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1EEE TRANSACTIONS ON INFORMA

‘The Collision Channel Withou:

Abstract—A model is proposed for the situation where M users share a
common communication resource but, because of unknown time offsets
among their clocks, cannot transmit their data packets in a time-sharing
mode and, because of the lack of a feedback link, can never determine
these time offsets and alsp can never be sure of the outcomes of their
individual packet transmissions. Each user is required to make his packet
transmissions at times determined by a protocol signal that is independent

of the data to be sent.

‘The capacity and zem—error capaclty regions of this channel are de-

termined for both the unsynchronized and slot-sy

d cases; these

four reglons are shown to coincide, It is further shown that a dense set of
rate points on the outer boundary of this region can be achieved in the
slot-synchronized case. Specific constructions of protocol sequences for
achieving these points are given, and the technique of “decimation decod-
ing” Is introduced for identifying the sender of each successfully trans-
mitted packet, Maximuni-erasure burst-correcting codes over an alphabet
of arbitrary size are constructed and shown to suffice for reconstructing the
packets lost in “collisions” when these protocol sequences are used.

I INTRODUCTION

HE USUAL PURPOSE of “random accessing” is to
reduce the large message delay that would otherwise

résult if many senders, who only infrequently had mes-:
sages, shared a_common communications resource on a

time-division mnltlple«access (TDMA) basis. Sometimes,
however, random accessing is necessitated where TDMA
might be preferred but is impractical because of the diffi-
culty in synchronizing transmission from the senders. Satel-
lite relay systems and mdbile radio systems are instances
where such synchromzatxon of ¢ data _packets may be well-

nigh impossible.

Random accessing leads inevitably to “collisions” when
two or more senders simultaneously transmit. It is often
thought that “feedback” is required in such systems so that

senders can retransmit packets after being notified via

feedback of their loss in collisions.

The purpose of this paper is to explore how much loss of
transmission capacity occurs when M senders are forced to
use random accessing because they cannot synchronize
their transmissions. This viewpoint requires us to rule out
the presence of a feedback link, as such feedback could
otherwise be exploxted by the users to bring their transmis-
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2) the unsynchronized case in which the time offsets
8,,8,, + *, 8, are arbitrary feal numbers.

We define fime slot n to be the semi-open interval
nN < t < (n + 1)T, where local time is understood. In the
slot-synchronized case, if user i sends a packet precisely
within his own time slot n, then it will be received precisely
within the receiver’s time slot n + 8,/T. Thus, if all users
align their packet transmissions within time slots, collisions

will result only when received packets completely overlap. '

In the unsynchronized case, however, the users have no

way to avoid collisions that result from only partial over-'

lapping of packets.

B. The Constraints on Channel Usage

The constraints on channel usage for the CCw/0oFB are
illustrated by Fig. 2 which shows the detailed structure by
which user i is permitted to use the basic channel of Fig. 1.
Each user has an independent information source which,
upon demand, produces a Q-ary symbol to be transxmttcd
to the destination.

-ary
INFORMATION
SOURCE

ENCODER

s, (t)
PROTOCOL
SIGNAL
GENERATOR|

Fig. 2. Constraint on channel usage for collision channel without
feedback.

x ()

In actual random-access systems, “information” is trans-
mitted only via the contents of packets and not also via the
timing of access attempts. To say this in another way, the
randomness of the “information” is not used in the selec-

tion of transmission times. Such a prohibition has the |
desirable effect that system performance does not vary-

with the statistical nature of the information transferred.
We wish to impose such a prohibition against the depen-
dence of starting times on information to be transmitted in

our channel model. We do this by requiring that each user .

have a protocol signal generator as shown in Fig. 2 whose

.output is a predetermined periodic waveform. that' com-
pletely specifies the transmission times for that user. This -

protocol signal s,(¢) for user i. has period 7, has value
either zero or one for all ¢, and takes on value one only
over semi-open intervals whose lengths are integer rhulti-
ples of T. The encoder for user i is required to emit
packets whenever s,(t) = 1 and is required to be silent (i.e.,
to emit the zero waveform) whenever s,(¢) = 0. We assume
that the users may jointly choose their protocol signals and
that their choice is known by the receiver.

It may seem strange that we have included an “on
demand” information source in our model, as one usually

-thinks of a random-access system as the appropriate way to

transmit many sources each of which only infrequently has
something to say. However, it seems desirable when possi-

_ ble to decouple the channel model from the source model”
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i 80 that “capacity” does not depend on the source. One ‘i
| | might view our “on demand” source model as a kind of
_1'5 worst-case assumption that all of the sporadic sources are

i || active and hence each has a non¢mpty queue of messages
awaiting transmission. Capacity can then be interpreted as
the best possible performance for heavy loading of the
system. Effectively, one makes such an “on demand” source
assumption when one asserts, for instance, that the capac-
ity of a time-divisioh multiple-access system is one packet
per slot. At bottom however, we must admit that our’
channel model is aimed primarily at determining how
| much loss results when M senders share a common chan-
nel but are prevented from time-sharing this channel by
what appears to be the mildest possible assumption that T\
prevents such nme-sharmg, namely, lack of a common time.: +-
‘| reference. <’.

