Patent Assignment Abstract of Title

Notice of References Cited	Application/Control No. $90 / 011,011$		Applicant(s)/Patent Under Reexamination $7,241,034$
	Examiner MY-TRANG N. TON	Art Unit 3992	Page 1 of 1

\star		Document Number Country Code-Number-Kind Code	Date MM-YYY	Name	Classification
\star	A	US-4,733,333	$03-1988$	Shibata et al.	$362 / 40$
	B	US-			
	C	US-			
	D	US-			
	E	US-			
	F	US-			
	G	US-			
	H	US-			
	I	US-			
	J	US-			
	K	US-			
	L	US-			
	M	US-			

FOREIGN PATENT DOCUMENTS

$*$		Document Number Country Code-Number-Kind Code	Date MM-YYYY	Country	Name	Classification
	N					
	O					
	P					
	Q					
	R					
	S					
	T					

NON-PATENT DOCUMENTS

$*$		Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages)
	U	
	w	
	x	

*A copy of this reference is not being furnished with this Office action. (See MPEP § 707.05(a).)
Dates in MM-YYYY format are publication dates. Classifications may be US or foreign.

REQUEST FOR INTER PARTES REEXAMINATION TRANSMITTAL FORM

Address to:

Mail Stop Inter Partes Reexam

 Commissioner for Patents P.O. Box 1450Alexandria, VA 22313-1450

Attorney Docket No.:

Date: May 16, 2011

1. X This is a request for inter partes reexamination pursuant to 37 CFR 1.913 of patent number \qquad 7,241,034 issued July 10, 2007 . The request is made by a third party requester, identified herein below.
2. X a. The name and address of the person requesting reexamination is:

Volkswagen Group of America, Inc.
2200 Ferdinand Porsche Drive
Herndon, Virginia 20171
b. The real party in interest (37 CFR 1.915(b)(8)) is: Volkswagen Group of America, Inc.
3. \square a. A check in the amount of $\$$ \qquad is enclosed to cover the reexamination fee, 37 CFR 1.20(c)(2);
b. The Director is hereby authorized to charge the fee as set forth in 37 CFR 1.20(c)(2) to Deposit Account No. \qquad ; or
$X \quad$ c. Payment by credit card. Form PTO-2038 is attached.
4. X Any refund should be made by \square check or X credit to Deposit Account No. 11-0600 37 CFR 1.26 (c). If payment is made by credit card, refund must be to credit card account.
5. X A copy of the patent to be reexamined having a double column format on one side of a separate paper is enclosed. 37 CFR $1.915(\mathrm{~b})(5)$
6. $\quad \square$ CD-ROM or CD-R in duplicate, Computer Program (Appendix) or large table
\square Landscape Table on CD
7. \square Nucleotide and/or Amino Acid Sequence Submission If applicable, items a. - c. are required.
a. \square Computer Readable Form (CRF)
b. Specification Sequence Listing on:
i. \square CD-ROM (2 copies) or CD-R (2 copies); or
ii. \square paper
c. \square Statements verifying identity of above copies
8. \square A copy of any disclaimer, certificate of correction or reexamination certificate issued in the patent is included.
9. X Reexamination of claim(s) 1-5 is requested.
10. X A copy of every patent or printed publication relied upon is submitted herewith including a listing thereof on Form PTO/SB/08, PTO-1449, or equivalent.
11. X An English language translation of all necessary and pertinent non-English language patents and/or printed publications is included.
This collection of information is required by 37 CFR 1.915. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 18 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Mail Stop Inter Partes Reexam, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.
12. X The attached detailed request includes at least the following items:
a. A statement identifying each substantial new question of patentability based on prior patents and printed publications. 37 CFR 1.915(b)(3)
b. An identification of every claim for which reexamination is requested, and a detailed explanation of the pertinency and manner of applying the cited art to every claim for which reexamination is requested. 37 CFR $1.915(b)(1) \&(3)$.
13. It is certified that the estoppel provisions of 37 CFR 1.907 do not prohibit this reexamination. 37 CFR 1.915(b)(7)
a. It is certified that a copy of this request has been served in its entirety on the patent owner as provided in 37 CFR 1.33 (c).
The name and address of the party served and the date of service are:
The Caldwell Firm, LLC
PO Box 59655, Dept. SVIPGP
Dallas, TX 75229

Date of Service: \qquad ; orb. A duplicate copy is enclosed because service on patent owner was not possible. An explanation of the efforts made to serve patent owner is attached. See MPEP 2620.
15. Third Party Requester Correspondence Address: Direct all communications about the reexamination to:

The address associated with Customer Number: \square
OR
Firm or
Individual Name

Address

KENYON \& KENYON LLP, One Broadway

City New York	State NY	Zip 10004
Country US		
Telephone 212.425 .7200	Email	

16. X The patent is currently the subject of the following concurrent proceeding(s):

a. Copending reissue Application No.
\triangle b. Copending reexamination Control No. 90/011,011
c. Copending Interference No.
d. Copending litigation styled:

WARNING: Information on this form may become public. Credit card information should not be included on this form. Provide credit card information and authorization on PTO-2038.

/Clifford A. Ulrich/
Authorized Signature
Clifford A. Ulrich
Typed/Printed Name

May 16, 2011
Date
42,194
Registration No., if applicable

Privacy Act Statement

The Privacy Act of 1974 (P.L. 93-579) requires that you be given certain information in connection with your submission of the attached form related to a patent application or patent. Accordingly, pursuant to the requirements of the Act, please be advised that: (1) the general authority for the collection of this information is 35 U.S.C. 2(b)(2); (2) furnishing of the information solicited is voluntary; and (3) the principal purpose for which the information is used by the U.S. Patent and Trademark Office is to process and/or examine your submission related to a patent application or patent. If you do not furnish the requested information, the U.S. Patent and Trademark Office may not be able to process and/or examine your submission, which may result in termination of proceedings or abandonment of the application or expiration of the patent.

The information provided by you in this form will be subject to the following routine uses:

1. The information on this form will be treated confidentially to the extent allowed under the Freedom of Information Act (5 U.S.C. 552) and the Privacy Act (5 U.S.C 552a). Records from this system of records may be disclosed to the Department of Justice to determine whether disclosure of these records is required by the Freedom of Information Act.
2. A record from this system of records may be disclosed, as a routine use, in the course of presenting evidence to a court, magistrate, or administrative tribunal, including disclosures to opposing counsel in the course of settlement negotiations.
3. A record in this system of records may be disclosed, as a routine use, to a Member of Congress submitting a request involving an individual, to whom the record pertains, when the individual has requested assistance from the Member with respect to the subject matter of the record.
4. A record in this system of records may be disclosed, as a routine use, to a contractor of the Agency having need for the information in order to perform a contract. Recipients of information shall be required to comply with the requirements of the Privacy Act of 1974, as amended, pursuant to 5 U.S.C. 552a(m).
5. A record related to an International Application filed under the Patent Cooperation Treaty in this system of records may be disclosed, as a routine use, to the International Bureau of the World Intellectual Property Organization, pursuant to the Patent Cooperation Treaty.
6. A record in this system of records may be disclosed, as a routine use, to another federal agency for purposes of National Security review (35 U.S.C. 181) and for review pursuant to the Atomic Energy Act (42 U.S.C. 218(c)).
7. A record from this system of records may be disclosed, as a routine use, to the Administrator, General Services, or his/her designee, during an inspection of records conducted by GSA as part of that agency's responsibility to recommend improvements in records management practices and programs, under authority of 44 U.S.C. 2904 and 2906. Such disclosure shall be made in accordance with the GSA regulations governing inspection of records for this purpose, and any other relevant (i.e., GSA or Commerce) directive. Such disclosure shall not be used to make determinations about individuals.
8. A record from this system of records may be disclosed, as a routine use, to the public after either publication of the application pursuant to 35 U.S.C. 122(b) or issuance of a patent pursuant to 35 U.S.C. 151. Further, a record may be disclosed, subject to the limitations of 37 CFR 1.14, as a routine use, to the public if the record was filed in an application which became abandoned or in which the proceedings were terminated and which application is referenced by either a published application, an application open to public inspection or an issued patent.
9. A record from this system of records may be disclosed, as a routine use, to a Federal, State, or local law enforcement agency, if the USPTO becomes aware of a violation or potential violation of law or regulation.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re Patent of	$:$	James E. SMITH et al.
Patent No.	$:$	$7,241,034$
Issued	$:$	July 10, 2007
Title	$:$	AUTOMATIC DIRECTIONAL CONTROL SYSTEM
		FOR VEHICLE HEADLIGHTS
Application Serial No.	$:$	$10 / 285,312$
Filed	$:$	October 31, 2002
Requester	$:$	Volkswagen Group of America, Inc.

VIA EFS-WEB

Mail Stop Inter Partes Reexam
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450

REQUEST FOR INTER PARTES REEXAMINATION

 OF U.S. PATENT NO. $7,241,034$ PURSUANT TO 37 C.F.R. $\$ 1.915$SIR:
Volkswagen Group of America, Inc. ("VWGoA"), through its undersigned counsel, hereby respectfully requests inter partes reexamination of U.S. Patent No. 7,241,034 pursuant to 35 U.S.C. § 311 et seq. and the provisions of 37 C.F.R. § 1.902 et seq.

TABLE OF CONTENTS

I. IDENTIFICATION PURSUANT TO 37 C.F.R. § $1.915(\mathrm{~b})(1)$ 1
II. COPY OF '034 PATENT PURSUANT TO 37 C.F.R. § $1.915(\mathrm{~b})(5)$1
III. CERTIFICATION PURSUANT TO 37 C.F.R. § $1.915(\mathrm{~b})(7)$ 1
IV. IDENTIFICATION OF REAL PARTY IN INTEREST PURSUANT TO 37 C.F.R. § $1.915(\mathrm{~b})(8)$ 1
V. PROCEEDINGS RELATED TO '034 PATENT 1
VI. THE '034 PATENT AND ITS PROSECUTION 2
A. Prosecution of '312 Application 3
B. Pending Ex Parte Reexamination of '034 Patent 7
VII. CITATIONS OF PRIOR ART PATENTS AND PRINTED PUBLICATIONS THAT ARE PRESENTED TO PROVIDE SUBSTANTIAL NEW QUESTIONS OF PATENTABILITY PURSUANT TO 37 C.F.R. § $1.915(\mathrm{~b})(2)$ 9
VIII. STATEMENTS POINTING OUT EACH SUBSTANTIAL NEW QUESTION OF PATENTABILITY PURSUANT TO 37 C.F.R.§ $1.915(\mathrm{~b})(3)$. 10
IX. DETAILED EXPLANATIONS PURSUANT TO 37 C.F.R. § $1.915(\mathrm{~b})(3)$ 13

1. Claims 1, 2, 4, and 5 of the '034 Patent Are Anticipated by Uchida Under 35 U.S.C. $\S 102(\mathrm{~b})$ 16
2. Claims 1, 2, 4, and 5 of the '034 Patent Are Anticipated by Takahashi Under 35 U.S.C. § 102(b) 17
3. Claims 1, 2, 4, and 5 of the '034 Patent Are Anticipated by Hussman Under 35 U.S.C. § 102(b) 19
4. Claims 1 and 5 of the ' 034 Patent Are Anticipated by Miskin et al. Under 35 U.S.C. § 102(b) 21
5. Claims 1 and 5 of the '034 Patent Are Anticipated by Leleve Under 35 U.S.C. § 102(b). 22
6. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over The Combination of Toda et al. and Uchida Under 35 U.S.C. § 103(a) 23
7. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over the Combination of Toda et al. and Takahashi Under 35 U.S.C. § 103(a) 24
8. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over the Combination of Toda et al. and Hussman Under 35 U.S.C. § 103(a) 26
9. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over the Combination of Toda et al. and Miskin et al. Under 35 U.S.C. § 103(a) 28
10. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over The Combination of Toda et al. and Leleve Under 35 U.S.C. § 103(a) 29
11. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Unpatentable Over the Combination of Okuchi et al. and Uchida Under 35 U.S.C. § 103(a) 31
12. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over the Combination of Okuchi et al. and Takahashi Under 35 U.S.C. § 103(a).33
13. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over the Combination of Okuchi et al. and Hussman Under 35 U.S.C. § 103(a)34
14. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over the Combination of Okuchi et al. and Miskin et al. Under 35 U.S.C. § 103(a)36
15. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over the
Combination of Okuchi et al. and Leleve Under 35 U.S.C. § 103(a) 38
16. Claims 1 to 5 of the ' 034 Patent Are Unpatentable Over the Combination of Gotoh and Uchida Under 35 U.S.C. § 103(a)40
17. Claims 1 to 5 of the ' 034 Patent Are Unpatentable Over the Combination of Gotoh and Takahashi Under 35 U.S.C. § 103(a)42
18. Claims 1 to 5 of the ' 034 Patent Are Unpatentable Over the Combination of Gotoh and Hussman Under 35 U.S.C. § 103(a)43
19. Claims 1, 2, 3, and 5 of the ' 034 Patent Are Unpatentable Over the Combination of Gotoh and Miskin et al. Under 35 U.S.C. § 103(a)45
20. Claims 1 to 5 of the '034 Patent Are Unpatentable Over the
Combination of Gotoh and Leleve Under 35 U.S.C. § 103(a) 47
21. Proposed Claims 1, 2, 4 to 6,9 to $13,20,22,24,25,37$, $38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination Are Anticipated by Uchida Under 35 U.S.C. § 102(b).48
22. Proposed Claims 1, 2, 4 to 6,9 to $11,17,18$, 20 to $22,24,25,28,33,34,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination Are Anticipated by Takahashi Under 35 U.S.C. § 102(b)50
23. Proposed Claims 1, 2, 4 to $6,9,10,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination Are Anticipated by Hussman Under 35 U.S.C. $\S 102(\mathrm{~b})$52
24. Proposed Claims 1, 2, 4 to 6,9 to $13,17,18,20$ to 22 , $24,25,28,29,36$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination of Toda et al. and Uchida Under 35 U.S.C. § 103(a)53
25. Proposed Claims 1, 2, 4 to 6,9 to $13,17,18,20$ to $22,24,25$, $28,29,33,34,36$ to 42, 44, and 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination of Toda et al. and Takahashi Under 35 U.S.C. § 103(a)56
26. Proposed Claims $1,2,4$ to 6,9 to $13,17,18,20$ to 22,24 ,
25, 28, 29, 36 to 42, 44, and 45 of the '034 Ex Parte

Reexamination Are Unpatentable Over the Combination
Of Toda et al. and Hussman Under 35 U.S.C. § 103(a) 58
27. Proposed Claims $1,2,4$ to 6,9 to 13,15 to 18,20 to 22 , $24,25,28,29,33,35,37$ to 42,44 , and 45 of the '034 Ex Parte Reexamination Are Unpatentable Over the Combination of Okuchi et al. and Uchida Under 35 U.S.C. § 103(a)61
28. Proposed Claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,24,25$, $28,29,33$ to 35,37 to 42,44 , and 45 of the ' $034 E x$
Parte Reexamination Are Unpatentable Over the Combination Of Okuchi et al. and Takahashi Under 35 U.S.C. § 103(a)63
29. Proposed Claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,25,28$, 29, 33 to 35, 37 to 42, 44, and 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination Of Okuchi et al. and Hussman Under 35 U.S.C. § 103(a)66
30. Proposed Claims 1 to $14,20,22,24$ to $26,28,29,37$, 38 , and 41 to 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination Of Gotoh and Uchida Under 35 U.S.C. § 103(a)69
31. Proposed Claims 1 to $12,14,16$ to 18,20 to 22,24 to 26 , $28,29,33,34,37,38$, and 41 to 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination of Gotoh and Takahashi Under 35 U.S.C. § 103(a).................... 71
32. Proposed Claims 1 to $13,24,26,28,29,37,38$, and 41 to 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination of Gotoh and Hussman Under 35 U.S.C. § 103(a).74

33. Proposed Claims $17,19,21,23,26$, and 30 to 32 of the
'034 Ex Parte Reexamination Are Unpatentable in
View of the Combination of Uchida and the Admitted Prior Art
Described in the '034 Patent Specification Under 35 U.S.C. § 103(a)............ 76
34. Proposed Claims 19, 23, 26, and 30 to 32 of the ' 034
Ex Parte Reexamination Are Unpatentable in View of the Combination of Takahashi and the Admitted Prior Art Described in the '034 Patent Specification Under 35 U.S.C. § 103(a)78
35. Proposed Claims 17 to 21,23 to 26 , and 30 to 32 of the ' 034 Ex Parte Reexamination Are Unpatentable in View of the Combination of Hussman and the Admitted Prior Art Described in the '034 Patent Specification Under 35 U.S.C. § 103(a) 80
36. Proposed Claim 27 of the ' 034 Ex Parte Reexamination
Is Unpatentable Over the Combination of
Uchida and Wassen et al. Under 35 U.S.C. § 103(a) 82
37. Proposed Claim 27 of the ' 034 Ex Parte Reexamination
Is Unpatentable Over the Combination of
Takahashi and Wassen et al. Under 35 U.S.C. § 103(a)
84
38. Proposed Claim 27 of the ' 034 Ex Parte Reexamination Is Unpatentable Over the Combination of Hussman ' 460 and Wassen et al. Under 35 U.S.C. § 103(a) 85
X. PROPOSED REJECTION OF PROPOSED
CLAIMS 12 TO 16 UNDER 35 U.S.C. § 314(A) 87
XI. PROPOSED REJECTION OF PROPOSED CLAIMS 12 TO 16 UNDER 35 U.S.C. § 112, 94 88
XII. FEE PURSUANT TO 37 C.F.R. § 1.915(a) 88
XIII. CERTIFICATION PURSUANT TO 37 C.F.R. § $1.915(\mathrm{~b})(6)$ 88
XIV. CONCLUSION 89

EXHIBITS

Exhibit 1 U.S. Patent No. 7,241,034
Exhibit 2 "Original Complaint for Patent Infringement," filed on March 8, 2010, BALTHER TECHNOLOGIES, LLC, v. AM. HONDA MOTOR CO. INC., et al., Case No. 6:10-CV-78-LED (E.D. Tex.)
Exhibit 3 "Plaintiff's Notice of Voluntary Dismissal," filed on May 17, 2010, BALTHER TECHNOLOGIES, LLC, v. AM. HONDA MOTOR CO. INC., et al., Case No. 6:10-CV-78-LED (E.D. Tex.)
Exhibit 4 "Order," dated May 17, 2010, BALTHER TECHNOLOGIES, LLC, v. AM. HONDA MOTOR CO. INC., et al., Case No. 6:10-CV-78-LED (E.D. Tex.)
Exhibit 5 Listing of Prior Art Patents and Printed Publications that Raise Substantial New Questions of Patentability
Exhibit 6 United Kingdom Patent Application Publication No 2309773 to Uchida
Exhibit 7 United Kingdom Patent Application Publication No. 2309774 to Takahashi
Exhibit 8 U.S. Patent No. 5,182,460 to Hussman
Exhibit 9 German Patent Application Publication No. 3110094 to Miskin et al.
Exhibit 10 Certified English-Language Translation of German Patent Application Publication No. 3110094 to Miskin et al.
Exhibit 11 German Patent Application Publication No. 3129891 to Leleve
Exhibit 12 Certified English-Language Translation of German Patent Application Publication No. 3129891 to Leleve

Exhibit 13 U.S. Patent No. 6,305,823 to Toda et al.
Exhibit 14 U.S. Patent No. 6,193,398 to Okuchi et al.
Exhibit 15 U.S. Patent No. 5,909,949 to Gotoh
Exhibit 16 U.S. Patent No. 4,954,933 to Wassen et al.
Exhibit 17 Certificate of Service

I. IDENTIFICATION PURSUANT TO 37 C.F.R. § 1.915(b)(1)

Inter partes reexamination of claims 1 to 5 of U.S. Patent No. 7,241,034 ("the '034 patent") is requested.

II. COPY OF '034 PATENT PURSUANT TO 37 C.F.R. \& 1.915(b)(5)

Pursuant to 37 C.F.R. § $1.915(\mathrm{~b})(5)$, annexed hereto as Exhibit 1 is a copy of the entire '034 patent including the front face, drawings, specification and claims (in double column format) for which inter partes reexamination is requested.

To the best of VWGoA's knowledge, as of the filing date of this Request, no disclaimer, certificate of correction, or reexamination certificate has been issued in connection with the ' 034 patent.

III. CERTIFICATION PURSUANT TO 37 C.F.R. § 1.915(b)(7)

Pursuant to 37 C.F.R. § 1.915(b)(7), VWGoA certifies that the estoppel provisions of 37 C.F.R. § 1.907 do not prohibit the inter partes reexamination.

IV. IDENTIFICATION OF REAL PARTY IN
 INTEREST PURSUANT TO 37 C.F.R. $\& 1.915(b)(8)$

The real party in interest is VOLKSWAGEN GROUP OF AMERICA, INC., which is a subsidiary of VOLKSWAGEN AG.

V. PROCEEDINGS RELATED TO '034 PATENT

Although VWGoA is not obligated to inform the Office of proceedings related to the '034 patent, the Office is hereby informed of the following proceeding that relates to the '034 patent which is pending as of the filing date of this Request:

EX PARTE REEXAMINATION OF THE '034 PATENT, Control Number 90/011,011 (Request for Ex Parte Reexamination filed July 10, 2010) ('the '034 Ex Parte Reexamination"). Pursuant to M.P.E.P. § 2282, ${ }^{1}$ VWGoA is filing in the '034 Ex Parte Reexamination a "Notice of Concurrent Proceeding" to inform the Office of the filing of this Request.

The Office is hereby further informed of the following concluded proceeding that related to the ' $034:^{2}$

> BALTHER TECHNOLOGIES, LLC, v. AM. HONDA MOTOR CO. INC., et al., Case No. 6:10-CV-78-LED (E.D. Tex. Complaint Filed on March 8, 2010) ("the BALTHER case"). Plaintiff Balther Technologies, LLC ("Balther") asserted infringement of the '034 patent by the Requester. Requester was therefore a party to the BALTHER case. A copy of the "Original Complaint for Patent Infringement" filed on March 8,2010 is annexed hereto as Exhibit 2. A copy of "Plaintiff's Notice of Voluntary Dismissal" filed on May 17, 2010 is annexed hereto as Exhibit 3. A copy of the "Order" dismissing the BALTHER case pursuant to Plaintiff's request dated May 18,2010 is annexed hereto as Exhibit 4.

VI. THE '034 PATENT AND ITS PROSECUTION

The '034 patent issued on July 10, 2007 from U.S. Patent Application Serial No. 10/285,312 ("the '312 application"), filed on October 31, 2002. The '034 patent states that it claims the benefit of U.S. Provisional Application No. 60/369,447, filed on April 2, 2002,

[^0]U.S. Provisional Application No. 60/356,703, filed on February 13, 2002, and U.S. Provisional Application No. 60/335,409, filed on October 31, 2001.

A. Prosecution of ' 312 Application

As originally filed, the ' 312 application included thirteen claims, of which application claim 1 was the only independent claim. Application claim 1 is reproduced below:

1. An automatic directional control system for a vehicle headlight comprising:
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;
a controller that is responsive to said sensor signal for generating an output signal; and
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.

An Office Action was issued on December 23, 2003, in which: (1) application claims 1 to 2,4 to 8 , and 10 to 13 were rejected under 35 U.S.C. $\S 102(\mathrm{e})$ as anticipated by U.S. Patent No. 6,305,823 ("Toda et al."); (2) application claims 1 to 2,4 to 8 , and 10 to 13 were rejected under 35 U.S.C. § $102(\mathrm{e})$ as anticipated by U.S. Patent No. 6,193,398 ("Okuchi et al.''); and (3) application claims 1 to 3 and 9 were rejected under 35 U.S.C. § 102(b) as anticipated by U.S. Patent No. 5,909,949 ("Gotoh").

In an Amendment submitted on March 23, 2004, application claim 6 was cancelled, and application claims 1 and 7 were amended as follows:

1. An automatic directional control system for a vehicle headlight comprising:
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;
a controller that is responsive to said sensor signal for generating an output signal only when said sensor signal changes by more than a predetermined amount; and
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.
2. An The automatic directional control system defined in Claim 1 wherein said for a vehicle headlight comprising:
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;
a controller that is responsive to a rate of change of said sensor signal for generating said output signal; and
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.

The "Remarks" section of the Amendment alleged that: (1) "None of the art of record is believed to show or suggest a controller that is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined amount," as recited in amended claim 1, and (2) "None of the art of record is believed to show or suggest a controller that is responsive to a rate of change of the sensor signal for generating the output signal," as recited in amended claim 7. Amendment at page 5.

A Final Office Action was issued on June 15, 2004, in which all of the claims were again rejected. In particular, (1) application claims 1 to 2,4 to 5,7 to 8 , and 10 to 13 were rejected under 35 U.S.C. § 102(e) as anticipated by Toda et al.; (2) application claims 1 to 2, 4 to 5,7 to 8 , and 10 to 13 were rejected under 35 U.S.C. $\S 102(\mathrm{e})$ as anticipated by Okuchi et al.; and (3) application claims 1 to 3 and 9 were rejected under 35 U.S.C. § 102(b) as anticipated by Gotoh. The Examiner further stated that the applicants' arguments had been considered but were not persuasive.

On September 15, 2004, the applicants filed a Request for Reconsideration along with a Notice of Appeal. On December 28, 2004, the Examiner issued an Advisory Action, which stated that the "request for reconsideration has been considered but does NOT place the application in condition for allowance because [t]he prior art of record including Toda et al[.] in particular reads on independent claims 1 and 7.

Concurrent with the filing of a Request for Continued Examination on February 17, 2005, the applicants again argued that the claims, as amended on March 23, 2004, were allowable. Again, the applicants argued in particular that (1) "None of the art of record is believed to show or suggest a controller that is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined amount," as recited in amended claim 1, and (2) "None of the art of record is believed to show or suggest a controller that is responsive to a rate of change of the sensor signal for generating the output signal," as recited in amended claim 7. Request for Continued Examination, Remarks at pages 2 to 4 (emphasis in original).

Another Office Action was issued on April 14, 2005 again rejecting all of the pending claims on the same grounds as the June 15, 2004 Office Action, and also concluding that the arguments of the applicants were not persuasive. The applicants replied to the April 14, 2005 Office Action by submitting a Response on July 14, 2005, in which the applicants stated that the limitation, "wherein the controller generates an output signal only when the sensor signal changes by more than a predetermined amount" (emphasis in original), "is not merely a recitation of 'intended use' alleged by the Examiner, but rather an important aspect of the operation of the headlight automatic directional control system." Response at page 2 .

The Examiner issued a Final Office Action on October 5, 2005, again rejecting the claims as anticipated by Toda et al., Okuchi et al., and Gotoh et al., and again finding the applicants arguments to be unpersuasive.

The applicants then filed a Notice of Appeal and a Pre-Appeal Brief Request for Review on January 5, 2006, again restating their position. On February 3, 2006, a Notice of Panel Decision from Pre-Appeal Brief Review was issued, which states that the application remains under appeal because there is at least one actual issue for appeal.

On August 9, 2006, the applicants filed a Request for Continued Examination with a Preliminary Amendment, adding new independent claim 14, and again arguing that independent claims 1 and 7 were patentable. Newly added independent claim 14 is reproduced below:
14. An automatic directional control system for a vehicle headlight comprising:
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;
a controller that is responsive to said sensor signal for generating an output signal only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.

According to the "Remarks" section of the Preliminary Amendment, (1) the cited references, i.e., Toda et al., Okuchi et al., and Gotoh, fail to disclose the limitation of claim 1 that the controller is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined amount; (2) the cited references, i.e., Toda et al., Okuchi et al., and Gotoh, fail to disclose the limitation of claim 14 that the controller is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined minimum threshold amount to prevent the actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and (3) the cited references, i.e., Toda et al. and Okuchi et al., fail to disclose the limitation of claim 7 that the controller is responsive to a rate of change of the sensor signal for generating the output signal.

A further Office Action was issued on October 6, 2006 in which all of the claims were rejected. In particular, (1) application claims 1 to 2,4 to 5,7 to 8 , and 10 to 14 were rejected under 35 U.S.C. § 102(e) as anticipated by Toda et al.; (2) application claims 1 to 2, 4 to 5, 7 to 8 , and 10 to 14 were rejected under 35 U.S.C. $\S 102(\mathrm{e})$ as anticipated by Okuchi et al.; and (3) application claims 1 to 3 and 9 were rejected under 35 U.S.C. § 102(b) as anticipated by Gotoh. The Examiner further stated that the applicants' arguments had been considered but were not persuasive.

In a January 8, 2007 Response, the applicants again argued that (1) the cited references, i.e., Toda et al., Okuchi et al., and Gotoh, fail to disclose the limitation of claim 1 that the controller is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined amount; (2) the cited references, i.e., Toda et al., Okuchi et al., and Gotoh, fail to disclose the limitation of claim 14 that the controller is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined minimum threshold amount to prevent the actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and (3) the cited references, i.e., Toda et
al. and Okuchi et al., fail to disclose the limitation of claim 7 that the controller is responsive to a rate of change of the sensor signal for generating the output signal. The applicants further argued that claims 1 and 14 "define a system wherein the actuator does not change the headlight according to the output signal generated by the sensor unless the sensor signal changes by more than a predetermined amount" (emphasis in original).

On January 31, 2007, an Interview took place. In the Interview Summary, the Examiner summarized the substance of the Interview as follows:

We discussed independent claims 1,7 , and 14 . We agreed that claim 14 is allowable over the prior art of record because of the specific limitation of "a predetermined minimum threshhold [sic] amount to prevent the actuator from being operated continiously $[$ sic $]$ or duly in response to relatively small variations in the sensed operating speed. $[$ sic $]$ "

Interview Summary (emphasis added).
That same day, the applicants submitted an Amendment, cancelling claims 1 and 7 to 13, and amending dependent claims 2 to 5 to depend from independent claim 14.

A Notice of Allowance issued on April 19, 2007, in which application claims 2 to 5 and 14 were indicated to be allowed. The Examiner stated that the 'applicant's amendment and accompanying remarks has persuaded the examiner to place the application in condition for allowance." Thus, it is clear that application claim 14 was allowed due to the inclusion of the limitation:
a controller that is responsive to said sensor signal for generating an output signal only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition.

Independent application claim 14 corresponds to claim 1 in the ' 034 patent, the sole independent claim of the ' 034 patent.

B. Pending Ex Parte Reexamination of '034 Patent

On May 25, 2010, Balther Technologies, LLC ("Balther"), the stated owner of the '034 patent, filed an incomplete request for ex parte reexamination of the ' 034 patent, and on July 9, 2010, Balther filed a "Substitute Request for Ex Parte Reexamination of U.S. Patent No. $7,241,034$ ' requesting reexamination of the ' 034 patent. According to the records of the Office, the filing date of the request for reexamination is July 10, 2010, the date the requisite fee was received, and Reexamination Control No. 90/011,011 has been assigned to the ex
parte reexamination proceeding. In its request, Balther admitted that claims 1 and 3 of the '034 patent were anticipated by U.S. Patent No. 4,733,333 ("Shibata") under 35 U.S.C. § 102(b), as Shibata teaches all of the limitations of claims 1 and 3.

On August 12, 2010, an Order Granting Request for Ex Parte Reexamination issued granting reexamination with respect to claims 1 and 3. On January 12, 2011 an Office Action issued rejecting claims 1 and 3 under 35 U.S.C. $\S 102(\mathrm{~b})$ as anticipated by Shibata.

In response to the Office Action, on January 18, 2011 Balther submitted an "Amendment A," and then, on February 16, 2011, Balther submitted a "Substitute Amendment A," proposing amendments to claims 1 to 5 and proposing the addition of new claims dependent claims 6 to 45 . Substitute Amendment A proposed the following amendment to independent claim 1, the sole independent claim:

1. An automatic directional control system for a vehicle headlight, comprising:
[a] two or more sensors that [is] are each adapted to generate a signal that is representative of a condition of [the] a vehicle, said sensed conditions including[es] [one] two or more of road speed, steering angle, pitch, and suspension height of the vehicle;
a controller that is responsive to said two or more sensor signals for generating [an] at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent [said] at least one actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and
[an] said at least one actuator [that is] being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.

In the Remarks section of Substitute Amendment A, Balther argued that Shibata fails to teach "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Substitute Amendment A at page 9 (emphasis in original). Thus, it appears that Balther considers proposed amended claim 1 to be patentable because it requires two or more sensors to generate a signal.

VII. CITATIONS OF PRIOR ART PATENTS AND PRINTED PUBLICATIONS THAT ARE PRESENTED TO PROVIDE SUBSTANTIAL NEW QUESTIONS OF PATENTABILITY PURSUANT TO 37 C.F.R. $\mathbb{1} 1.915(b)(2)$

Substantial new questions of patentability affecting claims 1 to 5 of the ' 034 patent under 35 U.S.C. $\S \S 102$ and 103 are raised by the prior art patents and printed publications cited below pursuant to 37 C.F.R. $\S 1.915(\mathrm{~b})(2)$. Annexed hereto as Exhibit 5 is a listing of, inter alia, the prior art patents and printed publications that raise substantial new questions of patentability.

The following patents and publications constitute prior art against the '034 patent, under the subsections of 35 U.S.C. § 102 indicated below:

1. United Kingdom Patent Application Publication No 2309773 ("Uchida"), which published on June 8, 1997 and therefore constitutes prior art against the '034 patent under 35 U.S.C. § 102(b).
2. United Kingdom Patent Application Publication No. 2309774 ("Takahashi"), which published on June 8, 1997 and therefore constitutes prior art against the '034 patent under 35 U.S.C. § 102(b).
3. U.S. Patent No. 5,182,460 ("Hussman"), which issued on January 26, 1993 and therefore constitutes prior art against the '034 patent under 35 U.S.C. § 102(b).
4. German Patent Application Publication No. 3110094 ("Miskin et al."), which published on September 30, 1982 and therefore constitutes prior art against the '034 patent under 35 U.S.C. § 102(b).
5. German Patent Application Publication No. 3129891 ("Leleve"), which published on June 9, 1982 and therefore constitutes prior art against the '034 patent under 35 U.S.C. § 102(b).
6. U.S. Patent No. 6,305,823 ("Toda et al."), which was filed on October 14, 1999 and issued on October 23, 2001 and therefore constitutes prior art against the '034 patent under 35 U.S.C. § 102(e).
7. U.S. Patent No. 6,193,398 ("Okuchi et al."), which was filed on June 16, 1999 and issued on February 27, 2001 and therefore constitutes prior art against the '034 patent under 35 U.S.C. § 102(e).
8. U.S. Patent No. 5,909,949 ("Gotoh"), which issued on June 8, 1999 and therefore constitutes prior art against the ' 034 patent under 35 U.S.C. $\S 102$ (b).
9. U.S. Patent No. 4,954,933 ("Wassen et al."), which issued on September 4, 1990 and therefore constitutes prior art against the '034 patent under 35 U.S.C. § 102(b).

A copy of every prior art patent and printed publication relied upon or referred to herein is submitted herewith as required by 37 C.F.R. § $1.915(\mathrm{~b})(4)$, as follows:
A. A copy of Uchida is annexed hereto as Exhibit 6.
B. A copy of Takahashi is annexed hereto as Exhibit 7.
C. A copy of Hussman is annexed hereto as Exhibit 8.
D. A copy of Miskin et al. is annexed hereto as Exhibit 9, and a certified Englishlanguage translation of Miskin et al. is annexed hereto as Exhibit 10.
E. A copy of Leleve is annexed hereto as Exhibit 11, and a certified Englishlanguage translation of Leleve is annexed hereto as Exhibit 12.
F. A copy of Toda et al. is annexed hereto as Exhibit 13.
G. A copy of Okuchi et al. is annexed hereto as Exhibit 14.
H. A copy of Gotoh is annexed hereto as Exhibit 15.
I. A copy of Wassen et al. is annexed hereto as Exhibit 16.

VII. STATEMENTS POINTING OUT EACH SUBSTANTIAL NEW OUESTION OF PATENTABILITY PURSUANT TO 37 C.F.R. § $1.915(\mathrm{~b})(\mathbf{3})$

In accordance with 37 C.F.R. § $1.915(\mathrm{~b})(3)$, reexamination of claims 1 to 5 of the '034 patent is requested in view of the prior art patents and printed publications cited above in Section VII based on the following substantial new questions of patentability and proposed grounds of rejection:

1. Claims 1, 2, 4, and 5 Are Anticipated by Uchida Under 35 U.S.C. § 102(b)
2. Claims 1, 2, 4, and 5 Are Anticipated by Takahashi Under 35 U.S.C. § 102(b)
3. Claims 1, 2, 4, and 5 Are Anticipated by Hussman Under 35 U.S.C. § 102(b)
4. Claims 1 and 5 Are Anticipated by Miskin et al. Under 35 U.S.C. § 102(b)
5. Claims 1 and 5 Are Anticipated by Leleve Under 35 U.S.C. § 102(b)
6. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Toda et al. and Uchida Under 35 U.S.C. § 103(a)
7. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Toda et al. and Takahashi Under 35 U.S.C. § 103(a)
8. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Toda et al. and Hussman Under 35 U.S.C. § 103(a)
9. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Toda et al. and Miskin et al. Under 35 U.S.C. § 103(a)
10. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Toda et al. and Leleve Under 35 U.S.C. § 103(a)
11. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Okuchi et al. and Uchida Under 35 U.S.C. § 103(a)
12. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Okuchi et al. and Takahashi Under 35 U.S.C. § 103(a)
13. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Okuchi et al. and Hussman Under 35 U.S.C. § 103(a)
14. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Okuchi et al. and Miskin et al. Under 35 U.S.C. § 103(a)
15. Claims 1, 2, 4, and 5 Are Unpatentable Over the Combination of Okuchi et al. and Leleve Under 35 U.S.C. § 103(a)
16. Claims 1 to 5 Are Unpatentable Over the Combination of Gotoh and Uchida Under 35 U.S.C. § 103(a)
17. Claims 1 to 5 Are Unpatentable Over the Combination of Gotoh and Takahashi Under 35 U.S.C. § 103(a)
18. Claims 1 to 5 Are Unpatentable Over the Combination of Gotoh and Hussman Under 35 U.S.C. § 103(a)
19. Claims 1, 2, 3, and 5 Are Unpatentable Over the Combination of Gotoh and Miskin et al. Under 35 U.S.C. § 103(a)
20. Claims 1 to 5 Are Unpatentable Over the Combination of Gotoh and Leleve Under 35 U.S.C. § 103(a)

Requester proposes the following grounds of rejection against proposed amended claims 1 to 46 as presented by Balther in its Substitute Amendment A filed on February 16, 2011 in the Ex Parte Reexamination of the ' 034 patent:
21. Proposed Claims 1, 2, 4 to 6,9 to $13,20,22,24,25,37,38,41,42$, 44, and 45 Are Anticipated by Uchida Under 35 U.S.C. § 102(b)
22. Proposed Claims 1, 2, 4 to 6,9 to $11,17,18,20,21,22,24,25,28$, 33, 34, 37, 38, 41, 42, 44, and 45 Are Anticipated by Takahashi Under 35 U.S.C. § 102(b)
23. Proposed Claims $1,2,4$ to $6,9,10,37,38,41,42,44$, and 45 Are Anticipated by Hussman Under 35 U.S.C. $\S 102$ (b)
24. Proposed Claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28$, 29,36 to 42,44 , and 45 Are Unpatentable Over the Combination of Toda et al. and Uchida Under 35 U.S.C. § 103(a)
25. Proposed Claims 1, 2, 4 to 6,9 to $13,17,18,20$ to $22,24,25,28$, $29,33,34,36$ to 42,44 , and 45 Are Unpatentable Over the Combination of Toda et al. and Takahashi Under 35 U.S.C. § 103(a)
26. Proposed Claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28$, 29,36 to 42,44 , and 45 Are Unpatentable Over the Combination of Toda et al. and Hussman Under 35 U.S.C. § 103(a)
27. Proposed Claims 1, 2, 4 to 6,9 to 13,15 to 18,20 to $22,24,25,28$, $29,33,35,37$ to 42,44 , and 45 Are Unpatentable Over the Combination of Okuchi et al. and Uchida Under 35 U.S.C. § 103(a)
28. Proposed Claims 1, 2, 4 to 6,9 to 13,15 to 18,20 to $22,24,25,28$, 29,33 to 35,37 to 42,44 , and 45 Are Unpatentable Over the Combination of Okuchi et al. and Takahashi Under 35 U.S.C. § 103(a)
29. Proposed Claims 1, 2, 4 to 6,9 to 13,15 to 18,20 to $22,25,28,29$, $33,35,37$ to 42,44 , and 45 Are Unpatentable Over the Combination of Okuchi et al. and Hussman Under 35 U.S.C. § 103(a)
30. Proposed Claims 1 to $13,20,22,24$ to $26,28,29,37,38$, and 41 to 45 Are Unpatentable Over the Combination of Gotoh and Uchida Under 35 U.S.C. § 103(a)
31. Proposed Claims 1 to $12,14,16$ to 18,20 to 22,24 to $26,28,29$, 33, 34, 37, 38, and 41 to 45 Are Unpatentable Over the Combination of Gotoh and Takahashi Under 35 U.S.C. § 103(a)
32. Proposed Claims 1 to $13,24,26,28,29,37,38$, and 41 to 45 Are Unpatentable Over the Combination of Gotoh and Hussman Under 35 U.S.C. § 103(a)
33. Proposed Claims $17,19,21,23,26$, and 30 to 32 Are Unpatentable in View of the Combination of Uchida and the Admitted Prior Art Described in the '034 Patent Specification Under 35 U.S.C. § 103(a)
34. Proposed Claims 19, 23, 26, and 30 to 32 Are Unpatentable in View of the Combination of Takahashi and the Admitted Prior Art Described in the '034 Patent Specification Under 35 U.S.C. § 103(a)
35. Proposed Claims 17 to 21, 23 to 26, and 30 to 32 Are Unpatentable in View of the Combination of Hussman and the Admitted Prior Art Described in the '034 Patent Specification Under 35 U.S.C. § 103(a)
36. Proposed Claim 27 Is Unpatentable Over the Combination of Uchida and Wassen et al. Under 35 U.S.C. § 103(a)
37. Proposed Claim 27 Is Unpatentable Over the Combination of Takahashi and Wassen et al. Under 35 U.S.C. § 103(a)
38. Proposed Claim 27 of Is Unpatentable Over the Combination of Hussman and Wassen et al. Under 35 U.S.C. § 103(a)

IX. DETAILED EXPLANATIONS PURSUANT TO 37 C.F.R. § $1.915(\mathrm{~b})(3)$

The following statements are made, pursuant to 37 C.F.R. § $1.915(\mathrm{~b})(3)$, pointing out each substantial new question of patentability, and each proposed ground of rejection, based on the prior art patents and printed publications cited above in Section VII and annexed hereto as Exhibits 6 to 16 , in accordance with the "broadest reasonable interpretation" standard as set forth in M.P.E.P. $\S 2258(\mathrm{I})(\mathrm{G}),{ }^{3}$ which also applies to inter partes reexamination proceedings (M.P.E.P. § 2658). As set forth in detail below, the foregoing prior art patents and printed publications would have been considered important by a reasonable Examiner in deciding whether to allow claims 1 to 5 of the '034 patent. Therefore, these prior art patents and printed publications raise substantial new questions of patentability. In addition, the prior art patents and printed publications cited above should be

[^1]considered to be important to a reasonable Examiner in determining whether claims 1 to 46, as proposed by Balther in the Ex Parte Reexamination of the '034 patent, are patentable.

The criteria for determining whether a substantial new question of patentability is present is set forth in M.P.E.P. § 2642(I), which states:
[F]or a substantial new question of patentability to be present, it is only necessary that:
(A) The prior art patents and/or printed publications raise a substantial question of patentability regarding at least one claim, i.e., the teaching of the prior art patents and printed publications is such that a reasonable examiner would consider the teaching to be important in deciding whether or not the claim is patentable; and
(B) The same question of patentability as to the claim has not been decided by the Office in a previous examination or pending reexamination of the patent or in a final holding of invalidity by the Federal Courts in a decision on the merits involving the claim. (emphasis in original).

With respect to the original prosecution of the ' 034 patent, this Request presents substantial new questions of patentability. It should be noted that of the prior art documents that are relied upon in this request, only Toda et al., Okuchi et al., and Gotoh were considered by the Examiner during the prosecution of the ' 034 patent. While the Examiner relied on these references in anticipation rejections under 35 U.S.C. §§ 102(b) and (e), this Request presents substantial new questions of patentability and proposed obviousness rejections based on these references under 35 U.S.C. § 103(a). These questions of patentability and obviousness rejections were not decided during the original prosecution of the '034 patent. Thus, substantial new questions of patentability are presented herein with respect to Toda et al., Okuchi et al., and Gotoh. Furthermore, this Request cites prior art patents and printed publications that disclose the following limitation of claim 1 of the '034 patent, which apparently lead to its allowance:
a controller that is responsive to said sensor signal for generating an output signal only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition.

With respect to the '034 Ex Parte Reexamination, this Request also presents substantial new questions of patentability. As of the filing date of the Request, the only question of patentability that is being addressed in the '034 Ex Parte Reexamination is the question of anticipation of claims 1 and 3 under 35 U.S.C. § 102(b) by Shibata.

As indicated above, the '034 Ex Parte Reexamination was requested based on Balther's admission that Shibata anticipates claims 1 and 3 under 35 U.S.C. § 102(b), and the Office Action dated January 12, 2011 rejected claims 1 and 3 under 35 U.S.C. § 102(b) as anticipated by Shibata. As further indicated above, Balther responded to the Office Action by proposing amendments to claims 1 to 5 and proposing the addition of new dependent claims 6 to 45 . According to Balther, "Shibata fails to teach 'two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Substitute Amendment A at page 9 (emphasis in original). This Request cites prior art patents and printed publications that disclose the foregoing limitation of proposed amended claim 1.

Additionally, only claims 1 and 3 of the ' 034 patent are under reexamination in the '034 Ex Parte Reexamination. That is, claims 2, 4, and 5 are not being reexamined in the '034 Ex Parte Reexamination. This Request presents questions of patentability affecting claims 2,4 , and 5 , and, as such, presents questions of patentability that are necessarily different from the only question of patentability that is being addressed in the '034 Ex Parte Reexamination.

Each of the questions of patentability presented herein are new questions of patentability, with respect to both the original prosecution of the '034 patent and the '034 Ex Parte Reexamination. Furthermore, as set forth below, the teachings of the prior art patents and printed publications cited herein are such that a reasonable Examiner would consider them important in deciding whether the issued claims of the ' 034 patent and the proposed claims in the '034 Ex Parte Reexamination are patentable. Accordingly, substantial new questions of patentability are raised in this Request.

Pursuant to 37 C.F.R. § 1.915(b)(3), a detailed explanation of the pertinence and manner of applying the cited prior art patents and printed publications to every claim for which reexamination is requested is set forth below with reference to the appended charts.

1. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Anticipated by Uchida Under 35 U.S.C. $\$ 102(b)$

Uchida anticipates claims $1,2,4$, and 5 of the ' 034 patent under 35 U.S.C. $§ 102(\mathrm{~b})$. Uchida was not cited during the prosecution of the ' 034 patent, and Uchida provides teachings that were not otherwise provided in any prior art that was relied upon during prosecution of the ' 034 patent.

Uchida relates to a vehicle lamp illumination directional control device which detects the posture of a vehicle and adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction. Page 1 at lines 3 to 7 . Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , vehicle speed 7 , and vehicle acceleration or deceleration 8 . The illumination direction is adjusted by control device 3 , and drive device 4 . Thus, as a vehicle posture changes when loads are applied to it, the inclination angle is measured and the direction of illumination of vehicle lamps are adjusted accordingly. Page 6, line 10 to page 7, line 4.

FIG. 1

Signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10 , line 26 to page 11 , line 6 .

FIG. 5

When it is found that the vehicle is not in the acceleration or deceleration running condition, the control device 3 controls the illumination direction of the lamp by fixing the direction of illumination in a given direction, or by limiting the direction of the illumination light to a limited range. Page 4, lines 16 to 27.

Thus, Uchida discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., figure 5; page 4, lines 16 to 27; page 10, line 26 to page 11, line 6 . Accordingly, a substantial new question of patentability of claims $1,2,4$, and 5 is raised by Uchida.

As set forth in the appended charts, Uchida discloses all of the limitations of claims 1 , 2,4 , and 5 of the ' 034 patent and therefore anticipates claims $1,2,4$, and 5 of the ' 034 patent. Accordingly, VWGoA proposes a ground of rejection of claims 1,2, 4, and 5 of the '034 patent under 35 U.S.C. § 102(b) as anticipated by Uchida.

2. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Anticipated by Takahashi Under 35 U.S.C. $\$ 102(b)$

Takahashi anticipates issued claims $1,2,4$, and 5 of the ' 034 patent under 35 U.S.C. § 102(b). Takahashi was not cited during the prosecution of the '034 patent, and Takahashi
provides teachings that were not otherwise provided in any prior art that was relied upon during prosecution of the '034 patent.

Takahashi relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp to maintain it in a predetermined direction. Page 1, lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , and vehicle running condition 3 . The illumination direction is adjusted by control device 4, and drive device 5. Thus, as a vehicle posture changes when loads are applied to it, the inclination angle is measured and the direction of illumination of vehicle lamps are adjusted accordingly. Page 6 , line 26 to page 7 , line 4 .

FIG. 1

A threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9, line 16 to page 10, line 3. Referring to Figure 7, in step S4 the determination of whether the variation in road gradient is more than a predetermined threshold is made. Based on this determination the lamp illumination is either corrected (S5) or not (S6). Page 10, line 20 to page 11, line 11.

Thus, Takahashi discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., figure 7; page 9, line 16 to page 10, line 3 ; page 10 , line 20 to page 11 , line 11 . Accordingly, a substantial new question of patentability of claims $1,2,4$, and 5 is raised by Takahashi.

As set forth in the appended charts, Takahashi discloses all of the limitations of claims $1,2,4$, and 5 of the '034 patent and therefore anticipates claims $1,2,4$, and 5 of the '034 patent. Accordingly, VWGoA proposes a ground of rejection of claims 1, 2, 4, and 5 of the ' 034 patent under 35 U.S.C. § 102(b) as anticipated by Takahashi.

3. Claims 1, 2, 4 , and 5 of the ' 034 Patent Are Anticipated by Hussman Under 35 U.S.C. $\$ 102(b)$

Hussman anticipates issued claims $1,2,4$, and 5 of the ' 034 patent under 35 U.S.C. § 102(b). Hussman was not cited during the prosecution of the '034 patent, and Hussman
provides teachings that were not otherwise provided in any prior art that was relied upon during prosecution of the '034 patent.

Hussman relates to the regulation of the illumination direction of vehicle lamps based on the relative position of a vehicle body to the front and rear axles. Col. 1, lines 6 to 20 . The change in the relative position of the vehicle body over time is detected and signaled by a resulting difference signal, a nominal-value signal. Abstract. This signal is filtered by three filters to determine the time for three average-value formations, each employing different time constants. Abstract. The first nominal-value signal is obtained by using a predetermined value. The second filtered nominal-value signal, obtained from using a smaller time constant, is then compared with the third filtered nominal-value signal, obtained from using a longer filtered time constant. Abstract. When a difference is detected between the second and third signal indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3, lines 49 to 61 ; col. 6 , lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6, lines 51 to 64 .

Thus, Hussman discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See, e.g., col. 3, lines 49 to 61; col. 6, lines 51
to 64 . Accordingly, a substantial new question of patentability of claims $1,2,4$, and 5 is raised by Hussman.

As set forth in the appended charts, Hussman discloses all of the limitations of claims $1,2,4$, and 5 of the ' 034 patent and therefore anticipates claims $1,2,4$, and 5 of the ' 034 patent. Accordingly, VWGoA proposes a ground of rejection of claims $1,2,4$, and 5 of the '034 patent under 35 U.S.C. § 102(b) as anticipated by Hussman.

4. Claims $\mathbf{1}$ and 5 of the ' 034 Patent Are Anticipated by Miskin et al. Under 35 U.S.C. \& 102(b)

Miskin et al. anticipates issued claims 1 and 5 of the ' 034 patent under 35 U.S.C. § 102. Miskin et al. was not cited during the prosecution of the ' 034 patent, and Miskin et al. provides teachings that were not otherwise provided in any prior art that was relied upon during prosecution of the ' 034 patent.

Miskin et al. relates to a device for adjusting vehicle headlights automatically including four sensors, S1, S2, S3, and S4 that measure vehicle loading. Abstract; page 4. When the sensors detect a change in loading, they transmit signals through analog multiplexer 2 to the analog-digital converter 3 and are then input to microprocessor 4 as digital signals. Page 4. The microprocessor evaluates the signals by determining differential values and calculating the mean values from a series of measurements and compares these values to a predetermined threshold. Abstract.

Miskin et al. teaches that if the signals that lead to measured data are based on light loads caused by road bumps, the average differential value will be only a small deviation from the ideal headlight position value, and the predetermined threshold value will not be exceeded. Page 5. In this case, the headlights will not be adjusted. Id. In the case of a heavier load, the threshold value will be exceeded and the position of the headlights will be changed. Id.

Thus, Miskin et al. discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., Abstract; page 5. Accordingly, a substantial new question of patentability of claims 1 and 5 is raised by Miskin et al..

As set forth in the appended charts, Miskin et al. discloses all of the limitations of claims 1 and 5 of the ' 034 patent and therefore anticipates claims 1 and 5 of the ' 034 patent. Accordingly, VWGoA proposes a ground of rejection of claims 1 and 5 of the ' 034 patent under 35 U.S.C. § 102(b) as anticipated by Miskin et al.

5. Claims 1 and 5 of the '034 Patent Are Anticipated by Leleve Under 35 U.S.C. $\$ 102(b)$

Leleve anticipates issued claims 1 and 5 of the '034 patent under 35 U.S.C. § 102. Leleve was not cited during the prosecution of the ' 034 patent, and Leleve provides teachings that were not otherwise provided in any prior art that was relied upon during prosecution of the '034 patent.

Leleve relates to a device for adjusting vehicle headlights as a function of the relative position of the vehicle wheels in relation to the vehicle body. Abstract. As illustrated in Figure 1, two sensors supply signals that correspond to the relative position of the vehicle. Sensor 1 is between the front axle and the body of the vehicle to detect the relative movement of the front of the vehicle, while sensor 2 is situated on the rear axle and performs the same function for the rear of the vehicle. Page 12. The signals from sensors 1 and 2 are sent to mixer stage 3 , which generates a signal representative of the vibration or rocking motion of the vehicle. Id.

FIG. 1

The output of mixer stage 3 is connected to low pass filter 4 , and the output of filter 4 is connected to control device 6 , which actuates the mechanisms 7 causing headlights 8 to move. Id. Filter 4 is used to filter out frequencies above a certain threshold, for example, frequencies over 2 Hz , which can occur due to the pavement of the road and do not require adjustment. Pages 6 to 8 . This feature prevents unwanted frequent adjusting of the headlights and also prolongs the service life of the system. Pages 6 to 7 .

Thus, Leleve discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small
variations in the sensed operating condition." See e.g., Abstract; page 5. Accordingly, a substantial new question of patentability of claims 1 and 5 is raised by Leleve.

As set forth in the appended charts, Leleve discloses all of the limitations of claims 1 and 5 of the ' 034 patent and therefore anticipates claims 1 and 5 of the '034 patent. Accordingly, VWGoA proposes a ground of rejection of claims 1 and 5 of the '034 patent under 35 U.S.C. $\S 102$ (b) as anticipated by Leleve.

6. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Unpatentable Over The Combination of Toda et al. and Uchida Under 35 U.S.C. $\$ 103(\mathrm{a})$

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Uchida under 35 U.S.C. § 103(a). Although Toda et al. was relied on by the Examiner during the prosecution of the ' 034 patent, it was relied upon in an anticipation rejection under 35 U.S.C. \S 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Uchida was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Toda et al.

Toda et al. discloses an automatic leveling device for automotive vehicle headlamps. The system includes actuators to tilt the optical axes of the vehicle headlights, and a control unit which controls the driving of the actuators based on a detected pitch angle such that the optical axes of the headlamps stay in a certain inclined state with respect to the surface of the road. Col. 1 , lines 52 to 63 . The system further includes a vehicle speed detection means 12 and a pitch angle detection means 14. Abstract. Toda et al. further discloses that while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, and the acceleration is equal to or lower than a reference value, and these states continue for a predetermined amount of time. Col. 4, lines 1 to 25 .

As discussed above, Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10 , line 26 to page 11 , line 6 . Thus, Uchida discloses precisely the feature of claim 1 on which patentability of the issued
claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., figure 5; page 4, lines 16 to 27 ; page 10 , line 26 to page 11 , line 6 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Toda et al. and the features of Uchida to "prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle" as described, for example, on page 4 , lines 16 to 27 of Uchida. Moreover, combining the automatic leveling device described in Toda et al. and the vehicle lamp illumination directional control in Uchida is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Toda et al. and Uchida discloses all of the limitations of claims $1,2,4$, and 5 .

Based on the foregoing, a substantial new question of patentability of claims $1,2,4$, and 5 of the '034 patent is raised by the combination of Toda et al. and Uchida. Accordingly, VWGoA proposes a ground of rejection of claims $1,2,4$, and 5 of the ' 034 patent under 35 U.S.C. $\S 103(\mathrm{a})$ as obvious over the combination of Toda et al. and Uchida.

7. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Unpatentable Over the Combination of Toda et al. and Takahashi Under 35 U.S.C. $\$ 103(\mathrm{a})$

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Takahashi under 35 U.S.C. $\S 103(\mathrm{a})$ As discussed above, Toda et al. was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating
condition." As indicated above, Takahashi was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Toda et al.

Toda et al. discloses an automatic leveling device for automotive vehicle headlamps. The system includes actuators to tilt the optical axes of the vehicle headlights, and a control unit which controls the driving of the actuators based on a detected pitch angle such that the optical axes of the headlamps stay in a certain inclined state with respect to the surface of the road. Col. 1, lines 52 to 63 . The system further includes a vehicle speed detection means 12 and a pitch angle detection means 14. Abstract. Toda et al. further discloses that while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, and the acceleration is equal to or lower than a reference value, and these states continue for a predetermined amount of time. Col. 4, lines 1 to 25.

As discussed above, Takahashi discloses that a threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9, line 16 to page 10, line 3. Referring to Figure 7, in step S4 the determination of whether the variation in road gradient is more than a predetermined threshold is made. Based on this determination the lamp illumination is either corrected (S5) or not (S6). Page 10, line 20 to page 11, line 11. Thus, Takahashi discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., figure 7; page 9 , line 16 to page 10 , line 3 ; page 10 , line 20 to page 11 , line 11.

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Toda et al. and the features of Takahashi to "improve . . . visibility . . . and guarantee the safety of running of the vehicle" as described, for example, on page 3, lines 8 to 15 of Takahashi. Moreover, combining the automatic leveling device described in Toda et al. and the vehicle lamp illumination directional control in Takahashi is merely: (a) a combination of prior art elements according to known methods to yield predictable results;
(b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Toda et al. and Takahashi discloses all of the limitations of claims $1,2,4$, and 5.

Based on the foregoing, a substantial new question of patentability of claims $1,2,4$, and 5 of the ' 034 patent is raised by the combination of Toda et al. and Takahashi. Accordingly, VWGoA proposes a ground of rejection of claims 1, 2, 4, and 5 of the ' 034 patent under 35 U.S.C. $\S 103(\mathrm{a})$ as obvious over the combination of Toda et al. and Takahashi.

8. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Unpatentable Over the Combination of Toda et al. and Hussman Under 35 U.S.C. $\$ 103(\mathrm{a})$

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Hussman under 35 U.S.C. $\S 103(a)$. As discussed above, Toda et al. was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Hussman was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Toda et al.

Toda et al. discloses an automatic leveling device for automotive vehicle headlamps. The system includes actuators to tilt the optical axes of the vehicle headlights, and a control unit which controls the driving of the actuators based on a detected pitch angle such that the optical axes of the headlamps stay in a certain inclined state with respect to the surface of the road. Col. 1, lines 52 to 63 . The system further includes a vehicle speed detection means 12 and a pitch angle detection means 14. Abstract. Toda et al. further discloses that while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or
higher than a reference value, and the acceleration is equal to or lower than a reference value, and these states continue for a predetermined amount of time. Col. 4, lines 1 to 25 .

As discussed above, Hussman discloses that when difference between the second and third signal is detected indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3 , lines 49 to 61 ; col. 6 , lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6, lines 51 to 64 .

Thus, Hussman discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See, e.g., col. 3, lines 49 to 61 ; col. 6 , lines 51 to 64 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Toda et al. and the features of Hussman to "avoid[] false adjustments caused by" "inclination changes of the motor-vehicle body which are not attributable to changes in load or in road surface unevenness" as described, for example, at col. 1, line 65 to col. 2, line 4 of Hussman. Moreover, combining the automatic leveling device described in Toda et al. and the vehicle lamp illumination directional control in Hussman is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Toda et al. and Hussman discloses all of the limitations of claims $1,2,4$, and 5 .

Based on the foregoing, a substantial new question of patentability of claims $1,2,4$, and 5 of the '034 patent is raised by the combination of Toda et al. and Hussman. Accordingly, VWGoA proposes a ground of rejection of claims 1, 2, 4, and 5 of the '034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Toda et al. and Hussman.

9. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Unpatentable Over the Combination of Toda et al. and Miskin et al. Under 35 U.S.C. § 103(a)

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Miskin et al. under 35 U.S.C. § 103(a). As discussed above, Toda et al. was relied on by the Examiner during the prosecution of the '034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Miskin et al. was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Toda et al.

Toda et al. discloses an automatic leveling device for automotive vehicle headlamps. The system includes actuators to tilt the optical axes of the vehicle headlights, and a control unit which controls the driving of the actuators based on a detected pitch angle such that the optical axes of the headlamps stay in a certain inclined state with respect to the surface of the road. Col. 1, lines 52 to 63 . The system further includes a vehicle speed detection means 12 and a pitch angle detection means 14. Abstract. Toda et al. further discloses that while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, and the acceleration is equal to or lower than a reference value, and these states continue for a predetermined amount of time. Col. 4, lines 1 to 25 .

Miskin et al. teaches that if the signals that lead to measured data are based on light loads caused by road bumps, the average differential value will be only a small deviation from the ideal headlight position value, and the predetermined threshold value will not be exceeded. Page 5. In this case, the headlights will not be adjusted. Id. In the case of a heavier load, the threshold value will be exceeded and the position of the headlights will be changed. Id.

Thus, Miskin et al. discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., Abstract; page 5.

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the '034 patent were made would have been motivated to combine the features provided by Toda et al. and the features of Miskin et al. to provide for "the correct illumination of the road regardless of the load of the vehicle that changes its position compared to its unloaded state" and so that "blinding of oncoming vehicles is avoided" as described, for example, on page 3 of Miskin et al. Moreover, combining the automatic leveling device described in Toda et al. and the vehicle lamp illumination directional control in Miskin et al. is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Toda et al. and Miskin et al. discloses all of the limitations of claims $1,2,4$, and 5 .

Based on the foregoing, a substantial new question of patentability of claims $1,2,4$, and 5 of the ' 034 patent is raised by the combination of Toda et al. and Miskin et al. Accordingly, VWGoA proposes a ground of rejection of claims 1, 2, 4, and 5 of the '034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Toda et al. and Miskin et al.

10. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over The Combination of Toda et al. and Leleve Under 35 U.S.C. $\$ 103(\mathrm{a})$

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Leleve et al. under 35 U.S.C. § $103(\mathrm{a})$. As discussed above, Toda et al. was relied on by the Examiner during the prosecution of the '034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Leleve was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Toda et al.

Toda et al. discloses an automatic leveling device for automotive vehicle headlamps. The system includes actuators to tilt the optical axes of the vehicle headlights, and a control unit which controls the driving of the actuators based on a detected pitch angle such that the optical axes of the headlamps stay in a certain inclined state with respect to the surface of the road. Col. 1, lines 52 to 63 . The system further includes a vehicle speed detection means 12 and a pitch angle detection means 14. Abstract. Toda et al. further discloses that while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, and the acceleration is equal to or lower than a reference value, and these states continue for a predetermined amount of time. Col. 4, lines 1 to 25 .

Leleve teaches that if the signals that lead to the measured vibration of the vehicle are caused by road bumps, the frequency will be above a certain level, and the frequency threshold will be exceeded. Pages 6 to 8 . In this case, the headlights will not be adjusted. Id. In the case of lower frequencies, the signal will pass through the filter causing the headlights to be adjusted. Page 12 .

Thus, Leleve discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., pages 6 to 8 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Toda et al. and the features of Leleve to provide for a device that can "differentiate between phenomena that require correction, and those for which a correction is undesired" and can prevent a phase shift that would cause the headlights "to be directed upward at the same moment that the front part of the vehicle body is executing an upward movement" as described, for example, on page 7 of Leleve. Moreover, combining the automatic leveling device described in Toda et al. and the vehicle lamp illumination directional control in Leleve is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one
based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Toda et al. and Leleve discloses all of the limitations of claims $1,2,4$, and 5 .

Based on the foregoing, a substantial new question of patentability of claims $1,2,4$, and 5 of the ' 034 patent is raised by the combination of Toda et al. and Leleve. Accordingly, VWGoA proposes a ground of rejection of claims $1,2,4$, and 5 of the '034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Toda et al. and Leleve.

11. Claims 1, 2, 4 , and 5 of the '034 Patent Are Unpatentable Over the Combination of Okuchi et al. and Uchida Under 35 U.S.C. § 103(a)

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Uchida under 35 U.S.C. § 103(a). As discussed above, Okuchi et al. was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the ' 034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Uchida was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Okuchi et al.

Okuchi et al. discloses a vehicle headlight optical axis direction adjusting system for adjusting the direction of illumination of a vehicle headlight. In Okuchi et al. the vehicle pitch angle is calculated from vehicle height sensors $11 \mathrm{~F}, 11 \mathrm{R}, \mathrm{HF}$ and HR on the front and rear portions of a vehicle. Col. 4, line 58 to col. 5 , line 8 . These signals are supplied to Electronic Control Unit 20, which outputs signals to actuators to adjust the optical axis direction of the headlights as needed. Col. 5, lines 11 to 20. Referring to Figure 3, Okuchi further discloses measuring vehicle speed and acceleration and adjusting the filtering of the change in pitch signals in accordance with the running state of the vehicle. Col. 5, line 52 to col. 6, line 39. For example, when the vehicle speed is lower than a speed threshold, the control mode "stop mode" is implemented, and no filtering of the pitch signal is performed so that the actuator is allowed to respond quickly to changes in pitch angle. Col. 5, line 66 to col. 6 , line 5 . In contrast, when vehicle speed is higher than the threshold, but vehicle acceleration is lower than a threshold, the control mode "constant speed" mode is
implemented, and high filtering of the pitch signal is performed as it is largely assumed that the pitch angle does not largely change. Col. 6, lines 29 to 38 .

As discussed above, Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10, line 26 to page 11, line 6 . Thus, Uchida discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating threshold." See e.g., figure 5; page 4, lines 16 to 27; page 10 , line 26 to page 11 , line 6 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Okuchi et al. and the features of Uchida to "prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle" as described, for example, on page 4, lines 16 to 27 of Uchida. Moreover, combining the automatic headlight optical axis adjusting system described in Okuchi et al. and the vehicle lamp illumination directional control in Uchida is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Okuchi et al. and Uchida discloses all of the limitations of claims $1,2,4$, and 5 .

Based on the foregoing, a substantial new question of patentability of claims 1, 2, 4, and 5 of the ' 034 patent is raised by the combination of Okuchi et al. and Uchida. Accordingly, VWGoA proposes a ground of rejection of claims 1, 2, 4, and 5 of the '034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Okuchi et al. and Uchida.

12. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Unpatentable Over the Combination of Okuchi et al. and Takahashi Under 35 U.S.C. § 103(a)

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Takahashi under 35 U.S.C. § 103(a). As discussed above, Okuchi et al. was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Takahashi was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Okuchi et al.

Okuchi et al. discloses a vehicle headlight optical axis direction adjusting system for adjusting the direction of illumination of a vehicle headlight. In Okuchi et al. the vehicle pitch angle is calculated from vehicle height sensors $11 \mathrm{~F}, 11 \mathrm{R}$, HF and HR on the front and rear portions of a vehicle. Col. 4 , line 58 to col. 5 , line 8 . These signals are supplied to Electronic Control Unit 20, which outputs signals to actuators to adjust the optical axis direction of the headlights as needed. Col. 5, lines 11 to 20. Referring to Figure 3, Okuchi further discloses measuring vehicle speed and acceleration and adjusting the filtering of the change in pitch signals in accordance with the running state of the vehicle. Col. 5 , line 52 to col. 6, line 39. For example, when the vehicle speed is lower than a speed threshold, the control mode "stop mode" is implemented, and no filtering of the pitch signal is performed so that the actuator is allowed to respond quickly to changes in pitch angle. Col. 5 , line 66 to col. 6, line 5. In contrast, when vehicle speed is higher than the threshold, but vehicle acceleration is lower than a threshold, the control mode "constant speed" mode is implemented, and high filtering of the pitch signal is performed as it is largely assumed that the pitch angle does not largely change. Col. 6, lines 29 to 38 .

As discussed above, Takahashi discloses that a threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9 , line 16 to page 10 , line
3. Referring to Figure 7 , in step S 4 the determination of whether the variation in road gradient is more than a predetermined threshold is made. Based on this determination the lamp illumination is either corrected (S5) or not (S6). Page 10 , line 20 to page 11 , line 11 . Thus, Takahashi discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., figure 7; page 9, line 16 to page 10 , line 3 ; page 10 , line 20 to page 11 , line 11 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Okuchi et al. and the features of Takahashi to "improve . . . visibility . . . and guarantee the safety of running of the vehicle" as described, for example, on page 3 , lines 8 to 15 of Takahashi. Moreover, combining the automatic headlight optical axis adjusting system described in Okuchi et al. and the vehicle lamp illumination directional control in Takahashi is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Okuchi et al. and Takahashi discloses all of the limitations of claims $1,2,4$, and 5 .

Based on the foregoing, a substantial new question of patentability of claims $1,2,4$, and 5 of the ' 034 patent is raised by the combination of Okuchi et al. and Takahashi. Accordingly, VWGoA proposes a ground of rejection of claims 1, 2, 4, and 5 of the '034 patent under 35 U.S.C. $\S 103(a)$ as obvious over the combination of Okuchi et al. and Takahashi.

13. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Unpatentable Over the Combination of Okuchi et al. and Hussman Under 35 U.S.C. § $103(\mathrm{a})$

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Hussman under 35 U.S.C. $\S 103(\mathrm{a})$. As discussed above, Okuchi et al. was relied on by the

Examiner during the prosecution of the '034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation 'a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Hussman was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Okuchi et al.

Okuchi et al. discloses a vehicle headlight optical axis direction adjusting system for adjusting the direction of illumination of a vehicle headlight. In Okuchi et al. the vehicle pitch angle is calculated from vehicle height sensors $11 \mathrm{~F}, 11 \mathrm{R}$, HF and HR on the front and rear portions of a vehicle. Col. 4 , line 58 to col. 5 , line 8 . These signals are supplied to Electronic Control Unit 20, which outputs signals to actuators to adjust the optical axis direction of the headlights as needed. Col. 5, lines 11 to 20. Referring to Figure 3, Okuchi further discloses measuring vehicle speed and acceleration and adjusting the filtering of the change in pitch signals in accordance with the running state of the vehicle. Col. 5 , line 52 to col. 6, line 39. For example, when the vehicle speed is lower than a speed threshold, the control mode "stop mode" is implemented, and no filtering of the pitch signal is performed so that the actuator is allowed to respond quickly to changes in pitch angle. Col. 5 , line 66 to col. 6, line 5 . In contrast, when vehicle speed is higher than the threshold, but vehicle acceleration is lower than a threshold, the control mode "constant speed" mode is implemented, and high filtering of the pitch signal is performed as it is largely assumed that the pitch angle does not largely change. Col. 6 , lines 29 to 38 .

As discussed above, Hussman discloses that when difference between the second and third signal is detected indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3, lines 49 to 61 ; col. 6 , lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6, lines 51 to 64 .

Thus, Hussman discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small
variations in the sensed operating condition." See, e.g., col. 3, lines 49 to 61; col. 6, lines 51 to 64 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Okuchi et al. and the features of Hussman to "avoid[] false adjustments caused by" "inclination changes of the motor-vehicle body which are not attributable to changes in load or in road surface unevenness" as described, for example, at col. 1, line 65 to col. 2, line 4 of Hussman. Moreover, combining the automatic headlight optical axis adjusting system described in Okuchi et al. and the vehicle lamp illumination directional control in Hussman is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Okuchi et al. and Hussman discloses all of the limitations of claims $1,2,4$, and 5.

Based on the foregoing, a substantial new question of patentability of claims $1,2,4$, and 5 of the '034 patent is raised by the combination of Okuchi et al. and Hussman. Accordingly, VWGoA proposes a ground of rejection of claims 1, 2, 4, and 5 of the ' 034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Okuchi et al. and Hussman.

14. Claims 1, 2, 4, and 5 of the ' 034 Patent Are Unpatentable Over the Combination of Okuchi et al. and Miskin et al. Under 35 U.S.C. $\$ 103(a)$

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Miskin et al. under 35 U.S.C. § 103(a). As discussed above, Okuchi et al. was relied on by the Examiner during the prosecution of the '034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the ' 034 patent, because of the inclusion of the limitation " a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating
condition." As indicated above, Miskin et al. was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Okuchi et al.

Okuchi et al. discloses a vehicle headlight optical axis direction adjusting system for adjusting the direction of illumination of a vehicle headlight. In Okuchi et al. the vehicle pitch angle is calculated from vehicle height sensors $11 \mathrm{~F}, 11 \mathrm{R}, \mathrm{HF}$ and HR on the front and rear portions of a vehicle. Col. 4 , line 58 to col. 5 , line 8 . These signals are supplied to Electronic Control Unit 20, which outputs signals to actuators to adjust the optical axis direction of the headlights as needed. Col. 5, lines 11 to 20. Referring to Figure 3, Okuchi further discloses measuring vehicle speed and acceleration and adjusting the filtering of the change in pitch signals in accordance with the running state of the vehicle. Col. 5 , line 52 to col. 6, line 39. For example, when the vehicle speed is lower than a speed threshold, the control mode "stop mode" is implemented, and no filtering of the pitch signal is performed so that the actuator is allowed to respond quickly to changes in pitch angle. Col. 5 , line 66 to col. 6, line 5. In contrast, when vehicle speed is higher than the threshold, but vehicle acceleration is lower than a threshold, the control mode "constant speed" mode is implemented, and high filtering of the pitch signal is performed as it is largely assumed that the pitch angle does not largely change. Col. 6, lines 29 to 38.

As discussed above, Miskin et al. teaches that if the signals that lead to measured data are based on light loads caused by road bumps, the average differential value will be only a small deviation from the ideal headlight position value, and the predetermined threshold value will not be exceeded. Page 5. In this case, the headlights will not be adjusted. Id. In the case of a heavier load, the threshold value will be exceeded and the position of the headlights will be changed. Id.

Thus, Miskin et al. discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., Abstract; page 5.

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Okuchi et al. and the features of Miskin et al. to provide for 'the correct illumination of the road regardless of the load of the vehicle that changes its position compared to its unloaded state" and so that "blinding of oncoming vehicles is avoided" as described, for example, on page 3 of Miskin et al. Moreover, combining the automatic
headlight optical axis adjusting system described in Okuchi et al. and the vehicle lamp illumination directional control in Miskin et al. is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Okuchi et al. and Miskin et al. discloses all of the limitations of claims $1,2,4$, and 5 .

Based on the foregoing, a substantial new question of patentability of claims $1,2,4$, and 5 of the ' 034 patent is raised by the combination of Okuchi et al. and Miskin et al. Accordingly, VWGoA proposes a ground of rejection of claims 1, 2, 4, and 5 of the '034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Okuchi et al. and Miskin et al.

15. Claims 1, 2, 4, and 5 of the '034 Patent Are Unpatentable Over the Combination of Okuchi et al. and Leleve Under 35 U.S.C. § 103(a)

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Leleve under 35 U.S.C. § 103(a). As discussed above, Okuchi et al. was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(e). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Leleve was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Okuchi et al.

Okuchi et al. discloses a vehicle headlight optical axis direction adjusting system for adjusting the direction of illumination of a vehicle headlight. In Okuchi et al. the vehicle pitch angle is calculated from vehicle height sensors $11 \mathrm{~F}, 11 \mathrm{R}$, HF and HR on the front and rear portions of a vehicle. Col. 4 , line 58 to col. 5 , line 8 . These signals are supplied to Electronic Control Unit 20, which outputs signals to actuators to adjust the optical axis direction of the headlights as needed. Col. 5, lines 11 to 20. Referring to Figure 3, Okuchi
further discloses measuring vehicle speed and acceleration and adjusting the filtering of the change in pitch signals in accordance with the running state of the vehicle. Col. 5 , line 52 to col. 6, line 39. For example, when the vehicle speed is lower than a speed threshold, the control mode "stop mode" is implemented, and no filtering of the pitch signal is performed so that the actuator is allowed to respond quickly to changes in pitch angle. Col. 5 , line 66 to col. 6 , line 5 . In contrast, when vehicle speed is higher than the threshold, but vehicle acceleration is lower than a threshold, the control mode "constant speed" mode is implemented, and high filtering of the pitch signal is performed as it is largely assumed that the pitch angle does not largely change. Col. 6, lines 29 to 38 .

As discussed above, Leleve teaches that if the signals that lead to the measured vibration of the vehicle are caused by road bumps, the frequency will be above a certain level, and the frequency threshold will be exceeded. Pages 6 to 8 . In this case, the headlights will not be adjusted. Id. In the case of lower frequencies, the signal will pass through the filter causing the headlights to be adjusted. Page 12.

Thus, Leleve discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., pages 6 to 8 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,4$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Okuchi et al. and the features of Leleve to provide for a device that can "differentiate between phenomena that require correction, and those for which a correction is undesired" and can prevent a phase shift that would cause the headlights "to be directed upward at the same moment that the front part of the vehicle body is executing an upward movement" as described, for example, on page 7 of Leleve. Moreover, combining the automatic headlight optical axis adjusting system described in Okuchi et al. and the vehicle lamp illumination directional control in Leleve is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Okuchi et al. and Leleve discloses all of the limitations of claims $1,2,4$, and 5 .

Based on the foregoing, a substantial new question of patentability of claims $1,2,4$, and 5 of the '034 patent is raised by the combination of Okuchi et al. and Leleve. Accordingly, VWGoA proposes a ground of rejection of claims 1, 2, 4, and 5 of the ' 034 patent under 35 U.S.C. $\S 103(a)$ as obvious over the combination of Okuchi et al. and Leleve.

16. Claims 1 to 5 of the' '034 Patent Are Unpatentable Over the Combination of Gotoh and Uchida Under 35 U.S.C. § $103(\mathrm{a})$

Claims 1 to 5 are unpatentable over the combination of Gotoh and Uchida under 35 U.S.C. § 103(a). As discussed above, Gotoh was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(b). The Examiner ultimately allowed application claim 14 , which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Uchida was not cited during the prosecution of the ' 034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Gotoh.

Gotoh discloses a device for changing the illumination direction of a vehicle headlights in the right and left directions. Referring to figure 3, a steering angle sensor 21, a vehicle speed sensor 22 , and a yaw rate sensor 23 , signal the steering angle, vehicle speed, and yaw rate, respectively to the Light Distribution Control ECU 10. Col. 4, line 61 to col. 5, line 5.

FIC. 3

The ECU 10 calculates a first lighting angle based on the steering angle as detected by the steering angle sensor and a speed correction coefficient based on the measured vehicle speed. Col. 5, lines 1 to 15 . A second lighting angle based on the turning movement as based on the detections of the yaw rate and vehicle speed sensors. Col. 5, lines 16 to 24 . The final lighting angle is decided based on whether the first lighting angle and the second lighting angle are pointed in the same right or left direction. Col. 5 , lines 57 to 62 .

As discussed above, Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10 , line 26 to page 11 , line 6 . Thus, Uchida discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., figure 5; page 4, lines 16 to 27 ; page 10 , line 26 to page 11 , line 6 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims 1 to 5 of the ' 034 patent were made would have been motivated to combine the features provided by Gotoh and the features of Uchida to "prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle" as described, for example, on page 4 , lines 16 to 27 of Uchida. Moreover, combining the device for changing the illumination direction of a vehicle headlights in the right and left directions described in Gotoh and the vehicle lamp illumination directional control in Uchida is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Gotoh and Uchida discloses all of the limitations of claims 1 to 5 .

Based on the foregoing, a substantial new question of patentability of claims 1 to 5 of the ' 034 patent is raised by the combination of Gotoh and Uchida. Accordingly, VWGoA proposes a ground of rejection of claims 1 to 5 of the ' 034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Gotoh and Uchida.

17. Claims $\mathbf{1}$ to 5 of the '034 Patent Are Unpatentable Over the Combination of Gotoh and Takahashi Under 35 U.S.C. \& 103(a)

Claims 1, 2, 3, 4, and 5 are unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a). As discussed above, Gotoh was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(b). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Takahashi was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Gotoh.

As discussed above, Gotoh discloses a device for changing the illumination direction of a vehicle headlights in the right and left directions. Referring to figure 3, a steering angle sensor 21 , a vehicle speed sensor 22 , and a yaw rate sensor 23 , signal the steering angle, vehicle speed, and yaw rate, respectively to the Light Distribution Control ECU 10. Col. 4, line 61 to col. 5, line 5 . The ECU 10 calculates a first lighting angle based on the steering angle as detected by the steering angle sensor and a speed correction coefficient based on the measured vehicle speed. Col. 5 , lines 1 to 15 . A second lighting angle based on the turning movement as based on the detections of the yaw rate and vehicle speed sensors. Col. 5, lines 16 to 24 . The final lighting angle is decided based on whether the first lighting angle and the second lighting angle are pointed in the same right or left direction. Col. 5, lines 57 to 62 .

As discussed above, Takahashi discloses that a threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9 , line 16 to page 10 , line
3. Referring to Figure 7 , in step S 4 the determination of whether the variation in road gradient is more than a predetermined threshold is made. Based on this determination the lamp illumination is either corrected (S5) or not (S6). Page 10 , line 20 to page 11 , line 11 . Thus, Takahashi discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., figure 7 ; page 9 , line 16 to page 10 , line 3 ; page 10 , line 20 to page 11 , line 11 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims 1 to 5 of the '034 patent were made would have been motivated to combine the features provided by Gotoh and the features of Takahashi to "improve . . . visibility . . . and guarantee the safety of running of the vehicle" as described, for example, on page 3 , lines 8 to 15 of Takahashi. Moreover, combining the device for changing the illumination direction of a vehicle headlights in the right and left directions described in Gotoh and the vehicle lamp illumination directional control in Takahashi is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Gotoh and Takahashi discloses all of the limitations of claims 1 to 5 .

Based on the foregoing, a substantial new question of patentability of claims 1 to 5 of the ' 034 patent is raised by the combination of Gotoh and Takahashi. Accordingly, VWGoA proposes a ground of rejection of claims 1 to 5 of the ' 034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Gotoh and Takahashi.

18. Claims 1 to 5 of the' 034 Patent Are Unpatentable Over the Combination of Gotoh and Hussman Under 35 U.S.C. § 103(a)

Claims 1, 2, 3, 4, and 5 are unpatentable over the combination of Gotoh and Hussman under 35 U.S.C. § 103(a). As discussed above, Gotoh was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(b). The Examiner ultimately allowed application claim 14, which issued as claim 1 in
the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Hussman was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Gotoh.

As discussed above, Gotoh discloses a device for changing the illumination direction of a vehicle headlights in the right and left directions. Referring to figure 3, a steering angle sensor 21 , a vehicle speed sensor 22 , and a yaw rate sensor 23 , signal the steering angle, vehicle speed, and yaw rate, respectively to the Light Distribution Control ECU 10. Col. 4, line 61 to col. 5, line 5 . The ECU 10 calculates a first lighting angle based on the steering angle as detected by the steering angle sensor and a speed correction coefficient based on the measured vehicle speed. Col. 5, lines 1 to 15 . A second lighting angle based on the turning movement as based on the detections of the yaw rate and vehicle speed sensors. Col. 5, lines 16 to 24 . The final lighting angle is decided based on whether the first lighting angle and the second lighting angle are pointed in the same right or left direction. Col. 5, lines 57 to 62 .

As discussed above, Hussman discloses that when difference between the second and third signal is detected indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3, lines 49 to 61 ; col. 6 , lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6, lines 51 to 64 .

Thus, Hussman discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See, e.g., col. 3, lines 49 to 61 ; col. 6, lines 51 to 64 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims 1 to 5 of the '034 patent were made would have been motivated to combine the features provided by Gotoh and the features of Hussman to "avoid[] false adjustments caused by" "inclination changes of the motor-vehicle body which are not attributable to changes in load or in road surface unevenness" as described, for example, at col. 1 , line 65 to col. 2 , line 4 of Hussman. Moreover, combining the device for changing the illumination direction of a vehicle headlights in the right and left directions described in Gotoh and the vehicle lamp
illumination directional control in Hussman is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Gotoh and Hussman discloses all of the limitations of claims 1 to 5 .

Based on the foregoing, a substantial new question of patentability of claims 1 to 5 of the ' 034 patent is raised by the combination of Gotoh and Hussman. Accordingly, VWGoA proposes a ground of rejection of claims 1 to 5 of the ' 034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Gotoh and Hussman.

19. Claims 1, 2, 3, and 5 of the ' 034 Patent Are Unpatentable Over the Combination of Gotoh and Miskin et al. Under 35 U.S.C. $\$ 103(\mathrm{a})$

Claims 1, 2, 3, and 5 are unpatentable over the combination of Gotoh and Miskin under 35 U.S.C. § 103(a). As discussed above, Gotoh was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(b). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Miskin et al. was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Gotoh.

As discussed above, Gotoh discloses a device for changing the illumination direction of a vehicle headlights in the right and left directions. Referring to figure 3, a steering angle sensor 21 , a vehicle speed sensor 22 , and a yaw rate sensor 23 , signal the steering angle, vehicle speed, and yaw rate, respectively to the Light Distribution Control ECU 10. Col. 4, line 61 to col. 5, line 5. The ECU 10 calculates a first lighting angle based on the steering angle as detected by the steering angle sensor and a speed correction coefficient based on the measured vehicle speed. Col. 5 , lines 1 to 15 . A second lighting angle based on the turning movement as based on the detections of the yaw rate and vehicle speed sensors. Col. 5, lines

16 to 24 . The final lighting angle is decided based on whether the first lighting angle and the second lighting angle are pointed in the same right or left direction. Col. 5, lines 57 to 62 .

As discussed above, Miskin et al. teaches that if the signals that lead to measured data are based on light loads caused by road bumps, the average differential value will be only a small deviation from the ideal headlight position value, and the predetermined threshold value will not be exceeded. Page 5. In this case, the headlights will not be adjusted. Id. In the case of a heavier load, the threshold value will be exceeded and the position of the headlights will be changed. Id.

Thus, Miskin et al. discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., Abstract; page 5.

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims $1,2,3$, and 5 of the ' 034 patent were made would have been motivated to combine the features provided by Gotoh and the features of Miskin et al. to provide for "the correct illumination of the road regardless of the load of the vehicle that changes its position compared to its unloaded state" and so that "blinding of oncoming vehicles is avoided" as described, for example, on page 3 of Miskin et al. Moreover, combining the device for changing the illumination direction of a vehicle headlights in the right and left directions described in Gotoh and the vehicle lamp illumination directional control in Miskin et al. is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Gotoh and Miskin et al. discloses all of the limitations of claims $1,2,3$, and 5 .

Based on the foregoing, a substantial new question of patentability of claims $1,2,3$, and 5 of the ' 034 patent is raised by the combination of Gotoh and Miskin et al. Accordingly, VWGoA proposes a ground of rejection of claims $1,2,3$, and 5 of the ' 034 patent under 35 U.S.C. $\S 103(\mathrm{a})$ as obvious over the combination of Gotoh and Miskin et al.

20. Claims $\mathbf{1}$ to 5 of the '034 Patent Are Unpatentable Over the Combination of Gotoh and Leleve Under 35 U.S.C. § 103(a)

Claims 1 to 5 are unpatentable over the combination of Gotoh and Leleve under 35 U.S.C. § 103(a). As discussed above, Gotoh was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(b). The Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Leleve was not cited during the prosecution of the ' 034 patent and discloses the foregoing limitation that the Examiner considered to be missing from Gotoh.

As discussed above, Gotoh discloses a device for changing the illumination direction of a vehicle headlights in the right and left directions. Referring to figure 3, a steering angle sensor 21 , a vehicle speed sensor 22 , and a yaw rate sensor 23 , signal the steering angle, vehicle speed, and yaw rate, respectively to the Light Distribution Control ECU 10. Col. 4, line 61 to col. 5, line 5 . The ECU 10 calculates a first lighting angle based on the steering angle as detected by the steering angle sensor and a speed correction coefficient based on the measured vehicle speed. Col. 5 , lines 1 to 15 . A second lighting angle based on the turning movement as based on the detections of the yaw rate and vehicle speed sensors. Col. 5, lines 16 to 24 . The final lighting angle is decided based on whether the first lighting angle and the second lighting angle are pointed in the same right or left direction. Col. 5, lines 57 to 62 .

As discussed above, Leleve teaches that if the signals that lead to the measured vibration of the vehicle are caused by road bumps, the frequency will be above a certain level, and the frequency threshold will be exceeded. Pages 6 to 8 . In this case, the headlights will not be adjusted. Id. In the case of lower frequencies, the signal will pass through the filter causing the headlights to be adjusted. Page 12.

Thus, Leleve discloses precisely the feature of claim 1 on which patentability of the issued claims was apparently based, i.e., "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." See e.g., pages 6 to 8 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in claims 1 to 5 of the ' 034 patent were made would have been motivated to combine the features provided by Gotoh and the features of Leleve to provide for a device that can "differentiate between phenomena that require correction, and those for which a correction is
undesired" and can prevent a phase shift that would cause the headlights "to be directed upward at the same moment that the front part of the vehicle body is executing an upward movement" as described, for example, on page 7 of Leleve. Moreover, combining the device for changing the illumination direction of a vehicle headlights in the right and left directions described in Gotoh and the vehicle lamp illumination directional control in Leleve is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Gotoh and Leleve discloses all of the limitations of claims 1 to 5 .

Based on the foregoing, a substantial new question of patentability of claims 1 to 5 of the ' 034 patent is raised by the combination of Gotoh and Leleve. Accordingly, VWGoA proposes a ground of rejection of claims 1 to 5 of the ' 034 patent under 35 U.S.C. § 103(a) as obvious over the combination of Gotoh and Leleve.

21. Proposed Claims $1,2,4$ to 6,9 to $13,20,22,24,25,37$, 38, 41, 42, 44, and 45 of the ' 034 Ex Parte Reexamination Are Anticipated by Uchida Under 35 U.S.C. $\S 102(b)$

Uchida anticipates proposed claims $1,2,4$ to 6,9 to $13,20,22,24,25,37,38,41,42$, 44, and 45 of the '034 Ex Parte Reexamination under 35 U.S.C. § 102(b). Uchida was not cited during the prosecution of the '034 patent, and, as of the filing date of this Request, has not been cited during the '034 Ex Parte Reexamination. Uchida provides teachings that were not otherwise provided in any prior art that was relied upon during prosecution of the '034 patent, and have not been otherwise provided in any prior art relied upon in the '034 Ex Parte Reexamination.

Uchida relates to a vehicle lamp illumination directional control device which detects both the posture and speed of a vehicle and adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction. Page 1 at lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , vehicle speed 7 , and vehicle acceleration or
deceleration 8 . The illumination direction is adjusted by control device 3, and drive device 4 . Thus, as a vehicle posture changes when loads are applied to it, the inclination angle is measured and the direction of illumination of vehicle lamps are adjusted accordingly. Page 6, line 10 to page 7 , line 4 .

FIG. 1

Signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10, line 26 to page 11 , line 6 . When it is found that the vehicle is not in the acceleration or deceleration running condition, the control device 3 controls the illumination direction of the lamp by fixing the direction of illumination in a given direction, or by limiting the direction of the illumination light to a limited range. Page 4 , lines 16 to 27 .

Thus, by disclosing detection of vehicle posture, speed, and acceleration, Uchida discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 1; page 6, lines 9 to 15; page 9, lines 28 to 33. Accordingly, a substantial new question of patentability of proposed claims 1, 2, 4 to 6,9 to $13,20,22,24,25,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination is raised by Uchida.

As set forth in the appended charts, Uchida discloses all of the limitations of proposed claims $1,2,4$ to 6,9 to $13,20,22,24,25,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination and therefore anticipates proposed claims $1,2,4$ to 6,9 to $13,20,22,24,25$, 37, 38, 41, 42, 44, and 45 of the '034 Ex Parte Reexamination. Accordingly, VWGoA proposes a ground of rejection of proposed claims $1,2,4$ to 6,9 to $13,20,22,24,25,37,38$, 41, 42, 44, and 45 of the '034 Ex Parte Reexamination under 35 U.S.C. § 102(b) as anticipated by Uchida.

22. Proposed Claims 1, 2, 4 to 6, 9 to 11, 17, 18, 20 to $22,24,25,28,33,34,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination Are Anticipated by Takahashi Under 35 U.S.C. § 102(b)

Takahashi anticipates proposed claims $1,2,4$ to 6,9 to $11,17,18,20$ to $22,24,25$, $28,33,34,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. § 102(b). Takahashi was not cited during the prosecution of the '034 patent, and, as of the filing date of this Request, has not been cited during the '034 Ex Parte Reexamination. Takahashi provides teachings that were not otherwise provided in any prior art that was relied upon during prosecution of the '034 patent, and have not been otherwise provided in any prior art relied upon in the '034 Ex Parte Reexamination.

Takahashi relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp to maintain it in a predetermined direction. Page 1, lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , and vehicle running condition 3 .

FIG. 1

Referring to figure 9, vehicle posture detect member 2 is composed of four height sensors 9 . Figure 9; page 15, lines 24 to 30 . Vehicle speed sensor 11 corresponds to the running condition detection device 3. Figure 9; page 15, line 24 to page 16, line 1.

FIG. 9

The illumination direction is adjusted by control device 4, and drive device 5. Thus, as a vehicle posture changes when loads are applied to it, the inclination angle is measured and the direction of illumination of vehicle lamps are adjusted accordingly. Page 6, line 26 to page 7 , line 4 .

A threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9, line 16 to page 10, line 3. Referring to Figure 7, in step S 4 the determination of whether the variation in road gradient is more than a
predetermined threshold is made. Based on this determination the lamp illumination is either corrected (S5) or not (S6). Page 10, line 20 to page 11, line 11.

Thus, by disclosing vehicle height sensors and speed sensors, Takahashi discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 9; page 15, line 24 to page 16, line 1. Accordingly, a substantial new question of patentability of proposed claims $1,2,4$ to 6,9 to $11,17,18,20$ to $22,24,25,28,33,34,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination is raised by Takahashi.

As set forth in the appended charts, Takahashi discloses all of the limitations of proposed claims $1,2,4$ to 6,9 to $11,17,18,20$ to $22,24,25,28,33,34,37,38,41,42,44$, and 45 of the '034 Ex Parte Reexamination and therefore anticipates proposed claims 1, 2, 4 to 6,9 to $11,17,18,20$ to $22,24,25,28,33,34,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination. Accordingly, VWGoA proposes a ground of rejection of proposed claims $1,2,4$ to 6,9 to $11,17,18,20$ to $22,24,25,28,33,34,37,38,41,42,44$, and 45 of the '034 Ex Parte Reexamination under 35 U.S.C. § 102(b) as anticipated by Takahashi.

23. Proposed Claims 1, 2, 4 to 6, 9, 10, 37, 38, 41, 42, 44, and 45 of the ' 034 Ex Parte Reexamination Are Anticipated by Hussman Under 35 U.S.C. $\$ 102(b)$

Hussman anticipates proposed claims 1, 2, 4 to $6,9,10,37,38,41,42,44$, and 45 of the '034 Ex Parte Reexamination under 35 U.S.C. § 102. Hussman was not cited during the prosecution of the '034 patent, and, as of the filing date of this Request, has not been cited during the '034 Ex Parte Reexamination. Hussman provides teachings that were not otherwise provided in any prior art that was relied upon during prosecution of the ' 034 patent, and have not been otherwise provided in any prior art relied upon in the '034 Ex Parte Reexamination.

Hussman relates to the regulation of the illumination direction of vehicle lamps based on the relative position of a vehicle body to the front and rear axles. Col. 1, lines 6 to 20. A front axle sensor sender V measures a relative position of a motor vehicle body to the front axle, and a rear axle sensor sender H measures a relative position of a motor vehicle body to the rear axle. Col. 2, lines 40 to 48 . The change in the relative position of the vehicle body between front axle sender V and rear axle sender H is used to obtain a nominal-value signal.

Col. 2 , lines 48 to 53 . This signal is filtered by three filters to determine the time for three average-value formations, each employing different time constants. Abstract. The first nominal-value signal is obtained by using a predetermined value. The second filtered nominal-value signal, obtained from using a smaller time constant, is then compared with the third filtered nominal-value signal, obtained from using a longer filtered time constant. Abstract. When a difference is detected between the second and third signal indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3 , lines 49 to 61 ; col. 6, lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6, lines 51 to 64.

With two sensors, V and H , signaling the suspension height of the vehicle, Hussman discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., col. 2, lines 48 to 53. Accordingly, a substantial new question of patentability of proposed claims $1,2,4$ to $6,9,10,37,38,41,42$, 44, and 45 of the ' 034 Ex Parte Reexamination is raised by Hussman.

As set forth in the appended charts, Hussman discloses all of the limitations of proposed claims $1,2,4$ to $6,9,10,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination and therefore anticipates proposed claims $1,2,4$ to $6,9,10,37,38,41,42$, 44, and 45 of the '034 Ex Parte Reexamination. Accordingly, VWGoA proposes a ground of rejection of claims $1,2,4$ to $6,9,10,37,38,41,42,44$, and 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. $\S 102(\mathrm{~b})$ as anticipated by Hussman.

24. Proposed Claims 1, 2, 4 to 6,9 to 13, 17, 18, 20 to 22, $24,25,28,29,36$ to 42,44 , and 45 of the ' 034
 Ex Parte Reexamination Are Unpatentable Over the Combination of Toda et al. and Uchida Under 35 U.S.C. $\S 103(a)$

Proposed claims 1, 2, 4 to 6,9 to $13,17,18,20$ to $22,24,25,28,29,36$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination are unpatentable over the combination of Toda et al. and Uchida under 35 U.S.C. § 103(a). As discussed above, Toda et al. was relied on by the Examiner during the prosecution of the '034 patent in rejecting the claims as anticipated
under 35 U.S.C. $\S 102(\mathrm{e})$. As of the filing date of this Request, Toda et al. has not been relied on during the '034 Ex Parte Reexamination of the '034 patent. During the original prosecution of the ' 034 patent, the Examiner ultimately allowed application claim 14 , which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Uchida was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner in the original prosecution of the '034 patent considered to be missing from Toda et al. Moreover, Toda et al. and Uchida disclose the limitation of proposed amended claim 1 that Balther apparently considers to be absent from the prior art cited in the '034 Ex Parte Reexamination, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle.

Toda et al. discloses an automatic leveling device for automotive vehicle headlamps. The system includes actuators to tilt the optical axes of the vehicle headlights, and a control unit which controls the driving of the actuators based on a detected pitch angle such that the optical axes of the headlamps stay in a certain inclined state with respect to the surface of the road. Col. 1, lines 52 to 63 . The system further includes a vehicle speed detection means 12 and a pitch angle detection means 14. Abstract. Toda et al. further discloses that while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, and the acceleration is equal to or lower than a reference value, and these states continue for a predetermined amount of time. Col. 4, lines 1 to 25 . Thus, by disclosing detection of vehicle pitch angle and speed, Toda discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Abstract; col. 1, lines 52 to 63.

As discussed above, Uchida relates to a vehicle lamp illumination directional control device which detects both the posture and speed of a vehicle and adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction. Page 1 at lines 3 to 7 . Referring to Figure 1, the illumination
direction of lights in a vehicle is controlled by detecting vehicle posture 2 , vehicle speed 7 , and vehicle acceleration or deceleration 8. Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10, line 26 to page 11, line 6 . Thus, by disclosing detection of vehicle posture, speed, and acceleration, Uchida discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 1; page 6, lines 9 to 15; page 9, lines 28 to 33 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims 1, 2, 4 to 6,9 to $13,17,18,20$ to $22,24,25,28,29,36$ to 42,44 , and 45 of the '034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Toda et al. and the features of Uchida to "prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle" as described, for example, on page 4, lines 16 to 27 of Uchida. Moreover, combining the automatic leveling device described in Toda et al. and the vehicle lamp illumination directional control in Uchida is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Toda et al. and Uchida discloses all of the limitations of proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to 22,24 , $25,28,29,36$ to 42,44 , and 45.

Based on the foregoing, a substantial new question of patentability of proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28,29,36$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination is raised by the combination of Toda et al. and Uchida. Accordingly, VWGoA proposes a ground of rejection of proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28,29,36$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. $\S 103(\mathrm{a})$ as obvious over the combination of Toda et al. and Uchida.

25. Proposed Claims 1, 2, 4 to 6,9 to 13, 17, 18, 20 to 22, 24, 25, $28,29,33,34,36$ to 42, 44, and 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination of Toda et al. and Takahashi Under 35 U.S.C. $\$ 103(a)$

Proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28,29,33,34,36$ to 42 , 44, and 45 of the '034 Ex Parte Reexamination are unpatentable over the combination of Toda et al. and Takahashi under 35 U.S.C. § 103(a). As discussed above, Toda et al. was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. $\S 102(\mathrm{e})$. As of the filing date of this Request, Toda et al. has not been relied on during the '034 Ex Parte Reexamination of the '034 patent. During the original prosecution of the '034 patent, the Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Takahashi was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner in the original prosecution of the '034 patent considered to be missing from Toda et al. Moreover, Toda et al. and Takahashi disclose the limitation of proposed amended claim 1 that Balther apparently considers to be absent from the prior art cited in the '034 Ex Parte Reexamination, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle.

Toda et al. discloses an automatic leveling device for automotive vehicle headlamps. The system includes actuators to tilt the optical axes of the vehicle headlights, and a control unit which controls the driving of the actuators based on a detected pitch angle such that the optical axes of the headlamps stay in a certain inclined state with respect to the surface of the road. Col. 1, lines 52 to 63 . The system further includes a vehicle speed detection means 12 and a pitch angle detection means 14. Abstract. Toda et al. further discloses that while the
vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, and the acceleration is equal to or lower than a reference value, and these states continue for a predetermined amount of time. Col. 4 , lines 1 to 25 . Thus, by disclosing detection of vehicle pitch angle and speed, Toda discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the ' 034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Abstract; col. 1, lines 52 to 63.

As discussed above, Takahashi relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp to maintain it in a predetermined direction. Page 1, lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , and vehicle running condition 3. Referring to figure 9, vehicle posture detect member 2 is composed of four height sensors 9. Figure 9; page 15 , lines 24 to 30 . Vehicle speed sensor 11 corresponds to the running condition detection device 3 . Figure 9 ; page 15 , line 24 to page 16 , line 1 . The illumination direction is adjusted by control device 4 , and drive device 5. Thus, as a vehicle posture changes when loads are applied to it, the inclination angle is measured and the direction of illumination of vehicle lamps are adjusted accordingly. Page 6 , line 26 to page 7 , line 4 .

A threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9 , line 16 to page 10 , line 3 .

Thus, by disclosing vehicle height sensors and speed sensors, Takahashi discloses precisely the feature of proposed claim 1 that Balther argues the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 9; page 15 , line 24 to page 16 , line 1.

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28,29,33,34,36$ to 42,44 , and 45 of the '034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Toda et al. and the features of Takahashi to "improve . . . visibility . . . and guarantee the safety of running of the vehicle" as described, for example, on page 3, lines 8 to 15 of Takahashi. Moreover, combining the automatic leveling device described in Toda et al. and the vehicle lamp illumination directional control in Takahashi is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Toda et al. and Takahashi discloses all of the limitations of proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to 22,24 , $25,28,29,33,34,36$ to 42,44 , and 45 .

Based on the foregoing, a substantial new question of patentability of proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28,29,33,34,36$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination is raised by the combination of Toda et al. and Takahashi. Accordingly, VWGoA proposes a ground of rejection of proposed claims $1,2,4$ to 6,9 to 13 , $17,18,20$ to $22,24,25,28,29,33,34,36$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. $\S 103(a)$ as obvious over the combination of Toda et al. and Takahashi.

26. Proposed Claims 1, 2, 4 to 6, 9 to 13, 17, 18, 20 to 22, 24, 25, 28, 29, 36 to 42, 44, and 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination Of Toda et al. and Hussman Under 35 U.S.C. § $103(\mathrm{a})$

Proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28,29,36$ to 42,44 , and 45 of the '034 Ex Parte Reexamination are unpatentable over the combination of Toda et al. and Hussman under 35 U.S.C. § 103(a). As discussed above, Toda et al. was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. $\S 102(\mathrm{e})$. As of the filing date of this Request, Toda et al. has not been relied on during the '034 Ex Parte Reexamination of the '034 patent. During the original
prosecution of the ' 034 patent, the Examiner ultimately allowed application claim 14 , which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Hussman was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner in the original prosecution of the '034 patent considered to be missing from Toda et al. Moreover, Toda et al. and Hussman disclose the limitation of proposed amended claim 1 that Balther apparently considers to be absent from the prior art cited in the '034 Ex Parte Reexamination, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle.

Toda et al. discloses an automatic leveling device for automotive vehicle headlamps. The system includes actuators to tilt the optical axes of the vehicle headlights, and a control unit which controls the driving of the actuators based on a detected pitch angle such that the optical axes of the headlamps stay in a certain inclined state with respect to the surface of the road. Col. 1, lines 52 to 63 . The system further includes a vehicle speed detection means 12 and a pitch angle detection means 14. Abstract. Toda et al. further discloses that while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, and the acceleration is equal to or lower than a reference value, and these states continue for a predetermined amount of time. Col. 4 , lines 1 to 25 . Thus, by disclosing detection of vehicle pitch angle and speed, Toda discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Abstract; col. 1, lines 52 to 63.

As discussed above, Hussman relates to the regulation of the illumination direction of vehicle lamps based on the relative position of a vehicle body to the front and rear axles. Col. 1 , lines 6 to 20. A front axle sensor sender V measures a relative position of a motor vehicle body to the front axle, and a rear axle sensor sender H measures a relative position of a motor vehicle body to the rear axle. Col. 2 , lines 40 to 48 . The change in the relative position of the vehicle body between front axle sender V and rear axle sender H is used to obtain a
nominal-value signal. Col. 2, lines 48 to 53 . This signal is filtered by three filters to determine the time for three average-value formations, each employing different time constants. Abstract. The first nominal-value signal is obtained by using a predetermined value. The second filtered nominal-value signal, obtained from using a smaller time constant, is then compared with the third filtered nominal-value signal, obtained from using a longer filtered time constant. Abstract. When a difference is detected between the second and third signal indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3, lines 49 to 61 ; col. 6 , lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6 , lines 51 to 64 .

With two sensors, V and H, signaling the suspension height of the vehicle, Hussman discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., col. 2, lines 48 to 53.

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28,29,36$ to 42,44 , and 45 of the '034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Toda et al. and the features of Hussman to "avoid[] false adjustments caused by" "inclination changes of the motor-vehicle body which are not attributable to changes in load or in road surface unevenness" as described, for example, at col. 1 , line 65 to col. 2, line 4 of Hussman. Moreover, combining the automatic leveling device described in Toda et al. and the vehicle lamp illumination directional control in Hussman is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Toda et al. and Hussman discloses all of the limitations of proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to 22,24 , $25,28,29,36$ to 42,44 , and 45.

Based on the foregoing, a substantial new question of patentability of proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28,29,36$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination is raised by the combination of Toda et al. and Hussman. Accordingly, VWGoA proposes a ground of rejection of proposed claims $1,2,4$ to 6,9 to $13,17,18,20$ to $22,24,25,28,29,36$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Toda et al. and Hussman.

27. Proposed Claims 1, 2, 4 to 6,9 to 13, 15 to 18,20 to 22, $24,25,28,29,33,35,37$ to 42,44 , and 45 of the '034 Ex Parte Reexamination Are Unpatentable Over the Combination of Okuchi et al. and Uchida Under 35 U.S.C. $\$ 103(\mathrm{a})$

Proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,24,25,28,29,33,35,37$ to 42, 44, and 45 of the ' 034 Ex Parte Reexamination are unpatentable over the combination of Okuchi et al. and Uchida under 35 U.S.C. § 103(a). As discussed above, Okuchi et al. was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. $\S 102(\mathrm{e})$. As of the filing date of this Request, Okuchi et al. has not been relied on during the ' 034 Ex Parte Reexamination of the ' 034 patent. During the original prosecution of the ' 034 patent, the Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Uchida was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner in the original prosecution of the ' 034 patent considered to be missing from Okuchi et al. Moreover, Okuchi et al. and Uchida disclose the limitation of proposed amended claim 1 that Balther apparently considers to be absent from the prior art cited in the '034 Ex Parte Reexamination, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle.

Okuchi et al. discloses a vehicle headlight optical axis direction adjusting system for adjusting the direction of illumination of a vehicle headlight. In Okuchi et al. the vehicle pitch angle is calculated from vehicle height sensors $11 \mathrm{~F}, 11 \mathrm{R}$, HF and HR on the front and
rear portions of a vehicle. Col. 4 , line 58 to col. 5 , line 8 . These signals are supplied to Electronic Control Unit 20, which outputs signals to actuators to adjust the optical axis direction of the headlights as needed. Col. 5, lines 11 to 20. Referring to Figure 3, Okuchi et al. further discloses detecting vehicle speed and acceleration and adjusting the filtering of the change in pitch signals in accordance with the running state of the vehicle. Col. 5, line 52 to col. 6 , line 39 . For example, when the vehicle speed is lower than a speed threshold, the control mode "stop mode" is implemented, and no filtering of the pitch signal is performed so that the actuator is allowed to respond quickly to changes in pitch angle. Col. 5, line 66 to col. 6, line 5. In contrast, when vehicle speed is higher than the threshold, but vehicle acceleration is lower than a threshold, the control mode "constant speed" mode is implemented, and high filtering of the pitch signal is performed as it is largely assumed that the pitch angle does not largely change. Col. 6, lines 29 to 38 . Thus, by disclosing sensors for suspension height, speed, and acceleration of a vehicle, Okuchi et al. discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Col. 4 , line 58 to col. 5 , line 8 ; col. 5 , line 52 to col. 6 , line 39.

As discussed above, Uchida relates to a vehicle lamp illumination directional control device which detects both the posture and speed of a vehicle and adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction. Page 1 at lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , vehicle speed 7 , and vehicle acceleration or deceleration 8. Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10, line 26 to page 11, line 6. Thus, by disclosing detection of vehicle posture, speed, and acceleration, Uchida discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension
height of the vehicle." (emphasis in original) See e.g., figure 1 ; page 6 , lines 9 to 15 ; page 9 , lines 28 to 33 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,24,25,28,29,33,35,37$ to 42,44 , and 45 of the '034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Okuchi et al. and the features of Uchida to "prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle" as described, for example, on page 4 , lines 16 to 27 of Uchida. Moreover, combining the automatic leveling device described in Okuchi et al. and the vehicle lamp illumination directional control in Uchida is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Okuchi et al. and Uchida discloses all of the limitations of proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to 22,24 , $25,28,29,33,35,37$ to 42,44 , and 45.

Based on the foregoing, a substantial new question of patentability of proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,24,25,28,29,33,35,37$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination is raised by the combination of Okuchi et al. and Uchida. Accordingly, VWGoA proposes a ground of rejection of proposed claims 1, 2, 4 to 6,9 to 13 , 15 to 18,20 to $22,24,25,28,29,33,35,37$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Okuchi et al. and Uchida.

> 28. Proposed Claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,24,25$, $28,29,33$ to 35,37 to 42,44 , and 45 of the '034 Ex Parte Reexamination Are Unpatentable Over the Combination Of Okuchi et al. and Takahashi Under 35 U.S.C. $\S 103($ a)

Proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,24,25,28,29,33,34,35,37$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination are unpatentable over the combination
of Okuchi et al. and Takahashi under 35 U.S.C. § 103(a). As discussed above, Okuchi et al. was relied on by the Examiner during the prosecution of the '034 patent in rejecting the claims as anticipated under 35 U.S.C. $\S 102(\mathrm{e})$. As of the filing date of this Request, Okuchi et al. has not been relied on during the '034 Ex Parte Reexamination of the ' 034 patent. During the original prosecution of the '034 patent, the Examiner ultimately allowed application claim 14 , which issued as claim 1 in the ' 034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Takahashi was not cited during the prosecution of the ' 034 patent and discloses the foregoing limitation that the Examiner in the original prosecution of the ' 034 patent considered to be missing from Okuchi et al. Moreover, Okuchi et al. and Takahashi disclose the limitation of proposed amended claim 1 that Balther apparently considers to be absent from the prior art cited in the '034 Ex Parte Reexamination, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle.

Okuchi et al. discloses a vehicle headlight optical axis direction adjusting system for adjusting the direction of illumination of a vehicle headlight. In Okuchi et al. the vehicle pitch angle is calculated from vehicle height sensors $11 \mathrm{~F}, 11 \mathrm{R}$, HF and HR on the front and rear portions of a vehicle. Col. 4 , line 58 to col. 5 , line 8 . These signals are supplied to Electronic Control Unit 20, which outputs signals to actuators to adjust the optical axis direction of the headlights as needed. Col. 5, lines 11 to 20 . Referring to Figure 3, Okuchi et al. further discloses detecting vehicle speed and acceleration and adjusting the filtering of the change in pitch signals in accordance with the running state of the vehicle. Col. 5 , line 52 to col. 6, line 39. For example, when the vehicle speed is lower than a speed threshold, the control mode "stop mode" is implemented, and no filtering of the pitch signal is performed so that the actuator is allowed to respond quickly to changes in pitch angle. Col. 5 , line 66 to col. 6 , line 5 . In contrast, when vehicle speed is higher than the threshold, but vehicle acceleration is lower than a threshold, the control mode "constant speed" mode is implemented, and high filtering of the pitch signal is performed as it is largely assumed that the pitch angle does not largely change. Col. 6, lines 29 to 38 . Thus, by disclosing sensors for suspension height, speed, and acceleration of a vehicle, Okuchi et al. discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a
signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Col. 4 , line 58 to col. 5 , line 8 ; col. 5 , line 52 to col. 6 , line 39 .

As discussed above, Takahashi relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp to maintain it in a predetermined direction. Page 1, lines 3 to 7 . Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , and vehicle running condition 3 . Referring to figure 9 , vehicle posture detect member 2 is composed of four height sensors 9. Figure 9; page 15 , lines 24 to 30 . Vehicle speed sensor 11 corresponds to the running condition detection device 3 . Figure 9 ; page 15 , line 24 to page 16 , line 1 . The illumination direction is adjusted by control device 4 , and drive device 5. Thus, as a vehicle posture changes when loads are applied to it, the inclination angle is measured and the direction of illumination of vehicle lamps are adjusted accordingly. Page 6 , line 26 to page 7 , line 4 .

A threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9 , line 16 to page 10 , line 3 .

Thus, by disclosing vehicle height sensors and speed sensors, Takahashi discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 9; page 15 , line 24 to page 16 , line 1.

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,24,25,28,29,33,34,35,37$ to 42 , 44, and 45 of the '034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Okuchi et al. and the features of Takahashi to "improve . . . visibility . . and guarantee the safety of running of the vehicle" as described, for example, on page 3 , lines 8 to 15 of Takahashi. Moreover, combining the automatic leveling device described in Okuchi et al. and the vehicle lamp illumination directional control in Takahashi is merely: (a) a combination of prior art elements according to known methods to yield
predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Okuchi et al. and Takahashi discloses all of the limitations of proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to 22,24 , $25,28,29,33,34,35,37$ to 42,44 , and 45.

Based on the foregoing, a substantial new question of patentability of proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,24,25,28,29,33,34,35,37$ to 42,44 , and 45 of the '034 Ex Parte Reexamination is raised by the combination of Okuchi et al. and Takahashi. Accordingly, VWGoA proposes a ground of rejection of proposed claims $1,2,4$ to 6,9 to 13 , 15 to 18,20 to $22,24,25,28,29,33,34,35,37$ to 42,44 , and 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Okuchi et al. and Takahashi.

29. Proposed Claims 1, 2, 4 to 6, 9 to 13, 15 to 18, 20 to 22, 25, 28, 29, 33 to 35, 37 to 42, 44, and 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination Of Okuchi et al. and Hussman Under 35 U.S.C. $\$ 103(\mathrm{a})$

Proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,25,28,29,33$ to 35,37 to 42 , 44, and 45 of the '034 Ex Parte Reexamination are unpatentable over the combination of Okuchi et al. and Hussman under 35 U.S.C. § 103(a). As discussed above, Okuchi et al. was relied on by the Examiner during the prosecution of the '034 patent in rejecting the claims as anticipated under 35 U.S.C. $\S 102(\mathrm{e})$. As of the filing date of this Request, Okuchi et al. has not been relied on during the ' 034 Ex Parte Reexamination of the ' 034 patent. During the original prosecution of the '034 patent, the Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Hussman was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner in the original prosecution of the '034 patent considered to be missing from Okuchi et al. Moreover, Okuchi et al. and

Hussman disclose the limitation of proposed amended claim 1 that Balther apparently considers to be absent from the prior art cited in the '034 Ex Parte Reexamination, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle.

Okuchi et al. discloses a vehicle headlight optical axis direction adjusting system for adjusting the direction of illumination of a vehicle headlight. In Okuchi et al. the vehicle pitch angle is calculated from vehicle height sensors $11 F, 11 R$, HF and HR on the front and rear portions of a vehicle. Col. 4 , line 58 to col. 5 , line 8 . These signals are supplied to Electronic Control Unit 20, which outputs signals to actuators to adjust the optical axis direction of the headlights as needed. Col. 5, lines 11 to 20 . Referring to Figure 3, Okuchi et al. further discloses detecting vehicle speed and acceleration and adjusting the filtering of the change in pitch signals in accordance with the running state of the vehicle. Col. 5 , line 52 to col. 6, line 39. For example, when the vehicle speed is lower than a speed threshold, the control mode "stop mode" is implemented, and no filtering of the pitch signal is performed so that the actuator is allowed to respond quickly to changes in pitch angle. Col. 5, line 66 to col. 6, line 5. In contrast, when vehicle speed is higher than the threshold, but vehicle acceleration is lower than a threshold, the control mode "constant speed" mode is implemented, and high filtering of the pitch signal is performed as it is largely assumed that the pitch angle does not largely change. Col. 6, lines 29 to 38 . Thus, by disclosing sensors for suspension height, speed, and acceleration of a vehicle, Okuchi et al. discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Col. 4 , line 58 to col. 5 , line 8 ; col. 5 , line 52 to col. 6 , line 39 .

As discussed above, Hussman relates to the regulation of the illumination direction of vehicle lamps based on the relative position of a vehicle body to the front and rear axles. Col. 1 , lines 6 to 20 . A front axle sensor sender V measures a relative position of a motor vehicle body to the front axle, and a rear axle sensor sender H measures a relative position of a motor vehicle body to the rear axle. Col. 2 , lines 40 to 48 . The change in the relative position of the vehicle body between front axle sender V and rear axle sender H is used to obtain a nominal-value signal. Col. 2, lines 48 to 53 . This signal is filtered by three filters to determine the time for three average-value formations, each employing different time
constants. Abstract. The first nominal-value signal is obtained by using a predetermined value. The second filtered nominal-value signal, obtained from using a smaller time constant, is then compared with the third filtered nominal-value signal, obtained from using a longer filtered time constant. Abstract. When a difference is detected between the second and third signal indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3, lines 49 to 61 ; col. 6 , lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6, lines 51 to 64 .

With two sensors, V and H, signaling the suspension height of the vehicle, Hussman discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., col. 2, lines 48 to 53 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims 1, 2, 4 to 6,9 to 13,15 to 18,20 to $22,25,28,29,33$ to 35,37 to 42,44 , and 45 of the '034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Okuchi et al. and the features of Hussman to "avoid[] false adjustments caused by" "inclination changes of the motor-vehicle body which are not attributable to changes in load or in road surface unevenness" as described, for example, at col. 1, line 65 to col. 2, line 4 of Hussman. Moreover, combining the automatic leveling device described in Okuchi et al. and the vehicle lamp illumination directional control in Hussman is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Okuchi et al. and Hussman discloses all of the limitations of proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to 22,25 , $28,29,33$ to 35,37 to 42,44 , and 45 .

Based on the foregoing, a substantial new question of patentability of proposed claims $1,2,4$ to 6,9 to 13,15 to 18,20 to $22,25,28,29,33$ to 35,37 to 42,44 , and 45 of the ' 034 Ex Parte Reexamination is raised by the combination of Okuchi et al. and Hussman. Accordingly, VWGoA proposes a ground of rejection of proposed claims $1,2,4$ to 6,9 to 13 , 15 to 18,20 to $22,25,28,29,33$ to 35,37 to 42,44 , and 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Okuchi et al. and Hussman.

30. Proposed Claims 1 to 14, 20, 22, 24 to 26, 28, 29, 37, 38, and 41 to 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination Of Gotoh and Uchida Under 35 U.S.C. $\mathbb{1 0 3 (a)}$

Proposed claims 1 to $14,20,22,24$ to $26,28,29,37,38$, and 41 to 45 of the ' $034 E x$ Parte Reexamination are unpatentable over the combination of Gotoh and Uchida under 35 U.S.C. § 103(a). As discussed above, Gotoh was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. $\S 102(\mathrm{~b})$. As of the filing date of this Request, Gotoh has not been relied on during the ' 034 Ex Parte Reexamination of the ' 034 patent. During the original prosecution of the ' 034 patent, the Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Uchida was not cited during the prosecution of the '034 patent and discloses the foregoing limitation that the Examiner in the original prosecution of the ' 034 patent considered to be missing from Gotoh. Moreover, Gotoh and Uchida disclose the limitation of proposed amended claim 1 that Balther apparently considers to be absent from the prior art cited in the '034 Ex Parte Reexamination, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle.

Gotoh discloses a device for changing the illumination direction of a vehicle headlights in the right and left directions. Referring to figure 3 , a steering angle sensor 21 , a vehicle speed sensor 22 , and a yaw rate sensor 23 , signal the steering angle, vehicle speed,
and yaw rate, respectively to the Light Distribution Control ECU 10. Col. 4, line 61 to col. 5, line 5.

The ECU 10 calculates a first lighting angle based on the steering angle as detected by the steering angle sensor and a speed correction coefficient based on the measured vehicle speed. Col. 5, lines 1 to 15 . A second lighting angle based on the turning movement as based on the detections of the yaw rate and vehicle speed sensors. Col. 5, lines 16 to 24 . The final lighting angle is decided based on whether the first lighting angle and the second lighting angle are pointed in the same right or left direction. Col. 5, lines 57 to 62 .

Thus, by disclosing sensors for steering angle, vehicle speed, and yaw rate, Gotoh discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., 'two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Col. 4 , line 61 to col. 5 , line 5.

As discussed above, Uchida relates to a vehicle lamp illumination directional control device which detects both the posture and speed of a vehicle and adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction. Page 1 at lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , vehicle speed 7 , and vehicle acceleration or deceleration 8. Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10 , line 26 to page 11 , line 6 . Thus, by disclosing detection of vehicle posture, speed, and acceleration, Uchida discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 1 ; page 6 , lines 9 to 15 ; page 9 , lines 28 to 33 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims 1 to $14,20,22,24$ to $26,28,29,37,38$, and 41 to 45 of the ' 034 Ex Parte

Reexamination were made would have been motivated to combine the features provided by Gotoh and the features of Uchida to "prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle" as described, for example, on page 4 , lines 16 to 27 of Uchida. Moreover, combining the automatic leveling device described in Gotoh and the vehicle lamp illumination directional control in Uchida is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Gotoh and Uchida discloses all of the limitations of proposed claims 1 to $14,20,22,24$ to $26,28,29,37,38$, and 41 to 45 .

Based on the foregoing, a substantial new question of patentability of proposed claims 1 to $14,20,22,24$ to $26,28,29,37,38$, and 41 to 45 of the ' 034 Ex Parte Reexamination is raised by the combination of Gotoh and Uchida. Accordingly, VWGoA proposes a ground of rejection of proposed claims 1 to $14,20,22,24$ to $26,28,29,37,38$, and 41 to 45 of the '034 Ex Parte Reexamination under 35 U.S.C. $\S 103$ (a) as obvious over the combination of Gotoh and Uchida.

31. Proposed Claims 1 to 12, 14, 16 to 18, 20 to 22, 24 to 26, 28, 29, 33, 34, 37, 38, and 41 to 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination of Gotoh and Takahashi Under 35 U.S.C. $\S 103(a)$

Proposed claims 1 to $12,14,16$ to 18,20 to 22,24 to $26,28,29,33,34,37,38$, and 41 to 45 of the ' 034 Ex Parte Reexamination are unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a). As discussed above, Gotoh was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(b). As of the filing date of this Request, Gotoh has not been relied on during the '034 Ex Parte Reexamination of the '034 patent. During the original prosecution of the '034 patent, the Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined
minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Takahashi was not cited during the prosecution of the ' 034 patent and discloses the foregoing limitation that the Examiner in the original prosecution of the '034 patent considered to be missing from Gotoh. Moreover, Gotoh and Takahashi disclose the limitation of proposed amended claim 1 that Balther apparently considers to be absent from the prior art cited in the '034 Ex Parte Reexamination, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle.

Gotoh discloses a device for changing the illumination direction of a vehicle headlights in the right and left directions. Referring to figure 3, a steering angle sensor 21, a vehicle speed sensor 22, and a yaw rate sensor 23, signal the steering angle, vehicle speed, and yaw rate, respectively to the Light Distribution Control ECU 10. Col. 4, line 61 to col. 5, line 5.

The ECU 10 calculates a first lighting angle based on the steering angle as detected by the steering angle sensor and a speed correction coefficient based on the measured vehicle speed. Col. 5, lines 1 to 15 . A second lighting angle based on the turning movement as based on the detections of the yaw rate and vehicle speed sensors. Col. 5, lines 16 to 24. The final lighting angle is decided based on whether the first lighting angle and the second lighting angle are pointed in the same right or left direction. Col. 5 , lines 57 to 62 .

Thus, by disclosing sensors for steering angle, vehicle speed, and yaw rate, Gotoh discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Col. 4, line 61 to col. 5 , line 5 .

As discussed above, Takahashi relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp to maintain it in a predetermined direction. Page 1, lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , and vehicle running condition 3. Referring to figure 9 , vehicle posture detect member 2 is composed of four height sensors 9. Figure 9; page 15, lines 24 to 30. Vehicle speed sensor 11 corresponds to the running condition detection device 3. Figure 9; page 15,
line 24 to page 16 , line 1 . The illumination direction is adjusted by control device 4 , and drive device 5. Thus, as a vehicle posture changes when loads are applied to it, the inclination angle is measured and the direction of illumination of vehicle lamps are adjusted accordingly. Page 6 , line 26 to page 7 , line 4 .

A threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9, line 16 to page 10 , line 3 .

Thus, by disclosing vehicle height sensors and speed sensors, Takahashi discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 9; page 15 , line 24 to page 16 , line 1.

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims 1 to $12,14,16$ to 18,20 to 22,24 to $26,28,29,33,34,37,38$, and 41 to 45 of the '034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Gotoh and the features of Takahashi to "improve . . . visibility . . . and guarantee the safety of running of the vehicle" as described, for example, on page 3 , lines 8 to 15 of Takahashi. Moreover, combining the automatic leveling device described in Gotoh and the vehicle lamp illumination directional control in Takahashi is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Gotoh and Takahashi discloses all of the limitations of proposed claims 1 to $12,14,16$ to 18,20 to 22,24 to $26,28,29,33$, $34,37,38$, and 41 to 45 .

Based on the foregoing, a substantial new question of patentability of proposed claims 1 to $12,14,16$ to 18,20 to 22,24 to $26,28,29,33,34,37,38$, and 41 to 45 of the ' $034 E x$ Parte Reexamination is raised by the combination of Gotoh and Takahashi. Accordingly, VWGoA proposes a ground of rejection of proposed claims 1 to $12,14,16$ to 18,20 to 22,24 to $26,28,29,33,34,37,38$, and 41 to 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Gotoh and Takahashi.

32. Proposed Claims 1 to 13, 24, 26, 28, 29, 37, 38, and 41 to 45 of the ' 034 Ex Parte Reexamination Are Unpatentable Over the Combination of Gotoh and Hussman Under 35 U.S.C. $\$ 103(\mathbf{a})$

Proposed claims 1 to $13,24,26,28,29,37,38$, and 41 to 45 of the ' 034 Ex Parte Reexamination are unpatentable over the combination of Gotoh and Hussman under 35 U.S.C. § 103(a). As discussed above, Gotoh was relied on by the Examiner during the prosecution of the ' 034 patent in rejecting the claims as anticipated under 35 U.S.C. § 102(b). As of the filing date of this Request, Gotoh has not been relied on during the '034 Ex Parte Reexamination of the ' 034 patent. During the original prosecution of the ' 034 patent, the Examiner ultimately allowed application claim 14, which issued as claim 1 in the '034 patent, because of the inclusion of the limitation "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating condition." As indicated above, Hussman was not cited during the prosecution of the ' 034 patent and discloses the foregoing limitation that the Examiner in the original prosecution of the '034 patent considered to be missing from Gotoh. Moreover, Gotoh and Hussman disclose the limitation of proposed amended claim 1 that Balther apparently considers to be absent from the prior art cited in the '034 Ex Parte Reexamination, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle.

Gotoh discloses a device for changing the illumination direction of a vehicle headlights in the right and left directions. Referring to figure 3 , a steering angle sensor 21 , a vehicle speed sensor 22 , and a yaw rate sensor 23 , signal the steering angle, vehicle speed, and yaw rate, respectively to the Light Distribution Control ECU 10. Col. 4, line 61 to col. 5, line 5.

The ECU 10 calculates a first lighting angle based on the steering angle as detected by the steering angle sensor and a speed correction coefficient based on the measured vehicle
speed. Col. 5, lines 1 to 15 . A second lighting angle based on the turning movement as based on the detections of the yaw rate and vehicle speed sensors. Col. 5, lines 16 to 24 . The final lighting angle is decided based on whether the first lighting angle and the second lighting angle are pointed in the same right or left direction. Col. 5 , lines 57 to 62.

Thus, by disclosing sensors for steering angle, vehicle speed, and yaw rate, Gotoh discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Col. 4 , line 61 to col. 5, line 5.

