
VWGoA - Ex. 1009
Volkswagen Group of America, Inc., Petitioner

1

2

AUTOMOTIVE

ELECTRONICS

HANDBOOK

Ronald K. Jurgen Editor in Chief

McGraw-Hill, Inn.

New York San Francisco Washington.D.C. Auckland Bogota‘:
Caracas Lisbon London Madrid Mexico City Milan

Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto

3

Related McGraw-Hill Books of Interest

Handbooks

Availone and Baameister - MARK’S STANDARD HANDBOOK FOR MECHANICAL ENGINEERS
Benson - AUDIO ENGINEERING HANDBOOK

Brady - MATERIALS HANDBOOK
Chen - COMPUTER ENGINEERING HANDBOOK

Considine - PROCESSIINDUSTRIAL INSTRUMENTS AND CONTROL HANDBOOK
Coombs - PRINTED CIRCUITS HANDBOOK

Coombs - ELECTRONIC lNSTRUM.EN‘I' HANDBOOK

Di Giacomo - DIGITAL BUS HANDBOOK

Fink and Beaty - STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS
Fink and Chnstiansen - ELECTRONICS ENGINEERS’ HANDBOOK
Ganic - McGRAw-HILL HANDBOOK OF ESSENTIAL ENGINEERING INFORMATION

Harper - ELECTRONIC PACKAGING AND INTERCONNECITON HANDBOOK

I’-Iarpcr and Sampson - ELECTRONIC MATERIALS AND PROCESSES HANDBOOK
Hicks - STANDARD HANDBOOK OF ENGINEERING CALCULATIONS

Hodson - MAIINARTFS INDUSTRIAL ENGINEERING HANDBOOK

Johnson - ANTENNA ENGINEERING HANDBOOK

Ito-an and Gryna - IURAN’S QUALITY CONTROL HANDBOOK

Kaufman and Seidmtm - HANDBOOK OF ELECTRONICS CALCULATIONS
Lenk - McGRAw-HILL ELECTRONIC '[‘ES'I‘ING HANDBOOK

Lertk - LENK’S DIGITAL HANDBOOK

Mason - SwITCH ENGINEERING HANDBOOK

Schwartz - COMPOSITE MATERIALS HANDBOOK
Townsend - DUDLEY’S GEAR HANDBOOK

Titma - ENGINEERING MATHEMATICS HANDBOOK

Waynant - ELEC'I'RO-OPTICS HANDBOOK
Woodson - HUMAN FACTORS DESIGN HANDBOOK

Other

Bosweti - sUBCONTRE }E§TfiO "ICS:'
Gieck - ENGINEERING Fofiggfigiifis ' _ .. '

Ginsberg - PRINTED cSR‘O§;JBxfiBOARD:._DESIGiS'--- 1 <1
Johnson. - ISO 9000

Lenk ' MCGRAW-HILL CIRCUIT ENCYCLOPEDIA AND TROUBLESHOOTING GUIDE,
VOLS. 1 AND 2 3

Lubben - JUS'I‘—IN-TIME MANUEACITIRING

Markus and Sciater - McGRAw—HIt,L ELECTRONICS DICTIONARY

Saytor - TOM FIELD MANUAL -
Soin - TOTAL QUALITY CONTROL ESSE‘.NTIAI..S
Whitaker - ELECTRONIC DISPLAYS

Young - ROARK‘S EORMULAS FOR STRESS AND STRAIN i
1I

To order or to receive additional information on these or any other
McGraw—Hi1!ti.tles, please cab‘ 1-800-822-8153 in the United States.
In other countries; please Contact your focal McGraw—HiIl office. BC14BCZ

4

Library of Congress Cataloging—in-Publication Data

Automotive electronics handbook J’ Ronald Jurgen, editor in chief.
p. cm.

includes index.
ISBN D—U’i—033189-8

1. Automobiles—Electronic equipment. 1. Jurgen, Ronald K.
TL2';'2.5.A982 1994
629.25 '49—dc 94-39724

CIP

Copyright @ 1995 by McGraw—Hill, Inc. All rights reserved. hinted in the
United States of America. Except as permitted under the United States
Copyright Act of 19?6, no part of this publication may be reproduced or dis-
tributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher.

234567890 AGMIAGM 9098'.-'65

ISBN 0-0’? 4333189-8

The sponsoring editor for this book was Stephen S Chapman, the editing
supervisor was Virginia Carroll, and the production supervisor was
Suzanne W B. Rapcavage. It was set in Times Roman by North Market
Street Graphics.

Printed and bound by Arcata Graphics/Martinsburg.

McGraw-Hill books are available at special quantity discounts to use as pre-
miums and sales promotions, or for use in corporate training programs. For
more information, please write to the Director of Special Sales, McGraw—
Hill, Inn, 11 West 19th Street, New York, NY 10011. Or contact your local
bookstore.

Information contained in this work has been obtained by McGraw-
Hill, Inc. from sources believed to be reliable. However, neither
McGraw-Hill nor its authors guarantee the accuracy or complete-
ness of any information published herein, and neither McGraw-
Hill nor its authors shall be responsible for any errors, omissions,
or damages arising out of use of this information. This work is
published with the understanding that McGraw-Hill and its authors
are supplying information, but are not attempting to render engi-
neering or other professional services If such services are
required, the assistance of an appropriate professional should be
sought

This book is printed on acid-free paper.

5

-This book is dedicated to Robert H. Lewis and to

the memories ofDouglas R. Jurgen and Marion
Schappel.

6

7

CONTENTS

Contributors xv
Preface xvii

Part 1 Introduction

Chapter 1. Introduction RonaIdK.Jurgen 1.3

1.1 The Dawn of a New Era I 1.3

1.2 The Mir:rocorr1puterTal(es Center Stage I 1.4
1.3 Looking to theFuture I 1.5

References I I6

Part 2 Sensors and Actuators

Chapter 2. Pressure Sensors Handy Frank 2.3

2.1 Automotive Pressure Measurements I 2.3

2.2 AJ.llOJ.‘n0|IiV3AppllCailOI1S for-Pressure Sensors I 2.5
2.3 Technologies forsensirig Pressure I 2.15
2.4 Future Pressure—Sensing Developments I 2.23

Glossary I 2.24
Bibliography I 2.24

Chapter 3. Linear and Angie Position Sensors Paul‘ Nfcirson 3.1

3.1 Introduction I 3.1
3.2 Classification of Sensors I 3.1

3.3 Position SensorTechn0logies I 3.2
3.4 Interfacing Sensors to Control Systems I 3.16

Glossary I 3.17
References I 3.}?

Chapter 4. Flow Sensors Robert E. Bicking 4.1

4.1 Introduction I 4.1

4.2 Automotive Applications of Flow Sensors I 4.1
4.3 Basic Classification of Flow Sensors I 4.3

4.4 Applicable Flow MeasurementTechnologies I 4.4
Glossary I 4.8
Bibliography I 4.9

8

Viti CONTENTS

Chapter 5. Temperature, Heat, and Humidity Sensors Randy Frank 5.1

5.1 Temperature, l'leat,and Humidity 1 5.1
5.2 Automotive Temperature Measurements 1 5.5
5.3 Humidity Sensing and Vehicle Performance 1 5.12
5.4 Sensors forTemperature 1 5.14
5.5 Humidity Sensors 1 5.21
5.6 Conclusions 1 5.22

Glossary 1 5.23
Bibliography 1 5.23

Chapter 6. Exhaust Gas Sensors Hans-Martin Wledenmann,
Gerhard Hfitzel, Harald Neumann, Johann Hlegel, and Helmut Weyl 6.1

6.1 Basic Concepts 1 6.1
6.2 Principles of Exhaust Gas Sensors for Lambda Control 1 6.5
6.3 Technology of Ceramic Exhaust Gas Sensors 1 6.11
6.4 Factors Affecting the Control Characteristics of Lambda = 1 Sensors 1 6.14
6.5 Applications 1 6.18
6.6 Sensor Principles for Other Exhaust Gas Components 1 6.20

Bibliography 1 6.22

Chapter '1. Speed and Acceleration Sensors William C. Dunn 7.1

7.1 Introduction 1 7.1

7.2 Speed-Sensing Devices 1 7.2
'13 Automotive Applications for Speed Sensing 1 7.6
7.4 Acceleration Sensing Devices 1 7.8
7.5 Automotive Applications for Accelerometers 1 7.18
’1.6 New Sensing Devices 1 7.22
7.7 FutureApplications 1 7.24
7.8 Summary 1 37.26

Glossary 1 7.27
References 1 7.28

Chapter 8. Engine Knock Sensors William G. Wolber 8.1

8.1 Introduction 1 8.1
8.2 The Knock Phenomenon 1 8.2

8.3 Technologies for Sensing Knock 1 8.4
8.4 Summary 1 8.9

Glossary 1 8.9
References 1 8.9

Chapter 9. Engine Torque Sensors William G. Wolber 9.1

9.1 Introduction 1 9.1

92 Automotive Applications of'I'orque Measurement 1 9.3
9.3 Direct'Ibrque Sensors 1 9.6
9.4Inferrcd'I‘orq11eMeasL1rernent 1 9.8
9.5 Summary 1 9.13

Glossary 1 9.13
References 1 9.14

9

Chapter 10. Actuators K1ausMt'ifler

CONTENTS ix

10.1

10.1 Preface 1 10.1

10.2 Types of Electromechanical Actuators 1 10.2
10.3 Autorr1otiveActuators 1 10.19

10.4 TechnologyforFutureApplication 1 10.27
Acknowledgments 1 1030
Glossary 1 10.30
Bibliography 1 10.31

Part 3 Control Systems

Chapter 11. Automotive Microcontrollers David S. Boehmer

11.1 Microcorltroller Architecture and Performance Characteristics 1 11.3 -
11.2 Memory 1 11.24
11.3 Low-Speed Input10utput Ports 1 11.31
11.4 High-Speed I10 Ports 1 11.36
115 Serial Communications 1 11.41

11.6 Analog-to—Digital Converter 1 11.45
11.1 Failsafe Methodologies 1 11.49
11.8 E.1tureTrencls 1 11.51

Glossary 1 11.54
Bibliography 1 11.55

Chapter 12. Engine Control
and Shari Stottier

Gary C. Hfrsehfieb, Gottfried Schiiier,

12,1 Objectives of Electronic Engine Control Systems 1 12.1
12.2 Spark Ignition Engines 1 12.5
12.3 Compression Ignition Engines 1 12.32

Chapter 13. Transmission Control Kurt Neufler, Wolfgang Buflmel;
and Werner Brehm

11.3

12.1

13.1

13.1 Introduction 1 13.1

132 System Components 1 13.2
133 System Functions 1 13.7
13.4 Communications with Other Electronic Control Units 1 13.17

13.5 Optimization of the Drivetrain 1 13.18
13.6 Future Developments 1 13.19

Giossary 1 13.20
References 1 13.20

Chapter 14. Cruise Control Richard Valentine

14.1 Cruise Control System 1 14.1
14.2 Microcontroiler Requirements for Cruise Control 1 14.3
14.3 Cruise Control Software 1 14.4

14.4 Cruise Control Design 1 14.6
145 Future Cruise Concepts 1 14.7

Glossary 1 14.8
Bibliography 1 14.8

14.1

10

CONTENTS

Chapter 15. Braking Control Jerry L. Cage 15.1

15.1 Introduction I 15.1

15.2 Vehicle BrakingFundarnentals I 15.1
15.3 Antilock Systems I 15.8
15.4 FutnreVehic[e Brakingsystems I 15.14

Glossary I 15.15
References I 15.16

Chapter 16. Traction Control Armin Czim.-zeI 16.1

16.1 Introduction I 16.1

16.2 Forces Affecting WheclTraction: Fundamental Concepts I 16.3
16.3 ControlledVariables I 16.5
16.4 Control Modes I 16.6

16.5 Traction Control Components I 16.11
16.6 Applications on Heavy CommereialVehicles I 16.13
16.’? F11tureTren_ds I 16.14

Glossary I 16.14
Bibliography I 16.15

Chapter 17. Suspension Control Akarsu Yahsuke 17.1

11.1 ShockAbsorber Control System I 17.1
17.2 Hydropneumatic Suspension Control System I 17.4
17.3 Electronic Leveling Control System I 17.5
11.4 Activesuspension I 17.8
17.5 Conclusion I 17.17

Glossary I 17.18
Nomenclature I 17.18

Bibliography I 17.18

Chapter 18. Steering Control Makoto Safo 18.1

18.1 Variable—A.ssistSteering I 18.1
18.2 Four-WheelSteeringSystcms (4WS) I 18.15

Glossary I 18.33
References I 18.33

Chapter 19. Lighting, Wipers, Air ConditioningIHeating
Richard Valentine 19.1

19.1 Lighting Controls I 19.1
19.2 Windshield Wiper Control I 19.9
19.3 Air ConditionerIHea1.er Control I 19.15
19.4 Miscellaneous Load Control Reference I 19.20

19.5 Future Load Contro! Concepts I 19.25
Glossary I 19.26
Bibliography I 19.27

10

11

CONTENTS

Part 4 Displays and Information Systems

Chapter 20. Instrument Panel Displays Ronald K. Jurgen

20.1 The Evolution to Electronic Displays I 20.3
20.2 Vacuum Fluorescent Displays I 20.3
20.3 Liquid Crystal Displays a'' 20.4
20.4 Cathode-Ray Tube Displays 1' 20.6
20.5 He-ad—upDisplays I 20.6
20.6 Electronic Analog Displays I 20.8
20.’? Reconfigurable Displays J’ 20.9

References I 20.9

Chapter 21. Trip Computers Ronald K. Jurgen

xi

20.3

21.1

21.1 Trip Computer Basics 1' 21.1
21.2 SpecificTrip Computer Designs I 21.2
21.3 Conclusion I 21.4

References I 21.6 -

Chapter 22. On- and Off-Board Diagnostics Wolfgang Bremer,
Frfeder Heintz. and Robert Huge!

22.1 Why Diagnostics? I 22.1
22.2 On-Board Diagnostics I 22.6
22.3 Off-Board Diagnostics I 22.7
22.4 Legislation and Standardization J’ 22.8
22.5 Future Diagnostic Concepts I 22.15

Glossary I 22.18
References 1' 22.19

Part 5 Safety, Convenience, Entertainment,

and Other Systems

Chapter 23. Passenger Safety and Convenience Bernhard K. Manes

23.1 Passenger Safety Systems J’ 23.3
23.2 Passenger Convenience Systems I 23.11

Glossary I 23.13
Bibliography I 23.13

Chapter 24. Antitheft Systems Sh:'m'chiKato

24.1 Vehicle Theft Circumstances I 24.1

24.2 Overview of Antitheft Regulations I 24.2
24.3 ABasicAntitheft System I 24.3

22.1

23.3

24.1

11

12

xii CONTENTS

Chapter 25. Entertainment Products Tom Chrapkiewicz 25.1

25.1 Fundamentals of Audio Systems I 25.1
25.2 ABrief History of Automotive Entertainment I 25.4
25.3 Conten1poraryAudio Systems I 25.5
25.4 FutureTrends I 25.12

Glossary I 25.17
References I 25.18

Chapter 26. Multiplex Wiring Systems Fred Miesterfeld 26.1

26.1 Vehicle Multiplexing I 26.1
26.2 EncodingTecl1niques I 26.9
26.3 Protocols 1 26.23

26.4 Summary and Conclusions I 26.53
Glossary I 26.56
References I 26.64

Part 6 Electromagnetic Interference and Compatibility

Chapter 27. Electromagnetic Standards and Interference
James E Muccioli 27.3

27.1 SAE Automotive EMC Standards I 27.3
272 IEEE Standards Related to EMC I 27.11

27.3 The Electromagnetic Environment of an Automobile Electronic System I 27.13
Bibliography I 27.18 '

Chapter 28. Electromagnetic Compatibility James I’. Muccioli 28.1

28.] Noise Propagation Modes I 28.1
28.2 Cabling I 28.2
28.3 Components I 28.4
28.4 Printed Circuit Board EMC Checklist I 28.9

28.5 Integrated Circuit Decoupln-1g—A Key Automotive EMI Concern I 28.10
28.6 IC Process Size Affects EMC I 28.14

Bibliography I 28.19

Part '1 Emerging Technologies

Chapter 29. Navigation Aids and Intelligent Vehicle-Highway Systems Robert 1..
French 293

29.1 Background I 29.3
29.2 Automobile Navigation Technologies I 29.4
29.3 Examples of Navigation Systems I 29.10
29.4 Other IVHS Systems and Services I 29.15

References I 29.18

12

13

CONTENTS

Chapter 30. Electric and Hybrid Vehicles George G. Karady, Tracy Blake,
Raymond S. Hobbs. and Donald B. Karner

30.1 Introduction I 30.1

30.2 System Description I 30.5
30.3 Charger and Protectior1Systen1 I 30.6
30.4 Motor Drive System I 30.8
30.5 Battery I 30.17
30.6 Vehicle Control and Auxiliary Systems I 30.19
30.? Infrastructure 2‘ 30.21

30.8 Hybrid Vehicles I 30.23
Glossary I 30.24
References I 3025

Chapter 31. Noise Canceilation Systems Jeffrey N. Dem-mberg

31.1 Noise Sources I 31.1

31.2 Applications 3 31.5
Glossary I 31.10
Bibliography I 31.10

Chapter 32. Future Vehicle Electronics Randy Frank and Salim Momin

32.1 Retrospective J‘ 32.1
32.2 [C Technology I’ 32.1
32.3 Other Semiconductor Technologies 1 32.5
32.4 Enabling the Future I _ 32.1}
32.5 Impact on Future Automotive Electronics I 32.15
32.6 Conclusions I 32.20

Glossary I 32.21
Bibliography I 3223

Index I 1.1

xiii

30.1

31.1

32.1

13

1414

15

CONTRIBUTORS

Robert E. Bicking Honeywell, Micro Switch Division (CHAP. 4)

Tracy Blake Arizona State University (CHAR 30)

David S. Boehmer Intel Corporation (CHAR 11)

Werner Brehm Robert Bosch GmbH (CHAR 13)

Wolfgang Bremar Robert Bosch GmbH (CHAP. 22)

Wollgang Bullmer Robert Bosch GmbH (CHAP. 13)

