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Abstract

The introduction of Java applets has taken the World Wide
Web by storm. Information servers can customize the pre-
sentation of their content with server-supplied code which
executes inside the Web browser. We examine the Java lan-
guage and both the HotJava and Netscape browsers which
support it, and find a significant number of flaws which
compromise their security. These flaws arise for several
reasons, including implementation errors, unintended inter-
actions between browser features, differences between the
Java language and bytecode semantics, and weaknesses in
the design of the language and the bytecode format. On a
deeper level, these flaws arise because of weaknesses in the
design methodology used in creating Java and the browsers.
In addition to the flaws, we discuss the underlying tension
between the openness desired by Web application writers
and the security needs of their users, and we suggest how
both might be accommodated.

1. Introduction

The continuing growth and popularity of the Internet has
led to a flurry of developments for the World Wide Web.
Many content providers have expressed frustration with the
inability to express their ideas in HTML. For example, be-
fore support for tables was common, many pages simply
used digitized pictures of tables. As quickly as new HTML
tags are added, there will be demand for more. In addition,
many content providers wish to integrate interactive features
such as chat systems and animations.
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Rather than creating new HTML extensions, Sun popu-
larized the notion of downloading a program (called an ap-
plet) which runs inside the Web browser. Such remote code
raises serious security issues; a casual Web reader should
not be concerned about malicious side-effects from visit-
ing a Web page. Languages such as Java[9], Safe-Tcl[3],
Phantom[8], and Telescript[10] have been proposed for run-
ning downloaded code, and each has varying ideas of how
to thwart malicious programs.

After several years of development inside Sun Microsys-
tems, the Java language was released in mid-1995 as part of
Sun’s HotJava Web browser. Shortly thereafter, Netscape
Communications Corp. announced they had licensed Java
and would incorporate it into version 2.0 of their market-
leading Netscape Navigator Web browser. With the support
of at least two influential companies behind it, Java appears
to have the best chance of becoming the standard for exe-
cutable content on the Web. This also makes it an attractive
target for malicious attackers, and demands external review
of its security.

Netscape and HotJava1 are examples of two distinct ar-
chitectures for building Web browsers. Netscape is written
in an unsafe language, and runs Java applets as an add-on fea-
ture. HotJava is written in Java itself, with the same runtime
system supportingboth the browser and the applets. Both ar-
chitectures have advantages and disadvantages with respect
to security: Netscape can suffer from being implemented in
an unsafe language (buffer overflow, memory leakage, etc.),
but provides a well-defined interface to Java. In Netscape,
Java applets can name only those functions and variables
explicitly exported to the Java subsystem. HotJava, imple-
mented in a safe language, does not suffer from potential
memory corruption problems, but can accidentally export
too much of its environment to applets.

In order to be secure, such systems must limit applets’

1Unless otherwise noted, “HotJava” refers to the 1.0 alpha 3 release of
the HotJava Web browser from Sun Microsystems, “Netscape” refers to
Netscape Navigator 2.0, and “JDK” refers to the Java Development Kit,
version 1.0, from Sun.
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access to system resources such as the file system, the CPU,
the network, the graphics display, and the browser’s internal
state. The language’s type system should be safe – prevent-
ing forged pointers and checking array bounds. Addition-
ally, the system should garbage-collect memory to prevent
memory leakage, and carefully manage system calls that
can access the environment outside the program, as well as
allow applets to affect each other.

The Anderson report[2] describes an early attempt to
build a secure subset of Fortran. This effort was a failure
because the implementors failed to consider all of the con-
sequences of the implementation of one construct: assigned
GOTO. This subtle flaw resulted in a complete break of the
system.

The remainder of this paper is structured as follows. Sec-
tion 2 discusses the Java language in more detail, section 3
gives a taxonomy of known security flaws in HotJava and
Netscape, section 4 considers how the structure of these
systems contributes to the existence of bugs, section 5 dis-
cusses the need for flexible security in Java, and section 6
concludes.

