of signal 55 to
form a compressed digital audio signal S6. Since succes-
sive audio samples are often highly correlated, fewer
bits are required to encode the sample differences. The
term “adaptive" means that the encoder is of a type that
changes the bit significance of encoded differences as a
function of the previous encoded difference so as to
provide fine resolution over a wide dynamic range.

Encoder 210 may be of conventional design but it is
highly desirable for purposes of overall audio/video
coding that provision be made either to bypass or reset
it on a periodic basis so as to periodically encode an
audio sample with full resolution. Illustratively, en-
coder 21!} (FIG. 25) is reset once every 256 bytes. Re-
call that the audio signal is ultimately organized in a
block form with one block of audio data included with
each block of video data in bit stream S4. The formation

of audio data “bloclts" is supported via buffer store 212
which stores signal S6. Later the formatter 250 recovers
the stored signal (S?) periodically on a frame-by-frame
basis when the audio and video data are combined as

will be explained. Typical audio block sizes currently
used are 130 and 134 bytes for a video frame rate of 30
FPS and voice grade audio. The audio block size de-
pends on the sampling rate, the number of audio chan-
nels to be recorded, and audio dithering within the
formatter 250. .

One reason for periodically resetting or bypassing
DI-‘CM encoder 210 is to prevent audio errors, which
may occur in the CD-ROM transmission system, from
propagating from frame—to-frame. This feature also
facilitates subsequent editing of sequences to enable any

10

15

20

25

30

35

45

50

55

65

6

frame to be chosen as an edit point. This feature is im-
plemented as, shown irt FIG. 25 by means of a compara-
tor 2l4 which supplies a reset signal to reset input R of
audio A DPCM encoder 211 when the byte count of the
compressed audio signal 56 (produced by a byte
counter 216) exceeds the byte limit set by a byte limit
source 218.

VIDEO CODING OVERVIEW

The principal elements providing video encoding in
FIG. 2 comprise a pre-compression processor 220, a
digital video compressor 230 and an output signal for-
matter 250 which are described herein in detail with

reference to FIGS. 3-47. As an overview. processor 220
provides conversion of video signal 52 to a non-stand-
ard format that provides a variable amount of data re-
duction, facilitates subsequent compression and contrib-
utes to certain features of the system relating to variable

frame-rate processing for controlling spatial-temporal
resolution. Some images are converted at one frame rate
for subsequent display at an entirely different rate.

Compressor 230 employs, broadly speaking, four
types of processing for reducing the quantity of digital
data to encode a frame to a specific “optimum" value.
This value is related to the CD-ROM channel capacity
but varies as a function of several variables including
the frame rate, the desired spatial-temporal resolution.
and other factors relating to error propagation and
visual appearance. The processing “types" include in-
tra-frame region-specific coding for still frames and for
the first frame of a motion video sequence. Inter-frame
region-specific coding is used for the second and subse-
quent frames of a motion video sequence. Encoded
frames are subjected to further data reduction by two
processes in compressor 230 which will be referred to
herein as “area dependent adaptive quantization" and
"segmented stream variable length coding". These pro-
cesses are applied to each video frame to reach the
desired "optimum” value noted above. Some sequences
of frames may be repeatedly compressed with a change
of compression thresholds to reach the optimum com-
pression value.

From time to time, an ‘‘impossible‘‘ frame may be
encountered which is hopelessly oversized and can not
be reduced to the desired byte count by altering com-
pression parameters without_ introducing noticeable
visual artifacts. Such oversized frames receive special
treatment in formatter 250 which combines the audio,
video, auxiliary (e-.g., interactive) and other data to
create the recording bit-stream signal S4. Specifically,
formatter 250 analyzes frames backwards from the last
frame to the first and “borrows" space from short
frames to hold the extra data of the oversized frames.

Other functions provided by formatter 250 include add-
ing "padding" data to undersized frames and dithering
the number of bytes of data per frame to arrive at a
specific average frame rate selected to keep the CD-
ROM system operating at its maximum channel capac-
ity and to avoid pauses during playback. Pauses are
avoided because the recovery time (the "seek mode
latency") of a CD-ROM player can be lengthy and
unpredictable.

Details of video processing are discussed in the fol-
lowing five sections entitled “Video Pre-Compression
Processing", “Video Compression Processing“, "Post-
Compression Processing“, "Playback System", and
“Video Decoding".

36



5,225,904
'7

Video Pre-Compression Processing

Pre-compression processor 220 is coupled to input
terminal 204 (in FIG. 2) for converting the standard
video signal S2 to a non-standard form specially
adapted for the particular types of compression and
formatting functions subsequently employed in encoder
16. Specifically, each frame of the video 52 is converted
in the "pre-compression“ processor 220 to form three
separate component frames comprising one luminance
sub-frame and a pair of color-difference signal sub-
frarnes. Each of the color-difference sub-frames is sub-

sampled by a predetermined amount with respect to the
luminance sub-frame which, itself, may or may not be
sub-sampled with respect to the original video frame.
The original video signal may be analog or digital and
may be of component form, composite form or of an-
other suitable form such as multiplexed analog compo-
nent (MAC) form.

FIGS. 3, 4 and 5 illustrate the pre-compression pro-
cessing of one frame of video signal S2 for the case
where signal S2 is assumed to be an NTSC standard
composite video signal, one frame of which is shown in
FIG. 3. FIG. 4 illustrates an intermediate stage of pre-
compression processing in which the composite signal
has been decoded to RGB component form, stripped of
synchronizing and blanking intervals and digitized to
form RGB picture element (pixel) arrays representing
the "active“ video portion of each RGB field. The
array dimensions, as illustrated, are 512 pixels horizon-
tally by 240 pixels vertically for each RGB component.

FIG. 5 illustrates the final stage of pre-compression"
processing in which the digital RGB arrays of FIG. 4
have been converted to fonn a single luminance signal
sub-frame (Y) measuring 256 X 240 pixels and two color
difference signal subframes (I and Q) each measuring
64-X60 pixels. The three sub-frames are stored in a
memory (to be described) for subsequent individualized
“custom“ compression. Comparing FIGS. 3, 4 and 5 it
is seen that one frame of signal 52 (FIG. 3) which re-
quires 737,230, bytes in digital RGB form (FIG. 4) is
reduced to 69120 bytes after sub-sampling. conversion
and formatting (FIG. 5) thus providing an effective data
reduction for the frame of a factor of about ll:l for the
assumed rate of 30 FPS.

An operator control unit 222 is provided in FIG. 2 for
varying the sizes of the sub-frames of FIG. 5 as a func-
tion of the frame rate to facilitate varying the temporal
and spatial resolution of encoded frames. This feature of
the system relates to subsequent compression of the
signals in the following way. The CD-ROM recording
system can support a bit rate of about 1.2 mega-bits per
second as previously noted. For 30 FPS (frame per
second) video this channel capacity corresponds to a
video byte count (B-bits/byte) of 5125.12 bytes per
frame. Of this. typically about 4500 bytes per frame are
available for video with the remainder being used for
audio and other data. The video compressor (to be
described) meets this requirement by compressing the
formatted YIQ sub-frames by another factor of about
15:1 from 69120 to under 4500 bytes per frame for the
assumed rate of 30 FPS. If the playback frame rate is
halved then twice as much time (I/15th second) is avail-
able for decoding each frame and 9,000 bytes are avail-
able for encoding each frame. This increased decoding
time and quantity of image data can be used in a variety
of ways to provide improved image quality. One may
for example, increase the number of pixels in the en-

10

15

20

25

30

35

45

S0

55

65

37

8

coded frame or may more accurately encode the same
number of pixels as at the higher frame rate (30 FPS).

FIG. 14 shows a specific implementation of pre-com-
pression processor 220 for providing the variable sub-
sampling and format conversion functions previously
described. Processor 220 comprises an RGB decoder
1402 which converts the composite video signal to
RGB component form. The RGB components are ap-
plied via anti-aliasing (2 MHz} low-pass filters (1404,
1406 and 1408) to inputs of a programmable graphics
workstation 1410. A suitable workstation is the "Adage
3000 Color Raster Display System". Operator control
unit 222 of FIG. 2 comprises a terminal unit 222' (in
FIG. 14) which supplies a "skip list“ of fields, lines and
pixels to workstation 1410 as well as anti-alias filter
coefficients and sample rate control data. Data reduced
sub-frames of Y, I and Q samples are produced by the
work station and stored in a disc store 1412.

FIG. 15 is a block diagram illustrating the specific
programmed configuration of workstation 1410 for use
in processing video signal S2 to create the non-standard
sub-frame signal format of FIG. 5. The anti—alias filtered
analog RGB signals provided by filters 1404-1408 are
applied to respective analog-to-digital converters
1502-1506 which digitize the signals at a rate selected to
provide 512 pixels per active line interval as controlled
by terminal 222’ coupled to the workstation timing and
control unit 1530. The digitized RGB signals (FIG. 4)
are sub-sampled by two banks of switches 1510 and
1514. Switches 1510 are timed by unit 1530 to skip alter-
nate fields'of the RGB signals. Switches 1514 skip alter-
nate pixels, so that the resultant digitized and sub-sam-
pled RGB signals each comprise arrays of 256x240
pixels per frame.

A matrix 1516 converts the sub-sampled RGB signals
to YIQ form. The I and Q color difference signals are
each sub-sampled 4:1 both vertically and horizontally
with respect to the luminance signal Y. This is provided
by horizontal anti-alias low-pass filters 1518 (500 KHZ),
vertical anti-alias low-pass filters 1520 (60 lines/picture
height), switches 1522 which skip 3 of 4 lines and
switches 1524 which skip 3 of4 pixels. The formatted Y,
I and Q sub-frame signals (FIG. 5} are then stored in
respective sub-frame locations in the disc store (e.g., a
hard disc drive) 1412 for subsequent recovery and com-
pression. '

As previously explained, the filtering and s'I:tb-sam-
pling parameters are variables which depend on the
frame rate. For the specific examples of FIGS. 14 and
15 the frame rate is assumed to be 30 FPS. At different
frame rates the operator inputs appropriate anti-alias
filter coefficients, skip lists and conversion frequencies
to timing and control unit 1530 via terminal 222'. At any
frame rate or resolution, however. it is important that
the original signal, of whatever form (analog or digital,
component, composite or‘ MAC), be converted as
shown in FIG. 5 to a form comprising a luminance
component Y and a pair of color-difference components
that are filtered and sub-sampled both vertically and
horizontally with respect to the luminance component.
Color difference components I and Q are used as exam-
ples herein. Alternatively, the color components may be
of other forms, such as R-Y and B-Y or U and V.

Pre-compression processor 220 of FIG. 14 may be
modified for processing a video input signal of MAC
format by replacing RGB decoder 1408 with a MAC
decoder providing YUV line sequential to ‘(UV line
parallel outputs, deleting the RGB/YIQ matrix in FIG.



5,225,904
9

15 and changing the sub-sampling parameters as needed
to arrive at the individual (separated) sub-frames of
luminance and color-difference components of FIG. 5.
It will be appreciated that other variations are possible.
For example, the source may be decoded to YIQ or
YUV component form prior to filtering. Sampling may
be done on either RGB or YIQ.

Video Compression Processing

After pre-compression processing the Y, I and Q
video sub-frames are recovered one at a time from disc

store 1412 for independent compression. The sequential
recovery of sub-frames is indicated symbolically in
FIG. 2 by sub-frame selector switch 224. In the position
shown, switch 224 applies all Y sub-frames of a motion
video sequence to compressor 230 which compresses
and stores the complete sub-frames in a buffer store 232.
Switch 224 is then advanced and the compression pro-
cess is repeated for all of the ] sub-frames of the se-
quence. Finally, compression is applied to all of the Q
sub-frames of the sequence thereby completing an initial
stage of compression of a sequence of color frames.
Alternatively, switch 224 may be advanced to select the
Y, I and Q subframes of one complete frame of the
sequence for compression before advancing to the next
frame of a sequence.

The compressed signal S9, as shown in FIG. 1'. in-
cludes the three individually compressed sub-frames,
each of which consists of a bitstream header (H) fol-
lowed by the compressed data for the sub-frame (Y, I,
or Q). The header identities which sub-frame the data
corresponds to, the size (number of pixels horizontally
and vertically) of the sub-frame, a checltsum for diag-
nostic purposes, and various tables used by the decoder.
Further details of the format of signal S9 are discussed
later with reference to FIGS. 46 and 47. The com-

pressed data of FIG. 7 will hereafter be referred to as a
video data “stream“.

The feature of compressor 230 of individually com-
pressing the YIQ sub-frames to form the compressed
digital video “strcam" S9 greatly enhances the com-
pression efficiency. One reason is that even though the
sub-frames represent the same image, they can differ
from one-another dramatically because they represent
different color measures of the image. Some images, for
example, may contain no flesh tones. Others may con-
tain no blue-green tones. Others may contain no color at
all. A further reason for individual sub-frame compres-
sion relates to the statistical distribution of codes repre-
senting the image. Variable length coding is employed
as one compression step. Variable length codes are
selected in accordance with the frequency distribution
or statistics of data to be coded. Since the statistics of Y,
I and Q encoded sub-frames differ, individual variable
length codes are employed that are optimized for each
sub-frame. There are, in fact a number of separate statis-
tical codes for each sub-frame as will be discussed.

After compression, the compressed video streams
(S10) are recovered from buffer store 232 and applied to
a byte count monitor 234 and to a decode time monitor
236 which identify, respectively, the number of data
bytes and the decoding time for each individual frame
of a video sequence. Since audio and auxiliary data will
be added to each frame, the average byte count should
be less than the total number of bytes allowed per frame
in the bit stream 54. For encoding a video signal for
playback at 30 FPS from a CD-ROM. the average num-
ber of bytes available per frame is 5125.12. This is deter-

10

I5

20

25

30

35

45

50

55

65

10

mined by dividing the CD-ROM channel capacity by
the video frame rate. Monitor 234 provides an accumu-
lated average byte count over a sequence of video
frames (alternatively monitor 234 may be arranged to
count bytes on a frame-by-frame basis). This count is

used for setting compression thresholds in a compres-
sion threshold control unit 238 to maintain the average
byte count of signal 510 below 4500 bytes per frame.
‘This allows room in the frame for audio and other data

that is later added. Dashed lines are used to signify this
closed loop procedure which is presently performed
manually in a current implementation of encoder 16.

As previously noted. oversizedvideo frames that can
not be reduced to 4500 bytes are accounted for during
reformatting by borrowing space from an earlier frame.
The mechanics of this are discussed later. in the section
on video post compression. Decode time monitor 236
measures the time it takes to decompress each sub-frame
of the compressed digital video signal 510. This mea-
surement may be accomplished by applying the signal
S10 to a decoder such as processor 30 of the playback
system 8 and measuring the processor decode time. For
an exemplary playback rate of 30 FPS, the decode time
of a frame should be no more than 1/30th of a second.

When this monitor detects a larger decode time. thresh-
olds in the threshold control 238 are adjusted go reduce
the decode time of the “oversized" frame.

Alternatively, threshold 238 can be adjusted to
merely keep the running average of the decode time
below 1/30th of a second. With such a strategy, there is
no need to repeat a compression, even if it exceeds the
allowed decode time. In other words, the average can
still be acceptable even if individual frames are not. As
will be described subsequently, the playback system can
cope with such temporary excesses in the decode time,
without any effect on the playback rate, by using a
technique of borrowing decode time from “short“
frames (i.e., those frames that require less than l/30th of
a second to decode). This alternative technique of cod-
ing “oversized" frames applies where the average de-
code time is less than 1/30th of a second. and the play-
back system has adequate buffer storage. The amount of
buffer storage needed by the playback system is moni-
tored within the formatter 250 (FIG. 2), and if it is
excessive, the threshold control is adjusted to reduce
the decode time further. This alternative strategy for
using the decode time monitor is desirable, because it
permits a more accurate encoding of those framed that
need a long decode time.