Jerry L. Cage Allied Signal, Inc. (CI-IAP. 15)

Tom Chrapkiewicz Philips Semic0t1dttCi0t‘{CHAP. 25)

Armin Czinczel Robert Bosch GmbH (CI-LAP. 16)

Jeffrey N. Denanberg Noise Cancellation Technologies, Inc. (CHAP. 31)

William C. Dunn Motorola Semiconductor Products (CRAP. 7)

Randy Frank Motorola Semiconductor Products (CHAPS. 2, 5, 32)

Robert L. French R. L French &Associates (Cl-IAP. 29)

Frieder Heintz Robert Bosch G'mbH (CHAR 22)

Gary C. Hirschlieb Robert Bosch GmbH (CHAR 12)

Raymond S. Hobbs Arizona Pttbiic Service Con1pony(CI-IAP.3U)

Gerhard Hfitzel Robert Bosch GmbH (amp. 6)

Robert Hugel Robert Bosch GmbH (CH.-M‘. 22)

Ronald K. Jurgen Editor (CHAPS. 1, 2|], 21)

George G. Karady Arizona State Univeristy (CHAP. 30)

Donald B. Karnar Eiectric TronsportationAppiioation((:11A1=.3{])

Shinichi Kate Nissan Motor Co., Ltd. (CHAP. 24}

Bernhard K. Mattes Robert Bosch Gmbh’ {CHAR 23)

Fred Miesterfeld Chrysler Corporation (CI-IAP. 26)

Salim Momin Motorola Semiconductor Products (CHAP. 32)

James P. Muccioli JASTECH (CHAPS. 27,28)

Klaus Mfiller Robert Bosch GrnbH (CHAP. 10)

Kurt Neuffer Robert Bosch GmbH (CI-IAP. 13)

Harald Neumann Robert Bosch Gn-:bH (CH.-\P'. 6)

Paul Nickson Analog Devices, Inc. (cl-1AP.3)

Johann Riegel Robert Bosch GrnbH (CHAR 6)

15

16

xvi CONTRIBUTORS

Makoto Sato Honda R&D C9,, Ltd. (CHAP. 38)

Gottfried Schiller Robert Bosch GmbH (CHAIB12)

Shari Stottlar Robert Bosch GmbH (CRAP. 12)

Richard Valentine Mororofa Inc. (CHAPS. 14, 19}

Helmut Way! Robert Bosch GmbH {Cl-LAP. 6)

Hans-Martin Wiedenmann Robert Bosch GmbH (CHAR 6)

William G. Wolher Cummins Electronics Co, Inc. (CHAPS. 8, 9}

Akatsu Yohsuke Nissan Motor Co., Ltd. [CHAR 17)

16

17

PREFACE

Automotive electronics as we know it today encompasses a wide variety of devices and sys-
tems. Key to them all, and those yet to come, is the ability to sense and measure accurately
automotive parameters. Equally important at the output is the ability to initiate control
actions accurately in response to cornrhands. In other words, sensors and actuators are the
heart of any automotive electronics application. That is why they have been placed first in this
handbook where they are described in technical depth. In other chapters, application—specific
discussions of sensors and actuators can be found.

The importance of sensors and actuators cannot be overernphasized.’l'he future growth of
automotive electronics is arguably more dependent on sufficiently accurate and low-cost sen-
sors and actuators than on computers, controls, displays, and other technologies. Yet it is those
nonsensor, nonactuator technologies that are to many engineers the more “glamorous” and
exciting areas of automotive electronics.

In the section on control systems, a key in—depth chapter deals with automotive microcor1—
trollers.Witl1out them, ail of the controls described in the chapters that follow in that see-
tion——engine, transmission, cruise, braking, traction, suspension, steering, lighting, windshield
wipers, air conditionerlheater—would not be possible. Those controls, of course, are key to car
operation and they have made cars over the years more drivable, safe, and reliable.

Displays, trip computers, and on— and off—board diagnostics are described in another sec-
tion, as are systems for passenger safety and convenience, antitheft, entertainment, and multi-
plex wiring. Displays and trip computers enable the driver to readily obtain valuable
information about the car’s operation and anticipated trip time. On- and off-board diagnostics
have of necessity become highly sophisticated to keep up with highiy sophisticated electronic
controls. Passenger safety and convenience items and antitheft devices add much to the feel-
ing of security and pleasure in owning an automobile. Entertainment products are what got
automotive electronics started and they continue to be in high demand by car buyers. And
multiplex wiring, off to a modest start in production cars, holds great promise for the future in
reducing the cumbersome wiring harnesses presently used.

The section on electromagnetic interference and compatibility emphasizes that interfer-
ence from a variety of sources, if not carefully taken into account early on, can raise havoc
with what otherwise would be elegant automotive electronic designs. And automotive systems
themselves, if not properly designed, can cause interference both inside and outside the auto-
mobile.

In the final section on emerging technologies, some key newer areas are presented:

I Navigation aids and intelligent vehicle-highway systems are of high interest worldwide
since they hold promise to alieviate many of vehicle-caused problems and frustrations in
our society.

I While it may be argued that electric vehicles are not an emerging technology, since they
have been around for many years, it certainly is true that they have yet to come into their
own in any really meaningful way.

I Electronic noise cancellation is getting increasing attention from automobile designers
seeking an edge over their competitors.

17

18

xviii PREFACE

The final chapter on future vehicle electronics is an umbrella discussion that runs the
gamut of trends in future automotive electronics hardware and software. It identifies poten-
tial technology developments and trends for future systems.

Nearly every chapter contains its own glossary of terms. This approach, rather than one
overall unified glossary, has the advantage of allowing terms to be defined in a more applica-
tion-specific n1anner——in the context of the subject of each chapter. It should also be noted
that there has been no attempt in this handbook to cover, except peripherally, purely mechan-
ical and electrical devices and systems To do so would have restricted the number of pages
available for automotive electronics discussions.

Finally, the editor would like to thank all contributors to the handbook and particularly
two individuals: Otto Holzinger of Robert Bosch Grub!-I in Stuttgart, Germany and Randy
Frank of Motorola Semiconductor Products in Phoenix, Arizona. Holzinger organized the

many contributions to this handbook from his company. Frank, in addition to contributing
two chapters himself and cocontributing a third, organized the other contributions from
Motorola. Without their help, this handbook would not have been possible.

Ronald K. Jurgen

18

19

CHAPTER 11

AUTOMOTIVE

MICROCONTROLLERS

David S. Boehmer

Senior Applications Engineer
Intel Corporation

A rnicrocontroller can be found at the heart of almost any automotive electronic control mod-
ule or ECU in production today. Automotive systems such as antilock braking control (ABS),
engine control, navigation, and vehicle dynamics all incorporate at least one microcontroller
within their ECU to perform necessary control functions. Understanding the various features
and offerings of microcontrollers that are available on the market today is important when
making a selection for an application. This chapter is intended to provide a look at various
microcontroller features and provide some insight into their characteristics from an automo-
tive application point of view.

1' 1. 1 MICROCONTROLLER ARCHITECTURE AND PERFORMANCE
CHARACTERISTICS

A microcontroller can essentially be thought of as a single-chip computer system and is often
referred to as a sing1e—chip microcomputer. It detects and processes input signals, and
responds by asserting output signals to the rest of the ECU. Fabricated upon this highly inte-
grated, single piece of silicon are all of the features necessary to perform embedded control
functions. Microcontrollers are fabricated by many manufacturers and are offered in just
about any imaginable mix of memory, HO, and peripheral sets. The user customizes the oper-
ation of the microcontroller by programming it with his or her own unique program. The pro-
gram configures the microcontroller to detect external events, manipulate the collected data,
and respond with appropriate output. The user’s program is commonly referred to as code
and typically resides on-chip in either ROM or EPROM. In some cases where an excessive
amount of code space is required, memory may exist off—chip on a separate piece of silicon.
After power-up, a microcontroller executes the user’s code and performs the desired embed-
ded control function.

Microcontrollers differ from microprocessors in several ways. Microcontrollers can be
thought of as a complete microcomputer on a chip that integrates a CPU with memory and
various peripherals such as analog-to-digital converters (AID), serial communication units
(SIO, SSIO), high~speed input and output units (HSIO, EPA, PWM), timerfcounter units, and

20

1 1 .4 CONTROL SYSTEMS

standard low—speed inputloutput ports (LSIO). Microcontrollers are designed to be embed-
ded within event-driven control applications and generally have all necessary peripherals
integrated onto the same piece of silicon. Microcontrollers are utilized in applications ranging
from automotive ABS to household appliances in which the mit:rocontroller’s function is pre-
defined and limited user interface is required.

Microprocessors, on the other hand, typically require external peripheral devices to per-
form their intended function and are not suited to be utilized in single-chip designs Micro-
processors basically consist of a CPU with register arrays and interrupt handlers Peripherals
such asA.I'D and HSIO are rarely integrated onto microprocessor silicon. Microprocessors are
designed to process large quantities of data and have the capability to handle large amounts
of external memory. Although microprocessors are typically utilized in applications which are
much more human-interface and U0 intensive such as personal computers and office work-
stations, they are beginning to find their way into embedded applications.

Choosing a microcontroller for an application is a process that takes careful investigation
and thought. Items such as memory size, frequency, bus size, U0 requirements, and tempera-
ture range are all basic requirements that must be considered when choosing a microcon-
troller. The microcontroller family must possess the performance capability necessary to
successfully accomplish the intended task. The family should also provide a memory, I10, and
frequency growth path that allows easy upgradability to meet market demands. Additionally,
the microcontroller must meet the application’s thermal requirements in order to guarantee
functionality over the intended operating temperature range. Items such as these must all be
considered when choosing a microcontroller for an automotive application.

'_11.1.1 Block Diagram

Usually the first item a designer will see when opening a microcontroller data book or data
sheet is a block diagram. A block diagram provides a high—level pictorial representation of a
microcontroller and depicts the various peripherals, U0, and memory functions the micro-
controller has to offer. The block diagram gives the designer a quick indication if the particu-
lar microcontroller will meet the basic memory, U0, and peripheral needs of their application.
Figure 11.1 shows a block diagram for a state-of—the-art microcontroller. It depicts 32 Kbytes

than - —. -_ _ . — __ - — __..-—-__..———--q.. ..- ..

5 I 1 bylul an-chipand: Ill! EPWH

Ptammua. :5‘
IRINSACTIOH 95smza umor;

(915) 16 ;;....,.u., . commit slcmts

!I I u-,.-’PrnIM:Iu QIIIIJI i ‘mnfmu “us
0 conumr Programmable I IInhrruvl tvtur PROCESSOR

 I

u |
I In II I
' :

Vnzr , 0 all} '
AHGHD I (utuinanmh) °°""°”" - :I

E Surill I/0 :("W fij
= ~=-'= =
l IInun—— ——q— — — ———QF——— 9 fin--—-uC— —u-—n bu——I

acne-? gggagg §E§E Z §E‘3."_'E3."3_ u=
"' """'“ ;c,-:2 g a2§e2§s

FIGURE 11.1 Microcontroller block diagram.

21

AUTOMOTIVE MICROCONTROLLERS 1 1 .5

of EPROM, 1 Kbyte of register RAM, 6 I10 ports, an A-to-D converter, 2 timers, high-speed
input.-‘output (U0) channels, as well as many other peripherals. These features may be “exces-
sive” to a designer looking for a rnicrocontroller to implement in an automotive trip-com-
puter application but would be excellently suited for automotive ABS."traction control or
engine control.

11.1.2 Pin-Out Diagram

A rnicrocontroller’s pin-out diagram is used to specify the functions assigned to pins relative to
their position on a given package.An example pin-out diagram is shown in Fig. 11.2. Note that
most pins have multiple functions assigned to them. Pins that can support more than one func-
tion are referred to as multifunction pins The default function for multifunction pins is nor-
mally that of low-speed input and output (discussed later in this chapter). If the user should
wish to select the secondary or special function associated with the pin, he or she can do so by
writing to the appropriate special function register. There are some exceptions. A good exam-
ple is pins used for interfacing to external memory. If the device is instructed to power-up exe-
cuting from external memory as opposed to on-chip memory, the address data bus and
associated control pins will revert to their special function as opposed to low—speed IEO.

'0 D
as -

re 3 “.2 5A‘: ‘-..-—_no,,_ ..._¢-,9“,

_, vs |> IL..; cunt).-
|:. anE g_""\|fl |'.I'I|'J'l('fl|lII—

:3“ “~._>-ea. “‘¢‘1“*-».‘*-“-s."-..“-..
...&......“.:.~-52-.;a‘sr~.-=2«2~r.*:

1

lii§l3>"'>"'2'.¥.3£>"'°":2'§$§E3EIIIIIIIIIIIIIIIII
9 B? E 54 5 2158-|i?S665646362fil

BUSWDTH/P5.? - so I r-6.2/TICLK

El
A015/P45’ 59 I P6.1/EH9
ADM/PL6 12 53 I ps.u/nus
Anus/94.5 13 57 I PLO/EPAO/T2CL|(
AD12/P4.4 14 56 PM/EPM

ADII/PL! I5 55P1.2/EPA2/TZDIRAD10/P-L2 16 ' 54 I PL3/EPA!

nos/Pu 1? 58-PIN 5: I 91.4/EPA4
ans/94.0 1a PLCC 52 I PL5/EPA5
AD?/P3,? 19 Top v|[w 51 In Pl.B/EFA6
Ans/93.6 20 Cumpunenl Side 50 I P1.T/EN?

‘D5/P35 of PC Board 49 - “RE?
AD4/P3.4 43 I menu
ADJ/P5.3 4? I PD.?'/ACH?
AD2/P332
ADI/P3.1
AUG/P3.0

46 I Po.6/Acne
45 I Pt:.5/AcH5
44 I r-n.4,/ACH4

OI‘

LII 9) LR ‘N-I bl Cl bl Eh I-- D

 III I IIIIIIIl--— "L! c(b—D< "
u:2|5$u§fi'§u::_Ir:|"‘.g:I:¥2
32 ;.5"_:::.:fi'9:i'$o‘-_5:’uu°= o'“.2‘Z.‘J‘-E-ra-.-.~‘.§-..~“5,-.‘f_

I-ir~i“‘_‘_;-2:_'~e~i“?'5<3"'.°'!"!
°"‘¢~i°Ln‘°'$3EEEE

n. u. 6

FIGURE 11.2 Microcontroller pin—out diagram.

21

22

11.6 CONTROL SYSTEMS

11.1.3 Central Processing Unit

The central processing unit or CPU can be thought of as the brain of a rnicrocontroller. The
CPU is the circuitry within a microcontroller where instructions are executed and decisions
are made. Mathematical calculations, data processing, and control signal generation all take
place within the CPU. Major components of the CPU include the arithmetic logic unit (ALU),
register file, instruction register, and a microcode engine. The CPU is connected to the bus
controller and other peripherals via a bidirectional data bus.

Microcontrollers are, for the most part, digital devices As digital devices, microcoritrollers
utilize a binary numbering system with a base of 2. Binary data digits or bits are expressed as
either a logic “1” (boolean value of true) or a logic “0” (boolean value of false). In a 5~V sys-
tem, a logic “1" may be simply defined as a +5-V state and a logic “U" may be defined as a (}-V
state. A bit is a single memory or register location that can contain either a logic “1” or a logic
“O" state. Bits of data can be arranged as a nibble (4 bits of data), a byte (8 bits of data), or as
a word (16 bits of data). It should also be noted that,in some instances, a word may be defined
as the data width that a given microcontroller can recognize at a time, be it 8 bits or 16 bits.
For purposes of this chapter, we will refer to a word as being 16 bits. Data can also be
expressed as a double word which is an unsigned 32—bit variable with a value between D and
4,294,967,295. Most architectures support this data only for shifts, dividends of a 32—by-16
divide, or for the product of a 16-by-16 multiply.

The most common way of referring to a microcontroller is by the width of its CPU. This
indicates the width of data that the CPU can process at a time. A microcontroller with a CPU
that can process 8 bits of data at a time is referred to as an 8-bit microcontroller.A n1icrocon—
troller with a CPU that can process 16 bits of data at a time is referred to as a 16-bit micro~
controller. With this in mind, it is easy to see why 16-bit rnicrocontrollers offer higher
performance than their 8-bit counterparts. Figure 11.3 illustrates a typical 16-bit CPU dia-

Memory Controller

Master 5.3.; [I :
Prcgramrcounlar Loop cotmm . . 3|-'5 ,

wflncramantar w.-Deeramanter ' : CONTROLLER Memo” t
' I
l I Bus ‘

register 9 - * ' uI I : , ms :
Lower word : ‘I :

register . '
wrshmsr - '- 1 - II

. : sflyts [Slave Aoar : Data '_

P3311” V : - ouaua. PC . Fl. .
Word : : -

I t :I L
I

W ‘I

A

RLU

FIGURE 11.3 16~bit CPU.

22

23

Al.JTOM0'I'IV'E MICROCONTROLLERS 11.?

gram. The microcode engine controls the CPU. Instructions to the CPU are taken from the

instruction queue and temporarily stored in the instruction register. This queue is often
referred to as a prefetch queue and it decreases execution time by staging instructions to be
executed. The microcode engine then decodes the instructions and generates the correct
sequence of events to have the ALU perform the desired function(s).

Arithmetic Logic Unit. The ALU is the portion of the CPU that performs most mathemat-
ical and logic operations. After an instruction is decoded by the microcode engine, the data -
specified by the instruction is loaded into the ALU for processing. The ALU then processes
the data as specified by the instruction.

Register File. The register file consists of memory locations that are used as temporary stor-
age locations while the user’s code is executing. The register file is implemented as RAM and
consists of both RAM memory locations and special function registers (SFRS). RAM mem-
ory locations are used as temporary data storage during execution of the user’s code. After
power-up, RAM memory locations default to a logic “0" and data in SFR locations contain
default values as specified by the microcontroller manufacturer.