As discussed above, Hussman relates to the regulation of the illumination direction of vehicle lamps based on the relative position of a vehicle body to the front and rear axles. Col. 1 , lines 6 to 20 . A front axle sensor sender V measures a relative position of a motor vehicle body to the front axle, and a rear axle sensor sender H measures a relative position of a motor vehicle body to the rear axle. Col. 2 , lines 40 to 48 . The change in the relative position of the vehicle body between front axle sender V and rear axle sender H is used to obtain a nominal-value signal. Col. 2 , lines 48 to 53 . This signal is filtered by three filters to determine the time for three average-value formations, each employing different time constants. Abstract. The first nominal-value signal is obtained by using a predetermined value. The second filtered nominal-value signal, obtained from using a smaller time constant, is then compared with the third filtered nominal-value signal, obtained from using a longer filtered time constant. Abstract. When a difference is detected between the second and third signal indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3, lines 49 to 61 ; col. 6 , lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6 , lines 51 to 64 .

With two sensors, V and H, signaling the suspension height of the vehicle, Hussman discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., col. 2, lines 48 to 53.

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims 1 to $13,24,26,28,29,37,38$, and 41 to 45 of the ' 034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Gotoh and the features of Hussman to "avoid[] false adjustments caused by" "inclination changes of the motor-vehicle body which are not attributable to changes in load or in road surface unevenness" as described, for example, at col. 1, line 65 to col. 2, line 4 of Hussman. Moreover, combining the automatic leveling device described in Gotoh and the vehicle lamp illumination directional control in Hussman is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Gotoh and Hussman discloses all of the limitations of proposed claims 1 to $13,24,26,28,29,37,38$, and 41 to 45 .

Based on the foregoing, a substantial new question of patentability of proposed claims 1 to $11,24,26,28,29,37,38$, and 41 to 45 of the ' 034 Ex Parte Reexamination is raised by the combination of Gotoh and Hussman. Accordingly, VWGoA proposes a ground of rejection of proposed claims 1 to $13,24,26,28,29,37,38$, and 41 to 45 of the ' 034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Gotoh and Hussman.

33. Proposed Claims $17,19,21,23,26$, and 30 to 32 of the ' 034 Ex Parte Reexamination Are Unpatentable in View of the Combination of Uchida and the Admitted Prior Art Described in the ' 034 Patent Specification Under 35 U.S.C. $\$ 103$ (a)

Proposed claims 17, 19, 21, 23, 26, and 30 to 32 of the ' 034 Ex Parte Reexamination are unpatentable in view of the combination of Uchida and the admitted prior art described in the '034 patent specification under 35 U.S.C. § 103(a). As indicated above, Uchida was not cited during the prosecution of the '034 patent, and, as of the filing date of this Request, has not been cited during the '034 Ex Parte Reexamination.

As discussed above, Uchida relates to a vehicle lamp illumination directional control device which detects both the posture and speed of a vehicle and adjusts the illumination
direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction. Page 1 at lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , vehicle speed 7 , and vehicle acceleration or deceleration 8 . Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10 , line 26 to page 11 , line 6 . Thus, by disclosing detection of vehicle posture, speed, and acceleration, Uchida discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 1 ; page 6 , lines 9 to 15 ; page 9 , lines 28 to 33 .

The '034 patent specification admits that the features recited in proposed dependent claims $17,19,21,23,26$, and 30 to 32 of the ' 034 Ex Parte Reexamination were in the prior art at the time the '034 patent was filed. For example, the '034 patent specification states that "it is known to provide a directional control system for vehicle headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle," including moving the headlights in both the horizontal and vertical directions for aiming. Col. 1, lines 57 to 62 . Further, actuators 12 and 13 to move the vehicle headlights are "conventional in the art," and the motors that embody the actuators, such as servo motors, step motors, electronically controlled mechanical actuators, and micro stepping motors are also described as "known in the art." Col. 3, lines 26 to 41 . Further, the condition sensors 15 and 16 are described as "conventional in the art" and position feedback sensors 18 and 19 "can be embodied as any conventional sensor structures, such as Hall effect sensors" or can include "a conventional optical interrupter for each of the actuators 12 and 13." Col. 4, lines 24 to 36 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims $17,19,21,23,26$, and 30 to 32 of the ' 034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Uchida and the admitted prior art features in the '034 patent specification to include conventional features
such as allowing the headlights to move both horizontally and vertically, or various types of conventional actuators and condition sensors. Moreover, combining the vehicle lamp illumination directional control in Uchida is merely with the prior art features described in the '034 patent specification is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Uchida and the admitted prior art described in the ' 034 patent specification discloses all of the limitations of proposed claims $17,19,21,23,26$, and 30 to 32.

Based on the foregoing, a substantial new question of patentability of proposed claims 17, 19, 21, 23, 26, and 30 to 32 of the ' 034 Ex Parte Reexamination is raised by the combination of Uchida and the admitted prior art described in the ' 034 patent specification. Accordingly, VWGoA proposes a ground of rejection of proposed claims 17, 19, 21, 23, 26, and 30 to 32 of the '034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Uchida and the admitted prior art.

34. Proposed Claims 19, 23, 26, and 30 to 32 of the ' 034 Ex Parte Reexamination Are Unpatentable in View of the Combination of Takahashi and the Admitted Prior Art Described in the '034 Patent Specification Under 35 U.S.C. § 103 (a)

Proposed claims 19, 23, 26, and 30 to 32 of the '034 Ex Parte Reexamination are unpatentable in view of the combination of Takahashi and the admitted prior art described in the '034 patent specification under 35 U.S.C. § 103(a). As indicated above, Takahashi was not cited during the prosecution of the '034 patent, and, as of the filing date of this Request, has not been cited during the '034 Ex Parte Reexamination.

As discussed above, Takahashi relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp to maintain it in a predetermined direction. Page 1, lines 3 to 7 . Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , and vehicle running condition 3 . Referring to figure 9 , vehicle posture detect
member 2 is composed of four height sensors 9. Figure 9; page 15 , lines 24 to 30 . Vehicle speed sensor 11 corresponds to the running condition detection device 3 . Figure 9 ; page 15 , line 24 to page 16 , line 1 . The illumination direction is adjusted by control device 4 , and drive device 5. Thus, as a vehicle posture changes when loads are applied to it, the inclination angle is measured and the direction of illumination of vehicle lamps are adjusted accordingly. Page 6 , line 26 to page 7 , line 4 .

A threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9 , line 16 to page 10 , line 3 .

Thus, by disclosing vehicle height sensors and speed sensors, Takahashi discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 9; page 15 , line 24 to page 16 , line 1.

The ' 034 patent specification admits that the features recited in proposed dependent claims $19,23,26$, and 30 to 32 of the ' 034 Ex Parte Reexamination were in the prior art at the time the '034 patent was filed. For example, the '034 patent specification states that "it is known to provide a directional control system for vehicle headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle," including moving the headlights in both the horizontal and vertical directions for aiming. Col. 1, lines 57 to 62 . Further, actuators 12 and 13 to move the vehicle headlights are "conventional in the art," and the motors that embody the actuators, such as servo motors, step motors, electronically controlled mechanical actuators, and micro stepping motors are also described as "known in the art." Col. 3, lines 26 to 41. Further, the condition sensors 15 and 16 are described as "conventional in the art" and position feedback sensors 18 and 19 "can be embodied as any conventional sensor structures, such as Hall effect sensors" or can include "a conventional optical interrupter for each of the actuators 12 and 13." Col. 4 , lines 24 to 36 .

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims $19,23,26$, and 30 to 32 of the ' 034 Ex Parte Reexamination were made
would have been motivated to combine the features provided by Takahashi and the admitted prior art features in the '034 patent specification to include conventional features such as allowing the headlights to move both horizontally and vertically, or various types of conventional actuators and condition sensors. Moreover, combining the vehicle lamp illumination directional control in Takahashi is merely with the prior art features described in the '034 patent specification is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Takahashi and the admitted prior art described in the ' 034 patent specification discloses all of the limitations of proposed claims $19,23,26$, and 30 to 32.

Based on the foregoing, a substantial new question of patentability of proposed claims $19,23,26$, and 30 to 32 of the ' 034 Ex Parte Reexamination is raised by the combination of Takahashi and the admitted prior art described in the '034 patent specification. Accordingly, VWGoA proposes a ground of rejection of proposed claims $19,23,26$, and 30 to 32 of the '034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Takahashi and the admitted prior art.

35. Proposed Claims 17 to 21, 23 to 26, and 30 to 32 of the ' 034 Ex Parte Reexamination Are Unpatentable in View of the Combination of Hussman and the Admitted Prior Art Described in the ' 034 Patent Specification Under 35 U.S.C. $\$ 103(\mathrm{a})$

Proposed claims 17 to 21,23 to 26 , and 30 to 32 of the ' 034 Ex Parte Reexamination are unpatentable in view of the combination of Hussman and the admitted prior art described in the '034 patent specification under 35 U.S.C. $\S 103(\mathrm{a})$. As indicated above, Hussman was not cited during the prosecution of the '034 patent, and, as of the filing date of this Request, has not been cited during the '034 Ex Parte Reexamination.

As discussed above, Hussman relates to the regulation of the illumination direction of vehicle lamps based on the relative position of a vehicle body to the front and rear axles. Col. 1 , lines 6 to 20. A front axle sensor sender V measures a relative position of a motor vehicle
body to the front axle, and a rear axle sensor sender H measures a relative position of a motor vehicle body to the rear axle. Col. 2, lines 40 to 48 . The change in the relative position of the vehicle body between front axle sender V and rear axle sender H is used to obtain a nominal-value signal. Col. 2 , lines 48 to 53 . This signal is filtered by three filters to determine the time for three average-value formations, each employing different time constants. Abstract. The first nominal-value signal is obtained by using a predetermined value. The second filtered nominal-value signal, obtained from using a smaller time constant, is then compared with the third filtered nominal-value signal, obtained from using a longer filtered time constant. Abstract. When a difference is detected between the second and third signal indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3, lines 49 to 61 ; col. 6 , lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6 , lines 51 to 64 .

With two sensors, V and H , signaling the suspension height of the vehicle, Hussman discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., col. 2, lines 48 to 53.

The ' 034 patent specification admits that the features recited in proposed dependent claims 17 to 21, 23 to 26, and 30 to 32 of the ' 034 Ex Parte Reexamination were in the prior art at the time the '034 patent was filed. For example, the '034 patent specification states that "it is known to provide a directional control system for vehicle headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle," including moving the headlights in both the horizontal and vertical directions for aiming. Col. 1, lines 57 to 62. Further, actuators 12 and 13 to move the vehicle headlights are "conventional in the art," and the motors that embody the actuators, such as servo motors, step motors, electronically controlled mechanical actuators, and micro stepping motors are also described as "known in the art." Col. 3, lines 26 to 41 . Further, the condition sensors 15 and 16 are described as "conventional in the art" and position feedback sensors 18 and 19 "can be embodied as any conventional sensor
structures, such as Hall effect sensors" or can include "a conventional optical interrupter for each of the actuators 12 and 13." Col. 4, lines 24 to 36.

A person of ordinary skill in the art at the time of the alleged inventions claimed in proposed claims 17 to 21, 23 to 26, and 30 to 32 of the ' 034 Ex Parte Reexamination were made would have been motivated to combine the features provided by Hussman and the admitted prior art features in the '034 patent specification to include conventional features such as allowing the headlights to move both horizontally and vertically, or various types of conventional actuators and condition sensors. Moreover, combining the vehicle lamp illumination directional control in Hussman is merely with the prior art features described in the '034 patent specification is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Hussman and the admitted prior art described in the ' 034 patent specification discloses all of the limitations of proposed claims 17 to 21,23 to 26 , and 30 to 32 .

Based on the foregoing, a substantial new question of patentability of proposed claims 17 to 21,23 to 26 , and 30 to 32 of the ' 034 Ex Parte Reexamination is raised by the combination of Hussman and the admitted prior art described in the '034 patent specification. Accordingly, VWGoA proposes a ground of rejection of proposed claims 17 to 21, 23 to 26, and 30 to 32 of the '034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Hussman and the admitted prior art.

36. Proposed Claim 27 of the ' $\mathbf{0 3 4}$ Ex Parte Reexamination Is Unpatentable Over the Combination of Uchida and Wassen et al. Under 35 U.S.C. § 103(a)

Proposed claim 27 of the ' 034 Ex Parte Reexamination is unpatentable over the combination of Uchida and Wassen et al. under 35 U.S.C. § 103(a). As indicated above, neither Uchida nor Wassen et al. was cited during the prosecution of the ' 034 patent, and, as of the filing date of this Request, neither Uchida nor Wassen et al. has been cited during the '034 Ex Parte Reexamination.

As discussed above, Uchida relates to a vehicle lamp illumination directional control device which detects both the posture and speed of a vehicle and adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction. Page 1 at lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , vehicle speed 7 , and vehicle acceleration or deceleration 8. Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction. Specifically, referring to Figure 5, the vehicle is judged to be in acceleration or deceleration running condition or not in acceleration or deceleration condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10, line 26 to page 11 , line 6 . Thus, by disclosing detection of vehicle posture, speed, and acceleration, Uchida discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 1; page 6, lines 9 to 15; page 9, lines 28 to 33 .

Wassen et al. discloses manual adjustment of the beam emitted by a headlight when an actuator is associated with the adjustment device. Col. 3, lines 17 to 30 .

A person of ordinary skill in the art at the time of the alleged invention claimed in proposed claim 27 of the '034 Ex Parte Reexamination was made would have been motivated to combine the features of Uchida with the features provided by Wassen et al. to provide a calibration mode that includes the capability of adjusting the illumination direction of a beam of light by manual operation of the at least one actuator. Moreover, combining the manual adjustment described in Wassen et al. and the vehicle lamp illumination directional control in Uchida is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended chart, the combination of Uchida and Wassen et al. discloses all of the limitations of proposed claim 27.

Based on the foregoing, a substantial new question of patentability of proposed claim 27 of the '034 Ex Parte Reexamination is raised by the combination of Uchida and Wassen et al. Accordingly, VWGoA proposes a ground of rejection of proposed claim 27 of the ' 034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Uchida and Wassen et al.

37. Proposed Claim 27 of the '034 Ex Parte Reexamination Is Unpatentable Over the Combination of Takahashi and Wassen et al. Under 35 U.S.C. $\$ 103(a)$

Proposed claim 27 of the ' 034 Ex Parte Reexamination is unpatentable over the combination of Takahashi and Wassen et al. under 35 U.S.C. § 103(a). As indicated above, neither Takahashi nor Wassen et al. was cited during the prosecution of the '034 patent, and, as of the filing date of this Request, neither Takahashi nor Wassen et al. has been cited during the '034 Ex Parte Reexamination.

As discussed above, Takahashi relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp to maintain it in a predetermined direction. Page 1, lines 3 to 7. Referring to Figure 1, the illumination direction of lights in a vehicle is controlled by detecting vehicle posture 2 , and vehicle running condition 3. Referring to figure 9 , vehicle posture detect member 2 is composed of four height sensors 9. Figure 9; page 15, lines 24 to 30. Vehicle speed sensor 11 corresponds to the running condition detection device 3. Figure 9; page 15, line 24 to page 16, line 1. The illumination direction is adjusted by control device 4, and drive device 5. Thus, as a vehicle posture changes when loads are applied to it, the inclination angle is measured and the direction of illumination of vehicle lamps are adjusted accordingly. Page 6 , line 26 to page 7 , line 4 .

A threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted. Page 9 , line 16 to page 10 , line 3 .

Thus, by disclosing vehicle height sensors and speed sensors, Takahashi discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034

Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., figure 9; page 15 , line 24 to page 16 , line 1.

Wassen et al. discloses manual adjustment of the beam emitted by a headlight when an actuator is associated with the adjustment device. Col. 3 , lines 17 to 30 .

A person of ordinary skill in the art at the time of the alleged invention claimed in proposed claim 27 of the '034 Ex Parte Reexamination was made would have been motivated to combine the features of Takahashi with the features provided by Wassen et al. to provide a calibration mode that includes the capability of adjusting the illumination direction of a beam of light by manual operation of the at least one actuator. Moreover, combining the manual adjustment described in Wassen et al. and the vehicle lamp illumination directional control in Takahashi is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended chart, the combination of Takahashi and Wassen et al. discloses all of the limitations of proposed claim 27.

Based on the foregoing, a substantial new question of patentability of proposed claim 27 of the '034 Ex Parte Reexamination is raised by the combination of Takahashi and Wassen et al. Accordingly, VWGoA proposes a ground of rejection of proposed claim 27 of the '034 Ex Parte Reexamination under 35 U.S.C. § 103(a) as obvious over the combination of Takahashi and Wassen et al.

38. Proposed Claim 27 of the ' 034 Ex Parte Reexamination Is Unpatentable Over the Combination of Hussman ' 460 and Wassen et al. Under 35 U.S.C. $\$ 103(a)$

Proposed claim 27 of the '034 Ex Parte Reexamination is unpatentable over the combination of Hussman and Wassen et al. under 35 U.S.C. § 103(a). As indicated above, neither Hussman nor Wassen et al. was cited during the prosecution of the ' 034 patent, and,
as of the filing date of this Request, neither Hussman nor Wassen et al. has been cited during the '034 Ex Parte Reexamination.

As discussed above, Hussman relates to the regulation of the illumination direction of vehicle lamps based on the relative position of a vehicle body to the front and rear axles. Col. 1 , lines 6 to 20. A front axle sensor sender V measures a relative position of a motor vehicle body to the front axle, and a rear axle sensor sender H measures a relative position of a motor vehicle body to the rear axle. Col. 2, lines 40 to 48 . The change in the relative position of the vehicle body between front axle sender V and rear axle sender H is used to obtain a nominal-value signal. Col. 2, lines 48 to 53 . This signal is filtered by three filters to determine the time for three average-value formations, each employing different time constants. Abstract. The first nominal-value signal is obtained by using a predetermined value. The second filtered nominal-value signal, obtained from using a smaller time constant, is then compared with the third filtered nominal-value signal, obtained from using a longer filtered time constant. Abstract. When a difference is detected between the second and third signal indicating changes in the inclination of the motor-vehicle body, and the vehicle speed is above a given threshold, the regulation of the illumination direction is switched from the first signal to the third signal, which was obtained using a larger time constant. Col. 3, lines 49 to 61 ; col. 6 , lines 51 to 64 . This causes the illumination direction to be adjusted less frequently, and prevents changing of illumination direction based on signals not attributable to longer term body position change. Col. 6 , lines 51 to 64 .

With two sensors, V and H , signaling the suspension height of the vehicle, Hussman discloses precisely the feature of proposed claim 1 that applicants argue the reference cited in the '034 Ex Parte Reexamination fails to teach, i.e., "two or more sensors that are each adapted to generate a signal that is representative of a condition of the vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." (emphasis in original) See e.g., col. 2, lines 48 to 53.

Wassen et al. discloses manual adjustment of the beam emitted by a headlight when an actuator is associated with the adjustment device. Col. 3, lines 17 to 30 .

A person of ordinary skill in the art at the time of the alleged invention claimed in proposed claim 27 of the '034 Ex Parte Reexamination was made would have been motivated to combine the features of Hussman with the features provided by Wassen et al. to provide a calibration mode that includes the capability of adjusting the illumination direction of a beam of light by manual operation of the at least one actuator. Moreover, combining the manual adjustment described in Wassen et al. and the vehicle lamp illumination directional control in

Hussman is merely: (a) a combination of prior art elements according to known methods to yield predictable results; (b) a simple substitution of one known element for another to obtain predictable results; (c) a use of known technique to improve similar devices in the same way; (d) application of a known technique to a known device ready for improvement to yield predictable results; (e) obvious to try; and/or (f) known work in one field of endeavor prompting variations of it for use in either the same field or a different one based on design incentives or other market forces since the variations are predictable to one of ordinary skill in the art.

As set forth in the appended charts, the combination of Hussman and Wassen et al. discloses all of the limitations of proposed claim 27.

Based on the foregoing, a substantial new question of patentability of proposed claim 27 of the '034 Ex Parte Reexamination is raised by the combination of Hussman and Wassen et al. Accordingly, VWGoA proposes a ground of rejection of proposed claim 27 of the '034 Ex Parte Reexamination under 35 U.S.C. $\S 103(\mathrm{a})$ as obvious over the combination of Hussman and Wassen et al.

X. PROPOSED REJECTION OF PROPOSED
 CLAIMS 12 TO 16 UNDER 35 U.S.C. $\S 314$ (A)

Pursuant to 35 U.S.C. $\S 314(a)$, "no proposed amended or new claim enlarging the scope of the claims of the patent shall be permitted" in inter partes reexamination. Proposed claim 1 of the '034 Ex Parte Reexamination recites "two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle." Thus, proposed claim 1 requires sensors that generate a signal representative of two or more of the specific group of four specific recited conditions of road speed, steering angle, pitch, and suspension height of the vehicle.

Proposed claim 12 recites "The automatic directional control system defined in claim 1, wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, or a rate of change of suspension height of the vehicle." Thus, proposed claim 12 allows for sensors that generate a signal representative of four additional conditions, none of which were in the group required by claim 1. In other words, the group recited in proposed claim 12 is broader than the group recited in claim 1 of the ' 034 patent. Thus,
proposed claim 12 is broader than claim 1 of the ' 034 patent. For example, a directional control system with sensors for rate of change of pitch and rate of change of road speed would satisfy the conditions of proposed claim 12, but not claim 1 of the '034 patent.

Proposed claim 12 therefore improperly enlarges the scope of the claims of the '034 patent. As such proposed claim 12, and proposed claims 13 to 16 , which depend from proposed claim 12, are should be rejected under 35 U.S.C. $\S 314(a)$.

XI. PROPOSED REJECTION OF PROPOSED
 CLAIMS 12 TO 16 UNDER 35 U.S.C. § 112,44

Pursuant to 35 U.S.C. § 112 , $\| 4$, "a claim in dependent form shall . . . specify a further limitation of the subject matter claimed." As set forth above, proposed claims 12 to 16 are broader than proposed claim 1, from which proposed claims 12 to 16 ultimately depend. As such, proposed claims 12 to 16 fail to "specify a further limitation of the subject matter claimed" and should therefore be rejected under 35 U.S.C. § 112, 94.

XII. FEE PURSUANT TO 37 C.F.R. § 1.915(a)

The $\$ 8,800$ fee under 37 C.F.R. § $1.915(\mathrm{a})$ and 37 C.F.R. $\S 1.20(\mathrm{c})(2)$ for requesting inter partes reexamination is being paid by credit card. The Director is nevertheless authorized to charge any fees that may be required in connection with the Request or these proceedings on behalf of Requester, Volkswagen Group of America, Inc., to the deposit account of Kenyon \& Kenyon LLP, Deposit Account 11-0600.

XIII. CERTIFICATION PURSUANT TO 37 C.F.R. § 1.915(b)(6)

According to 37 C.F.R. $\S 1.915(\mathrm{~b})(6)$, a request for inter partes reexamination must include a certification that a copy of the request filed by a person other than the patent owner has been served in its entirety on the patent owner at the address as provided for in 37 C.F.R. § 1.33(c).

According to the Office's PAIR system, the correspondence address for the '034 patent is: The Caldwell Firm, LLC, P.O. Box 59655, Dept. SVIPGP, Dallas, Texas 75229.

Accordingly, a copy of this Request is being served in its entirety at the foregoing correspondence address as provided for in 37 C.F.R. $\S 1.33$ (c), in accordance with 37 C.F.R. $\S 1.915(\mathrm{~b})(6)$. A certificate of service is annexed hereto as Exhibit 17, which sets forth that, pursuant to 37 C.F.R. §1.1.915(b)(6), a copy of this Request has been served in its entirety on "the patent owner at the address as provided for in [37 C.F.R.] § 1.33(c)" at the correspondence address listed above.

XIV. CONCLUSION

For all of the reasons set forth above, reexamination of claims 1 to 5 of the ' 034 patent is requested.

Date: May 16, 2011
Respectfully submitted,
By: /Clifford A. Ulrich/
Clifford A. Ulrich
Reg. No. 42,194
KENYON \& KENYON LLP
One Broadway
New York, New York 10004
(212) 425-7200 (telephone)
(212) 425-5288 (facsimile)

CUSTOMER NO. 26646
Attorneys for Requester, VOLKSWAGEN GROUP OF AMERICA, INC.
Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 are Anticipated by Uchida under 35 U.S.C. § 102(b)

Limitation of 034 Patent Claimi	
1. An automatic directional control system for a vehicle headlight comprising:	E.g., page 1, line 3 to 7, "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., Page 1, lines 14 to 28, "The conventional device of this type includes a detection device which detects the inclination and height of the vehicle body variable according to the conditions of occupants (such as the number of occupants, the position arrangement of the occupants, and the like), the loaded conditions of loads on board the vehicle, the running conditions of the vehicle, and the like, calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detection device, and adjusts the illumination angle of the vehicle lamp with respect to the initially adjusted value of the vehicle lamp so that the illumination state of the vehicle lamp can always be kept in a desired state, thereby to control the illumination direction of the vehicle lamp for desired light distribution." E.g., Page 8, lines 20 to page 9 , line 1, "Here, as basic information used to judge whether the vehicle is in the acceleration or deceleration running condition or not, besides the information that is given by the vehicle posture detection device 2, as shown in Fig. 1, there is also available information which can be obtained by providing acceleration or deceleration instruction detection device 8 used to detect an acceleration or deceleration instruction or information relating to the present instruction according to the amount of pressing-down of a gas pedal, variations in the opening of a throttle valve or the like, or information which can be obtained by providing an engine revolution number detection device 9 used to detect the number of revolutions of an engine: that is, the information obtained by these detection devices may be transmitted to the acceleration or deceleration running condition judging device 3 b ."

$\left.\begin{array}{|l|l|}\hline \text { Limitation of } 034 \text { Patert Chim. } & \begin{array}{l}\text { E.g., Page 9, lines } 13 \text { to } 23 \text {, "At first, the judging method in the acceleration } \\ \text { or deceleration running condition judging device } 36 \text { will be described by } \\ \text { classifying it into the following four methods: i) a method using the vehicle } \\ \text { speed detection device; ii) a method using the acceleration or deceleration } \\ \text { instruction detection device } 8 \text {; iii) a method using the engine revolution } \\ \text { number detection device } 9 \text {; and iv) a method using the vehicle posture } \\ \text { detection device 2." }\end{array} \\ \text { See also Page 9, lines } 24 \text { to } 28 \text { and Page } 12 \text { line 27 to page 13, line 15. }\end{array}\right\}$

Limitation of 034 Patent Claim	CB 2309773 (Uehida)
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., Page 16, line 28 to Page 17, line 6 "Also, if it is judged by the acceleration or deceleration running condition judging device $3 b$ that the vehicle is not in the acceleration or deceleration running condition, then the illumination angle of the lamp 5 can be controlled by one of the following methods when the drive control device 4a receives an instruction from the acceleration or deceleration running condition judging device $3 \mathrm{~b}: 1$) a method for fixing the illumination angle; 2) a method for limiting the range of the illumination angle or forbidding part of the range of the illumination angle; and, 3) a method for changing the response speed or control speed of an actuator." E.g., Page 7, lines 4 to 9 "In particular, the correction calculating device 3a is structured in the following manner: that is, in accordance with a detect signal from the vehicle posture detection device 2 , it transmits a control signal to the drive device 4 so that the illumination direction of the lamp 5 can be always kept in a given direction." See also 7:9-32. E.g., Page 8, lines 1 to 9 "When the judging device 3b judges that the vehicle is in an acceleration or deceleration running condition, in accordance with a control signal transmitted from the correction calculating device 3 a to the drive control device 4 a , the acceleration or deceleration running condition judging device 3 b transmits to the drive control device 4 a a signal which allows the illumination direction of the lamp 5 to be corrected in a predetermined direction."
Limitation of 034 Patent Claim 2	CB 2309773 (UChida)
2. The automatic directional control system defined in claim 1	See claim 1 chart, above at page 1.
wherein said sensor generates a signal that is representative of the road speed	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration

Limitation of 034 Patent Claim 2	GB 2309773 (Uehida)
of the vehicle.	or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."
Limitation of 034 Patent Claim 4	CB 230973 (Uehida)
4. The automatic directional control system defined in claim 1	See claim 1 chart, above at page 1.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., Page 12 line 27 to page 13 , line 15 "Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitation of 034 Patent Claim 5	CB 2309773 (Uchida) $\ldots \ldots . \begin{aligned} & \ldots \\ & \ldots\end{aligned}$
5. The automatic directional control system defined in claim 1	See claim 1 chart, above at page 1.

Limitation of 034 Patent claims	
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2. Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 are Anticipated by Takahashi under 35 U.S.C. § 102(b)
2.

Limitation of 2034 Patent Clain 1	GR 2309774 (Takalashi)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., page 5, line 3 to 7, "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjust the illumination direction of a vehicle lamp so that it can be always kept in a predetermined direction."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
a controller that is responsive to said sensor signal for generating an output signal	E.g., Page 10 , line 20 to page 11 , line 11 , "In Step S 4 , it is checked whether a state in which the amount of variations of the detect signal supplied by the vehicle posture detection device 2 is equal to or more than a given reference value continues for a given period of time or longer or not. If it is found that such state continues, then the processing advances to Step S and, if not, then the processing goes to Step S6. Here, when a threshold value relating to the running distance of the vehicle is set instead of setting a threshold value relating to the above-mentioned continuing time, in Step S4, it may be checked whether a state in which the amount of variations in the detect signal supplied by the vehicle posture detection device 2 is equal to or more than a given reference value continues over a given running distance or not. In Step S 5 , in accordance with the information from the vehicle posture detection device 2, the control device 4 transmits to the drive control device 5a a control signal which causes the illumination direction of the lamp 6 to be kept

Limitation of 034 Patent Claim	as 2309774 T rakahashil.
	in a predetermined direction, and the illumination direction of the lamp 6 is corrected through the drive mechanism 5. After then, the processing goes back to the first step S1. Also, in Step 6, the correction of the illumination direction of the lamp 6 is not carried out but the processing returns to the first Step S1."
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, line to page 10 , line 3 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected. Also, the threshold values may be set in various manners, for example, they may be set as a constant value, or may be set as a variable which varies according to the speeds of the vehicle." E.g., Page 10, line 20 to page 11, line 11, "In Step S4, it is checked whether a state in which the amount of variations of the detect signal supplied by the

10

Limitation of 034 Patent Clain 2	GB 2309774 (Takahashil)
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4. As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."
Limitation of 034 Patent Clain 4	
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 7.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."
Limitation of 034 Patent Claim 5	CR 2309774 (Takahashil)
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 7 .
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is

Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 are Anticipated by Hussman under 35 U.S.C. § 102(b)
3.

I imitation of 03a patent haim!	
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation." See also col. 2, lines 40 to 48 , and col. 3, lines 40 to 45 .
a controller that is responsive to said sensor signal for generating an output signal	E.g., col. 3, lines 30 to 39 , "The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R."
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the

$\left.\begin{array}{l}\text { Limitation of } 034 \text { Patent cham } \\ \hline\end{array} \begin{array}{l}\text { E.g., col. 6, line 10 to 34, "In this connection, it is beneficial that upon the } \\ \text { presence of a difference between the second, filtered, nominal-value signal to } \\ \text { the third, filtered, nominal-value signal and upon termination of a difference } \\ \text { is again switched from the third, filtered, nominal-value signal to the first, } \\ \text { filtered, nominal-value signal because in this manner, in an uncomplicated } \\ \text { and cost effective manner, upon the presence of an inclination change of the } \\ \text { motor vehicle body which is not attributable to a change in loading or to road } \\ \text { surface unevenness, the regulation of the illumination range of the motor } \\ \text { vehicle, in dependence from the third, long, filter time constant results, } \\ \text { whereby the third, filtered, nominal-value signal is independent, or } \\ \text { substantially independent, from the disturbing, or distorting, short time } \\ \text { inclination changes so that after inclination changes of the motor-vehicle } \\ \text { body which, for example, are caused by driving about a curve, false } \\ \text { adjustments of the illumination range are not caused which can lead to the } \\ \text { blinding of oncoming traffic or to losses in illumination range, which } \\ \text { eliminates a danger during operation of a motor vehicle." }\end{array}\right]$

Limitation of 034 Patent Claim 2.......	US. Patent No, $5,182,460$ (Hussman)
	third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
Limitation of 034 Patent Claim 4	US.S. Patent No. $5,182.460$ (Ilissman)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 13.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g. col. 1, lines 6 to 20, "This invention concerns a method to regulate an illuminating range of a motor vehicle in which signals are measured at a position on a front axle and at a position on a rear axle, which signals depend upon a relative position of a motor vehicle body, or chassis, to the front and rear axles, with a difference between these signals being formed as a difference signal, with the resulting difference signal, as a nominal-value signal, being filtered to a first mean, or average, value, with a time for the first average-value formation being determined by a first filter time constant, and with positions of adjusting elements being regulated when the first, filtered, nominal-value signal deviates from a predetermined, or set, value and an apparatus for regulating the illumination range of a motor vehicle."
Limitation of 034 Patent Claims	U.S. Patent No. 5. 182.460 (Hussman)
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 13.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g. col. 1, lines 6 to 20, "This invention concerns a method to regulate an illuminating range of a motor vehicle in which signals are measured at a position on a front axle and at a position on a rear axle, which signals depend upon a relative position of a motor vehicle body, or chassis, to the front and rear axles, with a difference between these signals being formed as a

Limitation of 034 Patent Claims	US. Patent No. 5.182 .460 (llussman)
	difference signal, with the resulting difference signal, as a nominal-value signal, being filtered to a first mean, or average, value, with a time for the first average-value formation being determined by a first filter time constant, and with positions of adjusting elements being regulated when the first, filtered, nominal-value signal deviates from a predetermined, or set, value and an apparatus for regulating the illumination range of a motor vehicle."

Claims 1, and 5 of U.S. Patent No. 7,231,034 are Anticipated by Miskin et al. under 35 U.S.C. § 102(b)
$\left.\left.\begin{array}{|l|l|}\hline \text { Limitation of N34 Patent Claim } \\ \hline \begin{array}{l}\text { 1. An automatic directional control system for a vehicle headlight } \\ \text { comprising: }\end{array} & \begin{array}{l}\text { E.g., Abstract, "A device for automatic headlight adjustment in motor } \\ \text { vehicles consists of four sensors which are arranged in pairs one behind the } \\ \text { other in the direction of travel on those components of the motor vehicle } \\ \text { which respond to loading." }\end{array} \\ \hline \begin{array}{l}\text { a sensor that is adapted to generate a signal that is representative of a } \\ \text { condition of the vehicle, said sensed condition includes one or more of road } \\ \text { speed, steering angle, pitch, and suspension height of the vehicle; }\end{array} & \begin{array}{l}\text { E.g., Abstract, "A device for automatic headlight adjustment in motor } \\ \text { vehicles consists of four sensors which are arranged in pairs one behind the } \\ \text { other in the direction of travel on those components of the motor vehicle } \\ \text { which respond to loading." }\end{array} \\ \begin{array}{l}\text { E.g., page 4, "The four sensors are arranged in pairs one behind the other S1, }\end{array} \\ \text { S2/s3, S4, following the driving direction, on those components of the motor } \\ \text { vehicle that experience position change by loading, e.g. on wheel suspensions } \\ \text { or shock absorbers." }\end{array} \right\rvert\, \begin{array}{l}\text { E.g., page 5, "If the signals that lead to measured data are based on light load } \\ \text { such as those caused by road bumps, then it will result on average in a } \\ \text { differential value that provides only a small deviation from the ideal } \\ \text { headlight position value, thus the predetermined threshold value is not } \\ \text { exceeded. For heavier loads, the threshold value is exceeded, the } \\ \text { microprocessor 4 transmits signals via the digital/analog converter 6, 6" and } \\ \text { the operational amplifier 7, 7' to the respective headlights adjustment } \\ \text { devices, which then change the position of the headlights accordingly using } \\ \text { conventional tools, such as, for example, spindles, which convert the rotary } \\ \text { motion of the motor into linear movement of the headlights." }\end{array}\right\}$

Limitation of 034 Patent Claim 1	DE 3110094 (Miskin et ali)
	exceeded. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals via the digital/analog converter $6,6^{\prime}$ and the operational amplifier $7,7^{\prime}$ to the respective headlights adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights."
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., page 5, "If the signals that lead to measured data are based on light load such as those caused by road bumps, then it will result on average in a differential value that provides only a small deviation from the ideal headlight position value, thus the predetermined threshold value is not exceeded. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals via the digital/analog converter 6, 6^{\prime}, and the operational amplifier 7,7 ' to the respective headlights adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights."
Limitation of O34 Patent Clains	DE 3110094 Miskin et all)
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 17.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., Abstract, "A device for automatic headlight adjustment in motor vehicles consists of four sensors which are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle which respond to loading." E.g., page 4, "The four sensors are arranged in pairs one behind the other S1, S2/S3, S4, following the driving direction, on those components of the motor vehicle that experience position change by loading, e.g. on wheel suspensions

Claims 1, and 5 of U.S. Patent No. 7,231,034 are Anticipated by Leleve under 35 U.S.C. § 102(b)

Limitation of 134 Patent Clain 1	DF 3129891 (Leleve)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., page 7, "According to the invention, a device for the dynamic adjustment of the headlights of a vehicle is to be provided, which no longer has the aforementioned disadvantages and allows pleasant night-time driving under all driving conditions and regardless of the state of the road."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., page 12, "The device shown in Fig. 1 has a first sensor 1 between the front axle and the body of the vehicle in order to detect a relative movement. A corresponding sensor 2 is situated on the rear axle."
a controller that is responsive to said sensor signal for generating an output signal	E.g., page 12 , "The signals generated by sensors 1,2 are processed in a mixer stage 3 , where a signal is generated that represents the vibration or rocking motion of the vehicle in the course of its movement."
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., page 8, "One first specific embodiment of the invention is characterized by the fact that the filter includes threshold value elements, via which at least one amplitude threshold is able to be defined, for which the filter predefines a limit frequency. This allows a precise adaptation of the features of the filter to the different interference phenomena requiring an adjustment of the headlight position." See also pages 9 to 10,13 .
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., page 12, "The output of filter 4 is connected to a control and amplifier device 6 , which outputs a power signal to actuating organs 7 , which causes headlights 8 to move."

Linitationot 034 Patent Mams.as.as.ans	
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 20.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., page 12, "The device shown in Fig. 1 has a first sensor 1 between the front axle and the body of the vehicle in order to detect a relative movement. A corresponding sensor 2 is situated on the rear axle."

Inimation of 034 Patent Maliml	Vik. Patent No. 6 305s823 Modan at al)	
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "An automatic leveling device for automotive vehicle headlamps is described."	E.g., page 1, line 3 to 7, "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Page 1, lines 14 to 28, "The conventional device of this type includes a detection device which detects the inclination and height of the vehicle body variable according to the conditions of occupants (such as the number of occupants, the position arrangement of the occupants, and the like), the loaded conditions of loads on board the vehicle, the running conditions of the vehicle, and the like, calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detection device, and adjusts the illumination angle of the vehicle lamp with respect to the initially adjusted value of the vehicle lamp so that the illumination state of the vehicle lamp can always be kept in a desired state, thereby to control the illumination direction of the vehicle lamp for desired light distribution." E.g., Page 8, lines 20 to page 9, line 1, "Here, as basic information used to judge whether the vehicle is in the acceleration or deceleration running condition or not, besides the information that is given by the vehicle posture detection device 2, as shown in Fig. 1, there is

| Limitation of 034 Patent Claim |
| :--- | :--- | :--- | :--- |

Limitation of 034 Patent Claim 1	U.S. Patent No. 6, 305:823 (Toda et al.)	GB 2309773 (Uehida)
	lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s}^{2}$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or	E.g., Page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the

Limitation of 034 Patent Claim	U.S. Patent No. 6, 305:823 (Toda et al.)	GB 2309773 (Uehida)
	lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s}^{2}$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle." E.g., Page 10, line 26 to page 11, line 6, "At first, in step Sl , the vehicle speed $\mathrm{v}(\mathrm{t})$ is detected and, after then, in step S2, the acceleration $\mathrm{dv}(\mathrm{t}) / \mathrm{dt}$ or the absolute value thereof is calculated. Next, in Step S3, it is checked whether the acceleration $\mathrm{dv}(\mathrm{t}) / \mathrm{dt}$ or the absolute value thereof is equal to or more than a reference value or not. If it is found that the acceleration $\mathrm{dv}(\mathrm{t}) / \mathrm{dt}$ or the absolute value thereof is less than the reference value, then the processing advances to step S5. In step S4, it is judged that the vehicle is in the acceleration or deceleration running condition and, after then, the processing goes back to Step S2. Also, in Step S5, it is judged that the vehicle is not in the acceleration or deceleration running condition and, after then, the processing returns back to the first step S1. E.g., Figure 5:

Limitation of 034 Patent Claimi	US. Patent No. 6,305823 (loda et al)	GB 2309773 (Uehida)
		FIG. 5
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., Page 16, line 28 to Page 17, line 6 "Also, if it is judged by the acceleration or deceleration running condition judging device $3 b$ that the vehicle is not in the acceleration or deceleration running condition, then the illumination angle of the lamp 5 can be controlled by one of the following methods when the drive control device 4a receives an instruction from the acceleration or deceleration running condition judging device 3 b : 1) a method for fixing the illumination angle; 2) a method for limiting the range of the illumination angle or forbidding	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1 R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:

wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device $2 . "$ E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."

Limitation of 034 Patent Claim 4	U. S Patent No. g, 3058823 (Toda et al)	GB 2309773 (Uchilda)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 22.	See claim 1 claim chart, above at page 22.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Limitation of 034 Patent Claims	U. S. Patent No. $6,305,823$ (Toda et al.)	68 2300773 (Uchida)
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 22.	See claim 1 claim chart, above at page 22.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 ($1 \mathrm{~L}, 1 \mathrm{R}$) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the

Limitation of 034 Patent Claims	U.S. Patent No. 6 , 305823 (Toda et al)	GB 2309773 (Ul chida)
		running condition of the vehicle can be confirmed to a certain degree."

Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Toda et al. and Takahashi Under 35 U.S.C. § 103(a)

IImitation of 034 Patent Claim 1	U.S. Patent No. $6,305,823$ (Toda el al.)	GB 2309774 (Takalasili)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "An automatic leveling device for automotive vehicle headlamps is described."	E.g., page 5, line 3 to 7, "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjust the illumination direction of a vehicle lamp so that it can be always kept in a predetermined direction."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition

| Limitation of 034 Patent |
| :--- | :--- | :--- |

Limitation of 034 Patent Claim 1	U.S. Patent No. 6.3058823 (Toda et al)	
		a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
a controller that is responsive to said sensor signal for generating an output signal	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s}^{2}$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off,	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2."

Limitation of 034 Patent Claim	US. Patent No. 6 305 823 (Toda et al.)	GB 2309774 (Takahashil
	and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s}^{2}$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off,	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, line to page 10, line 3 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given

Limitation of 034 Patent Claim 1	US. Patent No. 6,305823 (Toda et ali)	GB 2309774 (Takahashil
	and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected. Also, the threshold values may be set in various manners, for example, they may be set as a constant value, or may be set as a variable which varies according to the speeds of the vehicle." E.g., Page 10, line 20 to page 11, line 11, "In Step $S 4$, it is checked whether a state in which the amount of variations of the detect signal supplied by the vehicle posture detection device 2 is equal to or more than a given reference value continues for a given period of time or longer or not. If it is found that such state continues, then the processing advances to Step S and, if not, then the processing goes to Step S6. Here, when a threshold value relating to the running distance of the vehicle is set instead of setting a threshold value relating to the above-mentioned continuing time, in Step S4, it may be checked whether a state in which the amount of variations in the detect signal supplied by the vehicle posture detection device 2 is equal to or more than a given reference value continues over a given running distance or not. In Step S5, in accordance with the information from the vehicle posture detection device 2 , the control device 4 transmits to the drive control device 5 a a control signal which causes the illumination direction of the lamp 6 to be kept in a predetermined direction, and the

Limitation of 034 Patent Chimi	U. S. Patent No, 6,305,823 (Toda et al)	GB 2309774 (Takahashi)
		illumination direction of the lamp 6 is corrected through the drive mechanism 5. After then, the processing goes back to the first step S1. Also, in Step 6, the correction of the illumination direction of the lamp 6 is not carried out but the processing returns to the first Step S1." E.g., Figure 7:
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit."	E.g., page 2, lines 14 to 17 "However, in the above-mentioned automatic adjustment device, since the lamp is driven with high frequency, an actuator used in a drive mechanism for driving the lamp is required to show high response property and high durability." E.g., page 6, lines 26 to 32 "When the control device 4 receives the detect signal of the vehicle running condition detection device 3 and finds from this detect signal that the vehicle is standing

Limitation of 034 Patent Claim 1	U.S. Patent No. 6,3058823 IToda et aly	GB 2309774 (Takahashi)
	E.g., Figure 1: 4\%:	still, the control device 4, in accordance with information on the vehicle posture obtained from the vehicle posture detection device 2 , transmits to the drive signal 5 a control signal for correction of the illumination direction of the lamp 6." E.g., page 7, lines 12 to 17 "In view of this, the control device 4 is structured such that, based on the information from the vehicle posture detection device 2, it can detect the amount of variations in the gradient of the road and, therefore, when the road gradient varies suddenly, it can correct the illumination direction of the lamp 6." E.g., page 11, lines 12 to 16 "The correction of the illumination direction of the lamp 6 in Step S5 is carried out by the drive device 5 based on the control signal transmitted from the control device 4 and, as a method for executing such correction, there are available two methods . . ."
Limitation of 034 Patent Clain 2	U. S. Patent No. $\mathrm{l}, 305823$ (Toda et al.	GB 2309774 (Takaliasti)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 33.	See claim 1 claim chart, above at page 33.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the

Limitation of 034 Patent Chaim 2	U.S. Patent No. 6 , 305 823 (Toda et al)	GB 2309174 (Takahashi)
	failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."

Limitation of 034 Patent Clain 4	U.S. Patent No. 6, 30: 823 (Toda ct al)	GB 2309774 (Takahashi)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 33.	See claim 1 claim chart, above at page 33.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a

Limitation of 034 Patent Claim 4	U.S. Patent No. 6,305 823 (Toda et al)	GB 2309774 (Takahashi)
	(17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."

Uimitation of 034 Patent Clains		GB 2300774 (Takahashi)
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 33.	See claim 1 claim chart, above at page 33.
wherein said sensor generates a signal that is	E.g., col. 3, lines 11 to 18, "The headlamp	E.g., page 2, lines 6 to 13 "Therefore, there is

Linitation of 034 Patent Claims	U. P. Patent No. 6,3058823 IToda et alt	GB 2309174 (Takahashi)
representative of the suspension height of the vehicle.	automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

Itimiation of 03t ratent chalmil		
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "An automatic leveling device for automotive vehicle headlamps is described."	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value

Limitation of 034 Patent Claim 1	U. S. Patent No. 6,3058823 (Toda et al.)	US. Patent No. 5.182 .460 (llussman)
	維:	former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
a controller that is responsive to said sensor signal for generating an output signal	E.g., col. 4, lines 1 to 25, "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is	E.g., col. 3, lines 30 to 39 , "The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R."

Limitaion of 034 Patent Claim 1	US. Patent No. 6,305823 (Toda et al.)	US. Patent No. 5.182 .460 (liussman)
	proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s}^{2}$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 ($18 \mathrm{~L}, 18 \mathrm{R}$) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 4, lines 1 to 25, "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is	E.g., col. 3, lines 30 to 39 , "The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R." E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that

Limitation of 034 Patent Claim 1	U.S. Patent No. 6 , 3058823 (Toda et al.)	U.S. Patenl No. 5.182 .460 (lussman)
	proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s}^{2}$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	discontinuities or jumps in the adjustment and regulation of the illumination range are avoided." E.g., col. 6, line 10 to 34, "In this connection, it is beneficial that upon the presence of a difference between the second, filtered, nominal-value signal to the third, filtered, nominal-value signal and upon termination of a difference is again switched from the third, filtered, nominal-value signal to the first, filtered, nominal-value signal because in this manner, in an uncomplicated and cost effective manner, upon the presence of an inclination change of the motor vehicle body which is not attributable to a change in loading or to road surface unevenness, the regulation of the illumination range of the motor vehicle, in dependence from the third, long, filter time constant results, whereby the third, filtered, nominal-value signal is independent, or substantially independent, from the disturbing, or distorting, short time inclination changes so that after inclination changes of the motor-vehicle body which, for example, are caused by driving about a curve, false adjustments of the illumination range are not caused which can lead to the blinding of oncoming traffic or to losses in illumination range, which eliminates a danger during operation of a motor vehicle."
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes	E.g., col. 3, lines 16 to 18 , "The regulator R regulates the position of adjusting elements, which are shown here in block form and which change

Simitation of 034 Patent Claim 2	U.S. Patent No. 6,305823 (Toda et al.)	U.S. Patent No. $5,182.460$ (Hussman)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 43.	See claim 1 claim chart, above at page 43.
wherein said sensor generates a signal that is	E.g., col. 3, lines 11 to 18, "The headlamp	E.g., col. 3, lines 40 to 45, "The curve-recognition

Limintion of 034 Patent Maimis		
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g. col. 1, lines 6 to 20, "This invention concerns a method to regulate an illuminating range of a motor vehicle in which signals are measured at a position on a front axle and at a position on a rear axle, which signals depend upon a relative position of a motor vehicle body, or chassis, to the front and rear axles, with a difference between these signals being formed as a difference signal, with the resulting difference signal, as a nominalvalue signal, being filtered to a first mean, or average, value, with a time for the first averagevalue formation being determined by a first filter time constant, and with positions of adjusting elements being regulated when the first, filtered, nominal-value signal deviates from a predetermined, or set, value and an apparatus for regulating the illumination range of a motor vehicle."

IImitation of 034 Patent Claims	U.S. Palent Mo. 6\% 305833 (Toda mi al)		
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 43.	See claim 1 claim chart, above at page 43.	

wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g. col. 1, lines 6 to 20, "This invention concerns a method to regulate an illuminating range of a motor vehicle in which signals are measured at a position on a front axle and at a position on a rear axle, which signals depend upon a relative position of a motor vehicle body, or chassis, to the front and rear axles, with a difference between these signals being formed as a difference signal, with the resulting difference signal, as a nominalvalue signal, being filtered to a first mean, or average, value, with a time for the first averagevalue formation being determined by a first filter time constant, and with positions of adjusting elements being regulated when the first, filtered, nominal-value signal deviates from a predetermined, or set, value and an apparatus for regulating the illumination range of a motor vehicle."

Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Toda et al. and Miskin et al. Under 35 U.S.C. § 103(a)

Limitation of Mast Patent Claim 1	U.S. rateit No. $6.305: 823$ (Toda et all)	DE 3110 O94 (Miskin et al.)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "An automatic leveling device for automotive vehicle headlamps is described."	E.g., Abstract, "A device for automatic headlight adjustment in motor vehicles consists of four sensors which are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle which respond to loading."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Abstract, "A device for automatic headlight adjustment in motor vehicles consists of four sensors which are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle which respond to loading." E.g., page 4, "The four sensors are arranged in pairs one behind the other S1, S2/S3, S4, following the driving direction, on those components of the motor vehicle that experience position change by loading, e.g. on wheel suspensions or shock absorbers."

| Limitation of 034 Patent chaimen |
| :--- | :--- | :--- | :--- |

Limitation of 034 Patent Claim 1	U.S. Patent No. 6 .305:823 (Toda et al)	DE 3110094 (Miskin et al)
	lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s}^{2}$ or	E.g., page 5, "If the signals that lead to measured data are based on light load such as those caused by road bumps, then it will result on average in a differential value that provides only a small deviation from the ideal headlight position value, thus the predetermined threshold value is not exceeded. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals via the digital/analog converter $6,6^{\prime}$ and the operational amplifier 7,7 ' to the respective headlights adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights."

Limitation of 034 Patent Claim 1	U.S. Patent No. $6,305,823$ (Toda et al)	DE 3110094 Miskin et al.)
	lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 5, "If the signals that lead to measured data are based on light load such as those caused by road bumps, then it will result on average in a differential value that provides only a small deviation from the ideal headlight position value, thus the predetermined threshold value is not exceeded. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals via the digital/analog converter $6,6^{\prime}$ and the operational amplifier $7,7^{\prime}$ to the respective headlights adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights."

Linitation of O34 Patent Claim 1	US. Patent No. 6,3058823 (Toda et all)	DE 3110094 (Miskin et al)
	4:	

Limitation of 034 Patent Clain 2	U.S. Patent No. t . 305823 (Toda et al.)	DE 3110094 Miskín et al.)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 51.	See claim 1 claim chart, above at page 51.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit."	

Limitation of 034 Patent Claim 2	US. P. Patent No. 6,3058823 (Toda et al)	DF 3110094 Miskin et ai.)
	E.g., Figure 1: 率:	

1 imitation of 034 Patent Clain 4	U.S. Patent No. $6,305,823$ (Toda et al)	DE 3110094 (Miskin et al)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 51.	See claim 1 claim chart, above at page 51.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control	

Limitation of 034 Patent Claim 4	US. Patent No. 6.305823 (Toda et al)	DE 3110094 Miskir et alt.
	unit." E.g., Figure 1:	
Imitation of 034 Patent Clains	US. Patent No. 6.305823 (Toda et al.	de 3110094 miskin et ait
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 51.	See claim 1 claim chart, above at page 51.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height	E.g., Abstract, "A device for automatic headlight adjustment in motor vehicles consists of four sensors which are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle which respond to loading." E.g., page 4, "The four sensors are arranged in

10. Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Toda et al. and Leleve Under 35

Limitation of M34 Patent Clatin 1	DE 3129891 (lielere)	US. Patent No. 6 , 305,823 (loda et all)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., page 7, "According to the invention, a device for the dynamic adjustment of the headlights of a vehicle is to be provided, which no longer has the aforementioned disadvantages and allows pleasant night-time driving under all driving conditions and regardless of the state of the road."	E.g., Abstract, "An automatic leveling device for automotive vehicle headlamps is described."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., page 12, "The device shown in Fig. 1 has a first sensor 1 between the front axle and the body of the vehicle in order to detect a relative movement. A corresponding sensor 2 is situated on the rear axle."	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:

Limitation of 034 Patent Claim 1	DE 3129891 (Leleve)	U. S. Patent No. 6,305823 (Toda ct ail).......
		nal
a controller that is responsive to said sensor signal for generating an output signal	E.g., page 12, "The signals generated by sensors 1, 2 are processed in a mixer stage 3 , where a signal is generated that represents the vibration or rocking motion of the vehicle in the course of its movement."	E.g., col. 4, lines 1 to 25, "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s}^{2}$ or lower. Therefore, an abrupt detection of an

| Limitation of 034 Patent Chaim |
| :--- | :--- | :--- |

Limitation of 034 Patent Claim	DE 3129891 (Leleve)	US. Patent No. 6 , 305823 IToda et ali)
		abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., page 12, "The output of filter 4 is connected to a control and amplifier device 6 , which outputs a power signal to actuating organs 7 , which causes headlights 8 to move."	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:

Limitation of 034 Patent Claim 1	DE $3129891($ Leleve)	US P Patent No. 6, 305 823 (Toda ct ail).....
		na

Limitation of 034 Patent Claim 2	DE 3129891 (Leleve)	US. S. Patent No. 6,305,823 (Toda et al)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart above at page 59.	See claim 1 claim chart above at page 59.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.		E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit."

Limitation of 034 Patent Claim 2	DE 3129891 (Leleve)	US. Patent No. 6 , 305823 IToda et al)
		E.g., Figure 1:

Limitation of 034 Patent Claim 4	DE 3129891 (1 eleve)	1.S. Patent No. gi,305823 (Toda et ail
4. The automatic directional control system defined in claim 1	See claim 1 claim chart above at page 59.	See claim 1 claim chart above at page 59.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.		E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control

Limitation of 034 Patent Claims	DE 3129891 (1) elere)	US. Patent No. , 305,823 (Toda et al)
5. The automatic directional control system defined in claim 1	See claim 1 claim chart above at page 59.	See claim 1 claim chart above at page 59.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., page 12, "The device shown in Fig. 1 has a first sensor 1 between the front axle and the body of the vehicle in order to detect a relative movement. A corresponding sensor 2 is situated on the rear axle."	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch

11. Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Okuchi et al. and Uchida Under 35 U.S.C. § 103(a)

Mimitation of 034 Patent Claim 1	U. S. Paten No. $0.193,398$ (Okuchi t ali)	CR 2309773 (UCHİa)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor."	E.g., page 1, line 3 to 7, "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the	E.g., Page 1, lines 14 to 28, "The conventional device of this type includes a detection device which detects the inclination and height of the vehicle body variable according to the conditions of occupants (such as the number of occupants, the position arrangement of the occupants, and the like), the loaded conditions of loads on board the vehicle, the running conditions of the vehicle, and the like, calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detection device, and adjusts the illumination angle of the vehicle lamp with respect to the initially adjusted value of the vehicle lamp so that the illumination state of the vehicle lamp can always be kept in a desired state, thereby to control the illumination direction of the vehicle lamp for desired light distribution." E.g., Page 8, lines 20 to page 9, line 1, "Here, as basic information used to judge whether the vehicle is in the acceleration or deceleration running condition or not, besides the information that is given by the vehicle posture detection device 2, as shown in Fig. 1, there is

| Limitation of 034 Patent |
| :--- | :--- | :--- | :--- |

Minitation of 034 Patent Chaim	US Patent No. 6.193 .398 (0kucli et alt	GB 2309773 (Uchida)
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} /$ dt obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16. 7	E.g., Page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle." E.g., Page 10, line 26 to page 11, line 6, "At first, in step S 1 , the vehicle speed $\mathrm{v}(\mathrm{t})$ is detected and, after then, in step S 2 , the acceleration $\mathrm{dv}(\mathrm{t}) / \mathrm{dt}$ or the absolute value thereof is calculated. Next, in Step S3, it is checked whether the acceleration $\mathrm{dv}(\mathrm{t}) / \mathrm{dt}$ or the absolute value thereof is equal to or more than a reference value or not. If it is found that the acceleration $\mathrm{dv}(\mathrm{t}) / \mathrm{dt}$ or the absolute value thereof is less than the reference value, then the processing advances to step S5. In step S4, it is judged that the vehicle is in the acceleration or deceleration running condition and, after then, the processing goes back to Step S2. Also, in Step S5, it is judged that the vehicle is not in the acceleration or deceleration running condition and, after then, the processing returns back to the first step S1. E.g., Figure 5:

Limitation of 034 Patent Claim 1	US. Patent No. $6.193,398$ (Okuchi it alt	GB 2309773 (Uchida)
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., col. 5, lines 16 to 20 , "Output signals from the ECU 20 are supplied to actuators 35 R and 35 L of right and left headlights 30R and 30L of the vehicle, thereby adjusting the optical axis direction of the right and left headlights 30R and 30 L as will be described hereinlater."	E.g., Page 16, line 28 to Page 17, line 6 "Also, if it is judged by the acceleration or deceleration running condition judging device $3 b$ that the vehicle is not in the acceleration or deceleration running condition, then the illumination angle of the lamp 5 can be controlled by one of the following methods when the drive control device 4 a receives an instruction from the acceleration or deceleration running condition judging device 3 b : 1) a method for fixing the illumination angle; 2) a method for limiting the range of the illumination angle or forbidding part of the range of the illumination angle; and, 3) a method for changing the response speed or control speed of an actuator." E.g., Page 7, lines 4 to 9 "In particular, the correction calculating device 3 a is structured in the following manner: that is, in accordance with a detect signal from the vehicle posture detection device 2, it transmits a control signal to the drive device 4 so that the illumination direction of the lamp 5 can be always kept in a given direction." See also 7:9-32. E.g., Page 8, lines 1 to 9 "When the judging device 3b judges that the vehicle is in an acceleration or deceleration running condition, in accordance with a control signal transmitted from the correction calculating device 3 a to the drive control device 4 a , the acceleration or deceleration running condition judging device 3 b transmits to the drive control device 4 a a signal which allows the illumination direction of the lamp 5 to be corrected in a predetermined direction."

| Limitation of 034 Patent Claint |
| :--- | :--- | :--- |

Limitation of 034 Patent Claim 2	US. Patent No. 6.193398 (Okuchi et ali)	GB 2309773 (Uechida)
	Fla,	
limitation of 034 Patent Claim 4	U.S. Patent No. 6.193,398 (Ohuchit alit	CB 2309773 (Uchida)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 67.	See claim 1 claim chart, above at page 67.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used

Limitation of 034 Patent Claim 4	US. Patent No. 6.193 .398 (Oknchi et ail.	GB 2309773 (uchida)
	wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: H6.	height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

| Limitation of 034 Patert Claims |
| :--- | :--- | :--- |

Limitation of O34 Patent Claim 1	U.S. ratent No. 6.193398 (Okichi et al)	GB 2309774 (Takahasti)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor."	E.g., page 5, line 3 to 7 , "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjust the illumination direction of a vehicle lamp so that it can be always kept in a predetermined direction."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20."	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition

Limitation of 034 Patent Claim 1	U.S. Patent No, $6,193,398$ (Okuchi et al)	GB 2309774 Takahashil
		a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
a controller that is responsive to said sensor signal for generating an output signal		E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2."
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7:	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, line to page 10, line 3 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations

GB 2309774 (Takahashi)		
U.S. Patent No. it is 398 (Oknehi et ar.		
Limitation of 034 Patent lame		

Linitation of 034 Patent Chín 1	U.S. Patent No. 6.193 398 (Okuchi et al)	GB 2309774 (Takahashit
		FiG. 7
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., col. 5 , lines 16 to 20 , "Output signals from the ECU 20 are supplied to actuators 35 R and 35L of right and left headlights 30R and 30L of the vehicle, thereby adjusting the optical axis direction of the right and left headlights 30 R and 30 L as will be described hereinlater."	E.g., page 2, lines 14 to 17 "However, in the above-mentioned automatic adjustment device, since the lamp is driven with high frequency, an actuator used in a drive mechanism for driving the lamp is required to show high response property and high durability." E.g., page 6 , lines 26 to 32 "When the control device 4 receives the detect signal of the vehicle running condition detection device 3 and finds from this detect signal that the vehicle is standing

Limitation of 034 Patent cham

Linitation of P34 Patent Chaim 2	US. Patent No. 6.193398 (Okachi et al)	GB 2309774 (Takahashit.
	driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."

limitation of o34 Patent Claim 4	U.S. Patent No, 6.193,398 (Okichi et al)	GB 2309774 (Takahashi)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 79.	See claim 1 claim chart, above at page 79.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."

| Limitation of o34 Patent Cham s |
| :--- | :--- | :--- |

8
13. Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Okuchi et al. and Hussman Under 35 U.S.C. § 103(a)
1 Imitation of 034 Patent Clains
vehicle headlight comprising:

| a sensor that is adapted to generate a signal that is |
| :--- | :--- |
| representative of a condition of the vehicle, said |
| sensed condition includes one or more of road |
| speed, steering angle, pitch, and suspension height |
| of the vehicle; |\quad| E.g., col. 4, line 58 to col. 5, line 8, "Referring |
| :--- |
| first to Fig. 1, a front (front-wheel) height sensor |
| 11F is attached to a front suspension provided |
| between a front axle and a vehicle chassis on a |
| driver's seat side or a front passenger seat side. A |
| rear (rear-wheel) height sensor 11R is attached to a |
| rear suspension provided between the rear axic |
| and the vehicle chassis on the driver's seat side or |
| the rear passenger seat side. A front height value |
| (a displacement of the vehicle height on the front |
| wheel side) HF and a rear height value (a |
| displacement of the vehicle height on the rear |
| wheel side) HR as relative displacements |
| (displacements of the vehicle height) between the |
| respective axles on the front and rear wheel sides |
| and the vehicle chassis supplied from the height |
| sensors 11F and 11R, and various sensor signals of |

Linitation of 034 Patent Claim 1	U.S. Patent No. 5,909,949 (Cotoh)	U.S. Patent No. 5182.460 (Hussman)
	wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fig.	former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
a controller that is responsive to said sensor signal for generating an output signal	E.g., Col. 4, lines 59 to 60 , "The motor 8 is controlled for its driving by a light distribution control ECU 10."	E.g., col. 3, lines 30 to 39, "The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R."

Linitation of 034 Patent Claim 1	US. Patent No. $5,909,949$ (Cotoh)	US. Patent No. 5.182 .460 (Hussman)
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time	E.g., col. 3, lines 30 to 39 , "The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R." E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided." E.g., col. 6, line 10 to 34 , "In this connection, it is beneficial that upon the presence of a difference between the second, filtered, nominal-value signal to the third, filtered, nominal-value signal and upon termination of a difference is again switched from the third, filtered, nominal-value signal to the first, filtered, nominal-value signal because in this manner, in an uncomplicated and cost effective manner, upon the presence of an inclination change of the motor vehicle body which is not attributable to a change in loading or to road surface unevenness, the regulation of the

Limitation of 034 Patent Claimi	U.S. Patent No. 5,909949 (Cotoh)	U.S. Patent No. 5.182 .460 Ulussman)
	somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., Col. 7, lines 34 to 39 , "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle θ, even if the steering wheel is operated rapidly for the counter-steering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	illumination range of the motor vehicle, in dependence from the third, long, filter time constant results, whereby the third, filtered, nominal-value signal is independent, or substantially independent, from the disturbing, or distorting, short time inclination changes so that after inclination changes of the motor-vehicle body which, for example, are caused by driving about a curve, false adjustments of the illumination range are not caused which can lead to the blinding of oncoming traffic or to losses in illumination range, which eliminates a danger during operation of a motor vehicle."
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., col. 5, lines 16 to 20 , "Output signals from the ECU 20 are supplied to actuators 35R and 35L of right and left headlights 30R and 30L of the vehicle, thereby adjusting the optical axis direction of the right and left headlights 30R and 30L as will be described hereinlater."	E.g., col. 3, lines 16 to 18 , "The regulator R regulates the position of adjusting elements, which are shown here in block form and which change the positions of headlights."
1 Lmitation of 034 Patent Chaim2	U. S. Patent No. $5,909,949$ (Cotoh)	U. S Patent No. 5.182 .461 (114sman)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 136.	See claim 1 claim chart, above at page 136.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a	E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects

Limitation of 034 Patent Clame	US. Patent No. 5, 909949 (Gotoh)	US. Patem No. 5182.460 (Hussman)
	driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."

Limitation of 034 Patent Claim	U. S. Patent No. 5 ,909,949 (Cotoh)	US S Patemt No. 5.182 .460 (lussman)
	FIG)	
Limitation of 034 Patent Clain 4	U.S. Patent No. $5,900,949$ (Cotoh)	US. Patent No. S. 182.460 (Hussman)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 136.	See claim 1 claim chart, above at page 136.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g. col. 1, lines 6 to 20, "This invention concerns a method to regulate an illuminating range of a motor vehicle in which signals are measured at a position on a front axle and at a position on a rear axle, which signals depend upon a relative position of a motor vehicle body, or chassis, to the front and rear axles, with a difference between these signals being formed as a difference signal, with the resulting difference signal, as a nominal-value signal, being filtered to a first mean, or average,

Limitation of 034 Patent Claims	US. Patent No. 5,909,949 (Cotoh)	U.S. Patent No. 5.182 .460 Illissman)
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 136.	See claim 1 claim chart, above at page 136.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g. col. 1, lines 6 to 20, "This invention concerns a method to regulate an illuminating range of a motor vehicle in which signals are measured at a position on a front axle and at a position on a rear axle, which signals depend upon a relative position of a motor vehicle body, or chassis, to the front and rear axles, with a difference between these signals being formed as a difference signal, with the resulting difference signal, as a nominal-value signal, being filtered to a first mean, or average, value, with a time for the first average-value formation being determined by a first filter time constant, and with positions of adjusting elements being regulated when the first, filtered, nominalvalue signal deviates from a predetermined, or set, value and an apparatus for regulating the illumination range of a motor vehicle."

14. Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Okuchi et al. and Miskin et al. Under 35 U.S.C. § 103(a)

Limitation of 034 Patent Claim 1		DE. 3110094 Miskin et al.)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor."	E.g., Abstract, "A device for automatic headlight adjustment in motor vehicles consists of four sensors which are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle which respond to loading."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, line 58 to col. 5, line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20."	E.g., Abstract, "A device for automatic headlight adjustment in motor vehicles consists of four sensors which are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle which respond to loading." E.g., page 4, "The four sensors are arranged in pairs one behind the other S1, S2/S3, S4, following the driving direction, on those components of the motor vehicle that experience position change by loading, e.g. on wheel suspensions or shock absorbers."

Limitation of 034 Patent Claim 1	US. Patent No. 6.193 .398 (Okuchit et alt	DE 3110094 (Miskili et al)
	E.g., Fig. 1: Fig.	
a controller that is responsive to said sensor signal for generating an output signal		E.g., page 5, "If the signals that lead to measured data are based on light load such as those caused by road bumps, then it will result on average in a differential value that provides only a small deviation from the ideal headlight position value, thus the predetermined threshold value is not exceeded. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals via the digital/analog converter $6,6^{\prime}$ and the operational amplifier 7,7 ' to the respective headlights adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights."

Limitation of 034 Patent Claim	U.S. Patent No. 6.193 .398 (Okuchi ct alit	DE 3110094 Miskin et al.)
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: 516.7	E.g., page 5, "If the signals that lead to measured data are based on light load such as those caused by road bumps, then it will result on average in a differential value that provides only a small deviation from the ideal headlight position value, thus the predetermined threshold value is not exceeded. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals via the digital/analog converter $6,6^{\prime}$ and the operational amplifier 7,7 ' to the respective headlights adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights."
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., col. 5, lines 16 to 20 , "Output signals from the ECU 20 are supplied to actuators 35R and 35L of right and left headlights 30R and 30L of the vehicle, thereby adjusting the optical axis direction of the right and left headlights 30R and 30L as will be described hereinlater."	E.g., page 5, "If the signals that lead to measured data are based on light load such as those caused by road bumps, then it will result on average in a differential value that provides only a small deviation from the ideal headlight position value, thus the predetermined threshold value is not exceeded. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals

Limitation of 034 Patent Claim 1	US. Patent No. 6.193398 (Oknchi et ail)	DE 3110094 Miskin et ail)
		via the digital/analog converter $6,6^{\prime}$ and the operational amplifier 7,7 ' to the respective headlights adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights."

IImitation of 034 Patent Claim 2	U.S. Patenit No. 6.193.398 (okuchit el alit	DE 3111094 (Miskin et all)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 100.	See claim 1 claim chart, above at page 100.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of	

Limitation of 034 Patent Claim 2	U.S. Patent No. 6.193 .398 (Oknchi et al.)	DE 3110094 (Miskin et ailt.
	wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fla,	

Limitation of D34 Patent Claim 4	U. S. Patent No. $0.193,398$ (Okuchi et al.)	DE 3110094 (Miskia et alı
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 100.	See claim 1 claim chart, above at page 100.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided	

Limitation of 034 Patent Clain 4	U.S. Patent No. 6.193 3998 (Okuchi et ali)	DE 3110094 Miskin et ai.)	
	between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:		

Limitation of 034 Patent Chaim 4	U.S. Patent No. $6.193,398$ (Okuchil ct al.)	DE 3110094 Miskin et al.
	Flo.	
limitation of 034 Patent Clains	U.S. Patent No. 6.193,398 (Okuchi el ail	DE 3110094 Miskin etat.
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 100.	See claim 1 claim chart, above at page 100.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., Abstract, "A device for automatic headlight adjustment in motor vehicles consists of four sensors which are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle which respond to loading." E.g., page 4, "The four sensors are arranged in pairs one behind the other S1, S2/S3, S4, following the driving direction, on those

Limitation of 034 Patent Chims 5			

15. Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Okuchi et al. and Leleve Under 35
U.S.C. § 103(a)
Claims 1, 2, 4, and 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Okuchi et al. and Leleve Under 35
U.S.C. § 103(a)

Limitaion of O84 Patent Clain	U.S. Patent No. 6,193398 (Oluchi et al)	DE 3129891 (1 eleve)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor."	E.g., page 7, "According to the invention, a device for the dynamic adjustment of the headlights of a vehicle is to be provided, which no longer has the aforementioned disadvantages and allows pleasant night-time driving under all driving conditions and regardless of the state of the road."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, line 58 to col. 5 , line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20."	E.g., page 12, "The device shown in Fig. 1 has a first sensor 1 between the front axle and the body of the vehicle in order to detect a relative movement. A corresponding sensor 2 is situated on the rear axle."

1. An automatic directional control system for a \quad E.g., Abstract, "In a vehicle headlight optical axis \quad E.g., page 7, "According to the invention, a device for the dynamic adjustment of the headlights of a vehicle is to be provided, which no longer has the aforementioned disadvantages and allows pleasant

E.g., page 12, "The device shown in Fig. 1 has a first sensor 1 between the front axle and the body of the vehicle in order to detect a relative
movement. A corresponding sensor 2 is situated on the rear axle."

Limitation of 034 Patent Claimi...	U.S. Patent No. 6.1933988 (Oknchi et ait.)	DE 3129891 Llevel
	E.g., Fig. 1: Fig.	
a controller that is responsive to said sensor signal for generating an output signal		E.g., page 12, "The signals generated by sensors 1, 2 are processed in a mixer stage 3 , where a signal is generated that represents the vibration or rocking motion of the vehicle in the course of its movement."
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so	E.g., page 8, "One first specific embodiment of the invention is characterized by the fact that the filter includes threshold value elements, via which at least one amplitude threshold is able to be defined, for which the filter predefines a limit frequency. This allows a precise adaptation of the features of the filter to the different interference phenomena requiring an adjustment of the headlight position." See also pages 9 to 10,13 .

Limitation of 034 Patent Claim	US. Patent No. 6.1933998 (Okuchi ct al)	DE 3129891 (Leleve)
	that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16.7	
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.	E.g., col. 5, lines 16 to 20 , "Output signals from the ECU 20 are supplied to actuators 35 R and 35 L of right and left headlights 30R and 30L of the vehicle, thereby adjusting the optical axis direction of the right and left headlights 30 R and 30 L as will be described hereinlater."	E.g., page 12, "The output of filter 4 is connected to a control and amplifier device 6 , which outputs a power signal to actuating organs 7 , which causes headlights 8 to move."
Limitation of 034 Patent Claim?	U.S. Patent No. 6.193 .398 (Okichi et al.)	DE 3129891 (lelere)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 108.	See claim 1 claim chart, above at page 108.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided	

Limitation of 034 Patent Chim?	U.S. Patent No. 6.193398 (Okuchi et al)	DE 3129891 (Leteve)	
	between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:		

$$
111
$$

Limitation of ob4 Patent Claim 4	U.S. Patent No. $6,193.398$ (Okichitl al.)	DE 3129891 (1 eleve)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 108.	See claim 1 claim chart, above at page 108.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	

113

| Limitation of $\mathbf{0 3 4}$ Patent Claim 5 |
| :--- | :--- | :--- |

115

Limitation of 034 Patent Claim 1	U. S. Patent No. 5,909,949 (Cotol)	CB 2309773 (Uchida)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "A head lamp device for a vehicle capable of changing a lighting region in front of the vehicle in right and left directions, in which change of the lighting region is suppressed so as not to give the driver a sense of incongruity when a steering wheel is operated in one direction and then rapidly in the other as in case of counter-steering."	E.g., page 1, line 3 to 7 , "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω. ." E.g., Figure 3	E.g., Page 1, lines 14 to 28 , "The conventional device of this type includes a detection device which detects the inclination and height of the vehicle body variable according to the conditions of occupants (such as the number of occupants, the position arrangement of the occupants, and the like), the loaded conditions of loads on board the vehicle, the running conditions of the vehicle, and the like, calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detection device, and adjusts the illumination angle of the vehicle lamp with respect to the initially adjusted value of the vehicle lamp so that the illumination state of the vehicle lamp can always be kept in a desired state, thereby to control the illumination direction of the vehicle lamp for desired light distribution." E.g., Page 8, lines 20 to page 9, line 1, "Here, as basic information used to judge whether the vehicle is in the acceleration or deceleration running condition or not,

Limitation of 034 Patent

Limitation of 034 Patent Chaim	US. Patent No. 5.909 .949 (Cotoh)	G82 309773 U Chida)
		E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
a controller that is responsive to said sensor signal for generating an output signal	E.g., Col. 4, lines 59 to 60 , "The motor 8 is controlled for its driving by a light distribution control ECU 10."	E.g., Page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration rumning condition, the control device controls the illumination direction of the

Limitation of 034 Patert Clain		lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

Limitation of 034 Patent Claim 1	U.S. Patent No. 5.909949 (Gotoh)	GB 2309773 (Uchida)
	Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., Col. 7, lines 34 to 39 , "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle θ, even if the steering wheel is operated rapidly for the counter-steering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	than the reference value, then the processing advances to step S5. In step S4, it is judged that the vehicle is in the acceleration or deceleration running condition and, after then, the processing goes back to Step S2. Also, in Step S5, it is judged that the vehicle is not in the acceleration or deceleration running condition and, after then, the processing returns back to the first step S1. E.g., Figure 5: FIG. 5
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.		E.g., Page 16 , line 28 to Page 17 , line 6 "Also, if it is judged by the acceleration or deceleration running condition judging device $3 b$ that the vehicle is not in

Limitation of 034 Patent Chaim 1	US. Patent No. 5 ,909,949 (Cotoh)	GB 2309773 (Uehida)
		the acceleration or deceleration running condition, then the illumination angle of the lamp 5 can be controlled by one of the following methods when the drive control device 4a receives an instruction from the acceleration or deceleration running condition judging device 3b: 1) a method for fixing the illumination angle; 2) a method for limiting the range of the illumination angle or forbidding part of the range of the illumination angle; and, 3) a method for changing the response speed or control speed of an actuator." E.g., Page 7, lines 4 to 9 "In particular, the correction calculating device 3 a is structured in the following manner: that is, in accordance with a detect signal from the vehicle posture detection device 2, it transmits a control signal to the drive device 4 so that the illumination direction of the lamp 5 can be always kept in a given direction." See also 7:9-32. E.g., Page 8, lines 1 to 9 "When the judging device 3b judges that the vehicle is in an acceleration or deceleration running condition, in accordance with a control signal transmitted from the correction calculating device 3 a to the drive control device 4 a , the acceleration or deceleration running condition judging device $3 b$ transmits to the drive control device $4 a$ a signal which allows the illumination direction of the lamp 5 to be corrected in a predetermined direction."

Limitation of 034 Patent Claim?	US. Patent No. 5,909 949 (Cotoh)	GB 2309773 (Uehida)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 116.	See claim 1 claim chart, above at page 116.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, lines 61 to 67, "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω. ." E.g., Figure 3 號	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."
Limitation of 034 Patent Clatm	U.S. Patent No. $5,909,949$ (Cotoh)	GB 2.309773 (Uchida)
3. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 116.	See claim 1 claim chart, above at page 116.
wherein said sensor generates a signal that is	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block	

Linitation of 034 Patent Claim 3	U.S. Patent No. $5,909,949$ (Gotoh)	GB 2309773 (Uchida)	
representative of the steering angle of the vehicle.	diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 解		

Limitation of 034 Patent Clam 4	U. S. Patent No. 5, 909,949 (Gotoh)	GB 2309773 (Uchida)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 116.	See claim 1 claim chart, above at page 116.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.		E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 .

| Limitation of 034 Patent Claim | |
| :--- | :--- | :--- |
| | Generally, as a device for detecting variations in
 the vibration of a mechanism for absorbing the
 vibration that is given to the wheels of fhe vehicle
 from the surface of a road or for detecting the
 height of the axle of the vehicle, there is used
 height detection device such as a height sensor or
 the like. In the present method, based on the
 information that is obtained from the height
 detection device, the time differential of the
 detected level or the absolute value thereof is
 calculated and, after then, by comparing the
 resultant value with a given reference value, it is
 possible to judge whether the vehicle is in the
 acceleration or deceleration running condition or
 not. Also, if a plurality of height detection device
 are arranged at several positions of the vehicle, for
 example, in the front and rear portions thereof
 and/or right and left portions thereof and the
 inclination angle in the pitching direction of the
 vehicle (so-called pitch angle) is detected in
 accordance with the detect information that is
 detected by these height detection device, then the
 running condition of the vehicle can be confirmed
 to a certain degrec." |

Limitation of 034 Patent Claims	U.S. Patent No. 5,909949 (Cotoh)	GB 2309773 (uchidat
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.		E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Claims 1 to 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Gotoh and Takahashi Under 35 U.S.C. § 103(a)
$\stackrel{\rightharpoonup}{-}$

Limitation of O34 Patent Claim 1	U. S. Patent No. $5.909,949$ (Gotol)	GB 2300774 (Takahastii)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "A head lamp device for a vehicle capable of changing a lighting region in front of the vehicle in right and left directions, in which change of the lighting region is suppressed so as not to give the driver a sense of incongruity when a steering wheel is operated in one direction and then rapidly in the other as in case of countersteering."	E.g., page 5, line 3 to 7 , "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjust the illumination direction of a vehicle lamp so that it can be always kept in a predetermined direction."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 解	E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the

$\stackrel{\pi}{4}$			

| Limitation of 034 Patent Chim |
| :--- | :--- | :--- |

Limitation of 034 Patent Chaim	U. S. Patent No. 5 , 909,949 (Cotoh)	GB 2300714 T Takahashil
		time, in Step S4, it may be checked whether a state in which the amount of variations in the detect signal supplied by the vehicle posture detection device 2 is equal to or more than a given reference value continues over a given running distance or not. In Step S5, in accordance with the information from the vehicle posture detection device 2, the control device 4 transmits to the drive control device 5a a control signal which causes the illumination direction of the lamp 6 to be kept in a predetermined direction, and the illumination direction of the lamp 6 is corrected through the drive mechanism 5. After then, the processing goes back to the first step S1. Also, in Step 6, the correction of the illumination direction of the lamp 6 is not carried out but the processing returns to the first Step S1." E.g., Figure 7:

Limitation of 034 Patent Claim	U. S. Patemt No. 5 , 909,949 (Gotoh)	GB 2309774 (Takahashi)
		FiG. 7
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.		E.g., page 2, lines 14 to 17 "However, in the above-mentioned automatic adjustment device, since the lamp is driven with high frequency, an actuator used in a drive mechanism for driving the lamp is required to show high response property and high durability." E.g., page 6, lines 26 to 32 "When the control device 4 receives the detect signal of the vehicle running condition detection device 3 and finds from this detect signal that the vehicle is standing

Limitation of 034 Patent Chim 1	U.S. Patent No. 5,909949 (Gotoh)	GB 2309774 (Takahashi)
		still, the control device 4 , in accordance with information on the vehicle posture obtained from the vehicle posture detection device 2 , transmits to the drive signal 5 a control signal for correction of the illumination direction of the lamp 6." E.g., page 7, lines 12 to 17 "In view of this, the control device 4 is structured such that, based on the information from the vehicle posture detection device 2 , it can detect the amount of variations in the gradient of the road and, therefore, when the road gradient varies suddenly, it can correct the illumination direction of the lamp 6." E.g., page 11, lines 12 to 16 "The correction of the illumination direction of the lamp 6 in Step S5 is carried out by the drive device 5 based on the control signal transmitted from the control device 4 and, as a method for executing such correction, there are available two methods . .."

Limitation of 034 Patent Clain 2	U. S. Patent No, 5,909,949 (Gotoh)	GB 2309774 (Takahashi)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 126.	See claim 1 claim chart, above at page 126.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the

Limitation of 034 Patent Claim 2	U.S. Patent No. $5,909,949$ (Cotoh)	GB 2309774 (Takahashi)
	a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 解	detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."

Limitation of 034 Patent Claim 3	US. Patent No. $5,909,949$ (Gotoh)	GE 2309774 (Takahashi)
3. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 126.	See claim 1 claim chart, above at page 126.
wherein said sensor generates a signal that is representative of the steering angle of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw	

134

Limitation of 034 Patent Claims	U. S. Patent No. 5 , 909 949 (Gotoh)	GB 2309774 (Takahashi)
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 126.	See claim 1 claim chart, above at page 126.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.		E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

 regulate the illumination range of a motor vehicle
in which, at a position on a front axle and at a
 are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear
axle, with a difference formation between the signal from the front axle and that of the rear axle
being accomplished with a resulting difference
signal, as a nominal-value signal, being filtered to a first average-value formation."
E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value

| Limitation of 034 Patent Chaim. |
| :--- | :--- | :--- |

Limitation of 034 Patent Claim	U. S Patent No. 5 . 909 949 (Cotoh)	U. S. Patent No. 5.182 .460 (lussman)
	steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., Col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of	difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R." E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided." E.g., col. 6, line 10 to 34 , "In this connection, it is beneficial that upon the presence of a difference between the second, filtered, nominal-value signal to the third, filtered, nominal-value signal and upon termination of a difference is again switched from the third, filtered, nominal-value signal to the first, filtered, nominal-value signal because in this manner, in an uncomplicated and cost effective manner, upon the presence of an inclination change of the motor vehicle body which is not attributable to a change in loading or to road surface unevenness, the regulation of the illumination range of the motor vehicle, in dependence from the third, long, filter time constant results, whereby the third, filtered, nominal-value signal is independent, or substantially independent, from the disturbing, or distorting, short time inclination changes so that

Linitation of 034 Patent Chaim	U. S. Patent No. 5 , 909,949 (Cotoh)	U.S. Patent No. 5.182 .460 (Ilusman)
	the above-mentioned final lighting angle θ, even if the steering wheel is operated rapidly for the counter-steering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	after inclination changes of the motor-vehicle body which, for example, are caused by driving about a curve, false adjustments of the illumination range are not caused which can lead to the blinding of oncoming traffic or to losses in illumination range, which eliminates a danger during operation of a motor vehicle."
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.		E.g., col. 3, lines 16 to 18, "The regulator R regulates the position of adjusting elements, which are shown here in block form and which change the positions of headlights."
Limitation of 034 Patent Claim	U. S. Patent No. 5, 909,949 ((otoh)	U. S. Patent Io. 5,182,460 (Iussman)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 136.	See claim 1 claim chart, above at page 136.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3	E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."

140

Limitation of 034 Patent Claim 3	U.S. Patenl No. 5, 909,949 (Gotoh)	US. Patent No. 5.182 .460 (Hussman).
	\&	
Limitation of 034 Patent Clain 4	U. S. Patent No. 5 .909,949 (Cotoll	US. Patent No. 5is in2.460 thussmant
4. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 136.	See claim 1 claim chart, above at page 136.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.		E.g. col. 1, lines 6 to 20, "This invention concerns a method to regulate an illuminating range of a motor vehicle in which signals are measured at a position on a front axle and at a position on a rear axle, which signals depend upon a relative position of a motor vehicle body, or chassis, to the front and rear axles, with a difference between these signals being formed as a difference signal, with the resulting difference signal, as a nominalvalue signal, being filtered to a first mean, or average, value, with a time for the first averagevalue formation being determined by a first filter time constant, and with positions of adjusting elements being regulated when the first, filtered, nominal-value signal deviates from a

141

İmiationot 034 Patent Clamit	US. Paten No. 5909\%99\% (Fotoh)	
		predetermined, or set, value and an apparatus for regulating the illumination range of a motor vehicle."

Limintion of 034 Patent Clalms	U. S. Patent No. Sis 909.949 (Gototh)	US Faten So. Sis is\%,400 Mussman
5. The automatic directional control system defined in claim 1	See claim 1 claim chart, above at page 136.	See claim 1 claim chart, above at page 136.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.		E.g. col. 1, lines 6 to 20, "This invention concerns a method to regulate an illuminating range of a motor vehicle in which signals are measured at a position on a front axle and at a position on a rear axle, which signals depend upon a relative position of a motor vehicle body, or chassis, to the front and rear axles, with a difference between these signals being formed as a difference signal, with the resulting difference signal, as a nominalvalue signal, being filtered to a first mean, or average, value, with a time for the first averagevalue formation being determined by a first filter time constant, and with positions of adjusting elements being regulated when the first, filtered, nominal-value signal deviates from a predetermined, or set, value and an apparatus for regulating the illumination range of a motor vehicle."

19. Claims 1, 2, 3, and 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Gotoh and Miskin et al. Under 35

IImiation of O34 Patent Clatm 1	U. S. Pateni No. 5,909,949 (Cotoll)	DE 3110094 (Miskin et al.)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "A head lamp device for a vehicle capable of changing a lighting region in front of the vehicle in right and left directions, in which change of the lighting region is suppressed so as not to give the driver a sense of incongruity when a steering wheel is operated in one direction and then rapidly in the other as in case of countersteering."	E.g., Abstract, "A device for automatic headlight adjustment in motor vehicles consists of four sensors which are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle which respond to loading."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 樶:	E.g., Abstract, "A device for automatic headlight adjustment in motor vehicles consists of four sensors which are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle which respond to loading." E.g., page 4, "The four sensors are arranged in pairs one behind the other S1, S2/S3, S4, following the driving direction, on those components of the motor vehicle that experience position change by loading, e.g. on wheel suspensions or shock absorbers."

Limitation of 034 Patent Chimi	US. Patent No. 5,909,949 (Gotoh)	DE 3110094 Miskin et at
a controller that is responsive to said sensor signal for generating an output signal	E.g., Col. 4, lines 59 to 60 , "The motor 8 is controlled for its driving by a light distribution control ECU 10."	E.g., page 5, "If the signals that lead to measured data are based on light load such as those caused by road bumps, then it will result on average in a differential value that provides only a small deviation from the ideal headlight position value, thus the predetermined threshold value is not exceeded. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals via the digital/analog converter 6,6 ' and the operational amplifier 7,7 ' to the respective headlights adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights."
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the stecring angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-stecring to recover direction of the vehicle. Namely, the steering	E.g., page 5, "If the signals that lead to measured data are based on light load such as those caused by road bumps, then it will result on average in a differential value that provides only a small deviation from the ideal headlight position value, thus the predetermined threshold value is not exceeded. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals via the digital/analog converter 6, 6 ' and the operational amplifier 7,7 ' to the respective headlights adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights."

Limitation of 034 Patent Chaim.	angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-stering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations.	
	However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ."	E.g., Col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle θ, even if the stecring wheel is operated rapidly for the counter-steering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."

Limitation of 034 Patent Claim

147

Claims 1 to 5 of U.S. Patent No. 7,231,034 Are Unpatentable Over the Combination of Gotoh and Leleve Under 35 U.S.C. § 103(a)
푼

Linitation of 034 Patent Clatin 1	U.S. Patent No. $5,909,949$ (Gotoh)	DE 3129891 (1) elere)
1. An automatic directional control system for a vehicle headlight comprising:	E.g., Abstract, "A head lamp device for a vehicle capable of changing a lighting region in front of the vehicle in right and left directions, in which change of the lighting region is suppressed so as not to give the driver a sense of incongruity when a steering wheel is operated in one direction and then rapidly in the other as in case of countersteering."	E.g., page 7, "According to the invention, a device for the dynamic adjustment of the headlights of a vehicle is to be provided, which no longer has the aforementioned disadvantages and allows pleasant night-time driving under all driving conditions and regardless of the state of the road."
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3	E.g., page 12, "The device shown in Fig. 1 has a first sensor 1 between the front axle and the body of the vehicle in order to detect a relative movement. A corresponding sensor 2 is situated on the rear axle."

Linitation of 034 Patent Claim 1	U. S. Patent No. 5 , 909,949 (Cotoh)	DE 3129891 (Leleve)
a controller that is responsive to said sensor signal for generating an output signal	E.g., Col. 4, lines 59 to 60 , "The motor 8 is controlled for its driving by a light distribution control ECU 10."	E.g., page 12, "The signals generated by sensors 1, 2 are processed in a mixer stage 3 , where a signal is generated that represents the vibration or rocking motion of the vehicle in the course of its movement."
only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in	E.g., page 8, "One first specific embodiment of the invention is characterized by the fact that the filter includes threshold value elements, via which at least one amplitude threshold is able to be defined, for which the filter predefines a limit frequency. This allows a precise adaptation of the features of the filter to the different interference phenomena requiring an adjustment of the headlight position." See also pages 9 to 10,13 .

Limitation of 034 Patent Claim 1	US S Patent No. 5 , 909,949 (Cotoh)	DE 3129891 (1 cerve)
	large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., Col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle θ, even if the steering wheel is operated rapidly for the counter-steering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.		E.g., page 12, "The output of filter 4 is connected to a control and amplifier device 6 , which outputs a power signal to actuating organs 7 , which causes headlights 8 to move."
Limitation of 034 Patent Claim 2	U. S. Patent No. 5,909,949 (Cotoh)	DE 3129891 (Leleve)
2. The automatic directional control system defined in claim 1	See claim 1 claim chart above at page 149.	See claim 1 claim chart above at page 149.
wherein said sensor generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4 , lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing	

Limitation of 034 Patern Claim 2	U.S. Patent No. 5,909,949 (Cotoh)	DE 3129891 (Leteve)	
	the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 5 5. 3		

Limitation of 034 Patent Claim 3	US. Patent vo 5,909,949 (Gotoh)	DE 3129891 (Lelere)
3. The automatic directional control system defined in claim 1	See claim 1 claim chart above at page 149.	See claim 1 claim chart above at page 149.
wherein said sensor generates a signal that is representative of the steering angle of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle	

Limitation of 034 Patent Chim 3	U.S. Patent No. 5,909,949 (Cotoh)	DE 3129891 (Lelere)	
	speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 \$70. :		

Limitation of 034 Patent Clain 4	DE 3129891 (leleve)	US. Patent No. 5 , 900,949 (Cotoh)
4. The automatic directional control system defined in claim 1	See claim 1 claim chart above at page 149.	See claim 1 claim chart above at page 149.
wherein said sensor generates a signal that is representative of the pitch of the vehicle.		E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front

$\text { U. S. Paten No. } ., 909,949 \text { (Cotoh) }$			
DE 3129891 (Leleve)			
Limitation of 034 Patent Chim 4			

Limitaion of 034 Patent Claim 5	DE $3129891($ Lelere)	US. Patent No. 5 , 909,949 (Cotoh)
5. The automatic directional control system defined in claim 1	See claim 1 claim chart above at page 149.	See claim 1 claim chart above at page 149.
wherein said sensor generates a signal that is representative of the suspension height of the vehicle.	E.g., page 12, "The device shown in Fig. 1 has a first sensor 1 between the front axle and the body of the vehicle in order to detect a relative movement. A corresponding sensor 2 is situated on the rear axle."	

Limitation of 034 Patent Proposed Claimi	GB 2309773 (Uchida)
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., page 1, lines 3 to 7 , "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp so that the illumination direction can be always kept in a predetermined direction."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle." E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the

Limitation of 034 Patent Iroposed Claim	
	vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
E.g., page 15, line 30 to page 16, line 2 "As has been described above, according to the respective methods, it is possible to judge whether the vehicle is running in the acceleration condition or in the deceleration condition. Also, these methods can be applied in various manners, for example, the respective methods can be used individually, or some of them may be combined together for the enhanced accuracy of the judgment."	
a controller that is responsive to said two or more sensor signals for generating at least one output signal	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

Linitation of 034 Patent Proposed Claim 1	GB 2309773 (Uehida)
only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."
said at least one actuator being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.	E.g., page 16 , line 28 to page 17 , line 6 "Also, if it is judged by the acceleration or deceleration running condition judging device 3 b that the vehicle is not in the acceleration or deceleration running condition, then the illumination angle of the lamp 5 can be controlled by one of the following methods when the drive control device 4a receives an instruction from the acceleration or deceleration running condition judging device 3b: 1) a method for fixing the illumination angle; 2) a method for limiting the range of the illumination angle or forbidding part of the range of the illumination angle; and, 3) a method for changing the response speed or control speed of an actuator." E.g., page 7, lines 4 to 9 , "In particular, the correction calculating device 3 a is structured in the following manner: that is, in accordance with a detect signal from the vehicle posture detection device 2, it transmits a control signal to the drive device 4 so that the illumination direction of the lamp 5 can be always kept in a given direction." See also 7:9-32. E.g., page 8, lines 1 to 9 , "When the judging device 3 b judges that the vehicle is in an acceleration or deceleration running condition, in accordance with a control signal transmitted from the correction calculating device 3 a to the drive control device 4a, the acceleration or deceleration running condition judging device $3 b$ transmits to the drive control device 4 a a signal which

Limitation of 034 Patent Proposed Claim 1	GB 2309773 (Uehida)
	allows the illumination direction of the lamp 5 to be corrected in a predetermined direction."
Vimitation of 034 Patent Proposed Claimi	GB 2300773 (Uchida)
2. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein at least one of said two or more sensors generates a signal that is representative of the road speed of the vehicle.	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device $3 b$ will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."
Limitation of 034 Patent Proposed Clain 4	CB 2309773 (Uchida)
4. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the

Limitation of 034 Patent Proposed Claim 4	GB 2309773 (Uehidat
	vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitation of 034 Patent Proposed Claim 5	CB 2300773 (Uchida)
5. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by

Limitation of 034 Patent Proposed Claim 5	CB 2309773 (Uehida)
	comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
6. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein said two or more sensors include a first sensor and a second sensor.	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device $3 b$ will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is

Limitation of 034 Patent Proposed Claim 6	CB 2309733 (Uehida)
	obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitation of 034 Patent Proposed Claim9	GB 2300773 (Uellida)
9. The automatic directional control system defined in claim 6,	See claim 6 claim chart, above at page 161.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2. Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions

Limitation of 034 Patent Proposed Claing	CB 2309773 (Uehida)
	thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitation of 034 Patent Proposed Clain 10	GB2 309773 (Uchilda)
10. The automatic directional control system defined in claim 6,	See claim 6 claim chart, above at page 161.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2. Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Limitation of 034 Patent Proposed Claim

Limitation of 034 Patent Proposed Claim 11	an 2309773 duchidat.
	Fig. 1
Limitation of 034 Patent Proposed Clain 12	CB 2300773 (Uehida)
12. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, or a rate of change of suspension height of the vehicle.	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2. Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by

Limitation of 034 Patent Proposed Claim

Limitation of 034 Patent Proposed Clain 22	CB 2309773 A (L chida)
22. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein the at least one actuator includes a servo motor.	E.g., page 19, lines 6 to 22 "For example, when the actuator incorporates therein a DC (direct current) motor, a difference between the control target position (or angle) of the actuator and the current position (or angle) thereof is detected, and a pulse signal having a duty cycle corresponding to the detected position difference is supplied to the DC motor to thereby control the position of the actuator, as shown in Fig. 11, if the characteristic of the duty cycle DT with respect to the position difference $\delta \mathrm{xx}$ is changed from the state of a relatively faster response speed shown by a broken line 10 to the state of a slow response speed shown by a solid line 11, with respect to the same position difference $\delta \mathrm{xx}=\delta \mathrm{xxa}$, the duty cycle DT in the other running conditions of the vehicle than the acceleration or deceleration running condition thereof is smaller than the duty cycle in the acceleration or deceleration running condition of the vehicle, so that the drive control on the lamp 5 by the actuator is slowed down."

Limitation of 034 Patent Proposed Claim 24	GB 2300773 (Uchila)
24. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.	E.g., page 16, lines 6 to 15 "The simplest method for changing the illumination pattern of the lamp 5 in a vertical plane is a method which changes the illumination angle of the lamp 5 with respect to a horizontal plane by rotating the entire lamp 5 about the rotary shaft thereof. For example, the right and left side surfaces of the lamp 5 are supported in a freely rotatable manner and the rotary shaft of the lamp 5 is rotated directly by a drive source such as a motor or the like, or, there is available a drive mechanism in which a member fixed to the lamp 5 or formed integrally with the lamp 5 is rotated by the drive device 4 ."

Limitation of 034 Patent Proposed Clain 25	GB 2309773 (UChida)
25. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted up and down relative to a horizontal reference position.	E.g., page 16, lines 6 to 15 "The simplest method for changing the illumination pattern of the lamp 5 in a vertical plane is a method which changes the illumination angle of the lamp 5 with respect to a horizontal plane by rotating the entire lamp 5 about the rotary shaft thereof. For example, the right and left side surfaces of the lamp 5 are supported in a freely rotatable manner and the rotary shaft of the lamp 5 is rotated directly by a drive source such as a motor or the like, or, there is available a drive mechanism in which a member fixed to the lamp 5 or formed integrally with the lamp 5 is rotated by the drive device 4 ."
Limitation of 034 Patent Proposed Claim 37	6R 2309773 (Uchida)
37. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2. Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running

Limitation of o34 Patent Proposed Claimsur

Limitation of 034 Patent Proposed Claim 38	GB 2309773 (Uchida)
	to a certain degree."
Limitation of 034 Patent Proposed Claim 41	GB 2309773 A (UChida)
41. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., page 4, lines 16 to 27, "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."
Limitation of 034 Patent Proposed Clain 42	GB 2300173 (Uehida)
42. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein said sensed conditions include three or more of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., Page 9, lines 13 to 23 , "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2."

limitation of 034 Patent Proposed Claims 42		GR 2309773 Uchidat
		E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle." E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2. Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree." E.g., page 15, line 30 to page 16 , line 2 "As has been described above, according to the respective methods, it is possible to judge whether the vehicle is running in the acceleration condition or in the deceleration condition. Also, these methods can be applied in various manners, for example, the respective methods can be used individually, or some of them may be combined together for the enhanced accuracy of the judgment."

Limitation of 034 Patent Proposed Claim 44	CB 2309733 (Uehida)
44. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to relatively small variations in the sensed operating conditions.	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."
Limitation of 034 Patent Proposed Claim 45	GB 2309773 (Uehida)
45. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

1. An automatic directional control system for a vehicle headlight,
comprising:

two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4. As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping

Limitation of 034 Patent Proposed Claim 1	GB 2309774 Takahashil
	or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4. As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
a controller that is responsive to said two or more sensor signals for generating at least one output signal	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2."
only when said at least one of the two or more sensor signals changes by	E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination

Limitation of 034 Patent Proposed Claim	
more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."
said at least one actuator being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.	E.g., page 2, lines 14 to 17 "However, in the above-mentioned automatic adjustment device, since the lamp is driven with high frequency, an actuator used in a drive mechanism for driving the lamp is required to show high response property and high durability."
E.g., page 6, lines 26 to 32 "When the control device 4 receives the detect signal of the vehicle running condition detection device 3 and finds from this detect signal that the vehicle is standing still, the control device 4, in accordance with information on the vehicle posture obtained from the vehicle posture detection device 2, transmits to the drive signal 5 a control signal for correction of the illumination direction of the lamp 6 ."	
E.g., page 7, lines 12 to 17 "In view of this, the control device 4 is structured such hat, based on the information from the vehicle posture detection device 2, it can detect the amount of variations in the gradient of the road and, therefore, when the road gradient varies suddenly, it can correct the illumination direction of the lamp 6 ."	

Limitation of 034 Patent Proposed Clain 1	GB 2309774 (Takahashil)
	E.g., page 11, lines 12 to 16, "The correction of the illumination direction of the lamp 6 in Step S5 is carried out by the drive device 5 based on the control signal transmitted from the control device 4 and, as a method for executing such correction, there are available two methods as follows: 1) a method for inclining the entire lamp, and, 2) a method for moving the component (such as a lens, a reflector, a shade or the like) of the optical system of the lamp."
IImitation of 034 Patent Proposed Clain 2	GB 2300774 (akahashit.
2. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein at least one of said two or more sensors generates a signal that is representative of the road speed of the vehicle.	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."
Limitation of 034 Patent Proposed Claim 4	CR 2309774 (Takahashi)
4. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is

L imitation of 034 Patent Proposed Claim $4 . N W$	ab 2300 7 74 T Takhashi)
	obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."
I imitation of 034 Patent Proposed Claim 5	GE 2309774 (Takahashil)
5. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
Limitation of 034 Patent Proposed Clain 6	CB 2309774 (akahashit.
6. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.

177

wherein said two or more sensors include a first sensor and a second sensor.	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4. As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."

Limilation of 034 Patent Proposed Mlaims	ab ${ }^{\text {and }}$
9. The automatic directional control system defined in claim 6,	See claim 6 claim chart, above at page 177.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."

Limitation of 034 Patent Proposed Claim9	G8 2309774 Thathashil
	E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."
1 imitation of 034 Patent Proposed Chim 10	Gn 23097774 (Thahashit
10. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 177.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.	E.g., page 2 , lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4

Limitation of 034 Patent Proposed claim 10.

Imitation of 034 Patent Proposed Claim 11	GB 2309774 Trakhashil
	FIG. 1
Limitation of 034 Patent Proposed Claim 17	CB 2300774 (Takahashi)
17. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the automatic directional control system is configured to include at least two actuators.	E.g., page 16, line 31 to page 17, line 1 "A rudder resistance network 18, which corresponds to the above-mentioned drive control device 5 a , is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19' which are disposed downstream thereof."

Limitation of 034 Patent Proposed Clain is	(GB 2309774 (Takahashil
18. The automatic directional control system defined in claim 17,	See claim 17 claim chart, above at page 181.
wherein the at least two actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.	E.g., page 11, lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5."
Limitation of 034 Patent Proposed Clain 20	CB 2309774 (akahashit
20. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the at least one actuator includes an electronically controlled mechanical actuator.	E.g., page 16, line 31 to page 17, line 1 "A rudder resistance network 18, which corresponds to the above-mentioned drive control device 5 a, is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19^{\prime} which are disposed downstream thereof." E.g., page 11 , line 32 to page 12 , line 3 "As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see Japanese Patent Publication No. Hei. 63-166672)."

Limitation of 034 Patent Proposed Claim 21	GB 2309774 (Takahashil)
21. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the at least one actuator includes a step motor.	E.g., page 18, lines 5 to 8 "Besides this, according to the invention, the lamp or the component thereof can be driven or controlled by use of a stepping motor to thereby correct the illumination direction of the lamp."

Limitation of 034 Patent Proposed Clain 22	Gs 2309774 (Iakhashil
22. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the at least one actuator includes a servo motor.	E.g., page 16, line 31 to page 17, line 1 "A rudder resistance network 18, which corresponds to the above-mentioned drive control device 5 a , is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19 ' which are disposed downstream thereof." E.g., page 11 , line 32 to page 12 , line 3 "As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see Japanese Patent Publication No. Hei. 63-166672)."

Limitation of 034 Patent Proposed Claim 24	
24. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.	E.g., page 11 , lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to

Limitation of 034 Patent Proposed Clain 24	Gs 2309774 Trakhashil)
	a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5."
Limitation of 034 Patent Proposed Clain 25	GE 2309774 (lakhashil)
25. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted up and down relative to a horizontal reference position.	E.g., page 11, lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5."
Limitation of 034 Patent Proposid Claim 28	CR 2309774 (Takhashi)
28. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the automatic directional control system is configured such that the controller includes a microprocessor.	E.g., page 16 , lines 1 to 4 "When a turn-on switch 12 for the lamp 6 is put into operation, a supply voltage from a constant voltage supply circuit 13 and

Page 286 of 1228

Limitation of 034 Patent Proposed Claim 37	GB 2300774 (Takrhashil
37. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.	E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
Limitation of O34 Patent Proposed Chin 38	CB 2309774 (Takhashi)
38. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.	E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

Limitation of 034 Patent Proposed Clain 41	GB 2309774 (Takahashi)
41. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device $2 . "$ E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."
Linitation of 034 Patent Proposed Claim 42	GB 2309774 (Takahashil
42. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein said sensed conditions include three or more of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping

Limitation of 034 Patent Proposed Claim 42	GB2 300 774 Takahashil
	or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4. As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

Limitation of 034 Patent Proposed Claim 44	an 2309774 Takahashit
sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to relatively small variations in the sensed operating conditions.	time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."
Limitation of 034 Patent Proposed Clain 45	GB 2309774 (Takalashi)
45. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 173.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2."

Limitation of 034 Patent Proposed Claim 45	
sensed operating conditions.	E.g., page 9 , lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."

Proposed Claims 1, 2, 4 to 6, 9, 10, 37, 38, 41, 42, 44, and 45 Are Anticipated by Hussman Under 35 U.S.C. § 102(b)

1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominalvalue former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45, "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."

$\left.\begin{array}{|l|l|}\hline \text { Limitation of } 034 \text { Patent Proposed Claim } \\ \hline \begin{array}{l}\text { a controller that is responsive to said two or more sensor signals for } \\ \text { generating at least one output signal }\end{array} & \begin{array}{l}\text { E.g., col. 3, lines 30 to 39, "The curve-recognition device K is electrically } \\ \text { conductively coupled with the switchover device SE and thereby couples the } \\ \text { third filter F3 electrically conductively with the regulator R if a difference } \\ \text { signal other than zero is fed to it from the subtractor SU. When no difference } \\ \text { signal from the subtractor SU is present, the curve-recognition device K } \\ \text { switches the switchover device SE so that the first filter F1 is coupled to the } \\ \text { regulator R." } \\ \text { E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE }\end{array} \\ \text { and the regulator R, a matching device AE is, here for example, arranged } \\ \text { which, upon a switchover by the switchover device SE, adjusts the various } \\ \text { nominal values to one another so that discontinuities or jumps in the } \\ \text { adjustment and regulation of the illumination range are avoided." }\end{array}\right\}$

Linitation of 034 Patent Proposed Claim 1	US. Patent No. 5.182 .460 (llussman)
effect movement thereof in accordance with said at least one output signal.	adjusting elements, which are shown here in block form and which change the positions of headlights."
limitation of 034 Patent Proposed Claim 2	US. Patent No. 5, 182, 460 (11ussman)
2. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 193.
wherein at least one of said two or more sensors generates a signal that is representative of the road speed of the vehicle.	E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
Limitation of 034 Patent Proposed Claim	US. Patent No. 5.182 .460 (Hussman)
4. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 193.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-

Limitation of 034 Patent Proposed Clain 4	US. Patent No. 5, 182.460 (llussman)
	value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Claim 5	U.S. Patent No. 5, 182.460 (Hussman)
5. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 193.
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominalvalue former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
1 Imitation of 034 Patent Proposed Clainit	U.S. Patent No. 5.182 .460 (Hissman)
6. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 193.

Linitation of 034 Patent Proposed Claim 6	U.S. Patent No. S. 182.460 (llussman)
wherein said two or more sensors include a first sensor and a second sensor.	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominalvalue former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
Limitation of 034 Patent Proposed Claim	US. Patent No. S. 182.460 (Hussman)
9. The automatic directional control system defined in claim 6,	See claim 6 claim chart, above at page 196.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a

Limitation of 034 Patent Proposed Claim9	USS. Patent No. S. 182.460 (lussman)
	difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48 , "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominalvalue former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Claim 10	U.S. Patent No. 5.182,460 (Hissman)
10. The automatic directional control system defined in claim 6,	See claim 6 claim chart, above at page 196.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominalvalue former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor

$\|$Limitation of 034 Patent Proposed Claim

Imitation of 034 Patent Proposed Claim 38	US. Patent No. S. 182.460 (llussmam)
38. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 193.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominalvalue former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Chin 41	U. S. Patent No. 5.182 .460 (Hussman
41. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 193.
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R, a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

ILmitation of 034 Patent Proposed Claim 42	U.S. Patent No. S. 182.460 (Hussman)
42. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 193.
wherein said sensed conditions include three or more of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominalvalue signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominalvalue former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Cliin 4	US. Patent No. 5.182 .460 (Hussman)
44. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 193.
wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to relatively small variations in the sensed operating conditions.	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

IMmintionjor 034 Patent Proposed Clains is.	Vis. Pateni No. Si Mo.460 (Hussman)
45. The automatic directional control system defined in claim l,	See claim 1 claim chart, above at page 193.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., col. 4, lines 6 to 12 , "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

Proposed Claims 1, 2,4 to 6,9 to 13, 17, 18, 20, 21, 22, 24, 25, 28, 29, 36 to 42, 44, and 45 Are Unpatentable Over the Combination of Toda et al. and Uchida Under 35 U.S.C. § 103(a)

IImifation of O34 Patent Proposed Claim 1	U.S. Patent No. $6,305,823$ (Toda et al)	
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "An automatic leveling device for automotive vehicle headlamps is described."	E.g., page 1, lines 3 to 7 , "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp so that the illumination direction can be always kept in a predetermined direction."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R}$), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2."

$\left.\begin{array}{|l|l|l|}\hline \text { Limitation of } 034 \text { Patent Proposed Claim } & & \begin{array}{l}\text { inclination angle in the pitching direction of the } \\ \text { vehicle (so-called pitch angle) is detected in } \\ \text { accordance with the detect information that is } \\ \text { detected by these height detection device, then the } \\ \text { running condition of the vehicle can be confirmed } \\ \text { to a certain degree." }\end{array} \\ \hline \text { E.g., page 15, line 30 to page 16, line 2 "As has } \\ \text { been described above, according to the respective } \\ \text { methods, it is possible to judge whether the } \\ \text { vehicle is running in the acceleration condition or } \\ \text { in the deceleration condition. Also, these methods } \\ \text { can be applied in various manners, for example, } \\ \text { the respective methods can be used individually, } \\ \text { or some of them may be combined together for the } \\ \text { enhanced accuracy of the judgment." }\end{array}\right\}$

Limitation of 034 Patent Proposed Claim	U.S. Patent No. 6,305:823 (Toda et al.)	CB 2309773 (Uechida)
	and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on."	
only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	E.g., col. 4, lines 1 to 25, "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher,	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

Limitation of 034 Patent Proposed Claim	US. Patent No. $6,305: 823$ (Toda et al)	GB2 309773 (uchida)
	and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	
said at least one actuator being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 16 , line 28 to page 17 , line 6 "Also, if it is judged by the acceleration or deceleration running condition judging device 3 b that the vehicle is not in the acceleration or deceleration running condition, then the illumination angle of the lamp 5 can be controlled by one of the following methods when the drive control device 4a receives an instruction from the acceleration or deceleration running condition judging device 3 b : 1) a method for fixing the illumination angle; 2) a method for limiting the range of the illumination angle or forbidding part of the range of the illumination angle; and, 3) a method for changing the response speed or control speed of an actuator."

Limitation of 034 Patent Proposed Claim

Limitation of 034 Patent Proposed Claim	US. Patent No. 6.3058823 Thoda et alt	GB2 309773 U chida)
	failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."
Limitation of 034 Patent Proposed Claim 4	U. S. Patent No. 6.305823 (Toda et al)	GB2 309773 (uchida)
4. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes	E.g., Page 12 line 27 to page 13, line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition

Linitation of 034 Patent Proposed Claim 4	US. Patent No. 6 , 3058823 T Toda et aly	GB 2300773 (Uehidal
	L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

1 Imitation of 034 Patent Proposed Claims	US. Patent No. $6,305,823$ (Toda et al)	G8 2309773 (Uchida)
5. The automatic directional control system	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.

210

Limitation of 034 Patent Proposed Claim 5	US. Patent No. 6.3058823 (Toda et al)	GB 2309173 (uchida).
defined in claim 1,		
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

211

| Lmitation of 034 Patent Proposed Claim 6 |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Claima	US. Patent No. 6.305823 (Toda et al)	c8 2309173 (Uchilda)
		possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitation of 034 Patent Proposed Claim 9		cri 309773 (uchidat \ldots W.
9. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 212.	See claim 6 claim chart, above at page 212.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit."	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the

Limitation of 034 Patent Proposed Claim9	U.S. Patent No. 6,305823 (Toda et al.)	GB 2309773 (Uchilda)
	E.g., Figure 1:	information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitalion of O34 Patent Proposed Claim 10	U.S. ratent No. 6.305.823 (Toda el al.	G12 300773 IUchida)
10. The automatic directional control system defined in claim 6,	See claim 6 claim chart, above at page 212.	See claim 6 claim chart, above at page 212.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for	E.g., Page 12 line 27 to page 13, line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the

Limitation of 034 Patent Proposed Claim

Limitation of 034 Patent Proposed Claim 10	U.S. Patent No. 6,305823 (Toda et all)	GB 2309173 (uchila)
		detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."
Limitation of 034 Patent Proposed Claim 11	US. Patent No. ginus.823 (Toda et al.)	GB 2309773 (Uehida)
11. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 212.	See claim 6 claim chart, above at page 212.
wherein said first sensor is physically separate from said second sensor.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 6, line 30 to page 7, line 3, "In order for the vehicle posture detection device and the acceleration or deceleration running condition judging device to transmit signals to one another, they must be separate: "The outputs of the vehicle posture detection device 2 are transmitted to the correction calculating device 3 a and acceleration or deceleration running condition judging device 3 b which cooperate together in forming the control device 3, and these outputs are used as control signals to be applied to the drive device 4 and are then used as instructions for correcting the illumination of lamp 5." E.g., Fig. 1:

Limitation of 034 Patent Proposed Claimll

Limitation of 034 Patent Proposed Claimut

Limitation of 034 Patent Proposed Claim in	US. Patent No. 6 , 3058823 (Toda et ali)	G82 309773 (uchidat
	at halt. In step 124, if YES (lower than $0.5 \mathrm{~m} / \mathrm{s} 2$), then in step 126 it is determined whether or not a state continues for a predetermined time period (three seconds) or longer in which the vehicle speed exceeds $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is lower than $0.5 \mathrm{~m} / \mathrm{s}^{\prime \prime}$	obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Limitation of 034 Patent Proposed Claim 1.	U.S. Patent No. 6.3058823 (Toda et al.)	GB 2309173 (uchida)
wherein the automatic directional control system is configured to include at least two actuators.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)."	
Limitation of Ost Patent Proposed Claim 18	U.S. Patent No. 6.305:823 (Toda et al.)	CB 2309733 (Uchila)
18. The automatic directional control system defined in claim 17,	See claim 17 claim chart, above at page 219.	See claim 17 claim chart, above at page 219.
wherein the at least two actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb	E.g., page 7, lines 4 to 9 "In particular, the correction calculating device 3 a is structured in the following manner: that is, in accordance with a detect signal from the vehicle posture detection device 2 , it transmits a control signal to the drive device 4 so that the illumination direction of the lamp 5 can be always kept in a given direction."

Limitation of 034 Patent Proposed Claim 18	U.S. Patent No. 6.3058823 (Toda et al)	GB2309773 (Uehida)
	6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 ($17 \mathrm{~L}, 17 \mathrm{R}$) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)."	E.g., page 8, lines 1 to 9 "When the judging device 3 b judges that the vehicle is in an acceleration or deceleration running condition, in accordance with a control signal transmitted from the correction calculating device 3 a to the drive control device 4 a , the acceleration or deceleration running condition judging device 3 b transmits to the drive control device 4a a signal which allows the illumination direction of the lamp 5 to be corrected in a predetermined direction." E.g., page 3, lines 19 to 22 "There is provided a vehicle lamp illumination direction control device for changing the direction of the illumination light of a lamp according to the vertical inclination of a vehicle in the advancing direction thereof."

limitation of 034 Patent Proposed Claim 20	U.S. ratent No. 6,305,823 (lida il aly	G® 2309773 (Uchida)
20. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the at least one actuator includes an electronically controlled mechanical actuator.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb	E.g., page 19, lines 6 to 22 "For example, when the actuator incorporates therein a DC (direct current) motor, a difference between the control target position (or angle) of the actuator and the current position (or angle) thereof is detected, and a pulse signal having a duty cycle corresponding to the detected position difference is supplied to

Limitation of 034 Patent Proposed Claim ${ }^{20}$

Limitation of 034 Patent Proposed Clain 21	U.S. Patent No. $6,305: 823$ (Toda et al)	GB 2309713 (Uchida)
	body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 10R) which includes an actuator main body and a motor driver 18 (18L, 18R)."	
Limitation of 034 Patent Proposed Clain 22	U.S. Patent No. 6.305.823 (Toda et al)	GB 2300773 (Uchida)
22. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the at least one actuator includes a servo motor.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt	E.g., page 19 , lines 6 to 22 "For example, when the actuator incorporates therein a DC (direct current) motor, a difference between the control target position (or angle) of the actuator and the current position (or angle) thereof is detected, and a pulse signal having a duty cycle corresponding to the detected position difference is supplied to the DC motor to thereby control the position of the actuator, as shown in Fig. 11, if the characteristic of the duty cycle DT with respect to the position difference $\delta \mathrm{xx}$ is changed from the state of a relatively faster response speed shown by a broken

Limitation of 034 Patent Proposed Claim 22	U.S. Patent No. 6.3058823 (Toda et al.)	GB 2309773 (uchida)
	adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 10R) which includes an actuator main body and a motor driver 18 (18L, 18R)." E.g., col. 3, lines 18 to 24, "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	line 10 to the state of a slow response speed shown by a solid line 11 , with respect to the same position difference $\delta x x=\delta \times x a$, the duty cycle $D T$ in the other running conditions of the vehicle than the acceleration or deceleration running condition thereof is smaller than the duty cycle in the acceleration or deceleration running condition of the vehicle, so that the drive control on the lamp 5 by the actuator is slowed down."
Limitaton of 034 Patent Proposed Chimi 24	U. S. Patent No. 6.305 .823 (Toda et al.)	GB 2309773 (Uchida)
24. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a	E.g., page 16, lines 6 to 15 "The simplest method for changing the illumination pattern of the lamp 5 in a vertical plane is a method which changes the illumination angle of the lamp 5 with respect to a horizontal plane by rotating the entire lamp 5 about the rotary shaft thereof. For example, the right and left side surfaces of the lamp 5 are supported in a freely rotatable manner and the rotary shaft of the lamp 5 is rotated directly by a

Limitation of 034 Patent Proposed Claim 24	US. Patent No. 6.305823 (Toda et al)	GB 2309773 (Ul chida)
	horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)."	drive source such as a motor or the like, or, there is available a drive mechanism in which a member fixed to the lamp 5 or formed integrally with the lamp 5 is rotated by the drive device 4 ."
Limitation of 034 Patent Proposed Chim 25	U. S. Patent No. 6,305:823 (Toda ct al.)	GB 2309773 uchidat.
25. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted up and down relative to a horizontal reference position.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L,	E.g., page 16, lines 6 to 15 "The simplest method for changing the illumination pattern of the lamp 5 in a vertical plane is a method which changes the illumination angle of the lamp 5 with respect to a horizontal plane by rotating the entire lamp 5 about the rotary shaft thereof. For example, the right and left side surfaces of the lamp 5 are supported in a freely rotatable manner and the rotary shaft of the lamp 5 is rotated directly by a drive source such as a motor or the like, or, there is available a drive mechanism in which a member fixed to the lamp 5 or formed integrally with the lamp 5 is rotated by the drive device 4 ."

Limitation of 034 Patent Proposed Claim 25	US. Patent No. 6.3058823 (Toda et al)	GB 2309773 (uchida)
	18R)."	
Limitation of 034 Patent Proposed Claim 28	U. S. Patent No. 6, 30: 82. (Toda et ali)	6B 2300773 (Uchida)
28. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured such that the controller includes a microprocessor.	E.g., col. 3, lines 18 to 24 , "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	
Imitation of 034 Patent Proposed Claim 29	US. Patell No. 6.305 .823 (Toda et al)	GB2300 773 (Uchilda)
29. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.	E.g., col. 3, lines 18 to 24 , "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14, judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors	

IImitation of 034 Patent Proposed Clain 29	US. Patent No. g 30:823 (Toda et al)	GR 2300773 (Uehidat
	10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	
Limitation of 034 Patent Proposed Clain 36	U.S. Patent No. 6 , 305, 823 (Toda et al.	682 309773 (Uchida)
36. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured to position the headlight at or near a calibration position when an electrical system of the vehicle is turned on.	E.g., col. 3, lines 62 to 65 , "When the vehicle is stationary, since the proper pitch angle of the vehicle can be detected in principle, the driving of the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ is first controlled based on the vehicle pitch angle obtained when the vehicle is at halt."	
Limitation of 034 Patent Proposed Claim 37	US. Patent No. $6,30: 823$ lloda et ali	GB 2309773 (Uchida)
37. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.	E.g., col. 3, lines 48 to 53 , "When a two-sensor system is used in which vehicle height sensors are provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the	E.g., Page 12 line 27 to page 13, line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the

Limitation of 034 Patent Proposed Claim 37	US. Patent No. 6 , 3058823 T Toda et aly	GB 2309773 (Uchilda)
	vehicle."	vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitation of 034 Patent Proposed Claim 38	U.S. Patell No. $6,3058.823$ troda ct ali.	CR 2309773 (Uchida)
38. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured such that the pitch of the vehicle is	E.g., col. 3, lines 48 to 53 , "When a two-sensor system is used in which vehicle height sensors are	E.g., Page 12 line 27 to page 13, line 15 "The remaining method iv) is a method which can judge

Limitation of 034 Patent Proposed Claim 38\%		abe 30% \}
capable of being determined by a pitch level sensor.	provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the vehicle."	the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2. Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

39. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18	

Limitation of 034 Patent Proposed Clain 39	US. Patent No. 6,305 s 23 IToda et aly	GB 2309773 (uchida)	
	(18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."		

limitation of 034 Patent Proposed Clain 40	U.S. Patent No. 6,305:823 (Ioda et al)	GB2 309773 (Uchida)
40. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the	

Limitation of 034 Patent Proposed Clain 40	US. Patent No. 6.3058823 (Toda et al)	GB 2309773 (Uchida)
	vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	
Limitation of 034 Patent Proposed Clain 41	U.S. Patent No. 6.3058823 (Toda et al)	GB 2309773 (Uchida)
41. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher,	E.g., page 4, lines 16 to 27 , "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

Limitation of 034 Patent Proposed Clain 41	U.S. Patent No. 6,305:823 (Toda et al.)	GB 2309773 (Uchilda)
	and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 ($18 \mathrm{~L}, 18 \mathrm{R}$) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	
Linitation of 034 Patent Proposed Clain 42	U.S. Patent No. 6,305823 (Toda et al)	Gs 2309773 (Uchila)
42. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.
wherein said sensed conditions include three or more of road speed, steering angle, pitch, and suspension height of the vehicle.		E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ;

Limitation of 034 Patent Proposed Claim 42

Limitation of 034 Patent Proposed Claim 44	U.S. Patent No. 6 , 305, 823 (Toda et al.)	GB 2309773 (Uchilda)
from being operated continuously in response to relatively small variations in the sensed operating conditions.	reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

Ulinitation of 034 Patent Proposed Clain 45	U. S. Patent No. 6,305,823 (Toda et al.	GB 2309772 (UChida)
45. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 203.	See claim 1 claim chart, above at page 203.

$\stackrel{\sim}{\sim}$

Limitationot 034 Patent Proposed Glam is:		
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on."	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

25. Proposed Claims 1, 2, 4 to 6,9 to $13,17,18,20,21,22,24,25,28,29,33,34,36$ to 42, 44, and 45 Are Unpatentable Over the Combination of Toda et al. and Takahashi Under 35 U.S.C. §103(a)

Limitation of 034 Patent Proposed Claim 1	U.S. Patent No. 6,3058823 UToda el al.	GB 2300774 (Takhastio
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "An automatic leveling device for automotive vehicle headlamps is described."	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the

| Limitation of 034 Patent Proposed Claim |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Claim 1	US. Patent No. 6,305823 (Toda et ali)	GB2 309174 T Takahashil
	example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 $(18 \mathrm{~L}, 18 \mathrm{R})$ to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."
only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6

| Limitation of 034 Patent Proposed Claim |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Clainl.	US. Patent No. 6,3058823 (Toda et all	GR 2309774 (Takahashi)
	unit." E.g., Figure 1:	from this detect signal that the vehicle is standing still, the control device 4, in accordance with information on the vehicle posture obtained from the vehicle posture detection device 2 , transmits to the drive signal 5 a control signal for correction of the illumination direction of the lamp 6." E.g., page 7, lines 12 to 17 "In view of this, the control device 4 is structured such that, based on the information from the vehicle posture detection device 2 , it can detect the amount of variations in the gradient of the road and, therefore, when the road gradient varies suddenly, it can correct the illumination direction of the lamp 6." E.g., page 11, lines 12 to 16 , "The correction of the illumination direction of the lamp 6 in Step S5 is carried out by the drive device 5 based on the control signal transmitted from the control device 4 and, as a method for executing such correction, there are available two methods as follows: 1) a method for inclining the entire lamp, and, 2) a method for moving the component (such as a lens, a reflector, a shade or the like) of the optical system of the lamp."

Linitation of 034 Patent Proposed Climit	IV. S. Patent No. $6,305,823$ (Toda et al.)	GB 2309774 (Takahasti)
2. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.

Limitation of 034 Patent Proposed Clain 2	U.S. Patent No. 6.305823 (Toda et al)	GB 2309774 (Takahashi)
wherein at least one of said two or more sensors generates a signal that is representative of the road speed of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."
1 initation of 034 Patent Proposed Claim 4	U. S. Patent No. 6,305,823 (Todat et all	GA 2309774 (Takahashi)
4. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.

$\underset{~}{~}$

Limitation of 034 Patent Proposed Claims	US. Patent No. 6.3058823 (Toda et al.)	GB2309774 (Takahashi)
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
1 initation of 034 Patent Proposed Claim 6	US. Patent No. 6.305823 (Toda et al)	GB 2309774 (Takahashi)
6. The automatic directional control system	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.

Limitation of 034 Patent Proposed Clain 6	US. Patent No. 6,3058823 (Toda et al)	GB 2309774 (Takahashi)
defined in claim 1 ,		
wherein said two or more sensors include a first sensor and a second sensor.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."

Linitation of 033 Patent Proposed Claim 9	U.S. Patent No. 6,305,823 (Toda et al\%	G8 2309774 (Takahashit
9. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 245.	See claim 6 claim chart, above at page 245.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

Limitation of 034 Patent Proposed Claim 9	U.S. Patent No. 6.305823 (Toda et al)	GB 2309774 (Takahashi)
		E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."
Linitation of 034 Patent Proposed Clain 10	US. Patent No. G.305:823 Tloda et al)	GB2 3097774 (Takahashi)
10. The automatic directional control system defined in claim 6,	See claim 6 claim chart, above at page 245.	See claim 6 claim chart, above at page 245.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., page 2 , lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition

Limitation of 034 Patent Proposed Claim 10	U.S. Patent No. 6, 305 823 (Toda et ali)	GB 2309774 (Takahashi)
	PR	detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."
Limitation of 034 Patent Proposed Clain 11	U.S. Patent No. 6,305,823 (Toda et al.	GB 2309774 (Takahashit
11. The automatic directional control system defined in claim 6,	See claim 6 claim chart, above at page 245.	See claim 6 claim chart, above at page 245.
wherein said first sensor is physically separate from said second sensor.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit."	See, e.g., Fig. 1, ref. 2, 3 (Separate detection devices). See also 5:25-27 ("an illumination direction control device 1 is composed of vehicle posture detection device 2 , vehicle running condition detection device 3, control device 4, drive device $5 \ldots$, and lamp 6.")

