
■ PROSE is a knowledge-based configurator platform
for telecommunications products. Its outstand-
ing feature is a product knowledge base written
in C-CLASSIC, a frame-based knowledge representa-
tion system in the KL-ONE family of languages. It
is one of the first successful products using a KL-
ONE–style language. Unlike previous configurator
applications, the PROSE knowledge base is in a
purely declarative form that provides developers
with the ability to add knowledge quickly and
consistently. The PROSE architecture is general
and is not tied to any specific telecommunica-
tions product. As such, it is being reused to
develop configurators for several different prod-
ucts. Finally, PROSE not only generates configura-
tions from just a few high-level parameters, but
it can also verify configurations produced manu-
ally by customers, engineers, or salespeople. The
same product knowledge, encoded in C-CLASSIC,
supports both the generation and the
verification of product configurations.

PROSE (product offerings expertise) is a
knowledge-based engineering and order-
ing platform that supports sales and

order processing at AT&T Network Systems
(AT&T-NS). The cornerstone of the PROSE

architecture is a product knowledge base writ-
ten in C-CLASSIC, a knowledge representation
system in the KL-ONE language family that was
developed at AT&T Bell Laboratories (Borgida
et al. 1989). Currently, PROSE is being used to
provide configurations for sales proposals and
to generate factory orders for manufacturing.
Some examples of products that are currently

being configured by PROSE are the cross-con-
nect systems DACS IV-2000 and DACS II CEF
as well as the remote cell sites for the AT&T
Autoplex mobile telephone system. We
expect PROSE to be deployed for highly
optioned products across all AT&T-NS busi-
ness units.

The PROSE platform is closely integrated with
the corporate infrastructure for ordering prod-
ucts, and it has communication links to the
mainframe systems that support order process-
ing and manufacturing. PROSE can produce a
detailed materials list and pricing for sales pro-
posals, it can electronically place orders and
initiate billing, it can send manufacturing
specifications to the factory, and it can pro-
duce instructions for on-site installers. Most
importantly, the PROSE architecture is general
and is not tied to any specific product.

The motivation underlying the PROSE proj-
ect was to solve what we initially called the
data-synchronization problem. In a large
company offering complex products, ordering
information is typically distributed among a
variety of sources, both formal and informal.
The distributed, informal nature of this criti-
cal information makes it difficult to maintain
in an up-to-date, valid, and consistent way.

The official repositories of product informa-
tion at AT&T-NS are the engineering draw-
ings. As technical documents, they cannot be
read and understood by everyone. Conse-
quently, the ordering information in the engi-
neering drawings is reworked into paper

Articles

FALL 1993 69

A Knowledge-Based
Configurator That Supports

Sales, Engineering,
and Manufacturing at

AT&T Network Systems
Jon R. Wright, Elia S. Weixelbaum, Gregg T. Vesonder, Karen E. Brown,

Stephen R. Palmer, Jay I. Berman, and Harry H. Moore

Copyright © 1993, AAAI. 0738-4602-1993 / $2.00

AI Magazine Volume 14 Number 3 (1993) (© AAAI)

WTS PARADIGM LLC EXHIBIT 1013
1 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

delivered when.
In addition, it seems to us that the term

knowledge-acquisition bottleneck is especial-
ly meaningful for configurator applications.
The R1 project, partly in response to the fact
that the Digital product knowledge was too
complex for one person to maintain, devel-
oped schemes for factoring rules into mod-
ules so that the maintainers could specialize
within the product domain (Bachant 1988).
Having access to people who understand the
product is a key element in the success of a
configurator project.

Thus, a configurator application such as
PROSE has three critical problems to address:
(1) the acquisition of product knowledge, (2)
rapid and sometimes unexpected changes in
product knowledge, and (3) the complexity
of software enhancements and maintenance.