Special Function Registers. SFRs allow the user to configure and monitor various periph-
erals and functions of the microcontroller. By writing specific data to an SFR, the users can
configure the microcontroller to meet the exact needs of their application. Figure 11.4 shows
an example of a serial port SFR used for configuration. Note that each bit location within the
SFR determines a specific function and can be programmed to either a logic “1” or “G”. If
more than two configuration choices are possible, two or more bits will be combined to pro-
duce the multiple choices. An example of this would be the mode bits (M1 and M2) in the
example SFR (Fig. 11.4). Bit locations marked “RSV” are reserved and should be written to
with a value as indicated by the manufacturer.

SP_CON (1 FBBH)

MM 4 3 2 '_H 1 1:
III-—il§I——il§I—Zi‘.l1IEIZ
M2. M1 Mode Function

00 Mode 0: Synchronous
01 Made 1: Standard asynchronous
10 Made 2: Asynchronous {receiver interrupt on 9th bit = 1}‘
11 Made 3: Asynchronous (9th bit -_- parity or data)"

PEN Parity Enable. Enables the Parity function for Mode 1 or Mode 3; cannot be
enabled for Mode 2. .

FIEN Receiver Enable. Enables the receiver :3 write to SBUF_HX.
TBB Transmission Bit 8. Set the ninth data bit for transmission {Modes 2 and 3}. Cleared after

each transmission; not valid if parity is enabled.
PAFl"‘ 0 = even parity

1 = odd parity
Bits 6. 7 Fleserved; write as zeros for future product compatibility.

' Made 2: Asynchronous (receiver: interrupt on 9th bit = 1; transmitter: 9th bit = TB8)
" Mode 3: Asynchronous (receiver: always interrupt on 9th bit: transmitter: 9th bit = parity for PEN = 1
"" Par bit only available on B:-<C196KT and KS devices. 9th bit = T88 for PEN = 0

For El)(C196KFt. JFI. K0. JO devices. this bit shoutd be written as a zero
to maintain compatibility with future devices.

FIGURE 11.4 Special function control register example.

24

11.8 CONTROL SYSTEMS

SP__STAT {1FB9H)

XXX-11111111111
IE1 ' TXE 11111111
Bite 0. 1 Fleserved; ignore data.
OE Seton bufler overrun error.

TXE Set on transmitter empty. when set may write 2 bytes to transmit butler.
FE Framing error: set it no STOP bit is found at the end at a reception. When set may write

1 byte to transmit butler.
TI Transmit interrupt: set at the beginning of the STOP bit transmission.
RI Receive interrupt: set after the last data bit is received.
RPE [Parity enabled) Receive parity error {Modes 1 and 3 only): Set it partly is enabled and a

parity error occurred.
F138 [Parity disabled) Received Bit 8 [Modes 2 and 3 only): set it the 9th bit is high on reception.

FIGURE 11.5 Special function status register example.

Sorne SFRS can be read by tl1e user to determine the current status of a given peripheral.
Figure 11.5 shows an example of a serial port status register that, when read, indicates the cur-
rent status of the microcontroller’s serial port. Note that each bit location corresponds to a
particular state of the serial port. Bit locations marked “RSV” are reserved and should be
ignored when read.

Register Direct vs. Accurrwlrrtori-BasedArchitectures. Microcontroller architectures can be
classified as either the register-direct or accumulator—based type. These terms refer to the
means by which the CPU must handle data when performing mathematical, logical,or storage
operations.

Register—direct architectures allow the programmer to essentially use most, if not all, of the
microcontroller’s entire RAM array as individual accumulators. That is, the programmer can
perform mathematical or storage operations directly upon any of the RAM locations. This
simplifies task switching because program variables may be left in their assigned registers
while servicing interrupts Figure 11.6 illustrates a register-to-register type architecture (such

Register Flle

Z=X-!-Y

1. HUI: z,x,Y

FIGURE 11.6 Register-to-register architecture example.

24

25

AUTOMOTIVE MICROCONTROLLERS 1 1 .9

as Intel's MCS®—96).This architecture essentially has 232 “accumulators” (more are available
through a windowing mechanism) of which any can be operated on directly by the RALU.
The true advantage of this type of architecture is that it reduces accumulator bottleneck and
speeds throughput during program execution.

Accumulator—based architectures require the user to first store the data to be manipulated
into a temporary storage location, referred to as an “accumulator,” prior to performing any
type of data operation. After the operation is completed, the user program must then store
the result to the desired destination location. Figure 11.7 depicts an example of an accumula-
tor-based architecture.

Accumulator "A" Accumulator ‘'a’’

$34.

V
Z=X+Y

LD A,Y

LD 3,}!

HUI; A,B

4. ST h;Z

FIGURE 11'! Aocurmrlatophased architecture.

RAM memory

Program Counren The Program Counter (PC) controls the sequencing of instructions to be
exec1.tted.The PC is a 16-bit register located within the CPU which holds the address of the

next instruction to be executed. After an instruction is fetched, the PC is automatically incre~
rnented to point to the next instruction.

Stack and Stack Painter: The stack is an

area of memory (typically user-assigned) that
is used to store data temporarily in a FILO

SP startlng address (SP+12):—
(3"+1°!=ET

I3P+°l=E1
fSP+61=
t'5P+4)=J
t5P+=!=E1

SP ending address (SP):
'Ii‘I£‘_'|"lI)E' 11 0 Donal. .-..-.J..o..-. H-.———‘—

(first-in, last-out) fashion. The stack is pri-
marily used for storing program information
(such as the program counter or interrupt
mask registers) when an interrupt service
routine is invoked. It is also sometimes used

to pass variables between subroutines The
stack is typically accessed through PUSH and
POP instructions. Execution of the PUSH

instruction “pushes” the contents of the spec-.'L':...l

25

26

11.10 CONTROL SYSTEMS

POP instruction “pops” the contents of the specified operand off of the stack.Tl1e stack pointer
(SP) is a register which points to the next available word location on the stack. Consider the
example shown in Fig. 11.8 which shows the contents of the stack after the following code
sequence is executed:

PUSH #80FFh pushes immediate data 80FFh onto stack

PUSH #0A5A5h pushes immediate data A5A5h onto stack

PUSH 82h pushes data @ 82h (assume it’s 6E20h) onto stack

PUSH #5555h pushes immediate data 5555h onto stack

PUSH 4Eh pushes data @ 4Eli (assume it’s 0000h) onto stack

PUSH #8000h pushes immediate data 8U0'0h onto stack

Continuing with the preceding example, if_ a POP instruction were executed, the data at the
current SP address (SP) would be “popped” off the stack and stored to the address specified
by the instruction’s operand. Executing the POP instruction results in the SP being incre-
mented by 2.

Program Status Word and Flags. The program status word (PSW) is a collection of boolean
flags which retain information concerning the state of the user’s program. These flags are set
or cleared depending upon the result obtained after executing certain instructions as specified
by the microcontroller manufacturer. PSW flags are not directly accessible by the user’s pro-
gram; access is typically through instructions which test one or more of the flags to determine
proper program flow. Following is a siunmary of common PSW flags as supported by Intel’s
MCS-96® architecture:

I
, Z: The Zero flag is set when an operation generates a result equal to zero. The Z flag is
never set by the add—with-carry (ADDCIADDCB) or subtract—with-carry (SUBCISUBCB)
instructions, but is cleared if the result is nonzero. These two instructions are normally used
in conjunction with ADDIADDB and SUBISUBB instructions to perform multiple-preci-
sion arithmetic. The operation of the 2. flag for these instructions leaves it indicating the
proper result for the entire multiple-precision calculation.
N: The Negative flag is set when an operation generates a negative result. Note that the
N flag will be in the algebraically correct state even if overflow occurs. For shift operations,
the N flag is set to the same value as the most significant bit of the result.

V: The oVerflow flag is set when an operation generates a result that is outside the range
for the destination data type. For shift-left instructions, the V flag is set if the most signifi~
cant bit of the operand changes at any time during the shift. For an unsigned word divide,
the V flag is set if the quotient is greater than 65,535. For a signed word divide, the V flag
is set if the quotient is less than -—32,768 or greater than 32,761

VT‘: The ol/erflow Trap flag is set when the V flag is set, but it is only cleared by instruc-
tions which are specially designated to clear the VT flag (such as CLRVT, WT, and JNVT).
The VT flag allows for testing possible overflow conditions at the end of a sequence of
related arithmetic operations. This is normally more efficient than testing the V flag after
each instruction.

C: The Curry flag is set to indicate either (1) the state of the arithmetic carry from the
most significant bit of the ALU for an arithmetic operation or (2) the state of the last bit
shifted out of an operand for a shift. Arithmetic borrow after a subtract operation is the
complement of the C flag (i.e., if the operation generated a borrow, then C = 0).
ST} The STicky bit flag is set to indicate that, during a right shift, a 1 has been shifted first
into the C flag and then shifted out. The ST flag can be used along with the C flag to con-
trol rounding after a right shift. Iniprecise rounding can be a major source of error in a
numerical calculation; use of both the C and ST flags can increase accuracy as described in«-1-... full.-nvriun «..n.-n.-.—n.-.lnz-

26

27

AUTOMOTIVE MICROCONTROLLERS 1 1 .1 1

Consider multiplying two 8-bit quantities and then scaling the result down to 12 bits:

MULUB Ax, CL, DL (CL * DL = AX)

SHR AK, #4 (AX is shifted right by 4 bits)

If the C flag is set after the shift, it indicates that the bits shifted off the end of the operand were
greater than or equal to one-half the least significant bit of the 12-bit result. If the C flag is
cleared after the shift, it indicates that the bits shifted off the end of the operand were less than
half the LSB of the 12-bit result. Without the ST flag, the rounding decision must be made on
the basis of the C flag alone. (Normally the result would be rounded up if the C flag is set.) The
ST flag allows a finer resolution in the rounding decision as shown here:

C ST Bits shifted off

0 0 Value = 0
0 1 0 < Value < ‘.4 LSB
1 0 Value = if LSB
1 1 Value > ‘A LSB

Jump instructions are the most common instructions to utilize PSW flags for determining
the operation to perform. Instructions that test PSW flags are very useful when program flow
needs to be altered dependent upon the outcome of an arithmetic operation. The most com-
mon example of this would be for program loops that are to be executed a certain number of
times. Following are examples of several MCS-96 instructions whose operation is dependent
upon the state of one or more program status word flags:

JC (Jump if C flag is Set.) If the C (carry) bit is set, the program will jump to the
address location specified by the operand. If the C flag is cleared, control wili pass
to the next sequential instruction.

(Jump if signed greater than.) If both the N (negative) and the Z (zero) flags are
clear, the program will jump to the address location specified by the operand. If
either of the flags is set, control will pass to the next sequential instruction.

(Jump if signed less than or equal.) If either the N or 2'. flags is set, the program
will jump to the address location specified by the operand. If both the N and 2
flags are cleared, control will pass to the next sequential instruction.

JGT

JLE

11.1.4 Bus Controller

The bus controller serves as the interface between the CPU and the internal program memory
and the external memory spaces. The bus controller maintains a queue (commonly called the
prefetch queue) of prefetched instruction bytes and responds to CPU requests for data memory
references The prefetch queue decreases execution time by staging instructions to be executed.
The capacities of prefetch queues vary but for the MCS-96 architecture, it is 4 bytes deep.

When using a logic analyzer to debug code it is important to consider the effects of the
prefetch queue. It is not possible to accurately determine when an instruction will execute by
simply watching when it is fetched from external memory. This is because the prefetch queue
is filled in advance of instruction execution. It is also important to consider the effects when a
jump or branch occurs during program execution. When the program sequence changes
because of a jump, interrupt, call, or return, the PC is loaded with the new address, the queue
is flushed and processing continues. Consider the situation in which the external addressfdata
bus is being monitored when a program branch occurs Because of the prefetch queue, it will
appear as if instructions past the branch point were executed, when in fact they were only
loaded into the prefetch queue.

27

28

11J2 CONTROL SYSTEMS

11.1.5 Frequency of Operation

11.1.6

Mjcrocontrollers are being offered in an ever-increasing range of operating frequencies. Most
high-end automotive applications currently use microcontrollers operating in the 12- to 20-
MHZ range, with 24 MHz becoming not so uncommon. Microcontrollers with frequencies as
high as 30 and 32 MHz are available as prototypes and will soon be available for production.
Operating frequency becomes especially important when a rnicrocontroller must perform
high-speed event control such as required in ABS braking and engine control. Applications
such as these typically have to detect, calculate, and respond to external events within a given
amount of time. In ABS applications, this time is commonly referred to as loop time and
defines the amount of time that the rnicrocontroller has to execute the main loop of the soft-

ware algorithm to achieve optimal performance.
Operating frequency can be directly related to the speed at which a microcontroller will

execute the user’s code. For instance, let’s look at how long it takes for a particular microcom-
troller to execute the following generic subroutine. For this example, consider the execution
times rather than the operations each instruction is performing.

{6} PUSHF

{3} NOTE PTS“COUNT_EPA1

{5} ADDB NUM_0F,PULSES_1, PTS_COUNT_EPA1, #UDh
{5} SUB lNV_SPEED_1, FTIME_1, ITIME_1

[2?} DI? lNV_SPEED_1, NUM_0F_PULSES_1

{5} Li) "empl+2, #Speed_high_con5tant
{5} LD Templ, #Speed_low__constant

{2?} DIV Templ, INU_SPEED_1
{4} ST ”emp'|, EPAl_FREO

{ll} RET

In this example, the numbers in brackets {] denote how many state times it will take the micro~
controller to execute the given line of code. A state time is the basic time measurement for all
rnicrocoutroller operations. For this MCS-96 family microcontrol1er,a state time is based on the
crystal frequency divided by two. A state time for other microcontrollers may be based upon the
crystal frequency divided by three. For this particular rnicrocontroller, a state time can be calcu-
lated by the following formula (other microcontroller families use similar formulas):

1 state time = 1[(frequency of operation)/2]

Applying this formula, 1 state time = 125 ns when operating at 16 MHz, and 16'? 1'18 when oper-
ating at 12 MHz. The example code sequence takes the microcontroller 98 state times to exe-
cute. This equates to 16.37 us to execute at an operating frequency of 12 MHZ. At 16 MHz, it
takes only 12.25 its for the microcontroller to execute the subroutine. An operating frequency
of 16 MHZ results in the microcontroller executing approximately 34 percent more instruc-
tions in a given time than at a frequency of 12 MHz.

Another consideration when choosing an operating frequency is the clocking resolution of
on-chip timerfcounters. The maximum clocking rate of on-chip timerfcounters is limited by
the frequency the microcontroller is being clocked at. As an example, if an on-chip
timerlcounter is set up to incrementfdecrement at a rate determined by CLOCKI4, this would
result in 333 ns resolution at 12 MHz. However, if the clock speed were increased to 16 MHZ,
a higher and more desirable resolution of 250 ns is achieved.

Instruction Set

An often overlooked feature that gives a microcontroller the capability to perform desired
operations and manipulate data is its instruction set. A microcontroller’s instruction set con-

28

29

AUTOMOTIVE M'ICROOON‘I'ROl_.LERS 1 1 .13

sists of a set of unique commands which the programmer uses to instruct the microcontroller
on what operation to perform.

An instruction is a binary command which is recognized by the CPU as a request to per-
form a certain operation. Examples of typically supported operations are loads, moves, and
stores which transfer data from one memory location to another. There are also jumps and
branches which are used to alter program flow. Arithmetic instructions include various multi-
ples, divides, subtracts, additions, increments, and decrements. Instructions such as ANDS,
ORs, XORS, shifts, and so forth, allow the user to perform logical operations upon data. In
addition to these basic instructions, microcontrollers often support specialized instructions
unique to their architecture or intended application.

Instructions can be divided into two parts, the opcode and operand. The opoode (some-
times referred to as the machine instruction) specifies the operation to take place and the
operand specifies the data to be operated upon. Instructions typically consist of either 0, 1, 2,
or 3 operands to support various operations. As an example, consider the following MCS—9|5
architecture instructions:

PUSI-IF (0 operands) is an instruction that pushes the program status word (PSW) onto
the stack. Since this instruction operates on a predefined location, no operand is necessary.
Format: PUSHF

PUSH (1 operand) is an instruction that pushes the specified word operand onto the stack.

Format: PUSH (SRC)

ADD (2 operands) adds two words together and places the result in the destination (left-
most) operand location.

ADD (DST),(SRC)

ADD (3 operands) adds two words together as the 2-operand ADD instruction, but in this
case, a third operand is specified as the destination.

ADD (DEST),(SRC1),(SRC2)

Format:

Format:

Instructions support one or more of six basic addressing types to access operands within the
address space of the microcontroller. If programmers wish to take full advantage of a micro-
controller architecture, it is important that they fully understand the details of the supported
addressing types. The six basic types of_addressing modes are termed registendirect, indirect,
indirect with autoincrernent, immediate, short—indexed, and long-indexed. The following
descriptions describe these modes as they are handled by hardware in register~to-register
architectures.

The register~dz'rect addressing mode is used to directly access registers within the lower 256
bytes of the on—chip register tile. The register is selected by an 8-bit field within the instruction
and the register address must conform to the operand type’s alignment rules. Depending
upon the instruction, typically up to three registers can take part in the calculation.

Examples:

ADD AX,BX,CX AX = Bx + cx

MUL AX,BX AX = AX*BX
INCB CL CL=CL+1

The indirect addressing mode accesses a word in the lower register file containing the 16-
bit operand address The indirect address can refer to an operand anywhere within the
address space of the microcontroller. The register containing the indirect address is selected
by an 8-bit field within the instruction. An instruction may contain only one indirect refer-
ence; the remaining operands (if any) must be register—direct references

29

30

11.14- CONTROL SYSTEMS

Exampies:

LD BX,[AX] EX = mem_word(AX)

In this example, assume that before execution:
contents of AX = 2FC2h

contents of 2FC2l1 = 3F26h

Then after execution,
contents of BX = 3F26h

ADDB AL,BL,[CX] AL = BL + mern_byte(CX)

The indirect with autoincrement addressing mode is the same as the indirect mode except
that the variable that contains the indirect address is autoincremented after it is used to

address the operand. If the instruction operates on bytes or short integers, the indirect address
variable is incremented by one; if it operates on words or integers, the indirect address will be
incremented by two.