Limitation of 034 Patent Proposed Claim 11	US. Patert No. 6,3058823 (Toda et al)	GB 2309774 (Takahashit
	E.g., Figure 1: 月a:	F/G. 1

Limitation of 034 Patent Proposed Clain 12	U.S. Patent No. 6,305823 (Toda et al)	GB 2309774 (Takahashi)
12. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, or a rate of change of suspension height of the vehicle.	E.g., col. 5, lines 31 to 38 , "If YES (the vehicle speed exceeds $30 \mathrm{~km} / \mathrm{h}$), in step 124 , it is determined whether or not the acceleration is lower than the reference value when the vehicle is at halt. In step 124, if YES (lower than $0.5 \mathrm{~m} / \mathrm{s} 2$), then in step 126 it is determined whether or not a state continues for a predetermined time period (three seconds) or longer in which the vehicle speed exceeds $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ "	E.g., page 7, lines 29 to 34 , to page 8 , line 21 "In particular, Fig. 3 shows schematically the amount of variations in the output level V when the vehicle runs first along an uphill slope and thereafter runs along a road having a small gradient. In this case, when the vehicle runs over the uphill slope the output level V falls down suddenly." E.g., page 8, lines 19 to 25 , "These figures show clearly that the magnitude of the amount of

IImitation of 034 Patent Proposed Claim 12	US. Patent No. 6 , 3058823 (Toda et ali)	GB 2309174 (Takahashit
		variations in the road gradients is reflected on the amount of variations in the outputs of the height sensor when the vehicle runs from the road having a small gradient to the road having a large gradient or when the vehicle runs from the road having a large gradient to the road having a small gradient."
Limitation of 034 Patent Proposed Claim is	U.S. Patent No. 6,305 :823 (loda et al)	G8 2309774 (lakahashi)
13. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 250.	See claim 12 claim chart, above at page 250.
wherein at least one of said two or more sensors generate a signal that is representative of the rate of change of road speed of the vehicle.	E.g., col. 5, lines 31 to 38 , "If YES (the vehicle speed exceeds $30 \mathrm{~km} / \mathrm{h}$), in step 124 , it is determined whether or not the acceleration is lower than the reference value when the vehicle is at halt. In step 124, if YES (lower than $0.5 \mathrm{~m} / \mathrm{s} 2$), then in step 126 it is determined whether or not a state continues for a predetermined time period (three seconds) or longer in which the vehicle speed exceeds $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is lower than $0.5 \mathrm{~m} / \mathrm{s}^{\prime \prime}$ "	
Linitation of to34 Patent Proposed Clian 17	U.S. Patent No. 6,305,823 (Toda et al)	GB 2309774 (Takahashi)
17. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.

Limitation of 034 Patent Proposed Claim 17	U.S. Patent No. 6, 305:823 (Toda et ali)	GB2 300774 T Takahashil
wherein the automatic directional control system is configured to include at least two actuators.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)."	E.g., page 16, line 31 to page 17, line 1 "A rudder resistance network 18 , which corresponds to the above-mentioned drive control device 5 a , is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19 ' which are disposed downstream thereof."
limitation of 0is ratent Proposed Claim is	U. S. ratent No. 6.305:823 Moda el al.	G1 2.300774 Mahahashil
18. The automatic directional control system defined in claim 17,	See claim 17 claim chart, above at page 251.	See claim 17 claim chart, above at page 251.
wherein the at least two actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb	E.g., page 11, lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the

Linitation of 034 Patent Proposed Clain 18	U.S. Patent No. 6, 305:823 (Toda et ali)	GB2 300774 T Takahashil
	6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)."	lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5 ."
Limitation of 034 Patent Proposed Claimi 20	U.S. Patent No. 6,305:823 (Toda et al)	GB 2309774 (Takalashil)
20. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the at least one actuator includes an electronically controlled mechanical actuator.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a	E.g., page 16 , line 31 to page 17 , line 1 "A rudder resistance network 18 , which corresponds to the above-mentioned drive control device 5 a, is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19^{\prime} which are disposed downstream thereof." E.g., page 11 , line 32 to page 12 , line 3 "As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see

Limitutionot 034 Paten Propused Clamino		
	stepping motor 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) which includes an actuator main body and a motor driver 18 (18L, 18R)." E.g., col. 3, lines 18 to 24 , "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	Japanese Patent Publication No. Hei. 63-166672)."

Limitationot O3A Patent Proposed Clamin 21	C. S. Patent Mo. 6, 30, 823 (Modame al)	aB2 309 T74 (Tatahashil
21. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the at least one actuator includes a step motor.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic	E.g., page 18 , lines 5 to 8 "Besides this, according to the invention, the lamp or the component thereof can be driven or controlled by use of a stepping motor to thereby correct the illumination direction of the lamp."

Limitation of 034 Patent Proposed Clain 21	US. Patent No. 6 , 305 823 (loda et ali).	GB 2309774 (Takahashi)
	reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 10R) which includes an actuator main body and a motor driver 18 (18L, 18R)."	
Iimitation of 034 Patent Proposed Chaim 22	U.S. Patent No. $6,305,823$ (Toda et al.	(88 2300774 (Takahashi)
22. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the at least one actuator includes a servo motor.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number 1 (1L, 1R) denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)."	E.g., page 16 , line 31 to page 17 , line 1 "A rudder resistance network 18 , which corresponds to the above-mentioned drive control device 5 a , is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19' which are disposed downstream thereof." E.g., page 11, line 32 to page 12 , line 3 "As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see Japanese Patent Publication No. Hei. 63-166672)."

Uimitation of 034 Patent Proposed Clain 22	U.S. Patent No. $6,305: 823$ (Toda et al)	GB 2309714 Takahashi)
	E.g., col. 3, lines 18 to 24, "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	
Limitation of 034 Patent Proposed Claim 24	U.S. Patent No. 6.3058823 IToda et al.)	GB2 3007174 Takahashil
24. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 10R) which includes an	E.g., page 11, lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5 ."

limitation of 034 Patent Proposed Claim 24	U. S. Patent No. 6,3058223 IToda et al.)	GB 2309174 (Takahashil
	actuator main body and a motor driver 18 (18L, 18R)."	
İmitation of 034 Patent Proposed Claim 25	US. Patent No. 6, 30:823 (Toda et al.)	GB 2309774 (Takahashi)
25. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted up and down relative to a horizontal reference position.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)."	E.g., page 11, lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5."

Limitation of 034 Patent Proposed Clain 28	US. Patent No. 6 305 823 (Toda et al.)	GB 2309774 (Takahashi)
28. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the automatic directional control system is configured such that the controller includes a microprocessor.	E.g., col. 3 , lines 18 to 24 , "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	E.g., page 16 , lines 1 to 4 "When a turn-on switch 12 for the lamp 6 is put into operation, a supply voltage from a constant voltage supply circuit 13 and a reset signal from a reset circuit 14 are supplied to the microcomputer 10." See also Fig. 9 , ref. 10 .

Limitation of 034 Patent Proposed Clain 29	U.S. Patent No. 6,3058223 (Toda et al)	GB 2309774 (Takahashi)
29. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the automatic directional control system is	E.g., col. 3, lines 18 to 24, "The CPU 16 calculates	

Limitation of 034 Patent Proposed Clain 29	U.S. Patent No. 6 , 3058823 (Toda et ali)	GB 2309174 (Takahashi)
configured such that the controller includes a programmable electronic controller.	vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	
Limitation of 034 Patent Proposed Claim 33	U.S. Patent No. 6,3058823 (Todat ct al)	Gis 209774 (Takahashit)
33. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the automatic directional control system further includes memory.		E.g., page 16, lines 5 to 9 "Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control programs and data values therein) [sic] and an oscillator 16 used to generate a clock signal are additionally attached to the microcomputer 10 ." See also Fig. 9, ref. 15.

Limitation of 034 Patent Proposed Claim 34	US. Patent No. 6.3058823 Toda et alt	G82309774 Takahashit.
		additionally attached to the microcomputer 10 ." See also Fig. 9, ref. 15. Fica 9

1 imitation of 034 Patent Proposed Clain 36	U. S. Patent No. $6,305,823$ (Toda et al.)	G18 2309774 (Takahasti)
36. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the automatic directional control system is configured to position the headlight at or near a calibration position when an electrical system of the vehicle is turned on.	E.g., col. 3, lines 62 to 65 , "When the vehicle is stationary, since the proper pitch angle of the vehicle can be detected in principle, the driving of the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ is first controlled based	

$\stackrel{\rightharpoonup}{C}$

Limitation of 034 Patent Proposed Claim 36	US. Patent No. 6,3058823 Thoda et all)	GB 2309774 (Takahashi)
	on the vehicle pitch angle obtained when the vehicle is at halt."	
Uimitation of 034 Patent Proposed Clain 37	U.S. Patent No. 6 , 3058823 (Toda et al)	G82 309774 (Takahashi)
37. The automatic directional control system defined in claim 1,.	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.	E.g., col. 3, lines 48 to 53, "When a two-sensor system is used in which vehicle height sensors are provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the vehicle."	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
Limitation of 034 Patent Proposed Clain 38	U. S. Patent No. 6,305,823 (Toda et al.)	GE 2309774 (Takahashi)
38. The automatic directional control system	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.

Linitation of 034 Patent Proposed Clain 38	U. S Patent No. g, 3058823 (Toda et al)	GB 2309714 (Takahashil
defined in claim 1 ,		
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.	E.g., col. 3, lines 48 to 53, "When a two-sensor system is used in which vehicle height sensors are provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the vehicle."	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
Limitation of 034 Patent Proposed Claim 30	U.S. Patent No. 6,305823 (Toda et al)	CB 2309774 (Takahashi)
39. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a	

Limitation of 034 Patent Proposed Claim 39	US. Patent No. 6.305823 (Toda et al)	CR 2309774 (Takahashi)
	reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on."	

Linitation of 034 Patent Proposed Clain 40	U. S. Patent No. 6,305,823 (Toda et al.	GB 2309774 (Takahashi)
40. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.

GB 2309774 (Takahashi)

Limitation of O34 Patent Proposed Claim to	
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on."

| Limitation of patent Proposed Claim 4ita |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Clain 41	US. Patent No. 6,305:823 (Toda et al)	GB 2309774 (Takahashi)
	and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."
Linitation of 034 Patent Proposed Clains 42	U.S. Patent No. 6,305823 (Toda et al)	GB 2309774 (Takahashi)
42. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein said sensed conditions include three or more of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the

Linitation of 034 Patent Proposed Clain 42	U. S Patent No. g, 3058823 (Toda et al)	GB 2309174 (Takahashi)
	detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
Limitation of 034 Patent Proposed Clains 4	U. S. Patent No. 6,3055823 Thda et al.	GB 2309774 (Takahashin
44. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals	E.g., col. 4, lines 1 to 25, "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that

Iimitation of 034 Patent Proposed Claim 44	US. Patent No. 6.305883 (loda et al.)	GB2 309774 (Takahashi)
changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to relatively small variations in the sensed operating conditions.	vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 ($18 \mathrm{~L}, 18 \mathrm{R}$) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."

Limitation of 034 Patent Proposed Clain 45	U.S. Patent No. 6,305823 (Toda et al.)	GR2309 774 T Takahashil
45. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 238.	See claim 1 claim chart, above at page 238.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues

Limitation of 034 Patent Proposed Claim 45	U.S. Patent No. 6,305823 (Toda et al)	GB 2300174 (Takahashi)
	(18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."

272
Proposed Claims 1, 2, 4 to 6, 9 to 13, 17, 18, 20, 21, 22, 24, 25, 28, 29, 36 to 42, 44, and 45 Are Unpatentable Over the Combination of Toda et al. and Hussman Under 35 U.S.C. § $103(\mathrm{a})$

Limitation of 034 Patent Proposed Claimi	U. S. Patent No. 6,305883 (Toda et al)	US. Patent No. 5.182 .461 (llussman)
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "An automatic leveling device for automotive vehicle headlamps is described."	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value

Limitation of 034 Patent Proposed Claim 1	US. Patent No. 6 305 823 M Moda et ali)	U.S. Patent No. 5.182 .460 (Ilussman)
	㗔:	former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
a controller that is responsive to said two or more sensor signals for generating at least one output signal	E.g., col. 4, lines 1 to 25, "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is	E.g., col. 3, lines 30 to 39, "The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R."

Limitation of 034 Patent Proposed Claim 1	U. S. Patent No. 6,305.823 (Toda et al.)	US. Patent No. Si 182.4600 (liussman)
	proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on."	
only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	E.g., col. 4, lines 1 to 25, "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is	E.g., col. 3, lines 30 to 39 , "The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R." E.g., col. 4, lines 6 to 12 , "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that

Limitation of 034 Patent Proposed Claim 1	U.S. Patent No. 6 . 3058823 (Toda et al.)	US. Patent No. 5.182 .460 (Hussman)
	proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on."	discontinuities or jumps in the adjustment and regulation of the illumination range are avoided." E.g., col. 6, line 10 to 34 , "In this connection, it is beneficial that upon the presence of a difference between the second, filtered, nominal-value signal to the third, filtered, nominal-value signal and upon termination of a difference is again switched from the third, filtered, nominal-value signal to the first, filtered, nominal-value signal because in this manner, in an uncomplicated and cost effective manner, upon the presence of an inclination change of the motor vehicle body which is not attributable to a change in loading or to road surface unevenness, the regulation of the illumination range of the motor vehicle, in dependence from the third, long, filter time constant results, whereby the third, filtered, nominal-value signal is independent, or substantially independent, from the disturbing, or distorting, short time inclination changes so that after inclination changes of the motor-vehicle body which, for example, are caused by driving about a curve, false adjustments of the illumination range are not caused which can lead to the blinding of oncoming traffic or to losses in illumination range, which eliminates a danger during operation of a motor vehicle."
said at least one actuator being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes	E.g., col. 3, lines 16 to 18 , "The regulator R regulates the position of adjusting elements, which are shown here in block form and which change

Limitation of 034 Patent Proposed Claim 2	US. Patent No. 6,305823 (Toda et al)	US S. Patent No. 5.182 .460 (lursman)
2. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein at least one of said two or more sensors generates a signal that is representative of the road	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17	E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with

277

Limitation of 034 Patent Proposed Claim 2.	U.S. Patent No. 6,305:823 (Toda et al.)	US Patent No. 5.182 .460 (Hussman).
speed of the vehicle.	(17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
Linitation of 034 Patent Proposed Clain 4	U.S. Patent No. 6.305 si3 (Toda et al.)	1. S Patent No. $5,182.460$ (tussman)
4. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein at least one of said two or more sensors	E.g., col. 3, lines 11 to 18, "The headlamp	E.g., Abstract, "In a method and apparatus to

278

Limitation of 034 Patent Proposed Clain 4	US. Patent No. 6.3058833 IToda et al.)	US S Patent No. sis2.460 (Hussman).
generates a signal that is representative of the pitch of the vehicle.	automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Clains	U.S. Patent No. 6.305 .823 (Toda et al)	U. S. Yatent No. 5. 182.460 IHussman)
5. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.

Limitation of 034 Patent Proposed Claim 5	US. Patent No. 6.3058833 (Toda et ali)	US. Patent No. 5.182 .460 (Ilissman)
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Claim f	U. S. Patent No. 6.3058323 (Toda el all)	US. Patent No. 5, 182,460 (14ssman)
6. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.

Linitation of 034 Patent Proposed Claim 6	US. Patent No. 6, 3058823 (Toda et al)	US. Patent No. S 182.460 (llussman)
wherein said two or more sensors include a first sensor and a second sensor.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1 R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."

| Limitation of 034 Patent Proposed Claim |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Clain 10	U.S. Patent No. 6.305823 (Toda et al)	US. Patent No. 5.182 .460 (Hussman)
10. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 280.	See claim 6 claim chart, above at page 280.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.	E.g., col. 3, lines 11 to 18 , "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only

Limitation of 034 Patent Proposed Claim 10	US Patent No. 6,305:823 (Toda et al)	US. Patent No. 5.182 .460 (llussman)
		coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
1 imitation of 034 Patent Proposed Claim 11	U. S. Patent No. 6.305823 (Toda et al)	1. S. Patent No. 5.182 .4610 (lus man)
11. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 280.	See claim 6 claim chart, above at page 280.
wherein said first sensor is physically separate from said second sensor.	E.g., col. 3, lines 11 to 18, "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps 1 (1L, 1R) vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." E.g., Figure 1:	

Limitation of 034 Patent Proposed Claim 11	U.S. Patent No. 6,305 823 (Toda et al.)	U. S. Patent No. 5.182.460 Mussman).
	flat	
Limitation of 034 Patent Proposed Claim 12	U.S. Patent No. 6,305,823 (Toda et al.)	US. Patent No. S, 182.460 (lussman)
12. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, or a rate of change of suspension height of the vehicle.	E.g., col. 5, lines 31 to 38, "If YES (the vehicle speed exceeds $30 \mathrm{~km} / \mathrm{h}$), in step 124 , it is determined whether or not the acceleration is lower than the reference value when the vehicle is at halt. In step 124, if YES (lower than $0.5 \mathrm{~m} / \mathrm{s} 2$), then in step 126 it is determined whether or not a state continues for a predetermined time period (three seconds) or longer in which the vehicle speed exceeds $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ "	E.g., col. 5, lines 34 to 40 , "So that also such inclination changes of the motor-vehicle body which are not attributable to acceleration changes will be recognized and false adjustments during regulation of the illumination range because of such inclination changes will be avoided, the third filter F3 is only placed in connection with the regulator when no acceleration of the motor vehicle is present."

Limitation of 034 Patent Proposed Clain 13	U.S. Patent No. 6.305823 (Toda et al)	US. Patent No. 5.182 .4600 (llussman)
13. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 285.	See claim 12 claim chart, above at page 285.
wherein at least one of said two or more sensors generate a signal that is representative of the rate of change of road speed of the vehicle.	E.g., col. 5 , lines 31 to 38 , "If YES (the vehicle speed exceeds $30 \mathrm{~km} / \mathrm{h}$), in step 124, it is determined whether or not the acceleration is lower than the reference value when the vehicle is at halt. In step 124, if YES (lower than $0.5 \mathrm{~m} / \mathrm{s} 2$), then in step 126 it is determined whether or not a state continues for a predetermined time period (three seconds) or longer in which the vehicle speed exceeds $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is lower than $0.5 \mathrm{~m} / \mathrm{s}^{2}$ "	E.g., col. 5, lines 34 to 40, "So that also such inclination changes of the motor-vehicle body which are not attributable to acceleration changes will be recognized and false adjustments during regulation of the illumination range because of such inclination changes will be avoided, the third filter F3 is only placed in connection with the regulator when no acceleration of the motor vehicle is present."
limitation of 034 Patent Proposed Claim 17	U.S. Patent No. 6,305,823 (Tada et al)	US. Patent No. 5.182 .460 (Hussman)
17. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the automatic directional control system is configured to include at least two actuators.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic	

Limitation of 034 Patent Proposed Clain 17	U.S. Patent No. 6,305,823 (Toda et al.)	U.S. Patent No. 5.182 .460 (Hussman)
	reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 10R) which includes an actuator main body and a motor driver 18 (18 L , 18R)."	

1 initation of 034 Patent Proposed Clain 18	U.S. Patent No. 6,305 S23 (loda et al.)	US. Patent No. $5,182,460$ (llussman)
18. The automatic directional control system defined in claim 17,	See claim 17 claim chart, above at page 286.	See claim 17 claim chart, above at page 286.
wherein the at least two actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 10R) which includes an actuator main body and a motor driver 18 (18L, 18R)."	

Limitation of 034 Patent Proposed Claim 20	U. S. Patent No. g, 30: 823 (Toda et al)	U. S. Patent No. 5, 182.460 (llussman)
20. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the at least one actuator includes an electronically controlled mechanical actuator.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 ($17 \mathrm{~L}, 17 \mathrm{R}$) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)." E.g., col. 3, lines 18 to 24, "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	

Limitation of \$034 Patent Proposed Claim 21	U.S. Patent No. 6, 305:823 (Toda et al)	US. Patent No. 5182.460 Illussman)
21. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the at least one actuator includes a step motor.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)."	
1 lmitation or P334 Patent Proposed Clain 22	US. Patent No. 6,305,823 (Toda et al.)	IVS. Patenl No. 5, 182,460 Mlissman)
22. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the at least one actuator includes a servo motor.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the	

Limitation of 034 Patent Proposed Clain 22	U.S. Patent No. 6,305:823 (Toda et al.)	U. S. Patent No. 5.182 .460 Illissman)
	headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 10 \mathrm{R})$ which includes an actuator main body and a motor driver 18 (18L, 18R)." E.g., col. 3, lines 18 to 24 , "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	

Limitation of 034 Patent Proposed Claim 24	U.S. Patent No. 6,3058223 (Toda ct al.)	US Patent No. $5,182.460$ (Hussman)
24. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.

$\stackrel{8}{8}$

IImitation of 034 Patent Proposed Claim 24	U.S. Patent No. 6,305:823 (Toda et al.)	US. Patent No. 5.182 .460 (Ilussman)
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 ($17 \mathrm{~L}, 17 \mathrm{R}$) each comprise a stepping motor 10 (10L, 10R) which includes an actuator main body and a motor driver 18 (18L, 18R)."	
Limitation of 034 Patent Proposed Claim 25	U.S. ratent No. 6,305:823 (Toda et all	US. Paten No. Sis2.460 (llussman)
25. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted up and down relative to a horizontal reference position.	E.g., col. 2, line 65 to col. 3, line 10, "In FIG. 1, reference number $1(1 \mathrm{~L}, 1 \mathrm{R})$ denotes a pair of left and right headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb	

Linitation of 034 Patent Proposed Clain 29	U. S Patent No. g, 3058823 (Toda et al)	US. Patent No. 5.182 .460 (llussman)
29. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.	E.g., col. 3, lines 18 to 24 , "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16."	
Limitation of 034 Patent Proposed Clain 36	U. S. Patent No. $6,305,823$ (Toda et al.	US. Patent Mo. 5182,460 (Hussman)
36. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the automatic directional control system is configured to position the headlight at or near a calibration position when an electrical system of the vehicle is turned on.	E.g., col. 3, lines 62 to 65 , "When the vehicle is stationary, since the proper pitch angle of the vehicle can be detected in principle, the driving of the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ is first controlled based on the vehicle pitch angle obtained when the vehicle is at halt."	
Limitation of 034 Patent Proposed Claim 37	U.S. Patent No. 6,3058823 (Toda et al.	U. . Patent No. 5 i 182.460 Illisman)
37. The automatic directional control system	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.

Limitation of 034 Patent Proposed Clain 37	US. Patent No. 6,3058823 T Toda et ali)	US. Patent No. 5.182 .4600 (llissman)
defined in claim 1,		
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.	E.g., col. 3, lines 48 to 53 , "When a two-sensor system is used in which vehicle height sensors are provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the vehicle."	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Clain 38	U.S. Patent No. 6,3058823 (Toda et al.)	IS. Patent No. S. 182.4601 (lussman)
38. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.

Limitation of 034 Patent Proposed Claim 38	U. S. Patent No. 6 , 3058 823 Moda et al)	U.S. Patent No. 5.182 .460 (Hussman)
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.	E.g., col. 3, lines 48 to 53 , "When a two-sensor system is used in which vehicle height sensors are provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the vehicle."	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Uimitation of 034 Patent Proposed Claim 30	U. S. Patelt No, 6,305823 thoda el al.	U.S. Patent No. 5, 182,460 (llussman)
39. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the automatic directional control system is	E.g., col. 4, lines 1 to 25, "But while the vehicle is	E.g., Abstract, "In a method and apparatus to

Linitation of 034 Patent Proposed Clain 39	U. S Patent No. g, 3058823 (Toda et al)	US. Patent No. 5.182 .460 (llussman)
configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.	running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on."	regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."

Limitation of 034 Patent Proposed Clain 40	U.S. Patent No. 6.305823 (Toda et al)	US. Patent No. 5.182 .4600 (llussman)
40. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18	

Limitation of 034 Patent Proposed Clain 40	U.S. Patent No. 6,305:823 (Toda et al.)	US.S. Patent No. 5.182 .460 (llussman)
	(18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	
Iimitation of 034 Patent Proposed Clain 41	U.S. Patent No. 6,305:823 (Toda et al)	IIS. Patent No. 5.182 .460 (llussman)
41. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., col. 4, lines 1 to 25 , "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

$\stackrel{\text { הे }}{ }$

Limitation of 034 Patent Proposed Clain 42	U.S. Patent No. 6,305 823 (Toda et ali)	US. Patent No. 5.182 .4600 Ihussman)
	and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on."	
Limitation of 034 Patent Proposed Clain 44	U.S. Tatent No. 6,3058223 (Toda et al)	1.S. Iatent No. 5 , 182.460 (llussman)
44. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to relatively small variations in the sensed operating	E.g., col. 4, lines 1 to 25, "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

Limitationot 034 Patent Proposed Clamit		V.S. Patent No. 5. 182.460 Mrssman
conditions.	reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on."	

Limitation of 034 Patent Proposed Claim 45	U.S. Patelt No, 6,305823 (Toda et al.)	U.S. Patent No, 5, 182,460 (llussman)
45. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 273.	See claim 1 claim chart, above at page 273.
wherein controller is configured to be responsive	E.g., col. 4, lines 1 to 25, "But while the vehicle is	E.g., col. 4, lines 6 to 12, "At the coupling

301

Limitationot 034 Patent Proposed Clam ing	U. S. Patent Mo. g, 30:382s Moda et alt	US Patent No. Sismi 400 M Misman
to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of $30 \mathrm{~km} / \mathrm{h}$ or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on."	between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

Minitation of 034 Patent Proposed Claimi	U.S. Patent No. $6.193,398$ (Okiuchit itil)	G8 2309773 (Uchida)
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor."	E.g., page 1, lines 3 to 7 , "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp so that the illumination direction can be always kept in a predetermined direction."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are	E.g., Page 9, lines 13 to 23 , "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 13 to 23 , "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2."

Limitation of 034 Patent Proposed Chaimil		
	supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fig.	E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle." E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the

$\left.\begin{array}{|l|l|l|}\hline \text { Limitation of } 034 \text { Patent Proposed Claim } & & \begin{array}{l}\text { inclination angle in the pitching direction of the } \\ \text { vehicle (so-called pitch angle) is detected in } \\ \text { accordance with the detect information that is } \\ \text { detected by these height detection device, then the } \\ \text { running condition of the vehicle can be confirmed } \\ \text { to a certain degree." }\end{array} \\ \hline \text { E.g., page 15, line 30 to page 16, line 2 "As has } \\ \text { been described above, according to the respective } \\ \text { methods, it is possible to judge whether the } \\ \text { vehicle is running in the acceleration condition or } \\ \text { in the deceleration condition. Also, these methods } \\ \text { can be applied in various manners, for example, } \\ \text { the respective methods can be used individually, } \\ \text { or some of them may be combined together for the } \\ \text { enhanced accuracy of the judgment." }\end{array}\right\}$

Limitation of 034 Patent Proposed Claim 1.	U.S. Patent No. 6.193 .398 (Oknchi et all)	GB2309 773 (Uchilda)
	obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7: 16.7	
only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$, the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device,

Limitation of 034 Patent Proposed Claim	U.S. Patent No. 6.193 .398 (Okuchi ct alit	GB 2309773 (Uchilda)
	that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7: 16.7	thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."
said at least one actuator being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output		E.g., page 16 , line 28 to page 17 , line 6 "Also, if it is judged by the acceleration or deceleration running condition judging device $3 b$ that the

307

Minitation of 034 Patent Proposed Claim 1	U.S. Patent No. 6.193398 (Okuchi et al)	CB 2309 Th3 (uchida)
signal.		vehicle is not in the acceleration or deceleration running condition, then the illumination angle of the lamp 5 can be controlled by one of the following methods when the drive control device 4a receives an instruction from the acceleration or deceleration running condition judging device 3 b : 1) a method for fixing the illumination angle; 2) a method for limiting the range of the illumination angle or forbidding part of the range of the illumination angle; and, 3) a method for changing the response speed or control speed of an actuator." E.g., page 7, lines 4 to 9 , "In particular, the correction calculating device 3 a is structured in the following manner: that is, in accordance with a detect signal from the vehicle posture detection device 2 , it transmits a control signal to the drive device 4 so that the illumination direction of the lamp 5 can be always kept in a given direction." See also 7:9-32. E.g., page 8, lines 1 to 9 , "When the judging device 3 b judges that the vehicle is in an acceleration or deceleration running condition, in accordance with a control signal transmitted from the correction calculating device 3 a to the drive control device 4a, the acceleration or deceleration running condition judging device 3 b transmits to the drive control device 4 a a signal which allows the illumination direction of the lamp 5 to be corrected in a predetermined direction."

Linitation of 034 Patent Proposed Claim 2	U.S. Patent No, 6, 193,398 (Okuchi et al)	68 2300773 (Uchida)
2. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein at least one of said two or more sensors generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) $H R$ as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device $3 b$ will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."

Linitation of 034 Patent Proposed Claim 2	U.S. Patent No. $6.193,398$ (Okachi et alt)	GB2309 773 (Uchidat	
	FIG.		

Limitation of 034 Patent Proposed Clain 4	U.S. Patent No, $6.193,398$ (Okichit et al.)	GB2309773 (UChila)
4. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used

Limitatunot 034 Paten Proposed Mainm		
	wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fis.	height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

311

Limitation of 034 Patent Proposed Clains	U.S. Patent No. 6.193,398 (Okuchi et ai.)	GB 2309773 (uchiday
5. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Limitation of O34 Patent Proposed Clain 6	U.S. Patent No. 6.193 398 (Okichi et al)	G8 2309773 (UChila)
6. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein said two or more sensors include a first sensor and a second sensor.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2."

Limitation of 034 Patent Proposed Claim 6	U.S. Patent No. 6.193,398 (Okuchi et ail)	G8 2309773 (uchida)
	wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fic.	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

| Limitation of 034 Patert Proposed Claim |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Claim 9	U.S. Patent No. 6.193 .398 (Okuchi et ai.)	GB 2309773 (Uchida)	
	FIG.		

limitation of 034 Patent Proposed Claim 10	U.S. Patent No, 6.193,398 (Okichi et alin	G8 2309773 (UChilda)
10. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 313.	See claim 6 claim chart, above at page 313.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used

Imitation of O34 Patent Proposed Glamion	US Patent No.	
	wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fic.	height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree." E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i)

Limitation of 034 Patent Proposed Claim 10	U.S. Patent No. $6.193,398$ (Oknchi et al)	GB 2.309773 (Uchilda)
		is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."

I initation of 034 Patent Proposed Claim 11	U.S. Patent No. $6,193,398$ (Okuchi el al)	GB 2309773 (Uehida)
11. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 313.	See claim 6 claim chart, above at page 313.
wherein said first sensor is physically separate from said second sensor.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses	E.g., page 6, line 30 to page 7, line 3, "In order for the vehicle posture detection device and the acceleration or deceleration running condition judging device to transmit signals to one another, they must be separate: "The outputs of the vehicle posture detection device 2 are transmitted to the correction calculating device 3 a and acceleration or deceleration running condition judging device 3 b which cooperate together in forming the control device 3, and these outputs are used as control signals to be applied to the drive device 4 and are then used as instructions for correcting the illumination of lamp 5." E.g., Fig. 1:

1 imitation of 034 Patent Proposed Clain 12	U.S. Patent No. $6.193,398$ (Okuchi et al.)	CB 2309773 (Uchida)
12. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition

Limitation of 034 Patent Proposed Claim 12	U.S. Patent No. 6.193 .398 (Oknchi et all)	CR2309 773 (Uchida)
vehicle, a rate of change of pitch of the vehicle, or a rate of change of suspension height of the vehicle.	acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16. 7	of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Iimitation of 034 Patent Proposed Claim 13	U.S. Patent No. 6.193,398 (Okuchi et ai.)	GR2309773 (Uchilda)
13. The automatic directional control system	See claim 12 claim chart, above at page 319.	See claim 12 claim chart, above at page 319.

Limitation of 034 Patent Proposed Claim 13	U.S. Patent No. 6.193,398 (Okuchi et ai.)	Gs 2309173 (uchidat.
defined in claim 12,		
wherein at least one of said two or more sensors generate a signal that is representative of the rate of change of road speed of the vehicle.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16. 7	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Limitation ot O34 Patent Proposed Clamis		FB\% 309\%73 Mchidil
15. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 319.	See claim 12 claim chart, above at page 319 .
wherein at least one of said two or more sensors generates a signal that is representative of the rate of change of pitch of the vehicle.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: $F 19.7$	

Iimitation of 034 Patent Proposed Claim 16	US. Patent No. 6.193398 (Okuchi et ali)	GB 2309773 (U chida)
16. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 319.	See claim 12 claim chart, above at page 319.
wherein at least one of said two or more sensors generates a signal that is representative of the rate of change of suspension height of the vehicle.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16. 7	
Iimitation of 034 Patent Proposed Chim 17	U.S. Patent No. 6.193 .398 (OKuchi et all)	682309773 (Uchída)
17. The automatic directional control system	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.

Limitation of 034 Patent Proposed Claim 17	U.S. Patent No. 6.193 ,398 (Okuchi et alf	GB 2309773 (Uchilda)
defined in claim 1,		
wherein the automatic directional control system is configured to include at least two actuators.	E.g., col. 5, lines 16 to 20, "Output signals from the ECU 20 are supplied to actuators 35 R and 35 L of right and left headlights 30R and 30L of the vehicle, thereby adjusting the optical axis direction of the right and left headlights 30 R and 30 L as will be described hereinlater."	
Linitation of 034 Patent Proposed Clain 18	U.S. Patent No. 6, 193,398 (Okuchi et al.)	GR 2309773 (Uchida)
18. The automatic directional control system defined in claim 17 ,	See claim 17 claim chart, above at page 323.	See claim 17 claim chart, above at page 323.
wherein the at least two actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow. The movable member 34 is driven in the back and forth directions by the actuator 35L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be	E.g., page 7, lines 4 to 9 "In particular, the correction calculating device 3 a is structured in the following manner: that is, in accordance with a detect signal from the vehicle posture detection device 2 , it transmits a control signal to the drive device 4 so that the illumination direction of the lamp 5 can be always kept in a given direction." See also 7:9-32. E.g., page 8, lines 1 to 9 "When the judging device 3 b judges that the vehicle is in an acceleration or deceleration running condition, in accordance with a control signal transmitted from the correction calculating device 3 a to the drive control device 4a, the acceleration or deceleration running condition judging device 3 b transmits to the drive

Limitation of 034 Patent Proposed Claim 18	U.S. Patent No. 6.193 .398 (Okuchi et all	GR 2309173 (Uchida)
	described hereinlater, thereby adjusting the optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$. The optical axis direction of the headlight 30L (30R) is initially set on the assumption that one driver is on the vehicle."	control device 4 a a signal which allows the illumination direction of the lamp 5 to be corrected in a predetermined direction." E.g., page 3, lines 19 to 22 "There is provided a vehicle lamp illumination direction control device for changing the direction of the illumination light of a lamp according to the vertical inclination of a vehicle in the advancing direction thereof."
Limitation of 034 Patent Proposed Claim 20	U.S. Patent No. 6.193 .398 (Okuchi et ali)	GB 2309773 (Uchilda)
20. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein the at least one actuator includes an electronically controlled mechanical actuator.	E.g., col. 5 , lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24 , an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., col. 5, lines 24 to 33, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the	E.g., page 19, lines 6 to 22 "For example, when the actuator incorporates therein a DC (direct current) motor, a difference between the control target position (or angle) of the actuator and the current position (or angle) thereof is detected, and a pulse signal having a duty cycle corresponding to the detected position difference is supplied to the DC motor to thereby control the position of the actuator, as shown in Fig. 11, if the characteristic of the duty cycle DT with respect to the position difference $\delta \mathrm{xx}$ is changed from the state of a relatively faster response speed shown by a broken line 10 to the state of a slow response speed shown by a solid line 11 , with respect to the same position difference $\delta \mathrm{xx}=\delta \mathrm{xxa}$, the duty cycle DT

Page 427 of 1228

Imitation of 034 Patent Proposed Clain 21	U.S. Patent No. $6.193,398$ (Okuchi ct al$)$	GB 2309773 (Uehida)
	the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow.	
Limitation of 034 Patent Proposed Claim 22	US. Patent No. 6.193399 (Okuchi et al)	GB 2309773 (Uchida)
22. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein the at least one actuator includes a servo motor.	E.g., col. 5 , lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25, and a bus line 26 connecting these elements." E.g., col. 5, lines 24 to 33, "As shown in FIG. 2, the headlight $30 \mathrm{~L}(30 \mathrm{R})$ includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator $35 \mathrm{~L}(35 \mathrm{R})$ such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow."	E.g., page 19, lines 6 to 22 "For example, when the actuator incorporates therein a DC (direct current) motor, a difference between the control target position (or angle) of the actuator and the current position (or angle) thereof is detected, and a pulse signal having a duty cycle corresponding to the detected position difference is supplied to the DC motor to thereby control the position of the actuator, as shown in Fig. 11, if the characteristic of the duty cycle DT with respect to the position difference $\delta \mathrm{xx}$ is changed from the state of a relatively faster response speed shown by a broken line 10 to the state of a slow response speed shown by a solid line 11 , with respect to the same position difference $\delta \mathrm{xx}=\delta \mathrm{xxa}$, the duty cycle DT in the other running conditions of the vehicle than the acceleration or deceleration running condition thereof is smaller than the duty cycle in the acceleration or deceleration running condition of

Limitation of 034 Patent Proposed Clain 22	U.S. Patent No. $6.193,398$ (Okuchi ct al$)$	GB 2309773 (Uchilda)
	E.g., Fig. 1, FIG.	the vehicle, so that the drive control on the lamp 5 by the actuator is slowed down."
Limitation of 034 Patent Proposed Claim 24	U. S. Patent No. $6.103,398$ (OKachit et al)	GB 2309773 (Uchida)
24. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35L (35R) such as a stepping motor or a	E.g., page 16, lines 6 to 15 "The simplest method for changing the illumination pattern of the lamp 5 in a vertical plane is a method which changes the illumination angle of the lamp 5 with respect to a horizontal plane by rotating the entire lamp 5 about the rotary shaft thereof. For example, the right and left side surfaces of the lamp 5 are supported in a freely rotatable manner and the

Limitation of 034 Patent Proposed Claim 24

Limitationot 034 Patentroposed Mamis		
	forth directions by the actuator 35 L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be described hereinlater, thereby adjusting the optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$. The optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$ is initially set on the assumption that one driver is on the vehicle."	fixed to the lamp 5 or formed integrally with the lamp 5 is rotated by the drive device 4 ."

Limitation of 034 Patent Proposed Claim 28	U.S. Patent No. 6,193,398 (Onnchi et al.)	GB 2309773 (Uchida)
28. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein the automatic directional control system is configured such that the controller includes a microprocessor.	E.g., col. 5, lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., Fig. 1,	

Limitation of 034 Patent Proposed Clain 28	U. S. Patent No. 6.193 .398 (Okuchi et ai.)	GB 2309773 (uchida)	
	FIG.		

Limitation of 034 Patent Proposed Clian 29	U.S. Patent No. 6.193,398 (Okuchi et ail)	CB 2300773 (Uchila)
29. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.	E.g., col. 5, lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24 , an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., Fig. 1,	

331

Limitation of 034 Patent Proposed Claim 33	U.S. Patent No, 6.193398 (Okichi et al.)	GB 2309773 (Uchila)
33. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein the automatic directional control system further includes memory.	E.g., col. 5, lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24 , an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., Fig. 1,	

Limitation of 034 Patent Proposed Clain 33	U.S. Patent No. 6.193 .399 (Oknchi ct ail)	GB2309773 U (Uhilda)	
	FIG.		

1 imitation of 034 Patent Proposed Claim 35	U.S. Patent No, 6,193,398 (Okichit itil	cr 2309773 (uchida)
35. The automatic directional control system defined in claim 33 ,	See claim 33 claim chart, above at page 332.	See claim 33 claim chart, above at page 332.
wherein the memory is configured to store a predetermined reference position associated with the headlight.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow.	

Limitation of 034 Patent Proposed Claim 35	U. S. Patent No. 6.193 .398 (Okachi et alt	GB2 300773 (Uehida)
	The movable member 34 is driven in the back and forth directions by the actuator 35 L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be described hereinlater, thereby adjusting the optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$. The optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$ is initially set on the assumption that one driver is on the vehicle."	
Limitation of 034 Patent Proposed Claim 37	US. Patent No. 6, 19:3,398 (Okichi et all	G82 309773 (Uchida)
37. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height

Linitation of 034 Patent Proposed Claim 37	U.S. Patent No. $6.193,398$ (Okuchi et al.)	GB 2309773 (Uchilda)
	(displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fla.	detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Limitation of 2034 Patent Proposed Cliam 38	U.S. Patent No. 6, 103,398 (Okichi et al)	GB 2309773 (Uchida)
38. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.

limitation of 034 Patent Proposed Claim 38	U.S. Patent No. $6.193,398$ (Oknchi ct ai.)	GB2 300773 (Uechida)
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Limitation of 034 Patent Proposed Claim 38	U.S. Patent No. 6.193,398 (Okuchi et all)	G8 2300173 (uchida)	
	FIG.		

1 imitation of 034 Patent Proposed Claim 39	U.S. Patent No, 6,193,398 (Okichi et ill)	CB 2309773 (Uchila)
39. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.	E.g., col. 6, lines 29 to 38 , "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2$]), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of	

Limitation of 034 Patent Proposed Claim 4it

limitation of 034 Patent Proposed Claim 42	U.S. Patent No. $6,193,398$ (Oknehis all)	
	(a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: FIG.	detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle." E.g., Page 12 line 27 to page 13, line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof

Linitation of 034 Patent Proposed Claim 42	U.S. Patent No. 6.193,398 (Oknchi et ai.)	GB 2300773 (Uchila)
		and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree." E.g., page 15 , line 30 to page 16 , line 2 "As has been described above, according to the respective methods, it is possible to judge whether the vehicle is running in the acceleration condition or in the deceleration condition. Also, these methods can be applied in various manners, for example, the respective methods can be used individually, or some of them may be combined together for the enhanced accuracy of the judgment."

Iimitation of 034 Patent Proposed Claim 44	U.S. Yatent No, 6, 193.398 (Okuchi et al.	GE 2309773 (Uchida)
44. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the

Limitationot 034 Patent Proposed Glami4		
relatively small variations in the sensed operating conditions.	used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7: F16. 7	illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

Limitation of 034 Patent Proposed Claim 45	US. Patent No. 6.193 .398 (Okuchi ct al)	GB 2309773 (Ul chida)
45. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 303.	See claim 1 claim chart, above at page 303.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2 \mathrm{]}$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7:	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

GB 2309773 (Uchida)	
U.S. Patent No. $6.193,398$ (Okuchi et al)	

Proposed Claims 1, 2, 4 to 6, 9 to 13, 15 to 18, 20, 21, 22, 24, 25, 28, 29, 33 to 35, 37 to 42, 44, and 45 Are Unpatentable Over the

1initation of 034 Patent Proposed Claim 1	U.S. Patent No. $6.193,398$ (Olucht et al.)	GB 2300774 (Takathashil
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor."	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle	E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in

Linitation of 034 Patent Proposed Clain 1	U.S. Patent No. 6.193,398 (Oknehi et al.)	GB 2309774 (Takahashi)
	speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fic.	the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
a controller that is responsive to said two or more sensor signals for generating at least one output signal	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2."

Limitation of 034 Patent Proposed Claim 1	U. S. Patent No. 6.193 .398 (Okuchil et alt	GB 2309714 (Takahashil
	the change in the pitch angle." E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ $[\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7: F10. 7	
only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the	E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs

戸

limitation of 034 Patent Proposed Claim 1	U.S. Patent No. 6.193 .398 (Okuchi ct alt	GB 2309714 (Takahashil
continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7:	temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."

$\stackrel{\infty}{\infty}$

| Limitation of 034 Patent Proposed Claim |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Claim 1	U.S. Patent No. $6.193,398$ (Okuchi ct alt	GB 2309774 (Takahashi)
		the gradient of the road and, therefore, when the road gradient varies suddenly, it can correct the illumination direction of the lamp 6." E.g., page 11, lines 12 to 16 , "The correction of the illumination direction of the lamp 6 in Step S5 is carried out by the drive device 5 based on the control signal transmitted from the control device 4 and, as a method for executing such correction, there are available two methods as follows: 1) a method for inclining the entire lamp, and, 2) a method for moving the component (such as a lens, a reflector, a shade or the like) of the optical system of the lamp."
Limitation of 034 Patent Proposed Claim 2	U.S. Patent No. $6.193,398$ (OKinchi et alt)	GB 2300774 (Takahashil)
2. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein at least one of said two or more sensors generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a	E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be

351

Limitation of 034 Patent Proposed Claim 4	US. Patent No. 6.193 398 (Okuchi ct ali)	GB 2309774 T Takahashil
4. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."

Limitation of 034 Patent Proposed Claim 4	U.S. Patent No. 6.193 .398 (Okuchi et ail)	GB 2309774 (Takahashi)
	FIG.	
limitation of 034 Patent Proposed Claim 5	U.S. Patent No. $6.193,398$ Ohichi et al.	CB 2309774 (Takahashil
5. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."

\ddagger		

| Limitation of 034 Patent Proposed Claim 6. |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Clain 6	U.S. Patent No. $6.193,398$ (Okuchi et ali)	GB 2309714 (Takahashit
	Fig.	vehicle."
Limitation of 034 Patent Proposed Claimg	U.S. Patent No, 6.193,398 (Okichi et al)	GB 2309774 (Takahashil
9. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 355.	See claim 6 claim chart, above at page 355.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."

Limitation of 034 Patent Proposed Claim9	U.S. Patent No. 6.193 .398 (Okuchi ct al.)	GB 2309774 (Takahashil
	wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fic.	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."

Limitation of 034 Patent Proposed Claim 10	U.S. Patent No. 6.193 .398 (Okuchi et ali)	GR2309774 Takahashil
10. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 355.	See claim 6 claim chart, above at page 355.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."

IImitation of 034 Patent Proposed Clain 10	U.S. Patent No. 6.193 ,398 (Okuchi et ali)	GB 2309774 (Takahashi)
	FIG.	
limitation of 034 Patent Proposed Claim 11	U.S. Patent No. 6,193,398 Okuchiet ilit	GB2 309.774 Trakhashit
11. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 355.	See claim 6 claim chart, above at page 355.
wherein said first sensor is physically separate from said second sensor.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	See, e.g., Fig. 1, ref. 2, 3 (Separate detection devices). See also 5:25-27 ("an illumination direction control device 1 is composed of vehicle posture detection device 2 , vehicle running condition detection device 3 , control device 4, drive device $5 \ldots$, and lamp 6.")

.

Limitation of 034 Patent Proposed Claim 12	U.S. Patent No. 6.1933998 (Okuchi ct ail)	GB 2309174 (Takahashi)
12. The automatic directional control system defined in claim 1 ,	See claim 6 claim chart, above at page 345.	See claim 6 claim chart, above at page 345.
wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, or a rate of change of suspension height of the vehicle.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F1G. 7	E.g., page 7 , lines 29 to 34 , to page 8 , line 21 "In particular, Fig. 3 shows schematically the amount of variations in the output level V when the vehicle runs first along an uphill slope and thereafter runs along a road having a small gradient. In this case, when the vehicle runs over the uphill slope the output level V falls down suddenly." E.g., page 8, lines 19 to 25 , "These figures show clearly that the magnitude of the amount of variations in the road gradients is reflected on the amount of variations in the outputs of the height sensor when the vehicle runs from the road having a small gradient to the road having a large gradient or when the vehicle runs from the road having a large gradient to the road having a small gradient."
İimitation of 034 Patent Proposed C Caim 13	U. S. Patent No. 6,193,398 (Okichi et al)	GE 2300774 (Takahashi)
13. The automatic directional control system	See claim 12 claim chart, above at page 361.	See claim 12 claim chart, above at page 361.

limitation of 034 Patent Proposed laim is			
defined in claim 12,			
wherein at least one of said two or more sensors generate a signal that is representative of the rate of change of road speed of the vehicle.	E.g., col. 6, lines 6 to 14 , "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: 516.7		

Limitation of 034 Patent Proposed Claim is	U.S. Patent No. $6.193,398$ (Okuchir et al.)	cB 2309774 (Takahashi)
15. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 361.	See claim 12 claim chart, above at page 361.

Limitation of 034 Patent Proposed Clain is	U. S. Patent No. 6.193,398 (Okuchi et ali)	GB 2309774 (Takahashi)
wherein at least one of said two or more sensors generates a signal that is representative of the rate of change of pitch of the vehicle.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16. 7	

1 limitation of 034 Patent Proposed Claim 16	U.S. Patent No. $6.193,398$ (Okuchi et al.)	GB 2309714 (Iakahashi)
16. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 361.	See claim 12 claim chart, above at page 361.
wherein at least one of said two or more sensors	E.g., col. 6, lines 6 to 14, "On the other hand,	E.g., page 7, lines 29 to 34, to page 8, line 21 "In

Limitation ot 034 Patent Propused Claim lo		
generates a signal that is representative of the rate of change of suspension height of the vehicle.	when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16. 7	particular, Fig. 3 shows schematically the amount of variations in the output level V when the vehicle runs first along an uphill slope and thereafter runs along a road having a small gradient. In this case, when the vehicle runs over the uphill slope the output level V falls down suddenly." E.g., page 8, lines 19 to 25 , "These figures show clearly that the magnitude of the amount of variations in the road gradients is reflected on the amount of variations in the outputs of the height sensor when the vehicle runs from the road having a small gradient to the road having a large gradient or when the vehicle runs from the road having a large gradient to the road having a small gradient."

Limitation of 034 Patent Proposed Claim 17	U.S. Fatent No. 6,193,398 (Okucht et al)	GB 2309774 (Takahashil)
17. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system is configured to include at least two actuators.	E.g., col. 5, lines 16 to 20 , "Output signals from the ECU 20 are supplied to actuators 35 R and 35 L	E.g., page 16, line 31 to page 17, line 1 "A rudder resistance network 18 , which corresponds to the

Imitation of 034 Patent Proposed Clain 17	U.S. Patent No. $6.193,398$ (Okuchi ct al$)$	GB 2309714 Takahashi)
	of right and left headlights 30R and 30L of the vehicle, thereby adjusting the optical axis direction of the right and left headlights 30R and 30L as will be described hereinlater."	above-mentioned drive control device 5a, is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19^{\prime} which are disposed downstream thereof."
Limitation of 034 Patent Proposed Clain is.	US. Patent No. 6.193399 (OHuchi et al)	GB 23007744 Thakahashil
18. The automatic directional control system defined in claim 17 ,	See claim 17 claim chart, above at page 364.	See claim 17 claim chart, above at page 364.
wherein the at least two actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight $30 \mathrm{~L}(30 \mathrm{R})$ includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35 R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow. The movable member 34 is driven in the back and forth directions by the actuator 35L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be described hereinlater, thereby adjusting the optical axis direction of the headlight 30L (30R). The optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$ is	E.g., page 11, lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5 ."

1 Imitation of 034 Patent Proposed Claim 18	U. S. Patent No. 6.193 .398 (Okuchi et alt	GB 2309774 (Takahashi)
	initially set on the assumption that one driver is on the vehicle."	
Iimitation of 034 Patent Proposed Claim 20	U. S. Patent No. 6.193 3,398 (Okuchi ct ali)	GB 2309774 (akahashi)
20. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the at least one actuator includes an electronically controlled mechanical actuator.	E.g., col. 5 , lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24 , an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., col. 5, lines 24 to 33, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow." E.g., Fig. 1,	E.g., page 16, line 31 to page 17 , line 1 "A rudder resistance network 18 , which corresponds to the above-mentioned drive control device 5 a , is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and $19{ }^{\prime}$ which are disposed downstream thereof." E.g., page 11 , line 32 to page 12 , line 3 "As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see Japanese Patent Publication No. Hei. 63-166672)."

Limitation of 034 Patent Proposed Claim 20	U.S. Patent No. $6.193,398$ (Okuchi ct ail	GB 2309774 T akahashit:
	FIG. 1	

Limitation of 034 Patent Proposed Clain 21	U.S. Patent No, 6,193,398 (Okichi et ali)	GB 2309774 (Takahashi)
21. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the at least one actuator includes a step motor.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow.	E.g., page 18 , lines 5 to 8 "Besides this, according to the invention, the lamp or the component thereof can be driven or controlled by use of a stepping motor to thereby correct the illumination direction of the lamp."

Linitation of 034 Patent Proposed Clain 22	U.S. Patent No. 6.193398 (OMuchi et al)	G8 2309774 (Takahashil
22. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the at least one actuator includes a servo motor.	E.g., col. 5 , lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24 , an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., col. 5, lines 24 to 33, "As shown in FIG. 2, the headlight 30 L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35 R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow.' E.g., Fig. 1,	E.g., page 16 , line 31 to page 17 , line 1 "A rudder resistance network 18 , which corresponds to the above-mentioned drive control device 5 a, is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19 ' which are disposed downstream thereof." E.g., page 11, line 32 to page 12 , line 3 "As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see Japanese Patent Publication No. Hei. 63-166672)."

Limitation of 034 Patent Proposed Claim 22	U.S. Patent No. 6.193 398 (Okuchi ct all	GB 2300774 (Takahashil
	FIG.	
1 imitation of 034 Patent Proposed Claim 24	U.S. Patent No. 6.193 398 (ORuchi et al)	GB 2309774 (Takahashi)
24. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator $35 \mathrm{~L}(35 \mathrm{R})$ such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow.	E.g., page 11, lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably,

Limitation of 034 Patent Proposed Clain 24	U.S. Patent No. 6.193 .398 (Okuchi et alt	GB 2309714 (Takahashi)
	The movable member 34 is driven in the back and forth directions by the actuator 35 L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be described hereinlater, thereby adjusting the optical axis direction of the headlight 30 L (30R). The optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$ is initially set on the assumption that one driver is on the vehicle."	and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5 ."
Limitation of 034 Patent Proposed Clain 25	U.S. Patent No. 6, 193,398 (Okuchis ali)	G82 309774 (Takahashi)
25. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted up and down relative to a horizontal reference position.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator $35 \mathrm{~L}(35 \mathrm{R})$ such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow. The movable member 34 is driven in the back and forth directions by the actuator 35L (35R) so that the reflector 32 is vertically inclined about the end	E.g., page 11, lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally

Limitation of 034 Patent Proposed Claim 25	U.S. Patent No. $6.193,398$ (Okuchi ct ail)	GB 2309774 (Takahashi)
	of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be described hereinlater, thereby adjusting the optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$. The optical axis direction of the headlight 30L (30R) is initially set on the assumption that one driver is on the vehicle."	with the lamp 6 is rotated by the drive device 5 ."
Limitation of 034 Patent Proposed Claim 28	U.S. Patent No. $6.193,398$ (Okreht et al.)	GB 2309774 (Takahashil)
28. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system is configured such that the controller includes a microprocessor.	E.g., col. 5, lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B / U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., Fig. 1,	E.g., page 16, lines 1 to 4 "When a turn-on switch 12 for the lamp 6 is put into operation, a supply voltage from a constant voltage supply circuit 13 and a reset signal from a reset circuit 14 are supplied to the microcomputer 10." See also Fig. 9, ref. 10.

371

373

Limitation of 034 Patent Proposed Claim 33	U.S. Patent No. 6.193 .398 (Okuchi et al.)	Gs 2309774 (Takahashi)
33. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system further includes memory.	E.g., col. 5 , lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., Fig. 1, FIG.	E.g., page 16, lines 5 to 9 "Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control programs and data values therein) [sic] and an oscillator 16 used to generate a clock signal are additionally attached to the microcomputer 10 ." See also Fig. 9, ref. 15. Fig. 9

Limitation of 034 Patent Proposed Claim 34	U.S. Patent No. 6, 193,398 (Okuchi et ail)	GB 2309774 (Takahashi)
34. The automatic directional control system defined in claim 33 ,	See claim 33 claim chart, above at page 374.	See claim 33 claim chart, above at page 374.
wherein the memory includes non-volatile memory.		E.g., page 16, lines 5 to 9 "Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control programs and data values therein) [sic] and an oscillator 16 used to generate a clock signal are additionally attached to the microcomputer $10 . "$ See also Fig. 9, ref. 15.

375

Page 477 of 1228

Limitation of 034 Patent Proposed Claim 35	U.S. Patent No. 6, 193,398 (Okuchi et ail.	GB 2309174 (Takahashit
the headlight.	reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow. The movable member 34 is driven in the back and forth directions by the actuator 35 L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be described hereinlater, thereby adjusting the optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$. The optical axis direction of the headlight 30L (30R) is initially set on the assumption that one driver is on the vehicle."	
Limitation of 034 Patent Proposed Claim 37	U. P. Patent No. 6.193.398 (Okuchit ali)	CB 2309774 (Takahashi)
37. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used

377

Limitation of 034 Patent Proposed Claim 37	U.S. Patent No. 6.193 .398 (Okuchi et al.)	GB 2309774 (Takahashit
	rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

Limitation of 034 Patent Proposed Claim 37	U.S. Patent No. 6.193 .398 Okuchi et all	CB2 309774 Takahashil
	FIG.	
Limitation of 034 Patent Proposed Claim 38	U.S. Patent No. 6.193 .398 (Okichit in	CB 2309774 (Takhashil
38. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such

U.S. Patent No. 6.193.398 (Okiachict ai.)			

Iimitation of 034 Patent Proposed Claim 39	U.S. Pateni No. 6.193 .398 (Okuchi ct al$)$	GB 2309774 (Takahashi)
39. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.	E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ $[\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding."	
1 Imitation of 034 Patent Proposed Claim 40	US. Patent No. 6.193398 (Okuchit al)	G8 2300774 (Takahashi)
40. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.	E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong	

Iimitation of 034 Patent Proposed Clain 40	U.S. Patent No. $6.193,398$ (Okuchi ct al$)$	GB 2309714 Takahashi)
	filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding."	
Limitation of 034 Patent Proposed Claim 41	US. Patent No. 6.193399 (Okuchi et al)	GB 23007744 Thakahashil
41. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ $[\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding."	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations

Linitation of 034 Patent Proposed Claim 41	U.S. Patent No. 6, 193,398 (0kuchi et al.)	GR 2309774 (Takahashil
		in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."

Limitation of 034 Patent Proposed Clain 42	U.S. Patent No. 6,193,398 (Ohuchi et al.)	GB 2300774 (Takahashi)
42. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein said sensed conditions include three or more of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be

Limitation of 034 Patent Proposed Clain 42	U.S. Patent No. $6.193,398$ (Oknchi ct ai.)	GR 2309774 (Takahashi)
	displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fic.	used to detect the running conditions of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

Limitation of 034 Patent Proposed Clain 44	U.S. Patent No. 6.193 .398 (Okuchi et ali)	GB2 300174 (Takahashi)
44. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., col. 6, lines 29 to 38 , "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ $[\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7:	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold

Limitation of 034 Patent Proposed Clain 44	U.S. Patent No. $6.193,398$ (Okuchi et ali)	GB 2309714 Takahashil
	F16. 7	value, the illumination direction of the lamp 6 may be corrected."
Limilation of 034 Patent Proposed Claim 45	US. Pateil No. $6,193,398$ (Okichi it all)	GB 2309774 (Takahashi)
45. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 345.	See claim 1 claim chart, above at page 345.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} /$ dt obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2 ." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the

Limitation of 034 Patent Proposed Claim 45.	U.S. Patent No. 6.1933988 (Okuchi et all	GB 2309774 (Takahashi)
	(such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ $[\mathrm{m} / \mathrm{s} 2])$, the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7: $F 16.7$	lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."

1 linitation of 034 Patent Proposed Claim 1	U.S. Patent No. $6,193,398$ (Okichi it al)	U. S. Patent No. 5, 182,460 (lussman)
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor."	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, line 58 to col. 5, line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value

Limitation of 034 Patent Proposed Claim 1	U.S. Patent No. 6.193 .398 (Okuchi ct alit	U.S. Patent No. 5.182 .460 (lussman)
	wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fig.	former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45, "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
a controller that is responsive to said two or more sensor signals for generating at least one output signal	E.g., col. 6, lines 6 to 14 , "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to	E.g., col. 3, lines 30 to 39, "The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R."

Limitation of 034 Patent Proposed Claim 1	US. Patent No. 6. 193.398 (Okuchi ct al	US Patent No. 5.182 .460 Ihussman)
	the change in the pitch angle." E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ $[\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7: 16.7	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."
only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the	E.g., col. 6, line 10 to 34 , "In this connection, it is beneficial that upon the presence of a difference between the second, filtered, nominal-value signal to the third, filtered, nominal-value signal and

$\underset{\sim}{8}$

Limitation of 034 Patent Proposed Claim 1	U.S. Patent No. 6.193 .398 (Okuchi et al)	US.S Patent No. 5.182 .460 (Hussman)
continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7:	upon termination of a difference is again switched from the third, filtered, nominal-value signal to the first, filtered, nominal-value signal because in this manner, in an uncomplicated and cost effective manner, upon the presence of an inclination change of the motor vehicle body which is not attributable to a change in loading or to road surface unevenness, the regulation of the illumination range of the motor vehicle, in dependence from the third, long, filter time constant results, whereby the third, filtered, nominal-value signal is independent, or substantially independent, from the disturbing, or distorting, short time inclination changes so that after inclination changes of the motor-vehicle body which, for example, are caused by driving about a curve, false adjustments of the illumination range are not caused which can lead to the blinding of oncoming traffic or to losses in illumination range, which eliminates a danger during operation of a motor vehicle."

Limitation of 034 Patent Proposed Claim 1	US. Patent No. 6.193398 (Okachi ct ali)	US Patent No. S. 182.4600 (Hussman)
	Fig. 7	
said at least one actuator being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.	E.g., col. 5, lines 16 to 20, "Output signals from the ECU 20 are supplied to actuators 35 R and 35 L of right and left headlights 30 R and 30 L of the vehicle, thereby adjusting the optical axis direction of the right and left headlights 30 R and 30 L as will be described hereinlater."	E.g., col. 3, lines 16 to 18 , "The regulator R regulates the position of adjusting elements, which are shown here in block form and which change the positions of headlights."
Limitation of 034 Patent Proposed Claim 2	U.S. Patent No. $6,193.398$ (Okichit et alt	
2. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein at least one of said two or more sensors generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided between the rear axle	E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."

393

Limitation of 034 Patent Proposed Clain 4	U.S. Patent No. 6.193 .398 (Okuchi et al)	US. Patent No. 5 i 182.460 (Ilussman)
4. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."

Limitation of 034 Patent Proposed Claim 4	U.S. Patent No. 6.193 .398 (Okuchi ct alt	US. Patent No. 5.182 .460 (liussman)
	FIG.	
1 limitation of 034 Patent Proposed Clains	U.S. Patent No. 6.193 .398 (Onuchi et al.)	US. Patent No. $5.182,460$ (Hissman)
5. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to

Limitation of 034 Patent Proposed Claim 5	U.S. Patent No. 6.193 .398 (Okuchi et ali)	US. Patent No. S. 182.460 (Hussman)
	wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fic.	a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."

Limitation of 034 Patent Proposed Claim 6	U.S. Patent No. 6, 193,398 (Okuchi et al.)	U.S. Patent No. 5.182 .460 (llussman)
6. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein said two or more sensors include a first sensor and a second sensor.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only

Limitation of 034 Patent Proposed Claim 6	US. Patent No. 6.193 398 (Okuchi ct al)	US. Patent No. 5.182 .460 (Iussman)
	FIG. 1	coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
Limitation of 034 Patent Proposed Claim	U.S. Patent No. 6.193 398 (Ohuchit al.)	
9. The automatic directional control system defined in claim 6,	See claim 6 claim chart, above at page 397.	See claim 6 claim chart, above at page 397.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to

398

Limitation of 034 Patent Proposed Claim9	US. Patent No. $6.193,398$ (Okuchi et alt	US. Patent No. Si. 182.4600 (lius sman)
	wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fic.	a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."

$\stackrel{\rightharpoonup}{2}$

Linitation of 034 Patent Proposed Claim 10	U.S. Patent No. 6.193 .398 (Okachi et ali)	US. Patent No. S. 182.460 (Hussman)
10. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 397.	See claim 6 claim chart, above at page 397.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only

Limitation of 034 Patent Proposed Clain 10	U. S. Patent No. 6.193 .398 (Okuchi et ai.)	US. Patent No. Si 182.4600 (liusman)
	FIG.	coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."

limitation of 034 Patent Proposed Claim 11	U.S. Patent No. 6.193 398 (Okichi et al)	US. Patent No. 5, 182,460 (Ilussman)
11. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 397.	See claim 6 claim chart, above at page 397.
wherein said first sensor is physically separate from said second sensor.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front	

402

linitation of 034 Patent Proposed Clain 12	U.S. Patent No. 6.193 .398 (Okachi et ali)	U.S. Patent No. 5.182 .460 (Hussman)
12. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, or a rate of change of suspension height of the vehicle.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16. 7	E.g., col. 5, lines 34 to 40 , "So that also such inclination changes of the motor-vehicle body which are not attributable to acceleration changes will be recognized and false adjustments during regulation of the illumination range because of such inclination changes will be avoided, the third filter F3 is only placed in connection with the regulator when no acceleration of the motor vehicle is present."
I initation of 034 Patent Proposed Clain 13	U. S. Patent No. 6.193 .398 (Okweht et al)	1.5. Patent No, 5, 182,460 (11ussman)
13. The automatic directional control system	See claim 12 claim chart, above at page 403.	See claim 12 claim chart, above at page 403.

403

Limitation of 034 Patent Proposed Clain 13	U.S. Patent No. 6.193 .398 (Okuchi ct alit	US. Patent No. 5.182 .460 (Ilissman)
defined in claim 12,		
wherein at least one of said two or more sensors generate a signal that is representative of the rate of change of road speed of the vehicle.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16.7	E.g., col. 5, lines 34 to 40, "So that also such inclination changes of the motor-vehicle body which are not attributable to acceleration changes will be recognized and false adjustments during regulation of the illumination range because of such inclination changes will be avoided, the third filter F3 is only placed in connection with the regulator when no acceleration of the motor vehicle is present."
Limitation of 034 Patent Proposed Claim 15	US. Patent No. 6.193398 (Okuchi et alit.ty	U. P. Patent No. $5,182.460$ (Hussman)
15. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 403.	See claim 12 claim chart, above at page 403.

Limitation of 034 Patent Proposed Claim is	U.S. Patemi No. 6.193 398 (Okuchi et al.)	US. Patent No. 5.182 .460 Ilissman)
wherein at least one of said two or more sensors generates a signal that is representative of the rate of change of pitch of the vehicle.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F16. 7	

$1 \mathrm{lmitation} \mathrm{of} \mathrm{D34} \mathrm{Patent} \mathrm{Proposed} \mathrm{Claim} 16$	U.S. Patent No. $6.193,398$ (Okuchi et al.)	1.S. Paten No. 5.182 .460 (llusman)
16. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 403.	See claim 12 claim chart, above at page 403.
wherein at least one of said two or more sensors	E.g., col. 6, lines 6 to 14, "On the other hand,	

IImitation of 034 Patent Proposed Claim 16	U.S. Patent No. $6.193,398$ (Oknchi et al.)	U. S. Patent No. S. 182.460 (Hussman)
generates a signal that is representative of the rate of change of suspension height of the vehicle.	when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., Fig. 7: F1G. 7	
Limitation of 034 Patent Proposed Claim 17	U.S. Patent No. 6.193 .398 (Okichit et al.)	IV. Patent Mo. 5, 182,460 (Hussman)
17. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein the automatic directional control system is configured to include at least two actuators.	E.g., col. 5, lines 16 to 20, "Output signals from the ECU 20 are supplied to actuators 35 R and 35 L	

Limitation of 034 Patent Proposed Claim 17	U.S. Patent No. 6.193 .398 (Okuchi et alt	US. Patent No. S. 182.460 (lussman)
	of right and left headlights 30R and 30L of the vehicle, thereby adjusting the optical axis direction of the right and left headlights 30R and 30L as will be described hereinlater."	

Limitation of 034 Patent Proposed Claim is	U.S. Patent No. 6. 193,398 (0kuchi et al.)	US. Patent No. 5.182 .460 (Hussman)
18. The automatic directional control system defined in claim 17,	See claim 17 claim chart, above at page 406.	See claim 17 claim chart, above at page 406.
wherein the at least two actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator $35 \mathrm{~L}(35 \mathrm{R})$ such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow. The movable member 34 is driven in the back and forth directions by the actuator 35 L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be described hereinlater, thereby adjusting the optical axis direction of the headlight 30L (30R). The optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$ is initially set on the assumption that one driver is on	

Limithion of 034 Patent Propused Claim is		
	the vehicle."	
20. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein the at least one actuator includes an electronically controlled mechanical actuator.	E.g., col. 5, lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., col. 5, lines 24 to 33, "As shown in FIG. 2, the headlight $30 \mathrm{~L}(30 \mathrm{R})$ includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32, and the actuator $35 \mathrm{~L}(35 \mathrm{R})$ such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow." E.g., Fig. 1,	

$\stackrel{\infty}{\gamma}$

Vimitation of 034 Patent Proposed Claimi 22	U.S. Patent No. $6,193,598$ (Okichi et al.)	IS. Patent No. 5, 182,46i (Hissman)
22. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein the at least one actuator includes a servo motor.	E.g., col. 5 , lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24 , an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., col. 5, lines 24 to 33, "As shown in FIG. 2, the headlight 30 L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow." E.g., Fig. 1,	

Limitation of 034 Patent Proposed Claim 22	U.S. Patent No. 6.193 .398 (Okuchi ct ail)	U. S. Patent No. S. 182.460 (Hussman)
	FIG.	

limitation of 034 Patent Proposed Clain 25	U.S. Patent No. 6.193,398 (Okuchi et ali)	UiS. Patent No. $5,182,460$ (Hussman)
25. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted up and down relative to a horizontal reference position.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight $30 \mathrm{~L}(30 \mathrm{R})$ includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow.	

411

Limitation of 034 Patent Proposed Clains 25	U.S. Patent No. 6.193398 (Okuchi et al.)	US. Patent No. 5.182 .460 (Hussman)
	The movable member 34 is driven in the back and forth directions by the actuator 35 L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be described hereinlater, thereby adjusting the optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$. The optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$ is initially set on the assumption that one driver is on the vehicle."	

Limitation of 034 Patent Proposed Claim 28	U.S. Patent No. $6,193,398$ (Okuchi et all)	1.S. Paten No. 5.182 .460 Illusman)
28. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein the automatic directional control system is configured such that the controller includes a microprocessor.	E.g., col. 5, lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B / U (back-up) RAM 24 , an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., Fig. 1,	

413

Limitation of 034 Patent Proposed Claim 29	U.S. Patent No. 6.193,398 (Okuchi et ail)	US. Patent No. S. 182.4600 Ilissman)
	Fle.	

Limitation of 034 Patent Proposed Claim 33	U.S. Patent No, 6, 193,398 (Okichit ali)	US. Patent No. 5, 182,460 (llussman)
33. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein the automatic directional control system further includes memory.	E.g., col. 5 , lines 11 to 15 , "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." E.g., Fig. 1,	

414

Limitation of 034 Patent Proposed Claim 33	U.S. Patent No. 6.193 .398 (Okuchi ct ail)	U. S. Patent No. S. 182.460 (Hussman)
	FIG.	

Limitation of 034 Patent Proposed Claim 35	U.S. Patent No, 6,193,398 (Okichi et ali)	US. Patent No. 5, 182.460 (llussman)
35. The automatic directional control system defined in claim 33,	See claim 33 claim chart, above at page 414.	See claim 33 claim chart, above at page 414.
wherein the memory is configured to store a predetermined reference position associated with the headlight.	E.g., col. 5, lines 24 to 40, "As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31, a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow.	

Limitation of 034 Patent Proposed Claim 35	US. Patent No. 6.193 .398 (Okuchi ct al)	US. Patent No. 5.182 .4600 Ihussman)
	The movable member 34 is driven in the back and forth directions by the actuator 35 L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) Θ a which will be described hereinlater, thereby adjusting the optical axis direction of the headlight 30 L (30R). The optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$ is initially set on the assumption that one driver is on the vehicle."	
Limitation of 034 Patent Proposed Claim 37	U.S. Patent No. $6,193,398$ (Okuchit l al)	1.S. Paten No. 5.182 .460 (llussman)
37. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5, line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor

Limitation of 034 Patent Proposed Claim 37	U.S. Patent No. 6.193398 Okachi et ail)	US.S Patent No. 5.182 .460 (Hussman)
	(displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1: Fle.	sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."

Limitation of 2034 Patent Proposed Cliam 38	U.S. Patent No. $6.193,398$ (Okichi et al)	U. . Patent No. 5, 182,460 (lissman)
38. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.

417

Linitation of 034 Patent Proposed Claim 38	U.S. Patent No. $6.193,398$ (Okachi et ali)	US.S. Patent No. 5.182 .460 (Hussman)
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.	E.g., col. 4, line 58 to col. 5 , line 8, "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." E.g., Fig. 1:	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."

Limitation of 034 Patent Proposed Claim 38	U.S. Patent No. 6.193 .398 (Okuchi ct ail)	U. S. Patent No. S. 182.460 (Hussman)
	FIG.	

Limitation of 034 Patent Proposed Claim 39	U.S. Patent No, 6, 193,398 (Okichit ali)	US. Patent No. 5, 182.460 (llussman)
39. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.	E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2$]), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of	

Limitation of 034 Patent Proposed Claim 39	US. Patent No. 61933998 (Oknchi ct ail)	US. Patent No. 5.182 .460 (llussman)
	driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding."	
Limitation of 034 Patent Proposed Clain 40	U.S. Patent No. 6.193,398 (Okuchi et al.)	US. Patent No. 5.182 .460 (lussman).
40. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.	E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding."	
1 lmitation of 034 Patent Proposed Claim 41	U. S. Patent No. $6.193,398$ (Oknchit al.)	U. S. Patent No. 5.182 .460 Ilussman)
41. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.

Limitation of 034 Patent Proposed Clain 41	US. Patent No. 6.193 .398 (Okuchi ct al)	US. Patent No. 5.182 .460 (llussman)
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ $[\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding."	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."
Limitation of 034 Patent Proposed Clain 42	U.S. Patent No. 6.193398 (Okuchi et al)	US. Pateni No. $5.182,460$ (Ilussman)
42. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein said sensed conditions include three or more of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., col. 4, line 58 to col. 5 , line 8 , "Referring first to Fig. 1, a front (front-wheel) height sensor 11 F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation."

Iinitation of 034 Patent Proposed Clain 44	U.S. Patent No. 6.193 .398 (Okuchi et all)	U.S. Patent No. 5.182 .460 (Ilusman)
44. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., col. 6, lines 29 to 38 , "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ $[\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." E.g., Fig. 7:	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

Limitation of 034 Patent Proposed Clain 44	U.S. Patent No. 6.193,398 (Okuchi et ail)	U. S Patent No. 5.182 .460 (Hassman).
	Fic. 7	
IImitation of 034 Patent Proposed Clamm 45	U.S. Patent No. $6,193,398$ (Okichi il ali)	1. . Patent No. 5, 182,460 (llissman)
45. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 388.	See claim 1 claim chart, above at page 388.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, lines 6 to 14, "On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." E.g., col. 6, lines 29 to 38, "When the vehicle speed V is equal to or higher than a few km / h	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

Proposed Claims 1 to 13, 20, 22, 24 to 26, 28, 29, 37, 38, 41, 42- 45 Are Unpatentable Over the Combination of Gotoh and Uchida Under 35 U.S.C. § 103(a)

Limitation of 034 Patent Proposed Claim 1	U. S. Patent No. 5, 909,949 (Gotoh)	GB 2309773 A (luchida)
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "A head lamp device for a vehicle capable of changing a lighting region in front of the vehicle in right and left directions, in which change of the lighting region is suppressed so as not to give the driver a sense of incongruity when a steering wheel is operated in one direction and then rapidly in the other as in case of countersteering."	E.g., page 1, lines 3 to 7 , "The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp so that the illumination direction can be always kept in a predetermined direction."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture

| Limitation of Past Patent Proposed Claim |
| :--- | :--- | :--- |

| Limitation of 034 Patent Proposed Claim |
| :--- | :--- | :--- | :--- |

Limitation of 034 Patent Proposed Claín 1	U.S. Patent No. 5 , 909,949 (Cotoh)	
		the vehicle."
only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the	E.g., page 4 , lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

Limitation of 034 Patent Proposed Claim 1	U. S. Patent No. 5 ,909,949 (Cotoh)	GB 2309774 A (UChida)
	yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., Col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle θ, even if the steering wheel is operated rapidly for the counter-steering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	
said at least one actuator being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.		E.g., page 16, line 28 to page 17 , line 6 "Also, if it is judged by the acceleration or deceleration running condition judging device 3 b that the vehicle is not in the acceleration or deceleration running condition, then the illumination angle of the lamp 5 can be controlled by one of the following methods when the drive control device 4a receives an instruction from the acceleration or deceleration running condition judging device 3 b : 1) a method for fixing the illumination angle; 2) a method for limiting the range of the illumination angle or forbidding part of the range of the illumination angle; and, 3) a method for changing the response speed or control speed of an actuator." E.g., page 7, lines 4 to 9 , "In particular, the correction calculating device 3 a is structured in the

Limitation of 034 Patent Proposed Claim 1	U.S. Patent No. 5,909949 (Gotoh)	GB2309 773 A (Uchida)
		following manner: that is, in accordance with a detect signal from the vehicle posture detection device 2 , it transmits a control signal to the drive device 4 so that the illumination direction of the lamp 5 can be always kept in a given direction." See also 7:9-32. E.g., page 8, lines 1 to 9, "When the judging device $3 b$ judges that the vehicle is in an acceleration or deceleration running condition, in accordance with a control signal transmitted from the correction calculating device 3 a to the drive control device 4a, the acceleration or deceleration running condition judging device $3 b$ transmits to the drive control device 4a a signal which allows the illumination direction of the lamp 5 to be corrected in a predetermined direction."
Limitation of 0.34 Patent Proposed Clain 2	U.S. Patent No, 5,909,949 (Gotoh)	GR2309 773 (Uchida)
2. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein at least one of said two or more sensors generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using

Limitation of 034 Patent Proposed Claim 2	US. Patent No. $5,909,949$ (Cotoh)	GR 2309773 Uechilda)
	and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 触 3	the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."

Limitation of 034 Patent Proposed Claim 3	U.S. Patent No. 5,909949 (Cotoh)	GB 2309773 (Uchida)
3. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein at least one of said two or more sensors generates a signal that is representative of the steering angle of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3	

Limitation of 034 Patent Proposed Claim 3	U.S. Patent No. 5 , 909,949 (Gotoh)	GB 2300773 (Uehida)
	\&	
Limitation of 034 Patent Proposed Clain 4	U. S. Patent No. 5.909 .949 (Cotoh)	GB 2300773 (Uchila)
4. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.		E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is

Limitation of 034 Patent Proposed Claim 4	US. Patent No. 5 , 909 949 (Cotoh)	GB 2309773 (Uchilda)
		calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitation of 034 Patent Proposed Claim 5	US. Patent No. 5,909949 (Cotoh)	GB 2309773 (Uchida)
5. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.		E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used

Limitation of 034 Patent Proposed Claim 5	US. Patent No. 5.909949 (Gotoh)	GR2309 773 (Uchiday
		height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitation of 034 Patent Proposed Clain	U. S. Patent No. 5.909 .949 (Cotoh)	CB 2309773 (Uchida)
6. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein said two or more sensors include a first sensor and a second sensor.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device;

Limitation of 034 Patent Proposed Glamion	U.S. Paten No. 59009949 (eotoh)	
	vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 觔. 8	ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device $2 . "$ E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is

Limitation of 034 Patent Proposed Clain 6	U.S. Patent No. $5,909,949$ (Cotoh)	GB 2309773 (U chida)
		detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
Limitation of 034 Patent Proposed Claim 7	US.S. Patent No, 5,909,949 (Gotoh)	GB 2309773 (Uchida)
7. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 435.	See claim 6 claim chart, above at page 435.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 触 3	E.g., Page 9, lines 13 to 23 , "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle."

Linitation of 034 Patent Proposed Clain 8	U. S. Patent No. 5 , 909,949 (Cotoh)	GB2300 773 (Uchilda)
8. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 435.	See claim 6 claim chart, above at page 435.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω."	E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed

Limitation of 034 Patent Proposed Clain 8	U.S. Patent No, 5, 909,949 (Gotoh)	GB 2309773 U Uchilat
		to a certain degree."
Limitation of 034 Patent Proposed Claim 9	US. Patent No. $5,909,949$ (Gotoh)	GB 2300773 (Uchida)
9. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 435.	See claim 6 claim chart, above at page 435.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.		E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the

Limitation of 034 Patent Proposed Claim9	U.S. Patent No. $5,909,949$ (Gotoh)	
		inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
1 imitation of 034 Patent Proposed Claim 10	US Patent No, 5,909,949 (Gotoh)	Gs 2309773 (Uchida)
10. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 435.	See claim 6 claim chart, above at page 435.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.		E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the

Iimitation of 034 Patent Proposed Clain 11	US. Patemt No. 5 , 909,949 (Cotoh)	GB 2309773 (Uchida)
11. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 435.	See claim 6 claim chart, above at page 435.
wherein said first sensor is physically separate from said second sensor.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 \$0. 8	E.g., page 6 , line 30 to page 7 , line 3 , "In order for the vehicle posture detection device and the acceleration or deceleration running condition judging device to transmit signals to one another, they must be separate: "The outputs of the vehicle posture detection device 2 are transmitted to the correction calculating device 3a and acceleration or deceleration running condition judging device $3 b$ which cooperate together in forming the control device 3 , and these outputs are used as control signals to be applied to the drive device 4 and are then used as instructions for correcting the illumination of lamp 5." E.g., Fig. 1: FIG. 1

IImitation of 034 Patent Proposed Claim 12	U. S. Patent No, 5, 909,949 (Gotol)	GB 2309773 (Uchida)
12. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, or a rate of change of suspension height of the vehicle.		E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the

Limitation of 034 Patent Proposed Clain 12	U. S. Patent No. $5,909,949$ (Gotoh)	GB 2309713 (Uchida)
		running condition of the vehicle can be confirmed to a certain degree."
Vimitation of 034 Patent Proposed Claim 13	US. Patent No. 5, 909,949 (Cotoh)	G8 2309773 (Uechida)
13. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 443.	See claim 12 claim chart, above at page 443.
wherein at least one of said two or more sensors generate a signal that is representative of the rate of change of road speed of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ©."	E.g., Page 12 line 27 to page 13, line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof

1 limitation of 034 Patent Proposed Claim 13	U. S. Patent No. 5 , 909,949 (Cotoh)	GB 2309773 (Uchida)
		and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."
1 Imitation of 034 Patent Proposed Claim 20	US. Pateni No. $5,909,949$ (Gotoh)	GB2 309773 (Uchida)
20. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the at least one actuator includes an electronically controlled mechanical actuator.		E.g., page 19 , lines 6 to 22 "For example, when the actuator incorporates therein a DC (direct current) motor, a difference between the control target position (or angle) of the actuator and the current position (or angle) thereof is detected, and a pulse signal having a duty cycle corresponding to the detected position difference is supplied to the DC motor to thereby control the position of the actuator, as shown in Fig. 11, if the characteristic of the duty cycle DT with respect to the position difference $\delta \mathrm{xx}$ is changed from the state of a relatively faster response speed shown by a broken line 10 to the state of a slow response speed shown by a solid line 11 , with respect to the same position difference $\delta x x=\delta x x a$, the duty cycle $D T$ in the other running conditions of the vehicle than the acceleration or deceleration running condition

Limitation of 034 Patent Proposed Claim 20	U.S. Patent No. 5 , 909,949 (Cotoh)	GB 2309773 ((Chida)
		thereof is smaller than the duty cycle in the acceleration or deceleration running condition of the vehicle, so that the drive control on the lamp 5 by the actuator is slowed down."
Limitation of 034 Patent Proposed Claim 22	U. S. Patent No. 5, 909,949 (Gotoh)	GB2 300773 (Uehidat
22. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the at least one actuator includes a servo motor.		E.g., page 19, lines 6 to 22 "For example, when the actuator incorporates therein a DC (direct current) motor, a difference between the control target position (or angle) of the actuator and the current position (or angle) thereof is detected, and a pulse signal having a duty cycle corresponding to the detected position difference is supplied to the DC motor to thereby control the position of the actuator, as shown in Fig. 11, if the characteristic of the duty cycle DT with respect to the position difference $\delta \mathrm{xx}$ is changed from the state of a relatively faster response speed shown by a broken line 10 to the state of a slow response speed shown by a solid line 11 , with respect to the same position difference $\delta x x=\delta x x a$, the duty cycle DT in the other running conditions of the vehicle than the acceleration or deceleration running condition thereof is smaller than the duty cycle in the acceleration or deceleration running condition of the vehicle, so that the drive control on the lamp 5

446

Limitation of 034 Patent Proposed Claim 22	U.S. Patent No. $5,909,949$ (Cotoh)	
		by the actuator is slowed down."
Limitation of :134 Patent Proposed Claim 24	U. S. Patent No, 5, 909,949 (Gotoh)	6B 2309773 (Uchida)
24. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.	E.g., col. 4, lines 32 to 38 , "The vehicle 1 of the preferred embodiment has head lights 2 for lighting the space in front of the vehicle installed such that they are swingable in rightward and leftward horizontal directions. FIG. 1 is a view showing the vehicle 1 from above and in this figure, the right and left head lights 2,2 are swung rightward so as to cause the right forward regions to become lighting regions 3, 3."	E.g., page 16 , lines 6 to 15 "The simplest method for changing the illumination pattern of the lamp 5 in a vertical plane is a method which changes the illumination angle of the lamp 5 with respect to a horizontal plane by rotating the entire lamp 5 about the rotary shaft thereof. For example, the right and left side surfaces of the lamp 5 are supported in a freely rotatable manner and the rotary shaft of the lamp 5 is rotated directly by a drive source such as a motor or the like, or, there is available a drive mechanism in which a member fixed to the lamp 5 or formed integrally with the lamp 5 is rotated by the drive device 4."
Limitation of 034 Patent Proposed Claim 25	US. Patent No. 5,909,949 (Cotoh)	GE 2309773 (Uchilda)
25. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the automatic directional control system is configured such that the headlight is adjustably		E.g., page 16, lines 6 to 15 "The simplest method for changing the illumination pattern of the lamp 5

Limitation of 034 Patent Proposed Claim 25	U. S. Patent No. 5 S 909949 (Gotoh)	GB 2309773 (Ulchida)
mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted up and down relative to a horizontal reference position.		in a vertical plane is a method which changes the illumination angle of the lamp 5 with respect to a horizontal plane by rotating the entire lamp 5 about the rotary shaft thereof. For example, the right and left side surfaces of the lamp 5 are supported in a freely rotatable manner and the rotary shaft of the lamp 5 is rotated directly by a drive source such as a motor or the like, or, there is available a drive mechanism in which a member fixed to the lamp 5 or formed integrally with the lamp 5 is rotated by the drive device 4 ."
Limitation of 034 Patent Proposed Clain 26	U. S. Patent No. $5,909,949$ (Gotol)	GB 2309773 (Uchida)
26. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted left and right relative to a vertical reference position.	E.g., col. 4 , lines 32 to 38 , "The vehicle 1 of the preferred embodiment has head lights 2 for lighting the space in front of the vehicle installed such that they are swingable in rightward and leftward horizontal directions. FIG. 1 is a view showing the vehicle 1 from above and in this figure, the right and left head lights 2,2 are swung rightward so as to cause the right forward regions to become lighting regions 3,3 ."	

Limitation of 034 Patent Proposed Clain 28	U.S. Patent No. 5,909949 (Gotoh)	GB 2309773 (Uchilda)
28. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the automatic directional control system is configured such that the controller includes a microprocessor.	E.g., col. 4, lines 56 to 60, "Accordingly, the lamp unit 4 is swung together with the rotary shaft 5 through an engagement between the worm gear 7 and the worm wheel 6 under a driving of the motor 8. The motor 8 is controlled for its driving by a light distribution control ECU 10."	
Linitation of 034 Patent Proposed Claim 29	U. S. Patent No. 5.909 .949 (Cotoh)	GB2 309773 (4ehila)
29. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.	E.g., col. 4, lines 56 to 60 , "Accordingly, the lamp unit 4 is swung together with the rotary shaft 5 through an engagement between the worm gear 7 and the worm wheel 6 under a driving of the motor 8. The motor 8 is controlled for its driving by a light distribution control ECU 10."	
Linitation of 034 Patent Proposed Clain 37	U. S. Patent No. $5,909,949$ (Gotoh)	GB 2309773 (Uchida)
37. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the automatic directional control system is		E.g., Page 12 line 27 to page 13, line 15 "The

Linitation of 034 Patent Proposed Claim 37	U.S. Patent No. 5.909949 (Getoh)	GB 2309173 (Uchida)
configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.		remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Limitation of 034 Patent Proposed Clain 38	US.S Patent No. 5 , 909,949 (Cotoh)	GB 2309773 (Uechida)
38. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.		E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree."

Uimitation of 034 Patent Proposed Clain 41	U. S. Patent No. 5, 909,949 (Gotoh)	G8 2309773 (Uchida)
41. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations.	E.g., page 4, lines 16 to 27, "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

| Limitation of 034 Patent Proposed Claim 41. | Us. Patent No. 5,909 , 949 Gotoht |
| :--- | :--- | :--- |
| | However, while the steering angle φ is swinging
 rightward and leftward as described above, the
 yaw angular velocity ω is maintained at a certain
 angular velocity stably in general, and a a time
 somewhat before the vehicle passes through the
 curve completely, the yaw angular velocity ω
 comes to coincide with the stecring angle φ."
 E.g., Col. 7, lines 34 to 39, "Since the actual light
 distribution control is performed on the basis of
 the above-mentioned final lighting angle θ, even if
 the steering wheel is operated rapidly for the
 counter-steering and the like, change of the
 lighting region is suppressed pertinently and the
 driver is given no sense of incongruity." |

1 Imitation of 034 Patent Proposed Claim 42	U. S. Patent No. 5,909,949 (Gotoh)	GB 2309773 (Uchida)
42. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein said sensed conditions include three or	E.g., col. 4, lines 61 to 67, "Fig. 3 is a rough block	E.g., Page 9, lines 13 to 23, "At first, the judging

Limitationot O34 Patent Proposed Mlamman	US. Paten No. 5.90\% 94\% (eotoh)	
more of road speed, steering angle, pitch, and suspension height of the vehicle.	diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω."	method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device $2 . "$ E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle." E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the

Linitation of 034 Patent Proposed Clains 42	U.S. Patemt No. 5,909949 (Cotoh)	GB2309 773 (Uchida)
		detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree." E.g., page 15 , line 30 to page 16 , line 2 "As has been described above, according to the respective methods, it is possible to judge whether the vehicle is running in the acceleration condition or in the deceleration condition. Also, these methods can be applied in various manners, for example, the respective methods can be used individually, or some of them may be combined together for the enhanced accuracy of the judgment."

Limitation of M34 Patent Proposed Clain 43	U.S. Patent No. 5,900,949 (Cotoh)	68 2300773 (Uchida)
43. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.

Limitation of 034 Patent Proposed Clain 43	U.S. Pament No. 5 909949 (cotoh)	CB\% 309\%7\% Uchida)
wherein said sensed conditions include all four of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω."	E.g., Page 9, lines 13 to 23, "At first, the judging method in the acceleration or deceleration running condition judging device 3 b will be described by classifying it into the following four methods: i) a method using the vehicle speed detection device; ii) a method using the acceleration or deceleration instruction detection device 8 ; iii) a method using the engine revolution number detection device 9 ; and iv) a method using the vehicle posture detection device 2." E.g., Page 9, lines 24 to 28 "Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle." E.g., Page 12 line 27 to page 13 , line 15 "The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2 . Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection device such as a height sensor or the like. In the present method, based on the information that is obtained from the height

aitation of 034 Patent Proposed Chaim 43	U.S. Patent No. 5.909949 (Gotoh	173 Uehir
		detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so-called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree." E.g., page 15, line 30 to page, 16 , line 2 "As has been described above, according to the respective methods, it is possible to judge whether the vehicle is running in the acceleration condition or in the deceleration condition. Also, these methods can be applied in various manners, for example, the respective methods can be used individually, or some of them may be combined together for the enhanced accuracy of the judgment."

$1 \mathrm{lmitation} \mathrm{of} \mathrm{pa4} \mathrm{Patent} \mathrm{Proposed} \mathrm{Claim} 44$	U.S. Patent No. 5,909949 (cotoh)	CB 2309773 (uchida)
44. The automatic directional control system	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.

| Limitation of 034 Patent Proposed Claim 44 | US. Patent No.s.909.949 Cotoht |
| :--- | :--- | :--- |
| defined in claim 1, | |

Limitation of 034 Patent Proposed Clain 44	U.S. Patent No. 5 , 909,949 (Cotoh)	GB 2309773 (uchida)
	yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle 9 , even 35 if the steering wheel is operated rapidly for the countersteering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	
Limitation of 034 Patent Proposed Clain 45	U. S. Patent No. 5, 909,949 (Gotoh)	GB 2300773 (Uchida)
45. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 426.	See claim 1 claim chart, above at page 426.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle.	E.g., page 4, lines 16 to 27 "According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed

	In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle 9 , even 35 if the steering wheel is operated rapidly for the countersteering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle."

31. Proposed Claims 1 to 12, 14, 16 to 18, 20 to 22, 24 to 26, 28, 29, 33, 34, 37, 38, and 41 to 45 Are Unpatentable Over the Combination of Gotoh and Takahashi Under 35 U.S.C. § 103(a)

IIImitation of 0.34 Patent Proposed Claim 1	U. S. Patent No, 5, 909,949 (Gotoh)	GB 2300774 (Takahastil
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "A head lamp device for a vehicle capable of changing a lighting region in front of the vehicle in right and left directions, in which change of the lighting region is suppressed so as not to give the driver a sense of incongruity when a steering wheel is operated in one direction and then rapidly in the other as in case of countersteering."	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the

| Limitation of 034 Patent Proposed Claim |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Clain 1	U.S. Patell No. 5, 909,949 (Cotoh)	GB 2309774 (Takahashi)
		as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
a controller that is responsive to said two or more sensor signals for generating at least one output signal	E.g., Col. 4, lines 59 to 60 , "The motor 8 is controlled for its driving by a light distribution control ECU 10."	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running

| Limitation of 034 Patent Proposed Claim |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Claim	US. Patent No. 5 , 909.949 (Cotoh)	GB2 309774 (Takahashi)
	counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., Col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle θ, even if the steering wheel is operated rapidly for the counter-steering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."
said at least one actuator being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.		E.g., page 2, lines 14 to 17 "However, in the above-mentioned automatic adjustment device, since the lamp is driven with high frequency, an actuator used in a drive mechanism for driving the lamp is required to show high response property and high durability." E.g., page 6 , lines 26 to 32 "When the control device 4 receives the detect signal of the vehicle running condition detection device 3 and finds from this detect signal that the vehicle is standing still, the control device 4, in accordance with

Limitation of 034 Patent Proposed Clain 1	U.S. Patent No. $5,909,949$ (Gotoh)	GB 2309714 (Takahashi)
		information on the vehicle posture obtained from the vehicle posture detection device 2 , transmits to the drive signal 5 a control signal for correction of the illumination direction of the lamp 6." E.g., page 7, lines 12 to 17 "In view of this, the control device 4 is structured such that, based on the information from the vehicle posture detection device 2 , it can detect the amount of variations in the gradient of the road and, therefore, when the road gradient varies suddenly, it can correct the illumination direction of the lamp 6." E.g., page 11, lines 12 to 16 , "The correction of the illumination direction of the lamp 6 in Step S5 is carried out by the drive device 5 based on the control signal transmitted from the control device 4 and, as a method for executing such correction, there are available two methods as follows: 1) a method for inclining the entire lamp, and, 2) a method for moving the component (such as a lens, a reflector, a shade or the like) of the optical system of the lamp."
Limitation of 034 Patent Proposed Claimi	U. S. Patent No. $5.909,949$ (Cotoh)	GR 2300774 (Takhashit
2. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein at least one of said two or more sensors generates a signal that is representative of the road	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing	E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the

Limitation of 034 Patent Proposed Claim 2	U.S. Patent No. 5 ,909 949 (Cotoh)	GB 2309774 (Takahashi)
speed of the vehicle.	the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 EC. 3	running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."
Linitation of 034 Patent Proposed Claims	U.S. Patent No. 5,909949 (Cotoh)	GB2 309 T144 Takahashit
3. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein at least one of said two or more sensors generates a signal that is representative of the stecring angle of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle	

Limitation of 034 Patent Proposed Claim 3	U.S. Patent No. 5 , 909,949 (Cotoh)	GB 2309714 (Takahashi)
	speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 虎	

Limitation of 034 Patent Proposed Claim 4	U. S. Patent No. $5,909,949$ (Gotoh)	GB 2309774 (Takahashi)
4. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.		E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."

Limitation of 034 Patent Proposed Claim 5	U. S. Patent No. 5, 909,949 (Cotoh)	GB 2309774 Takahashil
5. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.		E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

Limitation of 034 Patent Proposed Clain 6	U.S. Patent No. 5,909 949 (Cotoh)	GB 2309174 (Takahashil
6. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein said two or more sensors include a first sensor and a second sensor.	E.g., col. 4 , lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 机 3	E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the

Limitation of 034 Patent Proposed Claim 6	U. S. Patent No. 5 , 909,949 (Cotoh)	GB 2309774 T akahashil
		vehicle."
Uinitation of 034 Patent Proposed Claim 7	U. S. Patent No. 5, 909,949 (Gotoh)	G8 2309774 (Takahashi)
7. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 470.	See claim 6 claim chart, above at page 470.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 析 3	E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."

Limitation of 034 Patent Proposed Clain 8	U.S. Patent No. 5 , 909,949 (Cotoh)	GB 2309774 (Takahashi)
8. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 470.	See claim 6 claim chart, above at page 470.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω."	E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."
Limitation of 034 Patent Proposed Claims	U.S. Patent No. 5,909,949 (Gotoh)	GB 2309774 (Takahashi)
9. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 470.	See claim 6 claim chart, above at page 470.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.		E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the

Limitation of 034 Patent Proposed Claim 9	U.S. Patent No. 5,909949 (Cotoh)	GB 2309774 (Takahashi)
		posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp."

Limitation of 034 Patent Proposed Clain 10	U.S. Patent No. 5 , 909 ,949 (Cotoh)	GB 2309774 (Takhashi)
10. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 470.	See claim 6 claim chart, above at page 470.

Limitation of 034 Patent Proposed Claim 10	U.S. Patent No. 5, 909,949 (Cotoh)	GB 2309774 (Takahashi)
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.		E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."

IImitation of 034 Patent Proposed Claim 11	U.S. Patent No. 5,909,949 (Cotoh)	GB 2309774 (Takahash)
11. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 470.	See claim 6 claim chart, above at page 470.
wherein said first sensor is physically separate	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough	See, e.g., Fig. 1, ref. 2, 3 (Separate detection

IImitation of 034 Patent Proposed Claim 11	US. Patent No. $5,909,949$ (Gotoh)	GR 2309774 (Takahashi)
from said second sensor.	block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3 解高	devices). See also 5:25-27 ("an illumination direction control device 1 is composed of vehicle posture detection device 2 , vehicle running condition detection device 3, control device 4, drive device $5 \ldots$, and lamp 6.") Fig. 1

Limitation of 034 Patent Proposed Claim 12	US. Patent No. $5,909,949$ (Gotoh)	GB 2309774 Tlakahashil
12. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, or		E.g., page 7 , lines 29 to 34 , to page 8 , line 21 "In particular, Fig. 3 shows schematically the amount of variations in the output level V when the vehicle runs first along an uphill slope and

Limitation of 034 Patent Proposed Claim 12	U.S. Patent No. 5.909 .949 (Gotoh)	GR 2309774 Takahashil
a rate of change of suspension height of the vehicle.		thereafter runs along a road having a small gradient. In this case, when the vehicle runs over the uphill slope the output level V falls down suddenly." E.g., page 8, lines 19 to 25 , "These figures show clearly that the magnitude of the amount of variations in the road gradients is reflected on the amount of variations in the outputs of the height sensor when the vehicle runs from the road having a small gradient to the road having a large gradient or when the vehicle runs from the road having a large gradient to the road having a small gradient."
Limitation of 034 Patent Proposed Chami 14	U. S. Patent No. $5,900,949$ (Gotoh)	G8 2300774 (Takahashil!
14. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 475.	See claim 12 claim chart, above at page 475.
wherein at least one of said two or more sensors generates a signal that is representative of the rate of change of steering angle of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ©."	E.g., page 7, lines 29 to 34 , to page 8 , line 21 "In particular, Fig. 3 shows schematically the amount of variations in the output level V when the vehicle runs first along an uphill slope and thereafter runs along a road having a small gradient. In this case, when the vehicle runs over the uphill slope the output level V falls down suddenly." E.g., page 8, lines 19 to 25 , "These figures show clearly that the magnitude of the amount of

Limitation of 034 Patent Proposed Claim 14	U. S. Patent No. $5,909,949$ (Cotoh)	GB 2309774 (Takahashi)
		variations in the road gradients is reflected on the amount of variations in the outputs of the height sensor when the vehicle runs from the road having a small gradient to the road having a large gradient or when the vehicle runs from the road having a large gradient to the road having a small gradient."
IImitation of 034 Patent Proposed Claim 16	US. Patent No. $5,909,949$ (Gotoh)	G8 2309774 (Takahashi)
16. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 475.	See claim 12 claim chart, above at page 475.
wherein at least one of said two or more sensors generates a signal that is representative of the rate of change of suspension height of the vehicle.		E.g., page 7 , lines 29 to 34 , to page 8 , line 21 "In particular, Fig. 3 shows schematically the amount of variations in the output level V when the vehicle runs first along an uphill slope and thereafter runs along a road having a small gradient. In this case, when the vehicle runs over the uphill slope the output level V falls down suddenly." E.g., page 8, lines 19 to 25 , "These figures show clearly that the magnitude of the amount of variations in the road gradients is reflected on the amount of variations in the outputs of the height sensor when the vehicle runs from the road having a small gradient to the road having a large gradient or when the vehicle runs from the road having a large gradient to the road having a small gradient."

1 Imitation of 034 Patent Proposed Claim 17	U. S. Patent No. 5,909949 (Gotoh)	GB 2309774 (Takahashi)
17. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the automatic directional control system is configured to include at least two actuators.		E.g., page 16, line 31 to page 17 , line 1 "A rudder resistance network 18, which corresponds to the above-mentioned drive control device 5 a , is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and $19{ }^{\prime}$ which are disposed downstream thereof."
Limitation of 034 Patent Proposed Clain 18	U. S. Patenl No. $5,909,949$ (Gotoh)	GB 209774 (Takatashi)
18. The automatic directional control system defined in claim 17,	See claim 17 claim chart, above at page 478.	See claim 17 claim chart, above at page 478.
wherein the at least two actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.		E.g., page 11, lines 21 to 32 "In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5 ."

Mimitation of O34 Patent Proposed Claim 20	U. S. Patent No. 5, 909,949 (Cotoh)	G8 2309774 (Takahashil
20. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the at least one actuator includes an electronically controlled mechanical actuator.		E.g., page 16 , line 31 to page 17, line 1 "A rudder resistance network 18 , which corresponds to the above-mentioned drive control device 5 a, is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19° which are disposed downstream thereof." E.g., page 11 , line 32 to page 12 , line 3 "As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see Japanese Patent Publication No. Hei. 63-166672)."
IImilation of 034 Patent Proposed Claim 21	US. Patent No. 5,909,949 (Gotoh)	GB 2309744 (Takahashi)
21. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the at least one actuator includes a step motor.		E.g., page 18, lines 5 to 8 "Besides this, according to the invention, the lamp or the component thereof can be driven or controlled by use of a stepping motor to thereby correct the illumination

Limitation of 034 Patent Proposed Claim 21	U.S. Patent No. 5,909949 (Gotoh)	GB 2309774 (Takahashi)
		direction of the lamp."
Limitation of 034 Patent Proposed Claim 22	U.S. Patent No. $5,909,949$ (Cotoh)	GB 2309774 (Takahashi)
22. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the at least one actuator includes a servo motor.		E.g., page 16 , line 31 to page 17 , line 1 "A rudder resistance network 18, which corresponds to the above-mentioned drive control device 5 a, is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19^{\prime} which are disposed downstream thereof." E.g., page 11, line 32 to page 12 , line 3 "As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see Japanese Patent Publication No. Hei. 63-166672)."
Limitation of 034 Patent Proposed Clain 24	U.S. Patent No, 5,909,949 (Gotoh)	GE 2309774 (Talahashi)
24. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.

Limitation of 034 Patent Proposed Claim 24

Limitation of 034 Patent Proposed Clain 25	U. S. Patent No. 5 ,909949 (Cotoh)	GB 2309174 (Takahashi)
		and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5."
Limitation of 034 Patent Proposed Clain 26	U.S. Patent No. 5,909949 (Cotoh)	GB2 309174 (Takahashil
26. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted left and right relative to a vertical reference position.	E.g., col. 4, lines 32 to 38 , "The vehicle 1 of the preferred embodiment has head lights 2 for lighting the space in front of the vehicle installed such that they are swingable in rightward and leftward horizontal directions. FIG. 1 is a view showing the vehicle 1 from above and in this figure, the right and left head lights 2,2 are swung rightward so as to cause the right forward regions to become lighting regions 3,3 ."	
Limitation of os4 Patent Proposed Claim 28	U. S. Patent No. $5,9009.949$ (Cotol)	G82 209774 (Takahastit)
28. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the automatic directional control system is configured such that the controller includes a microprocessor.	E.g., col. 4, lines 56 to 60 , "Accordingly, the lamp unit 4 is swung together with the rotary shaft 5 through an engagement between the worm gear 7	E.g., page 16, lines 1 to 4 "When a turn-on switch 12 for the lamp 6 is put into operation, a supply voltage from a constant voltage supply circuit 13

Limitation of 034 Patent Proposed Claim 28	U.S. Patent No. 5 , 909,949 (Cotoh)	GB 2309774 (Takahashi)
	and the worm wheel 6 under a driving of the motor 8. The motor 8 is controlled for its driving by a light distribution control ECU 10."	and a reset signal from a reset circuit 14 are supplied to the microcomputer 10 ." See also Fig. 9 , ref. 10. FIG. 9

Limitation of 034 Patent Proposed Clain 29	U. S. Patent No. 5,909,949 (Gotoh)	GB 2300774 (Takahashil
29. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.	E.g., col. 4, lines 56 to 60 , "Accordingly, the lamp unit 4 is swung together with the rotary shaft 5 through an engagement between the worm gear 7	

${ }_{\substack{\infty}}$

Limitation of 034 Patent Proposed Claim 29	U.S. Patent No. $5,909.949$ (Cotoh)	Gb 2300 774 (Takahashit.
	and the worm wheel 6 under a driving of the motor 8. The motor 8 is controlled for its driving by a light distribution control ECU 10."	
Limitation of 034 Patent Proposed Chami 33	US. Patent No. S.909,949 (Cotoh)	G8 2300774 Takahashit.
33. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the automatic directional control system further includes memory.		E.g., page 16, lines 5 to 9 "Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control programs and data values therein) [sic] and an oscillator 16 used to generate a clock signal are additionally attached to the microcomputer 10 ." See also Fig. 9, ref. 15.

Limitation of 034 Patent Proposed Claim 33	U. S. Patent No. 5 , 909,949 (Cotoh)	G8 2300774 (Takahashi)
		FiG. 9

Limitation of 034 Patent Proposed Claim 34	U. S. Patent No. 5, 909,949 (Cotoh)	GB 2309774 (Takahashi)
34. The automatic directional control system defined in claim 33,	See claim 33 claim chart, above at page 484.	See claim 33 claim chart, above at page 484.
wherein the memory includes non-volatile memory.		E.g., page 16, lines 5 to 9 "Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control

$98 t$

Limitation of 034 Patent Proposed Claim 37	U.S. Patent No. 5 , 909,949 (Cotoh)	GB 2309714 Tlakahashil
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.		E.g., page 5 , line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
IImitation of 034 Patent Proposed Clain 38	U. S. Patent No. $5,909,949$ (Cotoh)	G82 309774 Tlakhashil
38. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.		E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a

Limitation of 034 Patent Proposed Claim 38	U. S. Patent No. 5 , 909,949 (Cotoh)	GB2 300774 T Takahashil
		distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle.":
Limitation of 034 Patent Proposed Claim 41	US. Patent No. 5, 909,949 (Gotoh)	68 2300774 (Takahashil
41. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the stecring wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or

limitation of 034 Patent Proposed Clain 41	U.S. Patent No. 5 , 909,949 (Cotoh)	GB 2309174 (Takahashil
	angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the stecring angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., col. 7, lines 34 to 39 , "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle 9 , even 35 if the steering wheel is operated rapidly for the countersteering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."

Limitation of D34 Patent Proposed Clain 42	U.S. Patent No. $5,909,949$ (Cotoh)	GB 2309774 (Takahashi)
42. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein said sensed conditions include three or more of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ©."	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used

Limitation of O34 Patent Proposed Clamita	U. S. Patent No. 5.909\%99\% (cotoh)	abe 30\%\#74 Makhashil
		height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

Limilationot 034 Patent Proposed Clamm 4	U.S. Patent Mo. 5, 909,949 (cotoh)	
43. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein said sensed conditions include all four of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω."	E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle."

Limitationot 034 Paten Proposed Mamm\%	U. S. Paten No. 5, 90\% 949 (CB\% 300\% 74 \% Manhash
		E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

	U.S. Patent No. 5.909949 (GOtoh)	
44. The automatic directional control system	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.

$\underset{\sigma}{\alpha}$

Limitation of 034 Patent Proposed Claim 44	U.S. Patent No. $5,909,949$ (Gotoh)	GB 2309774 (Takahashi)
defined in claim 1,		
wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold

Limitation of 034 Patent Proposed Clain 44	U. S. Patent No. 5 , 909949 (Gotoh)	GB 2309774 (Takahashi)
	yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., col. 7, lines 34 to 39 , "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle 9 , even 35 if the steering wheel is operated rapidly for the countersteering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	value, the illumination direction of the lamp 6 may be corrected."
Limitation of 034 Patent Proposed Clain 45	U. S. Patent No, 5,909,949 (Gotoh)	GB 2309774 (Takahashi)
45. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 461.	See claim 1 claim chart, above at page 461.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle.	E.g., page 8, lines 26 to 32 "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." E.g., page 9, lines 16 to 34 "Also, in order to prevent the illumination direction of the lamp 6

Limitation of 034 Patent Proposed Clain 45	US. Patent No. 5.909 .949 (Gotoh)	GB2309774 (Takahashi)
	In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle 9 , even 35 if the steering wheel is operated rapidly for the countersteering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected."

Limitation of 034 Patent Proposed Claim 1	U.S. Patent No, 5,909,949 (Gotoh)	US. Patent No. 5, 182,460 (llissman)
1. An automatic directional control system for a vehicle headlight, comprising:	E.g., Abstract, "A head lamp device for a vehicle capable of changing a lighting region in front of the vehicle in right and left directions, in which change of the lighting region is suppressed so as not to give the driver a sense of incongruity when a steering wheel is operated in one direction and then rapidly in the other as in case of countersteering."	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation."
two or more sensors that are each adapted to generate a signal that is representative of a condition of a vehicle, said sensed conditions including two or more of road speed, steering angle, pitch, and suspension height of the vehicle;	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first

Limitation of 034 Patent Proposed Claim 1	U. S. Patent No. 5 ,909 949 (Cotoh)	$U S$. Patent No. 5.182 .460 (hussman)
		analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
a controller that is responsive to said two or more sensor signals for generating at least one output signal	E.g., Col. 4, lines 59 to 60 , "The motor 8 is controlled for its driving by a light distribution control ECU 10."	E.g., col. 3, lines 30 to 39 , "The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter F1 is coupled to the regulator R." E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various

Limitation of 034 Patent Proposed Claim 1	U. S. Patent No. 5,909 949 (Cotoh)	US. Patent No. Si 182.4600 (liussman)
		nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided." E.g., col. 6, line 10 to 34, "In this connection, it is beneficial that upon the presence of a difference between the second, filtered, nominal-value signal to the third, filtered, nominal-value signal and upon termination of a difference is again switched from the third, filtered, nominal-value signal to the first, filtered, nominal-value signal because in this manner, in an uncomplicated and cost effective manner, upon the presence of an inclination change of the motor vehicle body which is not attributable to a change in loading or to road surface unevenness, the regulation of the illumination range of the motor vehicle, in dependence from the third, long, filter time constant results, whereby the third, filtered, nominal-value signal is independent, or substantially independent, from the disturbing, or distorting, short time inclination changes so that after inclination changes of the motor-vehicle body which, for example, are caused by driving about a curve, false adjustments of the illumination range are not caused which can lead to the blinding of oncoming traffic or to losses in illumination range, which eliminates a danger during operation of a motor vehicle."
only when said at least one of the two or more sensor signals changes by more than a	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the

limitation of 034 Patent Proposed Claimi	U. S. Patent No. 5, 909,949 (Gotoh)	U.S. Patent No. 5.182 .460 Ilissman)
predetermined minimum threshold amount to prevent at least one actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating conditions; and	the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω	regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided." E.g., col. 6, line 10 to 34 , "In this connection, it is beneficial that upon the presence of a difference between the second, filtered, nominal-value signal to the third, filtered, nominal-value signal and upon termination of a difference is again switched from the third, filtered, nominal-value signal to the first, filtered, nominal-value signal because in this manner, in an uncomplicated and cost effective manner, upon the presence of an inclination change of the motor vehicle body which is not attributable to a change in loading or to road surface unevenness, the regulation of the illumination range of the motor vehicle, in dependence from the third, long, filter time constant results, whereby the third, filtered, nominal-value signal is independent, or substantially independent, from the disturbing, or distorting, short time inclination changes so that after inclination changes of the motor-vehicle body which, for example, are caused by driving about a curve, false adjustments of the illumination range are not caused which can lead to the blinding of oncoming traffic or to losses in illumination range, which eliminates a danger during operation of a motor vehicle."

Limitation of 034 Patent Proposed Clain 1	U.S. Patent No. 5,909949 (Gotoh)	US Patent No. 5.182 .460 (Ilussman)
	comes to coincide with the steering angle φ." E.g., Col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle θ, even if the steering wheel is operated rapidly for the counter-steering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	
said at least one actuator being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.		E.g., col. 3, lines 16 to 18 , "The regulator R regulates the position of adjusting elements, which are shown here in block form and which change the positions of headlights."
Limitation of 034 Patent Proposed Claim 2	U.S. Patent No. $5,909,949$ (Cotoh)	US. Patent No. 5.182 .460 (llussman)
2. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein at least one of said two or more sensors generates a signal that is representative of the road speed of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω."	E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."

IImitation of 034 Patert Proposed Claim 2	US. Patent No. 5 , 909,949 (Gotoh)	U. S. Patent No. 5.182 .460 Mussman).
	E.g., Figure 3 动號	
Limitation of 034 Patent Proposed Claim 3	U. . Patent No. 5,909,949 (Cotoh)	1. S . Patent No. $5,182.460$ (llussman)
3. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein at least one of said two or more sensors generates a signal that is representative of the steering angle of the vehicle.	E.g., col. 4 , lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3	

Limitation of 034 Patent Proposed Claim 3	U.S. Patent No. 5, 909,949 (Gotoh)	US. Patent No. 5.182 .460 (Hussman).
	虎, 各	
Limitation of 034 Patent Proposed Clain 4	U. S. Patent No. 5, 909.949 (Cotoh)	US. Patent No. S.182.46\% Itussmant
4. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein at least one of said two or more sensors generates a signal that is representative of the pitch of the vehicle.		E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here

502

Limitation of 034 Patent Proposed Claim 4	U.S. Patent No. 5 , 909,949 (Gotoh)	U.S. Patent No. 5.182 .460 (lus sman)
		coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Claim 5	U.S. Patent No. 5, 9019,949 (Gotoh)	U. S. Patent No $5,182,460$ (IIussman)
5. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein at least one of said two or more sensors generates a signal that is representative of the suspension height of the vehicle.		E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first

Limitation of 034 Patent Proposed Clains	U.S. Patent No. 5 ,909 949 (Gotoh)	US. Patent No. 5.182 .460 (Hussman)
		analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Uimitation of 034 Patent Proposed Claims	U.S. Patent No. $5,909,949$ (Gotoh)	U.S. Patent No. $5,182,460$ (llussman)
6. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein said two or more sensors include a first sensor and a second sensor.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω." E.g., Figure 3	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value

Limitation of 034 Patent Proposed Claim 6	US. Patent No. 5,909949 (Gotoh)	US. Patent No. 5.182 .460 (Hussman)
	部纪,	former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
Limitation of 034 Patent Proposed Clain 1	U.S. Patent No. $5,909,949$ (Getoh)	
7. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 504.	See claim 6 claim chart, above at page 504.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω. ."	E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."

Limitation of 034 Patent Proposed Claim 7	U. S. Patent No. 5, 909,949 (Cotoh)	US. Patent No. 5.182 .4600 (lius sman)
	E.g., Figure 3 新 3	
Limitation of 034 Patent Proposed Claim 8	U. S. Patent No, 5,909,949 (Gotoh)	Vi.S. Patent No. 5, 182,460 (llussman)
8. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 504.	See claim 6 claim chart, above at page 504.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω."	E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a

Limitation of 034 Patent Proposed Clains	U.S. Patent No. 5 ,909 949 (Gotoh)	US. Patent No. 5.182 .460 (Hussman)
		sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Claim?	US. Patent No. 5 ,909,949 (Cotoh)	US. Patent No. 5.182 .460 Ilussman)
9. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 504.	See claim 6 claim chart, above at page 504.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the suspension height of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.		E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here

507

Limitation of 034 Patent Proposed Claim 9	U.S. Patent No. $5,909,949$ (Gotoh)	US. Patent No. 5.182 .460 Ilissman)
		coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
1 imitation of 034 Patent Proposed Claim 10	U.S. Patent No. $5,909.944$ (Gotoh)	U.S. Patent No. $5,182.460$ (Ilussman)
10. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 504.	See claim 6 claim chart, above at page 504.
wherein said first sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the road speed of the vehicle.		E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first

Limitation of 034 Patent Proposed Claim 10	US. Patent No. 5 , 909 949 (Gotoh)	US. Patent No. S. 182.460 (llussman)
		analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles." E.g., col. 3, lines 40 to 45 , "The curve-recognition device K is electrically conductively coupled with a speed signal sensor, or sender, G and includes a speed threshold value device which itself affects the switchover such that the third filter F3 is only coupled to the regulator R if a minimum speed of the motor vehicle is exceeded."
Limitation of 034 Patent Proposed Claim 11	U. S. Patent No, 5,909,949 (Gotoh)	US. Patent No. $5,182.460$ (lussman)
11. The automatic directional control system defined in claim 6 ,	See claim 6 claim chart, above at page 504.	See claim 6 claim chart, above at page 504.
wherein said first sensor is physically separate from said second sensor.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω."	

Linitation of 034 Patent Proposed Claim 11	U.S. Patent No. 5,909949 (Gotoh)	US. Patent No. 5.182 .460 (Hissman)
	E.g., Figure 3 秋 3	
Limitation of 034 Patent Proposed Claim 12	U. S. Patent No. $5,909,949$ (Cotoh)	W. S. Patent No. 5, 182.460 (llussman)
12. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein said sensed conditions further include one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, or a rate of change of suspension height of the vehicle.		E.g., col. 5, lines 34 to 40 , "So that also such inclination changes of the motor-vehicle body which are not attributable to acceleration changes will be recognized and false adjustments during regulation of the illumination range because of such inclination changes will be avoided, the third filter F3 is only placed in connection with the regulator when no acceleration of the motor vehicle is present."

Linitation of 034 Patent Proposed Claim 13	U.S. Patent No. 5 , 909,949 (Cotoh)	US. Patent No. 5.182 .460 (llussman)
13. The automatic directional control system defined in claim 12,	See claim 12 claim chart, above at page 510.	See claim 12 claim chart, above at page 510.
wherein at least one of said two or more sensors generate a signal that is representative of the rate of change of road speed of the vehicle.		E.g., col. 5, lines 34 to 40 , "So that also such inclination changes of the motor-vehicle body which are not attributable to acceleration changes will be recognized and false adjustments during regulation of the illumination range because of such inclination changes will be avoided, the third filter F3 is only placed in connection with the regulator when no acceleration of the motor vehicle is present."
Limitation of 034 Patent Proposed Clain 24	U. S. Patent No. 5,909,949 (Gotoh)	US. Patent Io. 5.182 .460 (Hussman)
24. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.	E.g., col. 4, lines 32 to 38, "The vehicle 1 of the preferred embodiment has head lights 2 for lighting the space in front of the vehicle installed such that they are swingable in rightward and leftward horizontal directions. FIG. 1 is a view showing the vehicle 1 from above and in this figure, the right and left head lights 2,2 are swung rightward so as to cause the right forward regions to become lighting regions 3,3 ."	

511

Limitation of 034 Patent Proposed Claim 26	U.S. Patent No. 5 , 909,949 (Cotoh)	U. S. Patent No. 5.182 .460 (luissman)
26. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted left and right relative to a vertical reference position.	E.g., col. 4 , lines 32 to 38 , "The vehicle 1 of the preferred embodiment has head lights 2 for lighting the space in front of the vehicle installed such that they are swingable in rightward and leftward horizontal directions. FIG. 1 is a view showing the vehicle 1 from above and in this figure, the right and left head lights 2,2 are swung rightward so as to cause the right forward regions to become lighting regions 3,3 ."	
IImitation of 034 Patent Proposed Clain 28	U.S. Patent No. 5,909,949 (Gotoh)	US. Patent Io. $5,182,460$ (Ilusman)
28. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein the automatic directional control system is configured such that the controller includes a microprocessor.	E.g., col. 4, lines 56 to 60 , "Accordingly, the lamp unit 4 is swung together with the rotary shaft 5 through an engagement between the worm gear 7 and the worm wheel 6 under a driving of the motor 8. The motor 8 is controlled for its driving by a light distribution control ECU 10."	
Limitation of 034 Patent Proposed Clain 29	U.S. Patent No. $5,909,949$ (Gotoh)	1.S. Patent No. 5.182 .460 (llussman)
29. The automatic directional control system	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.

512

Limitation of 034 Patent Proposed Claim 29	U.S. Patent No. 5 , 909,949 (Cotoh)	US. Patent No. 5.182 .4600 Hussman)
defined in claim 1,		
wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.	E.g., col. 4, lines 56 to 60 , "Accordingly, the lamp unit 4 is swung together with the rotary shaft 5 through an engagement between the worm gear 7 and the worm wheel 6 under a driving of the motor 8. The motor 8 is controlled for its driving by a light distribution control ECU 10."	
Limitation of 034 Patent Proposed Claim 37	U. S. Patent No. $5,909,949$ (Cotoh)	U.S. Patent No. $5.182,460$ (Hussman)
37. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.		E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first

513

Limitation of 034 Patent Proposed Claim 37	U.S. Patent No. 5 , 909,949 (Gotoh)	U. S. Patent No. 5.182 .460 (Ilussman)
		analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
limitation of 034 Patent Proposed Claim 38	U.S. Pateni No. $5.909,949$ (Gotoh)	US Patent No. S. 182.460 (lisssman)
38. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch level sensor.		E.g., Abstract, "In a method and apparatus to regulate the illumination range of a motor vehicle in which, at a position on a front axle and at a position on a rear axle, signals are measured which are dependent upon the relative positions of a motor-vehicle body to the front axle and the rear axle, with a difference formation between the signal from the front axle and that of the rear axle being accomplished with a resulting difference signal, as a nominal-value signal, being filtered to a first average-value formation." E.g., col. 2, lines 40 to 48, "A front axle sensor sender (a device including or associated with a sensor for sending a sensed signal) V is here coupled with a nominal-value former over a first analog/digital converter A1. The nominal-value former S is additionally coupled with a rear axle

Limitation of 034 Patent Proposed Claim 38	U S. Patent No. 5 , 909,949 (Gotoh)	US. Patent No. 5.182 .4600 (liussman)
		sensor sender H over a second analog/digital converter A2. The front axle sender and the rear axle sender produce signals which are functions of the relative position of a motor vehicle body to the front and rear axles."
Limitation of 034 Patent Proposed Clain 41	U. S Patent No. 5 ,909,949 (Gotoh)	US. Patent No. S. 182.460 (llussman)
41. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of the at least one actuator.	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity 0 of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia.	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

	U. S. Patent No. 5 909 949\% (eotoh):	
	Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle 9 , even 35 if the steering wheel is operated rapidly for the countersteering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	

Limitation of 034 Patent Proposed Clain 42	U.S. Patent No. 5.909 .949 (Cotoh)	US Patent No. $5,182.460$ (Hussman)
42. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.

Imitation of O34 Patent Proposed Mlaimstan	U. S. Patent No. 5909 949 (cotoh)	US. Paten No. 5.182 .460 Minsman)
wherein said sensed conditions include three or more of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω."	E.g., page 6, lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a

Limitation of 034 Patent Proposed Clain 42	US. Patent No. 5 , 909 949 (Cotoh)	US. Patent No. S. 182.460 (Hussman)
		distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."
1 imitation of 034 Patent Proposed Claim 43	U.S. Patent No. 5,909,949 (Gotoh)	U.S. Patent No $5,182,461$ (Ilussman)
43. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein said sensed conditions include all four of road speed, steering angle, pitch, and suspension height of the vehicle.	E.g., col. 4, lines 61 to 67 , "Fig. 3 is a rough block diagram showing a control system for changing the lighting region in the present embodiment. The vehicle has a steering angle sensor 21 for detecting a direction of a front wheel with respect to the vehicle body, i.e. a steering angle φ, a vehicle speed sensor 22 for detecting a vehicle speed v and a yaw rate sensor 23 for detecting a yaw angular velocity (yaw rate) ω. ."	E.g., page 6 , lines 16 to 25 "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4 . As the vehicle running condition detection device 3, for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." E.g., page 2, lines 6 to 13 "Therefore, there is conventionally known a device which includes a

Limitation of 034 Patent Proposed Clain 43	U. S. Patent No. 5 ,909949 (Gotoh)	US. Patent No. 5.182 .460 (Ilussman)
		device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." E.g., page 5, line 30 to page 6 , line 9 "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle."

Limitation of 034 Patent Proposed Clain 44	U.S. Patent No. 5,909949 (Cotoh)	US. Patent No. S, 182,460 (Ilussman)
44. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.

Limitation of 034 Patent Proposed Claim 44	U. S. Patent No. 5 , 909,949 (Cotoh)	U. S . Patent No. 5.182 .460 (lussman)
wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated continuously in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive steering angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time	E.g., col. 4, lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

Limitation of 034 Patent Proposed Claim 44	US P Patent No. 5 ,909949 (Gotoh)	US. Patent No. 5.182 .460 (Ilussman)
	somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., col. 7, lines 34 to 39 , "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle 9 , even 35 if the steering wheel is operated rapidly for the countersteering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	
Limitation of 034 Patent Proposed Claim 45	U. S. Patent No. 5,909,949 (Gotoh)	IS. S. Patent No. 5.182 .460 (llussman)
45. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 496.	See claim 1 claim chart, above at page 496.
wherein controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one actuator from being operated unduly frequently in response to relatively small variations in the sensed operating conditions.	E.g., col. 6, line 42 to col. 7, line 2, "Referring to FIG. 8, from changes of the steering angle φ and the yaw angular velocity ω of FIGS. 7A and 7B, the following is understood. When the vehicle goes around the rightward curve, the steering wheel is turned to the right to have a positive stecring angle φ at first, and the vehicle body yaws somewhat after the change of steering angle φ so that the yaw angular velocity ω increases following increase of the steering angle. In the meantime, the rear part of the vehicle is swung outside large, and therefore the driver turns	E.g., col. 4 , lines 6 to 12, "At the coupling between the switchover device SE and the regulator R , a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE , adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided."

극

Limitation of 034 Patent Proposed Clain 45	U.S. Patemt No. 5,909949 (Cotoh)	US. Patent No. 5.182 .460 (Hussman)
	the steering wheel to the left or in the opposite direction rapidly for counter-steering to recover direction of the vehicle. Namely, the steering angle φ changes from an upward incline to a downward incline in FIG. 7A. However, the yaw angular velocity ω is maintained due to inertia. Further, when the direction of the vehicle comes to show some recovery, the driver again turns the steering wheel to the right for going around the rightward curve, but he comes to carry out the counter-steering again soon after. Thus, the steering angle φ swings rightward and leftward in large variations. However, while the steering angle φ is swinging rightward and leftward as described above, the yaw angular velocity ω is maintained at a certain angular velocity stably in general, and at a time somewhat before the vehicle passes through the curve completely, the yaw angular velocity ω comes to coincide with the steering angle φ." E.g., col. 7, lines 34 to 39, "Since the actual light distribution control is performed on the basis of the above-mentioned final lighting angle 9 , even 35 if the steering wheel is operated rapidly for the countersteering and the like, change of the lighting region is suppressed pertinently and the driver is given no sense of incongruity."	

33. Proposed Claims 17 to 19, 21, 23, 26, and 30 to 32 Are Unpatentable in View of the Combination of Uchida and the Admitted Prior Art Described in the '034 Patent Specification Under 35 U.S.C. § 103(a)

Limitation of 034 Patent Proposed Cliim 17	CB 2300773 (Uchida)	Admitit Prior Art
17. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 156.	
wherein the automatic directional control system is configured to include at least two actuators.		E.g., col. 3, lines 26 to 41, "To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13 . Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights $11 . "$

| Limitation of 034 Patent Proposed Clain | |
| :--- | :--- | :--- |
| defined in claim 17, | |

Limitation of 034 Patent Proposed Clain 19	CB 2309773 A (Lechida)	Adritted Prior Art
actuator that is adapted to be connected to the headlight to effect movement thereof in a horizontal direction.		the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13. Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights 11 ."
limitation of 034 Patent Proposed Claim 21	6B 2309773 (Ueliida)	Admitted Prion Art
21. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, ab	
wherein the at least one actuator includes a step motor.		E.g., col. 3, lines 26 to 41, "To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be

Limitation of 034 Patent Proposed Claim 21	GB2309773 (Uehida)	Admitted Prior Att
		embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13. Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights $11 . "$
Limitation of 034 Patent Proposed Claim 23	GB 2309773 Uchida)	Admitted Prior Art
23. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart,	
wherein the at least one actuator includes a microstepping motor capable of being operated in fractional step increments.		E.g., col. 3, lines 26 to 41 , "To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13 .

4 mmitation of 034 Patent Proposed Clain 23	GB 2309773 (Uehila)	Admitted Prior Arr!
		Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights 11."
Limitation of P34 Patent Proposed Claim 26	GE 2309773 A (Uchida)	Adnitted Prior Arl
26. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 156.	
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted left and right relative to a vertical reference position.		E.g., col. 1, lines 36 to 61 , "In the past, these headlights have been mounted on the vehicle in fixed positions relative thereto such that the beams of light are projected therefrom at predetermined directional aiming angles relative to the vehicle. Although such fixed aiming angle headlight systems have and continue to function adequately, they cannot alter the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. For example, if the speed of the vehicle is increased, it would be desirable to adjust the aiming angle of the headlights upwardly such that an area that is

Limitation of 034 Patent Proposed Claim 30	GB 2300773 (Uchida)	Adnitted Prior Art	
30. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 156.		

