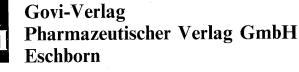
Die Pharmazie

An International Journal of Pharmaceutical Sciences

Volume 51 March 1996

In this issue


Review

• Micellization of quaternary ammonium salts

Original articles

- Amino acid derivatives as anticonvulsants
- Oxidation products of analgesic pyrazolinones
- HPLC separation of barbiturates
- Microcapsules of cephradine
- Morphological and functional features of cytostatic drug resistance
- Effect of retinoic acid and valproate on sea urchin development
- Behaviour of erythrocytes in the presence of monoalkylphosphates
- Inhibition of fungal growth and enzyme activity by (-)-usnic acid
- Antiviral activity of Porphyridium curentum polysaccharide
- Pentapeptides from Aster tataricus
 A new neolignan from Piper cuneifolium

UW PHARMACY LIBRATY

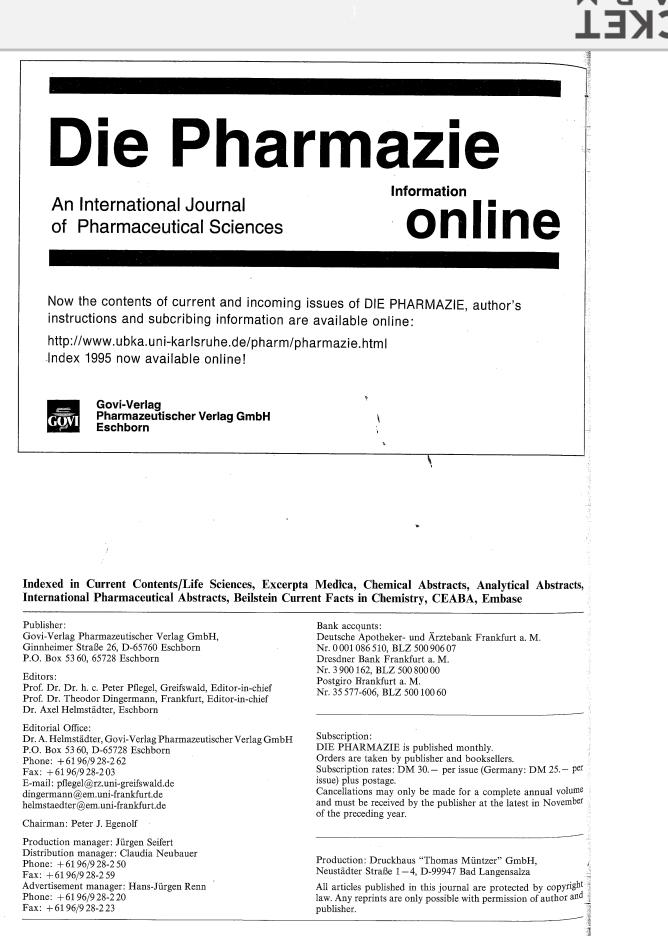
Editors

P. Pflegel (Greifswald) Editor-in-chief T. Dingermann (Frankfurt am Main) Editor-in-chief

A. Helmstädter (Eschborn)

Editorial advisory board

G. Bernáth (Szeged) R. Braun (Eschborn) D. D. Breimer (Leiden) H. Derendorf (Gainesville) M. Dittgen (Jena) D. Duchêne (Paris) G. Franz (Regensburg) H. Gebler (Hannover) G. Heinisch (Innsbruck) K. Hiller (Berlin) H.-D. Höltje (Berlin) L. Kny (Berlin) L. Krówczyński (Kraków) W. Kubelka (Wien) G. Lee (Erlangen) M. Luckner (Halle/Saale) F. Markwardt (Erfurt) H. Möhrle (Düsseldorf) H. Morck (Eschborn) E. Mutschler (Frankfurt am Main) P. Nuhn (Halle/Saale) H.-H. Otto (Greifswald) J. Richter (Berlin) P. C. Schmidt (Tübingen) W. Schunack (Berlin) F. T. Smith (Auburn) O. Sticher (Zürich) K. Szendrei (Szeged) K. Thoma (München) G. Wagner (Leipzig) R. A. de Zeeuw (Groningen)


89052596491

PHARAT 51 (3) 133–196

ISSN 0031 7111. Pharmazie · Frankfurt/Main · 51 (1996) 3 · nn. 133-196

Find authenticated court documents without watermarks at docketalarm.com.