Examples:

ID BX,[AX]+ BX = rncm_word(AX)
AX = AX + 2

ADDB AL,BL,[CX]+ AL = BL + 1'nern_byte(CX)
CX = CX + 1

For the immediate addressing mode, an operand itself is in a field in the instruction. An
instruction may contain only one immediate reference; the remaining operand(s) must be reg-
ister-direct references

Example:

ADD AX,#340 AX = AX + 340 (decimal)

For the short-indexed addressing mode, an 8-bit field in the instruction selects a word vari-
able (which is contained in square brackets) in the lower register file that contains an address.
A second 8-bit field in the instruction stream is sign-extended and summed with the word
variable to form an operand address.

Since the 8-bit field is sign-extended, the effective address can be up to 128 bytes before
the address in the word variable and up to 127 bytes after it. An instruction may contain only
one short-indexed reference; the remaining operand(s) must be register-direct references.

Example.-

LD AX,4[BX] AX = mem_word(BX + 4)

In this example, assume that before execution:
contents of BX = A15‘2h

The operand address is then A152h + 04h = A156h

The long—indexed addressing mode is like the short-indexed mode except that a 16bit field
is taken from the instruction and added to the word variable to form the operand. No sign

extension is necessary. An instruction may contain only one long-indexed reference and the
remaining operand(s) must be register-direct references.

Examples:

ST AX,TABLE[B-X} mern_word{TABLE + BK) = AX

AND AX,BX,TABLE[CX] Ax = Bx and mem_word{TABLE + cx)

30

31

AUTOMOTIVE MI CROCONTRO LLERS 11.15

11.1.? Programming Languages

The two most common types of programming languages in use today for automotive micro-
controllers are assembly languages and hz'gh—level languages (HLI.s). Program development
begins with the user writing code in either an assembly language or an HLL. This code is writ-
ten as a text file and is referred to as a source file. The source file is then assembled or com-

piled using the appropriate assemblerlcompiler program. The assembler translates the source
code into object code and creates what is referred to as an object file. The object file contains
machine language instructions and data that can be loaded into an evaluation tool for debug-
ging and validation/I'he object can also be converted into a hex file for EPROM program-
ming or ROM mask generation as discussed later in this chapter. The program development
process is illustrated in Fig. 11.9.

Create and
Maintain
Libraries with

 Write
Source Ffle

Text Editor

Pl-1OM—Ioadahla 00%

FIGURE 11.9 The program development process.

Assembly Language Programming. An assembly language is a low-level programming lan-
guage that is specific to a given microcontroller family. Assemblers translate language opera-
tion codes (mnemonics) directly into machine instructions that instruct the microcontroller

31

32

11.16 CONTROL SYSTEMS

on what operation to perform. Because the programmer is essentially using the microcon-
troller’s machine code to write assembly language programs, more precise control of the
device can be achieved through the direct manipulation of individual bits within registers.
Because of their efficiency, assembly language programs require less code space than high-
level languages. Assembly language programs consist of three parts: machine instructions,
assembler directives, and assembler controls.

A machine instruction is a machine code that can be executed by the microcontroller’s
CPU. The collection of machine instructions that a particular microcontroller can execute is
referred to as its instruction set. An example of a machine instruction is the opcode for the
MULB instruction (Fig. 11.10) from Intel’s MCS-96 assembly language. MULB is the
mnemonic that represents the machine instruction which performs the specified multiplica-
tion operation. When executed by the microcontroller, the MULB opcode results in the mul-
tiplication of the two byte operands with the result being placed in a word destination
location.

MULB (Throe Operands)

Format nuts ure9.breg.haop

Operation The second and third byte operands are multiplied u.'.i,ng
signed u-ithsrretic and the 16-bit result is stored into the
destination (leftmost) operand. The sticky hit flag is
undefnradaflzrdieinsnuctiooisexocuted.

tD£STl 0- {5ilC1l " {SRC2}

Opcode Pattern "E fi

Flags Affected 51'

Examples HULE arm. Ttl-IEFII. I2
HULE ALPHA. BETA. GAMMA
HULI. ALPHA. DELTA. 1B[Gn-ma]

FIGURE 11.10 Machine instruction example: MULB.

Assembler directives allow the user to specify auxiliary information (such as storage reser-
vation, location counter control, definition of nonexecutable code, object code relocation, and
flow of assembler processing) that determines the manner in which the assembler generates
object code from the user's source file input.

Assembler controls set the mode of operation for the assembler and direct the flow of the
assembly process. Assembler controls can be classified into primary controls and general con-
trols. Primary controls are set at the beginning of the assembly process and cannot be changed
during the assembly. Primary controls allow the user to specify items such as print options,
page lengths and widths, error messages, and cross-referencing. General controls can be spec-
ified in the invocation line or on control lines anywhere in the source file and can appear any
number of times in the program. General controls either cause an immediate action or an
immediate change of conditions in which the condition specified remains in effect until
another general control causes it to change.

Higli-level Language Programming. Unlike low~1evel languages (such as assembly lan-
guages), a high—level language is a general purpose language that can support numerous micro-
oontroller architectures. The most common high—level language used for automotive

32

33

11.1.8

AUTOMOTIVE MICROCONTROLLERS 11.17

applications is C. C programs are written with statements rather than specific instructions from
a microcontroIler’s instruction set. High~level languages utilize a software program known as a
compiler to translate the user's source code into the specific microcontroller’s machine lan-
guage. Each microcontroller family has its own unique compiler to support selected high-level
languages Although high-level languages tend to be less efficient than assembly languages, their
advantage lies in case of writing code and better debugging capability. The use of statements as
opposed to specific instructions better suits high—level languages toward control of procedures
(to implement complex software algorithms) as opposed to the microoontroller itself.

Interrupt Structure

The interrupt structure is one of the more important features of an automotive microcom-
troller. Applications such as automotive ABS and engine control can be referred to as event-
driven control systems Event—driven control systems require that normal code execution be
halted to allow a higher—priority task or event to take place. These higher—priority tasks are
known as interrupts and can initiate a change in the program flow to execute a specialized
routine. When an interrupt occurs, instead of executing the next instruction, the CPU
branches to an interrupt service routine (ISR).The branch can occur in response to a request
from an on-chip peripheral, an external signal, or an instruction. In the simplest case, the
microcontroller receives the request, performs the desired operation and returns to the task
that was interrupted.

ISRs are typically serviced via software but it is becoming common for rnicrocontroller
manufacturers to implement special on-chip hardware ISR functions for commonly per-
formed operations. These ISRs are typically microcoded or hardwired into the n'1icrocon—
troller as described later in this section.

Software, or Normal’, Servicing of Interrupts. The software servicing of interrupts is fairly
straightforward as shown in Fig. 11.11.When an interrupt source is enabled by the user and a

NQB

LB VlR,'l.'3!l?3

l!.'U'L SPEEIMDISTLIICE / ISRI FUSE!‘
——h intenuptoccurs

51'.‘ R.lSUL!I.‘,EI'.'lHP2

LD V1R,'1'l!IP3

IIDL SPIED,DIS1'-INCH Org u|5P"['S [1-jg‘;-3

esxactnodlnmlcmaoda.

*-"'Flnlarruptoawrs mopclspmdsmdt
nnsunaflactad.3'! RESULT, '.'|'.‘BlI?2

FIGURE 11.11 Comparison of normal interrupts and hardwired interrupts.

33

34

11.18 CONTROL SYSTEMS

valid interrupt event occurs, the CPU will fetch the starting address of the ISR from the inter-
rupt vector table.The interrupt vector table is a dedicated section of memory that contains the
user-programmed start address of the various ISRs. After fetching the ISR address, the CPU
automatically pushes the current program counter (PC) onto the stack and loads the PC with
the ISR beginning address. This results in the program flow vectoring to the [SR address The
user—programmed ISR is then executed. The last instruction within the ISR is a return instruc-
tion that pops the old PC off the stack. This results in program flow continuing from where it
was interrupted.

Interrupt mask registers allow the user to prevent or musk undesirable interrupts from
occurring during various sections of the program. This is a very desirable feature and allows
for custom tailoring of the interrupt structure to meet the needs of a particular application.
Enabling or disabling of all interrupts (known as globally enabling/disabling) is typically sup-
ported with a software instruction such as DI (globally disable all interrupts} or E1 (globally
enable all interrupts).

Hardware, or Microcodcd, Interrupt Structures. Hardware interrupt structures differ from
software interrupts in that the user doesn’t have to provide the ISR to be executed when the
interrupt occurs. With a hardware interrupt structure, the ISR is predefined by being hard-
wired or microcoded into the microcontroller. This is advantageous because it requires less

code space and requires less CPU overhead. Stack operations are not necessary since inter-
rupt vectors do not have to be fetched. Most microcontroller manufacturers have their own
proprietary solution for hardware ISR’s, which are all somewhat similar to one another. For
purposes of this section,'we will briefly describe the peripheral transaction server as imple-
mented on members of Intel’s MCS~96 family of microcontrollers.

The PTS provides a microcoded hardware interrupt handler which can be used in place of
a normal ISR.'Il1e PTS requires much less overhead than a normal ISR since it operates with-
out modification of the stack. Any interrupt source can be selected by the user to trigger" a
PTS interrupt in place of a normal ISR. The PTS is similar to a direct memory access (DMA)
controller in that when a PTS interrupt, or cycle, occurs, data is automatically moved from one
location of memory to another as specified by the user. Figure 11.11 compares a regular ISR
to a PTS interrupt cycle. '

The PTS allows for five modes of operation; single-byte transfer, multiple-byte transfer,
PWM, PWM toggle, and AD scan mode. Each mode is configurable through an 8-byte, user-
defined PTS control block (PTSCB) located in RAM. The user may enable virtually any nor-
mal interrupt source to be serviced by a PTS interrupt by simply writing to the appropriate bit
in an SFR known as the PTS_SELEC1“ register. When a PTS interrupt is enabled and the event
occurs, a microcoded interrupt service routine executes in which the contents of the PTSCB
are read to determine the specific operation to be performed. More details on the PTSCB can
be found in the application example found in this section. _

The major advantage of the PTS for automotive applications is its fast response time. The
PTS is ideally suited for transferring single or multiple bytesfwords of data in response to an
interrupt. An example of this is the serial port example which will be described shortly.
Another example of the usefulness of the PTS (using A.-’D scan mode) would be if the user
wanted to automatically store AID conversion results every time a conversion completed
within a user-defined scan of AID channels. The PTS could also be configured to automati-

cally transfer a block of data between memory locations every time an interrupt occurs.

Application Example of PTS Single-Byte Transfer Mode. This example shows how the
PTS can be used to automatically transmit and receive 8-byte messages over the serial port.
Data to be transmitted and received data are stored in separate tables. ‘The use of the PTS for
this purpose greatly reduces CPU overhead and code-space requirements. The layout of the
user-defined PTSCB for single—byte transfer mode is shown in Fig. 11.12. PTS_DEST within
the PTSCB contains the destination address for the data transfer and PTS_SOURCE con- -
tains the source address for the transfer.

34

35

AUTOMOTIVE MICROCONTROLLERS 1 1 .19

 (PTSCB located in PTS DEST i

internal registerRAM) PTS DEST 10

PTS SOURCE (hi

PTS SOURCE 10)

PTS CONTROL

PTS vector address: PTS COUNT

FIGURE 11.12 PTS control block for sirigle-byte transfer mode.

Two P'I'SCBs are set up for this example, one in response to receive (RX) interrupts and
one in response to transmit (TX) interrupts. The RX PTSCB’s PTS_DEST is initialized with
the start address of the receive data table and the TX PTSCB’s PTS_DEST is initialized with

the address of the serial port’s transmit buffer.
P'I'S_CON’I‘ROL is a byte that specifies the PTS operation to be performed. Its layout is

shown in Fig. 11.13.
PTS_COUNT is a down counter that is used to keep track of how many PTS interrupts or

cycles have occurred since the last initialization. PTS_COUNT is initialized by the user to any
value below 256 and is decremented everytime the corresponding PTS cycle occurs. It is often
used to keep track of how many pieces of data have been transferred. In this example,
PTS_COUNT is used to determine when a complete 8-byte message has been transmitted or
received. After PTS_COUNT expires, an “end-of-PT ” or “normal" ISR occurs, in which the
user utilizes the data as required by the application. When an interrupt source is enabled by
the user to be 21 PTS interrupt, the following sequence of events occurs every time the corre-
sponding interrupt occurs:

1.

2.
Instead of a normal interrupt, the user has selected it to do a PTS cycle.

The rnicrocoded PTS routine fetches the PTS_CON'I‘ROL byte from the PTSCB whose
start address is specified by the user in the PTS interrupt vector table.'I‘he microcoded PTS
routine then:

reads data to be transferred from address specified by PTS_SOURCE

writes the data to address specified by PTS__DEST

optionally irtcrernentsfupdates PTS__SOURCE and PTS_DEST addresses

decrements PTS_COUNT

. When PTS_COUN'I‘ reaches “0”, an end of PTS interrupt occurs and the normal ISR is
executed in which the user utilizes the received data as necessary (for RX interrupts) or
reloads the transmit table with new data (for TX interrupts).

Interrupt Latency. Interrupt latency is defined as the time from when the interrupt event
occurs (not when it is acknowledged) to when the rnicroc0nt_roller begins executing the first

35

36

11.20 CONTROL SYSTEMS

PTS CONTROL BYTE for sin e and multi le— - e transfers)

E31
133

M2, M 1, M0: E Function

000 FPS Block Transfer

100 PTS Single Transfer

BIW: Byte.~’Word: "0" = Word; " 1" = Byte

SU: Source Update: " " = update source address

DU: Destination Update: " " = update destination address

SI: Increment Source: " 1" = Increment Source address

DI: Increment Destination: "l" = Increment Destination address

FIGURE 11.13 PTS control byte for single— and m11ltiple—byte transfer modes.

instruction of the interrupt service routine. Interrupt latency must be carefully considered in
timing-critical code as is found in many automotive applications.

There is a delay between an interrupt’s triggering and its acknowledgment. An interrupt is
not acknowledged until t_l1e currently executing instruction is finished. Further, if the interrupt
signal does not occur at least some specified (assume four for this discussion) state times
before the end of the current instruction. the interrupt may not be acknowledged until after
the next instruction has been executed. This is because an instruction is fetched and prepared
for execution a few state times before it is actually executed. Thus, the maximum delay
between interrupt generation and its acknowledgment is approximately four state times plus
the execution time of the next instruction.

It should also be noted that most rnicrocontrollers have protected instructions (such as
RETURN, PUSH, POP) which inhibit interrupt acknowledgment until after the following
instruction is executed. These instructions can increase interrupt-to-acknowledgment
delay.

When an interrupt is acknowledged, the interrupt pending bit is cleared and a call is
forced to the location indicated by the corresponding interrupt vect0r.This call occurs after
the completion of the current instruction, except as noted previously. For the MCS-96 archi-
tecture, the procedure of fetching the interrupt vector and forcing the call requires 16 state
times. The stack being located in external memory will add an additional two state times to
this number. '

Latency is the time from when an interrupt is generated (not acknowledged) until the
microcontroller begins executing interrupt code. The maximum latency occurs when an inter-

36

37

AUTOMOTIVE MICROCONTROLLERS 1 1 .21

rupt occurs too late for acknowledgment following the current instruction. The worst case is
calculated assuming that the current instruction is not a protected one. The worst-case latencyis the sum of three terms:

1. The time for the current instruction to finish (assume four state times).
2. The state times required for the next instructionflhis time is basically the time it takes to exe-

cute the longest instruction used in the user’s code (assume it’s a 16—state DIV instruction).
3. The response time (assume 16 states, 18 for an externally located stack).

Thus, for this scenario, the maximum delay would be 4 + 16 + 16 = 36 state times. This equates
to approximately 4.5 its for a MCS-96 microcontroller operating at 16 MHz. This latency can
increase or decrease depending upon the longest execution-time instruction used. Figure
11.14 illustrates an example of this worst—case scenario.

Interrupt latency can be reduced by carefully selecting instructions in areas of code where
interrupts are expected. Using a protected instruction followed immediately by a long instruc-
tion increases the maxirnuni latency because an interrupt cannot occur after the protectedinstruction.

11.1.9 Fabrication Processes

The basic fabrication processes that are widely used for automotive microcontrollers today
are NMOS (N-channel metal—oxide semiconductor) and CMOS (complementary MOS). The
scope of this chapter does not allow for an in-depth discussion of these processes, although a
brief description of the structures used to build on—chip circuitry will be discussed. These
terms refer to the components used in the construction of MOSFET (MOS field effect tran-
sistor) inverters which are the basis of logic on digital devices. NMOS inverters are con-
structed of N-channel transistors only, whereas CMOS inverters are constructed of both
N—channel and P-channel transistors. This section will describe the basic operation of each
inverter along with its pros and cons.

Simply stated, a P—'channel transistor conducts when a logic “0" is applied to its gate. Con-
versely, N-channel transistors conduct when a logic “1" is applied to their gate. Figures 11.15
and 11.16 show a simplified cross—sectional view and the electrical symbol for N— and P-chan-
nel devices, respectively.

‘ .3 2 1(———-#<ssstataa——-><——-1s-—><-—'2-—)<éIsn——

PROGRAM endlnu tonoastpeuibio andlnng eallls Itstnck .,,,_,sHA..'
ExEcu"r|oN Instruction Instruction Inslmetlon forced external -

l‘ 4‘ k__ interrupt _
interrupt irfllflllpt response

owntoneura uckriowlodgmsret

INTEHHUPT
SOURCE

PENDING cleared
mrsanupr J "‘ __

mnaaaur-r Interrupt Iamna; *j__,||_A-|-Ency (61 state times worst case)

FIGURE 11.14 Worst case interrupt latency example.

38

11.22 CONTROL SYS'I'F.MS

renounce: tDHA|l'«|J GATE ji
FSUSETHATE

SOURCE

FIGURE 11.15 N—char1nel transistor.

Diflfltflm Elanflitfllfixlnhnl

DRAIN

aA'n;‘ —ol

SOURCE

FIGURE 11.16 P-channel transistor.

NMOS Inverters. NMOS inverters are constructed of two NMOS transistors in which one is

utilized as a resistance (02) and the other is utilized as a switch (Q1). A depletion-mode
NMOS transistor is commonly utilized for the resistance device. A basic NMOS inverter is
shown in Fig. 11.17. Note that Q2 is always on and acts as a resistor.