Limitation of 034 Patent Proposed Claim 30	©B 2.309773 (Uchida)	Admitted Prior A
wherein the automatic directional control system further includes at least one position feedback sensor capable of providing a position feedback signal associated with the at least one actuator.		E.g., col. 3, line 49 to col. 4, line 6, "A headlight directional controller 14 is provided for controlling the operations of the up/down actuator 12 and the left/right actuator 13 and, therefore, the angle at which the beam of light projects from the headlight 11 relative to the vehicle. The headlight directional controller 14 can be embodied as any control system, such as a microprocessor or programmable electronic controller, that is responsive to one or more sensed operating conditions of the vehicle for selectively operating the up/down actuator 12 and the left/right actuator 13. To accomplish this, the automatic directional control system 10 can include, for example, a pair of condition sensors 15 and 16 that are connected to the headlight directional controller 14. The condition sensors 15 and 16 are conventional in the art and are responsive to respective sensed operating conditions of the vehicle for generating electrical signals to the headlight directional controller 14. However, if desired, only a single one of the condition sensors 15 and 16 need be provided. Alternatively, additional condition sensors (not shown) may be provided if desired to generate electrical signals that are representative of any other operating conditions of the vehicle. A conventional input/output device 17 is connected to (or can be connected to) the headlight directional controller 14 for facilitating communication therewith in the manner described below."

Limitation of 034 Patent Proposed Claim 31	CB 2309773 (Uehilda)	Admitted Prior Art
31. The automatic directional control system defined in claim 30,	See claim 30 claim chart, above at page 528.	
wherein the at least one position feedback sensor includes a Hall Effect sensor.		E.g., col. 4, lines 24 to 30, "The position feedback sensors 18 and 19 can be embodied as any conventional sensor structures, such as Hall effect sensors, that are responsive to movements of the headlight 11 (or to the movements of the respective actuators 12 and 13 that are connected to move the headlight 11) for generating such signals."
Limitation of 034 Patent Proposed Claim 32	GR 2309773 (Uchida)	Admitted Prior Art
32. The automatic directional control system defined in claim 30,	See claim 30 claim chart	
wherein the at least one position feedback sensor includes an optical interrupter.		E.g., col. 4, lines 31 to 36, "Alternatively, the position feedback sensors 18 and 19 can be embodied as respective devices that generate electrical signals whenever the headlight 11 has achieved respective predetermined up/down or left/right positions. This can be accomplished, for example, using a conventional optical interrupter (not shown) for each of the actuators 12 and 13."

Proposed Claims 19, 23, 26, and 30 to 32 Are Unpatentable in View of the Combination of Takahashi and the Admitted Prior Art Described in the '034 Patent Specification Under 35 U.S.C. § 103(a)

Minitation of 034 Patent Proposed Claim 19	GB 2300774 (Takahastil)	Admitied Prior Alt
19. The automatic directional control system defined in claim 18 ,	See claim 18 claim chart, above at page 182.	
wherein the at least two actuators include a second actuator that is adapted to be connected to the headlight to effect movement thereof in a horizontal direction.		E.g., col. 3, lines 26 to 41 , "To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13. Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights 11."

531

Limitation of 034 Patent Proposed Claim 23	GB 2309774 (Takahashi)	Admitted Prior Art
defined in claim 1,		
wherein the at least one actuator includes a microstepping motor capable of being operated in fractional step increments.		E.g., col. 3, lines 26 to 41, "To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13. Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights 11. ."
Limitation of 034 Patent Proposed Claim 26	CB 2309774 (Takahashi)	Admitted Prior Art
26. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, abo	
wherein the automatic directional control system is configured such that the headlight is adjustably		E.g., col. 1, lines 36 to 61 , "In the past, these headlights have been mounted on the vehicle in

1 imitation of 034 Patent Proposed Clain 26	CB 2309774 (Takahashi)	Admitted Prior Art
mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted left and right relative to a vertical reference position.		fixed positions relative thereto such that the beams of light are projected therefrom at predetermined directional aiming angles relative to the vehicle. Although such fixed aiming angle headlight systems have and continue to function adequately, they cannot alter the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. For example, if the speed of the vehicle is increased, it would be desirable to adjust the aiming angle of the headlights upwardly such that an area that is somewhat farther in front of the vehicle is more brightly illuminated. On the other hand, if the speed of the vehicle is decreased, it would be desirable to adjust the aiming angle of the headlights downwardly such that an area that is somewhat closer in front of the vehicle is more brightly illuminated. Similarly, if the vehicle turns a corner, it would be desirable to adjust the aiming angle of the headlights either toward the left or toward the right (depending on the direction of the turn) such that an area that is somewhat lateral to the front of the vehicle is more brightly illuminated. To accomplish this, it is known to provide a directional control system for vehicle headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. A variety of such automatic directional control systems for vehicle headlights

Limitation of 034 Patent Proposed Clain 30	GB 2309774 (Takahashi)	Admitted Prior Art
		controller 14. However, if desired, only a single one of the condition sensors 15 and 16 need be provided. Alternatively, additional condition sensors (not shown) may be provided if desired to generate electrical signals that are representative of any other operating conditions of the vehicle. A conventional input/output device 17 is connected to (or can be connected to) the headlight directional controller 14 for facilitating communication therewith in the manner described below."

Linitation of 034 Patent Proposed Clain 31	CB 2300774 (Takahashi)	Adnitted Prior Mrt
31. The automatic directional control system defined in claim 30,	See claim 30 claim chart, above at page 534.	See claim 30 claim chart, above at page 534.
wherein the at least one position feedback sensor includes a Hall Effect sensor.		E.g., col. 4, lines 24 to 30, "The position feedback sensors 18 and 19 can be embodied as any conventional sensor structures, such as Hall effect sensors, that are responsive to movements of the headlight 11 (or to the movements of the respective actuators 12 and 13 that are connected to move the headlight 11) for generating such signals."

Limitation of 034 Patent Proposed Claim 32	GB 2309774 (Takahashil)	Admitted Prior Art
32. The automatic directional control system defined in claim 30,	See claim 30 claim chart, above at page 534.	See claim 30 claim chart, above at page 534.
wherein the at least one position feedback sensor includes an optical interrupter.		E.g., col. 4, lines 31 to 36, "Alternatively, the position feedback sensors 18 and 19 can be embodied as respective devices that generate electrical signals whenever the headlight 11 has achieved respective predetermined up/down or left/right positions. This can be accomplished, for example, using a conventional optical interrupter (not shown) for each of the actuators 12 and 13."

35. Proposed Claims 17 to 21, 23 to 26, and 30 to 32 Are Unpatentable in View of the Combination of Hussman and the Admitted Prior Art Described in the ' $\mathbf{0 3 4}$ Patent Specification Under 35 U.S.C. § 103(a)

Limitation of O34 Patent Proposed Clain 17	U.S. Yatent No, 5, 182,460 (lissman)	Admitted Prior Art
17. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 193.	
wherein the automatic directional control system is configured to include at least two actuators.		E.g., col. 3, lines 26 to 41 , "To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13 . Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights 11."

limitation of 034 Patent Proposed Claim 18	U. S. Patent No. 5.182 .460 (Hissman)	Admitted Prior Arl
18. The automatic directional control system	See claim 17 claim chart, above at page 537.	See claim 17 claim chart, above at page 537.

537

Linitation of 034 Patent Proposed Claim 18	U.S. Patent No. 5.182 .460 Hissman)	Admitted Prior Art
defined in claim 17,		
wherein the at least two actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.		E.g., col. 3, lines 26 to 41, "To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13. Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights 11. ."
Limitation of 034 Patent Proposed Claim 10	U.S. Patent No, 5, 182,460 (1ussman)	Admitted Prior Art
19. The automatic directional control system defined in claim 18 ,	See claim 18 claim chart, above at page 537.	See claim 18 claim chart, above at page 537.
wherein the at least two actuators include a second actuator that is adapted to be connected to the		E.g., col. 3, lines 26 to 41 , "To effect movement of the illustrated headlight 11 relative to the vehicle,

Limitation of 034 Patent Proposed Clain 19	U.S. Patent No. 5.182 .460 (llusman)	Admitted Prior Art
headlight to effect movement thereof in a horizontal direction.		an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13. Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights 11."
1 Imitation of 034 Patent Proposel Claim 20	US. Patent No. S. 182,460 (1hissman)	Admitted Prior Art
20. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 193.	
wherein the at least one actuator includes an electronically controlled mechanical actuator.		E.g., col. 3, lines 26 to 41 , "To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any

Limitation of 034 Patent Proposed Claim 21	US Patent No. 5.182 .460 (Hissman)	Admitted Prior Art
		and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights $11 . "$

Limitation of 034 Patent Proposed Claim 23	US. Patent No. 5.182 .460 (Hissman)	Admitted Prior Art
23. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 193.	
wherein the at least one actuator includes a microstepping motor capable of being operated in fractional step increments.		E.g., col. 3, lines 26 to 41 , "To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13 . Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use

Limitation of 034 Patent Proposed Claim 23	U. S. Patent No. 5.182 .460 (Hussman)	Admitted Prior Art
		of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights 11 ."

IImitation of 034 Patent Proposed Chain 24	U. S. Patent No. 5, 182,460 (lissman)	Admitted Prior Art
24. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 193.	
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle.		E.g., col. 1, lines 36 to 61 , "n the past, these headlights have been mounted on the vehicle in fixed positions relative thereto such that the beams of light are projected therefrom at predetermined directional aiming angles relative to the vehicle. Although such fixed aiming angle headlight systems have and continue to function adequately, they cannot alter the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. For example, if the speed of the vehicle is increased, it would be desirable to adjust the aiming angle of the headlights upwardly such that an area that is somewhat farther in front of the vehicle is more brightly illuminated. On the other hand, if the speed of the vehicle is decreased, it would be desirable to adjust the aiming angle of the headlights downwardly such that an area that is

Limitation of 034 Patent Proposed Chaim 24	US. Patent No. 5.182 .460 (Hussman)	Admitted Prior Art
		somewhat closer in front of the vehicle is more brightly illuminated. Similarly, if the vehicle turns a corner, it would be desirable to adjust the aiming angle of the headlights either toward the left or toward the right (depending on the direction of the turn) such that an area that is somewhat lateral to the front of the vehicle is more brightly illuminated. To accomplish this, it is known to provide a directional control system for vehicle headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. A variety of such automatic directional control systems for vehicle headlights are known in the art. However, such known automatic headlight directional control systems have been found to be deficient for various reasons."

Limitation of 034 Patent Proposed Clain 25	U. S. Patent No, $5.182,460$ (Hussman)	Adnitted Prior Ant
25. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 193.	
wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects		E.g., col. 1, lines 36 to 61 , "In the past, these headlights have been mounted on the vehicle in fixed positions relative thereto such that the beams of light are projected therefrom at predetermined

therefrom is capable of being adjusted up and down relative to a horizontal reference position.		directional aiming angles relative to the vehicle. Although such fixed aiming angle headlight systems have and continue to function adequately, they cannot alter the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. For example, if the speed of the vehicle is increased, it would be desirable to adjust the aiming angle of the headlights upwardly such that an area that is somewhat farther in front of the vehicle is more brightly illuminated. On the other hand, if the speed of the vehicle is decreased, it would be desirable to adjust the aiming angle of the headlights downwardly such that an area that is somewhat closer in front of the vehicle is more brightly illuminated. Similarly, if the vehicle turns a corner, it would be desirable to adjust the aiming angle of the headlights either toward the left or toward the right (depending on the direction of the turn) such that an area that is somewhat lateral to the front of the vehicle is more brightly illuminated. To accomplish this, it is known to provide a directional control system for vehicle headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. A variety of such automatic directional control systems for vehicle headlights are known in the art. However, such known automatic headlight directional control systems

Linitation of 034 Patent Proposed Claim 25	U.S. Patent No. 5.182 .460 (Hussmant	Adinitted Prior Art
		have been found to be deficient for various reasons."

| Nimitation of inat Patent Proposed Claim |
| :--- | :--- | :--- |

Limitation of 034 Patent Proposed Claim 26	US. Patent No. 5.182 .460 (Hussman)	Admitted Prior Art
		toward the right (depending on the direction of the turn) such that an area that is somewhat lateral to the front of the vehicle is more brightly illuminated. To accomplish this, it is known to provide a directional control system for vehicle headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. A variety of such automatic directional control systems for vehicle headlights are known in the art. However, such known automatic headlight directional control systems have been found to be deficient for various reasons."

Limitation of 034 Patent Proposed Clain 30	U. S. Patent No. 5 , 182, 460 (llis sman)	Admitted Prior Ait
30. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 193.	
wherein the automatic directional control system further includes at least one position feedback sensor capable of providing a position feedback signal associated with the at least one actuator.		E.g., col. 3, line 49 to col. 4, line 6, "A headlight directional controller 14 is provided for controlling the operations of the up/down actuator 12 and the left/right actuator 13 and, therefore, the angle at which the beam of light projects from the headlight 11 relative to the vehicle. The headlight directional controller 14 can be embodied as any control system, such as a microprocessor or

546

I milationot 034 Patent Proposed Claim 30		Admitted Prior Amt
		programmable electronic controller, that is responsive to one or more sensed operating conditions of the vehicle for selectively operating the up/down actuator 12 and the left/right actuator 13. To accomplish this, the automatic directional control system 10 can include, for example, a pair of condition sensors 15 and 16 that are connected to the headlight directional controller 14. The condition sensors 15 and 16 are conventional in the art and are responsive to respective sensed operating conditions of the vehicle for generating electrical signals to the headlight directional controller 14. However, if desired, only a single one of the condition sensors 15 and 16 need be provided. Alternatively, additional condition sensors (not shown) may be provided if desired to generate electrical signals that are representative of any other operating conditions of the vehicle. A conventional input/output device 17 is connected to (or can be connected to) the headlight directional controller 14 for facilitating communication therewith in the manner described below."

Limitation ot 034 Patent Proposed Clamm	U. S Patent No. 5 , 182 , 400 (Massman)	Admittid Prior Art
31. The automatic directional control system defined in claim 30,	See claim 30 claim chart, above at page 546.	See claim 30 claim chart, above at page 546.
wherein the at least one position feedback sensor		E.g., col. 4, lines 24 to 30, "The position feedback

547

Limitation of 034 Patent Proposed Claim 31	U. S. Patent No. 5.182 .460 (Hussman)	Adritted Prior Art
includes a Hall Effect sensor.		sensors 18 and 19 can be embodied as any conventional sensor structures, such as Hall effect sensors, that are responsive to movements of the headlight 11 (or to the movements of the respective actuators 12 and 13 that are connected to move the headlight 11) for generating such signals."
Limitation of 034 Patent Proposed Claim 32	U. S. Patent No. 5.182 .460 (llussman)	Admitted Prior Art
32. The automatic directional control system defined in claim 30 ,	See claim 30 claim chart, above at page 546.	See claim 30 claim chart, above at page 546.
wherein the at least one position feedback sensor includes an optical interrupter.		E.g., col. 4, lines 31 to 36 , "Alternatively, the position feedback sensors 18 and 19 can be embodied as respective devices that generate electrical signals whenever the headlight 11 has achieved respective predetermined up/down or left/right positions. This can be accomplished, for example, using a conventional optical interrupter (not shown) for each of the actuators 12 and 13."

$\stackrel{\infty}{6}$
Proposed Claim 27 Is Unpatentable Over the Combination of Uchida and Wassen et al. Under 35 U.S.C. § 103(a)

1 limitatiol of 034 Patent Proposed Claim 27	GB 2300773 (Uchida)	U. S. Patent No. 4,954,933 (Wassen et al.
27. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 156.	
wherein the automatic directional control system is configured such that, while in a calibration mode, a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle by manual operation of the at least one actuator.		E.g., col. 3, lines 17 to 30, "When a driving member such as a small electrical motor M is associated with such an adjustment device, it is placed so as to face the lower bearing point A3 and is functionally connected thereto so as to be capable of achieving, by remote control, possibly in an automated way, the heightwise adjustment of the beam emitted by the headlight. In this case, the directional adjustment of the beam is still done manually because, as pointed out, it would be extremely complicated to provide for means for the mechanical switching-over of the mechanical power and a linkage for making the selective connection of the adjusting point A1 to the motor while, at the same time disengaging the connection with the diagonally opposite point A3."

Proposed Claim 27 Is Unpatentable Over the Combination of Takahashi and Wassen et al. Under 35 U.S.C. § 103(a)

Limitation of 03s Patent Proposed Chim 27.		US. Patent Mo. 4,954,930 Massen et ant.
27. The automatic directional control system defined in claim 1 ,	See claim 1 claim chart, above at page 173.	
wherein the automatic directional control system is configured such that, while in a calibration mode, a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle by manual operation of the at least one actuator.		E.g., col. 3, lines 17 to 30, "When a driving member such as a small electrical motor M is associated with such an adjustment device, it is placed so as to face the lower bearing point A3 and is functionally connected thereto so as to be capable of achieving, by remote control, possibly in an automated way, the heightwise adjustment of the beam emitted by the headlight. In this case, the directional adjustment of the beam is still done manually because, as pointed out, it would be extremely complicated to provide for means for the mechanical switching-over of the mechanical power and a linkage for making the selective connection of the adjusting point A1 to the motor while, at the same time disengaging the connection with the diagonally opposite point A3."

Proposed Claim 27 Is Unpatentable Over the Combination of Hussman and Wassen et al. Under 35 U.S.C. § 103(a)

Limitation of 034 Patent Proposed (lam 27.	U. S. Patent No. 5, 182, 460 (Hussman)	US. Patent No. 4,954,93 (Wassen et al.)
27. The automatic directional control system defined in claim 1,	See claim 1 claim chart, above at page 193.	
wherein the automatic directional control system is configured such that, while in a calibration mode, a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle by manual operation of the at least one actuator.		E.g., col. 3, lines 17 to 30, "When a driving member such as a small electrical motor M is associated with such an adjustment device, it is placed so as to face the lower bearing point A3 and is functionally connected thereto so as to be capable of achieving, by remote control, possibly in an automated way, the heightwise adjustment of the beam emitted by the headlight. In this case, the directional adjustment of the beam is still done manually because, as pointed out, it would be extremely complicated to provide for means for the mechanical switching-over of the mechanical power and a linkage for making the selective connection of the adjusting point A1 to the motor while, at the same time disengaging the connection with the diagonally opposite point A3."

Electronic Patent Application Fee Transmittal				
Application Number:				
Filing Date:				
Title of Invention:	Automatic Direction	ontrol Syste	Vehicle Head	
First Named Inventor/Applicant Name:	James E. Smith			
Filer:	Clifford A. Ulrich/Hel			
Attorney Docket Number:				
Filed as Large Entity				
inter partes reexam Filing Fees				
Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Basic Filing:				
Request for inter reexamination	1813	1	8800	8800
Pages:				
Claims:				
Miscellaneous-Filing:				
Petition:				
Patent-Appeals-and-Interference:				
Post-Allowance-and-Post-Issuance:				
Extension-of-Time:				

Description	Fee Code	Quantity	Amount	Sub-Total in USD(\$)
Miscellaneous:				

Electronic Acknowledgement Receipt	
EFS ID:	10100775
Application Number:	95001621
International Application Number:	
Confirmation Number:	1240
Title of Invention:	Automatic Directional Control System for Vehicle Headlights
First Named Inventor/Applicant Name:	James E. Smith
Customer Number:	26646
Filer:	Clifford A. Ulrich
Filer Authorized By:	
Attorney Docket Number:	
Receipt Date:	16-MAY-2011
Filing Date:	
Time Stamp:	19:02:48
Application Type:	inter partes reexam

Payment information:

Submitted with Payment	yes
Payment Type	Credit Card
Payment was successfully received in RAM	$\$ 8800$
RAM confirmation Number	6368
Deposit Account	110600
Authorized User	ALI,ZEBA
The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows: \quad Charge any Additional Fees required under 37 C.F.R. Section 1.16 (National application filing, search, and examination fees) Charge any Additional Fees required under 37 C.F.R. Section 1.17 (Patent application and reexamination processing fees)	

Charge any Additional Fees required under 37 C.F.R. Section 1.19 (Document supply fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)
Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Copy of patent for which reexamination is requested	Exhibit-1.pdf	2230858	no	17
Warnings:					
Information:					
2	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-2.pdf	2502387	no	40
Warnings:					
Information:					
3	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-3.pdf	105836	no	4
Warnings:					
Information:					
4	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-4.pdf	49359	no	2
			cec55aeee7b8af498477460ce5056b3bc4		
Warnings:					
Information:					
5	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-6.pdf	3190640	no	39
			4c51f928043e9067057b7ba8096810867bc		
Warnings:					
Information:					
6	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-7.pdf	2588815	no	31
Warnings:					
Information:					
7	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-8.pdf	1472739	no	9
			02a806a62d84a55161fc67b521d728a0d37 $95 a 3 \mathrm{~d}$		
Warnings:					
Information:					
8	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-9.pdf	558013	no	9

Warnings:					
Information:					
9	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-10.pdf		no	8
Warnings:					
Information:					
10	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-11.pdf		no	25
Warnings:					
Information:					
11	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-12.pdf		no	45
Warnings:					
Information:					
12	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-13.pdf		no	12
Warnings:					
Information:					
13	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-14.pdf		no	33
Warnings:					
Information:					
14	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-15.pdf		no	14
Warnings:					
Information:					
15	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-16.pdf		no	9
Warnings:					
Information:					
16	Reexam - Affidavit/Decl/Exhibit Filed by 3rd Party	Exhibit-5.pdf		no	2
Warnings:					
Information:					
17	Reexam Certificate of Service	Exhibit-17.pdf		no	2

Warnings:					
Information:					
18	Receipt of Original Inter Partes Reexam Request	Transmittal-Letter.pdf		no	3
Warnings:					
Information:					
19	Receipt of Original Inter Partes Reexam Request	Request-for-Inter-PartesReeexamination.pdf		no	95
Warnings:					
Information:					
20	Receipt of Original Inter Partes Reexam Request	Reexamination-Claim-Charts. pdf		no	551
Warnings:					
Information:					
	Fee Worksheet (PTO-875)	fee-info.pdf	28932	no	2
Warnings:					
Information:					
Total Files Size (in bytes)			34352650		
This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to Post Card, as described in MPEP 503.					
New Applications Under 35 U.S.C. 111					
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.					
National Stage of an International Application under 35 U.S.C. 371					
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.					
New International Application Filed with the USPTO as a Receiving Office					
If a new international application is being filed and the international application includes the necessary components fo an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.					

EXHIBIT $\mathbb{1}$

US007241034B2
(12) United States Patent Smith et al.
(10) Patent No.: \quad US 7,241,034 B2
(45) Date of Patent:
(54) AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS
(75) Inventors: James E. Smith, Berkey, OH (US); Anthony B. McDonald, Perrysburg, OH (US)
(73) Assignee: Dana Corporation, Toledo, OH (US)
(${ }^{*}$) Notice:
Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
(21) Appl. No.: 10/285,312

Filed: Oct. 31, 2002
(65)

Prior Publication Data
US 2003/0107898 A1 Jun. 12, 2003

Related U.S. Application Data

(60) Provisional application No. 60/369,447, filed on Apr. 2, 2002, provisional application No. 60/356,703, filed on Feb. 13, 2002, provisional application No. 60/335, 409, filed on Oct. 31, 2001.
(51) Int. Cl.

B60Q 1/00 (2006.01)
B60R 22/00
(2006.01)
(52) U.S. Cl.
58) Field of Classification Search 362/465-466; 315/82; 701/49 See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

| 3,634,677 A | $1 / 1972$ | Stuttgart et al. $362 / 467$ |
| :--- | :--- | :--- | :--- |
| $3,939,339 \mathrm{~A}$ | $2 / 1976$ | Alphen $362 / 467$ |
| $3,953,726 ~ A$ | $4 / 1976$ | Scarritt, Sr. $362 / 465$ |
| 4,024,388 A | $5 / 1977$ | Skoff $362 / 467$ |

4,066,886 A	1/1978	Martin 362/465
4,162,424 A	7/1979	Zillgitt et al. 362/467
4,186,428 A	1/1980	Deverrewaere 362/466
4,204,270 A	5/1980	d'Orsay 362/466
4,217,631 A	8/1980	Bergkvist 362/466
4,225,902 A	9/1980	Ishikawa et al. 318/696
4,310,172 A	1/1982	Claude et al. 362/466
4,549,277 A	10/1985	Brunson et al.
4,583,152 A	4/1986	Kawai et al. 280/6.158
4,768,135 A	8/1988	Kretschmer et al. 362/40
(Continued)		

FOREIGN PATENT DOCUMENTS
EP 0306611 3/1989
(Continued)
Primary Examiner-Ali Alavi
(74) Attorney, Agent, or Firm-MacMillan, Sobanski \& Todd, LLC

(57)

ABSTRACT

A structure and method for operating a directional control system for vehicle headlights that is capable of altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. One or more operating condition sensors may be provided that generate signals that are representative of a condition of the vehicle, such as road speed, steering angle, pitch, suspension height, rate of change of road speed, rate of change of steering angle, rate of change of pitch, and rate of change of suspension height of the vehicle. A controller is responsive to the sensor signal for generating an output signal. An actuator is adapted to be connected to the headlight to effect movement thereof in accordance with the output signal. The controller can include a table that relates values of sensed operating condition to values of the output signal. The controller is responsive to the sensor signal for looking up the output signal in the table.

5 Claims, 7 Drawing Sheets

US 7,241,034 B2

Page 2

U.S. PATENT DOCUMENTS					5,781,105	A	$7 / 1998$	Bitar et al. 340/468
					5,785,405	A	$7 / 1998$	Huhn 362/459
4,791,343	A	12/1988	Ahrendt 362/348		5,868,488	A	2/1999	Speak et al. 362/37
4,833,573	A	5/1989	Miyauchi et al. 362/466		5,877,680	A	3/1999	Okuchi et al. 340/468
4,868,720	A	9/1989	Miyauchi et al. 362/466		5,896,011	A	4/1999	Zillgitt 340/468
4,868,721	A	9/1989	Soardo 362/466		5,907,196	A	5/1999	Hayami et al. 307/10.8
4,870,545	A	9/1989	Hatanaka et al. 315/82		5,909,949	A	6/1999	Gotoh 362/37
4,891,559	A	1/1990	Matsumoto et al. 356/121		5,920,386	A	$7 / 1999$	Panter et al. 356/121
4,907,877	A	3/1990	Fukuda et al. 318/603		5,938,319	A	8/1999	Hege 362/459
4,908,560	A	3/1990	Shibata et al. 318/603		5,977,678	A	11/1999	Miller et al. 310/103
4,916,587	A	4/1990	Hirose et al. 362/460		6,010,237	A	1/2000	Gotou 362/460
4,943,893	A	7/1990	Shibata et al. 362/37		6,049,749	A *	4/2000	Kobayashi 701/49
4,948,249	A	8/1990	Hopkins et al. 356/121		6,097,156	A	8/2000	Diep 315/82
5,060,120	A	10/1991	Kobayashi et al. 362/465		6,118,113	A	9/2000	Hibbard et al. 250/205
5,099,400	A	3/1992	Lee 362/37		6,142,655	A	11/2000	Zillgitt et al. 362/466
5,158,352	A	10/1992	Ikegami et al. 362/359		6,144,159	A	11/2000	Lopez et al. 315/82
5,164,785	A	11/1992	Hopkins et al. 356/121		6,176,590	B1	1/2001	Prevost et al. 362/37
5,181,429	A	1/1993	Sieber 74/89.42		6,183,118	B1	2/2001	Toda et al. 362/465
5,193,894	A	3/1993	Lietar et al. 362/466		6,193,398	B1*	2/2001	Okuchi et al. 362/466
5,331,393	A	7/1994	Hopkins et al. 356/121		6,227,691	B1	5/2001	Hogrefe et al. 362/539
5,373,357	A	12/1994	Hopkins et al. 356/121		6,231,216	B1	5/2001	Frasch 362/464
5,392,111	A	2/1995	Murata et al. 356/121		6,234,654	B1	5/2001	Okuchi et al. 362/466
5,404,278	A	4/1995	Shibata et al. 362/464		6,281,632	B1	8/2001	Stam et al. 315/82
5,426,571	A	6/1995	Jones 362/466		6,293,686	B1	9/2001	Hayami et al. 362/465
5,428,512	A	6/1995	Mouzas 362/466		6,305,823	B1 *	10/2001	Toda et al. 362/276
5,485,265	A	1/1996	Hopkins 356/121		1/0019225	Al	9/2001	Toda et al.
5,526,242	A	6/1996	Takahashi et al. 362/466					
5,550,717	A	8/1996	Liao 362/467			REIG	N PAT	NT DOCUMENTS
5,633,710	A	5/1997	Kumra 362/464	EP			757	10/2001
$5,660,454$ $5,707,129$	A	8/1997	Mori et al. ${ }_{\text {Kobayashi 362/464 }}$	EP			555	1/2003
5,707,129 5,751,832	A	1/1998 5/1998	Kobayashi 362/464 Panter et al. 362/104				925	3/2000
5,779,342	A	7/1998	Kluge 362/507		ed by exam	miner		

FIG. 1
U.S. Patent Jul. 10, 2007 Sheet 2 of $7 \quad$ US 7,241,034 B2

SENSED CONDITION (STEERING ANGLE) VALUES	UP/DOWN ADJUSTMENT FACTORS	$\begin{aligned} & \text { LEFT/RIGHT } \\ & \text { ADJUSTMENT } \\ & \text { FACTORS } \\ & \hline \end{aligned}$
$+6^{\circ}$	-3.00°	$+4.50{ }^{\circ}$
$+5^{\circ}$	-2.50°	$+3.75{ }^{\circ}$
$+4^{\circ}$	-2.00°	$+3.00^{\circ}$
$+3^{\circ}$	-1.50°	$+2.25^{\circ}$
$+2^{\circ}$	-1.00°	$+1.50^{\circ}$
$+1^{\circ}$	-0.50°	$+0.75^{\circ}$
0°	0.00°	0.00°
-1°	-0.50°	-0.75°
-2°	-1.00°	-1.50°
-3 ${ }^{\circ}$	$-1.50{ }^{\circ}$	-2.25°
-4 ${ }^{\circ}$	-2.00°	-3.00°
-5 ${ }^{\circ}$	$-2.50{ }^{\circ}$	$-3.75{ }^{\circ}$
-6°	-3.00°	-4.50°

FIG. 4

$\begin{array}{llll}\text { U.S. Patent } & \text { Jul. 10, } 2007 & \text { Sheet } 6 \text { of } 7 & \text { US 7,241,034 } \\ \text { B2 }\end{array}$

AUTOMATIC DIRECTIONAL CONTROL
 SYSTEM FOR VEBICLE HEADLIGHTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional Application Nos. 60/335,409, filed Oct. 31, 2001; 60/356, 703, filed Feb. 13, 2002; and 60/369,447, filed Apr. 2, 2002, the disclosures of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

This invention relates in general to headlights that are provided on vehicles for illuminating dark road surfaces or other areas in the path of movement. In particular, this invention relates to an automatic directional control system for such vehicle headlights.

Virtually all land vehicles, and many other types of vehicles (such as boats and airplanes, for example), are provided with one or more headlights that are adapted to illuminate a portion of a dark road surface or other area in the path of movement of the vehicle to facilitate safe travel thereon. Typically, each headlight is mounted on or near the front end of the vehicle and is oriented in such a manner that a beam of light is projected forwardly therefrom. The angle at which the beam of light projects from the headlight can, for example, be characterized in a variety of ways, including (1) up and down relative to a horizontal reference position or plane and (2) left and right relative to a vertical reference position or plane. Such directional aiming angles are usually set at the time of assembly of the headlight into the vehicle so as to illuminate a predetermined portion of the road surface or other area in the path of movement of the vehicle.
In the past, these headlights have been mounted on the vehicle in fixed positions relative thereto such that the beams of light are projected therefrom at predetermined directional aiming angles relative to the vehicle. Although such fixed aiming angle headlight systems have and continue to function adequately, they cannot alter the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. For example, if the speed of the vehicle is increased, it would be desirable to adjust the aiming angle of the headlights upwardly such that an area that is somewhat farther in front of the vehicle is more brightly illuminated. On the other hand, if the speed of the vehicle is decreased, it would be desirable to adjust the aiming angle of the headlights downwardly such that an area that is somewhat closer in front of the vehicle is more brightly illuminated. Similarly, if the vehicle turns a corner, it would be desirable to adjust the aiming angle of the headlights either toward the left or toward the right (depending on the direction of the turn) such that an area that is somewhat lateral to the front of the vehicle is more brightly illuminated.
To accomplish this, it is known to provide a directional control system for vehicle headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. A variety of such automatic directional control systems for vehicle headlights are known in the art. However, such known automatic headlight directional control systems have been found to be deficient for various reasons. Thus, it would be desirable to provide an improved structure for an automatic headlight directional control system that addresses such deficiencies.

SUMMARY OF THE INVENTION

This invention relates to an improved structure and method for operating a directional control system for vehicle 5 headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. One or more operating condition sensors may be provided that generate signals that are representative of an operating condition of the vehicle, such as road speed, steering angle, pitch, suspension height, rate of change of road speed, rate of change of steering angle, rate of change of pitch, and rate of change of suspension height of the vehicle. A controller is responsive to the sensor signal for generating an output 15 signal. An actuator is adapted to be connected to the headlight to effect movement thereof in accordance with the output signal. The controller can include a table that relates values of sensed operating condition to values of the output signal. The controller is responsive to the sensor signal for 20 looking up the output signal in the table.

Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiments, when read in light of the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an automatic directional control system for a vehicle headlight in accordance with this invention.

FIG. 2 is a flow chart of an algorithm for calibrating the automatic directional control system illustrated in FIG. 1 so as to define an initial reference position for the headlight from which the headlight directional controller can implement directional angle adjustments.

FIG. 3 is a flow chart of an algorithm for generating a table that relates one or more sensed vehicle operating condition values to one or more headlight directional angle adjustment factors and for storing such table in the headlight directional controller illustrated in FIG. 1.

FIG. 4 is an example of a table that can be generated and stored in the headlight directional controller in accordance with the table generating algorithm illustrated in FIG. 3.

FIG. 5 is a flow chart of an algorithm for operating the headlight directional controller illustrated in FIG. 1 to automatically implement directional angle adjustments in accordance with sensed condition values.
FIG. 6 is a flow chart of an algorithm for operating the headlight directional controller illustrated in FIG. 1 to automatically implement directional angle adjustments in accordance with the rate of change of one or more of the sensed condition values.
FIG. 7 is a flow chart of an algorithm for operating the headlight directional controller illustrated in FIG. 1 to auto55 matically implement directional angle adjustments, but only when the rate of change of one or more of the sensed condition values is less than (or greater than) a predetermined value.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, there is illustrated in FIG. 1 an automatic directional control system, indicated gener65 ally at 10, for a vehicle headlight 11 in accordance with this invention. The illustrated headlight 11 is, of itself, conventional in the art and is intended to be representative of any
device that can be supported on any type of vehicle for the purpose of illuminating any area, such as an area in the path of movement of the vehicle. The headlight 11 is typically mounted on or near the front end of a vehicle (not shown) and is oriented in such a manner that a beam of light is projected therefrom. In a manner that is well known in the art, the headlight 11 is adapted to illuminate a portion of a dark road surface or other area in the path of movement of the vehicle to facilitate safe travel thereon.

The headlight 11 is adjustably mounted on the vehicle 10 such that the directional orientation at which the beam of light projects therefrom can be adjusted relative to the vehicle. Any desired mounting structure can be provided to accomplish this. Typically, the headlight 11 is mounted on the vehicle such that the angle at which the beam of light projects therefrom can be adjusted both (1) up and down relative to a horizontal reference position or plane and (2) left and right relative to a vertical reference position or plane. Although this invention will be described and illustrated in the context of a headlight that is adjustable in both the $u p /$ down direction and the left/right direction, it will be appreciated that this invention may be practiced with any headlight 11 that is adjustable in any single direction or multiple directions of movement, whether up/down, left/ right, or any other direction.

To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13. Such microstepping motors are known in the art and consist of conventional step motors that have appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights $\mathbf{1 1}$. In the illustrated embodiment, the up/down actuator 12 is mechanically connected to the headlight $\mathbf{1 1}$ such that the headlight $\mathbf{1 1}$ can be selectively adjusted up and down relative to a horizontal reference position or plane. Similarly, the illustrated left/ right actuator 13 is mechanically connected to the headlight 11 such that the headlight 11 can be selectively adjusted left and right relative to a vertical reference position or plane.

A headlight directional controller 14 is provided for controlling the operations of the up/down actuator 12 and the left/right actuator 13 and, therefore, the angle at which the beam of light projects from the headlight 11 relative to the vehicle. The headlight directional controller 14 can be embodied as any control system, such as a microprocessor or programmable electronic controller, that is responsive to one or more sensed operating conditions of the vehicle for selectively operating the up/down actuator 12 and the left/ right actuator 13. To accomplish this, the automatic directional control system 10 can include, for example, a pair of condition sensors 15 and 16 that are connected to the headlight directional controller 14. The condition sensors 15 and 16 are conventional in the art and are responsive to respective sensed operating conditions of the vehicle for generating electrical signals to the headlight directional controller 14. However, if desired, only a single one of the condition sensors 15 and 16 need be provided. Alternatively, additional condition sensors (not shown) may be provided if
desired to generate electrical signals that are representative of any other operating conditions of the vehicle. A conventional input/output device 17 is connected to (or can be connected to) the headlight directional controller 14 for facilitating communication therewith in the manner described below.

If desired, a first position feedback sensor 18 may be provided for the up/down actuator 12, and a second position feedback sensor 19 may be provided for the left/right actuator 13. The position feedback sensors 18 and 19 are conventional in the art and are adapted to generate respective electrical signals that are representative of the actual up/down and left/right positions of the headlight 11. Thus, the first position feedback sensor 18 is responsive to the actual up/down position of the headlight 11 (as determined by a portion of the up/down actuator 12, for example) for generating an electrical signal to the headlight directional controller 14 that is representative thereof. Similarly, the second position feedback sensor 19 is responsive to the actual left/right position of the headlight 11 (as determined by a portion of the left/right actuator 13, for example) for generating an electrical signal to the headlight directional controller 14 that is representative thereof. The position feedback sensors 18 and 19 can be embodied as any conventional sensor structures, such as Hall effect sensors, that are responsive to movements of the headlight $\mathbf{1 1}$ (or to the movements of the respective actuators 12 and 13 that are connected to move the headlight 11) for generating such signals.

Alternatively, the position feedback sensors 18 and 19 can be embodied as respective devices that generate electrical signals whenever the headlight 11 has achieved respective predetermined up/down or left/right positions. This can be accomplished, for example, using a conventional optical interrupter (not shown) for each of the actuators 12 and 13. Each of the optical interrupters includes a flag or other component that is mounted on or connected to the headlight 11 for movement therewith. Each of the optical interrupters further includes an optical source and sensor assembly. As the headlight 11 is moved by the actuators 12 and 13 , the flag moves therewith relative to the optical source and sensor assembly between a first position, wherein the flag permits light emitted from the source from reaching the sensor, and a second position, wherein the flag prevents light emitted from the source from reaching the sensor. When the flag is in the first position relative to the optical source and sensor assembly, the sensor is permitted to receive light emitted from the source. As a result, a first signal is generated from the optical source and sensor assembly to the headlight directional controller 14. Conversely, when the flag is in the second position relative to the optical source and sensor assembly, the sensor is not permitted to receive light emitted from the source. As a result, a second signal is generated from the optical source and sensor assembly to the headlight directional controller 14. Thus, the edge of the flag defines a transition between the first and second positions of the flag relative to the optical source and sensor assembly and, therefore, defines a predetermined up/down or left/right position of the headlight 11. The nature of the signal generated from the optical source and sensor assembly to the headlight directional controller 14 (i.e., the first signal or the second signal) can also be used to determine on which side of the predetermined position (the left side or the right side, for example) that the headlight 11 is positioned. The purpose for such position feedback sensors 18 and 19 will be discussed below.

FlG. 2 is a flow chart of an algorithm, indicated generally at 20, for calibrating the automatic directional control system illustrated in FIG. 1 so as to define an initial reference position or positions for the headlight 11 from which the headlight directional controller 14 can implement directional angle adjustments. As mentioned above, the headlight 11 is mounted on the vehicle such that the angle at which the beam of light projects therefrom can be adjusted both up and down relative to a horizontal reference position or plane and left and right relative to a vertical reference position or plane. To insure accurate positioning of the headlight 11, it is desirable that a reference position or positions be initially established by the headlight directional controller 14 . Subsequent directional angle adjustments can be made by the headlight directional controller 14 from the pre-established reference position or positions established by this calibration algorithm 20.
To accomplish this, the calibration algorithm 20 has a first step 21 wherein the headlight directional controller 14 is caused to enter a calibration mode of operation. In the calibration mode of operation, the headlight directional controller 14 is responsive to input signals from the input/ output device 17 (or from another source, if desired) for causing manual operation of the up/down actuator 12 and the left/right actuator 13. Thus, while the headlight directional controller 14 is in the calibration mode of operation, an operator of the input/output device 17 can manually effect either up/down movement of the headlight 11, left/right movement of the headlight 11, or both, as desired.
In a second step 22 of the calibration algorithm 20, the up/down actuator 12 and the left/right actuator 13 are manually operated to aim the headlight 11 in a predetermined reference orientation. This can be accomplished by use of the input/output device 17 that, as mentioned above, is connected to (or can be connected to) the headlight directional controller 14. Traditionally, the aiming of a headlight 11 has been accomplished by parking the vehicle on a surface near a wall or other vertical structure, providing a reference target at a predetermined location on the wall or other structure, and mechanically adjusting the mounting structure of the headlight 11 such that the center of the beam therefrom is projected at the reference target. In this invention, the vehicle is parked on a surface near a wall or other vertical structure, and a reference target is provided at a predetermined location on the wall or other structure, as described above. Next, in accordance with the second step 22 of this calibration algorithm 20, the input/output device 17 is operated to generate electrical signals to the headlight directional controller 14. In response to such electrical signals, the headlight directional controller 14 operates the up/down actuator 12 and the left/right actuator 13 to move the headlight 11 such that center of the beam projecting therefrom is aimed at the reference target. When the beam from the headlight 11 is so aimed, then the headlight $\mathbf{1 1}$ is determined to be oriented in the initial reference position from which the headlight directional controller 14 can subsequently implement directional angle adjustments.

In a third step 23 of the calibration algorithm 20, once this initial reference position for the headlight 11 has been achieved, such position is stored in the headlight directional controller 14 as the predetermined initial reference position. This can be accomplished by means of the position feedback sensors 18 and 19. As discussed above, the position feedback sensors 18 and 19 are adapted to generate respective electrical signals that are representative of the actual up/down and left/right positions of the headlight 11 or of the predetermined positions for the headlight. Thus, the first
position feedback sensor 18 is responsive to the actual up/down position of the headlight 11 (as determined by the up/down actuator 12, for example) for generating an electrical signal to the headlight directional controller 14 that is representative thereof. Similarly, the second position feedback sensor 19 is responsive to the actual left/right position of the headlight 11 (as determined by the left/right actuator 13, for example) for generating an electrical signal to the headlight directional controller 14 that is representative thereof. Accordingly, the third step 23 of the calibration algorithm 20 can be performed by causing the headlight directional controller 14 to read the signals from the position feedback sensors 18 and 19 and store the current up/down and left/right positions of the headlight 11 as the initial reference positions from which the headlight directional controller 14 can subsequently implement directional angle adjustments.
The current position of the headlight 11 is preferably stored in the non-volatile memory of the headlight directional controller 14 for reference during normal operation of the automatic directional control system 10 described below. Thus, when the automatic directional control system 10 is initially activated (such as when the electrical system of the vehicle is initially turned on), the headlight directional controller 14 can position the headlight 11 at or near the calibrated position utilizing the signals comparing the current position of the headlight 11 (as determined by the signals generated by the position feedback sensors 18 and 19) with the predetermined reference position determined by he calibration algorithm 20.
FIG. 3 is a flow chart of an algorithm, indicated generally at 30, for generating a table that relates the sensed condition values from the condition sensors 15 and 16 to the headlight directional angle adjustment factors that will be implemented by the headlight directional controller 14, and further for storing such table in the headlight directional controller 14 illustrated in FIG. 1. As used herein, the term "table" is intended to be representative of any collection or association of data that relates one or more of the sensed condition values to one or more of the headlight directional angle adjustment factors. The table of data can be generated, stored, and expressed in any desired format. For example, this table of data can be generated, stored, and expressed in a conventional spreadsheet format, such as shown in FIG. 4, which will be discussed in detail below.

In a first step 31 of the table generating algorithm 30, an adjustment control algorithm is selected. The adjustment control algorithm can be, generally speaking, any desired relationship that relates one or more operating conditions of the vehicle to one or more angular orientations of the headlight 11. A variety of such relationships are known in the art, and this invention is not intended to be limited to any particular relationship. Typically, such relationships will be expressed in terms of a mathematical equation or similar relationship that can be readily processed using a microprocessor or similar electronic computing apparatus, such as the above-described headlight directional controller 14. The particular adjustment control algorithm that is selected may, if desired, vary from vehicle to vehicle in accordance with a variety of factors, including relative size and performance characteristics of the vehicle or any other desired condition. As mentioned above, a plurality of operating conditions may be sensed by the condition sensors 15 and 16 and provided to the headlight directional controller 14 for use with the adjustment control mechanism. For example, the condition sensors 15 and 16 may generate electrical signals to the headlight directional controller 14 that are represen-
tative of the road speed, the steering angle, and the pitch of the vehicle (which can, for example, be determined by sensing the front and rear suspension heights of the vehicle or by a pitch or level sensor). Additionally, the time derivative of these operating conditions (i.e., the rate of change of the road speed, steering angle, and pitch of the vehicle) can be sensed or calculated. However, any other operating condition or conditions of the vehicle may be sensed and provided to the headlight directional controller 14.

In a second step 32 of the table generating algorithm 30, the table is generated using the adjustment control algorithm selected in the first step 31. The table can be generated in any desired manner. For example, let it be assumed that the selected adjustment control algorithm relates a single sensed operating condition to each of the angular adjustment control values for adjusting both the up/down orientation and the left/right orientation of the headlight 11. The table can be generated by initially selecting a first discrete sensed operating condition value that might be encountered during operation of the vehicle. Then, the selected adjustment control algorithm is solved using such first discrete sensed operating condition value to obtain the corresponding adjustment control values for the up/down and left/right orientation of the headlight 11. Then, the first discrete sensed operating condition value and the corresponding adjustment control values are stored in the table. This process can be repeated for any desired number of other discrete sensed operating condition values that might be encountered during operation of the vehicle.

As mentioned above, FIG. 4 is a representative example of a table, indicated generally at 40 , that can be generated in accordance with the second step 32 of the table generating algorithm 30 illustrated in FIG. 3. As shown therein, a series of discrete sensed operating condition values (degrees of steering angles, for example) is related to the angular adjustment control values (degrees of movement from the associated up/down and left/right reference positions or planes, for example) for adjusting both the up/down orientation and the left/right orientation of the headlight 11. For the purposes of illustration only, let it be assumed that (1) a positive steering angle value represents steering toward left, while a negative steering angle value represents steering toward the right, (2) a positive up/down adjustment factor represents aiming the headlight 11 upwardly, while a negative up/down adjustment factor represents aiming the headlight 11 downwardly, and (3) a positive left/right adjustment factor represents aiming the headlight 11 toward the left, while a negative left/right adjustment factor represents aiming the headlight 11 toward the right.
Thus, in accordance with the selected adjustment control algorithm, a sensed steering angle of $+6^{\circ}$ results in an $\mathrm{up} /$ down adjustment factor of -3.00° and a left/right adjustment factor of $+4.50^{\circ}$. Similarly, a sensed steering angle of $+5^{\circ}$ results in an up/down adjustment factor of -2.50° and a left/right adjustment factor of $+3.75^{\circ}$, and so on as shown in the table 40 . The illustrated table 40 relates thirteen different sensed steering angle values to their corresponding adjustment control values for both the up/down and left/right orientation of the headlight 11. However, the table 40 can include a greater or lesser number of such sensed operating condition values, together with their corresponding adjustment control values. Furthermore, although the illustrated table 40 relates only a single sensed operating condition value (steering angle) to the corresponding adjustment control values for both the up/down and left/right orientation of the headlight 11, the selected adjustment control algorithm may, as mentioned above, be responsive to a plurality of
sensed operating condition values for determining the corresponding adjustment control values. Alternatively, as will be discussed further below, a plurality of tables 40 can be generated, one for each of the plurality of sensed operating condition values. The size and extent of the table 40 or tables can be varied to accommodate any desired number of such sensed operating conditions.

Referring back to FIG. 3, in a third step 33 of the table generating algorithm 30, the table 40 generated in the second step 32 is stored in the memory of the headlight directional controller 14 illustrated in FIG. 1. The contents of the table 40 can be communicated serially to the headlight directional controller 14 by means of the input/output device 17 illustrated in FIG. 1 or in any other desired manner. Regardless 15 of how it is communicated, the table 40 is preferably stored in a non-volatile memory of the headlight directional controller 14 for subsequent use in the manner described further below when the vehicle is operated.

As mentioned above, it may be desirable to vary the algorithm that is selected for use in implementing the headlight directional angle adjustment factors. The generation of the table 40 and the storage of such table 40 in the memory of the headlight directional controller 14 allow a designer of the automatic directional control system 10 to 25 quickly and easily alter the response characteristics of the system 10 as desired, without the need for direct access to the computer code or software that is used to operate the headlight directional controller 14. Rather, to effect such alterations, a designer can simply change some or all of the data points that are contained within the table 40 . As will be described in detail below, the headlight directional controller 14 will use whatever data points that are contained within the table 40 in determining the need for adjustments in the angular orientation of the headlight 11. This structure also 35 reduces the amount of processing power that is necessary for the headlight directional controller 14 because it can operate on a relatively simple look-up basis using the table 40, rather than having to calculate relatively high order equations that may be used to determine the data points contained within

FIG. 5 is a flow chart of an algorithm, indicated generally at 50, for operating the headlight directional controller illustrated in FIG. 1 to automatically implement directional angle adjustments in accordance with one or more of the sensed condition values from the condition sensors 15 and 16. In a first step 51 of the operating algorithm 50 , the values of one or more of the condition sensors 15 and 16 are read by the headlight directional controller 14. Then, the operating algorithm 50 enters a decision point 52, wherein it is determined whether the value or values of the condition sensors 15 and 16 that have been read by the headlight directional controller 14 are specifically contained in the table 40. For example, using the table 40 illustrated in FIG. 4 , if the headlight directional controller 14 has read a steering angle value of -2°, then it is determined that the value of the condition sensor 15 is specifically contained within the table 40. In this instance, the operating algorithm 50 branches from the decision point 52 to an instruction 53, wherein the adjustment factors contained in the table 40 that 0 correspond to the sensed condition value are looked up and stored in the headlight directional controller 14.

The operating algorithm 50 next enters an instruction 54 wherein the value of the magnitude of the adjustment factor (i.e., the desired position for the headlight 11) is compared 5 with the current position of the headlight 11. This step 54 of the operating algorithm 50 is optional and can be performed if one or more of the position feedback sensors 18 and 19 are
provided in the automatic directional control system 10 to generate respective electrical signals that are representative of the actual up/down and left/right positions of the headlight 11, as described above. This step 54 of the operating algorithm 50 can be performed to determine how much of an adjustment is necessary to move the headlight $\mathbf{1 1}$ from its current position, as determined by the position feedback sensors 18 and 19, to the desired position, as defined by the adjustment factor obtained from the table 40. To accomplish this, the value of the adjustment factor may, for example, be subtracted from the current position of the headlight 11 to determine the magnitude of the difference therebetween and, therefore, the magnitude of the adjustment that is necessary to move the headlight 11 from its current position to the desired position. However, this step 54 of the operating algorithm 50 can be accomplished in any other desired manner.

Next, the operating algorithm 50 enters a decision point 55 , wherein it is determined whether the magnitude of the adjustment that is necessary to move the headlight 11 from its current position to the desired position is greater than a predetermined minimum threshold. This step in the operating algorithm 50 is also optional, but may be desirable to prevent the actuators 12 and 13 from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition or conditions, such as relatively small bumps in the road. For example, if the current position of the headlight 11 is relatively close to the desired position, then it may be undesirable to effect any movement thereof. This step 55 will prevent the actuators 12 and 13 from being operated unless the current position of the headlight 11 is relatively far from the desired position. As another example, if the condition sensors 15 and 16 are respectively responsive to the front and rear suspension heights of the vehicle for the purpose of determining the pitch thereof, then the headlight directional controller 14 may be programmed to be responsive only to changes in the suspension heights that occur at frequencies that are lower than the suspension rebound frequency of the vehicle (thereby ignoring relatively high frequency changes in suspension height that are likely the result of bumps in the road). However, relatively high frequency changes in the suspension heights could also be monitored to assist in deciphering relatively rough suspension changes from other suspension changes.

In any event, the provision of the predetermined minimum threshold functions as a filter or dead band that minimizes or eliminates undesirable "hunting" of the actuators $\mathbf{1 2}$ and $\mathbf{1 3}$ for relatively small magnitudes of movement of the headlight 11. If the magnitude of the adjustment factor is not greater than the predetermined minimum threshold, then the operation of the actuators 12 and 13 is considered to be undesirable. Thus, the operating algorithm 50 branches from the decision point 55 back to the instruction 51, wherein the above-described steps of the operating algorithm 50 are repeated.
If, on the other hand, the magnitude of the adjustment factor is greater than the predetermined minimum threshold, then the operation of the actuators 12 and 13 is considered to be desirable. Thus, the operating algorithm 50 branches from the decision point 55 to an instruction 56, wherein either or both of the actuators 12 and 13 are actuated to effect movement of the headlight 11 . For example, using the table 40 illustrated in FIG. 4, if the headlight directional controller 14 has read a steering angle value of -2°, then the headlight directional controller 14 will look up an up/down adjustment factor of -1.00° and a left/right adjustment factor of -1.50°
from the table 40. The headlight directional controller 14 operates the actuators 12 and 13 to adjust the angular orientation of the headlight $\mathbf{1 1}$ to achieve the noted adjustment factors.
In some instances, the amounts of movement that are to be implemented by the two actuators 12 and 13 will be the same (i.e., the amount of up/down movement of the headlight 11 will be the same as the amount of left/right movement). More frequently, however, the amounts of movement that are to be implemented by the two actuators 12 and 13 will be different from one another. In the latter instances, it may be desirable to operate the two actuators 12 and 13 at two different speeds such that the overall movement of the headlight $\mathbf{1 1}$ is relatively uniform. For example, if the amount of movement that is to be implemented by the up/down actuator 12 is twice as large as the amount of movement that is to be implemented by the left/right actuator 13, then it may be desirable to operate the up/down actuator 12 at one-half of the speed of the left/right actuator 13 so that the movements of both actuators 12 and 13 (and, therefore, the overall movement of the headlight 11) will start and stop at approximately the same time. Similarly, if the vehicle is provided with two different headlights 11, as is commonly found, then it may be desirable to control the respective movements of such different headlights 11 in such a manner that they both start and stop at approximately the same time. This can be accomplished, for example, by providing a single headlight directional controller 14 for not only controlling, but also coordinating the movements of both of the headlights 11 in response to the sensed operating conditions.

Such operations can be performed in an open loop manner if desired, wherein the actuators 12 and 13 are operated to achieve predetermined amounts of movement. For example, the actuators 12 and 13 can be embodied as step motors that are operated a predetermined number of steps to achieve predetermined amounts of movement. Alternatively, the actuators 12 and 13 can be operated for predetermined periods of time to achieve the predetermined amounts of movement. However, more desirably, the operations of the actuators 12 and 13 are performed in a closed loop manner. To accomplish this, the actuators 12 and 13 are operated until either or both of the position feedback sensors 18 and 19 generate signals indicate that the headlight $\mathbf{1 1}$ has actually achieved the predetermined amounts of movement or desired position. In either event, the operating algorithm $\mathbf{5 0}$ then branches back to the instruction 51, wherein the abovedescribed steps of the algorithm 50 are repeated.
Referring back to the decision point 52, if the value or values of the condition sensors 15 and 16 that have been read by the headlight directional controller 14 are not specifically contained in the table 40 , then the operating algorithm 50 branches from the decision point 52 to an instruction 57, wherein the adjustment factors that are specifically contained in the table 40 that correspond to the adjacent sensed condition values are looked up and stored in the headlight directional controller 14. For example, using the table 40 illustrated in FIG. 4, if the headlight directional controller 14 has read a steering angle value of -1.5°, then it is determined that the value of the condition sensor 15 is not specifically contained within the table 40 . Rather than simply default to the closest value that is contained within the table 40, the two adjustment factors specifically contained in the table 40 that are adjacent to the sensed condition value (namely, the adjustment factors for the steering angle values of -1° and -2°) are looked up and stored in the headlight directional controller 14.

The operating algorithm 50 next enters an instruction 58, wherein the actual adjustment factors to be implemented by the headlight directional controller 14 are interpolated or otherwise calculated from the stored adjustment factors that are adjacent to the sensed condition value. For example, as mentioned above, if the actual sensed steering angle value is -1.5°, then the headlight directional controller 14 looks up the adjustment factors for the steering angle values of -1° and -2°. The up/down adjustment factor for a steering angle value of -1° is -0.50 while the up/down adjustment factor for a steering angle value of -2° is -1.00°. If the calculation that is performed by the headlight directional controller 14 is a simple arithmetic mean, then the interpolated up/down adjustment factor would be -0.75°. Similarly, the left/right adjustment factor for a steering angle value of -1° is -0.75°, while the left/right adjustment factor for a steering angle value of -2° is -1.50°. If the calculation that is performed by the headlight directional controller 14 is a simple arithmetic mean, then the interpolated left/right adjustment factor would be -1.13°. Thereafter, the operating algorithm 50 branches to the decision point 55, and the remainder of the 20 operating algorithm 50 is performed as described above.

The interpolation that is performed by the headlight directional controller 14 can be accomplished in any desired manner. The performance of the simple arithmetic mean described above is intended to be representative of any mathematical or other function that can be performed to calculate, derive, or otherwise obtain adjustment factors that are not present in the table 40. Furthermore, although this interpolation has been described in the context of using only the two condition values that are directly adjacent to the actual sensed condition value, it will be appreciated that the adjustment values for any single condition value or combination of sensed condition values may be selected for the interpolation. For example, several of the condition values both above and below the sensed condition value can be read from the table 40 to derive a trend line or other good estimate of the adjustment factors that are not present in the table 40. Performance of this interpolation does not require any significant increase in the amount of processing power that is necessary for the headlight directional controller 14.
The above discussion has assumed the use of a single table 40 that provides adjustment values based upon a single sensed operating condition (steering angle of the vehicle, in the illustrated embodiment). However, as discussed above, this invention may be practiced by sensing a plurality of operating conditions of the vehicle. For example, let it be assumed that both steering angle and vehicle road speed are sensed by the condition sensors 15 and 16. As previously discussed, the adjustment control algorithm that is selected in the first step 31 of the table generating algorithm 30 can be designed to accommodate multiple sensed conditions. Alternatively, however, a first table (such as the table 40 illustrated in FIG. 4) may be generated that relates the steering angle of the vehicle to the angular adjustment control values for adjusting both the up/down orientation and the leftright orientation of the headlight 11. A second, similar table (not shown) may also be generated that relates the road speed of the vehicle to the angular adjustment control values for adjusting both the up/down orientation and the left/right orientation of the headlight 11 . Thus, for a given steering angle and road speed of the vehicle, the first and second tables may provide differing angular adjustment control values. To address this, the interpolation step 57 of the operating algorithm 50 can be performed to interpolate a single composite adjustment value that is based upon the two different values provided in the first and second tables for the pair of sensed operating conditions. This interpolation can be performed in the same manner as described above for each of the actuators 12 and 13.

A variety of control strategies can be implemented using the automatic directional control system 10 described above. For example, the pitch of the vehicle can change as a result of a variety of factors, including acceleration, deceleration, and weight distribution of the vehicle. These pitch variations can alter the angle at which the beam of light projects from the headlight 11 in the up and down direction relative to a horizontal reference position or plane. The automatic directional control system 10 can be responsive to such pitch variations for operating the up/down actuator 12 to maintain the angle at which the beam of light projects from the headlight 11 in the up and down direction relatively constant to the horizontal reference position or plane.

As discussed above, the angle at which the beam of light projects from the headlight 11 in the left and right direction relative to a vertical reference position or plane can be adjusted in accordance with the sensed steering angle. However, the angle at which the beam of light projects from the headlight 11 in the up and down direction relative to a horizontal reference position or plane can also be adjusted in accordance with the sensed steering angle. This can be done to lower the headlight beams as the vehicle is turning a corner. The advantages of this are not only to better illuminate the road surface in the path of movement of the vehicle, but also to reduce headlight glare to other vehicles as the turn is negotiated.

Lastly, many vehicles on the road today have halogen lamps or other lights that are aimed to illuminate the sides of the roads in front of the vehicle during the turn. These other lights are activated by the manual operation of the turn signals of the vehicle. The automatic directional control system 10 of this invention can be responsive to one or more operating conditions of the vehicle to automatically activate these other lights on the vehicle. For example, the automatic directional control system 10 of this invention can be responsive to a steering angle in excess of a predetermined magnitude for automatically activating these other lights on the vehicle. This can be effective to extend the angular range of illumination of the road surface.
FIG. 6 is a flow chart of an algorithm, indicated generally at 60 , for operating the headlight directional controller illustrated in FIG. 1 to automatically implement directional angle adjustments in accordance with the rate of change of one or more of the sensed condition values. As mentioned above, the headlight directional controller 14 can be operated to automatically implement directional angle adjustments in accordance with one or more of the sensed condition values or in accordance with the rate of change of one or more of the sensed condition values.

To accomplish this, the algorithm 60 has a first step 61 wherein the values of one or more of the condition sensors 15 and 16 are initially read by the headlight directional controller 14. Then, the algorithm 60 enters a second step 62 wherein the values of one or more of the condition sensors 15 and 16 are subsequently read a second time by the headlight directional controller 14. The second reading of the condition sensors 15 and 16 occurs a predetermined amount of time after the first reading thereof. Next, the algorithm enters a third step 63 wherein a rate of change of the sensed condition or conditions is calculated. The rate of change of the sensed condition can be calculated as the difference between the first and second readings divided by the amount of time therebetween or by any other desired means. For example, if the sensed condition is vehicle speed, then the difference between the first sensed vehicle speed and the second sensed vehicle speed, divided by the amount of time therebetween, would yield a number that is repre-
sentative of the acceleration of the vehicle. In a final step 64 of the algorithm 60, either or both of the actuators 12 and 13 are actuated to effect movement of the headlight 11 in accordance with the calculated rate of change of the sensed condition. Such movement of the headlight 11 can be effected in a manner that is similar to that described above.

FIG. 7 is a flow chart of an algorithm, indicated generally at 70, for operating the headlight directional controller illustrated in FIG. 1 to automatically implement directional angle adjustments, but only when the rate of change of one or more of the sensed condition values is less than (or greater than) a predetermined value. As mentioned above, the headlight directional controller 14 can be operated to automatically implement directional angle adjustments in accordance with one or more of the sensed condition values. In this variation of the invention, the headlight directional controller 14 automatically implements directional angle adjustments in response to the sensed condition values (or in response to the rate of change of the sensed condition values), but only when the rate of change of one or more of the sensed condition values is less than (or greater than) a predetermined value.
To accomplish this, the algorithm 70 has a first step 71 wherein the values of one or more of the condition sensors 15 and 16 are initially read by the headlight directional controller 14. Then, the algorithm 70 enters a second step 72 wherein the values of one or more of the condition sensors 15 and 16 are subsequently read a second time by the headlight directional controller 14. The second reading of the condition sensors 15 and 16 occurs a predetermined amount of time after the first reading thereof. Next, the algorithm enters a third step 73 wherein a rate of change of the sensed condition or conditions is calculated. The rate of change of the sensed condition can be calculated as the difference between the first and second readings divided by the amount of time therebetween or by any other desired means. For example, if the sensed condition is suspension height, then the difference between the first sensed suspension height and the second sensed suspension height, divided by the amount of time therebetween, would yield a number that is representative of the rate of change of the suspension height of the vehicle.
In a fourth step 74 of the algorithm 70, a determination is made as to whether the rate of change of the sensed condition value is less than a predetermined threshold value. If the rate of change of the sensed condition value is less than this predetermined threshold value, then the algorithm 70 branches from the decision point 74 to a final step 75 of the algorithm 70, wherein either or both of the actuators 12 and 13 are actuated to effect movement of the headlight 11 in 5 accordance with the calculated rate of change of the sensed condition. Such movement of the headlight 11 can be effected in a manner that is similar to that described above. If, however, the rate of change of the sensed condition value is not less than this predetermined threshold value, then the algorithm 70 branches from the decision point 74 back to the first step 71, wherein the algorithm 70 is repeated. This threshold sensing algorithm 70 can function to prevent the headlight directional controller 14 from being operated to automatically implement directional angle adjustments when the rate of change of the suspension height of the vehicle changes more rapidly than the system can effect corrective changes. For example, if the vehicle is operated on a bumpy road, the algorithm 70 will prevent the headlight directional controller 14 from attempting to correct for every single bump that is encountered. However, for relatively low frequency or rates of change in the suspension height of the
vehicle, such as can occur when accelerating, decelerating, and weight changes, the headlight directional controller 14 will be operated in the normal manner to effect corrective actions, as described above.

As mentioned above, the input/output device 17 is connected to (or can be connected to) the headlight directional controller 14 for facilitating communication therewith, and the input/output device 17 can be used for calibrating the automatic directional control system illustrated in FIG. 1 so 10 as to define an initial reference position or positions for the headlight 11 from which the headlight directional controller 14 can implement directional angle adjustments. Additionally, however, the input/output device 17 can be employed as a diagnostic tool. To accomplish this, the input/output device 17 can be embodied as a conventional microprocessor or similar electronically programmable device that can be connected to the headlight directional controller 14 to read fault codes that may be generated during the operation thereof. The headlight directional controller 14 can be programmed to generate fault codes whenever a fault condition or other anomaly occurs or is detected. Such fault codes can be stored in the headlight directional controller 14 until the input/output device 17 is subsequently connected thereto. When so connected, the input/output device 17 can read such codes and display them for an operator. As a result, the operator can take whatever corrective actions are necessary to address the fault condition or anomaly. The input/ output device $\mathbf{1 7}$ can also be programmed to clear the fault codes from the headlight directional controller 14 after they are read.

In accordance with the provisions of the patent statutes, the principle and mode of operation of this invention have been explained and illustrated in its preferred embodiments. However, it must be understood that this invention may be 35 practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.

What is claimed is:

1. An automatic directional control system for a vehicle headlight comprising:
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension height of the vehicle;
a controller that is responsive to said sensor signal for generating an output signal only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.
2. The automatic directional control system defined in
nal control system defined in claim 1 wherein said sensor generates a signal that is representative of the pitch of the vehicle.
3. The automatic directional control system defined in claim 1 wherein said sensor generates a signal that is 65 representative of the suspension height of the vehicle.

EXHIBIT 2

Page 676 of 1228

IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS
TYLER DIVISION

BALTHER TECHNOLOGIES, LLC,	$\begin{aligned} & \S \\ & \S \end{aligned}$
Plaintiff,	§
	§
v.	§
	§
AMERICAN HONDA MOTOR CO. INC.,	§
HONDA MOTOR COMPANY, LTD., BMW	§
OF NORTH AMERICA, LLC, BMW AG,	§
CHRYSLER GROUP LLC, FERRARI	§
NORTH AMERICA, INC., FERRARI S.P.A.,	§
GENERAL MOTORS, LLC, HYUNDAI	§
MOTOR AMERICA, HYUNDAI MOTOR	§ Civil Action No. 6:10-CV-78
COMPANY, JAGUAR LAND ROVER	§
NORTH AMERICA, LLC, JAGUAR CARS	§
LIMITED, MASERATI NORTH AMERICA,	§
INC., MASERATI S.P.A., MERCEDES-BENZ	§
USA, LLC, DAIMLER NORTH AMERICA	§ JURY TRIAL DEMANDED
CORP., DAIMLER AG, MAZDA MOTOR	§
OF NORTH AMERICA, INC., MAZDA	§
MOTOR CORP., MITSUBISHI MOTORS	§
NORTH AMERICA, INC., MITSUBISHI	§
MOTORS CORP., NISSAN NORTH	§
AMERICA, INC., NISSAN MOTOR CO.,	§
LTD., PORSCHE CARS NORTH AMERICA,	§
INC., DR. ING. HC. F. PORSCHE AG, SAAB	§
CARS NORTH AMERICA, INC., TOYOTA	§
MOTOR NORTH AMERICA, INC.,	§
TOYOTA MOTOR SALES, U.S.A., INC.,	§
TOYOTA MOTOR CORP., VOLKSWAGEN	§
GROUP OF AMERICA, INC.,	§
AUTOMOBILI LAMBORGHINI S.P.A.,	§
AUDI AG, VOLKSWAGEN AG, FORD	§
MOTOR COMPANY, VOLVO CARS OF	§
NORTH AMERICA, LLC, and VOLVO CAR	§
CORP.,	§
	§
Defendants.	§

ORIGINAL COMPLAINT FOR PATENT INFRINGEMENT

This is an action for patent infringement in which Plaintiff Balther Technologies, LLC ("Balther") complains against Defendants American Honda Motor Co. Inc. and Honda Motor Company, Ltd. (collectively "Honda"); BMW of North America, LLC and BMW AG (collectively "BMW"); Chrysler Group LLC ("Chrysler"); Ferrari North America, Inc. and Ferrari S.p.A. (collectively "Ferrari"); General Motors, LLC (formerly known as General Motors Company) ("GM"); Hyundai Motor America and Hyundai Motor Company (collectively "Hyundai"); Jaguar Land Rover North America, LLC and Jaguar Cars Limited (collectively "Jaguar"); Maserati North America, Inc. and Maserati S.p.A. (collectively "Maserati"); Mercedes-Benz USA, LLC, Daimler North America Corporation, and Daimler AG (collectively "Mercedes-Benz"); Mazda Motor of America, Inc. (also known as Mazda North American Operations) and Mazda Motor Corporation (collectively "Mazda"); Mitsubishi Motors North America, Inc. and Mitsubishi Motors Corporation (collectively "Mitsubishi"); Nissan North America, Inc. and Nissan Motor Co., Ltd. (collectively "Nissan"); Porsche Cars North America, Inc. and Dr. Ing. hc. F. Porsche AG (collectively "Porsche"); SAAB Cars North America, Inc. ("SAAB"); Toyota Motor North America, Inc., Toyota Motor Sales, U.S.A., Inc., and Toyota Motor Corporation (collectively "Toyota"); Volkswagen Group of America, Inc. (also known as Audi of America, Inc.) ("VW-Audi US"); Automobili Lamborghini S.p.A. ("Lamborghini"); Audi AG; Volkswagen AG ("VW AG"); Ford Motor Company ("Ford"); and Volvo Cars of North America, LLC and Volvo Car Corporation (collectively "Volvo"), as follows:

PARTIES

1. Plaintiff Balther Technologies, LLC is a Texas limited liability company having its principal place of business in Longview, Texas.
2. On information and belief, Defendant American Honda Motor Co. Inc. is a California corporation having its principal place of business in Torrance, California.
3. On information and belief, Defendant Honda Motor Company, Ltd. is a Japanese corporation having its principal place of business in Tokyo, Japan.
4. On information and belief, Defendant American Honda Motor Co. Inc. is a subsidiary of Defendant Honda Motor Company, Ltd.
5. On information and belief, Defendant BMW of North America, LLC is a Delaware limited liability company having its principal place of business in Woodcliff Lake, New Jersey.
6. On information and belief, Defendant BMW AG is a German corporation having its principal place of business in Munich, Germany.
7. On information and belief, Defendant BMW of North America, LLC is a wholly owned subsidiary of BMW (US) Holding Corp., which is a wholly owned subsidiary of Defendant BMW AG.
8. On information and belief, Defendant Chrysler is a Delaware limited liability company having its principal place of business in Auburn Hills, Michigan.
9. On information and belief, Defendant Ferrari North America, Inc. is a Delaware corporation having its principal place of business in Englewood Cliffs, New Jersey.
10. On information and belief, Defendant Ferrari S.p.A. is an Italian corporation having its principal place of business in Maranello, Italy.
11. On information and belief, Defendant Ferrari North America, Inc. is a whollyowned subsidiary of Defendant Ferrari S.p.A.
12. On information and belief, Defendant GM is a Delaware limited liability company having its principal place of business in Detroit, Michigan.
13. On information and belief, Defendant Hyundai Motor America is a California corporation having its principal place of business in Fountain Valley, California.
14. On information and belief, Defendant Hyundai Motor Company is a Korean corporation having its principal place of business in Seoul, South Korea.
15. On information and belief, Defendant Hyundai Motor America is a wholly owned subsidiary of Defendant Hyundai Motor Company.
16. On information and belief, Defendant Jaguar Land Rover North America, LLC is a Delaware limited liability company having its principal place of business in Mahwah, New Jersey.
17. On information and belief, Defendant Jaguar Cars Limited is a UK corporation having its principal place of business in Whitley, England.
18. On information and belief, Defendant Jaguar Land Rover North America LLC is a wholly owned subsidiary of Defendant Jaguar Cars Limited.
19. On information and belief, Defendant Maserati North America, Inc. is a Delaware corporation having its principal place of business in Englewood Cliffs, New Jersey.
20. On information and belief, Defendant Maserati S.p.A. is an Italian corporation having its principal place of business in Modena, Italy.
21. On information and belief, Defendant Maserati North America, Inc. is a wholly owned subsidiary of Defendant Maserati S.p.A.
22. On information and belief, Defendant Mercedes-Benz USA, LLC is a Delaware limited liability company having its principal place of business in Montvale, New Jersey.

Case 6:10-cv-00078-LED Document 1 Filed 03/08/2010 Page 5 of 20
23. On information and belief, Defendant Daimler North America Corp. is a Delaware corporation having its principal place of business in Bingham Farms, Michigan.
24. On information and belief, Defendant Daimler $A G$ is a German corporation having its principal place of business in Stuttgart, Germany.
25. On information and belief, Defendant Mercedes-Benz USA LLC is a wholly owned subsidiary of Defendant Daimler North America Corp., which is a wholly owned subsidiary of Defendant Daimler AG.
26. On information and belief, Defendant Mazda Motor of America, Inc. is a California corporation having its principal place of business in Irvine, California.
27. On information and belief, Defendant Mazda Motor Corporation is a Japanese corporation having its principal place of business in Hiroshima, Japan.
28. On information and belief, Defendant Mazda Motor of America, Inc. is a subsidiary of Defendant Mazda Motor Corporation.
29. On information and belief, Defendant Mitsubishi Motors North America, Inc. is a California corporation having its principal place of business in Cypress, California.
30. On information and belief, Defendant Mitsubishi Motors Corporation is a Japanese corporation having its principal place of business in Tokyo, Japan.
31. On information and belief, Defendant Mitsubishi Motors North America, Inc. is a wholly owned subsidiary of Defendant Mitsubishi Motors Corporation.
32. On information and belief, Defendant Nissan North America, Inc. is a California corporation having its principal place of business in Franklin, Tennessee.
33. On information and belief, Defendant Nissan Motor Co., Ltd. is a Japanese corporation having its principal place of business in Kanagawa, Japan.
34. On information and belief, Defendant Nissan North America, Inc. is a subsidiary of Defendant Nissan Motor Co., Ltd.
35. On information and belief, Defendant Porsche Cars North America, Inc. is a Delaware corporation having its principal place of business in Atlanta, Georgia.
36. On information and belief, Defendant Dr. Ing. hc. F. Porsche AG is a German corporation having its principal place of business in Stuttgart, Germany.
37. On information and belief, Defendant Dr. Ing. hc. F. Porsche AG indirectly owns the stock of Defendant Porsche Cars North America, Inc.
38. On information and belief, Defendant SAAB is a Delaware corporation having its principal place of business in Detroit, Michigan.
39. On information and belief, Defendant Toyota Motor North America, Inc. is a California corporation having its principal place of business in New York, New York.
40. On information and belief, Defendant Toyota Motor Sales, U.S.A., Inc. is a California corporation having its principal place of business in Torrance, California.
41. On information and belief, Defendant Toyota Motor Corporation is a Japanese corporation having its principal place of business in Toyota City, Japan.
42. On information and belief, Defendant Toyota Motor North America, Inc. and Defendant Toyota Motor Sales, U.S.A., Inc. are each wholly owned subsidiaries of Defendant Toyota Motor Corporation.
43. On information and belief, Defendant VW-Audi US is a New Jersey corporation having its principal place of business in Herndon, Virginia.
44. On information and belief, Defendant Lamborghini is an Italian corporation having its principal place of business in Sant' Agata Bolognese, Italy.

Case 6:10-cv-00078-LED Document 1 Filed 03/08/2010 Page 7 of 20
45. On information and belief, Defendant VW AG is a German corporation having its principal place of business in Wolfsburg, Germany.
46. On information and belief, Defendant VW-Audi US and Defendant Lamborghini are each wholly owned subsidiaries of Defendant VW AG.
47. On information and belief, Defendant Audi AG is a German corporation having its principal place of business in Ingolstadt, Germany.
48. On information and belief, Defendant Audi AG is a 99.55% owned subsidiary of Defendant VW AG.
49. On information and belief, Defendant Ford Motor Company is a Delaware corporation having its principal place of business in Dearborn, Michigan.
50. On information and belief, Defendant Volvo Cars of North America, LLC is a Delaware limited liability company having its principal place of business in Rockleigh, New Jersey.
51. On information and belief, Defendant Volvo Car Corporation is a Swedish corporation having its principal place of business in Göteborg, Sweden.
52. On information and belief, Defendant Volvo Cars of North America, LLC is a subsidiary of Defendant Volvo Car Corporation.

JURISDICTION AND VENUE

53. This action arises under the patent laws of the United States, Title 35 of the United States Code. This Court has subject matter jurisdiction pursuant to 28 U.S.C. $\$ \$ 1331$ and 1338(a).
54. Venue is proper in this district under 28 U.S.C. $\S 1391$ (c) and 1400 (b). On information and belief, each Defendant has transacted business in this district and has committed and/or induced and/or contributed to acts of patent infringement in this district.
55. On information and belief, Defendants are subject to this Court's specific and general personal jurisdiction pursuant to due process and/or the Texas Long Arm Statute, due at least to their substantial business in this forum, directly or through intermediaries, including: (i) at least a portion of the infringements alleged herein; and (ii) regularly doing or soliciting business, engaging in other persistent courses of conduct, and/or deriving substantial revenue from goods and services provided to individuals in Texas and in this Judicial District.

PATENT INFRINGEMENT

56. Balther is the owner by assignment of United States Patent No. 7,241,034 ("the '034 patent") entitled "Automatic Directional Control System for Vehicle Headlights." The ' 034 patent was duly and legally issued on July 10, 2007. A true and correct copy of the ' 034 patent is attached as Exhibit A.
57. On information and belief, Defendant Honda has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Honda's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Acura RL product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Honda that includes automatic directional and/or leveling control system(s) for vehicle lights
or similar features that infringe one or more claims of the '034 patent. Honda is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. $\S 271$.
58. On information and belief, Defendant BMW has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the '034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. BMW's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the BMW 5 Series and Mini Cooper S products that include automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by BMW that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the '034 patent. BMW is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. $\S 271$.
59. On information and belief, Defendant Chrysler has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Chrysler's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States at least the Jeep Grand Cherokee product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Chrysler that includes automatic directional and/or leveling control system(s) for velicle lights or similar features that infringe one or more claims of the ' 034 patent. Chrysler is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
60. On information and belief, Defendant Ferrari has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the '034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Ferrari's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Ferrari California product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Ferrari that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. Ferrari is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
61. On information and belief, Defendant GM has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the '034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. GM's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States at least the Cadillac CTS and Buick Enclave products that include automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by GM that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. GM is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
62. On information and belief, Defendant Hyundai has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the '034 patent in the State of Texas, in this judicial district, and elsewhere in the

United States. Hyundai's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Hyundai Genesis product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Hyundai that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the '034 patent. Hyundai is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
63. On information and belief, Defendant Jaguar has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Jaguar's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Jaguar XKR and Land Rover Range Rover Sport products that include automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Jaguar that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. Jaguar is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
64. On information and belief, Defendant Maserati has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the " 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Maserati's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the

Maserati GranTurismo product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Maserati that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the '034 patent. Maserati is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
65. On information and belief, Defendant Mercedes-Benz has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Mercedes-Benz's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Mercedes-Benz GL550 and Maybach 57 products that include automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Mercedes-Benz that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. Mercedes-Benz is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. $\S 271$.
66. On information and belief, Defendant Mazda has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the '034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Mazda's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Mazda RX-8 product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold
by Mazda that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the '034 patent. Mazda is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
67. On information and belief, Defendant Mitsubishi has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Mitsubishi's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Mitsubishi Outlander XLS product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Mitsubishi that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the '034 patent. Mitsubishi is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
68. On information and belief, Defendant Nissan has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Nissan's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Infiniti G37 Sport product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Nissan that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the '034 patent. Nissan is thus liable for infringement of the '034 patent pursuant to 35 U.S.C. $\$ 271$.
69. On information and belief, Defendant Porsche has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Porsche's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Porsche 911 GT3 product that includes automatic directional and/or leveling control system(s) for vehicle lighits or similar features, and any other product made, used, offered for sale, and/or sold by Porsche that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the '034 patent. Porsche is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
70. On information and belief, Defendant $S A A B$ has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the '034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. SAAB's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Saab 9-3 2.0T product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by SAAB that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the '034 patent. SAAB is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
71. On information and belief, Defendant Toyota has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the

United States. Toyota's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Toyota Avalon product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Toyota that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. Toyota is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
72. On information and belief, Defendants Toyota Motor Sales, U.S.A., Inc. and Toyota Motor Corporation have been and now are further directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the "034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Toyota Motor Sales, U.S.A., Inc. and Toyota Motor Corporation's further infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Lexus IS 250 product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Toyota Motor Sales, U.S.A., Inc. and Toyota Motor Corporation that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. Toyota Motor Sales, U.S.A., Inc. and Toyota Motor Corporation are thus liable for further infringement of the '034 patent pursuant to 35 U.S.C. § 271.
73. On information and belief, Defendants VW-Audi US, Audi AG, and VW AG have been and now are directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial
district, and elsewhere in the United States. VW-Audi US, Audi AG, and VW AG's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Audi S4 Avant product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by VW-Audi US, Audi AG, and VW AG that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. VW-Audi US, Audi AG, and VW AG are thus liable for infringement of the '034 patent pursuant to 35 U.S.C. § 271.
74. On information and belief, Defendants VW-Audi US and VW AG have been and now are further directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. VW-Audi US and VW AG's further infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Volkswagen Passat Lux product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by VW-Audi US and VW AG that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. VW-Audi US and VW AG are thus liable for further infringement of the ' 034 patent pursuant to 35 U.S.C. $\S 271$.
75. On information and belief, Defendants Lamborghini and VW AG have been and now are directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and
elsewhere in the United States. Lamborghini and VW AG's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the Lamborghini Gallardo product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Lamborghini and VW AG that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. Lamborghini and VW AG are thus liable for infringement of the '034 patent pursuant to 35 U.S.C. $\$ 271$.
76. On information and belief, Defendant Ford has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the ' 034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Ford's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States at least the Lincoln MKX product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Ford that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the ' 034 patent. Ford is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
77. On information and belief, Defendant Volvo has been and now is directly infringing, and/or inducing infringement by others, and/or contributing to the infringement by others of the '034 patent in the State of Texas, in this judicial district, and elsewhere in the United States. Volvo's infringements include, without limitation, making, using, offering for sale, and/or selling within the United States, and/or importing into the United States, at least the

Volvo S 80 product that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features, and any other product made, used, offered for sale, and/or sold by Volvo that includes automatic directional and/or leveling control system(s) for vehicle lights or similar features that infringe one or more claims of the " 034 patent. Volvo is thus liable for infringement of the ' 034 patent pursuant to 35 U.S.C. § 271.
78. As a result of Defendants' infringement of the '034 patent, Balther has suffered monetary damages that are adequate to compensate it for the infringement under 35 U.S.C. § 284 , but in no event less than a reasonable royalty.

PRAYER FOR RELIEF

WHEREFORE, Balther requests that this Court enter:
A. A judgment in favor of Balther that Defendants have directly infringed, induced others to infringe, and/or contributed to others' infringement of the ' 034 patent;
B. A judgment and order requiring Defendants to pay Balther its damages, costs, expenses, and prejudgment and post-judgment interest for Defendants' infringement of the '034 patent as provided under 35 U.S.C. § 284; and
C. Any and all other relief to which the Court may deem Balther entitled.

DEMAND FOR JURY TRIAL

Balther, under Rule 38 of the Federal Rules of Civil Procedure, requests a trial by jury of any issues so triable by right.

Respectfully submitted,

Eric M. Albritton
Texas Bar No. 00790215
Adam A. Biggs

Texas Bar No. 24051753
Debra Coleman
Texas Bar No. 24059595
Matthew C. Harris
Texas Bar No. 24059904
ALBRITTON LAW FIRM
P.O. Box 2649

Longview, Texas 75606
'Telephone: (903) 757-8449
Facsimile: (903) 758-7397
ema@emafirm.com
aab@emafirm.com
drc@emafirm.com
mch@emafirm.com
Thomas John Ward, Jr.
Texas Bar No. 00794818
WARD \& SMITH LAW FIRM
P.O. Box 1231

Longview, Texas 75606
Telephone: (903) 757-6400
Facsimile: (903) 757-2323
jw@jwfirm.com
Danny L. Williams
Texas Bar No. 21518050
J. Mike Amerson

Texas Bar No. 01150025
Jaison C. John
Texas State Bar No. 24002351
Christopher N. Cravey
Texas Bar No. 24034398
Matthew R. Rodgers
Texas Bar No. 24041802
Michael A. Benefield
Indiana Bar No. 24560-49
David Morehan
Texas Bar No. 24065790
WILLIAMS, MORGAN \& AMERSON, P.C.
10333 Richmond, Suite 1100
Houston, Texas 77042
Telephone: (713) 934-7000
Facsimile: (713) 934-7011
danny@wmalaw.com
mike@wmalaw.com
jjohn@wmalaw.com
ccravey@wmalaw.com
mrodgers@wmalaw.com
mbenefield@wmalaw.com
dmorehan@wmalaw.com
Attorneys for Balther Technologies, LLC

CERTIFICATE OF SERVICE

The undersigned certifies that the foregoing document was filed electronically in compliance with Local Rule CV-5(a). As such, this motion was served on all counsel who are deemed to have consented to electronic service. Local Rule CV-5(a)(3)(A). Pursuant to Fed. R. Civ. P. 5(d) and Local Rule CV-5(d) and (e), all other counsel of record not deemed to have consented to electronic service were served with a true and correct copy of the foregoing by email and/or fax, on this the 8th day of March 2010.

Eric M. Albritton

IN THE UNITED STATES DISTRICT COURT
FOR THE EASTERN DISTRICT OF TEXAS
TYLER DIVISION

ORIGINAL COMPLAINT FOR PATENT INFRINGEMENT

EXHIBIT A

${ }^{(12)}$ United States Patent Smith et al.

(10) Patent No.: US 7,241,034 B2
(45) Date of Patent: Jul. 10, 2007
(54) AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE FEADLIGHTS
(75)

Inventors: James E. Smith, Berkey, OH (US); Anthony B. MeDonald, Perrysburg, OH (US)
(73) Assignee: Dana Corporation, Toledio, OH (US)
(*) Notice: Subject to any disclaimer, the tem of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
(21) Appl. No:: 10/285,312
(22) Filed:

Oct 31, 2002
(65)

US 2003/0107898 A1 Jun. 12, 2003
Related U.S. Application Data
(60) Provisional application No. 60/369,447, filed on Apr. 2,2002, provisional application No. $60 / 356,703$, filed on Feb. 13, 2002, provisional application No. 60/335, 409, filed on Oct. 31, 2001.
(51) Int. Cl.

$B 60 Q 1 / 00$	(2006.01)
$B 60 R 22 / 00$	(2006.01)

(52) US Cl
(2006.01)
(52)
... 362/465; 701/49
Field of Classification Search 362/37, $362 / 465-466 ; 315 / 82 ; 701 / 49$
See application file for complete search history.
(56)

References Cited

U.S. PATENT DOCUMENTS

3,634,677 A	$1 / 1972$	Stuttgart et al. $362 / 467$	
$3,939,339$	A	$2 / 1976$	Alphen $362 / 467$
$3,953,726 ~ A ~$	$4 / 1976$	Scarritt, Sr. $362 / 465$	
$4,024,388 ~ A$	$5 / 1977$	Skoff $362 / 467$	

4,066,886 A	1/1978	Martin 362/465
4,162,424 A	$7 / 1979$	Zillgitt et al, 362/467
4,186,428 A	1/1980	Deverrewacre 362/466
4,204,270 A	5/1980	d'Orsay 362/466
4,217,631 A	\$/1980	Bergkvist 362/466
4,225,902 A	$9 / 1980$	Ishikawa et al. 318/696
4,310,172 A	1/1982	Claude et al. 362/466
4,549,277 A	10/1985	Brunson et al.
4,583,152 A	4/1986	Kawai et al. $280 / 6.158$
4,768,135 A	$8 / 1988$ (Con	Kretschmer et al. \qquad 362/40 tinued)
FOREIGN PATENT DOCUMENTS		
	6611	3/1989
	(Continued)	

Primary Examiner-Ali Alavi
(74) Attorney, Agent, or Firm-MacMillan, Sobanski \& Todd, LLC

(57)

ABSTRACT

A structure and method for operating a directional control system for vehicle headlights that is capable of altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. One or more operating condition sensors may be provided that generate signals that are representative of a condition of the vehicle, such as road speed, steering angle, pitch, suspension height, rate of change of road speed, rate of change of steering angle, rate of change of pitch, and rate of change of suspension height of the vehicle. A controller is responsive to the sensor signal for generating an output signal. An actuator is adapted to be connected to the headlight to effect movement thereof in accordance with the output signal. The controller can include a table that relates values of sensed operating condition to values of the output signal. The controller is responsive to the sensor signal for looking up the output signal in the table.

5 Claims, 7 Drawing Sheets

US 7,241,034 B2
Page 2

FIG. 1

SENSED CONDITION (STERING ANGLE) VALUES	UP/DOWN ADIUSTMENT FACTORS	LEFT/RIGHT ADJUSTMENT FACTORS
$+6^{\circ}$	-3.00°	$+4.50^{\circ}$
$+5^{\circ}$	-2.50°	$+3.75^{\circ}$
$+4^{\circ}$	-2.00°	$+3.00^{\circ}$
$+3^{\circ}$	-1.50°	$+2.25^{\circ}$
$+2^{\circ}$	-1.00°	$+1.50^{\circ}$
$+1^{\circ}$	-0.50°	$+0.75^{\circ}$
0°	0.00°	0.00°
-1°	-0.50°	-0.75°
-2°	-1.00°	-1.50°
-3°	-1.50°	-2.25°
-4°	-2.00°	-3.00°
-5°	-2.50°	-3.75°
-6°	-3.00°	-4.50°

FIG. 4

AU'TOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Nos. 60/335,409, filed Oct. 31, 2001; 60/356, 703, filed Feb. 13, 2002; and 60/369,447, filed Apr. 2, 2002, the disclosures of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

This invention relates in general to headlights that are provided on vehicles for illuminating dark road surfaces or other areas in the path of moveruent. In particular, this invention relates to an automatic directional control system for such vehicle headlights.

Virtually all land vehicles, and many other types of vehicles (such as boats and airplanes, for example), are provided with one or more headlights that are adapted to illuminate a portion of a dark road surface or other area in the path of movement of the vehicle to facilitate safe travel thereon. Typically, each headlight is mounted on or near the front end of the venicle and is oriented in such a manner that a beam of light is projected forwardly therefrom. The angle at which the beam of light projects from the headlight can, for example, be characterized in a variety of ways, including (1) up and down relative to a horizontal reference position or plane and (2) left and right relative to a vertical reference position or plane. Such directional aiming angles are usually set at the time of assembly of the headlight into the vehicle so as to illuminate a predetermined portion of the road surface or other area in the path of movement of the vehicle.
In the past, these headlights have been mounted on the vehicle in fixed positions relative thereto such that the beams of light are projected therefrom at predetermined directional aiming angles relative to the vehicle. Although such fixed aiming angle headlight systems have and continue to function adequately, they cannot alter the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. For example, if the speed of the vehicle is increased, it would be desirable to adjust the aiming angle of the headlights upwardly such that an area that is somewhat farther in front of the vehicle is more brighily illuminated. On the other hand, if the speed of the vehicle is decreased, it would be desirable to adjust the aiming angle of the headlights downwardly such that an area that is somewhat closer in front of the vehicle is more brightly illuminated. Similarly, if the vehicle tams a comer, it would be desirable to adjust the aiming angle of the headights either toward the left or toward the right (depending on the direction of the turn) stuch that an area that is somewhat lateral to the front of the vehicle is more brightly illuminated.

To accomplish this, it is known to provide a directional control system for vehicle headlights that is capable of automatically altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. A variety of such automatic directional control systems for vehicle headlights are known in the art. However, such known automatic headlight directional control systems have been found to be deficient for various reasons. Thus, it would be desirable to provide an improved structure for an automatic headlight directional control system that addresses such deficiencies.

2

SUMMARY OF THE INVENTION

This invention relates to an improved structure and method for operating a directional control system for vehicle 5 headlights that is capable of automatically altering the directional aming angles of the headights to account for changes in the operating conditions of the vehicie. One or more operating condition sensors may be provided that generate signals that are representative of an operating condition of the vehicle, such as road speed, steering angle, pitch, suspension height, rate of change of road speed, rate of change of steering angle, rate of change of pitch, and rate of change of suspension height of the vehicle. A controller is responsive to the sensor signal for generating an output signal. An actuator is adapted to be connected to the headlight to effect movement thereof in accordance with the output signal. The controller can include a table that relates values of sensed operating condition to values of the output signal. The controller is responsive to the sensor signal for looking up the output signal in the table.

Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiments, when read in light of the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an automatic directional control system for a vehicle headlight in accordance with this invention.

FIG. 2 is a flow chart of an algorithm for calibrating the automatic directional control system illustrated in FIG. 1 so as to define an initial reference position for the headlight from which the headlight directional controller can imple5 ment directional angle adjestments.

FIG. 3 is a flow chart of an algorithm for generating a table that relates one or more sensed vehicle operating condition values to one or more headlight directional angle adjustment factors and for storing such table in the headlight directional controller illustrated in FIG. 1.

FIG. 4 is an example of a table that can be generated and stored in the headlight directional controller in accordance with the table generating algorithm illustrated in FIG. 3.

FIG. 5 is a flow chart of an algorithm for operating the headlight directional controller illustrated in FIG. 1 to automatically implement directional angle adjustments in accordance with sensed condition values.

FIG. 6 is a flow chart of an algorithm for operating the headlight directional controller illustrated in FIG. 1 to automatically implement directional angle adjustments in accordance with the rate of change of one or more of the sensed condition values.

FIG. 7 is a flow chart of an algorithm for operating the headlight directional controller illustrated in FIG. 1 to automatically implement directional angle adjustments, but only when the rate of change of one or more of the sensed condition values is less than (or greater than) a predetermined value.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, there is illustrated in FIG. 1 an automatic directional control system, indicated generally at 10 , for a vehicle headlight 11 im accordance with this invention. The illastrated headlight 11 is, of itself, conventional in the art and is intended to be representative of any

US 7,241,034 B2

device that can be supported on any type of vehicle for the purpose of illuminating any area, such as an area in the path of movement of the vehicle. The headlight 11 is typically mounted on or near the front end of a vehicle (not shown) and is oriented in sluch a manner that a beam of light is projected therefrom. In a manner that is well known in the art, the headlight 11 is adapted to illuminate a portion of a dark road surface or other area in the path of movement of the vehicle to facilitate safe travel thereon.

The headlight 11 is adjustably mounted on the vehicle such that the ditectional orientation at which the beam of light projects therefrom can be adjusted relative to the vehicle. Any desired mounting structure can be provided to accomplish this. Typically, the headlight 11 is mounted on the vehicle such that the angle at which the beam of light projects therefrom can be adjusted both (1) up and down relative to a horizontal reference position or plane and (2) left and right relative to a vertical reference position or plane. Although this invention will be described and illustrated in the context of a headight that is adjustable in both the up/down direction and the leftiright direction, it will be appreciated that this invention may be practiced with any headlight 11 that is adjustable in any single direction or multiple directions of movement, whether up/down, left right, or any other direction.

To effect movement of the illustrated headlight 11 relative to the vehicle, an up/down actuator 12 and a left/right actuator 13 are provided. The actuators 12 and 13 are conventional in the art and may, for example, be embodied as servo motors, step motors, or any other electronically controlled mechanical actuators. It has been found to be desirable to use microstepping motors for the actuators 12 and 13. Such microstepping motors are known in the art and consist of conventional step motors that bave appropriate hardware (i.e., driver integrated circuits) and software that allow the step motors to be operated in fractional step increments. The use of such microstepping motors has been found to be desirable because they can effect movements of the headlights in a somewhat faster, smoother, and quieter manner than conventional step motors, and further permit more precise positioning of the headlights 11. In the illustrated embodiment, the up/down actuator 12 is mechanically connected to the headlight 11 such that the headlight 11 can be selectively adjusted up and down relative to a horizontal reference position or plane. Similarly, the illustrated left/ right actuator 13 is mechanically connected to the headlight 11 such that the headlight 11 can be selectively adjusted left and right relative to a vertical reference position or plane.

A headlight directional controller 14 is provided for controlling the operations of the up/down actuator 12 and the left/right actuator 13 and, therefore, the angle at which the beam of light projects from the headlight 11 relative to the vehicle. The headlight directional controller 14 can be embodied as any control system, such as a microprocessor or programmable electronic controller, that is responsive to one or more sensed operating conditions of the vehicle for selectively operating the up/down actuator 12 and the left right actuator 13 . To accomplish this, the automatic directional control system 10 can include, for example, a pair of condition sensors 15 and 16 that are connected to the headight directional controller 14. The condition sensors 15 and 16 are conventional in the art and are responsive to respective sensed operating conditions of the vehicle for generating electrical signals to the headlight directional controller 14. However, if desired, only a single one of the condition sensors 15 and 16 need be provided. Alternatively, additional condition sensors (not shown) may be provided if
desired to generate electrical signals that are representative of any other operating conditions of the vehicie. A conventional mput/output device 17 is connected to (or can be connected to) the headlight directional controller 14 for facilitating communication therewith in the manner described below.
If desired, a first position feedback sensor 18 may be provided for the up/down actuator 12, and a second position feedback sensor 19 may be provided for the leftright actuator 13. The position feedback sensors 18 and 19 are conventional in the art and are adapted to generate respective electrical signals that are representative of the actual up/down and left/right positions of the headlight 11. Thus, the first position feedback sensor 18 is responsive to the actual up/down position of the headlight 11 (as determined by a portion of the up/down actuator 12 , for example) for generating an electrical signal to the headlight directional controller 14 that is representative thereof. Similarly, the second position feedback sensor 19 is responsive to the actual left/right position of the headlight 11 (as determined by a portion of the leftright actuator 13, for example) for generating an electrical signal to the headlight directional controller 14 that is representative thereof. The position feedback sensors 18 and 19 can be embodied as any conventional sensor structures, such as Hall effect sensors, that are responsive to movements of the headlight 11 (or to the movements of the respective actuators 12 and 13 that are connected to move the headlight 11) for generating such signals.

Alternatively, the position feedback sensors 18 and 19 can be embodied as respective devices that generate electrical signals whenever the headlight 11 has achieved respective predetermined up/down or left/right positions. This can be accomplished, for example, using a conventional optical intermpter (not shown) for each of the actuators 12 and 13. Each of the optical interrupters includes a flag or other component that is mounted on or connected to the headlight 11 for movement therewith. Each of the optical interrupters further includes an optical source and sensor assembly. As the headlight 11 is moved by the actuators 12 and 13 , the flag moves therewith relative to the optical source and sensor assembly between a first position, wherein the flag permits light emitted from the source from reaching the sensor, and a second position, wherein the flag prevents light emitted from the source from reaching the sensor. When the flag is in the first position relative to the optical source and sensor assembly, the sensor is permitted to receive light emitted from the source. As a result, a first signal is generated from the optical source and sensor assembly to the headight directional controller 14. Conversely, when the flag is in the second position relative to the optical source and sensor assembly, the sensor is not permitted to receive light emitted from the source. As a result, a second signal is generated from the optical source and sensor assembly to the headlight directional controller 14. Thus, the edge of the flag defines a transition between the first and second positions of the flag rełative to the optical source and sensor assembly and, therefore, defines a predetermined up/down or left/right position of the headlight 11 . The nature of the signal generated from the optical source and sensor assembly to the headight directional controller 14 (i.e., the first signal or the second signal) can also be used to determine on which side of the predetermined position (he left side or the right side, for example) that the headlight 11 is positioned. The purpose for such position feedback seasors 18 and 19 will be discussed below.

US 7,241,034 B2

FIG. 2 is a flow chart of an algorithm, indicated generally at 20 , for calibrating the automatic directional control system illustrated in FIG. 1 so as to define an initial reference position or positions for the headlight 11 from which the headlight directional controller 14 can implement directional angle adjustments. As mentioned above, the headlight 11 is mounted on the vehicle such that the angle at which the beam of light projects therefrom can be adjusted both up and down relative to a horizontal reference position or plane and left and right relative to a vertical reference position or plane. To insure accurate positioning of the headlight 11, it is desirable that a reference position or positions be initially established by the headlight directional controller 14. Subsequent directional angle adjustments can be made by the headlight directional controller 14 from the pre-established reference position or positions established by this calibration algorithm 20.

To accomplish this, the calibration algorithm 20 has a first step 21 wherein the headight directional controller 14 is caused to enter a calibration mode of operation. In the calibration mode of operation, the headight directional controller 14 is responsive to input signals from the input/ output device 17 (or from another source, if desired) for causing manual operation of the up/down actuator 12 and the left/right actuator 13. Thus, while the headight directional controller 14 is in the calibration mode of operation, an operator of the input/output device 17 can manually effect either up/down movement of the headlight 11, left/right movement of the headlight 11, or both, as desired.

In a second step 22 of the calibration algorithm 20, the up/down actuator 12 and the left/right actuator 13 are manually operated to aim the headlight 11 in a predetermined reference orientation. This can be accomplished by use of the input/output device 17 that, as mentioned above, is connected to (or can be connected to) the headlight directional controller 14. Traditionally, the aiming of a headlight 11 has been accomplished by parking the vehicle on a surface near a wall or other vertical structure, providing a reference target at a predefermined location on the wall or other structure, and mechanically adjusting the mounting structure of the headight 11 such that the center of the bearn therefrom is projected at the reference target. In this invention, the vehicle is parked on a surface near a wall or other vertical structure, and a reference target is provided at a predetermined location on the wall or other structure, as described above. Next, in accordance with the second step 22 of this calibration algorithm 20 , the input/output device 17 is operated to generate electrical signals to the headlight directional controller 14. In response to such electrical signals, the headlight directional controller 14 operates the up/down actuator 12 and the leftright actuator 13 to move the headtight 11 such that center of the beam projecting therefrom is amed at the reference target. When the beam from the headlight 11 is so aimed, then the headlight 11 is determined to be oriented in the initial reference position from which the headlight directional controller 14 can subsequently implement directional angle adjustments.

In a third step 23 of the calibration algorithm 20, once this initial reference position for the headlight 11 has been achieved, such position is stored in the headlight directional controller 14 as the pretetermined initial reference position. This can be accomplished by means of the position feedback sensors 18 and 19. As discussed above, the position feedback sensors 18 and 19 are adapted to generate respective electrical signals that are representative of the actual up/down and leffright positions of the headlight 11 or of the predetemined positions for the beadiight. Thus, the first
position feedback sensor 18 is responsive to the actual up/down position of the headlight 11 (as determined by the updown actuator 12 , for example) for generating an electrical signal to the headlight directional controller 14 that is representative thereof. Similarly, the second position feedback sensor 19 is responsive to the actual lefvright position of the headight 11 (as cetermined by the leftright actuator 13, for example) for generating an electrical signal to the headlight directional controller 14 that is representative thereof. Accordingly, the third step 23 of the calibration algorthm 20 can be performed by causing the headlight directional controller 14 to read the signals from the position feedback sensors 18 and 19 and store the current up/down and left/right positions of the headlight 11 as the initial reference positions from which the headlight directional controller 14 can subsequently implement directional angle adjustments.

The current position of the headlight 11 is preferably stored in the non-volatile memory of the headlight directional controller 14 for reference during normal operation of the automatic directional control system 10 described below. Thus, when the automatic directional control system 10 is initially activated (such as when the electrical system of the vehicle is initially turned on), the headlight directional controller 14 can position the headight 11 at or near the calibrated position utilizing the signals comparing the current position of the headight 11 (as determined by the signals generated by the position feedback sensors 18 and 19) with the predetermined reference position determined by the calibration algorithm 20.
FIG. 3 is a flow chart of an algorithm, indicated generally at 30 , for generating a table that relates the sensed condition values from the condition sensors 15 and 16 to the headlight directional angle adjustment factors that will be implemented by the headlight directional controller 14, and further for storing such table in the headight directional controller 14 illustrated in FIG. 1. As used herein, the term "table" is intended to be representative of any collection or association of data that relates one or more of the sensed condition values to one or more of the headlight directional angle adjustment factors. The table of data can be generated, stored, and expressed in any desired format. For example, this table of data can be generated, stored, and expressed in a conventional spreadsheet format, such as shown in FIG. 4, which will be discussed in detail below.
In a first step 31 of the table generating algorithm 30, an adjustment control algorithm is selected. The adjustment control algorithm can be, generally speaking, any desired relationship that relates one or more operating conditions of the vehicle to one or more angular orientations of the headlight 11. A variety of such relationships are known in the art, and this invention is not intended to be limited to any particular relationship. Typically, such relationships will be expressed in terms of a mathematical equation or similar relationship that can be readily processed using a microprocessor or similar electronic computing apparatus, such as the above-described headlight directional controller 14. The particular adjustment control algorithm that is selected may, if desired, vary from vehicle to vehicle in accordance with a variety of factors, including relative size and performance characteristics of the vehicle or any other desired condition.
As mentioned above, a plurality of operating conditions may be sensed by the condition sensors 15 and 16 and provided to the headlight directional controller 14 for use with the adjustment control mechanism. For example, the condition sensors 15 and 16 may generate electrical signals to the headilight directional controller 14 that are represen-
tative of the road speed, the steering angle, and the pitch of the vehicle (which can, for example, be determined by sensing the front and rear suspension heights of the vehicle or by a pitch or level sensor). Additionally, the time derivative of these operating conditions (i.e., the rate of change of the road speed, steering angle, and pitch of the vehicle) can be sensed or calculated. However, any other operating condition or conditions of the vehicle may be sensed and provided to the headlight directional controller 14.
In a second step 32 of the table generating algorithm 30 , the table is generated using the adjustment control algorithm selected in the first step 31. The table can be generated in any desired manner. For example, let it be assumed that the selected adjustment control algorithm relates a single sensed operating condition to each of the angular adjustment control values for adjusting both the up/down orientation and the leff/right orientation of the headlight 11 . The table can be generated by initially selecting a first discrete sensed operating condition value that might be encountered during operation of the vehicle. Then, the selected adjustment control algorithm is solved using such first discrete sensed operating condition value to obtain the corresponding adjustment control values for the up/down and lefl/right orientation of the headtight 11. Then, the first discrete sensed operating condition value and the corresponding adjustment control values are stored in the table. This process can be repeated for any desired momber of other discrete sensed operating condition values that might be encountered during operation of the vehicle.

As mentioned above, FIG. 4 is a representative example of a table, indicated generally at $\mathbf{4 0}$, that can be generated in accordance with the second step 32 of the table generating algorithm 30 illustrated in FIG. 3. As shown therein, a series of discrete sensed operating condition values (degrees of steering angles, for example) is related to the angular adjustment control values (degrees of movement from the associated up/down and left/right reference positions or planes, for example) for adjusting both the up/down orientation and the lefttright orientation of the headlight 11. For the purposes of illastration only, let it be assumed that (1) a positive steering angle value represents steering toward left, while a negative steering angle value represents steering toward the right, (2) a positive up/down adjustment factor represents aiming the headlight 11 upwardly, while a negative up/down adjustment factor represents aiming the headlight 11 downwardly, and (3) a positive leftright adjustment factor represents aiming the headlight 11 towand the left, while a negative left/right adjustment factor represents aiming the headlight 11 toward the right.

Thus, in accordance with the selected adjustnent control algorithm, a sensed steering angle of $+6^{\circ}$ results in an up/down adjustment factor of -3.00° and a leftright adjustment factor of $+4.50^{\circ}$. Similarly, a sensed steering angle of $+5^{\circ}$ results in an up/down adjustment factor of -2.50° and a leffright adjustment factor of $+3.75^{\circ}$, and so on as shown in the table 40 . The illustrated table 40 relates thirteen different sensed steering angle values to their corresponding adjustment control values for both the up/down and leftright orientation of the headlight 11 . However, the table 40 can include a greater or lesser number of such sensed operating condition values, together with their corresponding adjustment control values. Furthermore, although the illustrated table 40 relates only a single sensed operating condition value (steering angle) to the corresponding adjustment control values for both the up/down and leftright orientation of the headlight 11, the selected adjustment control algorithm may, as mentioned above, be responsive to a plurality of
sensed operating condition values for determining the corresponding adjustment control values. Alternatively, as will be discussed further below, a plurality of tables 40 can be generated, one for each of the plurality of sensed operating condition values. The size and extent of the table 40 or tables can be varied to accommodate any desired number of such sensed operating conditions.

Referring back to FIG. 3, in a third step 33 of the table generating algorithm 30 , the table 40 generated in the second step 32 is stored in the memory of the headlight directional controller 14 illustrated in FIG. 1. The contents of the table 40 can be communicated serially to the headlight directional controller 14 by means of the input/output device 17 illustrated in FIG. 1 or in any other desired manner. Regardless of how it is communicated, the table 40 is preferably stored in a non-volatile memory of the headlight directional controller 14 for subsequent use in the manner described further below when the vehicle is operated.
As mentioned above, it may be desirable to vary the algorithm that is selected for use in implementing the headlight directional angle adjustment factors. The generation of the table 40 and the storage of such table 40 in the memory of the headlight directional controller 14 allow a designer of the automatic directional control system 10 to quickly and easily alter the response characteristics of the system 10 as desired, without the need for direct access to the computer code or software that is used to operate the headlight directional controller 14. Rather, to effect such alterations, a designer can simply change some or all of the data points that are contained within the table 40 . As will be described in detail below, the headlight directional controller 14 will use whatever data points that are contained within the table 40 in determining the need for adjustments in the angular orientation of the headight $\mathbf{1 1}$. This structure also reduces the amount of processing power that is necessary for the headight directional controller 14 becatse it can operate on a relatively simple look-up basis using the table 40, rather than having to calculate relatively high order equations that may be used to determine the data points contained within the table 40.
FIG. 5 is a flow chart of an algorithm, indicated generally at 50, for operating the headlight directional controller illustrated in EIG. 1 to automatically implement directional angle adjustments in accordance with one or more of the sensed condition values from the condition sensors 15 and 16. In a first step 51 of the operating algorithm 50 , the values of one or more of the condition sensors 15 and 16 are read by the headlight directional controller 14. Then, the operating algorithm 50 enters a decision point 52 , wherein it is determined whether the value or values of the condition sensors 15 and 16 that have been read by the headlight directional controller 14 are specifically contained in the table 40. For example, using the table 40 illustrated in FIG. 4 , if the headlight directional controller 14 has read a steering angle value of -2°, then it is determined that the value of the condition sensor 15 is specifically contained within the table 40 . In this instance, the operating algorithm 50 branches from the decision point 52 to an instruction 53, wherein the adjustment factors containedi in the table 40 that correspond to the sensed condition value are looked up and stored in the headlight directional controller 14.

The operating algorithm 50 next enters an instruction 54 wherein the value of the magnitude of the adjustment factor (i.e., the desired position for the beadlight 11) is compared with the current position of the headiight 11. This step 54 of the operating algorithm 50 is optional and can be performed if one or more of the position feedback sensors 18 and 19 are
provided in the automatic directional control system 10 to generate respective electrical signals that are representative of the actual up/down and left/right positions of the headlight 11, as described above. This step 54 of the operating algorithm 50 can be performed to determine how much of an adjustment is necessary to move the headight 11 from its current position, as determined by the position feedback sensors 18 and 19 , to the desired position, as defined by the adjustment factor obtained from the table 40 . To accomplish this, the value of the adjustment factor may, for example, be subtracted from the current position of the headlight 11 to determine the magnitude of the difference therebetween and, therefore, the magnitude of the adjustment that is necessary to move the headlight 11 from its current position to the desired position. However, this step 54 of the operating algorithm 50 can be accomplished in any other desired manner.
Next, the operating algorithm 50 enters a decision point 55 , wherein it is determined whether the magnitude of the adjustment that is necessary to move the headlight 11 from its current position to the desired position is greater than a predetermined minimum threshold. This step in the operating algorithm 50 is also optional, but may be desirable to prevent the actuators 12 and 13 from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition or conditions, such as relatively small bumps in the road. For example, if the current position of the headlight 11 is relatively close to the desired position, then it may be undesirable to effect any movement thereof. This step 55 will prevent the actuators 12 and 13 from being operated unless the current position of the beadight 11 is relatively far from the desired position. As another example, if the condition sensors 15 and 16 are respectively responsive to the fromt and rear suspension heights of the vehicle for the purpose of determining the pitch thereof, then the headlight directional controller 14 may be programmed to be responsive only to changes in the suspension heights that occur at frequencies that are lower than the suspension rehound frequency of the vehicle (thereby ignoring relatively high frequency changes in suspension height that are likely the result of bumps in the road). However, relatively high frequency changes in the suspension heights could also be monitored to assist in deciphering relatively rough suspension changes from other suspension changes.

In any event, the provision of the predetermined minimum threshold froctions as a filter or dead band that minimizes or eliminates undesirable "hunting" of the actuators 12 and 13 for relatively small magnitudes of movement of the headlight 11 . If the magnitude of the adjustment factor is not greater than the predetermined minimum threshold, then the operation of the actuators 12 and 13 is considered to be undesirable. Thus, the operating algorithm 50 branches from the decision point 55 back to the instruction 51 , wherein the above-described steps of the operating algorithm 50 are repeated,
If, on the other hand, the magnitude of the adjustment factor is greater than the predetermined minimum threshold, then the operation of the actuators 12 and 13 is considered to be desirable. Thus, the operating algorithm 50 branches from the decision point 55 to an instruction 56 , wherein either or both of the actuators 12 and 13 are actuated to effect movement of the headlight I1. For example, using the table 40 illustrated in FIG. 4 , if the headlight directional controller 14 has read a steering angle value of -2°, then the headigght directional controller 14 will look up an up/down adjustment factor of -1.00° and a leftright afjustment factor of -1.50°
from the table 40. The headlight directional controller 14 operates the actuators 12 and 13 to adjust the angular orientation of the headlight 11 to achieve the noted adjustment factors.
In some instances, the amounts of movement that are to be implemented by the two actuators 12 and 13 will be the same (f.e, the amount of up/down movement of the headlight 11 will be the same as the amount of leftright movement). More frequently, however, the amounts of movement that are to be implemented by the two actuators 12 and 13 will be different from one another. la the latter instances, it may be desirable to operate the two actuators 12 and 13 at fwo different speeds such that the overall movement of the headlight 11 is relatively uniform. For example, if the amount of movement that is to be implemented by the up/down actuator 12 is twice as large as the amount of movement that is to be implemented by the leftright actuator 13, then it may be desirable to operate the up/down actuator 12 at one-half of the speed of the left/right actuator 13 so that the movements of both actuators 12 and 13 (and, therefore, the overall movement of the headlight 11) will start and stop at approximately the same time. Similarly, if the vehicle is provided with two different headlights 11, as is commonly found, then it may be desirable to control the respective movements of such different headlights 11 in such a manner that they both start and stop at approximately the same time. This can be accomplished, for example, by providing a single headight directional controller 14 for not only controlling, but also coordinating the movements of both of the headlights $\mathbf{1 1}$ in response to the sensed operating conditions.
Such operations can be performed in an open loop manner if desired, wherein the actuators 12 and 13 are operated to achieve predetermined amounts of movement. For example, the actuators 12 and 13 can be embodied as step motors that are operated a predetermined number of steps to actieve predetermined amounts of movement. Alternatively, the actuators 12 and 13 can be operated for predetermined periods of time to achieve the predetermined amounts of movement. However, more desirably, the operations of the actuators 12 and 13 are performed in a closed loop manner. To accomplish this, the actuators 12 and 13 are operated until either or both of the position feedback sensors 18 and 19 generate signals indicate that the headlight 11 has actually achieved the predetermined amounts of movement or desired position. In either event, the operating algorithm 50 then branches back to the instruction 51 , wherein the abovedescribed steps of the algorithm 50 are repeated.

Referring back to the decision point 52 , if the value or values of the condition sensors 15 and 16 that have been read by the headlight directional controller 14 are not specifically contained in the table 40 , then the operating algorithm 50 branches from the decision point 52 to an instruction 57 , wherein the adjustment factors that are specifically contained in the table 40 that correspond to the adjacent sensed condition values are looked up and stored in the headlight directional controller 14. For example, using the table 40 illustrated in FIG. 4, if the headlight directional controller 14 has read a steering angle value of -1.5°, then it is determined that the value of the condition sensor 15 is not specifically contained within the table 40. Rather than simply default to the closest value that is contained within the table 40 , the two adjustment factors specifically contained in the table $\mathbf{4 0}$ that are adjacent to the sensed condition value (namely, the adjustment factors for the steering angle values of -1° and -2°) are looked up and stored in the headight directional controller 14

US 7,241,034 B2

11

The operating algorithm 50 next enters an instruction 58 , wherein the actual adjustment factors to be implemented by the beadlight directional controller 14 are interpolated or otherwise calculated from the stored adjustment factors that are adjacent to the sensed condition value. For example, as mentioned above, if the actual sensed steering angle value is -1.5°, then the headlight directional controller 14 looks up the adjustment factors for the steering angle values of -1° and -2°. The up/down adjustment factor for a steering angle value of -1° is -0.50 while the up/down adjustment factor for a steering angle value of -2° is -1.00°. If the calculation that is performed by the headlight directional controller 14 is a simple arithmetic mean, then the interpolated up/down adjustment factor would be -0.75°. Similarly, the left/right adjustment factor for a steering angle value of -1° is -0.75°, while the leftright adjustment factor for a steering angle value of -2° is -1.50°. If the calculation that is performed by the headlight directional controller 14 is a simple arithnetic mean, then the interpolated lefvight adjustment factor would be -1.13°. Thereafter, the operating algorithm 50 branches to the decision point 55 , and the remainder of the operating algorithm 50 is performed as described above.

The interpolation that is performed by the headlight directional controller 14 can be accomplished in any desired manner. The performance of the simple arithmetic mean described above is intended to be representative of any mathematical or other function that can be performed to calculate, derive, or otherwise obtain adjustment factors that are not present in the table 40. Furthermore, although this interpolation has been described in the context of using only the two condition values that are directly adjacent to the actual sensed condition value, it will be appreciated that the adjustment values for any single condition value or combination of sensed condition values may be selected for the interpolation. For example, several of the condition values both above and below the sensed condition value can be read from the table 48 to derive a trend line or other good estimate of the adjustment factors that are not present in the table 40. Performance of this interpolation does not require any significant increase in the amount of processing power that is necessary for the headight directional controller 14.

The above discussion has assumed the use of a single table 40 that provides adjustment values based upon a single sensed operating condition (steering angle of the vehicle, in the illustrated embodiment). However, as discussed above, this invention may be practiced by sensing a plurality of operating conditions of the vehicle. For example, let it be assumed that both steering angle and vehicle road speed are sensed by the condition sensors 15 and 16 . As previously discussed, the adjustment control algorithm that is selected in the first step 31 of the table generating algorithm 30 can be designed to accommodate multiple sensed conditions. Alternatively, however, a first table (such as the table 40 illustrated in FIG. 4) may be generated that relates the steering angle of the vehicle to the angular adjustment control values for adjusting both the up/down orientation and the leftright orientation of the headlight 11. A second, similar table (not shown) may also be generated that relates the road speed of the vehicle to the angular adjustment control values for adjusting both the up/down orientation and the left/right orientation of the headlight 11. Thus, for a given steering angle and road speed of the vehicle, the first and second tables may provide differing angular adjustment control values. To address this, the interpolation step 57 of the operating algorthm 50 can be performed to interpolate a single composite adjustment value that is based upon the two different values provided in the first and second tables for the pair of sensed operating conditions. This interpolation can be perfomed in the same manner as described above for each of the actuators 12 and 13 . and the second sensed vehicle speed, divided by the amount of time therebetween, would yield a number that is repre-
sentative of the acceleration of the vehicle. In a final step 64 of the algorithm 60 , either or both of the actuators 12 and 13 are actuated to effect movement of the headlight 11 in accordance with the calculated rate of change of the sensed condition. Such movement of the headlight 11 can be effected in a manner that is similar to that described above.

FIG. 7 is a flow chart of an algorithm, indicated generally at 70, for operating the headight directional controller illustrated in FIG. 1 to atomatically implement directional angle adjustments, but only when the rate of change of one or more of the sensed condition values is less than (or greater than) a predetermined value. As mentioned above, the headight directional controller 14 can be operated to automatically implement directional angle adjustments in accordance with one or more of the sensed condition values. In this variation of the invention, the headlight directional controller 14 automatically implements directional angle adjustments in response to the sensed condition values (or in response to the rate of change of the sensed condition values), but only when the rate of change of one or more of the sensed condition values is less than (or greater than) a predetermined value.

To accomplish this, the algorithm 70 has a first step 71 wherein the values of one or more of the condition sensors 15 and 16 are initially read by the headlight directional controller 14. Then, the algorithm 70 enters a second step 72 wherein the values of one or more of the condition sensors 15 and 16 are subsequently read a second time by the headlight directional controller 14. The second reading of the condition sensors 15 and 16 occurs a predetermined amount of time after the first reading thereof. Next, the algorithm enters a third step 73 wherein a rate of change of the sensed condition or conditions is calculated. The rate of change of the sensed condition can be calculated as the difference between the first and second readings divided by the amount of time therebetween or by any other desired means. For example, if the sensed condition is suspeasion height, then the difference between the first sensed suspension height and the second sensed suspension height, divided by the amount of time therebetween, would yield a number that is representative of the rate of change of the suspension height of the vehicle.

In a fourth step 74 of the algorithm 70, a determination is made as to whether the rate of change of the sensed condition value is less than a predetermined threshold value. If the rate of change of the sensed condition value is less than this predetermined threshold value, then the algorithm 70 branches from the decision point 74 to a final step 75 of the algorithm 70, wherein either or both of the actuators 12 and 13 are actuated to effect movement of the headlight 11 in accordance with the calculated rate of change of the sensed condition. Such movement of the headlight 11 can be effected in a manner that is similar to that described above. If, however, the rate of change of the seased condition value is not less than this predetermined threshold value, then the algorithm 70 branches from the decision point 74 back to the first step 71, wherein the algorithm 70 is repeated. This threshold sensing algorithm 70 can function to prevent the headlight directional controller 14 from being operated to automatically implement directional angle adjustments when the rate of change of the suspension height of the vehicle changes more rapidly than the system can effect corrective changes. For example, if the vehicle is operated on a bumpy road, the algorithm 70 will prevent the headlight directional controller 14 from attempting to correct for every single bump that is encountered. However, for relatively low frequency or rates of change in the suspension height of the
vehicle, such as can occur when accelerating, decelerating, and weight changes, the headlight directional controller 14 will be operated in the normal manner to effect corrective actions, as described above.
As mentioned above, the input/output device 17 is connected to (or can be connected to) the headlight directional controller 14 for facilitating communication therewith, and the imput/output device 17 can be used for calibrating the automatic directional control system illustrated in FIG. 1 so as to define an initial reference position or positions for the beadight 11 from which the headlight directional controller 14 can implement directional angle adjustments. Additionally, however, the input/output device 17 can be employed as a diagnostic tool. To accomplish this, the input/outpat device 17 can be embodied as a conventional microprocessor or similar electronically programmable device that can be connected to the headlight directional controller 14 to read fault codes that may be generated during the operation thereof. The headlight directional controller 14 can be programmed to generate fault codes whenever a fault condition or other anomaly occurs or is detected. Such fault codes can be stored in the headlight directional controller 14 until the input/output device 17 is subsequently connected thereto. When so connected, the input/output device 17 can read such codes and display them for an operator. As a result, the operator can take whatever corrective actions are necessary to address the fault condition or anomaly. The input/ output device 17 can also be programmed to clear the fault codes from the headlight directional controller 14 after they are read.

In accordance with the provisions of the patent statutes, the principle and mode of operation of this invention have been explained and illustrated in its preferred embodiments. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.

What is clamed ist

1. An automatic directional control systern for a vehicle beadlight comprising:
a sensor that is adapted to generate a signal that is representative of a condition of the vehicle, said sensed condition includes one or more of road speed, steering angle, pitch, and suspension beight of the vehicle;
a controller that is responsive to said sensor signal for generating an output signal only when said sensor signal changes by more than a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition; and
an actuator that is adapted to be connected to the headlight to effect movement thereof in accordance with said output signal.
2. The automatic directional control system defined in 5 claim 1 wherein said sensor generates a signal that is representative of the road speed of the vehicle.
3. The automatic directional control system defined in claim 1 wherein said sensor generates a signal that is representative of the stecring angle of the vehicle.
4. The automatic directional control system defined in claim 1 wherein said sensor generates a signal that is representative of the pitch of the vehicle.
5. The automatic directional control system defined in claim 1 wherein said sensor generates a signal that is representative of the suspension height of the vehicke.

Case 6:10-cv-00078-LED Document 1-3 Filed 03/08/2010 Page 1 of 2

©JS 44 (Rev 12,07)

CIVIL COVER SHEET

The IS 44 civil cover sheet and the information contained herein neither feplace nor supplement the filing and service of pleadings or other papers bs tequired by law, exceptas provided by local rules of court. This form, approved by the Judicial Conference of the United States in September 1974 , is required for the use of the Clerk of Court for the parpose of initiating the civil docket sheet. (SEE INSTRUCTIONS ON THE REVERSE OF THE FORM)
I. (a) PLAINTIFFS

BALTHER TECHNOLOGIES, LLC
(b) County of Residence of First Listed Plaintiff GREGG, TX (EXCEPT IN U.S. PLAINTIFF CASES)

DEFENDANTS

AMERICAN HONDA MOTOR CO. INC., ET AL
County of Residence of First Listed Defendant

> (IN U.S. PLAINTIFF CASES ONLY)

NOTE: IN LAND CONDEMNATION CASES, USE THE LOCATION OF THE LAND ${ }^{\text {INVOLVED. }}$

Attorneys (If Known)
(c) Attorney's (Fimn Name, Address, and Telephone Number) (see attachment)
II. BASIS OF JURISDICTION (Place an " x "; in One Box Only)

III. CITIZENSHIP OF PRINCIPAL PARTIES(Place an " x " in One Box for Plaintiff (For Diversity Cases Only) and One Box for Defendant)
 of Business In This State
Citixen of Another State [17 D 2 Incomorated and Paincipal Place © 5 O of Business In Another State

Citizen or Subject of a D 3 D 3 Foreign Nation CE 6 O 6 Foreinn Comary

CONTEACT	T01	RTS
$\bigcirc 110$ lusuance	PERSONAL INJURY	PERSONAL INJURY
O 120 Marine	[] 310 Aiplane	- 362 Personal Ingiry -
- 130 Miller Act	[315 Aiplane Prodiect	Med. Malpractice
(1) 140 Negotiable Insimanent	Liability	0365 Pcrsonal Injury -
- 150 lecovery of Overpayment \& Enforcemento ofuidamem	0 320 Assaut, libel \& Slander	Product Eiability (1) 368 Asbestos Persomal
O 151 Meslicare Act	O 336 Federat Enployers'	lijury Ptoduct
O 152 Recovery of Defantied	Lishlility	Liability
Student Loans	O. 340 Manie	PERSONAL PROPERTY
(Excl, Veterans)	O 345 Maine Prodict	[370 Oiter Frand
Q 153 Recovery or Overpayment	1 1, iability	- 371 Truth in Lentiog
of Veminn's Betefits	[350 Motor Vechicla	(1) 380 Other Personal
$\square 160$ Stockholdcrs' Suits	-7 355 Motor Velicle	Propery Dansye
$\square 190$ Ohter Contrect	Product Liability	H 385 Property Damage
$\square 195$ Contract Produet Liability	15360 Oher Personal	Product Liebility
$\bigcirc 196$ Pauchase	Injury	
HEALPROPEHTY	CIVIL Bichis	HRISONER PETITIONS
$\square 210$ Land Condemnation	O 441 Voting] 510 Motions to Vacata
O 220 Fereclosure	O 442 Employment	Sextence
- 230 Rent Lease \& Ejectrnent	15 443 Housing'	Habeas Corpus:
$\square 240$ Torts to Land	Accolmmodations	(3) 530 General
- 245 Tort Product Lisbility	[7 444 Welfare	$1] 535$ Deam Penalty
$\square 290$ Ah Other Real Property	ก 445 Aner w/Disabilities Employment	(7) 540 Mandamas \& Other
	© 446 Amer wiDisabilities Other	[555 Prison Condition

CORFEMTIREPENAMTY	BANKEBITCY	OTLIBSTATUTE*
610 Agriculture 620 Other Food \& Dreg 625 Dreg Related Scixure of Propery 21 USC 881 6,30 Liequer haws \% 640 R R. KTrack 0650 Abline Regs. [] 660 Occupational Safety/Healih 690 Other langl 710 Fair Lator Slazdards Acl 13720 Labon/Mgmt, Relations IG 730 Labompgut.Reporting \& Disclosure Act a] 740 Railwby Labor Act $\square 790$ OHer Labor Litigation 15791 Empl. Ret. Iac. Security Act HMMGRAT1ON 462 Anturalization Appicanion LT 463 Habess Coqpus - Alien Detatnee 15465 Other Inamigration Actions		400 Slate Rexpportiormsent 410 Antitnst 430 Banks and Banking 450 Commerce 460 Deportation 470 Racketeer Inflecneed and Cormpt Oryanizations 480 Consumer Credit 490 Cable/sat IV 810 Sclective Servipe 850 Sccurilics/Commoditites/ Exelutinge 875 Customer Challenge 12 USC 3410 890 Other Statutery Actions 891 Agricultural Acts 892 Economic Stabilization Act 893 Environtrental Matters 894 Energy Altocation Act 895 Freedon of Information Act 900 Appeal of Fee Determination Urder Equai Access to Justice (1) 950 Constitutionality of State Slatules
Reinstated or Reopened $\quad 5 \begin{gathered}\text { Transf } \\ \text { anothe } \\ \text { isperif }\end{gathered}$	$\begin{aligned} & \text { rred from } \\ & \text { disfrict } \end{aligned} \square 6 \begin{aligned} & \text { Multidis } \\ & \text { Litigatic } \end{aligned}$	Appeal to District 7 Judge from Magistrate lymomeat:

Cite the U.S. Civil Statute under which you are filing (Do not cite jurisulictionsl statutes untess diversity):
VI. CAUSE OF ACTION

VII. REQUESTED IN

 Brief description of cause:Patent infringemens

VII. REQUESTED IN	\square CHECKIF THIS IS A CLASS ACTION	DEMAND S	CHECK YES only if temanded in complaint:
COMPLAINT:	ONDERF.RC.P. 23		SURY DEMAND:

VIII. RELATED CASE(S)

IF ANY (Sec instructions): JuDGE
DOCKET NUMBER

DATE	SIGAEATURELOFATTORAEY OF RECORD			
03/08/2010	$\cdots, \quad \text { i i i } i+i / 7$			
TOROFFICF USE ON, Y				
RECEIPT*	AMOUNT	APPLYINGIFP	\#1008	MAG. Jubge

ATTORNEYS OF RECORD

Eric M. Albritton
Adam A. Biggs
Debra Coleman
Matthew C. Harris
ALBRITTON LAW FIRM
P.O. Box 2649
Longview, Texas 75606
Telephone: (903) 757-8449
Thomas John Ward, Jr.
WARD \& SMITH LAW FIRM
P.O. Box $123 I$
Longview, Texas 75606
Tetephone: (903) 757-6400
Danny L. Williams
J. Mike Amerson
Jaison C. John
Christopher N. Cravey
Matthew R. Rodgers
Michael A. Benefield
David Morehan
WILLIAMS, MORGAN \& AMERSON, P.C.
10333 Richmond, Suite 1100
Houston, Texas 77042
Telephone: (713) 934-7000

EXHIBIT 3

IN THE UNITED STATES DISTRICT COURT

FOR THE EASTERN DISTRICT OF TEXAS
TYLER DIVISION
BALTHER TECHNOLOGIES, LLC,

Plaintiff,

v.