2. Java Semantics

Java is similar in many ways to C++[31]. Both pro-
vide support for object-oriented programming, share many
keywords and other syntactic elements, and can be used to
develop standalone applications. Java diverges from C++
in the following ways: it is type-safe, supports only single
inheritance (although it decouples subtyping from inheri-
tance), and has language support for concurrency. Java
supplies each class and object with a lock, and provides
the synchronized keyword so each class (or instance
of a class, as appropriate) can operate as a Mesa-style
monitor[21].

Java compilers produce a machine-independent byte-
code, which may be transmitted across a network and then
interpreted or compiled to native code by the Java runtime
system. In support of this downloaded code, Java distin-
guishes remote code from local code. Separate sources2 of
Java bytecode are loaded in separate naming environments to
prevent both accidental and malicious name clashes. Byte-
code loaded from the local file system is visible to all applets.
The documentation[15] says the “system name space” has
two special properties:

1. It is shared by all “name spaces.”

2. It is always searched first, to prevent downloaded code
from overriding a system class.

2While the documentation[15] does not define “source”, it appears to
mean the machine and Web page of origin. Sun has announced plans to
include support for digital signatures in a future version.

However, we have found that the second property does not
hold.

The Java runtime system knows how to load byte-
code only from the local file system. To load code from
other sources, the Java runtime system calls a subclass
of the abstract class ClassLoader, which defines an
interface for the runtime system to ask a Java program
to provide a class. Classes are transported across the
network as byte streams, and reconstituted into Class
objects by subclasses of ClassLoader. Each class
is tagged with the ClassLoader that loaded it. The
SecurityManager has methods to determine if a class
loaded by a ClassLoader is in the dynamic call chain,
and if so, where. This nesting depth is then used to make
access control decisions.

Java programmers can combine related classes into a
package. These packages are similar to name spaces in
C++[32], modules in Modula-2[33], or structures in Stan-
dard ML[25]. While package names consist of components
separated by dots, the package name space is actually flat:
scoping rules are not related to the apparent name hierar-
chy. A (package, source of code) pair defines the scope of
a Java class, method, or instance variable that is not given
a public, private, or protected modifier. In Java,
public and private have the same meaning as in C++:
Public classes, methods, and instance variables are acces-
sible everywhere, while private methods and instance vari-
ables are only accessible inside the class definition. Java
protected methods and variables are accessible in the
class or its subclasses or in the current (package, source
of code) pair; private protected methods and vari-
ables are only accessible in the class or its subclasses, like
C++’s protected members. Unlike C++, protected
variables and methods can only be accessed in subclasses
when they occur in instances of the subclasses or further
subclasses. For example:

class Foo {
private protected int i;
void SetFoo(Foo o) { o.i = 1; } // Legal
void SetBar(Bar o) { o.i = 1; } // Legal

}

class Bar extends Foo {
void SetFoo(Foo o) { o.i = 1; } // Illegal
void SetBar(Bar o) { o.i = 1; } // Legal

}

The definition of protected was different in some
early versions of Java; it was changed during the beta-test
period to patch a security problem.

The Java bytecode runtime system is designed to enforce
the language’s access semantics. Unlike C++, programs are
not permitted to forge a pointer to a function and invoke it di-
rectly, nor to forge a pointer to data and access it directly. If
a rogue applet attempts to call a private method, the runtime
system throws an exception, preventing the errant access.
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Thus, if the system libraries are specified safely, the runtime
system assures application code cannot break these specifi-
cations.

The Java documentation claims that the safety of Java
bytecodes can be statically determined at load time. This is
not entirely true: the type system uses a covariant[5] rule
for subtyping arrays, so array stores require run time type
checks3 in addition to the normal array bounds checks. Un-
fortunately, this means the bytecode verifier is not the only
piece of the runtime system that must be correct to ensure
security. Dynamic checks also introduce a performance
penalty.

2.1. Java Security Mechanisms

In HotJava, all of the access controls were done on an ad
hoc basis which was clearly insufficient. The beta release
of JDK introduced the SecurityManager class, meant
to be a reference monitor[20]. The SecurityManager
defines and implements a security policy, centralizing all ac-
cess control decisions. Netscape also uses this architecture.