1 It may also seem strange that we have required dest.

: terminisitic protocol signals (and indeed periodic ones) to
! i control access in our model of a random-access system.
‘;“/\“; Note, however, that nothing prevents user i from choosing
AN

region where zero-ei'rqr\ ; _ defi
such regions precisely, i cggvemem zto make use; of‘ :

Shannon’s concept of an ¥ "‘ppproachable” rate[1; p 614] 50

are approachable in’ the
numbers & and ¢,. the e

for tranemleelon durmg sucee

i actually uses the channel, ¢

2) a decoder can, from the ch nnei output sngnal reoon-
X

average paeket ert

! the first period of s,(t) as a realization of some appropriate of the vaIues of the ”

1. random process. The point is.that the random process that
i controls transmission time should not depend on the infor-
. mation source; thus we can conveniently consider that any
i random experiment' used to produce. the protocol signals
" has been carried out in advance of performmg the random
\expenment used to produce the output sequences of the
1 information sources. We have required the protocol se-
' quences to have finite periods for ianalytical convenience,
* but we have placed no finite bound on these periods so this :
is no real limitation on the model. . each’of thej
The purpose of the encoder in; Fig. 2 is to code the any of, the capac,~
output of the Q-ary source into packets for transmission so  above sau f1 \
that the receiver will be able to reconstruct the output of -
this source from the received signal y(f) with an accept-
ably small error probability. The receiver must, of course,
so reconstruct each of the M sources.

.ubo of t.he unsynchro- g )

q

Anthe.g '«Tiﬁ‘l.ay'a.s,“fu.cxcer?t
that e c = 0 is’ sp ified The. capacxgy regton and. zero-errbr

R nsn

ity (or zero-error capaclt
III. CarAcCITY REGIONS AND MAIN RESULTS of ‘this region sucl}j'th #

region " for "which R'<
capacity” (or zero-erre
specifi cation of 5ts'outer boy fin»

In proving coding theorems for the CCw/0FB, we shall -
always assume that the “on demand” source for each user
is a Q-ary symmetric source (QSS), i.e., a source whose next
output digit is equally likely to be any of the Q possible
values, independent of ‘its past history. The QSS has an

7“ information rate of log,Q bits per symbol or, eqmvalemly,
one packet per symbol.
For the CCw/0FB, it is convenient to define Lhe duty
factor p, for user i as that fraction of its period during
i which the protocol signal s,(¢) is nonzero, i.e., the fraction note‘ om t
\" | of time during which user i is actually transmitting packets. i (p C.oC e
'| Of course, 0 < p, < 1. Note that if user i is transmitting 'The i m"é B
information from his QSS at a rate R, packets/slot, then of the definl uo:%s of the
he is actually transmitting ififormation at a rate R,/p,
~ || packets/slot durmg those times that he is actively using the
channel.

In general, by the t‘capacity region” of any multiuser
channel, one means the set of all joint user rates such that-
it is possible to communicate with arbitrarily small (posx-
tive) error probability at any joint rate inside this set, but it

Ve EUSE e Refpe

\ ' e
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The region € is not convex for any M > 2, as follows
from the M = 2 case by considération of that portion of
the outer boundary corresponding to probability véctors
with p, = 0 for 3 < i < M. This is the first instance known
to us of a capacity (or zero-error capacity) region that is
not convex.! As Shannon has pointed out [1}, all capacity
(and zero-error capacity) regions are convex if it is possible
to time-share the coding schemes used to approach individ-
ual rate points of the region. The fact that ¢ is not convex

L4
—~Ttp

for the M-user CCw/0FB when M > 2 must thus be seen [|{ ;

as a conséquence of the fact that the lack of a common
time reference prevents the users from time-sharing differ- ;3.

r

s

A rate vector R in a capacity (or zero-error capacity)
region is said to be achievable (cf. [5, p. 5]) if R. satisfies
the above definition of an approachable rate with the
change that & = 0. Interior points of a capacity (or zero-
error capacity) region are always achievable, but. boundary
points may or may not be achievable. Our second' main -
result”is that, for the slot-synchronized CCw/oFB, the
outer boundary is everywhere dense with achievable rates.

Theorem 2: Every open neighborhood of every point on

" the outer boundary of the capacity regions ¥, and %,
" - contains achievable rates that also lie on the outer

boundary.
In a random-access system, one is usually most in-

terested in the “symmetric case” where all users are signal-

ing at the same rate, Thus, we define the symmetric capac-
ity, Gy, Of the M-user CCw/0FB to be the maximum rate §, s
r such that R = (r/M,r/M,---,r/M) is in €.-Note:that

if there is an r such that C = (r/M,r/M, -+, r/M)ison.
the outer boundary of ¥, then C,,, = r. But, from (3) and
(4), ‘we ‘see that the choice p = (1/M,1/M,--.,1/M)
gives such a C. This proves all but the final part of the
following corollary.

Corollary to Theorem 1: The symmetnc capacxty of the_.
M-user CCw/0FB 'with M > 2 (whether unsynchronized
or slot-synchronized and whether for arbitrarily small posi-
tive error probability or for zero-error probability) is
Moreover, the rate point (Cyy/M, Coy/ M, -+, Copri/ M)
is achievable in the slot-synchronized case. )

From (5) one calculates, for instance,

1 M-1
(1 s ﬁ) packets/slot.

1/2, M=2
. = |49 = a4, M=3
K = 3874, M=10
= 3678, M = 100.

Moreover, C,,,, decreases monotonically as M increases
and REReT

Covm =* as M - 0.

sym ‘;'

()

1The “achievable region” of Wyner's wire-tap channel [4] is not convex,
but this is not actually a capacity region as one of the coordmates is not

an information rate. . 0,
e ~

/(‘,‘(.

e’

l
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The quantity 1/e is, of course, the well-known maximum
throughput of the slotted ALOHA algorithm (6] for in-
finitely many identical users. Thus, (6) could perhaps be
expected for the slot-synchronized case, although ALOHA
algorithms make essefitial use of the feedback that is not
present in our model. That (6) holds for the unsynchro-
nized case seems truly surprising because the maximum
throughput of the “pure” ALOHA algorithm [7] is only
1/2e. '

We remark here that C,
Ci+ Cy+ --+ +Cy, for any point C = (C,Cy, -+

is also the minimum of
»Car)

: on the outer boundary of €. This confirms the intuition
¢ about random-access systems which claims that a given
; total amount of traffic is most difficult to serve when it is
* equally apportioned among the M users.