When a logic “O” is appiied to the inverter’s input, Q1 is turned off, which results in Q2
driving a logic 1 at the output. When a logic “1" is applied to the inverter‘s input, O1 is turned
on and overcomes 02. This results in 21 logic “0" at the output.

NMOS microcontrollers are still produced in large quantities today. An advantage of
NMOS processes is the simplistic circuit configuration which results in higher chip densities
NMOS devices are also less sensitive to electrostatic discharge (ESD) than CMOS devices.
An inherent disadvantage of NMOS design is the slower switching speeds and higher power
dissipation due to the dc current path from power to ground through Q1 and Q2 when the
inverter is driving a logic “0".

38

39

AUTOMOTIVE MICROCONTROLLERS 11.23

Vet: Vac

02 P-charinetilzhansbtorDepletion load

Von! Vln Voul

01

W‘ Ermancsrnernd:-Mr Q1
N-channel transistor

V!-3 I Vs:

FIGURE 11.17 NMOS inverter. FIGURE 11.18 Clu![OS inverter.

. CMOS Inverters. The CMOS is the most widely used process for automotive microcon—
trollers today. CMOS inverters are constructed of both P—channel and N-channel transistors

that have their inputs tied together as shown in Fig. 11.18. When a logic “0” is applied to the
inverter’s input, O1 is turned off and Q2 is turned on, which results in Q2 driving a logic “1"
at the output. When a_ logic “1" is applied to the inverter‘s input, Q2 is turned off and O1 is
turned on, which results in Q1 driving ‘a logic “0” at the output. Note that only one of these
two devices will conduct at a time when the input is “1" or “D”.Whi1e the input switches, both
Q1 and 02 may conduct for a short time resulting in a small amount of power dissipation.

The main advantages of CMOS logic are greatly improved switching times and lower
power consumption, which is due to the complementary design of the inverter. A disadvan-
tage of CMOS logic is that it is more expensive due to its increased complexity and more
demanding fabrication process. CMOS logic is more susceptible to ESD damage, although
rnicrocontroller manufacturers have countered this by incorporating very effective ESD pro-tection devices onto the silicon.

11.1.10 Temperature Range

Another important factor that must be considered when choosing a microcontroller is the
temperature range in which it will be required to operate.Tl1e two most common temperature
specifications specified by microcontroller manufacturers are ambient temperature under bias
(TA) and storage temperature. These specifications are based upon package thermal charac-
teristics as determined through device and package testing. Storage temperature refers to the
temperature range that a microcontroller can be subjected to during periods of nonoperation.
Storage temperature specifications are more extreme than ambient temperature under bias
temperatures and are usually all the same regardless of the specified ambient temperature
range. The common storage temperature range in industry is -60 to +150 °C. While powered-
down, a given rnicrocontroller must not be subjected to temperatures that exceed its specified
storage temperature range.

39

40

11.24 CONTROL SYSTEMS

Ambient temperature under bias (TA) refers to the temperature range that the microcon-
troller is guaranteed to operate at within a given application.While powered-up or operating,
a microcontroller must not be subjected to temperatures that exceed its specified ambient
temperature range. The most common ambient temperature ranges in industry are:

Commercial 0 to +70 °C

Extended -40 to +85 °C

Automotive -40 to +125 "C

11.2 MEMORY

Microcontrollers execute customized programs that are written by the user. These programs
are stored in either on-chip or off-chip memory and are often referred to as the user’s code. On-
chip memory is actually integrated onto the same piece of silicon as the microcontroller and is
accessed over the internal data bus Off-Chip memory exists on a separately packaged piece of
silicon and is typically accessed by the microcontroller over an external addressfdata bus

A memory map shows how memory addresses are arranged in a particular microcon-
troller. Figure 11.19 shows a typical microcontroller memory map.

Memory Function l

External Memory

internal FIOWEPROM or External Memory
zoom. unuarrupt worm, Gcam. Seourlly Key. Reserved Inuutonu. my

1FFFh

Intamal Special Function Registers (SFF-Ye)
_ _ _ .1 F99.“ . . _ _ . _ . _ . . _ . _ _ _ _ _ _ _ _ _ _ _

1EFFh

Extemal Memory

_ _ A 060011 _ _ _ _ _ _ _ _
05FFl1 ' ‘ ‘ ' ‘ ‘ ' ‘ ' ' ‘ ‘ ' ' ‘ ‘ ' ' ' ' ' ' '

0400,. Wooknowu0odeFlAN|}

“FF” Upper Register File (Address
Ream" RAM wrm Indirect or Indexed

. . . .‘?‘.°‘."‘. 'T“3“."‘."5"."?"."‘.9i‘ 3"'!"5“.""f’:’- Flegleter
00FFh Lowe a late Fllo

"°9“-‘W “A” (Addriaeee5lrIIl1 crllrect “'9
. . . 3°13" . _ _ _ _ _ _ _ __ lndlrectorlndexedf

°°m' CPU SFRa '“°“°'-1
0000h

FIGURE 1Ll9 Microcontroller memory map.

40

41

AUTOMOTIVE MICROCONTRO LLERS 1 1 .25

Memory is commonly referred to in terms of Kbytes of memory. One Kbyte is defined as
1024 bytes of data. Memory is most commonly arranged in bytes which consist of 8 bits of
data. For instance, a common automotive EPROM is referred to as a “256k x 8 EPROM“.’Ihis

EPROM contains 256-Kbytes 8-bit memory locations or 2,097,152 hits of information.

11.2.1 On-Chip Memory

On-chip microcontroller memory consists of some mix of five basic types: random access mem-
ory (RAM), read—on1y memory (ROM), erasable ROM (EPROM), electrically erasable ROM
(EPROM), and flash memory. RAM is typically utilized for run-time variable storage and
SFRS. The various types of ROM are generally used for code storage and fixed data tables

The advantages of on-chip memory are numerous, especially for automotive applications,
which are very size and cost conscious. Utilizing on-chip memory eliminates the need for
external memory and the “glue” logic necessary to implement an addressfdata bus system.
External memory systems are also notorious generators of switching noise and RF} due to
their high clock rates and fast switching times. Providing sufficient on—chip memory heips to
greatly reduce these concerns.

RAM. RAM may be defined as memory that has both read and write capabilities so that the
stored information can be retrieved (read) and changed by applying new information to the
cell (write). RAM found on rnicrocontrollers is that of the static type that uses transistor cells
connected as flip-flops. A typical six—transistor CMOS RAM cell is shown in Fig. 11.20. It con-
sists of two cross-coupled CMOS inverters to store the data and two transmission gates, which
provide the data path into or out of the cell.The most significant characteristic of static mem-
ory is that it loses its memory contents once power is removed. After power is removed, and
once it is reapplied, static microcontroller RAM locations will revert to their default state of
a logic “0”. Because of the number of transistors used to construct a single cell, RAM mem-
ory is typically larger per hit than EPROM or ROM memory.

Although code typically cannot be executed from register RAM, a special type of RAM
often referred to as code RAM is useful for downloading small segments of executable code.
The difference between code and register RAM is that code RAM can be accessed via the

V09 ‘Vac

to II calls
In column

Ioalonls
flleoiunm

FIGURE 11.20 CMOS RAM memory cell.

42

11.26 CONTROL SYSTEMS

memory controller, thus allowing code to be executed from it. Code RAM is especially useful
for end—of—line testing during ECU manufacturing by allowing test code to be downloaded via
the serial port peripheral.

ROM‘. Read~onIy memory (ROM), as the name implies, is memory that can be read but not
written to. ROM is used for storage of user code or data that does not change since it is a non-
volatile memory that retains its contents after power is removed. Code or data is either
entered during the manufacturing process (masked ROM, or MROM) or by later program-
ming (programmable ROM, or PROM); either way, once entered it is unalterable.

A ROM cell by itself (Fig. 11.21) is nothing more than a transistor. ROM cells must be used
in a matrix of word and bit lines (as shown in Fig. 11.22) in order to store infor1nation.The
word lines are connected to the address decoder and the bit lines are connected to output
buffers.The user’s code is permanently stored by including or omitting individual cells at WOI‘Ci
and bit line junctions within the ROM array. For MROMs, this is done during wafer fabrica-
tion. For PROMs, this is done by blowing a fuse in the sourcefdrain connection of each cell.To
read an address within the array, the address decoder applies the address to the memory
matrix. For any given intersection of a word and bit line, the absence of a cell transistor allows
no current to flow and causes the transistor to be off. This indicates an unprogrammed ROM
cell. The presence of a complete cell conducts and is sensed as a logical “0", indicating a pro-
grammed cell. The stored data on the bit lines is then driven to the output buffers.

MRON[s are typically used for applications whose code is stable and in volume produc-
tion. After the development process is complete and the user’s program has been verified, the
user submits the ROM code to the rnicrocontroller manufacturer. The microcontroller manu-

facturer then produces a mask that is used during manufacturing to permanently embed the
program within the mierocontroller. This mask layer either enables or disables individual
ROM Cells at the junctions of the word and bit lines An advantage of MROM microcom-
trollers is that they come with user code embedded, which saves time and money since post-
production programming is not necessary.A disadvantage of MROM devices is that,since the
mask with the user code has to be supplied early in the manufacturing process, throughput
time (TPT) is longer.

Some versions of ROM (such as lntel’s Quick-ROM) are actually not ROMs, but rather
EPROMS, which are programmed at t.he factory. These devices are packaged in plastic
devices, which prevents them from being erased since ultraviolet light cannot be applied to
the actual EPROM array. Throughput time for QROMS is faster since the user code isn't
required until after the actual manufacturing of the microcontroller is complete. As with

Dlfllllflfll Elatfltittfll.-filtnlhnl

DRAIN
(GATE

POLY

IE3 ‘EEK
¢°°“"°'3 mm» was

SOURCE

P G-UB51'HATE

FIGURE 11.21 ROM memory cell.

42

43

AUTOMOTIVE MICROCONTROLLERS 1 1 .27

WORD lines from address decoder

O 1 2 3

o

1
2
3

BITlinestooutputbut-fers
FIGURE 11.22 Simplified ROM memory matrix.

MROMs, the user supplies the ROM code to the microcontrolier manufacturer. Instead of

creating a mask with the ROM code, the manufacturer programs it into the device just priorto final test.

EPROM. EPROM devices are typically used during application development since this is
when user code is changed often. EPROMs are delivered to the user unprogranuned. This
allows the user to program the code into memory just prior to installation into an ECU mod-

ule. Many EPROM microcontrollers actually provide a mechanism for in-niodulc program-
rning.Tlu's feature allows the user to program the device via the serial port while it is installed
in the module. EPROM devices come assembled in packages either with or without a trans-
parent window. Windowed devices are true EPROM devices that allow the user to erase the

memory contents by exposing the EPROM array to ultraviolet light. These devices may be
reprogrammed over and over again and thus are ideally suited for system development and
debug during which code is changed often. EPROM devices assembled in a package without a
window are commonly referred to as one-time programmable devices or OTPs. OTPs may only
be programmed once, since the absence of a transparent window prevents UV erasure OTPs
are suited for limited production validation {PV) builds in which the code will not be erased.

A typical EPROM cell is shown in Fig. 11.23. It is basically an N-channel transistor that has
an added polyl floating gate to store charge. This floating gate is not connected and is sur-
rounded by insulating oxide that prevents electron flow. The mechanism used to program an
EPROM cell is known as hot electron injection. Hot electron injection occurs when very high
drain (9-V) and select gate (12-V) voltages are applied.Tl1is gives the negatively charged elec-
trons enough energy to surmount the oxide barrier and allows them to be stored on the gate.

43

44

11.28

CONTROL SYSTEMS

This has the same effect as a negative applied gate voltage and turns the transistor off. When
the cell is unprogrammed, it can be turned on like a normal transistor by applying 5 V to the
polyl select gate. When it is programmed, the 5 V will not turn on the cell. The state of the cell
is determined by attempting to turn on the cell and detecting if it turns on. Erasure is per-
formed through the application of ultraviolet (UV) light, which gives just the right amount of
energy necessary for negatively charged electrons to surmount the oxide barrier and leave the
floating gate.

Dlaamm Elaclrlmlsiunhal

DRAIN

P3UB$'|'R-RTE J
PoIy1Flndi:-yeah

(300309 I IDRNN}

SOURCE

FIGURE 11.23 EPROM memory cell.

Flash. Flash memory is the newest nonvolatile memory technology and is very similar to
EPROM. The key difference is that flash memory can be electrically erased. Once programmed,
flash memory contents remain intact until an erase cycie is initiated via software Like EEPROM,
flash memory requires a programming and erase voltage of approximately 12.0V. Since a clean,
regulated 12-V reference is not readily available in automotive environments, this need is often
provided for through the incorporation of an on-chip charge pump. The charge pump produces
the voltage and current necessary for programming and erasure from the standard 5-V supply
voltage.The advantage of flash is in its capability to be progrannned and erased in-module with-
out having to be removed. In-module reprogrammability is desirable since in-vehicle validation
testing doesn’t always allow for easy access to the microcontroller. Flash also allows for last—
minute code changes, data table upgrades, and general code customization during ECU assem-
bly Since a flash cell is nearly identical in size to that of an EPROM cell, the high reliability and
high device density capable with EPROM is retainedflhe main disadvantage of flash is the need
for an on-chip charge pump and special program and erase circuitry, which adds cost.

A flash memory cell is essentially the same as an EPROM cell, with the exception of the
floating gate. The difference is a thin oxide layer which allows the cell to be electrically erased.
The mechanism used to erase data is known as Fowler—N0rdhet'm tunneling, which allows the
charge to be transferred from the floating gate when a large enough field is created. Hot elec-
tron injection is the mechanism used to program a cell, exactly as is done with EPROM cells.
‘When the floating gate is positively charged, the cell will read a “I”, when negatively charged,
the cell will read a “0".

EEPROM. EEPROM (electrically erasable and programmable ROM, commonly referred to
as EZROM) is a ROM that can be electricaliy erased and programmed. Once programmed, EEP—
ROM contents remain intact until an erase cycle is initiated via software. Like flash, progamrning
and erase voltages of approximately 12V are required. Since a clean, regulated 12-V reference is
not readily available in automotive environments, this requirement is satisfied using an on—chiprelncar-up nurnn no it: r'lnru=- Fnr ‘Finch mprnnn: -.:r1'cnH: T i'|r.r=- Hack the nrivmnfnnrp nF FFDHFIRJ in iha

44

45

AUTOMOTIVE MICROCCINTROLLERS 1 1 .29

capability to be programmed and erased in-module.'I‘his allows the user to erase and program the
device in the module without having to remove it. EEPROM’s most significant disadvantage is
the need for an on-chip charge pump. Special program and erase circuitry also adds cost.

An EEPROM cell is essentially the same as an EPROM cell with the exception of the
floating gate being isolated by a thin oxide layer. The main difference from flash is that
Fowler-Nordheim electron tunneling is used for both prograrnrning and erasure. This mecha-
nism allows charge to be transferred to or from the floating gate (depending upon the polar-
ity of the field) when a large enough field is created. When the floating gate is positively
charged, the cell will read a “1"; when negativeiy charged, the cell will read a “0".

11.2.2 Off-Chip Memory

Off-chip memory offers the most flexibility to the system designer, but at a price; it takes up
additional PCB real estate as well as additional IEO pins. In cost— and size—conscience applica-
tions, such as automotive ABS, system designers almost exclusively use on—chip memory.
However, when memory requirements grow to sizes in excess of what is offered on~chip (such
as is common in electronic engine control), the system designer must implement an off-chip
memory system. Off—chip memory is flexible because the user can implement various memory
devices in the configuration of his choice. Most microcontrollers on the market today offer a
wide variety of control pins and timing modes to allow the system designer flexibility when
interfacing to a wide range of external memory systems

Accessing External Memory. If circuit designers must use external memory in their appli-
cations, the type of external addressldata bus incorporated onto the microcontroller should be
considered. If external memory is not used, this will have, if any, impact upon the application.
There are two basic types of interfaces used in external memory systems Both of these are
parailel interfaces in which hits of data are moved in a parallel fashion and are referred to as
multiplexed and demulriplexed addressldata buses

Mufrfptered Address/Dara Buses. As the name implies, multiplexed addressfdata buses
allow the address as well as the data to be passed over the same microcontroller pins by mul-
tiplexing the two in time. Figure 11.24 illustrates a typical multiplexed 16-bit addressfdata bus
system as is implemented with Intel‘s 8XC196Kx family of microcontrollers.

 s
HIGH ADDRESS HIGH ADDRESS

EPFIOM

DATA (LOW)

EPFIOM °”"
{High}

LOW ADDRESS LOW ADDFIESS
I?f(“I'II'I'I'i‘ ‘II ‘II 'IJ..l-.}_l.«-.-a-.;~'l .\..l.l__...l..l..a.. L..- ..‘..a..._.

45

46

11.30 CONTROL SYSTEMS

During a multiplexed bus cycle (refer to Fig. 11.25), the address is placed on the bus dur-
ing the first half of the bus cycle and then latched by an external address data latch/Ihe sig-
nal to latch the address comes from a signal generated by the microcontroller, called address
latch enable (ALE). The address must be present on the bus for a specified amount of time
prior to ALE being asserted. After the address is latched, the microcontroller asserts either a
read (RD#) or a write (WR#) signal to the external memory device.

‘(can

ALE r W

TLHLL T
TLLHL THLFIH “H”

E

Tmau. TH‘-‘Z mo;
TLLAX T

aw« ”' «)»»

WI’-‘I

BUS
(16-BR Mail]

ETTEZINST

IDS-‘I5
{'8-Bil Mada}

AE

WFWorFIDl “

ADO-15 —

18-bit bus cycle
8-bltbmcydo

FIGURE 11.25 Multiplexed bus cycle and timing diagram.

For a read cycle, the microcontroller will pull its RD# output pin low and float the bus to
allow the memory device to output the data located at the address latched on its address pins
The data returned from external memory must be on the bus and stable for a specified setup
time before the rising edge or RD#, which is when the microcontroller latches the data.