The decode time monitor may alternatively comprise
an estimator, based on the known decoding time charac-
teristics of the video processor 30. A careful examina-
tion of the decode process will reveal that it consists of
a fixed number of well defined operations (say “A“.
"B", etc.) each of which requires a maximum length of
time to complete. The encoder has available to it the
precise bit stream that will be processed by the decoder.
Hence the encoder can determine precisely how many
times each of these operations will be performed for
each sub-frame. The decode time estimate, T, is simply
the sum of products:

N

r= _s xix, int=l

In the summation, each term “A,-" represents the total
number of times a particular decoding action is per-

38



5,225,904
11

formed. The term K; represents the maximum decoding
time of the action. Examples of such actions include
relative, absolute, DPCM and dyad decoding. More-
over, each decoding action may comprise several ac»
tions depending on where the pixel is in the region being
decoded. To facilitate the use of such an estimator, the
digital video compressor 230 stores the A,-counts associ-
ated with each sub—frame in the buffer-store 232. They
are retrieved by means of a connection (not shown)
from monitors 234 and 236 to store 232. As an example 10
of the use of equation 1 for estimating decoding time,
the products that may be summed are (1) the number of
regions described by respective fill data times respec-
tive first constants, (2) the number of pixels included in
each type of region times respective second constants IS
and (3) the number of rows of pixels included in respec-
tive types of regions times respective third constants. A
constant term may be added to the sum of products to
account for decoding steps common to all regions to be
decoded. 20

FIG. 16 is a simplified block diagram of digital video
compressor 23{} which includes an input terminal 1602
for receiving the YIQ selected sub-frame signal 88 from
switch 224 and another input 1604 for receiving the
threshold control signal 511 from control 238. Mode 25
switch 240 of FIG. 2 is indicated symbolically as switch
240' in FIG. 16. In the position shown (UP), mode
switch 240‘ applies the video sub-frame signal S8 to an
intra-frame region-specific coder 1610 which produces
a region-specific coded signal $12 that is applied via 30
mode switch 240‘ to an area dependent adaptive quan-
tizer 1630. The quantized region coded signal 514 is
applied to a stream-segmented variable length coder
1640 as the final compression step in producing the
compressed signal S9 for storage in buffer 232 (FIG. 2]. 35
Reversing the position of switch 240' applies the video
input signal 58 to an inter-frame region-specific coder
1620 and selects the inter-frame coded signal 513 for
quantization. Both encoders 1610 and 1620 are coupled
to receive the threshold control signal S11. 40

In operation, mode switch 240’ is placed in the UP
position for encoding still frames and the first frame of
a motion video sequence using intra-frame coder 1610.
Briefly stated, coder 1619 splits the frame into a number
of small groups of similar pixels referred to herein as 45
"regions". For each region a code is produced for rep-
resenting the values of all pixels of the region. This
technique provides very substantial data reduction
(compression) because very few bytes of code are
needed to specify where a region is, how big it is and 50
what "fill" values are to be used to represent the region
pixels. Further, the specific coding method used for
each region is optimally chosen based on detailed char-
acteristics of each region. This technique (herein, “re-
gion-specific" coding) of tailoring the encoding strat- 55
est‘. not just to individual images, but actually to indi-
vidual regions within an image, greatly increases the
amount of compression possible. Details of (1) how to
find the regions, (2) how to code or "fiIl“ the region (3)
how to identify “good" and "bad" fill values and (4) 60
what to do about "bad“ fills are shown and described
with reference to FIGS. 17-38.

Switch 240' is placed in the down position for encod-
ing the second frame and all subsequent frames of a
motion video sequence using inter-frame coder 1620. 65
This different coding mode is used because once the
first frame is encoded by coder 1610, the second and
later frames can be coded on a “relative" basis using

39

12

differences of the regions from frame-to-frame. One
advantage of this “relative" coding of region differ-
ences is that smaller numbers are produced and smaller
numbers can be represented using fewer bits by means
of variable length coding in which shorter codes are
assigned to smaller numbers. Details of (1) how to find
the best direction to look for corresponding regions in a
previous frame, (2) how to encode the region if found
and (3) what to do if a corresponding region does not
exist are discussed with reference to FIGS. 39-43 and
61, 62. ,

The region-specific coded signals S12 and 813 are
subjected to what is termed herein as “area dependent"
adaptive quantization in quantizer 1630 which provides
further data reduction. Recall that frames are coded as

regions of pixels. The size of each region varies with
details of the overall image. For example, in areas of
high detail there will be many small regions of a few
pixels each. Conversely, in areas of low detail there will
be a smaller number of regions but these regions will
contain tens or even hundreds of pixels each. Quantizer
1631} achieves data reduction by variably quantizing
region data as a function of the region area (i.e., the
number of pixels in the region) such that smaller regions
are more coarsely quantized (and thus require fewer
bits) than larger regions. This process, and the psycho-
visual effect that makes the quantization essentially
invisible, will be discussed with reference to FIGS. 44
and 45. .

The quantized region-specific coded signal S14 re-
ceives additional data reduction (compression) in vari-
able length coder 1640. Briefly, the data describing an
image is rather complex. It includes data describing
how the regions were split and filled, how regions were
shifted, parameters describing the fill values in terms of
bi-linear polynomial coefficients and further data in
DPCM and dyad coded form. The point is that each
video stream includes many types of data. These differ-
ent types of data are formatted to occur in separate
“segments" of each video stream. Coder 164-0 deter-
mines the statistical occurrence of data for each individ-

ual segment of a video stream and assigns the shortest
code to the most frequently occurring data within each
segment. This is done independently for each one of the
Y, I and Q sub-frames comprising a stream. In a pre-
ferred application, the different forms of region-specific
codes are biased, so to speak, towards zero so that small
numbers have a higher frequency of occurrence than
larger numbers and thus are assigned shorter variable
length codes by coder 164-I]. Details of the foregoing
“stream segmented” variable length coding are de-
scribed with refercncc to FIGS. 46 and 47.

Compressor 230 of FIG. 16 has been impletnented by
programming a digital computer as described with ref-
erence to FIGS. 17-47. For the computer, a model
VAX ll/785 manufactured by Digital Equipment Cor-
poration was selected. Compression speeds of a few
minutes per frame have been achieved for typical mo-
tion video sequences. The principal goal of compressor
230 is not speed but rather is high quality for the images
that are ultimately displayed. This goal is achieved in
large part through the use of what is herein termed
“region-specific" coding as will now be described.

Region specific coding comprises two actions,
namely. (1) dividing the image into several regions ("re-
gionalization"), and (2) selecting "optin1al“ fill parame-
ters for each region. These two actions are performed



5,225,904
13

concurrently, as will be described with reference to
FIG. 17.

FIGS. 27-31 provide an overview of the regionaliza-
tion process called binary tree decomposition. In this
simplified example, the region 2702 consists of four
subregions (2704, 2706, 2708, 2710) in which the pixels
are assumed to have uniform gray levels (e.g., 141, I12,
90 and 98 out of a possible range of 256 gray levels}.
The pixel value-distribution of this sub-frame is atypi-
cal, and is only intended to illustrate how binary tree
regionalization is applied, and how the resulting decom-
position can be efficiently encoded. In the more general
case, the "fill" (i.e., the code representing the region
pixel values) is described by the linear expression Ax+-
By+C, where the coefficient “A" represents the slope
or brightness gradient in the horizontal (X) direction,
"B" represents the gradient in the vertical (Y) direction
and "C" represents a constant or uniform level of
brightness over the region. In the example of FIG. 27,
the terms A and B of the fill polynomial Ax+By+C are
both zero.

Binary tree decomposition is performed by splitting a
region in half, and then possibly splitting each of the
resulting sub-regions in half, until the resulting sub-
regions can be efficiently encoded. Later. in the discus-_ 25
sion of FIG. 17, a number of strategies are described for
deciding when a sub-region should be split, and in
which direction it should be split, horizontal or vertical.
For FIG. 27, these decisions are easy. The first split,
labeled split 1 in FIG. 27 splits the region horizontally
into two equal halves. The top half 2704 can be effi-
ciently encoded by the single value 141, while the bot-
tom half needs further decomposition. A further verti-
cal split, split 2 divides the remaining area in half. The
right half (2706) can be efficiently encoded by the value
112 and hence is not split any further. The left half,
however, requires a further horizontal split, into two
subregions 2708 and 2710 which can be efficiently en-
coded by the values 90 and 98.

Other regionalization strategies are possible. For
example in quad-tree decomposition, instead of picking
a single split direction, both split directions are used
together. This leads to a regionalization as shown in
FIG. 26 where region 2602 is split to form four more
regions 2604-2608 one of which (2608) is further split to
form four regions. Binary tree regionalization is the
preferred mode because it has been found to normally
result in fewer regions and hence fewer bits and less
decode time.

FIGS. 28 and 30 illustrate the encoding of the abso- so
lute fill values and region locations of the example of
FIG. 27. The term "absolute" as used herein signifies fill
values obtained solely from the region data of the re-
gion being coded. The term “relative" as used herein
signifies region fill values based upon frame-to—frame 55
region differences. The inverted tree-like structure of
the coding diagram 2802 in FIG. 28 represents succes-
sive divisions of region 2702 and is called a “binary
tree" because each branch is split to form two branches.
The top node of the tree represents the whole image. 60
Each time a region is split. two new node values are
formed. Tenninal nodes of the tree are encoded with

the region fill values.
The code (FIG. 30) to describe the complete tree

consists, therefore, of two types of data: "values,” 65
which are the fill values. and “actions", which are the
split or till command. The “actions“ and "values" are
encoded using the same code “space". That is, they

10

15

20

30

35

45

40

14

each comprise variable-length-encoded non—negative
numbers. It is always possible, however, to distinguish
between an action and a value based on context, that is,

the position of the action or value in the code sequence.
For instance, in the example of FIG. 28, when a “i'1ll"
action is encountered, the next number must be a value.
The next item after this value must be another action,
etc.

In more detail, the tree description data is ordered
using the following rule. For each node that is split, all

the data pertaining to the “top" node (if a horizontal
split) or the "left" node (if a vertical split) is listed,
followed by all the data for the'~other node. This is an
inherently recursive procedure that begins with the
root node of the tree and operates successively on nodes
of the tree until all terminal nodes of the tree are

reached. For the example tree in FIG. 28 this yields the
tree code shown in FIG. 30. This short code, together
with the dimensions of the original image. gives all the
information one needs to specify the size and location of
every region and the value of every pixel in the image
2102. The “H" and "V" symbols signify horizontal and
vertical splits. The "F" symbol signifies a fill action.

FIG. 29 illustrates an alternative and preferred for-
mat for encoding the binary tree data for the regions of
FIG. 27. It differs from the method of FIG. 28 in that
the fill data is encoded as node differences rather than as

the actual values of the end nodes. This requires calcu-
lation in the decoder to recover the actual fill values but

has an advantage in that the encoded values are numeri-
cally smaller. Compare, for example, the values 141, 90,
98, 112 of FIG. 30 with the values -7, -37, I3, and 3

of FIG. 31. Since the values are encoded using a varia-
ble-length code, this produces greater coding effi-
ciency, since this weights the statistics of the values
more heavily towards small numbers.

The coding procedure which results in the binary
tree illustrated in FIG. 29 is performed as follows. First,
the encoding process which develops the binary tree of
FIG. 28 is performed. Next, pairs of fill values at termi-
nal nodes from the same branch point are differenced
and averaged. The difference value is assigned to the
branch point and is the value which will subsequently
be encoded in the tree description. The average value is
also assigned to the branch point, but only for the pur-
pose of determining other nodal or branch values work-
ing backwards up the tree. That is. the average values
are averaged and differenced with absolute or average
values from a corresponding node on a parallel branch.
The difference value is assigned to the branch point as
the value to be encoded, and the new average value is
used to determine the next difference and average value
working hierarchically up the tree. Differences are
determined by subtracting the lefl nodal or branch
value from the right nodal or branch value.

In the example illustrated the terminal nodal value 90
is subtracted from the terminal value 98 to produce the
difference value +8 which is assigned to the branch
point designated "split 3". The average of the nodal
values (90+98)/2=94 is also applied to the branch
point and shown in angle brackets. The average value
94 at the branch point “split 3" is differenced and aver-
aged with the terminal nodal value 122 to generate the
difference +18 and average 103 which are assigned to
the branch point designated "split 2". This process is
carried out all the way up the tree until the firstmost
branch point is reached.



5,225,904
15

A further encoding efficiency is accomplished at the
top node of the tree by referencing the top node to the
value 128. That is, the value 128 is subtracted from the
average value established for the top node. In this exam-
ple, the average value for the top node or branch is 122. 5
Subtracting 128 from 122 yields a value of -6. This
value is assigned the first position in the encoded tree
description.

The tree description is illustrated in line “A" FIG. 31
and includes in order of occurrence the value -6 fol- 10

lowed by the direction “H“ of the first split, followed
by the difference value assigned the first branch, fol-
lowed by the instruction to fill the left branch, followed
by the direction "V" of the next split, followed by the
difference value assigned that branch point etc. This l5
code contains the same number of instructions as FIG.
30 but has smaller numerical values.

For decoding, the average value of the first two
nodes (141 and branch point “split 2"} is calculated by
adding -6 to +128 to yield 122 which equals (R+L)/2 20
where R and L are the right and left node or average
values respectively. The difference value, 38, transmit-
ted in the code is equal to (R -1..) i.e., R - L-—~ —— 37. But
(R + L)/2 = 122. Solving these equations simultaneously
yields the left nodal value. L. equal to 141 and the right 25
branch average value R equal to I03. This process is
continued down the tree. Occasionally, the averaging
process described above may require dividing an odd
number by 2. This may be dealt with by having the
encoder and decoder agree on the same truncation or 30
rounding strategy.

The foregoing binary tree encoding methods require
encoding negative numbers. This is accomplished in the
following way: A positive (or zero) number P is en-
coded by the positive number 2P, and a negative nurn- 35
ber N is encoded by the positive number 2 N r l. Posi-
tive and negative numbers are differentiated because all
positive values (2P} are even and all negative values 2 N
-1 are odd. This technique avoids placing a sign bit in
the most significant bit position of fixed bitwidth code- 40
words and therefore eliminates extra bits between the

sign bit and value bits for small values. When using this
coding scheme, the tree code assumes the values in line
“B" of code in FIG. 31.

As a further efficiency measure, it has been found 45
useful to encode the “actions" and the “values" using
different variable-length codes. Since there are only a
few different actions, and many more possible values.
their statistics are significantly different. Thus, using
separate variable-length codes produces some addi- 50
tional code savings.

The above description applies specifically to images
containing absolute fills by constants. In actuality. there
are four types of fills currently used, namely: absolute,
relative. DPCM. and dyad. Each of these has its own 55
separate action code. The node values discussed above
only apply to absolute fills. The fill values for the other
three types of fills are encoded separately in different
code "segments“ that are later combined with the
split/fill segment to form the overall video bit-stream. 60
The use of many code segments is described in a subse-
quent discussion of “segmented stream variable length
coding" and FIGS. 4-6 and 4'7.

Vertical splits, V, and horizontal splits H, have ap-
proximately equal probabilities of occurrence. An alter- 65
native way of encoding this information has been found
that uses fewer bits on average. It has been found that
most splits tend to split the longer dimension (e.g., re-

41

16

gions 3402 and 3406 in FIG. 34A). Such a split is called
a simple split and is encoded as S. If the dimensions of
a region are equal and it is to be split horizontally, it is
coded as a simple split, S. This encoding is not ambigu-
ous to the decoder because the region dimensions are
available and if they are equal, the split code 5 is inter-
preted as a horizontal split. Any split which is not a
'‘simple‘‘ split is called an alternate split and is encoded
as A (e.g.. regions 3404 and 3408 as shown in FIG. 3413}.
Because of the greater probability of occurrence of
simple splits the variable length encoder is able to use
fewer bits on average by assigning a shorter code to
represent simple splits. With this encoding strategy. the
tree of FIG. 29 would be encoded via line “C“ of FIG.