In part, PROSE responds to these problems
by taking advantage of knowledge representa-
tion techniques originally introduced by KL-
ONE (Brachman and Schmolze 1985).
Although there has been active research on
KL-ONE–style languages since 1975, and
research prototypes have demonstrated feasi-
bility in several cases, heretofore few success-
ful production software applications have
used a KL-ONE–style representation (O’Brien,
Brice, and Hatfield 1989). However, we think
other successes are likely to follow.

The use of C–CLASSIc, whose ancestry can be
traced directly to KL-ONE, provides the PROSE

platform with several key advantages. With
some exceptions to be discussed later, prod-
uct knowledge in PROSE is isolated to a single
module—the product knowledge base. C-CLAS-
SIC encourages a reasonable organization for
the product knowledge and enforces internal
consistency. Inconsistencies in the knowledge
base are often flagged in the compilation
stage and, at other times, are caught during
testing. Both kinds of inconsistencies are
identified by C-CLASSIC’s internal integrity-
checking mechanisms.

Our experience is that within the context
of the PROSE application, consistency checking
has somewhat the feel of programming in a
strongly typed programming language, where
inconsistent and incorrect uses of data types
are caught by the compiler. C-CLASSIC’s consis-
tency checking has had a beneficial effect on
both the maintainability of the PROSE product
knowledge and the quality of the configura-
tor’s output.

Like that of its predecessors, the simplicity
of C-CLASSIC’s description language and the
tractability of its inference algorithms are
linked. C-CLASSIC provides only a few primitive

ordering guides, informal spreadsheet pro-
grams used by account executives, and vari-
ous personal computer (PC)–based configura-
tor programs. The product information
contained in these sources frequently
becomes obsolete and out of synch with the
engineering drawings.

Inaccurate orders, when combined with
products that are so highly technical in
nature, cause delays in order processing and
manufacturing and can result in billing dis-
crepancies. PROSE seeks to centralize this infor-
mation, or product knowledge, in a single
source, and put it in a form that can be made
available to anyone who needs it. Having
every team member working off the same
page, so to speak, greatly reduces rework in
the ordering process, improves quality, and
reduces cost.

The earliest and best-known configurator
application that used techniques pioneered in
the AI community was developed at Digital
Equipment Corporation in conjunction with
Carnegie Mellon’s John McDermott (McDer-
mott 1982; McDermott and Bachant 1984;
Barker and O’Connor 1989). The research ver-
sion was called R1 and later become known as
XCON in its production version. R1 used pro-
duction rules to represent knowledge about
configuring Digital’s computer systems.

Although production rules had advantages
over the conventional development
approaches that had been tried at Digital pri-
or to R1, some drawbacks surfaced after the
deployment of R1 in 1981. The most serious
was the effort needed to maintain an up to
date, consistent, and valid collection of pro-
duction rules. Digital estimated that 40 to 50
percent of the R1 product knowledge changes
each year (Bachant 1988). By some estimates,
there have been as many as 6000 R1 produc-
tion rules. The rate of change, coupled with
the sheer number of rules needed to ade-
quately represent R1’s product knowledge,
made R1 software maintenance an expensive
process. Subsequently, special techniques had
to be developed to make software mainte-
nance easier and more cost effective (Bachant
1988).

For a configurator application, product-
ordering conventions serve as software
requirements. Responding quickly to changes
in requirements is especially important in
this application domain because the inability
to order new product features through a con-
figurator dramatically affects utility. Develop-
ment schedules for a configurator tend to be
driven by the pace of change in the product,
not by the developer’s sense of what can be

Our
experience is
that within

the context of
the PROSE

application,
consistency

checking has
somewhat the

feel of
programming

in a
strongly

typed
programming

language,
where

inconsistent
and incorrect
uses of data

types are
caught by the

compiler.

Articles

70 AI MAGAZINE

WTS PARADIGM LLC EXHIBIT 1013
2 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

operators with which knowledge can be
described. These operators were chosen at
least in part to avoid intractability in the
underlying subsumption algorithm (Levesque
and Brachman 1987). In particular, the
description language lacks true disjunction
and has no way to express negation. Never-
theless, we have not encountered major prob-
lems when we encoded the product knowl-
edge for our AT&T Network Systems products.

