68 Chapter 2 Drug Discovery, Design, and Development

Two other steric parameters worth mentioning are molar refractivity (MR) and the Verloop
parameter. Molar refractivity,”?°% the molar volume corrected by the refractive index which
represents the size and polarizability of a fragment or molecule, is defined by the Lorentz-
Lorenz equation:

n% — 1MW
T 242 d
where 7 is the index of refraction at the sodium D line, MW is the molecular weight, and d is
the density of the compound. The greater the positive MR value of a substituent, the larger its
steric or bulk effect. This parameter also measures the electronic effect and, therefore, may
reflect dipole—dipole interactions at the receptor site.

The Verloop steric parameters?*1) are used in a program called STERIMOL to calculate
the steric substituent values from standard bond angles, van der Waals radii, bond lengths,
and user-determined reasonable conformations. Five parameters are involved. One (L) is the
length of the substituent along the axis of the bond between the substituent and the parent
molecule. Four width parameters (B1—Bj) are measured perpendicular to the bond axis. These
five parameters describe the positions, relative to the point of attachment and the bond axis,
of five planes that closely surround the group. In contrast to Es values which, because of the
reaction on which they are based, cannot be determined for many substituents, the Verloop
parameters are available for any substituent.

MR .17)

G.3 Methods Used to Correlate Physicochemical Parameters with
Biological Activity : '

Now that we can obtain numerous physicochemical parameters (also called descriptors) for
any substituent, how do we use these parameters to gain information regarding what compound
to synthesize next in an attempt to optimize the lead compound? First, several (usually, many)
compounds related to the lead are synthesized, and the biological activities are determined in
some screen. These data, then, can be manipulated by a number of QSAR methods. I present
Hansch analysis first. If you are not interested in an overview of computational methods, you
can skip sections 2.2.G.3 and 2.2.G .4, pp. 68-78.

a. Hansch Analysis: A Linear Multiple Regression Analysis

With the realization that there are (at least) two considerations for biological activity, namely,
lipophilicity (required for the journey of the drug to the site of action) and electronic factors
(required for drug interaction with the site of action), and that lipophilicity is a parabolic
function, Hansch and Fujita?92 expanded Equation 2.8 to that shown in either Equation 2.18a
or 2.18b, known as the Hansch equation,

log1/C = —kn? +k'mw + po + k" (2.18a)
log1/C = —k(log P)? + k'(log P) + po + k" (2.18b)

where C is the molar concentration (or dose) that elicits a standard biological response (e.g.,
EDso, the dose required for 50% of the maximal effect; ICso, the concentration that gives 50%
inhibition of an enzyme or antagonism of a receptor; LDsp, the lethal dose for 50% of the
animal population); k, k', o, and k” are the regression coefficients derived from statistical curve
fitting; and 7z and o are the lipophilicity and electronic substituent constants, respectively. The
reciprocal of the concentration (1/C) reflects the fact that greater potency is associated with a
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nt Section 2.2 Lead Modification: Drug Design and Development 69

p lower dose, and the negative sign for the 72 [or (log P)2] term reflects the expectation of an
h optimum lipophilicity, i.e., the 7rg or log Py.
z- Because of the importance of steric effects and other shape factors of molecules for receptor

interactions, an E; term and a variety of other shape, size, or topography terms (S) have been
added to the Hansch equation:

7

i log1/C = —an?® + brw 4 po + cEs+dS +e (2.19)

its The way these parameters are used is by the application of the method of linear multiple

ay regression analysis.[?%3] The best least-squares fit of the dependent variable (the biological
activity) to a linear combination of the independent variables (the descriptors) is determined.

ite Hansch analysis, also called the extrathermodynamic method, then, is a linear free-energy

1s, approach to drug design in congeneric series in which equations are set up involving different

he combinations of the physicochemical parameters; the statistical methodology allows the best

nt equation to be selected and the statistical significance of the correlation to be assessed. Once

se this equation has been established, it can be used to predict the activities of untested com-

is, pounds. Problems associated with the use of multiple regression analysis in QSAR studies

he have been discussed by Deardon.?04 '

op Several assumptions must be made when the extrathermodynamic method is utilized: ‘
Conformational changes in receptors can be ignored, metabolism does not interfere, linear 1l
free-energy terms relevant to receptor affinity are additive, the potency-lipophilicity rela- l{“
tionship is parabolic or linear, and correlation implies a causal relationship. According to 11
Martin[2% and ’Ihte,[206] there is a balance of assets and liabilities to the extrathermody- '

) namic method. The strengths are several-fold: (1) The use of descriptors (7, o, Es, MR, and

:o(; so forth) permits data collected from simple organic chemical model systems to be utilized

n

for the prediction of biological activity in complex systems, (2) the predictions are quantita-
1y) tive with statistical confidence limits, (3) the method is easy to use and is inexpensive, and
(4) conclusions that are reached may have application beyond the substituents included in the
particular analysis. {

The weaknesses of this method are that (1) parameter values must be available for the
substituents in the data set; (2) a large number of compounds must be included in the analysis
to have confidence in the derived equations; (3) expertise in statistics and computer use is
essential; (4) small molecule interactions are imperfect models for biological systems; (5) in
1y, contrast to chemical reactions in which you know the atoms that interact with the reagent,
o steric effects in biological systems may not be relevant, since it is often not certain which atoms
lic in the drug interact with the receptor; (6) organic reactions used to determine the descriptors
8a usually are studied under acidic or basic conditions when all analogs are fully protonated

or deprotonated, but in biological systems, the drug may be partially protonated; (7) because
- QSAR is empirical, it is a retrospective technique that depends on the pharmacological activity

>nt
ou

3a) of compounds belonging to the same structural type, and, therefore, new types of active
3b) compounds are not discovered (i.e., it is a lead optimization technique, not a lead discovery i
approach); and (8) like other empirical relationships, extrapolations frequently lead to false 4
o predictions.
3% Despite the weaknesses of this approach, it is used, and several successes in drug i
the design attributable to Hansch analysis have been reported.?”] As pointed out in Chapter 3 e
rve (Section 3.2.E.2, p. 143), however, caution should be used when applying QSAR methods to e
(he racemic mixtures if only one enantiomer is active. Other important statistical approaches are i
ha mentioned briefly. i J
#5
i
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70 Chapter 2 Drug Discovery, Design, and Development

b. Free and Wilson or de novo Method

Not long after Hansch proposed the extrathermodynamic approach, Free and Wilson!2%%!
reported a general mathematical method for assessing the occurrence of additive substituent
effects and for quantitatively estimating their magnitude. It is a method for the optimization
of substituents within a given molecular framework that is based on the (tenuous) assumption
that the introduction of a particular substituent at any one position in a molecule always
changes the relative potency by the same amount, regardless of what other substituents are

present in the molecule. A series of linear equations of the form shown here is constructed:
BA=Y aXi+p (2.20)

where BA is the magnitude of the biolo gical activity, X; is the ith substituent with a value of 1
if present and 0 if not, a; is the contribution of the ith substituent to the BA, and w is the overall
average activity of the parent skeleton. These linear equations are solved by the method of
least squares for the a; and f. All activity contributions at each position of substitution must
sum to zero. The pros and cons of the Free-Wilson method have been discussed.?%”! Fujita
and Ban21% suggested two modifications of the Free-Wilson approach on the assumption that
the effect on the activity of a certain substituent at a certain positionina compound is constant
and additive. First, that the biological activity should be expressed as log A/ Ao, where A and
Ag represent the magnitude of the activity of the substituted and unsubstituted compounds,
respectively, and that a; is the log activity contribution of the ith substituent relative to H . This
allows the derived substituent constants to be compared directly with other free-energy-related
parameters that are additive. Second, that ;2 become analogous to the theoretically predicted
(calculated) activity of the parent compound of the series. Both of these modifications have
been widely accepted.

