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Bulk Impurity Charge Trapping in Buried Channel 
Charge Coupled Devices 

M. J. McNutt* and W. E. Meyer 
R o c k w e l l  I n t e r n a t i o n a l ,  A n a h e i m ,  C a l i f o r n i a  92803 

ABSTRACT 

Buried  channel  charge  coupled devices are  pa r t i cu l a r ly  sensi t ive to the  
effects of bu lk  s ta te  impur i t ies  on such device character is t ics  as t he rma l  
leakage  current ,  charge t ransfer  efficiency, and noise. This paper  reviews the  
statist ics re levan t  to these effects and describes an improved  appl ica t ion  of 
the double pulse exper imen t  for probing bu lk  impuri t ies .  This expe r imen t  
found that  the dominant  impur i ty  in our  devices had  an energy  level  0.404 eV 
from one of the  bandedges  and de te rmined  a lower  l imi t  of 1013 cm-S for the  
concentrat ion.  A close match  wi th  prev ious ly  repor ted  resul ts  suggests that  
this energy  level  is re ferenced to the valence band and represents  iron. By 
e l iminat ing  the  corrosive HC1 gas used to get ter  sodium in the the rmal  
oxides,  the source of i ron was removed  and the affected device character is t ics  
improved  about  two orders  of magni tude.  

Bulk impuri t ies ,  especial ly  in  bur ied  channel  de-  
vices, give rise to severa l  undes i rable  charge  coupled 
device (CCD) characterist ics.  Among these are enhanced 
the rmal  leakage  current ,  bu lk  state t rapping,  and bu lk  
state t rapp ing  noise. Thermal  leakage  cur ren t  gen-  
erates  charge in te rna l ly  and l imits  the t ime dur ing 
which an empty  charge packet  can be stored. Bulk 
s tate  t rapping  and subsequent  emission smears  charge 
into t ra i l ing  charge packets,  thus degrading  the signal, 
and also gives rise to a pa r t i t i on - type  bulk  state t r ap -  
ping noise. The t rapp ing  noise can also dominate  as a 
genera t ion- recombina t ion  noise in the output  circuit  
due to the  p ropor t iona l i ty  of this noise power  to the  
square of the bias current .  

Mohsen and Tompset t  (1) discussed the effects of 
bu lk  t raps  on the  pe r fo rmance  of bur ied  channel  
CCD's and descr ibed  the double  pulse technique they  
used to de te rmine  the t rap  emission t ime constant. Our  
purpose  in this paper  is to review the t rapp ing  s ta -  
tistics that  include the effects of both  energy  bands 
and to descr ibe an efficient implementa t ion  of the dou-  
ble pulse measuremen t  .technique. We are  also in t e r -  
ested in ident i fy ing the appropr ia t e  impuri t ies ,  and, in 
our  example ,  we wil l  find a large  i ron d is t r ibut ion  and 
discuss its source and eventua l  el imination.  

�9 Electrochemical Society Active Member. 
Key words: iron, bulk impurities, charge coupled devices. 

Bulk Impurity Statistics 
Figure  1 is a band d i ag ram descr ibing the four possi-  

ble Shock ley -Read -Ha l l  (2) t r app ing  t ransi t ions as-  
sumed to dominate  in the device. (a) and (b) a re  
e lect ron capture  and emission rates,  and (c) and (d) 
a re  hole capture  and emission rates  at  a t r ap  with  
energy,  ET. Ec and Ev are  the conduction and valence 
band energies.  The re levan t  stat ist ics can be descr ibed 
by  three  ra te  equations 

d n / d t  : (b)  --  (a) --  ennT --  Cnnpw [1] 

d p / d t  ---- (d) --  (c) ---- epPT - -  CppnT [2] 

d n T / d t  = (a) --  (b)  --  (c) + (d) 

-:  cnnpT --  ennT - -  cDpnT + epPT [3] 

n and p are  the  e lec t ron and hole concentrat ions,  and  
nT and PT are  the filled and empty  e lect ron bu lk  s tate  
concentrations,  ca and Cp are  the  e lec t ron and hole 
capture  coefficients, and en and ep are  the e lect ron and 
hole emission coefficients. 

