CURRENT AWARENESS

May 1994

Volume 83 Number 5

Bio-Medical Library

12 94

Univ. of Minn.

Pharmaceutica! Sciences

A publication of the American **Pharmaceutical Association** and the

American Chemical Society

ATTENTION PHARMACISTS

BOARD CERTIFICATION_{IN}

PHARMACOTHERAPY

DATE:

Saturday, July 30, 1994

TIME:

8:30 am - 5:00 pm

SITES:

- ✓ Atlanta
- ✓ Chapel Hill
- ✓ Detroit
- ✓ Lakeland (FL)
- ✓ Newark
- ✓ San Francisco
- St. Louis (Site of ACCP Annual Meeting)

For details and application

WRITE:

Board of

Pharmaceutical Specialties 2215 Constitution Avenue, NW Washington, DC 20037-2985

OR CALL:

202 • 429 • 7591

Pharmaceutical Sciences

Journal of Pharmaceutical Sciences (ISSN 0022-3549) is copublished monthly by the American Chemical Society, 1155 16th St., N.W., Washington, DC 20036, and the American Pharmaceutical Association, 2215 Constitution Ave., N.W., Washington, DC 20037. Second-class postage paid at Washington, DC, and additional mailing offices. POSTMASTER: Send address changes to Journal of Pharmaceutical Sciences, Member & Subscriber Services, P.O. Box 3337, Columbus, OH 43210 (614) 447-3776; (800) 333-9511.

Canadian GST Reg. No. R127571347. Printed in the USA.

MANAGEMENT BOARD

American Chemical Society Robert H. Marks Charles R. Bertsch

American Pharmaceutical Association James P. Caro Joan S. Zaro

Journals Department American Chemical Society

2540 Olentangy River Road P.O. Box 3330 Columbus, OH 43210 (614) 447-3600, Ext. 3171 TELEX 6842086

FAX (614) 447-3745 Manager: Mary E. Scanlan

Journals Editing Managers: Kathleen E. Duffy, Anne C. O'Melia, and Joseph E. Yurvati Assistant Editor: Mary Jo Lesheski

Office of

Journal of Pharmaceutical Sciences
American Pharmaceutical Association

2215 Constitution Ave., N.W. Washington, DC 20037 (202) 628-4410 FAX (202) 783-2351 Senior Director, Programming and Publications: James P. Caro Administrative Assistant: Susan Ysais

Advertising Office: Centcom, Ltd., 1599 Post Road East, P.O. Box 231, Westport, CT 06881. Phone: (203) 256-8211. FAX: (203) 256-8175.

© Copyright 1994 by the American Chemical Society and the American Pharmaceutical Association. Copyright permission: An individual may make a single reprographic copy of an article in this publication for personal use. Reprographic copying beyond that permitted by Section 107 or 108 of the U.S. Copyright Law is allowed, provided that the appropriate per-copy fee is paid through the Copyright Clearance Center, Inc., 222 Rosewood Dr., Danvers, MA 01923. Salem, MA 01970. Reprint permission: For material published prior to 1994, write to Susan Ysais at APhA; for material published after January 1, 1994, write to the Copyright Administrator, Publications Division, at the ACS Washington address.

The paper used in this publication meets the minimum requirements of American National

Editorial Information

Instructions for authors appears in the January issue. Please conform to these instructions when submitting manuscripts.

Manuscripts for publication should be submitted to the Editor, William I. Higuchi, Ph.D., Department of Pharmaceutics and Pharmaceutical Chemistry, 301 Skaggs Hall, University of Utah, Salt Lake City, UT 84112.

Correspondence regarding accepted papers and proofs should be directed to the Journals Department, American Chemical Society, at the address given.

Bulk reprints of individual articles are available. For information contact Susan Ysais at APhA. Phone: (202)429-7526.

The American Chemical Society, the American Pharmaceutical Association and their Editors assume no responsibility for the statements and opinions advanced by contributors.