As an example of the Free-Wilson approach, consider the hypothetical compound 2.90.211]
If in one pair of analogs for which R1, R?, R3, and R* are constant and R is Cl or CHj3, the
methyl compound is one-tenth as potent as the chloro analog, then the Free-Wilson method
assumes that every R> methyl analog (where RI_R# are varied) will be one-tenth as potent
as the corresponding RS chloro analog. A requirement for this approach, then, is a series of
compounds that have changes at more than one position. In addition, each type of substituent
must occur more than once at each position in which it is found. The outcome is a table of the
contribution to potency of each substituent at each position. If the free-energy relationships of
the extrathermodynamic method are linear or position specific, then Free-Wilson calculations
will be successful.

OH
CHCH,R!
nanas:
B R3

The interaction model??) is a mathematical model similar to that of the Free-Wilson
additive model with an additional term (exey) that is to account for possible interactions
between substituents X and Y.
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c. Enhancement Factor

One of the earliest QSAR observations resulted from a retrospective analysis of alarge number
of synthetic corticosteroids.213! Examination of the biological properties of steroids prepared
by the introduction of halogen, hydroxyl, alkyl, or double bond modifications revealed that
cach substituent affects the activity of the molecule in a quantitative sense and almost inde-
pendently of other groups. The effect (whether positive or negative) of each substituent was
assigned a numerical value termed the enhancement factor. Multiplication of the enhancement
factor for each substituent by the biological activity of the unsubstituted compound gave the
potency of the modified steroid.

d. Manual Stepwise Methods: Topliss Operational Schemes and Others

Because of the lack of easy access to computers by chemists in the early 1970s, Topliss[214]
developed a nonmathematical, nonstatistical, and noncomputerized (hence, manual) guide to
the use of the Hansch principles. This method is most useful when the synthesis of large num-
bers of compounds is difficult and when biological testing of compounds is readily available.
It is an approach for the efficient optimization of the potency of a lead compound with the
minimization of the number of compounds needed to be synthesized. The only prerequisite
for the technique is that the lead compound must contain an unfused benzene ring. However,
according to literature surveys at the time that this method was published, 40% of all reported
compounds?'] contained an unfused benzene ring and 50% of drug-oriented patents[zm]
were concerned with substituted benzenes. This approach relies heavily on 7 and o values
and to a much lesser degree E values. The methodology will be outlined here; a more detailed
discussion can be found in the Topliss papers.

Consider that your lead compound is benzenesulfonamide (2.91, R = H) and its potency
has been measured in whatever screen is being used. Because many systems are -+ dependent,
that is, the potency incréases with increasing 7 values, then a good choice for your first analog
would be one with a substituent having a 4+ value. Because w4.c1 = 0.71 and o4.c1 = 0.23
(remember, 7y = oy = 0), the 4-chloro analog (2.91, R = C1) should be synthesized and
tested. There are three possible outcomes of this effort, namely, the 4-chloro analog is more
potent (M), equipotent (E), or less potent (L) than the parent compound. If it is more potent,
then it can be attributed to a +m effect, a +o effect, or to both. To determine which is
important, one term could be held more or less constant and the other varied. For example, the
4-phenylthio analog (7 4-pns = 2.32, 04-phs = 0.18) would be a good test of the importance
of lipophilicity, and the 4-trifluoromethyl analog (7 4-cF; = 0.88, 0 4.cr, = 0.54) would test
the importance of electron withdrawal. If the 4-phenylthio analog is more potent than the
4-chloro analog, further increases in lipophilicity would be desirable. At this point a potency
tree, termed a Topliss decision tree, could be constructed (Figure 2.16), and additional analogs

could be made.
R‘@vs()zNHz

291 |

What if the 4-chloro analog was equipotent with the parent compound? This could result
from a favorable 47 effect counterbalanced by an unfavorable +o effect or vice versa. If this
is the case, then the 4-methyl analog (774 me = 0.56, 0°4-me = —0.17) should show enhanced
potency. Enhancement of potency by the 4-methyl analog would suggest that the synthesis
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4-H
L |[E M

4-Cl

L B |M

4-PhS

L B |[M

4-CF,

L B |M

Figure 2.16 > Topliss decision tree (M, more potent; E, equipofent; L, less potent)

of analogs with increasing 7 values and decreasing o values would be propitious. If the 4-
methyl analog is worse than the 4-chloro analog, perhaps the equipotency of the 4-chloro
compound was the result of a favorable ¢ effect and an unfavorable 7 effect. The 4-nitro
analog (mw4-No, = —0.28, 04.NO, = 0.78) would, then, be a wise next choice. ’

If the 4-chloro analog was less potent than the Jead, then there may be a steric problem
at the 4 position or increased potency depends on —7 and —o values. The 3-chloro analog
(m3_c1 = 0.71, o3-c1 = 0.37) could be synthesized to determine if a steric effect is the
problem. Note that the o constant for the 3-Cl substituent is different from that for the 4-Cl
one because these descriptors are constitutive. If there is no steric effect, then the 4-methoxy
compound (74-0Me = —0.04, 0 4.0Me = —0.27) could be prepared to investigate the effect of
adding a — and —o substituent. Increased potency of the 4-OMe substituent would suggest
that other substituents with more negative 7 and/or @ constants be tried.

This analysis was based almost exclusively on 77 and o values, and other factors such as
steric effects have been neglected. Another way to increase both 7 and o values would be
by synthesizing the 3 4-dichloro analog (734-cl, = 1.25, o34-c1, = 0.52). Again, the 3,4-
dichloro analog could be more potent, equipotent, or less potent than the 4-chloro compound. If
it is more potent, then determination of whether 47 or +o is more important could be made
by selection of appropriate substituents with higher 7= and/or o values. If the 3,4-dichloro
compound was less potent than the 4-chloro analog, it could be that the optimum values of
7 and o were exceeded or that the 3-chloro group has an unfavorable steric effect. The latter
hypothesis could be tested by the synthesis of the 4-trifluoromethyl analog (7w4-cr; = 0.88,
o4.cr; = 0.54) which has no 3-substituent, but has a high o and intermediate 7 value.

Topliss extended the operational scheme for side-chain problems when the group is adja-
centto acarbonyl, amino, or amide functionality,i.e.,~COR, —NHR,-CONHR, and—NHCOR,
where R is the variable substituent. This approach is applicable to a variety of situations other
than direct substitution on the aromatic nucleus. In this case, the parent molecule is the one
where R = CHjs, and 7, o, and Eg parameters are used. Note that in the Topliss operational

scheme, as in the other methods in this section, the procedure is stepwise; that is, the next
compound is determined on the basis of the results obtained with the previous one.

