
PALO ALTO NETWORKS Exhibit 1056 Page 1

Continuous Queries over Append-Only
Databases

Douglas Terry, David Goldberg, David Nichols,
and Brian Oki

Xerox Corporation
Palo Alto Research Center

3333 Coyote Hill Rd.
Palo Alto, CA 94304

Abstract: In a database to which data is continually added, users
may wish to issue a permanent query and be notified whenever
data matches the query. If such continuous queries examine only
single records, this can be implemented by examining each record
as it arrives. This is very efficient because only the incoming
record needs to be scanned. This simple approach does not work
for queries involving joins or time. The Tapestry system allows
users to issue such queries over a database of mail and bulletin
board messages. The user issues a static query, such as "show me
all messages that have been replied to by Jones," as though the
database were fixed and unchanging. Tapestry converts the query
into an incremental query that efficiently finds new matches to the
original query as new messages are added to the database. This
paper describes the techniques used in Tapestry, which do not
depend on triggers and thus be implemented on any commercial
database that supports SQL. Although Tapestry is designed for fil
tering mail and news messages, its techniques are applicable to
any append-only database.

1.0 INTRODUCTION

A new class of queries, continuous queries, are similar to conven
tional database queries, except that they are issued once and
henceforth run "continually" over the database. As additions to the
database result in new query matches, the new results are returned
to the user or application that issued the query. This paper concen
trates on the semantics and implementation of continuous queries.

Continuous queries were developed and incorporated into the Tap
estry system for filtering streams of electronic documents, such as
mail messages or news articles. The Tapestry system maintains
information about a document, such as its author, date, keywords,
and title, in a database. The database is append-only, that is, new
documents are added to the database as they arrive and are never
removed. Continuous queries are used to identify documents of
interest to particular users. Although the concept of continuous
queries was developed for Tapestry, it applies to any database that
is append-only.

Tapestry users desire more elaborate filtering queries than those
that use only the properties of the individual message, such as
selecting all messages that were written by a given person or that

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, tha ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1992 ACM SIGMOD- 6/92/CA, USA
e 1992 ACM 0-89791-522-4/92/0005/0321...$1.50

321

contain a given keyword [16]. Tapestry's filter queries can also
select a message based on its relationship to other messages, such
as the fact that it is a reply to a particular message or that one or
more messages are replies to it. They can select a message based
on its age, such as the fact that it is two weeks old and nobody has
replied to it. They can select a message based on annotations
attached to the message by one or more users; for example, users
might vote for messages they like and have such votes registered
as annotations on the messages. To support these desires, the sys
tem cannot simply examine each message as it arrives, but needs
to run arbitrary database queries continuously.

Writing a continuous query should be as easy as writing a con
ventional query for a relational database. In the Tapestry system,
users write continuous queries in a special language TQL (Tapes
try Query Language) that is similar to SQL. These queries are
written as queries over a static database. This permits a user to try
out a query by running it as an ad hoc query against the database,
refine it, and then try it again. Once satisfied with the query, the
user can install it in the Tapestry system as a continuous query.

For its storage, the Tapestry system uses a commercial relational
database management system that supports SQL. A straightfor
ward method of implementing a continuous query over such a
database is to periodically execute the query, say once every hour.
Figure 1 outlines the basic algorithm.

Figure 1 Periodic Query Execution

FOREVER DO
Execute Query Q
Return results to user
Sleep for some period of time.

ENDLOOP

While simple to implement, this approach has three main defi
ciencies:

• Nondeterministic results. The records selected by a query
depend on when that query is executed. A query that is exe
cuted every hour on the hour may produce a different compos
ite set of results than the same query executed once per day or
even every hour on the half hour. This means that two users
with the exact same continuous query could be presented with
a different set of results.