IV. NONAPPROACHABILITY OF RATES OUTSIDE €

We now wish to show that rates outside the region €, as
defined in Theorem 1, cannot be approached for the
CCw/oFB in either the slot-synchronized or unsynchro-
nized case and for either error probability criterion. From
(2), we see that it suffices to show that points outside ¥
cannot be approached with arbitrarily small positive error
probability in the slot-synchronized case. Thus, for the rest
of this section, we consider only the slot-synchronized case.

Consider now any choice of protocol signals and codes
for the users. Without loss of essential generality, we may
assume that the period 7, of the protocol signal s,(¢) is a

rational multiple of the slot length T, for 1 < i < M. Thus, .

we can write 1, = (m,;/m)T where m, and , are integers.
Then NT, where N = mym, -+ m,, is an integer multiple
of each 7,. Thus, for all ¢,

5;(t + NT) = 5,(2)

forl <i< M.

For purposes only of our proof, we now impose a
fictitious: probability distribution on the time offsets
8,,8,,% <+, 8,,; namely, we specify that these are indepen-
dent and identically distributed (IID) random variables
that are equally likely to take on-any of the N 'values
0,7,2T,- - -, (N = )T. It follows from (7), from the defini-
tion of the duty factor p,, and from the fact that s5,(¢) is

“nonzero only over semi-open intervals of lengths which are

/“\/“ 1'(‘\7 oo

integer multiples of T, that
|
E[s(t-8)] =

for every time instant ¢,

At any given time instant 7 on the receiver’s clock, user i
will be the only user in the act of transmission if and only
if

®

5(e - 81)}:11[1 "'-"j(’ - 6])] =1 9

Moreover, the left side of (9) will otherwise be zero. Thus,
defining 7, as the total time within an arbitrary semi-open
interval, [£o, fo + NT'), @n the receiver’s clock of length NT

" during which the receiver is receiving noncollided packets ;

from user i, we have
T j‘°*’" (- s,)l‘[ [1~s,(:~8)]as (10)

A A SN
-\ e Y Vamagree 0 a " lbﬂf\’ '“‘ a feA r\{ "“ (
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" of user i can-affe&:t the re

Ul

| tion " from his: QSS ;at

the mequahty is requxred by’ the fact that the satxsfactxon of
(9) for some t does not ensA e that the packet bemg sent at
receiver time ¢ by user i will not. experiencé a “p;u‘hal”
collision. (Note that the users need not ahgn their packets
with a time slot even though the channel i is slot-synchro~
nized.) Taking expectations in (9)- and makmg use of (8)
and of the independence of. §,, 8,,:+,8,, glves

el saggf=st-sl]-p -0
s (11)

Now takmg expectauons m (10) and usmg (11) gwes

E[T}] SNTP:n(l "PJ) (12)
For any given i, it follows from (12) that there must'be
some specific choice of 8,,8,, 'b‘M' such that

TGS NTII(-p) (13)

and, indeed, it was only to amve at this oonclusxon that we |
introduced the flctmous probab ly dlstnbutxon on
81) 82’ * sM

We now recall that accor ng tb thc modcl of the
CCw,/oFB as given in Sectxon II “the! spec1fic time intervals
over which- the: received: s1gna1 is indicating exther “1dle” or.
“collision” are; dctermméd'e (
and the time offseéts

i0f
: signalat most durmg'the T
seconds of the interval [fo,fo'+ NT)], when the receiver. is
receiving noncollided packets from usef . Tt follows from
(12) that, given i, there isa. épec;ﬁc ¢choice of - 81? 8g5e 58
such that the recewcr recewes oncblhded packets from

L= pj) packets/slot. -
eme who Jdenuﬁep

r'Suppose: further that there
m advanoe, for both user I

has, with this extra he}p_, 1
receiver with a capacity'of-
most pI1; . {1+ ~P))’ ‘uses
oodmg theorem for-a’ D]

cannoy. send anforma-
with" arbxtranly small.
d ess of the va.l s

positive error probabxlxt
81,85, 8,,,, unless

" independent of &, unlcss (14)i is satlsfxcd for i'=1;2,

fr £ 8y

L

It follows “that" R = (R, R, 3
proached with atbmanly small posxtive crror probabmty,
M
To complete the proof: that, points’ outside. cannot be .. §
achieved, we need only show tha; everyR 2.0 that satisfies
(14) forlgis M, lies i m th e region ¥ defined in Theorem
1, ie, thatif R satxsfies (14 forl'<.i s M for some duty_ :
factor vector p, then Rialsc S §-90
for .some: probab, Y

lemn
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Lemma 1: ot ‘atiy (Pl Do ,pM) ‘with 0 < p’

< 1, there is a~ probabiilty vector p= (Py P2s***s Pai)
such that SR Y '
p,I'I(l'—P,)SP:n@—P;)_' l‘sisM.

V ACHIEVABILITY R.ATBS ON 'rma OUI‘ER
i «,BOUND RY OF € . ’

In - this secuon, ve: w111 gwe ‘a’ constructive proof of

. Theorem 2.’ In. the followmé séction, we shall use ‘the
_results of thisséc ) am‘a sxmplc proof of the direct
part of Theorem 1L g

- A Prellminartes

& receiver's clock:
. of the slot. length‘ K

:.‘Where A denotes a-collision of two or riiore packets. In this
manner, we obtain a‘ fully discrete representation for the
slot-synchromzed CCw/oFB Note that the channel input
iifis-Q + 1-letters and that the
tains Q + -2 letters. Hence-
. of time mstant n,,” rather

than thie. “nth Atime! .