Pharmazie 51 (1996) 3

Argentum Pharm. v. Research Corp. Techs., IPR2016-00204 RCT EX. 2059 - 2/7

135

. 145

171

175

VOLUME 51

CONTENTS

Review

ĸ

Kopecky, F.: Micellization and other associations of amphiphilic antimicrobial quaternary ammonium salts in aqueous solutions

Original articles

Ammar, H. O.; Khalil, R. M.: Discrepancy among dissolution rates of commercial tablets as a function of dissolution method, part 6: Rifampicin Tunçel, T.; Bergişadi, N.; Akin, L.; Ötük, G.; Kuşçu, I.: *In vitro* and *in vivo* studies on microcapsules and tabletted microcapsules of cephradine.

Reymann, A.; Bunge, A.; Läer, S.; Dietel, M.: Morphological and functional features of cytostatic drug resistance and the effects of MDR modulators (in German) Sconzo, G.; Fasulo, G.; Romancino, D.; Cascino, D.; Giudice, G.: Effect of retinoic acid and valproate on sea uchin development

AP 3	0	'96

Safak, C.; Simsek, R.; Erol, K.; Vural, K.: Analgesic	
and antiinflammatory effects of some 2-mercaptobenz-	
oxazole derivatives.	180
Khalil, R. M.; Murad, F. E.; Yehia, S. A.; El-Ridy,	
M. S.,; Salama, H. A.: Free versus liposome-entrapped	
streptomycin sulfate in treatment of infections caused by	
Salmonella enteritidis	182
Cheng, DL.; Shao, Y.; Zhao, K.; Hartmann, R.;	
Roeder, E.: Pentapeptides from the roots of Aster ta-	
taricus	185
Abdallah, O. M.; Ibrahaim, Z. Z.: Chemical consti-	
tuents of <i>Piper cuneifolium</i> , structure of a new neolignan	187

¹⁴⁸ Short communications

152	Tarasiewicz, M.; Kuźmicka, L.: Determination of	
155	thioridazine by means of absorption spectrophotometry.	189
155	Russeva, V.: New spectrophotometric test establishing drug-protein interaction	190
	Fang, J. Y.; Tsai, Y. H.: Stability of nonivamide and sodium nonivamide acetate in solution at various pH	100
1.50	values	191
159		
162	Trotta, M.; Pattarino, F.; Gasco, M. R.: Behaviour	
102	of erythrocytes in the presence of monoalkylphosphates .	192
	Minkova, K.; Michailov, Y.; Toncheva-Panova,	
	T.; Houbavenska, N.: Antiviral activity of Porphyridium	10.4
165	cruentum polysaccharide	194
105	Proksa, B.; Šturidíková, M.; Prónayová, N.;	
	Liptaj, T.: $(-)$ -Usnic acid and its derivatives. Their inhibi-	
	tion of fungal growth and enzyme activity	195
168		

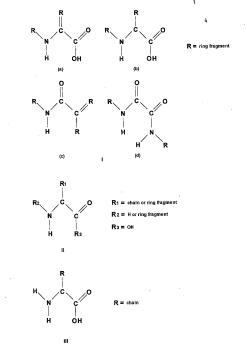
ORIGINAL ARTICLES

Department of Pharmaceutical Chemistry¹, Medical University, Warszawa, Poland and Division of Convulsive, Developmental and Neuromuscular Disorders², NINDS, NIH, Bethesda, USA

Synthesis and anticonvulsant activity of some amino acid derivatives

Part 1: Alanine derivatives³

R. PARUSZEWSKI¹, GRAZYNA ROSTAFINSKA-SUCHAR¹, MARZANNA STRUPINSKA¹, P. JAWORSKI¹ and J. P. STABLES²


Fifteen amides of N-substituted D-Ala, DL-Ala and β Ala have been designed and synthesized as potential anticonvulsants. All obtained amides as well as one intermediate (8) were evaluated in the maximal electroshock seizure (MES) test, the subcutaneous Metrazol seizure threshold (sc Met) test and the rotorod neurotoxicity (Tox) test in mice. According to the classification of the Anticonvulsant Screening Project (ASP) of the Antiepileptic Drug Development Program (ADDP) eight compounds received class I, three class II and five class III designations. Two of the most active compounds (20, 24) were tested quantitatively. They exhibited, after i.p. administration in mice, a large protective index (PI) 3.2 for 20 and 4.3 for 24 and after oral administration in rat PI > 18 for 20 and > 14 for 24.