When the Java runtime system starts up, there is no se-
curity manager installed. Before executing untrusted code,
it is the Web browser’s or other user agent’s responsibility
to install a security manager. The SecurityManager
class is meant to define an interface for access control;
the default SecurityManager implementation throws
a SecurityException for all access checks, forcing
the user agent to define and implement its own policy in a
subclass of SecurityManager. The security managers
in both JDK and Netscape typically use the contents of the
call stack to decide whether or not to grant access.

Java uses its type system to provide protection for the
security manager. If Java’s type system is sound, then the
security manager should be tamperproof. By using types,
instead of separate address spaces for protection, Java is em-
beddable in other software, and performs better because pro-
tection boundaries can be crossed without a context switch.

3. Taxonomy of Java Bugs

We now present a taxonomy of Java bugs, past and
present. Dividing the bugs into classes is useful because
it helps us understand how and why they arose, and it alerts
us to aspects of the system that may harbor future bugs.

3For example, suppose that A is a subtype of B; then the Java typing
rules say that A[] (“array of A”) is a subtype of B[]. Now the following
procedure cannot be statically type-checked:
void proc(B[] x, B y) f

x[0] = y;
g
Since A[] is a subtype of B[], x could really have type A[]; similarly, y
could really have type A. The body of proc is not type-safe if the value of
x passed in by the caller has type A[] and the value of y passed in by the
caller has type B. This condition cannot be checked statically.

3.1. Denial of Service Attacks

Java has few provisions to thwart denial of service at-
tacks. The obvious attacks are busy-waiting to consume
CPU cycles and allocating memory until the system runs out,
starving other threads and system processes. Additionally,
an applet can acquire locks on critical pieces of the browser
to cripple it. For example, the code in figure 1 locks the
status line at the bottom of the HotJava browser, effectively
preventing it from loading any more pages. In Netscape,
this attack can lock the java.net.InetAddress class,
blocking all hostname lookups and hence all new network
connections. Both HotJava and Netscape have several other
classes suitable for this attack. The attack could be pre-
vented by replacing such critical classes with wrappers that
do not expose the locks to outsiders. However, the CPU
and memory attacks cannot be easily fixed; many genuine
applications may need large amounts of memory and CPU.

There are two twists that can make denial of service
attacks more difficult to cope with. First, an attack can be
programmed to occur after some time delay, causing the
failure to occur when the user is viewing a different Web
page, thereby masking the source of the attack. Second, an
attack can cause degradation of service rather than outright
denial of service. Degradation of service means significantly
reducing the performance of the browser without stopping
it. For example, the locking-based attack could be used to
hold a critical system lock most of the time, releasing it only
briefly and occasionally. The result would be a browser that
runs very slowly.

Sun has said that they consider denial of service attacks
to be low-priority problems[14].

3.2. Two vs. Three Party Attacks

It is useful to distinguish between two different kinds of
attack, which we shall call two-partyand three-party. A two-
party attack requires that the Web server the applet resides on
participate in the attack. A three-party attack can originate
from anywhere on the Internet, and might spread if it is
hidden in a useful applet that gets used by many Web pages
(see figure 2). Three-party attacks are more dangerous than
two-party attacks because they do not require the collusion
of the Web server.

3.3. Covert Channels

Various covert channels exist in both HotJava and
Netscape, allowing applets to have two-way communica-
tion with arbitrary third parties on the Internet.

Typically, most HotJava users will use the default net-
work security mode, which only allows an applet to connect
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synchronized (Class.forName("net.www.html.MeteredStream")) {
while(true) Thread.sleep(10000);

}

Figure 1. Java code fragment to deadlock the HotJava browser by locking its status line.
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Figure 2. A Three Party Attack — Charlie pro-
duces a Trojan horse applet. Bob likes it and
uses it in his Web page. Alice views Bob’s
Web page and Charlie’s applet establishes a
covert channel to Charlie. The applet leaks
Alice’s information to Charlie. No collusion
with Bob is necessary.

to the host from which it was loaded. This is the only se-
curity mode available to Netscape users. In fact, HotJava
and Netscape fail to enforce this policy through a number of
errors in their implementation.

The accept() system call, used to receive a network
connection initiated on another host, is not protected by the
usual security checks in HotJava. This allows an arbitrary
host on the Internet to connect to a HotJava browser as
long as the location of the browser is known. For this to
be a useful attack, the applet needs to signal the external
agent to connect to a specified port. Even an extremely
low-bandwidth covert channel would be sufficient to com-
municate this information. The accept() call is properly
protected in Netscape, but the attack described in section 3.7
allows applets to call accept().