We assume ‘for-convenience, that thc output alphabet of
the QSS ‘of each s so:the set. {0,1,-5,0 ~ 1}. We
séek then to choosé a protoc:ol sequence and block code for
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each user such that, regardless of the values of the time
offsets, the receiver can reconstruct each source output
sequence without error. Moreover, we must show that the
joint rates R that can be so achieved are dense on the outer
boundary of the region € dcfined in Theorem 1.

. B. Protocol Matrices and an Example

We define the protocol matrix S as the M X N binary
matrix whose ith row is the protocol sequence s, of user i.
For instance, with M =2 users, and protocol sequence
periods Ny = 2 and N, = 4 with least common multxple
N = 4, we could choose

1010
S[1100‘ (15)

We shall be interested in the received sequence over a span
of N consecutive time instants, which, with no loss of
essermal generality, we can take to be time instants
1, 2 -; N. We write

Yyl

Y = [Y, Y, e
to denote this received N-tuple. We see from (15) that, in

case the time offsets are §, = 8, = 0,

Y" [A’PArPByA]’.

i.e., that slot 1'is a collision slot, that slot 4 is idle, and that
slots 2 and 3 contain packets. From (15), we see further

. that packet P, was sent by user 2 whereas packet Py was

sent by user 1.

Suppose next that 8, = 5. This delays the periodic pro-
tocol sequence of user 1 by 5 slots, so that it will appear to
the receiver that user 1 is actually using the protocol
sequence [0,1,0, 1] in slots 1 through 4. Similarly, if 8, = 3,
it will appear to the receiver that user 2 is actually using
the protocol sequence (1,0, 0, 1]. Thus, it will appear to the
receiver as if the modified protocol matrix

st=[3 4 !

i$ actually in use. In particular, we see that

(16)

= [P, Py, A, A] —

where the packets P, and Py are from users 2 and 1,
respectively.

As we have observed from this example, a time offset (or
“delay”) of §; slots corresponds to 8, right cyclic shifts of
the protocol sequence s,. We write s,[8,] to denote the
sequence obtained from s, after 8, right cyclic shifts and,
as we have already done in (16), we write S[8] for the

.effective protocol matrix whose ith row is s,{8;]. Note that

S = S[0]. Because s, = s, ,,y for all i and n, it follows
that s,[8,] = 5,[8, + N]. Thus, given N, we can and do
hereafter restrict ourselves to the condition

0<8<N 17)

without loss of essential generality. Because of (17), we see
that there are only N values of 8 = (8,,8,,-*+,8,,] to be .
considered, and hence at most this many distinct effective
protocol matrices.

For the protocol matrix S of (15), the reader can easily
check that all 16 choices of 8 result in an S[8] such that

Pet., Exh. 1018, p. 6
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~ the'resulting ¥ = [Y), 1,, Y3, Y] always contains one colli-
sion slot, one idle slot, and one packet from each of.the
two users. Moreover, the packet from user 2 is always
adjacent to a collision slot [provided we count slot 1 as
adjacent to slot N] whereas the packet from user 1 is never
adjacent to a collision slot. Thus, the receiver can, from
examination of ¥ = (Y,,7,,Y;,Y,], uniquely identify the

sender of each of the two successfully received packets in

this sequence regardless of the values of the time offsets.
Suppose further that each user employs the simple rate
r = 1/2 packets/slot repeat code in which each informa-
tion packet from his QSS is sent twice. Precisely one of
these two packets will be correctly received, and its sender
identified, as the other packet will be lost in a collision.
Hence, the receiver can perfectly reconstruct the output

..sequence from each of the two QSS’s. Note that user i is
sending information! packets at the rate R, = 1/4
packets/slot for i = 1 and 2. (We note from (15) that the
duty factors are p; = p, = 1/2, which, since the code rates
are ry =r, = 1/2 packets/slot, also implies R, = p,r, =
1/4 packets/slot for i = 1 and 2.) Thus, we have demon-
strated a coding scheme that achieves the equi-rate point
C=(1/4,1 /4) on the outer boundary of the zero-error
capacity region of the . two-user slot-synchronized
CCw/0oFB.

In the following subsections, we develop the appropriate
generalization of this example. We shall show, in fact, how
to achieve, with zerd-error, any C = (C,,C,,++,Cy) ‘on
the ‘outer boundary of € for which the corresponding prob-
ability vector p = ( Py Py
components.

C. Construction of Protocol Sequences

Any duty factor vector p = (py, py,- -+, pay) With only
rational ‘components may be written as p = (q,/9,
42/qs * *s4n/q), Where gy, ¢,,¢ <+, 44, are nonnegative in-

tegers and ¢ is a positive integer that we assume is chosen °

as small as possible. We shall construct a special protocol
matrix S for this p, using as an intermediary a matrix with
g-ary components. We write 4,/ to denote the M X g
- matrix whose jth column is the M place radix-g represen-
tation of the integer g — j, with the least significant digit
at the top. For example, with p = (1/3,2/3), we have
M =2 and g = 3 so we first construct
2 1,002 1 0 2 1 0

Az = [z 2211100 o]' (15a)
We then obtain the desired protocol matrix, which we
denote sxmply by SMq [although it also depends on the
values of ¢;,q5,°*, qM], by mappmg, within the ith row of
Ay, the g-ary digits ¢ — 1,9 - 2,---,9 - g, to 's and
mapping the g-ary digits ¢ — ¢, — 1,-- -, 1,0 to zeros. Con-
tinuing, our example, we obtam-(from (18a) and the fact
that ¢_= 1 and ¢, = 2) the protocol matrix

100100100
523 [11}111000](1%)

We write 4,,,[8] t\denote the matrix whose ith row is the
vector obtamed by 8, right cyclic shifts of the /th row of

IEEE TRANSACTIONS ON INFORMAI. . . 3

*y Par) Of (3) has only rational

AM,, Notc that SM,,[SJ is. ob i
g-ary to, bmary digit. ma

Lemma 2: For,; evcry 6
SM,,[B] can be obtamcd from qu,
columns.