Synthese and antikonvulsive Wirkung einiger Aminosäure-Derivate Teil 1: Alanin-Derivate

Fünfzehn Amide des N-substituierten D-Alanins, DL-Alanins, und β-Alanins wurden als potentielle Antikonvulsiva synthetisiert. Alle Amide sowie die intermediäre Verbindung 8 wurden an Mäusen im Maximalen Elektroschock-Test (MES), im Metrazol-Minimaldosis-Test (scMet) und im Neurotoxizitätstest (Tox) geprüft. Gemäß der ASP-Klassifizierung des Programms zur Entwicklung von Antikonvulsiva (ADDP) erreichten acht Verbindungen die Klasse I, drei die Klasse II und fünf die Klasse III. Zwei der aktivsten Verbindungen, **20** und **24**, wurden quantitativ geprüft. Nach i. p. Verabreichung an Mäusen wiesen sie Schutzindices von 3,2 bzw. 4,3; nach oraler Gabe an Ratten von > 18 bzw. > 14 auf.

1. Introduction

Excitatory amino acids (EAAs), primarily glutamate, take part in neurotransmission. Disturbances of this transmission may be responsible for seizure disorders. EAAs exert physiological effects by the medium of distinct receptor

types defined by their selective agonists: N-methyl-Daspartic acid (NMDA), 2-carboxy-4-isopropenyl-3-pyrrolidineacetic acid (kainic acid) and α -amino-3-hydroxy-5methyl-4-isoxazolepropionic acid (AMPA) [1]. NMDA receptors received the most attention mainly on account of their importance in brain function. They have been implicated in the etiology of epilepsy [2, 3]. NMDA receptor antagonists have been shown to exhibit their anticonvulsant activity in a variety of epilepsy models [4, 5]. NMDA receptors contain several recognition sites and the compounds acting at each of the sites are numbered in various groups including glycine site antagonists and competitive NMDA antagonists.

Almost all glycine site antagonists contain structurally similar fragments I. Also, almost all compounds included in the group of competitive NMDA antagonists contain fragment II. We recognized these fragments as necessary for pharmacological activity. This structure is included in the α -amino acid molecule III. Therefore, we decided to search for anticonvulsants in the group of amino acid derivatives.

2. Investigations and results

2.1. Chemistry

N-Methylalanine amides and *N*-acetyl-*N*-methylalanine amides were prepared according to the sequence Boc-Axx-OH → Boc-MeAxx-OH → Boc-MeAxx-amide → MeAxxamide → Ac-MeAxx-amide, *N*-acetylalanine amides as follows: Boc-Axx-OH → Boc-Axx-amide → Axx-amide → Ac-Axx-amide and *N*,*N*-dimethylalanine amide: Axx-OH → Me₂Axx-amide. *N*-ethylalanine amide was obtained in the same way as the *N*-methyl derivatives. All compounds were synthesized by procedures common for the prepa-

Find authenticated court documents without watermarks at docketalarm.com.