AMERICAN HONDA MOTOR CO. INC., et al.,

Defendants.

JURY TRIAL DEMANDED

PLAINTIFF'S NOTICE OF VOLUNTARY DISMISSAL

Balther Technologies, LLC, plaintiff in the above-entitled and numbered civil action, files this notice of voluntary dismissal of this civil action without prejudice pursuant to Fed. R. Civ. P. 41(a)(1)(A)(i). To date, none of the defendants have filed an answer to Plaintiff's Original Complaint for Patent Infringement or a motion for summary judgment.

Plaintiff and Defendants shall bear their own costs, expenses and legal fees.
Respectfully submitted,

Eric M. Albritton
Texas Bar No. 00790215
ema@emafirm.com
Adam A. Biggs
Texas Bar No. 24051753
aab@emafirm.com
Debra Coleman
Texas Bar No. 24059595
drc@emafirm.com
Matthew C. Harris

Texas Bar No. 24059904
mch@emafirm.com
ALBRITTON LAW FIRM
P.O. Box 2649
Longview, Texas 75606
Telephone: (903) 757-8449
Facsimile: (903) 758-7397
Attorneys for Balther Technologies, LLC

CERTIFICATE OF SERVICE

The undersigned hereby certifies that all counsel of record who are deemed to have consented to electronic service are being served with a copy of this document via the Court's CM/ECF system per Local Rule CV-5(a)(3). Any other counsel of record will be served by e-mail, facsimile transmission and/or first class mail on May 17, 2010.

Eric M. Albritton

IN THE UNITED STATES DISTRICT COURT

 FOR THE EASTERN DISTRICT OF TEXAS
TYLER DIVISION

BALTHER TECHNOLOGIES, LLC,
 Plaintiff,
 v.
 AMERICAN HONDA MOTOR CO. INC., et al.,
 Defendants.
 §
 §
 § §
 §
 § § \S §
 Civil Action No. 6:10-CV-78-LED
 JURY TRIAL DEMANDED
 ORDER

Pursuant to the Plaintiff's Notice of Voluntary Dismissal this civil action, shall be, and is hereby, DISMISSED WITHOUT PREJUDICE.

Plaintiff and Defendants shall bear their own costs, expenses and legal fees.

EXHIBIT 4

Page 720 of 1228

IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS

TYLER DIVISION

\section*{| BALTHER TECHNOLOGIES, LLC, | \S | |
| :--- | :--- | :--- |
| Plaintiff, | \S | |
| | \S | Civil Action No. 6:10-CV-78-LED |
| v. | \S | |
| | \S | |
| AMERICAN HONDA MOTOR CO. | \S | JURY TRIAL DEMANDED |
| INC., et al., | \S | |
| Defendants. | | \S |
| | \S | |
 ORDER}

Pursuant to the Plaintiff's Notice of Voluntary Dismissal this civil action, shall be, and is hereby, DISMISSED WITHOUT PREJUDICE.

Plaintiff and Defendants shall bear their own costs, expenses and legal fees.

So ORDERED and SIGNED this 18th day of May, 2010.

EXHIBIT 6

Page 722 of 1228

${ }_{12}$ UK Patent Application
 (9) GB
 „12309 773

(43) Date of A Publication 06.08.1997
(21) Application No 9701821.2
(22) Date of Filing 29.01.1997
(30) Priority Data
(31) 08037109
(32) 01.02.1996
(33) JP
(71) Applicant(s)

Koito Manufacturing Co., Ltd.
(Incorporated in Japan)
8-3, Takanawa 4-chome, Minato-ku, Tokyo, Japan
(72) Inventor(s)

Hideki Uchida
(74) Agent and/or Address for Service

Gill Jennings \& Every
Broadgate House, 7 Eldon Street, LONDON,
EC2M 7LH, United Kingdom
(51) $\operatorname{INTCL}{ }^{6}$

B600 1/115
(52) UK CL (Edition O)

F4R RMC R364 R41Y R765 R78X R789
U1S S 1934
(56) Documents Cited

GB2053439 A EP 0709240 A2 EP 0699559 A1
EP 0852134 A1 WO 96/18524 A1
(58) Field of Search

UK CL (Edition O) FAR RMC
INT CL ${ }^{6}$ B600 1/08 1/10 1/105 1/11 1/115
Online : WPI, CLAIMS, JAPIO

(54) Controlling diraction of vehicle lights

(57) The illumination direction of lights in a vehicle is controlled by detecting (1) vehicle posture (stationary and/or moving) and (2) whether the vehicle is accelerating/ decelerating and directing the illumination of the lights to a predetermined direction in accordance with signals received from the posture detection device. The signals to the drive means are over-ridden when acceleration/deceleration is detected in order to fix the lights in a predetermined direction and/or limit the permitted range of light movement and/or slow the speed of direction change. Reference values may be used to determine whether and what direction change occurs. The systern may include means to distinguish true acceleration/deceleration from vehicle movements caused by rough roads.

FIG. 1

-• $\because . .{ }^{\circ}$

2/11

FIG. 2

Page 725 of 1228

3/11

FIG. 3

FIG. 4

FIG. 5

FIG. 6

7/11

FIG. 7

Page 730 of 1228

$$
a .
$$

8/11

FIG. 8

FIG. 9

9/11

FIG. 10

FIG. 11

10/11

FIG. 12

FIG. 13

Page 733 of 1228

- . $\quad \circ$.. :

11/11

FIG. 14

2309773

A VEHICLE LAAMP ILLUMINATION DIRECTION CONTROL DEVICE

The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp so that the illumination direction can be alwavs kept in a predetermined direction.

Conventionally, there has been known a device (a so called automatic leveling device) which, even when the inclination of a vehicle body varies, is capable of automatically adjusting the illumination direction of the vehicle lamp so that the illumination direction of the vehicle lamp can be kept at a predetermined direction. The conventional device of this type includes a detection device which detects the inclination and height of the vehicle body variable according to the conditions of occupants (such as the number of occupants, the position arrangement of the occupants and the like), the loaded conditions of loads on board the vehicle, the running conditions of the vehicle, and the like, calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detection device, and adjusts the illumination angle of the vehicle lamp with respect to the initially adjusted value of the vehicle lamp so that the illumination state of the vehicle lamp can be always kept in a desired state, thereby to control the illumination direction of the vehicle lamp for desired light distribution.

For example, when a load is applied to the rear portion of the vehicle, the device finds the then inclination angle of the vehicle body in the longitudinal direction thereof, and inclines the vehicle lamp downward because the illumination
direction of which would be displaced upwardly of the reference direction if the posture of the vehicle lamp is left as it is, thereby adjusting the illumination direction of the vehicle lamp (a so called leveling adjustment) so that the vehicle lamp illumination direction can be always kept in the reference direction.

However, in the above-mentioned conventional device, while the vehicle is running along a rough road including an uneven and rough surface, when the device makes the abovementioned automatic adjustment of the illumination direction of the vehicle lamp, there is a possibility that the detection device can respond excessively to the illumination direction of the vehicle lamp and thus the illumination direction of the vehicle lamp can be controlled or adjusted excessively, which causes the light distribution of the vehicle lamp and the field of view to vary. Such variations in the light distribution and visibility in turn can give a driver a strange feeling, or can dazzle the driver of an oncoming vehicle, a pedestrian, and the like.

For example, when the vehicle runs into a rough road at a rather high speed, vibrations and the like applied to the vehicle wheels from the surface of the rough road are relieved by the expansion and contraction of the suspension of the vehicle and, therefore, there is a possibility that variations in the inclination of the vehicle body are not as large as variations in the output of the detection device due to the vehicle height and the like. That is, if the leveling adjustment is made faithfully according to the output of the detection device, then there is a possibility that the illumination direction of the vehicle lamp can be corrected excessively when compared with the actual inclination of the vehicle body.

The present invention was made in view of the foregoing problems accompanying the conventional device as discussed above. Therefore, it is an object of the present invention to provide a vehicle lamp illumination direction control device capable of controlling and properly adjusting the vehicle lamp illumination direction without correcting the same excessively while the vehicle is running along a rough road, whereby the visibility of the driver of the vehicle can be enhanced while the controlled vehicle lamp illumination direction can never dazzle the driver of an oncoming vehicle, so that the safety of the vehicle driving can be assured.

In attaining the above object, according to the invention, in view of the fact that the posture change of the vehicle in the constant speed running condition of the vehicle or in the bad road running condition thereof is relatively smaller than the posture change of the vehicle in the acceleration or deceleration running condition of thereof, there is provided a vehicle lamp illumination direction control device for changing the direction of the illumination light of a lamp according to the vertical inclination of a vehicle in the advancing direction thereof, the control device comprising:
a vehicle posture detection device for detecting the posture of the vehicle during the stationary and/or moving condition thereof;
an acceleration or deceleration running condition judging device for judging whether the vehicle is in the acceleration running condition or in the deceleration running condition or not;
a drive device for directing the illumination light of the lamp in a predetermined direction; and
a correction calculating device for transmitting to the drive device a correction signal for holding the illumination
light of the lamp in a given direction, in accordance with a signal received from the vehicle posture detection device, wherein, when it is judged by the acceleration or deceleration running condition judging device that the vehicle is in the acceleration running condition or in the deceleration running condition, the direction of the lamp can be controlled by the signal transmitted from the correction calculating device to the drive device, and, when it is judged by the acceleration or deceleration running condition judging device that the vehicle is not in the acceleration running condition or in the deceleration running condition, the drive device can fix the direction of the illumination light of the lamp in a given direction or can limit the allowable range of the direction of the illumination light, or the response speed of the drive device can be slowed down.

According to the invention, when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a given direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle.

In the accompanying drawings:
Fig. 1 is a block diagram of the structure of a vehicle lamp illumination direction control device according to the invention;

Fig. 2 is a schematic view of a vehicle for explanation of height detection device;

Fig. 3 is an explanatory view of a correction control on the illumination direction of a vehicle lamp;

Fig. 4 is a graphical representation of an example of the change with time of a detect level detected by vehicle speed detection device;

Fig. 5 is a flow chart of a judging processing on the acceleration or deceleration running condition of the vehicle;

Fig. 6 is a graphical representation of an example of a detect level detected by a height sensor;

Fig. 7 is an explanatory view of a method for judging the bad road running condition of the vehicle by combined use of a height sensor and an angular velocity sensor;

Fig. 8 is a schematic view of an example of a method for changing the illumination direction of the lamp by driving and controlling the entire lamp;

Fig. 9 is an explanatory view of a method for limiting the allowable range of the illumination angle of the lamp when it is judged that the vehicle is in the acceleration or deceleration running condition;

Fig. 10 is an explanatory view of a method for limiting the allowable range of the illumination angle of the lamp to thereby prohibit the occurrence of an upwardly directed light when it is judged that the vehicle is in the acceleration or deceleration running condition;

Fig, 11 is an explanatory view of a method for slowing down the response speed of drive device when it is judged that the vehicle is in the acceleration or deceleration running condition;

Fig. 12 is an explanatory view of a method for changing the illumination direction of a reflector by driving or controlling the reflector;

Fig. 13 is an explanatory view of a method for changing the illumination direction of a lens by driving or controlling the lens; and,

Fig. 14 is an explanatory view of a method for changing the illumination direction of a shade by driving or controlling the shade.

Now, description will be given below of an embodiment of a vehicle lamp illumination direction control device according to the invention with reference to the accompanying drawings.

Fig. 1 shows the basic structure of the present invention, in which an illumination direction control device 1 includes a vehicle posture detection device 2 , a control device 3 (which is composed of correction calculating device $3 a$ and acceleration or deceleration running condition judging device 3b), a drive device 4 (which is composed of a drive control device 4 a and a drive mechanism 4b), and a lamp 5.

The vehicle posture detection device 2 is used to detect the posture of a vehicle while it is standing still and/or moving (including the vertical inclination of the vehicle while it is running). For example, when there is used a vehicle height detection device 6 which detects the height of the vehicle body according to the uneven surface of the road, as shown in Fig. 2, there are available a method for measuring a distance L between the vehicle height detection device 6 and the road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the vehicle height detection device 6 detects the amount x of the expansion and contraction of a suspension S. These two methods are both advantageous in that the existing facilities in the vehicle can be used.

The outputs of the vehicle posture detection device 2 are transmitted to the correction calculating device 3 a and acceleration or-deceleration running condition judging device 3b which cooperate together in forming the control device 3,
and these outputs are used as control signals to be applied to the drive device 4 and are then used as instructions for correcting the illumination condition of the lamp 5.

In particular, the correction calculating device 3 a is structured in the following manner: that is, in accordance with a detect signal from the vehicle posture detection device 2 , it transmits a control signal to the drive device 4 so that the illumination direction of the lamp 5 can be always kept in a given direction. For example, as shown in Fig. 3, when the vehicle body rises in the front portion thereof with respect to a light distribution pattern PN (shown by a solid line in Fig. 3) which is set using a horizontal line $\mathrm{H}-\mathrm{H}$ or a vertical line $\mathrm{V}-\mathrm{V}$ as a reference line, the illumination direction of the lamp 5 varies upward with respect to the horizontal line $\mathrm{H}-\mathrm{H}$ and thus the light distribution pattern varies upward like a pattern PU (shown by a one-dot chained line in Fig. 3). In this case, the correction calculating device 3 a transmits to the drive control device $4 a$ a signal which causes the illumination direction of the lamp 5 to vary downward as well as the light distribution pattern thereof to vary downward and coincide with the light distribution patter PN as shown by an arrow A in Fig. 3. Also, contrary to this, when the vehicle body falls down in the front portion thereof, the illumination direction of the lamp 5 varies downward with respect to the horizontal line $\mathrm{H}-\mathrm{H}$ and thus the light distribution pattern also varies downward like a pattern PD (shown by a two-dot chained line in Fig. 3). In this case, the correction calculating device $3 a$ transmits to the drive control device $4 a$ a signal which causes the illumination direction of the lamp 5 to vary upward as well as the light distribution pattern thereof to vary upward and coincide with the light distribution pattern PN as shown by an arrow B in Fig. 3.

Now, the acceleration or deceleration running condition judging device 3 b is used to judge whether the vehicle is
increasing its speed or decreasing its speed. When the judging device $3 b$ judges that the vehicle is in an acceleration or deceleration running condition, in accordance with a control signal transmitted from the correction calculating device $3 a$ to the drive control device $4 a$, the acceleration or deceleration running condition judging device $3 b$ transmits to the drive control device $4 a$ a signal which allows the illumination direction of the lamp 5 to be corrected in a predetermined direction. Also, when the acceleration or deceleration running condition judging device 3 b judges that the vehicle is not in the acceleration or deceleration running condition (that is, it is judged that the vehicle is in a constant speed running condition or in a bad road running condition, or the like), it transmits a control signal to the drive device 4 , so that the illumination direction of the lamp 5 can be fixed in a predetermined direction or limited to a given range, or the response speed of the drive mechanism $4 b$ for varying the illumination direction of the lamp 5 is slowed down to thereby be able to control the illumination direction of the lamp 5 in such a manner that it varies slowly. Here, as basic information used to judge whether the vehicle is in the acceleration or deceleration running condition or not, besides the information that is given by the vehicle posture detection device 2, as shown in Fig. 1, there is also available information which can be obtained by providing acceleration or deceleration instruction detection device 8 used to detect an acceleration or deceleration instruction or information relating to the present instruction according to the amount of pressing-down of a gas pedal, variations in the opening angle of a throttle valve or the like, or information which can be obtained by providing an engine revolution number detection device 9 used to detect the number of revolutions of an engine: that is, the information obtained by these detection devices may be transmitted to the acceleration or deceleration running
condition judging device $3 b$. A judging method for judging whether the vehicle is in the acceleration or deceleration running condition or not will be described later below.

The drive control device 4 a is used to receive signals from the correction calculating device 3 a and acceleration or deceleration running condition judging device $3 b$ and allow the drive mechanism $4 b$ to control or change the illumination direction of the lamp 5. The control or change of the illumination direction of the lamp 5 can be achieved by inclining the entire lamp 5 or by moving part of the components of the lamp 5 such as a shade or the like, while the details of these controlling or changing methods will be given later.

At first, the judging method in the acceleration or deceleration running condition judging device $3 b$ will be described by classifying it into the following four methods:
i) a method using the vehicle speed detection device;
ii) a method using the acceleration or deceleration instruction detection device 8;
iii) a method using the engine revolution number detection device 9; and,
iv) a method using the vehicle posture detection device 2.
Firstly, the method i) is a method which judges whether the vehicle is in the acceleration or deceleration running condition or not by detecting the running speed of the vehicle to calculate the change of the speed with time, that is, by calculating the acceleration of the vehicle. The present method i) is advantageous in that the vehicle speed detection device 7 is one of the existing facilities in the vehicle and use of the detect signal of the vehicle speed detection device 7 facilitates the judgment on the acceleration or deceleration running condition of the vehicle.

Fig. 4 shows an example of the change of the speed with time, in which the axis of abscissa expresses the time t and the axis of ordinate expresses the speed $v(t)$ of the vehicle. In Fig. 4, a period designated by Ta expresses the acceleration period of the vehicle, a period designated by $T b$ expresses the deceleration period of the vehicle, a period designated by TC expresses the constant speed period of the vehicle, and a period designated by T expresses the bad road running period of the vehicle.

Based on the speed v obtained from the vehicle speed detection device 7 , if the time differential of the speed v or an acceleration $d v(t) / d t$ is calculated, the acceleration is given as a positive value in the acceleration period $T a$, the acceleration is given as a negative value in the deceleration period Tb , and the acceleration is given as zero in the constant speed period or a small value in the bad road running period Td. Therefore, by comparing the acceleration or the absolute value thereof with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not.

Now, Fig. 5 is a flow chart which shows the flow of the acceleration or deceleration running condition judging process, that is, Fig. 5 shows the procedure of the processing to be performed by the above-mentioned acceleration or deceleration running condition judging device $3 b$.

At first, in Step $S 1$, the vehicle speed $v(t)$ is detected and, after then, in Step $S 2$, the acceleration $d v$ (t)/dt or the absolute value thereof is calculated. Next, in Step S3, it is checked whether the acceleration $d v$ (t)/dt or the absolute value thereof is equal to or more than a reference value or not. If it is found that the acceleration $d v$ (t)/dt or the absolute value thereof is less than the reference value, then the processing advances to Step 55.

In Step 54 , it is judged that the vehicle is in the acceleration or deceleration running condition and, after then, the processing goes back to Step S2. Also, in Step S5, it is judged that the vehicle is not in the acceleration or deceleration running condition and, after then, the processing returns back to the first step Sl .

As described above, the method i) is a method which monitors the variations in the speed of the vehicle and, therefore, when an instruction for acceleration or deceleration of the vehicle given by a driver cannot be reflected instantaneously on the speed of the vehicle, there is a fear that a time delay can occur in the judgment of the acceleration or deceleration. In this case, as shown in the method ii), as the information relating to the acceleration or deceleration instruction of the vehicle, there can be used the detect information relating to the variations in the amount of pressing-down of the accelerator pedal or relating to the variations in the amount of opening of the throttle valve.

In particular, the variations in the accelerator pedal pressing-down amount or the variations in the throttle valve opening amount is large when the vehicle is in the acceleration or deceleration running condition (which is hereinafter referred to as acceleration or deceleration time), while it is small when the vehicle is running at a constant speed or along a bad road. Therefore, by detecting a difference between the variations, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. In other words, in Fig. 5, Step Sl may be replaced by the detection of the accelerator pedal pressing-down amount or the throttle valve opening amount, the variations in these amounts may be calculated in Step $S 2$ and, after then, the thus calculated value may be compared with the given reference value in Step S3, whereby the following processing (that is, the processing to be performed after then) can be decided.

In another method, attention is paid to variations in the state of the drive source of the vehicle, that is, as shown in above-mentioned method iii), by detecting variations in the number of revolutions of the engine, the judgment on the acceleration or deceleration running condition can be achieved.

That is, due to the fact that the variations in the number of revolutions of the engine are large in the acceleration or deceleration running condition of the vehicle, whereas the variations are small in the constant speed running condition or in the bad road running condition, by detecting a difference between the variations, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. In this case, in Fig. 5, the number of revolutions of the engine may be detected in Step Sl , a variation in the number of revolutions of the engine may be calculated in Step $S 2$ and, after then, the thus calculated value may be compared with the given reference value in Step S3, whereby the following processing can be decided.

As described above, based on the respective pieces of information that are obtained by calculating the amounts of variations with time of the vehicle speed, the speed instruction given by the driver, and the state of the drive source of the vehicle, or based on the information that is obtained by combining them with each other, the variations in the acceleration or deceleration condition of the vehicle can be detected.

The remaining method iv) is a method which can judge the acceleration or deceleration running condition of the vehicle based on the information that is obtained by the vehicle posture detection device 2. Generally, as a device for detecting variations in the vibration of a mechanism for absorbing the vibration that is given to the wheels of the vehicle from the surface of a road or for detecting the height of the axle of the vehicle, there is used height detection
device such as a height sensor or the like. In the present method, based on the information that is obtained from the height detection device, the time differential of the detected level or the absolute value thereof is calculated and, after then, by comparing the resultant value with a given reference value, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not. Also, if a plurality of height detection device are arranged at several positions of the vehicle, for example, in the front and rear portions thereof and/or right and left portions thereof and the inclination angle in the pitching direction of the vehicle (so called pitch angle) is detected in accordance with the detect information that is detected by these height detection device, then the running condition of the vehicle can be confirmed to a certain degree. However, actually, there exists a state in which it is difficult to tell the acceleration or deceleration running condition of the vehicle from the bad road running condition only by means of such height detection device.

Now, Fig. 6 shows an example of the level variations in the detect signal that is output from a height sensor attached to the vehicle. In Fig. 6, the axis of abscissa expresses the time t and the axis of ordinate expresses the level V of the detect signal.

In Fig. 6, a period designated by Tl expresses a period in which the vehicle is in an acceleration or deceleration running condition, a period designated by T2 expresses a period in which the vehicle is in a constant speed running condition, and a period designated by T3 expresses a period in which the vehicle is in a bad road running condition. Fig. 6 tells that the width of the amplitude variations in the output signal of the height sensor is large in the periods $T 1$ and $T 3$.

That is, in order to judge whether the vehicle is in the acceleration or deceleration running condition or in the
bad road running condition, it is necessary to recognize a difference between the detected level variations in the period $T 1$ and T3. For example, attention is paid to a difference between the degrees of the variations in the detected levels and the judgment is made in accordance with the fact that the amplitude variations in the detected levels in the period $T 3$ are heavier. However, as a method which can enhance the accuracy of the judgment, there can be pointed out a method which detects the variations in the detected levels by using the vehicle height detection device and angular velocity detection device in combination.

Now, Fig. 7 shows a method which carries out a judgment on the acceleration or deceleration running condition of the vehicle by using a height sensor and an angular velocity sensor in combination. In Fig. 7, a graphical representation shown in the upper stage thereof represents variations with time in the time difference amount (which is expressed as $d \theta / d t$) of the pitch angle of the vehicle calculated from the detect level v of the height sensor, whereas a graphical representation in the lower stage thereof represents variations with time in the output level (which is expressed as ω) of the angular velocity sensor which is installed at a position above the suspension of the vehicle to detect the pitch angle. Here, in Fig. 7, a period Tl expresses a period in which the vehicle is running at a constant speed along a comparatively even road, a period T2 expresses a period in which the vehicle is running in an acceleration or deceleration condition, and a period T3 expresses a period in which the vehicle is running on a bad road, respectively.

As can be seen from Fig. 7, in the period T2, variations in $d \theta / d t$ and ω are found when the vehicle is running in the acceleration or deceleration condition, whereas variations in $d \theta / d t$ and ω are small in the period $T 1$; in the period $T 3$, the vibration component of $d \theta / d t$ is large, whereas
large variations are not found in w; and, therefore, it can be found that $d \theta / d t$ and have no correlation between them or the relation between them is low. The reason for this is as follows: since the vibration of the suspension is detected by the height sensor in the bad road running condition of the vehicle, $d \theta / d t$ calculated from the output of the height sensor is also affected by the influence of the thus detected vibration, whereas, because the influence of the vibration on the load portion of the suspension situated above the spring is absorbed by the expansion and contraction of the suspension, the present load portion is not inclined so greatly in the pitching direction and, therefore, the vibration component relating to the load portion of the suspension situated below the spring is not reflected greatly on the output of the angular velocity sensor for detection of the pitch angle.

In this manner, when there is found a correlative variation between $d \theta / d t$ and ω, it can be judged that the vehicle is in the acceleration or deceleration running condition. In the other cases, that is, when $d \theta / d t$ and ω are small in variations, or when no correlation or only a small correlation is found, it can be judged that the vehicle is running at a constant speed or along a bad road.

Here, the number of the angular velocity sensor (in Fig. 1, included in the vehicle posture detection device 2) is not limited to one but, of course, a plurality of angular velocity sensors may be used, that is, it is also possible to obtain the information that is necessary for the angular velocity calculation based on the information from these angular velocity sensors.

As has been described above, according to the respective methods, it is possible to judge whether the vehicle is running in the acceleration condition or in the deceleration condition. Also, these methods can be applied in various manners, for example, the respective methods can be used
individually, or some of them may be combined together for the enhanced accuracy of the judgment.

Next, description will be given below of the control of the direction of the illumination light of the lamp 5 to be made by the drive device 4.

The simplest method for changing the illumination pattern of the lamp 5 in a vertical plane is a method which changes the illumination angle of the lamp 5 with respect to a horizontal plane by rotating the entire lamp 5 about the rotary shaft thereof. For example, the right and left side surfaces of the lamp 5 are supported in a freely rotatable manner and the rotary shaft of the lamp 5 is rotated directly by a drive source such as a motor or the like, or, there is available a drive mechanism in which a member fixed to the lamp 5 or formed integrally with the lamp 5 is rotated by the drive device 4. As an example of such lamp, there is pointed out a lamp of a type that it employs a mechanism in which the rotational force of the motor is used as the rotational force of the lamp by a transmission mechanism using a worm and a worm wheel (for example, see Japanese Patent Publication No. Sho. 63-166672).

If it is judged by the acceleration or deceleration running condition judging device $3 b$ that the vehicle is in the acceleration running condition or in the deceleration running condition, then the drive control device 4 a rotates the entire lamp 5 within a vertical plane so that the lamp 5 can provide an illumination angle as specified by the correction calculating device 3 a .

Also, if it is judged by the acceleration or deceleration running condition judging device $3 b$ that the vehicle is not in the acceleration or deceleration running condition, then the illumination angle of the lamp 5 can be controlled by one of the following methods when the drive control device 4 a receives an instruction from the acceleration or deceleration running condition judging device 3 b :

1) a method for fixing the illumination angle;
2) a method for limiting the range of the illumination angle or forbidding part of the range of the illumination angle; and,
3) a method for changing the response speed or control speed of an actuator.
At first, the method 1), which is the simplest in the above-mentioned three methods, is a method which always holds the illumination angle of the lamp 5 at a constant angle when judging whether the vehicle is in the acceleration or deceleration running condition or not. That is, when the vehicle is not in the acceleration or deceleration running condition, in order to prevent the illumination light of the lamp 5 from being directed too upwardly, the lamp 5 may be held in such a condition that the illumination direction of the lamp 5 can be directed a little downwardly.

The then downwardly directed angle of illumination may be set for a value irrelevant to an illumination angle before it is judged that the vehicle is not in the acceleration or deceleration running condition, or may be set at an illumination angle just prior to the present judgment or an angle obtained by correcting the present illumination angle (for example, adjusting the present illumination angle a little downwardly), or, may be set at an average illumination angle prior to the present judgment or an angle obtained by correcting the present average illumination angle.

The method 2), which limits the range of the illumination angle, is a method which narrows the range of the illumination angle so that the allowable range of the illumination angle of the lamp 5 when it is judged that the vehicle is not in the acceleration or deceleration running condition is smaller than the allowable range of the illumination angle when it is judged that the vehicle is in the acceleration or deceleration running condition.

For example, as shown in Fig. 9, where the allowable range of the illumination angle of the lamp 5 in the other running conditions than the acceleration or deceleration running condition is expressed as θa and the allowable range of the illumination angle in the acceleration or deceleration running condition is expressed as θb, if a ratio $n(0<(1 / n)<1)$ is introduced and the angle range is narrowed so that $\theta a=\theta b / n$ can be obtained, then it is possible to reduce the frequency that the illumination light of the lamp 5 provides an upward light in the other running conditions of the vehicle than the acceleration or deceleration running condition thereof.

Also, as shown in Fig. 10 , by setting an upper limit on the illumination angle of the lamp 5 in the other running conditions of the vehicle than the acceleration or deceleration running condition thereof, the illumination angle of the lamp 5 can be restricted in such a manner that it is prevented from exceeding the upper limit. For example, if an upper limit $\theta \mathrm{m}$ is set on the allowable range θb of the illumination angle of the lamp in the acceleration or deceleration running condition of the vehicle so that the allowable range θ a of the illumination angle of the lamp 5 is prevented from exceeding the upper limit $\theta \mathrm{m}$, then the illumination light of the lamp 5, in the other running conditions of the vehicle than the acceleration or deceleration running condition, can be controlled such that it cannot provide an upward light.

Now, the remaining method 3) is a method which, while the previously described two methods respectively control the illumination angle itself, controls the response speed of the drive device 4 to thereby prevent the illumination angle of the lamp 5 from being changed excessively in the other running conditions of the vehicle than the acceleration or deceleration running condition.

That is, while the control on the response speed of the drive device 4 varies infinitely according to the structures of
the drive device 4 , by changing a voltage, a current, a control signal and the like to be supplied to an actuator forming the drive device, it is possible to slow down the posture control of the lamp 5 in the other running conditions of the vehicle than the acceleration or deceleration running condition.

For example, when the actuator incorporates therein a DC (direct current) motor, a difference between the control target position (or angle) of the actuator and the current position (or angle) thereof is detected, and a pulse signal having a duty cycle corresponding to the detected position difference is supplied to the DC motor to thereby control the position of the actuator, as shown in Fig. 11, if the characteristic of the duty cycle DT with respect to the position difference $\delta x x$ is changed from the state of a relatively faster response speed shown by a broken line 10 to the state of a slow response speed shown by a solid line ll, with respect to the same position difference $6 \times x=6 \times x a$, the duty cycle DT in the other running conditions of the vehicle than the acceleration or deceleration running condition thereof is smaller than the duty cycle in the acceleration or deceleration running condition of the vehicle, so that the drive control on the lamp 5 by the actuator is slowed down.

Here, according to the method 3), various kinds of embodiments are possible. For example, the response speed of the drive device 4 can be changed according to the running speed of the vehicle, or can be changed according as the vehicle is in the constant running condition or in the bad road running condition. Also, of course, it is possible to use the methods 1) to 3) in combination according to the states of the vehicle (such as the running conditions thereof, variations in the posture thereof, and the like).

In the above description, by rotating the entire lamp by use of the drive device 4 , the illumination direction of the
lamp is changed. However, alternatively, the components of the lamp 5 may be in part controlled in position.

For example, as shown in Fig. 12, it is possible to employ a structure in which a reflector 12 is rotated within a vertical plane by the drive device 4 to thereby change the direction of the reflected light of the reflector 12 . In particular, in order that the reflector can be in part supported rotatably on the body of the lamp and a screw member mounted on the other portions than the lamp body for adjusting the inclining angle of the reflector can be rotated by a motor, there can be used a transmission mechanism which includes a worm and a worm wheel (for example, see Japanese Patent Publication No. 59-195441). Or, as shown in Fig. 13, it is also possible to employ a structure in which a lens 13 is inclined by the drive device 4 to thereby change the direction of the illumination light that has passed through the lens 13 (for example, see Japanese Patent Publication No. Hei. 737405). Here, instead of inclining the whole of the reflector and lens, the main portions of the illumination light may also be changed to a predetermined direction by controlling the position of part of the reflector and lens.

Further, as shown in Fig. 14, a shade 14 interposed between the reflector 12 and the lens 13 in the lamp 5 may be moved by the drive device 4 so that a light and shade boundary (so called cut line) in the light distribution pattern of the lamp 5 can be changed vertically (for example, see Japanese Patent Publication No. Hei. 7-29401).

In addition, according to the method 3), other various kinds of embodiments are also possible according to the combinations of the optical components of the lamp 5. For example, if the reflector and light source, or the lens and reflector, or the lens and shade are moved together by the drive device 4 , then the direction of the illumination light of the lamp 5 can be changed in the vertical direction.

As can be understood clearly from the foregoing description, according to the invention as set force in claim 1 , when it is found that the vehicle is not in the acceleration or deceleration running condition, the control device controls the illumination direction of the lamp by fixing the direction of the illumination light of the lamp in a predetermined direction, or by limiting the direction of the illumination light to a limited range, or by slowing down the response speed of the drive device, thereby being able to prevent the illumination direction of the lamp from being changed excessively and thus prevent the illumination direction of the lamp from being corrected excessively in the bad road running condition of the vehicle. This makes it possible to restrict not only a strange feeling given to the driver of the vehicle due to the sudden change of the lamp light distribution and visibility but also a dazzling feeling given to the driver of an oncoming vehicle, a pedestrian, and the like.

Also, according to the invention as set forth in Claim 2 , by detecting the acceleration instruction or deceleration instruction given to the drive source of the vehicle, or by detecting the drive condition of the drive source of the vehicle, it is possible to judge whether the vehicle is in the acceleration or deceleration running condition or not, without waiting for a time delay necessary for the change of the speed of the vehicle.

Further, according to the invention as set forth in Claim 3, the detect signal relating to the vehicle posture from the vehicle posture detection device can also be used as basic information to judge whether the vehicle is in the acceleration or deceleration running condition or not.

Still further, according to the invention as set forth in Claim 4, the change with time of the inclination angle of the vehicle based on the detect signal from the height detection device is compared with the change with time of the
angular velocity of the inclination angle detected by the angular velocity detection device to find a correlation in terms of time between them, and, in accordance with the high or low correlation between them, it is possible to distinguish the acceleration or deceleration running condition of the vehicle from the bad road running condition of the vehicle.

CLAIMS

1. A vehicle lamp illumination direction control device for changing the direction of the illumination light of a lamp according to the vertical inclination of a vehicle in the advancing direction thereof, the control device comprising:
a vehicle posture detection device for detecting the posture of said vehicle during the stationary and/or moving condition thereof;
an acceleration or deceleration running condition judging device for judging whether said vehicle is in the acceleration running condition or in the deceleration running condition or not;
a drive device for directing the illumination light of said lamp in a predetermined direction; and,
a correction calculating device for transmitting to said drive device a correction signal for holding said illumination light of said lamp in a predetermined direction, in accordance with a signal received from said vehicle posture detection device,
wherein, when it is judged by said acceleration or deceleration running condition judging device that said vehicle is in the acceleration running condition or in the deceleration running condition, the direction of said lamp can be controlled by said signal transmitted from said correction calculating device to said drive device, and, when it is judged by said acceleration or deceleration running condition judging device that said vehicle is not in the acceleration running condition or in the deceleration running condition, said drive device can fix the direction of said illumination light of said lamp in a predetermined direction or can limit the allowable range of the direction of said illumination light, or the response speed of said drive device can be slowed down.
2. A vehicle lamp illumination direction control device as set forth in Claim 1, wherein said acceleration or deceleration running condition judging device detects an acceleration instruction or a deceleration instruction to the drive source of said vehicle or detects the drive state of said drive source of said vehicle, thereby being able to judge whether said vehicle is in the acceleration running condition or in the deceleration running condition or not.
3. A vehicle lamp illumination direction control device as set forth in Claim 1 , wherein said acceleration or deceleration running condition judging device detects the change with time of a detect signal relating to the vehicle posture from said vehicle posture detection device, thereby being able to judge whether said vehicle is in the acceleration running condition or in the deceleration running condition or not.
4. A vehicle lamp illumination direction control device as set forth in Claim 3, further including:
a height detection device for detecting variations in the vibrations of a mechanism for absorbing the vibrations that are applied to the wheels of said vehicle from the surface of a road, or detecting the height of the axle of said vehicle; and,
an angular velocity detection device for detecting an angular velocity relating to the inclination angle of said vehicle in the advancing direction thereof,
wherein said acceleration or deceleration running condition judging device detects the change with time of said inclination angle of said vehicle in the advancing direction thereof in accordance with a detect signal from said height detection device, and compares said change with time of said vehicle inclination angle with the change with time of a detect
signal from said angular velocity detection device, thereby being able to judge in accordance with high or low correlation between them whether said vehicle is in the acceleration running condition or in the deceleration running condition or not.

Patent
Office

2

Application No:	GB 9701821.2	Examiner:	R E Hardy
Claims searched:	ALL	Date of search:	18 April 1997

Patents Act 1977
Search Report under Section 17
Databases searched:
UK Patent Office collections, including GB, EP, WO \& US patent specifications, in:
UK Cl (Ed.O): F4R (RMC)
Int Cl (Ed.6): B60Q (1/08, $1 / 10,1 / 105,1 / 11,1 / 115)$
Other: Online : WPI, CLAIMS, JAPIO

Documents considered to be relevant:

Category	Identity of document and relevant passage	Relevant to claims	
A	GB2053439 A	CIBIE : Whole document	1
A	EP0709240 A2	MERCEDES-BENZ : Whole document	1
A	EP0699559 A1	JOSIC : Whole document	1
A	EP0652134 A1	CARELLO : Whole document	1
A	WO96/18524 A1	ARAYA : Whole document	1

An Executive Agency of the Department of Trade and Industry

EXHIBIT 7

${ }_{12}$ UK Patent Application
 (19) GB
 (112309774
 ${ }_{13} \mathrm{~A}$

(43) Date of A Publication 06.08.1997
(21) Application No 9701822.0
(22) Date of Filing 29.01.1997
(30) Priority Data

(31) 08037108	(32) 01.02.1996	(33) JP

(71) Applicant(s)

Koito Manufacturing Co., L\&d.
(Incorporated in Japan)
8-3, Takanawa 4-chome, Mineto-ku, Tokyo, Japan
(72) inventor(s)

Kazuki Takahashi
(74) Agent and/or Address for Service

Gill Jennings 8 Evary
Broadgate House, 7 Eldon Street, LONDON, EC2M 7LH, United Kingdom

(51) $\mathrm{INT} \mathrm{CL}^{6}$
 B600 1/115

(52) UK CL (Edition O)

F4R RMC R364 R41Y R765 R78X R789
U1S S1934
(58) Documents Cited

GB 2115929 A EP 0699559 A1 EP 0554663 A2
US 5195816 A US 4204270 A
(58) Field of Search

UK CL (Edition O) F4R RMAC
INT CL ${ }^{6}$ BEOO 1/08 1/10 1/105 1/11 1/115
Online : WPPI, CLAIBSS, JAPIO

(54) Controlling direction of vehicte lights

(57) The illumination direction of lights in a vehicle is controlled by detecting vahicle posture leg height and/or inclination) and whether the vehicle is stationary and/or has passed through a change of road gradient, and directing the illumination of the lights to a desired direction in accordance with signals received from the posture detection device. Control means effect the direction change only when the vehicle is stationary and/or has passed through a change of gradient. Reference values related to time may be used to prevent unwanted light movements due to rough road surfaces and sudden stops or starts.

FIG. 1

Page 764 of 1228

3/7

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

Page 768 of 1228

FIG. 10

2309774

A VEHICLE LAMP ILLUMINATION DIRECTION CONTROL DEVICE

The present invention relates to a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjust the illumination direction of a vehicle lamp so that it can be always kept in a predetermined direction.

Conventionally, there has been known a device (a so called automatic leveling device) which, even when the inclination of a vehicle body varies, is capable of automatically adjusting the illumination direction of the vehicle lamp so that the illumination direction of the vehicle lamp can be kept at a predetermined direction. The device of this type, with the conditions of occupants (such as the number of occupants, the position arrangement of the occupants, and the like) as well as the loaded conditions of loads on board the vehicle taken into consideration, corrects manually the illumination angle of the vehicle lamp with respect to the initially adjusted value of the vehicle lamp so that the illumination state of the vehicle lamp can be always kept in a desired state, thereby to control the illumination direction of the vehicle lamp to provide desired light distribution.

For example, when a load is applied to the rear portion of the vehicle, the device finds the then inclination angle of the vehicle body in the longitudinal direction thereof, and inclines the vehicle lamp downward because the illumination direction of which would be displaced upwardly of the reference direction if the posture of the vehicle lamp is left as it is, thereby adjusting the illumination direction of the vehicle lamp so that the vehicle lamp

illumination direction can be always kept in the reference

 direction.However, in the above-mentioned manual adjustment, is no guarantee that the illumination direction of the lamp can be always held in the optimum condition with respect to the posture of the vehicle. Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp.

However, in the above-mentioned automatic adjustment device, since the lamp is driven with high frequency, an actuator used in a drive mechanism for driving the lamp is required to show high response property and high durability. Due to this, the adjustment device is expensive and consumes a large amount of electric power.

Therefore, in order to avoid the above inconveniences, there can be expected a device which corrects the illumination direction of the lamp only when the vehicle is standing still. However, in such device, when the vehicle stops once on a road having a gradient, the illumination of the lamp cannot be corrected until the vehicle stops again on a road having a small gradient, which raises another inconvenience. For example, when the vehicle stops on a downhill road, because the vehicle posture detect device detects that the front portion of the vehicle is lower in position, the illumination direction of the lamp is corrected to a position which is set a little upwardly of a reference position. After then, when the driver starts the vehicle while the illumination direction of the lamp remains as it is corrected upwardly, and the vehicle passes through the
downhill slope and then runs into a flat road, that is, even when the vehicle runs along the flat road, the illumination direction of the lamp is still left in the upwardly corrected condition until the vehicle stops again, which can cause an increase in the glare onto an oncoming vehicle or can worsen the visibility of the driver of the present vehicle.

Accordingly, it is an object of the invention to provide a vehicle lamp illumination direction control device capable of not only reducing the cost thereof but also correctly adjusting the illumination direction of a lamp according to the stationary condition of the vehicle and the amount of variations in the gradient of the road to thereby improve the visibility thereof and guarantee the safety of the running of the vehicle.

In attaining the above object, according to the invention, there is provided a vehicle lamp illumination direction control device so structured as to change the illumination direction of a vehicle lamp according to the vertical inclination of a vehicle in the advancing direction thereof, the vehicle lamp illumination direction control device comprising:
a vehicle posture detection device for detecting the posture of the vehicle;
a vehicle running condition detection device for detecting the running conditions of the vehicle including the stationary condition thereof;
a drive device for directing the illumination light of the lamp to a desired direction; and,
control device, when it is judged in accordance with a signal from the vehicle running condition detection device that the vehicle is in the stationary condition thereof and when it is judged that the vehicle has run from a road having
a small gradient into a road having a large gradient or the vehicle has run from a road having a large gradient into a road having a small gradient, for transmitting to the drive device a signal for correcting the illumination direction of the lamp in a predetermined direction in accordance with a signal from the vehicle posture detection device.

Therefore, according to the invention, only when the vehicle is found stationary and when it is found that the vehicle has run from a road having a small gradient into a road having a large gradient or the vehicle has run from a road having a large gradient into a road having a small gradient, the illumination direction of the lamp can be corrected.

In the accompanying drawings:
Fig. 1 is a block diagram of the structure of a vehicle lamp illumination direction control device according to the invention;

Fig. 2 is a schematic view of a vehicle, explaining height detection device provided in the vehicle;

Fig. 3, together with Figs. 4 to 6, is a schematic graphical representation of the amount of variations with time in the output signal of the height sensor when the vehicle runs along a road having a large gradient; and, in particular, Fig. 3 shows the variations in the output of the height sensor when the vehicle firstly runs along an uphill slope and then runs along a road having a small gradient;

Fig. 4 shows the amount of variations in the output of the height sensor when the vehicle firstly runs along a road having a small gradient and then runs along an uphill slope;

Fig. 5 shows the amount of variations in the output of the height sensor when the vehicle firstly runs along a
downhill slope and then runs along a road having a small gradient;

Fig. 6 shows the amount of variations in the output of the height sensor when the vehicle firstly runs along a road having a small gradient and then runs along a downhill slope;

Fig. 7 is a flow chart of a processing for correction of the illumination direction of the lamp;

Fig. 8 is a graphical representation in which
variations in the output signal levels of the height sensor, the illumination angles of the lamp, and the vehicle speeds are shown in combination;

Fig. 9 is a circuit block diagram of a first
embodiment of a vehicle lamp illumination direction control device according to the invention; and,

Fig. 10 is a circuit block diagram of a second embodiment of a vehicle lamp illumination direction control device according to the invention.

Now, description will be given below of the embodiments of a vehicle lamp illumination direction control device according to the invention with reference to the accompanying drawings.

At first, Fig. 1 shows the basic structure of the present invention, in which an illumination direction control device 1 is composed of vehicle posture detection device 2 , vehicle running condition detection device 3, control device 4, drive device 5 (which is composed of drive control device $5 a$ and a drive mechanism 5b), and a lamp 6.

The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection
device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle. The two methods are both advantageous in that the existing facilities of the vehicle can be used for detection of the posture of the vehicle.

The output of the vehicle posture detection device 2 is sent to the control device 4 and is used as basic information for correction calculation of the illumination direction of the lamp 6.

The vehicle running condition detection device 3 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4. As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle.

When the control device 4 receives the detect signal of the vehicle running condition detection device 3 and finds from this detect signal that the vehicle is standing still, the control device 4, in accordance with information on the vehicle posture obtained from the vehicle posture detection device 2, transmits to the drive signal 5 a control signal for correction of the illumination direction of the lamp 6. For example, in the stationary condition of the vehicle, when the front portion of the vehicle is situated lower (or
higher) than the rear portion thereof, the illumination direction of the lamp 6 is adjusted in the upward (or downward) direction so that the illumination direction can be always held substantially in the horizontal direction.

By the way, the vehicle does not always stop on a road having no gradient but, as described above, the vehicle is sometimes caused to stop on the slanting road. In this case, with use of the above-mentioned method for adjusting the illumination direction of the lamp only when the vehicle is caused to stop, the thus adjusted illumination direction of the lamp cannot be corrected until the vehicle stops next.

In view of this, the control device 4 is structured such that, based on the information from the vehicle posture detection device 2 , it can detect the amount of variations in the gradient of the road and, therefore, when the road gradient varies suddenly, it can correct the illumination direction of the lamp 6.

Now, Figs. 3 to 6 are respectively explanatory views of a method for detecting the amount of variations in the road gradient when a height sensor is used as the vehicle posture detection device 2 and, in these figures, an axis of abscissa expresses the time t and an axis of ordinate expresses the output level V of the height sensor; that is, in these figures, there is shown an example of the amount of variations in the output level V with the passage of time (by the way, for the purpose of simplified expression, the term "with the passage of time" is sometimes expressed as "with time" in this specification).

In particular, Fig. 3 shows schematically the amount of variations in the output level V when the vehicle runs first along an uphill slope and thereafter runs along a road having a small gradient. In this case, when the vehicle runs over the uphill slope, the output level v falls down suddenly.

Also, Fig. 4 shows schematically the amount of variations in the output level V when the vehicle runs first along a road having a small gradient and thereafter runs along an uphill slope. In this case, when the vehicle starts to run the uphill slope, the output level v rises up suddenly.

Fig. 5 shows schematically the amount of variations in the output level V when the vehicle runs first along a downhill slope and thereafter runs along a road having a small gradient. In this case, when the vehicle has run through the downhill road, the output level v rises up suddenly.

Fig. 6 shows schematically the amount of variations in the output level V when the vehicle runs first along a road having a small gradient and thereafter runs along a downhill slope. In this case, when the vehicle starts to run along the downhill slope, the output level v falls down suddenly.

These figures show clearly that the magnitude of the amount of variations in the road gradients is reflected on the amount of variations in the outputs of the height sensor when the vehicle runs from the road having a small gradient to the road having a large gradient or when the vehicle runs from the road having a large gradient to the road having a small gradient.

Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2. That is, according to this way of correction, when the vehicle moves from the uphill or downhill slope to the road having a small gradient, or vice
versa, the illumination direction of the lamp 6 can be adjusted in a proper direction.

By the way, in the present method, the control device 4 is structured such that it can judge the amount of variations in the road gradients according to the detect information provided by the vehicle posture detection device 2 , which can in turn simplify the structure of the illumination direction control device. However, the invention is not limited to this but, for example, a device for detecting the road gradients or the amounts of variations therein may be provided separately from the vehicle posture detection device 2 and the control device 4 may judge the amounts of variations in the road gradients according to the information that is detected by the separately provided detection device.

Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected. Also, these threshold values may be
set in various manners, for example, they may be set as a constant value, or may be set as a variable which varies according to the speeds of the vehicle.

Now, Fig. 7 is a flow chart of a processing to be performed by the control device 4. At first, in Step Sl, it is checked in accordance with the information from the vehicle running condition detection device 3 whether the vehicle is stopped or not. If it is found that the vehicle is stopped, then the processing advances to Step 55 and, if the vehicle is found running, then the processing advances to Step S2.

After the posture of the vehicle is detected by the vehicle posture detection device 2 in Step $S 2$, in Step 53 , it is checked from the amount of variations with time in the detect signal whether the amount of variations in the gradient of the road is large or not. If it is found that the amount of variations in the road gradients is large, then the processing advances to Step $S 4$ and, if not, then the processing advances to Step S6.

In Step S4, it is checked whether a state in which the amount of variations of the detect signal supplied by the vehicle posture detection device 2 is equal to or more than a given reference value continues for a given period of time or longer or not. If it is found that such state continues, then the processing advances to Step S5 and, if not, then the processing goes to Step S6. Here, when a threshold value relating to the running distance of the vehicle is set instead of setting a threshold value relating to the abovementioned continuing time, in Step S4, it may be checked whether a state in which the amount of variations in the detect signal supplied by the vehicle posture detection device 2 is equal to or more than a given reference value continues over a given running distance or not.

In Step S5, in accordance with the information from the vehicle posture detection device 2 , the control device 4 transmits to the drive control device 5 a a control signal which causes the illumination direction of the lamp 6 to be kept in a predetermined direction, and the illumination direction of the lamp 6 is corrected through the drive mechanism 5. After then, the processing goes back to the first step s 1.

Also, in Step 6, the correction of the illumination direction of the lamp 6 is not carried out but the processing returns to the first step sl .

The correction of the illumination direction of the lamp 6 in Step 55 is carried out by the drive device 5 based on the control signal transmitted from the control device 4 and, as a method for executing such correction, there are available two methods as follows:

1) a method for inclining the entire lamp, and,
2) a method for moving the component (such as a lens, a reflector, a shade or the like) of the optical system of the lamp.
In particular, the method 1) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5. As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of
the lamp through a transmission mechanism using a worm and a worm wheel (for example, see Japanese Patent Publication No. Sho. 63-166672).

Also, in the method 2), there is employed a structure in which the reflector of the lamp 6 is rotated by the drive device 5 within a vertical plane including the optical axis of the lamp to thereby change the direction of the reflected light of the reflector. For example, there is available a structure in which part of the reflector is rotatably supported on the lamp and, in order that a screw member mounted on the other part than the lamp for adjusting the inclining angle of the remaining portions of the reflector can be rotated by a motor, there is employed a transmission mechanism including a worm and a worm wheel (for example, see Japanese Patent Publication No. Sho. 59-195441); or, there is also available a structure in which the lens is inclined by the drive device 5 to thereby change the direction of the illumination light of the lamp that has passed through the present lens (for example, see Japanese Patent Publication No. Hei. 7-37405). Here, instead of inclining the whole of the reflector and lens, part of them may be controlled in position to thereby change the main portions of the illumination light in a desired direction.

Also, when a shade is interposed between the reflector and lens, the shade may be moved by the drive device 5 to thereby change a light and shade boundary in the light distribution pattern of the lamp 6 in the vertical direction (for example, see Japanese Patent Publication No. Hei. 7-29401).

Further, there are also possible other various embodiments according to the combinations of the optical components of the lamp 6; for example, the reflector and light source, the lens and reflector, or the lens and shade may be moved together by the drive device 5 to thereby change
the direction of the illumination light of the lamp in the vertical direction.

In addition, in either of the method 1) or 2), of course, the illumination direction of the lamp 6 can be controlled in stages or continuously.

Now, Fig. 8 is a graphical representation in which, when the vehicle runs down along a downhill slope from a road having a small gradient and runs again for a short time along a road having a small gradient and, after then, it stops, there are shown the respective amounts of variations with time in the output level V of the height sensor, in the illumination angle θ of the lamp 6 , and in the output signal vs of the vehicle speed sensor. Here, in the graph shown in the upper stage of Fig. 8 and showing the amount of variations in the output level V, reference character rVal represents a detect level detected on the downill slope and Vb represents a detect level detected on the road having a small gradient, while Tsh stands for a judgment time relating to the detection of the variations in the road gradients. Also, in the graph shown in the middle stage of Fig. 8 and showing the amount of variations in the illumination angle θ, θa expresses an illumination angle when the vehicle is running on the slanting slope, while θb expresses an illumination angle when the vehicle is standing still. Further, in the graph shown in the lower stage of Fig. 8 and showing the variations in the output signal vs, a period Tm, during which pulse trains continue, stands for a period during which the vehicle is running, whereas a period To, during which no pulse train exists, represents a period during which the vehicle is standing still.

In this example, when the vehicle runs from a road having a small gradient into a downhill slope, the amount of variations in the output level v of the height sensor is equal to or more than a reference value and such high
variation amount state continues for a time equal to a judging time $T s$ or longer. Therefore, the illumination angle of the lamp 6 is corrected from zero to θa after the passage of a time Tsh. And, when the vehicle runs into a road having a small gradient. after the vehicle has run through the downhill slope, the variation amount of the output level v of the height sensor is equal to or more than a reference value and such high variation amount state continues for a time equal to a judging time $T s$ or longer. Therefore, the illumination angle of the lamp 6 is corrected from θ to zero after the passage of the time Tsh. After then, if the vehicle is caused to stop in a period To, then the illumination angle of the lamp 6 is corrected according to the then posture of the vehicle. For example, when the loading condition of the vehicle is varied by unloading the cargo, the illumination angle of the lamp 6 is corrected to an angle of θb.

As described above, a threshold value (which is expressed as Ls) of the running distance can be substituted for the judging time Tsh, the illumination angle θ can be corrected when the vehicle runs continuously for a distance equal to or larger than the threshold value Ls with the detect level of the height sensor remaining higher than the reference value, or the threshold value can be caused to vary with respect to a vehicle speed vs in accordance with an equation $T s=L s / v s(\neq 0)$.

Also, in the above description, for the convenience of explanation, the number of height sensors to be provided on the vehicle is set as one. However, this is not limitative but other various embodiments are also possible, for example, some of a plurality of sensors provided in the front and rear portions and/or right and left portions of the vehicle can be selected and the detect signals of the selected sensors can be used. In particular, out of sensors
respectively provided in the front and rear portions of the vehicle as well as in the right and left portions thereof, the sensors provided in the right and left direction can be selected and the average value of the selected sensors can be used; or, out of four sensors which are respectively provided in the front, rear, right and left portions of the vehicle, there can be selected a pair of sensors positioned diagonally with respect to each other in a quadrangle having four vertices respectively consisting of the positions of the four sensors (for example, a pair of a left and front sensor and a right and rear sensor, or a pair of a right and front sensor and a left and rear sensor), and only the detect signals of the thus selected pair of sensors can be used; or, there can be used only the detect signals of two sensors which are respectively positioned in the front and rear portions of the vehicle and are also positioned on the same straight line extending in the longitudinal direction of the vehicle (for example, sensors which are positioned in the front and rear portions of the vehicle on the right or left side of the vehicle).

Now, in Figs. 9 and 10, there are shown the first and second embodiments of a vehicle lamp illumination direction control device according to the invention.

In particular, Fig. 9 shows a block diagram of a vehicle lamp illumination direction control device according to the first embodiment of the invention. In the present embodiment, the vehicle posture detect member 2 is composed of four height sensors 9 which are respectively provided in the neighborhood of the front and rear as well as right and left wheels of the vehicle.

Also, the control device 4 includes a microcomputer 10 into which there are input the detect voltages of the four height sensors 9 , and the output signals of a vehicle speed sensor 11 corresponding to the previously described vehicle
running condition detection device 3. When a turn-on switch 12 for the lamp 6 is put into operation, a supply voltage from a constant voltage supply circuit 13 and a reset signal from a reset circuit 14 are supplied to the microcomputer 10. Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control programs and data values therein) and an oscillator 16 used to generate a clock signal are additionally attached to the microcomputer 10.

And, into the microcomputer 10 , there is input by switch device 17 a select signal which is used to instruct whether the above-mentioned control on the illumination direction of the lamp is to be carried out or not. The reason for such input of the select signal is as follows: that is, when a lamp is mounted on a vehicle and the illumination direction of the lamp is initially adjusted, or when the lamp is inspected, if the above-mentioned correction control on the illumination direction of the lamp is carried out, then the adjusting operation and inspection are difficult to perform. In this case, by operating the switch device 17, the illumination direction of the lamp may be set in a non-control state in which no correction control is carried out (for example, in a state in which the illumination angle of the lamp is fixed at a given angle). Here, if the detect data of the height sensors 9 in the initial adjustment time are stored in the above-mentioned memory 15, then the illumination direction of the lamp in and after the initial adjustment time can be controlled with the vehicle posture in the initial adjustment time as a reference.

A rudder resistance network 18, which corresponds to the above-mentioned drive control device $5 a$, is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19, which
are disposed downstream thereof. In this case, there is employed an actuator of a current input type and the lamp or the components thereof are driven by these actuators 19 and 19' to thereby correct the illumination direction of the lamp. Here, one actuator 19 is used to control the illumination direction of the lamp provided on the right side of the front portion of the vehicle, while the other actuator 19' is used to the illumination direction of the lamp provided on the left side of the front portion of the vehicle.

Now, Fig. 10 shows a vehicle lamp illumination direction control device 8 A according to the second embodiment of the invention, in which there are used a potentiometer and a direct current motor as the actuators thereof. Since most of the second embodiment is similar to the first embodiment, the similar portions thereof are given the same designations as the corresponding portions of the first embodiment and thus the description thereof is omitted here.

In the present embodiment, there are provided two motor drive circuits 20 and 20^{\prime} which correspond to the above-mentioned drive control device 5 a and are respectively used to control the rotational movements of two motors 21 and 21' in accordance with a control signal output from the microcomputer 10.

In this case, the drive mechanism 5 is composed of the motors 21 (21^{\prime}) and potentiometers 22 (22'). For example, when a reflector disposed within the lamp is inclined in a vertical plane including the optical axis thereof to thereby change the illumination direction of the lamp, the reflector is inclined by the motors 21 and 21' and then the inclining angle of the reflector is detected by the potentiometers 22 and 22^{\prime} (including A / D conversion and the like) and is input to the microcomputer 10 . That is, the
microcomputer 10 continues to transmit the control signal to the motor drive circuits 20 and 20' until the inclining angle of the reflector detected by the potentiometers 22 and 22, becomes a target angle.

Besides this, according to the invention, the lamp or the components thereof can be driven or controlled by use of a stepping motor to thereby correct the illumination direction of the lamp. In other words, the concrete structure of the drive device 5 can vary greatly according to the structure of the lamp.

As can be clearly understood from the foregoing description, according to the invention as set forth in Claim 1 , since the illumination direction of the lamp can be corrected only when the vehicle is found standing still as well as only when it is found that the vehicle runs from a road having a small gradient into a road having a large gradient or that it runs from a road having a large gradient into a road having a small gradient, it is not necessary that the drive device have high response property and high durability, so that the cost of the vehicle lamp illumination direction control device or the consumption of power thereof cannot be increased excessively. Also, even when the vehicle is caused to stop on a road having a gradient, the amount of variations in the gradient of the road can be detected and thus, without waiting for the next stop of the vehicle, the illumination direction of the lamp can be corrected.

Also, according to the invention as set forth in Claim 2, since the control device judges the magnitude of the road gradients in accordance with the amount of variations with time in the output signal levels of the vehicle posture detection device, it is not necessary to provide exclusive device for detecting the road gradients.

Further, according to the invention as set forth in Claim 3, when a state in which the output signal level of the
vehicle posture detection device is equal to or higher than a given reference value continues for a given time or running distance, it is judged that the vehicle has run from a road having a small gradient into a road having a large gradient or the vehicle has run from a road having a large gradient into a road having a small gradient. This eliminates the possibility that the illumination direction of the lamp cian be corrected inadvertently when the vehicle starts or stops suddenly, thereby being able to prevent the generation of the wrong correction of the illumination direction of the lamp.

CLAIMS

1. A vehicle lamp illumination direction control device for changing the illumination direction of a vehicle lamp according to the vertical inclination of a vehicle in the advancing direction thereof, said vehicle lamp illumination direction control device comprising:
vehicle posture detection device for detecting the posture of said vehicle;
vehicle running condition detection device for detecting the running conditions of said vehicle including the stationary condition thereof;
drive device for directing the illumination light of said lamp to a desired direction; and,
control device, when it is judged in accordance with a signal from said vehicle running condition detection device that said vehicle is in the stationary condition thereof and when it is judged that said vehicle has run from a road having a small gradient into a road having a large gradient or said vehicle has run from a road having a large gradient into a road having a small gradient, for transmitting to said drive device a signal for correcting the illumination direction of said lamp in a predetermined direction in accordance with a signal from said vehicle posture detection device.
2. A vehicle lamp illumination direction control device as set forth in Claim 1 , wherein said control device can judge the magnitude of the gradients of roads in accordance with the amount of variations with time in the output signal of said vehicle posture detection device.
3. A vehicle lamp illumination direction control device as set forth in Claim 2, wherein, if a state in which the output signal of said vehicle posture detection device is

4 equal to or larger than a given reference value continues for 5 a given time or running distance, then said control device 6 judges that said vehicle has run from a road having a small 7 gradient into a road having a large gradient or said vehicle 8 has run from a road having a large gradient into a road 9 having a small gradient.

Application No: GB 9701822.0
Claims searched: ALL

Examiner:	R E Hardy
Date of search:	21 April 1997

Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO \& US patent specifications, in:
UK Cl (Ed.O): F4R (RMC)
lnt Cl (Ed.6): B60Q (1/08, 1/10, 1/105, 1/11, 1/115)
Other: Online : WPl, CLAIMS, JAPIO

Documents considered to be relevant:

Category	Identity of document and relevant passage	Relevant to claims	
A	GB2115929 A	STC : Whole document	1
A	EP0699559 A1	JOSIC : Whole document	1
A	EP0554663 A2	HELLA : Whole document	1
A	US5195816 A	MOSS : Whole document	1
A	US4204270 A	D'ORSAY : Whole document	1

[^2]
EXHIBIT 9

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES

P 3110094.5
(2) Anmeldetag:
(43) Offenlegungstag:

PATENTAMTI
(7) Anmelder:

Deutsche ITT Industries GmbH, 7800 Freiburg, DE

(72) Erfinder:

Miskin, Leslie, 7803 Gundelfingen, DE; Balanescu Alexander, Dipl.-Ing. Dr., 7801 Stegen, DE
(66) Recherchenergebnis gem. 543 Abs. 1 Satz 1 PatG:

DE-OS	2742271
US	$4204270=$
DE-OS	2716476
DE-OS	2220586
FR	2458426

Eine Einrichtung zur automatischan Scheinwerfereinsiallung bei Krafffahrzeugen besteht aus vier Sensoren, die paarweise hintereinander in Fahrtrichtung an solchen Teilen des Kraftfahrzeuges angeordnat sind, die auf Belastung ansprechen. Die Sensoren senden dann Signale aus, die über einen Analog-Multiplexer und einen Analog/Digital-Wandler in einen Mikroprozessor gelangen, der die Signale auswertet, d.h. Differenzwerte ermiltelt, ferner Miltelwerte aus einer Reihe von Messungen errechnet und mit einem vorgegebenen Wert verglaicht. Beim Abweichen von diesem Wert und Übarschreiten eines bestimmten Schwellwertes sendet der Mikroprozessor Signale aus, die OUber Digita/Analog-Wandler mit nachgeschalteten Operationsverstärkern zu Scheinweriereinstallvorrichtungen gelangen und dort abar entsprechende herkömmliche Miltel, wie z.B. Servomotoren, eine Korrektur des jeweiligen zugehörlgen Scheinwerfers bewirken.
(31 10 094)

$$
\begin{aligned}
& -5-
\end{aligned}
$$

L. Miskin et al 22-6

FI 1084
Dr.R1/bk
13. Mürz 1981

Patentansprüche

1. Einrichtung zur automatischen Korrẹtur der Scheinwerfereinstellung bei Kraftfahrzeugen, gekennzeichnet durch folgende Merkmale:

- die Ausgangssignale von vier Sensoren (S1,...S4) sind einem Analog-Multiplexer (2) zugeführt, dessen Ausgang uber einen Analog/Digital-Wandler (3) mit einem Mikroprozessor (4) verbunden ist,
- vom Mikroprozessor (4) führen zwei Ausgänge (8, 8') über je einen Digital/Analog-Wandler (6,6') zu zwei Operationsverstarkern (7, 7'), an die jeweils eine Scheinwerfereinstellvorrichtung (9, 9') angeschlossen ist.

2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die vier Sensoren (S1,...S4) jeweils an vier verschiedenen, auf Belastung ansprechenden Punkten des Kraftfahrzeuges angeordnet sind.

L. Miskin et al 22-6
Fl 1084
Dr. Rl/bk
13. März 1981

Einrichtung zur automatischen Scheinwerfereinstellung bei Kraftfahrzeugen

Die Erfindung betrifft eine Einrichtung nach dem Oberbegriff des Anspruchs 1.

Die Einstellung der Scheinwerfer eines Kraftfahrzeuges
5
hilfenahme hierfür konstruierte Geräte, wobei die eigentliche Ausrichtung von Hand vorgenommen wird. Das bedeutet, dab normalerweise eine korrekte Lage der Scheinwerfer praktisch nur beim nicht belasteten Fahrzeug gegeben ist.
10
Wird dieses belastet, ż.B. beim PKW durch Beladung des Kofferraumes, so tritt eine Verschiebung des Lichtkegels nach oben ein. Dadurch kommt es zur häufig beobachteten Blendwirkung, trotz eingeschaltetem Fahrlicht. Eine

15 forderlich, ist jedoch nur in Ausnahmefällen ohne großen Aufwand möglich und wird selbst dann noch durch das Fehlen eines festgelegten Bezugspunktes erschwert, d.h. ohne Hilfsgerate wird das Nachregulieren ungenau.

20
Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Einrichtung anzugeben, die eine automatische Korrektur der Scheinwerfereinstellung auf eine festgelegte Höhe ermöglicht. Die Aufgabe wird durch die im Anspruchs 1 angegebene 25 Erfindung gelöst. Eine zweckmäBige Ausgestaltung ist dem Anspruch 2 gekennzeichnet.

L. Miskin et al 22-6

Fl 1084

Die Einrichtung nach der Erfindung ermöglicht die korrekte Ausleuchtung der Fahrbahn unabhängig von der Belastung des Kraftfahrzeuges, die seine Lage gegenüber dem unbeladenen Zustand ändert. Die Blendung entgegen5 kommender Fahrzeuge wird vermieden, der von den Lampen kommende Lichtstrahl bleibt scharf abgegrenzt.

Die Erfindung wird nun anhand.der beigefügten zeichnung, die das Blockschaltbild eines Ausführungsbeispiels zeigt, 10 nảher erlautert.

Die Bezugszeichen S1...S4 in der Figur bedeuten vier Sensoren, die über einen Analog-Multiplexer 2 an den Eingang eines Analog/Digital-Wandlers 3 angeschlossen 15 sind, dessen Ausgang zu einem Mikroprozessor 4 führt. Dieser besitzt zwei Ausgange 8, 8', die über zwei Digitalf Analog-Wandler 6,6' mit jeweils einem nachgeschalteten Operationsverstärker 7, 7' mit zwei Scheinwerfereinstellvorrichtungen 9, 9^{\prime} verbunden sind.
20
Die vier Sensoren sind parweise hintereinander s1,52/ S3,54 in Fahrtrichtung an solchen Teilen des Kraftfahrzeuges angeordnet; die bei Belastung eine Lageverảnderung erfahren, also z.B. an Radaufhăngungen oder an Stoßdämpfern. 25 Die vier Senseren können z.B. Dehnmeßstreifen sein.

Voraussetzung für den Betrieb der erfindungsgemaßen Einrichtung ist die Festlegung der Ideal- oder Soll-Lage der Scheinwerfer. Dazu werden sie mittels der üblichen Hilfs-
30 mittel genau eingestellt und die sich dabei für die einzelnen Sensoren S1...s4 ergebenden Werte im Mikroprozessor 4 gespeichert. Die Einrichtung arbeitet dann wie folgt: werden die Sensoren S1...S4 durch Belastung beeinflußt, so senden sie elektrische Signale aus, die über den Analog-

L. Miskin et al 22-6

Fl 1084

Multiplexer 2 zum Analog/Digital-Wandler 3 gelangen und von dort als Digitalsignale dem Microprozessor 4 eingegeben werden.

5 werten bezüglich der Scheinwerferlage entsprechen, erfolgt in festgelegten Zeitabständen von z.B. einer Minute. Zur Erfassung der jeweiligen Scheinwerferlage benötigt man n MeBwerte, wobei n eine ganze zahl zwischen eins und ..uniendlich sein kann. ZweckmäBigerweise wixd man n so groß wählen, daß sich bei einer sinnvollen Zahl van Meßwerten ein optimaler Mittelwert ergibt. Nach jeder Messung wird ein Mittelwert $\overline{\mathrm{V}}$ der letzten n Meßwerte nach der folgenden Formel errechnet:

$$
\frac{\bar{V}_{K}}{}=\frac{1}{N} \cdot N_{\mathrm{N}=1}^{\mathrm{N}} \cdot \mathrm{~V} \quad\left(\mathrm{~S}_{\mathrm{K}}^{\mathrm{n}}\right)
$$

wobei mit K die Anzahl der Räder 1 bis 4 ,
N die Anzahl der.in die obige Berechnung einbezogenen Meßwerte (wird experimentell ermittelt)
S das von den Sensoren kommende Signal bezeichnet ist.

Aus den Werten $\overline{\mathrm{V}}_{\mathrm{K}}$ werden Differenzen für die Sensorenpaare $\mathrm{S} 1 / \mathrm{S} 2$ und $\mathrm{S} 3 / \mathrm{S} 4$ ermittelt, die die Lage des Kraftfahrzeuges beschreiben. Diese Differenzwerte ergeben zwei Scheinwerfereinstellwerte. In Abhängigkeit von deren Vorzeichen werden gleichzeitig z.B. Servomotoren vor- bzw. zurückgestellt und die Scheinwerferlageregister im Mikro-

Beruhen die zu den Meßwerten führenden Signale auf geringen Belastungen, wie sie z.B. durch Fahrbahnstöße entstehen, so ergibt sich im Mittel ein Differenzwert, der nur eine
35 geringe Abweichung vom Wert der Ideallage der Scheinwerfer

- 4-

Fl 1084
aufweisen, ein vorgegebener Schwellwert wird somit nicht uberschritten, die Verstellung der Scheinwerfer wird nicht ausgelöst. Bei stärkerer Belastung wird der Schwellwert überschritten, der Mikroprozessor 4 sendet signale 5 über die Digital/Analog-Wandler 6, 6' und die Operationsverstärker 7, 7' au den jeweiligen Scheinwerfereinstellvorrichtungen, die dann die Lage der Scheinwerfer unter Verwendung herkömmlicher Einrichtungen, wie z.B. von Schraubspindeln, die die Drehbewegung des Motors in eine
10 Linearbewegung der Scheinwerfer umsetzen, entsprechend verändern.

$$
\stackrel{6}{\text { Leerseite }}
$$

Page 799 of 1228

EXHIBIT 10

ALBANY
AMSTERDAM
ATLANTA AUSTIN
BARCELONA
BERLIN
bOGOTA BOSTON BRUSSELS CHARLOTTE CHICAGO dAllas DENVER DUBAI DUBLIN FRANKFURT GENEVA HONG KONG HOUSTON IRVINE LONDON LOS ANGELES LYON MEXICO CITY MIAMI MILAN MINNEAPOLIS MONTREAL MUNICH NEW YORK PARIS PHILADELPHIA PHOENIX PORTLAND prague RESEARCH TRIANGLE PARK SAN DIEGO

SAN FRANCISCO SANIOSE seattle

I, Kevin Kelley, hereby certify that the following is, to the best of my knowledge and belief, a true and accurate translation of the following document, "DE 31100 94 Al " from German into English.

Sworn to before me this
$21^{\text {st }}$ day of April, 2011

> rotary public state UnI
> No 0101610 of New Yo
> Quallifedin NELGY Vóg 3
> Commission Expires JRK Count

$$
\begin{aligned}
& \text { Stamp, Notary Public } \\
& \text { State of New York }
\end{aligned}
$$

SINGAPORE
STOCKHOLM
STUTTGART SyDNey TOKYO TORONTO
VANCOUVER WASHINGTON, DC ZURICH

City of New York, State of New York, County of New York

Abstract

Device for automatic headlight adjustment in motor vehicles A device for automatic headlight adjustment in motor vehicles, which consists of four sensors that are arranged in pairs one behind the other in the direction of travel on those components of the motor vehicle that respond to loading. The sensors then transmit signals, which pass via an analog multiplexer and an analog-to-digital converter into a microprocessor that evaluates the signals, i.e. determines differential values and additionally calculates the mean values from a series of measurements and compares them with a predetermined value. In the event of deviations from this value and when a specific threshold value is exceeded, the microprocessor transmits signals, which are fed via digital-to-analog converters with operational amplifiers connected downstream to headlight adjustment equipment and bring about there a correction of the respective associated headlight using corresponding conventional means, such as, for example, servo motors.


```
Patent claims
1. Device for automatic headlight adjustment in motor
vehicles, characterized by the following properties:
```

- the output signals of the four sensors (S1,...S4) are fed to an analog-multiplexer (2) and its output is connected with a microprocessor (4) via an analog-digital converter (3),
- from the microprocessor (4) two outputs (8, 8 ') pass through a respective digital/analog converter (6, 6') to two operational amplifiers (7, 7'), that are each coupled to a respective headlight adjustment device (9, 9').

2. The device according to claim 1, wherein 4 sensors (S1,...S4) are arranged in each case at four different vehicle points responding to the load.

Device for automatic headlight adjustment.in motor vehicles

The invention relates to a device according to the preamble of claim 1.

The installation of the headlights of a motor vehicle usually takes place in a garage with the help of the appropriate instruments, wherein the actual alignment is done manually. This means that normally the position of the headlights is correct, practically, only when vehicle is not loaded.

When the vehicle is loaded, for example, by filling up the baggage compartment of the car, a light beam is shifted upwards. This leads to the frequently observed blinding, despite the switched-on driving lights. It would require a correction of the headlight position by the driver but in only exceptional cases is it possible without much effort and is even more complicated by the lack of a fixed reference point, i.e. without auxiliary devices the readjustment is inaccurate.

The object of the invention is, therefore, to provide a device that allows automatic adjustment of the headlights to a specified level. The object of the invention is achieved by the technical teaching of patent claim l. The advantageous embodiment is characterized by the claim 2.

The device according to the invention allows the correct illumination of the road regardless of the load of the vehicle that changes its position compared to its unloaded state. The blinding of oncoming vehicles is avoided and the light beam coming from the lights is sharply delimited.

The invention will be described in more detail with reference to the attached drawing which illustrates the block diagram of an embodiment.

In the figure, reference characters Sl...S4 stand for four sensors that are connected via an analog multiplexer 2 to - 3 -
the input of an analog/digital converter 3, whose output leads to a microprocessor 4. The microprocessor has two outputs 8, 8' that are connected in each case with a downstream operational amplifier 7,7 ' with two headlight adjustment devices 9, 9' through the two digital-analog converters 6, 6'.

The four sensors are arranged in pairs one behind the other S1, S2/S3, S4, following the driving direction on those components of the motor vehicle that experience position change by loading, e.g. on wheel suspensions or shock absorbers. The four sensors can be, for example, strain gauges.

Determination of the ideal or nominal position of the headlights is required for the operation of the device according to the invention. For this purpose, the nominal position is precisely set using the conventional instruments and the values produced by each sensor $\mathrm{S} 1 . . \mathrm{S} 4$ are saved in the microprocessor 4. The device operates then as follows: when the sensors S1...S4 are affected by loading, they transmit electrical signals that pass through the analog multiplexer 2 to the analog-digital converter 3 and from there are entered to the microprocessor 4 as digital signals.

The recording of the electrical signals that correspond to specific measured data regarding the headlight position is carried out at fixed intervals of e.g. one minute. To capture the respective headlight position n measurements are required, where n can be an integer between one and infinity.
Advantageously, n can be chosen to be so large that, when there are a reasonable number of measurements, an optimal mean value appears. After each measuring, a mean value $\overline{\mathbf{v}}$ of the last n values is calculated using the following formula:
wherein K is the number of wheels 1 to 4 ,
N is the number of measured data included in the calculation above (to be determined experimentally)
S is the signal coming from the sensors
The differences for the sensors pairs S1/S2 and S3/S4 that describe the position of the vehicle are determined from the values of $\overline{\mathrm{v}}_{\mathrm{K}}$. These differential values provide two headlight position values. Depending on the sign of these values, the servo motor, for example, will be put forward or reset and, simultaneously, the headlight position register in the microprocessor 4 will be counted up and down.

If the signals that lead to measured data are based on light loads such as those caused by road bumps, then it will result on average in a differential value that provides only a small deviation from the ideal headlight position value, thus the predetermined threshold value is not exceeded and the adjustment of the headlights does not occur. For heavier loads, the threshold value is exceeded, the microprocessor 4 transmits signals via the digital/analog converter 6, 6' $^{\prime}$ and the operational amplifier 7, 7' to the respective headlight adjustment devices, which then change the position of the headlights accordingly using conventional tools, such as, for example, spindles, which convert the rotary motion of the motor into linear movement of the headlights.
-Blank page-

EXHIBIT 11

(11) DE 3129891 A1
(21) Aktenzeichen:
(2) Anmeldetag:
(47) Offenlegungstag:
P 3129891.5
29. 7.81
9. 6.82
(30) Unionspriorität: (32) (37) (31) 31.07.80 FR 8016959 13.05.81 FR. 8109537
(72) Erfinder:

Leleve, Joël, 93800 Epinay-Sur-Seiner FR
(11) Anmeider:

Equipements Automobiles Marchal, 92132
Issy-les-Moulineaux, Hauts-de-Seine, FR
(14) Vertretar:

Schönwald, K. Dr.-Ing.; Fues, J., Dipl.-Chem. Dr.rer.nat.: von Kreisler, A., Dipl.-Chem.; Keller, J., Dipl.-Chem.; Selting, G.r. Dipl.-Ing.; Werner, H., Dipl.-Chem. Dr.rar.nat., Pat-Anw., 5000 Köln

(54) »Vorrichtung zur dynamischen Einstellung der Stellung voin Schaimwerfern einas Fahrzeugas«

Gezeigt und beschriaben wird aine Vorrichtung zur dynamischen Einstellung der Stellung von Scheinwerfern (8) eines Fahrzeuges in Abhängigkeit von der relativen Position der Räder in bezug auf die Karosserie mit zwel Fühlern (1, 2) zur Leferung von der relativen Position entsprechenden Signalen und mit in Verblndung mit den Schelnwerfern (8) stehenden Betätigungsorganen (7), wobel die Betätlgungsorgane (7) durch eine Steuervorrichtung (6) steuerbar sind und wobel die Steuervorrichtung (6) durch das Positionșsignal uber ein TiefpaBfilter (4) unerwünschte Frequenzen des Positionssignales ableitbar sind. Um bei Fahrzeugen eine angenehme Nachtfahrt unter allen Fahrbedingungen und unabhảngig vom Straßenzustand zu emmöglichen, weist das Filter (4) Filterelemente (11 bis 14) auf, über die eine variable Charakteristikder Frequenzabtrennung in Abhängigkeit von der Amplitude der Positionssignale der Fühler (1,2) gewahrieistet ist.
(31 29 891)

PATENTANWALTE

Equipements Automobiles Marchal
26, rue Guynemer
92132 Issy Les Moulineaux
Frankreich

Dr.-Ing. von Kreisler 19973
Dr.-lng. K. Schörwald, Köln Dr.-ling. K. W. Eishold, Bad Soden Dr. J. F. Fues, Köln
Dipl.-Chem. Alek von Kreisler, Köln Dipl.-Chem. Carola Keller, Köln Dipl.-Ing. G. Selling, Köln Dr. H.-K. Werner, Köln

DELCHMANNHAUS AM HAUPTBAHNHOF
D-5000 KOLN 1
$28 . J u l i$
Sg-vR-fz

Patentansprüche:

1). Vorrichtung zur dynamischen Einstellung der stellung von Scheinwerfern eines Fahrzeuges in Abhängigkeit von der relativen Position der Räder in Bezug auf die Karosserie, mit mindestens einem Fühler zur Lieferung eines der relativen Position entsprechenden Signales und mit in Verbindung mit den Scheinwerfern stehenden Betätigungsorganen, wobei die Betätigungsorgane durch eine Steuervorrichtung steuerbar sind und die Steuervorrichtung durch das Positionssignal über ein Tiefpaßfiltcr schaltbar ist und wobei über das Tiefpaßfillor unerwünschte Frequenzen des Positionssignales ableitbar sind, $d a d u r c h \quad g e k e n n-$ zeichnet, daß das Filter (4;104). Filterelemente (11 bis 14; 111 bis 114) aufweist und daß über die Filterelemente (11 bis 14; 111 bis 114) eine variable Charakteristik der Frequenzabtrennung in Abhängigkeit von der Amplitude der Positionssignale der Fühler (1,2;101,102) gewährleistet ist.
2. Vorrichtung nach Anspruch 1.r dadurch gekennzeichnet, daß das Filter (4;104) Schwellwertelemente (11,12; 111,112) aufweist, über die mindestens eine Amplitudenschwelle (s_{1}, s_{2}) definierbar ist, für die das Filter (4;104) eine Grenzfrequenz vorbestimmt.
3. Vorrichtung nach Anspruch 1 oder 2 r dadurch gekennzeichnet, daß die Grenzfrequenz des Filters (4;104) für eine Amplitude über den Amplitudenschwellen $\left(s_{1}, s_{2}\right)$ etwa 2 Hz und für eine Amplitude unter den Ampliṭudenschwellen $\left(s_{1}, s_{2}\right)$ etwa $0,3 \mathrm{~Hz}$ beträgt.

4: Vorrichtung nach einem der Ansprüche 1 bis. 3, dadurch gekennzeichnet, daß das Filter (4;104) elektrisch ist und ein L-förmiges RC-Glied (5;105) aufweist, daß das RC-Glied (5;105) aus einem Serienwiderstand (9;109) und einem Parallelkondensator (10;110) besteht, daB dem Serienwiderstand (9;109) eine Antiparallelschaltung zweier Gleichrichter (11,12;111,112) parallel geschaltet ist und daß über die Innenwiderstände in Durchgangsrichtung die Amplitudenschwellen (s_{1}, s_{2}) festlegbar sind.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, wobei über Filterelemente zwei Amplitudenschwellen festlegbar sind, die mit den Bewegungen der Karosserie in Bezug auf die Räder in Beziehung stehen, dadurch gekennzeichnet, daß die Absolutwerte der Amplitudenschwellen (s_{1}, s_{2}) unterschiedlich sind, daß nämlich
der Absolutwert der Amplitudenschwelle (s_{2}) für die durch Beschleunigungen erzeugten Bewegungen unter dem Absolutwert der Amplitudenschwelle (s_{1}) für die durch Verzögerungen erzeugten Bewegungen liegt.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Grenzfrequenz des Filters (4; 104) 1 bis 2 . Hz für Schwankungen des Positionssignales (S_{E}) beträgt, die die Amplitudenschwelle (s_{2}) für die Beschleunigung oder die Amplitudenschwelle (s_{1}) für die Verzögerung überschreiten und daß die Grenzfrequenz im iibrigen, d.h. wenn die Schwankungen weder die eine noch die andere Amplitudenschwelle (s_{1}, s_{2}) Uberschreiten, 0,15 IIz beträgt.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daB das Filter (104) elektrisch ist und ein L-förmiges RC-Glied (105) aufweist, daß das RC-Glied (105) aus einem Serienwiderstand (109) und einem Parallelkondensator (110) besteht, daß dem Serienwiderstand (109) eine Antiparallelschaltung zweier Gleichrichtereinheiten $(111,112)$ parallel geschaltet ist und daß die Gleichrichtereinheiten (111,112) verschiedene Innenwiderstände in Durchgangsrichtung aufweisen, so daB die Amplitudenschwellen $\left(s_{1}, s_{2}\right)$ festgelegt sind.

- 4 -

8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Gleichrichtereinheiten (111, 112) jeweils mehrere voneịnander verschiedene Einheitsgleichrichter aufweisen.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daB als Gleichrichter (11,12;111,112) Dioden vorgesehen sind.
10. Vorrichtung nach einem der Ansprüche 1 bis 9 r dadurch gekennzeichnet, daß die Gleichrichter (11,12;111,112) jeweils in Serie mit einem Einstellwiderstand (13,14;113,114) geschaltet sind.

Equipements_Automobiles_Marchal

Vorrichtung zur dynamischen Einstellung der
Stellung van Scheinwerfern eines Fahrzeuges

Die Erfindung betrifft eine Vorrichtung zur dynamischen Einstellung der Stellung von Scheinwerfern eines Fahrzeuges in Abhängigkeit von der relativen Position der Räder in Bezug auf die Karosserie, mit mindestens einem Fühler zur Lieferung eines der relativen Position entsprechenden Signales und mit in Verbindung mit den Scheinwèffern stehenden Betätigungsorganen, wobei die Betätigungsorgane durch eine steucrvorrjchtung steuerbar sind und die Steuervorrichtung durch dis Positionssignal uber ein liefpaßfilter schaftbar ist und wobei über das Tiefpaßfilter unerwüschte Frequenzen des Positionssignales ableitbar sind,insbesondere für ein Auto.

Man hat bereits Vorrichtungen für die Korrektur der Scheinwerferstellung eines Fahrzeuges gebaut, wolei einige statisch, eịnige dynamisch waren.

Die statischen Korrekturvorrichtungen haben eine relativ lange Ansprechzeit und verstellen dic Scheinwerfer des pahrzeuges abhangig von der fast: und deren Verteilung zwischen Vorder- und Hinterachse. Eine solche Vorrichtung kann nicht tätig werden wenn das Fahrzeug sich bewegt.

Es sind auch schon Vorrichtungen mit dynamischer Einstellung konstruiert worden, um eine adäquate Position der Scheinwerfer bei allen Fahrbedingungen des Fahrzeuges zu gewährleisten. Eine Vorrichtung hat Korrekturorgane in Verbindung mit den Scheinwerfern und funktioniert durch Schwerkraft (z.B. Pendel). Diese Vorrichtung hat den Nachteil, daß sie die Scheinwerfer nicht passend einstellen kann, wenn das Fahrzeug auf einem Abhang rollt.

Andere dynamische Einstellvorrichtungen haben Fühler über die die relative Position beim Schwanken oder Schaukeln von vorn nach hinten bei der Karosserie in Bezug auf die Räder feststiellbar ist. Diese Fühler wirken über ein Korrekturfilter auf Betätigungsorgane, die die Position der Scheinwerfer abhängig von dem durch die Fühler gelieferten Signal ändern sollen. Einige Vorrichtungen sind hydraulisch and in diesem F'all wird die Filterung der unerwünschten Signale mit erhöhter Frequenz (insbesondere derjenigen aufgrund von Bewegungen des Fahrzeuges auf Pflaster) an den. Leitungen des hydraulischen Systems vorgenommen. Wenn die Einrichtung zur Verstellung elektrịch ist, bewirkt man die Filterung durch ein elektrisches. Tiefpaßfilter.

Die Störerscheinungen aufgrund des Wegezustandes und dar Fahrzeugbedingungen, die eine Korrektur der Stellung der Scheinwerfer verlangen, sind zahilreich:

- Pfilaster verursacht Störungen mit relativ hoher Frequenz von 5 bis 15 Hz ;
- Löcher und Schwellen können Stampfschwingungen von 5 bis 10 Hz verursachen, aber diese Störungen sind relativ selten und für die Fahrweise relativ wenig hinderlich;
- plötzliche Beschleunigungen und Bremsungen bringen Schwankungen in der Grössenordnung von 1 bis 2 Hz mit sich.

Jenseits von 15 Hz sind die Schwingungen des Fahrzeugos wegen der Ansprechzeit des Auges, das diese schnellen Anderungen der Scheinwerferposition automatisch integriert, nicht hinderlich. Die weniger hohen Frequenzen zwischen 2 und 15 Hz werden in einem gewissen Umfang durch die Federung des Fahrzeuges gefiltert und gelangen daher in abgeschwächter Form an die Scheinwerfer. Jedoch bleiben diese .Frequenzen auch in abgeschwächter Form lästig.

Die bisher entwickelten Einstellvorrichtungen haben den ernsten Nachteil einer Phasenverschiebung zwischen der zeit des Schaukelns des Fahrzeuges und der Reaktion der Korrekturvorrichtung bei Erscheinungen, deren Frequenz gleich oder höher ist als die Grenzfrequenz des die Fịlterung bewirkenden Systems. Wenn z.B. die Grenzfrequenz 2 Hz ist, gelangen schnellere Phänomene als aiejenigen aufgrund von Pflaster, obwohl sie duich die

Fiľterung abgeschwächt sind, trotzdem zu den Betätigungsorganen der Scheinwerfer und können so durch die Phasenverschiebung bestimmte physiologische Unbehaglichkeiten mit sich bringen. Bei Bewegungen des Fahrzeuges auf Pflaster kann die Korrektur gerade gegenphasig in Bezug auf Stampfschwingungen des Fahrzeuges eingreifen. Die Scheinwerfer sind z.B. gerade in dem Augenblick nach oben orientiert, in dem das Vorderteil der Karosserie des Fahrzeuges auch eine Bewegung nach oben ausführt.

Eine andere Unannehmlichkeit der vorhandenen Einstellvorrichtungen besteht darin, daß bei schnellen Phänomenen ihre Korrekturorgane ständig gefördert werden und so die Lebensdauer relativ gering ist.

Gemäß der, Erfindung soll eine Vorrichtung zur dynamischen Einstellung der Scheinwerfer eines Fahrzcuges geschaffen werden, die die oben erwähnten Nachteile nichtht besitzt und eine angenehme Nachtfahrt unter allen Fahrbedingungen und unabhängig vom Straßenzustand zulässt.

Die erfindungsgemäBe Vorrichtung ist dadurch gekennzeichnet, daß das Filter Filterelemente aufweist und daß über die Filterelemente eine variable Charakteristik der. Frequenzabtrennung in Abhängigkeit von der Amplitude der Positionssignale der Fîhler gewährleistet ist.

- 9 -

Abstract

Dank dieser Merkmale ist die erfindungsgemäße Vorrichtung in der Lage, eine Unterscheidung vorzunehmen zwischen den Erscheinungen, die eine Korrektur verIangen und denjenigen, bei denen eine Korrektur aufgrund der unvermeidlichen Phasenverschiebung, die es zwischen dem Störphänomen und der Korrektur der Scheinwerfer geben würde, unerwünscht ist.

Eine erste Ausführungsform der Vorrichtung ist dadurch gekennzeichnet, daB das Filter Schwellwertelemente aufweist, über die mindestens eine Amplitudenschwelle definierbar ist, für die das Filter eine Grenzfrequenz vorbestimmt. Auf diese Weise können die Merkmale des Filters mit Genauigkeit den verschiedenen Störerscheinungen angepaßt werden, die eine Verstellung der Scheinwerferposition verlangen.

Eine weitere vorteilhafte Ausführungsform ist dadurch gekennzeichnet, daB die Grenzfrequenz des Filters für eine Amplitude Aber den Amplitudenschwellen etwa 2 Hz und für eine Amplitude unter den Amplitudenschwellen etwa $0,3 \mathrm{~Hz}$ beträgt. So werden die Hochfrequenzsignale zwischen 2 und 5 Hz und mit schwacher Amplitude aufgrund einer Bewegung auf Pflaster z.B. nicht berücksichtigt und können daher auch nicht der Fahrannehmiichkeit schaden.

Eine bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß das Filter elektrisch ist und ein L-förmiges RC-Glied aufweist, daß das RC-Glied aus einem Serienwiderstand und einem Parallelkondensator besteht, daß dem Serienwiderstand eine Antiparallelschaltung zweier Gleichrichter parallel goschaltet ist und daß uber die Innenwiderstände in Durchgangsrichtung die Amplitudenschwellen festlegbar sind.

Gemäß einem anderen Merkmal sind die Gleichrichter Dioden. Vorteilhafterweise sind die Dioden in Serie mit einem Widerstand für die Einstellung der Abschaltschwelle geschaltet.

Die Ausführungsform, die beschrieben wird, hat den Vorteil, daß sie leicht an eine statische Einstellvorrichtung für die Position von Scheinwerfern eines Fahrzeuges mittels Benutzung von zwei einfachen Dioden und von zwei Widerständen angepaBt werden kannr deren Kosten nicht sehr hoch sind.

Man konnte aber beobachten, daß der absolute Wert der genannten Schwellen ausreichend hoch sein muß, um die Schwankungen mit geringer Amplitude auszuschalten, die sich z.B. ergeben, wenn das Fahrzeug auf pflaster fährt, insbesondere bei mittleren Geschwindigkeiten. Daraus ergibt sich, daß in bestimmten Fällen Bewegungen mittlerer Amplitude aufgrund von Beschleunigungen oder Verzögerungen des Fahrzeuges nicht mehr berücksichtigt werden, und daB die Einrichtung in diesen Fallen nicht eingreift, um die• Position der Scheinwerfer zu regeln. Dieser Ein-
stellungsmangel bei solchen Bewegungen wird umso lästiger, je bedeutsamer Reichweite und Genauigkeit der Scheinwerfer werden.

In einer zweiten Ausführungsiform beabsichtigt die Erfindung daher, eine Vorrichtung. zur dynamischen Einstellung der Scheinwerfer eines Fahrzeuges abhängig von der relativen Position der Räder in Bezug auf die Karosserie zu liefern, wobei die Reaktion der Vorrichtung bei Bewegungen mit geringer Amplitude wirksam unterdrückt wird, wie z.B. Bewegungen, die mit der Fahrt über Pflaster oder Schwellen in Verbindung stehen. Die Vorrichtung soll dabei eine wirksame dynamische Einstellung bei anderen Bewegungen mit geringer oder mittlerer Amplitude gewährleisten, zumindest in den Fällen, die für das Fahren und die Sicherheit auf der Straße wichtig sind.

Die Erfindung bezieht sich daher auch auf eine zweite Ausführungsform einer Vorrichtung des obigen Typs, bei der Bestandteile zwei Amplitudenschwellen definieren, welche mit den Bewegungen der Karosserie in Bezug auf die Räder in Verbindung stehen, für deren jede das Filter eine Grenzfrequenz bestimmt. Diese Vorrichtung ist dadurch gekennzeichnet, daB die Absolutwerte der Amplitudenschwellen unterschiediich sind, daß nämlich der Absolutwert der Amplitudenschwelle für die durch Beschleunigungen erzeugten Bewegungen unter dem Absolutwert der Amplitudenschwelle für die durch Verzögerungen erzeugten Bewegungen liegt. So wird die Schwelle in Beaug aut Signalu

- 12 -

Abstract

in Verbindung mit einer Beschleunigung festgelegt auf einen ausreichend schwachen Wert, um auf geringfügige Beschleunigungen anzusprechen, die für Fahrer entgegenkommender Fahrzeuge lästig sind, während die Schwelle für Signale in Verbindung mit einer Bremsung oder Geschwindigkeitsabnahme eine sehr große Amplitude hat. Uberraschenderweise hat man festgestellt, daß bei einer solchen Regelung der Werte der Schwellen ein komplettes Verschwinden dex unerwünschten Reaktionen erzielt wird, die ein Schwanken hervorrufen, z.B. bei einer Fahrt über Straßenpflaster, wobei eine wirksame Einstellung der Scheinwerfer auf die durch eine noch so geringe Beschleunigung hervorgerufenen Bewegungen gewährleistet wird, was insbesondere die Sicherheit auf der Straße wesentlich erhöht.

Andererseits stellt man fest, daß die Vorrichtung bei geringen Verzögerungen keine Korrektur der Scheinwerferstellung bewirkt. Dies ist nicht lästig, weil sich in diesem Fall das Lichtbündel senkt, was keinen Nachteil für die Sicherheit auf der StraBe nach sich zieht.

GemäB einer vorteilhaften Gestaltung der zweiten Ausführungsform der Lrfindung beträgt die Grenzfrequenz des Filters 1 bis 2 Hz bei einem Signal, das die Schwelle für die Beschleunigung überschreitet, oder einem Signal (mit entgegengesetztem Vorzeichen das die andere Schwelle für die Verzögerung überschreitet, während die Abschal̇̇frequenz $0,15 \mathrm{~Hz}$ beträgt, wenn das

3129897

Abstract

Signal nicht gemäß seinem Vorzeichen die eine oder andere Schwelle überschreitet.

So werden die Signale zwischen 0,15 und 2 Hz mit schwachter Amplitude, die sich aus der Bewegung auf Pflaster ergeben, nicht berucksichtigt. Dagegen wird ein Beschleunigungssignal mit einer Frequenz in der Rangordnung von• 1 Hz und einex Amplitude, die kaum höher ist als diejenige der Signale, die sich durch Bewegung auf. dem Pflaster ergeben, berücksichtigt und es erfolgt ein Eingreifen der Stellvorrichtung für die Korrektur der Scheinwerferposition. Vorteilhafterweise ist dabei die Vorrichtung so konstruiert, daß das Filter elektrisch ist und ein L-förmiges RC-Glied aufweist, daß das RC-Glied aus einem Serienwiderstand und einem Parallelkondensator besteht, đaß dem-Serienwiderstand eine Antiparallelschaltung zweier Gleichrichtereinhoiten parallel geschaltet ist und dab dle Glolchrichioreinheiten verschiedene Innenwiderstände in Durchgangsrichtung aufweisen, so daß die Amplitudenschwellen festgelegt sind.

Der Unterschied zwischen den Innenschwellen kann z.B. erzielt werden, indem man in der einen Gleichrichtereinheit, nämlich derjenigen, die das elektrische Signal durchläßt, das mit den relativen Positionen verbunden ist, welche dex Bremsung oder der Verzögerung entsprechen, eine Anzahl von Einheitsgleichrichtern anbringit, die größer ist als die der anderen Gleichrichtereinheit. Als Variante kann man Einheitsgleichrichter verwenden, z.B. Dioden, die verschiedene Inncnschwellen haben. Die Gleichrichter jeder Einheit sind vorzugsweise in Serie geschaltet mit einem Einstell-
widerstand.

Zum besseren Verständnis der Erfindung werden nachstehend $z w e i$ Ausführungsformen anhand der beigefügten Zeichnung beschrieben; es zeigt:

Fig. 1 ein Grundschaltbild einer Vorrichtung gemäß einer ersten Ausführungsform der Erfindung,

Fig. 2 ein Diagramm, das den Betrieb der Vorrichtung gem. Fig. 1 durch den Vergleich von zwei Kurven zeigt,

Fig. 3 ein Grundschaltbild einer Vorrichtung gemäß einer zweiten Ausführungsform der Erfindung und

Fig. 4 ein Diagramm analog demjenigen der Fig. 2 zur Darstellung des Betriebs der Vorrichtung gemäß Fig. 3.

Die in Fig. 1 dargestellte Vorrichtung hat einen ersten Fühlor 1 zwischen der Vorderachse und der Karosserie des Fahrzeuges, um eine relative Bewegung zu entdecken. Ein entsprechender Fühler 2 befindet sich an der Hinterachse.

Die von den Fühlern 1,2 erzeugten Signale werden in einer Mischstufe 3 behandelt, in der ein Signal erzeugt wird, das die Schwingungr.oder Schaukelbewegung des Fahrzeuges. im Verlauf seiner Bewegung darstellt.

3129891

Der Ausgang der Mischstufe 3 ist mit einem Tiefpaßfilter 4 verbunden, das in diesem Beispiel durch ein RC-Glied 5, das in I-Form montiert ist, gebildut wird.

Der Ausgang des Filters 4 ist mit einer Steuer- und Verstärkervorrichtung 6 verbunden, die ein Leistungssignal an Betätigungsorgane 7 abgibt, welche Bewegungen der Scheinwerfer 8 hervorrufen.

Das Filter 4 hat einen Serienwiderstand 9 und einen 0^{*} Parallelkondensator 10. Dem Serienwiderstand 9 sind zwei antiparallel geschaltete Dioden 11 und 12 , die jeweils in Serie mit einem Einstellwiderstand 13 und 14 liegen, parallel geschaltet.

Wenn die Amplitude des Eingangssignals des Filters 4 die Amplitudenschwellen $\mathrm{s}_{1}, \mathrm{~s}_{2}$ der Dioden 11 und 12 überschreitet, werden diese für entsprechende Signale durchgängig, so daB der Wert des Serienwiderstandes des RC-GIiedes 5 sinkt.Die Zeitkonstante RC sinkt ebenfalls und die Grenzfrequenz wird höher. Das Filter 4 bewirkt also eine Abstufung seiner Grenzfrequenz in Abhängigkeit von der Amplitude des. Signals, das ihm geliefert wird.

In dem dargestellten Fall, in dem man handelsübliche Dioden 11.12 verwendet, Ist. deren Innenwiderstand nicht ausreichend, um eine Grenzfrequenz von 2 Hz zu erzielen. Deshalb sind die Einstellwiderstände 13 und

14 in Serie vorgesehen.
Der Betrieb der Vorrichtung geht aus Fig. 2 hervor:
fe sei die Frequenz des Eingangssignals S_{E} des Filters 4 und fc diejenige des Ausgangssignals S_{s}. Man sieht, daß während der Zeit A die Frequenz fe des Eingangssignals unter der Gfenzfrequenz fc des Filters 4 liegt. So ist das Signal am Ausgang uneingeschränkt wiederhergestellt. Dieser Fall findet bei einer statischen Korrektur Anwendung, z.B. wenn die Belastung des Fahrzeuges geändert wird.

Während der Zeit B ist die Frequenz fe höher als die Grenzfrequenz des Filters, aber die Amplitude des. Eingangssignals liegt unter den Amplitudenschwellen s_{1}, s_{2}, die von den Dioden 11 und 12 gegeben werden, so daß das Signal uneingeschränkt durch den Filter 4 gelangt. Am Ausgang wird der Mittelwert des Eingangssignals wiederhergestellt, wogegen das Hochfrequenzsignal durch das Filter 4 gelöscht wird. Dieser Fall entspricht diem Rollen auf Pflaster.

Während der Zeit C ist die Frequenz fe auch höher als die Grenzfrequenz fc, aber die Amplitude des Signals übersteigt die Amplitudenschwellen s_{1}, s_{2}, die von den Dioden 11,12 gegeben werden. Das Hochfrequenzsignal erfährt keine Phasenverschiebung, sondern es wird in der Amplitude um den Wert der Amplituden-

3129891
schwellen s_{1}, s_{2} verringert. Dieser Fall entspricht dem Rollen auf einem Weg, der in sehr schlechtem Zustand ist.

Bei D handelt es sich um brutales Bremsen auf schlechtem Weg. Sobald das Eingangssignal den Wert der Amplitudenschwellen s_{1}, s_{2} überschreitet, findet man es am Ausgang, vèmindert um den Wert der Amplitudenschwellen s_{1}, s_{2} wieder. Wenn das Phänomen sich hinzieht, kann man mit dem Filter 4 am Ausgang einen Wert erhalten, der mit dem Eingangssignal identisch ist.

Die Grenzfrequenzen des Filters 4 können gewählt werden, z.B. für starke Amplituden mit: 2 llz , bei geringen Amplituden mit 0,3 Hz. Im letztgenannten Fall ist alsodie Dämpfung des Signals wichtig. Die bei hoheren Frequenzen gegebene Phasenverschiebung hat keine Wirkung auf die Einstellung der Scheinwerfer.

In Fig. 3 sieht man, daß die Vorrichtung einen ersten Fühlex 101 besitzt, welcher zwischen der Vorderachse und der Karosserie des Fahrzeuges montiert ist, um die relativen Bewegungen festzustellen. Ein weiterer Fühler 102 ist der Hinterachse zugeordnet. Die durch die Fühler 101, 102 erzeugten Signale werden in einer Mischstufe 103 behandelt, in der ein Signal erzeugt wird, welches das Schaukeln oder Schwingen des Fahrzeuges bei seiner Bewegung darstellt. Der Aus-

Abstract

gang der Mischstufe 103 ist mit einem Tiefpaßfilter 104 verbunden, das durch ein RC-Glied 105 in E-Form gebildet wird. Der Ausgang des Filters 104 ist mit einer Steuer- und Verstärkungseinrichtung 106 ver-

 bunden, die ein Leistungssignal an Betätigungsorgane 107 abgibt, welche die Bewegungen der Scheinwerfer 108 des Fahrzeuges hervorrufen. Das Filter 104 hat einen Serienwiderstand 109 und einen Parallelkondensator 110. Dem Serienwiderstand 109 ist eine Antiparallelschaltung zweier Diodeneinheiten 111,112 parallel geschaltet. Die eine Einheit hat zwei Dioden 111 und die andere drei Dioden 112: Jede Einheit ist in Serie mit einem Einstellwiderstand 113 bzw. 114 geschaltet.Der Betrieb der Vorrichtung geht aus Fig. 4 hervor:
fe sei die Frequenz des Eingangssignals SE des Filters 104 und fc diejenige des Ausgangssignals ss. Man sieht, daß in der Zeit A die Frequenz des Eingangssignals fe unter der Grenzfrequenz fc des Filters 104 liegt. Daher wirà das Signal uneingeschränkt am Ausgang wiederhergestellt, was die Korrektur bewirkt. Dieser Fall liegt z.B. einer einer statischen Korrektur vor, wenn die Last des Fahrzeuges geändert wird.

In der Zait B ist die Frequenz fe höher als die Grenzfrequenz fc des Filters, aber die Hochfrequenzamplitude des Eingangssignals ist nicht nur geringer als der absolute Wert der Amplitudenschwelle s_{1} entsprechend der

Verzögering, sondern auch als der Wert der Amplitudenschwelle s_{2} entsprechend der Beschleunigung, so daß das Signal uneingeschränkt den Filter 104 passiert. Am Ausgang wird nur der mittlere Wert des Eingangs- signals wiederhergestellt, wogegen das Hochfrequenzsignal durch das Filter 104 eliminiert wird. Dieser Fall entspricht dem Weg auf Pflaster.

In der zeit C, die einer leichten Beschleunigung entspricht, sieht man, daß die Amplitude des Signals S_{E} die Amplitudenschwelle s_{2} der Beschleunigung uiberschreitet. Dies übersetzt sich in eine Veränderung des Signals S_{S} am Ausgang und infolgedessen in einc Korrektur der Scheinwerfer, die leicht gesenkt werden.

In der Zeit D, die einer leichten Verzögerung entspricht, welche eine Änderung mit fast derselben Anplitude wie bei der: Beschleunigung C bewirkt, erfolgt keine Änderung des Signals S_{S}, weil die Amplitude unter der Ampiitudenschwelle s_{1} bleibt.

Erst wenn die Bremsung stärker ist, wie in der Zeit E, wobei die Amplitudenschwelle s_{1} diesmal überschritten wird, geschieht auf der Kurve S_{S} eine Ånderung des Signals, als Antwort auf die Bremsung. Die Grenzfrequenzen des Filters 104 können gewählt werden, z.B. für starke Amplituden 1 bis 2 Hz und für schwache Amplituden $0,15 \mathrm{~Hz}$.

Man kann im übrigen in vorteilhafter Weise die antiparallel geschalteten Dioden durch in Serie geschaltete Zenerdioden ersetzen.
Leerseite

FIG. 1

FIG. 2

$$
\begin{aligned}
\therefore & \\
& .22 .
\end{aligned}
$$

FIG. 3

FIG. 4

EXHIBIT 12

DECIARATION

I, Judith E. Taddeo, declare that I am well qualified as a translator of German to English and that I have carefully prepared the attached English language translation from the original document:

Offenbarungsschrift DE 3129891 A1 "Vorrichtung zur dynamischen Einstellung der Stellung von Scheinwerfern eines Fahrzeuges"
[Laid-Open Document DE 3129891 A1 "Device for Dynamically Adjusting the Position of Headlights of a Vehicle"]
filed at the German Patent Office on July 29, 1981 written in German and that the attached translation is an accurate English version of such original to the best of my knowledge and belief.

I certify under penalty of perjury that the foregoing is true and correct.

Date April 29, 2011

Published Application (1) DE 3129891 A1
Int Cl 3 :
B6001/08

GERMAN PATENT OFFICE

(27) File Number:
(23) Filing Date:
(44) Püblication Date:

P31 29891.5
29. 7.81
9. 6:82


```
Union Priority: (3) (3) (3)
31:07:80 FR 8016959
13.05.81 FF 8109537
```

(23) Inventor:

Leleve, Joal, 93800 Epinay-Sur-Seine, FR
(1) Applicant:

Equipements Automobiles Marohal, 92132
Issyles-Moulineaux, Hauts-de:Seine, FR
(74) Representative:

Schönwald, K, Dr-Ing, Fues, J, Dipl-Chom, Dr.rar.nat. von Kreisler, A, Dipl-Chem, Keller, U., Dipl-Chem; Selting, G, Dipl.Ing. Werner, H., Dipl-Chem. Drrer.nat., Pat-Anw, 6000 Köln

(54) "Device for Dynamically Adjusting the Position of Headlights of a Vehicle"

Abstract

Shown and described is a device for dynamically adjusting the position of headlights (8) of a vehicle as a function of the relative position of the wheels in relation to the car body, having two sensors (1,2) for supplying signals that correspond to the relative position, and actuating organs (7) connected to the headlights (8), the actuating organs (7) being controllable by a control device (6) and the control device (6) by the position signal via a deep-pass filter (4) undesired frequencies of the position signal removable [sic]. In order to provide pleasant night-time driving for vehicles under all driving conditions and regardless of the state of the road, the filter (4) has filter elements (11 through 14) via which a variable characteristic of the frequency separation is ensured as a function of the amplitude of the position signals from the sensors (1, 2).

Device for Dynamically Adjusting the Position of Headlights of a Vehicle

Shown and described is a device for dynamically adjusting the position of headlights (8) of a vehicle as a function of the relative position of the wheels in relation to the car body, having two sensors $(1,2)$ for supplying signals that correspond to the relative position, and actuating organs (7) connected to the headlights (8), the actuating organs (7) being controllable by a control device (6) and the control device (6) by the position signal via a deep-pass filter (4) undesired frequencies of the position signal removable [sic]. In order to provide pleasant night-time driving for vehicles under all driving conditions and regardless of the state of the road, the filter (4) has filter elements (11 through 14) via which a variable characteristic of the frequency separation is ensured as a function of the amplitude of the position signals from the sensors (1, 2).
$\left(\begin{array}{lll}31 & 29 & 891\end{array}\right)$
VON KREISLER SCHÖNWALD EISHOLD FUES
VON KREISLER KELIER SELTING WERNER

Equipements Automobiles
Marchal
26, rue Guynemer
92132 Issy Les Moulineaux
France
PATENT ATTORNEYS
Dr.-Ing. von Kreisler † 1973
Dr.-Ing. K. Schönwald, Köln
Dr.-Ing. K W. Eishold, Bad Soden
Dr. J. F. Fues, Cologne
Dipl.-Chem. Alek von Kreisler, Cologne
Dipl.-Chem. Carola Keller, Cologne
Dipl.-Ing. G. Selting, Cologne
Dr. H.-K. Werner, Cologne
DEICHMANNHAUS AM HAUPTBAHNHoF
D-5000 COLOGNE
July 28, I981
Sg-vR-fz

Patent Claims:

1. A device for dynamically adjusting the position of headlights of a vehicle as a function of the relative position of the wheels in relation to the body, comprising at least one sensor for supplying a signal that corresponds to the relative position, and actuating organs, which are connected to the headlights, the actuating organs being controllable by a control device, and the control device being switchable by the position signal via a low-pass filter, and undesired frequencies of the position signal are able to be removed via the low-pass filter, wherein the filter (4;104) includes filter elements (11 through 14; 111 through 114), and a variable characteristic of the frequency separation as a function of the amplitude of the position signals of the sensors (1,2;101,102) is ensured via the filter elements (11 through 14; 111 through 114).

Telephone: (0221) 131041 - Telex: 8882307 dopa d \cdot Telegramm: Dompatent Köln
2. The device as recited in Claim 1, wherein the filter (4;104) has threshold value elements (11;12; 111,112), via which at least one amplitude threshold (s_{1}, s_{2}) is definable, for which the filter (4;104) predefines a limit frequency.
3. The device as recited in Claim 1 or 2 , wherein the limit frequency of the filter (4;104) amounts to approximately 2 Hz for an amplitude above the amplitude thresholds (sir $\left.s_{2}\right)$, and to approximately 0.3 Hz for an amplitude below the amplitude thresholds ($\mathrm{s}_{1}, \mathrm{~s}_{2}$).
4. The device as recited in one of the Claims 1 through 3, wherein the filter (4;104) is electric and has an Lshaped RC element (5;105), the RC element (5;105) is made up of a series resistor $(9 ; 109)$ and a parallel capacitor (10;110), an antiparallel circuit of two rectifiers (11,12;111,112) is switched in parallel to the series resistor $(9 ; 109)$, and the amplitude thresholds (s_{1}, s_{2}) are definable via the internal resistances in the throughput direction.
5. The device as recited in one of the Claims 1 through 4, two amplitude thresholds, which are related to the movements of the body in relation to the wheels, being definable via filter elements, wherein the absolute values of the amplitude thresholds (s_{1}, s_{2}) differ in that the absolute value of the amplitude threshold $\left(s_{2}\right)$ for the movements produced by accelerations lies below the absolute value of the amplitude threshold (s_{1}) for the movements produced by decelerations.
6. The device as recited in one of the Claims 1 through 5, wherein the limit frequency of the filter (4;104) amounts to 1 to 2 Hz for fluctuations of the position signal (S_{E}) that exceed the amplitude threshold $\left(s_{2}\right)$ for the
acceleration or the amplitude threshold (s_{1}) for the deceleration, and in all other cases, i.e., when the fluctuations exceed neither the one nor the other amplitude threshold (s_{1}, s_{2}), the limit frequency amounts to 0.15 Hz .
7. The device as recited in Claim 5 or 6 , wherein the filter (104) is electric and has an L-shaped RC element (105), the $R C$ element (105) is made up of a series resistor (109) and a parallel capacitor (110), an antiparallel circuit of two rectifier units $(111,112)$ is switched in parallel to the series resistor (109), and the rectifier units (111,112) have different internal resistances in the throughput direction, so that the amplitude thresholds (s_{1}, s_{2}) are defined.
8. The device as recited in Claim 7, wherein the rectifier units (111, 112) each have a plurality of standard rectifiers that differ from each other.
9. The device as recited in one of the Claims 1 through 8, wherein diodes are provided as rectifiers
$(11,12 ; 111,112)$.
10. The device as recited in one of the Claims 1 through 9, wherein the rectifiers $(11,12 ; 111,112)$ are each switched in series with an adjustable resistor (13,14;113,114).

Equipements Automobiles Marchal

Device for Dynamically Adjusting the Position of Headlights of a Vehicle

The invention relates to a device for dynamically adjusting the position of headlights of a vehicle as a function of the relative position of the wheels in relation to the body, having at least one sensor for supplying a signal which corresponds to the relative position, and actuating organs, which are connected to the headlights, the actuating organs being controllable by a control device and the control device being switchable by the position signal via a low-pass filter, undesired frequencies of the position signal being able to be removed via the low-pass filter, especially for an automobile.

Devices for correcting the headlight position of a vehicle have already been built, some of them having had a static and others a dynamic design.

The static correction devices have a relatively long response time and adjust the headlights of the vehicle as a function of the load and its distribution between front and rear axles. Such a device is unable to act when the vehicle is moving.

Devices featuring a dynamic adjustment have also been built already, so as to ensure a proper position of the headlights under all driving conditions of the vehicle. A device includes correction organs connected to the headlights, and functions by gravity (e.g., pendulum). This device has the disadvantage of being unable to properly adjust the headlights when the vehicle is moving on a downhill slope.

Other dynamic adjustment devices are equipped with sensors, via which the relative position is able to be determined
during forward or rearward rocking or swinging of the body in relation to the wheels. Via a correction filter, these sensors are acting on actuating organs which are meant to adjust the position of the headlights as a function of the signal supplied by the sensors. Some devices are hydraulic, and in this case the filtering of the undesired signals is implemented at an increased frequency (in particular the frequency caused by movements of the vehicles on block pavement), at the lines of the hydraulic system. If the adjustment device is an electrical device, then the filtering is implemented by an electric low-pass filter.

The interference phenomena due to the state of the road, and the vehicle conditions requiring a correction of the headlight position are numerous:

- block pavement causes interference of a relatively high frequency of 5 to 15 Hz ;
- holes and thresholds may cause pitch vibrations of 5 to 10 Hz , but this type of interference is relatively rare and does not interfere significantly with the driving style;
- sudden accelerations and braking cause fluctuations on the order of magnitude of 1 to 2 Hz .

Beyond 15 Hz , the vibrations of the vehicle are not a problem due to the response time of the eye, which automatically integrates these rapid changes in the headlight position. The less pronounced frequencies between 2 and 15 Hz are filtered to a certain extent by the suspension of the vehicle and thus reach the headlights in attenuated form. However, these frequencies are a nuisance even in attenuated form.

The adjustment devices developed so far have the serious disadvantage of causing a phase shift between the rocking
instant of the vehicle and the response of the correction device when phenomena arise that have a frequency that is equal to or higher than the limit frequency of the system carrying out the filtering. For example, if the limit frequency is 2 Hz , more rapid phenomena than those resulting from block pavement reach the actuating organs of the headlights despite being attenuated by the filtering and thus may cause certain uncomfortable physiological conditions due to the phase shift. In movements of the vehicle on block pavement, the correction may intervene precisely in phase opposition in relation to the pitch vibrations of the vehicle. For example, the headlights happen to be directed upward at the same moment that the front part of the vehicle body is executing an upward movement as well.

Another unpleasant effect of the existing adjustment devices is that their correction organs are constantly stressed in the presence of rapid phenomena, so that the service life is relatively short.

According to the invention, a device for the dynamic adjustment of the headlights of a vehicle is to be provided, which no longer has the aforementioned disadvantages and allows pleasant night-time driving under all driving conditions and regardless of the state of the road.

The device according to the invention is characterized by the fact that the filter includes filter elements and that a variable characteristic of the frequency separation as a function of the amplitude of the position signals of the sensors is ensured via the filter elements.

Due to these features, the device according to the invention is able to differentiate between phenomena that require correction, and those for which a correction is undesired on account of the unavoidable phase shift that would arise
between the interference phenomenon and the headlight correction.

One first specific embodiment of the invention is characterized by the fact that the filter includes threshold value elements, via which at least one amplitude threshold is able to be defined, for which the filter predefines a limit frequency. This allows a precise adaptation of the features of the filter to the different interference phenomena requiring an adjustment of the headlight position.

One further advantageous specific embodiment is characterized by the fact that the limit frequency of the filter amounts to approximately 2 Hz for an amplitude above the amplitude thresholds, and to approximately 0.3 Hz for an amplitude below the amplitude thresholds. Thus, the high frequency signals between 2 and 5 Hz having a weak amplitude due to movement on block pavement, for example, are not taken into account and thus are also unable to have an adverse effect on driving comfort.

One preferred specific embodiment of the invention is characterized in that the filter is electric and includes an L-shaped RC element, the RC element is made up of a series resistor and a parallel capacitor, an antiparallel circuit of two rectifiers is switched in parallel with the series resistor, and the amplitude thresholds are specifiable via the internal resistances in the throughput direction.

According to another feature, the rectifiers are diodes. The diodes are advantageously switched in series with a resistor for adjusting the switch-off threshold.

The specific embodiment described has the advantage of being easily adaptable to a static adjustment device for the
position of headlights of a vehicle, utilizing two simple diodes and two resistors, the cost of which is relatively low.

However, it became obvious that the absolute value of the mentioned thresholds must be high enough to eliminate the fluctuations having a low amplitude, which, for example, arise when the vehicle is driving on block pavement, especially at medium speeds. This has the result that movements having a medium amplitude due to accelerations or decelerations of the vehicle are no longer taken into account. in certain cases, and the device no longer intervenes to regulate the position of the headlights in such instances. This lack of adjustment in the presence of such movements becomes more bothersome the more important the range and precision of the headlights become.

Therefore, in a second specific embodiment, the invention intends to provide a device for dynamically adjusting the headlights of a vehicle as a function of the relative position of the wheels in relation to the body, the response of the device in movements having a low amplitude such as movements related to driving over block pavement or thresholds, for example, being effectively suppressed. In so doing, the device is to ensure an effective dynamic adjustment at other movements having a low or medium amplitude, at least in cases where this is important for driving and for safety on the road.

The invention thus also relates to a second specific embodiment of a device of the above type, in which components define two amplitude thresholds which are related to the movements of the body in relation to the wheels, for which the filter defines a limit frequency in each case. This device is characterized by different absolute values of the amplitude thresholds; that is to say, the absolute value of the
amplitude threshold for the movements caused by accelerations lies below the absolute value of the amplitude threshold for the movements caused by decelerations. For instance, the threshold with regard to signals in connection with an acceleration is specified as a low value sufficient to respond to slight accelerations which are a nuisance to drivers of oncoming vehicles, while the threshold for signals in connection with a braking operation or a decrease in speed has a very high amplitude. It came as a surprise to discover that such a control of the values of the thresholds achieves complete vanishing of the undesired reactions that provoke rocking; when driving over block pavement, for example, an effective adjustment of the headlights in response to the movements caused by even the slightest acceleration is ensured, which considerably increases road safety, in particular.

On the other hand, it is obvious that the device does not bring about a correction of the headlight position when slight decelerations take place. However, this is not a problem because the light beam is lowered in this case, which has no adverse effect on road safety.

According to one advantageous development of the second specific embodiment of the invention, the limit frequency of the filter amounts to 1 to 2 Hz for a signal that exceeds the threshold for the acceleration, or a signal (having the opposite algebraic sign that exceeds the other threshold for the deceleration, while the switch-off frequency amounts to 0.15 Hz when the signal does not exceed the one or the other threshold according to its algebraic sign.

For instance, the signals between 0.15 and 2 Hz having a weak amplitude resulting from movement on block pavement are not taken into account. On the other hand, an acceleration signal
having a frequency on the order of magnitude of 1 Hz and an amplitude that is barely higher than that of the signals resulting from movement on the block pavement is taken into account, and the actuating device intervenes to correct the headlight position. The device is advantageously constructed in such a way that the filter is electric and has an L-shaped RC element, the $R C$ element is made up of a series resistor and a parallel capacitor, an antiparallel circuit of two rectifier units is switched in parallel to the series resistor, and the rectifier units have different internal resistances in the throughput direction, so that the amplitude thresholds are specified.

For example, the difference between the internal thresholds is achievable by installing a number of standard rectifiers greater than that of the other rectifier unit in the one rectifier unit, i.e., the unit that lets through the electrical signal related to the relative positions that correspond to the braking or the deceleration. As a variant, standard rectifiers may be used, e.g., diodes having different internal thresholds. The rectifiers of each unit are preferably switched in series with an adjustable resistor.

For a better understanding of the invention, two specific embodiments are described in the following text with the aid of the appended drawing; the figures show:

Fig. 1 a basic circuit diagram of a device according to a first specific embodiment of the invention,

Fig. 2 a diagram showing the operation of the device according to Fig. 1 by comparing two curves,

Fig. 3 a basic circuit diagram of a device according to a second specific embodiment of the invention, and

Fig. 4 a diagram analogous to the diagram from Fig. 2, to illustrate the operation of the device according to Fig. 3.

The device shown in Fig. 1 has a first sensor 1 between the front axle and the body of the vehicle in order to detect a relative movement. A corresponding sensor 2 is situated on the rear axle.

The signals generated by sensors 1,2 are processed in a mixer stage 3 , where a signal is generated that represents the vibration or rocking motion of the vehicle in the course of its movement.

The output of mixer stage 3 is connected to a low-pass filter 4, which in this case is formed by an RC element 5 mounted in an L-shape.

The output of filter 4 is connected to a control and amplifier device 6, which outputs a power signal to actuating organs 7, which causes headlights 8 to move.

Filter 4 has a series resistor 9 and a parallel capacitor 10 . Two diodes 11 and 12 switched in antiparallel manner are switched in parallel with series resistor 9, the diodes each being connected in series with an adjustable resistor 13 and 14.

If the amplitude of the input signal of filter 4 exceeds amplitude thresholds s_{1}, s_{2} of diodes 11 and 12 , they become transmissive to corresponding signals, so that the value of the series resistor of RC element 5 drops. Time constant RC drops as well, and the limit frequency becomes higher. That is to say, filter 4 causes a gradation of its limit frequency as a function of the amplitude of the signal supplied to it.

In the case illustrated, in which commercially available diodes 11,12 are used, their internal resistance is insufficient to achieve a limit frequency of 2 Hz . This is why the series connection of adjustable resistors 13 and 14 is provided.

The operation of the device can be gathered from Fig. 2:
fe is the frequency of input signal S_{E} of filter 4, and fc is the frequency of output signal S_{s}. It is apparent that frequency fe of the input signal lies below limit frequency fc of filter 4 during time A. In this way the signal at the output is completely restored again. This case is used in a static correction, e.g., when the loading of the vehicle is varied.

During time B, frequency fe is higher than the limit frequency of the filter, but the amplitude of the input signal lies below amplitude thresholds s_{1}, s_{2}, which are specified by diodes 11 and 12 , so that the signal passes through filter 4 without restriction. At the output, the average value of the input signal is restored again, whereas the high frequency signal is deleted by filter 4. This corresponds to rolling on block pavement.

During time C, frequency fe is also higher than limit frequency fc, but the amplitude of the signal exceeds amplitude thresholds s_{1}, s_{2} defined by diodes 11,12 . The highfrequency signal undergoes no phase shift, but it is reduced in its amplitude by the value of amplitude thresholds $\mathrm{s}_{1}, \mathrm{~s}_{2}$. This case corresponds to rolling on a road that is in very poor condition.

D relates to brutal braking on a poor road. As soon as the input signal exceeds the value of amplitude thresholds s_{1}, s_{2}, it can be found again at the output, reduced by the value of
amplitude thresholds s_{1}, s_{2}. If the phenomenon drags on, a value that is identical to the input signal may be obtained at the output with the aid of filter 4.

The limit frequencies of filter 4 are selectable, e.g., 2 Hz for strong amplitudes, 0.3 Hz for low amplitudes. In the latter case, damping of the signal is therefore important. The phase shift experienced at higher frequencies has no effect on the setting of the headlights.

As can be gathered from Fig. 3, the device includes a first sensor 101, which is mounted between the front axle and the vehicle body for the purpose of detecting the relative movements. Another sensor 102 is assigned to the rear axle. The signals generated by sensors 101,102 are processed in a mixer stage 103, where a signal is generated that represents the rocking or vibration of the vehicle in the course of its movement. The output of mixer stage 103 is connected to a lowpass filter 104, which is formed by an RC element 105 in Lshape. The output of filter 104 is connected to a control and amplifier device 106, which outputs a power signal to actuating organs 107 bringing about the movements of headlights 108 of the vehicle. Filter 104 has a series resistor 109 and a parallel capacitor 110. An antiparallel circuit of two diode units 111,112 is switched in parallel to series resistor 109. One unit has two diodes 111 , and the other has three diodes 112. Each unit is switched in series with an adjustable resistor 113 and 114 respectively.

The operation of the device can be gathered from Fig. 4:
fe is the frequency of input signal $S E$ of filter 1 , and fc the frequency of output signal SS. It is apparent that the frequency of input signal fe lies below limit frequency fc of filter 104 during time A. Thus, the signal is completely restored at the output, which brings about the correction.

This case exists in a static correction, for example, when the load of the vehicle is varied.

During time B, frequency fe is higher than limit frequency fc of the filter, but the high-frequency amplitude of the input signal is not only lower than the absolute value of amplitude threshold s_{1} according to the deceleration, but also lower than the value of amplitude threshold s_{2} according to the acceleration, so that the signal passes filter 104 without restriction. Only the average value of the input signal is restored again at the output, whereas the high-frequency signal is eliminated by filter 104. This case corresponds to rolling on block pavement.

During time C, which corresponds to a slight acceleration, it can be seen that the amplitude of signal $S_{\text {E }}$ exceeds amplitude threshold s_{2} of the acceleration. This translates into a modification of signal S_{s} at the output and thus into a correction of the headlights, which are lowered slightly.

During time D, which corresponds to a slight deceleration which causes a change having virtually the same amplitude as in acceleration C, no change takes place in signal Ss because the amplitude remains below amplitude threshold s_{1}.

Only when the braking is stronger, as during time E, where amplitude threshold s_{i} has now been exceeded, does a change in the signal occur on curve S_{s} in response to the braking operation. The limit frequencies of filter 104 are selectable, e.g., 1 to 2 Hz for strong amplitudes, and 0.15 Hz for weak amplitudes.

It should be noted that the diodes switched in antiparallel manner may advantageously be replaced by Zener diodes switched in series.