'by a permutation of 'f

- ‘Proof:’ Itsufflces to prove that the colimns of A Mq[ﬁ] ;
are a permutatlon of those of 4, pty: To prove this, we note
that the first row:of Ay, ‘(periodically repeated-—-as we
shall always mean when we speak ‘the “period” of finite *
sequences) is a sequence of period g in which each g-ary
symbol appears. But the. symbols in the second row of 4, Mg
occur in runs of ¢ 1denucal ‘symbols ‘and ‘this row has |
period q2 Thus, ng matter how:the first and second rows
ows of the resulting " }¢
f atrix.in which each. &
2-place g-ary numbcr appears ‘as '-coluhm and in which
the columns are periodic with penod ‘g% But the symbols
in the third row of AM sgeeur. in ‘runs of - ¢* identical
4% Hence, the first three
rm=:a_'subn'lat:ix whose
which. each possxble colum/n'
‘we' conclude ‘that every ‘4
ly’ once’ as a: column of’

rows of  A,,.[8] must, ¢
columns have period q’» and |
appears. By ‘a* snnple
g-ary M-tuple mus; pp

For example, from (lﬁb)
Y= [A PA,

where the packets PA :
whereas packet I"g 'is fro
will always’contaift
successful packet§ fro!
from user:1, rcgar,dless.
protocol matrix Sﬁ of :(18b) is' us

of N, we shall mean'
of lcngth ‘N/d ob-
tained by, selcctmg every . d th digit of. the sequence, com-
mencing with the kth digit Tl)c follo ving lemma is the key , |
to recogmzmg the sende . ssfully- received packels,
' ecuve protocol matnx

Sual8], whnch has. N= "igo !
d=gq/ thhlsj<M§.nd forevery.k wnthlsksd 813
the kth phase of the dth: decxmatlon of the recelved vector ¥

=Y, Yz’ : YN‘] hﬂs
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q so the kih phase of;
-S(8] must have the sai
and this is precxse_,l' th

5

amng of property 1).
we -note_that, 1[ d-= q’ where

row of AMq 1s1ust the ( ‘) h row of Apr—j,q The matrix
“iAp,[8] inherits this property,in. the sense that ‘such a dth
. decimation of its ith ro is the (jg I)th row of Ap_y (8]
for some offset &, It foliows, that there must be some slot
- in the_dth decimati ‘q/ wheré thc correspondmg
: column of A4 mal® y
M Because q

I

'the;recely‘ T can identify the
€cei edmacket contained in
11 the protocol matrix Shrg is used.

:i:.The :caseq, = ¢, and

:-" hence p, = q,/q = 1' is mterestmg‘only for: those ttmally

1t mmg from user i
'bkett,s in those newly formed
idle slot, If, § = = M, stop, Other-
| a' pedt thls step.

PP at M= 2 users have the
M (18b) ‘and - that 6 is such 'that ‘the

e
-

protocol matrix. S,,
,.recenved vector 1s :

Decxmatmg by q = 3 as called for in step 1), yields the
_three phases. S

A, P,,,P,,]},;[If,,A‘.‘A] [A P, Pgl.

‘Only the second of these phases contams no idle slot; thus,
sonly packet P, is idefitified as: having been sent by user 1.
Of course, because ' M, = 12, .the ‘other four packets in Y
ere -sent by user. 2,1;But Ain: prmclple, we find this out
ccording to step 2), ﬁy decimating by q= 3.the first and
ird of the above phascs to obtain the six phases -

O TAL AL [P AL (P LR

AT :
(The packets in thcse phases thh no idle slot, i.e., packets

nl z.eros in rows j+1,j+ .

1997

Py, Pp, Pe, and P, are now identified as havmg been sent -

by user 2. A}

It must be pointed out that, although decimation dccod-,
ing identifies the sender of all successfully received packets,
it does not in general ideqtify the position of such a packet
in the (unshifted) protocol sequence of the sender. This
knowledge is not always required to decode the block code
that the user has employed for his packets, as the example
in Subsection V-B shows, but it is required in general.
Thus, we need some scheme by which such packet location
information can be obtained by the receiver. Note that it is
necessary to locate only one packet for each user, and note
that this packet location information allows the receiver to
construct the effective protocol matrix S,,,[8] and thus to
identify the subset of users participating in each collision
contained in Y.

.E‘ Finding Packet Locations

We assume that, for each user, there is some finite time
in the past when that user first began to transmit informa-
tion from his QSS, and we further assume that this user
transmitted the zero packet, P = 0, in all previous slots
into the infinite past in which he was required by his

. protocol sequence to send a packet. Note that user i sends

Np, packets during one cycle of his protocol sequence s,;
we shall call these Np, packets a frame. When user i is
ready to send information from his QSS, he first sends the
frame [1,1,:--,1] consisting only of packets P =1. He
then sends successively the following Np, frames contain-
ing one 1 packct 10,---,0,0), {0,1,---,0,0],---,
{0,0,++,1, 0], [o,0,---,0,1}.