A t  equ i l ib r ium 

d n / d t  - :  0 

n = no ---- Nc exp [(EF --  E c ) / k T ]  

d p / d t  . :  0 

P : Po : Nv exp [ (Ev --  E F ) / k T ]  [4] 
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Fig. 1, Energy band diagram indicating bulk state trapping 
I~mcesses. 

where  Nc and Nv a r e  t h e  effective dens i ty  of s tates  at  
the two bandedges  and EF is the Fe rmi  energy.  Sub-  
s t i tu t ing  Eq. [4] into [1] and  [2] gives 

en = cnNc exp [ (ET --  Ec)/kT] 
[5] 

ep = cpNv exp [ (Ev --  ET)/kT] 

To obta in  this resul t  we used the Fe rmi  occupat ion 
factor  in  nw and PT such tha t  

•W = NTT/(1 + exp [(ET --  EF)/kT]) 

PT = NTT exp [ (ET -- EF)/kT]/ 

(i ~- exp [(ET -- EF)/kT]) [6] 

where NTT = nT + PT is the total bulk state concen- 
tration. Also in equiliSrium 

dnT/dt = 0 

•T : NIT (Cnno -~- %)/(cnno + ea + %Po + ep) [7] 

where  Eq. [3] was subs t i tu ted  along wi th  PT : NTT 
- -  nT. 

As noted by  Sah (3), Eq. [5] are  s t r ic t ly  va l id  only 
at  t he rmal  equ i l ib r ium where  they  are  der ived.  How-  
ever,  for smal l  deviat ions f rom equi l ib r ium we can as-  
sume tha t  the e lect r ic  fields a re  not large  enough to 
m a k e  the  cap ture  and emission coefficients field depen-  
dent.  Also, we wil l  be p r i m a r i l y  in teres ted  in the t em-  
pe ra tu re  dependence  of the emission cofficient r a the r  
than  its absolu te  value,  thus minimiz ing  the effects of 
nonequi l ib r ium on the measuremen t  accuracy.  

In  deplet ion,  we  have p : n : 0, so the emission 
t ransi t ions,  (b) and  (d) ,  dominate  the  capture  events,  
(a)  and (c) ,  in Eq. [3] giving 

dnT/dt  ~-~ -- ennT + epPT 

: -- (en + ep)'rt,r ~- epNwT [8] 

The solution to Eq. [8] is 

ST = AnT exp (-- t/z) ~- (T/Tp)NTT [9] 

where ~-i _: en ~- ep and Tp -I ---- ep. Let t ---- 0 be the 
time when the device is switched from equilibrium to 
depletion so that nT(0) is given by Eq. [7]. Then from 
[7] and  [9] at  t = 0 we get  

AnT = NTT [enCnno --  epcppo]/[ (On + ep)  

(Cnt%o + en -I- CpPo -'l- ep)] [I0] 

In  some cases, [10] can be g rea t ly  simplified. For  
example ,  in N - t y p e  ma te r i a l  no > >  Po, and, if  the 
impur i t y  level  is near  the middle  of the  bandgap,  Cnno 
> >  on, ep so tha t  AnT ~-~ NTTen/(en-}-ep). F u r t h e r -  
more,  if the energy  level  is in the  upper  half  of the  
bandgap,  we  should have en > >  ep and  z~nT ~ NTT. 

Depending  on the locat ion of the  impur i t y  energy  
level,  e i ther  en or  ep n o r m a l l y  dominates  in r. Fo r  ex-  
ample,  if ET is closer to Ec than  Ev, we  expect  en > >  
ep f rom Eq. [5] and  so 

_~ en -1 --  {enNc exp [ (ET -- Ec)/kT]} -1 [11] 

The cap ture  coefficient, Cn, is p ropor t iona l  to TY2 since 
i t  contains the t he rma l  veloci ty  factor,  and  the effec- 
t ive densi ty  of states, Nc, is p ropor t iona l  to T 3/2 (4). 
Thus, there  is a T ~ factor  bui l t  into the cnNc product .  
This factor  can be e l imina ted  by  mul t ip ly ing  Eq. I l l ]  
by  T ~. Then when  we take  the na tu ra l  logar i thm we 
get  

l n ( r T  2) - - l n ( T 2 / c n N c )  + ( E c -  ET)/kT [12] 