3!. While this approach does decrease the code size, it
has the disadvantage that the decoding time is increased
by the need to deduce vertical and horizontal split ac-
tions (V and H) from the simple and altemative split
codes (S and A).

For images containing relative or dyad coded regions
(described later). the region shift values (X9, Y9) are also
encoded in the split/fill tree description. using another
action (called "shift") followed by the two shift values.
As will be explained, a "shift" value is a measure of the
horizontal (X9) and vertical (Y9) offset between a region
of a given frame and a corresponding region of a previ-
ous frame. The shift is a measure of frame-to-frame

motion ofa region. These values are encoded in the tree
description, rather than separately, for further effi-
ciency of coding. Since many regions tend to have the
same X9, Y9 values, the "shift" action is defined to mean
“apply these X9, Y9 values to this node and all child
nodes of this node“. Advantageously, this permits the
shift values for regions having the same shift to only be
encoded once. _

FIG. 17 and FIGS. 18-38 related thereto provide the
details of intra-frame coder 1610 that encodes all "still"

frames and the first frame of a motion video sequence.
FIG. 17 is a flow chart illustrating each step in the
encoding process provided by coder 1610. This “soft-
ware" implementation of coder 1610 is presently pre-
ferred. However, it will be appreciated that the individ-
ual processing functions may readily be implemented by
individual elements of apparatus providing the func-
tions shown in the flow chart. Specific examples ofsuch
"hardware“ implementations are included in FIGS.
18-38.

The first step for intra-frame coding (FIG. 17) com-
prises the START step (1702) and is initiated by placing
mode switch 240' in the UP position (FIG. 16) for still
frames or the first frame of a motion sequence. Simulta-
neously, switch 224 (FIG. 2) is placed to select the Y
sub-frame. All of the Y sub-frames will be compressed
before advancing switch 224 to select the I and finally
the Q sub-frames.

As a brief overview, FIG. 17 has four main actions.

Prefiltering occurs in step I703. Sub-region stacking
and selection is provided by steps 1730, 1732, and 1704.
This is the process (to be described) by which the same
strategy can be applied to every sub-region regardless
of its size. Linear fill encoding, provided by steps 1706
to 1716, determines whether a region is suitable for
encoding as a plane surface (Ax-1-By+C}, and if so,
what the details of the encoding should be. DPCM
encoding, provided by 1722 and 1724, are used for re-
gions that are not suitable for linear till encoding. Step
172!) performs post-processing on the resulting encod-
ing to further reduce code size and decode time. Pro-



5,225,904
17

cessing provided by steps 1734 and 1736 check for the
end of the sequence of still frames or the end of the first
frame of a motion sequence.

The first action in FIG. 17 is to apply filter 1703 to
the "iIrtage“ of video signal S8. Filtering removes extra-
neous detail which improves the speed of the compres-
sion process, it decreases code size, and decreases the
decode time- because larger regions tend to be pro-
duced. Since simple low pass filters also tend to blur the
image, nonlinear filters are preferred that remove low
amplitude noise but preserve high amplitude informa-
tion. There are many kinds of filters that can be used for
this purpose, a preferred form being a cascade connec-
tion of a weighted median filter and a modified linear
low pass filter. The modification is described subse-
quently in reference to FIG. 36.

FIGS. 3_5A—E illustrate the weighted median filter.
FIG. 35A illustrates a pixel 3502 to be filtered and its
eight nearest neighbors. FIG. 35B shows an array 3506
of weighting factors for filtering pixel 3502 to produce
the weighted value (12). for this one pixel 3506 indi-
cated in FIG. 35C. The weighting method is shown in
FIG. 35D. First, the values of pixel 3502 and of its eight
neighbors are listed in ascending order (3503). The
un-weighted median is seem to have the value of “ll“
units. One half of the values are higher and one half are
lower. The weighting values (3504) from FIG. 353 are
listed beneath the ordered values 3503. They determine
the number of times each value is repeated to form an
ordered list 3508. In the example. the four corner pixels
(11. 9, 1, 17) have weights of unity and are listed once in
list 3508. The center side pixels (12, 5, 10, 13) have
weights of 2 and so are listed twice in list 3508. The
central pixel (15) to be filtered has a weight of 5 and so
is listed 5 times in list 3508. The weighted median value
(12) is the value taken from list 3508 for which half the
weighted values are less and half are greater. This value
(12) is the filtered value ofthe central pixel of the region
3503 as shown (3506) in FIG. 35C. The remaining pixels
are deterrnined the same way by applying the weighting
array 350-! to each pixel and its 8 near neighbors.

The weights of FIG. 358 were selected for purposes
of illustration to keep list 3508 reasonably short. Exem-
plary weights for an average scene are listed in FIG.
35E which shows corner weighting of 2, mid-side
weighting of 4 and center pixel weighting of 13. One
may vary these weights to achieve controlled direc-
tional spatial detail redirection while preserving edge
transitions. One may, for example, change diagonal
contributions to the filtered value by changing the cor-
ner weights. Vertical and horizontal contributions are
determined, respectively, by the values of the top and
bottom or the left and right weights. Accordingly, the
weighted median, in addition to preserving edges due to
being a median filter, can exhibit selective directional
characteristics due to the weighting factors.

FIG. 36A illustrates a modified low-pass filter suit-
able for use in the filtering step 1703 which removes
unimportant detail while preserving edge transitions.
The filter comprises the combination of a linear trans-
verse] filter 3602 and it modifier 3620 (both outlined in
phantom). Briefly, the modifier detects edges and gen-
erates a "damping factor D" which is used to selectively
mix the low pass filter input and output signals as a
function of the edge amplitude to thereby suppress
small changes while preserving larger signal transitions.
Filter 3602 comprises a cascade connection of pixel
delay elements 3604 and 3606 which delay an input

10

‘I5

20

25

30

35

45

50

55

65

42

18
signal at input terminal 3603 by one and two pixel peri-
ods. An adder 3610 produces a low pass filtered signal
by forming a weighted sum of the input signal
(weight=£), the pixel delayed signal (weight=l) and
the two-pixel delayed signal (weight = D. Modifier 3620
includes a subtractor 3622 which detects transitions by
subtracting the low pass filtered signal of adder 3610
from the unfiltered one-pixel delayed input signal pro-
vided by delay 3604. The output of subtractor 3622 is
applied to a non-linear detector 3624 which produces
complementary control signals D and 1-D for control-
ling multipliers 3626 and 3628, respectively, which mul-
tiply the filtered and un-filtered pixel delayed signals.
An adder 3630 adds the multiplied signals to provide an
output signal at terminal 3632. Detector 3624 may be a
ROM programmed to output the values D and (1-D)
responsive to the differences from subtracter 3622 ap-
plied as addresses.

FIG. 36B illustrates the non-linear characteristic of

detector 3624 for producing control signal D (hereafter,
the damping factor) and 1-D as a function of the sub-
tractor 3622 output (difference signal). For small differ-
ences characteristic of small detail features of an image
the factor D is near unity. Accordingly, multiplier 3626
selects the filtered signal of adder 3610 as the output.
For larger transitions the value of D decreases and so
signal 1-D increases causing multiplier 3628 to select
more of the unfiltered signal as the output. For very
large transitions (D near zero) filter 3602 is essentially
bypassed thereby faithfully preserving the full ampli-
tude of large edges. This is further illustrated in FIG.
36C in which 3640 indicates the occurrence of a step
transition for the input pixels represented by open cir-
cles. Dashed line 3642 illustrates the response of a con-
ventional low pass filter which, as shown, tends to
smooth both large and small pixel variations. The solid
circles indicate the response of the modified filter of
FIG. 36A. The damping factor D is low for pixels ap-
proaching and leaving the transition zone whereby
small pixel variation’ (detail) are filtered. The damping
factor is low in the transition zone thereby bypassing
the filter and thus preserving the steep transition.

Returning now to FIG. 17, steps 1704, 1730 and 1732
select and list regions for subsequent analysis. This pro-
cess has one of two possible effects. It may yield an
encoding of the region via step 1716 or 1724. and hence
removal of the region from further analysis. Or it may
cause the current region to be split 1726, and both
halves put on a list of regions for further examination.
Each split reduces the size of the region. When the
region gets small enough it encounters the test for a
minimum size region, 1722. This test prevents unlimited
splitting, and hence forces eventual encoding of every
region.

Initially, the region select step 1704- treats the entire
image sub-frame as one single region. During this pro-
cessing, it is likely that a split 1726-1732 will occur,
resulting in two subregions that need to be processed.
Boxes 1730 and 1732 “push" two regions onto a list of
regions waiting to be removed by 1704. By "push" it is
meant that the region identities (locations) are stored in
the region list. The next time select region 1704 is used,
the top region on the list is encoded as will be described.
The order in which regions are processed is determined
by the order in which they are placed on this list. For a
horizontal split (1732) the bottom half region and the
top half region are each added to the list and the top half

is first to be encoded. For a vertical split 1730 the right



5,225,904
19

half region and the left half region are added to the list
with the left half region being first to be encoded. This
orderly sequencing of how regions are examined is
known to the video processor 30 (FIG. 1), and is used
by it during decoding to interpret the sequence of codes 5
used to represent each image.

Linear fill encoding is provided by steps 1704-1716 as
will now be described. It will be recalled that region-
specific coding gets its strength from the ability to
choose optimal encoding strategies for each individual 10
region. Linear fill encoding is tried first, since it can
describe a large region with very few bits. If linear fill
encoding is not possible, the region is split (1726) and
linear fill encoding is again tried for each sub-region. As
we shall see, the number of bits required to encode a 15
region using linear fill techniques does not increase as
the size of the region increases, so it is an excellent
encoding strategy for large regions. Only when the
resulting subregions fall below a minimum size (TEST
1722) is another encoding technique used.

A mean square error measure (MSE).is one method
used to determine whether or not linear fill encoding is
acceptable (1714). Since this measure is an average over
the entire region, there may be localized portions of the
regions where the deviation from a plane surface is
quite large and visually apparent, yet the MSE may be
acceptably low. To avoid this problem a roughness
estimator 1706 is applied to the region before attempt-
ing linear fill coding (1710). If the region fails this test
(1703) and is not of a minimum size (test 1722), it is split
(1726-1732) and the same processing is applied to the"
resulting sub-regions so formed.

Roughness of a region in this example is detennined

by detecting edges in the region. FIG. 18 illustrates a 35
simple definition of edges. based on large changes in
gray level between adjacent pixels. FIG. 19 is a block
diagram of apparatus providing edge detection.

In FIG. 18 a region 1802 is shown comprising four

rows and four columns of pixels. Luminance (Y) signal 40
values are indicated for the 16 pixels. By definition. an
edge exists between adjacent pixels whose values differ
by more than a threshold value (input via threshold
control 238). A typical threshold value may be 25 units
for a Y signal quantized to 8-bits (i.e., a 256 level scale 45
from black to peak white). Using a level of IO brightness
units as an exemplary edge threshold, it is seen that
there are two vertical edges (V) and three horizontal
edges (H) in FIG. 18.

If region 1802 were “split" (i.e—, liivided) horizontally 59
between rows 2 and 3, the result would be two regions
neither of which contains a horizontal edge. Notice also
that the pixels of rows 3 and 4 range only from 3 to 5 in
brightness, which is less than the edge threshold. Thus,
horizontal splitting of region 1802 provides two regions 55
which have no horizontal edges and one region (rows 3
and 4) which may be encoded with a “fill" value of “4-"
that fairly represents the Y signal value for all eight
pixels. Rows 1 and 2, however, still contain vertical
edges V. By splitting this region vertically between 50
columns 2 and 3 two more regions are formed and nei-
ther contains edges. The 4x4 region containing the
uniform pixels “23" can be filled with a single value.
The 4X4 region having pixel values 1, 3, 9 and 12 has
no horizontal or vertical edges but is not “fillable“ with 65
a single value because of the presence of a pronounced
"gradient". Filling of such a region requires a plane
surface fill via 1710.

43

20

25

30

20

The fill procedure begins at step 1710 by using the
method of least squares to find the coefficients A, B and
C of the bi-linear polynomial (Ax+ By-!-C) estimate of
the region pixel values. Boundary error and MSE error
measurements are made (1711) and tests 1712 and 1714
are performed to determine acceptability of the fill
value.

If a linear fill is not acceptable. because of the results
of any of the tests 1708. 1712 or 1714, then the next step
is usually to split (1726) the region. However, the test at
1722 prevents splits if the region size is already small.
This is done for two reasons. First. the code size for

linear fill encoding is nominally independent of the
region area. However. once the region falls below some
predetermined size, other encoding methods require
fewer bits. Second, there can be delays in the decoder
(FIG. 48) whenever a new region must be decoded. If
the image were represented using a large number of
relatively small regions, these delays can become suffi-
ciently significant to interfere with the requirement that
images be decoded at a rate such as 30 FPS.

When the minimum size test indicates a niinirnurrt

sized region, 1724 encodes the region in DPCM (Differ-
ential Pulse Code Modulation} format. In this encoding
method, the difference between every pixel and its left
neighbor is transmitted. However, since it does not
have a left neighbor the first pixel of each line of the
region is transmitted as the difference between itself and
the pixel immediately above it. The first pixel of the first
line of the region (which has no pixel to its left or above
it) is transmitted as the difference between itself and a
mid-gray value, namely 128. The resulting dillerences
may _be additionally data reduced by passing them
through a nonlinear quantizer. For decoding purposes,
a table describing the nonlinear quantization levels may
be transmitted to the decoder in the header part of the
compressed video bit-stream.

A number of DPCM quantizers may be used. This is
practical because region-specific coding enables match-
ing the coding technique to the individual region. These
quantizer tables differ in the dynamic range of the dif-
ferences. The DPCM encoder 1724 examines the statis-

tics of each region and decides which quantizer table is
better suited to that region, and generates a code speci-
fying which clequantizing table is to be used in decoding
it.

FIG. 19 shows apparatus for providing the roughness
test. FIGS. 32 and 33 which are described later, show
apparatus for determining the split direction. In FIG. 19
the region data is stored in a memory 1902. Subtractors
1904 and 1906 subtract the region pixels by row and by
column. respectively. Threshold detectors 1908 and
1910 compare the differences of pixels with a threshold
value Th (e.g., 10 is assumed) to detect the Horizontal
and vertical edges which, in turn, are counted by count-
ers 1912 and 1914 and stored in an edge memory 1916.
The stored edge data is applied to a zero detector 1920.
A HIGH output of detector 1920 signifies that there are
no horizontal or vertical edges in the region and initi-
ates the process of finding a value (or values) to ‘fill the
region. If edges are present, the edge data in memory
1916 is applied to split logic circuit (FIG. 33A) for
finding a split direction as described later.

Alternative definitions of roughness are also possible.
For example. one can estimate the slope between adja-
cent pixels by multipoint interpolation techniques. If the
slope is larger than a threshold and is not constant over
the region, then the surface is rough.



5,225,904
21

Returning to FIG. 17, it will be assumed that test
1708 finds no edges present in the region. This initiates
the process of finding a fill value for representing all
pixels of the region as a group. This is done in step 1710
by generating coefficients A, B and C of a bilinear poly-
nomial (Ax+By~l-C) estimation of pixel values for the
region using the method of "least squares" estimation.
The estimated pixel values are compared with the ac-
tual values for all pixels of the region to determine the
closeness or "fit" of the estimate. The “fill" value coni-

prises the coefficients A, B and C of the polynomial that
satisfies two tests, namely, a “boundary error" test 1712
and a "mean square error" test 1714.