Registered names and trademarks, etc., used in this publication, even without specific indication thereof, are not to be considered unprotected by law.

Subscription and Business Information

1994 subscription prices, including postage. Subscriptions are available only on a calendar year basis. (For membership information, contact Office of Member Services at the ACS Washington address or APhA, 2215 Constitution Ave, N.W., Washington, DC 20037.)

	U.S.	Canada and Mexico	Europe*	All Other Countries*
Members	\$ 30	\$ 44	\$ 62	\$ 70
Nonmembers, individual	\$ 85	\$ 99	\$117	\$125
Nonmembers, institutional	\$278	\$292	\$310	\$318

APhA member subscriptions should be sent to APhA, 2215 Constitution Ave., N.W., Washington, DC 20037. All other new and renewal subscriptions should be sent with payment to American Chemical Society, Department L-0011, Columbus, OH 43268-0011. Rates quoted do not apply to nonmember subscribers in Japan, who must enter subscription orders with Maruzen Company Ltd., 3-10 Nihonbashi 2-chome, Chuo-ku, Tokyo 103, Japan. Phone: (03) 272-7211.

Printed edition single issue prices: Current year, \$35.00. Foreign postage additional. Mail orders should be sent to Microforms & Back Issues Office at the ACS Washington address. For information concerning back issues and volumes prior to Vol. 83 contact the APhA in Washington, DC.

Microfilm, microfiche, and single issues on paper are available from University Microfilms International, 300 N. Zeeb Road, Ann Arbor, MI 48106 [(303) 761-4700].

Changes of address must include both old and new addresses with ZIP code and a recent mailing label. Send all address changes to Member & Subscriber Services, American Chemical Society, P.O. Box 3337, Columbus, OH 43210 [(614) 447-3776; (800) 333-9511]. Please allow 6 weeks for change to become effective.

Claims for missing numbers will not be allowed if loss was due to failure of notice of change of address to be received in the time specified; if claim is dated (a) North American: more than 90 days beyond issue date, (b) all other foreign: more than 180 days beyond issue

Pharmaceutical Colombia

May 1994

Volume 83, Number 5 JPMSAE 83(5) 611-762 ISSN 0022-3549

Contanto continued on V

RESEARCH ARTICLES

A Novel Skeletal Drug Delivery System Using Self-Setting Calcium Phosphate Cement. 2. Physicochemical Properties and Drug Release Rate of the Cement-Containing Indomethacin Makoto Otsuka, Yoshihisa Matsuda, Yoshiko Suwa, Jeffrey L. Fox, and William I. Higuchi
High-Performance Capillary Electrophoresis/Frontal Analysis for the Study of Protein Binding of a Basic Drug Akimasa Shibukawa, Yasuki Yoshimoto, Toshio Ohara, and Terumichi Nakagawa
Effect of (Hydroxypropyl)-β-cyclodextrin on Flux of Morphine, Fentanyl, Sufentanil, and Alfentanil through the Spinal Meninges of Monkey Christopher M. Bernards
Determination of Acitretin in the Skin, in the Suction Blister, and in Plasma of Human Volunteers after Multiple Oral Dosing Jean-Philippe Laugier, Christian Surber, Hot Bun, Jean-Marie Geiger, Klaus-Peter Wilhelm, Alain Durand, and Howard I. Maibach
Deconvolution Method for Assessing the Absorption of a Drug with Reversible Metabolic Pathways Stephen Hwang and Mark Knowles
Sustained Release of Ferrous Sulfate from Polymer-Coated Gum Arabica Pellets Veena Batra, Ashis Bhowmick, Basanta K. Behera, and Alok R. Ray
In Vitro and in Vivo Evaluation of Thyrotrophin Releasing Hormone Release from Copoly(dl-lactic/glycolic acid) Microspheres Toshiro Heya, Hiroaki Okada, Yasuaki Ogawa, and Hajime Toguchi
Release of Indomethacin from Transparent Oil-Waters Gels A. De Vos, L. Vervoort, and R. Kinget
Morpholinoalkyl Ester Prodrugs of Diclofenac: Synthesis, In Vitro and In Vivo Evaluation Vijay K. Tammara, Milind M. Narurkar, A. Michael Crider, and Mansoor A. Khan
Determination of Pyrrolizidine Alkaloids in Commercial Comfrey Products (Symphytum sp.) Joseph M. Betz, Robert M. Eppley, Wendell C. Taylor, and Denis Andrzejewski
Isoelectric Focusing and Capillary Zone Electrophoretic Studies Using Luteinizing Hormone Releasing Hormone and Its Analog Mark C. Heit, Ann McFarland, Randy Bock, and Jim E. Riviere
Radioimmunoassay for the Novel Platelet Activating Factor Receptor Antagonist E5880 Hiromasa Suzuki, Osamu Asano, Kyoichi Tadano, and Toru Horie
Hepatic Enzyme Induction Potential of Acitretin in Male and Female Sprague-Dawley Rats David S. Small and Patrick J. McNamara
Derivation of a Rigorous Equation for the Calculation of the F-Value in Isothermal Sterilization Processes Piero M. Armenante
Binding of Fantofarone, A Novel Ca ²⁺ Antagonist, to Serum Albumin: A Fluorescence Study Pierre Chatelain, Jean-Roger Matteazzi, and René Laruel