Now if ln(~T2) is p lo t ted  agains t  ( k T ) - l ,  the slope 
of the  s t ra ight  l ine is Ec --  ET which identifies the 
impur i t y  energy  level.  In  the  o ther  case, if  ep > >  en 
(e.g., ET closer to Ev),  then  

ln(~ T2) ---- ln(T2/%Nv) -t- (ET --  Ev) / kT  [13] 

and the da ta  slope gives ET --  Ev. 
Trapping  occurs when a charge packe t  in the CCD 

is t ranspor ted  into a cell tha t  has prev ious ly  been 
empty  or in depletion.  This means  that  the  exponent ia l  
t e rm in Eq. [9] has at  leas t  pa r t i a l l y  decayed. When 
the charge  packe t  arr ives,  e lectrons fill these empty  
impur i t y  states a lmost  ins tan taneous ly  due to the high 
capture  r a t e  caused by  the la rge  ca r r i e r  concentrat ion.  
However ,  when the charge  packet  is t r anspor ted  to the 
next  cell, these electrons s tay t r apped  in the impur i t y  
states. We are  back to a deple t ion  condit ion and these 
electrons are  only emi t ted  f rom the t raps  according to 
the exponent ia l  t ime t e rm  in Eq. [9]. As the electrons 
are  emi t ted  f rom the t raps  they  are  p icked up by  
t ra i l ing  charge packets.  This to ta l  process tends to 
smear  out  the  CCD signal  in time. 

The t rapp ing  process also gives r ise to par t i t ion  
noise in the CCD charge signal  due to the constant  
r eappor t ionment  of charge among ad jacen t  cells. Also, 
there  is subs tant ia l  genera t ion- recombina t ion  noise in 
any  currents  flowing in the device, pa r t i cu l a r ly  in the 
ou tput  circui t  where  the  currents  can be substant ia l .  
This noise is der ived  f rom the constant  emission and 
capture  of the cur ren t  car r ie rs  even in a nea r ly  equi-  
l ib r ium condit ion where  the total  concentra t ion is con- 
stant. 

Experimental Procedure 
In o rder  to obta in  some di rec t  quant i ta t ive  in forma-  

t ion on these bu lk  states, we pe r fo rmed  a double pulse 
charge t ransfer  expe r imen t  s imi lar  to tha t  of Mohsen 
and Tompset t  (1). This expe r imen t  is i l lus t ra ted  in 
Fig. 2. The device is encased in a control led  t empera -  
ture  environment ,  and the analog signal  charge t rans-  
fer is drircen by  a four -phase  clock driver .  The d r ive r  
also t r iggers  a double pulse genera tor  at  a p r ede t e r -  
mined  in te rva l  based on an in tegra l  number  of clock 
periods. The double pulse genera to r  puts  out  two 
pulses, one immed ia t e ly  fol lowing the t r igger  s ignal  
and a second pulse that  is de layed  f rom the t r igger  
signal. The de lay  is manua l ly  adjustable ,  and the 
wid th  of the two pulses is also adjustable ,  but  the 
wid th  is no rma l ly  at  least  two clock periods. The 
double  pulse ou tpu t  signal  f rom the pulse genera tor  is 
appl ied  to the shift  reg is te r  input,  which samples  the  
signal  every  clock per iod and converts  vol tage to p ro -  
por t iona l  charge. The sampled  signal  charge is t rans-  
f e r red  th rough  the shift  regis ter  where  it loses charge 
to empty  bu lk  state energy  levels.  Eventual ly ,  the 
d iminished signal  charge  reaches the ou tpu t  whe re  
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Fig. 2. Block diagram of CCD variable delay double pulse trap- 
ping experiment. 

i t  is p ropor t iona l ly  conver ted  back  to vol tage  and dis-  
p layed  on the oscilloscope. The oscilloscope uses the 
same t r igger  as the pulse  generator .  F igure  3 contains 
typica l  examples  of the  input  and  output  signals, 
where,  in this case, the  ou tput  s ignal  has been  t ime 
shif ted to e l imina te  the shift  reg is te r  de lay  tha t  would  
no rma l ly  occur. As shown in the figure, the pulses ap-  
p l ied  to the  CCD inpu t  ex tend  over  two clock periods.  
For  each input  s ignal  pulse, the  resul t ing  output  then 
gives two sample  pulses corresponding to the two 
Charge packets  tha t  each input  signal  pulse forms. A 
more  negat ive  output  corresponds to a l a rge r  charge 
packe t  of electrons.  