FIGS. 20424 show in detail how the polynominal fill
values are found and how the two tests for acceptability
of the fill are performed. FIG. 20 represents the most
elementary case where all pixels of region 2002 are of
the same value (5 units). There is no brightness gradient
in the horizontal (“x") direction therefore the coeffici-
ent "A“ which signifies the horizontal brightness gradi-
ent or “sIope" equals zero. There is no brightness gradi-
ent in the vertical direction either. Therefore, the coeffi-
cient “B" representing vertical slope is also zero. The
only coefficient remaining is “C", which is the
polynominal coefficient representing the constant or
uniform signal level of 5 units. The code to represent
this simple case is shown as ABS 0 0 5 to signify what
will be called absolute coding hereinafter to distinguish
region codes based on the actual signal values from
region codes based on frame-to-frame differences (here-
inafter relative codes). Decoding of region 2002 com-
prises assigning a value of 5 to every pixel in the region.

In FIG. 21 the region 2102 includes a horizontal
brightness gradient of one unit per pixel in the x direc-
tion. Starting in the upper left hand corner the values
are 4, 5 and 6. The fill polynomial Ax-+~By+C there-
fore has coefficients A=1. B=0, C=4 (taking the
upper left pixel as a reference level). The code is there-
fore ABS 1 0 4. This is decoded by assigning a value 4
to the upper left hand pixel and adding a gradient cor-
rection to each horizontal pixel of one unit of brightness
per pixel. Since there is no vertical gradient, successive
rows are replicas of the first row. FIG. 22 is similar
except that the gradient is vertical rather than horizon-
tal.

In FIG. 23 the region 2302 has both horizontal and
vertical gradients. Taking the upper left corner pixel as
a reference, the polynomial constant C equals 5, the
brightness increases by 1 unit per pixel in the x direction
and changes by -1 unit in the y direction. The code is
therefore ABS 1 —l 5. Decoding is effected by assign-
ing a value of 5 to the first pixel and incrementing its
value by one unit per pixel horizontally. The second and
third rows are similarly decoded after decrementing the
starting pixel value by the vertical slope value (minus
one pixel per column).

The above examples suggest that the slope values A
and B in the polynomial Ax+By+C are always inte-
gers. It has been found, however, that most slopes that
occur in real images are not integers, and in fact are
usually less than 1 in absolute value. The A and B values

are, therefore, specified in units of I/2S6ths; i.e., binary
numbers with the least significant 8 bits representing the
fractional part of the slope.

In FIGS. 20-23 the polynomial coding is exact. That
is, for the exemplary values given, it just happens that
upon decoding the decoded regions will have exactly
the same values as the original regions. In practice this

22

ideal situation may not occur very often. For this reason
measures are needed to determine if the bi-linear poly-
nomial fill values produce a reasonably close replica of
the actual pixels values when the region is ultimately
decoded. The tests used are the mean square error
(MSE) and the boundary error test of the polynomial fit
as illustrated in FIG. 24. .

FIG. 24 illustrates a specific case where the polyno-
' mial fill is not exact and acceptability of the fit is tested.10

15

20

25

30

35

45

50

55

63

44

Region 24102 is a region of pixel values as they appear in
the image. Array 24-04 is a corresponding set of values
that is produced when using a polynomial of the font:
Ax-l-By +C, the coefficients of-which were determined
using least squares analysis on the data of region 2402.
Array 24-04 shows a uniform horizontal gradient of 1
and a uniform vertical gradient of l. Array 2406 is a set
of values corresponding to the errors between the ac-
tual pixel values and the corresponding generated pixel
values. The MSE is obtained by taking the square root
of the average value of the squares of the values in array
24-06. For this specific example the MSE is 1. This value
is compared with a theshold value to determine accep-
tance or rejection of the fill data.

The boundary error is based on analysis of the 12
pixels that constitute the boundary of this region. It has

been found that boundary errors require tig_hter toler-
ances than errors interior to a region if false edges are
not to be generated between abutting regions. One pos-
sible boundary test is to compare each of the boundary
difference values in array 2406 against a predetermined
threshold value, e.g., 10, and if any of the differences
exceed this threshold, to reject the coefficients.

A'preferred embodiment of the boundary test looks
for coherence in values. It has been discovered that

boundary errors are more visible when they are coher-
ent; that is when adjacent pixels have errors with the
same sign. Random differences such as those along the
top, bottom and left side of array 24-06 are unlikely to
produce a false edge in a reproduced image. In the
preferred embodiment, the boundary estimator 1711
identifies contiguous blocks of boundary errors which
have the same sign. Only boundary pixels that are part
of a block whose length is greater than a threshold
(from threshold control 238). typically 2, may be con-
sidered. For example, in array 2406 of FIG. 24, only the
block of error values having the value +1 on the right
boundary would be considered, and a boundary error
estimator of “1” generated. The average block error
value of such coherent pixels is compared against a
threshold value. If the error exceeds the threshold value

the fill is rejected.
In summary. tests at 1712 and 1714 are performed to

see whether the fit represented by Ax+By+C should
be accepted. The test at 1714 might fail because the
average deviation from a plane surface is too high. In
other words, the MSE test essentially measures close-
ness of the fit of the encoded pizel values (Ax+ By+0
to the actual pixel values. An MSE threshold is selected
and used as an input for threshold control 238, and is
typically 4. The test at 1712 might fail if the errors along
the boundary might tend to introduce a visible transi-
tion between adjacent regions when they are decoded
and displayed. The boundary threshold is also used an
an input for threshold control 238 and is typically 20.

Returning to FIG. 17, once the decision has been
made to split a region. the region is analyzed to find the
best split direction. If test 1728 indicates the need for a
vertical split, step 1730 splits the region into a left half



3,225,904
23

and right half region. If test 1728 indicates the need for
a horizontal split, step 1732 splits the region into a top
half and a bottom half. If the split is horizontal. the
compression process is repeated starting with the next
region selected (1704) being the upper one of the split
regions. If the split is vertical, the compression process
is repeated selecting (step 1704) the left one of the split
regions. This process of splitting and compressing con-
tinues until all the regions created by the splitting pro-
cess are encoded (step 1705). Then remerge (step 1720 10
to be described) is done and the intra-frame compres-
sion operation ends (1736) for the luminance (Y) signal
subframe. A complete color frame is encoded by repeat-
ing the compression process for the remaining I and Q
sub-frames. If additional still frames are to be encoded, 15
the next frame is selected (1735) as a result of a “last
frame" test 1734 and the process repeats.

Finding a split direction for a region to be split (1726
ofFlG. 17) may be accomplished by means of: (1) edge
distribution analysis; or (2) polynomial lit analysis. Each 20
of these procedures, and specific apparatus for provid-
ing the split direction indication are described as fol-
lows with reference to FIGS. 32-38.

Edge distribution analysis is used to find a most favor-
able split direction for cases where the reason for spiit- 25
ting the region is the presence of edges in the region
(e.g., failure of the roughness test 1708 in FIG. 17).
FIGS. 32A—l provide examples of regions to be split
using edge distribution analysis. FIGS. 33A and B,
discussed later, show how the analysis may be imple- 30
mented.

FIGS. 32A—E illustrate five cases where a vertical

split is favored over a horizontal split. In FIG. 32A the
region 3202 contains two vertical edges which lie on the
vertical bisector of the region. Nothing would be 35
gained by splitting this region horizontally since each
subregion would still contain an edge whereas a vertical
split will produce two regions (1. 3 and 2, 4) neither of
which contains an edge. In FIG. 32B there are no edges
in the right half of region 3204 therefore a vertical split 40
will produce one sub-region having no edges. A vertical
split is similarly favored in region 3206 of FIG. 32C. In
FIG. 32D there are many vertical edges in region 3208.
Although edge free regions will not be produced here.
a vertical split is favored since it is more likely that an 45
edge will be eliminated than if it were split horizontally.
In FIG. 32E region 3210 contains several horizontal
and vertical edges with no clear advantage. For this
case aspect ratio analysis is used. Specifically, region
3210 is wider than its height and a vertical split is se- 50
lected because it will tend to produce sub-regions that
are more square. On average, this has been found to
result in fewer regions being produced for typical im-
ages where the edge analysis shows no clear advantage.
Regions 3212-3220 of FIGS. 32F—J are split horizon- 55
tally for reasons similar to those discussed with regard
to vertical splitting of regions 3202-3210.

From the foregoing it is seen that there are a number
of factors which have a bearing on selection of a split
direction. In practice. the split decision is not as simple 60
a matter as it might appear from the examples given
because real images produce regions having many more
edge distributions than the relatively simple examples of
FIGS. 32.-‘-\—-J. The flow chart of FIG. 33A and associ-

ated table of FIG. 33B illustrate a method for finding a E5
split direction which takes into account the complex
edge distributions encountered in splitting regions of
typical video images.

45

24

In FIG. 33A the split direction analysis starts (3302)
with the step (3304) of detecting edges in four quadrants
of the region to be split. As shown in FIGS. 32A and
32F, the quadrants are designated 1 for the top left. 2 for
the top right, 3 for the bottom left and four for the
bottom right. Next (step 3306) four functions V13, V24,
H12 and H34 are generated as listed in the table of FIG.
3333. The function V13 equals the sum of a number of
terms (Col. I of FIG. 3333) relating to edges in the left
half of the region (i.e., quadrants I and 3). The function
V24 is comprised of the sum of a number of edge distri-
bution terms for the right half (quadrants 2 and-It-) of the
region. The function H12 and H34 similarly relate to
sums of terms for the top and bottom halves of the
region. Specific terms are discussed later.

At step 3308 multiplication is performed to produce
what is herein termed a vertical factor VF and a hori-

zontal factor HP. The vertical factor VF equals the
product of the region height (H) times V13 times V24.
The horizontal factor I-IF equals the product of the
region width (W) times H12 times I-134. The factors HF
and VF are compared at step 3310. A vertical split is
made (3312) if VF is less than HF and the program ends
(3316) otherwise the region is split horizontally (3314)
and the program ends.

In operation, any factor which tends to make VF
smaller than I-IF favors a vertical split. From step 3308,
for example, if the edge analysis factors V13 and V24
are equal to H12 and H34 than a vertical split will be
favored ifthe region heigth H is less than its width. This
condition corresponds to the example of FIG. 32E
where it was seen that there was no clear advantage
shown by edge analysis but the aspect ratio test favored
a vertical split to obtain sub-regions that are more
square.

The factors of FIG. 33B (calculated in generation
step 3306) become important in cases where the vertical
and horizontal edge distributions are not uniform in a
region. Factors tending to make V13 (left hall) or V24
(right hall) small favor a vertical split. For example, if
the number V] of vertical edges in quadrant 1 is equal
to the number V3 of vertical edges in quadrant 3. then
the factor V1-V3 will be zero thus favoring a vertical
split. Vertical and horizontal edge difference factors
V1—V3, Hl—H3, V2-V4, I-I2—H4 etc. are included for all

quadrants. These terms are all squared in FIG. 3313 to
give them added weight. The terms Ho and V0 repre-
sent the number of horizontal and vertical edges, re-
spectively, which will be eliminated by the split (i.e..
edges falling on the split line). The elimination of edges
has also been found important and so these terms are
also squared to increase their weight in the split direc-
tion test. The remaining factors I-11, I-12. V1, V2 etc.
represent the number of edges _pcr quadrant. If, for
example, there are many horizontal edges in the left and
right halves a horizontal split will be favored (e.g., FIG.
321). Other examples of the application of the table of
FIG. 33B are apparent. For example. the terms may be
weighted differently than shown. Also. the region may
be more finely subdivided and additional terms for split
direction analysis added to the table.

The foregoing assumed that the reason for a split was
a YES exit from the roughness test 1708. If the reason
for the split was a linear fill that failed the MSE test
(1714) or the boundary error test (1712), then a different
method for choosing the split direction is appropriate.

FIG. 37 illusLrates analysis of the polynomial fit to
determine the split direction. Recall from FIG. 17 that



5,225,904
25

a region will always be split if either the mean square
error (MSE) or the boundary error tests of the bi-linear
polynomial Ax-t-By+C is unsatisfactory. In FIG. 37
the vertical portion (By+ C) of the bi-linear polynomial
is compared with the vertical luminance values Yy(i.e.,
the average luma values by row). Also, the horizontal
portion (Ax -l-C) is compared with the horizontal lumi-
nance value Y3 (i.e., the average luma value by col-
umn). The comparison providing the better "fit" (i.e.,
lower MSE) is selected as the split direction.

A flow chart for a computer apparatus implementa-
tion of this method is shown in FIG. 38. Measurements

ofthe fit of Ax+C to Ygand By+C to Yyare made in
steps 3302 and 3804. Test 3806 selects a vertical split
3810 if the vertical "fit" (i.e., MSE) is better than the
horizontal fit as shown in the example of FIG. 37. Oth-
erwise test 3806 selects a horizontal split 3808 and the
program ends (done).

An advantage of this technique of finding a split di-
rection is that it frequently results in a “f1l1able" region
if most of the error occurs in one-half of the region. In
the example of FIG. 37 the vertical fit is good and most
of the error in the horizontal direction is on the right-
hand side of the image. Thus, for this case a vertical split

10

15

20

is favored and the left side of region 3702 will probably- 25
not require further splitting since the errors (horizontal)
are mostly on the right-hand side.

Returning to FIG. 17, when all the regions have been
encoded, the process continues at step 1720. Remerge
examines the encoding generated for all regions of the
image, and performs some post processing on it to re-
move some code and to improve the decoding time. If
two adjacent regions of like size have been encoded
with the same DPCM quantizing table, the split could
have been avoided. Remerge (step 1120) will modify
the coding stream to replace the two smaller regions by
the larger region. The larger region formed by the re-
joined two regions can thereafter participate in a further
rejoining operation with adjacent like sized DPCM
encoded regions.

FIGS. 39-43 provide details for implementing the
inter-frame coder 1620 of FIG. 16. As previously men-
tioned, inter-frame coding is used for the second and
subsequent frames of a motion video sequence to take
advantage of correlation or redundancy which exists
between frames in a typical motion video sequence. The
advantage is that if a region ofa previous frame may be
found that corresponds fairly well to a region being
coded in a current frame. then one need only code the
differences rather than the absolute values as was done

in the intra-frame coder 1610. An advantage of inter-
frame coding, as previously noted, is that the differ-
ences values tend to be small numbers that can be en-

coded with fewer bits. Region motion, due to panning
or object movements within a scene, requires an addi-
tional code parameter, namely, the offset values X, and
Y9. The offset values Xgand Ya represent the amount by
which a moving object has translated in the horizontal
and vertical directions between the current and the

previous frame.
FIG. 40 illustrates the motion effect. The solid region

4004 represents a particular region of the current frame.
Region «£002 is a region in the previous frame containing
picture information corresponding to the information in
region 4004. Relative to the corresponding region 4002,
region 4-004 has moved by X, horizontally and Ya verti-
cally. As an overview, one task of coder 1620 is to
encode the region 4004 (hereafter the "target" region

30

35

45

50

55

65

46

26

T) as a bi-linear polynomial Ax+By+C representing
the differences between regions 4004 and 4002. The
differences in the location of the regions X9, Y9 (hereaf-
ter, the “offset") is also coded to enable a decoder to
locate the previous image and add the differences
thereto to reconstruct the target image. This form of
coding will hereafter be referred to as "relative" linear
fill coding to distinguish it from the "absolute" linear fill
coding of coder 1610. Other functions provided by
coder 1620 include providing a high speed search rou-
tine for locating regions “C“ in the previous frame
corresponding to the target image in the current frame
and, providing default coding ‘alternatives if a suitable
previous region can not be found.

FIG. 39 is a detailed flow chart illustrating each step
in the inter-frame coding process provided by coder
1620. This "softwafe" implementation is presently pre-
ferred. It will be appreciated that the individual pro-
cessing functions may readily be implemented by indi-
vidual apparatus elements providing the functions
shown in the flow chart. Inter-frame coding is initiated
(START 3902) by placing mode switch 240' (see FIG.
16} in the down position to begin encoding the second
frame of a motion video sequence. Recall that switch
240’ was previously in the UP position for coding the
first frame using intra-frame coder 1610.‘ This previous
frame is already coded and stored in buffer store 232
(FIG. 2) and is also stored in uncoded form for compari-
son with the current frame to be coded.