• Duplicates. Each time the query is executed the user will see
all records selected by the query, old as well as new. Since the
database is append-only, the set of records returned by a query
will increase steadily over time. In practice, users are only
interested in the records matching a continuous query that
have not been previously returned.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1056 Page 2

• Inefficiency. Executing the same query over and over again is
overly expensive. Just as the size of the query's result set
increases over time, so does the execution cost. Ideally, the cost
of executing a continuous query should be a function of the
amount of new data, and not dependent on the size of the whole
database.

The problem of duplicates can be solved by having the system
remember the complete set of records that has been returned to
each user. The system would then take care to only return query
results that are not in this set. While this approach strictly avoids
duplicates, it still has efficiency problems. Much of the computa
tion cost of the query is spent selecting records that are subse
quently discarded.

Active databases, such as the 51lert system [12], address the ineffi
ciency problem by using triggers to execute queries over new data
as it arrives. Continuous queries are similar to the active queries of
the 51lert system but can be implemented in standard SQL [2].
Tapestry transforms each user-provided query into an incremental
query that is run periodically. These incremental queries execute
efficiently and avoid duplicates, to a large extent, by limiting the
query to the portion of the database that might newly match the
query. This is similar to the approach taken by active databases but
does not require a trigger mechanism. The result of running a
sequence of incremental queries is the same as executing the orig
inal user query after every update to the database, but the compu
tation cost is drastically reduced.

The following section explains in more detail why periodic execu
tion can yield nondeterministic results and proposes a clean, time
independent semantics for continuous queries. Sections 4.0 and
5.0 detail the translation steps needed to convert a general SQL
query into its associated incremental query. Section 6.0 discusses
the implementation of incremental queries and their performance
when run on a sample database. Section 7.0 discusses other
approaches to supporting continuous queries and related work.
Section 8.0 suggests applications of continuous queries and future
work.

2.0 CONTINUOUS SEMANTICS

The most significant problem with simply executing a query peri
odically is that this can produce nondeterministic results. Consider
the query: "select messages to which nobody has sent a reply."
When a message is added to the database, it matches the query.
However, once a reply message arrives, the message being replied
to no longer matches the query. If a particular message were to
arrive in the database at 8:15 and a reply to it arrived at 8:45, then
the message would not be returned by a system that ran the algo
rithm in Figure 1 every hour on the hour, but would be returned by
a system that ran it every hour on the half hour (since the message
would match at 8:30).

This raises the general question: What are reasonable semantics
for a query that executes "continuously?" In other words: What
guarantees can be provided to users about the set of records
returned by a continuous query?

Users should not need to understand the implementation of the
system in order to know what results to expect as the result of a
continuous query. The semantics should be independent of how
the system operates internally and when it chooses to perform var
ious operations such as executing queries. Two users with the
same continuous query should see the same result data. This
implies that the semantics of continuous queries should be time
independent.

322

We suggest that the semantics of a continuous query should be
defined as follows:

Continuous semantics: the results of a continuous query is the
set of data that would be returned if the query were executed at
every instant in time.

This says that the behavior of a continuous query is that it appears
to be executed continuously by the system. That is, the system
guarantees to show the user any record that would be selected by
the query at any time. The system may implement this behavior in
any number of ways, such as collecting results and presenting
them to the user periodically, but the actual set of results eventu
ally seen by the user is well-defined and time-independent.

To be precise, let Q(t) be the set of records returned by the execu
tion of query Q over the database that existed at time t. That is,
Q(t) is the result of running Q at time t. Now let QM(t) denote
the total set of data returned up until time t by executing query Q
as a continuous query:

Q~t) = UQ(s) (EQ 1)
sSt

When a query Q is executed with continuous semantics, it returns
QM(t), not Q(t).

Continuous queries are qualitatively different from one-time que
ries. Consider the user who wants to see all the messages that do
not receive replies. The obvious formulation: "select messages to
which nobody has sent a reply," when executed as a continuous
query, would return every message to the user, since every mes
sage has no replies when it first arrives. This is undoubtedly not
what the user intended. The problem does not lie with continuous
semantics, but rather with the user's imprecise specification of his
continuous query. Finding the messages that never receive a reply
would require waiting forever, but a short wait will find most mes
sages that never receive a reply. Thus a more precise query would
be something like: "select messages that are more than two weeks
old and to which nobody has sent a reply." This illustrates the
point that not all database queries are suitable as continuous que
ries. Nevertheless, continuous queries are a valuable concept.
Throughout the remainder of this paper, continuous semantics are
assumed to be the desired semantics for continuous queries.