A Lamellar Liquid Crystal with Fosinopril Sodium Stig E. Friberg, Teanoosh Moaddel, Kenneth R. Morris, Robert Abramowitz, and Kent L. Amsberry	677
The Ferguson Principle and an Analysis of Biological Activity of Gases and Vapors M. H. Abraham, G. D. Nielsen, and Y. Alarie	680
Anticonvulsant Properties of N-Substituted α,α -Diamino Acid Derivatives Harold Kohn, Kailash N. Sawhney, David W. Robertson, and J. David Leander	689
Kinetics of Water Vapor Sorption in Porcine Stratum Corneum Zvi Liron, Harvey J. Clewell, and James N. McDougal	692
Cytotoxic Effects of Pamidronate on Monolayers of Human Intestinal Epithelial (Caco-2) Cells and Its Epithelial Transport	
Irene M. Twiss, Ruud de Water, Jan den Hartigh, Rolf Sparidans, Willy Ramp-Koopmanschap, Hadewich Brill, Monique Wijdeveld, and Pieter Vermeij	699
Effect of Diazoxide on Serum and Tissue Electrolyte Levels in Rats with Deoxycorticosterone Acetate-Induced Hypertension T. Nakai	704
Structure Evolution of Tablets during Compression Unloading Edward G. Rippie and William T. Morehead	708
Degradation Chemistry of Gemcitabine Hydrochloride, a New Antitumor Agent Sally L. Anliker, Michael S. McClure, Thomas C. Britton, Erwin A. Stephan, Steven R. Maple, and Gary G. Cooke	716
High-Performance Liquid Chromatographic Determination of 1,1'-Ethylidenebis(L-tryptophan) in L-Tryptophan Preparations Mary W. Trucksess, Frederick S. Thomas, and Samuel W. Page	720
Renal Handling of Tobramycin in the Isolated Perfused Rat Kidney Tetsuya Aiba, Yoshie Itoga, Hiromasa Shimizu, Yusuke Tanigawara, and Ryohei Hori	723
In Vitro Drug Release Behavior of D.L-Lactide/Glycolide Copolymer (PLGA) Nanospheres with Nafarelin Acetate Prepared by a Novel Spontaneous Emulsification Solvent Diffusion Method T. Niwa, H. Takeuchi, T. Hino, N. Kunou, and Y. Kawashima	727
Valproic Acid Intensifies the Depressant Action of Phenobarbital and Ethanol by a Pharmacodynamic Mechanism Amnon Hoffman and Gastav Habib	733
High-Performance Liquid Chromatographic Determination of Ceftibuten and its Metabolite in Biological Fluids: Applications in Pharmacokinetic Studies J. M. Kinowski, F. Bressolle, D. Fabre, F. Goncalves, R. Rouzier-Panis, and M. Galtier	736
Effect of the Addition of Electrolytes on the Partition Coefficients, Activity Coefficients, and Acid Dissociation Constants of Carnitine and its Acetyl and Propionyl Derivatives Paolo De Maria, Antonella Fontana, Sara Frascari, Giuseppe Gargaro, Domenico Spinelli, and Maria O. Tinti	742
Effects of Indomethacin on the Pharmacokinetics and Pharmacodynamics of Prednisolone in Rats Varun Garg and William J. Jusko	747
Comparison of Three New Spectrophotometric Methods for Simultaneous Determination of Aspirin and Salicyclic Acid in Tablets without Separation of Pharmaceutical Excipients Bernhard W. Glombitza and Peter C. Schmidt	751
Pharmacokinetic Study of (S)-(-)-2-(N-Propyl-N-(2-thienylethyl)amino)-5-hydroxytetralin Infusion in Cynomolgus Monkeys Denise R. Lowe Walters, William R. McConnell, and Eugenio A. Cefali	758
Potent Inhibitors of Histamine Release: Polyhydroxylated Sterols from the Okinawan Soft Coral Sinularia abrupta	
Noboru Shoji, Akemi Umeyama, Masao Takei, and Shigenobu Arihara	761