Inter-frame encoding is performed separately on the
Y, I and Q subframes. After starting the inter-frame
coding, the next step 3904 comprises selecting the target
(1') and the corresponding (C) previous regions. The
target image controls the selection of the corresponding
region by selecting the corresponding region to be of
exactly the same size and, initially, at exactly the same
location (X,Y coordinates) in the previous frame as the
target region. As will be explained, a search is then
performed in the vicinity of the target region coordi-
nates to compensate for frame-to-frame motion effect.

The target region is selected similar to region selec-
tion for absolute fill encoding of still frames. Originally
the entire image area is selected as the target region. If
this region cannot be adequately encoded, it is split into
sub-regions which are subsequently examined for en-
coding.

Once a target region is selected the resulting process-
ing is the same regardless of whether the current region
is the whole image, or one of the regions placed on the
region list (3904) by a split action. Ifa region is available
for processing (3908), it is examined (3910) to determine
whether this region has already undergone motion com-
pensation. lfit has, there is no need to repeat this pro-
cessing. and processing skips directly to step 3930. As
will be described in later discussions of motion compen-
sation, step 3928 generates a code describing the rela-
tive displacement of the _“T" and "C" regions. This
code is included in the code stream only once for a
given region and all sub-regions derived from it later by
stream and is one of the many benefits of binary tree
decomposition.

Ifstep 3910 determines that motion compensation has
not yet been performed, the motion compensation pro-
cess 3920 is initiated.

Briefly, the process 3920 comprises searching for a
region “C” of the previous frame which most closely
matches the target region “T" of the current frame. If
no motion has occurred, regions C and T will have the



5,225,904
2‘?

same coordinates. If motion has occurred. region C will
be offset or translated relative to region T by an amount
X9, Y9. The mean square difference (MSD) between
corresponding pixel values of the target region and the
best choice for the translated “C" region is calculated.
This MSD value is compared (3922) against a threshold
entered via threshold control 238 (FIG. 2). It will be
understood by those skilled in the art that in the mean
square pixel difference process, pixel movements which
extend in different directions all contribute to the mean

regardless of direction. This is so because squaring pixel
movement eliminates any effect on the mean due to the
relative direction of the movement. Thus. requiring the
mean square distance to be less than a predetermined
threshold tends to force the selection of a region in
which substantially all the pixels are moving in the same
direction. This is so because if the movement distances

of the pixels in the region are in different directions they
do not cancel because the relative positive and negative
values are squared before they are added. Therefore, if
substantially all the pixels are not moving in the same
direction. the means square distance would not be
below the predetermined threshold. If the comparison
indicates that this best choice for a translated region
does not provide an acceptable match to the target
region, the target region is checked for minimum size
(3924). If the target region is larger than the minimum
size. it is split (3926) and motion compensation is per-
formed on the split regions. If a translated region is
found, which acceptably matches the target image (that
is, passes test 3922) or the target region is of minimum
size the XaY., displacement values are encoded (3928) to
provide the region offset in the region description code.
If step 3928 is reached via step 3924, and has not satis-
fied test 3922, the translated region will not accurately
describe the target region. This occurs for example if‘
the camera is panning and hence there are no anteced-
ent pixels. Subsequent steps in FIG. 39 will represent
the region as best as it can, probably via absolute
DPCM.

A more detailed discussion of motion compensation
will now be presented with reference to FIGS. 40, 41,
42 and 43. The purpose of motion compensation 3920 is
to determine the offset or displacement of the region
"C" that most closely approximates the target region.
The process shown in FIG. 42 is a directed search for a
displacement that minimizes some measure of closeness
of fit. Norninally the mean square difference (MSD)
between the two regions is used as the closeness of fit
measure. The particular target region may contain a
large number of pixel values and hence evaluating the
MSD can be very time consuming. The time required to
make this calculation may be significantly reduced
without significantly affecting the end result, if the
mean square difference is calculated only for a properly
chosen subset of the pixels.

The first step in FIG. 42 is to determine (4210) a
representative set of pixels for the MSD calculation. A
strategy of picking the pixels at random, but unifortnly
distributed over the region has proven to be effective.
The number of representative pixels needed in the sub-
set depends roughly on the square root of the area of the
region. More precisely, the required number is deter-
mined from the formula KW/A; where K is a parameter
entered via threshold control 238. and typically about
10 and A is the region area. In order to assure that the
representative pixels are uniformly distributed through-
out the region, the region is considered to be composed

in

15

20

25

30

35

45

50

55

65

47

28

of KVA equal sized sub-regions. and a pixel randomly
selected from each of these sub-regions.

Next, simple low pass filtering is applied to the "T".
and "C“ regions. Such a filter (4204) makes use of repre-
sentative pixels less sensitive to random effects. This
filtering operation is done only for motion compensa-
tion and the filtered regions are discarded before subse-
quent processing of the region.

The first phase of the search begins by setting (4220)
the search resolution to one pixel. While it is desired to
know the displacement between the target region and a
corresponding “C" region to greater resolution, starting
with single pixel resolution has two advantages. First,
larger translations can be made with fewer time-con»
suming evaluations of the MSD. Second. the calcula-
tion time for the MSD is faster. The latter is true be-

cause calculating the MSD for fractional displacements
of a pixel requires the additional step of interpolation
between pixels.

Next trial evaluations of the MSD are done in eight
different directions from the starting point (4230).
These eight_ possible directions are shown in FIG. 41.
The direction that gives the greatest reduction in the
MSD is pursued. In practice, it is not necessary to do
eight MSD calculations to pick the best direction. The’
algorithm assumes that the MSD is roughly a linear
function in the neighborhood of the starting point.
Hence, if the direction L gives a reduction, it is ex-
pected that direction R will give an increase. and its
MSD is not evaluated. Similarly a reduction in the di-
rection U will suppress the evaluation for the direction
D. Finally, it is only necessary to evaluate one diagonal
direction; first the best horizontal and vertical direc-

tions are determined, and then the diagonal direction
between them is examined. This strategy often points in
the right general direction. Further, even if it points in
the wrong direction, other steps in the process can
eventually direct the search in the proper direction.

Usually when these various directions have been
examined. a direction is found that decreases the MSD‘
more than others. If such a direction exists the test for

local minima (4240) will fail, and the search proceeds to
step 4260. At this point "C" regions are examined only
along the direction which produced the smallest MSD
at step 4230. Test region are examined, with one pixel
resolution. in the chosen direction for as long as the
MSD continues to decrease. This process is suggested
by the double arrow in FIG. 41. When further transla-
tions produce no further decrease of the MSD, step
4230 is repeated to find a new‘ search direction. This
process continues until there is no further reduction in
the MSD. Then the resolution is increased to one eighth
pixel (4240, 4250, 4270) and the Search process repeats
at this higher resolution until there is again no further
reduction in MSD and the search ends (3922) with the
values of X,Y., being stored for possible subsequent
encoding 3928.

Pixel values in the "C" regions are only available at
one full pixel resolution. Searching for regions in the
“C" frame at e.g., Lth pixel resolution can only be mean-
ingful if pixel values are available at fith pixel interval
resolution. These pixel values are generated by interpo-
lation to produce values at it pixel increments. There are
many known interpolation algorithms which may be
used to produce these values such as linear interpola-
tion. quadratic interpolation. cubic interpolation etc.

FIG. 43 provides further illustration of the process of
motion compensation and relative coding and illustrates



5,225,904
29

the substantial region data reduction obtained, In this
example the C region 4304 of the previous frame is
assumed to be of uniform brightness (5 units). The tar-
get region 4302 is similar but has vertical and horizontal
gradients of --l and +1 units per pixel. Subtraction
(4306) results in a difference image, I, 4308 with rela-
tively low valued pixels to encode. As shown, the code
comprises the changes in brightness (C) and gradients
(A. B) and the region offset code X0Y,,.

When motion compensation is completed for a target
region, processing is continued at step 3930. Step 3930
determines the type of encoding to be performed on the
target region. First. a region is generated comprised of
difference values of corresponding pixel values in the
target and selected “C" regions (see FIG. 43). If none of
the difference values in this generated region are greater
than a threshold, typically 30, the target region is classi-
fied as relative and selected for relative encoding. The
advantage of relative encoding is that it tends to result
in larger regions with smaller code values, and hence
results in smaller code size and decode time. In this case

we exit step 3930 along the decision path labeled rela-
tive (REL).

Returning to FIG. 39, if there are difference values in
the generated region greater than the threshold, the
target region is not classified relative, but it is conceiv-
able that part of it may successfully be processed by
relative encoding. Hence step 3930 performs a trial
split, and examines the two resulting subregions. This

10

30

decode time. The target image is also filtered in case the
region is classified absolute which tends to increase the
size of absolute regions. In this regard it has been found
that an additional nonlinear filter is very helpful. The
eye is less sensitive to loss of detail in the difference
value region, since the eye sees the sum of the encoded
difference values and the pixel values in the “C" region.
Therefore, it is extremely useful to weight the amount
of filtering based on the human perceptual system.
There are two reasons why the eye may be less sensitive
to errors in one part of the difference image than an-
other, and these two reasons are both used to detcntiine

' the amount of filtering on a pixel by pixel basis. First.

i5

20

25

trial split uses a simple split (FIG. 35A). If either of 30
these sub-regions satisfies the threshold requirement
step 3930 is exited along the decision path labeled
mixed, which leads to the split step 3938, so that the two
half size regions can be separately processed. The split
at 3938 is also a simple split.

The split at step 3938 is preceded by a minimum size
test (3936). If the split at 3938 would reduce the region
below the minimum size, the minimum size test (3936)
reclassifies the target region as absolute. This prevents
the generation of very small planar fill regions, which
are inefficient both in code size and decode time.

It may be that neither half of the trial split region
results in a sub~region that can clearly be classified as
relative. In that case trial splits are performed (3930) on
each of the sub-regions. This process continues until one
of two things results. If a sub-region is found that is
clearly relative step 3930 is exited along the mixed deci-
sion path. Otherwise, trial splitting is continued until the
resulting regions would fail the minimum region size
test. If this happens, that is, no trial subregion is found
which is larger than the minimum size, and is clearly
relative, then the region is classified as absolute and step
3930 is exited along the absolute decision path to 3934.

If the exit is along the mixed path, the region will be
split by step 3938. These sub-regions will eventually
each be processed by step 3930 again. Since the reason
for exiting along the mixed exit was the presence of a
trial region that could be classified as relative, the split
at 3938 will eventually yield that region.

Once the region has been classified, it is identified by
relative and absolute flags at steps 3932 and 3934 for
subsequent use in fill processing (steps 3952 and 3968).

It will be noted that relative regions are low-pass
filtered at step 3929 after encoding of the X0 Y9 offset
values (step 3928) and before region classification (step
3930). Filtering at this point removes extraneous detail
which increases the probability that larger regions will
be classified as relative thereby reducing code size and

35

40

45

those portions of the difference region where the target
region is bright are filtered more strongly then those
portions where the target region is dark. Second. those
portions of the difference region where the target re-
gion is "busy" (i.e., detailed) are filtered more strongly
than those portions where the target region is relatively
smooth. That is. if the target region is changing slowly,
errors in the difference region will be more visually
apparent than if the target region has a lot of detail. The
degree of busyness of a point is estimated by subtracting
neighboring pixel values, thereby getting a measure of
the local gradient. In view of the foregoing, the delec-
tor 3624 in FIG. 36A may be modified to increase the
damping factor D for bright and/or busy images.

The next processing step is to try and represent the
region by a planar surface: Ax+By+C. This step
(3952) is either applied to the difference region or the
target region. depending on whether step 3930 has clas-
sified the region as relative or absolute. This process is
essentially the same as previously described for FIG. 17
steps 1706 to 1716.

If the region fails the roughness threshold test 3942,
the region will be tested for minimum size (3964). If the
region is greater than minimum size, a split is done
(3966) and new target regions generated for selection
(3904). Conversely if the region size falls below a
threshold value, one of two techniques is pursued de-
pending on whether the region had been classified as
absolute or relative. For absolute regions DPCM en-
coding (3970) of the region is performed which is sub-
stantially the same technique used for intra-frame en-
coding, and described in that context.

For relative regions. a different technique. referred to
' as dyad encoding, is implemented. This technique is

50

55

65

48

optimized for regions that are fairly flat, but have a few
exceptional pixels that prevent it from being properly
encoded as a planar surface. Dyad encoding will be
described in reference to FIG. 61. This figure shows a
representative region of eight pixels in the target region
6110, and the associated best match corresponding re-
gion 6120 of the previous frame. The encoder will gen-
erate the target image pixels A1 and B; by respectively
adding the pair of values R, S, to the corresponding
pixels, C; and D]. The pair of values R, S, is herein
referred to as a dyad. The decoder will find the pair of
values R, S, in a dyad memory table by using the code
value from the data stream to generate address values
for application to the dyad memory.

FIG. 62 illustrates the dyad coding process. Eleven
dyad points (solid dots) are plotted on the diagonals of
an R5 coordinate system. The coordinates of the dyad
points are entered in compressor 230 by means of
threshold control 238. The dyad points are numbered
K1—Kl! and it is the dyad number (not its coordinate
values) which is used to encode a pair of difference



31

values R, S. This may be done by plotting the actual
pixel difference values as a point (P) in the RS plane and
choosing the nearest dyad point K as the code value. As
an example. in FIG. 61 assume that pixels A1 and B1 are
to be encoded. First, C1 of the previous field is sub-
tracted frame At to yield a difference value R]. Then
D; is subtracted from B1 to yield the difference value S].
For purposes of illustration assume that R;=l0 and
S;=l3. These values are then used as coordinates of

point P (10, 13) in FIG. 62 and plotted in the RS plane.
As shown, the closest dyad to point P (10, 13) is dyad
number K6 at coordinates R=l4, S= 14. One may,
therefore, encode A. B; of region 6110 (FIG. 6!} by
transmitting the dyad designator K6. When decoded
(by a table look-up of K6) the A1 and B1 pixels would be
only slightly brighter than their original values. Specifi-
cally, the true value of pixel A1 is C1+ 10 and the true
value of pixel B1 is D; + 13. Using dyad K6. the decoded
values will be C1 + 14 and D1 + 14 which is very close to
the true values of the pixel pair A1 131.

It has been found that a superior dyad decoded image
may be obtained by modifying the foregoing dyad selec-
tive procedure. In the example given. the dyad K6 was
seen to provide a slightly brighter pixel pair A1 B1 when
decoded than would be the case if the “true" differences

had been transmitted. Accordingly, in the previous
example the dyad K5 would be a better choice for en-

coding pixel pair P rather than K6 even though the
coding errors are clearly somewhat larger for the given
example. A further reason for choosing the smaller
dyad is that it skews the dyad frequency variable length
encoder 1640 to be more efficient. '

A further aspect of dyad region-specific coding
shown in FIG. 62 is that the dyads K1—K11 are not
uniformly spaced along the left and right diagonals of
the pixel difference RS plane. Specifically, dyads near
the origin are more closely spaced than those farther
away. The effect is that there are more dyads available
for coding small pixel pair difference (R, S) and thus the
coding accuracy is improved as the differences A—C
and B-1) become smaller. This is important because it
has been discovered that the eye is more sensitive to
errors in the dyad values when the values are small.

It will be readily apparent that the accuracy of dyad
encoding may be enhanced by increasing the number of

dyads K;. For example. dyads may be determined along
two diagonals (e.g.. 30“ and 60°) rather than along the
illustrated diagonal along 45’. In general, a number of
dyad tables are available and a table is selected which
best fits the region data. The particular table used is
indicated as part of the encoded data.