One very important question remains: Can continuous semantics
be realized in a practical system? Certainly, running a query at
every time is not possible, and if it were possible, would not be
practical. This paper discusses techniques for providing continu
ous semantics in an effective and efficient manner.

3.0 PROVIDING CONTINUOUS SEMANTICS

The key to providing efficient continuous queries is the following
observation: If we have a query QM that can compute QM(t) as
defined above, then the simple technique of periodically executing
QM and returning the new results yields continuous semantics.
The frequency with which QM is executed simply affects the size
of each batch of results, not the collective set of results. Figure 2
shows a modification to the algorithm in Figure 1 that obeys con
tinuous semantics. The algorithm keeps track of the last time it
ran, 't.

This algorithm works because QM is monotone, that is,
Q~t1) ~ Q~t2) whenever t 1 < t2. Many interesting queries are
not monotone and are converted to Q M. We call Q M the minimum
bounding monotone query since it is the smallest monotone query
that returns all the messages in Q .

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1056 Page 3

Figure2 Continuous Query Execution using QM.

Set 1: = -oo

FOREVER DO
set t := current time
Execute queries Q~t) and Q~'t)
Return Q~t)- QM('t) to user
set 1: := t
Sleep for some period of time

ENDLOOP

Tapestry's approach to implementing continuous queries is two
fold. First, a query, Q , is converted into the minimum bounding
monotone query, QM. If the user's query is already monotone then
Q M is usually the same as Q, and in any event produces the same
results. Section 4.0 gives the details of how to generate an efficient
QM.

Second, tJte monotone query is converted into an incremental
query, Q' , that can quickly compute an appr~lfimation to
Q~t)- Q~'t). The queries Q, QM, and {! can all be in
expressed in SQL.

Incremental queries 5e introduced for performance reasons. An
incremental query, {! , is parameterized by two tim_ep: the time
that it was last executed t, and the current time t. {! ('t, t) is
intended to return the records that begin matching query Q M in
the time interval from 't to t. The incremental query works by
restricting the portion of the database over which it runs to those
objects that might match the query and have not been previously
returned. This allows incremental queries to run much more effi
ciently than queries over the complete database.

An incremental query should obey the following two properties:

It returns enough: Q~t)- Q~'t) ~ rj('t, t). (a)
It doesn't return too much: Q'('t, t) ~ QM(t). (b)

Ideally, QI should return exactly the new results, but the current
rewrite rules do not achieve this. Unlike QM, which is exactly the
minimum bounding n:qnotone query, d is only an approximation
of QM(t)- Q~'t). {! returns at least the new results, and occa
sionally returns a past result. Thus, to guarantee that previously
returned results are not returned to a user again, the system must
keep track of these results and explicitly filter out duplicates. In
practice, if users are not bothered by occasional duplicates, then
the results of the incremental queries can be returned directly to
users.

As long as the minimum bounding monotone query for Q can be
obtained and this query can be incrementalized so as to satisfy the
two properties above, then the incremental query can be executed
periodically and still guarantee continuous semantics. This is
because the union of the results of all the incremental queries is
exactly Q~t):

QM(tn} = d(-oo, !1} U Q1(t1, t2} U ... U rj(tn-1' tn} (EQ 2)

which is true because (using (a))

Q~tn} = Q~t1}- Q~-oo) U

QM(t2)- QM(t1) U ... U QM(tn)- Q~tn-1)

c. d(-oo, t 1) u QI(tl' t2) u ... u dUn-1' tn) (EQ
3

)

and (using (b))