To the contrary, we feel that C-CLASSIC has
encouraged the encoding of product knowl-
edge in a natural way. Subject-matter experts
with a variety of engineering and business
backgrounds, when provided with a small
amount of assistance from someone who
understands C-CLASSIC, have been able to easi-
ly relate to and understand the product
knowledge encoded in C-CLASSIC.

In this context, standard software-engineer-
ing techniques such as code inspections take
on a special meaning. Essentially, these ses-
sions perform double duty as verification
exercises. Typically, a product expert partici-
pates and often clarifies misunderstandings in
the ordering knowledge for a product. In
most cases, the C-CLASSIC expressions are close
to the expert’s intuitive understanding of the
product, providing an uncommonly strong
basis for communication between the devel-
oper and the product expert.

C-CLASSIC’s contribution to the PROSE project
is unmistakable. Maintenance and customiza-
tion of a product configurator for specific user
communities can be accomplished in a clean
and straightforward way. Reuse of the descrip-
tive product knowledge is one of PROSE’s most
interesting features, and it has some genuine
benefits. In particular, the sticky problems
associated with updating, synchronizing, and
distributing product knowledge to the appro-
priate people are much easier to control in
the PROSE environment.

The PROSE Application
The PROSE platform is geared toward configur-
ing telephone switching and transmission
equipment. By their nature, these products
are complex and have many optional fea-
tures. Although there is a trend toward scal-
ing down the number of available options for
individual products, customers like the ability
to customize products to their specific needs.
To provide a concrete example of the capabili-
ties of the platform, we briefly describe the
DACS IV-2000 cross-connect, which was the
first product to be made available within the
PROSE platform.

DACS IV-2000 is a digital cross-connect sys-
tem that processes digitized signals at a DS1
or DS3 rate.1 A complete lineup consists of
nine 7-foot frames (called bays when they are
equipped and working) connected by cabling.
The positions in the lineup are significant and
are numbered from left to right. Each bay
contains as many as four shelves or modules
of electronic gear. A 6-bay DACS IV-2000 con-
figuration is shown in figure 1.

There are 13 types of DACS IV-2000 bay, 3
of which appear in figure 1. The modules
within a bay can be equipped with different
kinds of circuit packs depending on what
capabilities are desired. In addition, compati-
ble cabling and software must be ordered.
Although we have not tried to produce an
exact calculation, the number of possible con-
figurations is large, perhaps exceeding
100,000 or more. The cost of a complete nine-
bay lineup, including spare circuit packs, can
easily extend into seven figures.

The time needed to process orders prior to
manufacturing is called the up-front order
interval. The rework and delay associated with
the processing of invalid configurations dur-
ing the order interval is a significant contribu-
tor to the cost of providing a new DACS IV-
2000. Significant benefits are associated with
reducing the length of the order interval, not
the least of which is increased customer satis-
faction. For DACS IV-2000 prior to PROSE, the
time period for getting manually produced
equipment specifications to the factory was
generally 7 to 14 days. PROSE is capable of
delivering valid orders to the factory at the
push of a button.

Central to the PROSE application, no matter
what aspect is being discussed, is the materials
list, which is a description of the materials
needed to assemble and install a configura-
tion. It is used for producing a bill of materi-
als for the shop floor, billing and shipping to
customers, generating instructions to
installers, and communicating with cus-
tomers about the product. In essence, the
materials list serves as a manufacturing speci-
fication, telling the factory what to assemble.

For a nine-bay lineup, there would be sepa-
rate materials lists for each of the bays plus
separate lists for DACS IV-2000 software and
cabling. A completed order also includes
installation instructions (where to locate and
how to wire each bay). PROSE generates all the
information that is associated with manufac-
turing and installing the equipment it
configures.