ORIGINAL ARTICLES

Compd.	Formula (m.w.)	Yield (%)	m.p. (°C)	K _D ²⁰ (c, MeOH)	TLC, R _f (solvent	Class of ASP
				(c, weori)	system)	of ASP
1 Boc-DL-Ala-BA	$C_{12}H_{24}O_3N_2$ (244.3)	84	120-122	_	0,81 (A)	
2 Boc-D-Ala-BA	$C_{12}H_{24}O_3N_2$ (244.3)	60	74–76	+26.2(1.9)	0.81 (A)	
3 Boc-DL-Ala-IBA	$C_{12}H_{24}O_3N_2$ (244.3)	72	103 - 105	- ` ´	0.84 (A)	_
4 Boc-D-Ala-IBA	$C_{12}H_{24}O_3N_2$ (244.3)	84	102 - 104	+32.0(1.5)	0.84 (A)	
5 Boc-DL-Ala-IAA	$C_{13}H_{26}O_3N_2$ (258.4)	78	95-97	. –	0.85 (A)	
6 Boc-D-Ala-IAA	$C_{13}H_{26}O_3N_2$ (258.4)	88	73-75	+24.2(1.6)	0.85 (A)	
7 Boc-βAla-BZA	$C_{15}H_{22}O_3N_2$ (278.4)	77	119 - 120	-	0.41 (A)	
8 Boc-DL-MeAla-BZA	$C_{16}H_{24}O_3N_2$ (292.4)	81	69-71	_	0.81 (A)	п
9 Boc-D-MeAla-BZA	$C_{16}H_{24}O_3N_2$ (292.4)	75	37-39	+23.6(1.8)	0.81 (A)	_
10 Boc-MeβAla-OH	$C_9H_{17}O_4N$ (203.2)	89	oil	_	0.50 (E)	_
11 Boc-MeβAla-BZA	$C_{16}H_{24}O_3N_2$ (292.4)	79	64-65	_	0.57 (A)	
12 Boc-D-Et-Ala-BZA	$C_{17}H_{26}O_3N_2$ (306.4)	75	oil	+21.6(1.6)	0.34 (F)	_
13 Ac-DL-Ala-BA	$C_9H_{18}O_2N_2$ (186.3)	76	110	_	0.25 (B)	III
14 Ac-D-Ala-BA	$C_9H_{18}O_2N_2$ (186.3)	69	122 - 124	+51.3(1.5)	0.25 (B)	III
15 Ac-DL-Ala-IBA	$C_9H_{18}O_2N_2$ (186.3)	62	119 - 121		0.30 (B)	ÎÎÎ
16 Ac-D-Ala-IBA	$C_9H_{18}O_2N_2$ (186.3)	55	125 - 127	+52.1 (1.8)	0.30 (B)	III
17 Ac-DL-Ala-IAA	$C_{10}H_{20}O_2N_2$ (200.3)	63	97-99		0.31 (B)	ÎÌÌ
18 Ac-D-Ala-IAA	$C_{10}H_{20}O_2N_2$ (200.3)	52	122 - 124	+51.3(1.5)	0.31 (B)	I
19 Ac-βAla-BZA	$C_{12}H_{16}O_2N_2$ (220.7)	86	169 - 170		0.70 (A)	Î
20 DL-MeAla-BZA	$C_{11}H_{16}ON_2$ (192.3)	72	oil	_	0.42 (D)	Ĩ
21 D-MeAla-BZA	$C_{11}H_{16}ON_2$ (192.3)	68	oil ,	+12.0(1.2)	0.42 (D)	Î
22 MeβAla-BZA	$C_{11}H_{16}ON_2$ (192.3)	90	oil		0.30 (A)	Î
23 Ac-DL-MeAla-BZA	$C_{13}H_{18}O_2N_2$ (234.3)	93	oil \		0.32 (C)	Î
24 Ac-D-MeAla-BZA	$C_{13}H_{18}O_2N_2$ (234.3)	71	oil	+64.0(1.5)	0.32 (C)	Î
25 Ac-MeβAla-BZA	$C_{13}H_{18}O_2N_2$ (234.3)	91	oil	_	0.48 (A)	п
26 DL-Me ₂ Ala-BZA	$C_{12}H_{18}ON_2$ (206.3)	18	30-32		0.34 (E)	Ĩ
27 D-EtAla-BZA	$C_{12}H_{18}ON_2$ (206.3)	75	64-66	+9.9 (1.0)	0.25 (A)	Î

Table 1: Physical and analytical data and preliminary pharmacological evaluation/ASP, Phase I Identification, mice, i.p./of synthesized compounds

 $BZA = benzylamide, BA = butylamide, IAA = usoamylamide, IBA = isobutylamide, Boc = N-tert-butoxycarbonyl, MeAla = N-methylalanine, Me₂Ala = N,N-dimethylalanine, EtAla = N-ethylalanine, Me₃Ala = N-methyl-β-alanine, HPLC purity of compounds 8 and 13-27 is not less than 97%. The elemental analyses were within <math>\pm 0.4\%$ of theoretical values. ¹H NMR data clearly confirmed the proposed structures.

ration of peptides. The pure products were characterized by TLC, HPLC, ¹H NMR; elemental analysis, m.p. and optical rotation (Table 1).