Three other manual, stepwise methods are mentioned briefly: Craig plots,[217] the
Fibonacci search method,?!8) and sequential simplex strategy.?1%! The Topliss decision tree
approach evolved from the work of Craig, who pointed out the utility of a simple graphical
plot of v versus o (or any two parameters) to guide the choice of a substituent (Figure 2.17).
Once the Hansch equation has been expressed for an initial set of compounds, the sign and
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If
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TO magnitude of the v and & regression coefficients determine the particular quadrant of the Craig
of plot that is to be used to direct further synthesis. Thus, if both the 7z and o terms have positive
ter coefficients, then substituents in the upper right-hand quadrant of the plot (Figure 2.17) should
38, be selected for future analogs.
The Fibonacci search technique is a manual method to discover the optimum of some
ja- parabolic function, such as potency versus log P, in a minimum number of steps. Sequen-
R, tial simplex strategy is another stepwise technique suggested when potency depends on two
1er physicochemical parameters suchas 7 and 0. il
mne i ;t
aal e. Batch Selection Methods: Batchwise Topliss Operational Scheme, ‘ 1
axt Cluster Analysis, and Others f i
The inherent problem with the Topliss operational scheme described above is its stepwise I ;
the nature. Provided that pharmacological results can be obtained quickly, this is probably not | i
ree much of a problem; however, sometimes biological evaluation is slow. Toplissmo] proposed “
cal an alternative scheme that uses batchwise analysis of small groups of compounds. Substituents | ¥
7). were grouped by Topliss according to 7, 0, 72, and a variety of x7- and yo-weighted com- I i
nd binations. The approach starts with the synthesis of five derivatives, the unsubstituted (4-H); 5 i :
|
i
I
i {
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4-chloro; 3,4-dichloro; 4-methyl; and 4-methoxy compounds. After these five analogs have
been screened, they are ranked in order of decreasing potency. The potency order deter-
mined for these analogs is, then, compared with the rankings in Table 2.9 to determine
which parameter or combination of parameters is most dominant. If, for example, the potency

order is 4-OCH3 > 4-CHz > H > 4-Cl > 3,4-Clp, then

—o is the dominant parameter.

Once the parameter dependency is determined, Table 2.10 is consulted to discover what sub-
stituents should be investigated next. Tn the above example, 4-N(CyHs)2, 4-N(CH3)2,4-NHy,
4-NHC4Ho, 4-OH, 4-OCH(CH3),, 3-CHs, and 4-OCHj5 would be suitable choices. The major
weakness of this approach is that it is difficult to extend the method to additional parameters
unless computers are used.

A computer-based batch selection method, known as cluster analysis, was introduced by
Hansch et al.[221] Substituents were grouped into clusters with similar properties according

TABLE 2.9 > Potency Order for Various Parameter Dependencies [With
permission from Topliss, J. G. (1977). Reprinted with permission from J. Med.
Chem. 20, 463. Copyright © 1977 American Chemical Society.]

Substituent

3,4-Cly 1
4-C1 2
4-CH3 3
4-OCH3 4-5
H 4-5

g % - - -

a ypfavorable steric effect from 4-substitution. {

TABLE 2.10 »> New Substituent Selections [With permission from Topliss, J. G.
(1977). Reprinted with permission from J. Med. Chem. 20, 463. Copyright 1977
American Chemical Society.]

Probable operative parameters

", % +0,0

—_—

w,2m—0, T —0

7w —20,m—30,—0

_—

o — w2

———

Ortho effect
Other

Parameters
ym—n? ¢ —0 mw+o 2m—0 TW—O w—20 w—30 Ej}
1-2 1 5 1 1 1-2 3-4 5 2-5
1-2 2 4 2 2-3 3 3-4 3-4 2-5
3 42 3 23 12 1 1 25
4-5 5 1 5 4 4 2 2 2-5
4-5 3 3 4 5 5 5 3-4 1

st T o U S,
: ..v-r.‘ﬂ i) AT

New substituent selection

3-CF3, 4-Cl; 3-CF3, 4-NOg; 4-CF3, 2,4-Cly; 4-¢-CsHy; 4-c-CeH11

4-CH(CHa)z; 4-C(CHs)3; 3,4-(CHz3)2; 4-O(CH3)3CHs;
4-OCH,Ph; 4-N(C2Hs)2

4-N(CyHs)2; 4-N(CHz3)2; 4-NH,; 4-NHC4Ho; 4-OH;
4-OCH(CHj3)2; 3-CHs, 4-OCH3

4-Br; 3-CFs; 3,4-(CHsz)2; 4-CoHs; 4-O(CH3),CHs; 3-CHj3, 4-Cl;
3-Cl; 3-CHs; 3-OCH3; 3-N(CH3)2; 3-CF3; 3,5-Clp

2-Cl; 2-CHs; 2-OCHs; 2-F

4-F; 4-NHCOCH3; 4-NHSO,CHj3; 4-NOg; 4-COCHz;
4—802CH3; 4-CONH2; 4—502NH2
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TABLE 2.11 » Typical Members of Clusters Based on o, 7, F, R, MR,
and MW [With permission from Martin, Y. C. (1979). Reprinted from
Drug Design,Vol. VIII, E. J. Ariéns, ed., “Advances in the Methodology
of Quantitative Drug Design”, pp 2-72, Copyright ©1979, with
permission from Elsevier.]

Cluster
number? Typical members

Me, H, 3,4-(OCH,0), CH,CH,COOH, CH=CHj, Et, CH,OH

2 CH=CHCOOH

3a CN, NO,, CHO, COOH, COMe

3b C + CH, CH, (], Cl, NNN, SH, Sme, CH=NOH, CH,CN, OCOMe,
SCOMe, COOMe, SCN

4a CONH,, CONHMe, SO,NH;, SO,Me, SOMe

4b NHCHO, NHCOMe, NHCONH,, NHCSNH;, NHSO,Me

5 F. OMe, NH,, NHNH,, OH, NHMe, NHEt, NMe,

6 Br, OCFs, CF3, NCS, 1, SFs, SOF

7 CH,Br, SeMe, NHCO,Et, SO,Ph, 0SO,Me

8 NHCOPh, NHSO,Ph, OSO,Ph, COPh, N=NPh, OCOPh, PO,Ph
9

3,4-(CHy)3, 3,4-(CHp)4, Pr, i-Pr, 3,4-(CH)4, NHBu, Ph, CH,Ph,
t-Bu, OPh

10 - Ferrocenyl, adamantyl

@ Clusters 3 and 4 contain many of the common substituents used in medicinal
chemistry; hence, these clusters are further subdivided according to their cluster
membership when 20 clusters have been made.

i
\

to their o, 7, w2, E,, F (field constant), R (resonance constant), MR (molar refractivity),
and MW (molecular weight) values. Some of the clusters are shown in Table 2.11.12221 One
member of each cluster would be selected for substitution into the lead compound, and the
compounds would be synthesized and tested. If a substituent showed dominant potency, then
other substituents from that cluster would be selected for further investigation. The important
advantage of the batch selection methods is that the initial batch of analogs prepared is derived
from the widest range of parameters possible so that the dominant physicochemical property
can be revealed early in the lead modification process.