The receiver will see only 0 packets, idle slots and
collisions into the infinite past. As soon as the receiver
identifies, by decimation decoding, a packet P =1 from
user i, he begins to count the number of slots, taken at
intervals of N slots, until packet P = 1 again appears in
this slot. This number is the location of this slot in pser i’s
frame, and this allows the receiver to locate this slot in tiser
i’s protocol sequence.

It remains only to formulate an appropriate coding .
scheme for user i so that he can code the information
desired rate and in such a way that the receiver can always
correctly decode these packets.

F. Coding the Packets

The matrix 4,,, has ¢,I1;,,(¢ — g;) columns in which
the entry in row i is a digit equal to or greater than ¢ — g,
but in which the entry in each other row j is an integer less
than g — g;. It follows then from the construction of S,,,
and Lemma 2 that, for every 8, the matrix S,,,[8] will be
such that Y contains exactly q,I1;4,(¢ — g)) succcssfully
received packets from user i. Thus, provided we can find a
coding scheme that allows each user i to send one information
packet without error to the receiver for each successfully
received packet from that user, user i will be transmitting
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with zero-error probability at the rate
)
R, = =4, -q.

= P’,I;:I,(l ~ p;) packets/slot, (19)
where we have used the fact that N = ¢M and that the
duty factor p, is given by p, = g,/q. Thus, our proof of
Theorem 2 will be complete if we can find a coding scheme
that meets this proviso.

Note that the packets from user.i that are mvolved in.

~ collisions are equivalent to “erasures” for the decoding of

packets from user i. We assume that user i employs a block
code of length n, = Np, to code his £, = NR, packets. This
(n;, k;) code must be capable of correcting any of the
patterns of n, — k, jerasures within a block that are con-
sistent with S,,,{8] for some 8.

If Q = 2" for some m such that Q > n, ~ 1 (as mlght
be expected in practxce) the coding problem for user i is
trivial in principle. He can simply use a Reed-Solomon
(RS) code over GF (2), possibly extended ‘to length @ + 1
[10}. Such an (n,k,) RS code has minimum distance
n;— k,+ 1 and hence can correct every pattern of n, ~ 'k,
erasures. But this is not a satisfactory solution for our
purposes, since we have insisted that the packet alphabet
size Q@ can be as small as 2. We thus must construct
appropriate codes over the alphabet {0,1,---,0 — 1) for
any Q 2 2. In fact; we shall see that it suffices to correct
bursts of consecutive erasures. The following lemma is the
key to our coding scheme.

Lemma 4: For any integers Q, n, and k with Q > 2
and 1 < k < n, there exists an (n, k) systematic lineat
code over Z,, the ring of integers modulo O, that corrects
all closed-loop erasure bursts of length n — k.

By a “closed-loop” erasure burst, we mean that position
1 in the block is assumed to follow position n so that a
burst can begin near the end of the block and continue into
the beginning of this same block. By an (n, k) systematic
linear code over Z,, we mean that the first & symbols in
the block can be arbitrarily chosen (the “information sym-
bols”) and the remaining n ~ k symbols (the “parity sym-
bols”) computed as linear combinations in Z, of these
information symbols. We shall prove Lemma 4 by con-
structing the code whose existence is asserted. First, how-
ever, we show how these codes can be used to obtain the
information rate R, of (19) when the protocol matrix Sy,
is used. -

For convenience, we refer to the code described in
Lemma 4 as a maximum-erasure-burst-correcting (MEBC)
code. We now show inductively how to nest such MEBC
codes to obtain the desired coding system for user 1.

User 1 will actually use ‘h mdependenl but identical,
codes of block length n = ¢ ~*, one of which will be used
to code the packets sent during each of the g, phases of
the gth decimatiorof s; that consist only of ones. We
describe the code used by user 1 for the packets sent during
phase 1 of the gth decimation of his protocol sequence.

~pothesxs, can be done. :

" then oneo ains the mdtrix:

AlﬂfﬁORY,"V:()L;‘ﬂ-31;il‘{O<'2: Marc 1985 {4 SSE'

We see, from the fact that each phase;of the gth deci-- fifact
mation of the second row of A, has period g, that, in any ‘|
q successive slots during phasel of the ‘qth decimation of ¢
user 1’s protocol sequence;” the' packets from user 2'will
occur as a (closed-loop) burst of, length gy packets occur-
‘ ff as we now assume to]

inan(n = q, e qz) MEBC then. the decoder will be i
able to deterrmne all user’ 1’s packets eorrectly, provxded 3

i "=IT-1M @P

code has been’ found for’ user 1's packets dunng phase 1 of

his protoeol sequence 1hat z}llow the’ decoder to correct all if}
7 M~

Yifon
this to an (n = q” ! ‘l_c' ﬂ,_,(q qj) code " that will | el
correct all ‘erasure patte 1t are: possxble when ‘user.