As seen in the output  c i rcui t  signal, the first charge 
packe t  or  cell  is g rea t ly  reduced  dur ing  t ransfe r  down 
the CCD channel.  This is due to t r app ing  of charge b y  
the bu lk  states. Since most  of the t raps  are  filled by  
the first charge packet ,  the second charge packe t  t r ans -  
fers th rough  the CCD wi th  ve ry  l i t t le  loss. There  is 
some loss, however ,  since the first charge packe t  is not  
exposed to all  the  t raps  in the  channel  because of de-  
creases in the  charge packe t  volume due to charge  loss. 

UNDELAYED 
PULSE 

DELAYED 
PULSE CCD I NPUT 

CCD OUTPUT 

FI RST CELL SATURATION 
~- t d ~- / / 

Tc= ~,.-Z E~CO.N ~ CELL SATURATION 

/ - I  I "  NOTRAPPING LOSS PERIOD/___....-- 

Fig. 3. Variable delay double pulse trapping experiment input and 
output signals. 

These remain ing  t raps  are  nea r ly  al l  fil led (in this ex-  
ample)  by  the second charge packe t  or  the second 
sample  of the first i npu t  signal  pulse. 

In  the  ex t reme  case of a ve ry  large  impur i t y  con- 
centrat ion,  more than  two charge  packets  m a y  be re -  
qui red  to fill the  t r app ing  levels.  This does not  sub-  
s tan t ia l ly  affect the measu remen t  technique as long 
as a sufficient number  of charge packets  is provided.  
This is accomplished by  ex tend ing  the signal  pulse 
wid th  over  addi t ional  clock periods.  

There  is a delay,  td, be tween  the second charge 
packe t  f rom the first inpu t  pulse  and the first charge  
packe t  f rom the second inpu t  pulse  as shown in the 
figure. Dur ing  this t ime electrons are  emi t ted  from 
the t raps  according to the  deple t ion  stat ist ics of Eq. 
[9]. Then when the nex t  charge packe t  comes along, 
i t  fills the recen t ly  empt ied  t raps  such that  i ts t r app ing  
loss is equal  to the emission that  occurred in the td 
in terval .  If the emission of t r apped  charge  is large,  
some of these t raps  m a y  be missed by  the reduced  
first de layed  charge packet .  These are  then filled by  
the second de layed charge packe t  or any  addi t ional  
charge  packets  tha t  m a y  be required.  

I f  td = O, no significant emission f rom the t raps  oc- 
curs be tween  the charge packe t  pairs  so tha t  no 
t r app ing  loss occurs in the  second pair .  At  the o ther  
extreme,  if ta > >  ~, where  �9 is the  t rap  emission t ime 
constant,  alI  the  t raps  e m p t y  dur ing  td and the second 
charge packe t  pa i r  exper iences  the same t rapp ing  loss 
as the  first pair .  For  values  of td in be tween  these ex-  
tremes,  the  second pa i r  t r app ing  loss follows the form 

Q(td) = Q(ao)  + [Q(0) - Q(~o)]  

[Q(ta)/Q(O)] e x p ( -  ta/T) [14] 

In Eq, [14], Q(td) is the remain ing  charge at  the CCD 
output  in a charge packet  de layed  by  ta, while  Q(O) 
and Q ( ~ ) a re  the remain ing  charge for charge  packets  
wi th  zero and infinite delays.  The quan t i ty  Q(0) - 
Q (oo) is the  charge po ten t ia l ly  subject  to t rapping,  and  
the exponent ia l  factor  is tha t  of the t rap  emission rate.  
As the charge  packe t  moves along the  CCD channel  
losing charge to t r app ing  centers, its volume is re -  
duced and i t  is exposed to a smal le r  volume of t rapp ing  
centers. In  a un i form bur i ed  channel,  this is r ep re -  
sented by  the  factor  Q(ta)/Q(O) where  the  charge 
packe t  volume is assumed propor t iona l  to the amount  
of charge. Final ly ,  we can isolate Q (td) in [14] to get  

Q(td)  - -  Q ( ~ ) / { 1  - [1 - Q(~)/Q(O)] e x p ( -  td/~)} 

[15] 

Of course the CCD output  vol tage  is p ropor t iona l  to 
Q(td) .  Thus, b y  va ry ing  td and observing the corre-  
sponding change in the  ou tpu t  voltage,  x can be de-  
duced. 