Anticonvulsant Properties of N-Substituted α, α -Diamino Acid Derivatives

HAROLD KOHN^{†X}, KAILASH N. SAWHNEY[†], DAVID W. ROBERTSON^{‡§}, AND J. DAVID LEANDER[‡]

Received April 19, 1993, from the [†]Department of Chemistry, University of Houston, Houston, TX 77204-5641, [‡]Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285. Accepted for publication November 24, 1993[®]. [§]Current address: Ligand Pharmaceuticals, 9393 Towne Center Dr., Suite 100, San Diego, CA 92121.

Abstract \square Recent studies have demonstrated that functionalized α, α -diamino acids (1) display excellent activity when evaluated in the maximal electroshock seizure (MES) test in mice. The synthesis and pharmacological evaluation of 14 select analogues within this series of compounds are detailed. Included in this survey were 10 *N*-acyl derivatives in which the basic $C(\alpha)$ *N*-group in 1 was replaced by a neutral *N*-substituent and four dipeptides where the amino acid fusion point was the α -carbon site. *N*-Acylation of 1 led to decreased anticonvulsant activity. The importance of these findings in relation to the requirements of the $C(\alpha)$ substituent for anticonvulsant activity in 1 are briefly discussed.

Introduction

Recent studies have shown that α, α -diamino acid derivatives (1) and related compounds are surprisingly stable and readily accessible materials. 1-5 Moreover, we have demonstrated that α -amino, α -hydrazino, and α -N-hydroxylamino adducts display excellent anticonvulsant activity when evaluated in the maximal electroshock seizure (MES) test in mice.⁵ For example, the median effective dose (ED₅₀) values after intraperitoneal injection for the α -N-ethylamino (2a) (42.4 mg/kg) and α -N²-(benzyloxycarbonyl)hydrazino (2b) (55.6 mg/kg) derivatives approached the ED₅₀ of phenobarbital⁶ (21.8 mg/kg), whereas the ED₅₀s of the α -methoxyamino (2c) (6.2 mg/kg) and the α -[(methoxymethyl)amino] (2d) (6.7 mg/kg) adducts exceeded the ED₅₀ of phenytoin⁶ (9.5 mg/kg). Both 2c and 2d exhibited these potent anticonvulsant effects at doses much lower than those which produced neuromotor impairment on the horizontal screen (HS) test (46.0 and 50.5 mg/kg were the ED₅₀ doses for 2c and 2d on the HS test).⁵ These findings prompted our investigation of the pharmacological activity of the racemic N-substituted α, α diamino acid derivatives (2e-r) (Table 1). The N-acyl derivatives (2e-n) were evaluated to determine the effect of conversion of the basic $C(\alpha)$ -amino group in 2a-d to a neutral $C(\alpha)$ -carbamate (2e, 2f), urea (2g-2i), thiourea (2j, 2k), amide (2l, 2n), or succinimide (2m) substituent on anticonvulsant activity. Also included in our study were the unique dipeptides 20-r, where the amino acid fusion point was the α -carbon site.