- l"lj_z(q qj) It re: .7&-
ecoder can .correct +any

€ q e 3y
just described, first- formg ach'phas & q” =2th decx-' ;
mation of the recelved cod ord ut” ach such phase 1s

an erasure burst of length ;
constructxon, the packets fro_ use

an (n =g, k= q = g, code in’ §uch a; phase lI’hus, ’th v
decoder can at the qutsét correct‘all erasures resulhng from, :
collisions mvolvmg user M would not also have been

We now show. that essenually the same codmg strategy ;
just developed for' user 1 canbe used by all :M-users: To:
see this, let a denote any. chosen: g-ary digit, i.c., any digit
in' (0,1, -+, =11} modifies the matrix A,y Airst }
by. deletmg all columns hxch the  entry infa chosen’ ro?/,
say row 1,is no; 3! 1

4 M_’, +This follows from’ the

ML J @ttt
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fact that- the -columns: of%AM contam the M-place g-ary
numbers in' natural ordér.:It: is then easy to.see that the
_coding strategy just developed for user’l’ apphes directly to
‘user- / with the roles of usérs 2;3,++ ¢, M iin the former
;schieme bemg played by, users 1,2, +, i =~ Li+ 1,--+ M,
respectively, in the coding; scheme for user 7, It 1s only
‘necessary that each codeword of the length n=qg*"! code
for user i“be placed in thosé sidts in whxch the uh row of
A contains the same digitia. "

It remains finaily ‘construict the MEBC code described
‘in- Lémma 4..We do"this by specifying ‘the " systematic
; generator matrix G for: thls code, where G is a kX n
‘matrix with entries in ZQ = {0 1,-++,0 = 1} whose first k
" colimns form an idehtity matrix. In fact, the entries in G
;will take values only in'the siibset (0,1} of Z, so that the
iform of G does not depénd on the particular value of Q.
k! Our construction is/perhaps bést explamed by an exam-
*ple, for ‘which we choo 4 and k=27, We first
tdivide k = r, into 7’ 'to obtdin the quotient go,=2 and
remamder =10, We {hen diwde r; into ro to get a new

wﬂof Iqo matnoes L; then,

i rmed by startmg
i-column, of g, matnoes y

mg from the tpp dl

n, k) code thét can

f stematic generet )
of ength n- k 1s not

; oé"“rrect all closed-loo

ponems. ,But.every open nexghborhood of every probability
éttor contains probabﬂlty vectors with only rational com-
L ents Moreover, the, mapping (3) from probabxhty vec-
%lors p_to points C on:the outerboundary of €.is continu-
It follows that every open neighborhood of.every point

201

C of the outer boundary of ¥ contains outer boundary

points that correspond to probability vectors with only-—-—-

rational components and that thus are achievable with
zero-error probability, which is the assertion of Theorem 2.

-

VI. APPROACHABILITY OF RATES IN &

To prove the direct part of Theorem 1, we see from (2)
that it suffices to show that any rate vector R in the region
% defined in Theorem 1 can be approached without error
for the unsynchronized CCw/oFB. However, we first show
that such R can be approached without error for the
slot-synchronized CCw/oFB, and then we give a simple
argument that reduces the unsynchronized case to the
slot-synchronized case. .

A. The Slot-Synchronized Case

Let R be any vector in € as defined in Theorem 1."Note
that R can be on the boundary or even on the outer
boundary of €. But, in any case, there must exist a point
C’ (possibly R itself) on the outer boundary of € such
that R < C’. Hence, for any given positive §, R — 81 <
C’. It now follows from Theorem 2 that there is a point C
on the outer boundary of ¥ that is achievable with zero
error in the slot-synchronized case and for which R — 81
< C. Therefore, R is indeed approachable in the slot~
synchronized case. .

B. The Unsynchronized Case

Since we are dealing with constructive coding schemes,
we can and do enforce the provision that all users must
align their packet transmissions to fall within time slots on
their local clocks, even in the unsynchronized case that we
now consider. Of course, because the components of § are
now arbitrary real numbers, received packets will in gen-
eral not fall into time slots on the receiver’s clock.

By virtue of our restriction on packet transmission, we '
can still describe the protocol signals in the unsynchro-
nized case by protocol sequences and protocol matrices as

-+ in Section V. (The slot length will again be taken for

convenience as T = 1.) The following result, because of the
arbitrariness of m, shows that any rate approachable
without error in the slot-synchronized case is also ap-

proachable without error in the unsynchronized case. We

write 0™ and 1™~! to denote, respectively, a string of m
zeroes and a string of m — 1 ones.

Lemma 5: Suppose that the protocol matrix S, together
with a given code for each user, yields error-free operation
at the joint rate R on the M-user, slot-synchronized,
> CCw/0FB. Let the protocol matrix S‘™ be constructed
from S by replacing each zero in S with 0™ and each one
in S with 1™~10, where m is an arbitrary positive integer.
Then the protocol matrix S¢™), together with interleaving
m ~ 1 times the code previously given to each user, yields
error-free operation at the joint rate ((m — 1)/m)R on the
M-user, unsynchronized, CCw/oFB.

Pet., Exh. 1018, p. 10



202

For example, with M = 3 and taking S to be the proto-
col matrix (15), we would have » )
0 0 0 ﬂ

0 0 0 0

sm=[1'1 000 0 O
110 0
(20)

o101
We saw in Section V-B that the protocol matrix S, together
- with r = 1/2 repeat codes for both users, yielded error-free
operation at R = (1/4,1/4) on the slot-synchronized .

11
00

CCw/oFB. Lemma 5 asserts that the protocol matrix S

of (20), together with two interleaved r = 1/2 repeat codes
for each user, will yield eérror-free operation at R =
(1/6,1/6) on the unsynchronized CCw /oFB.

