

PALO ALTO NETWORKS Exhibit 1006 Page 1

VIRUS BUU£TIN CONFERENCE, SEPTEMBER I 995 • 7 5

DYNAMIC DETECTION AND CLASSIFICATION OF
COMPUTER VIRUSES USING GENERAL BEHAVIOUR

PATTERNS

Morton Swimmer

Virus Test Center, University of Hamburg, Odenwaldstr. 9, 20255 Hamburg, Germany

Tel +49 404 910041 · Fax +49 405 471 5226 ·Email swimmer@acm.org

ABSTRACT

Baudouin Le Charlier and Abdela:!iz Mounji

F.U.N.D.P., Institutd' lnformatique, University ofNamur, Belgium

Email ble@info.fundp.ac.be / amo@info.fundp.ac.be

The number of files which need processing by virus labs is growing exponentially. Even though only a small
proportion of these .files will contain a new virus, each file requires examination. The normal method for
dealing with .files is still brute force manual analysis. A virus expert runs several tests on a given file and
delivers a verdict on whether it is virulent or not. If it is a new virus, it will be necessGiy to detect it. Some
tools have been developed to speed up this process, ranging/rom programs which identify previously­
classified files to programs that generate detection data. Some anti-virus products have built-in mechanisms
based on heuristics, which enable them to detect unknown viruses. Unfortunately all these tools have
limitations.

In this paper, we will demonstrate how an emulator is used to monitor the system activity of a virtual PC,
and how the expert system ASAX is used to analyse the stream of data whicg the emulator produces. We use
general rules to detect real vin1ses generically and reliably, and specific rules to extract details of their
behaviour. The resulting system is called VI DES: it is a prototype for an automatic analysis system for
computer viruses and possibly a prototype anti-virus product for the emerging 32 bit PC operating
systems.

1 INTRODUCTION

Virus researchers must cope with many thousands of suspected files each month, but the problem is not so
much the number of new viruses (which number perhaps a few hundred and grows at a nearly exponential
rate) as the number of files the researcher receives and must analyse - the glut. Out of perhaps one hundred
files, only one may actually contain a new virus. Unfortunately, there are no short cuts. Every file has to be
processed.

ViRUS BULLETIN CONFERENC£©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmined in any form
without the prior wrinen permission of the publishers.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1006 Page 2

7 6 • SWIMMER: DYNAMIC DETEGION AND CLASS/FICA TION OF COMPUTER VIRUSES ...

The standard method of sorting out such files is still brute force manual analysis, requiring specialists.
Some tools have been developed to help cope with the problem, ranging from programs which identify and
remove previously-classified files and viruses to utilities which extract strings from infected files that aid in
identifying the viruses. However, none of the solutions are satisfactory. Clearly, more advanced tools are
needed.

In this paper, the concept of dynamic analysis as applied to viruses is discussed. This is based on an idea
called VIDES (Virus Intrusion Detection Expert System), coined at the Virus Test Center (BFHS9 1]. The
system will comprise of a PC emulation and an IDES-like expert system. It should be capable of detecting
viral behaviour using a set of a priori rules, as shown in the preliminary work done with Dr. Fischer­
Hiibner. Furthermore, advanced rules will help in classifying the detected virus.

The present version of VIDES is only of interest to virus researchers; it is not designed to be a practical
system for the end-user - its demands on processing power and hardware platform are too high. However, it
can be used to identify unknown viruses rapidly and provide detection and classification information to the
researcher. It also serves as a prototype for the future application of intrusion detection technology in
detecting malicious software under future operating systems, such as OS/2, MS-Windows NT and 95,
Linux, Solaris, etc.

The rest of the paper is organized as follows: Section 2 presents the current state of the art in anti-virus
technology; Section 3 describes a generic virus detection rule; Section 4 discusses the architecture of the PC
auditing system; Section 5 shows how the expert system ASAX is used to analyse the activity data collected
by the PC emulator; and fmally, Section 6 contains some concluding remarks.

2 CURRENT STATE OF THE ART

For the purpose of discussion it will be necessary to define the term computer virus.

2.1 TERMS

There is still no universally-agreed definition for a computer virus. What is missing is a description which
is still general enough to account for all possible implementations of computer viruses. An attempt was
made in [Swi95], which is the resultof many years of experience with viruses in the Virus Test Center. The
fo llowing definition for a computer virus is the result of discussion in comp.virus (Virus-L) derived from
[Seb]:

Def 1 A Computer Virus is a routine or a program that can 'infect ' other programs by modifying them
or their environment such that a call to an injected program implies a call to a possibly evolved,
functional~y similar, copy of the virus.

A more formal, but less useful, definition ofacomputer viruscan be found in [Coh85]. Using the formal
definition, it was possible to prove the virus property undecidable.