323

I I I
QM(-oo, t1} U QM(tp t2} U ••• U QM(tn-1• tn}

~ QM(t1} U Q~t2} U ... U Q~tn}

= QM(tn}
(EQ4)

This indicates an effective strategy for executing a continuous
query using a conventional relational database manager. The basic
algorithm is presented in Figure 3. The system runs each incre
mental query, queues up the results for delivery to users, records
the time at which each query was run, waits some period of time,
and then repeats this process using the recorded times as parame
ters to the incremental queries

Figure 3 Continuous Query Execution

Set 1: = -oo

FOREVER DO
set t := current tir:t)e
Execute query Q ('t, t)
Return result to user
set 1: := t
Sleep for some period of time

ENDLOOP

As mentioned before, in the Tapestry system users write queries in
a special language TQL (Tapestry Query Language). We have
developed algorithms for taking a TQL query, transforming it to
be monotone, incrementalizing that monotone query, and then
converting it to SQL. Rather than introduce TQL, the following
sections present versions of the algorithms that translate SQL que
ries. Because they were designed to work for TQL, the algorithms
have some restrictions in the SQL environment. The major differ
ence is that Tapestry queries always want duplicate suppression
(DISTINCT) because they are always retrieving mail messages.
While the algorithms below do not always suppress duplicates,
they often do, and this means they do not support the use of aggre
gates (such as SUM or COUNT). Another area we have not
addressed is outer joins. These are areas for future work.

The following sections examine various constructs that can be
used in SQL and discuss how to generate minimal bounding
monotone and incremental queries for continuous queries that use
these constructs. The rules for producing monotone and incremen
tal queries make two principal assumptions about the database: (1)
the database is append-only, namely, records are added to the data
base but no data is deleted or modified, and (2) each table contains
a timestamp column, called "ts", that indicates when the record
was added to the database.

4.0 MONOTONE QUERIES

4.1 The Class of Non-monotone queries

Without the database being append-only, no query is monotone
since it is always possible to delete a record that has been previ
ously returned as the result of a query, thereby reducing the que
ry's result set. For an append-only database, many common SQL
queries are monotone. For example, SQL queries that are simply
boolean predicates over the column values of a single table are
monotone in nature. Such queries can include the comparison
operators (=, <, >, ...) and boolean operators (AND, OR, and
NOT). The following is an example of a simple query:

SELECT * FROM tbl
WHERE

tbl.fieldl = "Foo" AND NOT tbl.field2 < tbl.field3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1056 Page 4

This query is monotone because once a record is added to the data
base, it either satisfies the query or not, and that satisfaction
doesn't change over time (since the database is append-only).

Queries involving joins are also monotone in nature. Again, this is
because the database is append-only. Conceptually, a query with a
join is the same as a query over a single table formed by taking the
cross product of the joined tables. This single "join" table is
append-only as long as the base tables are append-only.

Tapestry queries may include the following constructs, which can
lead to non-monotone queries:

• functions that read the current time

• subqueries prefaced by "NOT EXISTS"

First consider time. While the original SQL standard does not
include an explicit data type for storing dates, many versions of
SQL, such as Sybase's Transact-SQL [15], as well as the proposed
new ISO SQL standard [2], do support dates. These systems gen
erally provide functions that read and return the current date and
time. In Transact-SQL, for example, GetDate() is such a function,
and the ISO SQL standard uses the variable CURRENT_TIMES
TAMP. Queries involving calls on such functions are often non
monotone. The simplest example of a query involving time is

SELECT * FROM tbl WHERE tbl.field op GetDate()

When op is <, this query can be illustrated as follows:

TRUE

FALSE
)

tbl.field

The horizontal axis represents time t, (the value returned by Get
Date()), and the graph represents the boolean value of the query
tbl.field < GetDate() for a fixed message. It is false when time t is
less than tbl.field (evaluated for that one fixed message), true when
t is greater than tbl.field. The fact that this graph is monotone
increasing translates directly into the query being monotone.
When op is>, the graph is decreasing, and the query is no longer
monotone.