F r e que n t l y  if the  t rapp ing  effect is not  too large,  we 
have [ 1 -  Q(oo)/Q(O)] < <  1, and Eq. [15] can be 
approx ima ted  by  

Q(td) ~ Q ( ~ )  {1 + [1 --  Q(~)/Q(O)] e x p ( -  td/~)} 

[16] 

This approx imat ion  becomes more  accurate  as the ex-  
ponent ia l  factor  decays. Since we now have a pu re ly  
exponent ia l  t ime te rm in Eq. [16], the t ime constant,  
~, can be de te rmined  wi thout  r egard  to the absolute  
values  of Q ( ~ )  and Q (O). Somet imes  the first sample  
of the de layed  signal  pulse  exper iences  ve ry  la rge  
t r app ing  losses such tha t  Q ( ~ )  ~ 0 and [16] cannot 
be used. In  tha t  case, a second or  th i rd  sample  wi l l  
have less t rapping  loss and thus qual i fy  for using Eq. 
[16]. Since we have to t ake  as many  samples  of each 
signal  pulse (i.e., s t re tch  the signal pulse  over  more  
clock per iods)  as necessary to get  at  least  one und im-  
inished sample,  we can a lways  app ly  Eq. [16] to one 
of the sample  pulses. 
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Al though  the t ime de layed  t r app ing  da ta  can be 
t aken  in the  usual  p o i n t ' b y - p o i n t  manner ,  a more  effi- 
cient  technique gives a much  fas ter  resul t  wi th  an  in -  
crease in  accuracy.  This technique  uses the  fact  tha t  
the sampl ing  na tu re  of the CCD provides  the same size 
charge  packets  a t  the  same sample  t imes even as the  
s ignal  pulse  is de layed  up to one ful l  clock period.  
However ,  when  the s ignal  pulse  edge passes th rough  
the sample  ape r tu re  t ime,  the charge  packe t  a b r u p t l y  
changes. Thus, when  the t ime de lay  be tween  pulses is 
cont inuously  varied,  the  CCD ou tpu t  pho tographed  
by  a t ime exposure  c lea r ly  indicates  the  corresponding 
charge loss variation in the de layed  charge  packets .  
Each of the t ime delayed  outputs  is d i sp layed  for  the  
t ime i t  takes to adjust the de lay  th rough  one CCD 
clock period.  If this  t ime is long enough to expose the 
film and the de lay  is va r i ed  in a roughly  un i fo rm 
fashion, a good pho tograph  wi l l  result .  In  pract ice,  
this typ ica l ly  requi res  opening  the camera  shutter for 
about  5 sec whi le  tu rn ing  the de lay  knob on a double  
pulse  generator .  

In  pe r fo rming  the exper iment ,  i t  is impor t an t  to 
choose a CCD clock per iod  tha t  is much  less than  T 
in o rde r  to get  many  samples  of the exponent ia l  decay 
to ma tch  wi th  Eq. [15]. Also, the t ime be tween  the 
end of the  de layed  signal  pulse  and the s ta r t  of the 
nex t  s ignal  pulse  pa i r  must  be long enough to a l low 
al l  the  t r apped  car r ie rs  to be emit ted.  In  other  words,  
the signal  pulse  pa i r  repe t i t ion  per iod  mus t  be many  

t ime constants  longer  than  the longest  de lay  be tween  
the two pulses. The first s ignal  pulse  then  provides  the 
Q (~o) re ference  values.  

The accuracy  of the  single pho tograph  method can 
be be t t e r  than  the technique of recording  each t ime 
de layed  sample  separate ly ,  even though the ind iv idua l  
sample  resolut ion  m a y  be less. This is because there  is 
much less oppor tun i ty  for ca l ibra t ion  or  t empe ra tu r e  
d r i f t  be tween  td readings.  Therefore,  the re la t ive  ac-  
curacy  be tween  da ta  points  is excellent ,  which is most  
impor t an t  in ob ta in ing  the t ime constant,  T, by  ma tch -  
ing expe r imen ta l  resul ts  wi th  Eq. [15]. I t  should also 
be noted tha t  this  technique of p robing  bu lk  impur i t ies  
by  using CCD's is po ten t i a l ly  more  sensi t ive than  nor -  
mal  capaci tance t rans ient  methods  (5) because the 
charge packe t  flows th rough  a number  of cells losing 
t r apped  charge  in  each one. In  more  t rad i t iona l  m e a -  
surements ,  only  the equivalent lof  one cell is used. Thus, 
sens i t iv i ty  is mul t ip l i ed  by  the number  of CCD cells. 
However ,  to t ake  advan tage  of this enhanced sensi t iv-  
i ty,  CCD noise Sources such as t ransfe r  efficiency noise 
and ou tput  FET noise mus t  be minimized.  