The initial promise of these computational methods has yet to be realized. They seem to
be just additional examples of potentially exciting new approaches for which little success
has been forthcoming. These early computational methods have largely been supplanted by
what is known as 3D-QSAR and molecular modeling approaches.

G.4 Computer-Based Methods of QSAR Related to Receptor Binding: 3D-QSAR

Three-dimensional quantitative structure—activity relationships (3D-QSAR) permit corre-
lations between a series of diverse molecular structures and their biological functions at
a particular target. The general approach of 3D-QSAR is to select a group of molecules, each
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of which has been assayed for a particular activity; align the molecules according to some
predetermined orientation rules; calculate a set of spatially dependent parameters for each
molecule determined in the receptor space surrounding the aligned series; derive a function
that relates each molecule’s spatial parameters t0 their respective biological property; and
establish self-consistency and predictability of the derived function. A variety of computer-
"based methods have been used to correlate molecular structure with receptor binding, and,
therefore, activity. Some are mentioned here; marny more are listed in the General References
at the end of the chapter. '

Crippen and coworkers[223’224] devised a linear free-energy model, termed the distance
geometry approach, for calculating QSAR from receptor binding data. The distances between
various atoms in the molecule, compiled into a table called the distance matrix, define the
conformation of the molecule. Rotations about single bonds change the molecular conforma-
tion and, therefore, these distances; consequently, an upper and lower distance limit is set on
each distance. Experimentally determined free energies of binding of a series of compounds
to the receptor are used with the distance matrix of each molecule in a computerized method
to deduce possible binding sites in terms of geometry and chemical character of the site,
thereby defining a three-dimensional pharmacophore. Although this approach requires more
computational effort and adjustable parameters than Hansch analysis, it is thought to give
good results on more difficult data sets. _

The distance geometry approach was extended by Sheridan e? al.[225] {0 treat two or more
molecules as a single ensemble. The ensemble approach to distance geometry can be used
to find a common pharmacophore for a receptor with unknown structure from a small set of
biologically active molecules. Once the pharmacophore has been, at least, partially identified,
new molecular scaffolds can be revealed which contain that pharmacophore embedded in
their structure by three-dimensional database (or similarity) searching.[226] In this method
you start from a receptor ligand, enzyme substrate, or other molecule whose pharmacophoric
groups are known for a particular target. Then a database of compounds (e.g., the company’s
library of compounds, the CMC database, or any database of compounds) is searched to deter-
mine which ones have a similar three-dimensional structure as the pharmacophore. The top
virtual “hits” are visually inspected to determine which ones might be the best candidates,
and then they are tested. This was the approach taken to identify inhibitors of human immun-
odeficiency virus type 1 integrase (HIV-1 IN) as potential anti-AIDS drugs.mﬂ HIV-1 IN
mediates the integration of HIV-1 DNA into host chromosomal targets and is essential for
effective viral replication. From a known inhibitor of HIV-1IN, a pharmacophore hypothesis
was proposed. Based on this hypothesis, a three-dimensional search of the National Cancer
Institute (NCT) database of compounds was performed, which produced 267 structures that

- matched the pharmacophore; 60 of those were tested against HIV-1 IN, and 19 were found
to be active. The relevance of the proposed pharmacophore was tested using a small three-
dimensional validation database of known HIV-1 IN inhibitors, which had no overlap with
the group of compounds found in the initial search. This new three-dimensional search sup-
ported the existence of the postulatéd pharmacophore and also suggested a possible second
pharmacophore. Using the second pharmacophore in another three-dimensional search of the
NCI database, 10 novel, structurally diverse HIV-1 IN inhibitors were found.

Hopﬁngermg] has developed a set of computational procedures termed molecular shape
analysis for the determination of the active conformations and, thereby, molecular shapes
during receptor binding. Common pairwise overlap steric volumes calculated from low-energy
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>me conformations of molecules are used to obtain three-dimensional molecular shape descriptors 1‘ |
saeh that can be treated quantitatively and used with other physicochemical parameter descriptors. il
tion Two other descriptors for substructure representation, the atom pair?* and the topological il
and torsion,?3% have been described by Venkataraghavan and coworkers. These descriptors char- H i
Lter- acterize molecules in fundamental ways that are useful for the selection of potentially active “[}
and, compounds from hundreds of thousands of structures in a database. The atom pair method can "i;:
— select compounds from diverse structural classes that have atoms within the entire molecule ikl
similar to those of a particular active structure. The topological torsion descriptor is comple- i
— mentary to the atom pair descriptor, and focuses on a local environment of a molecule for
veen comparison with active structures.
s the One of the most widely used computer-based 3D-QSAR methodologies, developed by
ma- Cramer and coworkers,?31] is termed Comparative Molecular Field Analysis (CoMFA).[232]
st 611 In this method the molecule—receptor interaction is represented by the steric and electrostatic
s fields exerted by each molecule. A series of active compounds is identified, and three-
thod dimensional structural models are constructed. These structures are superimposed on one
site, another and placed within a regular three-dimensional grid. A probe atom, with its own ener-
nore getic values, is placed at lattice points on the grid, where it is used to calculate the steric
give and electrostatic potentials between itself and each of the superimposed structures. At each
lattice point one steric value, one electrostatic value, and one inhibition value are saved for
- each inhibitor in the series. The results are represented as a three-dimensional contour map in
_— which contours of various colors represent locations on the structure where lower or higher ‘
st of steric or electrostatic interactions would increase binding. However, because simple steric I
ified, and electrostatic fields are unlikely to represent a complete description of a drug—receptor i
ad 51 interaction, alternative and modified forms have been proposed.[*33! Because it is assumed “ ‘
shod that the molecules bind with similar orientations in the receptor, which may not necessarily ;
horié be the case, correct alignments are almost impossible, particularly for compounds with a
any’s large number of rotatable bonds, which limits the applicability of CoMFA. Other approaches | '
leter- have been developed that do not depend on a common alignment of the molecules, such as |
¢ top Comparative Molecular Moment Analysis (COMMA),[23] EVA,[233] and WHIM; 23! these I '
lates, approaches provide 3D descriptors that are independent of the orientation of the molecules in i
HTifi space, so they do not have to be aligned. However, it is not possible to give a 3D display of
1IN the resulting model. Goodford’s program called GRID uses a grid force field that includes a
2l o very good description of hydrogen bonding.[?>”] Because the energetics, as well as the shape
hiesis complementarity, of a drug—receptor complex are vital to its stability, this method simultane-
ancer ously displays the energy contour surfaces and the macromolecular structure on the computer
s ‘that graphics system. This allows both the energy and shape to be considered together when con-
St sidering the design of molecules that have an optimal fit to the receptor, and it determines {5
itoe- probable interaction sites between various functional groups on the ligand and the enzyme \ f;'_
—_— surface. The program HINT (Hydrophobic INTeractions) maps potential hydrophobic and Kl"‘.;:;
1 sup- polar interactions between a molecule and a receptor.?38] } ’
<ol Another useful methodology is the Aypothetical active site lattice (HASL) technique, which 1
of the creates a QSAR model from a composite lattice generated from a series of regular orthogonal : ',«
3D grids established for each molecule.!?3%! These points are restricted to locations embedded i
shape in the van der Waals radii of a molecule and are kept in the analysis dependent on some feature i E ;
hapes f)f a proximal atom (for exan.lple, hydrophobicity). Each molecule’s biological activity value il
nergy is then averaged over all points on its respective lattice. A composite lattice is constructed ‘\ E
from these partial activity values by averaging over all molecules that share common points. |
i
||
A
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Using an iterative optimization scheme, the partial activity values are gradually adjusted to
yield a composite lattice best fitting the molecular series. Other pharmacophore-based design
algorithms include Caveat,[240] Aladdin,ml] and Spacer Skeletons.[242]