TRUE----
FALSE

)

tbl.field

An example of a non-monotone query is "select messages that
have not expired", or

SELECT * FROM m WHERE m.expires > GetDate()

This is not monotone because any message that satisfies the query
will eventually cease to satisfy it (after it expires).

The graph argument just given suggests that a query is monotone
if its only reference to time is in subexpressions of the form

E < GetDate()
or

E~ GetDate()

and likely to be non-monotone if it the comparison operator is>,
:<::,=,or:¢.

324

Here E is some date-valued expression, possibly involving fields
of one or more tables and other built-in functions. The next section
will show that queries involving the AND and OR of terms of the
first form are indeed monotone. However, boolean combinations
of terms of the second form are not always non-monotone. For
example,

SELECT * FROM tbl
WHERE

(tbl.field > GetDate() AND tbl.string = "base") OR
(tbl.field ~ GetDate() AND

tbl.string LIKE "%base")

is monotone, because it can be rewritten as

SELECT * FROM tbl
WHERE tbl.string = "base" OR

(tbl.field ~ GetDate() AND
tbl.string LIKE "%base")

assuming that the two calls to GetDate() in the original query
return the same value.

This example illustrates that a monotone rewriting rule is not the
same as a test for monotonicity. Although the rewriting rules of the
next section will rewrite the first form of the query into the second,
it requires knowledge about the semantics of LIKE to conclude
that the two queries are the same, and thus that the original query
was monotone.

Only the failure of monotonicity due to time has been discussed so
far. A second cause of nonmonotonicity is the use of NOT
EXISTS. The simple query "select messages that have no reply",
might be written in SQL as

SELECT * FROM msgs m
WHERE NOT EXISTS (

SELECT * FROM msgs m1
WHERE ml.inreplyto = m.msgid)

This is non-monotone because a message may satisfy the query for
a while, but then fail because of the arrival of a reply. No explicit
occurrence of time in the query is involved. Assuming that each
append-only table has a column named "ts" that contains a times
tamp of when the row was added to the table, the following figure
illustrates the non-monotonicity.

TRUE ___ _

FALSE
)

ml.ts

A more realistic non-monotone query is "select messages that are
more than two weeks old and to which nobody has sent a reply."
Although it involves time, it uses the monotone construction E <
GetDate(), but is still non-monotone because of NOT EXISTS.

4.2 The Basic Rewriting Rules

This section will show how to compute the minimal bounding
monotone query for any SQL query in standard form (see below).
Throughout the next two sections, several shorthands are used in
expressing SQL queries. Table 1 lists these shorthands and their
SQL equivalents. In particular, the term t used in a query refers to
the current time. All instances of t in a query should obtain the
same value. To ensure this, t could be a parameter to the query that
is set by calling GetDate() exactly once. QM(t) occasionally refers
to both the query Q M and the set of records returned by Q M when
evaluated at time t. The meaning should be clear from context.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1056 Page 5

Standard form queries have the form

SELECf ... FROM tbll, tbl2, ...
WHERE (E11 AND E12 AND .. AND Elk) OR

(Ez! AND E22 AND ... AND E 2k) OR
1

2

(En! AND Enz AND ... AND Enk)

where each E;j is either of the form NOT EXISTS(q), or a boolean
expression without subqueries. Furthermore if E;j involves time,
then it must be of the form tope, where op is one of<,=,>,::;,~.
-:t:., and e is an arithmetic expression that does not involve t. The
subqueries q of NOT EXISTS(q) must also be in standard form.
The technical report gives examples to show how most common
SQL queries can be rewritten to this standard form [17].

Table 1

C+2weeks

SOL shorthands.

CURRENT_ TIMESTAMP or GetDate()

c +INTERVAL "14" DAY or
DateAdd(week, 2, c)

MAX(c1, c2, ... , ck) < t

P(x, y, ...)