To summarize, step 3904 provides a region for possi-
ble encoding by steps 3960, 3970 or 3980. If the region
is not encoded. it is split at 3926, 3938 or 3966, and the

separate sub-regions analyzed for possible encoding.
Eventually the minimum size tests (3924) (3936) and
(3964) force every region to be encoded.

Once every region has been encoded, the condition

that all regions have been encoded is detected (3908).
The process then shifts to the remerge operation (3990).
Remerge examines the encoding generated for all re-
gions of the images, and where possible, merges adja-
cent dyad encoded regions and adjacent DPCM en-
coded regions. This process is similar to the remerge
operation discussed with respect to step 1720 of FIG.17.

After retnerge (3990) the process checks (3982) for
further frames in the sequence. If there are no further

5,225,904

10

15

20

25

30

35

40

45

50

S5

65

49

32

frames, then all frames of the sequence have been com-
pressed, and the process of FIG. 39 is exited (3998). If
there are more frames, the next frame is readied (3984)
for compression, and the process is repeated.

Returning to FIG. 16, the next compression process
after intra-frame and inter-frame coding comprises ap-
plying the coded signals S12 and S13 to an area depen-
dent adaptive quantizer 1630. This quantizer, as previ-
ously described, quantizes the coded data as a function
of the region area. This quantizer is only applied to the
“C" coefficient of the Ax+I:'ly+C linear fills. Area
dependent quantization of coefficients A and B has been
found to not be necessary because these coefficients are
typically less than unity. The average brightness “C" of
large regions is nominally represented by all eight bits.
Smaller regions are progressively quantized using fewer
bits and thus shorter code words.

FIG. 44 is a table listing region sizes and the number
of bits used to represent the region fill value. For a
region of 32 pixels or more, 8 bits are used, thereby
providing a fine resolution of 256 brightness levels. For
regions in the range of 16 to 31 pixels, seven bits provide
a resolution of 128 levels. One bit is dropped each time
the area is halved. A one-pixel region is quantized to 3
bits giving a coarse resolution of 18 brightness levels.

From the foregoing, it is seen that 5 bits are saved for
each one-pixel region, 4 bits are saved for each two-
pixel region, etc. Area dependent adaptive quantization
provides an additional data reduction as compared with
assigning a full resolution value (8-bit byte) to every
region fill value. Moreover, variable quantizing has
been found to be visually acceptable because the large
regions which are more visible are finely quantized
thereby giving an overall appearance of high resolution.
The smaller coarsely quantized regions are. in a manner
of speaking, psycho-visually masked by the presence of
large high resolution regions.

FIG. 45 is a flow chart implementation cf the area
dependent quantization of FIG. -14. The process begins
by getting the height and width data for a region (4502)
from a region data memory and computing the region
area 4506. The region area (#506) is tested by area test
4508 and 4512 to 4518 to select the corresponding quan-
tizers 4520 to 4528 for progressively decreasing the
number of bits as the region “area" decreases below 32
pixels.

Returning to FIG. 16, the final element of compres-
sor 230 to be described comprises what will herein be
denoted as a “stream segmented” variable length code
1640. The term “stream segmented", as used herein,
relates to the use of a plurality of variable length codes
for each video frame. A minimum of 18 distinct variable

length codes are generated for every single compressed
digital video frame in the example herein described.

Recall that variable length codes, as is known,
achieve data reduction by assigning shorter codes to
more frequently occurring events. It has been discov-
ered that there is no single variable length code that can

efficiently code the separately compressed Y, I and Q
images. This is because the statistics of each of the Y, I
and Q subframes are different. Moreover, it has been
discovered that there is no single variable length code
that can efficiently code the separate data elements of
the sub-frames. Therefore, a different variable length
code is used for each segment of each sub-frame.

Altogether, it has been found that six (6) different
variable length codes are effective in describing the
markedly dil'ferent data comprising a single sub-frame.



5,225,904
33

For this reason, the statistics {i.e., frequency of occur-
rence) of each major data category are calculated for
every video frame stream. Since there are three sub-
frames (Y, I, Q) a minimum of 18 statistical decoding
“tables“ are included in every video stream.

FIG. 4'.-' illustrates the data format in detail of a com-

pressed sub-frame of one video stream. The identical
format is used for Y, I and Q portions of the compressed
video stream.

The "header" segment, as previously mentioned,
contains the sub-frame type (Y, I, or Q), its size (i.e.,
resolution), a check sum. and two tables (DPCM and
dyad) that are used during decoding of the sub-frame.
The header is followed by code tables describing the
specific variable-length codes to be used in decoding
the remaining segments of data. For efficiency, these
table descriptions are themselves encoded using an im-
plicit (i.e.. agreed upon by the encoder and decoder)
code table. The next section contains the binary tree
description, containing “actions" and “values”, as pre-
viously described under “Video Compression Process-
ing". The “relative data" section follows, which con-
tains the coefficients for all the relative bilinear fills.

The "absolute data" sections contains only the A, B
coefficients for absolute bilinear fills. since the C coeffi-
cients are contained in the tree description. The next
section contains the DPCM data (one value per pixel)
for all the DPCM regions, and the last section contains
the “dyad" data (one value per two pixels) for all the

34

ever, in this case variable length encoding is performed
using a predetermined (implicit) variable length code
set. This feature is provided in FIG. 46 by switch 1644
which couples the output of store 1652 to the variable
length encoder 1650.

Illustratively. the variable length encoding is a two
pass process in which code 1650 first generates the code
statistics and the variable length code sets for each of

-the data types. In the second pass the respective data
10

l5

20

25

dyad regions. The ordering of the data within each of 30
the last four segments is implicit: region data is ordered
based on the order that regions will be generated by
decoding of the binary tree, and pixel based values
(DPCM and dyad) are ordered in ordinary raster-scan
order (top line to bottom line, and left to right within
each line).

FIG. 46 is a block diagram of the “stream segmented"
variable length coder 1640. The region coded and quan-
tized video signal S14 from quantizer 1630 is stored in
memory 1642 as indicated. A selecter switch 1644 se-
lects the dyad fill data, the DPCM fill data, the ABSO-
LUTE fill data. the RELATIVE fill data and the
TREE descriptive data and the stream HEADER data
(source 1646) for application to a variable length coder
1650. Coder 650 encodes the various types of data as-
signing the shortest codes to the more frequently occur-
ring data code words and stores the variable length
coded data in store 1065. The stored data is selected in

the order shown in FIG. 47 to form the compressed
digital video output signal S9 for application to buffer
store 232.

More particularly, variable length encoder 1650 ex-
amines each data type independently of the other data
types, to determine the statistics of the data in each data
type over the entire subframe. For example, the relative
frequency of occurrence of each codeword of the data
is ascertained along with the range of, e.g. values, of the
codewords in the data set. Using this information. one
of a plurality of variable length code sets is selected
which will most efficiently variable length encode the
respective data types. The plurality of code sets are
stored in element 1652. Once a code set is selected,
coder 1650 retrieves the selected code set from store

1652 via switch 1644 and proceedsto encode the corre-
sponding data type.

In addition, the particular variable length code sets
are in turn variable length encoded and added to the
data stream to provide additional data reduction. How-

35

45

SO

55

65

50

types in store 1642 and the code sets in statistics store
1652 are variable length encoded.

Stream segmentation provides a significant advantage
in reducing decoding time for the compressed video
data. This results because it minimizes the number of

times the variable length decoder (to be described) must
be reprogrammed during decoding to accommodate the
differing statistics of different code formats. In other
words, by grouping all the DPCM data together the
variable length decoder only has to be programmed
once to decode all the DPCM regions. The same advan-
tage results for the other code formats (relative, abso-
lute. and dyad) as well as the tree data and other vari-
able length coded data in FIGURE 47.

Post Compression Processing

Once a sequence of images has been compressed, the
forrnatter does further processing in preparation for full
motion video playback. This processing is indicated in
FIG. 13. In overview, the compressed video data Sill
must be combined with the compressed audio data S8
and any auxiliary data 53 and prepared for recording on
the CD-ROM 18.

The CD-ROM is shown as a representative member
of a class of devices that have a high storage capacity
(more than a 100 megabytes), and a relatively low sus-
tainable data rate (1.23 megabits/sec for the CD-ROM}.
Other magnetic and optical storage media are also suit-
able.

FIGS. 8 and 9 illustrate how the audio data 58 is
interleaved with the video data S10, and with other data
to be described. FIG. 8 shows a logical frame. (The
adjective logical is used to suggest that a logical frame
may be different from 1/30 of a second, for example in
24 FPS playback.) In general, a logical frame is the set
of all data that are needed during the time that a single
image is displayed. FIG. 8 shows a logical frame with
enough video data to construct one image, and enough
audio data to be generated while the image is displayed.
The size of a logical frame is determined by the sus-
tained data rate from the input device (for a CD—ROM,
1.2288 megabits per second), and the image playback
rate, commonly one every 33.3666 milliseconds. Hence
for 30 FPS playback, the logical frame size must aver-
age 5125.12 bytes.

FIG. 13 shows how this average rate is achieved. It is
a three phase process. In the first phase. data is captured
from several sources, and written to disk 1350 as an
interleaved stream of data. In the second and third

phase, this stream is read back, processed through the
dither switch 1390 and re-recorded on the disk. As a

preview, the first phase collects the data and perfonns
most of the processing needed to generate a single
stream of data S4 that contains interleaved audio and

video data. Phase 2 and 3 deal with any remaining prob-
lems, most importantly, with the possibility of oversized
frames.

In the first phase, the control unit 1310 directs the
audio ditherer 1360 to pass a specific amount of audio



5,225,904
35

data each time that switch 1320 is coupled to it. The
audio ditherer 1360 addresses the following problem.
The audio playback system 32 consumes hits at a spe-
cific and well defined rate. For voice quality audio, this
may be set to 31.25 kilobits/sec. In order to sustain the
maximum possible data rate from the CD-ROM player
22. the audio data rate in S16 must precisely match this.
Too low a data rate from S16 will cause sound proces-
sor 32 to pause, waiting for data. Too high a rate will
cause audio data to pile up in the host computer 28,
waiting to be played. The audio ditherer 1360 assures
that the average size of the digital audio data block in
FIG. 8 is the right size as given by the relationship:

5 (.D+l)/D-T25

wherein: B is the number of audio bytes per frame, S is
the audio data rate. D is the number of audio ADPCM
samples between ADPCM resets (e.g., the ADPCM
encoder is reset once for each 256 samples) and T is the
period (in milliseconds) of the video frame rate. For a
frame rate of 30 FPS, a data rate of 31.25 kilobits per
second, reset-frequency of 256 and a frame period of
33.36 milliseconds, the average value of B is equal to
l30.847 bytes per frame. -

The audio ditherer 1360 either passes 130 or I34 bytes
for each logical frame. (The block sizes are rounded to
multiples of four to increase the efficiency of moving
data in the host computer 28). To make this decision,
ditherer 1360 maintains a running average of how many
bytes it has transferred so far. When the running aver-
age is less than 130.847, the audio ditherer 1360 passes
l34 bytes. When the running average is greater than
130.347 the audio ditherer passes 130 bytes. The partic-
ular value 130.847 is passed from control element 1310,
and is a function of the desired playback rate and the
playback audio bit rate.

The switch 1370 is controlled by control element
1310. depending on the nature of the auxiliary data.
Some auxiliary data needs to be available as the motion
video is played, and is processed in phase 1. One exam-
ple of auxiliary data may be imbedded directions to the
host computer 23 to fade the audio volume at pre-
selected times. Other auxiliary data may be passed via
switch 1330, for incorporation in the signal stream dur-
ing the second phase. Such other auxiliary data will not
have critical timing relationships with the audio or
video signal and, thus, may be included at convenient
locations in the bit stream. i.e., encoded video frames
containing less than the nominal number of bytes. This
auxiliary data may be loaded into the host computer 28
memory, as a side effect of playing the motion video
sequence.

During Phase I, for successive logical frames. switch
1320 is switched successively to the video data S10, the
output of the audio ditherer 1360, and the output of the
switch 1370. Switch 1320 also selects the output of a
header data source 1361 which describes the length and
location (pointers) of the individual pieces of data in the
logical frame (FIG. 8). Note, during phase I there is no
"filler" (i.e., padding) in the logical frame. Note also,
the length of every logical frame may be different, be-
cause compressed video may have differing sizes, be-
cause of the audio dithering, and because the amount of
auxiliary data may vary from one logical frame to an-
other. The data for all the logical frames of the sequence
are written to the disk store 1350, ending phase 1.

When phase 1 is complete, the control element 1.310
initiates phase 2. In this phase the data collected by

51

I0

l5

20

25

30

35

45

SO

55

£5

36

phase 1 is read in reverse from the disk store 1350 and
rerecorded via loop 1351 in which switch 1390 inserts
padding on additional auxiliary data to individual
frames of the sequence. This process was earlier re-
ferred to as “reverse frame sequence reformatting."
That is, during phase 2 the system e.g., computer, first
processes the last frame, then the next to last, etc. The
purpose of phase 2 is to generate padding data so that
the average size of logical frame is 5125.12 as shown in
FIG. 9 (for 30 FPS video).

Consider first the simplest case, the absence_of over-
size frames. ln this case, the control unit merely adds
the lengths of the audio, video and auxiliary data it
finds, and then inserts enough padding bytes of zero
value to raise the size of the logical frame to 5124 or
5128 bytes. The control logic for the dithering switch
1390 works similarly to that of the audio ditherer 1350.
It maintains a running average of the size of the logical
frames generated so far, and chooses whichever of 5124
or 5128 would tend to maintain an average of 5125.12.
The required size for this average is set by the control
1311], based on the data rate of the recording medium
and the desired playback rate in images per second.

If there are no oversized frames, the padding inser-
tion could have been done during phase 1. The reason it
is done in Phase 2 is to better deal with oversize frames.

FIGS. 10, 11 and 12 illustrate the basic principle behind
the processing of oversize frames. FIG. 10 shows the
sizes a sequence of logical frames might have at the end
of phase 1. Frame 3 is clearly too large to fit in $125.12
bytes.

F]G. 11 illustrates one possible solution to this prob-
lem. On detection of oversized frames, the formatter

sends a signal to the threshold control 238, requesting
that the frame be recompressed harder so that it be-
comes small enough to avoid oversize frames. In FIG.
11 the result of such a recornpression is shown. To
simplify the figure, a logical frame size of 5000 is shown
instead of 5125.12.

Note, in general oversize frames cannot be detected
until after an entire sequence has been decoded and sent
to the forrnatter. The reason is that the total size of a

logical frame depends on information not directly avail-
able to the video compressor 30. For example. it may
arise from the presence of a large block of auxiliary
data.

The approach shown in FIG. 12 and implemented in
FIG. 13 is a better solution, since it does not force re-
compression of the sequence. If such additional com-
pression were done, it is likely that it would result in a
perceptible loss of image quality, and the FIG. 12 ap-
proach avoids this. The compressed data for each frame
should arrive at 1/30 of a second intervals, but up to a
point (to be discussed), it does riot matter if it arrives
earlier. Hence the data for frame 3 can use space that is
nominally associated with frame 2.

In general, the strategy is as follows. Each frame is
read starting with the last and examined. If it fits in the
current dithered size for a frame, just enough padding is
added (switch 1390) to bring it up to that size. If not it
is placed in the file so that it will start loading early, by
borrowing space from the temporally previous frame.
Next the temporally previous frame is examined. De-
spite the fact that space was borrowed from it. it is
nevertheless possible that it will fit in its nominal frame
allocation. This case is indicated in FIG. 12, where

frame 2 and frame 3 both fit in the space associated with



5,225,904
37

these two frames. In general, however, the temporally
previous frame may not fit, even if it itself had not been
oversized. In that case it is placed in the file so that it
will be loaded ahead of the frame just processed. In this
situation, no padding is generated, since every byte is
needed. Continuing in this way, one of two things can
happen. Either there is found a frame that fits where it
was supposed to start, or the process reaches the first
frame of the sequence.