The anti-Alzheimer’s drug donepezil hydrochloride (2.92, Aricept) was discovered using
a variety of 3D-QSAR methods.?#!

o HCl1
CH3O: i I /: 7 NJ /\©
CH3O )

donepezil hydrochloride
2.92

29H Molecular Graphics-Based Drug Design

QSAR studies have relied heavily on the use of computers from the beginning for statis-
tical calculations involving multiparameter equations. Researchers soon realized that drug
design could be aided significantly if structures of receptors and drugs could be displayed
on a computer terminal, and molecular processes could be observed. Molecular graphics is
the visualization and manipulation of 3D representations of molecules on a graphics dis-
play device. The origins of molecular graphics have been traced by Hassalll?*4 to the project
MAC (Multiple Access Computer),[24 51 which produced molecular graphics models of macro-
molecules for the first time. The potential to apply this technology to protein crystallography
was quickly realized, and by the early 1970s electron density data from X-ray diffraction stud-
ies could be presented and manipulated in stick or space-filling ;multicolored representations
on a computer terminal. 2461 The number of X-ray crystal structures available in the protein
data bank (PDB)[247] went from about 200 in 1990 to more than 20,000 by 2003.

Medicinal chemists saw the potential of this approach in drug design as well. These
approaches are known as structure-based drug design (SBDD), computer-assisted drug design

* (CADD), or computer-assisted molecular design (CAMD). A variety of commercial software

packages are available for structure-based drug design, for example, Sybyl (Tripos), Insight
I (Molecular Simulations Inc.), and Gold (Cambridge Crystallographic Data Centre). It is
now possible for a synthetic chemist to carry out his or her own molecular modeling without
having to become a computer scientist.

Stick (Dreiding) and space-filling (CPK) molecular models have been used extensively
by organic chemists for years for small molecules, but these handheld models have major
disadvantages.[248] Space-filling models often obscure the structure of the molecule, and wire
or plastic models can give false impressions of molecular flexibility and tend to change into
unfavorable conformations at inopportune moments. Plastic models of proteins are much too
cumbersome to work with. A three-dimensional computer graphics representation of a protein
that can be manipulated in three dimensions allows the operator to visualize the interactions of
small molecules with biologically important macromolecules. Superimposition of structures,
which is cumbersome at best with manual models, can be performed easily by molecular
graphics. Also, some systems have the capability to synthesize graphically new structures by
the assemblage of approprie{te molecular fragments from a fragment file.
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Numerous molecular graphics systems are available,*”) but the typical system, which
has not changed much over the years, utilized by every major pharmaceutical company in the
United States, Western Europe, and Japan, consists of a mainframe or supermini computer
linked to a high-resolution graphics terminal with local intelligence. The graphics terminal
may be equipped with a variety of peripheral devices such as graphic tablets, light pens, func-
tion keys, and dials to effect the molecular display and three-dimensional manipulations. The
mainframe or minicomputer executes all of the molecular calculations, such as calculations
of bond lengths, bond angles, and quantum chemical or force field calculations.

A variety of approaches can be taken to utilize molecular modeling for drug design;
direct design approaches are used when the structure of the target receptor is known, and
indirect design approaches are used when the receptor structure is not known. The basic
premise in the utilization of molecular graphics is that the better the complementary fit of the
drug to the receptor, the more potent the drug will be. This is the lock-and-key hypothesis of
Fischer'®Y in which the receptor is the lock into which the key (i.e., the drug) fits. To apply
this concept most effectively, the structure of the receptor (either X-ray crystal structure or
NMR solution structure) should be known; then, different drug analogs can be docked into
the receptor. Docking is a molecular graphics term for the computer-assisted movement of
a terminal-displayed molecule into its receptor. It cannot be assumed that the lowest energy
structure of the molecule binds to the receptor; the bioactive conformation can be a higher
energy conformation of the molecule.>>]

The most effective use of molecular modeling is when a high-resolution crystal structure
(or NMR solution structure) of a receptor with a ligand bound is available. Molecular graphics
visualization of the electron density map of this complex may reveal empty pockets in the
complex that could be filled by appropriate modification of a lead compound. An important
example of structure-based drug design is the discovery of zanamivir (2.93, Relenza), an
antiviral agent used against influenza A and B infections.>?! The hemagglutinin at the surface
of the virus binds to sialic acid (2.94) residues on receptors at the host cell surface. The virus
enters the cell and replicates in the nucleus. The progeny virus particles escape the cell and
stick to the sialic acid residues on the cell surface as well as to each other. Neuraminidase
(also known as sialidase) is a key viral surface enzyme that catalyzes the cleavage of terminal
sialic acid residues from the cell surface, which releases the virus particles to spread into
the respiratory tract and infect new cells. The important feature of this enzyme that made it
an attractive target for drug design is that its active site is lined with amino acids that are

- invariant in neuraminidases of all known strains of influenza A and B. Therefore, inhibition

of this enzyme should be effective against all strains of influenza A and B. Random screening
did not produce any potent inhibitors of the enzyme, although a nonselective neuraminidase
inhibitor (2.95, R = OH) was identified. The breakthrough came when the crystal structures of
the influenza A neuraminidase(?33! with inhibitors bound!>>*! were obtained. The active site of
the enzyme with 2.95 (R = OH) bound was probed computationally using Goodford’s GRID
program (see Section 2.2.G.4). Predictions by GRID of energetically favorable substitutions
suggested replacement of the 4-hydroxyl group of 2.95 (R = OH) by an amino group (2.95,R =
NH,), which when protonated would form a favorable electrostatic interaction with Glu-119
(Figure 2.18a). It was apparent from the crystal structure that extension of the 4-ammonium
group with a 4-guanidinium group (2.93) would produce an even tighter affinity because of
the increase in basicity of the guanidinium group and also because it could interact with both
Glu-119 and Glu-227 (Figure 2.18b).