For a write cycle, the rriicrocontroller will pull its WR# pin low and then output data on the
bus to be written to the external memory. After a specified setup time, the microcontroller will

46

47

1’ 1.3 LOW—SPEED INPUT/OUTTPUT PORTS

AUTOMOTIVE MICROCONTROLLERS ‘I 1 .31

release its WR# signal, which signals to the memory device to latch the data on the bus into
the address location present on its address pins.

Advantages of multiplexed addressfdata bus systems are that fewer niicrocontroller pins
are required since address and data share the same pins. For a true 16-bit system, this trans-
lates into a multiplexed system requiring 16 fewer pins (for address and data) than would be
required by a dernultiplexed system. A disadvantage is that an external latch is required to
hold the address during the second half of the bus cycle; this adds to the component count.

Demultiplexed Address/Dam Buses. Microcontrollers with demultiplexed addressfdata
buses implement separate, dedicated address and data buses as shown in Fig. 11.26.

{Low}

ADDRESS JIDDHE 55

GE IE
FIGURE 11.26 Typical demultiplexed addtessfdata bus system.

The operation of a demultiplexed addressfdata bus is basically the same as the multiplexed

type with the exception of not having an ALE signal to latch the address for the second half
of the bus cycle.'I‘he operation of the RD#,WR#, address, and data lines is essentially the same
as for that of a multiplexed system. '

During a demultiplexed bus cycle, the microcontroller places the address on the address
bus and holds it there for the entire bus cycle. For a read of external memory, the microcom-
troller asserts the RD# signal (or WR# for a write signal) just as would be done for a multi-
plexed bus cycle.The memory device will respond accordingly by either placing the data to be
read on the data bus or by latching the data to be written off of the data bus. Figure 11.2? illus-
trates a simplified demultiplexed bus cycle.

An advantage of multiplexed addressfdata bus systems is that external data latches are
not necessary, which saves on system component coL1nt.A disadvantage, as mentioned earlier,
is that more rnicrocontroller pins must be allocated for the interface, which leaves fewer pins
for other I10 purposes.

Low-speed inputfoutput (LSIO) ports allow the microcontroller to read input signals as well as
provide output signals to and from other electronic components such as sensors, power drivers,

47

48

 }

16-hltbuacyda

FIGURE 1.1.27 Demultiplexed bus cycle.

digital devices, actuators, and other microcontrollers. The term “low-speed” is used to describe
these ports because unlike high—speed IIO (I-ISIO) ports which are interrupt driven,LSIO port
data must be manually read and written by the user program. Interrupt-driven IE0 is typically
not possible on port pins configured for LSIO operation. It is common for modern high-
performance rnicrocontrollers to utilize multifunctional port pins which can be configured for
a special function as well as L310. L810 ports most commonly consist of eight port pins in par-
allel, which are supported by byte registers. For example, by writing to a single—byte special
function register, an entire port can be configured, read, or written. Manipulating individual
bits in the port register allows the user flexibility in accessing either single or multiple port pins

11.3.1 Push-Pull Port Pin Configuration

The term push—puJ.'i, or complementary, output is commonly used to define a port pin that has the
capability to output either a logic “1” or “O”. Figure 11.28 shows a basic push—pull port pin con-
figuration. Referring to Fig. 11.28, writing a “1” to the data output register enables the P—channel
MOSFET and pulls the pin to +5 V, thus driving a logic “1” at the port pin.Whcn a “O” is written

We

look: value to
be drive at 'port Pln-H pm pm

Van

FIGURE 11.23 Push—pull port pin.

48

49

AUTOMOTIVE MICROCONTROLLERS 1 1 .33

to the data register, the N-channel MOSFET is enabled and thus provides a current path to
ground which results in a logic 0 at the port pin. Note that during this time the P-channel pull-up
MOSFET is disabled to prevent contention at the port pin. Also note that the port logic design
does not allow both the P-channel and the N-channel devices to be driving at the same time.

11.3.2 0pen~Drain Port Pin Configuration

Open-drain port pins (Fig. 11.29) are useful for handshaking signals over which multiple
devices will have control. The fact that the P-channel transistor is either omitted or disabled
dictates the need for an external pull-up resistor. An example of an application for open-drain
port pins would be for a bus contention line between two microcontrollers communicating on
a common bus. During normal operation, the line is pulled high by the external pull-up resis-
tor to signal to either microcontroller that no contention exists. If one of the microcontrollers
should detect contention on the bus, it simply outputs a logic “0", which signals the ‘contention
to the other processor. To output the “O”, the port only has to overcome the external pull-up
which the user should appropriately size to match the port drive specifications.

No connection

PM Pl“

logic value to

be driven at{DO
purl pln.

Van

FIGURE 11.29 0pen—drain port pin.

11.3.3 High-Impedance Input Port Pin Configuration

High impedance, or “Hi-z,” port pins (Fig. 11.30) are used strictly as inputs since no drivers exist
on these types of pins. Hi-2 refers to the relatively high input impedance of the port pin. This
high input impedance prevents the port pin circuitry from actively loading the input signal. Note
that the pin is connected to the gates of a CMOS inverter, which drives internal circuitry. Usu-
ally a certain amount of hysteresis is built into these pins and is specified in the data sheet.

1 1.3.4 Quasi Bidirectional Port Pin Configuration

Quasi bidirectional (QBD) port pins are those that can be used as either input or output
without the need for direction control logic. QED port pins can output a strong low value or
a weak high value. The weak high value can be externally overridden, providing an input func-
tion. Figure 11.31 shows a QBD port pin diagram and its transfer characteristic.

Writing a “Z” to the port pin disables the strong low driver (Q2) and enables a very weak
high driver (Q3).To get the pin to transition high quickly, a strong high driver (Q1) is enabled
for one state time and then disabled (leaving only Q3 active).

It is important to keep in mind that since the port pin can be externally overridden with a
logic “D", reading the port pin could falsely indicate that it was written as a logic “0".

49

50

11.34 CONTROL SYSTEMS

The ability to overdrive the weak output driver is what gives the quasi bidirectional port
pin its input capability. To reduce the amount of current that flows when the pin is externally
pulled low, the weak output driver (Q4) is turned off when a valid logic “0” is detected. The
input transfer characteristic of a quasi bidirectional port pin is shown in Fig. 11.31.

VGC

mud pin
state Pfltvln

V39

FIGURE 11.30 High-impedance input port pin.

11.3.5 Bidirectional Port Example

The following example describes th_e operation of a state-of-the—art bidirectional port struc-
ture. This particular structure is used upon newer members of Intel‘s MCS-96 automotive
microcontroller family. A single port consists of eight multifunction, parallel port pins (see
Fig. 11.32), which are controlled (on a by-pin basis) with four special function registers
referred to as Px__PIN, Px_REG, Px_MODE, and Px_DIR. As is common with other high-per-
formance rnicrooontrollers, the pins of this port are shared with alternate special functions
controlled by other on—chip peripherals. The PLMODE register allows the programmer to
choose either I..S_IO or the associated special function for any given port pin. Writing a “I” to
the appropriate bit selects the corresponding pin as special function whereas a “0" selects
L510. The function of the Px_PIN and Px_REG registers is fairly straightforward. In order to
read the value on the pin, the user simply reads the Px__PIN register. To write a value to the
Px_REG register, the user simply writes the desired output value to the Px__REG register.'Ihe
Px_DIR register allows the user to configure the port pin as either input or output.

In order to prevent an undefined pin state during reset, port pins revert to a default state
during reset. For the Intel Kx bidirectional port structure, this state is defined as a weak logic
“1".The transistor that drives this state is labeled as WKPU in Fig. 11.32 and is asserted in
reset until the user writes to the Px_MODE register to configure the port pin.

Ports such as this offer the user rnuch flexibility in assigning their function within an appli-
cation. Following are three examples that depict how these ports may be configured by the
user by writing values to the appropriate bit within the port SFR. Also note that the eight pins
of a port may be configured individually on a pin—by-pin basis.

To configure a given port pin as a high-impedance input pin, the user must write the fol-‘ ...-.._ ..._r:.__ l..:;__.:4.1.:.. a-I..._.. c"I:‘I".I

50

51

AUTO MOTIVE MICROCONTROLLERS 1 1 .35

lnlemal 2 Dec. Periods

SAMPLE
LATCH

CLK

Q1. 02 Strong Driver

04 Weak Driver

03 Vary weak Driver PH‘ cm“

-1200

-800
Weak Driver {C14} Ovaroorna

Currant

-400
Very Weak
Pullup [03] Only

/
Vm. Vans

FIGURE 11.31 Quasi bidirectional port pin and transfer characteristic.

Px_MODE: “0" selects the pin as LSIO and disables weak pull—up.

Px_DIR: “1" disables operation of the N-channel transistor.

Px__REG: “1” disables the N~channel transistor.

To configure a given port pin for pL1sh—pul1 operation, the following values must be written
to the corresponding bit within the port SFR.

51

52

11.36 CONTROL SYSTEMS

 SPECIALFUNCTION

DATA

w-ru id. ..
(week, nessrl p- .

FIGURE 11.32 Bidirectional port structure example.

Px_MODE: “O” selects the pin as LSIO and disables weak pl1lI—up transistor.

Px_DIR: “0" enables operation of both the N- and P-channel transistors

Px_RBG: “O" or “1” drives that value at the port pin.

To configure a port pin for open—drain operation, the user must write the following values
to the corresponding bits within the port SFR.

Px_MODE: “(}" selects the pin as LSIO and disables weak pull-up transistor.

Px_DIR: “1” disables operation of the N-channel transistor.

Px_REG: “1” disables the P-channel transistor I achieves Hi—Z state.

“0” enables the N—channel transistor 2' drives “0” at pin.

11.4 H!GH—SPEED I/O PORTS

Perhaps the most demanding of automotive microcontroller applications is electronic engine
control and antilock braking/traction control.These applications both require the rnicrocon—
troller to detect, process, and respond to external signals or “events” within relatively short
periods of time. Sometimes referred to as a captureicompare module, a Inicrocontrollefis
HSIO (high-speed inputioutput) peripheral allows the rnicrocontroller to capture an event as
it occurs. The term capture refers to a series of events that begins with the microcontroller
detecting a rising or failing edge upon a high~speed input pin.At the precise moment this edge
is detected, the value of a software timer is loaded into a time register and an interrupt is trig-
gered. This gives the microcontroller the relative time at which the event occurred. An HSIO
peripheral also provides compare functions by detecting an internal event, such as a timer
reaching a particular count value. When the particular count value is detected, the HSIO unit
will generate a specified event (rising or falling edge) on a port pin. This feature is ideal for
generating PWM waveforms or synchronizing external events with internal events.

For example, consider a typical ABS rnicrocontroller which must detect, capture, and cal-
culate wheel speeds; respond with signals to hydraulic solenoids; and perform many other
background tasks all within a loop time of about 5 ms.'Ihe wheel speed signals are input to the
microcontroller as square waves with frequencies up to 7000 Hz (approximately one edge
every 71 ps). The rnicrocontroller must have the performance necessary to capture and pro-
cess these edges on as many as four wheel speed inputs. HSIO peripherals, along with the
interrupt structure, play a major role in the microcontrol1er’s ability to perform this function.

Nearly every rnicrocontroller manufacturer has its own proprietary I-ISIO peripheral. For
purposes of this section, the event processor array (EPA) HSIO peripheral, which is used by
Intel’s 8'.r'C196KT automotive microcontroller, will be discussed.

52

53

AUTOMDTIVE MICROCONTROLLERS 11.3?

11.4.1 High~Speed Input and Output Peripheral

High-speed inputfoutput peripherals typically consist of 3. given number of capturefcompare
modules, a tiznerlcounter structure, control and status SFRs, and an interrupt structure of
some type. Figure 11.33 shows a block diagram of the EPA peripheral. "Ihe main components
of the EPA are ten capturefconipare channels, two compare only channels, and two
timerfcounters. The eapturefcornpare channels are configured independently of each other.
The two tirnericounters are shared between the various capturelcompare channels. Each cap-
turelcornpare channel has its own dedicated SFR’s: EPAx__TIME and BPAx_CON (x desig-
nates the channel number).

and: mac hum OnI.I1hn'I2lnadiarI plnnClock orb tn QI.IadIu|.n
Clad-t lmrnuly with to Hit protectorGlod<onImor1 ow

 -D em»:
I

EPA! NTD

EFNN“ EPI CHM-"EL! 0, EPA (11
E‘’*'”“’ EPA CHANNEL2 ‘ EPA £21
EFNNT3 EPA on-unset. a EPA (31
EPMNTX em cmmsu Q EPM4:

iW=**-W —

 FIEGISTEH
CONPLTME

I
N
r B

R 0--

FIG s.
u K EPACHANNELII - tom,-_.U,-M1-A:P-
T

Ev!-rm‘

‘ nus

FIESET T117?

STAFIT ND

COMPARE CHO

CGAPAHE CHI
MODE SELECTION II.'

FIGURE 11.33 Example HSIO peripheral: Intcl’s EPA peripheral.

11.4.2 "I'imer,-‘Counter Structures

High~perforrnar1ce microcontrollers typically integrate one or more tirnerfcounters onto their
silicon. A microcontroller’s timerfcounter structure provides a time base to which all HSIO
events are referenced. Timers. are clocked internally, whereas counters are clocked from an
external clock source. Timers are often very flexible structures, in which programmers have
the capability to configure the tirnerlcounters to meet their application’s particular needs.The
87C196KT has two 16-bit timerfcouriters referred to as TIMERI and TIMER2. As 16-bit

timerfcounters, each timer has the capability of counting to 2” or 65,536 before overflowing.
The user has the option of triggering an interrupt upon overflow of a tirnerlcounter. Each of
these two timers can be independently configured using the TXCONTROL SFR as shown in
Fig. 1134, where X specifies either 1 or 2 for Timerl or 'I'1me1’2, respectively.

Bits number 3,4, and 5 are the mode bits that allow the user to configure the clocking
source and direction of each tirnerfcounter. The clock rate can be based either upon the fre-

54

11.38 CONTROL SYSTEMS

 TxCONTROL SFR

CE: Count Enable: “D” = disable timer, "1" = enable timer

UD: Up.I'Down: "0" = count up, " = count down

MODE: M2 M1 M0 Clock source Direction determined

0 0 0 XTAIJ4 state of UD bit

0 0 l TXCLK. pin state of U1) bit

0 1 0 XTAU4 state ofTxDIR pin

0 1 1 TxCLK pin state ofTXDIR pin

1 0 0 Timer] overflow state of UD bit

1 1 0 Timer] overflow same as Timer]

I 1 1 Quadrature clocking using TKCLK and TxDIR pins

Prescaie: P2 P1 P0 Clock Qrescale values

0 0 0 +byl(250 ns@16MH.zxtalf1'eqI.1ancy)

0 G 1 -1-by2(50{]ns@16MI-Izxtalfrequency)

0 1 0 -2-by4(1 p.s@ l6MI-Izxtal frequency)

0 1 1 + by 8 (2 ps @ 16 MI-lzxtal frequency)

1 0 0 +by16(4 ps@16MHzxta.lfrequency}

1 0 l +by32 (3 ps@ l6MI-Izxtal frequency)

1 1 D —.'~by64(ll5 1.ts@16l\/II-Izxtal frequency)

1 1 1 reserved

FIGURE 11.34 Timer control SFR example.

54

55

AUTOMOTIVE MICROCONTROLLERS 11.39

E]1413fi2]111ofs|a|7|s[5|_4|3g[1|o] t|5|14j|3h2fi1fio|s[a]7 s 5 4[a|2|: 0|
NMER2 TIMEFI1

CLOCK

Overflow of TIMER1 clocks 11MER2 thus creating a 32-bit TIMER.

FIGURE 11.35 Cascading of tirnericounters.

quency that the microcontroller is being clocked at the XTAL pins or upon the input fre-
quency on another pin referred to as TXCLK. The user also has the option of either having the
logic level of another pin (TxDIR) or the UD bits in 'I‘xCONTROL determine the direction
(upidown) that the timericounter is clocked.

For those applications that require a 32-bit tirnericountet‘, the user has the option (using
the mode bits) to direct the overflow ofTIMER1 to clock TIMER2. This is known as cascad-

ing and essentially creates a 32-bit timcrlcounter as shown in Fig. 11.35.

11.4.3 Input Capture

Input capture refers to the process of capturing a current timer value when a specific type of
event occurs. An excellent example of high—speed input capture can be illustrated with a basic
automotive ABS input capture algorithm that caiculates the frequency of a wheel speed
input.The signals from the wheel speed sensors are input into the microcontroller’s EPA pins
as square waves. Consider the generic wheel speed input capture example shown in Fig. 11.36.

Two timers (1 and 2) are used in this example. Timerl is used in conjunction with an EPA
channel to provide a 5—ms software timer (this is a cornpare function that will be discussed in
the next section). The 5 ms is the main loop time used in generic ABS algorithms. 'I‘imer2 is
used in conjunction with one or more EPA channels to capture the relative times at which
edges occur on wheel speed inputs. The EPA is configured to capture falling edges and initi-
ate an interrupt, which stores the event time and increments an edge count.To sirnpli;fy this
example. we will consider only a single input channel.

The process starts by EPA interrupts being enabled after Tirnerl starts a new 5—n-is timer

c0unt.Tl1e first falling edge causes an interrupt that stores the event time (T2) into a variable
initial time and increments an edge count. The next edge causes an interrupt in which the
event time ('I'2+x) is stored into a variable called final time and increments the edge count.

k ‘ ‘ ‘ ' ‘ ‘ ' ‘ ‘ ' ' ‘ ‘ " T'I[!TIrIar1]-5maloopllrner - ' - - ' - - - - ~ - - -
Inltiallime flnaltlrno

(T1) (T1-5.000)

MW i J,
..........r J Tm Tor/H TL;

(T2) (T2+X) U'2+'t’Xl l'|'213Xl (T“2+f|K'.'

"'9L"")L“T2lTlr:'Iar2J-Ibfloelapeedlirrrattaptlrs - - - - - — - - - - ~ --
FIGURE 11.36 Input capture example using EPA peripheral.