Al though  the double pulse exper imen t  does not  by  
i tself  give the impur i t y  concentrat ion,  NTT, except  in 
the special  cases where  NIT ~ AnT, i t  can give the im-  
pu r i t y  energy  level  by  finding the slope of Eq. [12] or  
[13]. This can iden t i fy  the  impur i t y  involved.  Since 
the  technique d i rec t ly  measures  the adverse  CCD 
character is t ic ,  name ly  charge t ransfe r  t r app ing  loss, i t  
a l w a y s  identifies the impur i t y  that  is most  in jur ious  to 
the  device, and the  measu remen t  can be made  near  
the normal  opera t ing  tempera ture .  

Experimental  Result 
An example  of the de te rmina t ion  of the  t ime con- 

stant,  T, a t  a single t e m p e r a t u r e  is shown in the  oscil lo- 
scope photo of Fig. 4. This photo is a long t ime ex-  
posure  showing the  first charge  packe t  pa i r  and a 
sequence of second charge  packe t  pai rs  at  var ious  de-  
lays. The de lay  t ime was ad jus ted  cont inuously f rom 0 
to the edge of the oscil loscope scale while  the camera  
shut te r  was open. The resul t  is the two exponent ia l  
decays v iv id ly  d isp layed  for  the first and second de-  
l ayed  charge  packets.  The two unde layed  charge packe t  
signals a re  also shown, somewhat  b loomed due to the  
long exposure  time. They indicate  the long de lay  
values  of the de layed  charge  packets  so tha t  the t ime 
constant  can be de termined.  They  also define the ref -  

Fig. 4. Long exposure photo of CCD output during variable delay 
double pulse trapping experiment. Device 30338-1-4-37B; CCD 
Clock Rate = 50 KHz; Horizontal scale = 100 #sec/div.; Vertical 
scale = 0.1 V/div.; temperature = 55~ 

erence time. Since the t r app ing  loss is about  25% of 
the  total  first charge packe t  ( the zero charge  level  is 
wel l  above the top of the scope d isp lay) ,  Eq. [16] ap -  
p rox ima tes  [15], and a s imple  exponent ia l  decay  can 
be assumed. 

Fo r  example ,  let  0V be the top of the ver t ica l  scale 
as an a r b i t r a r y  reference.  The unde layed  first charge 
packe t  signal  is a t  --0.05V. The de layed  first charge  
packe t  when the de lay  is zero (i.e., no charge loss) is 
at  --0.60V, giving a m a x i m u m  charge  loss equiva lent  
to 0.55V. We see a charge loss equiva len t  to 0.20V at  a 
de lay  of 700 ~sec, so that  

0.55 -- 0.20 = 0.55 exp ( - -  700 • 10-6/T) 

"- 700 X 10 -6 / in  (0.55/0.35) 

= 1 5 5 0 ~ s e c  at T = 5 5 ~  

Natura l ly ,  curve-f i t t ing  techniques could be used wi th  
Eq. [15] to get  more  precise values  of T if required.  
By repea t ing  the expe r imen t  at  severa l  t empera tures ,  
we can plot  ln(~T 2) vs .  ( kT ) - l ,  and f rom Eq. [12] and 
[13], we expect  a s t ra ight  l ine of slope Ec --  ET or 
ET --  Ev. The expe r imen ta l  resul ts  a re  p lo t ted  for  a 
single CCD device in Fig. 5 and they  do in fact  fal l  on 
a least  squares fit s t ra igh t  l ine of s lope 0.404 eV --  
Ec --  ET or ET --  Ev. This is an energy  level  tha t  l ies 
near  the midgap  of silicon, where  we know it  can give 
rise to the  most the rmal  leakage  current .  The repor ted  
energy level  closest to this number  in sil icon is ET-- Ev 
= 0.40 eV for i ron (6-8). I ron  is known  to have one of 
the highest  diffusion coefficients of any  i m p u r i t y  in 
silicon, and its solid solubi l i ty  is l a rge r  than  101~ cm - s  
at our  lowest  furnace tempera tures .  A n  obvious source 
of i ron is the stainless steel  p lumbing  for the gas flow 
systems and the gas s torage tanks.  The po ten t i a l ly  
corrosive HC1 gas sys tem used to ge t te r  mobi le  sodium 
ions f rom the gate oxides was pa r t i cu l a r ly  suspect. 
By e l iminat ing  the HC1 gas flow and re ly ing on 
clean processing and get ter ing  of sodium by  our  
phosphorus-doped  polysi l icon gates, we obta ined  an  
immedia te  reduct ion  of about  two orders  of magni tude  
in the rmal  leakage  and charge t r app ing  in  finished de-  
vices. 