!
x-,
!
|
!
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Figure 2.18 » Crystal structure of
the protonated amino group of 2.95 (R = NH%") with Glu-119. (b) Interact1

group of 2.93 with Glu-
MacMillan Magazines Ltd.]. Reproduced in color between pages 172 and 173
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2.93 2.94

B

neuraminidase active site with inhibitors bound. (2) Interaction of
ion of the protonated guanidinium

119 and Glu-227 [Reprinted with permission from Nature 363,418. Copyright ©1993
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Typically, the ideal compound is not realized so quickly. Rather, an idea for lead modifica-
- tion manifests from the crystal structure of the lead bound to the receptor. This modified lead
J\ is synthesized and tested; maybe only a minor improvement in potency is produced (or maybe
OH lower potency). If there is some improvement, a new crystal structure is obtained, additional
molecular modeling is carried out for further refinement of ideas, and new compounds are
synthesized and tested. This process is reiterated with further rounds of design, synthesis, test-
ing, and crystal structure until higher potency analogs are obtained. A beautiful example of
how the iterative combination of molecular modeling, crystallography, and combinatorial and
traditional medicinal chemistry synthesis was used to modify a lead neuraminidase inhibitor
and enhance its potency 72,500-fold was described by the group at Abbott Laboratories. >
Sometimes even a crystal structure with the ligand bound is not sufficient. A high-
resolution crystal structure of thymidylate synthase with a ligand bound did not properly i
account for a ligand-induced enzyme conformational change during structure-based drug i
design.[29] As a result the structure imparted an improper bias into the design of novel ‘
ligands. -

Earlier in the chapter, the SAR of paclitaxel was described (2.36, Section 2.2.C, p. 23).
By overlaying the molecular graphics depiction of the crystal structure of paclitaxel with
those of four other natural products also found to promote stabilization of microtubules in
competition with paclitaxel (Figure 2.19, Taxol), a common pharmacophore was proposed
(Figure 2.20).12571 This gives a new perspective to lead modification, and permits the construc-
tion of new synthetic analogs having hybrid structures of each of the four unrelated scaffolds.
Based on this pharmacophore model, 2.96 was synthesized and was shown to stabilize micro-
tubules as well. Other 3D computer models of paclitaxel binding to microtubules have been
promoted as well.[?° 8] Without the molecular graphics capabilities, it would be very difficult

to make this sort of comparison and design a new hybrid scaffold.

Taxol Epithilones Eleutherobin
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I \
s L.\BI |
raction of ili
anidinium Figure 2.19 » Five natural products found to promote stabilization of microtubules. The boxed sections 1‘
ht ©1993 were used to identify a common pharmacophore. [With permission from I. Ojima (1999). Reprinted with |
|

permission from PNAS 96, 4256. Copyright ©1999 National Academy of Science, U.S.A.]
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Figure 2.20 » Common pharmacophore based on the composite of boxed sections in Figure 2.19. [With
permission fromI. Ojima (1999). Reprinted with permission from PNAS 96,4256. Copyright ©1999 National
Academy of Sciences, U.S.A.]. Reproduced in color between pages 172 and 173

2.96

Kuntz et al259 reported on an algorithm called DOCK that was designed to fit small
molecules into their macromolecular receptors for lead discovery.[%o] This shape-matching
method, which was originally restricted torigid ligands (receptor-bound molecules) and recep-
tors, was modified6! for flexible ligands where a ligand is approximated as a small set of
rigid fragments. Ideally, a high-resolution structure (X-ray crystal structure or NMR spectral
structure) of the receptor with a ligand bound should be available. The ligand is removed
from the binding site in the graphic display, then DOCK fills the binding site with sets of
overlapping spheres, where a set of sphere centers serves as the negative image of the binding
site. When a crystal structure of a receptor is available, but without a ligand bound, DOCK
characterizes the entire surface of the receptor with regard to grooves that could potentially
form target binding sites, which are filled with the overlapping spheres. Next DOCK matches
X-ray or computer-derived structures of putative ligands to the image of the receptor on the

—
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basis of a comparison of internal distances. Then the program searches 3D databases of small
molecules and ranks each candidate on the basis of the best orientations that can be found for a
particular molecular conformation.[?62] Various databases are available to search, such as the
Cambridge Structural Database (CSD), a compendium of >200,000 small molecules whose
crystal structures are known and the Fine Chemicals Directory (FCD) distributed by Molec-
ular Design Limited, but the best ones to use are those containing commercially available
compounds, such as the Available Chemicals Directory (ACD), so that any virtual hits can be
purchased and assayed to determine quickly the effectiveness of the search. The drawbacks of
this approach are the assumptions that binding is determined primarily by shape complemen-
tarity and that only small changes in the shape of the receptor occur on ligand binding. An
important advantage, though, is that this method is not limited to docking of known ligands.
A library of molecular shapes can be scanned to determine which shapes best fit a particular
receptor binding site. In fact, DOCK was used to identify fullerenes as potential inhibitors
of HIV-1 protease.[?93] The high-resolution NMR structure of the aminoglycoside antibiotic
paromomycin (2.97, Humatin) bound to the A site of the bacterial ribosomal RNA was used
to perform a DOCK search of the CSD and the National Cancer Institute 3D database (a
total of 273,000 compounds).?®* The compounds that emerged from this search formed the
basis for the design of seven composite structures with additional features added to suppress
resistance. As a result, several of these compounds were found to have enhanced activity
in vitro and in vivo against a variety of pathogenic bacteria resistant to aminoglycosides.
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The program LUDI uses statistical analyses of nonbonded contacts in crystal packings
of organic molecules to establish a set of rules that define the possible nonbonded contacts
between proteins and ligands.[?%%) Using these rules it also can search databases to find struc-
tures that fit a particular binding site in a protein based not on shape, as in DOCK, but on
physicochemical properties, such as hydrogen bonding, ionic interactions, and hydrophobic
interactions.

Another program for de novo molecular design, GrowMol 266! (called AlleGrow*%7! in
the latest version), approaches the problem of receptor binding from a different direction.
Instead of docking known molecules into the binding site, it generates molecules with steric
and chemical complementarity to the three-dimensional structure of the receptor binding
site by evaluating each new atom according to its chemical complementarity to the nearby
receptor atoms. The program also connects a newly grown atom to a previously grown atom
in the growing structure to make ring systems. The principal “liability” to this method is that
it generates too many diverse structures, and it is necessary to evaluate each one visually
and determine which ones are best to try first. Often the decision comes from a synthetic
perspective or a knowledge of potential oral bioavailability. Having too many choices, of
course, also can be an asset, and a variety of other criteria could be set up to search the
database of newly generated compounds for specific beneficial properties.
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In the modified method for docking flexible ligands into a receptor described above, an
X-ray structure of the receptor is not necessary to characterize the shape of the receptor binding
site. Rather, the receptor binding site can be deduced from the shapes of active ligands. This
technique, which is useful for identification of the pharmacophore geometry, is called receptor
mapping.[268] It too is founded on the premise that receptor topography is complementary to
that of drugs, but in this case the structure of the lock is deduced from the shape of the keys
that fit it. A variety of receptor mapping techniques have been described. An approach termed
steric mappingmg] uses molecular graphics to combine the volumes of compounds known to
bind to the desired receptor. This composite volume generates an enzyme-excluded volume
map, which defines that region of the binding site available for binding by drug analogs and,
therefore, not occupied by the receptor itself. The same procedure is, then, carried out for
similar molecules that are inactive. The composite volume is inspected for regions of volume
overlap common to all of the inactive analogs. These are the enzyme-essential regions, sites
required by the receptor itself and unavailable for occupancy by ligands. Any other molecule

that overlaps with these regions should be inactive. Drug design, then, would involve the |

synthesis of compounds with the appropriate pharmacophore that filled the enzyme-excluded
regions and that avoided the enzyme-essential regions. Another approach that does not require
the structure of the target receptor, known as homology modeling, deduces the topography of
the unknown receptor site from that of a known related receptor structure. 2”0