56

11.-10 CONTROL SYSTEMS

Subsequent edges’ event times are also stored into final time until 'Iimer1’s 5—ms count
expires. At this point, final time contains the time at which the last edge to occur was captured.
The average period of the input waveform can then be calculated with the following equation:

input period = (final time — initial time) I edge count

11 .4.4- Output Compare

Output compare refers to the process of generating an event when a timer value matches a
predetermined time value. The event may be to generate an interrupt, toggle an output pin,
perform an AID conversion, and so forth. Following is an example that shows the steps nec-
essary to generate an event every 50 us:

1. Enable the output compare channe1’s interrupt.

2. Initialize the timer to count up at 1 us per timer tick.

3. Initialize the output compare channel to re-enable and reset the timer (to zero) when a
timer match occurs.

4. Initialize the output compare channel to produce the desired event when a timer match
OCCIIIIS.

5. Write 32h (50 decimal) to the appropriate output compare channel‘s time register.
6. Enable the timer to start the process

7. A compare channel interrupt will be generated every 50 us.

Since the example re—enables and zeros the timer, the event will occur continuously until the
user‘s program halts the process.

Software Timers. Software timers such as the 5-ms timer used in the ABS wheel speed cap~
ture example can be set up easily using a compare channel and a timer.The following software
timer procedure is very similar to that used in the previous output compare example:

1. Enable the compare channel’s interrupt.

2. Initialize the timer to count up at 1 as per timer tick.

3. Initialize the output compare channel to re-enable and reset the timer (to zero) when a
timer match occurs.

4. Initialize the output compare channel to produce an interrupt (5-ms ISR) when a timer
match occurs

5. Write 1388b (5000 decimal) to the appropriate output compare channel’s time register.
6. Enable the timer to start the process

7. An compare channel interrupt will be generated every 5 ms.

11.4.5 Pulse-Width Modulation {PWMl

Pulse—width modulation (PWM) peripherals provide the user with the ability to generate
waveforms that have specified frequencies and duty cycles. PWM waveforms are typically
used to generate pulsed waveforms used for motor control or they may be filtered to produce
a smooth analog signal. HSIO peripherals typically provide for PWM waveform generation,
although the methods are not usually as efficient as dedicated PWM peripherals. A basic
example of creating a PWM waveform using an HSIO peripheral‘s output compare function
is described in Sec. 11.4.4.

56

57

‘I 1.5 SERIAL COMMUNICATIONS H

AUTOMUHVE MICROOONTROLLERS 1 1 .41

PWM Peripheral. The components of a
basic automotive microcontr0ller’s PWM

peripheral include a counter (typically 8-bit),
a comparator, a holding register, and a con-
trol register. The counter typically has a
prescaler that allows the user to select the
ciock rate of the counter, which allows for
selectable PWM frequencies. Without

prescaling capability, an 8-bit counter would only allow for a period of 256 state times. The
PWM control register determines how long the PWM output is held high during the pulse,
effectively controlling the duty cycle as shown in Fig. 11.37. For an 8-bit PWM counter, the
value written to the PWM control register can be from 0 to 255 (equating to 255 state times
with no prescaling). Note that PWM peripherals do not typically allow for a 100 percent duty
cycle because the output must be reset when the counter reaches zero.

The operation of a PWM peripheral is rather simple. The PWM control register’s value
(assume 8-bit for this example) is loaded into a holding register when the 8-bit counter over-
flows. The comparator compares the contents of the holding register to the counter value.
When the counter value is equal to zero, the PWM output is driven high. It remains high until
the counter value matches the value in the holding register, at which time the output is pulled
low. When the counter overflows, the output is again switched high. Figure 11.38 shows typi-
cal PWM output waveforms.

|(—PWMOon'trolvaiua—>|
_

i(7 FWMrrIax.coI.intva.|in j>i
FIGURE 11.37 PWM waveform time values.

Duty PWM Oonlml

_C_ye_I_o___ Register Valun Outpulwavaforrn

oar. oo

10% 25 $-

50% 123 "Tj_

am; 230 |?‘r—i_|“‘———"I.J'“—*""'i_r*"

993% 2,55 *

FIGURE 11.38 PWM output waveforms. _

It is often necessary for automotive microcontrollers to have th_e capability to communicate
with other devices both internal and external to the ECU. Within an ECU a rnicrocontroller

may have to communicate with other devices such as backup processors, shift registers, watch-
dog timers, and so forth. It is not uncommon for automotive microcontrollers to communicate
with devices external to the ECU, such as other modules within the vehicle and even diagnos-

tic computers at a service station. All of these communication examples require a large quan-
tity of data to be transmittedireceived in a short period of time. Also consider that this
communication must utilize as few pins of the microcontroller as possible in order to save valu-
able PCB board space. These requirements all support the need for serial communications.

Serial communications provides for efficient transfer of data while utilizing a minimum
number of pins. Serial communications is performed by transferring a group of data bits, one
at a time, sequentially over a single data line. Each transmission of a group of bits (typicaily a

57

58

1 1 .42 CONTROL SYSTEMS

FIX shift register

is referred to as the baud rate and is typically specified in bitsisecond.
A typical rnicrocontroller serial port consists of data buffers, data registers, and a baud rate

generator. Interface to the outside world takes place via the transmit (TXD) and receive
(RXD) pins. A block diagram for a typical serial port peripheral is shown in Fig. 11.39. By
writing to the serial port control register, users are able to customize the operation of the
serial port to their particular application’s requirements.

The baud rate generator is used to provide the timing necessary for serial communications
and determines the rate at which the bits are transmitted. In synchronous modes, the baud

rate generator provides the timing reference used to create clock edges on the clock output
pin. In asynchronous modes, the baud rate generator provides the timing reference used to
latch data into the RX pin and clock it out of the TX pin.

11.5.1 Synchronous Serial Communications

Sometimes an application does not allow asynchronous serial communications to take place due
to variations in clock frequency, which results in unacceptable baud rate error. Some applica-
tions simply require some sort of shift register U0. Synchronous communication involves an
additional clock pin, which is used to signal the other device that data being transferred are valid
and ready to be read. Often when the user configures the serial port to work in a synchronous
mode, the TXD pin automatically reverts to supplying the clock and the RXD pin automatically
becomes the data pin. This configuration prevents an additional pin from having to be reserved
for use as a serial clock pin. When a synchronous data transfer is initiated, a series of eight clock

FIGURE 11.39 Serial port block diagram.

byte of data) is known as a data frame.This transfer of data takes place at a given speed, which

pulses is emitted from the clock pin at a predetermined baud rate as shown in Fig. 11.40.
I

58

59

AUTOMOTIVE MICROCONTROLLERS 1 1.43

W

axutcun mum:-ms-mznnsnmrnusn

HXDIINJ E5} E1! E2 IE Ell Eil EH

EXPANDED:

FIGURE 11.40 Synchronous serial mode data frame.

An example of synchronous serial communications is shown in Fig. 11.41. Assume that
processor A is to transfer a byte of data to processor B. The program executing in processor A
initiates a serial transmission by writing the data byte to be transmitted into the transmit

buffer. Assuming rnicrocontroller A’s serial port is enabled for transmission, writing to the
transmit buffer results in a series of eight clock pulses to be emitted from microcontroller A’s

clock pin. The first falling edge of the clock will signal to processor B that bit 0 (LSB) is ready
to be read into its receive buffer. Microcontroller A will place the next data bit on the TXD

pin with each rising clock edge. With B’s serial port enabled for reception, each falling edge
will result in another data bit being shifted into B’s receive buffer. When B’s receive buffer is

full, the received data byte will be loaded into its receive register and will signal its CPU that
the reception has been completed and the data is ready for use.

FIGURE 1L41 Synchronous serial communications example.

Shift Register Based I/0 Expansion. A common application for synchronous serial trans-
mission is shift register based IEO expansion as shown in Fig. 11.42. In this circuit, a 74HCl64
8-bit serial-inlparallel—out shift register is used to provide eight parallel outputs with a single
serial input. The 'r'4HC165 8-bit parallel—in./serial out shift register shown provides a single
serial input resulting from eight parallel input signals. This allows the system designer to

59

60

11.44 CONTROL SYSTEMS

CLOCKINWBW ____
SHWTFLOAD

SHFTHEGETER
NHG165

INPUTS

OUTPUTS

SHIFT nsersren

if-1Hc1a-1

FIGURE 11.42 Shift register based HO expansion example.

implement an additional 8-bit output port and additional 8~bit input port (16 signals total)
using only four pins on the microcontroller. This expansion scheme allows a designer to
achieve a greater number of U0 pins without having to upgrade to a microcontroller with a
higher pin count.

To output data using this U0 expansion method, the user code simply writes a byte to the
serial port transmit register to initiate data transfer. This causes the written byte to be shifted
out of the microcont‘roller’s RXD pin and into the 74HC164 one bit at a time. The data is
reflected at the output pins of the '?4HC164 as each bit is shifted in. For addressfdata bus emu-
lation, another microcontroller pin may be utilized to indicate valid data to the intended
receiving device.

To receive eight bits of data in parallel using this method, the user’s code must latch the
data on the ’l4HC165’s input pins into its shift register by asserting the shift/load signal. After
this is accomplished, the user’s code simply needs to enable the serial port receive circuitry to
receive the data one bit at a time into its receive buffer.

11.5.2 Asynchronous Serial Communications

The most common type of serial communications is asynchronous. As its name implies, asyn-
chronous communication takes place between two devices without use of a clock line. Data is
transmitted out the transmit buffer and received into the receive buffer independently at a

speed determined by the baud rate generator. Most microcontrollers offer several modes of
asynchronous serial communication.

Standard Asynchronous Made. The standard asynchronous mode consists of 10 bits: a start
bit, eight data bits (LSB first), and a stop bit, as shown in Fig. 11.43. After the user initiates a
transmission, data is automatically transmitted from the TX pin at the specified baud rate.

STOP JEIIDEDQEIIEIIIEEDEDED smv
$HT5OFUflTA

FIGURE 11.43 Standard asynchronous mode data frame.

60

61

11.6 ANALOG-1:0-{DIGITAL C0l\iFVEHTER

AUTOMOTIVE MICROCONTROLLERS 1 1 .45

A parity function is also implemented, which provides for a simple method of error-detec-
tion. Data transmitted will consist of either an odd or even number of iogical “1"s. If even par-
ity is enabled, the parity bit will either be set to a “1” or a “O” to make the number of “1"s in

the data byte even. If odd parity is enabled, the parity bit will be set to the appropriate value
to make the number of “1”s in the data byte odd. For instance, consider the data byte
11010010b. If even parity is enabled, the parity bit will be set to a “O” since there is already an
even number of “1”s. If odd parity were enabled, the parity bit would be set to a “1” since
another “1” would be needed to provide an odd number of “1”s. If the parity function is
enabled (usually through a serial port control register), the parity bit is sent instead of the
eighth data bit and parity is checked on reception. The occurrence of parity errors is typically
flagged in a serial port status register to alert the microcontroller to corrupted data in the
receive register.

Multiprocessor Asynchronous Serial Communications Modes. Two other common serial

communications modes which are used on automotive microcontrollers are the asynchronous
9th-bit recognition mode and the asynchronous 9th-bit mode. These two modes are com-
monly used together for multiprocessor communications where selective selection on a data

link is required. Both modes are similar to the standard asynchronous mode with the excep-
tion of an additional ninth data bit in the data frame as shown in Fig. 11.44.

STOP IZDEDGSIEEEEIDEEIEW STOP

G-BITS OF DATAPFIOGFIAI-UJABLE 9TH BIT IMOOE 2. 31

}1—-———-?———j 1o. on11.arr FRAMEmm

FIGURE 11.44 Asynchronous 9th-bit data frame.

The 9th-bit recognition mode consists of a start bit, nine data bits (LSB first), and a stop
bit. For transmission, the ninth bit can be set to “1” by setting a corresponding bit in the serial
port control register before writing to the transmit buffer. During reception, the receive inter-
rupt bit is not set uniess the ninth data bit being received is set to a logic “1”.

The 9th-bit mode uses a data frame identical to that of the 9th-bit recognition mode. In this
mode, a reception will always cause a receive interrupt, regardless of the state of the ninth data bit.

A multiprocessor data link is fairly simple to implement using these two modes Micro~
controllers within the system are connected as shown in Fig. 11.45. The master microcontroller
is set to the 9th-bit recognition mode so that it is always interrupted by serial receptions The
slave microcontrollers are set to operate in the 9th-bit recognition mode so that they are inter-
rupted on receptions only if the ninth data bit is set. Two types of data frames are used:
address frames, which have the ninth bit set, and data frames, which have the ninth bit cleared.
When the master processor wants to transmit a block of data to one of several slaves, it first
sends out an address frame which identifies the target slave. Slaves in the 9th-bit recognition
mode are not interrupted by a data frame, but an address frame interrupts all slaves. Each
slave can examine the received byte and see if it is being addressed.The addressed slave then
switches to the 9th-bit mode to receive data frames, while the slaves that were not addressed

stay in the 9th-bit recognition mode and continue without interruption.

Analog—to—digital converter (AID) peripherals allow automotive microcontrollers to sense

and assign digital values to analog input voltages with considerable accuracy. An analog input

61

62

1 1 .45 CONTROL SYSTEMS 1

Processor “A" Processor “B”

Processor “C”

TXD

FDCD

the discrete values of digital signals.

11.6.1 Types of AID Converters

The vast majority of AID converters available on rnicrocontrollers are of the successive
approximation (SKA) type. Other types include flash AID converters, in which conversions are
completed in a parallel fashion and are performed at speeds measuring tens—of-nanoseconds.
The drawback is that flash AID converters require a great deal of die space when integrated
on a microcor1troller.1t is because of their relatively large size that flash ND converters are
seldom offered on rnicrocontrollers. Dual-slope AID converters offer excellent AID accuracy
but typically take 21 relatively long period of time to complete a conversion. SEA AID con-
verters are very popular because they offer a compromise among accuracy, speed, and die-size
requirements. The main drawback to successive approximation converters is that implement-
ing the capacitor and resistor ladders takes a considerable amount of die space, although
somewhat less than flash AIDS. These converters are also somewhat susceptible to noise,
although there are proven ways to reduce the effects of noise within a given application. The
advantage of SEA converters is that they combine the best of other types of converters They
are relatively fast and do not take up excessive die space.

SEA converters typically consist of a resistor ladder, a sample capacitor, an input multi-
plexer, and a voltage comparator. A typical SEA converter is shown in Fig. 11.46. The resistor
ladder is used to produce reference voltages for the input voltage comparison. A sample
capacitor is utilized to capture the input voltage during a given period of time known as the
sample time. Sample time can be defined as the amount of time that an AD input voltage is

FIGURE 11.45 Asynchronous 9th—bit data frame.

may be defined as a voltage level that varies over a continuous range of values as opposed to

applied to the sample capacitor. i

62

63

AUTOMOTIVE MIICROCONTROLLBRS 11.-1-7

VFIEF

 C-‘-I\II’a'l-FIIFG-Ii .xo_assu.n.rn-a)

EPA GONNIAND

FIGURE 11.46 Typical successive approximation converter.

A successive approximation algorithm is used to perform‘ the AD conversion. A typical
S.-‘A converter consists of a 256_—resistor ladder, a comparator, coupling capacitors, and a 10-bit
successive approximation register (SAR),_along with SFRS and logic to control the process.
The resistor ladder provides 20-n'1V steps (with V”, = 5.12 V), while capacitive coupling cre-
ates 5—1nV steps within the 20—n1V ladder voltages. Therefore, 1024 internal reference voltage
levels are available for comparison against the analog input to generate a 10-bit conversion
result. Eight—bit conversions use only the resistor ladder, providing 256 levels.

11.5.2 The A!D Conversion Process

The successive approximation conversion compares a reference voltage to the analog input
voltage stored in the sampling capacitor. A binary search is performed for the reference volt-
age that most closely matches the input. The L5 full—scalc reference voltage is the first tested.
This corresponds to a 10-bit result in which the most significant bit is zero and all other bits
are one (0111 1111 11b). If the analog input is less than the test voltage, bit 10 is left at zero
and a new test voltage of la full scale (0011 1111 11b) is tested. If this test voltage is less than
the analog input voltage, bit 9 of the SAR is set and bit 8 is cleared for the next test (0101 1111

63

64

11.48 CONTROL SYSTEMS

11b). This binary search continues until 8 or 10 tests have occurred, at which time the valid 8-
bit or 10-bit result resides in the SAR where it can be read by software.

EXTEfiNAt 11.6.3 A!D Interfacing
f
l
I
l

Fbouacs

"ZPF The external interface circuitry to an analog

6 input is highly dependent upon the applica-

51 tion and can impact converter characteris-_ tics. Several important factors must be

E considerepl ll; the exterpal interface design;__ input pin ea age, samp e capacitor size, an
‘ multiplexer series resistance from the input

pin to the sample capacitor. These factors are
idealized in Fig. 11.47.

The following-example is for a 1-ps sample
time and a 10-bit conversion. The external

input circuit must be able to charge a sample capacitor (C3) through a series resistance (R1) to
an accurate voltage, given a dc leakage (IL). For purposes of this example, assume C5 of 2 pf,
R1 of 1.2 k§2, and I; of 1 11A.

External circuits with source impedances of 1 KQ or less can maintain an input voitage
within a tolerance of about 0.2 LSB (1.0 kfl X 1.0 uA = 1.0 mV) given the dc leakage. Source
irnpedances above 5 kfl can result in an external error of at least one LSB due to the voltage
drop caused by the 1—p.A leakage. In addition, source irnpedances above 25 kfl may degrade
converter accuracy because the internal sample capacitor will not charge completely during
the sample time.

Typically, leakage is much lower than the maximum specification specified by the micro-
controller manufacturer. Given typical leakage, source impedance may be increased substan-
tially before a one—LSB error is apparent. However, a high source impedance may prevent the
internal sample capacitor from fully charging during the sample window.This error can be cal-
culated using the following formula:

I
I
I
I
I
II
I
I
I
I

FIGURE 11.47 Idealizecl interface circuitry.

‘Tum

Error (LSBS) = (:2 RC) X 1024
where TSAM = sample time, us

R = Rsouuos 4‘ R1» 9
C = Cs. Ltf

The effects of this error can be minimized by connecting an external capacitor CEX-r from
the input pin to ANGND.The external signal will charge C33»; to the source voltage. When the
channe! is sampled, a small portion of the charge stored in Can will be transferred to the
internal sample capacitor. The ratio of C5 to Cgm causes the loss in accuracy. If CE);-F is .005 pf
or greater, the maximum error will be —0.6 LSB.