In the first case, there is a subsequence of frames
whose data can be read off the input device at a steady
rate of one per frame. Some of the fra.rnes_will start
loading into the host 28 memory early, but none of the
frames arrive late.

In the second case, it is apparently impossible to start
the first frame so as to maintain a steady 30 FPS. This
problem is solved by a third phase. As a result of the
second phase processing. the formatter knows how
many extra bytes were generated for the file. In the
third phase the formatter reads the file generated by the
second phase and generates the S4 bit stream. In this
phase, the forrnatter looks for padding, and deletes it.
This continues until an amount of padding equal to the
excess bytes found in phase 2 has been deleted. The
result is a file that can be played back in real time. In the’
unlikely case that phase 3 fails to find enough padding,
the control 1310 signals the threshold control 238 that
the sequence needs to be compressed for less code.

The control I310 calculates two important statistics
during phase 2 and 3. First, it may be necessary to pre-
load a certain amount of CD-ROM data before begin-
ning the playback. Control 1310 calculates this during
phase 3 by looking at the time when each frame arrives
compared to when it should arrive. Second, when a
subsequence in the middle of a sequence has been
blocked together during phase 2, some frames may
occur very early. The control 1310 can tell exactly
when each frame will arrive and hence how much tem-
porary storage is needed for these early frames. These
two important statistics are passed to the playback sys-
tem to control the allocation of host computer memory
prior to playback. If there is insufficient host memory,
then control 1310 signals the threshold control that
more compression is needed.

The above description ignored switch 1330. When
padding is inserted, this basically introduces unused
space in the 54 bit stream, that must be there to keep
new frames arriving at the desired times. Depending on
what the host computer is doing, there may be auxiliary
data that can be loaded as a side effect of playing some
motion video. If such data is present, control 1310 di-
rects the switches I370 and 1330 to use this auxiliary
data instead of an equivalent amount of padding.

PLAYBACK SYSTEM

The playback system 8 of FIG. 1 includes a CD-
ROM player 22 which plays disc 20 to provide a recov-
ered audio/video bit-stream signal S15 which is buff-
ered in CD-ROM controller 24 and supplied to a bus 26
of a “host” computer 28. Recall that "frame header"
data of bit-stream S15 identifies the location in the bit-

stream of the compressed audio data ($7), the com-
pressed video data (Sl0) and the auxiliary data. Com-
puter 28 responds to the frame header identification

data for directing the audio (S16) and video (517) por-
tions of bit-stream S15 to respective and and processors
via bus 26. The auxiliary data (S18). if present, is stored
in the host computer main memory for use, as an exam-

l0

15

20

25

30

35

45

50

55

65

38

ple, in interactive applications of the system. Illustra-
tively, the auxiliary data may comprise address informa-
tion of locations on disc 20 of specific still frames or
motion video sequences. When prompted to select one
of several sequences of still frames, the user enters his
choice by means of input/output device 38 and the host
computer responds by sending an appropriate seek com-
mand to player 22 by means of CD-ROM controller 24.

The sound processor 32 buffers and decodes the
audio portion of bit-stream S15 to continuously supply
one or more analog sound signals S19 to a speaker unit
34. Video processor 30 provides buffering, decoding
and interlace conversion of the video portion (SI?) of
bit-stream S15. The processed video signal S20 is sup-
plied at 30 frames per second. in for example, 2:1 inter-
laced RGB component form to a display 36 for display-
ing full motion color video. User interaction (control)
of the over-all system is facilitated by an input/output
unit 38 (e.g., a keyboard, monitor, "joy-stick", “mouse",
etc.).

VIDEO DECODING

Video processor 30. illustrated in detail in FIG. 48,
decodes each frame of the compressed digital video
signal S1‘? at terminal 4802 to provide a full-motion
color video signal S20 (RGB) for display unit 36 (FIG.
1) in interlaced form at 60 fields per second. Processor
30 includes a timing and control unit 4810 which gener-
ates all timing signals for controlling such functions as
memory read/write operations and decoder selection
(switch control) by means of timing and control bus
4812 coupled to the various processor elements. To
simplify the drawing bus 4812 is indicated only gener-
ally by an arrow. Header information relating to timing
and control (e.g., frame rate, frame sizes, data pointers.
etc.) is supplied to unit 4810 via a header detector 4314
coupled to input terminal 4802. A multiplex switch 4816
controlled by unit 4810 separates the compressed Y, I
and Q data (520) from signal S]? and stores it in com-
pressed form at location 4822 of a video random access
memory 4820 (outlined in phantom). Switch #816 also
separates the statistical code table data S22 from signal
S17 and applies it to variable length decoder 4830. The
decoder 4830 decodes the statistical data and stores it in

a RAM 4832 for use by the variable length decoder
4830 when the compressed data S20 is recovered from
location 4822 of video RAM 4820.

After loading the compressed Y, I and Q data as
described above, the decoding process for one frame

begins. To decode one frame, the identical process is
performed three times--once for each sub-frame (Y, I
and Q). The following description applies to the decod-
ing of one sub-frame. _

The first step in the decompression of one sub-frame
is to "parse" the binary tree description. That 5 is, the
tree data, which describes the tree in terms of splits and
fills, is converted into an explicit list of region locations
and sizes and fill types. This is accomplished by apply-
ing the tree data to the tree decoder 4842, which tra-
verses the tree and, at each terminal node of the tree,
outputs the relevant data to the region list. This list is
stored in the region location table 4824 in video RAM
4820. '

The general format of the region table is shown in
FIG. 49. For each cell, its “type" (relative, absolute,
DPCM. or dyad}, along with the coordinates of its
upper left corner (X, Y) and its size (H. W) are listed. If
the cell is a relative or a dyad cell, in which case the

52



5,225,904
39

region shift interpolator 4858 will be used. the offset
values X0, Y9) are also stored. These values specify the
relative offset between the region in the current image
and its corresponding region in the previous image. If
the cell is absolute, the absolute ftll value (which is 5
equivalent to the value C in the fill polynomial Ax+-
By+C) is also stored.

FIG. 50 shows an exemplary image and the corre-
sponding region table FIG. 51 that would be output by
the tree decoder. This image consists of two regions of 10
each possible type. Notice that all of the cells ofa par-
ticular type are not necessarily grouped together in the
region table. clue to the order in which the binary tree is
traversed.

Since some types of cells (e.g., dyads) operate on
pairs of pixels, it is desirable for all cells to have dimen-
sions (H and W) equal to an even number. Simple bi-
nary-tree splitting, in which a dimension is divided in
half on each split, rapidly leads to regions that have odd
dimensions, unless the original image dimensions are
powers of 2. Since this is overly restrictive. an im-
proved splitting scheme is used, in which a dimension D
that needs to be split will generate the two values
2Int{D/4) and D—2Int(D/4) where Int{D/4) is the
integer part of the quotient D/4. This still splits approxi-
mately in the middle but ensures that all cell dimensions
will be even numbers. provided the original image di-
mensions are also even. Since this restriction applies
equally to all three sub-frames, and since the I and Q
sub-frames are subsampled by a factor of 4, this means 30
that the overall image dimensions must be multiples of
8.

Returning to FIG. 48, video RAM 4820 includes two
bit maps. one for storing pixels of the current frame
being decoded (map 4826) and the other (map 4828}
storing pixels of the frame that was previously decoded
and is available for display on display unit 36 (FIG. 1).
To create hit map 4826 the compressed fill data at loca-
tion 4822 and the region location data at location 4824
are applied via switches 4850 to a selected one of four
decoders 4852. 4854, 4855 and 4856 depending on the
"type" of fill data i.e. DPCM. absolute. dyad or relative.
The fill data at location 4822 is first variable length
decoded in unit 4830 for application (via switch 4-840) to
the decoder selector switch 4850. Control of switch

4850 is provided by a region fill type detector 485!
which directs DPCM fill data to decoder 4852, absolute

fill data to decoder 4854. dyad fill data to decoder 4855
and relative fill data to decoder 4-856.

The absolute and relative decoders (4354, 4856) re»
ceive data representing the region “area” (i.e., the num-
ber of pixels in a region) provided by area detector
4853. This is used, as will be explained, in "dequantiz-
ing" the till data which, it will be recalled, is quantized
on the basis of region size for regions having fewer than
32 pixels. Bit map 4828 receives address data from the
dyad and relative decoder 4855 and 4856 for supplying
region pixel data of the previous frame to decoders 4855
and 4856 via region shift interpolator 4858. As bit map
4826 is being generated, bit map 4828 is ready for dis-
play on unit 36. This may be facilitated by selecting a
video RAM having multiple input/output ports and
buffers. Alternatively, as shown, the contents ofbit map
4828 may be transferred to a separate display buffer
4-829 per display purposes.

Since the I and Q data is subsampled by 4-:l both
vertically and horizontally with respect to the Y pixels.
an interpolator 4860 is provided for interpolating the I

15

20

25

35

40

45

50

55

65

53

4-0

and Q pixel arrays (6-4><60 each) back to the size of the
Y array (256X240). The Y. I and Q data is first applied
to a frame repeater 4862 which (for 30 FPS playback)
doubles the frame rate (30 Hz) by reading bit map 4-829
twice and interlacing the resultant 60 Hz field rate YIQ
signal. When 24 FPS video is to be displayed at 60 fields
per second, repeater 4862 repeats decoded frames using
a 2-3-2-3 repeat sequence. The luminance signal Y and
interpolated I and Q signals are applied to a digitaI-to-
analog (D/A) converter and matrix unit 4804 which
forms the RGB analog output signal 820 for display unit
36. -

FIG. 53 illustrates the process of relative decoding.
The value of each pixel P(x,y) in the current frame 5392
is determined by adding the value of the polynomial
function Ax+By+C to the corresponding pixel P'(x,y)
in the previous frame 5304. The coordinates x and y are
measured relative to the upper left corner of the region.
The location of the region 5304 in the previous frame is
determined by the offset values X., and Y9, which repre-
sent the spatial offset of the region 5304 relative to the
region 5302, expressed in units of 1/8 pixel.

FIG. 54 is a detailed block diagram of relative de-
coder 4856. The X, Y, H, W. X9, and Ya values from
region location table 4824 are latched in latch 54-02. The
coordinates X, Y are applied to an address counter unit
5404 to initialize it to the upper left corner of the region
to be decoded in bit map 4826. The height and width
values H, W are used to specify counter limits horizon-
tally and vertically, so that the address counter steps
successively through the address of each pixel in the
region 5302.

Recall that the X9. Y0 values represent a region offset
expressed in fractional-pixel precision. The integer parts
of these values are passed through the address offset
adder 5406 and added to the addresses from the address

counter 5404. The resulting addresses are applied to hit
map 4-828 to address the pixels in the previous-frame
region 5304. The fractional parts of the X0, Y0 values
are applied to the region shift interpolator to produce
interpolated values at intermediate locations between
the actual pixels in hit map 4828.

The next stage of relative decoder 4856 adds the
relative fill polynomial value Ax+By+C to the shifted
region data and stores the new region 5302 in bit map
4826. The coefficients A, B, and C are read from the
bitstream and applied to the dequantizer 5472 to undo
the area-based value quantization described previously.
After dequantization, the coefficients are applied to the
fill logic unit 5470. This unit taltes the three coefficients
and the values of it and y from the address counter 540-4
and outputs the three terms of the fill polynomial. The
it and y values are the region coordinates which are
used in logic 5470 to determine the terms of the fill
value. The three resulting terms are then summed, using
adders 54-60, 54-62, and 5464, with the previous region
data, and stored in bit map 4826. Recall that the coeffici-
ents WA and WB are fractional numbers, and therefore
that the fill value output by the adders of FIG. 54 is also
fractional. Before writing this value to hit map 4826, it
is twice truncated to an integer once for horizontal and
once for vertical.

FIG. 55 illustrates the decoding of an absolute region.
In this case there is no previous region to consider. The
value of the each pixel P(x.y) is the value of the polyno-
mial Ax+By+C, where x and y are coordinates mea-
sured relative to the upper left corner of the region.
Recall that the value ofC is stored in the region location



5,225,904
41

table, since it was encoded with the tree description, but
the values ofA and B are contained in the “absolute fill“

segment of the bitstream.
FIG. 56 is a block diagram of the absolute decoder

4854. It is similar to relative decoder 4856 but does not

use a previous bit map or the region irtterpolator. The
A, H, and C values are dequantized by dequantizer
5672, as required, and processed by the fill logic 5606 to
produce the terms of the fill polynomial. These terms
are added by the adders and the result, after truncating
to an integer twice (once for horizontal and once for
vertical}, is written to bit map 4826. The address count-
ers 5604 control this process to produce pixel values at
all locations within the rectangular region defined by X,
Y, H, W.

FIG. 57 illustrates the process of DPCM decoding. A
pixel value (P’) in region 5702 is obtained by adding a
difference value D to the value of the pixel immediately
to its left (P). A pixel (such as Q’ in the figure) which is
on the left edge of the region, and so does not have a
region pixel immediately to its left, is decoded by add-
ing the value D to the pixel above it (Q). The pixel in the
upper left corner of the region, which does not have a
pixel above it nor a pixel to its left, is decoded by adding
the value D to the constant 128. Recall that all the D

values are contained in the DPCM segment of the bit-stream. '

FIG. 58 is a block diagram of DPCM decoder 4852.
The X, Y, H, and W values from table 4824 are stored

in latch 5802 and used by the address controller 5804 to
generate pixel addresses for every pixel in the region
5702 being constructed Controller 5804 also generates
pixel addresses for reading from bit map 4-826 to provide
the pixels P to be added with difference values D. The
DPCM data from variable length decoder 4830 (FIG.
48) is applied to the DPCM dequantizer 5808, if re-
quired, which yields the difference values D. These

values are then added, using adder 5805, to pixels values

10

15

20

25

30

35

read from bit map 4826 (or to 128 if it is the first pixel of 40
the region) to produce the new pixel value for writing
5702 of the bit map 4826.

FIG. 61 illustrates the process of decoding dyad re-
gion. The values of pixels in the current frame 6110 are
determined by adding pairs of values (R, S) to pairs of 45
pixels (C, D) in a corresponding region of the previous
frame 6120 to produce pairs of pixels (A, B) in the cur-
rent frame As in a relative fill region, the location of the
region 6120 in the previous frame is determined by
offset values X, and Ya, which represent the spatial
offset of the region 6120 relative to the region 6110, in
fractional-pixel units.

FIG. 63 is a detailed block diagram of relative de-
coder 4855. The X, Y, H, W, X9, and Y, values from
region location table 4324 are latched in latch 6330. The
coordinates X.Y are applied to an address counter unit
6332 to initialize it to the upper left corner of the region
to be decoded. The H,W values are used to determine
the number of pixels that will be counted horizontally
and vertically by the address counter.

The X9. Y9 values are applied to the address offset
adder 633-4 to generate the integer and fractional offset
addresses for bit map 4828 and interpolator 4-858 respec-
tively. To produce pixel values for the target 4828,
processed through the region shift interpolator, 4858,
and added to the dyad values R,S using adders 6350 and
6352. The resulting values A.,B are written to bitmap
4826.

50

55

63

54

42

The dyad values are produced by first variable-length
decoding a value from the bitstream using decoder
4830, and applying it to the table address generator 6310
to point at a dyad in dyad memory 6320. For example,
if the value after variable-length decoding is a 3, this
would cause dyad pair #3 to be read out of the dyad
memory.

FIG. 59 is a table listing quantization values for re-
gions smaller than 32 pixels. Recall that a one-pixel
region was quantized to a resolution of 3-bits represent-
ing 8 levels of brightness. As the area doubles one more
bit of accuracy is used up to full video resolution of 8
bits per pixel. This reduces the number ofbits needed to
represent small regions. Decoding or “dequantizing" of
this data requires a shift left to give the bits their proper
binary significance when the fill values are calculated.