A major improvement in the use of molecular modeling came when high-throughput crys-
tallography was coupled with combinatorial chemistry approaches.ml] Because structure-
based drug design usually involves targets whose structures are already known, but which
have different ligands bound, only the part of the structure where the ligand binds needs to be
resolved. Software such as AutoSolve (Astex Technology) analyzes and interprets electron
density data automatically without the need for an expert crystallographer, so hundreds of
receptor complex crystals can be analyzed in just a few days.mz] With solid-phase synthetic
methodology to make many analogs rapidly, the two processes produce large numbers of
crystal structures with various ligands bound very rapidly. j

The initial expectation for structure-based drug design—that poteﬁt receptor binders would
be designed rapidly leading to the discovery of many new drugs—has not yet become a real-
ity. Several problems with this approach may contribute to its less than optimal effectiveness.
Table 2.12 lists various advantages to the use of molecular modeling approaches and its many
limitations. Although the ease of visualization is appealing, the main problems are (1) that the
structure of the molecular model may be completely different from the actual structure in the
living organism; (2) even if the structure were correct, the resolution of the structure is insuf-
ficient to make an accurate assessment of ligand binding; and (3) the bioactive conformation
of the ligands is not known, so the appropriate small molecules may not be used in docking
experiments. Another important reason why there has not been a large increase in the number
of new drugs being developed by molecular modeling techniques derives from the fact that
pharmacokinetics are ignored by this method. Prior to the drug candidate interacting with a
receptor, it must be properly absorbed, it must reach the receptor without metabolic or chemi-
cal degradation (unless it is a prodrug; see Chapter 8), excretion must be at an appropriate rate,
and the drug candidate and metabolites must not be toxic or lead to undesirable side effects.

Because of the uncertainty involved with this method, the process of molecular modeling,
synthesis, testing, and molecular modeling again needs to undergo many iterations. Structure-
based drug design has to be taken as yet another tool available to the medicinal chemist; it is
not the answer to drug discovery, but it can be an important part of the process.
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TABLE 2.12 » Advantages and Limitations to the Use of Molecular
Modeling in Lead Modification

Advantages

>
>

>
>

>
>

>

Proteins can be visualized in 3D and every amino acid can be located.

The structure can be manipulated so that it can be observed from any direction in
3D.

Particular regions, e.g., the binding site, can be enlarged for better viewing.

The physicochemical properties, e.g., hydrophobic, polar, positive or negative
charge, etc., of each part of the receptor can be viewed.

Distances between groups can be determined.

Small molecules can be docked into various regions to determine their fit and
interactions.
Residues that are most suitable to mutate for mechanism studies can be determined.

Limitations

>

>

The coordinates from an X-ray crystal structure or NMR solution structure are
required.
Crystals are obtained by crystallization of proteins under nonphysiological condi-
tions, such as at low or high pH, well below 37°C, and in the presence of additives,
such as buffers or detergents. Are the proteins really in the same conformation as
in the living cell?
Crystal structures represent the thermodynamically most stable conformation
of the protein under these nonphysiological conditions. Therefore, the crystal
structure may depict the protein in a conformation very different from that in
a living cell.
Often crystal structures with ligands bound are obtained by soaking the ligand into
the preformed crystal. If binding of the ligand in solution results in a conformational
change, it is highly unlikely that it will occur in the crystalline state because the
crystal packing forces will favor the preexisting conformation.
The protein structure is considered to be rigid, but small conformational changes
of side chains can induce large changes in the size, shape, and interaction pattern
of binding pockets. Typically, when a small molecule binds to a protein, there is
some movement of side chains.
Resolutions of crystal structures are generally in the range of 2-2.5 A; some at
1.5-2.0 A; rarely more resolved (although <1.0 A has been reported). Therefore,
there is much uncertainty as to the exact position of each atom. A rule of thumb
is that the posmonal error of atoms is about one-sixth of the rcsolunon SO a
structure at 2.4 A resolution has an uncertainty of every atom of 0.4 A
Small molecules in the ground state are generally energy minimized to give the
lowest energy conformers prior to docking them into the structure, but aligand does
not have to bind in the lowest energy conformation, and it can be quite different
from the ground state conformation. Also, solvent effects generally are not taken
into account.
For highly flexible molecules with several torsional angles, there may be many
different geometries having the same conformational energy, but significantly
different shapes.
You tend to believe what you see in your molecular model and think it is accurate!
This leads to many wrong assumptions.

@ For example, Betzel, C.; Gourinath, S.; Kumar, P; Kaur, P; Perbrandt, M.;

Eschenburg, S.; Singh, T. P. Biochemistry 2001, 40, 3080.
b Bohm, H.-J.; Klebe, G. Angew. Chem. Int. Ed. Engl. 1996, 35, 2588.
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2.2.1 Epilogue

On the basis of what was discussed in this chapter, it appears that even if you uncover a lead,
it may be a fairly slow and random process to optimize its potency. The cost to get a drug
on the market has increased from $4 million in 1962 to $350 million in 1996, $500 million
in 200,272 and about $800 million in 2003.272*) Between 1960 and 1980, the time for
development of a compound from synthesis to the market almost quadrupled, but the time has
remained fairly constant since 1980 at about 1215 years of research. The main cause for the
increase in the length of time to bring a drug on the market occurred in 1962 as a result of the
devastating effects of the drug thalidomide, a hypnotic drug shown to cause severe fetal limb
abnormalities (phocomelia) when taken in the first trimester of pregnancy (see Chapter 3,
Section 3.2.E.2). This tragedy led to the passing of the Harris-Kefauver Amendments to
the Food, Drug, and Cosmetic Act in 1962, which required sufficient pharmacological ‘and
toxicological research in animals before a drug could be tested in humans; the data of the animal
studies had to be submitted to the FDA in an application for approval of an investigational new
drug (IND) before human testing could begin. After 1-5 years (average 2.6 years) of animal
testing, three phases of clinical (human) trials were adopted (lasting from 4 to 10 years; see
the first paragraph of this chapter for a description of the phases of clinical trials) before a
new drug application (NDA) could be submitted for commercial approval of a new drug.?’4