The concentra t ion of t rap states f rom which car r ie rs  
are  emi t ted  af ter  a cer ta in  t ime is given by  the first 
t e rm in Eq. [9], and the concentra t ion of empt ied  
t raps  af ter  s teady s tate  is achieved is r epresen ted  by  
the factor  AnT. As seen in Eq. [10], a n t  is only  a f rac -  
t ion of the to ta l  impur i ty  concentrat ion,  NTT, wi th  the 
fract ion de te rmined  by  the values of the emission and 
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capture  coefficients and the equi l ib r ium doping con- 
centrat ions.  

In  our  bu r i ed  N-channe l  device we have  cnno > >  
%Po, and, since the i m p u r i t y  level  is near  the midgap  
energy,  Cnno ~ en,ep by  compar ing  Eq. [4] and [5]. 
F inal ly ,  we have assumed tha t  the impur i ty  level  emits  
holes to the  valence band so tha t  ep > >  en. Combining 
these approximat ions  in Eq. [10], we get AnT ~ (ea/  
ep)NWT. We have  de t e rmined  ep ~ .~-1, bu t  en can only 
be found by another  measuremen t  technique.  How- 
ever, we have de te rmined  that  the concentra t ion of 
t r apped  and reemi t t ed  carr iers ,  AnT, is much less than 
the impur i ty  concentrat ion or  NTT ~'~ ( % / e , )  AnT > >  
AnT. 

Refer r ing  to Fig. 4, a f te r  the t raps  have empt ied  in 
a full  deple t ion  mode so tha t  the first t e rm in Eq. [9] 
is zero, a ful l  charge packet  loses charge represented  
by  a 0.55 drop in output  voltage. A second charge 
packe t  exper iences  a 0.13 vol tage drop and succeeding 
ful l  charge  packets  lose nothing because the  t raps  
have reached the equi l ibr ium condit ion of Eq. [7]. The 
ou tput  circui t  has a sensi t iv i ty  of about  10 TM V/C, so 
the 0.55V and 0.13V represen t  0.55 X 10 -12 C and 0.13 
X 10 -12 C or a combined to ta l  of 4.3 X 106 electrons.  
These electrons are  t r apped  in a CCD channel  that  is 
250 ~m wide  X 1540 #m long X 1 ~m deep for a to ta l  
volume of 3.8 X 10 -~ cm 3. Therefore,  the concen- 

t ra t ion  of t r apped  electrons tha t  can be r eemi t t ed  is 
Anw = 4.3 • 106/3.8 X 10 -7 ---- 1.1 X 1013 cm -a.  This 
represents  a lower  l imi t  on Nvr. 

Conclusions 
By e m p l o y i n g  the t empe ra tu r e  dependent  t ransfe r  

inefficiency of a CCD, we have been able  to ident i fy  
the i m p u r i t y  causing tha t  inefficiency as i ron with  an 
energy  level  0.40 eV above the sii icon valence band. 
We have  also been  able  to place  a lower  l imi t  on the  
i ron concentra t ion of 1.1 X 1018 cm -8. A simplified 
single pho tograph  var ia t ion  of the double  pulse method 
grea t ly  faci l i ta ted de te rmina t ion  of the requ i red  emis-  
sion t ime constants.  

This i m p u r i t y  ident i f icat ion immed ia t e ly  t h rew sus-  
picion on the furnace  p lumbing  for the  HC1 gas used 
to ge t te r  the threshold  shif t ing sodium ions in isolat ion 
oxides. This p lumbing  contains i ron  in  the stainless 
steel  tubing and the HC1 tanks.  By e l iminat ing  the 
HC1 gas system, an immedia te  reduct ion  of about  two 
orders  of magn i tude  in  t he rma l  leakage  cu r ren t  and  in 
charge t r app ing  was observed in finished devices. 
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