We talk of the infected file as the host p rogram. System viruses infect system programs, such as the boot
or Master Boot Sector, whereas file viruses infect executable files such as EXE or COM files. For an in­
depth discussion of the properties of viruses, please refer to literature such as: [Hru92], [SK94], [Coh94] or
[Fer92].

Today, anti-virus technology can be divided into two approaches: the virus specific and the generic
approach. In principle, the former requires knowledge of the viruses before they can be detected. Due to
advances in technology, this prerequisite is no longer entirely valid in many of the modem anti-virus
products. This type of technology is known to us as a scanner. The latter attempts to detect a virus by
observing attributes characteristic of all viruses. For instance, integrity checkers detect viruses by checking
for modifications in executable files; a characteristic of many (although not all) viruses.

VIRUSBUUETINCONFERENCE©1995VirusBulletinLtd,21 TheQuadrant, Abingdon,Oxfordshire,OX143YS,England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1006 Page 3

VIRUS BUUETIN CONFERENCE, SEPTEMBER /995 • 77

2.2 VIRUS SPECIFIC DETECTION

Virus specific detection is by far the most popular type of virus protection used on PCs. Information
from the virus analysis is used in the so-called scanner to detect it. Usually, a scanner uses a database of
virus identification information which enable it to detect all viruses previously analysed.

The term scanner has become increasingly incorrect terminology. The term comes from lexical scanner, i.e.
a pattern matching tool. Traditionally scanners have been just that. The information extracted from viruses
were strings which were representative of that particular virus. This means that the string has to:

• differ significantly from all other viruses, and

• differ significantly from strings found in bona fide anti-virus programs.

Finding such strings was the entire art of anti-virus program writing until polymorphic viruses appeared on
the scene.

Encrypted viruses were the first minor challenge to string searching methods. The body of the v irus was
encrypted in the host file , and could not be sought, due to its variable nature. However, the body was
prepended by a decryptor-loader which must be in plain text (unencrypted code); otherwise it would not be
executable. This decryptor can still be detected using strings, even if it becomes difficult to differentiate
between viruses.

Polymorphic viruses are the obvious next step in avoiding detection. Here, the decryptor is implemented
in a variable manner, so that pattern matching becomes impossible or very difficult. Early polymorphic
viruses ?~ere identified using a set of patterns (strings with variable elements). Moreover, simple v irus
detection techniques are made unreliable by the appearance of the so-called Mutation Engines such as
MtE and TPE (Trident Polymorphic Engine). These are object library modules generating variable
implementations of the virus decryptor. They can easily be linked with viruses to produce highly
polymorphic infectors. Scanning techniques are further complicated by the fact that the resulting viruses
do not have any scan strings in common even if their structure remains constant. When polymorphic
technology improved, statistical analysis of the opcodes was used.

Recently, the best of the scanners have shifted course from merely detecting viruses to attempting to
identify the virus. This is often done with added strings, perhaps position dependent, or checksums, over the
invariant part of the virus. To support this, many anti-virus products have implemented machine-code
emulators so that the virus' own decryptor can be used to decrypt the virus. Using these enhancements, the
positive identification of even polymorphic viruses poses no problem.

The next shift many scanners are presently experiencing is away from known virus only detection to
detection of unknown viruses. The method of choice is heuristics. Heuristics are built into an anti-v irus
product in an attempt to deduce whether a file is infected or not. This is most often done by looking for a
pattern of certain code fragments that occur most often in viruses and hopefully not in bona fide programs.

Heuristics analysis suffers from a moderate to high false-positive rate. Of course, a manufacturer of a
heuristic scanner will improve the heuristics both to avoid false positives and still find all new viruses, but
both cannot be achieved completely. Usually, a heuristic scanner will contain a 'traditional' pattern-matching
component, so that viruses can be identified by name.

2.3 GENERIC VIRUS DETECTION

Computer viruses must replicate to be viruses. This means that a virus must be observable by its mechanism
of replication.

VIRUS BULLETIN CONFERENC£©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143 YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1006 Page 4

78 ·SWIMMER: DYNAMIC DETEaiON AND CLASSIFICATION OF COMPUTER VIRUSES ...

Unfortunately, it is not as easy to observe the replication as it may seem. DOS, in it various flavours,
provides no process isolation, or even protection of the operating system from programs. This means that
any monitoring program can be circumvented by a virus which has been programmed to do so. There used to
be many anti-virus programs which would try to monitor system activity for viruses, but were not proof
against all viruses. This problem led to the demise of many such programs. Later in the paper, we shall
discuss how we avoided the problem when implementing VIDES.

A more common approach is to detect symptoms of the infection such as file modifications. This type of
program is usually called an integrity checker or checksummer.