Experimental Section

Chemical Methods—Melting points were determined with a Thomas-Hoover melting point apparatus and are uncorrected. Infrared spectra (IR) were run on a Perkin-Elmer 1330 and 283 spectrometers and calibrated against the 1601-cm⁻¹ band of polystyrene. Absorption values are expressed in wavenumbers (cm⁻¹). Proton (¹H NMR) and carbon (¹³C NMR) nuclear magnetic resonance spectra were taken on Nicolet NT-300 and General Electric QE-300 NMR instruments. Chemical shifts (δ) are in parts per million (ppm) relative to Me₄Si and coupling constants (J values) are in hertz. Low-resolution mass spectra (MS) were recorded at an ionizing voltage of 70 eV from a Varian MAT CH-5 spectrometer at the Lilly Research Laboratories. Microanalyses were provided by the

Physical Chemistry Department of the Lilly Research Laboratories. All compounds gave satisfactory elemental analyses (C, H, N) that were within $\pm 0.4\%$ of theoretical values. Thin-and thick-layer chromatography were run on precoated silica gel GHLF microscope slides (2.5 × 10 cm; Analtech No. 21521) or silica gel GHLF (20 × 20 cm; Analtech 11187).

Chemical Synthesis—General Procedure for the Synthesis of Functionalized Amino Acid Derivatives 2e-k—A tetrahydrofuran (THF) solution containing 2s⁵ and either the acylating agent (1.06–1.10 equiv) and triethylamine (1.20 equiv) or the isocyanate (isothiocyanate) (1.0–1.1 equiv) was heated. The reaction was then filtered to remove any salts formed and purified, and the product was recrystallized if necessary. The reaction temperatures, times, and recrystallization solvents (if appropriate) were as follows: (2e) 55–60 °C, 2 h, EtOH; (2f) 45–50 °C, 2 h, MeOH; (2g) 45–50 °C, 2 h, MeOH; (2h) 45–50 °C, 2 h; (2i) 50–55 °C, 22 h; (2j) 65 °C, 4 h, EtOH; (2k) 65 °C, 3 h, EtOH.

Synthesis of N-[Acetamido(benzylcarbamoyl)methyl]phthalamic Acid (21). To a warm pyridine solution (7.0 mL) containing 2s (0.63 g, 2.83 mmol) was added phthalic anhydride (0.43 g, 2.87 mmol), and the reaction was stirred at 50-55 °C (5 h). Pyridine was removed by distillation in vacuo and the residue was treated with H₂O (20 mL). The aqueous mixture was extracted with EtOAc (2 × 20 mL) and then acidified with aqueous 1 N HCl solution. The white solid (0.70 g, 70%) that precipitated was filtered, washed with H₂O (10 mL), and dried; mp 186–188 °C.

Synthsis of 2-Acetamido-N-benzyl-2-(N-succinimidyl)acetamide (2m). A cooled (-78 °C) THF solution (150 mL) of 2t⁵ [prepared from 2-acetamido-N-benzyl-2-ethoxyacetamide^{7,8} (2.00 g, 8.0 mmol) and BBr₃ (2.51 g, 10.05 mmol)] was added slowly into a cooled (-78 °C) THF suspension (50 mL) of sodium succinimide (3.06 g, 25.25 mmol). The

 $^{{\}bf ^{\circ}}$ Abstract published in Advance~ACS~Abstracts, February 1, 1994.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