Placing an external capacitor on each analog input also reduces the sensitivity to noise
because the capacitor combines with series resistance in the external circuit to form a low-
pass filter. In practice, one should include a small series resistance prior to tl1e external capac-
itor on the analog input pin and choose the largest capacitor value practical, given the
frequency of the signal being 0onverteCl.This provides a low-pass filter on the input, while the
resistor also limits input current during overvoltage conditions.

11.6.4 Analog References

To achieve maximum noise isolation, on-chip AID converters typically separate the internai
AID power supply from the rest of the n1icrocontroIler’s power supply lines Separate supply

64

65

AUTOMOTIVE MICROCONTRDLLBRS 1 1.49

pins, VM and Angnd, usually supply both the reference and digital voltages for the ND con-
verter. Keep in mind that V”; and Ans“, are the reference for a large resistor ladder ou succes-
sive approximation converters. Any variation in these supplies will directly affect the reference
voltage taps within the ladder, which in turn directly affect AID conversion accuracy.

If the on-chip AID converter is not being used, or if accuracy is not a concern, the Vref and
Angnd pins can simply be connected to V0,, and V,,, respectively. However, since the reference
supply levels strongly influence the absolute accuracy of the AID converter, a precision, well-
regulated reference should be used to supply V”, to achieve the highest performance levels. It
is also important to use bypass capacitors between V,“ and Ans”, to minimize any noise that
may be present on these supplies. I.n noise—sensitive applications running at higher frequen-
cies, the use of separate ground planes within the PCB (circuit board) should be considered,
possibly as shown in Fig. 11.48. This will help minimize ground loops and provide for a stableAID reference.

FIGURE 11.48 Example of separate analog and digital ground planes

1' 1.7 FAILSAFE METHODOLOGIES

The amount and complexity of automotive electronics incorporated into automobiles has
increased at an incredible rate over the last decade. This trend has contributed significantly
towards the impressive safety record of modern automobiles. Although microcontrollers are
extremely reliable electronic devices, it is possible for failures to occur, either elsewhere in
the module or within the microcontroller itself. It is critical that these failures be detected

and responded to as quickly as" possible in safety-related applications such as automotive
antilock braking. If proper failsafe methodologies and good programming practices are fol-
lowed, the chances of a failure going undetected are drastically reduced. The application of
failure mode and effect analysis (FMEA) is an excellent tool for identifying potential failure
modes, detection strategies, and containment methods. Used properly, FMEA will assist the
designer in providing a high—quality, reliable automotive module. Although the scope of this
chapter does not provide for a discussion on this topic, the author highly encourages the use
of FMEA.

11.7.1 Hardware Failsafe Methods

Sometimes a hardware solution is required for detection of and response to certain failure
modes. If is difficult for software alone to detect failures external to the device. As an exarn~-1:1‘. nu».-...5.-Tl.-._ .. nu... .. .—-L:—‘- —l- - """'\"‘ '

66

11.50 CONTROL SYS‘I'l-EMS

read or drive an incorrect value. In this case, it can be difficult for software to detect because

it would base its response on an incorrect value read from a pin.

Watchdog Timers (WDTS). An on~chip hardware watchdog is an excellent method of
detecting failures which otherwise may go undetected. An example of this would be a micro-
controller fetching either erroneous address or data (due to noise, etc.) and becoming “lost.”
WD'I‘s commonly utilize a dedicated 16-bit counter, which provides for a count of 2“"(65,536)
clocked at a rate of one tick per state time. If users wish to take advantage of this feature, they
simply write to a register to enable the count. Once enabled, the user program must periodi-
cally clear the watchdog by writing a specific bit pattern to the Watchdog SFR. Clearing the
WDT at least every 4.1 ms (65,535 * 1 state time at 16 MHZ) will prevent the device from
being reset. The strategy is that if the WDT initiates a. reset, the assumption can be made that
a failure has occurred and the microcontroller has became lost.

External Failsafe Devices. It is common for systems to incorporate an external failsafe
device, such as another microcontroller or an application-specific integrated circuit (ASIC).
The function of a failsafe device is to monitor the operationof the primary rnicrocontroller
and determine if it is operating properly. _

The simplest failsafe devices output a signal such as a square wave for the microcontroller
to detect and respond to. If the microcontroller doesn’t respond correctly, a reset is typically
asserted by the failsafe and the ECU reverts to a safe mode of operation. More complex fail-
safe devices will actually monitor several critical functions for failures such as low Vcc,
stopped or decreased oscillator frequency, shortedlopened input signals, and so forth.

Oscillator Failure Detection. It is possible for the clocking source (typically an oscillator)
to fail for various reasons. Since most microcontrollers are static devices, a particularly diffi-
cult failure mode to detect is the clocking of the device at a reduced frequency. To detect this
failure, an oscillator failure detection circuit is often integrated upon the microcontroller. This
circuitry will detect if the oscillator clock input signal falls below a specified frequency, in
which case an interrupt will be generated or the device will reset itself.

Redundancy/Cross-cftecking. A common failsafe methodology is achieved by designing a
redundant, or backup, processor into the module. In this case, the secondary rnicrocontroller
usually executes a subset of the main microcontroller’s code. The secondary microcontroller
typically processes critical input data and performs cross—checks periodically with the main
rnicrocontroller to insure proper operation. A failsafe routine is initiated if data exchanged
between the two devices did not correlate.

11.7.2 Software Failsafe Techniques

Failsafe methodologies implemented in software are ideal for detecting failure modes that
can interfere with proper program flow. Examples of these types of_ failures include noise
glitches, which are notorious for causing external memory systems to fetch invalid addresses.
ROMEEPROM memory corruption could cause an ISR start address to be fetched from an
invalid interrupt vector location. Interrupts occurring at a rate faster than anticipated can
cause problems such as an overflowing stack. Fortunately, failure modes such as these can be
dealt with by implementing software failsafe methods It is simply good programming practice
to anticipate these types of failure modes and provide a failsafe strategy to deal with them.
Following are several software strategies commonly used to deal with specific types of failure
modes:

Checksum. One possible error that must be accounted for is ROMIEPROM memory cor-
ruption. An effective method of detecting these types of failures is through the calculation of

66

.:_.._.._..._..........__...........m.._ »¢

67

AUTOMOTIVE MICROCONTROLLERS 1 1.51

a checksum during the initialization phase of a uscr’s program. A checksum is the final value
obtained as the result of performing some arithmetic operation upon every ROMIEPROM
memory location. The obtained checksum is then compared against a stored checksum. If the
two match, the ROMIEPROM contents are intact. An error routine is called if the two check-

surns do not n1atch.The most common arithmetic operation used to perform a checksum is
addition.The checksum is calculated by adding the contents of all memory locations. When
the addition is performed, the carry is ignored which provides for a byte or word checksum.
The final result is then used as the checksum.

Umrscdlnrermpr Vectors. It is a rare occasion when all interrupt sources are enabled within
an application. If, for some unforeseen reason, the program should vector to an unused inter-
rupt source, some sort of failsafe routine should be implemented to respond to the faiJure.The
failsafe routine could be as simple as vectoring to a reset instruction or it can be as compli-
cated as the programmer wishes.

Unused Memory Locations. A strategy should be in place to detect if, for some unforeseen
reason, the program sequence should begin to execute in an unused area of ROMIEPROM.
It is uncommon for the user’s code to fill the entire ROMEEPROM array of a rnicrocontroller.
It is good programming practice to fill any unused locations with the opcode of an instruction
such as Reset. On the MCS-96 family, executing the opcode FFh (which happens to be the
blank state of EPROM) will initiate a reset sequence. Other microcontroller families have
similar instructions.

Unimpfemented Opcade Interrupt Vectors. Microcontrollers often dedicate one or more
interrupt vectors for failsafe purposes. An unimplemented opcode interrupt is designed to detect
corrupted instruction fetches The corresponding interrupt service routine is executed whenever
an unsupported opcode is fetched for execution. The interrupt service routine contains the
user’s failsafe routine, which is tailored to address this failure for the specific application.

31.35 FUTURE nssrvos

There are several significant trends developing in automotive electronics as ECU manufac-
turers strive to meet the challenges of a demanding automotive electronics market. The chal-
lenges that are bringing about these trends are: decreasing cost targets, decreasing form-factor
goals, increasing performance requirements, and increasing system-to-system communication
requirements. As the most significant component of an ECU, microcontrollers are bearing the
brunt of these demands This section will discuss these challenges and provide some insight
into some of the ways microcontroller manufacturers are addressing these trends.

11.8.1 Decreasing Cost Targets

Microcontroller manufacturers are aproachtug cost reduction in two ways: indirectly and
directly. Indirect cost reductions are achieved by integrating features onto the microcontroller
which allow the system designer to reduce cost elsewhere in the system. The key to this
approach being successful is in the microcontroller n'1anufacturer’s ability to integrate the fea-
ture cheaper than the cost of providing an external solution. Integration is not always the
cheaper solution, therefore each feature must be evaluated individually to determine the
feasability of integration. An example of an indirect cost reduction would be the integration
of watchdog and failsafe functions onto the microcontroller. This would eliminate the need
for external watchdog components and thus reduce cost.

68

11.52

11.8.2

11.8.3

CONTROL SYSTEMS

Another example would be through the integration of communications protocols such as
CAN (Controller Area Network) or J1850 onto the same piece of silicon as the rnicrocon—
troller.This will reduce the system chip count (and thus cost) by at least one integrated circuit
device (the CAN chip) and several interfacing components. In most cases, a reduced chip
count will translate into a PCB size decrease and a cost savings.

By directly addressing decreasing cost targets, rnicrocontroller manufacturers actually
reduce the manufacturing cost of the microcontroller itself. An example of this would be uti-
lizing smaller geometry processes for manufacturing. Process geometry refers to the transis-
tor channel width that is implanted onto a piece of silicon for a given fabrication process
Smaller processes allow for a higher transistor density on an integrated circuit. Higher densi-
ties allow for smaller die sizes which relate to lower costs. Most automotive rnicrocontrollers

manufactured today are fabricated with a 1.0-rnicron, or larger, process. As technology
advances. future automotive microcontrollers will be manufactured upon submicron pro-
cesses, such as 0.6 micron.

Increasing Performance Requirements

Automotive applications, such as ABS and engine control, require the processing of a sub-
stantial amount of data within a limited period of time. Higher-performance microcontrollers
are required as system complexity increases and new features, such as traction control and
vehicle dynamics, are incorporated into the ECU.

Microcontroller performance can be directly related to speed. Therefore, a rather straight-
forward approach to increased performance is through increasing clock speed. Today, most
automotive microcontrollers have the capability to operate at frequencies of 16 MHz with
speeds up to 20 MHz becoming cornrnon. Future microcontrollers will have the ability to be
operated at frequencies of 24 or even 32 MHZ. This allows more code to be executed in the
same amount of tirne, and thus improves performance.

The method of increasing performance is not limited to just increasing the clock frequency.
Microcontrollers can also achieve higher performance by enhancing existing peripherals for
more efficient opcration.T]'1is may be in the form of improved data handling or new features
which suit the needs of a specific automotive application.

Increasing System-to-System Communication Requirements

The increasing complexity of automotive electronics requires that an increasing amount of
information (diagnostics, etc.) be shared between various ECUs within an automobile. To ful-

fill this need, high—speed data links are utilized to transfer messages between multiple ECUs
utilizing protocols such as Bosch‘s Controller Area Network (CAN) and SAE’s .T18S0.To pro-
vide further size and cost savings, it is becoming more and more common to see these proto-
cols supported or integrated onto automotive microcontrollers as opposed to separate
integrated circuits.

The theory of centralized body computing is also receiving a closer look due to increased
government regulations concerning fuel economy and diagnostics. A centralized body com-
puter would link all ECUS (ABS and traction control, engine, transmission, suspension,
instrumentation, etc.) together over a high—speed, in—vehicle serial network. One common sce-
nario would have the central computer (possibly a microprocessor as opposed to a rnicrocon-
troller) performing the more intense data—crunching tasks, while peripheral microcontrollers
located in each individual ECU would perform system L’O functions. These communication
protocols provide for efficient two~wire, high—speed serial communications between multiple
ECUs utilizing protocols such as CAN and J1850. Supporting these protocols places addi-
tional loading upon the microcontroller. Increased microcontroller performance is necessary
to manage this loading.

68

69

AUTOMO‘I‘IVE IVHCROCONTROLLERS

PIN #1

SHRINK QUAD FLATPACK

N Lead Count ' 80

A Overall Heighl 1.66
A1

0.14 0.20 0.26

LeadThickness 0.11? 0.127 0.177

Terminal Dimension 13.70 14.00 14.30

Package Body 12.0

1330 14.00 14.30
12.!)

Package Body
Lead Pitch 0.40 0.50 0.60

Foot Lenglh 0.35 0.50 0.70

Lead Angle 0.0° 10.0”

Coplanarily 0.10

C) OC)

 0

E1

81

L1

FIGURE 11.49 Shrink quad flat pack (SO17?) package.

11.53

69

70

11.54 CONTROL SYSTEMS

11.8.4 Decreasing Form Factor Goals

GLOSSARY

Automobile manufacturers striving to build compact, more fuet efficient automobiles are
putting pressure upon ECU suppliers to build smaller, lighter modules.

ECU size is directly affected by PCB size. The easiest way to achieve a smaller PCB is
through integration and utilization of smaller integrated circuit packages. To support this
demand, automotive rnicrocontroller manufacturers are beginning to offer smaller, fine-pitch
packages. A package commonly used today is the 68-lead plastic leaded chip carrier (PLCC)
which has its pins placed on 1.27—mm centers and a body that is 24.3 rnm3.Ar1 example of a
possible automotive package solution for the future would be the 80-lead shrink quad flat
pack (SQFP, Fig. 11.49) which has pins on 0.50-mm centers and a body that is 12.0 mg. It is
relatively easy to see that the SQFP package offers 12 additional pins in a package that is half
the size of the PLCC. This high pin density, f1ne—pitch packaging allows for a smaller package
to be utilized for the same size microcontroller die.

Another technology that is quickly becoming popular for automotive applications is
referred to as multfchip modules (MCMs).An MCM is a collection of urtpackaged integrated
circuit die (from various manufacturers) which are mounted upon a common substrate and
packaged together. The advantage of MCMs is that they require much less PCB space than if
the ICs were packaged separately.

Accumulator A register within a microcorttroller that holds data, particularly data on which
arithmetic or logic operations are to be performed.

Arithmetic logic unit (ALU) The part of a microcontroller that performs arithmetic and
logic operations

Analog-to-digital converter An electronic device that produces a digital result that is pro-
portional to the analog input voltage.

Assembly language A low-level symbolic programming language closely resembling
machine language.

Central processing unit {CPU} The portion of a computer system or microcontrolier that

controls the interpretation and execution of instructions and includes arithmetic capability.

EPROM Erasable and programmable read~only memory.

I-Iigh-speed inputioulput unit (H510) A microcontroller peripheral which has the capabil~
ity to either capture the time at which a certain input event occurs or create an output event
at a predetermined time, both relative to a common clock. HSIO events are configured by the
programmer to occur automatically.

Interrupt service routine (ISR) A predefined portion of a computer program which is exe-
cuted in response to a specific event.

Low-speed inputfoutput The inputfoutput of a digital signal by “manually” reading or writ—
ing a register location in software.

Machine language A set of symbols, characters, or signs used to communicate with a com-
puter in a form directly usable by the computer without translation.

Program counter (PC) A rnicrocontrolier register which holds the address of the next
instruction to be executed.

70

71

AUTOMOTIVE MICROOONTROLLERS 1 1 .55

Program status word (PSW) A microcontroller register that contains a set of boolean flags
which are used to retain information regarding the state of the user's program.

Pulse-width modulation (PWM) The precise and timely creation of negative and positive
waveform edges to achieve a waveform with a specific Erequency and duty cycle.

Random access memory (RAM) A memory device which has both read and write capabili-
ties so that the stored information (write) can be retrieved (reread) and be changed by apply-

ing new information to the inputs.

Read-only memory (ROM) A memory that can only be read and not written to. Data is
either entered during the manufacturing process or by later programming; once entered, it is
unalterable.

Registerlaritlunetic logic unit (RALU) A component of register-direct rnicrocontroller
architectures that allows the ALU to operate directly upon the entire register file.

Serial inputioutput (S10) A method of digital communication in which a group of data bits
is transferred one at a time, sequentially over a single data line.

Special function register (SFR) A microcontroller RAM register which has a specific, dedi-
cated function assigned to it.

BIBLIOGRAPHY

ASM96 Assembler Users Marmot‘, Intel Corp., 1992.
Automotive Electrics/Electronics, Robert Bosch GmbH, 1988.

Atttomotive Handbook, Intel Corporation, 1994.
Autotnotive Handbook, 2d ed., Robert Bosch GmbH,1986.

Corell, Roger J., “How are semiconductor suppliers responding to the growing demand for automotive
safety teatures?,” Iniei Corp, 1993.

Davidson, Lee S., and Robert M. Kowaiczyk, “Microcontroller technology enhancements to meet ever-
increasing engine control requirements," Intel Corp., 1992.

Fink,Donald G., and Donald Christiansen, Electronics Engineers’ Handbook, 3d ed. McGraw—Hi]1, 1989.

iC-96 Comptter User’s Manual, Intel Corp., 1992.
Introduction to MOSFETS and EPROM Memories, Intel Corp, 1990.

MC'S®-51 Microconiroller Family User's Manttai, Intel Corp, 1993.
Millman, Jacob, and Arvin Grabel, Microelectronics, McGraw—Hill, 1987.

Packaging Handbook, Intel Corporation, 1994.
Ribbons, William 13., Understanding Automotive Electronics; Howard Sams Company, Carmel, Ind. 1992.
8XC196Kx User’: Manual, Intel Corporation, 1992.
8XCI96KC/8XCI96KD User’: Manual, Intel Corp, 1992.

ABOUT THE AUTHOR

David S. Boehmcr is currently a senior technical marketing engineer for the Automotive Oper-
ation of Intel‘s Embedded Microprocessor Division located in Chandler, Ariz. He is a member
of SAE.