When programs are installed on the PC, checksums are calculated over the entire file, or over portions of the
file. These checksums are then used to verify that the programs have not been modified. The shortcoming of
this method is that the integrity checker can detect a modification in the file, but cannot determine whether
the modification is due to a virus or not. A legitimate modification to, for instance, the data area of a
program will cause the same alarm as a virus infection.

Another problem is virus technology aimed specifically against anti-virus products. Advances in stealth and
tunnelling technology have made updates necessary. There have also been direct attacks against
particular integrity checkers, rendering them useless. Again, the lack of support from the operating
system makes the prevention of such attacks very difficult. As a consequence, the acceptance of such
products is low.

The non-specific nature of the detection has little appeal for many of the users. Even generic repair
facilities in the anti-virus products do not help, despite these methods effectively rendering identification
unnecessary. The problem is partly understandable. The user is concerned with his data. Merely
disinfecting the programs is not enough if data has been manipulated. Only if the virus has been
identified and analyzed can the user determine if his data was threatened.

Generic virus detection technology should not be dismissed. It is just as valid as virus-specific technology.
The problems so far have stemmed from the permissiveness of the underlying operating system, DOS, and
from the limits in the programs. Both problems can be addressed.

3 DYNAMIC DETECTION RULES

Before we can attempt to detect a virus using ASAX, we need to model the virus attack strategy. This is
then translated into RUSSEL, the rule-based language which ASAX uses to identify the virus attack.

3.1 REPRESENTING INFECTION PATTERNS USING STATE TRANSITION DIAGRAMS

State transition diagrams are eminently suitable for representing virus infection scenarios. In this model of
representation, we distinguish two basic components: a node in a state transition diagram represents some
aspects of the computing system state. Arcs represents actions performed by a program in execution.
Given a (current) states;, the action a takes the system from the states; to the state s

1
as shown in Figure

1. The infection process played by a virus can be viewed as a sequence of actions which drives the system
from an initial clean state to a final infectious state, where some files are infected. In order to get a complete
description of the actual scenario, a state is adorned by a set of assertions, characterizing the objects as
affected by actions.

Figure 1: State transition diagram

VIRUS BULLETIN CONFERENC£©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a re trieval system, or transmitted in any form
without the prior written permission of the publishers.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1006 Page 5

VIRUS BULLETIN CONFERENCE, SEPTEMBER 1995 • 79

In practice, we only represent those actions relevant to the infection scenario. As a result, many possible
actions may occur between adjacent states, but are not recorded because they do not entail a modification in
the current state. In terms of auditing, irrelevant audit records may be present in the sequence of audit
records representing the infection signature.

For the sake of simplicity, discussion of the generic detection rules are based on the state transition
diagrams described above.

3.2 BUILDING THE RULES

VI DES uses three types of detection rules: generic detection rules, virus specific rules, other rules. As its
name implies, generic rules are used to detect all viruses which use a known attack pattern. For this, models
of virus behaviour are needed for the target system (in our case MS-DOS). Virus-specific rules use
information from a previous analysis to detect that specific virus, or direct variants. These rules are similar
to virus-specific detection programs, except for the fact that they analyze the dynamic behaviour of the virus
instead of its code. Finally, there are the 'other rules' for gleaning other information from the virus which
can be used in its classification.

We will not go into the virus-specific rules or the ' other' rules, concentrating instead on the generic rules.

In developing a generic rule for detecting viruses, we need to have a model for the virus attack. No one
model will do, because MS-DOS viruses can use choose from many effective strategies. This is
compounded by the diversity of executable file types forMS-DOS. Fortunately for us, the majority of
viruses have chosen one particular strategy, and infect only two types of executable files. This means that
we can detect most viruses with very few rules. On the other hand, a virus which uses an unknown attack
strategy will not be detected. For this reason, the prototype analysis system contains an auxiliary static
analysis component to detect such problems.

In the following, we will develop a generic rule which detects file infectors that modify the file directly to
gain control over that file. We will concentrate on COM file infectors. EXE file infectors are detected in an
analogous way.

We must make two assumptions about the behaviour of DOS viruses to help us build the rule.

Assumption 1: A file-infecting virus modifies the host file in such a way that it gains control over the
host file when the host file is run.

This is a specific version of the virus definition (Def 1). However, it doesn' t specify when the virus gains
control over the host file.

Assumption 2: The virus in an infected file receives control over the file before the original host
program.

That is, when the infected file is run, the virus is run before the host program.

Discussion: If the virus never gains control over the host file, it would not fulfil the definition of a virus.
This observation leads to Assumption 1. However, there is no reason (in the defmition) why the virus must
gain control before the host does.

We make an additional assumption that the virus does gain control before the host program does. The reason
we do this is to avoid very blatant false positives. However, it should be noted that Assumption 2 does not
result from the virus definition, and will cause some viruses to be missed. For these cases, other rules are
used.

VIRUS BULLETLNCONFERENC£©1995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