Blank page

$$
{ }^{2}+\vec{r}{ }^{2}
$$

> 3129891
> $\begin{aligned} & \text { Int. CI } 3 \text {. } \\ & \text { Filing date }\end{aligned}$
> BG0@1/02
> July 29, 1981
> June 9, 1982

FIG. 1

FIG. 2

$$
\begin{aligned}
\therefore \ldots & \therefore \\
& -22 .
\end{aligned}
$$

FIG. 3

FIG. 4

(21) Aktenzaichen:
(27) Anmeldetag:
(47) Offenlegungstag:

DEUTSCHES
PATENTARAT

P31 29891.5
29. 7.81
9. 6.82

Erfinder:
Leleve, Loä, 93800 Epinay Sur-Seine, FR
(11) Anmelder:

Equipements Automobiles Marchal, 92132
Issyles-Moulineaux, Hauts-de-Saine, FR
(14) Vertretor

Schönwald, K, Dr-Ing., Fues, J, Dipl. Chem, Dr.rer.nat, von Kreisler, A. Dipl-Chem, Kaller, J., Dipl-Chem.; Selting, G., Dipl-Ing. Werner, H. Dipl-Ghem. Dr.rernat. Pat-Anw, 5000 Käln.

wVorrichtung zurdynamischen Einstellung der Stellung van Scheinwerfern eines Fahrzeugesk

Gezeigt und beschrieben witd eine Vorrichtung zur dynamischen Einstellung der Stellung von Schainverfern (8) eines Fahrzeuges in Abhängigkeit von der relativen Position der Aader in bezug auf de Karosserie mit zwel Fullein (1, 2) zur Lieferung von der relativen Position entsprechenden Signalen und milin Verblndung mit den Scheifiwerfern (g) stahiendan Betatigungsorganen (7), wobel dle Belatlgungsorgane (7) durch eine Stevervorrichtung (6) steusibat sind und wobel die Steuarvorrichtung (6) durch das Positionssignal über ein Tiefpabfilter (4) Unerwunschte Frequenzen des Posilionsstgnales ableilibar sind. Um bei Fahrzeugen eine angenehme Nachifahit unter allen Fahrbedingungen und unabhangig vom Straßenzustand zu ermoggichen, weist das Filter (4) Filterelemente (11 bis 14) auf, Ltber dle eine variable Charakteristik der Frequenzabtrennung in Abhängigkeit von der Amplitude der Posilionssignalo der Fuhiler (1, 2) gewahrieistetist.
(31 29891)

3129891

Equipements Automobiles
Marchal
26, rue Guynemer
92132 Issy Les Moulineaux
Frankreich

PATENTANWALTE
Dr.-Ing. von Kreaisler 1973
Dr.:Ing. K. Schönwald, Köln Dr.-ing. K. W. Eshold, Bad Soden Dr.J. FF Fues, Köln Dipl-Chem. Alek von Kreisler, Köln Dipl-Chem. Corola Keller, Käln Dip.-lng, G. Seling, Köh Dr. H. K. Werner, Kän

Patentansprüche:

1). Vorrichtung zur aynamischen Einstellung der stellung von Scheinwerfern eines Fahrzeuges in Abhängigkeit von der relativen position der Räder in Bezug auf die Karosserie, mit mindestens einem Fühler zur Lieferung eines der relativen position entsprechenden Signales und mit in Verbindung mit den Scheinwerfern stehenden Betatigungsarganen, wobei die Betatigungsorgane durch eine Steuervorrichtung steuerbar sind und die Steuervorrichtung durch das Positionssignal uber ein PlefpaBfillter schaltbar ist und wobel über das riefpaßfilter unerwünschte Erequenzen des positionssignales ubleitber sind, \quad a d $u r c h \quad g e k e n \pi-$ $z e \mathrm{i} c \mathrm{~h}$ net, a eB das Filter $(4,104)$ Filterelemente (11 bis 14 ; 111 bis 114) aufweist und da uber die Filterelemente (11 bis 14; 111 bis 114) eine variable Charakteristik der Frequenzabtrennung in Abhängigkeit von der Amplitude der positionssignale der Fîhler (1,2,101,102) gewährleistet ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Filter $(4,104)$ Schwellwertelemente $(1), 12$, 111,112) aufweist, tiber die mindestens eine Amplitudenschwelle $\left(s_{1}, s_{2}\right)$ definierbar ist, für die das Filter $(4 ; 104)$ eine Grenzfrequenz vorbestimmt.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennZelchnet, daB die Grenzfrequenz des Filters (4;104) für eine Amplitude über den Amplitudenschwellen ($\mathrm{s}_{1}, \mathrm{~s}_{2}$) etwa 2 Hz und für eine Amplitude unter den Amplitudenschwellen $\left(s_{1}, s_{2}\right)$ etwa $0,3 \mathrm{~Hz}$ beträgt.
4. Vorrichtung nach einem der Ansprüche 1 bis. 3, dadurch gekennzeichnet, daB das Filter $(4 ; 104)$ elektrisch ist und ein I-förmiges Re-Glied (5;105) aufweist, daB das RC-G1ied $(5,105)$ aus einem Sexienwiderstand (9;109) und einem parallelkondensator $(10,110)$ besteht, daB dem Serienwiderstand (9;109) eine Antiparallelschaltung zweier Gleichrichter $(11,12 ; 111,112)$ parallel geschaltet ist und daB uber die Innenwiderstände in Durchgangsrichtung die Amplitudenschwellen $\left(s_{1}, s_{2}\right)$ festlegbar sind.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, wobei über Filterelemente zwei Amplitudenschwellen festLegbar sind, die mit den Bewegungen der Karosserie in Bezug auf die Räder in Beziehung stehen, dadurch gekennzeichnet, daB die Absolutwerte der Amplitudenschwellen $\left(s_{1}, s_{2}\right)$ unterschiedlich sind, daß nämlich
der Absolutwert der Amplitudenschwelle $\left(s_{2}\right)$ für die durch Beschleunigungen erzeugten Bewegungen unter dem Absolutwert der Amplitudenschwelle $\left(s_{1}\right)$ fïr die durch Verzögerungen erzeugten Bewegungen liegt.
6. Vorrichtung nach einem der Anspriche 1 bis 5 , dadurch gekennzeichnet, daB die Grenzfrequenz des Filters $(4 ; 104)$ bis $2 * \mathrm{~Hz}$ für Schwankungen des Positionssignales (S_{F}) betragt, die die Amplituadenschwelle (s_{2}) für die Beschleunigung oder die Amplitudenschwelle (s, für die Verzögerung überschreiten und daß die Grenzfreguenz im ubrigen, d.h. wenn die Schwankungen weder die eine noch die andere Amplitudenschwelle $\left(s_{1}, s_{2}\right)$ uberschreiten, 0,15 ILz beträgt.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß das Filter (104) elektrisch ist und ein L-förmiges RC-Glied (105) aufweist, daB das RC-Glied (105) aus einem Serienwiderstand (109) und einem Parallelkondensator (110) besteht, daB dem Serienwiderstand (109) eine Antiparallelschaltung zweier Gleichrichtereinheiten (111, 112) parallel geschaltet ist und daß die Gleichrichtereinheiten (111,112) verschiedene Innenwiderstände in Durchgangsrichtung aufweisen, so daß die Amplitudenschwellen $\left(s_{1}, s_{2}\right)$ festgelegt sind.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daB die Gleichrichtereinheiten (11), 112) jeweils mehrere voneinander verschiedene Einheitsgleíchrichter aufweisen.
9. Vorrichtung nach einem der Anspriche 1 bis 8 , dadurch gekennzeiichnet, daB als Gleichrichter $(11,12,111,112)$ Dioden vorgesehen sind.
10. Vorrichtung nach einem der Ansprifche 1 bis 9 , dadurch gekennzeichnet, daß die Gleichrichter (11,12,111,112) jeweils in Serie mit einem Einstellwiderstand $(13,14 ; 113,114)$ geschaltet sind.

3129891

Equipements Automobiles Marchal

Vorrichtung zur dynamischen Einstellung der Stellung von Scheinwerfern elnes Eahrzeuges

Die Erfindung betrifft eine Vorrichtung zur dynamischen Einstellung der Stellung von Scheinwerfern eines Fahrzeuges in Abhängigkeit von der relativen position der Räder in Bezug auf die Karosserie, mit mindestens einem pühler zur Lieferung eines der relativen position entsprechenden Signales und mit in Verbindung mit den Scheinwerfern stehenden Betätigungsorganen, wobei die Betätigungsorgane durch eine steucrvorifichting steuerbar sind und die Steuervorrichtung durch dis Positionssignal Uber ein Piefpabfillter schalthar ist und wobei über das Tiefpaßfiliter unerwünschte Frequenzen des positionssignales ableitbar sind, insbesondere für ein Auto.

Man hat bereits Vorrichtungen für die Korrektur der Scheinwerferstellung eines Fahrzeuges gebaut, wobei einige statisch, einige dynamisch waren.

Die statischen Korrekturvorrichtungen haben eine relativ lange Ansprechzeit und verstellen dic Scheinwerfer des pahrzeuges abhangig von der fast: und deren Verteilung zwischen Vorder- und Hinterachse. Eine solche Vorrichtung kann nicht tätig werden, wenn das Fahrzeug sich bewegt.

Es sind auch schon Vorrichtungen mit dynamischer Einstellung konstruiert worden, um eine adaquate Position der Scheinwerfer bei allen Fahrbedingungen des Fahrzeuges zu gewährleisten. Eine Vorrichtung

Die Störerscheinungen aufgrund des Wegezustandes und dor Fahrzeugbedingungen, die eine Korrektur der Stellung der Scheinwerfer verlangen, sind zahlreich:

- Pilaster verussacht störungen mit relativ hoher Frequenz von 5 bls 15 Hz ;
- Löcher und Schwellen können Stampfschwingungen von 5 bis 10 Hz verursachen, aber diese

Jenseits von 15 Hz sind die Schwingungen des Fahrzeuges wegen dex Ansprechzedt des Auges, das diese schnellen Anderungen der Scheinwerferposition automatisch integrifert, nicht hinderlich. Die weniger hohen Frequenzen zwischen 2 und 15 Hz werden in einem gewissen Unfang durch die Federung des Fahrzeuges gefiltert und gelangen daher in abgeschwächter Form an die Scheinwerfer. Jedoch bleiben diese Frequenzen auch in abgeschwächter Form lästig.

Die bisher entwickelten Elnstellyorrichtungen haben den ernsten Nachtell einer Phasenverschiebung zwischen der Zeit des Schaukelns des Fahrzeuges und der Reaktion der Korrekturvorrichtung bei Erscheinungen, deren Frequenz gleich oder höher ist als die Grenzfreguenz des die Filterung bewirkenden Systems. Wenn z.B. die GrenzExequenz 2 Hz ist, gelangen schnellere Phänomene als diejenigen aufgrund von Pflaster, obwohl sie durch die
$-8-$

Abstract

Filterung abgeschwäht sind, trotzdem zu den Betätigungsorganen der scheinwerfer und können so durch die Phasenverschiebung bestimmte physiologische unbehaglichkeiten mit sich bringen. Bei Bewegungen des Fahrzeuges auf Pflaster kann die Korrektur gerade gegenphasig in Bezug auf Stampfschwingungen des Fahrzeuges eingreifen. Die Scheinwerfer sind 2 . B. gerade in den Augenblick nach oben orientiert, in dem das Vorderteil der Karosserie des Fahrzeuges auch eine Bewegung nach oben ausführt.

Eine andere Unannehmlichkeit der vorhandenen Einstelvorrichtungen besteht darln, daB bei schnellen Phänomenen ihre Korrekturorgane stanaig gefordert werden und so die Lebensdauer relativ gering ist.

Gemäß der Erfindung soll eine Vorrichtung zur dynamischen Einstellung der Scheinwerfer eines Fahrzouges geschaffen werden, die die oben erwahnten Nachteile nicht besitzt und eine angenehme Nachtfahrt unter allen Fahrbedingungen und unabhängig. von Straßenzustand zulässt.

Die erfindungsgemäBe Vorrichtung ist dadurch gekennzeichnet, da β das Filter Filterelemente aufweist und daß über die Filterelemente eine variable Charakteristik der Frequenzabtrennung in Abhangigkeit von der Amplitude der Positionssignale der Fühler gewährleistet ist.

> Eine bevorzugte Ausfihnungsfonm der Erfindung ist dadurch gekennzeichnet, daß das Filter elektrisch ist und ein l-förmiges RC-Glied aufweist, daB das RC-Glied aus einem Serienwiderstand und einem Parallelkondensator besteht, daß dem Serienwiderstand eine Antiparallelschaltung zweier Gleichrichter parallel goschaltat ist und daß uber die Innenwiderstäde in lurchyangsrlchtung die Amplitudenschwellen festleybar sind.

Gemäß ejinem anderen Merkmal, sind die Gleichrichter Dioden. Vorteilhafterweise sind die Dioden in Serie mit einem Widerstand für die Einstellung der Abschaltschwelle geschaltet.

Die Ausführungsform, die beschrieben wird, hat den Vorteil, daß slie leicht an eine statische Einstelivorrichtung für die Position von Schelnwerfern eines Fahrzeuges mittels Benutzung von zwei einfachen Dioden und von zwei widerstanden angepaßt werden kann, deren Kosten nicht sehr hoch sind.

Man konnte aber beobachten, daß der absolute Wert der genannten Schwellen ausreichend hoch sein muß, um die Schwankungen mit geringer Amplitude auszuschalten, die sich 2.B. ergeben, wenn das Fahrzeug auf Pflaster fährt, insbesondere bei mittleren Geschwindigkeiten. Daraus ergibt sich, daß in bestimmten Fällen Bewegungen mittlerer Amplitude aufgrund von Beschleunigungen oder Verzögexungen des Fahrzeuges nicht mehr berücksichtigt werden, und daß die tinrichtung in diesen FAllen nicht eingreift, um die Position der Scheinwerfer zu regeln. Dieser Ein-

3129891

Abstract

stellungsmangel bei solchen Bewegungen wird umso lastiger, Je bedeutsamer Reichweite und Genauigkeit der Scheinwerfer wexden.

In einer zweiten Ausführungsform beabsichtigt die Er- findung daher, eine Vorrichtung zur dynamischen Einstellung der Scheinwerfer eines Fahrzeuges abhängig von der relativen position der Räder in Bezüg auf die Karosserie zu liefern, wobei die Reaktion der Vorrichtung bel Bewegungen mit geringer Amplitude wirksam unterdrückt wird, wie z, B. Bewegungen, die mit der Fahrt äber Pflaster oder Schwellen in Verbindung stehen. Die Vorrichtung soll dabei eine wirksame dynamische Einstellung; bei anderen Bewegungen mit geringer oder mittlerex Amplitude gewahrleisten, zumindest in den Fallen, dle für das Fahren und die sicherheit auf der Strabe wichtig sind.

Die Exfindung bezieht sich daher auch auf eine zweite Ausführungsform einer Vorrichtung des obigen Typs, bei der Bestandteile zwei Amplitudenschwellen definieren, Welche mit den Bewegungen der Karosserie in Bezug auf die Räder in Verbindung stehen, für deren jede das Filter eine Grenzfrequenz bestimit. Diese Vorrichtung ist dadurch gekennzeichnet, daB die Absolutwerte der Amplitudenschwellen unterschiedilch sind, daB nämlich der Absolutwert der Amplitudenschwelle fir die durch Beschleunigungen erzeugten Bewegungen unter dem Absolutwert der Amplitudenschwelle für die durch Verzögerungen erzeugten Bewegungen liegt. So wird die Schwelle in Bezug auf Siynale
$-12-$

Abstract

In Verbindung mit einer Beschleunigung festgelegt auf einen ausceichend schwachen Wert, um auf geringfügige Beschleunigungen anzusprechen, die fur Fahrer entgegenkommender Fahrzeuge lástig sind, während die Schwelle für Signale in Verbindung mit einer Bremsung oder Geschwinaigkeitsabnahme elne sehr große Amplitude hat. Uberraschenderweise hat man festgestellt, daß bel einer solchen Regelung der Werteder Schwellen ein komplettes Verschwinden der unerwünschten Reaktionen erzielt wird, die ein schwanken, hervorrufen, z, B. bei einer Fahrt über Straßenpflaster, wobei eine wirksame Einstellung der Scheinwerfer auf die durch eine noch so gerlinge Beschleunigung hervorgerufenen Bewegungen gewährleistet wird, was insbesondere die sicherheit auf der StraBe wesentlich erhöht.

Andererseits stellt men fest, daß die Vorrichtung bei gexingen Verzögerungen keine Korrektur der Scheinwerferstellung bewirkt. Dies ist nicht laistig, weil sich in diesem Fall das Lichtbündel senkt, was keinen Nachte.il fuir die sicherheit auf der StraBe nach sich zieht.

Gemäß einer vorteilhaften Gestaltung der zweiten Ausführungsform der Erfindung beträgt die Grenzfrequenz des Filters 1 bis 2 Hz bei einem Signal, das die Schwelle fix die Beschleunigung uberschreitet, oder einem Signal (mit entgegengesetztem Vorzeichen das die andere Schwelle für die Verzögerung äberschreitet, während die Abschaltfrequenz 0, 15 Hz betrağt, wenn das

3129891
$-13-$

Abstract

Signal nicht gemäß seinem Vorzeichen die eine oder andere schwelle uberschreitet.

So werden die Signale zwischen 0,15 und 2 Hz mit schwachter Amplitude, die sich aus der Bewegung auf Pflaster ergeben, nficht berucksichtigt. Dagegen wird ein Beschleunigungssignal mit' einer Frequenz in der Rangordnung von 1 Hz und einer Amplitude, die kaum höhex ist als diejenige der Signale, die sich durch Bewegung auf dem Pflaster exgeben, berücksichtigt und es erfolgt ein Eingreifen der stellvorrichtung für die Korrektur dex Scheinwerferposition. Vorteilhafterweise ist dabei die Vorrichtung so konstruiert, daß das Filter elek-. - trisch. ist und ein I-törmiges RC-Glied aufweist, daß das RC-Glied aus einem Serienwidenstand und einem Parallelkondensator besteht, daß dem Serienwiderstand eine Antiparallelschaltung zweier cleiehrichtereinheiten parallel geschaltot ist und slab die Glelchrlehtereinheiten verschiedene Innenwiderstände in DurchgangsSichtung aufweisen, so daB die Amplitudenschwellen festgelegt sind.

Der Unterschied zwischen den Innenschwellen kann $z . B$. erzielt werden, indem man in der einen Gleichrlehtereinheit, nämlich derjenigen, die das elektrische Signal. durchlaßt, das mit den relativen positionen verbunden Lst, welche der Bremsung oder der Verzögerung entsprechen, eine Anzah1 von Einheitsgleichrichtern anbringt, die grobßer ist als die der anderen Gleichrichtereinhelt. Als Variante lkann man Einheitsgleichrichter verwenden, $2 . B$. Dioden, die verschiedene Inmenschwellen haben. Die Gleichrichter jeder Einheit sind vorzugsweise in Serie geschaltet mit einem einstell-

Widerstand.

Zum besseren Verstänanis der Erfindung werden nachstehend zwei Ausfïhrungsformen anhand der beigefïgten Zeichnung beschrieben; es zeigt:

Fig. 1 ein Grundschaltbild einer Vorrichtung gemäß einer ersten Ausfürungsform der Erfindung,

Tig, 2 ein Diagramm, das den Betrieb der Vorrichtung gem. Fig. 1 durch den Vergleich von zwei Kurven zelgt,

Fig. 3 ein Grundschaltbild einer Vorrichtung gemäß einer zweiten Ausführungsform der Enfindung und

Fig. 4 ein Diagramm analog demjenigen der Fig. 2 zur Darstellung des Betriebs der Vorrichtung gemä β Fig. 3.

Die in Fig. 1 dargestellte Vorrichtung hat einen ersten Tühler 1 zwischen der Vorderachse und der Karosserle des Fahrzeuges, um eine relatlve Bewegung zu entdecken. Ein entsprechender Finler 2 befindet slch an der Hinterachse.

Die von den Fihlein 1, 2 erzeugten Signale werden in einer Mischstufe 3 behandelt, in der ein Signal erzeugt wird, das die Schwingung, oder Schaukelbewegung des Fahrzeuges im Verlauf seiner Bewegung darstellt.

Der Ausgang der Mischstufe 3 ist mit einem Tiefpaßfilter 4 verbunden, das in diesem Beispiel durch ein Re-Glied 5, dasin L-Form montiert tist, gebildet wird.

Der Ausgang des Filters 4 ist mit einer Steuer- und Verstärkervorriehtung 6 verbunden, die ein Leistungssignal an Betatigungsorgane 7 abgibt, welche Bewegungen der Scheinwerfer 8 hervorrufen.

Das Eilter 4 hat einen Serienwiderstand 9 und einen Parallelkondensator 10 . Dem Serienwiderstand 9 sind zwei antiparallel geschaltete Dioden 11 und 12, die jeweils in Serie mit einem Einstellwiderstand 13 und 14 1legen, parallel geschaltet.

Wenn die Amplitude des Elingangssignals des Filters 4 die Amplitudenschwellen s_{1}, s_{2} der Dioden 11 und 12 tuberschreitet, werden diese für entsprechende signale durchgängig, so daß der Wert des Serienwiderstandes des RC-Gliedes 5 sinkt. Die Zeitkonstante RC sinkt ebenfalls und ale Grenzfrequenz wird höher. Das Filter 4 bewirkt also eine Abstufung seiner Grenzfrequenz in Abhängigkeit von der Amplitude des Signals, das ihm geliefert wird.

In dem dargestellten Fall, in dem man handelsübliche Dioden 11,12 verwendet, 1 st deren Innenwiderstand nicht ausreichend, um eine Grenzfrequenz von 2 Hz zu erzielen. Deshalb sind die Einstellwiderstande 13 und

14 in Serie vorgesehen.

Abstract

Der Betrieb der vorrichtung geht aus Fig. 2 hervor. fe sei die Frequenz des Eingangssignals S_{E} des Filters 4 und fic diejenige des Ausgangssignals S_{s}. Man sieht, däß während der Zeit A die Frequenz fe des Eingangssignals unter der Gfenzfrequenz fo des Filters 4 liegt. So ist das Signal am Ausgang uneingeschränkt wiederhergestellt. Dieser Fall findet bei einer statischen Korrektur Anwendung, z.B. wenn die Belastung des Fahrzeuges geändert wird.

Wärend der Zeit 8 ist die Frequenz Ie höher als die Grenzfrequenz des Filters, aber die Amplitude des. Eingangssignals liegt unter aen Amplitudenschwellen S1' s_{2}, dite von den Dioden 11 und 12 gegeben werden, so daB das Signal uneingeschränkt durch den Filter 4 gelangt. Am Ausgang wird der Mittelwert des Eingangssignals wiederhergestellt, wogegen das Hochfrequenzsignal dürch das Filter 4 gelöscht wird, Dieser Fall entspricht dem Rollen auf pflaster.

Während der Zeit C ist die Erequenz fe auch höher als die Grenzfrequenz fc, aber die Amplitude des Signals tibersteigt die Amplitudenschwellen s_{1}, s_{2}, die von Cen Dioden 11,12 gegeben werden, Das Hochfrequenz-. sighal erfährt keine Phasenverschlebung, sondern es wird in der Amplitude um den Wert der Amplituden-

3129891

> schwellen $s_{1} r^{s}{ }_{2}$ verringert, Dieser Fall entspricht dem Rollen auf elnem Weg, der in sehr schlechtem Zustand ist.
> Bei D handelt es sich um brutales Bremsen auf schlechtem Weg. Sobald das Eingangssignal den Wert der Amplitudenschwellen s_{1}, S_{2} uberschreitet, findet man es am Ausgang, vermindert um den Wert der Amplitudenschwellen $\mathrm{s}_{1}, \mathrm{~s}_{2}$ wleder. Wenn das phänomen sich hinzieht, kann man mit dem Filter 4 am Ausgang bei. hoheren. Frequenzen gegebene Phasenverschiebung hat keine Wirkung auf die Einstellung dex Scheinwerfer.

In Fig. 3 sleht man, daß die Vorrtichtung einen ersten Fühler 101 besitzt, welcher zwischen der Vorderachse und der Karosserie des Fahrzeuges montiert ist, um die relativen Bewegungen festzustellen. Ein weiterer Fühler 102 ist der Hinterachse zugeordnet. Die durch die Fuhler 101, 102 erzeugten Signale werden in einer Mischstufe 103 behandelt, in der ein Signal erzeugt wird, welches das Schaukeln oder Schwingen des Fahrzeuges bei seiner Bewegung darstellt. Der Aus-

Abstract

gang der Mischstufe 103 ist mit einem Tiefpabfilter 104 verbunden, das durch ein RC-Glied 105 in t-Form gebildet wird. Der Ausgang des Filters 104 ist mit einer Steuer- und verstärkungseinrichtung 106 ver-

 bunden, die ein Ieistungssignal an Betätigungsorgane 107 abgibt, welche die Bewegungen der Scheinwerfer 108 des Fahrzeuges hervorrufen. Das Filter 104 hat einen Serienwiderstand 109 und einen Parallelkondensator 110. Dem Serienwiderstand 109 ist eine Antiparallelschaltung zweier Diodeneinheiten 111,112 parallel geschaltet. Die eine Einheit hat zwei Dioden 111 und die andere drei Dioden 112. Jede Einheit ist in Serie mit einem Einstellwiderstand 113 bzw. 114 geschaltet.Der Betrieb der Vorrichtung geht aus Fig. 4 hervor:

Fe sei die Frequenz des Eingangssignalis. SE des Filters 104 und fc diejenige des Autsgangssignals SS. Man sieht, daB in der Zeit A die Frequenz des Eingangssignals fe unter der Grenzfrequenz fc des Fllters 104 liegt. Daher wird das signal uneingeschränkt am Ausgang wiederhergestellt, was die korrektur bewirkt. Dieser Fall liegt z.B. einer einer statischen Korrektur vor, wenn die Last des Fahrzeuges geändert wird.

In der zeit 3 ist die Frequenz fe höher als die Grenzfrequenz fe des Filters, aber die Hochfrequenzamplitude des Eingangssignals ist nicht nur geringer als der absolute Wert der Amplitudenschwelle s_{1} entsprechend der

Verzögerung, sondern auch als der Wert der Amplitudenschwelle s_{2} entsprechend der Beschleunigung, so daß das Signal uneingeschränkt den Filter 104 passiert. Am Ausgang wird nur der mittlere Wert des Eingangs- signals wlederhergestellt, wogegen das Hochirequenzsignal durch das Filter 104 eliminiert wird. Dieser Fall entspricht dem Weg auf pflaster.

In der zeit C, die einer leichten Beschleunigung entsppleht, sieht man, daB die Amplitude des signals S_{E} die Amplitudenschwelle s_{2} der Beschleunigung tiberschreitet. Dies ubersetzt sich in eine Veränderung des Signals S_{S} am Ansgang und fixfolgedessen in eline Korrektur der Scheinwerfex, die leicht gesenkt werden.

In def Zeit D, die einer lelchten Verzögerung entsprlcht, welche eine Anderung mit fast derselben Anplitude wie bel der Beschleunigung C bewirkt, erfolgt keine Anderung des Signals S_{S}, weil die Amplitude unter der Amplitudenschwelle s_{1} bleibt.

Erst wenh die Bremsung starker ist, wie in der Zeit E, wobet die Amplitudenschwelle s_{1} diesmal uberschritten Wird, geschieht auf der Kurve S_{S} eine Anderung des Signals, als Antwort auf die Bremsung. Die Grenzfrequenzen des Filters 104 können gewählt werden, $z . B$. für starke Amplituden 1 bis 2 Hz und für schwache Amplituden $0,15 \mathrm{~Hz}$.

Man kann im übrigen in vorteilhafter Weise die antiparallel geschalteten Dioden durch in Serie geschaltete zeneraioden ersetzen.

> Leerselte

Page 876 of 1228
, 7616°

FIG. 2

$$
\begin{aligned}
& \therefore \quad \therefore \quad \sqrt{\text { NACr }} 3129891 \\
& \text { - } 22 .
\end{aligned}
$$

FIG. 3

FIG. 4

EXHIBIT 5

LIST OF DOCUMENTS CITED BY THIRD PARTY REQUESTER IN INTER PARTES REEXAMINATION	PATENT NO. 7,241,034	PATENTEE James E. SMITH et al.
	PATENT DATE July 10, 2007	

U.S. PATENT DOCUMENTS

EXAM. INITIAL	PATENT/ PUBLICATION NUMBER	NAME	PATENT/ PUBLICATION DATE	CLASS	SUBCLASS
	$4,954,933$	Wassen et al.	September 4, 1990		
	$5,182,460$	Hussman	January 26, 1993		
	$5,909,949$	Gotoh	June 8, 1999		
	$6,193,398$	Okuchi et al.	February 27, 2001		
	Toda et al.	October 23, 2001			

FOREIGN PATENT DOCUMENTS

EXAMINER INITIAL	DOCUMENT NUMBER	COUNTRY	DATE	NAME	SUBCLASS	TRANSLATION
	3129891	DE		YES	NO	
	3110094	DE	June 9, 1982			
	2309773	GB	September 30, 1982			
	2309774	GB	August 6,1997			

OTHER DOCUMENTS

EXAMINER INITIAL	Name
	"Original Complaint for Patent Infringement," filed on March 8, 2010, BALTHER TECHNOLOGIES, LLC, v. AM. HONDA MOTOR CO. INC., et al., Case No. 6:10-CR-78-LED (E.D. Tex.).
	"Plaintiff's Notice of Voluntary Dismissal," filed on May 17, 2010, BALTHER TECHNOLOGIES, LLC. v. AM. HONDA MOTOR CO. INC., et al., Case No. 6:10-CR-78-LED (E.D. Tex.).
	"Order," dated May 18, 2010, BALTHER TECHNOLOGIES, LLC, v. AM. HONDA MOTOR CO. INC., et al., Case No. 6:10-CR-78-LED (E.D. Tex.).
	Certified English-language translation of German Patent Application Publication No. 3110094 to Miskin et al.
	Certified English-language translation of German Patent Application Publication No. 3129891 to Leleve.

EXAMINER	DATE CONSIDERED
EXAMINER: Initial if citation considered, whether or not citation is in conformance with M.P.E.P. 609; draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.	

EXHIBIT 17

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In Re Patent of	$:$	James E. SMITH et al.
Patent No.	$:$	$7,241,034$
Issued	$:$	July 10, 2007
Title	$:$	AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS
		$10 / 285,312$
Application Serial No.	$:$	October 31, 2002
Filed	$:$	Volkswagen Group of America, Inc.

CERTIFICATE OF SERVICE

I hereby certify that a copy of the attached "REQUEST FOR INTER PARTES REEXAMINATION OF U.S. PATENT NO. 7,241,034 PURSUANT TO 37 C.F.R. § 1.915" has been served in its entirety by first class mail on the patent owner at the following address as provided for in 37 C.F.R. § 1.33 (c):

The Caldwell Firm, LLC
PO Box 59655
Dept. SVIPGP
Dallas, TX 75229
on this $16^{\text {th }}$ day of May 2011.
/Clifford A. Ulrich/
Clifford A. Ulrich
Reg. No. 42,194
KENYON \& KENYON LLP
One Broadway
New York, N.Y. 10004
(212) 425-7200 (telephone)
(212) 425-5288 (facsimile)

Attorney for Requester, Volkswagen Group of America, Inc.

Bib Data Sheet

$\begin{gathered} \text { SERIAL NUMBER } \\ 95 / 001,621 \end{gathered}$	FILING OR 371(c) DATE $05 / 16 / 2011$ RULE	$\begin{gathered} \text { CLASS } \\ 362 \end{gathered}$	GROUP ART UNIT 3992		ATTORNEY DOCKET NO.
APPLICANTS 7,241,034, Residence Not Provided; BALTHER TECHNOLOGIES, LLC (OWNER), LONGVIEW, TX; KENYON \& KENYON LLP, (3RD.PTY.REQ.), NEW YORK, NY; VOLKSWAGEN GROUP OF AMERICA, INC. (REAL.PTY.IN.INTEREST.), HERNDON, VA; KENYON \& KENYON LLP, NEW YORK, NY					
** CONTINUING DATA \square This application is a REX of 10/285,312 10/31/2002 PAT 7,241,034 which claims benefit of $60 / 335,409$ 10/31/2001 and claims benefit of $60 / 356,70302 / 13 / 2002$ and claims benefit of 60/369,447 04/02/2002 ** FOREIGN APPLICATIONS					
		STATE OR COUNTRY	SHEETS DRAWING	TOTAL CLAIMS	INDEPENDENT CLAIMS
$\begin{aligned} & \text { ADDRESS } \\ & 92045 \\ & \hline \end{aligned}$					
TITLE Automatic Directional Control System for Vehicle Headlights					

FILING FEE RECEIVED	FEES: Authority has been given in Paper No. \qquad to charge/credit DEPOSIT ACCOUNT No. \qquad for following:	\square All Fees
		$\square 1.16$ Fees (Filing)
		1.17 Fees (Processing Ext. of time)
		$\square 1.18$ Fees (Issue)
		\square Other
		\square Credit

Patent Assignment Abstract of Title

Total Assignments: 4
Application \#: 10285312
Filing Dt: 10/31/2002
Patent \#: 7241034
Publication \#: US20030107898
Issue Dt: 07/10/2007
Pub Dt: 06/12/2003
Inventors: James E. Smith, Anthony B. McDonald
Title: AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS

Assignment: 1

Reel/Frame: $013729 / 0559$ Received: 02/10/2003 Recorded: 02/06/2003 Mailed: 06/13/2003 Pages: 3
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).

Assignors:SMITH, JAMES E.	Exec Dt: 01/31/2003
MCDONALD, ANTHONY B.	Exec Dt: 01/31/2003

Assignee: DANA CORPORATION
4500 DORR STREET
TOLEDO, OHIO 43615
Correspondent: MACMILLAN, SOBANSKI \& TODD, LLC
RICHARD S. MACMILLAN
720 WATER STREET
ONE MARITIME PLAZA, FOURTH FLOOR
TOLEDO, OH 43604-1853

Assignment: 3
Assignment: 3
Reel/Frame: 022813/0432 Received: 06/12/2009 Recorded: 06/12/2009 Mailed: 06/12/2009 Pages: 2
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: DANA AUTOMOTIVE SYSTEMS GROUP, LLC
Exec Dt: 05/26/2009
Assignee: STRAGENT,_LLC
211 W. TYLER, SUITE C
LONGVIEW, TEXAS 75601
Correspondent: ASSIGNMENT RECORDATION
211 W. TYLER ST., SUITE C
LONGVIEW, TX 75601

Assignment: 4

Mailed: 03/09/2010 Pages: 2
Conveyance: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Assignor: STRAGENT, LLC
Exec Dt: 12/16/2009
Assignee: BALTHER TECHNOLOGIES, LLC
211 W. TYLER
SUITE C-4
LONGVIEW, TEXAS 75601
Correspondent: THE CALDWELL FIRM, LLC
PO BOX 59655
DEPT. SVIPGP
DALLAS, TX 75229

Web interface last modified: Apr. 20. 2009

Page 885 of 1228

Date Mailed: 05/23/2011

NOTICE OF ASSIGNMENT OF INTER PARTES REEXAMINATION REQUEST

The above-identified request for inter partes reexamination has been assigned to Art Unit 3992. All future correspondence in this proceeding should be identified by the control number listed above and directed to: Mail Stop Inter Partes Reexam, Commissioner for Patents, P.O. Box 1450, Alexandria VA 22313-1450.
A copy of this Notice is being sent to the latest attorney or agent of record in the patent file or, if none is of record, to all owners of record. (See 37 CFR 1.33(c).) If the addressee is not, or does not represent, the current owner, he or she is required to forward all communications regarding this proceeding to the current owner(s)
(MPEP 2222). An attorney or agent receiving this communication who does not represent the current owner(s) may wish to seek to withdraw pursuant to 37 CFR 1.36 in order to avoid receiving future communications. If the address of the current owner(s) is unknown, this communication should be returned with the request to withdraw pursuant to Section 1.36.
cc: Third Party Requester
KENYON \& KENYON LLP
ONE BROADWAY
NEW YORK, NY 10004

> /kpdozier/

Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERC United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS

PO. Box 1450
Alexandria Vir
Alexandria, Virginia 22313-1450
wwwuspto.gov
REEXAM CONTROL NUMBER
95/001,621
FILING OR 371 (c) DATE
05/16/2011
PATENT NUMBER
7241034
CONFIRMATION NO. 1240
KENYON \& KENYON LLP
ONE BROADWAY
NEW YORK, NY 10004
REEXAM ASSIGNMENT NOTICE

Date Mailed: 05/23/2011

NOTICE OF INTER PARTES REEXAMINATION REQUEST FILING DATE

Requester is hereby notified that the filing date of the request for inter partes reexamination is $05 / 16 / 2011$, the date that the filing requirements of 37 CFR § 1.915 were received.

A decision on the request for inter partes reexamination will be mailed within three months from the filing date of the request for inter partes reexamination. (See 37 CFR 1.923.)
A copy of this Notice is being sent to the person identified by the requestor as the patent owner. Further patent owner correspondence will be with the latest attorney or agent of record in the patent file. (See 37 CFR 1.33.) Any paper filed should include a reference to the present request for inter partes reexamination (by Reexamination Control Number) and should be addressed to: Mail Stop Inter Partes Reexam, Commissioner for Patents, P.O. Box 1450, Alexandria VA 22313-1450.
cc: Patent Owner
92045
The Caldwell Firm, LLC
PO Box 59655
Dept. SVIPGP
Dallas, TX 75229
/kpdozier/
Legal Instruments Examiner
Central Reexamination Unit 571-272-7705; FAX No. 571-273-9900

Litigation Search Report CRU 3999

Reexam Control No. 95/001,621

TO: Mark Reinhart
Location: CRU
Art Unit: 3992
Date: 5/23/2011

From: Patricia Volpe
Location: CRU 3999
MDW 7C69
Phone: (571) 272-6825
Patricia.volpe@uspto.gov

Search Notes

Litigation Search for U.S. Patent Number: 7,241,034
Status (CLOSED) 6:10cv78 Balther Technologies, Llc v. American Honda Motor Co Inc et A

1) I performed a KeyCite Search in Westlaw, which retrieves all history on the patent including any litigation.
2) I performed a search on the patent in Lexis CourtLink for any open dockets or closed cases.
3) I performed a search in Lexis in the Federal Courts and Administrative Materials databases for any cases found.
4) I performed a search in Lexis in the IP Journal and Periodicals database for any articles on the patent.
5) I performed a search in Lexis in the news databases for any articles about the patent or any articles about litigation on this patent.

KEYCITE

C US PAT 7241034 AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS, Assignee: Dana Corporation (Jul 10, 2007)

History
Direct History
$\Rightarrow \quad 1$ AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS, US PAT 7241034, 2007 WL 1978614 (U.S. PTO Utility Jul 10, 2007) (NO. 10/285312)

Patent Family
2 AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR A VEHICLE HEADLIGHT USES SENSOR TO GENERATE SIGNAL REPRESENTATIVE OF CONDITION OF VEHICLE, CONTROLLER RESPONSIVE TO SENSOR SIGNAL TO GENERATE OUTPUT SIGNAL AND ACTUATOR TO EFFECT, Derwent World Patents Legal 2003-543647

Assignments

3 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Mar 08, 2010)
4 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Jun 12, 2009)
5 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 030, (DATE RECORDED: Feb 22, 2008)
6 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCCUMENT FOR DETAILS). Number of Pages: 003, (DATE RECORDED: Feb 06, 2003)

Patent Status Files
.. Request for Re-Examination, (OG DATE: Sep 07, 2010)
.. Patent Suit(See LitAlert Entries),

Docket Summaries

9 BALTHER TECHNOLOGIES, LLC v. AMERICAN HONDA MOTOR CO. INC. ET AL, (E.D.TEX. Mar 08, 2010) (NO. 6:10CV00078), (35 USC 271 PATENT INFRINGEMENT)

Litigation Alert
10 Derwent LitAlert P2010-11-45 (Mar 08, 2010) Action Taken: complaint

	Prior Art (Coverage Begins 1976)
C	11 ADJUSTABLE HEADLIGHTS, HEADLIGHT ADJUSTING AND DIRECTION SENSING CONTROL SYSTEM AND METHOD OF ADJUSTING HEADLIGHTS, US PAT 5868488 (U.S. PTO Utility 1999)
C	12 APPARATUS AND METHOD FOR CONTROLLING LIGHT DISTRIBUTION OF HEADLAMP, US PAT 5660454Assignee: Toyota Jidosha Kabushiki Kaisha, (U.S. PTO Utility 1997)
C	13 APPARATUS AND METHOD FOR CONTROLLING THE LIGHT-RANGE OF MOTOR VEHICLE HEADLIGHTS, US PAT 5193894Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1993)
C	14 APPARATUS FOR AUTOMATICALLY ADJUSTING AIMING OF HEADLIGHTS OF AN AUTOMOTIVE VEHICLE, US PAT 5877680Assignee: Denso Corporation, (U.S. PTO Utility 1999)
C	15 APPARATUS FOR CONTROLLING A HEADLIGHT OF A VEHICLE, US PAT 4891559Ássignee: Nippondenso Soken, Inc., (U.S. PTO Utility 1990)
C	16 APPARATUS FOR REGULATING THE ILLUMINATION FIELD OF A VEHICLE HEADLIGHT, US PAT 6144159 Assignee: Robert Bosch GmbH, (U.S. PTO Utility 2000)
C	17 ARRANGEMENT FOR AUTOMATIC HEADLIGHT ADJUSTMENT, US PAT 6231216Assignee: Dr. Ing. h.c.F. Porsche AG, (U.S. PTO Utility 2001)
C	18 AUTOMATIC LEVELING APPARATUS FOR USE WITH AUTOMOBILE HEADLAMPS, US PAT 6183118 Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 2001)
C	19 AUTOMATIC LEVELING DEVICE FOR AUTOMOTIVE VEHICLE HEADLAMPS, US PAT 6305823Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 2001)
C	20 AUTOMOTIVE ILLUMINATION SYSTEM, US PAT 4943893Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1990)
C	21 CONTINUOUSLY VARIABLE HEADLAMP CONTROL, US PAT 6281632Assignee: Gentex Corporation, (U.S. PTO Utility 2001)
C	22 CORNERING LIGHT SYSTEM FOR TWO-WHEELED VEHICLES, US PAT 4024388Assignee: Marvin H. Kleinberg, Inc., (U.S. PTO Utility 1977)
C	23 DEVICE FOR ADJUSTING THE INCLINATION OF AUTOMOBILE HEADLIGHTS, US PAT 4186428Assignee: Cibie Projecteurs, (U.S. PTO Utility 1980)
C	24 DEVICE FOR ADJUSTING THE LEVEL OF A VEHICLE HEADLIGHT, US PAT 5779342Assignee: Bayerische Motoren Werke Aktiengellschaft, (U.S. PTO Utility 1998)
C	25 DEVICE FOR ADJUSTING AN OBJECT TO ASSUME A PREDETERMINED ANGLE TO A CERTAIN PLANE, US PAT 4217631 (U.S. PTO Utility 1980)
C	26 DEVICE FOR ADJUSTING A PRESETTABLE LIGHTING LEVEL OF A HEADLIGHT IN MOTOR VEHICLES, US PAT 5785405Assignee: Bayerische Motoren Werke, (U.S. PTO Utility 1998)
C	27 DEVICE FOR CONTROLLING THE LIGHT WIDTH OF HEADLIGHTS FOR VEHICLES, US PAT 5896011Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1999)
C	28 DEVICE FOR REGULATING LIGHT WIDTH OF HEADLIGHTS FOR VEHICLES, AND VEHICLE PROVIDED THEREWITH, US PAT 6142655Assignee: Robert Bosch GmbH, (U.S.

PTO Utility 2000)
C 29 DIRECTION TURNING DEVICE FOR A HEADLIGHT OF AN AUTOMOBILE, US PAT 5550717 (U.S. PTO Utility 1996)
C . 30 FOCUSING MIRROR CONTROL SYSTEM AND METHOD FOR ADJUSTING SAME, US PAT 6118113 (U.S. PTO Utility 2000)
C 31 HEAD LAMP DEVICE FOR VEHICLE, US PAT 6010237Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 2000)
C 32 HEAD LAMP DEVICE FOR VEHICLE, US PAT 5909949Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 1999)
C 33 HEADLAMP, US PAT 5158352Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 1992)
C 34 HEADLAMP DRIVE AND CONTROL APPARATUS, US PAT 4583152Assignee: Aisin Seiki Kabushiki Kaisha, (U.S. PTO Utility 1986)
C 35 HEADLAMP FOR MOTOR VEHICLES WITH PROGRAMMABLE LIGHT DISTRIBUTION, US PAT 4868721 (U.S. PTO Utility 1989)
C 36 HEADLAMP POSITIONING DEVICE, US PAT 5181429Assignee: Saia AG, (U.S. PTO Utility 1993)

37 HEADLIGHT AIMING AND LIGHT PATTERN TESTING APPARATUS AND METHOD, US PAT 4948249Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1990)
38 HEADLIGHT AIMING APPARATUS, US PAT 5751832Assignee: Progressive Tool \& Industries Co., (U.S. PTO Utility 1998)
C 39 HEADLIGHT AIMING APPARATUS AND DISPLAY, US PAT 5164785Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1992)
C 40 HEADLIGHT AIMING METHOD USING PATTERN FRAMING, US PAT 5373357Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1994)
C 41 HEADLIGHT ARRANGEMENT FOR MOTOR VEHICLE, US PAT 6227691Assignee: Robert Bosch GmbH, (U.S. PTO Utility 2001)
C 42 HEADLIGHT ARRANGEMENT FOR VEHICLES, US PAT 4768135Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1988)
C 43 HEADLIGHT BEAM CONTROL SYSTEM FOR MOTOR VEHICLES, US PAT 4225902 (U.S. PTO Utility 1980)
C 44 HEADLIGHT CONTROL APPARATUS FOR MOTORCYCLES, US PAT 4870545Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 1989)
C 45 HEADLIGHT FOR VEHICLE, US PAT 4833573Assignee: Koito Seisakusho Co., Ltd., (U.S. PTO Utility 1989)
C 46 HEADLIGHT MOVING APPARATUS FOR A MOTOR VEHICLE, US PAT 5099400 (U.S. PTO Utility 1992)
C • 47 HEIGHT SENSOR AND VEHICULAR HEADLIGHT BEAM AXIS LEVELING APPARATUS, US PAT 6234654Assignee: Denso Corporation, (U.S. PTO Utility 2001)
C 48 INFINITELY ADJUSTABLE LEVEL LIGHT, US PAT 3953726 (U.S. PTO Utility 1976)

C 49 IRRADIATION DIRECTION CONTROL APPARATUS FOR VEHICULAR LAMP, US PAT 5907196Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1999)
50 LIGHT DESTRIBUTION OF HEADLIGHT BEAM, US PAT 4907877 (U.S. PTO Utility 1990)
51 LIGHT MANAGEMENT SYSTEM FOR A VEHICLE, US PAT 5781 105Assignee: Ford Motor Company, (U.S. PTO Utility 1998)
52 LIGHTING CONTROL FOR MOTOR VEHICLE LAMPS, US PAT 3634677Assignee: Robert Bosch Gmbh, (U.S. PTO Utility 1972)
53 LIGHTING DEVICE FOR A VEHICLE, US PAT 6049749Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 2000)
54 LIGHTING DEVICE FOR VEHICLES, US PAT 6293686Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 2001)
55 LIGHTING SYSTEM FOR A MOTORCYCLE, US PAT 3939339 (U.S. PTO Utility 1976)
56 LOAD TRIM COMPENSATING VEHICLE HEADLIGHT DEFLECTION SYSTEM, US PAT 4162424Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1979)
57 MAGNETIC COUPLING MECHANISM FOR USE IN AN AUTOMOTIVE VEHICLE, US PAT 5977678Assignee: UT Automotive Dearborn, Inc., (U.S. PTO Utility 1999)
C 58 METHOD AND APPARATUS FOR ADJUSTING THE ORIENTATION OF VEHICLE HEADLIGHTS, US PAT 4204270Assignee: Societe pour l'Equipement dè, (U.S. PTO Utility 1980)
59 METHOD AND APPARATUS FOR LOCATING A SPECIFIC LOCATION ON A VEHICLE HEADLAMP, US PAT 5331393 Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1994)
60 METHOD OF MEASURING AND ADJUSTING OPTICAL AXIS OF HEADLIGHT, US PAT 5392111Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 1995)
C 61 MOTOR VEHICLE LIGHTING SYSTEM HAVING AT LEAST TWO BEND LIGHTING DRIVING LIGHTS, US PAT 6176590Assignee: Valeo Vision, (U.S. PTO Utility 2001)
C 62 MOTOR VEHICLE WITH HEADLAMP TILTING MECHANISM, US PAT 4066886Assignee: The Lucas Electrical Company Limited, (U.S. PTO Utility 1978)
63 MOTORCYCLE HEADLIGHT AIMING DEVICE, US PAT 5426571 (U.S. PTO Utility 1995)
64 MULTIPLE SENSOR INCLINATION MEASURING SYSTEM, US PAT 4549277Assignee: Brunson Instrument Company, (U.S. PTO Utility 1985)
65 POSITION CONTROL SYSTEM, US PAT 4310172Assignee: General Motors Corporation, (U.S. PTO Utility 1982)

C 66 ROAD SURFACE-SENSITIVE BEAM PATTERN LEVELING SYSTEM FOR A VEHICLE HEADLAMP, US PAT 4868720Assignee: Koito Seisakusho Co., Ltd., (U.S. PTO Utility 1989)
67 SIDELIGHTING ARRANGEMENT AND METHOD, US PAT 5428512 (U.S. PTO Utility 1995)
68 STEPPER MOTOR SHAFT POSITION SENSOR, US PAT 4791343Assignee: Allied-Signal Inc., (U.S. PTO Utility 1988)
C 69 SUPPORT FRAME FOR HEADLIGHT AIMING APPARATUS, US PAT 5920386Assignee: Progressive Tool \& Industries Co., (U.S. PTO Utility 1999)
C 70 SWITCHING CONTROL SYSTEM FOR AUTOMATICALLY TURNING HEADLIGHTS OFF

AND ON AT INTERSECTIONS, US PAT 6097156 (U.S. PTO Utility 2000)
C 71 SYSTEM FOR AUTOMATICALLY ADJUSTING OPTICAL AXIS DIRECTION OF VEHICLE HEADLIGHT, US PAT 6193398Assignee: DENSO Corporation, (U.S. PTO Utility 2001)
C 72 SYSTEM FOR SELF-ALIGNING VEHICLE HEADLAMPS, US PAT 56337I0Assignee: EGS Inc., (U.S. PTO Utility 1997)
C 73 TILTING DEVICE OF VEHICLE HEADLIGHT, US PAT 4916587Assignee: Koito Seisakusho Co., Ltd., (U.S. PTO Utility 1990)
C 74 VARIABLE DISTRIBUTION TYPE AUTOMOTIVE HEADLAMP, US PAT 5060I20Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1991)
C 75 VEHICLE CORNERING LAMP SYSTEM, US PAT 5526242A ssignee: Koito Manufacturing C Co., Ltd., (U.S. PTO Utility 1996)
76 VEHICLE CORNERING LAMP SYSTEM, US PAT 4908560Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1990)
C 77 VEHICLE HEADLIGHT AIMING APPARATUS, US PAT 5485265Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1996)
C 78 VEHICLE HEADLIGHT WITH ADJUSTING MEANS FOR DIFFERENT TRAFFIC CONDITIONS, US PAT 5938319Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1999)
C 79 VEHICULAR CORNERING LAMP SYSTEM, US PAT 5404278Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1995)
C 80 VEHICULAR HEADLAMP PRODUCING LOW BEAM HAVING CUT LINE CONTROLLED IN ACCORDANCE WITH CONDITION OF CURVED ROAD, US PAT 5707129Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1998)

US District Court Civil Docket

U.S. District - Texas Eastern
 (Tyler)

6:10cv78

Balther Technologies, Llc v. American Honda Motor Co Inc et A

This case was retrieved from the court on Tuesday, May 17, 2011


```
Williams Morgan & Amerson
10333 Richmond
Suite 1100
Houston, TX }7704
USA
713/ 934-4060
Fax: 17139347011
Email: Dwilliams@wmalaw.com
David Wynne Morehan
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite 1100
Houston, TX }7704
USA
713-934-7000
Fax: 713-934-7011
Email: DMOREHAN@WMALAW.COM
Debra Rochelle Coleman
[COR LD NTC]
Albritton Law Firm
P O Box }264
Longview ,TX 75606
USA
903-757-8449
Fax: 903-758-7397
Email: DRC@EMAFIRM.COM
J Mike Amerson
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite 1100
Houston, TX }7704
USA
713/ 934-4055
Fax: 17139347011
Email: Mike@wmalaw.com
Jack Wesley Hill
[COR LD NTC]
Ward & Smith Law Firm
111 W Tyler Street
Longview, TX 75601
USA
903-757-6400
Fax: 903-757-2323
Email: WH@WSFIRM.COM
Jaison Chorikavumkal John
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite }110
Houston, TX }7704
USA
713/ 934-4060
Fax: 17139347011
Email: Jjohn@wmalaw.com
Matthew Clay Harris
[COR LD NTC]
Albritton Law Firm
P O Box 2649
Longview,TX 75606
```

American Honda Motor Co Inc Defendant

Honda Motor Company, Ltd Defendant

Bmw of North America, Lle Defendant

Bmw AG
Defendant
Chrysler Group Llc
Defendant
Ferrari North America, Inc Defendant

Ferrari Spa
Defendant
General Motors, Llc
Defendant

Hyundai Motor America
Defendant
Hyundai Motor Company
Defendant
Jaguar Land Rover North America, Llc

```
USA
903-757-8449
Fax: 903-758-7397
Email: MCH@EMAFIRM.COM
Matthew Richard Rodgers
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite 1100
Houston, TX }7704
USA
713/ 934-4061
Email: Mrodgers@wmalaw.com
Michael Aaron Benefield
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite 1100
Houston, TX }7704
USA
713-934-4091
Fax: 7139347011
Email: MBENEFIELD@WMALAW.COM
Thomas John Ward, Jr
[COR LD NTC]
Ward & Smith Law Firm
P O Box 1231
Longview, TX 75606-1231
USA
903/ 757-6400
Fax: 903/ 757-2323
Email: JW@WSFIRM.COM
USA
```

```
Fax: 903-758-7397
Email: MCH@EMAFIRM.COM
Matthew Richard Rodgers
[COR LD NTC]
Williams Morgan \& Amerson PC
nond
Suite 1100
USA
713/ 934-4061
Email: Mrodgers@wmalaw.com
Michael Aaron Benefield
[COR LD NTC]
10333 Richmond
Suite 1100
Houston, TX 77042
USA
713-934-4091
Fax: 7139347011
Email: MBENEFIELD@WMALAW.COM
Thomas John Ward, Jr
[COR LD NTC]
Ward \& Smith Law Firm
P O Box 1231
Longview, TX 75606-1231
903/ 757-6400
Email: JW@WSFIRM.COM
```

Defendant
Jaguar Cars Limited Defendant

Maserati North America Inc Defendant

Maserati Spa
Defendant
Mercedes-Benz USTA, Llc
Defendant
Daimler North America Corporation Defendant

Daimler AG
Defendant
Mazda Motor of North America, Inc Defendant

Mazda Motor Corp
Defendant
Mitsubishi Motors North America, Inc Defendant

Mitsubishi Motors Corp
Defendant

Nissan North America, Inc
Defendant
Nissan Motor Co, Ltd
Defendant
Porsche Cars North America, Inc
Defendant
Dr Ing Hc.F Porsche AG
Defendant
Saab Cars North America, Inc Defendant

Toyota Motor North America, Inc Defendant

Toyota Motor Sales, USA, Inc Defendant

Michael Charles Smith
[COR LD NTC]
Siebman Burg Phillips \& Smith, LLP-Marshall P O Box 1556
Marshall, TX 75671-1556
USA
903-938-8900
Fax: 19727674620
Email: MICHAELSMITH@SIEBMAN.COM
Michael Charles Smith
[COR LD NTC]
Siebman Burg Phillips \& Smith, LLP-Marshall
P O Box 1556
Marshall , TX 75671-1556
USA
903-938-8900
Fax: 19727674620
Email: MICHAELSMITH@SIEBMAN.COM

Toyota Motor Corp Defendant					
Volkswagen Group of America, Inc Defendant					
Automobili Lamborghini Spa Defendant					
Audi AG Defendant					
Volkswagen AG					
Ford Motor Company Defendant					
Volvo Cars of North America, Llc Defendant					
Volvo Car Corp Defendant					
Date	\#	Proceeding Text			
03/08/2010	1	COMPLAINT for Patent Infringement against all defendants (Filing fee $\$ 350$ receipt number 05400000000002387982 .), filed by Balther Technologies, LLC. (Attachments: \# 1 Exhibit A, \# 2 Civil Cover Sheet)(Albritton, Eric) (Entered: 03/08/2010)			
03/08/2010	--	Judge Leonard Davis added. (mll,) (Entered: 03/08/2010)			
03/08/2010	2	Notice of Filing of Patent/Trademark Form (AO 120). AO 120 mailed to the Director of the U.S. Patent and Trademark Office. (Albritton, Eric) (Entered: 03/08/2010)			
03/09/2010	3	NOTICE of Attorney Appearance by Thomas John Ward, Jr on behalf of Balther Technologies, LLC (Ward, Thomas) (Entered: 03/09/2010)			
03/09/2010	4	NOTICE of Attorney Appearance by Jack Wesley Hill on behalf of Balther Technologies, LLC (Hill, Jack) (Entered: 03/09/2010)			
03/09/2010	5	NOTICE of Attorney Appearance by Adam A Biggs on behalf of Balther Technologies, LLC (Biggs, Adam) (Entered: 03/09/2010)			
03/09/2010	6	NOTICE of Attorney Appearance by Debra Rochelle Coleman on behalf of Balther Technologies, LLC (Coleman, Debra) (Entered: 03/09/2010)			
03/09/2010	7	NOTICE of Attorney Appearance by Matthew Clay Harris on behalf of Balther Technologies, LLC (Harris, Matthew) (Entered: 03/09/2010)			
03/10/2010	8	NOTICE of Attorney Appearance by J Mike Amerson on behalf of Balther Technologies, LLC (Amerson, J) (Entered: 03/10/2010)			
03/10/2010	9	NOTICE of Attorney Appearance by Matthew Richard Rodgers on behalf of Balther Technologies, LLC (Rodgers, Matthew) (Entered: 03/10/2010)			
03/10/2010	10	NOTICE of Attorney Appearance by Michael Aaron Benefield on behalf of Balther Technologies, LLC (Benefield, Michael) (Entered: 03/10/2010)			
03/10/2010	11	NOTICE of Attorney Appearance by David Wynne Morehan on behalf of Balther Technologies, LLC (Morehan, David) (Entered: 03/10/2010)			
03/10/2010	12	NOTICE of Attorney Appearance by Danny Lloyd Williams on behalf of Balther Technologies, LLC (Williams, Danny) (Entered: 03/10/2010)			
03/10/2010	13	NOTICE of Attorney Appearance by Jaison Chorikavumkal John on behalf of Balther Technologies, LLC (John, Jaison) (Entered: 03/10/2010)			
03/10/2010	14	NOTICE of Attorney Appearance by Christopher Needham Cravey on behalf of Balther Technologies, LLC (Cravey, Christopher) (Entered: 03/10/2010)			
04/26/2010	15	ORDER that plaintiff file a notice that the case is ready for scheduling conference when all of the defendants have either answered or filed a motion to transfer or dismiss. The notice shall be filed within five days of the last remaining defendant's answer or motion. Signed by Judge			

		2010)
04/28/2010	16	E-GOV SEALED SUMMONS Issued as to American Honda Motor Co. Inc., BMW of North America, LLC, Chrysler Group LLC, Daimler North America Corporation, Ferrari North America, Inc., Ford Motor Company, General Motors, LLC, Hyundai Motor America, Jaguar Land Rover North America, LLC, Maserati North America Inc, Mazda Motor of North America, Inc., Mercedes-Benz USA, LLC, Mitsubishi Motors North America, Inc., Nissan North America, Inc., Porsche Cars North America, Inc., SAAB Cars North America, Inc., Toyota Motor North America, Inc., Toyota Motor Sales, U.S.A., Inc., Volkswagen Group of America, Inc., Volvo Cars of North America, LLC., and emailed to pltf for service. (mill,) (Entered: 04/28/2010)
05/17/2010	17	NOTICE of Voluntary Dismissal by Balther Technologies, LLC (Attachments: \# 1 Text of Proposed Order)(Albritton, Eric) (Entered: 05/17/2010)
05/18/2010	18	ORDER DISMISSING CASE. This civil action is dismissed without prejudice. PItf and defts shall bear their own costs, expenses and legal fees. Signed by Judge Leonard Davis on 05/18/10. cc:attys 5-18-10(mil,) (Entered: 05/18/2010)
05/18/2010	19	Agreed MOTION for Extension of Time to File Answer re 1 Complaint by Mitsubishi Motors Corp., Mitsubishi Motors North America, Inc.. (Attachments: \# 1 Text of Proposed Order)(Smith, Michael) (Entered: 05/18/2010)
05/19/2010	20	NOTICE by Mitsubishi Motors Corp., Mitsubishi Motors North America, Inc. re 19 Agreed MOTION for Extension of Time to File Answer re 1 Complaint (Notice of Withdrawal of Agreed MOTION for Extension of Time to File Answer) (Smith, Michael) (Entered: 05/19/2010)

UNITED STATES PATENT AND TRADEMARK OFFICE GRANTED PATENT

7241034

Get Drawing Sheet 1 of 7
Access PDF of Official Patent *
Order Patent File History / Wrapper from REEDFAX® ${ }^{\text {® }}$
Link to Claims Section

June 12, 2003
Automatic directional control system for vehicle headlights

REEXAM-LITIGATE:

Reexamination requested July 10, 2010 by PATENT OWNER, Reexamination No. 90/011,011 (O.G. September 7, 2010) Ex. Gp.: 3992 July 10, 2010

NOTICE OF LITIGATION

Balther Technologies, LLC v. American Honda Motor Co Inc et al, Filed March 8, 2010, D.C. E.D. Texas, Doc. No. 6:10cv78

APPL-NO: 285312 (10)
FILED-DATE: October 31, 2002
GRANTED-DATE: July 10, 2007

ASSIGNEE-PRE-ISSUE:

February 6, 2003 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., DANA CORPORATION 4500 DORR STREET TOLEDO OHIO 43615, Reel and Frame Number: 013729/0559

ASSIGNEE-AT-ISSUE:

Dana Corporation, Toledo, OHIO, United States of America (US), United States company or corporation (02)

ASSIGNEE-AFTER-ISSUE:

February 22, 2008 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., DANA AUTOMOTIVE SYSTEMS GROUP, LLC 4500 DORR STREET TOLEDO OHIO 43615, 4500 DORR STREET, TOLEDO, OHIO, UNITED STATES OF AMERICA (US), 43615, Reel and Frame. Number: 020540/0476
June 12, 2009 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., STRAGENT, LLC 211 W. TYLER, SUITE C LONGVIEW TEXAS 75601, 211 W. TYLER, SUITE C, LONGVIEW, TEXAS, UNITED STATES OF AMERICA (US), 75601, Reel and Frame Number: 022813/0432
March 8, 2010 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., BALTHER TECHNOLOGIES, LLC, SUITE C-4, 211 W . TYLER, LONGVIEW, TEXAS, UNITED STATES OF AMERICA (US), 75601, Reel and Frame Number: 024045/0235

PRIM-EXMR: Alavi, Ali

CORE TERMS: headlight, directional, controller, adjustment, sensed, algorithm, sensor, actuator, steering, control system, road, suspension, responsive, automatic, feedback, orientation, beam, aiming, height, generating, electrical, input output device, plane, stored, automatically, optical, pitch, calibration, accomplish, angular

Source: Legal > / . . / > Utility, Design and Plant Patents id
Terms: patno=7241034 (Edit Search | Suggest Terms for My Search)
View: Custom
Segments: Appl-no, Assign-type, Assignee, Cert-correction, Exmr, Lit-reex, Patno, Reexam-litigate, Reissue, Reissue-comment
Date/Time: Tuesday, May 24, 2011-11:34 AM EDT

In
About LexisNexis | Privacy Policy | Terms \& Conditions | Contact Us Copyright © 2011 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

1. Ohio Inventors Develop Vehicle Headlights Directional Control System, US Fed News, July 12, 2007 Thursday 2:12 AM EST, , 310 words, US Fed News, Alexandria, Va.
2. OLD FREE PRESS A RARE FIND, London Free Press (Ontario, Canada), July 24, 2000, Monday,, Final EDITION, NEWS,, Pg. A4, 295 words, JOE PARASKEVAS, FREE PRESS REPORTER
3. NEW GRASS STAYS GREEN WHEN IT'S DRY, The Augusta Chronicle (Georgia), July 21, 2000, Friday,, ALL EDITIONS, HOMESTEAD,, Pg. C12,, 368 words

Source: Legal > / . . / > News, All (English, Full Text) 国
Terms: $\mathbf{7 2 4 1 0 3 4}$ or 7,241,034 (Edit Search \| Suggest Terms for My Search) View: Cite
Date/Time: Tuesday, May 24, 2011-11:35 AM EDT

In Copyright (c) 2011 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

United States Patent and Trademark Office
mind

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
95/001,621	05/16/2011	7,241,034		1240
92045	06/23		EXAM	
The Caldwell Firm, LLC				
Dept. SVIPGP			ART UNIT	PAPER NUMBER
Dallas, TX				

Please find below and/or attached an Office communication concerning this application or proceeding.

DO NOT USE IN PALM PRINTER

(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)
KENYON \& KENYON LLP
One Broadway
MAIIED
JUN 2.32011
New York, N.Y. 10004
CENTRAL REEXAMMATION unIT

Transmittal of Communication to Third Party Requester Inter Partes Reexamination

REEXAMINATION CONTROL NUMBER 95/001,621.
PATENT NUMBER 7,241,034.
TECHNOLOGY CENTER 3900.
ART UNIT 3992.

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office in the above-identified reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30 -day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the communication enclosed with this transmittal.

ORDER GRANTING/DENYING REQUEST FOR INTER PARTES REEXAMINATION	Control No. $95 / 001,621$	Patent Under Reexamination$7,241,034$	
	Examiner MY-TRANG TON	Art Unit 3992	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

The request for inter partes reexamination has been considered. Identification of the claims, the references relied on, and the rationale supporting the determination are attached.

Attachment(s): \square PTO-892
\boxtimes PTO/SB/08 \square Other: \qquad

1. \boxtimes The request for inter partes reexamination is GRANTED.
\square An Office action is attached with this order.
\boxtimes An Office action will follow in due course.
2. \square The request for inter partes reexamination is DENIED.

This decision is not appealable. 35 U.S.C. 312(c). Requester may seek review of a denial by petition to the Director of the USPTO within ONE MONTH from the mailing date hereof. 37 CFR 1.927. EXTENSIONS OF TIME ONLY UNDER 37 CFR 1.183. In due course, a refund under 37 CFR 1.26(c) will be made to requester.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Order.

DECISION GRANTING INTER PARTES EXAMINATION

Summary

Reexamination has been requested for claims 1-5 of U.S. Patent No.
7,241,034 ("the '034 patent") to Smith, entitled "AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS".

The '034 patent is currently assigned to Dana Corporation.

A substantial new question of patentability (SNQ) affecting claims 1-5 of the '034 patent is raised by the present request for inter partes reexamination filed ("the Request").

An Office action on the merits does not accompany this order for inter partes reexamination. An Office action on the merits will be provided in due course. Patent owner is reminded that no proposed amendment may be made in this proceeding until after the first Office action on the merits. 37 CFR 1.939(b).

References Relied Upon in the Request

Pages 9-10 of the Request identify the following documents as providing teachings relevant to claims $1-5$ of the '034 patent:

1. United Kingdom Patent Application Publication No. 2309773 by Uchida (hereinafter "Uchida").
2. United Kingdom Patent Application Publication No. 2309774 by Takahashi (hereinafter "Takahashi").
3. U.S. Patent No. 5, 182,460 by Hussman (hereinafter "Hussman").
4. German Patent Application Publication No. 3110094 by Miskin et al (hereinafter "Miskin et al.").
5. German Patent Application Publication No. 3129891 by Leleve (hereinafter "Leleve").
6. U.S. Patent No. $6,305,823$ by Toda et al (hereinafter "Toda et al.").
7. U.S. Patent No. $6,193,398$ by Okuchi et al (hereinafter "Okuchi et al.").
8. U.S. Patent No. $5,909,949$ by Gotoh (hereinafter "Gotoh").
9. U.S. Patent No. $4,954,933$ by Wassen et al (hereinafter "Wassen et al.").

Issues Raised by Requester

The Requester asserts that the cited references raise substantial new questions of patentability when interpreted in the following manner:

1. Claims $1,2,4$, and 5 are anticipated by Uchida under 35 U.S.C. § 102(b).
2. Claims 1, 2, 4, and 5 are anticipated by Takahashi under 35 U.S.C. § 102(b).
3. Claims 1, 2, 4, and 5 are anticipated by Hussman under 35
U.S.C. § 102(b).
4. Claims 1 and 5 are anticipated by Miskin et al. under 35 U.S.C. \S 102(b).
5. Claims 1 and 5 are anticipated by Leleve under 35 U.S.C. § 102(b).
6. Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. and Uchida under 35 U.S.C. § 103(a).
7. Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. and Takahashi under 35 U.S.C. § 103(a).
8. Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. and Hussman under 35 U.S.C. § 103(a).
9. Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. and Miskin et al. under 35 U.S.C. § 103(a).
10. Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Leleve under 35 U.S.C. § 103(a).
11. Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Uchida under 35 U.S.C. § 103(a).
12. Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Takahashi under 35 U.S.C. § 103(a).
13. Claims $1,2,4$, and 5 are unpatentable over the combination of Okuchi et al. and Hussman under 35 U.S.C. § 103(a).
14. Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Miskin et al. under 35 U.S.C. § 103(a).
15. Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Leleve under 35 U.S.C. § 103(a).
16. Claims 1 to 5 are unpatentable over the combination of Gotoh and Uchida under 35 U.S.C. § 103(a).
17. Claims 1 to 5 are unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a).
18. Claims 1 to 5 are unpatentable over the combination of Gotoh and Hussman under 35 U.S.C. § 103(a).
19. Claims $1,2,3$, and 5 are unpatentable over the combination of Gotoh and Miskin et al. under 35 U.S.C. § 103(a).
20. Claims 1 to 5 are unpatentable over the combination of Gotoh and Leleve under 35 U.S.C. § 103(a).
21. Proposed claims $1,2,4$ to 6,9 to $13,20,22,24,25,37,38,41,42$, 44 and 45 are anticipated by Uchida under 35 U.S.C. § 102(b).
22. Proposed claims $1,2,4-6,9-11,17,18,20,21,22,24,25,28,33$, $34,37,38,41,42,44$ and 45 are anticipated by Takahashi under 35 U.S.C. § 102(b).
23. Proposed claims $1,2,4-6,9,10,37,38,41,42,44$ and 45 are anticipated by Hussman Under 35 U.S.C. § 102(b).
24. Proposed claims $1,2,4-6,9-13,17,18,20-22,24,25,28,29,36-$ 42,44 and 45 are unpatentable over the combination of Toda et al. and Uchida under 35 U.S.C. § 103(a).
25. Proposed claims $1,2,4-6,9-13,17,18,20-22,24,25,28,29,33$, $34,36-42,44$ and 45 are unpatentable over the combination of Toda et al. and Takahashi under 35 U.S.C. § 103(a).
26. Proposed claims $1,2,4-6,9-13,17,18,20-22,24,25,28,29,36-$ 42, 44 and 45 are unpatentable over the combination of Toda et al. and Hussman under 35 U.S.C. § 103(a).
27. Proposed claims $1,2,4-6,9-13,15-18,20-22,24,25,28,29,33$, $35,37-42,44$ and 45 are unpatentable over the combination of Okuchi et al. and Uchida under 35 U.S.C. § 103(a).
28. Proposed claims $1,2,4-6,9-13,15-18,20-22,24,25,28,29,33-35$, 37-42, 44 and 45 are unpatentable over the combination of Okuchi et al.
and Takahashi under 35 U.S.C. § 103(a).
29. Proposed claims $1,2,4-6,9-13,15-18,20-22,25,28,29,33,35$, 37-42, 44 and 45 are unpatentable over the combination of Okuchi et al. and Hussman under 35 U.S.C. § 103(a).

30; Proposed claims $1-13,20,22,24-26,28,29,37,38$ and 41 to 45 are unpatentable over the combination of Gotoh and Uchida under 35 U.S.C. § 103(a).
31. Proposed claims $1-12,14,16-18,20-22,24-26,28,29,33,34,37$, 38 and 41-45 are unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a).
32. Proposed claims $1-13,24,26,28,29,37,38$ and $41-45$ are unpatentable over the combination of Gotoh and Hussman under 35 U.S.C. § 103(a).
33. Proposed claims $17,19,21,23,26$ and 30-32 are unpatentable in view of the combination of Uchida and the admitted prior art described in the '034 patent specification under 35 U.S.C. § 103(a).
34. Proposed claims 19, 23, 26 and 30-32 are unpatentable in view of the combination of Takahashi and the admitted Prior Art described in the '034 Patent specification under 35 U.S.C. § 103(a).
35. Proposed claims 17-21, 23-26 and 30-32 are unpatentable in view of the combination of Hussman and the admitted Prior Art described in the '034 Patent specification under 35 U.S.C. § 103(a).
36. Proposed claim 27 is unpatentable over the combination of Uchida and Wassen et al. under 35 U.S.C. § 103(a).
37. Proposed claim 27 is unpatentable over the combination of Takahashi and Wassen et al. under 35 U.S.C. § 103(a).
38. Proposed Claim 27 is unpatentable over the combination of Hussman and Wassen et al. under 35 U.S.C. § 103(a).
*** Regarding issues 21-38: Since the Ex Parte Reexamination (90/011,011) of the '034 patent is still pending, the amendment (filed $2 / 16 / 2011$) is not officially in effect yet in the ' 034 patent. According to 35 USC 312, an SNQ is raised for "any claim of the patent", so at this time the Examiner only addresses the patented claims in this Inter parte Reexamination $(95 / 001,621)$ of the '034 patent. The Requester can discuss the new and amended claims in the Request; however, only the Requester's assertions regarding SNQs in issues 1-20 for patented claims are evaluated herein. Issues 21-38 will not be evaluated until the Inter Parte and Ex Parte are merged. The Patent Owner will have to put the same amended/new claims in the Inter Parte case, and those amended and new claims in the merged case will be evaluated. See MPEP 2643 and 2640(II)(A).

The patent claims in effect at the time of the determination will be the basis for deciding whether a substantial new question of patentability has been raised (37 CFR 1.923). See MPEP § 2643. Amendments which (A) have been filed in a copending reexamination proceeding in which the reexamination certificate has not been issued, or (B) have been submitted in a reissue application on which no reissue patent has been issued, will not be considered or commented upon when deciding a request for reexamination.

Therefore, this request will be decided on the wording of the

patent claims in effect at the present time (without any proposed

amendments). The decision on the request will be made on the basis of
the patent claims as though the proposed amendment had not been
presented.

Summary:

1 / It is agreed issues $1-2,4-7,9-12,14-17$ and $19-20$ raise SNQs as to claims 1-5 of the '034 patent.

2/ Issues 3, 8, 13 and 18 are found not to raise SNQ as to claims $1-5$ of the ' 034 patent.

3/ Issues 21-38 will not be evaluated at this time.

Prosecution History

The description of the prosecution history included on pages 3-7 of the request is accepted and is incorporated herein by reference. It is accepted that the Examiner of record issued non-final Office action on $12 / 23 / 2003$ including: rejected claims $1-2,4-8,10-13$ under 35 U.S.C. $102(\mathrm{e})$ as being anticipated by Toda et al (U.S. Pat. No 6,305,823); rejected claims 1-2, 4-8, 1013 under 35 U.S.C. 102(e) as being anticipated by Okuchi et al (U.S. Pat. No $6,193,398)$; and rejected claims $1-3$ and 9 under 35 U.S.C. 102 (b) as being anticipated by Gotoh (US Pat. No 5,909,949).

The Patent Owner complied with such requirements by submitting an amendment on $3 / 25 / 2004$ which amendment to claims 1 and 7 and canceled claim 6. Thus, in this amendment claims $1-5$ and $7-13$ were pending. Of these, claims 1 and 7 were independent claims.

In response to the amendment, the Examiner of record issued a final Office action on $6 / 15 / 2004$ including rejected claims $1-2,4-5,7-8,10-13$ under 35 U.S.C. 102(e) as being anticipated by Toda et al (U.S. Pat. No $6,305,823)$; rejected claims $1-2,4-5,7-8,10-13$ under 35 U.S.C. $102(e)$ as being anticipated by Okuchi et al (U.S. Pat. No $6,193,398$) and rejected claims

Art Unit: 3992
1-3 and 9 under 35 U.S.C. 102(b) as being anticipated by Gotoh (US Pat. No $5,909,949)$.

The Patent Owner submitted Notice of Appeal on 9/17/2004 and a request for reconsideration on $12 / 28 / 2004$. The Patent Owner noted in the remark that for claim 1: "None of the art of record is believed to show or suggest a controller that is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined amount" and claim 7: "None of the art of record is believed to show or suggest a controller that is responsive to a rate of change of the sensor signal for generating the output signal".

In response, the Examiner of record issued an Advisor Action on 12/28/2004 indicated that "The prior art of record including Toda et al in particular reads on independent claims 1 and 7. Regarding claims 1 and 7, Toda discloses an automatic leveling device for vehicle headlamps including a sensor (speed sensor12 and height sensor 14 fig. 1), a controller (CPU 16), an actuator (motor driver 18, and 20). Therefore, Toda meets the limitation of claims 1 and 7 and thus rejection of claims 1-5, and 7-13 are maintained".

Notice of Abandonment mailed out 2/22/2005.

RCE was filed on 2/28/2005 after personal interview held on $2 / 26 / 2005$ (noted in preliminary remark 02/28/2005).

Art Unit: 3992
In response to the RCE , the Examiner of record issued a non-final Office action on $4 / 14 / 2005$ including rejected claims $1-2,4-5,7-8,10-13$ under 35 U.S.C. 102(e) as being anticipated by Toda et al (U.S. Pat. No 6,305,823); rejected claims $1-2,4-5,7-8,10-13$ under 35 U.S.C. $102(\mathrm{e})$ as being anticipated by Okuchi et al (U.S. Pat. No 6,193,398); and rejected claims 1-3 and 9 under 35 U.S.C. 102(b) as being anticipated by Gotoh (US Pat. No $5,909,949)$.

The Patent Owner complied with such requirements by submitting remarks on 7/18/2005 with argument stating that "In independent Claim 1, the claimed controller is responsive to a sensor signal for generating an output signal when the sensor signal changes by more than a predetermined amount" and "In independent Claim 7, the claimed controller is responsive to a rate of change of the sensor signal for generating the output signal"

In response to the remarks, the Examiner of record issued a final Office action on $10 / 5 / 2005$ including rejected claims $1-2,4-5,7-8,10-13$ under 35 U.S.C. 102(e) as being anticipated by Toda et al (U.S. Pat. No 6,305,823); rejected claims 1-2, 4-5, 7-8, 10-13 under 35 U.S.C. 102(e) as being anticipated by Okuchi et al (U.S. Pat. No 6,193,398) and rejected claims 1-3 and 9 under 35 U.S.C. 102(b) as being anticipated by Gotoh (US Pat. No $5,909,949)$.

The Patent Owner complied with such requirement by submitting a notice of Appeal filed 1/9/2006.

In response, a pre-Appeal brief conference has been held on 2/3/2006 and a panel from the pre-appeal conference has determined that forwarded rejected claims 1-13 to Board of Patent Appeals and Interferences.

The examiner of record issued notice of abandonment mailed out 4/6/2006.

In response to the notice of abandonment, Patent Owner filed request for withdrawal of holding of abandonment filed on $7 / 11 / 2006$.

RCE was filed on 8/9/2006 including previously presented claims 1-5, 713 and added claim 14. Thus, in the RCE claims $1-5$ and $7-14$ were pending. Of these, claims 1,7 and 14 were independent claims.

The decision for withdrawal of holding of abandonment was granted and the Notice of Abandonment was vacated on 9/29/2006.

In response to the RCE, the Examiner of record issued a non final Office action on $10 / 6 / 2006$ including rejected claims $1-2,4-5,7-8,10-14$ under 35 U.S.C. 102(e) as being anticipated by Toda et al (U.S. Pat. No $6,305,823$); rejected claims 1-2, 4-5, 7-8, 10-14 under 35 U.S.C. 102(e) as being anticipated by Okuchi et al (U.S. Pat. No 6,193,398) and rejected claims 1-3
and 9 under 35 U.S.C. 102(b) as being anticipated by Gotoh (US Pat. No $5,909,949)$.

The Patent Owner complied with such requirement by submitting remarks on 1/10/2007 and argued that "Independent Claim 1 recites that the controller is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined amount. Independent Claim 14 recites that the controller is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined minimum threshold amount to prevent the actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition. The cited references fail to disclose either of these features" and "claim 7 recites that the controller is responsive to a rate of change of the sensor signal for generating the output signal. The Toda et al. and the Okuchi et al. references fail to disclose this feature".

A personal interview held on $1 / 31 / 2007$. The Examiner of record noted in the interview summary stating "We discussed independent claims 1, 7, and 14. We agreed that claim 14 is allowable over the prior art of record because of the specific limitation of "a predetermined minimum threshold amount to prevent the actuator from being operated continuously or duly in response to relatively small variations in the sensed operating speed".

On the same day, the Patent Owner submitted an amendment including canceled claims 1, 6-13 and amended claims 2-5 to depend from claim 14. Thus, in this amendment claims 2-5 and 14 were pending. Of these, claim 14 was independent claim.

Notice of allowance was mailed on $4 / 19 / 2007$ with a statement of reasons for allowance: "applicant's amendment and accompanying remarks has persuaded the examiner to place this application in condition for allowance."

Claims 2-5 and 14 were renumbered, the same numbering that appears in the base patent.

Thus, it appears from the Examiner's Statement of Reasons for allowance included in the base patent prosecution history that at the time of allowance, claims 2-5 and 14 were perceived as including at least the limitation " a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition" (the remark 1/10/2007) and the base patent issued for that reason.

In summary, a reference or combination of references teaching " a controller a predetermined minimum threshold amount to prevent said actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition" or equivalents thereof will be accepted as raising an SNQ and any reference or combination
that provides a portion of the critical limitations that is not cumulative to the teachings of record will also be accepted as raising an SNQ.

The above SNQ is based in part on patents and/or printed publications already cited/considered in an earlier concluded examination of the patent being reexamined. On November 2, 2002, Public Law 107-273 was enacted. Title III, Subtitle A, Section 13105, part (a) of the Act revised the reexamination statute by adding the following new last sentence to 35 U.S.C. 303(a) and 312(a):
"The existence of a substantial new question of patentability is not precluded by the fact that a patent or printed publication was previously cited by or to the Office or considered by the Office."

For any reexamination ordered on or after November 2, 2002, the effective date of the statutory revision, reliance on previously cited/considered art, i.e., "old art," does not necessarily preclude the existence of a substantial new question of patentability (SNQ) that is based exclusively on that old art. Rather, determinations on whether a SNQ exists in such an instance shall be based upon a fact-specific inquiry done on a case-by-case basis.

In the present instance, there exists a SNQ based in part on Gotoh, Okuchi and Toda. A discussion of the specifics now follows:

With regard to Gotoh, Okuchi and Toda, which were the subject of extensive written discussion on the record of the base application, it is clear that the request presents theirs teachings in a new light. Gotoh, Okuchi and Toda are now presented in the request in combination with Uchida, Takahashi, Hussman, Miskin and Leleve. Insofar as these references were previously not of record; Gotoh, Okuchi and Toda are not presented in a manner that conflicts with a finding from the prosecution history but instead is presented in a new light. See Ex parte Chicago Rawhide Mfg. Co., 223 USPQ 351 (Bd. Pat. App. \& Inter. 1984).

Analysis

Issue 1: The request indicates that Requester considers claims 1, 2, 4 and 5 are rejected under 35 U.S.C. $\S 102(\mathrm{~b})$ as being anticipated by Uchida.

It is agreed that the consideration of Uchida raises a substantial new question of patentability for claims $1,2,4$ and 5 of the ' 034 patent. As presented in the detailed explanation in the request, pp. 16-17, a reasonable examiner would consider Uchida important in making a decision as to the patentability of claims $1,2,4$ and 5 of the ' 034 patent.

Uchida appears to teach a vehicle lamp illumination directional control device which detects the posture of a vehicle and adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept
in a predetermined direction including a controller (3) that is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined minimum threshold amount to prevent the actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition (page 4, lines $16-27$, page 10 , line 26 to page 11 , line 6).

Sine this teaching is directly related to subject matter considered as the basis for allowability of the patent claim, a reasonable examiner would consider this teaching important in determining the patentability of claim 1. More particularly, the item matching in the claim chart, pages 1-6 offered by Requester is deemed plausible to the degree that further consideration is warranted.

There is a substantial likehood that a reasonable examiner would consider this teaching important in deciding whether or not claim 1 is patentable. The prosecution history of the base application does not indicate that Uchida was included for consideration by the examiner in charge of the base application. Accordingly, such teaching is not cumulative to any written discussion on the record of the teachings of the prior art, was not previously considered nor addressed during a prior examination and the same question of patentability was not the subject of a final holding of invalidity by Federal Courts.

Art Unit: 3992

Because dependent claims 2, 4 and 5 carry all of the limitations of the independent claim 1 from which its stem, by raising a substantial new question of patentability with regard to independent claim 1 , the reference implicitly raises a substantial new question of patentability for claims 2,4 and 5 .

Issue 2: The request indicates that Requester considers claims 1, 2, 4 and 5 are rejected under 35 U.S.C. $\S 102(\mathrm{~b})$ as being anticipated by Takahashi.

It is agreed that the consideration of Takahashi raises a substantial new question of patentability for claims $1,2,4$ and 5 of the ' 034 patent. As presented in the detailed explanation in the request, pp. 17-19, a reasonable examiner would consider Takahashi important in making a decision as to the patentability of claims $1,2,4$ and 5 of the ' 034 patent.

Takahashi appears to teach a vehicle lamp illumination direction control device which detects the posture of a vehicle and correctly adjusts the illumination direction of a vehicle lamp to maintain it in a predetermined direction including a controller (4) that is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined minimum threshold amount to prevent the actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition (page 9, line 16 - page 10 , line 3 ; page 10 , line 20 to page 11 , line 11).

Sine this teaching is directly related to subject matter considered as the basis for allowability of the patent claim, a reasonable examiner would consider this teaching important in determining the patentability of claim 1. More particularly, the item matching in the claim chart, pages 7-12 offered by Requester is deemed plausible to the degree that further consideration is warranted.

There is a substantial likehood that a reasonable examiner would consider this teaching important in deciding whether or not claim 1 is patentable. The prosecution history of the base application does not indicate that Takahashi was included for consideration by the examiner in charge of the base application. Accordingly, such teaching is not cumulative to any written discussion on the record of the teachings of the prior art, was not previously considered nor addressed during a prior examination and the same question of patentability was not the subject of a final holding of invalidity by Federal Courts.

Because dependent claims 2, 4 and 5 carry all of the limitations of the independent claim 1 from which its stem, by raising a substantial new question of patentability with regard to independent claim 1 , the reference implicitly raises a substantial new question of patentability for claims 2,4 and 5 .

Issue 3: The request indicates that Requester considers claims 1, 2, 4 and 5 are rejected under 35 U.S.C. § 102(b) as being anticipated by Hussman.

It is not agreed that the consideration of Hussman raises a substantial new question of patentability for claims $1,2,4$ and 5 of the ' 034 patent.

As pointed out on page 20 of the request, and the claim chart, pages 1314 , the requester indicates that Hussman teaches a controller that is responsive to the sensor signal for performing the recited functions at col. 3, lines 30-39 and lines 49-61; col. 4, lines 6-12 and col. 6, lines 51-64.

However, these paragraphs do not teach the limitation "a controller that is responsive to the sensor signal for generating an output signal only when the sensor signal changes by more than a predetermined minimum

threshold amount to prevent the actuator from being operated

 continuously or unduly frequently in response to relatively small variations in the sensed operating condition" as recited in claim 1.Hussman merely teaches:
"The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter FI is coupled to the regulator $\mathrm{R}^{\prime \prime}$ (col. 3 , lines $30-39$)
"At the coupling between the switchover device SE and the regulator R, a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided". (col. 4, lines 6-12)

There is no evidence presented that Hussman teaches a controller would include the same function as called for in claim 1. Thus, Hussman does not teach a key element of claim 1. As such, a reasonable examiner would not consider Hussman important in deciding whether or not the claims are patentable.

Because claims 2, 4 and 5 depend from claim 1, thus, Hussman also fails to raise SNQ to claims 2, 4 and 5 .

Issue 4: The request indicates that Requester considers claims 1 and 5 are rejected under 35 U.S.C. § 102(b) as being anticipated by Miskin.

It is agreed that the consideration of Miskin raises a substantial new question of patentability for claims 1 and 5 of the ' 034 patent. As presented in the detailed explanation in the request, p. 21, a reasonable examiner would consider Miskin important in making a decision as to the patentability of claims 1 and 5 of the ' 034 patent.

Miskin appears to teach a device for adjusting vehicle headlights automatically including a controller (2-4) that is responsive to the sensor signal (S1-S4) for generating an output signal only when the sensor signal changes by more than a predetermined minimum threshold amount to prevent the actuator from being operated continuously or unduly frequently in

response to relatively small variations in the sensed operating condition (page 5)

Sine this teaching is directly related to subject matter considered as the basis for allowability of the patent claim, a reasonable examiner would consider this teaching important in determining the patentability of claim 1. More particularly, the item matching in the claim chart, pages 17-19 offered by Requester is deemed plausible to the degree that further consideration is warranted.

There is a substantial likehood that a reasonable examiner would consider this teaching important in deciding whether or not claim 1 is patentable. The prosecution history of the base application does not indicate that Miskin was included for consideration by the examiner in charge of the base application. Accordingly, such teaching is not cumulative to any written discussion on the record of the teachings of the prior art, was not previously considered nor addressed during a prior examination and the same question of patentability was not the subject of a final holding of invalidity by Federal Courts.

Because dependent claim 5 carries all of the limitations of the independent claim 1 from which its stem, by raising a substantial new question of patentability with regard to independent claim 1 , the reference implicitly raises a substantial new question of patentability for claim 5 .

Issue 5: The request indicates that Requester considers claims 1 and 5 are rejected under 35 U.S.C. § 102(b) as being anticipated by Leleve.

It is agreed that the consideration of Leleve raises a substantial new question of patentability for claims 1 and 5 of the ' 034 patent. As presented in the detailed explanation in the request, p. 22, a reasonable examiner would consider Leleve important in making a decision as to the patentability of claims 1 and 5 of the ' 034 patent.

Leleve appears to teach a device for the dynamic adjustment of the headlights of a vehicle including a controller $(3,4,6)$ that is responsive to the sensor signal (1-2) for generating an output signal only when the sensor signal changes by more than a predetermined minimum threshold amount to prevent the actuator from being operated continuously or unduly frequently in response to relatively small variations in the sensed operating condition (Fig. 2).

Sine this teaching is directly related to subject matter considered as the basis for allowability of the patent claim, a reasonable examiner would consider this teaching important in determining the patentability of claim 1. More particularly, the item matching in the claim chart, pages $20-21$ offered by Requester is deemed plausible to the degree that further consideration is warranted.

There is a substantial likehood that a reasonable examiner would consider this teaching important in deciding whether or not claim 1 is patentable. The prosecution history of the base application does not indicate that Leleve was included for consideration by the examiner in charge of the base application. Accordingly, such teaching is not cumulative to any written discussion on the record of the teachings of the prior art, was not previously considered nor addressed during a prior examination and the same question of patentability was not the subject of a final holding of invalidity by Federal Courts.

Because dependent claim 5 carries all of the limitations of the independent claim 1 from which its stem, by raising a substantial new question of patentability with regard to independent claim 1 , the reference implicitly raises a substantial new question of patentability for claim 5.

Issues 6, 11 and 16: The request indicates that Requester considers that claims 1, 2, 4 and 5 are unpatentable under 35 USC 103(a) over Toda in view of Uchida (issue 6); or over Okuchi in view of Uchida (issue 11); or over Gotoh in view of Uchida (claims 1-5 in issue 16).

We have already found Uchida proposed in issue 1 above raises SNQ regarding claims $1,2,4$ and 5 of the ' 034 patent, and as a result, Uchida with any plausible combination of valid prior art references (i.e, Toda, Okuchi and

Art Unit: 3992
Gotoh) implicitly raise a substantial new question of patentability for claims 15.

The teachings of the above combinations are not cumulative to any written discussion on the record of the teachings of the prior art, were not previously considered nor addressed during a prior examination, and the same question was not the subject of a final holding of invalidity in the Federal Courts.

Issues 7, 12 and 17: The request indicates that Requester considers that claims 1, 2, 4 and 5 are unpatentable under 35 USC 103(a) over Toda in view of Takahashi (issue 7); or over Okuchi in view of Takahashi (issue 12); or over Gotoh in view of Takahashi (claims 1-5 in issue 17).

We have already found Takahashi proposed in issue 2 above raises SNQ regarding claims $1,2,4$ and 5 of the ' 034 patent, and as a result, Takahashi with any plausible combination of valid prior art references (i.e, Toda, Okuchi and Gotoh) implicitly raise a substantial new question of patentability for claims 1-5.

The teachings of the above combinations are not cumulative to any written discussion on the record of the teachings of the prior art, were not previously considered nor addressed during a prior examination, and the same
question was not the subject of a final holding of invalidity in the Federal Courts.

Issues 8, 13 and 18: The request indicates that Requester considers that claims 1, 2, 4 and 5 are unpatentable under 35 USC 103(a) over Toda in view of Hussman (issue 8); or over Okuchi in view of Hussman (issue 13); or over Gotoh in view of Hussman (claims 1-5 in issue 18).

It is not agreed that consideration of Toda in view of Hussman (issue 8), Okuchi in view of Hussman (issue 13) or Gotoh in view of Hussman (issue 18) raise a substantial new question of patentability with regard to claims 1-5 of the '034 patent. More particularly, without the additional teachings of Hussman, Toda or Okuchi or Gotoh is not presented in a different light than it was presented in the prosecution history. Moreover, as indicated above issue 3, Hussman does not include the teachings identified "a controller ... in response to relatively small variations in the sensed operating condition" as having the significance of an SNQ.

Neither Toda (or Okuchi or Gotoh) nor Hussman teaches a key element of claim 1. As such, a reasonable examiner would not consider their combination important in deciding whether or not the claims are patentable.

Issues 9, 14 and 19: The request indicates that Requester considers that claims 1, 2, 4 and 5 are unpatentable under 35 USC 103(a) over Toda in view of Miskin (issue 9); or over Okuchi in view of Miskin (issue 14); or over Gotoh in view of Miskin (issue 19).

We have already found Miskin proposed in issue 4 above raises SNQ regarding claims 1 and 5 of the '034 patent, and as a result, Miskin with any plausible combination of valid prior art references (i.e, Toda, Okuchi and Gotoh) implicitly raise a substantial new question of patentability for claims 1 , 2, 4 and 5 .

The teachings of the above combinations are not cumulative to any written discussion on the record of the teachings of the prior art, were not previously considered nor addressed during a prior examination, and the same question was not the subject of a final holding of invalidity in the Federal Courts.

Issues 10, 15 and 20: The request indicates that Requester considers that claims 1, 2, 4 and 5 are unpatentable under 35 USC 103(a) over Toda in view of Leleve (issue 10); or over Okuchi in view of Leleve (issue 15); or over Gotoh in view of Leleve (for claims 1-5 in issue 17).

We have already found Leleve proposed in issue 5 above raises SNQ regarding claims 1 and 5 of the ' 034 patent, and as a result, Leleve with any plausible combination of valid prior art references (i.e, Toda, Okuchi and Gotoh) implicitly raise a substantial new question of patentability for claims 15.

The teachings of the above combinations are not cumulative to any written discussion on the record of the teachings of the prior art, were not previously considered nor addressed during a prior examination, and the same question was not the subject of a final holding of invalidity in the Federal Courts.

Information Disclosure Statement

The Information Disclosure Statement filed $5 / 16 / 11$ is acknowledged. As current Central Reexamination Unit policy is that court documents are not prior art as such and are not to be listed on an IDS. It have been lined through. It is noted the court documents have been read and considered, and any duty to disclose such documents is deemed satisfied.

Conclusion

Extensions of time under 37 CFR $1.136(a)$ will not be permitted in inter partes reexamination proceedings because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to the patent owner in a reexamination proceeding. Additionally, 35 U.S.C. 314 (c) requires that inter partes reexamination proceedings "will be conducted with special dispatch" (37 CFR 1.937). Patent owner extensions of time in inter partes reexamination proceedings are provided for in 37 CFR 1.956. Extensions of time are not available for third party requester comments, because a comment period of 30 days from service of patent owner's response is set by statute. 35 U.S.C. 314(b)(3).

The patent owner is reminded of the continuing responsibility under 37 CFR 1.985(a), to apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the patent undergoing reexamination throughout the course of this reexamination proceeding. The third party requester is also reminded of the ability to similarly inform the Office of any such activity or proceeding throughout the course of this reexamination proceeding. See MPEP § 2686 and 2686.04.

Art Unit: 3992
NOTICE RE PATENT OWNER'S CORRESPONDENCE ADDRESS

Effective May 16, 2007, 37 CFR 1.33(c) has been revised to provide that:

The patent owner's correspondence address for all communications in an ex parte reexamination or an inter partes reexamination is designated as the correspondence address of the patent.

Revisions and Technical Corrections Affecting Requirements for Ex Parte and Inter Partes Reexamination, 72 FR 18892 (April 16, 2007)(Final Rule)

The correspondence address for any pending reexamination proceeding not having the same correspondence address as that of the patent is, by way of this revision to 37 CFR 1.33(c), automatically changed to that of the patent file as of the effective date.

This change is effective for any reexamination proceeding which is pending before the Office as of May 16,2007 , including the present reexamination proceeding, and to any reexamination proceeding which is filed after that date.

Parties are to take this change into account when filing papers, and direct communications accordingly.

In the event the patent owner's correspondence address listed in the papers (record) for the present proceeding is different from the correspondence address of the patent, it is strongly encouraged that the patent owner affirmatively file a Notification of Change of Correspondence Address in the reexamination proceeding and/or the patent (depending on which address patent owner desires), to conform the address of the proceeding with that of the patent and to clarify the record as to which address should be used for correspondence.

After the filing of a request for reexamination by a third party requester, any document filed by either the patent owner or the third party requester must be served on the other party (or parties where two or more third party requester proceedings are merged) in the reexamination proceeding in the manner provided in 37 CFR 1.248. See 37 CFR 1.903.

All correspondence relating to this inter partes reexamination proceeding should be directed:

By Mail to: Mail Stop Inter Partes Reexam
Attn: Central Reexamination Unit
Commissioner for Patents United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450
By FAX to: (571).273-9900
Central Reexamination Unit
By hand: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314
Registered users of EFS-Web may alternatively submit such correspondence via the electronic filing system EFS-Web, at https://sportal.uspto.gov/authenticate/authenticateuserlocalepf.html. EFSWeb offers the benefit of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS-Web submissions are "soft scanned" (i.e., electronically uploaded) directly into the official file for the reexamination proceeding, which offers parties the opportunity to review the content of their submissions after the "soft scanning" process is complete.

Any inquiry concerning this communication or earlier communications from the examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.

Signed:
/My-Trang N. Ton/
Primary Examiner, CRU 3992
/Margaret Rubin/
Primary Examiner, CRU 3992

LIST OF DOCUMENTS CITED BY THIRD PATENT NO. PARTY REQUESTER IN INTER PARTES $7,241,034$	PATENTEE	
	James E. SMITH et al.	
	PuTENT DATE	

U.S. PATENT DOCUMENTS

EXAM. INITIAL	PATENT/ PUBLICATION NUMBER	NAME	$\begin{gathered} \text { PATENT/ } \\ \text { PUBLICATION } \\ \text { DATE } \end{gathered}$	CLASS	SUBCLASS	FILING DATE
/M.T.I	4,954,933	Wassen et al.	September 4, 1990			
/M.T./	5,182,460	Ilussman	January 26, 1993			
/M.T./	5,909,949	Gotoh	June 8, 1999			
/M.T./	6,193,398	Okuchi et al.	February 27, 2001			
/M.T.I	6,305,823	Toda et al.	October 23, 2001			

FOREIGN PATENT DOCUMENTS

EXAMINER INTIAL	DOCUMENT NUMBER	COUNTRY	DATE	NAME	SUBCLASS	TRANSLATION	
/M.T./	3129891	DE	June 9,1982			yES	NO
M.T./	3110094	DE	September 30, 1982				
M.T./	2309773	GB	August 6, 1997			x	
M.T./	2309774	GB	August 6, 1997				x

OTHER DOCUMENTS

EXAMINER INITIAL	Name
	"Original Complaint for Patent Infringement," filed on March 8, 2010, BALTHER TECHNOLOGIES, LLC. v. AM . HONDA MOTOR CO.
	INC., et al., Case No. 6:10-CR-78-LED (E.D. Tex.).
	"Plaintiff's Notice of Voluntary Dismissal," filed on May 17, 2010, BALTHER TECHNOLOGIES, LLC. V. AMP, HONDA MOTOR CO. INC.
	et al., Case No. 6:10-CR-78-LED (E.D. Tex.).
	(E.D. Tex.).
/M.T./	Cerified English-language translation of German Patent Application Publication No. 3110094 to Miskin et al.
M.T./	Certified English-language translation of German Patent Application Publication No. 3129891 to Leleve.

| EXAMINER | /My Trang Ton/ (06/15/2011) | DATE CONSHEER15R2011 |
| :---: | :---: | :---: | citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Search Notes				Application/Control No. 95/001,621 Examiner MY-TRANG TON	Applicant(s)/Patent under Reexamination 7,241,034	
				95/001,621 Examiner MY-TRANG TON	Art Unit 3992	
SEARCHED				SEARCH NOTES(INCLUDING SEARCH STRATEGY)		
Class	Subclass	Date	Examiner	(INCLUD	DATE	EXMR
n/a	-	6/9/2011	MT	n'a	6/9/2011	MT
	.					
	RFEREN	SEARC				
Class	Subclass	Date	Examiner			
n/a	-	6/9/2011	MT			

Reexamination	Application/Control No. $95 / 001,621$	Applicant(s)/Patent Under Reexamination $7,241,034$
	Certificate Date	Certificate Number

Requester Correspondence Address: \square Patent Owner \quad Third Party

KENYON \& KENYON LLP
One Broadway
New York, N.Y. 10004

COPENDING OFFICE PROCEEDINGS		
TYPE OF PROCEEDING	NUMBER	
$1.90 / 011,011$		
2.		
3.		
4.		

DATE MAILED: 02/23/2012

Please find below and/or attached an Office communication concerning this application or proceeding.

DO NOT USE IN PALM PRINTER

THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS
Date: $2-23-12$
KENYON \& KENYON LLP
ONE BROADWAY
NEW YORK, NY 10004

Transmittal of Communication to Third Party Requester Inter Partes Reexamination

REEXAMINATION CONTROL NO. : $95001621 * 901011011$
PATENT NO. : 7241034
TECHNOLOGY CENTER : 3999
ART UNIT : 3992

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office in the above identified Reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30-day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the communication enclosed with this transmittal.

The Caldwell Firm, LLC (For Patent Owner)
PO Box 59655
Dept. SVIPGP
Dallas TX 75229
Kenyon \& Kenyon LLP
One Broadway
New York, NY 10004
In re Smith et al. (For the ' 1621 Requester)

Ex Parte Reexamination Proceeding
:
Control No.: 90/011,011
Filed: July 10,2010
For: U.S. Patent No. 7,241,034
: DECISION
: SUA SPONTE
: TO MERGE
In re Smith et al.
: REEXAMINATION
Inter Partes Reexamination Proceeding
: PROCEEDINGS
Control No.: 95/001,621
Filed: May 16, 2011
For: U.S. Patent No.: 7,241,034
The above-captioned reexamination proceedings are before the Office of Patent Legal Administration for sua sponte consideration on merging the above proceedings.

Ex parte reexamination proceeding No. 90/011,011 and inter partes reexamination proceeding No. 95/001,621 are merged into a single proceeding.

BACKGROUND

1. On July 10, 2007, United States Patent Number $7,241,034$ ("the ' 034 patent") issued to Smith et al. with 5 claims.
2. On July 10, 2010, patent owner filed a request for ex parte reexamination of claims 1 and 3 of the ' 034 patent, which was assigned control number 90/011,011 ("the ' 11011 proceeding"). ${ }^{1}$
3. On August 12, 2010, ex parte reexamination of claims 1 and 3 of the ' 034 patent was granted in the ' 11011 reexamination proceeding.
4. On October 12, 2010, the time period for submission of a patent owner's statement under 37 CFR 1.530(b) expired.

[^3]5. On January 12, 2011, the Office issued a non-final rejection in the ' 11011 proceeding.
6. On January 18, 2011 , patent owner timely filed an informal/non-responsive amendment after an Office action.
7. On February 16,2011 , patent owner timely filed a substitute amendment, which amended claims 1-5 and added new claims 6-45.
8. On May 16, 2011, a request for inter partes reexamination of claims $1-5$ of the ' 034 patent was filed by a third party requester, which was assigned Reexamination Control No. $95 / 001,621$ ("the ' 1621 proceeding"). The request identified Volkswagen Group of America, Inc. ("the 1621 requester") as the real party in interest.
9. On June 23, 2011, inter partes reexamination of claims $1-5$ of the ' 034 patent was granted in the ' 1621 proceeding.
10. On January 18, 2012, the Office issued a Notice of Defective Paper in the ' 11011 proceeding requesting correction of the February 16,2011 substitute amendment.
11. On February 2, 2012, patent owner timely filed a second substitute amendment, which amended claims 1-5 and added new claims 6-41.
12. To date, no Office action has issued in the ' 1621 proceeding.

DECISION

I. MERGER OF PROCEEDINGS

Reexamination has been ordered in the above-captioned two proceedings for overlapping claims of the same patent. One of the proceedings (the ' 11011 proceeding) is an ex parte proceeding. The other proceeding (the ' 1621 proceeding) is an inter partes proceeding. Both proceedings are still pending, and have not been terminated. The time period for filing a patent owner statement under 37 CFR 1.530 in the ex parte proceeding has expired. Therefore, consideration of merger is ripe at this point in time.

MPEP 2686.01 points out:
Where a second request for reexamination is filed and reexamination is ordered, and a first reexamination proceeding is pending, the proceedings will be merged where the Office (in its discretion) deems it appropriate to do so, to facilitate the orderly handling of the proceedings. However, a decision not to merge is within the sole discretion of the Office to facilitate/carry out the statutory mandate of 35 U.S.C. 314(c) to conduct reexamination proceedings with "special dispatch."

In this instance, based upon the record as a whole, it is found, based on the facts as they exist at present, that merger of the proceedings should facilitate the orderly handling of the proceedings with special dispatch. Accordingly, the $90 / 011,011$ and $95 / 001,621$ proceedings are hereby merged. The merged proceeding will be conducted in accordance with the guidelines and requirements that follow.

II. THE SAME CLAIMS MUST BE MAINTAINED IN BOTH PROCEEDINGS

Patent owner is required to maintain the same claims (and specification) in both files throughout the merged proceeding. An amendment accompanied the patent owner's statement in the ' 11011 ex parte reexamination proceeding. Originally issued claims $1-5$ have all been amended and new claims 6-41 have been added in the ' 11011 ex parte proceeding, while the claims in the ' 1621 inter partes proceeding have not been so amended. Thus, the claims are not currently the same in both proceeding files. An Office action requiring an amendment placing the claims of both proceedings in identical form is being issued concurrently with this decision. Patent owner must respond to the Office action in accordance with the procedure provided in 37 CFR 1.111. The inter partes third party requester will then have an opportunity to comment on patent owner's response in accordance with the procedures in 37 CFR 1.947.

The patent owner is required to maintain the same claims (and specification) in both files throughout the merged proceeding.

III. CONDUCT OF MERGED PROCEEDING

A. Governing regulations for the merged proceeding:

The present decision merges an ex parte reexamination proceeding with an inter partes reexamination proceeding. Pursuant to 37 CFR 1.989 (b), the merged proceeding is governed by 37 CFR 1.902 through 1.997.

B. Inter partes Third Party Requester Participation:

1. Comment rights:

The inter partes requester can comment pursuant to 35 U.S.C. $314(\mathrm{~b})(2) .{ }^{2}$ First, an inter partes requester's right to comment is contingent upon the patent owner responding to, or commenting on, an Office action. Second, the inter partes requester's right to comment is limited to issues raised in either the Office action or the patent owner's response to the action. Finally, the inter partes requester's comments must be submitted within 30 days from the date of service of the patent owner's response. An inter partes requester does not have a right to comment on any issue raised outside the confines of the statute, e.g. issues raised in a previous Office action (but

[^4]not raised in the most recent Office action or response) or the request and comments from the $e x$ parte requester: The inter partes requester's comments must be submitted within the statutory time period of 30 days from date of service of the patent owner's response.

2. Appeal Rights:

A discussion of third party requester's appeal rights can be found in section G below.

C. Papers mailed/filed:

All papers mailed by the Office throughout the merged proceeding will take the form of a single action which applies to both proceedings. All papers issued by the Office, or filed by the patent owner and the third party requester, will contain the identifying data for both files and will be physically entered in each reexamination file. All papers filed by the patent owner and the third party requester must consist of a single paper, filed in duplicate, each bearing a signature and identifying data for both files, for entry into each file.

All papers filed by the patent owner and the third party requesters should be directed:

by Mail to:	Attn: Mail Stop "Inter Partes Reexam" Central Reexamination Unit Commissioner for Patents
by FAX to:	P.O. Box 1450 Alexandria, VA 22313-1450
by Hand to:	(571) 273-9900 Central Reexamination Unit
bustomer Service Window	
by EFS:	Attn: Central Reexamination Unit Randolph Building, Lobby Level 401 Dulany Street
	Alexandria, VA 22314
	Registered users may submit papers via the electronic filing system EFS-Web, at:
https:// efs.uspto.gov/efile/myportal/efs-registered.	

The patent owner and the inter partes requester are reminded that every paper filed (including papers filed via facsimile transmission) in the merged proceeding subsequent to this decision must be served on the other party, and every paper filed must reflect that such paper was served on the other party in the merged proceeding, pursuant to 37 CFR 1.903. All papers are to be addressed to the Central Reexamination Unit as provided above.

D. Amendments:

The filing of any amendments to the drawings, specification or claims must comply with 37 CFR 1.943, which incorporates the provisions of 37 CFR 1.530 , and the guidelines of MPEP § 2666.01, which in turn references the guidelines of MPEP § 2250.

37 CFR 1.121 does not apply to amendments in reexamination. Accordingly, clean copies of the amended claims are not required and are not to be submitted; rather amendments are to be presented via markings pursuant to paragraph 37 CFR $1.530(\mathrm{f})$, except that a claim should be canceled by a statement canceling the claim, without presentation of the text of the claim.

Pursuant to 37 CFR 1.530(i), all amendments must be made relative to the patent specification, including the claims, and drawings, which are in effect as of the date of filing the request for reexamination. Amendments are not to be made relative to previous amendments. Thus, for all amendments, all words not appearing in the patent are always underlined, and only words being deleted from the patent appear in brackets.

E. Fees:

Where a paper is filed that requires payment of a fee (e.g., petition fee, excess claims fee, extension of time fee, appeal fee, brief fee, oral hearing fee), only a single fee need be paid. For example, only one fee need be paid for any patent owner's appellant brief (or that of the inter partes reexamination requester) which may be filed, even though the brief relates to merged multiple proceedings, and copies must be filed (as pointed out above) for each file in the merged proceeding.

F. Citation of Patents and Printed Publications:

Upon return of the present merged proceeding to the examiner, the examiner will review the files to ensure that each file contains identical citations of prior patents and printed publications, and will cite such documents as are necessary as part of the next action in order to place the files in that condition.

G. Appeal Procedure Reminders for Inter Partes Reexamination

The inter partes reexamination procedures for taking appeal, and for participating in the patent owner's appeal, are explained in MPEP §§ 2674 through 2675 and 2678 through 2683.

With respect to a patent owner's notice of appeal, the appeal must only be taken from the rejection(s) of the claims in the Right of Appeal Notice (RAN) that the patent owner proposes to contest, and must identify each claim rejected by examiner that the patent owner intends to contest.

With respect to a third party requester's notice of appeal, the appeal must only be taken from the finding(s) of patentability of claims in the RAN that the third party requester proposes to
contest. As set forth in MPEP § 2674 , the third party requester must identify in the notice of appeal each rejection that was previously proposed by third party requester that the third party requester intends to contest and each rejection made and later withdrawn by the examiner that the third party requester intends to contest. It is not sufficient to merely appeal from the allowance of a claim (i.e., the examiner's finding of a claim patentable); the third party requester must identify each previously proposed rejection to be contested.

No new ground of rejection can be proposed by a third party requester appellant, unless such ground was withdrawn by the examiner during the prosecution of the proceeding, and the third party requester has not yet had an opportunity to propose it as a third party requester proposed ground of rejection. See $37 \mathrm{CFR} 41.67(\mathrm{c})(1)(\mathrm{vi})$ as to the proposed rejections that a requester can challenge in the appellant brief.

CONCLUSION

1. Ex pate Reexamination Control No. 90/011,011 and inter partes Reexamination Control No. 95/001,621 are merged into a single proceeding, to be conducted in accordance with the procedure set forth above in Part III of this decision.
2. The examiner should not issue any further Office action for the present merged proceeding until after the earlier of: (a) the submission of the required response to the concurrently mailed Office action (see II above) to place the same amendment in all proceedings and requesters' comments on that response, or (b) the expiration of the time for filing the required response and any comments requesters elect to file.
3. Any questions concerning this communication should be directed to Joseph F. Weiss, Jr., Legal Advisor, at 571-272-7759.

Pinchus M. Laufer
Senior Legal Advisor
Office of Patent Legal Administration

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
95/001,621 +90\%11011 05/16/2011		7,241,034		1240
$92045 \quad 7590$ The Caldwell Firm, LLC PO Box 59655 Dept. SVIPGP Dallas, TX 75229		02/23/2012	EXAMINER	
			TON, MY TRANG	
		ART UNIT	PAPER NUMBER	
		3992		
			mall date	DELIVERY MODE
			02/23/2012	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

DO NOT USE IN PALM PRINTER

(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)

KENYON \& KENYON LLP

One Broadway
New York, N.Y. 10004

Transmittal of Communication to Third Party Requester Inter Partes Reexamination

REEXAMINATION CONTROL NUMBER 95/001,621. +901011011
PATENT NUMBER 7,241,034.
TECHNOLOGY CENTER 3900.
ART UNIT 3992.

> Enclosed is a copy of the latest communication from the United States Patent and Trademark Office in the above-identified reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30 -day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the communication enclosed with this transmittal.

OFFICE ACTION IN INTER PARTES	Control No.	Patent Under Reexamination
	$95 / 001,621$	$7,241,034$
	Examiner	Art Unit
	MY-TRANG TON	3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --
Responsive to the communication(s) filed by:
Patent Owner on 02 February, 2012
Third Party(ies) on 16 May, 2011

RESPONSE TIMES ARE SET TO EXPIRE AS FOLLOWS:

For Patent Owner's Response:
1 MONTH(S) from the mailing date of this action. 37 CFR 1.945. EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.956.
For Third Party Requester's Comments on the Patent Owner Response:
30 DAYS from the date of service of any patent owner's response. 37 CFR 1.947. NO EXTENSIONS OF TIME ARE PERMITTED. 35 U.S.C. 314(b)(2).

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

This action is not an Action Closing Prosecution under 37 CFR 1.949, nor is it a Right of Appeal Notice under 37 CFR 1.953.

PART I. THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1. \square Notice of References Cited by Examiner, PTO-892
2. Information Disclosure Citation, PTO/SB/08
3.

PART II. SUMMARY OF ACTION:
1a. \boxtimes Claims 1-41 are subject to reexamination.
1b. \square Claims \qquad are not subject to reexamination.
2. \square Claims \qquad have been canceled.
3. \square Claims \qquad are confirmed. [Unamended patent claims]
4. \square Claims \qquad are patentable. [Amended or new claims]
5. \boxtimes Claims $1-41$ are rejected.
6. \square Claims \qquad are objected to.
7. \square The drawings filed on \qquad . \square are acceptable $\quad \square$ are not acceptable.
8. \square The drawing correction request filed on \qquad is: \square approved. \square disapproved.
9. \square Acknowledgment is made of the claim for priority under 35 U.S.C. 119 (a)-(d). The certified copy has: \square been received. \square not been received. \square been filed in Application/Control No 95001621 .
10. \square Other \qquad

DETAILED OFFICE ACTION

This proceeding is a merger of 90/011,011 and 95/001,621.

I. MERGED REEXAMINATION PROCEEDINGS

Per the accompanying Decision Sua Sponte to Merge Reexamination Proceedings, Patent Owner is required to maintain the same claims (and specification) in both ex parte reexamination proceeding 90/011,011 ("the '11,011 proceeding') and inter partes reexamination proceeding 95/001,621 ("the '1621 proceeding").

II. STATUS OF CLAIMS

1. The ' 11,011 proceeding:

The status of the claims with respect to the ' 11,011 proceeding is as follows: The amendment filed $2 / 2 / 2012$ has been entered. Claims 1-41 were maintained; claim 1-5 were amended; and claims $6-41$ were newly added. Claims 1-41 are therefore pending.

2. The ' 1621 proceeding:

The status of the claims with respect to the ' 1621 proceeding is as follows: Per the Order Granting Request, mailed on $6 / 23 / 2011$, claims $1-5$ will be reexamined. Claims 1-5 are therefore pending.
3. The Merged Reexamination Proceedings:

As set forth above, Patent Owner is required to maintain identical amendments in the merged reexamination files for a Merged

Reexamination Proceeding. This requirement has not been satisfied.

III. RELEVANT STATUTES - CLAIM REJECTIONS

Claim Rejections-35 USC § 112

The following is a quotation of the second paragraph of 35 U.S.C. 112 :
The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.

Claims 1-41 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite because it is unclear which version of these claims is pending in the merged proceeding.

The version of claims in the ' 11,011 proceeding contains an amendment of claims 1-5 and the addition of claims $6-41$, whereas the version of claims in the ' 1621 proceeding contains only the original claims $1-5$. Patent Owner is required to maintain identical amendments in the merged reexamination files for purposes of the merged proceeding. Thus, the status of claims with respect to the Merged Reexamination Proceedings is unclear.

Patent owner is required to file an amendment putting the same claims in both proceedings to overcome the rejection discussed above.

 Patent owner is given one month to provide the required amendment in accordance with the procedures in MPEP 2250. Within $\mathbf{3 0}$ days from the date of service of the patent owner's response, the ' 1,621 inter partes requester may once file written comments in accordance with 37 CFR 1.947. The '1621 requester's comments may include proposed rejections for any claims amended with respect to the claims currently of record in the ' 1621 proceeding. Once the parties have filed responses or the time period for filing such responses has expired, the examiner will issue an Office action on the merits.
IV. EXTENSIONS OF TIME

Extensions of time under 37 CFR 1.136(a) will not be permitted in these proceedings because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a reexamination proceeding. Additionally, 35 U.S.C. 314(c) requires that inter partes reexamination proceedings "will be conducted with special dispatch" (37 CFR 1.937). Patent owner extensions of time in inter partes reexamination proceedings are provided for in 37 CFR 1.956. Extensions of time are not available for third party requester comments, because a comment period of 30 days from service of patent owner's response is set by statute. 35 USC 314(b)(3).

Art Unit: 3992

V. SERVICE OF PAPERS

Any paper filed by either the patent owner or the third party requester must be served on the other party in the reexamination proceeding in the manner provided by 37 CFR 1.248. See 37 CFR 1.903 and MPEP 2666.06.

VI. CORRESPONDENCE AND INQUIRY AS TO OFFICE ACTIONS

All correspondence related to this inter partes reexamination proceeding should be directed as follows:

By EFS: Registered users may submit via the electronic filing system EFSWeb, at https://efs.uspto.gov/efile/myportal/efs-registered

By Mail to: Mail Stop Inter Pates Reexam
Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450
By FAX to: (571) 273-9900
Central Reexamination Unit
By hand: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314
Any inquiry concerning this communication should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.
/My-Trang Nu Ton/
Primary Examiner
CRU - Art Unit 3992
Conferees:
/Margaret Rubin/
Primary Examiner CRU 3992

MARK J. REIN HART
CRU SPE-AU 3S92

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:)
)
7,241,034) Art Unit: 3992
) Examer
Applications No. 95/001,621 \& 90/011,011) Examiner: MY-TRANG N. TON
) Exty ${ }^{\text {d }}$
Filed:	05/16/2011) Atty. Docket No.:
) SVIPGP109RE
For:	AUTOMATIC DIRECTIONAL CONTROL)	
	SYSTEM FOR VEHICLE) Date: 03/23/2012
	HEADLIGHTS) 0
)

AMENDMENT D

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Examiner:

In response to the Office Action mailed 2/23/2012, the notice of Merger of Proceedings mailed $2 / 23 / 2012$, the Office Action mailed $1 / 12 / 2011$ ("Office Action"), and as a substitute for the Responses filed $1 / 18 / 2011,2 / 16 / 2011$, and $02 / 02 / 2012$ in the $90 / 011,011$ proceeding, please enter the following amendments believed to place the Claims in condition for allowance.

AMENDMENTS TO THE CLAIMS

Amended claims follow:

1. (Currently Amended) An automatic directional control system for a vehicle headlight, comprising:
[[a]]two or more sensors that [[is]]are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of [[the]] vehicle, said sensed conditions including at least[[es]] ene or more of road speed, steering angle[[,]] and pitch, and suspension height of the vehicle;
a controller that is responsive to said two or more sensor signals for generating [[an]]at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent [[said]]at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed eperating-conditions; and
[[an]]said two or more actuators [[that is]]each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.
2. (Currently Amended) The automatic directional control system defined in claim 1_{2} wherein at least one of said two or more sensors further generate[[s]] a signal that is representative of the road speed of the vehicle.
3. (Currently Amended) The automatic directional control system defined in claim 1. wherein at least one of said two or more sensors further generates a signal that is representative of [[the]] a rate of change of steering angle of the vehicle.
4. (Currently Amended) The automatic directional control system defined in claim 1_{2} wherein at least one of said two or more sensors further generates a signal that is representative of $[[$ the $]]$ rate of change of pitch of the vehicle.
5. (Currently Amended) The automatic directional control system defined in claim 1_{2} wherein at least one of said two or more sensors further generates a signal that is representative of the suspension height of the vehicle.
6. (New) The automatic directional control system defined in claim 1, wherein said two or more sensors include a first sensor and a second sensor.
7. (New) The automatic directional control system defined in claim 6, wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.
8. (New) The automatic directional control system defined in claim 6, wherein said first sensor is physically separate from said second sensor.
9. (New) The automatic directional control system defined in claim 1, further comprising one or more additional sensors for sensing one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, a suspension height, or a rate of change of suspension height of the vehicle.
10. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of road speed of the vehicle.
11. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of steering angle of the vehicle.
12. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of pitch of the vehicle.
13. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of a suspension height of the vehicle.
14. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured to include the first actuator connected to the headlight to effect movement thereof in a first direction and a second actuator connected to the headlight to effect movement thereof in a second direction different form the first direction.
15. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include the first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.
16. (New) The automatic directional control system defined in claim 15, wherein the two or more actuators include a second actuator that is adapted to be connected to the headlight to effect movement thereof in a horizontal direction.
17. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include an electronically controlled mechanical actuator.
18. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include a step motor.
19. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include a servo motor.
20. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include a microstepping motor capable of being operated in fractional step increments.
21. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted both up and down relative to a horizontal reference position and left and right relative to a vertical reference position.
22. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that, while in a calibration mode, a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle by manual operation of the two or more actuators.
23. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a microprocessor.
24. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.
25. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system further includes at least one position feedback sensor capable of providing a position feedback signal associated with at least one of the two or more actuators.
26. (New) The automatic directional control system defined in claim 25, wherein the at least one position feedback sensor includes a Hall Effect sensor.
27. (New) The automatic directional control system defined in claim 25, wherein the at least one position feedback sensor includes an optical interrupter.
28. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system further includes memory.
29. (New) The automatic directional control system defined in claim 28, wherein the memory includes non-volatile memory.
30. (New) The automatic directional control system defined in claim 28, wherein the memory is configured to store a predetermined reference position associated with the headlight.
31. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.
32. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch sensor.
33. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.
34. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.
35. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.
36. (New) The automatic directional control system defined in claim 1, wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators from being operated continuously in response to relatively small variations in the sensed conditions.
37. (New) The automatic directional control system defined in claim 1, wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators from being operated unduly frequently in response to relatively small variations in the sensed conditions.
38. (New) The automatic directional control system defined in claim 1, wherein said controller is further responsive to said two or more sensor signals to automatically activate one or more vehicle lights that are different than the headlight.
39. (New) The automatic directional control system defined in claim 38, wherein said one or more vehicle lights that are different than the headlight include one or more lights for illuminating a road in front of the vehicle during a turn.
40. (New) The automatic directional control system defined in claim 1, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight.
41. (New) The automatic directional control system defined in claim 1, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight to extend an angular range of a road surface.

REMARKS

As noted in the 6/23/2011 Office Communication for the Inter Partes Reexamination Proceeding number 95/001,621, which has now been merged with the current matter, Examiner has agreed with the Requestor that Requestor's issues 1-2, 4-7, 9-12, 14-17 and 19-20 raise substantial new questions of patentability as to claims 1-5 of the '034 patent.

Specifically, the Examiner agrees that:

Claims 1, 2, 4, and 5 are anticipated by Uchida (United Kingdom Patent Application Publication No. 2309773) under 35 U.S.C. §102(b);

Claims 1, 2, 4, and 5 are anticipated by Takahashi (United Kingdom Patent Application Publication No. 2309774) under 35 U.S.C. §102(b);

Claims 1 and 5 are anticipated by Miskin et al. (German Patent Application Publication No. 3110094) under 35 U.S.C. §102(b);

Claims 1 and 5 are anticipated by Leleve (German Patent Application Publication No. 3129891) under 35 U.S.C. §102(b);

Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. (U.S. Patent No. 6,305,823) and Uchida under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Takahashi under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Miskin et al. under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Leleve under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. (U.S. Patent No. $6,193,398$) and Uchida under 35 U.S.C. § 103(a);

Claims $1,2,4$, and 5 are unpatentable over the combination of Okuchi et al. and Takahashi under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Miskin et al. under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Leleve under 35 U.S.C. § 103(a);

Claims 1 to 5 are unpatentable over the combination of Gotoh (U.S. Patent No. $5,909,949)$ and Uchida under 35 U.S.C. § 103(a);

Claims 1 to 5 are unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a);

Claims 1, 2, 3, and 5 are unpatentable over the combination of Gotoh and Miskin et al. under 35 U.S.C. § 103(a); and

Claims 1 to 5 are unpatentable over the combination of Gotoh and Leleve under 35 U.S.C. § 103(a).

Applicant has amended Claim 1 to overcome such rejections, as follows:

1. (Currently Amended) An automatic directional control system for a vehicle headlight, comprising:
[[a]]two or more sensors that [[is]]are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of [[the]] vehicle, said sensed conditions including at least[[es]] one more rioad speed, steering angle[[,]] and pitch, and suspension height-of the vehicle;
a controller that is responsive to said two or more sensor signals for generating [[an]]at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent [[said]]at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed eperating-conditions; and
[[an]]said two or more actuators [[that is]]each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.

Applicant respectfully asserts that the references as relied on by the Examiner fail to teach "two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle, said sensed
conditions including at least steering angle and pitch of the vehicle" (emphasis added), as claimed by Applicant. Further, applicant respectfully asserts that the references as relied on by the Examiner fail to teach "two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal" (emphasis added), as claimed by Applicant.

Applicant respectfully notes that a claim is anticipated only if each and every element as set forth in the claim is found, either expressly or inherently described in a single prior art reference. Verdegaal Bros. v. Union Oil Co. Of California, 814 F.2d 628, 631, 2 USPQ2d 1051, 1053 (Fed. Cir. 1987). Moreover, the identical invention must be shown in as complete detail as contained in the claim. Richardson v. Suzuki Motor Co. 868 F.2d 1226, 1236, 9USPQ2d 1913, 1920 (Fed. Cir. 1989). Additionally, the elements must be arranged as required by the claim.

This criterion has simply not been met by the above reference, as noted above.

Further, to establish a prima facie case of obviousness, three basic criteria must be met. First, there must be some suggestion or motivation, either in the references themselves or in the knowledge generally available to one of ordinary skill in the art, to modify the reference or to combine reference teachings. Second, there must be a reasonable expectation of success. Finally, the prior art reference (or references when combined) must teach or suggest all the claim limitations. The teaching or suggestion to make the claimed combination and the reasonable expectation of success must both be found in the prior art and not based on applicant's disclosure. In re Vaeck, 947 F.2d 488, 20 USPQ2d 1438 (Fed.Cir.1991).

Applicant respectfully asserts that at least the first and third elements of the prima facie case of obviousness have not been met, since it would be unobvious to combine the references, and the prior art references, as relied upon by the Examiner, fail to teach or suggest all of the claim limitations.

Finally, Applicant brings to the Examiner's attention the subject matter of new Claims 6-41, which Applicant adds for full consideration. Claims 6-41 depend from and further limit Claim 1. Accordingly, Applicant respectfully submits that new Claims 6-41 are allowable for at least the same reasons that Claim 1 is in condition for allowance, as described above. Support for the amendments to Claim 1, as well as for the newly added dependent claims may be found (by way of example), in Table 1.

Table 1

Claim 1 - e.g., see Abstract; Col. 2, lines 7-17; and Figure 1.
Claim 2 - e.g., see Col. 2, line 10.
Claim 3 - e.g., see Col. 2, lines 11-12.
Claim 4 - e.g., see Col. 2, line 12.
Claim 5 - e.g., see Col. 2, line 11.
Claim 6 - e.g., see items 15 and 16 of Figure 1.
Claim 7 - e.g., see Abstract; Col. 2, lines 7-17; Col. 3, line 58 - Col. 4, line 2; and Figure 1.

Claim 8 - e.g., see items 15 and 16 of Figure 1.
Claim 9 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 10 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 11 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 12 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 13 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 14 - e.g., see Figure 1 and Col. 3, lines 26-29.
Claim 15 - e.g., see Figure 1 and Col. 3, lines 26-29.
Claim 16-e.g., see Figure 1 and Col. 3, lines 26-29.
Claim 17 - e.g., see Col. 3, lines 28-31.
Claim 18 - e.g., see Col. 3, lines 28-31.
Claim 19 - e.g., see Col. 3, lines 28-31.
Claim 20 - e.g., see Col. 3, lines 31-37.
Claim 21 - e.g., see Col. 3, lines 28-31.
Claim 22 - e.g., see Figure 2, Col. 5, lines 25-29.

> Claim 23 - e.g., see Col. 3, lines 53-58.
> Claim 24 - e.g., see Col. 3, lines 53-58.
> Claim 25 - e.g., see Col. 4, lines 7-30.
> Claim 26 - e.g., see Col. 4, line 26.
> Claim 27 - e.g., see Col. 4, lines 35-36.
> Claim 28 - e.g., see Col. 8, lines 8-11.
> Claim 29 - e.g., see Col. 8, line 16.
> Claim 30 - e.g., see Col. 6, lines 18-21.
> Claim 31 - e.g., see Col. 7, lines 1-4.
> Claim 32 - e.g., see Col. 7, lines 1-4.
> Claim 33 - e.g., see Col. 9, lines 33-42.
> Claim 34 - e.g., see Col. 9, lines 33-42.
> Claim 35 - e.g., see Col 9, lines 46-56.
> Claim 36 - e.g., see Col 9, lines 22-27.
> Claim 37 - e.g., see Col 9, lines 22-27.
> Claim 38 - e.g., see Col 12, lines 27-39.
> Claim 39 - e.g., see Col 12, lines 27-39.
> Claim 40 - e.g., see Col 12, lines 27-39.
> Claim 41 - e.g., see Col 12, lines 27-39.