PROSE has three interfaces that support dif-
ferent aspects of sales, engineering, and man-

… the sticky
problems
associated
with
updating,
synchroniz-
ing, and
distributing
product
knowledge
to the
appropriate
people are
much easier
to control in
the PROSE

environment.

Articles

FALL 1993 71

WTS PARADIGM LLC EXHIBIT 1013
3 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

of keying in capacity parameters and feature
choices, or they can specify the quantity and
the type of circuit pack for each bay. Like FPQ,
SPEC output is in the form of an order that can
be sent directly to the factory’s ordering and
billing systems.

The TCE (telephone company engi-
neered), or customer-service, interface:
Customers sometimes configure products on
their own without going through either FPQ

or SPEC. In such cases, the customer submits
what is essentially a proposed materials list.
Because invalid configurations cannot be
assembled, it is essential to know if the list
represents a valid configuration. The TCE

interface allows a customer service clerk to
key in the materials one item at a time. PROSE

validates the configuration and formats it so
that it can be entered in the appropriate
order-processing systems.

In addition to serving a diverse community
of users, PROSE must deal with products that
constantly change in response to the market-
place. Although we have observed variations,
the rate of change for certain products
approaches that reported by R1-XCON (40 to
50 percent a year).

For knowledge engineers, however, the real
problem is that the scheduling and timing of
changes is not within their control. The
inability to produce valid orders for new

ufacturing. Distinct user communities are
served by the three interfaces, but all three
draw on the same product knowledge base.
Having a single-product knowledge base
allows PROSE to avoid problems associated
with synchronizing knowledge and data or
resolving conflicts in several software applica-
tions.

The FPQ (firm price quote), or pricing,
interface: Because accurate price quotes are
not possible without knowing all the equip-
ment needed by an application, sales teams
have technical consultants with the responsi-
bility of producing price quotes with itemized
lists of equipment and prices. From a few
high-level parameters, FPQ can produce a price
quote for a complete nine-bay DACS IV-2000
lineup, including compatible software releas-
es and cabling, in a few minutes. FPQ output
is such that it could be turned into a valid
order and sent directly to the factory.2 Fre-
quently, technical consultants use FPQ to
explore what-if scenarios to help the cus-
tomer find the right configuration.

The SPEC (specification), or engineering,
interface: SPEC is intended for AT&T engi-
neers who might be working either on inter-
nal AT&T applications or as consultants to
outside customers. SPEC requires more input
from the user than the FPQ interface, but it is
also more flexible. Engineers have the choice

Articles

72 AI MAGAZINE

Fuse and Alarm
Panel

Switching
Power

Module
Auxiliary Power

Module

Memory
Controller
Module

Switching
Module

Fan Assembly

DS1
Interface
Module

DS1
Interface
Module

DS1
Interface
Module

DS1-P
Interface
Module

DS1
Interface
Module

DS1
Interface
Module

DS1
Interface
Module

DS1-P
Interface
Module

Blank
Panel

DS3
Interface-32

Module

DS3
Interface-32

Module

Blank
Panel

DS1
Interface
Module

DS1-P
Interface
Module

DS3
Interface-

32
Module

DS3
Interface-16

Module

Blank
Panel

DS3
Interface-32

Module

DS3
Interface-32

Module

Blank
Panel

Bay
Position 5

Bay
Position 6

Bay
Position 7

Bay
Position 4

Bay
Position 3

Bay
Position 2

Figure 1. A 6-Bay dacs iv-2000 Configuration.

WTS PARADIGM LLC EXHIBIT 1013
4 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

products and enhancements to existing prod-
ucts is problematic for any manufacturing
entity. To really be useful, configurators must
change in lockstep with new product offer-
ings. Although the solutions to these prob-
lems are partly methodological (for example,
early notification of changes from the design
community), the use of C-CLASSIC has played
an important role in our ability to respond
rapidly with quality results.