FIG. 60 is a block diagram for implementing the
left-shift “dequantizer" operation of FIG. 59. The re-
gion height (H) and width (W) data from region loca-
tion table 4824 is latched in latches 6002 and 6004 and

multiplied by multiplier 6006 of area detector 4853 (out-
lined in phantom). The multiplier provides addresse
codes to an area look-up table 6008 to obtain shift values
as a function of area (FIG. 59). These values are applied
to bit shifter 6010. Quantized variable length fill data to
be left justified is applied to the data input of the bit
shifter 6010 which left shifts the data in accordance

with the shift value provided by table 6008.
The discussion of the decode time monitor 236 indi-

cated that occasionai long-decode images were accept-
able, since it is possible to borrow decode time from the
previous image. This notion is discussed further in the
context of FIG. 52 which shows further detail of the

video RAM 4820. This memory includes a number of
display buffers including a buffer 4826 into which the
frame currently being decoded is stored, a buffer 4828
for storing a frame which was previously decoded, a
graphics buffer 5202, a pipeline buffer 5204 and a dis-
play buffer 4829. Each of these buffers is large enough
to hold an entire decompressed image As described
earlier, the decoding process uses data from a previous
image stored in bitmap 4828 to decode the next image or
current image which is stored in bitmap 4826 In FIG.
52, the frame contained in buffer 5202 was decoded just
prior to the frame contained in display buffer 4828 and
the frame contained in display buffer 4329 was decoded
just prior to the frame contained in bit map 5204, and so
on. That is. the image being displayed from buffer 4829
is not necessarily the image being used by the decode
process, but may in fact have been decoded several
frame times ago.

An advantage of having multiple display buffers is
that it permits the host software to draw graphics on the
display before it is viewed. Such changes cannot be
made on bit map 4826 because it is int he process of
being decoded. They cannot be drawn in hit map 4828
since the pixels of 4823 are used during decoding, and
this cannot be corrupted by graphics pixels. They
should not be drawn in buffer 4829 since the drawing
process would be visible on display 36. Drawing them
in buffer 5202 has none of these problems.

Another reason for multiple display buffers is that it
facilitates decode time borrowing. By having a few
extra buffers in the video RAM, the time at which a
buffer is chosen for display may be independent of or
asynchronous with the decoding process. As long as the
pipeline ofimages does not run dry, frame repeater 4862
can work with no visible pauses o_r blanks in the dis-



5,225,904
43

played image. This principle is similar tot he dithering
boxes in FIG. 13. Repeater 4862 maintains a running
average of the rate of display of images, and holds the
current image or advances to the next, so as to keep the
running average close to the desired playback rate. This 5
feature is particularly useful for variable-speed playback
applications. For example, a user may wish to slow
down or stop the playback frame rate of material re-
corded at 30 FPS for viewing details of a particular
frame or frame sequence. If 30 FPS recorded video is to 1'3
be viewed as a sequence of still frames, then the CD-
ROM player may be paused and the contents of the
buffer pipeline may be selectively displayed a frame at a
time. The CD-ROM player may be paused and the

contents of the keep the display pipeline from emptying. 15
The formatter 250 (FIG. 2) is designed to assure that

the pipeline of display buffers does not run dry. Based
on the values produced by the decode time monitor 236,
it can simulate the behavior of the display buffer pipe-
line during playback, and determine a minimum en-
coded frame size that prevents pipeline exhaustion. If
this value is larger than the memory available on the
host for display buffers, control 1310 may be used to
signal the threshold control 238 that the compression is
to be repeated using higher threshold values so as to
obtain shorter decode times.

In the examples of the system herein described, a
CD-ROM was used as the transmission media for the

compressed signal. Alternatively, other transmission 30
media may be used such as digital magnetic disk or tape.
Also full-sized (e.g., 12 inch} optical discs or discs of the-
capacitive storage type may be used for transmission.
Transmission of the compressed signal may also be

provided by other means such as satellite or cable trans- 35
mission systems. It will further be noted that linear fill
data for absolute and relative regions are both repre-
sented by coefficients A, B, C of the equation Ax+-
By+C. It is to be remembered that the coefficients of

absolute fill data are related to actual pixel values while 40
the coeflicients for relative fill data are related to the

difference values between pixels in the target region and
pixels in the corresponding region of the previous
frame.

In the claim hierarchically determining fill data is 45
defined as successively dividing an array of image data
into regions in which the image data can be described
by a first code type and for regions of the array which
can not be so encoded and which are of a predetermined
minimum size. describing the image data in such regions 59
by an alternate code type.

What is claimed is:

1. A method of encoding a digital motion video signal
having data parameters for representing images of a
sequence of images formed of pixels, said signal repre- 55
senting a current image being encoded and at least one

' previous image, each image having horizontal and ver-
tical coordinates for indicating corresponding locations
within said images, comprising the steps of:

(a) selecting a current target region within said cur- so
rent image, said current target region having target
region data parameters and target region coordi-
nates;

(b) comparing said target region data parameters with
region data parameters of at least one candidate 6
region of -said previous image, said candidate re-
gion having coordinates differing from said target
region coordinates;

55

20

25

44

(c) first determining motion compensation informa-
tion for said candidate region in accordance with
the comparing of step (b);

(d) second determining a sub-region within said cur-
rent target region in accordance with said motion
compensation infonnation of said candidate region
wherein substantially all pixels in said sub-region
have substantially equal motion compensation in-
formation; and,

(e) dividing said current region into at least tirst and
second sub-regions in accordance with said second
determining. '

2. The method of claim 1, wherein step (b) and step
(c) comprise the steps of comparing said target region
data parameters with region data parameters of a plural-
ity of candidate regions of -said previous image and
determining respective motion compensation informa-
tion for each of said candidate regions, comprising the
further steps of selecting one of said candidate regions
in accordance with said motion compensation informa-
tion.

3. The method of claim 2, wherein step (:3) comprises
the step of determining the means square difference
between at least one selected pixel of said target region
and a corresponding pixel said candidate regions.

4. The method of claim 3, comprising the step of
selecting a candidate region of said plurality of candi-
date regions having a minimum means square differ-ence.

5. The method of claim 4, wherein step (e) comprises
dividing said current region only ifsaid minimum means
square difference of said selected candidate region in
below a predetermined threshold.

6. The method of claim 5. comprising the further step
of adjusting said threshold. .

7. The method of claim 1, comprising the further step
of determining a selected candidate region displacement
value in accordance with coordinates of said target
region and coordinates of said selected candidate re-
gion.

8. The method of claim 7, comprising the further step
of encoding said current target region in accordance
with said candidate region displacement value.

9. The method of claim 1, comprising the further step
of providing a plurality of differing coding methods,
each coding method adapted for encoding a sub-region
having predetermined region data parameters.

Ill. The method of claim 9, comprising the further
steps of:

(0 selecting a first coding method in accordance with
the region data parameters of said first sub-region
and applying said first coding method to said first
sub-region to encode said first sub-region; and,

(g) selecting a second coding method in accordance
with the region data parameters of said second
sub-region and applying said second coding
method to said second sub-region for encoding said
second sub-region, whereby said first and second
sub-regions of said image are encoded differing
coding methods.

11. The method of claim 10, wherein step (f) and step
(g) comprise the step of selecting coding methods hav-
ing codes of differing lengths.

12. The method of claim 11, wherein said region data
parameters have respective frequency distributions and
steps (f) and (g) comprise selecting coding lengths in
accordance with said frequency distributions.



5,225,904
45

13. The method of claim 1, wherein said sub-regions
are repeatedly divided in half in accordance with binary
tree decomposition.

14. The method of claim 1, wherein said sub-regions
are repeatedly divided into quarters in accordance with
quad tree decomposition.

15. A method of encoding a digital motion video
signal having data parameters for representing a se-
quence of images having a current image being encoded
and at least one previous image, each image having
corresponding horizontal and vertical coordinates,
comprising the steps of:

(a) selecting a current target region within said cur-
rent image. said current target region having target
region data parameters and target region coordi-

.nates;

(b) comparing said target region data parameters with
region data parameters of at least on candidate
region of said Ptevious image, said candidate re-
gion having coordinates differing from said target
region coordinates;

(c) determining motion compensation information for
said candidate region in accordance with the com-
paring of step (b); and,

(d) dividing said current target region into at least
first and second sub-regions in accordance with
said motion compensation information of said can-
didate region.

16. The method of claim 15, wherein steps (b) and (c)
comprise comparing said target region data parameters
with region data parameters of a plurality of candidate
regions of said previous image and determining respec-
tive motion compensation information for each of said
candidate regions, comprising the further step of select-
ing one or said candidate regions in accordance with
said motion compensation information.

17. The method of claim 16, wherein said regions are
formed of pixels and step (c) comprises the step of deter-
mining the means square difference between at least one
selected pixel of said target region and corresponding
pixel within said candidate regions.

18. The method of claim 17, wherein said selecting in
accordance with motion compensation information

5

l0

l5

20

25

30

35

comprises the step of selecting a candidate region of 45
said plurality of candidate regions having a minimum
mean square difference.

19. The method of claim 18, wherein step (cl) com-
prises dividing said current region only if said minimum
mean square difference of said selected candidate region
is below a predetermined threshold.

20. The method of claim 19, comprising the further
step of adjusting said threshold.

21. The method of claim 20, comprising the further
step of determining a selected candidate region dis-
placement value in accordance with coordinates of said
target region and said coordinates of selected candidate
region.

22. The method of claim 21, comprising the further
step of encoding said current target region in accor-
dance with said candidate region displacement value.

23. The method of claim 15. comprising the further
step of providing a plurality of differing coding meth-
ods, each coding method being adapted for encoding a
sub-region having predetermined region data parame-ICIS.

24. The method of claim 23, comprising the further
steps of:

55

65

56

46

(e) selecting a first coding method in accordance with
the region data parameters of said first sub-region
and applying said first coding method to said first
sub-region to encode said first sub-region; and,

(fl selecting a second coding method in accordance
with the region data parameters of said second
sub-region and applying said second coding
method to said second sub-region for encoding said
second sub-region, whereby said first and second

sub-regions of said image are encoded by differing
coding methods.

25. The method of claim 24. wherein step (e) and step
(t) comprise selecting coding methods having codes of
differing lengths.

26. The method of claim 25, wherein said region data
parameters have respective frequency distributions and
step (e) and step (0 comprise selecting coding lengths in
accordance with said frequency distributions.

27. The method of claim 15, wherein said sub—regions
are repeatedly divided in half in accordance with binary
tree decomposition.

28. The method of claim 15, wherein said sub~regions
are repeatedly divided in quarters in accordance with
quad tree decomposition.

29. A method of encoding a digital motion video
signal having data parameters for representing an image
having at least two split directions, comprising the steps
Of:

(a) selecting regions of said image;
(b) determining edge information for said selected

regions; and,
(c) selecting a split direction for spatial splitting of

said image in accordance with said detennined
edge information.

30. The method of claim 29, wherein step (b) com-
prises the further steps of:

(d) determining the number of horizontal edges
within said selected regions; and.

{e} determining the number of vertical edges within
said selected regions.

31. The method of claim 30, comprising the further
steps of:

(i) determining the number of edges eliminated by
splitting said image in a first split direction; and,

(g) determining the number of edges eliminated by
splitting said image in a second split direction.

32. The method of claim 30, comprising the further
steps of:

(h) determining a horizontal edge inforrnation factor
in accordance with the determining of step (d);
and,

(i) determining a vertical edge information factor in
accordance with the determining of step (e).

33. The method of claim 32, wherein step (c) com-
prises selecting a split direction of said at least two split
directions in accordance with said horizontal and verti-

cal edge inforrnation factors.
34. A method of encoding a digital motion video

signal having rows and columns formed of pixels for
representing an image having at least first and second
split directions, each pixel having at least one pixel data
parameter, comprising the steps of:

(a) determining a respective row data parameter for
each of said rows in accordance with said pixel
data parameters of said pixels forming each row;

(b) determining a respective column data parameter
for each of said columns in accordance with the



5,225,904
47

pixel data parameters of said pixels fonrting each
column;

(c) determining a substantially uniform vertical gradi-
ent in accordance with said determined row data
parameters;

(d) determining a substantially uniform horizontal
gradient in accordance with said determined col-
umn data parameters;

(13) comparing said determined row data parameters
with said vertical gradient;

(0 comparing said deterrnined column data parame-
ters with said horizontal gradient; and,

(g) selecting a split direction for splitting said image
in accordance with the comparisons of step (e) and
step (0.

35. The method of claim 34. wherein step (a) and step
(13) comprise the steps of determining a vertical and
horizontal luminance value for each of said rows and

 

10

15

20

25

45

S0

55

65

57

48

columns in accordance with average lutna values of said
pixels forming said rows and columns.

36. The method of claim 34, wherein step (e) and step
(i) comprise the steps of:

(h) determining a vertical error term in accordance
with the difference between said determined row

data parameters and said substantially uniform ver-
tical gradient; and,

(i) determining a horizontal error term in accordance
with the difference between said determined col-

umn data parameters and said substantiallyunifonn
horizontal gradient.

37. The method of claim 36, wherein step (g) com-

prises the further step of splitting said image vertically
if said horizontal error term in greater than said vertical
C1'1'OJ.'ICl'II1.

t it n 3 3



UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,225,904 _ Page 1 of 3
DATED : July 6, 1993

WVENT0Rfi§=_ Stuart J. Golin, Allen H. Simon, Brian Astle,
John M. Keith

It is certified that error appears in the above-indentifisd patent and that said Letters Patent is hereby
cohemedasshawnbmow: '

Column 15, line 22, "33" should read —- -38 --.

Column 15, line 23, "-37" should read -- -38 --.

Column 15, line 36, the first "N" should read —- -N --.

'Column 28, line 45, "region" should read -- regions --.

Column 32, line 38, "cf" should read -- of --.

Column 33, line 45, "650" should read -- 1650 --.

Column 33, line 48, "1065" should read -- 1654 --.

Column 37, line 66, "and and" should read -- audio (32) and
video (30) --.

Column 38, line 55, please delete "5".

Column 39, lines 6-7, "Ax +- By + C" should read -- Ax + By 4 C

Column 40, line 61, "is twice truncated" should read -— is

truncated twice --.

Column 40, line 61, please insert "," after "integer".



 UNITED STATES PATEI~tT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

mmsmuo. : 5,225,904

DATED = July -6, 1993
WV3W0H$}= Stuart J. Golin, Allen H. Simon, Brian Astle,

John M. Keith

I! is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
conededasshownbmow:

Column 43, lines 14-15, the sentence "The CD-Rom player may be
paused and the contents of the keep the display pipeline from
emptying." should read -- The CD-Rom may be operated in a start-
stop mode to keep the display pipeline from emptying. --.

 
 

 
 

 
 

 
 
 

 
 

 
 

Page 2 of 3

. Column 43, lines 38-39, “Ax +- By +-C" should read

Column 44, line 23, "means" should read -- mean --.

Column 44, line 25, “pixel said" should read -- pixel within
said --.

Column 44, line 28, "means" should read -- mean --.

Column 44, line 31, "means" should read -- mean --.

Column 45, line 35, "one or said" should read -— one of said --.

Column 45, line 39, "means" should read -— mean --.

  

 



UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT N0. : 5, 225, 904
DATED : July 5, 1993

INVENTOR(S) :. Stuart J. Golin, Allen H. Simon, Brian Astle,
John M. Keith

It is certified that error appears in the above-indenllfied patent and that said Letters Patent is hereby
corrected as shown below:

Page 3 of 3

Column 22, line 63, "an" should read -? as --.

Column 44, line 32, "in" should read -- is --. _

_Co1umn 44, line 60, please insert "with" after "encoded".

Column 45, line 18, "on" should read -- one --.

Colman 48, line 16, "in" should read -- is

Signed and Sealed this

Twenty-sixth Day ofJuly, 1994

£24 at

Arresring Oflicer Commissioner ofParenr.r and Trademarks