Of course, the above citations are merely examples of the above claim language and should not be construed as limiting in any manner.

Applicant respectfully requests a Notice of Allowance of Claims 1-41, or a proper prior art showing of all of Applicant's claim limitations, in combination with the remaining claim elements.

Applicant believes no fees are due. In the event any other fees are due, the Commissioner is authorized to charge any additional fees or credit any overpayment to Deposit Account No. 50-4964 (Order No. SVIPGP109RE).

Should the Examiner deem that any further amendment is desirable to place this application in condition for allowance, Applicant invites the Examiner to telephone the undersigned attorney at the number listed below.

Respectfully submitted,

Dated: 23 March 2012
The Caldwell Firm, LLC
PO Box 59655
Dallas, Texas 75229-0655
Telephone: (972) 243-4523
pcaldwell@thecaldwellfirm.com

I hereby certify that a true and complete copy of the forgoing Amendment D has been served on Third Party Requestor by mailing said copy on 23 Mar 2012, via First Class Mail, postage prepaid to:

Kenyon \& Kenyon, LLP
One Broadway
New York, NY 10004

Electronic Acknowledgement Receipt	
EFS ID:	12385790
Application Number:	95001621
International Application Number:	
Confirmation Number:	1240
Title of Invention:	Automatic Directional Control System for Vehicle Headlights
First Named Inventor/Applicant Name:	7,241,034
Customer Number:	92045
Filer:	Patrick Edgar Caldwell
Filer Authorized By:	
Attorney Docket Number:	
Receipt Date:	23-MAR-2012
Filing Date:	16-MAY-2011
Time Stamp:	20:11:39
Application Type:	inter partes reexam

Payment information:

Submitted w	Payment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Amendment/Req. Reconsideration-After Non-Final Reject	SVIPGP109RE_Amndt_D_vF_23 -Mar-2012.pdf		no	14
Warnings:					
Information:					

Page 970 of 1228

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371
If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Please find below and/or attached an Office communication concerning this application or proceeding.

DO NOT USE IN PALM PRINTER

THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS
Date: 3-29-12
KENYON \& KENYON LLP
ONE BROADWAY
NEW YORK, NY 10004

Transmittal of Communication to Third Party Requester
 Inter Partes Reexamination

REEXAMINATION CONTROL NO. : $95001621+90 / 011011$
PATENT NO. : 7241034
TECHNOLOGY CENTER : 3999
ART UNIT : 3992

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office in the above identified Reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30-day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the communication enclosed with this transmittal.

	Control No.	Patent Under Reexamination
NOTICE RE DEFECTIVE PAPER IN	$95 / 001,621 ; 90 / 811,011$	$7,241,034$
INTER PARTES REEXAMINATION	Examiner	Art Unit
	MY-TRANG TON	3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

1. \boxtimes No proof of service is included with the paper filed by \boxtimes patent owner \square requester on 23 March, 2012. 37 CFR 1.248 and 1.903. Proof of service is required within a time period of 30 -days or one month from the date of this letter, whichever is longer. Failure to serve the paper may result in the paper being refused consideration. If the failure to comply with this requirement results in a patent owner failure to file a timely and appropriate response to any Office action, the prosecution of the reexamination proceeding will be terminated under 37 CFR 1.957(b) or limited under 37 CFR 1.957(c) (as is appropriate for the case).
2. \square The paper filed on \qquad by the \square patent owner \qquad requester is unsigned. A duplicate paper or ratification, properly signed, is required within a time period of 30 -days or one month from the date of this letter, whichever is longer. Failure to comply with this requirement will result in the paper not being considered. If the failure to comply results in a patent owner failure to file a timely and appropriate response to any Office action, the prosecution of the reexamination proceeding will be terminated under 37 CFR 1.957(b) or limited under 37 CFR 1.957(c) (as is appropriate for the case).
3. \square The paper filed on \qquad by thepatent owner \square requester is signed by \qquad who is not of record. A ratification or a new power of attorney with a ratification, or a duplicate paper signed by a person of record, is required within a time period of 30 -days or one month from the date of this letter, whichever is longer. Failure to comply with this requirement will result in the paper not being considered. If the failure to comply results in a patent owner failure to file a timely and appropriate response to any Office action, the prosecution of the reexamination proceeding will be terminated under 37 CFR 1.957 (b) or limited under 37 CFR 1.957 (c) (as is appropriate for the case).
4. \boxtimes The amendment filed by patent owner on 23 March, 2012, does not comply with 37 CFR 1.530. Patent owner is given a time period of 30 -days or one month from the date of this letter, whichever is longer, to correct this informality, or the prosecution of the reexamination proceeding will be terminated under 37 CFR 1.957(b) or limited under 37 CFR 1.957 (c) (as is appropriate for the case). The amendment will not be entered, although the argument the rein will be considered as it applies to the proceeding without the amendment should the prosecution be limited under 37 CFR 1.957(c).
5. \square The amendment filed by patent owner on \qquad does not comply with 37 CFR $\square 1.20$ (c)(3) and/or $\square 1.20$ (c)(4), as to excess claim fees. Patent owner is given a time period of 30 -days or one month from the date of this letter, whichever is longer, to correct this fee deficiency, or the prosecution of the reexamination proceeding will be terminated under 37 CFR 1.957(b) or limited under 37 CFR 1.957(c) (as is appropriate for the case), to effect the "abandonment" set forth in 37 CFR 1.20(c)(5).
6.Other: \qquad

NOTE: PATENT OWNER EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.956. NO EXTENSION OF TIME IS PERMITTED FOR THIRD PARTY REQUESTER. 35 U.S.C. § $314(\mathrm{~b})(2)$.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

[^5]
Defective Amendments

This proceeding is a merger of $90 / 011,011$ and $95 / 001,621$.

The amendment filed 3/23/2012 proposes amendments to the last Office action mailed out $2 / 23 / 2012$ that do not comply with 37 CFR $1.530(\mathrm{~d})-(\mathrm{j})$, which sets forth the manner of making amendments in reexamination proceedings. A supplemental paper correctly proposing amendments in the present reexamination proceeding is required.

1 / The amendment filed $3 / 23 / 2012$ is improper because strikeout and double brackets used for deleted text. Each patent claim proposed to be changed and each proposed added claim must include markings pursuant to paragraph (f) as indicated below.

37 CFR 1.530. Statement by patent owner in ex parte reexamination; amendment by patent owner in ex parte or inter partes reexamination; inventorship change in ex parte or inter partes reexamination.
(f) Changes shown by markings. Any changes relative to the patent being reexamined which are made to the specification, including the claims, must include the following markings:
(1) The matter to be omitted by the reexamination proceeding must be enclosed in brackets;
and
(2) The matter to be added by the reexamination proceeding must be underlined.
(E)Canceled claim(s) or paragraph(s) which are part of the patent are surrounded by brackets (i.e., a bracket placed at the beginning and end of each canceled claim or paragraph of the patent). They are not lined through;

2/ The indication for the certificate of service at the end of the remarks (page 14) filed on $3 / 23 / 2012$ is not adequate. 37 CFR 1.248. Rule 1.248 part (b) requires that a statement signed by the agent or attorney including the date and manner of service. The Patent Owner provides the date and manner of service but it isn't signed. The signature provided above is for the remarks rather than below the indication for the certificate of service. After the filing of a request for reexamination by a third party requester, any document filed by either the patent owner or the third party requester must be served on the other party (or parties where two or more third party requester proceedings are merged) in the reexamination proceeding in the manner provided in 37 CFR 1.248.

37 CFR 1.903. Service of papers on parties in inter partes reexamination.
The patent owner and the third party requester will be sent copies of Office actions issued during the inter partes reexamination proceeding. After filing of a request for inter partes reexamination by a third party requester, any document filed by either the patent owner or the third party requester must be served on every other party in the reexamination proceeding in the manner provided in $\S 1.248$. Any document must reflect service or the document may be refused consideration by the Office. The failure
of the patent owner or the third party requester to serve documents may result in their being refused consideration.
(b) Papers filed in the Patent and Trademark Office which are required to be served shall contain proof of service. Proof of service may appear on or be affixed to papers filed. Proof of service shall include the date and manner of service. In the case of personal service, proof of service shall also include the name of any person served, certified by the person who made service. Proof of service may be made by:
(1) An acknowledgement of service by or on behalf of the person served or
(2) A statement signed by the attorney or agent containing the information required by this section.

A shortened statutory period for response to this letter is set to expire ONE MONTH or THIRTY DAYS, whichever is longer, from the mailing date of this letter. If patent owner fails to timely correct this informality, the amendment will be held not to be an appropriate response, prosecution of the present reexamination proceeding will be terminated, and a reexamination certificate will issue. 37 CFR 1.550(d).

Therefore, the amendment filed $3 / 23 / 2012$ will not be entered.

All correspondence relating to this inter partes reexamination proceeding should be directed:

By Mail to:
Mail Stop lnterPartes Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450
By FAX to:
(571) 273-9900

Central Reexamination Unit
By hand:
Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314
Registered users of EFS-Web may alternatively submit such correspondence via the electronic filing system EFS-Web, at https://sportal.uspto.gov/authenticate/authenticateuserlocalepf.html. EFS-Web offers the benefit of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS- Web submissions are "soft scanned" (i.e., electronically uploaded) directly into the official file for the reexamination proceeding, which offers parties the opportunity to review the content of their submissions after the "soft scanning." processing complete.

Any inquiry concerning this communication or earlier communications from the examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.
/My-Trang N. Ton/
Primary Examiner, CRU 3992
Conferees:
/Margaret Rubin/
Primary Examiner CRU 3992

ANDREW J. FISCHER SUPERVISORY PATENT EXAMINER TECHNOLOGY CENTER 9600 3900

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:)
)
7,241,034) Art Unit: 3992
		,
Applications No. 95/001,621 \& 90/011,011) Examiner: MY-TRANG N. TON
) Axy ${ }^{\text {a }}$
Filed: 05/16/2011) Atty. Docket No.:
) SVIPGP109RE
For:	AUTOMATIC DIRECTIONAL CONTROL)	
	SYSTEM FOR VEHICLE) Date: 04/27/2012
	HEADLIGHTS	$)$
)

AMENDMENT D2

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Examiner:

In response to the Office Action mailed 2/23/2012, the notice of Merger of Proceedings mailed $2 / 23 / 2012$, the Office Action mailed 1/12/2011 ("Office Action"), and as a substitute for the Responses filed $1 / 18 / 2011,2 / 16 / 2011$, and 02/02/2012 in the $90 / 011,011$ proceeding, and further in response to the Notice of Defective Paper mailed $03 / 29 / 2012$, please enter the following amendments believed to place the Claims in condition for allowance.

AMENDMENTS TO THE CLAIMS

Amended claims follow:

1. (Currently Amended) An automatic directional control system for a vehicle headlight, comprising:
[a]two or more sensors that [is]are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of [the] vehicle, said sensed conditions including at least[es one or more of road speed,]steering angle[,] and pitch[, and suspension height]of the vehicle; a controller that is responsive to said two or more sensor signals for generating [an]at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent [said]at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed [operating]conditions; and
[an]said two or more actuators [that is]each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.
2. (Currently Amended) The automatic directional control system defined in claim 1_{2} wherein at least one of said two or more sensors further generate[s] a signal that is representative of the road speed of the vehicle.
3. (Currently Amended) The automatic directional control system defined in claim 1. wherein at least one of said two or more sensors further generates a signal that is representative of [the]a rate of change of steering angle of the vehicle.
4. (Currently Amended) The automatic directional control system defined in claim 1_{2} wherein at least one of said two or more sensors further generates a signal that is representative of [the] a rate of change of pitch of the vehicle.
5. (Currently Amended) The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors further generates a signal that is representative of the suspension height of the vehicle.
6. (New) The automatic directional control system defined in claim 1, wherein said two or more sensors include a first sensor and a second sensor.
7. (New) The automatic directional control system defined in claim 6, wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.
8. (New) The automatic directional control system defined in claim 6, wherein said first sensor is physically separate from said second sensor.
9. (New) The automatic directional control system defined in claim 1, further comprising one or more additional sensors for sensing one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, a suspension height, or a rate of change of suspension height of the vehicle.
10. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of road speed of the vehicle.
11. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of steering angle of the vehicle.
12. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of pitch of the vehicle.
13. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of a suspension height of the vehicle.
14. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured to include the first actuator connected to the headlight to effect movement thereof in a first direction and a second actuator connected to the headlight to effect movement thereof in a second direction different form the first direction.
15. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include the first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.
16. (New) The automatic directional control system defined in claim 15, wherein the two or more actuators include a second actuator that is adapted to be connected to the headlight to effect movement thereof in a horizontal direction.
17. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include an electronically controlled mechanical actuator.
18. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include a step motor.
19. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include a servo motor.
20. (New) The automatic directional control system defined in claim 1, wherein the two or more actuators include a microstepping motor capable of being operated in fractional step increments.
21. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted both up and down relative to a horizontal reference position and left and right relative to a vertical reference position.
22. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that, while in a calibration mode, a directional orientation at which a beam of light projects therefrom is capable of being adjusted relative to the vehicle by manual operation of the two or more actuators.
23. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a microprocessor.
24. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.
25. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system further includes at least one position feedback sensor capable of providing a position feedback signal associated with at least one of the two or more actuators.
26. (New) The automatic directional control system defined in claim 25, wherein the at least one position feedback sensor includes a Hall Effect sensor.
27. (New) The automatic directional control system defined in claim 25, wherein the at least one position feedback sensor includes an optical interrupter.
28. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system further includes memory.
29. (New) The automatic directional control system defined in claim 28, wherein the memory includes non-volatile memory.
30. (New) The automatic directional control system defined in claim 28, wherein the memory is configured to store a predetermined reference position associated with the headlight.
31. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.
32. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch sensor.
33. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.
34. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.
35. (New) The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.
36. (New) The automatic directional control system defined in claim 1, wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators from being operated continuously in response to relatively small variations in the sensed conditions.
37. (New) The automatic directional control system defined in claim 1, wherein said controller is configured to be responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators from being operated unduly frequently in response to relatively small variations in the sensed conditions.
38. (New) The automatic directional control system defined in claim 1, wherein said controller is further responsive to said two or more sensor signals to automatically activate one or more vehicle lights that are different than the headlight.
39. (New) The automatic directional control system defined in claim 38, wherein said one or more vehicle lights that are different than the headlight include one or more lights for illuminating a road in front of the vehicle during a turn.
40. (New) The automatic directional control system defined in claim 1, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight.
41. (New) The automatic directional control system defined in claim 1, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight to extend an angular range of a road surface.

REMARKS

As noted in the 6/23/2011 Office Communication for the Inter Partes Reexamination Proceeding number 95/001,621, which has now been merged with the current matter, Examiner has agreed with the Requestor that Requestor's issues 1-2, 4-7, 9-12, 14-17 and 19-20 raise substantial new questions of patentability as to claims 1-5 of the '034 patent.

Specifically, the Examiner agrees that:

Claims 1, 2, 4, and 5 are anticipated by Uchida (United Kingdom Patent Application Publication No. 2309773) under 35 U.S.C. §102(b);

Claims 1, 2, 4, and 5 are anticipated by Takahashi (United Kingdom Patent Application Publication No. 2309774) under 35 U.S.C. §102(b);

Claims 1 and 5 are anticipated by Miskin et al. (German Patent Application Publication No. 3110094) under 35 U.S.C. §102(b);

Claims 1 and 5 are anticipated by Leleve (German Patent Application Publication No. 3129891) under 35 U.S.C. §102(b);

Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. (U.S. Patent No. 6,305,823) and Uchida under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Takahashi under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Miskin et al. under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Toda et al. and Leleve under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. (U.S. Patent No. $6,193,398$) and Uchida under 35 U.S.C. § 103(a);

Claims $1,2,4$, and 5 are unpatentable over the combination of Okuchi et al. and Takahashi under 35 U.S.C. § 103(a);

Claims $1,2,4$, and 5 are unpatentable over the combination of Okuchi et al. and Miskin et al. under 35 U.S.C. § 103(a);

Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Leleve under 35 U.S.C. § 103(a);

Claims 1 to 5 are unpatentable over the combination of Gotoh (U.S. Patent No. $5,909,949)$ and Uchida under 35 U.S.C. § 103(a);

Claims 1 to 5 are unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a);

Claims 1, 2, 3, and 5 are unpatentable over the combination of Gotoh and Miskin et al. under 35 U.S.C. § 103(a); and

Claims 1 to 5 are unpatentable over the combination of Gotoh and Leleve under 35 U.S.C. § 103(a).

Applicant has amended Claim 1 to overcome such rejections, as follows:

1. (Currently Amended) An automatic directional control system for a vehicle headlight, comprising:
[a]two or more sensors that [is]are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of [the] \underline{a} vehicle, said sensed conditions including at least[es one or more of road speed,]steering angle[,] and pitch[, and suspension height]of the vehicle;
a controller that is responsive to said two or more sensor signals for generating [an]at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent [said]at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed [operating]conditions; and
[an]said two or more actuators [that is]each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal.

Applicant respectfully asserts that the references as relied on by the Examiner fail to teach "two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle, said sensed conditions including at least steering angle and pitch of the vehicle" (emphasis added),
as claimed by Applicant. Further, applicant respectfully asserts that the references as relied on by the Examiner fail to teach "two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal" (emphasis added), as claimed by Applicant.

Applicant respectfully notes that a claim is anticipated only if each and every element as set forth in the claim is found, either expressly or inherently described in a single prior art reference. Verdegaal Bros. v. Union Oil Co. Of California, 814 F.2d 628, 631, 2 USPQ2d 1051, 1053 (Fed. Cir. 1987). Moreover, the identical invention must be shown in as complete detail as contained in the claim. Richardson v. Suzuki Motor Co. 868 F.2d 1226, 1236, 9USPQ2d 1913, 1920 (Fed. Cir. 1989). Additionally, the elements must be arranged as required by the claim.

This criterion has simply not been met by the above reference, as noted above.

Further, to establish a prima facie case of obviousness, three basic criteria must be met. First, there must be some suggestion or motivation, either in the references themselves or in the knowledge generally available to one of ordinary skill in the art, to modify the reference or to combine reference teachings. Second, there must be a reasonable expectation of success. Finally, the prior art reference (or references when combined) must teach or suggest all the claim limitations. The teaching or suggestion to make the claimed combination and the reasonable expectation of success must both be found in the prior art and not based on applicant's disclosure. In re Vaeck,947 F.2d 488, 20 USPQ2d 1438 (Fed.Cir.1991).

Applicant respectfully asserts that at least the first and third elements of the prima facie case of obviousness have not been met, since it would be unobvious to combine the references, and the prior art references, as relied upon by the Examiner, fail to teach or suggest all of the claim limitations.

Finally, Applicant brings to the Examiner's attention the subject matter of new Claims 6-41, which Applicant adds for full consideration. Claims 6-41 depend from and further limit Claim 1. Accordingly, Applicant respectfully submits that new Claims 6-41 are allowable for at least the same reasons that Claim 1 is in condition for allowance, as described above. Support for the amendments to Claim 1, as well as for the newly added dependent claims may be found (by way of example), in Table 1.

Table 1

Claim 1 - e.g., see Abstract; Col. 2, lines 7-17; and Figure 1.
Claim 2 - e.g., see Col. 2, line 10.
Claim 3 - e.g., see Col. 2, lines 11-12.
Claim 4 - e.g., see Col. 2, line 12.
Claim 5 - e.g., see Col. 2, line 11.
Claim 6 - e.g., see items 15 and 16 of Figure 1.
Claim 7 - e.g., see Abstract; Col. 2, lines 7-17; Col. 3, line 58 - Col. 4, line 2; and Figure 1.

Claim 8 - e.g., see items 15 and 16 of Figure 1.
Claim 9 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 10 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 11 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 12 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 13 - e.g., see Col. 3, line 58 - Col. 4, line 2.
Claim 14 - e.g., see Figure 1 and Col. 3, lines 26-29.
Claim 15 - e.g., see Figure 1 and Col. 3, lines 26-29.
Claim 16-e.g., see Figure 1 and Col. 3, lines 26-29.
Claim 17 - e.g., see Col. 3, lines 28-31.
Claim 18 - e.g., see Col. 3, lines 28-31.
Claim 19 - e.g., see Col. 3, lines 28-31.
Claim 20 - e.g., see Col. 3, lines 31-37.
Claim 21 - e.g., see Col. 3, lines 28-31.
Claim 22 - e.g., see Figure 2, Col. 5, lines 25-29.

> Claim 23 - e.g., see Col. 3, lines 53-58.
> Claim 24 - e.g., see Col. 3, lines 53-58.
> Claim 25 - e.g., see Col. 4, lines 7-30.
> Claim 26 - e.g., see Col. 4, line 26.
> Claim 27 - e.g., see Col. 4, lines 35-36.
> Claim 28 - e.g., see Col. 8, lines 8-11.
> Claim 29 - e.g., see Col. 8, line 16.
> Claim 30 - e.g., see Col. 6, lines 18-21.
> Claim 31 - e.g., see Col. 7, lines 1-4.
> Claim 32 - e.g., see Col. 7, lines 1-4.
> Claim 33 - e.g., see Col. 9, lines 33-42.
> Claim 34 - e.g., see Col. 9, lines 33-42.
> Claim 35 - e.g., see Col 9, lines 46-56.
> Claim 36 - e.g., see Col 9, lines 22-27.
> Claim 37 - e.g., see Col 9, lines 22-27.
> Claim 38 - e.g., see Col 12, lines 27-39.
> Claim 39 - e.g., see Col 12, lines 27-39.
> Claim 40 - e.g., see Col 12, lines 27-39.
> Claim 41 - e.g., see Col 12, lines 27-39.

Of course, the above citations are merely examples of the above claim language and should not be construed as limiting in any manner.

Applicant respectfully requests a Notice of Allowance of Claims 1-41, or a proper prior art showing of all of Applicant's claim limitations, in combination with the remaining claim elements.

Applicant believes no fees are due. In the event any other fees are due, the Commissioner is authorized to charge any additional fees or credit any overpayment to Deposit Account No. 50-4964 (Order No. SVIPGP109RE).

Should the Examiner deem that any further amendment is desirable to place this application in condition for allowance, Applicant invites the Examiner to telephone the undersigned attorney at the number listed below.

Additionally, the undersigned hereby certifies that a true and complete copy of the forgoing Amendment D2 has been served on Third Party Requestor by mailing said copy on 27 Apr 2012 (and Amendment D, mailed 23 Mar 2012), via First Class Mail, postage prepaid to:

Kenyon \& Kenyon, LLP

One Broadway
New York, NY 10004

Dated: 27 April 2012
The Caldwell Firm, LLC
PO Box 59655
Respectfully submitted,

Dallas, Texas 75229-0655
Telephone: (972) 243-4523
pcaldwell@thecaldwellfirm.com

Patrick E. Caldwell, Esq.
Reg. No. 44,580

Electronic Acknowledgement Receipt	
EFS ID:	12654561
Application Number:	95001621
International Application Number:	
Confirmation Number:	1240
Title of Invention:	Automatic Directional Control System for Vehicle Headlights
First Named Inventor/Applicant Name:	7,241,034
Customer Number:	92045
Filer:	Patrick Edgar Caldwell
Filer Authorized By:	
Attorney Docket Number:	SVIPGP109RE
Receipt Date:	27-APR-2012
Filing Date:	16-MAY-2011
Time Stamp:	19:13:55
Application Type:	inter partes reexam

Payment information:

Submitted w	Payment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Amendment/Req. Reconsideration-After Non-Final Reject	SVIPGP109RE_Amndt_D2_vF_0 $4-27-2012 . p d f$		no	14
Warnings:					
Information:					

Page 993 of 1228

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Litigation Search Report CRU 3999

Reexam Control No. 90/011,011

TO: My Trang Ton
Location: CRU
Art Unit: 3992
Date: 5/21/2012
Merged: 95/001,621

From: Patricia Volpe
Location: CRU 3999
MDE 5D30
Phone: (571) 272-6825
Patricia.volpe@uspto.gov

Search Notes
Litigation search for U.S. Patent Number: 7,241,034

Status (CLOSED) 6:10cv78 Balther Technologies, Llc v. American Honda Motor Co Inc et A

1) I performed a KeyCit Search in Westlaw, which retrieves all history on the patent including any litigation.
2) I performed a search on the patent in Lexis CourtLink for any open dockets or closed cases.
3) I performed a search in Lexis in the Federal Courts and Administrative Materials databases for any cases found.
4) I performed a search in Lexis in the IP Journal and Periodicals database for any articles on the patent.
5) I performed a search in Lexis in the news databases for any articles about the patent or any articles about litigation on this patent.

Date of Printing: May 21, 2012

KEYCITE

C US PAT 7241034 AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS, Assignee: Dana Corporation (Jul 10, 2007)

History
Direct History
$\Rightarrow \quad \mid$ AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS, US PAT 7241034, 2007 WL 1978614 (U.S. PTO Utility Jul 10, 2007)

Patent Family

2 AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR A VEHICLE HEADLIGHT USES SENSOR TO GENERATE SIGNAL REPRESENTATIVE OF CONDITION OF VEHICLE, CONTROLLER RESPONSIVE TO SENSOR SIGNAL TO GENERATE OUTPUTT SIGNAL AND ACTUATOR TO EFFECT HEADLIGHT MOVEMENT, Derwent World Patents Legal 2003-543647

Assignments
3 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Mar 08, 2010)
4 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Jun 12, 2009)
5 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 030, (DATE RECORDED: Feb 22, 2008)
6 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 003, (DATE RECORDED: Feb 06, 2003)

Patent Status Files

.. Request for Re-Examination, (OG DATE: Jun 29, 20I1)
.. Request for Re-Examination, (OG DATE: Sep 07, 2010)
.. Patent Suit(See LitAlert Entries),

Docket Summaries

10 BALTHER TECHNOLOGIES, LLC v. AMERICAN HONDA MOTOR CO. INC. ET AL, (E.D.TEX. Mar 08, 2010) (NO. 6:10CV00078), (35 USC 271 PATENT INFRINGEMENT)

Litigation Alert

11 Derwent LitAlert P2010-11-45 (Mar 08, 2010) Action Taken: complaint
Prior Art (Coverage Begins 1976)

C

12 ADJUSTABLE HEADLIGHTS, HEADLIGHT ADJUSTING AND DIRECTION SENSING CONTROL SYSTEM AND METHOD OF ADJUSTING HEADLIGHTS, US PAT 5868488 (U.S. PTO Utility 1999)

3 APPARATUS AND METHOD FOR CONTROLLING LIGHT DISTRIBUTION OF HEADLAMP, US PAT 5660454Assignee: Toyota Jidosha Kabushiki Kaisha, (U.S. PTO Utility 1997)
14 APPARATUS AND METHOD FOR CONTROLLING THE LIGHT-RANGE OF MOTOR VEHICLE HEADLIGHTS, US PAT 5193894Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1993)

15 APPARATUS FOR AUTOMATICALLY ADJUSTING AIMING OF HEADLIGHTS OF AN AUTOMOTIVE VEHICLE, US PAT 5877680Assignee: Denso Corporation; Toyota Jidosha Kabushiki Kaisha, (U.S. PTO Utility 1999)
16 APPARATUS FOR CONTROLLING A HEADLIGHT OF A VEHICLE, US PAT 4891559Assignee: Nippondenso Soken, Inc.; Nippondenso Co., Ltd., (U.S. PTO Utility 1990)
17 APPARATUS FOR REGULATING THE ILLUMINATION FIELD OF A VEHICLE HEADLIGHT, US PAT 6144I59Assignee: Robert Bosch GmbH, (U.S. PTO Utility 2000)
18 ARRANGEMENT FOR AUTOMATIC HEADLIGHT ADJUSTMENT, US PAT 6231216Assignee: Dr. Ing. h.c.F. Porsche AG, (U.S. PTO Utility 200I)
19 AUTOMATIC LEVELING APPARATUS FOR USE WITH AUTOMOBILE HEADLAMPS, US PAT 6183118Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 2001)
20 AUTOMATIC LEVELING DEVICE FOR AUTOMOTIVE VEHICLE HEADLAMPS, US PAT 6305823Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 2001)
21 AUTOMOTIVE ILLUMINATION SYSTEM, US PAT 4943893Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1990)
22 CONTINUOUSLY VARIABLE HEADLAMP CONTROL, US PAT 6281632Assignee: Gentex Corporation, (U.S. PTO Utility 2001)
23 CORNERING LIGHT SYSTEM FOR TWO-WHEELED VEHICLES, US PAT 4024388Assignee: Marvin H. Kleinberg, Inc.; Richard Morganstern Inc.; Scholnick, Seymour A., (U.S. PTO Utility 1977)

24 DEVICE FOR ADJUSTING THE INCLINATION OF AUTOMOBILE HEADLIGHTS, US PAT 4186428Assignee: Cibie Projecteurs, (U.S. PTO Utility 1980)
25 DEVICE FOR ADJUSTING THE LEVEL OF A VEHICLE HEADLIGHT, US PAT 5779342Assignee: Bayerische Motoren Werke Aktiengellschaft, (U.S. PTO Utility 1998)
26 DEVICE FOR ADJUSTING AN OBJECT TO ASSUME A PREDETERMINED ANGLE TO A CERTAIN PLANE, US PAT 4217631 (U.S. PTO Utility 1980)
27 DEVICE FOR ADJUSTING A PRESETTABLE LIGHTING LEVEL OF A HEADLIGHT IN MOTOR VEHICLES, US PAT 5785405Assignee: Bayerische Motoren Werke, (U.S. PTO Utility 1998)

28 DEVICE FOR CONTROLLING THE LIGHT WIDTH OF HEADLIGHTS FOR VEHICLES, US

```
    PAT 5896011Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1999)
C 29 DEVICE FOR REGULATING LIGHT WIDTH OF HEADLIGHTS FOR VEHICLES, AND
    VEHICLE PROVIDED THEREWITH, US PAT 6142655Assignee: Robert Bosch GmbH, (U.S.
        PTO Utility 2000)
C 30 DIRECTION TURNING DEVICE FOR A HEADLIGHT OF AN AUTOMOBILE, US PAT
    5550717 (U.S. PTO Utility 1996)
C 31 FOCUSING MIRROR CONTROL SYSTEM AND METHOD FOR ADJUSTING SAME, US
    PAT 6118113 (U.S. PTO Utility 2000)
C 32 HEAD LAMP DEVICE FOR VEHICLE, US PAT 6010237Assignee: Honda Giken Kogyo Ka-
    bushiki Kaisha, (U.S. PTO Utility 2000)
```

C 42 HEADLIGHT ARRANGEMENT FOR MOTOR VEHICLE, US PAT 6227691 Assignee: Robert Bosch GmbH, (U.S. PTO Utility 2001)

C 44 HEADLIGHT BEAM CONTROL SYSTEM FOR MOTOR VEHICLES, US PAT 4225902 (U.S. PTO Utility 1980)
C 45 HEADLIGHT CONTROL APPARATUS FOR MOTORCYCLES, US PAT 4870545Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 1989)
C 46 HEADLIGHT FOR VEHICLE, US PAT 4833573Assignee: Koito Seisakusho Co., Ltd., (U.S. PTO Utility 1989)
C 47 HEADLIGHT MOVING APPARATUS FOR A MOTOR VEHICLE, US PAT 5099400 (U.S. PTO Utility 1992)
C
48 HEIGHT SENSOR AND VEHICULAR HEADLIGHT BEAM AXIS LEVELING APPARATUS,
© 2012 Thomson Reuters. All rights reserved.

US PAT 6234654Assignee: Denso Corporation, (U.S. PTO Utility 2001) The Lucas Electrical Company Limited, (U.S. PTO Utility 1978)
C 64 MOTORCYCLE HEADLIGHT AIMING DEVICE, US PAT 5426571 (U.S. PTO Utility 1995)
C 65 MULTIPLE SENSOR INCLINATION MEASURING SYSTEM, US PAT 4549277Assignee: Brunson Instrument Company, (U.S. PTO Utility I985)
C 66 POSITION CONTROL SYSTEM, US PAT 4310172Assignee: General Motors Corporation, . (U.S. PTO Utility 1982)

C 67 ROAD SURFACE-SENSITIVE BEAM PATTERN LEVELING SYSTEM FOR A VEHICLE HEADLAMP, US PAT 4868720Assignee: Koito Seisakusho Co., Ltd., (U.S. PTO Utility 1989) 68 SIDELIGHTING ARRANGEMENT AND METHOD, US PAT 5428512 (U.S. PTO Utility 1995) 69 STEPPER MOTOR SHAFT POSITION SENSOR, US PAT 4791343Assignee: Allied-Signal Inc., (U.S. PTO Utility 1988)

C	70 SUPPORT FRAME FOR HEADLIGHT AIMING APPARATUS, US PAT 5920386Assignee: Panter Master Controls, Inc.; Progressive Tool \& Industries Co., (U.S. PTO Utility 1999)
c	71 SWITCHING CONTROL SYSTEM FOR AUTOMATICALLY TURNING HEADLIGHTS O AND ON AT INTERSECTIONS, US PAT 6097156 (U.S. PTO Utility 2000)
C	72 SYSTEM FOR AUTOMATICALLY ADJUSTING OPTICAL AXIS DIRECTION OF VEHICLE HEADLIGHT, US PAT 6193398Assignee: DENSO Corporation, (U.S. PTO Utility 2001)
c	73 SYSTEM FOR SELF-ALIGNING VEHICLE HEADLAMPS, US PAT 5633710Assignee: EGS Inc., (U.S. PTO Utility 1997)
C	74 TILTING DEVICE OF VEHICLE HEADLIGHT, US PAT 4916587Assignee: Koito Seisakusho Co., Ltd., (U.S. PTO Utility 1990)
c	75 VARIABLE DISTRIBUTION TYPE AUTOMOTIVE HEADLAMP, US PAT 5060120Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1991)
C	76 VEHICLE CORNERING LAMP SYSTEM, US PAT 5526242Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1996)
C	77 VEHICLE CORNERING LAMP SYSTEM, US PAT 4908560Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1990)
C	78 VEHICLE HEADLIGHT AIMING APPARATUS, US PAT 5485265Assignee: Hopkins Manu- facturing Corporation, (U.S. PTO Utility 1996)
C	79 VEHICLE HEADLIGHT WITH ADJUSTING MEANS FOR DIFFERENT TRAFFIC CONDITIONS, US PAT 5938319Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1999)
C	80 VEHICULAR CORNERING LAMP SYSTEM, US PAT 5404278Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1995)
C	81 VEHICULAR HEADLAMP PRODUCING LOW BEAM HAVING CUT LINE CONTROLLED IN ACCORDANCE WITH CONDITION OF CURVED ROAD, US PAT 5707I29Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1998)

US District Court Civil Docket

U.S. District - Texas Eastern
 (Tyler)

6:10cv78

Balther Technologies, Llc v. American Honda Motor Co Inc et A

This case was retrieved from the court on Thursday, March 29, 2012


```
[COR LD NTC]
Williams Morgan & Amerson
10333 Richmond
Suite 1100
Houston,TX }7704
USA
713/ 934-4060
Fax: 17139347011
Email: Dwilliams@wmalaw.com
David Wynne Morehan
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite 1100
Houston,TX }7704
USA
713-934-7000
Fax: 713-934-7011
Email: DMOREHAN@WMALAW.COM
Debra Rochelle Coleman
[COR LD NTC]
Albritton Law Firm
P O Box 2649
Longview,TX }7560
USA
903-757-8449
Fax: 903-758-7397
Email: DRC@EMAFIRM.COM
J Mike Amerson
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite 1100
Houston, TX }7704
USA
713/934-4055
Fax: 17139347011
Email:Mike@wmalaw.com
Jack Wesley Hill
[COR LD NTC]
Ward & Smith Law Firm
111 W Tyler Street
Longview, TX 75601
USA
903-757-6400
Fax: 903-757-2323
Email: WH@WSFIRM.COM
Jaison Chorikavumkal John
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite 1100
Houston, TX }7704
USA
713/934-4060
Fax: 17139347011
Email: Jjohn@wmalaw.com
Matthew Clay Harris
[COR LD NTC]
Albritton Law Firm
P O Box 2649
```

```
Longview, TX 75606
USA
903-757-8449
Fax: 903-758-7397
Email: MCH@MATTHARRISLAW.COM
Matthew Richard Rodgers
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite 1100
Houston, TX }7704
USA
713/934-4061
Email: Mrodgers@wmalaw.com
Michael Aaron Benefield
[COR LD NTC]
Williams Morgan & Amerson PC
10333 Richmond
Suite 1100
Houston, TX }7704
USA
713-934-4091
Fax: 7139347011
Email: MBENEFIELD@WMALAW.COM
Thomas John Ward, Jr
[COR LD NTC]
Ward & Smith Law Firm
PO Box 1231
Longview, TX 75606-1231
USA
903/ 757-6400
Fax: 903/ 757-2323
Email: JW@WSFIRM.COM
```

```
American Honda Motor Co Inc
Defendant
Honda Motor Company, Ltd
Defendant
Bmw of North America, Llc
Defendant
Bmw AG
Defendant
Chrysler Group LIc
Defendant
Ferrari North America, Inc
Defendant
Ferrari Spa
Defendant
General Motors, Llc
Defendant
Hyundai Motor America
Defendant
Hyundai Motor Company
Defendant
```


Nissan North America, Inc
Defendant
Nissan Motor Co, Ltd
Defendant
Porsche Cars North America, Inc Defendant

Dr Ing Hc.F Porsche AG Defendant

Saab Cars North America, Inc Defendant

Toyota Motor North America, Inc

Toyota Motor Sales, USA, Inc

```
COR LD NTC]
Siebman Burg Phillips & Smith, LLP-Marshal
P O Box }155
Marshall , TX 75671-1556
903-938-8900
Fax: 19727674620
ael Charles Smith
Siebman Burg Phillips & Smith, LLP-Marshall
PO Box 1556
903-938-8900
Fax: 19727674620
Email:MICHAELSMITH@SIEBMAN.COM
```

Defendant				
Toyota Motor Corp Defendant				
Volkswagen Group of America, Inc Defendant				
Automobili Lamborghini Spa Defendant				
Audi AG Defendant				
Volkswagen AG Defendant				
Ford Motor Company Defendant				
Volvo Cars of North America, Llc Defendant				
Volvo Car Corp Defendant				
Date	\#		Proceeding Text	Source
03/08/2010		COMPLAIN number 05 1 Exhibit A	ent against all defendant 2.), filed by Balther Tech) (Albritton, Eric) (Enter	
03/08/2010	--	Judge Leor	I,) (Entered: 03/08/2010	
03/08/2010		Notice of F U.S. Paten	mark Form (AO 120). AO e. (Albritton, Eric) (Enter	
03/09/2010		NOTICE of Technolog	by Thomas John Ward, J s) (Entered: 03/09/2010)	
03/09/2010		NOTICE of LLC (Hill, J	by Jack Wesley Hill on b 2010)	
03/09/2010		NOTICE of (Biggs, Ad	by Adam A Biggs on beh 2010)	
03/09/2010	6	NOTICE of Technologi	by Debra Rochelle Colem bra) (Entered: 03/09/20	
03/09/2010	7	NOTICE of Technolog	by Matthew Clay Harris ew) (Entered: 03/09/20	
03/10/2010	8	NOTICE of LLC (Amer	by J Mike Amerson on be 0/2010)	
03/10/2010	9	NOTICE of Technolog	by Matthew Richard Rod thew) (Entered: 03/10/2	
03/10/2010	10	NOTICE of Technolog	by Michael Aaron Benefie chael) (Entered: 03/10/201	
03/10/2010	11	NOTICE of Technolog	by David Wynne Moreha vid) (Entered: 03/10/2010	
03/10/2010	12	NOTICE of Technolog	by Danny Lloyd Williams nny) (Entered: 03/10/20	
03/10/2010	13	NOTICE of Technolog	by Jaison Chorikavumka (Entered: 03/10/2010)	
03/10/2010	14	NOTICE of Technolog	by Christopher Needham btopher) (Entered: 03/10	
04/26/2010	15	ORDER that of the defe	that the case is ready fo swered or filed a motion	

Copied from 90011011 on 09/05/2012

		notice shall be filed within five days of the last remaining defendant's answer or motion. Signed by Judge Leonard Davis on 04/26/10. cc:attys 4-27-10(mill,) (Entered: 04/27/2010)
04/28/2010	16	E-GOV SEALED SUMMONS Issued as to American Honda Motor Co. Inc., BMW of North America, LLC, Chrysler Group LLC, Daimler North America Corporation, Ferrari North America, Inc., Ford Motor Company, General Motors, LLC, Hyundai Motor America, Jaguar Land Rover North America, LLC, Maserati North America Inc, Mazda Motor of North America, Inc., Mercedes-Benz USA, LLC, Mitsubishi Motors North America, Inc., Nissan North America, Inc., Porsche Cars North America, Inc., SAAB Cars North America, Inc., Toyota Motor North America, Inc., Toyota Motor Sales, U.S.A., Inc., Volkswagen Group of America, Inc., Volvo Cars of North America, LLC., and emailed to pltf for service. (mil,) (Entered: 04/28/2010)
05/17/2010	17	NOTICE of Voluntary Dismissal by Balther Technologies, LLC (Attachments: \# 1 Text of Proposed Order)(Albritton, Eric) (Entered: 05/17/2010)
05/18/2010	18	ORDER DISMISSING CASE. This civil action is dismissed without prejudice. PItf and defts shall bear their own costs, expenses and legal fees. Signed by Judge Leonard Davis on 05/18/10. cc:attys 5-18-10(mil,) (Entered: 05/18/2010)
05/18/2010	19	Agreed MOTION for Extension of Time to File Answer re 1 Complaint by Mitsubishi Motors Corp., Mitsubishi Motors North America, Inc.. (Attachments: \# 1 Text of Proposed Order) (Smith, Michael) (Entered: 05/18/2010)
05/19/2010	20	NOTICE by Mitsubishi Motors Corp., Mitsubishi Motors North America, Inc. re 19 Agreed MOTION for Extension of Time to File Answer re 1 Complaint (Notice of Withdrawal of Agreed MOTION for Extension of Time to File Answer) (Smith, Michael) (Entered: 05/19/2010)

[^6]
UNITED STATES PATENT AND TRADEMARK OFFICE GRANTED PATENT
 7241034

Get Drawing Sheet 1 of 7
Access PDF of Official Patent * Order Patent File History / Wrapper from REEDFAX® Link to Claims Section

June 12, 2003
Automatic directional control system for vehicle headlights

REEXAM-LITIGATE:

Reexamination requested July 10,2010 by PATENT OWNER, Reexamination No. 90/011,011 (O.G. September 7, 2010) Ex. Gp.: 3992 July 10, 2010

Reexamination requested May 16, 2011 by Volkswagen Group of America, Inc.; (Att'y Is: Clifford A. Ulrich, Kenyon \& Kenyon, LLP., New York, NY), Reexamination No. 95/001,621 (O.G. June 28, 2011) Ex. Gp.: 3992 May 16, 2011

NOTICE OF LITIGATION

Balther Technologies, LLC v. American Honda Motor Co Inc et al, Filed March 8, 2010, D.C. E.D. Texas, Doc. No. 6:10cv78

INVENTOR: Smith, James E. - Berkey, OHIO, United States of America (US), United States of America (US) ; McDonald, Anthony B. - Perrysburg, OHIO, United States of America (US), United States of America (US)

APPL-NO: 285312 (10)
FILED-DATE: October 31, 2002
GRANTED-DATE: July 10, 2007

ASSIGNEE-PRE-ISSUE:

February 6, 2003 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., DANA CORPORATION 4500 DORR STREET TOLEDO OHIO 43615, Reel and Frame Number: 013729/0559

ASSIGNEE-AT-ISSUE:

Dana Corporation, Toledo, OHIO, United States of America (US), United States company or corporation (02)

ASSIGNEE-AFTER-ISSUE:

February 22, 2008 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., DANA AUTOMOTIVE SYSTEMS GROUP, LLC 4500 DORR STREET TOLEDO OHIO 43615, 4500 DORR STREET, TOLEDO, OHIO, UNITED STATES OF AMERICA (US), 43615, Reel and Frame Number: 020540/0476
June 12, 2009 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).,

STRAGENT, LLC 211 W. TYLER, SUITE C LONGVIEW TEXAS 75601, 211 W. TYLER, SUITE C, LONGVIEW, TEXAS, UNITED STATES OF AMERICA (US), 75601, Reel and Frame Number: 022813/0432
March 8, 2010 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., BALTHER TECHNOLOGIES, LLC, SUITE C-4, 211 W . TYLER, LONGVIEW, TEXAS, UNITED STATES OF AMERICA (US), 75601, Reel and Frame Number: 024045/0235

LEGAL-STATUS:

February 6, 2003-ASSIGNMENT
February 22, 2008 - ASSIGNMENT
February 22, 2008 - ASSIGNMENT
February 22, 2008 - ASSIGNMENT
June 12, 2009 - ASSIGNMENT
March 8, 2010 - ASSIGNMENT
September 7, 2010 - REQUEST FOR REEXAMINATION FILED
January 10, 2011 - FEE PAYMENT

PRIM-EXMR: Alavi, Ali

CORE TERMS: headlight, directional, controller, adjustment, sensed, algorithm, sensor, actuator, steering, minus, control system, road, suspension, responsive, automatic, feedback, orientation, beam, aiming, height, generating, electrical, input output device, plane, stored, automatically, optical, pitch, calibration, accomplish

ENGLISH-ABST:

A structure and method for operating a directional control system for vehicle headlights that is capable of altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. One or more operating condition sensors may be provided that generate signals that are representative of a condition of the vehicle, such as road speed, steering angle, pitch, suspension height, rate of change of road speed, rate of change of steering angle, rate of change of pitch, and rate of change of suspension height of the vehicle. A controller is responsive to the sensor signal for generating an output signal. An actuator is adapted to be connected to the headlight to effect movement thereof in accordance with the output signal. The controller can include a table that relates values of sensed operating condition to values of the output signal. The controller is responsive to the sensor signal for looking up the output signal in the table.

NO-OF-CLAIMS: 5

Source: Legal > / . . . / > Utility, Design and Plant Patents i
Terms: patno $=7241034$ (Suggest Terms for My Search)
View: Custom
Segments: Abst, Appl-no, Assignee, Cert-correction, Date, Exmr, Inventor, Legal-status, Lit-reex, No-ofclaims, Patno, Reexam-litigate, Ref-patno, Reissue, Rel-patno, Title
Date/Time: Monday, May 21, 2012-1:28 PM EDT

In
About LexisNexis | Privacy Policy | Terms \& Conditions I Contact Us Copyright (c) 2012 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

Reexamination Requests Filed Weeks of 5/16/11 And 5/23/11 Patent Law Practice Center May 31, 2011 Tuesday 10:11 AM EST

Copyright 2011 Newstex LLC
All Rights Reserved
Newstex Web Blogs
Copyright 2011 Patent Law Practice Center
Patent Law Practice Center
May 31, 2011 Tuesday 10:11 AM EST
LENGTH: 2671 words
HEADLINE: Reexamination Requests Filed Weeks of 5/16/11 And 5/23/11
BYLINE: Stefanie Levine
BODY:
... in litigation in the Middle District of North Carolina over that patent and four others.
The following inter partes requests were filed:
(1) 95/001,621 (electronically filed) " U.S. Patent No. 7,241,034 entitled AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS and owned by Dana Corporation. Filed May 16, 2011, by Volkswagen Group of America.
(2) $95 / 001,622$ (electronically filed) ...

Source: Combined Source Set 3 - News, Most Recent Two Years (English, Full Text)
Terms: $\mathbf{7 2 4 1 0 3 4}$ or 7,241,034 (Suggest Terms for My Search) View: KWIC
Date/Time: Monday, May 21, 2012-1:29 PM EDT

In

[^7]Reexamination Requests Filed Weeks of 5/16/11 And 5/23/11 Patent Law Practice Center May 31, 2011 Tuesday 10:11 AM EST

Copyright 2011 Newstex LLC
All Rights Reserved
Newstex Web Blogs
Copyright 2011 Patent Law Practice Center
Patent Law Practice Center
May 31, 2011 Tuesday 10:11 AM EST
LENGTH: 2671 words
HEADLINE: Reexamination Requests Filed Weeks of 5/16/11 And 5/23/11
BYLINE: Stefanie Levine

BODY:
... in litigation in the Middle District of North Carolina over that patent and four others.
The following inter partes requests were filed:
(1) 95/001,621 (electronically filed) " U.S. Patent No. 7,241,034 entitled AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS and owned by Dana Corporation. Filed May 16, 2011, by Volkswagen Group of America.
(2) 95/001,622 (electronically filed) ...

```
    Source: Combined Source Set 3 [组 - News, Most Recent Two Years (English, Full Text)
    Terms: 7241034 or 7,241,034 (Suggest Terms for My Search)
        View: KWIC
Date/Time: Monday, May 21, 2012-1:29 PM EDT
```

In
About LexisNexis I Privacy Policy I Terms \& Conditions I Contact Us
Copyright © 2012 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

PO. Box 1450
Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
95/001,621-90/0/101\| 05/16/2011		7,241,034	SVIPGP109RE	1240
The Caldwell Firm, LLC	06/29/2012		EXAMINER	
$\text { PO Box } 59655$			TON, MY TRANG	
Dept. SVIPGP			ART UNIT	PAPER NUMBER
Dallas, TX 75229			3992	
			MAIL DATE	DELIVERY MODE
			06/29/2012	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding. The time period for reply, if any, is set in the attached communication.

DO NOT USE IN PALM PRINTER

(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)
Kenyon \& Kenyon, LLP
One Broadway
New York, NY 10004

Transmittal of Communication to Third Party Requester Inter Partes Reexamination

REEXAMINATION CONTROL NUMBER 95/001,621. 901011011
PATENT NUMBER 7,241,034.
TECHNOLOGY CENTER 3900.
ART UNIT 3992.

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office in the above-identified reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30 -day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the communication enclosed with this transmittal.

OFFICE ACTION IN INTER PARTES REEXAMINATION	Control No.	Patent Under Reexamination
	Examiner 901, /O11, 011	$7,241,034$
	MY-TRANG TON	Art Unit
	3992	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --
Responsive to the communication(s) filed by:
Patent Owner on 27 April, 2012
Third Party(ies) on \qquad

RESPONSE TIMES ARE SET TO EXPIRE AS FOLLOWS:

For Patent Owner's Response:
2. MONTH(S) from the mailing date of this action. 37 CFR 1.945. EXTENSIONS OF TIME ARE GOVERNED BY 37 CFR 1.956.
For Third Party Requester's Comments on the Patent Owner Response:
30 DAYS from the date of service of any patent owner's response. 37 CFR 1.947. NO EXTENSIONS OF TIME ARE PERMITTED. 35 U.S.C. 314(b)(2).

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

This action is not an Action Closing Prosecution under 37 CFR 1.949, nor is it a Right of Appeal Notice under 37 CFR 1.953.

PART I. THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1. \square Notice of References Cited by Examiner, PTO-892
2. \square
$3 . \square$
Information Disclosure Citation, PTO/SB/08
PART II. SUMMARY OF ACTION:
1a. \boxtimes Claims 1-41 are subject to reexamination.
1b. \square Claims \qquad are not subject to reexamination.
3. \square Claims \qquad have been canceled.
4. \square Claims \qquad are confirmed. [Unamended patent claims]
5. \square Claims \qquad are patentable. [Amended or new claims]
6. \boxtimes Claims $1,2,4-6,8-10$ and 12-37 are rejected.
7. \boxtimes Claims 3,7,11 and 38-41 are objected to.
8. \square The drawings filed on $\quad \square$ are acceptable \square are not acceptable.
9. \square The drawing correction request filed on ____ is: \square approved. \square disapproved.
10. \square Acknowledgment is made of the claim for priority under 35 U.S.C. 119 (a)-(d). The certified copy has: \square been received. \square not been received. \square been filed in Application/Control No 95001621 .
11. \square Other \qquad

INTER PARTES REEXAMINATION OFFICE ACTION

This is an interparte reexamination of United States Patent No.
$7,241,034$ ("the '034 patent"). This proceeding is a merger of 90/011,011 and 95/001,621.

Patent Owner's proposed Amendment and remarks filed on 4/27/2012 have been fully considered. Thus, all subsequent reexamination prosecution and examination will be on the basis of the claims as amended in the proposed amendment. It is noted that although the Office actions will treat proposed amendments as though they have been entered, the proposed amendments will not be effective until the reexamination certificate is issued.

This action responds to Patent Owner's Amendment of 4./27/2012.

Application/Control Number: 95/001,621, 90/011,011

Status of the claims

The following is the status of the claims with respect to the proposed Amendment:

With respect to proposed amendment, Claims 1-41 are pending. Of these, claim 1 is independent claim.

Claims 1-5 are amended.

Claims 6-41 are newly added.

Thus, claims 1-41 are reexamined in this proceeding.

References Relied Upon in the Request

For EP 90/011,011:
U.S. Patent 4,733,333 issued to Shibata (hereinafter "Shibata")

For IP 95/001,621:

1. United Kingdom Patent Application Publication No. 2309773 by

Uchida (hereinafter "Uchida").
2. United Kingdom Patent Application Publication No. 2309774 by Takahashi (hereinafter "Takahashi").
3. U.S. Patent No. 5,182,460 by Hussman (hereinafter "Hussman").

Application/Control Number: 95/001,621, 90/011,011
4. German Patent Application Publication No. 3110094 by Miskin et al (hereinafter "Miskin et al.").
5. German Patent Application Publication No. 3129891 by Leleve (hereinafter "Leleve").
6. U.S. Patent No. $6,305,823$ by Toda et al (hereinafter "Toda et al.").
7. U.S. Patent No: $6,193,398$ by Okuchi et al (hereinafter "Okuchi et al.").
8. U.S. Patent No. 5,909,949 by Gotoh (hereinafter "Gotoh").
9. U.S. Patent No. $4,954,933$ by Wassen et al (hereinafter "Wassen et al.").

Issues Raised

For EP 90/011,011:

Claims 1 and 3 are anticipated under 35 U.S.C. § 102(b) by Shibata.

For IP 95/001,621:

1. Claims $1,2,4$, and 5 are anticipated by Uchida under 35 U.S.C.
§ 102(b).
2. Claims 1, 2, 4, and 5 are anticipated by Takahashi under 35
U.S.C. § 102(b).
3. Claims $1,2,4$, and 5 are anticipated by Hussman under 35
U.S.C. § 102(b).
4. Claims 1 and 5 are anticipated by Miskin et al. under 35 U.S.C. § 102(b).
5. Claims 1 and 5 are anticipated by Leleve under 35 U.S.C. § 102(b).
6. Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. and Uchida under 35 U.S.C. § 103(a).
7. Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. and Takahashi under 35 U.S.C. § 103(a).
8. Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. and Hussman under 35 U.S.C. § 103(a).
9. Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. and Miskin et al. under 35 U.S.C. § 103(a).
10. Claims $1,2,4$, and 5 are unpatentable over the combination of Toda et al. and Leleve under 35 U.S.C. § 103(a).
11. Claims $1,2,4$, and 5 are unpatentable over the combination of Okuchi et al. and U̇chida under 35 U.S.C. § 103(a).
12. Claims $1,2,4$, and 5 are unpatentable over the combination of Okuchi et al. and Takahashi under 35 U.S.C. § 103(a).
13. Claims 1, 2, 4, and 5 are unpatentable over the combination of Okuchi et al. and Hussman under 35 U.S.C. § 103(a).
14. Claims $1,2,4$, and 5 are unpatentable over the combination of Okuchi et al. and Miskin et al. under 35 U.S.C. § 103(a).
15. Claims $1,2,4$, and 5 are unpatentable over the combination of Okuchi et al. and Leleve under 35 U.S.C. § 103(a).
16. Claims 1 to 5 are unpatentable over the combination of Gotoh and Uchida under 35 U.S.C. § 103(a).
17. Claims 1 to 5 are unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a).
18. Claims 1 to 5 are unpatentable over the combination of Gotoh and Hussman under 35 U.S.C. § 103(a).
19. Claims $1,2,3$, and 5 are unpatentable over the combination of Gotoh and Miskin et al. under 35 U.S.C. § 103(a).
20. Claims 1 to 5 are unpatentable over the combination of Gotoh and Leleve under 35 U.S.C. § 103(a).
21. Proposed claims $1,2,4$ to 6,9 to $13,20,22,24,25,37,38,41,42$, 44 and 45 are anticipated by Uchida under 35 U.S.C. § 102(b).
22. Proposed claims $1,2,4-6,9-11,17,18,20,21,22,24,25,28,33$, $34,37,38,41,42,44$ and 45 are anticipated by Takahashi under 35 U.S.C. § 102(b).
23. Proposed claims $1,2,4-6,9,10,37,38,41,42,44$ and 45 are anticipated by Hussman under 35 U.S.C. § 102(b).
24. Proposed claims $1,2,4-6,9-13,17,18,20-22,24,25,28,29,36-$

42, 44 and 45 are unpatentable over the combination of Toda et al. and Uchida under 35 U.S.C. § 103(a).
25. Proposed claims 1, 2, 4-6, 9-13, 17, 18, 20-22, 24, 25, 28, 29, 33, $34,36-42,44$ and 45 are unpatentable over the combination of Toda et al. and Takahashi under 35 U.S.C. § 103(a).
26. Proposed claims $1,2,4-6,9-13,17,18,20-22,24,25,28,29,36-$ 42, 44 and 45 are unpatentable over the combination of Toda et al. and Hussman under 35 U.S.C. § 103(a).
27. Proposed claims $1,2,4-6,9-13,15-18,20-22,24,25,28,29,33$, 35, 37-42, 44 and 45 are unpatentable over the combination of Okuchi et al. and Uchida under 35 U.S.C. § 103(a).
28. Proposed claims $1,2,4-6,9-13,15-18,20-22,24,25,28,29,33-35$, 37-42, 44 and 45 are unpatentable over the combination of Okuchi et al. and Takahashi under 35 U.S.C. § 103(a).
29. Proposed claims $1,2,4-6,9-13,15-18,20-22,25,28,29,33,35$, 37-42, 44 and 45 are unpatentable over the combination of Okuchi et al. and Hussman under 35 U.S.C. § 103(a).
30. Proposed claims $1-13,20,22,24-26,28,29,37,38$ and 41 to 45 are unpatentable over the combination of Gotoh and Uchida under 35 U.S.C. § 103(a).
31. Proposed claims 1-12, 14, 16-18, 20-22, 24-26, 28, 29, 33, 34, 37,

38 and 41-45 are unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a).
32. Proposed claims $1-13,24,26,28,29,37,38$ and 41-45 are unpatentable over the combination of Gotoh and Hussman under 35 U.S.C. § 103(a).
33. Proposed claims $17,19,21,23,26$ and $30-32$ are unpatentable in view of the combination of Uchida and the admitted prior art described in the '034 patent specification under 35 U.S.C. § 103(a).
34. Proposed claims 19, 23, 26 and 30-32 are unpatentable in view of the combination of Takahashi and the admitted Prior Art described in the '034 Patent specification under 35 U.S.C. § 103(a).
35. Proposed claims 17-21, 23-26 and 30-32 are unpatentable in view of the combination of Hussman and the admitted Prior Art described in the '034 Patent specification under 35 U.S.C. § 103(a).
36. Proposed claim 27 is unpatentable over the combination of Uchida and Wassen et al. under 35 U.S.C. § 103(a).
37. Proposed claim 27 is unpatentable over the combination of Takahashi and Wassen et al. under 35 U.S.C. § 103(a).
38. Proposed Claim 27 is unpatentable over the combination of Hussman and Wassen et al. under 35 U.S.C. § 103(a).
*** It is noted that the proposed grounds of rejections in Issues 3, 8, 13 and 18 that were found not to raise a SNQ in the Order will not be discussed further.
*** As explained in the Order of $6 / 23 / 2011$, it was agreed that Issues 1 2, 4-7, 9-12, 14-17 and 19-20 raised an SNQ for the original claims 1-5 under reexamination. However, this Office action is based on claims 1-5 under reexamination as amended on $4 / 27 / 2012$ and new claims 6-41 that accompanied the amendment (see MPEP 2221). Thus, Issues 1-2, 4-7, 9-12, 14-17 and 19-20 raised for the original claims 1-5 will not be evaluated.
*** Issues 21-38 raised for amended claims 1-5 and newly added claims 6-41 will be evaluated below.

Status of Previous Rejection in EP 90/011,011

The following rejection was previously made by the Office:

Claims 1 and 3 was previous rejected under 35 U.S.C. § 102(b) as being anticipated by Shibata.

This rejection is withdrawn.
Amended claim 1 now required: "two or more sensors ... including two or more of road speed, steering angle, pitch, and suspension height of the vehicle"

Application/Control Number: 95/001,621, 90/011,011
and " a controller ... in response to relatively small variations in the sensed conditions" in combination with "two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signat'. These features are not taught by Shibata. Shibata, is not seen to teach the amendatory subject matter of independent claim 1.

Claim 3 is dependent claim and therefore is distinguishable from Shibata at least the same reasons as its respective independent base claim 1, and add further claim limitation of its own.

Accordingly, the previous rejection of claims 1 and 3 under 35 U.S.C. § 102(b) as being anticipated by Shibata are withdrawn.

Rejections proposed in IP 95/001, 621

Within the scope of this reexamination proceeding, the request proposes the rejections in issues 21-38 for amended claims 1-5 and newly added claims 6-41 are discussed below.

Analysis

Issue 21: The proposed rejection of claims $1,2,4-6,9-13,20,22,24$, $25,37,38,41,42,44$ and 45 are anticipated by Uchida under 35 U.S.C. § 102(b) (Request at pages 48-50).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on 4/27/2012 and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42,44 and 45.

2/ The rejection of claims $1,2,4-6,9-13,20,22,24,25,37,38,41$ as anticipated by Uchida under 35 U.S.C $\S 102(b)$ were proposed by the requester in the request for reexamination, pages 48-50 and claim chart, pages 156-172, is NOT ADOPTED.

It is not agreed that consideration of Uchida presented a reasonable rejection with respect to the amended claims $1-41$ of the ' 034 patent. This rejection will not be applied against these claims for the following reason:

Independent claim 1 now required:
"two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle, said sensed conditions including at least steering angle and pitch of the vehicle;
a controller that is responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions; and

Application/Control Number: 95/001,621, 90/011,011
said two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal".

While Uchida does teach in Fig. 1 two or more sensors (i.e, 2, 7) that are each adapted to generate a signal (output of 2,7) that is representative of at least one of a plurality of sensed conditions of a vehicle (page 9, lines 13-23), the sensed conditions including at least steering angle and pitch of the vehicle (page 6 , lines $9-15$; page 9 , lines $28-33$; page 12 , line 27 - page 13 , line 15); and a controller (3) that is responsive to the two or more sensor signals (the output of 2,7) for generating at least one output signal (output of 3a, 3b). However, Uchida Fig. 1 only shows one actuator (4) connected to the headlight (5) to effect movement thereof in accordance with the output signal (the output of 3a, $3 b)$. Thus, the proposed rejection of claim 1 fails to persuasively show any teaching of Uchida corresponding to the feature of "two or more actuators that each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal" of claim 1. Therefore, the reference put forth in the request, Uchida, is not seen to teach the amendatory subject matter of independent claim 1.

Claims $2,4-6,9-13,20,22,24,25,37,38,41$ depend upon claim 1. Since the proposed rejection for claim 1 was not adopted; therefore, the proposed rejection for dependent claims $2,4-6,9-13,20,22,24,25,37,38,41$ are also not adopted.

Issue 22: The proposed rejection of claims $1,2,4-6,9-11,17,18,20-$ $22,24,25,28,33,34,37,38,41,42,44$ and 45 are anticipated by Takahashi under 35 U.S.C. § 102 (b) (Request at pages 50-52 and claim chart, pages 173192).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on 4/27/2012 and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42,44 and 45.

2/ The rejection of claims $1,2,4-6,8,15,17-19,23-24,28-29,31-32$, 35-37 (the number of claims as of the Amendment filed 4/27/2012) as anticipated by Takahashi under 35 U.S.C § 102(b) were proposed by the requester in the request for reexamination, pages 50-52 and claim chart, pages 173-192, is ADOPTED with modifications to the rationale in support thereof.

Claims 1, 2, 4-6, 8, 15, 17-19, 23-24, 28-29, 31-32, 35-37 are rejected under 35 U.S.C. § 102(b) as being anticipated by Takahashi.

Regarding claim 1: Takahashi discloses an automatic directional control system (1, Fig. 1) for a vehicle headlight (6), comprising:
"Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." (page 2, lines 6-13)
two or more sensors $(2,3)$ that are each adapted to generate a signal (output of 2 and 3) that is representative of at least one of a plurality of sensed conditions of a vehicle, said sensed conditions including at least steering angle and pitch of the vehicle;

Abstract

"The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." (page 5 , line 30 to page 6 , line 9) "The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the vehicle running condition detection device 3 is transmitted to the control device 4. As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." (page 6, lines 16-25)

a controller (4) that is responsive to said two or more sensor signals (output of 2 and 3) for generating at least one output signal (output of 4) only when said at least one of the two or_more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators (19, 19', Fig. 9) from being operated continuously or
unduly frequently in response to relatively small variations in the sensed

conditions; and

"Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." (page 8, lines 26-32)
"Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected." (page 9 , lines $16-34$)
said two or more actuators (19, 19', Fig. 9) each being adapted to be connected to the headlight (6) to effect movement thereof in accordance with said at least one output signal (the output signal of 4).
"A rudder resistance network 18, which corresponds to the above-mentioned drive control device $5 a$, is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19' which are disposed downstream thereof." (page 16, line 31 to page 17 , line 1)

Regarding claim 2: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors (2 and 3) further generate a signal that is representative of the road speed of the vehicle.
"The vehicle running condition detection device 4 is used to detect the running conditions of the vehicle (including the stopping or stationary condition thereof), while the detect signal of the
vehicle running condition detection device 3 is transmitted to the control device 4. As the vehicle running condition detection device 3 , for example, there can be used vehicle speed detection device which is one of the existing facilities of the vehicle. Also, every kind of information can be used, provided that it can be used to detect the running conditions of the vehicle." (page 6, lines 16-25)

Regarding claim 4: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors (2 and 3) further generates a signal that is representative of a rate of change of pitch of the vehicle.
"Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." (page 2, lines 6-13)

Regarding claim 5: The automatic directional control system defined in
claim 1 , wherein at least one of said two or more sensors (2 and 3) further generates a signal that is representative of the suspension height of the vehicle.
"Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." (page 2, lines 6-13)
"The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." (page 5 , line 30 to page 6 , line 9)

Regarding claim 6: The automatic directional control system defined in claim 1, wherein said two or more sensors include a first sensor (2) and a second sensor (3).

Regarding claim 8: The automatic directional control system defined in claim 6, wherein said first sensor (2) is physically separate from said second sensor (3).

Regarding claim 15: The automatic directional control system defined in claim 1, wherein the two or more actuators $(19,19)$ include the first actuator (19) that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.
> "In particular, the method I) is the simplest method that can change the illumination pattern of the lamp 6 within a vertical plane, in which the entire lamp is rotated about the rotary shaft thereof to thereby change the illumination angle of the lamp 6 with respect to a horizontal plane including the optical axis of the lamp. For example, in the method 1), there can be used a drive mechanism in which the right and left side surfaces of the lamp 6 are supported rotatably, and the rotary shaft of the lamp 6 is rotated directly by a drive source such as a motor or the like, or a member fixed to or formed integrally with the lamp 6 is rotated by the drive device 5 ." (page 11, lines 21 to 32)

Regarding claim 17: The automatic directional control system defined in claim 1 , wherein the two or more actuators $(19,19)$ include an electronically controlled mechanical actuator.
"A rudder resistance network 18, which corresponds to the above-mentioned drive control device $5 a$, is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19' which are disposed downstream thereof." (page 16, line 31 to page 17, line 1)
"As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see Japanese Patent Publication No. Hei. 63-166672)." (page 11, line 32 to page 12, line 3)

Regarding claim 18: The automatic directional control system defined in claim 1, wherein the two or more actuators (19, 19', Fig. 9) include a step motor.
"Besides this, according to the invention, the lamp or the component thereof can be driven or controlled by use of a stepping motor to thereby correct the illumination direction of the lamp." (page 18, lines 5-8)

Regarding claim 19: The automatic directional control system defined in claim 1, wherein the two or more actuators (19, 19', Fig. 9) include a servo motor.

[^8]Art Unit: 3992
Regarding claim 23: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a microprocessor (10, Fig. 9).
"When a turn-on switch 12 for the lamp 6 is put into operation, a supply voltage from a constant voltage supply circuit 13 and a reset signal from a reset circuit 14 are supplied to the microcomputer 10." (page 16, lines 1-4)

Regarding claim 24. The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller (10).

Regarding claim 28: The automatic directional control system defined in claim 1, wherein the automatic directional control system further includes memory (15, Fig. 9).
"Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control programs and data values therein) [sic] and an oscillator 16 used to generate a clock signal are additionally attached to the microcomputer 10." (page 16, lines 5-9)

Regarding claim 29: The automatic directional control system defined in claim 28 , wherein the memory includes non-volatile memory (15, Fig. 9).
"Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control programs and data values therein) [sic] and an oscillator 16 used to generate a clock signal are additionally attached to the microcomputer 10." (page 16, lines 5-9)

Regarding claim 31: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.
> "The vehicle posture detection device 2 is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." (page 5 , line 30 to page 6 , line 9)

Regarding claim 32. The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch sensor.
"Therefore, there is conventionally known a device which includes a device for detecting the posture of the vehicle by detecting the inclination and height of a vehicle body, and calculates the amount of variations in the inclination of the vehicle based on the information that is obtained by the detect device, thereby being able to adjust automatically the illumination direction of the lamp." (page 2, lines 6-13)
"The vehicle posture detection device is used to detect the posture of a vehicle (including the vertical inclination of the vehicle in the advancing direction thereof). For example, when there is used height detection device 7 which detects the height of the body of the vehicle, as shown in Fig. 2, there are available a method which measures a distance L between the height detection device 7 and a road surface G by use of detect waves such as ultrasonic waves, laser beams or the like, and a method in which the height detection device 7 detects the expansion and contraction amount x of a suspension S in order to detect the amount of variations in the vertical position of the axle of the vehicle." (page 5 , line 30 to page 6 , line 9)

Regarding claim 35: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such
that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.

Abstract

"Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." (page 8, lines 26-32) "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected." (page 9 , lines 16-34)

Regarding claim 36: The automatic directional control system defined in claim 1, wherein said controller (4) is configured to be responsive to said two or more sensor signals (2 and 3) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators (19, 19', Fig. 9) from being operated continuously in response to relatively small variations in the sensed conditions.

[^9]Art Unit: 3992
the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected." (page 9 , lines 16-34)

Regarding claim 37: The automatic directional control system defined in claim 1, wherein said controller (4) is configured to be responsive to said two or more sensor signals (2 and 3) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators from being operated unduly frequently in response to relatively small variations in the sensed conditions.
"Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." (page 8, lines 26 to 32)
"Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when the vehicle makes a sudden start or a sudden stop, preferably, a threshold value with respect to time may be set in detection of the road gradient and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a time equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected; or, a threshold value with respect to the running distance of the vehicle may be set and, only when the amount of variations in the detect signal of the vehicle posture detection device 2 exceeds a given reference value and such excessive state continues for a distance equal to or more than the threshold value, the illumination direction of the lamp 6 may be corrected." (page 9 , lines 16 to 34)

Issue 23: The proposed rejection of claims $1,2,4-6,9,10,37,38,41$, 42, 44 and 45 are anticipated by Hussman Under 35 U.S.C. § 102(b) (Request at pages 52-53, and claim chart, pages 193-202).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on 4/27/2012 and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42,44 and 45.

2/ The rejection of claims $1,2,4-6,9,10,37,38,41$ as anticipated by Hussman under 35 U.S.C § 102(b) were proposed by the requester in the request for reexamination, pages $52-53$ and claim chart, pages 193-202, is NOT ADOPTED.

It is not agreed that consideration of Toda in view of Hussman presented a reasonable rejection with respect to the amended claims 1-41 of the '034 patent. This rejection will not be applied against these claims for the following reason:

As pointed out on pages 52-53 of the request, and the claim chart, pages 193-202, the requester indicates that Hussman teaches a controller that is responsive to the sensor signal for performing the recited functions at col. 3, lines 30-39 and lines 49-61; col. 4, lines 6-12 and col. 6, lines 51-64.

However, these paragraphs do not teach the limitation "a controller that is responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated
continuously or unduly frequently in response to relatively small variations in the sensed conditions" as recited in amended claim 1.

Hussman merely teaches:
"The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor $S U$ is present, the curve-recognition device K switches the switchover device SE so that the first filter FI is coupled to the regulator R". (col. 3, lines 30-39)
"At the coupling between the switchover device $S E$ and the regulator R, a matching device $A E$ is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided". (col. 4, lines 6-12)

There is no evidence presented in these paragraphs that Hussman teaches a controller would include the same function as called for in claim 1. Thus, Hussman does not teach a key element of claim 1. The proposed rejection of amended claim 1 fails to persuasively show any teaching of Hussman corresponding to the feature of "the controller that is responsive to said two or more sensor signals for generating at least one output signal
only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at

least one first one of two or more actuators from being operated

 continuously or unduly frequently in response to relatively small variations in the sensed conditions" of claim 1. Moreover, the independent claim 1 now required: "two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal". However, Hussman only shows one actuator (R). Hence, the reference put forth in the request, Hussman, is not seen to teach the amendatory subject matter of independent claim 1.Claims $2,4-6,9,10,37,38,41$ depend upon claim 1 . Since the proposed rejection for claim 1 was not adopted; therefore, the proposed rejection for dependent claims $2,4-6,9,10,37,38$ and 41 are also not adopted.

Issue 24: The proposed rejection of claims $1,2,4-6,9-13,17,18,20-$ $22,24,25,28,29,36-42,44$ and 45 are unpatentable over the combination of Toda et al. and Uchida under 35 U.S.C. § 103(a) (Request at pages 53-56, and claim chart, pages 203-237).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on 4/27/2012 and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 44 and 45 .

2/ The rejection of claims $1,2,4-6,8-9,12,14,15,17-19,23-25,31-37$ as unpatentable over Toda in view of Uchida under 35 U.S.C § 103(a) were proposed by the requester in the request for reexamination, pages $53-56$ and claim chart, pages 203-237, is ADOPTED with modifications to the rationale in support thereof.

Claims $1,2,4-6,8-9,12,14,15,17-19,23-25,31-37$ are rejected under 35 U.S.C § 103(a) as being unpatentable over Toda in view of Uchida.

Regarding claim 1: Toda discloses an automatic directional control system (Fig. 1) for a vehicle headlight (1L, 1R) comprising:
two or more sensors $(12,14)$ that are each adapted to generate a signal (output of 12 and 14) that is representative of at least one of a plurality of
"The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3, lines 11 to 18)
a controller (CPU 16) that is responsive to said two or more sensor signals (output of 12 and 14) for generating at least one output signal (output of CPU 16);
"The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3 , lines 11 to 18)
and two or more_actuators (17L, 17R) each being adapted to be connected to the headlight ($1 \mathrm{~L}, 1 \mathrm{R}$) to effect movement thereof in accordance with said at least one output signal (the output signal of CPU 16).
"The actuators 17 (17L, 17R) each comprise a stepping motor $10(10 \mathrm{~L}, 1 \mathrm{OR})$ which includes an actuator main body and a motor driver 18 (18L, 18R).

The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3, lines 7-18)

Application/Control Number: 95/001,621, 90/011,011

However, Toda does not specifically disclose "only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions" as required in claim 1.

Uchida teaches a vehicle lamp illumination directional control device which detects both the posture and speed of a vehicle and adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction (page 1, lines 3-7). Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction.

It would have been obvious to one of ordinary skill in the art to have utilized the teachings of Uchida in Toda's automatic leveling device as a mere application of a known technique to a known device ready for improvement to yield predictable results. One of ordinary skill in the art would readily predict that the device would function to prevent excessive adjustment of the illumination direction, and, thus, the combination would function predictably.

Regarding claim 2: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors $(12,14)$ further generate a signal that is representative of the road speed of the vehicle.

Abstract

"The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3, lines 11-18)

Regarding claim 4: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors (12 and 14) further generates a signal that is representative of a rate of change of pitch of the vehicle.
"The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3, lines 11-18)

Regarding claim 5: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors (12 and 14) further generates a signal that is representative of the suspension height of the vehicle.
"The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3 , lines 11 to 18)

Regarding claim 6: The automatic directional control system defined in claim 1, wherein said two or more sensors include a first sensor (12) and a second sensor (14).

Regarding claim 8: The automatic directional control system defined in claim 6 , wherein said first sensor (12) is physically separate from said second sensor (14).

Regarding claim 9: The automatic directional control system defined in claim 1, further comprising one or more additional sensors (20L, 20R) for sensing one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, a suspension height, or a rate of change of suspension height of the vehicle.

[^10]addition, in a case where the driving of the motors $10 \mathrm{~L}, 10 \mathrm{R}$ is controlled based on the pitch angle 02 at the time of stable running, as is previously described, a flag is set. (col. 6, lines 30-51)

Regarding claim 12: The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors (20L, 20R) generate a signal that is representative of the rate of change of pitch of the vehicle.

Abstract

"In the actuator failure judgment control step 130, as will be described later, the control unit 16 determines based on signals from the actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$ whether or not there is a failure of driving of the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$. If no failure is detected, move to step 108 where the control unit 16 outputs signals to the motor drivers 18 (18L, 18R) so as to drive the motors 10 (10L, 10R) a magnitude corresponding to the pitch angle 0_{a} when the vehicle is at halt, and then return to step 100 . This simultaneously levels the left and right headlamps 1 (1L, 1R)" (col. 5, lines 1-5)

First, in step 132, a signal from the actuator failure detection sensor 20 R is compared with an allowable value set in advance, and from this it is determined whether or not the leveling motor 10R of the fight-hand side headlamp 1R fails. If $N O$ (no failure), move to step 136, where a signal from the actuator failure detection sensor 18 L is compared with an allowable value set in advance, and from this it is determined whether or not the leveling motor 10 L of the left-hand side headlamp 10L fails. If NO (no failure) then move to step 108, where the control circuit 16 outputs signals to the motor drivers $18 \mathrm{R}, 18 \mathrm{~L}$ so as to control the motors $10 \mathrm{R}, 10 \mathrm{~L}$ based on the pitch angle 01 when the vehicle is at a halt calculated in step 106 and stored in the RAM (or the pitch angle 02 at the time of stable running operated in step 128 and stored in the RAM), then returning to step 100. Thus, in a case where neither of the leveling motors 10L, 10R of the left and right headlamps is failing, the left and right headlamps are simultaneously leveled. In addition, in a case where the driving of the motors 10L, 10R is controlled based on the pitch angle 02 at the time of stable running, as is previously described, a flag is set. (col. 6, lines 30-51)

Regarding claim 14: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured to include the first actuator (17L) connected to the headlight to effect movement thereof in a first direction and a second actuator (17R) connected to the
headlight to effect movement thereof in a second direction different form the first direction.

Regarding claim 15: The automatic directional control system defined in claim 1 , wherein the two or more actuators (17L, 17R) include the first actuator (19) that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.

Abstract

"In FIG. 1, reference number 1 (1L, 1R) denotes a pair of left and fight headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 1 OR) which includes an actuator main body and a motor driver 18 (18L, 18R)." (col. 2, line 65 to col. 3, line 10)

Regarding claim 17: The automatic directional control system defined in claim 1, wherein the two or more actuators (17L, 17R) include an electronically controlled mechanical actuator.
"In FIG. 1, reference number 1 (1L, 1R) denotes a pair of left and fight headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 1 OR) which includes an actuator main body and a motor driver 18 (18L, 18R)." (col. 2, line 65 to col. 3, line 10)
"The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14, judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a
magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16." (col. 3, lines 18 to 24)

Regarding claim 18: The automatic directional control system defined in claim 1, wherein the two or more actuators (17L, 17R) include a step motor.
"In FIG. 1, reference number 1 (1L, 1R) denotes a pair of left and fight headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 1 OR) which includes an actuator main body and a motor driver 18 (18L, 18R)." (col. 2, line 65 to col. 3, line 10)

Regarding claim 19: The automatic directional control system defined in
claim 1, wherein the two or more actuators (17L, 17R) include a servo motor.
"In FIG. 1, reference number 1 (1L, 1R) denotes a pair of left and fight headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 1 OR) which includes an actuator main body and a motor driver 18 (18L, 18R)." (col. 2, line 65 to col. 3, line 10)
"The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16." (col. 3, lines 18-24)

Regarding claim 23: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a microprocessor (CPU 16).
"The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14, judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16." (col. 3, lines 18 to 24)

Regarding claim 24. The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller (CPU 16).

The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14, judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16." (col. 3, lines 18 to 24)

Regarding claim 25: The automatic directional control system defined in claim 1, wherein the automatic directional control system further includes at least one position feedback sensor (20L, 20R) capable of providing a position feedback signal (feedback from 10 to 16) associated with at least one of the two or more actuators (17L, 17R).

Regarding claim 31: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.
> "When a two-sensor system is used in which vehicle height sensors are provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the vehicle." (col. 3 , lines 48 to 53)

Regarding claim 32. The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch sensor.

> "When a two-sensor system is used in which vehicle height sensors are provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the vehicle." (col. 3 , lines 48 to 53)

Regarding claim 33: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.

[^11]caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of 30 km / h or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 ($18 \mathrm{~L}, 18 \mathrm{R}$) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on." (col. 4, lines 1-25)

Regarding claim 34: The automatic directional control system defined in
claim 1, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.

Abstract

"But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of 30 km / h or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on." (col. 4 , lines 1 to 25)

Regarding claim 35: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.

Abstract

"But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of 30 km / h or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 $(18 \mathrm{~L}, 18 \mathrm{R})$ to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on." (col. 4, lines 1-25)

Regarding claim 36: The automatic directional control system defined in claim 1, wherein said controller (CPU16) is configured to be responsive to said two or more sensor signals (the output of 12 and 14) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators (17L, 17R) from being operated continuously in response to relatively small variations in the sensed conditions (Toda in combination with Uchida: Uchida teaches that the vehicle is judged to be in acceleration or deceleration running condition by determining if a

Regarding claim 37: The automatic directional control system defined in claim 1, wherein said controller (4) is configured to be responsive to said two or more sensor signals (2 and 3) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators from being operated unduly frequently in response to relatively small variations in the sensed conditions (Toda in combination with Uchida: Uchida teaches that the vehicle is judged to be in acceleration or deceleration running condition by determining if a calculated value of acceleration is more or less than a reference value. Page 10 , line 26 to page 11 , line 6).

Application/Control Number: 95/001,621, 90/011,011

Issue 25: The proposed rejection of claims $1,2,4-6,9-13,17,18,20-$ $22,24,25,28,29,33,34,36-42,44$ and 45 are unpatentable over the combination of Toda et al. and Takahashi under 35 U.S.C. § 103(a) (Request at pages 56-58, and claim chart, pages 238-272).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on 4/27/2012 and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42,44 and 45 .

2/ The rejection of claims $1,2,4-6,8-9,12,14,15,17-19,23-25,28-29$, 31-37 as unpatentable over Toda in view of Takahashi under 35 U.S.C § 103(a) were proposed by the requester in the request for reexamination, pages 56-58 and claim chart, pages 238-272, is ADOPTED with modifications to the rationale in support thereof.

Claims $1,2,4-6,8-9,12,14,15,17-19,23-25,28-29,31-37$ are rejected under 35 U.S.C § 103(a) as unpatentable over Toda in view of Takahashi.

Regarding claim 1: Toda discloses an automatic directional control system (Fig. 1) for a vehicle headlight (1L, 1R) comprising:
two or more sensors $(12,14)$ that are each adapted to generate a signal (output of 12 and 14) that is representative of at least one of a plurality of

Art Unit: 3992
sensed conditions of a vehicle, said sensed conditions including at least steering angle and pitch of the vehicle;
"The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3, lines 11 to 18)
a controller (CPU 16) that is responsive to said two or more sensor signals (output of 12 and 14) for generating at least one output signal (output of CPU 16);
> "The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headiamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$, a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3, lines 11 to 18)

and two or more actuators (17L, 17R) each being adapted to be connected to the headlight ($1 \mathrm{~L}, 1 \mathrm{R}$) to effect movement thereof in accordance with said at least one output signal (the output signal of CPU 16).
"The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 1 OR) which includes an actuator main body and a motor driver 18 (18L, 18R).

The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3, lines 7-18)

However, Toda does not specifically disclose "only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions" as required in claim 1.

Takahashi teaches a threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted (page 9 , line 16 to page 10 , line 3).

It would have been obvious to one of ordinary skill in the art to have utilized the teachings of Takahashi in Toda's automatic leveling device as a mere application of a known technique to a known device ready for improvement to yield predictable results. One of ordinary skill in the art would readily predict that the device would function to prevent the adjustment of the illumination direction when the vehicle makes sudden stops or starts, and, thus, the combination would function predictably.

Regarding claim 2: The automatic directional control system defined in claim 1 , wherein at least one of said two or more sensors $(12,14)$ further generate a signal that is representative of the road speed of the vehicle.
"The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 R)$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3 , lines 11-18)

Regarding claim 4: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors (12 and 14) further generates a signal that is representative of a rate of change of pitch of the vehicle.
"The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 \mathrm{~L}, 1 \mathrm{R})$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11, vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3, lines 11-18)

Regarding claim 5: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors (12 and 14) further generates a signal that is representative of the suspension height of the vehicle.
"The headlamp automatic leveling device includes the actuators 17 (17L, 17R) for tilt adjusting respective optical axes L of the headlamps $1(1 L, 1 R)$ vertically, actuator failure detection sensors 20 (20L, 20R), a headlamp switch-on switch 11 , vehicle speed sensors 12 as a vehicle speed detection means for detecting the speed of a vehicle, vehicle height sensors 14 constituting a part of a vehicle pitch angle detection means, a CPU 16 as a control unit." (col. 3, lines 11-18)

Regarding claim 6: The automatic directional control system defined in claim 1, wherein said two or more sensors include a first sensor (12) and a second sensor (14).

Regarding claim 8: The automatic directional control system defined in claim 6, wherein said first sensor (12) is physically separate from said second sensor (14).

Regarding claim 9: The automatic directional control system defined in claim 1, further comprising one or more additional sensors (20L, 20R) for sensing one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, a suspension height, or a rate of change of suspension height of the vehicle.

[^12]addition, in a case where the driving of the motors 10L, 10R is controlled based on the pitch angle 02 at the time of stable running, as is previously described, a flag is set. (col. 6, lines 30-51)

Regarding claim 12: The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors (20L, 20R) generate a signal that is representative of the rate of change of pitch of the vehicle.

Abstract

"In the actuator failure judgment control step 130, as will be described later, the control unit 16 determines based on signals from the actuator failure detection sensors 20 (20L, 20R) whether or not there is a failure of driving of the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$. If no failure is detected, move to step 108 where the control unit 16 outputs signals to the motor drivers 18 (18L, 18R) so as to drive the motors 10 (10L, 10R) a magnitude corresponding to the pitch angle 0_{a} when the vehicle is at halt, and then return to step 100. This simultaneously levels the left and right headlamps 1 (1L, 1R)" (col. 5, lines 1-5)

First, in step 132, a signal from the actuator failure detection sensor 20 R is compared with an allowable value set in advance, and from this it is determined whether or not the leveling motor 10R of the fight-hand side headlamp 1R fails. If NO (no failure), move to step 136, where a signal from the actuator failure detection sensor 18L is compared with an allowable value set in advance, and from this it is determined whether or not the leveling motor 10L of the left-hand side headlamp 10 L fails. If NO (no failure) then move to step 108, where the control circuit 16 outputs signals to the motor drivers $18 \mathrm{R}, 18 \mathrm{~L}$ so as to control the motors $10 \mathrm{R}, 10 \mathrm{~L}$ based on the pitch angle 01 when the vehicle is at a halt calculated in step 106 and stored in the RAM (or the pitch angle 02 at the time of stable running operated in step 128 and stored in the RAM), then returning to step 100. Thus, in a case where neither of the leveling motors 10L, 10R of the left and right headlamps is failing, the left and right headlamps are simultaneously leveled. In addition, in a case where the driving of the motors 10L, 10R is controlled based on the pitch angle 02 at the time of stable running, as is previously described, a flag is set. (col. 6, lines 30-51)

Regarding claim 14: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured to include the first actuator (17L) connected to the headlight to effect movement thereof in a first direction and a second actuator (17R) connected to the
headlight to effect movement thereof in a second direction different form the first direction.

Regarding claim 15: The automatic directional control system defined in claim 1, wherein the two or more actuators (17L, 17R) include the first actuator (19) that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.
"In FIG. 1, reference number 1 (1L, 1R) denotes a pair of left and fight headiamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 1 OR) which includes an actuator main body and a motor driver 18 (18L, 18R)." (col. 2, line 65 to col. 3 , line 10)

Regarding claim 17: The automatic directional control system defined in claim 1 , wherein the two or more actuators (17L, 17R) include an electronically controlled mechanical actuator.
"In FIG. 1, reference number 1 (1L, 1R) denotes a pair of left and fight headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 1 OR) which includes an actuator main body and a motor driver 18 (18L, 18R)." (col. 2, line 65 to col. 3, line 10)
"The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14, judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a

Art Unit: 3992

magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16." (col. 3, lines 18-24)

Regarding claim 18: The automatic directional control system defined in claim 1, wherein the two or more actuators (17L, 17R) include a step motor.
"In FIG. 1, reference number 1 (1L, 1R) denotes a pair of left and fight headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S, a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 (10L, 1 OR) which includes an actuator main body and a motor driver 18 (18L, 18R)." (col. 2, line 65 to col. 3, line 10)

Regarding claim 19: The automatic directional control system defined in
claim 1, wherein the two or more actuators (17L, 17R) include a servo motor.

[^13]Regarding claim 23: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a microprocessor (CPU 16).

> "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14 , judges whether the headlamps are switched on or off, and output to motor drivers $18(18 \mathrm{~L}, 18 \mathrm{R})$ a control signal for driving the motors 10 (10L, 10 R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU $16 . "$ (col. 3, lines $18-24$)

Regarding claim 24. The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller (CPU 16).

The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14, judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16." (col. 3, lines 18-24)

Regarding claim 25: The automatic directional control system defined in claim 1, wherein the automatic directional control system further includes at least one position feedback sensor (20L, 20R) capable of providing a position feedback signal (feedback from 10 to 16) associated with at least one of the two or more actuators (17L, 17R).

Regarding claim 28: The automatic directional control system defined in claim 1, wherein the automatic directional control system further includes memory (Takahashi, 15, Fig. 9).
"Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control programs and data values therein) [sic] and an oscillator 16 used to generate a clock signal are additionally attached to the microcomputer 10." (page 16, lines 5-9)

Regarding claim 29: The automatic directional control system defined in claim 28, wherein the memory includes non-volatile memory (Takahashi, 15, Fig. 9).
"Also, a non-volatile memory 15 (such as an electrically erasable EEPROM, or the like) for storing control programs and data values therein) [sic] and an oscillator 16 used to generate a clock signal are additionally attached to the microcomputer 10 ." (page 16 , lines 5-9)

Regarding claim 31: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.

[^14]Regarding claim 32. The automatic directional control system defined in
claim 1, wherein the automatic directional control system is configured such
that the pitch of the vehicle is capable of being determined by a pitch sensor.

Abstract

"When a two-sensor system is used in which vehicle height sensors are provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the vehicle." (col. 3, lines 48-53)

Regarding claim 33: The automatic directional control system defined in claim. 1, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.

Abstract

"But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of 30 km / h or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) only when the lighting switch is switched on." (col. 4 , lines 1-25)

Regarding claim 34: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such
that the controller is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.

Abstract

"But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of 30 km / h or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 (18L, 18R) to drive the motors $10(10 \mathrm{~L}, 10 \mathrm{R})$ only when the lighting switch is switched on." (col. 4 , lines 1-25)

Regarding claim 35: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.
> "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is caused by irregularities on the road surface or the like, the vehicle cannot run at a speed of 30 km / h or higher, and in order to eliminate an abrupt acceleration causing the vehicle posture to be changed, it is proper to limit the acceleration to $0.5 \mathrm{~m} / \mathrm{s} 2$ or lower. Therefore, an abrupt detection
of an abnormal value and any influence from the detection of an abnormal value are impeded by permitting calculation of a pitch angle of the vehicle to occur only on condition that the state in which the vehicle speed is equal to or higher than $30 \mathrm{~km} / \mathrm{h}$ and the acceleration is equal to or lower than $0.5 \mathrm{~m} / \mathrm{s} 2$ continues for three seconds or longer. In addition, the CPU 16 determines whether the lighting switch is switched on or off, and it outputs a signal to the motor drivers 18 ($18 \mathrm{~L}, 18 \mathrm{R}$) to drive the motors 10 (10L, 10R) only when the lighting switch is switched on." (col. 4, lines 1-25)

Regarding claim 36: The automatic directional control system defined in claim 1, wherein said controller (CPU16) is configured to be responsive to said two or more sensor signals (the output of 12 and 14) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators (17L, 17R) from being operated continuously in response to relatively small variations in the sensed conditions (Takahashi teaches the threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. The threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted (page 9 , line 16 to page 10 , line 3)).

Regarding claim 37: The automatic directional control system defined in claim 1, wherein said controller (4) is configured to be responsive to said two or
more sensor signals (2 and 3) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators from being operated unduly frequently in response to relatively small variations in the sensed conditions (Takahashi teaches the threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. The threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted (page 9, line 16 to page 10 , line 3)).

Issue 26: The proposed rejection of claims $1,2,4-6,9-13,17,18,20-$ $22,24,25,28,29,36-42,44$ and 45 are unpatentable over the combination of Toda and Hussman Under 35 U.S.C. § 103(a) (Request at pages 58-61, and claim chart, pages 273-302).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on $4 / 27 / 2012$ and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42,44 and 45.

Application/Control Number: 95/001,621, 90/011,011

2/ The rejection of claims $1,2,4-6,9-13,17,18,20-22,24,25,28,29$, 36-41 as unpatentable over the combination of Toda and Hussman under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages $58-61$ and claim chart, pages $273-302$, is NOT ADOPTED.

It is not agreed that consideration of Toda in view of Hussman presented a reasonable rejection with respect to the amended claims 1-41 of the '034 patent. This rejection will not be applied against these claims for the following reason: Particularly, without the additional teachings of Hussman, Toda is not presented in a different light than it was presented in the prosecution history. As indicated above issue 23 , Hussman does not specifically include the teachings identified "a controller ... only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions" as having the significance of the reasonable likelihood of prevailing with respect to the amended claim 1 .

Since Toda does not clearly suggest "... only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from
being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions", and Hussman which is relied upon as the secondary reference for the teaching, does not also clearly demonstrate the details of "...only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions". Neither Toda nor Hussman teaches a key element of claim 1.

Hussman only teaches:
"The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter FI is coupled to the regulator $\mathrm{R}^{\prime \prime}$. (col. 3, lines 30-39)
"At the coupling between the switchover device $S E$ and the regulator R, a matching device $A E$ is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided". (col. 4, lines 6-12)

Therefore, the combination of Toda in view of Hussman do not result the lacking limitation "... only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the

Application/Control Number: 95/001,621, 90/011,011
sensed conditions" as called for in claim 1. Thus, the rejection based on Toda in view of Hussman for claim 1 is not adopted.

Claims 2, 4-6, 9-13, 17, 18, 20-22, 24, 25, 28, 29, 36-4 depend upon claim 1. Since the proposed rejection for claim 1 was not adopted; therefore, the proposed rejection for dependent claims $2,4-6,9-13,17,18,20-22,24,25$, $28,29,36-41$ are also not adopted.

Issue 27: The proposed rejection of claims $1,2,4-6,9-13,15-18,20-22$, $24,25,28,29,33,35,37-42,44$ and 45 are unpatentable over the combination of Okuchi et al. and Uchida under 35 U.S.C. § 103(a) (Request at pages 61-63, and claim chart, pages 303-344).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on 4/27/2012 and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42,44 and 45 .

2/ The rejection of claims $1,2,4-6,8-10,12-15,17-19,23-24,28-37$ are unpatentable over the combination of Okuchi et al. and Uchida under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages 61-63, and claim chart, pages 303-344, is ADOPTED with modifications to the rationale in support thereof.

Claims $1,2,4-6,8-10,12-15,17-19,23-24,28-37$ are rejected under 35
U.S.C. § 103(a) as being unpatentable over the combination of Okuchi et al. and Uchida.

Regarding claim 1: Okuchi discloses an automatic directional control system (Fig. 1) for a vehicle headlight (30L, 30R) comprising:
"In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor." (Abstract)
two or more sensors (11F, 11R) that are each adapted to generate a signal (output of $11 \mathrm{~F}, 11 \mathrm{R}$) that is representative of at least one of a plurality of sensed conditions of a vehicle, said sensed conditions including at least steering angle and pitch of the vehicle;
"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." , (col. 4, line 58 to col. 5 , line 8)
a controller (20) that is responsive to said two or more sensor signals (output of $11 \mathrm{~F}, 11 \mathrm{R}$) for generating at least one output signal (output of 20);

Application/Control Number: 95/001,621, 90/011,011
and two or more actuators (35L, 35R) each being adapted to be connected to the headlight (30L, 30R) to effect movement thereof in accordance with said at least one output signal (the output signal of 20).

However, Okuchi does not specifically disclose "only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions" as required in claim 1.

Uchida teaches a vehicle lamp illumination directional control device which detects both the posture and speed of a vehicle and adjusts the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction (page 1, lines 3-7). Uchida discloses that signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction.

It would have been obvious to one of ordinary skill in the art to have utilized the teachings of Uchida in Okuchi's automatic adjusting system as a mere application of a known technique to a known device ready for improvement to yield predictable results. One of ordinary skill in the art would readily predict that the device would function to detect both the posture and speed of a vehicle and adjusts the illumination direction of a vehicle lamp so
that the illumination direction can always be kept in a predetermined direction, and, thus, the combination would function predictably.

Regarding claim 2: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors (11F, 11R) further generate a signal that is representative of the road speed of the vehicle.

Abstract

"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." (col. 4, line 58 to col. 5, line 8)

"FIG. 20 is a timing diagram showing a transition state of the rear height value measured by the height sensor 11 according to a change in the vehicle speed $[\mathrm{km} / \mathrm{h}]$ when the vehicle changes from the state where the vehicle is stopped on a flat place, an acceleration mode, and to a constant speed driving mode". (col. 15, lines 16-21)

Regarding claim 4: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors (11F, 11R) further generates a signal that is representative of a rate of change of pitch of the vehicle.

[^15]between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." (col. 4, line 58 to col. 5, line 8)
"On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2$ [$\mathrm{m} / \mathrm{s} 2$]), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." (col. 6, lines 6 to 14)

Regarding claim 5: The automatic directional control system defined in

claim 1, wherein at least one of said two or more sensors (11F, 11R) further
generates a signal that is representative of the suspension height of the vehicle.
"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." (col. 4, line 58 to col. 5, line 8)
"FIG. 19 is a timing diagram showing a transition state of a displacement [mm] in each of the rear height value measured by the height sensor 11 according to a change in the vehicle speed [km], a measured front height based on the measured rear height, and a measured front height for comparison. The vehicle speed changes in accordance with the order of a state where the vehicle is stopped riding on a block or the like, acceleration, constant speed driving, deceleration, and a state where the vehicle is stopped on a flat place.

In FIG. 19, in the initial vehicle stop mode, a state where the rear suspension contracts when the vehicle is stopped riding on a block or the like is sensed and the measured rear height is obtained. After that, the front height value is calculated based on the displacement in the measured rear height, so that the measured front height includes an error and is largely deviated

Application/Control Number: 95/001,621, 90/011,011
from the actual measured front height. An error accordingly occurs in calculation of the pitch angle of the vehicle body. When the optical axis direction of the headlight 30 is adjusted based on the pitch angle, the direction is deviated from a proper angle and glare may be given to an oncoming vehicle or the like." (col. 14, line 61 to col. 15, line 3)

Regarding claim 6: The automatic directional control system defined in claim 1, wherein said two or more sensors include a first sensor (11F) and a second sensor (11R).

Regarding claim 8: The automatic directional control system defined in claim 6, wherein said first sensor (11F) is physically separate from said second sensor (11R).

Regarding claim 9: The automatic directional control system defined in claim 1 , further comprising one or more additional sensors $(12,13,14)$ for sensing one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, a suspension height, or a rate of change of suspension height of the vehicle.
'The various sensor signals from the wheel speed sensor 12 and the like are used for determining the mode of the vehicle, such as stop mode, acceleration mode, deceleration mode, and constant speed mode" (col. 5, lines 20-23).
"The various sensor signals from the vehicle speed sensor 12, the right-wheel speed sensor 13 , the left-wheel speed sensor 14, and the like are used to determine a driving mode of the vehicle such as stop mode, acceleration or deceleration mode, and constant speed driving (stable driving) mode, and to determine whether the vehicle is in a tuning state or not." (col. 15, lines 4955)

Regarding claim 10: The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors (12, 13, 14, Fig. 18) generate a signal that is representative of the rate of change of road speed of the vehicle.
'The various sensor signals from the wheel speed sensor 12 and the like are used for determining the mode of the vehicle, such as stop mode, acceleration mode, deceleration mode, and constant speed mode" (col. 5, lines 20-23).
"The various sensor signals from the vehicle speed sensor 12 , the right-wheel speed sensor 13 , the left-wheel speed sensor 14, and the like are used to determine a driving mode of the vehicle such as stop mode, acceleration or deceleration mode, and constant speed driving (stable driving) mode, and to determine whether the vehicle is in a tuning state or not." (col. 15, lines 49-55)

Regarding claim 12: The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors (12, 13, 14) generate a signal that is representative of the rate of change of pitch of the vehicle.
'The various sensor signals from the wheel speed sensor 12 and the like are used for determining the mode of the vehicle, such as stop mode, acceleration mode, deceleration mode, and constant speed mode" (col. 5, lines 20-23).
"The various sensor signals from the vehicle speed sensor 12, the right-wheel speed sensor 13, the left-wheel speed sensor 14, and the like are used to determine a driving mode of the vehicle such as stop mode, acceleration or deceleration mode, and constant speed driving (stable driving) mode, and to determine whether the vehicle is in a tuning state or not." (col. 15, lines 4955)

Regarding claim 13: The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors $(12,13,14)$ generate a signal that is representative of a suspension height of the vehicle.
'The various sensor signals from the wheel speed sensor 12 and the like are used for determining the mode of the vehicle, such as stop mode, acceleration mode, deceleration mode, and constant speed mode" (col. 5, lines 20-23).
"The various sensor signals from the vehicle speed sensor 12, the right-wheel speed sensor 13, the left-wheel speed sensor 14, and the like are used to determine a driving mode of the vehicle such as stop mode, acceleration or deceleration mode, and constant speed driving (stable driving) mode, and to determine whether the vehicle is in a tuning state or not." (col. 15, lines 4955)

Regarding claim 14: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured to include the first actuator (35L) connected to the headlight to effect movement thereof in a first direction and a second actuator (35R) connected to the headlight to effect movement thereof in a second direction different form the first direction.

Regarding claim 15: The automatic directional control system defined in claim 1, wherein the two or more actuators (35L, 35R) include the first actuator (35L) that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.
"As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow.
The movable member 34 is driven in the back and forth directions by the actuator 35 L (35R) so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) ea which will be described hereinlater, thereby adjusting the optical axis direction of the headlight $30 \mathrm{~L}(30 \mathrm{R})$. The optical axis direction of the headlight 30L (30R) is initially set on the assumption that one driver is on the vehicle." (col. 5, lines 24-40)

Regarding claim 17: The automatic directional control system defined in claim 1 , wherein the two or more actuators (35L, 35R) include an electronically controlled mechanical actuator.
"The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." (col. 5 , lines 11 to 15)
"As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow." (col. 5, lines 24 to 33)

Regarding claim 18: The automatic directional control system defined in claim 1 , wherein the two or more actuators (35L, 35R) include a step motor.
"The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." (col. 5, lines 11 to 15).
"As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow." (col. 5, lines 24 to 33)

Regarding claim 19: The automatic directional control system defined in claim 1 , wherein the two or more actuators (35L, 35R) include a servo motor.

Application/Control Number: 95/001,621, 90/011,011
Art Unit: 3992
" "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25, and a bus line 26 connecting these elements." (col. 5, lines 11-15)
"As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator 35 L (35R) such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow." (col. 5, lines 2433)

Regarding claim 23: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller (20) includes a microprocessor (CPU 21).
"The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25, and a bus line 26 connecting these elements." (col. 5, lines 11-15)

Regarding claim 24. The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller (20) includes a programmable electronic controller.
"The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." (col. 5, lines 11-15)

Regarding claim 28: The automatic directional control system defined in claim 1, wherein the automatic directional control system (20) further includes memory (EEPROM 29, Fig. 8).
"In this embodiment, as shown by a dotted line in FIG. 8, a non-volatile rewritable memory such as an EEPROM 29 is provided as a storing medium in which the system error ' information is stored in advance and the EEPROM 29 is housed in the ECU 20. The EEPROM 29 may be externally connected to the ECU 20." (col. 12, lines 12-18)

Regarding claim 29: The automatic directional control system defined in claim 28, wherein the memory includes non-volatile memory (EEPROM 29, Fig. 8).
"In this embodiment, as shown by a dotted line in FIG. 8, a non-volatile rewritable memory such as an EEPROM 29 is provided as a storing medium in which the system error ' information is stored in advance and the EEPROM 29 is housed in the ECU 20. The EEPROM 29 may be externally connected to the ECU 20." (col. 12, lines 12-18)

Regarding claim 30: The automatic directional control system defined in claim 28, wherein the memory (EEPROM 29, Fig. 8) is configured to store predetermined reference position associated with the headlight.
> "In this embodiment, as shown by a dotted line in FIG. 8, a non-volatile rewritable memory such as an EEPROM 29 is provided as a storing medium in which the system error ' information is stored in advance and the EEPROM 29 is housed in the ECU 20. The EEPROM 29 may be externally connected to the ECU 20 . The system error information denotes factors exerting influence on the calculation of the inclination angle, such as an installation error of the vehicle 0 height sensor 11 to the vehicle, an error of spring constants of the front and rear suspensions, a weight error due to variation in the specifications of the vehicle, a positional error of the center of. gravity, and the like. The control routine shown in FIG. 14 is repeatedly executed every 5 predetermined time by the CPU 21." (col. 12, lines 12-26)

Regarding claim 31: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such
that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.

Abstract

"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." (col. 4, line 58 to col. 5 , line 8)

Regarding claim 32. The automatic directional control system defined in
claim 1, wherein the automatic directional control system is configured such
that the pitch of the vehicle is capable of being determined by a pitch sensor.

Abstract

"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." (col. 4, line 58 to col. 5, line 8)

In the diagram of FIG. 3, the filter A corresponding to the stop mode is used when the vehicle speed V is lower than a few km / h (for example, $2[\mathrm{kin} / \mathrm{hi}$). When the vehicle is stopped, a large change in the pitch angle due to loading, unloading, or the like is expected. No filtering or very weak filtering is therefore performed so that the actuator is 5 allowed to respond quickly to the change in the pitch angle
On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, 2 $[\mathrm{kin} / \mathrm{hi}$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as,--2 [$\mathrm{m} / \mathrm{s} 2$]), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak
filtering is performed so that the actuator is allowed to respond quickly to the chance in the pitch angle." (col. 5, line 66-col. 6, line 14)

Regarding claim 33: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller (20) is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.
"When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." (col. 6, lines 29-38)
"In the diagram of FIG. 3, the filter A corresponding to the stop mode is used when the vehicle speed V is lower than a few km / h (for example, 2 [$\mathrm{kin} / \mathrm{hi}$). When the vehicle is stopped, a large change in the pitch angle due to loading, unloading, or the like is expected. No filtering or very weak filtering is therefore performed so that the actuator is 5 allowed to respond quickly to the change in the pitch angle.
On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, 2 $[\mathrm{kin} / \mathrm{hi}$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as,--2 [$\mathrm{m} / \mathrm{s} 2$]), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." (col. 5, line 66-col. 6, line 14)

Regarding claim 34: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller (20) is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency
changes in the suspension height of the vehicle that are a result of bumps in a
road.
"When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." (col. 6, lines 29-38)
"In the diagram of FIG. 3, the filter A corresponding to the stop mode is used when the vehicle speed V is lower than a few km / h (for example, $2[\mathrm{kin} / \mathrm{hi}$). When the vehicle is stopped, a large change in the pitch angle due to loading, unloading, or the like is expected. No filtering or very weak filtering is therefore performed so that the actuator is 5 allowed to respond quickly to the change in the pitch angle. On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, 2 $[\mathrm{kin} / \mathrm{hi}$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as,$--2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." (col. 5, line 66-col. 6, line 14)

Regarding claim 35: The automatic directional control system defined in
claim 1, wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.
"When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." (col. 6, lines 29-38)

Application/Control Number: 95/001,621, 90/011,011

Regarding claim 36: The automatic directional control system defined in claim 1, wherein said controller (20) is configured to be responsive to said two or more sensor signals (11F, 11R) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators (35L, 35R) from being operated continuously in response to relatively small variations in the sensed conditions (Uchida teaches adjusting the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction (page 1 , lines 3-7) and the signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction).

Regarding claim 37: The automatic directional control system defined in claim 1, wherein said controller (20) is configured to be responsive to said two or more sensor signals (11F, 11R) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators from being operated unduly frequently in response to relatively small variations in the sensed conditions (Uchida teaches adjusting the illumination direction of a vehicle lamp so that the illumination direction can always be kept in a predetermined direction (page 1, lines 3-7) and the
signals to the drive means are over-ridden when acceleration is not above a given threshold, such as when the vehicle is running over a rough road, to prevent excessive adjustment of the illumination direction).

Issue 28: The proposed rejection of claims $1,2,4-6,9-13,15-18,20-22$, $24,25,28,29,33-35,37-42,44$ and 45 are unpatentable over the combination of Okuchi et al. and Takahashi under 35 U.S.C. § 103(a) (Request at pages 6366 , and claim chart, pages $345-387$).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on 4/27/2012 and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42,44 and 45 .

2/ The rejection of claims $1,2,4-6,8-10,12-15,17-19,23-24,28-37$ are unpatentable over the combination of Okuchi et al. and Takahashi under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages 63-66, and claim chart, pages 345-387, is ADOPTED with modifications to the rationale in support thereof.

Claims 1, 2, 4-6, 8-10, 12-15, 17-19, 23-24, 28-37 are rejected under 35
U.S.C. § 103(a) as being unpatentable over the combination of Okuchi et al. and Takahashi.

Regarding claim 1: Okuchi discloses an automatic directional control system (Fig. 1) for a vehicle headlight (30L, 30R) comprising:
"In a vehicle headlight optical axis automatic adjusting system, a pitch angle in the longitudinal direction of a vehicle is calculated from a signal of a height sensor." (Abstract)
two or more sensors (11F, 11R) that are each adapted to generate a signal (output of $11 \mathrm{~F}, 11 \mathrm{R}$) that is representative of at least one of a plurality of sensed conditions of a vehicle, said sensed conditions including at least steering angle and pitch of the vehicle;
"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." , (col. 4, line 58 to col. 5 , line 8)
a controller (20) that is responsive to said two or more sensor signals (output of $11 \mathrm{~F}, 11 \mathrm{R}$) for generating at least one output signal (output of 20);
and two or more_actuators (35L, 35R) each being adapted to be connected to the headlight (30L, 30R) to effect movement thereof in accordance with said at least one output signal (the output signal of 20).

However, Okuchi does not specifically disclose "only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions" as required in claim 1.

Takahashi teaches a threshold value with respect to vehicle posture prevents the adjustment of the illumination direction when the vehicle makes sudden stops or starts. A threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted (page 9 , line 16 to page 10 , line 3).

It would have been obvious to one of ordinary skill in the art to have utilized the teachings of Takahashi in Okuchi's automatic adjusting system as a mere application of a known technique to a known device ready for improvement to yield predictable results. One of ordinary skill in the art would readily predict that the device would function to prevent the adjustment of the
illumination direction when the vehicle makes sudden stops or starts, and, thus, the combination would function predictably.

Regarding claim 2: The automatic directional control system defined in claim 1, wherein at least one of said two or more sensors (11F, 11R) further generate a signal that is representative of the road speed of the vehicle.

Abstract

"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." (col. 4, line 58 to col. 5, line 8)

"FIG. 20 is a timing diagram showing a transition state of the rear height value measured by the height sensor 11 according to a change in the vehicle speed $[\mathrm{km} / \mathrm{h}]$ when the vehicle changes from the state where the vehicle is stopped on a flat place, an acceleration mode, and to a constant speed driving mode". (col. 15, lines 16-21)

Regarding claim 4: The automatic directional control system defined in claim 1 , wherein at least one of said two or more sensors (11F, 11R) further generates a signal that is representative of a rate of change of pitch of the vehicle.

[^16]between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." (col. 4, line 58 to col. 5, line 8)
"On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." (col. 6, lines 6 to 14)

Regarding claim 5: The automatic directional control system defined in

claim 1, wherein at least one of said two or more sensors (11F, 11R) further generates a signal that is representative of the suspension height of the vehicle.
"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor $11 R$ is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20.1 (col. 4, line 58 to col. 5, line 8)
"FIG. 19 is a timing diagram showing a transition state of a displacement [mm] in each of the rear height value measured by the height sensor 11 according to a change in the vehicle speed [km], a measured front height based on the measured rear height, and a measured front height for comparison. The vehicle speed changes in accordance with the order of a state where the vehicle is stopped riding on a block or the like, acceleration, constant speed driving, deceleration, and a state where the vehicle is stopped on a flat place.

In FIG. 19, in the initial vehicle stop mode, a state where the rear suspension contracts when the vehicle is stopped riding on a block or the like is sensed and the measured rear height is obtained. After that, the front height value is calculated based on the displacement in the measured rear height, so that the measured front height includes an error and is largely deviated
from the actual measured front height. An error accordingly occurs in calculation of the pitch angle of the vehicle body. When the optical axis direction of the headlight 30 is adjusted based on the pitch angle, the direction is deviated from a proper angle and glare may be given to an oncoming vehicle or the like." (col. 14, line 61 to col. 15, line 3)

Regarding claim 6: The automatic directional control system defined in claim 1, wherein said two or more sensors include a first sensor (11F) and a second sensor (11R).

Regarding claim 8: The automatic directional control system defined in claim 6, wherein said first sensor (11F) is physically separate from said second sensor (11R).

Regarding claim 9: The automatic directional control system defined in claim 1, further comprising one or more additional sensors $(12,13,14)$ for sensing one or more of a rate of change of road speed of the vehicle, a rate of change of steering angle of the vehicle, a rate of change of pitch of the vehicle, a suspension height, or a rate of change of suspension height of the vehicle.
'The various sensor signals from the wheel speed sensor 12 and the like are used for determining the mode of the vehicle, such as stop mode, acceleration mode, deceleration mode, and constant speed mode" (col. 5, lines 20-23).
"The various sensor signals from the vehicle speed sensor 12, the right-wheel speed sensor 13, the left-wheel speed sensor 14, and the like are used to determine a driving mode of the vehicle such as stop mode, acceleration or deceleration mode, and constant speed driving (stable driving) mode, and to determine whether the vehicle is in a tuning state or not." (col. 15, lines 4955)

Regarding claim 10: The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors (12, 13, 14, Fig. 18) generate a signal that is representative of the rate of change of road speed of the vehicle.
'The various sensor signals from the wheel speed sensor 12 and the like are used for determining the mode of the vehicle, such as stop mode, acceleration mode, deceleration mode, and constant speed mode" (col. 5, lines 20-23).
"The various sensor signals from the vehicle speed sensor 12, the right-wheel speed sensor 13, the left-wheel speed sensor 14, and the like are used to determine a driving mode of the vehicle such as stop mode, acceleration or deceleration mode, and constant speed driving (stable driving) mode, and to determine whether the vehicle is in a tuning state or not." (col. 15, lines 4955)

Regarding claim 12: The automatic directional control system defined in claim 9 , wherein at least one of said one or more additional sensors $(12,13,14)$ generate a signal that is representative of the rate of change of pitch of the vehicle.
'The various sensor signals from the wheel speed sensor 12 and the like are used for determining the mode of the vehicle, such as stop mode, acceleration mode, deceleration mode, and constant speed mode" (col. 5, lines 20-23).
"The various sensor signals from the vehicle speed sensor 12 , the right-wheel speed sensor 13, the left-wheel speed sensor 14, and the like are used to determine a driving mode of the vehicle such as stop mode, acceleration or deceleration mode, and constant speed driving (stable driving) mode, and to determine whether the vehicle is in a tuning state or not." (col. 15, lines 4955)

Regarding claim 13: The automatic directional control system defined in claim 9 , wherein at least one of said one or more additional sensors (12, 13, 14) generate a signal that is representative of a suspension height of the vehicle.
'The various sensor signals from the wheel speed sensor 12 and the like are used for determining the mode of the vehicle, such as stop mode, acceleration mode, deceleration mode, and constant speed mode" (col. 5, lines 20-23).
"The various sensor signals from the vehicle speed sensor 12, the right-wheel speed sensor 13, the left-wheel speed sensor 14, and the like are used to determine a driving mode of the vehicle such as stop mode, acceleration or deceleration mode, and constant speed driving (stable driving) mode, and to determine whether the vehicle is in a tuning state or not." (col. 15, lines 4955)

Regarding claim 14: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured to include the first actuator (35L) connected to the headlight to effect movement thereof in a first direction and a second actuator (35R) connected to the headlight to effect movement thereof in a second direction different form the first direction.

Regarding claim 15: The automatic directional control system defined in claim 1, wherein the two or more actuators (35L, 35R) include the first actuator (35L) that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.

[^17]Regarding claim 17: The automatic directional control system defined in claim 1, wherein the two or more actuators (35L, 35R) include an electronically controlled mechanical actuator.
"The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." (col. 5, lines 11 to 15)
"As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32, and the actuator $35 \mathrm{~L}(35 \mathrm{R})$ such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow." (col. 5, lines 24 to 33)

Regarding claim 18: The automatic directional control system defined in claim 1, wherein the two or more actuators (35L, 35R) include a step motor.
"The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." (col. 5, lines 11 to 15)
"As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator $35 \mathrm{~L}(35 \mathrm{R})$ such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow." (col. 5, lines 24 to 33)

Regarding claim 19: The automatic directional control system defined in claim 1, wherein the two or more actuators (35L, 35R) include a servo motor.
" "The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25, and a bus line 26 connecting these elements." (col. 5, lines 11 to 15)
"As shown in FIG. 2, the headlight 30L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator $35 \mathrm{~L}(35 \mathrm{R})$ such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow." (col. 5, lines 24 to 33)

Regarding claim 23: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller (20) includes a microprocessor (CPU 21).
"The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25 , and a bus line 26 connecting these elements." (col. 5, lines 11 - 15)

Regarding claim 24. The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller (20) includes a programmable electronic controller (21-24).
"The ECU 20 is a logical operating circuit comprising a CPU 21 as a known central processing unit, a ROM 22 in which control programs are stored, a RAM 23 for storing various data, a B/U (back-up) RAM 24, an input/output circuit 25, and a bus line 26 connecting these elements." (col. 5, lines 11-15)

Regarding claim 28: The automatic directional control system defined in claim 1, wherein the automatic directional control system (20) further includes memory (EEPROM 29, Fig. 8).
"In this embodiment, as shown by a dotted line in FIG. 8, a non-volatile rewritable memory such as an EEPROM 29 is provided as a storing medium in which the system error ' information is stored in advance and the EEPROM 29 is housed in the ECU 20. The EEPROM 29 may be externally connected to the ECU 20." (col. 12, lines 12-18)

Regarding claim 29: The automatic directional control system defined in claim 28, wherein the memory includes non-volatile memory (EEPROM 29, Fig. 8).
"In this embodiment, as shown by a dotted line in FIG. 8, a non-volatile rewritable memory such as an EEPROM 29 is provided as a storing medium in which the system error ' information is stored in advance and the EEPROM 29 is housed in the ECU 20 . The EEPROM 29 may be externally connected to the ECU $20 .{ }^{\prime \prime}$ (col. 12, lines 12-18)

Regarding claim 30: The automatic directional control system defined in claim 28, wherein the memory (EEPROM 29, Fig. 8) is configured to store predetermined reference position associated with the headlight.
> "In this embodiment, as shown by a dotted line in FIG. 8, a non-volatile rewritable memory such as an EEPROM 29 is provided as a storing medium in which the system error ' information is stored in advance and the EEPROM 29 is housed in the ECU 20. The EEPROM 29 may be externally connected to the ECU 20 . The system error information denotes factors exerting influence on the calculation of the inclination angle, such as an installation error of the vehicle 0 height sensor 11 to the vehicle, an error of spring constants of the front and rear suspensions, a weight error due to variation in the specifications of the vehicle, a positional error of the center of gravity, and the like. The control routine shown in FIG. 14 is repeatedly executed every 5 predetermined time by the CPU 21." (col. 12, lines 12-26)

Regarding claim 31: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such
that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.

Abstract

"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor $11 R$ is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11F and 11R, and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." (col. 4, line 58 to col. 5, line 8)

Regarding claim 32. The automatic directional control system defined in
claim 1, wherein the automatic directional control system is configured such
that the pitch of the vehicle is capable of being determined by a pitch sensor.

Abstract

"Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11R is attached to a rear suspension provided between the rear axle and the vehicle chassis on the driver's seat side or the rear passenger seat side. A front height value (a displacement of the vehicle height on the front wheel side) HF and a rear height value (a displacement of the vehicle height on the rear wheel side) HR as relative displacements (displacements of the vehicle height) between the respective axles on the front and rear wheel sides and the vehicle chassis supplied from the height sensors 11 F and 11 R , and various sensor signals of wheel speed pulses and the like from a wheel speed sensor 12 which is mounted as a vehicle speed sensor on the vehicle side and is used for known TRC and ABS controls and the like are supplied to an ECU (Electronic Control Unit) 20." (col. 4, line 58 to col. 5, line 8)

In the diagram of FIG. 3, the filter A corresponding to the stop mode is used when the vehicle speed V is lower than a few km / h (for example, $2[\mathrm{kin} / \mathrm{hi}$). When the vehicle is stopped, a large change in the pitch angle due to loading, unloading, or the like is expected. No filtering or very weak filtering is therefore performed so that the actuator is 5 allowed to respond quickly to the change in the pitch angle.
On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, 2 [$\mathrm{ki} / \mathrm{h} / \mathrm{h}$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as,$--2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak
filtering is performed so that the actuator is allowed to respond quickly to the chance in the pitch angle." (col. 5, line 66-col. 6, line 14)

Regarding claim 33: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller (20) is programmed to be responsive to changes in the suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.

Abstract

"When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2[\mathrm{~m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." (col. 6, lines 29-38) "In the diagram of FIG. 3, the filter A corresponding to the stop mode is used when the vehicle speed V is lower than a few km / h (for example, $2[\mathrm{kin} / \mathrm{hi}$). When the vehicle is stopped, a large change in the pitch angle due to loading, unloading, or the like is expected. No filtering or very weak filtering is therefore performed so that the actuator is 5 allowed to respond quickly to the change in the pitch angle. On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, 2 $[\mathrm{kin} / \mathrm{hi}$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as,$--2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." (col. 5, line 66-col. 6, line 14)

Regarding claim 34: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the controller (20) is programmed to be responsive to changes in the
suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.

Abstract

"When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." (col. 6, lines 29-38) "In the diagram of FIG. 3, the filter A corresponding to the stop mode is used when the vehicle speed V is lower than a few km / h (for example, $2[\mathrm{kin} / \mathrm{hi}$). When the vehicle is stopped, a large change in the pitch angle due to loading, unloading, or the like is expected. No filtering or very weak filtering is therefore performed so that the actuator is 5 allowed to respond quickly to the change in the pitch angle. On the other hand, when the vehicle speed v is equal to or larger than a few km / h (for example, 2 $[\mathrm{kin} / \mathrm{hi}$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V exceeds a preset threshold (such as,$--2[\mathrm{~m} / \mathrm{s} 2]$), the filter B corresponding to the acceleration mode or the deceleration mode is used. Since the change in the pitch angle is large, no filtering or very weak filtering is performed so that the actuator is allowed to respond quickly to the change in the pitch angle." (col. 5, line 66-col. 6, line 14)

Regarding claim 35: The automatic directional control system defined in claim 1, wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.

[^18]Regarding claim 36: The automatic directional control system defined in claim 1, wherein said controller (20) is configured to be responsive to said two or more sensor signals (11F, 11R) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators (35L, 35R) from being operated continuously in response to relatively small variations in the sensed conditions (Takahashi teaches the threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted (page 9, line 16 to page 10 , line 3)).

Regarding claim 37: The automatic directional control system defined in claim 1, wherein said controller (20) is configured to be responsive to said two or more sensor signals (11F, 11R) for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of the two or more actuators from being operated unduly frequently in response to relatively small variations in the sensed conditions (Takahashi teaches the
threshold value with respect to time may be set in detection of the road gradient, and only when the amount of variations in the detection signal of the vehicle posture exceed a given reference value and such excessive state continues for a time longer than the set threshold time will the illumination direction be adjusted (page 9, line 16 to page 10 , line 3)).

Issue 29: The proposed rejection of claims $1,2,4-6,9-13,15-18,20-22$, $25,28,29,33,35,37-42,44$ and 45 are unpatentable over the combination of Okuchi et al. and Hussman under 35 U.S.C. § 103(a) (Request at pages 66-69, and claim chart, pages 388-425).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on $4 / 27 / 2012$ and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42,44 and 45.

2/ The rejection of claims $1,2,4-6,9-13,15-18,20-22,25,28,29,33$, $35,37-42,44$ and 45 are unpatentable over the combination of Okuchi et al. and Hussman under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages 66-69, and claim chart, pages 388-425, is NOT ADOPTED.

It is not agreed that consideration of Okuchi in view of Hussman presented a reasonable rejection with respect to the amended claims 1-41 of
the ' 034 patent. This rejection will not be applied against these claims for the following reason: Particularly, without the additional teachings of Hussman, Okuchi is not presented in a different light than it was presented in the prosecution history. As indicated above issue 23, Hussman does not specifically include the teachings identified "a controller ... only when said at least one of the two or more sensor signals changes by more than \boldsymbol{a} predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions" as having the significance limitation with respect to the amended claim 1.

Since Okuchi does not clearly suggest "... only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions", and Hussman which is relied upon as the secondary reference for the teaching, does not also clearly demonstrate the details of "...only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or
unduly frequently in response to relatively small variations in the sensed conditions". Neither Okuchi nor Hussman teaches a key element of claim 1.

Hussman only teaches:
"The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor SU is present, the curve-recognition device K switches the switchover device SE so that the first filter FI is coupled to the regulator $\mathrm{R}^{\prime \prime}$. (col. 3, lines 30-39)
"At the coupling between the switchover device $S E$ and the regulator R, a matching device $A E$ is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided". (col. 4, lines 6-12)

Therefore, the combination of Okuchi in view of Hussman do not result the lacking limitation "... only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions" as called for in claim 1. Thus, the rejection based on Okuchi in view of Hussman for claim 1 is not adopted.

Claims $2,4-6,9-13,15-18,20-22,25,28,29,33-35,37-41$ depend upon claim 1. Since the proposed rejection for claim 1 was not adopted; therefore,
the proposed rejection for dependent claims $2,4-6,9-13,15-18,20-22,25,28$, 33-35, 37-41 are also not adopted.

Issue 30: The proposed rejection of claims 1-13, 20, 22, 24-26, 28, 29, 37, 38 and 41-45 are unpatentable over the combination of Gotoh and Uchida under 35 U.S.C. § 103(a) (Request at pages 69-71 and claim chart, pages 426460).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on 4/27/2012 and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42-45.

2/ The rejection of claims $1-13,20,22,24-26,28,29,37,38$ and 41 as unpatentable over the combination of Gotoh and Uchida under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages 69-71 and claim chart, pages 426-460, is NOT ADOPTED.

This rejection will not be applied against these claims for the following reason:

Independent claim 1 now required:
"two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle, said sensed conditions including at least steering angle and pitch of the vehicle;
a controller that is responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than

Application/Control Number: 95/001,621, 90/011,011
Page 89
Art Unit: 3992

> a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions; and
> said two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal".

Gotoh only seen disclosed in Fig. 3 two or more sensors (21, 22, 23) and a controller (ECU 10). However, there are no actuators disclosed in Gotoh. And while Uchida does teach in Fig. 1 two or more sensors (i.e, 2, 7), a controller (3) and actuator (4). However, claim 1 now required "two or more actuators". Uchida Fig. 1 only shows one actuator (4) connected to the headlight (5) to effect movement thereof in accordance with the output signal (the output of 3a, 3b). Thus, the proposed rejection of claim 1 fails to persuasively show any teaching of Gotoh in view of Uchida corresponding to the feature of "two or more actuators that each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal" of claim 1. The references put forth in the request, Gotoh and Uchida, are not seen to teach the amendatory subject matter of independent claim 1.

Claims 2-13, 20, 22, 24-26, 28, 29, 37, 38, 41 depend upon claim 1. Since the proposed rejection for claim 1 was not adopted; therefore, the proposed rejection for dependent claims $2-13,20,22,24-26,28,29,37,38,41$ are also not adopted.

Issue 31: The proposed rejection of claims 1-12, 14, 16-18, 20-22, 24$26,28,29,33,34,37,38$ and 41-45 are unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a) (Request at pages 71-74 and claim chart, pages 461-495).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on 4/27/2012 and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42-45.

2/ The rejection of claims $1-12,14,16-18,20-22,24-26,28,29,33,34$, 37, 38 and 41 as unpatentable over the combination of Gotoh and Takahashi under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages 71-74 and claim chart, pages 461-495, is NOT

ADOPTED.

This rejection will not be applied against these claims for the following reason:

Independent claim 1 now required:
"two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle, said sensed conditions including at least steering angle and pitch of the vehicle;
a controller that is responsive to said two or more sensor signals for generating at least one output signal only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions; and
said two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal".

Gotoh only seen disclosed in Fig. 3 two or more sensors $(21,22,23)$ and a controller (ECU 10). However, there are no actuators disclosed in Gotoh. Thus, Gotoh, is not seen to teach the amendatory subject matter of independent claim 1. Furthermore, Requester does not provide a detail explanation of the pertinency and manner of combining actuators of Takahashi to the device of Gotoh. Requester provides no motivation/suggestion or convincing line of reasoning to support the substitution of Gotoh and Takahashi. Thus, the rejection of claim 1 as unpatentable over the combination of Gotoh and Takahashi is not accepted.

Claims 2-12, 14, 16-18, 20-22, 24-26, 28, 29, 33, 34, 37, 38, 41 depend upon claim 1. Since the proposed rejection for claim 1 was not adopted; therefore, the proposed rejection for dependent claims $2-12,14,16-18,20-22$, $24-26,28,29,33,34,37,38,41$ are also not adopted.

Issue 32: The proposed rejection of claims $1-13,24,26,28,29,37,38$ and 41-45 are unpatentable over the combination of Gotoh and Hussman under 35 U.S.C. § 103(a) (Request at pages 74-76, and claim chart, pages 496522).