C-CLASSIC

C-CLASSIC (Weixelbaum 1991) is a frame-based
knowledge representation system derived
from the KL-ONE family of languages (Brach-
man and Schmolze 1985; Brachman, Fikes,
and Levesque 1983; Patel-Schneider 1984;
Woods and Schmolze 1993). It is a direct
descendant of CLASSIC (Borgida et al. 1989),
which was written in Common Lisp and had
the benefit of years of research on semantic
nets and frame systems.3 Because of the
declarative nature of the information encod-
ed in a C-CLASSIC knowledge base, it and other
similar languages are sometimes referred to as
description logics.

C-CLASSIC inherits its two most salient fea-
tures from CLASSIC: a simple description lan-
guage and tractable inference algorithms
(Borgida et al. 1989). C-CLASSIC is an interpret-
ed language written in C and portable to any
UNIX system. C-CLASSIC provides three basic
types of objects: (1) concepts (or frames),
which are assertions or descriptions about the
state of the world; (2) individuals, which are
particular instantiations of concepts; and (3)
roles, which provide a way to relate individu-
als.

C-CLASSIC provides a simple rule-firing
mechanism. A rule consists of a left-hand side
and a right-hand side. The left-hand side is a
concept, and the right-hand side can either
be a concept or a function that returns a con-
cept when called on an individual. Whenever
an individual is classified under a concept, all
rules that have this concept as the left-hand
side fire on the individual, adding the right-
hand side concept or the result of the func-
tion call onto the individual’s descriptor.

Concepts are built up through composition
of components that primarily include previ-
ously defined concepts and various types of
role restrictions. In addition, a controlled
escape mechanism to the C language is pro-
vided through test functions and computed
rules. Test functions are used to test if an indi-
vidual satisfies criteria that are otherwise
inexpressible in C-CLASSIC. Computed rules are

used to compute the right-hand side of rules
that are otherwise inexpressible in C-CLASSIC.
Figure 2 shows C-CLASSIC’s description-lan-
guage syntax, and figure 3 shows how to
define C-CLASSIC objects.

C-CLASSIC provides the following types of
inference: (1) automatic classification of new
concepts and individuals into an existing
knowledge base; (2) completion or propaga-
tion of logical consequences, including but
not limited to inheritance; (3) contradiction
detection; (4) simple forward-chaining rules
(or triggers); and (5) dependency mainte-
nance (for retraction and error recovery).

All these inference mechanisms are used in
PROSE. Classification and inheritance are used
to organize the knowledge base into under-
standable pieces. In addition, an important
side-effect of C-CLASSIC’s ability to classify and
propagate logical consequences is that inter-
nal consistency is maintained within the
knowledge base. Sometimes a user can request
a combination of features that does not repre-
sent a legal configuration. Contradiction
detection is used to detect such errors. Next,
as we discuss in the subsequent section, rules
are needed to represent the product knowl-
edge adequately. Finally, users might some-
times change their minds in the middle of a
PROSE session. Dependency maintenance gives
them the opportunity to retract an action

Articles

FALL 1993 73

Figure 2. C-CLASSIC Description-Language Syntax.

<concept> ::= <concept-name> |
(at-least <integer> <role>) |
(at-most <integer> <role>) |
(between <integer> <integer> <role>) |
(exactly <integer> <role>) |
(all <role> <concept>) |
(fills <role> [<individual> ...]) |
(one-of [<individual> ...]) |
(range <number> <number>) |
(lower-limit <number>) |
(upper-limit <number>) |
(test-c <function> [<c-classic-object> ...]) |
(test-h <function> [<c-classic-object> ...]) |
(and [<concept> ...])

<rule-concept> ::= <concept> |
(computed-concept <function> [<c-classic object> . . .]) |
(computed-fillers <function> <role> [<c-classic object> ...])

<individual> ::= <host-individual> | <classic-individual>

<host-individual> ::= <integer> | <float> | <string>

<classic-individual> ::= <symbol>

<concept-name> ::= <symbol>

<role> ::= <symbol>

WTS PARADIGM LLC EXHIBIT 1013
5 of 12f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