Tt has been estimated that, in 1950, 7000 compounds had to be isolated and tested for each
one that made it to the market; by 1979 that number rose to 10,000 compounds, and now it is
greater than 20,000 compounds. There are only about 6000 known drugs in the Comprehensive
Medicinal Chemistry (CMC) database of the estimated 1090 possible compounds that could be
drug-like, and these 6000 drugs interact with only about 120 targetsmsa] (40% receptors, 40%
enzymes, and the rest ion channels and other) or <1% of the human proteome (the expressed
proteins). Prior to the sequencing of the human genome, it was estimated that the number of
potential drug targets may be between 5000 and 10,000,275b] but it is now thought that it may
only be 600—1500.12752] Therefore, genomics (identifying and analyzing new gene targets from
a genome) and proteomics (identifying and analyzing proteins expressed by the genes in the
genome) have become very important aspects to drug discovery. [276] Once a new target from
the proteome is identified, bioinformatics, in which databases of known proteins are scanned
to find known proteins with similar structures to that of the new target, is employed. When
the similarities are known, inhibitors of the known protein can be tested with the new target
protein. In addition to these biological methodologies, which appear to be increasing the rate
of lead discovery, other rational approaches to lead discovery and lead optimization, based on
chemical and biochemical principles, must be used. Between 1995 and 2000 it was estimated
at Bristol-Myers Squibb that there had been a threefold to fourfold increase in new drug can-
didates going into development, a 50% lower chemistry staff requirement per drug candidate,
and a 40% reduction in lead optimization time, believed to be the result of combinatorial
approaches.[277] Other companies have not enjoyed the predicted success of combinatorial
chemistry, and some have even dropped their combinatorial chemistry groups and returned to
only traditional medicinal chemistry efforts. The importance of combinatorial chemistry to
drug discovery will not be known for at least 10 years when we find out if there is a direct link
of this approach to new drugs entering the market or if it is just another false hope. However, in
2002, for the first time in the United States, the market share of nongeneric drugs was surpassed
by that of generic drugs. Also in that year the number of new chemical entity approvals by the
FDA, normally in the twenties or thirties per year, hit a 20-year low of only 16, although the
R&D spending by the pharmaceutical industry had tripled in the previous decade.?78 Maybe
Thomas Edison said it best: “I have not failed. I've just found 10,000 ways that won’t work.”
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Giannis, A.; Kolter, T. Angew. Chem. Int. Ed. Engl. 1993, 32, 1244.
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QSAR
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Devillers, J. (Ed.) Comparative QSAR, Taylor and Francis, Washington, DC, 1998.

Hansch, C.; Leo, A. Exploring OSAR, Vol. 1, Fundamentals and Applications in Chemistry
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Molecular ConceptorTM Courseware (Synergix, Ltd.)
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Bitetti-Putzer, R.; Joseph-McCarthy, D.; Hogle, J. M.; Karplus, M. Functional group place-
ment in protein binding sites: a comparison of GRID and MCSS. J. Comput.-Aided Mol.
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2001, 123, 12758-12769. '
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@ Many thanks to Dr. Haitao Ji for compiling these methodologies.
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GRID Applied to 3D-QSAR
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atomic packing preferences to identify favourable interaction regions in the binding sites
of proteins. J. Mol. Biol. 1996, 259, 175-201.

Molecular Docking

DOCK, GOLD, and FlexX are used as virtual screening tools when the 3-D structure of the
binding site of the receptor is known.
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Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R Ferrin, T E. A geometric approach
to macromolecule-ligand interactions. J. Mol. Biol. 1982, 161, 269-288.

Incremental Construction (FlexX, Hammerhead, Surflex)

Jain, A. N. Surflex: fully automatic flexible molecular docking using a molecular similarity-
based search engine. J. Med. Chem. 2003, 46, 499-511.

Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using as
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Baxter, C. A.; Murray, C. W.; Clark, D. E.; Westhead, D. R ; Fldridge, M. D. Flexible docking
using Tabu search and an empirical estimate of binding affinity. Proteins 1998, 33,367-382.
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Jones, G.; Wilett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a
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Cramer, R. D.; Clark, R. D.; Petterson, D. E.; Ferguson, A. M. Bioisosterism as a molecular
diversity descriptor: steric fields of single “topomeric” conformers. J. Med. Chem. 1996,
39, 3060. ‘

Patterson, D. E.; Cramer, R. D.; Ferguson, A. M.; Clark, R. D.; Weinberger, L. E. Neighbor-
hood behavior: a useful concept for validation of molecular diversity descriptors. J. Med.
Chem. 1996, 39, 3049.

FlexSim-S
Briem, H.; Lessel, U. F. In vitro and in silico affinity fingerprints: finding similarities beyond
structural classes. Perspective in Drug Discovery and Design 2000, 20, 231-244.

LASSOO .
Koehler, R. T.; Dixon, S. L.; Villar, H. 0.LASSOO: A generalized directed diversity approach
to the design and enrichment of chemical libraries. J. Med. Chem. 1999, 42, 4695-4704.

Others

Andrews, K. M.; Cramer, R. D. Toward general methods of targeted library design: topomer
shape similarity searching with diverse structures as queries. J. Med. Chem. 2000, 43,
1723-1740.

Makara, G. M. Measuring molecular similarity and diversity: total pharmacophore diversity.
J. Med. Chem. 2001, 44, 3563-3571.

Mason, J. S.; Morize, L; Menard, P. R; Cheney, D. L.; Hulme, C.; Labaudiniere, R. F.
New 4-point pharmacophore method for molecular similarity and diversity applications:
overview of the method and applications, including a novel approach to the design
of combinatorial libraries containing privileged substructures. J. Med. Chem. 1999, 42,
3251-3264. \

Mount, J.; Ruppert, J.; Welch, W.; Jian, A. N. Ice Pick: A flexible surface-based system for
molecular diversity. J. Med. Chem. 1999, 42, 60-66.

Srinivasan, J.; Castellino, A.; Bradley E. K.; Eksterowicz, J. E.; Grootenhuis P. D. J.; Putta, S,
Stanton R. Evaluation of a novel shape-based computational filter for lead evolution:
application to thrombin inhibitors. J. Med. Chem. 2002, 45, 2494-2500.

Synthetic Accessibility

Gasteiger, J.; Pfortner, M.; Sitzmann, M.; Hollering, R.; Sacher, 0.; Kostka, T.; Karg, N.
Computer-assisted synthesis and reaction planning in combinatorial chemistry. Perspective
in Drug Discovery and Design 2000, 20, 245-264. ‘

Gillet, V. J.; Nicolotti, O. Evaluation of reactant-based and product-based approaches to the
design of combinatorial libraries. Perspective in Drug Discovery and Design 2000, 20,

- 265-287.

Lewell, X. Q.; Judd, D. B.; Watson, S. P; Hann, M. M. RECAP—retrosynthetic combina-
torial analysis procedure: a powerful new technique for identifying privileged molecular
fragments with useful applications in combinatorial chemistry. J. Chem. Inf. Comput. Sci.
1998, 38, 511-522.

Argentum Pharm. v. Research Corp. Techs., IPR2016-00204
RCT EX. 2049 - 93/96

- ol
gl Sty . %

T e
Wy

e

iz

ity Wi e R oy
U AT A EET L il o R

ek )

il
> “U')l!

=
- 4
3



nent

ular
)96,

bor-
{ed.

‘ond

yach
)4.

mer
43,

sity.

L FE
ons:
'sign
, 42,

1 for

1,S.;
tion:

5, N.

EH

ctive

o the
s 207

bina-
cular
. Sci.

Section 2.3 General References 97
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