AND P(xi)
1::; i::; k

OR P(xi)
1::; i::; k

c1 <t AND c2 < t AND ... AND Ck< t

t<d1 AND f< d2 AND ... AND f< dk

Some expression involving x, y, ...

P(x1) AND P(x2) AND ... AND P(xk)

The rewrite rules need only consider each of the AND subexpres
sions, since the minimal bounding monotone query Q M of a query
Q in the form P ORR is PM OR RM. Here is a proof:

QM(t) = UQ(s)
sSt

= U (P(s) OR R(s))
sSt

= U (P(s) u R(s))
sSt

(UP(s) u UR(s))
sSt sSt

(EQ5)

This section assumes there are no NOT EXISTS terms. Then each
AND subexpression has the form (E1 AND E2 AND ... AND Ek).
If a term E; doesn't test the current time (the GetDate() function),
then its truth value cannot change as time passes. Since the truth
values of these terms are unchanging with respect to time, they
don't affect the monotonicity of the query. Each of the remaining
terms are of the form e op t, with op a simple relational test.

A device that will simplify the algorithms is to add a term tbl.ts < t
for each table tbl (recall that each table has a 'ts' column with the
time the row was added). Thus the query

SELECf * FROM tb1 WHERE tbl.field = "joe"

becomes

SELECf * FROM tbl
WHERE tbl.field = "joe" AND tbl.ts < t

325

After the manipulations are over, any remaining tbl.ts < t terms are
redundant and can be removed since a record will not appear in the
table before time tbl.ts. An example follows shortly.

To avoid multiple cases, first assume that op is < or> (the minor
changes needed for the other relational operators are indicated at
the end of this section). Then each AND subexpression is of the
forme1 <t AND ... AND en <t ANDt<d1 AND ... ANDt<dm
AND P, where P is the conjunction of all the terms that don't
involve t. The tbl.ts < t terms mentioned above simply add to the
list of e;'s. The expression e1 < t AND e2 < t AND ... AND en< tis
equivalent to MAX(e1, e2, ... , en)< t, and the expression t < d1
AND t < dz AND ... AND t < dm is equivalent to t < MIN(d1, d2,

... , dm). Thus, the AND subexpression can be rewritten as

MAX(e1, e2, ... , en)< t AND t < MIN(d1, d2, ... , dm) AND P

where Pis the conjunction of all the terms that don't involve t. If
MAX(e1, ez, ... , en)< MIN(d" d2, ... , dm), then the AND subex
pression is true between those times, as in the figure below.

-I I I I I
IfMAX(e1, e2, ... , en)> MIN(d1, d2, ... , dm), then the AND subex

pression can never be true. Combining these cases yields

MAX(e" e2, ... , en)< MIN(d1, d2, ... , dm) AND MAX(c1, e2, ... ,
en)< t ANDP.

Since SQL does not have MAX and MIN functions as such, this
must be rewritten as

AND(c; < di) AND AND(c; < t) AND P
l:s;i::;n 1:s;iSn
1 =s;j=s;m

Here are two examples. First, consider the query "select messages
whose date field is in the future." This can be written as

SELECf m.msgid FROMm WHERE t < m.date

After adding the m.ts < t subexpression, e1 = m.ts and d1 = m.date,
so the monotone query is

SELECf m.msgid FROMm
WHERE m.ts < m.date AND m.ts < t

The redundant m.ts < t can be removed for a final answer of

SELECf *FROMm WHERE m.ts < m.date

Note how the introduction of the m.ts < t term is reflected in the
final answer. For a second example, consider the query "select
messages that are between 2 and 3 weeks old", which can be writ
ten in SQL as

SELECf *FROMm
WHERE m.ts + 2 weeks < t AND t < m.ts + 3 weeks

There is no need to add an m.ts < t subexpression, since it would
be redundant. Then e1 = m.ts + 2 weeks, d1 = m.ts + 3 weeks, so
the monotone query is

SELECT *FROMm
WHERE m.ts + 2 weeks < m.ts + 3 weeks AND

m.ts + 2 weeks < t

Or simplifying,

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