If the Web server which served the applet is running
an SMTP mail daemon, the applet can connect to it and
transmit an e-mail message to any machine on the Internet.
Additionally, the Domain Name System (DNS) can be used
as a two-way communication channel to an arbitrary host
on the Internet. An applet may reference a fictitious name
in the attacker’s domain. This transmits the name to the
attacker’s DNS server, which could interpret the name as a
message, and then send a list of arbitrary 32-bit IP numbers
as a reply. Repeated DNS calls by the applet establish a
channel between the applet and the attacker’s DNS server.
This channel also passes through a number of firewalls[7].

In HotJava, the DNS channel was available even with the
security mode set to “no network access,” although this
was fixed in JDK and Netscape. DNS has other security
implications; see section 3.5 for details.

Another third-party channel is available with the URL
redirect feature. Normally, an applet may instruct the
browser to load any page on the Web. An attacker’s server
could record the URL as a message, then redirect the browser
to the original destination.

When we notified Sun about these channels, they said
the DNS channel would be fixed[26], but in fact it was still
available in JDK and Netscape. Netscape has since issued a
patch to fix this problem.

As far as we know, nobody has done an analyis of storage
or timing channels in Java.

3.4. Information Available to Applets

If a rogue applet can establish a channel to any Internet
host, the next issue is what the applet can learn about the
user’s environment to send over the channel.

In HotJava, most attempts by an applet to read or write
the local file system result in a dialog box for the user to
grant approval. Separate access control lists (ACLs)4 spec-
ify where reading and writing of files or directories may
occur without the user’s explicit permission. By default, the
write ACL is empty and the read ACL contains the HotJava
library directory and specific MIME mailcap files. The
read ACL also contains the user’spublic html directory,
which may contain information which compromises the pri-
vacy of the user. The Windows 95 version additionally al-
lows writing (but not reading) in the \TEMP directory. This
allows an applet to corrupt files in use by other Windows
applications if the applet knows or can guess names the files
may have. At a minimum, an applet can consume all the
free space in the file system. These security concerns could
be addressed by the user editing the ACLs; however, the
system default should have been less permissive. Netscape
does not permit any file system access by applets.

In HotJava, we could learn the user’s login name, machine
name, as well as the contents of all environment variables;
System.getenv() in HotJava has no security checks.

4While Sun calls these “ACLs”, they actually implement profiles — a
list of files and directories granted specific access permissions.
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By probing environment variables, including the PATH vari-
able, we can often discover what software is installed on the
user’s machine. This information could be valuable either
to corporate marketing departments, or to attackers desir-
ing to break into a user’s machine. In JDK and Netscape,
System.getenv() was replaced with “system proper-
ties,” many of which are not supposed to be accessible by
applets. However, the attack described in section 3.7 allows
an applet to read or write any system property.

Java allows applets to read the system clock, making
it possible to benchmark the user’s machine. As a Java-
enabled Web browser may well run on pre-release hardware
and/or software, an attacker could learn valuable informa-
tion. Timing information is also needed for the exploitation
of covert timing channels. “Fuzzy time”[18] should be in-
vestigated to see if it can be used to mitigate both of these
problems.

3.5. Implementation Errors

Some bugs arise from fairly localized errors in the im-
plementation of the browser or the Java subsystem.

DNS Weaknesses A significant problem appears in the
JDK and Netscape implementation of the policy that an
applet can only open a TCP/IP connection back to the server
it was loaded from. While this policy is sound (although
inconvenient at times), it was not uniformly enforced. This
policy was enforced as follows:

1. Get all the IP-addresses of the hostname that the applet
came from.

2. Get all the IP-addresses of the hostname that the applet
is attempting to connect to.

3. If any address in the first set matches any address in
the second set, allow the connection. Otherwise, do
not allow the connection.