1/ As noted above, this Office action is based on claims 1-5 under reexamination as amended on $4 / 27 / 2012$ and newly added claims 6-41 that accompanied the amendment (see MPEP 2221). In the amendment filed $4 / 27 / 2012$, there are no claims 42,44 and 45.

2/ The rejection of claims $1-13,24,26,28,29,37,38$ and 41 are unpatentable over the combination of Gotoh et al. and Hussman under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages $74-76$, and claim chart, pages $496-522$, is NOT

ADOPTED.

It is not agreed that consideration of Gotoh in view of Hussman presented a reasonable rejection with respect to the amended claims 1-41 of the ' 034 patent. This rejection will not be applied against these claims for the following reason: Particularly, without the additional teachings of Hussman, Gotoh is not presented in a different light than it was presented in the prosecution history. As indicated above issue 23, Hussman does not specifically include the teachings identified "a controller ... only when said at least one of the two or more sensor signals changes by more than \boldsymbol{a} predetermined minimum threshold amount to prevent at least one first

one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed

 conditions" as having the significance limitation with respect to the amended claim 1.Since Gotoh does not clearly suggest "... only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions", and Hussman which is relied upon as the secondary reference for the teaching, does also not clearly demonstrate the details of "...only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions". Neither Gotoh nor Hussman teaches a key element of claim 1.

Hussman only teaches:
"The curve-recognition device K is electrically conductively coupled with the switchover device SE and thereby couples the third filter F3 electrically conductively with the regulator R if a difference signal other than zero is fed to it from the subtractor SU. When no difference signal from the subtractor $S U$ is present, the curve-recognition device K switches the switchover device SE so that the first filter FI is coupled to the regulator R". (col. 3, lines 30-39)
"At the coupling between the switchover device SE and the regulator R, a matching device AE is, here for example, arranged which, upon a switchover by the switchover device SE, adjusts the various nominal values to one another so that discontinuities or jumps in the adjustment and regulation of the illumination range are avoided". (col. 4, lines 6-12)

Therefore, the combination of Gotoh in view of Hussman do not result the lacking limitation "... only when said at least one of the two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in the sensed conditions" as called for in claim 1. Moreover, Claim 1 now required "two or more actuators"; However, there is no actuators disclosed in Gotoh. Thus, the rejection based on Gotoh in view of Hussman for claim 1 is not adopted.

Claims $2-13,24,26,28,29,37,38,41$ depend upon claim 1 . Since the proposed rejection for claim 1 was not adopted; therefore, the proposed rejection for dependent claims $2-13,24,26,28,29,37,38,41$ are also not adopted.

Application/Control Number: 95/001,621, 90/011,011
Page 95 Art Unit: 3992

Issue 33: The proposed rejection of claims $17,19,21,23,26,30-32$ are unpatentable over the combination of Uchida and the admitted prior art described in the '034 patent specification under 35 U.S.C. § 103(a) (Request at pages 76-78, and claim chart, pages 523-530).

The rejection of claims $17,19,21,23,26,30-32$ are unpatentable over the combination of Uchida and the admitted prior art described in the '034 patent specification under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages76-78, and claim chart, pages 523-530, is NOT ADOPTED.

Claims $17,19,21,23,26,30-32$ depend upon claim 1. Since the proposed rejection for claim 1 , issue 21 was not adopted; Therefore, the proposed rejection for dependent claims $17,19,21,23,26,30-32$ are also not adopted.

Issue 34: The proposed rejection of claims 19, 23, 26 and 30-32 (claims $16,20,21,25-27$ as amended on $4 / 27 / 2012$) are unpatentable in view of the combination of Takahashi and the admitted prior art described in the ' 034 patent specification under 35 U.S.C. § 103(a) (Request at pages 78-80, and claim chart, pages 531-536).

The rejection of claims $19,23,26$ and $30-32$ (similar as claims 16,20 , 21, 25-27 as amended on $4 / 27 / 2012$) are unpatentable in view of the

Application/Control Number: 95/001,621, 90/011,011
combination of Takahashi and the admitted prior art described in the '034 patent specification under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages $78-80$, and claim chart, pages 531-536, is ADOPTED.

Claims $16,20,21,25-27$ (as amended on 4/27/2012) are rejected under 35 U.S.C. §103(a) as being unpatentable over Takahashi in view of the admitted prior art described in the ' 034 patent specification.

Pages 78-80 and claim chart, pages 531-536 of the request for reexamination is hereby incorporated by reference for the Requester's explanation of the proposed rejection.

Issue 35: The proposed rejection of claims 17-21, 23-26, 30-32 are unpatentable over the combination of Hussman and the admitted prior art described in the '034 patent specification under 35 U.S.C. § 103(a) (Request at pages $80-82$, and claim chart, pages 537-548).

The rejection of claims 17-21, 23-26, 30-32 are unpatentable over the combination of Hussman and the admitted prior art described in the '034 patent specification under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages $80-82$, and claim chart, pages $537-548$, is NOT ADOPTED.

Claims 17-21, 23-26, 30-32 depend upon claim 1. Since the proposed rejection for claim 1, issue 23 was not adopted; Therefore, the proposed rejection for dependent claims 17-21, 23-26, 30-32 are also not adopted.

Issue 36: The proposed rejection of claim 27 is unpatentable over the combination of Uchida and Wassen under 35 U.S.C. § 103(a) (Request at pages 82-84, and claim chart, page 549).

The rejection of claim 27 is unpatentable over the combination of Uchida and Wassen under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages $82-84$, and claim chart, page 549 , is NOT ADOPTED.

Claim 27 depends upon claim 1. Since the proposed rejection for claim 1 , issue 21 was not adopted; Therefore, the proposed rejection for dependent claim 27 is also not adopted.

Issue 37: The proposed rejection of claim 27 (similar with claim 22 as amended on $4 / 27 / 2012$) are unpatentable in view of the combination of Takahashi and Wassen under 35 U.S.C. § 103(a) (Request at pages 84-85, and claim chart, page 550).

The rejection of claim 27 (similar as claim 22 as amended on 4/27/2012) is unpatentable in view of the combination of Takahashi and Wassen under 35
U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages $84-85$, and claim chart, page 550, is ADOPTED.

Claim 22 is rejected under 35 U.S.C. §103(a) as being unpatentable over Takahashi in view of Wassen.

Pages 84-85 and claim chart, page 550 of the request for reexamination is hereby incorporated by reference for the Requester's explanation of the proposed rejection. Two or more actuators are seen in Fig. 9, 19 and 19', of Takahashi.

Issue 38: The proposed rejection of claim 27 is unpatentable over the combination of Hussman and Wassen under 35 U.S.C. § 103(a) (Request at pages $85-87$, and claim chart, page 551).

The rejection of claim 27 is unpatentable over the combination of Hussman and Wassen under 35 U.S.C. § 103(a) were proposed by the requester in the request for reexamination, pages $85-87$, and claim chart, page 551, is NOT ADOPTED.

Claim 27 depends upon claim 1. Since the proposed rejection for claim 1 , issue 23 was not adopted; therefore, the proposed rejection for dependent claim 27 is also not adopted.

PROPOSED REJECTION OF PROPOSED CLAIMS 12 TO 16 UNDER 35

 U.S.C. § 314(A)As noted above, all subsequent reexamination prosecution and examination will be on the basis of claims 1-41 as amended in the proposed amendment filed on $4 / 27 / 2012$. Thus, the proposed rejection with respect to claims 12-16 under 35 U.C.C 314(A) has been considered but is moot in view of the amendment filed on $4 / 27 / 2012$.

PROPOSED REJECTION OF PROPOSED CLAIMS 12 TO 16 UNDER 35

 U.S.C. § 112.As noted above, all subsequent reexamination prosecution and examination will be on the basis of claims 1-41 as amended in the proposed amendment filed on $4 / 27 / 2012$. Thus, the proposed rejection with respect to claims 12-16 under 35 U.C.C 314(A) has been considered but is moot in view of the amendment filed on $4 / 27 / 2012$.

Allowable Subject Matter

Claims 3, 7, 11 and 38-41 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

Service of Papers

After the filing of a request for reexamination by a third party requester, any document filed by either the patent owner or the third party requester must be served on the other party (or parties where two or more third party requester proceedings are merged) in the reexamination proceeding in the manner provided in 37 CFR 1.248. See 37 CFR 1.550(t).

Extensions of Time

Extensions of time under 37 CFR 1.136(a) will not be permitted in inter partes reexamination proceedings because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a reexamination proceeding. Additionally, 35 U.S.C. 314(c) requires that inter partes reexamination proceedings "will be conducted with special dispatch" (37 CFR 1.937). Patent owner extensions of time in inter partes reexamination proceedings are provided for in 37 CFR 1.956. Extensions of time are not available for third party requester comments, because a comment period of 30 days from service of patent owner's response is set by statute 35 U.S.C. 314(b)(3). Time periods may be extended only upon a strong showing of sufficient cause.

Application/Control Number: 95/001,621, 90/011,011
Page 101
Art Unit: 3992

Notification of Concurrent Proceedings

The patent owner is reminded of the continuing responsibility under 37 CFR 1.985(a), to apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the '034 patent throughout the course of this reexamination proceeding. The third party requester is also reminded of the ability to similarly apprise the Office of any such activity or proceeding throughout the course of this reexamination proceeding. See MPEP 2686 and 2686.04.

Complete Response Reminder

In order to ensure full consideration of any amendments, affidavits or declarations, or other documents as evidence of patentability, such documents must be submitted in response to this Office action. Submissions after the next Office action, which is intended to be an Action Closing Prosecution (ACP), will be governed by 37 CFR 1.116 (b) and (d), which will be strictly enforced.

Service of Papers

Any paper filed by either the patent owner or the third party requester must be served on the other party in the reexamination proceeding in the manner provided by 37 CFR 1.248. See 37 CFR 1.903 and MPEP 2666.06.

Amendments in Reexamination Procedures

Patent owner is notified that any proposed amendment to the specification and/or claims in this reexamination proceeding must comply with 37 CFR 1.530 (d)-(j), must be formally presented pursuant to 37 CFR 1.52(a) and (b), and must contain any fees required by 37 CFR 1.20 (c). Amendments in an inter partes reexamination proceeding are made in the same manner that amendments in an ex parte reexamination are made. MPEP 2666.01. See MPEP 2250 for guidance as to the manner of making amendments in a reexamination proceeding.

All correspondence relating to this inter partes reexamination proceeding should be directed:

By Mail to: Mail Stop Inter Partes Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, Virginia 22313-1450
By FAX to: (571) 273-9900
Central Reexamination Unit

By hand: Customer Service Window
Attn: Central Reexamination Unit
Randolph Building, Lobby Level
401 Dulany Street
Alexandria, VA 22314
By EFS-Web:
Registered users of EFS-Web may alternatively submit such correspondence via the electronic filing system EFS-Web, at
https://sportal.uspto.gov/authenticate/authenticateuserlocalepf.html
EFS-Web offers the benefit of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS-Web submissions are "soft scanned" (i.e., electronically uploaded) directly into the official file for the reexamination proceeding, which offers parties the opportunity to review the content of their submissions after the "soft scanning" process is complete.
Any inquiry concerning this communication or earlier communications from the examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.
/My-Trang Nu Ton/
Primary Examiner, CRU 3992

Conferees:
/Margaret Rubin/
ANDREW J. FISCHER aSf
Supervisory Patent Reexamination Specialist
CRU -- Art Unit 3992
Primary Examiner CRU 3992

Reexamination	Application/Control No.	Applicant(s)/Patent Under Reexamination
	$95 / 001,621,90 / 011,011$	$7,241,034$
	Certificate Date	Certificate Number

Requester Correspondence Address:
Patent Owner
Third Party

Kenyon \& Kenyon, LLP
One Broadway
New York, NY
10004

LITIGATION REVIEW \boxtimes (examiner initials) ${ }_{\text {(eat }}$	$\begin{gathered} 5 / 23 / 12 \\ \text { (date) } \\ \hline \end{gathered}$
Case Name	Director Initials
$\begin{aligned} & \text { I U.S. District - Texas Eastern (Tyler) } \\ & \text { 6:10CV78 } \end{aligned}$ Balther Technologies, LIc v. American Honda Motor Co Inc et A	cot for I.T.
	-
. .	

COPENDING OFFICE PROCEEDINGS		
TYPE OF PROCEEDING		
$1 . \quad 90 / 011011$	NUMBER	
2.		
3.		
4.		

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:)
)
7,241,034) Art Unit: 3992
		,
Applications No. 95/001,621 \& 90/011,011) Examiner: MY-TRANG N. TON
)
Filed:	05/16/2011) Atty. Docket No.:
) SVIPGP109RE
For:	AUTOMATIC DIRECTIONAL CONTROL)	
	SYSTEM FOR VEHICLE) Date: 07/26/2012
	HEADLIGHTS)
)

AMENDMENT E

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Examiner:

In response to the Office Action mailed 6/29/2012 ("Office Action"), please enter the following amendments believed to place the Claims in condition for allowance.

AMENDMENTS TO THE CLAIMS

Amended claims follow:

1. (Cancelled).
2. (Cancelled).
3. (Currently Amended) [The automatic directional control system defined in claim 1] An automatic directional control system for a vehicle headlight, comprising:
two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle such that two or more sensor signals are generated, said sensed conditions including at least a steering angle and a pitch of the vehicle;
a controller that is responsive to said two or more sensor signals for generating at least one output signal only when at least one of said two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in at least one of the sensed conditions; and
said two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal;
wherein at least one of said two or more sensors generates [a]at least one of said two or more sensor signals that is representative of [the]a rate of change of the steering angle of the vehicle.
4. (Currently Amended) The automatic directional control system defined in claim [1] $\underline{3}$, wherein at least one of said two or more sensors generates a signal that is representative of [the] a rate of change of the pitch of the vehicle.
5. (Currently Amended) The automatic directional control system defined in claim [1] $\underline{3}$, wherein at least one of said two or more sensors generates a signal that is representative of [the]a suspension height of the vehicle.
6. (New) The automatic directional control system defined in claim 3, wherein said two or more sensors include a first sensor and a second sensor.
7. (New) An automatic directional control system for a vehicle headlight, comprising:
two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle such that two or more sensor signals are generated, said sensed conditions including at least a steering angle and a pitch of the vehicle;
a controller that is responsive to said two or more sensor signals for generating at least one output signal only when at least one of said two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in at least one of the sensed conditions; and
said two or more actuators each being adapted to be connected to the vehicle headlight to effect movement thereof in accordance with said at least one output signal;
wherein said two or more sensors include a first sensor and a second sensor; and
wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.
8. (New) The automatic directional control system defined in claim 7, wherein said first sensor is physically separate from said second sensor.
9. (New) The automatic directional control system defined in claim 7, further comprising one or more additional sensors for sensing one or more of a rate of change of road speed of the vehicle, a rate of change of the steering angle of the vehicle, a rate of
change of the pitch of the vehicle, a suspension height of the vehicle, or a rate of change of suspension height of the vehicle.
10. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of the road speed of the vehicle.
11. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of the steering angle of the vehicle.
12. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of the pitch of the vehicle.
13. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the suspension height of the vehicle.
14. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured to include a first actuator connected to the headlight to effect movement thereof in a first direction and a second actuator connected to the headlight to effect movement thereof in a second direction different from the first direction.
15. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.
16. (New) The automatic directional control system defined in claim 15, wherein the two or more actuators include a second actuator that is adapted to be connected to the headlight to effect movement thereof in a horizontal direction.
17. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include an electronically controlled mechanical actuator.
18. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include a step motor.
19. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include a servo motor.
20. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include a microstepping motor capable of being operated in fractional step increments.
21. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted both up and down relative to a horizontal reference position and left and right relative to a vertical reference position.
22. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that, while in a calibration mode, a directional orientation at which a beam of light projects is capable of being adjusted relative to the vehicle by manual operation of the two or more actuators.
23. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller includes a microprocessor.
24. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.
25. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system further includes at least one position feedback sensor capable of providing a position feedback signal associated with at least one of the two or more actuators.
26. (New) The automatic directional control system defined in claim 25, wherein the at least one position feedback sensor includes a Hall Effect sensor.
27. (New) The automatic directional control system defined in claim 25, wherein the at least one position feedback sensor includes an optical interrupter.
28. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system further includes memory.
29. (New) The automatic directional control system defined in claim 28, wherein the memory includes non-volatile memory.
30. (New) The automatic directional control system defined in claim 28, wherein the memory is configured to store a predetermined reference position associated with the headlight.
31. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.
32. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch sensor.
33. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in a suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.
34. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in a suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.
35. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.
36. (New) The automatic directional control system defined in claim 7, wherein said controller is configured to be responsive to said two or more sensor signals for generating said at least one output signal only when said at least one of the two or more sensor signals changes by more than the predetermined minimum threshold amount to prevent said at least one of the two or more actuators from being operated continuously in response to said relatively small variations in the at least one of the sensed conditions.
37. (New) The automatic directional control system defined in claim 7, wherein said controller is configured to be responsive to said two or more sensor signals for generating said at least one output signal only when said at least one of the two or more sensor signals changes by more than the predetermined minimum threshold amount to prevent
said at least one of the two or more actuators from being operated unduly frequently in response to said relatively small variations in the at least one of the sensed conditions.
38. (New) The automatic directional control system defined in claim 7, wherein said controller is further responsive to at least one of said two or more sensor signals to automatically activate one or more vehicle lights that are different than the headlight.
39. (New) The automatic directional control system defined in claim 38, wherein said one or more vehicle lights that are different than the headlight include one or more lights for illuminating a road in front of the vehicle during a turn.
40. (New) The automatic directional control system defined in claim 7, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight.
41. (New) The automatic directional control system defined in claim 7, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight to extend an angular range of a road surface.

REMARKS

Applicant thanks the Examiner for noting the allowable subject matter. Applicant has incorporated the subject matter of amended Claim 1 (as presented in Applicant's Amendment D2, dated 4/27/2012) into Claims 3 and 7. Furthermore, Applicant has amended the claims such that the remaining dependent claims depend on either Claim 3 or Claim 7. Table 1 shows a summary of Applicant's amendments, relative to Applicant's Amendment D2, dated 4/27/2012.

Table 1

Claim 1 - Cancelled.
Claim 2 - Cancelled.
Claim 3 - Applicant deleted "The automatic directional control system defined in claim 1" and the comma added in Amendment D2. Applicant inserted the subject matter of amended Claim 1 (the subject matter as presented in Amendment D2). Applicant deleted "a" and added "at least one of said two or more sensor" before "signal". Applicant added an "s" to "signal". Applicant added "the" before "steering angle". Applicant deleted "further", which was added in the Amendment D2.

Claim 4 - Applicant deleted " 1 " and inserted " 3 " such that Claim 4 depends on Claim 3. Applicant deleted "further", which was added in Amendment D2. Applicant added "the" before "pitch".

Claim 5 - Applicant deleted " 1 " and inserted " 3 " such that Claim 5 depends on Claim 3. Applicant deleted "further", which was added in Amendment D2. Applicant deleted "the" and added "a" before "suspension height of the vehicle".

Claim 6 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 3 " such that Claim 6 depends on Claim 3.

Claim 7 - Applicant inserted the subject matter of amended Claim 1 (the subject matter as presented in Amendment D2), in addition to the subject matter of Claim 6 (as presented in Amendment D2).

Claim 8 - Applicant deleted " 6 " (which was presented in Amendment D2) and
inserted " 7 " such that Claim 8 depends on Claim 7.
Claim 9 - Applicant deleted "1" (which was presented in Amendment D2) and inserted " 7 " such that Claim 9 depends on Claim 7. Applicant added "of a vehicle" after "suspension height."

Claim 10 - Same text as Amendment D2.
Claim 11 - Applicant added "the" before "steering angle of the vehicle".
Claim 12 - Applicant added "the" before "pitch of the vehicle".
Claim 13 - Same text as Amendment D2.
Claim 14 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 14 depends on Claim 7. Applicant changed "form" to "from".

Claim 15 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 15 depends on Claim 7.

Claim 16 - Same text as Amendment D2.
Claim 17 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 17 depends on Claim 7.

Claim 18 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 18 depends on Claim 7.

Claim 19 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 19 depends on Claim 7.

Claim 20-Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 20 depends on Claim 7.

Claim 21 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 21 depends on Claim 7.

Claim 22 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 22 depends on Claim 7.

Claim 23 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 23 depends on Claim 7.

Claim 24 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 24 depends on Claim 7.

Claim 25 - Applicant deleted " 1 " (which was presented in Amendment D2) and
inserted " 7 " such that Claim 25 depends on Claim 7.
Claim 26 - Same text as Amendment D2.
Claim 27 - Same text as Amendment D2.
Claim 28 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 28 depends on Claim 7.

Claim 29 - Same text as Amendment D2.
Claim 30 - Same text as Amendment D2.
Claim 31 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 31 depends on Claim 7.

Claim 32 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 32 depends on Claim 7. Applicant added "a" and deleted "the" before "suspension height".

Claim 33 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 33 depends on Claim 7. Applicant added " a " and deleted "the" before "suspension height".

Claim 34 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 34 depends on Claim 7.

Claim 35 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 35 depends on Claim 7.

Claim 36 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 36 depends on Claim 7. Applicant added "the at least one of" before "the sensed conditions".

Claim 37 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 37 depends on Claim 7. Applicant added "the at least one of" before "the sensed conditions".

Claim 38 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 38 depends on Claim 7. Also, applicant inserted "to at least one of".

Claim 39 - Same text as Amendment D2.
Claim 40 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 40 depends on Claim 7.

Claim 41 - Applicant deleted " 1 " (which was presented in Amendment D2) and inserted " 7 " such that Claim 41 depends on Claim 7.

Applicant believes no fees are due. In the event any fees are due, the Commissioner is authorized to charge any additional fees or credit any overpayment to Deposit Account No. 50-4964 (Order No. SVIPGP109RE).

In the event the Examiner believes a telephone conversation would advance prosecution, Applicant invites the Examiner to telephone the undersigned attorney at the number listed below.

Additionally, the undersigned hereby certifies that a true and complete copy of the forgoing Amendment E has been served on Third Party Requestor by mailing said copy on 26 Jul 2012, via First Class Mail, postage prepaid to:

Kenyon \& Kenyon, LLP
One Broadway
New York, NY 10004

Respectfully submitted,

Dated: 26 July 2012
The Caldwell Firm, LLC
PO Box 59655
Patrick E. Caldwell, Esq.
Dallas, Texas 75229-0655
Telephone: (972) 243-4523
pcaldwell@thecaldwellfirm.com

Reg. No. 44,580

Electronic Acknowledgement Receipt	
EFS ID:	13353636
Application Number:	95001621
International Application Number:	
Confirmation Number:	1240
Title of Invention:	Automatic Directional Control System for Vehicle Headlights
First Named Inventor/Applicant Name:	7,241,034
Customer Number:	92045
Filer:	Patrick Edgar Caldwell
Filer Authorized By:	
Attorney Docket Number:	SVIPGP109RE
Receipt Date:	26-JUL-2012
Filing Date:	16-MAY-2011
Time Stamp:	20:15:39
Application Type:	inter partes reexam

Payment information:

Submitted w	Payment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1	Amendment/Req. Reconsideration-After Non-Final Reject	SVIPGP 109RE_Amndt_E_vF_07 $-26-2012 . p d f$	$\frac{57906}{\substack{\text { d623a3997279442eb5553e8042322de417ee } \\ \text { 9ec55 }}}$	no	12
Warnings:					
Information:					

Page 1131 of 1228

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111
If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office
If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

Litigation Search Report CRU 3999

Reexam Control No. 95/001,621.

TO: My Trang Ton
Location: CRU
Art Unit: 3992
Date: 12/06/2012
Merged: 90/011,011

From: Patricia Volpe
Location: CRU 3999
MDE 5D30
Phone: (571) 272-6825
Patricia.volpe@uspto.gov

Search Notes

Litigation search for U.S. Patent Number: 7,241,034
Status (CLOSED) 6:10cv78 Balther Technologies, Llc v. American Honda Motor Co. Inc. et al

1) I performed a KeyCit Search in Westlaw, which retrieves all history on the patent including any litigation.
2) I performed a search on the patent in Lexis CourtLink for any open dockets or closed cases.
3) I performed a search in Lexis in the Federal Courts and Administrative Materials databases for any cases found.
4) I performed a search in Lexis in the IP Journal and Periodicals database for any articles on the patent.
5) I performed a search in Lexis in the news databases for any articles about the patent or any articles about litigation on this patent.

KEYCITE

C US PAT 7241034 AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS, Assignee: Dana Corporation (Jul 10, 2007)

History
Direct History
$\Rightarrow \quad 1$ AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS, US PAT 7241034, 2007 WL 1978614 (U.S. PTO Utility Jul 10, 2007)

Patent Family

2 AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR A VEHICLE HEADLIGHT USES SENSOR TO GENERATE SIGNAL REPRESENTATIVE OF CONDITION OF VEHICLE, CONTROLLER RESPONSIVE TO SENSOR SIGNAL TO GENERATE OUTPUT SIGNAL AND ACTUATOR TO EFFECT HEADLIGHT MOVEMENT, Derwent World Patents Legal 2003-543647

Assignments
3 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Mar 08, 2010)
4 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 002, (DATE RECORDED: Jun 12, 2009)
5 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 030, (DATE RECORDED: Feb 22, 2008)
6 Action: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Number of Pages: 003, (DATE RECORDED: Feb 06, 2003)

Patent Status Files

.. Request for Re-Examination, (OG DATE: Jun 29, 2011)
.. Request for Re-Examination, (OG DATE: Sep 07, 2010)
.. Patent Suit(See LitAlert Entries),

Docket Summaries

10 BALTHER TECHNOLOGIES, LLC v. AMERICAN HONDA MOTOR CO. INC. ET AL, (E.D.TEX. Mar 08, 2010) (NO. 6:10CV00078), (35 USC 271 PATENT INFRINGEMENT)

Litigation Alert

11 Derwent LitAlert P2010-11-45 (Mar 08, 2010) Action Taken: complaint
Prior Art (Coverage Begins 1976)
C 12 ADJUSTABLE HEADLIGHTS, HEADLIGHT ADJUSTING AND DIRECTION SENSING CONTROL SYSTEM AND METHOD OF ADJUSTING HEADLIGHTS, US PAT 5868488 (U.S. PTO Utility 1999)

C 13 APPARATUS AND METHOD FOR CONTROLLING LIGHT DISTRIBUTION OF HEADLAMP, US PAT 5660454A ssignee: Toyota Jidosha Kabushiki Kaisha, (U.S. PTO Utility 1997)

C

C 26 DEVICE FOR ADJUSTING AN OBJECT TO ASSUME A PREDETERMINED ANGLE TO A CERTAIN PLANE, US PAT 4217631 (U.S. PTO Utility 1980)
14 APPARATUS AND METHOD FOR CONTROLLING THE LIGHT-RANGE OF MOTOR VEHICLE HEADLIGHTS, US PAT 5193894Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1993)

15 APPARATUS FOR AUTOMATICALLY ADJUSTING AIMING OF HEADLIGHTS OF AN AUTOMOTIVE VEHICLE, US PAT 5877680Assignee: Denso Corporation; Toyota Jidosha Kabushiki Kaisha, (U.S. PTO Utility 1999)
16 APPARATUS FOR CONTROLLING A HEADLIGHT OF A VEHICLE, US PAT 4891559Assignee: Nippondenso Soken, Inc.; Nippondenso Co., Ltd., (U.S. PTO Utility 1990)
17 APPARATUS FOR REGULATING THE ILLUMINATION FIELD OF A VEHICLE HEADLIGHT, US PAT 6144159Assignee: Robert Bosch GmbH, (U.S. PTO Utility 2000)
18 ARRANGEMENT FOR AUTOMATIC HEADLIGHT ADJUSTMENT, US PAT 6231216Assignee: Dr. Ing. h.c.F. Porsche AG, (U.S. PTO Utility 2001)
19 AUTOMATIC LEVELING APPARATUS FOR USE WITH AUTOMOBILE HEADLAMPS, US PAT 6I831I8Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 200I)
20 AUTOMATIC LEVELING DEVICE FOR AUTOMOTIVE VEHICLE HEADLAMPS, US PAT 6305823Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 2001)
21 AUTOMOTIVE ILLUMINATION SYSTEM, US PAT 4943893Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1990)
22 CONTINUOUSLY VARIABLE HEADLAMP CONTROL, US PAT 6281632Assignee: Gentex Corporation, (U.S. PTO Utility 2001)
23 CORNERING LIGHT SYSTEM FOR TWO-WHEELED VEHICLES, US PAT 4024388Assignee: Marvin H. Kleinberg, Inc.; Richard Morganstern Inc.; Scholnick, Seymour A., (U.S. PTO Utility 1977)

24 DEVICE FOR ADJUSTING THE INCLINATION OF AUTOMOBILE HEADLIGHTS, US PAT 4186428Assignee: Cibie Projecteurs, (U.S. PTO Utility I980)
25 DEVICE FOR ADJUSTING THE LEVEL OF A VEHICLE HEADLIGHT, US PAT 5779342Assignee: Bayerische Motoren Werke Aktiengellschaft, (U.S. PTO Utility I998)

27 DEVICE FOR ADJUSTING A PRESETTABLE LIGHTING LEVEL OF A HEADLIGHT IN MOTOR VEHICLES, US PAT 5785405Assignee: Bayerische Motoren Werke, (U.S. PTO Utility 1998)

28 DEVICE FOR CONTROLLING THE LIGHT WIDTH OF HEADLIGHTS FOR VEHICLES, US

PAT 5896011 Assignee: Robert Bósch GmbH, (U.S. PTO Utility 1999)
C 29 DEVICE FOR REGULATING LIGHT WIDTH OF HEADLIGHTS FOR VEHICLES, AND VEHICLE PROVIDED THEREWITH, US PAT 6142655Assignee: Robert Bosch GmbH, (U.S. PTO Utility 2000)
C 30 DIRECTION TURNING DEVICE FOR A HEADLIGHT OF AN AUTOMOBILE, US PAT 5550717 (U.S. PTO Utility 1996)
C 31 FOCUSING MIRROR CONTROL SYSTEM AND METHOD FOR ADJUSTING SAME, US PAT 6118113 (U.S. PTO Utility 2000)
C 32 HEAD LAMP DEVICE FOR VEHICLE, US PAT 6010237 Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 2000)
C 33 HEAD LAMP DEVICE FOR VEHICLE, US PAT 5909949Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 1999)
C 34 HEADLAMP, US PAT 5158352Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 1992)
C 35 HEADLAMP DRIVE AND CONTROL APPARATUS, US PAT 4583152Assignee: Aisin Seiki Kabushiki Kaisha, (U.S. PTO Utility 1986)
C 36 HEADLAMP FOR MOTOR VEHICLES WITH PROGRAMMABLE LIGHT DISTRIBUTION, US PAT 4868721 (U.S. PTO Utility 1989)
C 37 HEADLAMP POSITIONING DEVICE, US PAT 5181429Assignee: Saia AG, (U.S. PTO Utility 1993)

C 38 HEADLIGHT AIMING AND LIGHT PATTERN TESTING APPARATUS AND METHOD, US PAT 4948249Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1990)
C 39 HEADLIGHT AIMING APPARATUS, US PAT 5751832Assignee: Progressive Tool \& Industries Co.; Panter Master Controls, Inc., (U.S. PTO Utility 1998)
C 40 HEADLIGHT AIMING APPARATUS AND DISPLAY, US PAT 5164785Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1992)
C 41 HEADLIGHT AIMING METHOD USING PATTERN FRAMING, US PAT 5373357Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1994)
C 42 HEADLIGHT ARRANGEMENT FOR MOTOR VEHICLE, US PAT 6227691 Assignee: Robert Bosch GmbH, (U.S. PTO Utility 2001)
C 43 HEADLIGHT ARRANGEMENT FOR VEHICLES, US PAT 4768135Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1988)
C 44 HEADLIGHT BEAM CONTROL SYSTEM FOR MOTOR VEHICLES, US PAT 4225902 (U.S. PTO Utility 1980)
C 45 HEADLIGHT CONTROL APPARATUS FOR MOTORCYCLES, US PAT 4870545Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 1989)
C 46 HEADLIGHT FOR VEHICLE, US PAT 4833573Assignee: Koito Seisakusho Co., Ltd., (U.S. PTO Utility 1989)
C 47 HEADLIGHT MOVING APPARATUS FOR A MOTOR VEHICLE, US PAT 5099400 (U.S. PTO Utility 1992)
C 48 HEIGHT SENSOR AND VEHICULAR HEADLIGHT BEAM AXIS LEVELING APPARATUS,

US PAT 6234654Assignee: Denso Corporation, (U.S. PTO Utility 2001)
49 INFINITELY ADJUSTABLE LEVEL LIGHT, US PAT 3953726 (U.S. PTO Utility I976)
50 IRRADIATION DIRECTION CONTROL APPARATUS FOR VEHICULAR LAMP, US PAT 5907196Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1999)
C 51 LIGHT DESTRIBUTION OF HEADLIGHT BEAM, US PAT 4907877 (U.S. PTO Utility 1990)
C 52 LIGHT MANAGEMENT SYSTEM FOR A VEHICLE, US PAT 5781105 Assignee: Ford Motor Company, (U.S. PTO Utility 1998)
C 53 LIGHTING CONTROL FOR MOTOR VEHICLE LAMPS, US PAT 3634677Assignee: ROBERT BOSCH GMBH, (U.S. PTO Utility 1972)
C 54 LIGHTING DEVICE FOR A VEHICLE, US PAT 6049749Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 2000)
C 55 LIGHTING DEVICE FOR VEHICLES, US PAT 6293686Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 200I)
C 56 LIGHTING SYSTEM FOR A MOTORCYCLE, US PAT 3939339 (U.S. PTO Utility 1976)
C 57 LOAD TRIM COMPENSATING VEHICLE HEADLIGHT DEFLECTION SYSTEM, US PAT 4162424Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1979)
C 58 MAGNETIC COUPLING MECHANISM FOR USE IN AN AUTOMOTIVE VEHICLE, US PAT 5977678Assignee: UT Automotive Dearborn, Inc., (U.S. PTO Utility 1999)
C 59 METHOD AND APPARATUS FOR ADJUSTING THE ORIENTATION OF VEHICLE HEADLIGHTS, US PAT 4204270Assignee: Societe pour l\'Equipement de, (U.S. PTO Utility 1980)

60 METHOD AND APPARATUS FOR LOCATING A SPECIFIC LOCATION ON A VEHICLE HEADLAMP, US PAT 5331393Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1994)
C 61 METHOD OF MEASURING AND ADJUSTING OPTICAL AXIS OF HEADLIGHT, US PAT 5392111Assignee: Honda Giken Kogyo Kabushiki Kaisha, (U.S. PTO Utility 1995)
C 62 MOTOR VEHICLE LIGHTING SYSTEM HAVING AT LEAST TWO BEND LIGHTING DRIVING LIGHTS, US PAT 6176590Assignee: Valeo Vision, (U.S. PTO Utility 200I)
C 63 MOTOR VEHICLE WITH HEADLAMP TILTING MECHANISM, US PAT 4066886Assignee: The Lucas Electrical Company Limited, (U.S. PTO Utility 1978)
C 64 MOTORCYCLE HEADLIGHT AIMING DEVICE, US PAT 5426571 (U.S. PTO Utility 1995)
C 65 MULTIPLE SENSOR INCLINATION MEASURING SYSTEM, US PAT 4549277Assignee: Brunson Instrument Company, (U.S. PTO Utility 1985)
C 66 POSITION CONTROL SYSTEM, US PAT 4310I72Assignee: General Motors Corporation, (U.S. PTO Utility 1982)

67 ROAD SURFACE-SENSITIVE BEAM PATTERN LEVELING SYSTEM FOR A VEHICLE HEADLAMP, US PAT 4868720Assignee: Koito Seisakusho Co., Ltd., (U.S. PTO Utility 1989) 68 SIDELIGHTING ARRANGEMENT AND METHOD, US PAT 54285 I2 (U.S. PTO Utility 1995) 69 STEPPER MOTOR SHAFT POSITION SENSOR, US PAT 4791343Assignee: Allied-Signal Inc., (U.S. PTO Utility 1988)

C 70 SUPPORT FRAME FOR HEADLIGHT AIMING APPARATUS, US PAT 5920386Assignee: Panter Master Controls, Inc.; Progressive Tool \& Industries Co., (U.S. PTO Utility 1999) AND ON AT INTERSECTIONS, US PAT 6097156 (U.S. PTO Utility 2000) HEADLIGHT, US PAT 6193398Assignee: DENSO Corporation, (U.S. PTO Utility 2001) Inc., (U.S. PTO Utility 1997) Co., Ltd., (U.S. PTO Utility 1990)
75 VARIABLE DISTRIBUTION TYPE AUTOMOTIVE HEADLAMP, US PAT 5060120Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility I991)
C 76 VEHICLE CORNERING LAMP SYSTEM, US PAT 5526242Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1996)
77 VEHICLE CORNERING LAMP SYSTEM, US PAT 4908560Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1990)
C 78 VEHICLE HEADLIGHT AIMING APPARATUS, US PAT 5485265Assignee: Hopkins Manufacturing Corporation, (U.S. PTO Utility 1996)
C $\quad 79$ VEHICLE HEADLIGHT WITH ADJUSTING MEANS FOR DIFFERENT TRAFFIC CONDITIONS, US PAT 59383 19Assignee: Robert Bosch GmbH, (U.S. PTO Utility 1999)
C 80 VEHICULAR CORNERING LAMP SYSTEM, US PAT 5404278Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1995)
C 81 VEHICULAR HEADLAMP PRODUCING LOW BEAM HAVING CUT LINE CONTROLLED IN ACCORDANCE WITH CONDITION OF CURVED ROAD, US PAT 5707129Assignee: Koito Manufacturing Co., Ltd., (U.S. PTO Utility 1998)

US District Court Civil Docket

U.S. District - Texas Eastern
 (Tyler)

6:10cv78

Balther Technologies, Llc v. American Honda Motor Co. Inc. et al

This case was retrieved from the court on Thursday, November 29, 2012

10333 Richmond Suite 1100
Houston, TX 77042
USA
713/934-4060
Fax: 17139347011
Email:Dwilliams@wmalaw.Com
David Wynne Morehan
ATTORNEY TO BE NOTICED
Williams Morgan \& Amerson PC
10333 Richmond Suite 1100
Houston, TX 77042
USA
713-934-7000
-Fax: 713-934-70゙11
Email:Dmorehan@wmalaw.Com

Debra R. Coleman
ATTORNEY TO BE NOTICED
Albritton Law Firm
P O Box 2649
Longview, TX 75606
USA
(903) 757-8449

Fax: (903) 758-7397
Email:Drc@emafirm.Com
J Mike Amerson
ATTORNEY TO BE NOTICED
Williams Morgan \& Amerson PC
10333 Richmond Suite 1100
Houston, TX 77042
USA
713/934-4055
Fax: 17139347011
Email:Mike@wmalaw.Com
Jack Wesley Hill
ATTORNEY TO BE NOTICED
Ward \& Smith Law Firm
Po Box 12311127 Judson Road Suite 220
Longview, TX 75606
USA
903-757-6400
Fax: 903-757-2323
Email:Wh@wsfirm.Com

Jaison Chorikavumkal John
ATTORNEY TO BE NOTICED
Williams Morgan \& Amerson PC
10333 Richmond Suite 1100
Houston, TX 77042
USA
713/934-4060
Fax: 17139347011
Email:Jjohn@wmalaw.Com
Matthew Clay Harris
ATTORNEY TO BE NOTICED
Albritton Law Firm
P O Box 2649
Longview, TX 75606
USA
903-757-8449
Fax: 903-758-7397
Email:Mch@mattharrislaw.Com

Matthew Richard Rodgers
ATTORNEY TO BE NOTICED
Williams Morgan \& Amerson PC
10333 Richmond Suite 1100
Houston, TX 77042
USA
713/934-4061
Email:Mrodgers@wmalaw.Com

Michael A. Benefield
ATTORNEY TO BE NOTICED
Albritton Law Firm
P O Box 2649
Longview, TX 75606
USA
903-757-8449
Fax: 903-758-7397
Email:Mab@emafirm.Com
Thomas John Ward, Jr
ATTORNEY TO BE NOTICED
Ward \& Smith Law Firm
Po Box 12311127 Judson Road Suite 220
Longview, TX 75606
USA
903/757-6400
Fax: 903/757-2323
Email:Jw@wsfirm.Com
American Honda Motor Co. Inc.
Defendant
Honda Motor Company, Ltd.
Defendant
Bmw of North America, Llc
Defendant
Bmw AG
Defendant
Chrysler Group Lic
Defendant
Ferrari North America, Inc.
Defendant
Ferrari S.P.A.
Defendant
General Motors, Llc
Defendant
Hyundai Motor America
Defendant
Hyundai Motor Company
Defendant
Jaguar Land Rover North America, Llc
Defendant
Jaguar Cars Limited
Defendant
Maserati North America Inc
Defendant

Maserati S.P.A. Defendant	
Mercedes-Benz USA, LIC Defendant	
Daimler North America Corporation Defendant	
Daimler AG Defendant	\cdots
Mazda Motor of North America, Inc. Defendant	
Mazda Motor Corp. Defendant	
Mitsubishi Motors North America, Inc. Defendant	Michael Charles Smith ATTORNEY TO BE NOTICED Siebman Burg Phillips \& Smith, LLP-Marshall P O Box 1556 Marshall, TX 75671-1556 USA 903-938-8900 Fax: 19727674620 Email:Michaelsmith@siebman.Com
Mitsubishi Motors Corp. Defendant	Michael Charles Smith ATTORNEY TO BE NOTICED Siebman Burg Phillips \& Smith, LLP-Marshall P O Box 1556 Marshall, TX 75671-1556 USA 903-938-8900 Fax: 19727674620 Email:Michaelsmith@siebman.Com
Nissan North America, Inc. Defendant	
Nissan Motor Co., Ltd. Defendant	
Porsche Cars North America, Inc. Defendant	
Dr. Ing. Hc.F. Porsche AG Defendant	
Saab Cars North America, Inc. Defendant	
Toyota Motor North America, Inc. Defendant	
Toyota Motor Sales, U.S.A., Inc. Defendant	
Toyota Motor Corp. Defendant	
Volkswagen Group of America, Inc. Defendant	
Automobili Lamborghini S.P.A.	

Nissan North America, Inc.
Defendant
Nissan Motor Co., Ltd.
Defendant
Porsche Cars North America, Inc.
Defendant
Dr. Ing. Hc.F. Porsche AG Defendant

Saab Cars North America, Inc.
Defendant
Toyota Motor North America, Inc. Defendant

Toyota Motor Sales, U.S.A., Inc. Defendant

Toyota Motor Corp.
Defendant
Volkswagen Group of America, Inc.

Automobili Lamborghini S.P.A.

		Nissan North America, Inc., Porsche Cars North America, Inc., SAAB Cars North America, Inc., Toyota Motor North America, Inc., Toyota Motor Sales, U.S.A., Inc., Volkswagen Group of America, Inc., Volvo Cars of North America, LLC., and emailed to pltf for service. (mII,) (Entered: 04/28/2010)
05/17/2010	17	NOTICE of Voluntary Dismissal by Balther Technologies, LLC (Attachments: \# 1 Text of Proposed Order)(Albritton, Eric) (Entered: 05/17/2010)
05/18/2010	18	ORDER DISMISSING CASE. This civil action is dismissed without prejudice. PItf and defts shall bear their own costs, expenses and legal fees. Signed by Judge Leonard Davis on 05/18/10. cc:attys 5-18-10(mll,) (Entered: 05/18/2010)
05/18/2010	19	Agreed MOTION for Extension of Time to File Answer re 1 Complaint by Mitsubishi Motors Corp., Mitsubishi Motors North America, Inc.. (Attachments: \# 1 Text of Proposed Order) (Smith, Michael) (Entered: 05/18/2010)
05/19/2010	20	NOTICE by Mitsubishi Motors Corp., Mitsubishi Motors North America, Inc. re 19 Agreed MOTION for Extension of Time to File Answer re 1 Complaint (Notice of Withdrawal of Agreed MOTION for Extension of Time to File Answer) (Smith, Michael) (Entered: 05/19/2010)

[^19]7241034
Get Drawing Sheet 1 of 7
Access PDF of Official Patent * Order Patent File History / Wrapper from REEDFAX® Link to Claims Section

July 10, 2007
Automatic directional control system for vehicle headlights

REEXAM-LITIGATE:

Reexamination requested July 10,2010 by PATENT OWNER, Reexamination No. 90/011,011 (O.G. September 7, 2010) Ex. Gp.: 3992 July 10, 2010

Reexamination requested May 16, 2011 by Volkswagen Group of America, Inc.; (Att'y Is: Clifford A. Ulrich, Kenyon \& Kenyon, LLP., New York, NY), Reexamination No. 95/001,621 (O.G. June 28, 2011) Ex. Gp.: 3992 May 16, 2011

NOTICE OF LITIGATION

Balther Technologies, LLC v. American Honda Motor Co Inc et al, Filed March 8, 2010, D.C. E.D. Texas, Doc. No. 6:10cv78

INVENTOR: Smith, James E. - Berkey, Ohio, United States of America (US), United States of America () ; McDonald, Anthony B. - Perrysburg, Ohio, United States of America (US), United States of America ()

APPL-NO: 285312 (10)
FILED-DATE: October 31, 2002
GRANTED-DATE: July 10, 2007

ASSIGNEE-PRE-ISSUE:

February 6, 2003 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., DANA CORPORATION 4500 DORR STREET TOLEDO OHIO 43615, Reel and Frame Number: 013729/0559

ASSIGNEE-AT-ISSUE:

Dana Corporation, Toledo, Ohio, United States of America (US), United States company or corporation (02)

ASSIGNEE-AFTER-ISSUE:

February 22, 2008 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., DANA AUTOMOTIVE SYSTEMS GROUP, LLC 4500 DORR STREET TOLEDO OHIO 43615, 4500 DORR STREET, TOLEDO, OHIO, UNITED STATES OF AMERICA (US), 43615, Reel and Frame Number: 020540/0476
June 12, 2009 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).,

STRAGENT, LLC 211 W. TYLER, SUITE C LONGVIEW TEXAS 75601, 211 W. TYLER, SUITE C, LONGVIEW, TEXAS, UNITED STATES OF AMERICA (US), 75601, Reel and Frame Number: 022813/0432
March 8, 2010 - ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS)., BALTHER TECHNOLOGIES, LLC, SUITE C-4, 211 W . TYLER, LONGVIEW, TEXAS, UNITED STATES OF AMERICA (US), 75601, Reel and Frame Number: 024045/0235

LEGAL-REP: MacMillan, Sobanski \& Todd, LLC
PRIM-EXMR: Alavi, Ali
CORE TERMS: headlight, directional, controller, adjustment, sensed, algorithm, sensor, actuator, steering, minus, control system, road, suspension, responsive, automatic, feedback, orientation, beam, aiming, height, generating, electrical, input output device, plane, stored, automatically, optical, pitch, calibration, accomplish

NO-OF-CLAIMS: 5

Source: Legal >/.../> Utility, Design and Plant Patents i
Terms: patno=7241034 (Suggest Terms for My Search)
View: Custom
Segments: Appl-no, Assignee, Cert-correction, Date, Exmr, Inventor, Legal-rep, Lit-reex, No-of-claims, Patno, Reexam-litigate, Reissue, Reissue-comment
Date/Time: Thursday, December 6, 2012-11:23 AM EST
in

1. Weekly: Honey Hope Honesty Enterprise unchanged on weak volume, News Bites Asian Markets, September 8, 2012 Saturday, 674 words
2. Reexamination Requests Filed Weeks of $5 / 16 / 11$ And $5 / 23 / 11$, Patent Law Practice Center, May 31, 2011 Tuesday 10:11 AM EST, , 2671 words, Stefanie Levine

Source: Combined Source Set 3 - i - News, Most Recent Two Years (English, Full Text)
Terms: $\mathbf{7 2 4 1 0 3 4}$ or 7,241,034 (Suggest Terms for My Search)
View: Cite
Date/Time: Thursday, December 6, 2012-11:24 AM EST

In
About LexisNexis | Privacy Policy | Terms \& Conditions | Contact Us Copyright © 2012 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

Alexandria, Virginia 22313-1450

APPLICATION NO.	Filing date	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
95/001,621 05/16/201190lolloll959092045 Caldwell Firm, LLCThe CalPO Box S9655Dept. SVIPGPDallas, TX 75229		7,241,034	SVIPGP109RE	1240
			EXAM	
			TON, M	RaNG
			ART UNIT	PAPER NUMBER
			3992	
			MAIL DATE	DELIVERY MODE
			12/18/2012	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

DO NOT USE IN PALM PRINTER

(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)
Kenyon \& Kenyon, LLP One Broadway
New York, NY

MAILED

DEC 1820 ?

CENTRAL REEXAMINATION UNIY
10004

Transmittal of Communication to Third Party Requester Inter Partes Reexamination

REEXAMINATION CONTROL NUMBER 95/001,621; $90 / 011,011$
PATENT NUMBER 7,241,034.
TECHNOLOGY CENTER 3900.
ART UNIT 3992.

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office in the above-identified reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30 -day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the communication enclosed with this transmittal.

ACTION CLOSING PROSECUTION	Control Nos.	Patent Under Reexamination
	Examiner	$7,241,034$
	MY-TRANG TON	Art Unit

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

Responsive to the communication(s) filed by:
Patent Owner on 26 July, 2012
Third Party(ies) on \qquad
Patent owner may once file a submission under 37 CFR 1.951(a) within 1 month(s) from the mailing date of this Office action. Where a submission is filed, third party requester may file responsive comments under 37 CFR 1.951 (b) within 30 -days (not extendable- 35 U.S.C. § 314(b)(2)) from the date of service of the initial submission on the requester. Appeal cannot be taken from this action. Appeal can only be taken from a Right of Appeal Notice under 37 CFR 1.953.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

PART I. THE FOLLOWING ATTACHMENT(S) ARE PART OF THIS ACTION:

1. \square Notice of References Cited by Examiner, PTO-892
2. \square Information Disclosure Citation, PTO/SB/08
3. \square \qquad

PART II. SUMMARY OF ACTION:

1a. \boxtimes Claims 1-41 are subject to reexamination.
1b. \squareClaims \qquad are not subject to reexamination.
2. \boxtimes Claims 1 and 2 have been canceled.
3. \square Claims \qquad are confirmed. [Unamended patent claims]
4. \triangle Claims 3-13 and 15-35, 38-41 are patentable. [Amended or new claims]
5. \boxtimes Claims 14,36 and 37 are rejected.
6. \square Claims \qquad are objected to.
7. \square The drawings filed on \qquadare acceptable $\quad \square$ are not acceptable.
$8 \square$ The drawing correction request filed on \qquad is: \square approved. \square disapproved.
$9 \quad \square$ Acknowledgment is made of the claim for priority under 35 U.S.C. 119 (a)-(d). The certified copy has: \square been received. \square not been received. \square been filed in Application/Control No \qquad 10. \square Other

ACTION CLOSING PROSECUTION

This is an inter partes reexamination of United States Patent Number $7,241,034$ ("the '034 patent"), a merger of proceedings having control Number 95/001,621 and 90/011,011.

The '034 patent issued on July 10, 2007 based on US Patent Application No. 10/285,312 (the base application) filed on October 31, 2002.

The '034 patent is currently assigned to "Dana Corporation".

Status of Patent Owner's Response

Patent owner responded to the prior office action on $7 / 26 / 2012$ ("Response") and proposed amendments to claims 3-5, and cancellation of claims 1-2. This proposed amendment has been considered by the examiner and made of record. This action is in response to the Patent Owner's response.

Status of Requester's Comments

There is no comment from the third Party requester.

The following is the status of the claims with respect to the proposed Amendment:

Claims 1-2 are cancelled.

Claims 3-5 are amended (Amend claim 3 to allegedly incorporate the features of claim 1, and amend claim 4-5 to depend on claim 3).

Claims 6-41 are newly added (the amendments filed 4/27/2012).

Of these, claims 3 and 7 are independent claims.

Thus, all subsequent reexamination prosecution and examination will be on the basis of the claims as amended in the proposed amendment. It is noted that although the Office actions will treat proposed amendments as though they have been entered, the proposed amendments will not be effective until the reexamination certificate is issued.

References

Request for reexamination in EP 90/011,011:
U.S. Patent 4,733,333 issued to Shibata (hereinafter "Shibata")

Request for reexamination in IP 95/001,621:

Application/Control Numbers: 95/001,621, 90/011,011
Art Unit: 3992

1. United Kingdom Patent Application Publication No. 2309773 by Uchida (hereinafter "Uchida").
2. United Kingdom Patent Application Publication No. 2309774 by Takahashi (hereinafter "Takahashi").
3. U.S. Patent No. 5, 182,460 by Hussman (hereinafter "Hussman").
4. German Patent Application Publication No. 3110094 by Miskin et al (hereinafter "Miskin et al."\}.
5. German Patent Application Publication No. 3129891 by Leleve (hereinafter "Leleve").
6. U.S. Patent No. $6,305,823$ by Toda et al (hereinafter "Toda. et al.").
7. U.S. Patent No: 6,193,398 by Okuchi et al (hereinafter "Okuchi et al.").
8. U.S. Patent No. 5,909,949 by Gotoh (hereinafter "Gotoh").
9. U.S. Patent No. $4,954,933$ by Wassen et al (hereinafter "Wassen et al.").

Status of Previous not adopted Rejections

Request for reexamination in EP 90/011,011:

Shibata's issue has been withdrawn in the Non-Office action. For reasoning see the Non-final Office action at pages 9-10.

Request for reexamination in IP 95/001,621:

1 / Issues $3,8,13$ and 18 were found not to raise a SNQ in the Order will not be listed and will not be discussed further.

2/ Issues 1-2, 4-7, 9-12, 14-17 and 19-20 raised for the original claims 1-5 will not be evaluated because of the amendment filed on $4 / 27 / 2012$.

3 / Issues $21,23,26,29-33,35,36,38$ were found not adopted in the non-final Office action are not listed and will not be discussed further. For reasoning see the Non-final Office action at pages 11-12, 23-25, 53-55, 85-98.

Status of Previous Rejections

The following rejections were previously made by the Office:
Issue 22: Claims 1, 2, 4-6, 8, 15, 17-19, 23-24, 28-29, 31-32, 35-37 are rejected under 35 U.S.C. § 102(b) as being anticipated by Takahashi.

Issue 24: Claims $1,2,4-6,8-9,12,14,15,17-19,23-25,31-37$ are rejected under 35 U.S.C $\S 103(\mathrm{a})$ as being unpatentable over Toda in view of Uchida.

Issue 25: Claims $1,2,4-6,8-9,12,14,15,17-19,23-25,28-29,31-37$ are rejected under 35 U.S.C § 103(a) as unpatentable over Toda in view of Takahashi.

Issue 27: Claims 1, 2, 4-6, 8-10,~ 12-15, 17-19, 23-24, 28-37 are rejected under 35 U.S.C. § 103(a) as unpatentable over the combination of Okuchi et al. and Uchida.

Issue 28: Claims $1,2,4-6,8-10,12-15,17-19,23-24,28-37$ are rejected under 35 U.S.C. § 103(a) as being unpatentable over the combination of Okuchi et al. and Takahashi.

Issue 34: Claims 16, 20, 21, 25-27 (as amended on 4/27/2012) are rejected under 35 U.S.C. §103(a) as being unpatentable over Takahashi in view of the admitted prior art described in the ' 034 patent specification.

Application/Control Numbers: 95/001,621, 90/011,011

Issue 37: Claim 22 is rejected under 35 U.S.C. §103(a) as being unpatentable over Takahashi in view of Wassen.

Details of previous rejections

In view of the amendment filed by Patent Owner on $7 / 26 / 2012$, grounds of rejection have been changed to reflect the changes.

As to issue 22: The rejection of claims $1,2,4-6,8,15,17-19,23-24,28-$ 29, 31-32, 35-37 under 35 U.S.C. § 102(b) as being anticipated by Takahashi is withdrawn.

Insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3 , and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7, Takahashi is no longer an anticipatory reference. Examiner agrees to withdrawn the previously adopted rejections in issue 22. The reference put forth in the request, Takahashi, is not seen to teach the subject matter of claims 3 and 7 .

Remaining proposed reject claims 4-6, 8, 15, 17-19, 23-24, 28-29, 31-32, 35-37 are dependent claims and therefore are distinguishable from Takahashi at least the same reasons as their respective independent claims 3 and 7 , and add further claim limitations of their own.

As to issue 24: The rejection of claims $1,2,4-6,8-9,12,14,15,17-19$, 23-25, 31-37 under 35 U.S.C § 103(a) as being unpatentable over Toda in view of Uchida is withdrawn.

Insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3, and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7, the combination of Toda and Uchida no longer renders claims 3 and 7 obvious. Examiner agrees to withdrawn the previously adopted rejections in issue 24 . The references put forth in the request, Toda in view of Uchida, are not seen to teach the subject matter of claims 3 and 7.

Remaining proposed reject claims 4-6, 8-9, 12, 14, 15, 17-19, 23-25, 3137 are dependent claims and therefore are distinguishable from Toda in view of Uchida at least the same reasons as their respective independent claims 3 and 7, and add further claim limitations of their own.

As to issue 25: The rejection of claims $1,2,4-6,8-9,12,14,15,17-19$, 23-25, 28-29, 31-37 under 35 U.S.C § 103(a) as unpatentable over Toda in view of Takahashi is withdrawn.

Insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3, and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7 , the combination of Toda and Takahashi no longer renders claims 3 and 7 obvious. Examiner agrees to withdrawn the previously adopted rejections in issue 25 . The references put forth in the request, Toda in view of Takahashi, are not seen to teach the subject matter of claims 3 and 7 .

Remaining proposed reject claims $4-6,8-9,12,14,15,17-19,23-25,28-$ 29, 31-37 are dependent claims and therefore are distinguishable from Toda in view of Takahashi at least the same reasons as their respective independent claims 3 and 7, and add further claim limitations of their own.

As to issue 27: The rejection of claims $1,2,4-6,8-10,12-15,17-19,23-$ 24, 28-37 under 35 U.S.C. § 103(a) as unpatentable over the combination of Okuchi et al and Uchida is withdrawn.

Insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3, and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7, the combination of Okuchi and Uchida no longer renders claims 3 and 7 obvious. Examiner agrees to withdrawn the previously adopted rejections in issue 27 . The references put

Application/Control Numbers: 95/001,621, 90/011,011
Art Unit: 3992
forth in the request, Okuchi in view of Uchida, are not seen to teach the subject matter of claims 3 and 7.

Remaining proposed reject claims 4-6, 8-10, 12-15, 17-19, 23-24, 28-37 are dependent claims and therefore are distinguishable from Okuchi in view of Uchida at least the same reasons as their respective independent claims 3 and 7, and add further claim limitations of their own.

As to issue 28: The rejection of claims $1,2,4-6,8-10,12-15,17-19,23-$ 24, 28-37 under 35 U.S.C. § 103(a) as being unpatentable over the combination of Okuchi et al. and Takahashi is withdrawn.

Insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3, and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7, the combination of Okuchi and Takahashi no longer renders claims 3 and 7 obvious. Examiner agrees to withdrawn the previously adopted rejections in issue 28 . The references put forth in the request, Okuchi in view of Takahashi, are not seen to teach the subject matter of claims 3 and 7.

Remaining proposed reject claims 4-6, 8-10, 12-15, 17-19, 23-24, 28-37 are dependent claims and therefore are distinguishable from Okuchi in view of Takahashi at least the same reasons as their respective independent claims 3 and 7 , and add further claim limitations of their own.

As to issue 34: The rejection of claims $16,20,21,25-27$ (as amended on $4 / 27 / 2012$) under 35 U.S.C. §103(a) as being unpatentable over Takahashi in view of the admitted prior art described in the ' 034 patent specification is withdrawn.

Claims 16, 20, 21, 25-27 are dependent claims and therefore are distinguishable from Takahashi in view of the admitted prior art described in the '034 patent specification at least the same reasons as their respective independent claim 7, and add further claim limitations of their own.

As to issue 37: The rejection of claim 22 under 35 U.S.C. §103(a) as being unpatentable over Takahashi in view of Wassen is withdrawn.

Claim 22 is dependent claim and therefore is distinguishable from Takahashi in view of Wassen at least the same reasons as its respective independent claim 7, and add further claim limitation of its own.

Claim Rejections - 35 USC § 112

Claims 14,36 and 37 are rejected under 35 U.S.C. 112 , second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Regarding claim 14: claim 7 already recites the limitations "two or more actuators". It appears that "a first actuator" and "a second actuator" now recite in claim 14 are a part of "two or more actuators" already recites in claim 7. Thus, in order to avoid any confusion, it is suggested that claim 14 should be amended as:
14. (Currently Amended) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured [to include] such that said two or more actuators include a first actuator and a second actuator and wherein [a] the first actuator connected to the headlight to effect movement thereof in a first direction and [a] the second actuator connected to the headlight to effect movement thereof in a second direction different form the first direction.

Claims 36 and 37 include the same limitations for "the controller" as claim 7 and are therefore redundant. These claims should be cancelled.

STATEMENT OF REASONS FOR PATENTABILITY AND/OR CONFIRMATION

The following is an examiner's statement of reasons for patentability and/or confirmation of the claims found patentable in this reexamination proceeding:

Independent claim 3 is patentable because of the fact that no single reference of record or combination of references teach "at least one of said two

Application/Control Numbers: 95/001,621, 90/011,011
or more sensors generates at least one of said two or more sensor signals that is representative of a rate of change of the steering angle of the vehicle" in combination with a "a controller" and "two or more actuators" as required in claim 3.

Dependent claims 4-6 come freighted with the limitations of claim 3 from which they stem and are therefore patentable for the same reasons.

Independent claim 7 is patentable because of the fact that no single reference of record or combination of references teach "wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle " in combination with "a controller" and "two or more actuators" as required in claim 7.

Dependent claims $8-13,15-35,38-41$ come freighted with the limitations of claim 7 from which they stem and are therefore patentable for the same reasons.

Any comments considered necessary by PATENT OWNER regarding the above statement must be submitted promptly to avoid processing delays. Such submission by the patent owner should be labeled: "Comments on Statement of Reasons for Patentability and/or Confirmation" and will be placed in the reexamination file.

Conclusion

This is an ACTION CLOSING PROSECUTION (ACP); see MPEP § 2671.02.
(1) Pursuant to 37 CFR $1.951(\mathrm{a})$, the patent owner may once file written comments limited to the issues raised in the reexamination proceeding and/or present a proposed amendment to the claims which amendment will be subject to the criteria of 37 CFR 1.116 as to whether it shall be entered and considered. Such comments and/or proposed amendments must be filed within a time period of 30 days or one month (whichever is longer) from the mailing date of this action. Where the patent owner files such comments and/or a proposed amendment, the third party requester may once file comments under 37 CFR 1.951(b) responding to the patent owner's submission within 30 days from the date of service of the patent owner's submission on the third party requester.
(2) If the patent owner does not timely file comments and/or a proposed amendment pursuant to 37 CFR 1.951 (a), then the third party requester is precluded from filing comments under 37 CFR 1.951(b).
(3) Appeal cannot be taken from this action, since it is not a final Office action.

Extensions of Time

Extensions of time under 37 CFR 1.136(a) will not be permitted in inter partes reexamination proceedings because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a reexamination proceeding. Additionally, 35 U.S.C. 314(c) requires that inter partes reexamination proceedings "will be conducted with special dispatch" (37 CFR 1.937). Patent owner extensions of time in inter partes reexamination proceedings are provided for in 37 CFR 1.956. Extensions of time are not available for third party requester comments, because a comment period of 30 days from service of patent owner's response is set by statute. 35 U.S.C. 314(b)(3).

Notification of Other Proceedings

The patent owner is reminded of the continuing responsibility under 37 CFR 1.985(a), to apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the ' 034 patent throughout the course of this reexamination proceeding. The third party requester is also reminded of the ability to similarly apprise the Office of any such activity or proceeding throughout the course of this reexamination proceeding. See MPEP § 2686 and 2686.04.

All correspondence relating to this inter partes reexamination proceeding should be directed:

By Mail to: Mail Stop InterPartes Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450
By FAX to: (571) 273-9900
Central Reexamination Unit
By hand:
Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314
Registered users of EFS-Web may alternatively submit such correspondence via the electronic filing system EFS-Web, at https://sportal.uspto.gov/authenticate/authenticateuserlocalepf.html. EFS-Web offers the benefit of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS- Web submissions are "soft scanned" (i.e., electronically uploaded) directly into the official file for the reexamination proceeding, which offers parties the opportunity to review the content of their submissions after the "soft scanning." processing complete.

Any inquiry concerning this communication or earlier communications from the examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.
/My-Trang N. Ton/
Primary Examiner
Central Reexam Unit 3992

Conferees:

/Margaret Rubin/
Primary Examiner 3992

Requester Correspondence Address: $\quad \square$ Patent Owner $\quad \boxtimes$ Third Party

Kenyon \& Kenyon, LLP One Broadway New York, NY 10004

COPENDING OFFICE PROCEEDINGS	
TYPE OF PROCEEDING	
$1 . \quad 90 / 011011 ; 95 / 001,621$	NUMBER
2.	
3.	
4.	

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:)
)
7,241,034) Art Unit: 3992
)
Applications No. 95/001,621 \& 90/011,011) Examiner: MY-TRANG N. TON
) ${ }^{\text {a }}$
Filed:	05/16/2011) Atty. Docket No.:
) SVIPGP109RE
For:	AUTOMATIC DIRECTIONAL CONTROL)	
	SYSTEM FOR VEHICLE) Date: 01/02/2013
	HEADLIGHTS) 0
)

COMMENTS ON STATEMENT OF REASONS FOR PATENTABILITY AND/OR

CONFIRMATION

AND

AMENDMENT F

Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Examiner:

In response to the Office Action Closing Prosecution mailed 12/18/2012 ("Office Action"), please enter the following.

AMENDMENTS TO THE CLAIMS

Amended claims follow:

1. (Cancelled).
2. (Cancelled).
3. (Currently Amended) [The automatic directional control system defined in claim 1] An automatic directional control system for a vehicle headlight, comprising: two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle such that two or more sensor signals are generated, said sensed conditions including at least a steering angle and a pitch of the vehicle;
a controller that is responsive to said two or more sensor signals for generating at least one output signal only when at least one of said two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in at least one of the sensed conditions; and
said two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal;
wherein at least one of said two or more sensors generates [a]at least one of said two or more sensor signals that is representative of [the]a rate of change of the steering angle of the vehicle.
4. (Currently Amended) The automatic directional control system defined in claim [1]3, wherein at least one of said two or more sensors generates a signal that is representative of [the] a rate of change of the pitch of the vehicle.
5. (Currently Amended) The automatic directional control system defined in claim [1] $\underline{3}$, wherein at least one of said two or more sensors generates a signal that is representative of [the]a suspension height of the vehicle.
6. (New) The automatic directional control system defined in claim 3, wherein said two or more sensors include a first sensor and a second sensor.
7. (New) An automatic directional control system for a vehicle headlight, comprising:
two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle such that two or more sensor signals are generated, said sensed conditions including at least a steering angle and a pitch of the vehicle;
a controller that is responsive to said two or more sensor signals for generating at least one output signal only when at least one of said two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in at least one of the sensed conditions; and
said two or more actuators each being adapted to be connected to the vehicle headlight to effect movement thereof in accordance with said at least one output signal;
wherein said two or more sensors include a first sensor and a second sensor; and
wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.
8. (New) The automatic directional control system defined in claim 7, wherein said first sensor is physically separate from said second sensor.
9. (New) The automatic directional control system defined in claim 7, further comprising one or more additional sensors for sensing one or more of a rate of change of road speed of the vehicle, a rate of change of the steering angle of the vehicle, a rate of
change of the pitch of the vehicle, a suspension height of the vehicle, or a rate of change of suspension height of the vehicle.
10. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of the road speed of the vehicle.
11. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of the steering angle of the vehicle.
12. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of the pitch of the vehicle.
13. (New) The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the suspension height of the vehicle.
14. (Currently Amended) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that said two or more actuators include a first actuator and a second actuator and wherein the first actuator connected to the headlight to effect movement thereof in a first direction and the second actuator connected to the headlight to effect movement thereof in a second direction different from the first direction.
15. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.
16. (New) The automatic directional control system defined in claim 15, wherein the two or more actuators include a second actuator that is adapted to be connected to the headlight to effect movement thereof in a horizontal direction.
17. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include an electronically controlled mechanical actuator.
18. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include a step motor.
19. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include a servo motor.
20. (New) The automatic directional control system defined in claim 7, wherein the two or more actuators include a microstepping motor capable of being operated in fractional step increments.
21. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted both up and down relative to a horizontal reference position and left and right relative to a vertical reference position.
22. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that, while in a calibration mode, a directional orientation at which a beam of light projects is capable of being adjusted relative to the vehicle by manual operation of the two or more actuators.
23. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller includes a microprocessor.
24. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.
25. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system further includes at least one position feedback sensor capable of providing a position feedback signal associated with at least one of the two or more actuators.
26. (New) The automatic directional control system defined in claim 25, wherein the at least one position feedback sensor includes a Hall Effect sensor.
27. (New) The automatic directional control system defined in claim 25, wherein the at least one position feedback sensor includes an optical interrupter.
28. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system further includes memory.
29. (New) The automatic directional control system defined in claim 28, wherein the memory includes non-volatile memory.
30. (New) The automatic directional control system defined in claim 28, wherein the memory is configured to store a predetermined reference position associated with the headlight.
31. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.
32. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch sensor.
33. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in a suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.
34. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in a suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.
35. (New) The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.
36. (Cancelled).
37. (Cancelled).
38. (New) The automatic directional control system defined in claim 7. wherein said controller is further responsive to at least one of said two or more sensor signals to automatically activate one or more vehicle lights that are different than the headlight.
39. (New) The automatic directional control system defined in claim 38, wherein said one or more vehicle lights that are different than the headlight include one or more lights for illuminating a road in front of the vehicle during a turn.
40. (New) The automatic directional control system defined in claim 7, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight.
41. (New) The automatic directional control system defined in claim 7, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight to extend an angular range of a road surface.

REMARKS

Patent Owner thanks the Examiner for noting the allowable subject matter. Patent Owner has amended Claim 14 to overcome alleged 35 U.S.C. § 112 issues. Furthermore, Patent Owner has cancelled Claims 36 and 37. Table 1 shows a summary of Patent Owner's amendments, relative to Patent Owner's Amendment E, dated 7/26/2012.

Table 1

Claim 1 - Cancelled, same as Amendment E.
Claim 2 - Cancelled, same as Amendment E.
Claim 3 - Same text as Amendment E.
Claim 4 - Same text as Amendment E.
Claim 5 - Same text as Amendment E.
Claim 6 - Same text as Amendment E.
Claim 7 - Same text as Amendment E.
Claim 8 - Same text as Amendment E.
Claim 9 - Same text as Amendment E.
Claim 10 - Same text as Amendment E.
Claim 11 - Same text as Amendment E.
Claim 12 - Same text as Amendment E.
Claim 13 - Same text as Amendment E.
Claim 14 - Patent Owner deleted "to include" (which was presented in Amendment D1) and inserted "such that said two or more actuators include a first actuator and a second actuator and wherein." Patent Owner changed "a" to "the" relating to "the first actuator connected to the headlight" and "the second actuator connected to the headlight."

Claim 15 - Same text as Amendment E.
Claim 16 - Same text as Amendment E.
Claim 17 - Same text as Amendment E.
Claim 18 - Same text as Amendment E.
Claim 19 - Same text as Amendment E.

Claim 20 - Same text as Amendment E.
Claim 21 - Same text as Amendment E.
Claim 22 - Same text as Amendment E.
Claim 23 - Same text as Amendment E.
Claim 24 - Same text as Amendment E.
Claim 25 - Same text as Amendment E.
Claim 26 - Same text as Amendment E.
Claim 27 - Same text as Amendment E.
Claim 28 - Same text as Amendment E.
Claim 29 - Same text as Amendment E.
Claim 30 - Same text as Amendment E.
Claim 31 - Same text as Amendment E.
Claim 32 - Same text as Amendment E.
Claim 33 - Same text as Amendment E.
Claim 34 - Same text as Amendment E.
Claim 35 - Same text as Amendment E.
Claim 36 - Cancelled
Claim 37 - Cancelled
Claim 38 - Same text as Amendment E.
Claim 39 - Same text as Amendment E.
Claim 40 - Same text as Amendment E.
Claim 41 - Same text as Amendment E.

Patent Owner further notes that the " 034 patent is currently assigned to "Stragent, LLC" and not to "Dana Corporation" as stated by the Examiner on Page 2 of the Office Action. Patent Owner includes the accompanying 3.73(b) statement and assignment documents for the Examiner's convenience.

In the event fees are due, the Commissioner is authorized to charge any additional fees or credit any overpayment to Deposit Account No. 50-4964 (Order No.

SVIPGP109RE). Patent Owner invites the Examiner to telephone the undersigned attorney at the number listed below in the event such communication would advance prosecution.

Additionally, the undersigned hereby certifies that a true and complete copy of the forgoing COMMENTS ON STATEMENT OF REASONS FOR PATENTABILITY AND/OR CONFIRMATION AND AMENDMENT F has been served on Third Party Requestor by mailing said copy on 02 Jan 2013, via First Class Mail, postage prepaid to: Kenyon \& Kenyon, LLP

One Broadway
New York, NY 10004

Dated: 02 Jan 2013
The Caldwell Firm, LLC
PO Box 59655
Respectfully submitted,

Dallas, Texas 75229-0655
Telephone: (214) 734-2313
pcaldwell@ thecaldwellfirm.com

[^20]

This collection of information is required by 37 CFR 3.73 (b). The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

This collection of information is required by 37 CFR $3.73(\mathrm{~b})$. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 1.14. This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

WHEREAS, Bather Technologies, LLC, a Texas Limited Liability Company having a place of business at 211 W. Tyler, Suite C, Longview, TX 75601 (hereinafter "ASSIGNOR") is owner of:

Title: Automatic Directional Control System For Vehicle Headlights
Application Number: 10/285,312
Filing Date: 10/31/2002
Patent Number: 7,241,034
Issue Date: 7/10/2007
("Patent(s)/Application(s)")
WHEREAS, Stragent, LLC, a Texas Limited Liability Company having a place of business at 211 W. Tyler, Suite C, Longview, TX 75601 (hereinafter "ASSIGNEE") desires to acquire ASSIGNOR's entire right, title, and interest in and to the Patent(s)/Application(s);

NOW, THEREFORE, for good and valuable consideration, the receipt of which is hereby acknowledged, ASSIGNOR hereby acknowledges that it has sold, assigned, and transferred, and by these presents does hereby sell, assign, and transfer, unto ASSIGNEE, its successors, legal representatives, and assigns, the entire, irrevocable, and unconditional right, title, and interest of ASSIGNOR in, to, and under the Patent(s)/Application(s), and the inventions disclosed in the Patent(s)/Application(s) (regardless of whether claimed) including but not limited to (a) all rights of ASSIGNOR in any and all priority patent applications), and all foreign and domestic patents that may issue from the Patent(s)/Application(s) and the aforementioned priority patent applications), including reexaminations, reissues, renewals, continuations, continuations-in-part, divisionals, or extensions thereof that have been or may hereafter be filed, and (b) the right to sue for and collect damages for past, present, and future infringements of the Patent(s)/Application(s).

IN TESTIMONY WHEREOF, I hereunto set my hand and seal this 4 day of December 2010.

Name: Christopher M. Edgeworth
Title: President \& CEO, Balther Technologies, LLC

Electronic Acknowledgement Receipt	
EFS ID:	14597762
Application Number:	95001621
International Application Number:	
Confirmation Number:	1240
Title of Invention:	Automatic Directional Control System for Vehicle Headlights
First Named Inventor/Applicant Name:	7,241,034
Customer Number:	92045
Filer:	Patrick Edgar Caldwell
Filer Authorized By:	
Attorney Docket Number:	SVIPGP109RE
Receipt Date:	02-JAN-2013
Filing Date:	16-MAY-2011
Time Stamp:	18:03:32
Application Type:	inter partes reexam

Payment information:

Submitted w	ment	no			
File Listing:					
Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
1		SVIPGP109RE_Combined_Amn dt_F_vF_01-02-2013.pdf		yes	14

P.O. Box 1450

Alcxandria. Virginia 22313-1450
www.uspio.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
95/001,621+90/011011 05/16/2011		7,241,034	SVIPGPI09RE	1240
$92045 \quad 7590$ The Caldwell Firm, LLC PO Box 59655 Dept. SVIPGP Dallas, TX 75229		03/05/2013	EXAMINER	
			TON, MY TRANG	
			ART UNIT	PAPER NUMBER
			3992	
			MAIL DATE	DELIVERY MODE
			03/05/2013	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

DO NOT USE IN PALM PRINTER

(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)

Transmittal of Communication to Third Party Requester Inter Partes Reexamination

REEXAMINATION CONTROL NUMBER $\underline{95 / 001,621 ; ~} 90 / 011,011$
PATENT NUMBER 7,241,034.
TECHNOLOGY CENTER 3900.
ART UNIT 3992.

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office in the above-identified reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30 -day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

Right of Appeal Notice

 (37 CFR 1.953)| Control No. | Patent Under Reexamination |
| :--- | :--- |
| 95/001,621; 90/011,011 | $7,241,034$ |
| Examiner | Art Unit |
| MY-TRANG TON | 3992 |

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --
Responsive to the communications) filed by:
Patent Owner on 02 January, 2013
Third Party(ies) on \qquad
Patent owner and/or third party requester(s) may file a notice of appeal with respect to any adverse decision with payment of the fee set forth in 37 CFR 41.20(b)(1) within one-month or thirty-days (whichever is longer). See MPEP 2671. In addition, a party may file a notice of cross appeal and pay the 37 CFR $41.20(b)(1)$ fee within fourteen days of service of an opposing party's timely filed notice of appeal. See MPEP 2672.

All correspondence relating to this inter pates reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

If no party timely files a notice of appeal, prosecution on the merits of this reexamination proceeding will be concluded, and the Director of the USPTO will proceed to issue and publish a certificate under 37 CFR 1.997 in accordance with this Office action.

The proposed amendment filed $\underline{02 \text { January, } 2013 ~} \boxtimes$ will be entered \square will not be entered*
*Reasons for non-entry are given in the body of this notice.
1a. \boxtimes Claims 1-41 are subject to reexamination.
1b. \square Claims \qquad are not subject to reexamination.
2. \boxtimes Claims $1,2,36$ and 37 have been cancelled.
3. \square Claims \qquad are confirmed. [Unamended patent claims].
4. \boxtimes Claims 3-35 and 38-41 are patentable. [Amended or new claims].
5. \square Claims \qquad are rejected.
6. \square Claims \qquad are objected to.
7. \square The drawings filed on \qquad \square are acceptable.are not acceptable.
8.The drawing correction request filed on \qquad is \qquad approved. \qquad disapproved.
9. \square Acknowledgment is made of the claim for priority under 35 U.S.C. 119 (a)-(d) or (f). The certified copy has:
\square been received.not been received.been filed in Application/Control No. \qquad .
10. \qquad Other \qquad

Attachments

1. \square Notice of References Cited by Examiner, PTO-892
2. \square Information Disclosure Citation, PTO/SB/08

3
\qquad

DETAIL OFFICE ACTION

This is an inter partes reexamination of United States Patent Number 7,241,034 (herein "the '034 patent"), a merger of proceedings having control Number 95/001,621 and 90/011,011.

The '034 patent issued on July 10, 2007 based on US Patent Application No. 10/285,312 (the base application) filed on October 31, 2002.

The '034 patent is currently assigned to "Stragent, LLC".

This is a RIGHT OF APPEAL NOTICE (RAN); see MPEP § 2673.02 and § 2674. The decision in this Office action as to the patentability or unpatentability of any original patent claim, any proposed amended claim and any new claim in this proceeding is a FINAL DECISION.

Application/Control Number: 95/001,621; 90/011,011
Art Unit: 3992

Submissions after Action Closing Prosecution

Patent owner responded to the ACP on 1/2/2013 ("Response") and proposed amendments to claim 14, and cancellation of claims 36 and 37.

Status of Patent Owner's Response

The proposed amendment filed $1 / 2 / 2013$ has been considered by the examiner and made of record. This action is in response to the Patent Owner's response.

Status of Requester's Comments

There is no comment from the third Party requester.

Status of Claims

The following is the status of the claims with respect to the proposed Amendment:

Claims 1, 2 (the amendment filed $4 / 27 / 2012$) and 36, 37 (the Amendment filed $1 / 2 / 2013$) are cancelled.

Claim 14 is amended to correct the rejection under 35 U.S.C 112 , second paragraph (the amendment filed $1 / 2 / 2013$).

Claims 3-13, 15-35 and 38-41 are remained as of the amendments filed 4/27/2012.

Of these, claims 3 and 7 are independent claims.

The Action Closing Prosecution, dated $12 / 18 / 2012$, indicated that claims $3-13,15-35,38-41$ were noted as being patentable. Amended claim 14 is now patentable.

Prior Art References

Request for reexamination in EP 90/011,011:

U.S. Patent 4,733,333 issued to Shibata (hereinafter "Shibata")

Request for reexamination in IP 95/001,621:

1. United Kingdom Patent Application Publication No. 2309773 by Uchida (hereinafter "Uchida").
2. United Kingdom Patent Application Publication No. 2309774 by Takahashi (hereinafter "Takahashi").
3. U.S. Patent No. 5,182,460 by Hussman (hereinafter "Hussman").
4. German Patent Application Publication No. 3110094 by Miskin et al (hereinafter "Miskin et al."\}.
5. German Patent Application Publication No. 3129891 by Leleve (hereinafter "Leleve").
6. U.S. Patent No. 6,305,823 by Toda et al (hereinafter "Toda. et al.").
7. U.S. Patent No: 6,193,398 by Okuchi et al (hereinafter "Okuchi et al.").
8. U.S. Patent No. 5,909,949 by Gotoh (hereinafter "Gotoh").
9. U.S. Patent No. 4,954,933 by Wassen et al (hereinafter "Wassen et al.").

Status of Previous not adopted Rejections

Request for reexamination in EP 90/011,011:

Shibata's issue has been withdrawn in the Non-Office action. For reasoning see the Non-final Office action at pages 9-10.

Request for reexamination in IP 95/001,621:

1 / Issues 3, 8, 13 and 18 were found not to raise a SNQ in the Order will not be listed and will not be discussed further.

2/ Issues 1-2, 4-7, 9-12, 14-17 and 19-20 raised for the original claims 1-5 will not be evaluated because of the amendment filed on $4 / 27 / 2012$.

3/ Issues $21,23,26,29-33,35,36,38$ were found not adopted in the non-final Office action are not listed and will not be discussed further. For reasoning see the Non-final Office action at pages 11-12, 23-25, 53-55, 85-98.

Status of Previous Rejections

The following rejections are previously noted by the Office:

As to issue 22: The rejection of claims $1,2,4-6,8,15,17-19,23-24,28$ 29, 31-32, 35-37 under 35 U.S.C. § 102(b) as being anticipated by Takahashi.

As noted in the ACP, insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3 , and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7, Takahashi is no longer an anticipatory reference. Examiner agrees to withdrawn the previously adopted rejections in issue 22 . Thus, the anticipated rejection based on the Takahashi was withdrawn.

As noted in the ACP, remaining proposed reject claims 4-6, 8, 15, 17-19, 23-24, 28-29, 31-32, 35-37 are dependent claims and therefore are distinguishable from Takahashi at least the same reasons as their respective independent claims 3 and 7, and add further claim limitations of their own.

The ACP mailed out $12 / 18 / 2012$ is incorporated herein by reference.

As to issue 24: The rejection of claims $1,2,4-6,8-9,12,14,15,17-19$, 23-25, 31-37 under 35 U.S.C $\S 103(\mathrm{a})$ as being unpatentable over Toda in view of Uchida.

As noted in the ACP, insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3, and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7, the combination of Toda and Uchida no longer renders claims 3 and 7 obvious. Examiner agrees to withdrawn the previously adopted rejections in issue 24 . The references put forth in the request, Toda in view of Uchida, are not seen to teach the subject matter of claims 3 and 7. Thus, the obviousness rejection based on the combination of Toda in view of Uchida was withdrawn.

As noted in the ACP, remaining proposed reject claims $4-6,8-9,12,14$, $15,17-19,23-25,31-37$ are dependent claims and therefore are distinguishable from Toda in view of Uchida at least the same reasons as their respective independent claims 3 and 7, and add further claim limitations of their own.

The ACP mailed out $12 / 18 / 2012$ is incorporated herein by reference.

As to issue 25: The rejection of claims $1,2,4-6,8-9,12,14,15,17-19$, 23-25, 28-29, 31-37 under 35 U.S.C § 103(a) as unpatentable over Toda in view of Takahashi.

As noted in the ACP, insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3, and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7, the combination of Toda and Takahashi no longer renders claims 3 and 7 obvious. Examiner agrees to withdrawn the previously adopted rejections in issue 25 . The references put forth in the request, Toda in view of Takahashi, are not seen to teach the subject matter of claims 3 and 7 . Thus, the obviousness rejection based on the combination of Toda in view of Takahashi was withdrawn.

As noted in the ACP, remaining proposed reject claims 4-6, 8-9, 12, 14, 15, 17-19, 23-25, 28-29, 31-37 are dependent claims and therefore are distinguishable from Toda in view of Takahashi at least the same reasons as their respective independent claims 3 and 7, and add further claim limitations of their own.

The ACP mailed out $12 / 18 / 2012$ is incorporated herein by reference.

As to issue 27: The rejection of claims $1,2,4-6,8-10,12-15,17-19,23-$ 24, 28-37 under 35 U.S.C. § 103(a) as unpatentable over the combination of Okuchi et al and Uchida.

As noted in the ACP, insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3, and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7, the combination of Okuchi and Uchida no longer renders claims 3 and 7 obvious. Examiner agrees to withdrawn the previously adopted rejections in issue 27 . The references put forth in the request, Okuchi in view of Uchida, are not seen to teach the subject matter of claims 3 and 7 . Thus, the obviousness rejection based on the combination of Okuchi in view of Uchida was withdrawn.

As noted in the ACP, remaining proposed reject claims 4-6, 8-10, 12-15, 17-19, 23-24, 28-37 are dependent claims and therefore are distinguishable from Okuchi in view of Uchida at least the same reasons as their respective independent claims 3 and 7, and add further claim limitations of their own.

The ACP mailed out $12 / 18 / 2012$ is incorporated herein by reference.

As to issue 28: The rejection of claims $1,2,4-6,8-10,12-15,17-19,23-$ 24, 28-37 under 35 U.S.C. § 103(a) as being unpatentable over the combination of Okuchi et al. and Takahashi.

As noted in the ACP, insofar as claim 3 has been amended to allegedly incorporate the features of claims 1 and 3, and claim 7 has been amended to allegedly incorporate the features of claims 1 and 7, the combination of Okuchi and Takahashi no longer renders claims 3 and 7 obvious. Examiner agrees to withdrawn the previously adopted rejections in issue 28 . The references put forth in the request, Okuchi in view of Takahashi, are not seen to teach the subject matter of claims 3 and 7 . Thus, the obviousness rejection based on the combination of Okuchi in view of Takahashi was withdrawn.

As noted in the ACP, remaining proposed reject claims 4-6, 8-10, 12-15, 17-19, 23-24, 28-37 are dependent claims and therefore are distinguishable from Okuchi in view of Takahashi at least the same reasons as their respective independent claims 3 and 7, and add further claim limitations of their own.

The ACP mailed out $12 / 18 / 2012$ is incorporated herein by reference.

As to issue 34: The rejection of claims 16, 20, 21, 25-27 (as amended on 4/27/2012) under 35 U.S.C. §103(a) as being unpatentable over Takahashi in view of the admitted prior art described in the ' 034 patent specification.

As noted in the ACP, claims 16, 20, 21, 25-27 are dependent claims and therefore are distinguishable from Takahashi in view of the admitted prior art described in the '034 patent specification at least the same reasons as their respective independent claim 7, and add further claim limitations of their own. Thus, the obviousness rejection based on the combination of Takahashi in view of the admitted prior art described in the ' 034 patent specification was withdrawn.

The ACP mailed out $12 / 18 / 2012$ is incorporated herein by reference.

As to issue 37: The rejection of claim 22 under 35 U.S.C. §103(a) as being unpatentable over Takahashi in view of Wassen.

As noted in the ACP, claim 22 is dependent claim and therefore is distinguishable from Takahashi in view of Wassen at least the same reasons as its respective independent claim 7, and adds further claim limitation of its own. Thus, the obviousness rejection based on the combination of Takahashi in view of Wassen was withdrawn.

The ACP mailed out $12 / 18 / 2012$ is incorporated herein by reference.

STATEMENT OF REASONS FOR PATENTABILITY AND/OR CONFIRMATION

The following is an examiner's statement of reasons for patentability and/or confirmation of the claims found patentable in this reexamination proceeding:

As noted in the ACP, independent claim 3 is patentable because of the fact that no single reference of record or combination of references teach "at least one of said two or more sensors generates at least one of said two or more sensor signals that is representative of a rate of change of the steering angle of the vehicle" in combination with a "a controller" and "two or more actuators" as required in claim 3.

Dependent claims 4-6 come freighted with the limitations of claim 3 from which they stem and are therefore patentable for the same reasons.

Independent claim 7 is patentable because of the fact that no single reference of record or combination of references teach "wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle " in combination with "a controller" and "two or more actuators" as required in claim 7 .

Dependent claims 8-35, 38-41 come freighted with the limitations of claim 7 from which they stem and are therefore patentable for the same reasons.

Any comments considered necessary by PATENT OWNER regarding the above statement must be submitted promptly to avoid processing delays. Such submission by the patent owner should be labeled: "Comments on Statement of Reasons for Patentability and/or Confirmation" and will be placed in the reexamination file.

Conclusion

Extensions of time under 37 CFR $1.136(\mathrm{a})$ will not be permitted in inter partes reexamination proceedings because the provisions of 37 CFR 1.136 apply only to "an applicant" and not to parties in a reexamination proceeding. Additionally, 35 U.S.C. $314(\mathrm{c})$ requires that inter partes reexamination proceedings "will be conducted with special dispatch" (37 CFR 1.937). Patent owner extensions of time in inter partes reexamination proceedings are provided for in 37 CFR 1.956. Extensions of time are not available for third party requester comments, because a comment period of 30 days from service of patent owner's response is set by statute. 35 U.S.C. 314(b (3).

The patent owner is reminded of the continuing responsibility under 37 CFR 1.985(a), to apprise the Office of any litigation activity, or other prior or concurrent proceeding, involving the base patent throughout the course of this reexamination proceeding. The third party requester is also reminded of the ability to similarly apprise the Office of any such activity or proceeding throughout the course of this reexamination proceeding. See MPEP § 2686 and 2686.04.

This is a RIGHT OF APPEAL NOTICE (RAN); see MPEP § 2673.02 and § 2674. The decision in this Office action as to the patentability or unpatentability of any original patent claim, any proposed amended claim and any new claim in this proceeding is a FINAL DECISION.

No amendment can be made in response to the Right of Appeal Notice in an inter partes reexamination. 37 CFR 1.953(c). Further, no affidavit or other evidence can be submitted in an inter partes reexamination proceeding after the right of appeal notice, except as provided in 37 CFR 1.981 or as permitted by 37 CFR 41.77 (b)(1). 37 CFR $1.116(f)$.

Each party has a thirty-day or one-month time period, whichever is longer, to file a notice of appeal. The patent owner may appeal to the Board of Patent Appeals and Interferences with respect to any decision adverse to the patentability of any original or proposed amended or new claim of the patent by filing a notice of appeal and paying the fee set forth in 37 CFR 41.20 (b)(1). The

Application/Control Number: 95/001,621; 90/011,011
third party requester may appeal to the Board of Patent Appeals and Interferences with respect to any decision favorable to the patentability of any original or proposed amended or new claim of the patent by filing a notice of appeal and paying the fee set forth in 37 CFR $41.20(\mathrm{~b})(1)$.

In addition, a patent owner who has not filed a notice of appeal may file a notice of cross appeal within fourteen days of service of a third party requester's timely filed notice of appeal and pay the fee set forth in 37 CFR 41.20(b)(1). A third party requester who has not filed a notice of appeal may file a notice of cross appeal within fourteen days of service of a patent owner's timely filed notice of appeal and pay the fee set forth in 37. CFR 41.20(b)(1).

Any appeal in this proceeding must identify the claim(s) appealed, and must be signed by the patent owner (for a patent owner appeal) or the third party requester (for a third party requester appeal), or their duly authorized attorney or agent.

Any party that does not file a timely notice of appeal or a timely notice of cross appeal will lose the right to appeal from any decision adverse to that party, but will not lose the right to file a respondent brief and fee where it is appropriate for that party to do so. If no party files a timely appeal, the reexamination prosecution will be terminated, and the Director will proceed to issue and publish a certificate under 37 CFR 1.997 in accordance with this Office action.

Art Unit: 3992
All correspondence relating to this inter partes reexamination proceeding should be directed:

By Mail to: Mail Stop InterPartes Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450
By FAX to: (571) 273-9900
Central Reexamination Unit
By hand:
Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314
Registered users of EFS-Web may alternatively submit such correspondence via the electronic filing system EFS-Web, at https://sportal.uspto.gov/authenticate/authenticateuserlocalepf.html. EFS-Web offers the benefit of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS- Web submissions are "soft scanned" (i.e., electronically uploaded) directly into the official file for the reexamination proceeding, which offers parties the opportunity to review the content of their submissions after the "soft scanning." processing complete.

Any inquiry concerning this communication or earlier communications from the examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.
/My-Trang Nu Ton/
Primary Examiner
Central Reexam Unit 3992
Conferees:
/Margaret Rubin/
Primary Examiner, CRU 3992
/ANDREW J. FISCHER/
Supervisory Patent Examiner, Art Unit 3992

Reexamination	Application/Control No. $95 / 001,621 ; 90 / 011,011$	Applicant(s)/Patent Under Reexamination $7,241,034$
	Certificate Date	Certificate Number

Requester Correspondence Address: \square Patent Owner \boxtimes Third Party

Kenyon \& Kenyon, LLP
One Broadway
New York, NY 10004

COPENDING OFFICE PROCEEDINGS		
TYPE OF PROCEEDING	NUMBER	
$1 . \quad 90 / 011011$		
2.		
3.		
4.		

 P.O. Box 1450
 Alexandria. Virginia 22313-1450
 www.usplo.gov

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450
www.usplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
$90 / 011,011$$9.5 / 0 \mathrm{OCl} 621$92045The Caldwell Firm, LLCPO Box 59655Dept. SVIPGPDallas, TX 75229		7,241,034	SVIPGP109RE	3919
		04/29/2013	EXAMINER	
			TON, MY TRANG	
			ART UNIT	PAPER NUMBER
			3992	
			MAIL DATE	DELIVERY MODE
			04/29/2013	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.

THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS
KENYON \& KENYON LLP
ONE BROADWAY
NEW YORK, NY 10004

MAILED
APR 292013

Transmittal of Communication to Third Party Requester Inter Partes Reexamination

REEXAMINATION CONTROL NO. : 95001621 \& $90 / 010 \mathrm{II}$
PATENT NO. : 7241034
ART UNIT : 3992

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office in the above-identified reexamination proceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30 -day time period is statutory (35 U.S.C. $314(\mathrm{~b})(2)$), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the communication enclosed with this transmittal.

UNITED STATES DEPARTMENT OF COMMERCE
U.S. Patent and Trademark Office

Address: COMMISSIONER FOR PATENTS P.O. Box 1450

Alexandria, Virginia 22313-1450

DATE MAILED:

Please find below and/or attached an Office communication concerning this application or proceeding.

Commissioner for Patents

On March 5, 2013, the USPTO mailed a right of appeal notice (RAN) for reexamination of U.S Patent 7,241,034, a merger of proceedings having control Number $95 / 001,621$ and $90 / 011,011$, indicated under Status of claims section on page 4, lines 7-8, that "Claims 3-13, 15-35 and 38-41 are remained as of the amendments filed 4/27/2012". However, lines 7-8 of page 4 should be "Claims 3-13, 15-35 and 38-4 1 are remained as of the amendments filed $7 / 26 / 2012$ and $1 / 2 / 2013^{\prime \prime}$.

Any inquiry concerning this communication or earlier communications from the examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.
IMy-Trang Ton/
Primary Examiner, CRU 3992

```
/Margaret Rubin/
Primary Examiner, CRU }399
/Andrew J. Fischer/
SPRS, CRU }399
```

PTO-90C (Rev.04-03)

Transmittal of Communication to Third Party Requester Inter Partes Reexamination	Control No. $95 / 001,621 ; 90 / 011,011$	Patent Under Reexamination$7,241,034$	
	Examiner MY-TRANG TON	Art Unit 3992	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --
■_(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS) \longrightarrow

Kenyon \& Kenyon, LLP One Broadway New York, NY 10004

Enclosed is a copy of the latest communication from the United States Patent and Trademark Office in the above-identified reexamination prceeding. 37 CFR 1.903.

Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30 -day time period is statutory (35 U.S.C. 314(b)(2)), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the communication enclosed with this transmittal.

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
(THIRD PARTY REQUESTER'S CORRESPONDENCE ADDRESS)
Kenyon \& Kenyon, LLP
One Broadway
New York, NY 10004

MAILED

MAY 172013

CENTRAL REEXARERAATION UNIT

Transmittal of Communication to Third Party Requester Inter Partes Reexamination

REEXAMINATION CONTROL NUMBER 95/001,621.
PATENT NUMBER 7,241,034.
TECHNOLOGY CENTER 3900.
ART UNIT 3992.

Enclosed is a copy of the latest communication from the United States Patent and
Trademark Office in the above-identified reexamination proceeding. 37 CFR 1.903.
Prior to the filing of a Notice of Appeal, each time the patent owner responds to this communication, the third party requester of the inter partes reexamination may once file written comments within a period of 30 days from the date of service of the patent owner's response. This 30 -day time period is statutory (35 U.S.C. $314(\mathrm{~b})(2)$), and, as such, it cannot be extended. See also 37 CFR 1.947.

If an ex parte reexamination has been merged with the inter partes reexamination, no responsive submission by any ex parte third party requester is permitted.

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of the communication enclosed with this transmittal.

NOTICE OF INTENT TO ISSUE INTER PARTES REEXAMINATION CERTIFICATE

Control No.	Patent Under Reexamination
95/001,621; 90/011,011	$7,241,034$
Examiner	Art Unit
MY-TRANG TON	3992

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address. --

1. \boxtimes Prosecution on the merits is (or remains) closed in this inter partes reexamination proceeding. This proceeding is subject to reopening at the initiative of the Office or upon petition. Cf. 37 CFR 1.313(a). A Certificate will be issued in view of:
a. \boxtimes The communication filed on 02 January, 2013 by Patent Owner.
b. \square Patent owner's failure to file an appropriate timely response to the Office action dated
c. \boxtimes The failure to timely file an Appeal with fee by all parties to the reexamination proceeding entitled to do so. 37 CFR 1.959 and 41.61 .
d. \square The failure to timely file an Appellant's Brief with fee by all parties to the reexamination proceeding entitled to do so. 37 CFR 41.66(a).
e. \qquad \square Board of Patent Appeals and InterferencesCourt dated
f.Other:
2. \boxtimes The Reexamination Certificate will indicate the following:
a. Change in the Specification: \square Yes \boxtimes No
b. Change in the Drawings: \square Yes \boxtimes No
c. Status of the Claims:
(1) Patent claim(s) confirmed:
(2) Patent claim(s) amended (including dependent on amended claim(s)): 3-5
(3) Patent claim(s) cancelled: 1 and 2.
(4) Newly presented claim(s) patentable: 6-35 and 38-41.
(5) Newly presented cancelled claims: 36 and 37.
(6) Patent claim(s) \square previouslycurrently disclaimed:
(7) Patent claim(s) not subject to reexamination:
3. \boxtimes Note the attached statement of reasons for patentability and/or confirmation. Any comments considered necessary by patent owner regarding reasons for patentability and/or confirmation must be submitted promptly to avoid processing delays. Such submission(s) should be labeled: "Comments On Statement of Reasons for Patentability and/or Confirmation."
4. \square Note attached NOTICE OF REFERENCE CITED, (PTO-892).
5. \squareNote attached LIST OF REFERENCES CITED (PTO/SB/08 or PTO/SB/08 substitute).
6.The drawings filed on \qquad is:approveddisapproved.
6. \square Acknowledgment is made of the claim for priority under 35 U.S.C. § 119(a) - (d) or (f). a) \square All
b) \square Some*
c) \square None of the certified copies have
\square been received.not been received.been filed in Application No.been filed in reexamination Control No. \square been received by the International Bureau in PCT Application No.

* Certified copies not received:

8. \square Note Examiner's Amendment.
9. \square Other:

All correspondence relating to this inter partes reexamination proceeding should be directed to the Central Reexamination Unit at the mail, FAX, or hand-carry addresses given at the end of this Office action.

Art Unit: 3992

Notice of Intent to Issue Reexamination Certificate for Control No. 95/001,621 and 90/011,011

This is an inter partes reexamination of United States Patent Number 7,241,034 (herein "the '034 patent"), a merger of proceedings having control Number 95/001,621 and 90/011,011.

The '034 patent is currently assigned to Dana Corporation.

Review of Facts

1/ Amendments were filed on April 27, 2012 and July 26, 2012. These amendments have been considered and entered.

2/ An Action Closing Prosecution was mailed on December 18, 2012.

3/ A Right of Appeal Notice was mailed on March 5, 2013 in which Patent Owner and Third Party Requester were given a thirty-day or one-month time period (whichever is longer) to file a notice of appeal.

4/ No response has been received.

The RAN indicates:

Control Number: 95/001,621; 90/011,011

If no party timely files a notice of appeal, prosecution on the merits of this reexamination proceeding will be concluded, and the Director of the USPTO will proceed to issue and publish a certificate under 37 CFR 1.997 accordance with this Office action.

Accordingly, this Notice of Intent to Issue Inter Partes Reexamination Certificate is being issued.

Claim Status

Claims 1-41 are subject to reexamination.

Of these:

1/ Claims 1-2 and 36-37 are cancelled (the Amendments filed July 26, 2012 and January 2, 2013).

2/ Claims 3-35 and 38-41 are patentable. Of these, claims 3 and 7 are independent claims.

STATEMENT OF REASONS FOR PATENTABILITY AND/OR CONFIRMATION

The following is an examiner's statement of reasons for patentability and/or confirmation of the claims found patentable in this reexamination proceeding:

Independent claim 1 is patentable because of the fact that no single reference of record or combination of references teach "at least one of said two or more sensors generates at least one of said two or more sensor signals that is representative of a rate of change of the steering angle of the vehicle" in combination with a "a controller" and "two or more actuators" as required in claim 3.

Claims 4-6 depend directly from claim 3 are patentable for at least the reasons claim 3 is found patentable.

Independent claim 7 is patentable because of the fact that no single reference of record or combination of references teach "wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is
adapted to generate a signal that is representative of a condition
including the pitch of the vehicle " in combination with "a controller" and "two or more actuators" as required in claim 7.

Claims 8-35 and 38-41 depend directly from claim 7 are patentable for at least the reasons claim 7 is found patentable.

Any comments considered necessary by PATENT OWNER regarding the above statement must be submitted promptly to avoid processing delays. Such submission by the patent owner should be labeled: "Comments on Statement of Reasons for Patentability and/or Confirmation" and will be placed in the reexamination file.

All correspondence relating to this inter partes reexamination proceeding should be directed:

By Mail to: Mail Stop Inter Partes Reexam
Attn: Central Reexamination Unit
Commissioner for Patents
United States Patent \& Trademark Office
P.O. Box 1450

Alexandria, VA 22313-1450
By FAX to: (571) 273-9900
Central Reexamination Unit

By hand: Customer Service Window
Randolph Building
401 Dulany Street
Alexandria, VA 22314
Registered users of EFS-Web may alternatively submit such correspondence via the electronic filing system EFS-Web, at https://sportal.uspto.gov/authenticate/authenticateuserlocalepf.html. EFSWeb offers the benefit of quick submission to the particular area of the Office that needs to act on the correspondence. Also, EFS-Web submissions are "soft scanned" (i.e., electronically uploaded) directly into the official file for the reexamination proceeding, which offers parties the opportunity to review the content of their submissions after the "soft scanning" process is complete.

Any inquiry concerning this communication or earlier communications from the examiner, or as to the status of this proceeding, should be directed to the Central Reexamination Unit at telephone number (571) 272-7705.

/My-Trang N. Ton/
Primary Examiner
Central Reexamination Unit 3992

Conferees:

/Margaret Rubin/
Primary Examiner CRU 3992
/ANDREW J. FISCHER/
Supervisory Patent Examiner, Art Unit 3992

Issue Classification	Application/Control No.	Applicant(s)/Patent under Reexamination$7,241,034$	
	95/001,621; 90/011,011		
	Examiner MY-TRANG TON	Art Unit 3992	

\triangle Claims renumbered in the same order as presented by applicant									\square CPA		\square T.D.		$\square \mathrm{R} .1 .47$	
$\stackrel{\overline{\widetilde{T}}}{\stackrel{i}{\underline{1}}}$	$\begin{aligned} & \overline{\bar{W}} \\ & \text { 든 } \end{aligned}$	$\stackrel{\overline{\widetilde{x}}}{\stackrel{\rightharpoonup}{1}}$		$\stackrel{\overline{\mathrm{N}}}{\stackrel{i}{i}}$	$\begin{aligned} & \overline{\widetilde{x}} \\ & \text { = } \\ & \text { ⿹ㅡㄴ } \end{aligned}$	$\begin{aligned} & \overline{\widetilde{V}} \\ & \dot{\tilde{V}} \end{aligned}$			$\begin{aligned} & \overline{\widetilde{x}} \\ & \text { 든 } \end{aligned}$	$\begin{aligned} & \overline{\widetilde{0}} \\ & \text { 든 } \\ & \text { 응 } \end{aligned}$		$\begin{aligned} & \overline{\overline{0}} \\ & \text { 든 } \\ & \hline \overline{\mathrm{O}} \end{aligned}$	-	-
	1		31		61		91			121		151		181
	2		32		62		92			122		152		182
	3		33		63		93			123		153		183
	4		34		64		94			124		154		184
	5		35		65		95			125		155		185
	6		36		66		96			126		156		186
	7		37		67		97			127		157		187
	8		38		68		98			128		158		188
	9		39		69		99			129		159		189
	10		40		70		100			130		160		190
	11		41		71		101			131		161		191
	12		42		72		102			132		162		192
	13		43		73		103			133		163		193
	14		44		74		104			134		164		194
	15		45		75		105			135		165		195
	16		46		76		106			136		166		196
	17		47		77		107			137		167		197
	18		48		78		108			138		168		198
	19		49		79		109			139		169		199
	20		50		80		110			140		170		200
	21		51		81		111			141		171		201
	22		52		82		112			142		172		202
	23		53		83		113			143		173		203
	24		54		84		114			144		174		204
	25		55		85		115			145		175		205
	26		56		86		116			146		176		206
	27		57		87		117			147		177		207
	28		58		88		118			148		178		208
	29		59		89		119			149		179		209
	30		60		90		120			150		180		210

BIB DATA SHEET

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450

CONFIRMATION NO. 1240

SERIAL NUMBER				
$95 / 001,621$	FILING or 371(c) DATE $05 / 16 / 2011$ RULE	CLASS 362	GROUP ART UNIT 3992	ATTORNEY DOCKET SVIPGP109RE

APPLICANTS
7,241,034, Residence Not Provided;
BALTHER TECHNOLOGIES, LLC (OWNER), LONGVIEW, TX;
KENYON \& KENYON LLP, (3RD.PTY.REQ.), NEW YORK, NY;
VOLKSWAGEN GROUP OF AMERICA, INC. (REAL.PTY.IN.INTEREST.), HERNDON, VA;
KENYON \& KENYON LLP, NEW YORK, NY

* CONTINUING DATA

This application is a REX of $10 / 285,312$ 10/31/2002 PAT 7241034 which claims benefit of $60 / 335,40910 / 31 / 2001$ and claims benefit of $60 / 356,70302 / 13 / 2002$ and claims benefit of 60/369,447 04/02/2002
** FOREIGN APPLICATIONS
** IF REQUIRED, FOREIGN FILING LICENSE GRANTED **

ADDRESS

The Caldwell Firm, LLC
PO Box 59655
Dept. SVIPGP
Dallas, TX 75229
UNITED STATES
TITLE
Automatic Directional Control System for Vehicle Headlights

FILING FEE RECEIVED	FEES: Authority has been given in Paper No. \qquad to charge/credit DEPOSIT ACCOUNT No. \qquad for following:	\square All Fees
		1.16 Fees (Filing)
		1.17 Fees (Processing Ext. of time)
		$\square 1.18$ Fees (Issue)
		\square Other
		\square Credit

		Application/Control No.	
Reexamination		95/001,621; 90/011,011	7,241,034
		Certificate Date	Certificate Number

| Requester \quad Correspondence Address: $\quad \square$ Patent Owner $\quad \boxtimes$ Third Party |
| :--- | :--- | :--- | :--- |

Kenyon \& Kenyon, LLP
One Broadway
New York, NY 10004

COPENDING OFFICE PROCEEDINGS	
TYPE OF PROCEEDING	NUMBER
$1.90 / 011011$	
2.	
3.	
4.	

The claim content of the patent may be subsequently revised in the reexamination proceedings."

For items 7-16, mark the "YES" box(es) where appropriate and complete the statement. If not applicable, mark the "NO" box(es). Patent claims retain their original number. All NEW allowed claims should be renumbered, if necessary, to immediately follow the highest numbered patent claim. Note that a Claim is "amended" if there is ANY change to its text. A claim number should NOT be repeated in items 7-16.

ALL the ORIGINAL patent claims and ONLY new renumbered claims must be listed in items 7-16. Only original patent claims are to be listed in items $7-13$ and 15-16. Only new allowed claims are listed in item 14; cancelled new claims are not listed anywhere on this form.
\square YES \quad NO NO \square
7. The patentability of claim(s) is confirmed.
8. Claim(s)
was (were) previously cancelled. (Relates to a prior proceeding.)

YES \triangle NO
9. Claim(s)
was (were) previously disclaimed. (Statutory disclaimer prior to present reexam.)
10. Claim(s)
is (are) now disclaimed. (Statutory disclaimer in present reexamination.)
$\boxed{\text { YES }} \quad \square \mathrm{NO}$
11. Claim(s)

```
1-2
```

is (are) cancelled.
(Examiner Note: item 11 is not to be used for new claims that were cancelled. Cancelled new claims are not entered on this form.)
\triangle YES $\quad \square$ NO
12. Claim(s)

3-5
is (are) determined to be patentable as amended.
(Printer Note: these claims are to be printed on the reexamination certificate.)
13. Claim(s)
dependent on an amended claim, is (are) determined to be patentable.
(Examiner Note: item 13 is to be used for dependent claims whose text has not changed. Dependent claims with changes in the text are "amended claims" which must be listed in item 12, above.)
14. New claim(s)
$6-39$
is (are) added and determined to be patentable.
(Printer Note: these claims are to be printed on the reexamination certificate.)

26. For item 26, (a) check the box indicating which document identifies the correct, current owner/assignee of the patent, and (b) indicate the date of the document that you checked.
(Examiner Note: only one box is to be checked and completed.)

X (a) Title Report, (b) Prepared [Give doc code and date]
IFW doc code R3.73B Date 01/02/2013(b) § 3.73 (b) Statement, (b) Filed [Give doc code and date]

IFW doc code Date
(Examiner Note:Give the latest document, unless the record reflects that an earlier document gives the current patent owner/assignee.)

EXAMINER	DATE	CRU SPE/TC SPRE REVIEW	DATE
	Ton 5/23/2013	/Andrew J. Fischer/	

${ }_{(12)}$ INTER PARTES REEXAMINATION CERTIFICATE (624th)

Smith et al.
(10) Number:

US 7,241,034 C1
(45) Certificate Issued: Jun. 14, 2013
(54) AUTOMATIC DIRECTIONAL CONTROL SYSTEM FOR VEHICLE HEADLIGHTS
(75) Inventors: James E. Smith, Berkey, OH (US);

Anthony B. McDonald, Perrysburg, OH (US)
(73)

Assignee: Balther Technologies, LLC, Longview, TX (US)

Reexamination Request:

No. 95/001,621, May 16, 2011
No. 90/011,011, Jul. 10, 2010
Reexamination Certificate for:
Patent No.: $\quad \mathbf{7 , 2 4 1 , 0 3 4}$
Issued: Jul. 10, 2007
Appl. No.: 10/285,312
Filed: Oct. 31, 2002

Related U.S. Application Data

(60) Provisional application No. 60/369,447, filed on Apr. 2, 2002, provisional application No. 60/356,703, filed on Feb. 13, 2002, provisional application No. 60/335,409, filed on Oct. 31, 2001.
(51) Int. Cl.

B60Q 1/00
B06R 22/00 (2006.01)
(52) U.S. Cl.

USPC
(58) Field of Classification Search

None
See application file for complete search history.

References Cited

To view the complete listing of prior art documents cited during the proceedings for Reexamination Control Numbers $95 / 001,621$ and $90 / 011,011$, please refer to the USPTO's public Patent Application Information Retrieval (PAIR) system under the Display References tab.

Primary Examiner - My Trang Nu Ton

(57)

ABSTRACT

A structure and method for operating a directional control system for vehicle headlights that is capable of altering the directional aiming angles of the headlights to account for changes in the operating conditions of the vehicle. One or more operating condition sensors may be provided that generate signals that are representative of a condition of the vehicle, such as road speed, steering angle, pitch, suspension height, rate of change of road speed, rate of change of steering angle, rate of change of pitch, and rate of change of suspension height of the vehicle. A controller is responsive to the sensor signal for generating an output signal. An actuator is adapted to be connected to the headlight to effect movement thereof in accordance with the output signal. The controller can include a table that relates values of sensed operating condition to values of the output signal. The controller is responsive to the sensor signal for looking up the output signal in the table.

INTER PARTES

 REEXAMINATION CERTIFICATE ISSUED UNDER 35 U.S.C. 316THE PATENT IS HEREBY AMENDED AS INDICATED BELOW.

Matter enclosed in heavy brackets [] appeared in the patent, but has been deleted and is no longer a part of the 10 patent; matter printed in italics indicates additions made to the patent.

AS A RESULT OF REEXAMINATION, IT HAS BEEN DETERMINED THAT:

Claims 1-2 are cancelled.
Claims 3-5 are determined to be patentable as amended.
New claims 6-39 are added and determined to be patentable.
3. [The automatic directional control system defined in claim 1] An automatic directional control system for a vehicle headlight, comprising:
two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle such that two or more sensor signals are generated, said sensed conditions including at least a steering angle and a pitch of the vehicle;
a controller that is responsive to said two or more sensor signals for generating at least one output signal only when at least one of said two or more sensor signals changes by more than a predetermined minimum threshold amount to prevent at least one first one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in at least one of the sensed conditions; and
said two or more actuators each being adapted to be connected to the headlight to effect movement thereof in accordance with said at least one output signal;
wherein at least one of said [sensor] two or more sensors generates [a signal] at least one of said two or more sensor signals that is representative of [the] a rate of change of the steering angle of the vehicle.
4. The automatic directional control system defined in claim [1] 3, wherein at least one of said [sensor] two or more sensors generates a signal that is representative of [the] a rate of change of the pitch of the vehicle.
5. The automatic directional control system defined in claim [1] 3, wherein at least one of said [sensor] two or more sensors generates a signal that is representative of [the] a suspension height of the vehicle.
6. The automatic directional control system defined in claim 3, wherein said two or more sensors include a first 55 sensor and a second sensor.
7. An automatic directional control system for a vehicle headlight, comprising:
two or more sensors that are each adapted to generate a signal that is representative of at least one of a plurality of sensed conditions of a vehicle such that two or more sensor signals are generated, said sensed conditions including at least a steering angle and a pitch of the vehicle;
a controller that is responsive to said two or more sensor signals for generating at least one output signal only when at least one of said two or more sensor signals
changes by more than a predetermined minimum threshold amount to prevent at least one of two or more actuators from being operated continuously or unduly frequently in response to relatively small variations in at least one of the sensed conditions; and
said two or more actuators each being adapted to be connected to the vehicle headlight to effect movement thereof in accordance with said at least one output signal;
wherein said two or more sensors include a first sensor and a second sensor; and
wherein said first sensor is adapted to generate a signal that is representative of a condition including the steering angle of the vehicle and said second sensor is adapted to generate a signal that is representative of a condition including the pitch of the vehicle.
8. The automatic directional control system defined in claim 7, wherein said first sensor is physically separate from said second sensor.
9. The automatic directional control system defined in claim 7, further comprising one or more additional sensors for sensing one or more of a rate of change of road speed of the vehicle, a rate of change of the steering angle of the vehicle, a rate of change of the pitch of the vehicle, a suspension height of the vehicle, or a rate of change of suspension height of the vehicle.
10. The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of the road speed of the vehicle.
11. The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of the steering angle of the vehicle.
12. The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the rate of change of the pitch of the vehicle.
13. The automatic directional control system defined in claim 9, wherein at least one of said one or more additional sensors generate a signal that is representative of the suspension height of the vehicle.
14. The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that said two or more actuators include a first actuator and a second actuator and wherein the first actuator connected to the headlight to effect movement thereof in a first direction and the second actuator connected to the headlight to effect movement thereof in a second direction different from the first direction.
15. The automatic directional control system defined in claim 7, wherein the two or more actuators include a first actuator that is adapted to be connected to the headlight to effect movement thereof in a vertical direction.
16. The automatic directional control system defined in claim 15, wherein the two or more actuators include a second actuator that is adapted to be connected to the headlight to effect movement thereof in a horizontal direction.
17. The automatic directional control system defined in claim 7, wherein the two or more actuators include an electronically controlled mechanical actuator.
18. The automatic directional control system defined in claim 7, wherein the two or more actuators include a step motor.
19. The automatic directional control system defined in claim 7, wherein the two or more actuators include a servo motor.
20. The automatic directional control system defined in claim 7, wherein the two or more actuators include a microstepping motor capable of being operated in fractional step increments.
21. The automatic directional control system defined in claim 7 , wherein the automatic directional control system is configured such that the headlight is adjustably mounted on the vehicle such that a directional orientation at which a beam of light projects therefrom is capable of being adjusted both up and down relative to a horizontal reference position and left and right relative to a vertical reference position.
22. The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that, while in a calibration mode, a directional orientation at which a beam of light projects is capable of being adjusted relative to the vehicle by manual operation of the two or more actuators.
23. The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller includes a microprocessor.
24. The automatic directional control system defined in claim 7 , wherein the automatic directional control system is configured such that the controller includes a programmable electronic controller.
25. The automatic directional control system defined in claim 7, wherein the automatic directional control system further includes at least one position feedback sensor capable of providing a position feedback signal associated with at least one of the two or more actuators.
26. The automatic directional control system defined in claim 25, wherein the at least one position feedback sensor includes a Hall Effect sensor.
27. The automatic directional control system defined in claim 25 , wherein the at least one position feedback sensor includes an optical interrupter.
28. The automatic directional control system defined in claim 7, wherein the automatic directional control system further includes memory.
29. The automatic directional control system defined in claim 28 , wherein the memory includes non-volatile memory.
30. The automatic directional control system defined in claim 28, wherein the memory is configured to store a predetermined reference position associated with the headlight.
31. The automatic directional control system defined in 45 claim 7, wherein the automatic directional control system is
configured such that the pitch of the vehicle is capable of being determined by sensing a front and a rear suspension height of the vehicle.
32. The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the pitch of the vehicle is capable of being determined by a pitch sensor.
33. The automatic directional control system defined in claim 7 , wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in a suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle.
34. The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the controller is programmed to be responsive to changes in a suspension height of the vehicle that occur at frequencies lower than a suspension rebound frequency of the vehicle, thereby ignoring frequency changes in the suspension height of the vehicle that are a result of bumps in a road.
35. The automatic directional control system defined in claim 7, wherein the automatic directional control system is configured such that the predetermined minimum threshold amount functions as a filter to minimize undesirable operation of at least one of the two or more actuators.
36. The automatic directional control system defined in claim 7, wherein said controller is further responsive to at least one of said two or more sensor signals to automatically activate one or more vehicle lights that are different than the headlight.
37. The automatic directional control system defined in claim 36, wherein said one or more vehicle lights that are different than the headlight include one or more lights for illuminating a road in front of the vehicle during a turn.
38. The automatic directional control system defined in claim 7, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight.
39. The automatic directional control system defined in claim 7, wherein said controller is further responsive to a steering angle in excess of a predetermined magnitude for automatically activating one or more vehicle lights that are different than the headlight to extend an angular range of a road surface.

[^0]: 1 "Ordinarily, no submissions of any kind by third parties filed after the date of the order are entered into the reexamination or patent file while the reexamination proceeding is pending. However, in order to ensure a complete file, with updated status information regarding prior or concurrent proceedings regarding the patent under reexamination, the Office will, at any time, accept from any parties, for entry into the reexamination file, copies of notices of suits and other proceedings involving the patent and copies of decisions or papers filed in the court from litigations or other proceedings involving the patent."
 ${ }^{2}$ Despite its duty under 37 C.F.R. § 1.565(a) ("In an ex parte reexamination proceeding before the Office, the patent owner must inform the Office of any prior or concurrent proceedings in which the patent is or was involved such as . . litigation and the results of such proceedings") and M.P.E.P. § 2282 ("It is important for the Office to be aware of any prior or concurrent proceedings in which a patent undergoing ex parte reexamination is or was involved, such as . . . litigations, and the results of such proceedings") to inform the Office of all prior and concurrent proceedings involving the '034 patent, as of the filing date of this Request, Balther has not informed of Office of the BALTHER case in connection with the '034 Ex Parte Reexamination.

[^1]: 3 "During reexamination, claims are given their broadest reasonable interpretation consistent with the specification and limitations in the specification are not read into the claims."

[^2]: X Document indicating lack of novelty or inventive step A Documend indicaling technological background and/or state of the an.
 \mathbf{Y} Document indicating lack of inventive step if combined \mathbf{P} Document published on or after the declared priority date but before with one or more other documents of same category the filing date of this invention.
 E Patent document published on or after, but with priority date earlier than, the filing date of this application.

[^3]: ${ }^{\prime}$ Patent owner originally deposited a request on May 25,2010 that was found incomplete by the Office and was subsequently supplemented until found sufficient to grant a filing date of July 10, 2010.

[^4]: ${ }^{2}$ Each time that the patent owner files a response to an action on the merits from the Patent and Trademark Office, the inter partes third-party requester shall have one opportunity to file written comments addressing issues raised by the action of the Office or the patent owner's response thereto, if those written comments are received by the Office within 30 days after the date of service of the patent owner's response.

[^5]: U.S. Patent and Trademark Office

 PTOL-2069 (Rev. 7-05)

[^6]: Copyright © 2012 LexisNexis CourtLink, Inc. All rights reserved.
 *** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

[^7]: About LexisNexis | Privacy Policy | Terms \& Conditions I Contact Us Copyright © 2012 LexisNexis, a division of Reed Elsevier Inc. All rights reserved.

[^8]: "A rudder resistance network 18 , which corresponds to the above-mentioned drive control device 5 a , is used to convert the output signal of the microcomputer 10 into an analog signal and transmits it to actuators 19 and 19' which are disposed downstream thereof." (page 16, line 31 to page 17 , line 1)
 "As an example of such lamp, there is available a lamp including a mechanism which can use the rotational force of the motor as the rotational force of the lam through a transmission mechanism using a worm and worm wheel (for example, see Japanese Patent Publication No. Hei. 63166672)." (page 11, line 32 to page 12, line 3)

[^9]: "Therefore, when the amount of variations with time of the detect signal of the vehicle posture detect signal 2 is equal to or larger than a reference value, it may be judged that the gradient of the road has varied, and the illumination direction of the lamp 6 may be corrected in accordance with the detect signal of the vehicle posture detection device 2." (page 8, lines 26-32)
 "Also, in order to prevent the illumination direction of the lamp 6 from being corrected inadvertently when a sudden change in the posture of the vehicle occurs temporarily or due to the wrong operation of the lamp 6 caused by external disturbances, for example, when

[^10]: "In the actuator failure judgment control step 130, as will be described later, the control unit 16 determines based on signals from the actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$ whether or not there is a failure of driving of the motors 10 (10L, 10R). If no failure is detected, move to step 108 where the control unit 16 outputs signals to the motor drivers 18 (18L, 18R) so as to drive the motors 10 (10L, 10R) a magnitude corresponding to the pitch angle 0_{a} when the vehicle is at halt, and then return to step 100 . This simultaneously levels the left and right headiamps 1 ($1 \mathrm{~L}, 1 \mathrm{R}$)" (col. 5 , lines 1-5)

 First, in step 132, a signal from the actuator failure detection sensor 20R is compared with an allowable value set in advance, and from this it is determined whether or not the leveling motor 10R of the fight-hand side headlamp 1R fails. If NO (no failure), move to step 136 , where a signal from the actuator failure detection sensor 18 L is compared with an allowable value set in advance, and from this it is determined whether or not the leveling motor 10 L of the left-hand side headlamp 10L fails. If NO (no failure) then move to step 108, where the control circuit 16 outputs signals to the motor drivers $18 \mathrm{R}, 18 \mathrm{~L}$ so as to control the motors 10R, 10 L based on the pitch angle 01 when the vehicle is at a halt calculated in step 106 and stored in the RAM (or the pitch angle 02 at the time of stable running operated in step 128 and stored in the RAM), then returning to step 100. Thus, in a case where neither of the leveling motors 10L, 10R of the left and right headlamps is failing, the left and right headlamps are simultaneously leveled. In

[^11]: "But while the vehicle is running, in order to eliminate disturbance, the CPU 16 is constructed so as to calculate a pitch angle of the vehicle only on condition that the vehicle speed is equal to or higher than a reference value, the acceleration is equal to or lower than a reference value, and this state (in which the vehicle speed is equal to or higher than the reference value and the acceleration is equal to lower than the reference value) continues for a predetermined period of time or longer. For example, when a vehicle is running on a rough road in which disturbance is

[^12]: "In the actuator failure judgment control step 130, as will be described later, the control unit 16 determines based on signals from the actuator failure detection sensors $20(20 \mathrm{~L}, 20 \mathrm{R})$ whether or not there is a failure of driving of the motors 10 (10L, 10R). If no failure is detected, move to step 108 where the control unit 16 outputs signals to the motor drivers 18 (18L, 18R) so as to drive the motors 10 ($10 \mathrm{~L}, 10 \mathrm{R}$) a magnitude corresponding to the pitch angle 0_{a} when the vehicle is at halt, and then return to step 100 . This simultaneously levels the left and right headlamps 1 ($1 \mathrm{~L}, 1 \mathrm{R}$)" (col. 5 , lines 1-5)

 First, in step 132, a signal from the actuator failure detection sensor 20R is compared with an allowable value set in advance, and from this it is determined whether or not the leveling motor 10R of the fight-hand side headlamp 1R fails. If NO (no failure), move to step 136 , where a signal from the actuator failure detection sensor 18 L is compared with an allowable value set in advance, and from this it is determined whether or not the leveling motor 10 L of the left-hand side headlamp 10L fails. If NO (no failure) then move to step 108, where the control circuit 16 outputs signals to the motor drivers $18 \mathrm{R}, 18 \mathrm{~L}$ so as to control the motors $10 \mathrm{R}, 10 \mathrm{~L}$ based on the pitch angle 01 when the vehicle is at a halt calculated in step 106 and stored in the RAM (or the pitch angle 02 at the time of stable running operated in step 128 and stored in the RAM), then returning to step 100. Thus, in a case where neither of the leveling motors 10L, 10R of the left and right headlamps is failing, the left and right headlamps are simultaneously leveled. In

[^13]: "In FIG. 1, reference number 1 (1L, 1R) denotes a pair of left and fight headlamps for an automotive vehicle, the headlights having the same construction. A front lens 4 is mounted in the front opening of a lamp body, so that a lamp space S is provided. In the lamp space S , a parabolic reflector 5 having a bulb 6 as a light source securely inserted therein is supported in such a manner as to be tilted around a horizontal tilt shaft 7 (in FIG. 1, a shaft normal relative to the surface of paper) and the parabolic reflectors 5 are then constructed so as to be tilt adjusted by actuators 17 (17L, 17R), respectively. The actuators 17 (17L, 17R) each comprise a stepping motor 10 ($10 \mathrm{~L}, 1 \mathrm{OR}$) which includes an actuator main body and a motor driver 18 (18 L , 18R)." (col. 2, line 65 to col. 3 , line 10)
 "The CPU 16 calculates vehicle speed depending on data from sensors 12 and calculates vehicle height depending on data from sensors 14, judges whether the headlamps are switched on or off, and output to motor drivers 18 (18L, 18R) a control signal for driving the motors 10 (10L, 10R) a magnitude corresponding to operating pitch angle data. A timer 13 is also connected to the CPU 16." (col. 3, lines 18-24)

[^14]: "When a two-sensor system is used in which vehicle height sensors are provided on both the front and rear wheels, the vehicle pitch angle is obtained from displacement distances of the vehicle height at the front and rear of the vehicle and a wheel base of the vehicle, or a distance between front and rear axles of the vehicle." (col. 3, lines 48-53)

[^15]: "Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided

[^16]: "Referring first to Fig. 1, a front (front-wheel) height sensor 11F is attached to a front suspension provided between a front axle and a vehicle chassis on a driver's seat side or a front passenger seat side. A rear (rear-wheel) height sensor 11 R is attached to a rear suspension provided

[^17]: "As shown in FIG. 2, the headlight 30 L (30R) includes a lamp 31, a reflector 32 for fixing the lamp 31 , a supporting member 33 of a rod shape for supporting the reflector 32 swingably in the directions shown by the arc arrow, a movable member 34 having also a rod shape, for supporting the reflector 32 , and the actuator $35 \mathrm{~L}(35 \mathrm{R})$ such as a stepping motor or a DC motor for driving the movable member 34 in the directions shown by the double-headed arrow.
 The movable member 34 is driven in the back and forth directions by the actuator $35 \mathrm{~L}(35 \mathrm{R})$ so that the reflector 32 is vertically inclined about the end of the supporting member 33 as a fulcrum only by an actuator driving angle (target optical axis direction adjusting angle) эa which will be described hereinlater, thereby adjusting the optical axis direction of the headlight 30L (30R). The optical axis direction of the headlight 30 L (30R) is initially set on the assumption that one driver is on the vehicle." (col. 5, lines 24-40)

[^18]: "When the vehicle speed V is equal to or higher than a few km / h (such as $2[\mathrm{~km} / \mathrm{h}]$) and the acceleration $\mathrm{dV} / \mathrm{dt}$ obtained by differentiating the vehicle speed V is lower than the preset threshold (for example, $+/-2$ [$\mathrm{m} / \mathrm{s} 2]$), the filter C corresponding to the constant speed mode is used. Since it is generally expected that the pitch angle does not largely change, strong filtering is performed so as to remove high frequency components of a vibration at the time of driving and the change in the pitch angle due to unevenness of the road surface, thereby preventing the actuator from responding." (col. 6, lines 29-38)

[^19]: Copyright © 2012 LexisNexis CourtLink, Inc. All rights reserved.
 *** THIS DATA IS FOR INFORMATIONAL PURPOSES ONLY ***

[^20]: Patrick E. Caldwell, Esq.
 Reg. No. 44,580