2.2. Pharmacology

Compounds 8 and 13–27 were evaluated in the Phase I identification of ASP in mice after i.p. administration in the MES test, sc Met test and Tox test. The results are the basis for ASP classification into one of the three classes (I, II, III, Table 1). Compounds included in class I (18, 20–24, 26, 27) were tested in Phase IVa Evaluation (ASP, rat, oral). These results confirmed the classification of Phase I identification. Two compounds were considered promising and were assessed quantitatively in Phase II quantification (ASP, rat, oral). The MES ED₅₀, sc Met ED₅₀ Tox TD₅₀ and

Table 3: Pharmacological evaluation of selected compounds (ASP, Phase V1b quantification, rat, oral)

Comp	od. MES ED ₅₀ (mg/kg)	sc Met ED ₅₀ (mg/kg)	Tox TD ₅₀ (mg/kg)	PI
20	♥7.33 (16.2-48.2)	>250	> 500	>18
24	34.05 (29.0-38.4)	>250	> 500	>14

 \mathbf{PI} were determined in mice and in rats and are reported (Tables 2 and 3).

3. Discussion

The ability of amino acids to penetrate the blood-brain barrier is determined by their hydrophobicity. We designed a series of hydrophobic amino acid derivatives

Table 2: Pharmacological evaluation of	of selected compounds	(ASP, Phase II o	quantification,	mice, i.p).)
--	-----------------------	------------------	-----------------	-----------	-----

Compd.	MES ED ₅₀ (mg/kg)	sc Met ED ₅₀ (mg/kg)	Tox TD ₅₀ mg/kg)	PIª
20. 24. Phenytoin [6] Phenobarbital [6] Valproic acid [6] Ac-DL-Ala-BZA [7] Ac-DL-Mag-BZA ^a [8] Ac-DL-Mag-BZA ^d [8]	$\begin{array}{c} 31.17 \ (21.36-40.84)^{\rm b} \\ 53.47 \ (44.66-64.52) \\ 9.5 \ (8.1-10.4) \\ 21.8 \ (15.0-22.5] \\ 272 \ (247-338) \\ 76.54 \ (66.58-89.04) \\ 77.38 \ (62.55-91.01) \\ 6.2 \ (5.4-7.2) \end{array}$	> 50 124.56 (100.32-144.85) 	$\begin{array}{c} 99.09 \ (74.75-120.93 \\ 231.56 \ (195.32-279.71) \\ 65.5 \ (52.5-72.1) \\ 69.0 \ (62.8-72.9) \\ 426 \ (369-450) \\ 453.86 \ (416.56-501.01) \\ > 500 \\ 46 \ (38.0-56.0) \end{array}$	$3.2 \\ 4.3 \\ 6.9 \\ 3.2 \\ 1.6 \\ 5.9 \\ \approx 6.5 \\ 7.4$
Ac-DL-Mmag-BZA ^e [8]	6.7 (5.7–7.7)		50.5 (40.4-59.)	7.5

a = Protective Index value, PI, Tox TD_{50}/MES ED_{50} , b = 95% confidence limits between parentheses, c: mFBZA = meta-fluorobenzylamide, d: Mag = methoxyaminoglycine, c: Mmag = methoxymethylaminoglycine. The MES or scMet ED_{50} are the estimated doses from the dose-response data to protect 50% of the animals in the MES or sc Met tests. The Tox TD_{50} is the estimated dose from the dose-response data to impair 50% of the mice.

146

Pharmazie 51 (1996) 3

Argentum Pharm. v. Research Corp. Techs., IPR2016-00204 RCT EX. 2059 - 5/7

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.