The problem occurs in the second step: the applet can ask
to connect to any hostname on the Internet, so it can control
which DNS server supplies the second list of IP-addresses;
information from this untrusted DNS server is used to make
an access control decision. There is nothing to prevent an
attacker from creating a DNS server that lies. In particu-
lar, it may claim that any name for which it is responsible
has any given set of addresses. Using the attacker’s DNS
server to provide a pair of addresses (machine-to-connect-to,
machine-applet-came-from), the applet can connect to any
desired machine on the Internet. The applet can even encode
the desired IP-address pair into the hostname that it looks
up. This attack is particularly dangerous when the browser
is running behind a firewall, because the malicious applet

hotjava.props.put("proxyHost",
"proxy.attacker.com");

hotjava.props.put("proxyPort", "8080");
hotjava.props.put("proxySet", "true");
HttpClient.cachingProxyHost =

"proxy.attacker.com";
HttpClient.cachingProxyPort = 8080;
HttpClient.useProxyForCaching = true;

Figure 3. Code to redirect all HotJava HTTP
retrievals. FTP retrievals may be redirected
with similar code.

can attack any machine behind the firewall. At this point, a
rogue applet can exploit a whole legion of known network
security problems to break into other nearby machines.

This problem was postulated independently by Steve
Gibbons[11] and by us. To demonstrate this flaw, we pro-
duced an applet that exploits an old sendmail hole to run
arbitrary Unix commands as user daemon.

As of this writing, Sun and Netscape have both issued
patches to fix this problem. However, the attack described
in section 3.7 reopens this hole.

Buffer Overflows HotJava and the alpha release of JDK
had many unchecked sprintf() calls that used stack-
allocated buffers. Because sprintf() does not check for
buffer overflows, an attacker could overwrite the execution
stack, thereby transferring control to arbitrary code. Attack-
ers have exploited the same bug in the Unix syslog()
library routine (via sendmail) to take over machines from
across the network[6]. In Netscape and the beta release of
JDK, all of these calls were fixed in the Java runtime. How-
ever, the disassembler was overlooked all the way through
the JDK 1.0 release. Users disassembling Java bytecode us-
ing javap are at risk of having their machines compromised
if the bytecode has very long method names.

Disclosing Storage Layout Although the Java language
does not allow direct access to memory through pointers,
the Java library allows an applet to learn where in memory
its objects are stored. All Java objects have ahashCode()
method which, unless overridden by the programmer, casts
the address of the object’s internal storage to an integer and
returns it. While this does not directly lead to a security
breach, it exposes more internal state than necessary.

Public Proxy Variables Perhaps the strongest attack we
found on HotJava is that we can change the browser’s HTTP
and FTP proxy servers. We can establish our own proxy

PALO ALTO NETWORKS Exhibit 1057 Page 5f 

 

Find authenticated court documents without watermarks at docketalarm.com. 

https://www.docketalarm.com/


Real-Time Litigation Alerts
  Keep your litigation team up-to-date with real-time  

alerts and advanced team management tools built for  
the enterprise, all while greatly reducing PACER spend.

  Our comprehensive service means we can handle Federal, 
State, and Administrative courts across the country.

Advanced Docket Research
  With over 230 million records, Docket Alarm’s cloud-native 

docket research platform finds what other services can’t. 
Coverage includes Federal, State, plus PTAB, TTAB, ITC  
and NLRB decisions, all in one place.

  Identify arguments that have been successful in the past 
with full text, pinpoint searching. Link to case law cited  
within any court document via Fastcase.

Analytics At Your Fingertips
  Learn what happened the last time a particular judge,  

opposing counsel or company faced cases similar to yours.

  Advanced out-of-the-box PTAB and TTAB analytics are  
always at your fingertips.

Docket Alarm provides insights to develop a more  

informed litigation strategy and the peace of mind of 

knowing you’re on top of things.

Explore Litigation 
Insights

®

WHAT WILL YOU BUILD?  |  sales@docketalarm.com  |  1-866-77-FASTCASE

API
Docket Alarm offers a powerful API 
(application programming inter-
face) to developers that want to 
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your 
attorneys and clients with live data 
direct from the court.

Automate many repetitive legal  
tasks like conflict checks, document 
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks 
for companies and debtors.

E-DISCOVERY AND  
LEGAL VENDORS
Sync your system to PACER to  
automate legal marketing.