To reduce the unsynchronized case to the slot-synchro-
nized case, we argue as follows. If user i were the only
active user in the unsynchronized case, then his packets
would fall into “virtual time slots” at the receiver whose
edges would occur at noninteger times because of the time
offset §, that is in general not an integer. Fig. 4(a) il-
lustrates this situation. The packets of another user, say
user j, would not be aligned with these virtual time slots
for user i, as illustrated in Fig. 4(b), because §, — &, will
not in general be an integer. However, the effect of these
packets from user j on the packets of user i is precisely the
same with regard to idle slots and to successes for user i as
if the packets from user j were advanced (by less than one
slot) in time to alignment with the virtual time slots for
user i and then an additional dummy packet were inserted
after each run of consecutive packets; the equivalence is
illustrated in Fig. 4(c). We can summarize these observa-
tions as follows. Provided that all M users align their packet
transmissions with time slots on their own local clocks, then,
in the unsynchroinized case, the resulting pattern of idle slots
and of successes by user i is the same as in the slot-synchro-
nized case, provided that a dummy packet is inser_ted after
each run of consecutive packets from every user j for which
8 — 8 isnotan integer. In what follows, we shall make the
pesmmlstlc assumption that 8, — §, is not an integer for all
j # i when considering packet transm:ssnons from user i.

(@) l ] I

+3

+2 n=4 4

T
i
I
l

(b)

__l__-_-_-- s

T
'
I
1
I

t

©)

Fig. 4. (a) Packets from user i. (b) Packets from user j, as scen on
receiver's clock. (¢) Equivalent packets from user j in user {’s virtual
time slots.

-

As an example, when the protocol matrix S® of (20) is

used, the packet transmissions from user 1 can be studied

by replacing S® with the matrix

'S@nn[l 10000110000
1111111000000
(21)

1EEE TRANSACTIONS ON lNFORMATlON ‘i‘ﬂmm{,’ VOL. 1T-31, NO. 2, MARCH 1985/ :

' sense, the “time statistics

in whxch the runs of ones’ m the second row of S® have
been' extended by -one. Note' that, if: we take third deci
mations’of the. columns of S@1;: the three: phases are Just
the followmg matrices: :

1010 [o 00 0

P 0 ] ‘
1 1 o 0 LT 0 ol 11 1.0 or

The first m — 1.=2 of these matnces are just the ongmal
protocol matrix S of (15):that was used to construct S©,
By the construction of Lemma 5 each of these protocol’

The truth of Lemma > -3
restrict ourselves to con
the effect of other uscr'

, S, are] ‘all just the :
original matrix S wlule the last phase is a matrix whose
ith row is all zeroes. ln each of these first m'— 1 phases,
user i, by hypothesis, uses. a eode that guarantees error-free
coding at a rate R, packets/slot User i is silent in the last

at the rate ((m - 1)/m)R, packets/slot ‘as’ clauned ing
Lemma 5.

A remark on the:decoding . process is in order. Upon
seeing an uncollided packet, the receiver will extrapolate
virtual t1me slots to align'wi i edges, then de—mterleave

the usual decodmg pr
lowed by decoding . of.:

succeed in general only ‘f
i who sent the original :

We have: already ment n g
@ of Theorem 1 coincides w;th th ',-Aacluevable throughput
region” determined by Abramson'[8] (cf. [9, pp. 365-369]).
for an' M-user slotted’ ALOHA system Abramson' consjd:
ered the situation where user i'sends’a; packct in each! slot :
with, probability, p,, mdependent'pf previous transmxssmns‘ :
This corresponds in- the - languagev of ‘this paper: to‘using .
stochastic protocol sequences, each of which is an indepen-
dent identically: dxsmbuted (1ID) ‘sequence.:In- a icertain
*'of ‘the- protocol sequences’ con-
structed in Section V: are‘the samé as- the ‘ensemble statis- |
tics,'of ' Abramson’s -stochdstic' protocol sequence, ‘but the
former have addxtional’structure ‘that permits the receiver |
to identify the’ sender' seach. successfully ireceived- packet
and that guarantees that the ‘number of successes is- mde-
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. i ble commumcatlon thh_
stochastic protocol sequences iseeins to. necessitate header
information .in: pacfcct to:d ntify: their::serider. and also
_séems to rule out erfor-freé 'perauon when therc is no
_fecdback link; "« b

. Tsybakov and M1 1
achiévable throughpu

0 [11] showed that Abramson s
egion ' ¥ comc:dcs with. the
““crgodxclty region” -of slotted ALOHA system with
feedback, i.e., wnh the regxon of joint user rates for which
‘the retransmission proessés can_be, stablhzed It -seems
somewhat surpnsmg that: prccmely the:same .set of rates
“can be dchieved’ error-free Mnthou! feedback, as we have
“shown. : : ,, D

+.The only exphcxt pnor work ori-random accessmg wnhout
.feedback of .which. we are - aware, is that of ‘Htiber. and
Shah [12], who were:intetested in applications ‘to alarm

systems. They considered the _fully unsynchromzcd case .

_with equal ‘user tates. They used IID protocol sequences
-and achiéved a symmetiic throughput approachmg 1/(2e)
.packets/slot -as the number of users approached infidity.
Lemma 5 of .our paper: suggests that, to-approach a
: throughput of '1/e packets/slot with ‘stochastic protocol
;sequences, one must have stahsucal dependcncc of succes-

w constructxons in 'tlus paper were
Lorally preSented thh' detajiéd proofs by, the first author
:on two'occasions in- 1982 [2); {13]. However; the abstract of
[13] gives only the symmetnc capacity. results-—tha exten-

slon to. the fu]l capac:ty Té

mdependently denved' ther [y pjacxty rregxon '«? for the

mptxo
it

i this’ "paper, such as a
nature of the protocol

mdependemly suggested th" sa.me'protocol sequences for

S 1
(o)

Pnom: OF LimMa 1

_ The claim of Lemma1 is trmally true if p =0,if p) = 1 for
some i, or if p’ has only! ‘6nenonzero .component. Thus, we
“festrict our attention to ‘the casé'where 0'<'p’ < I and where p’
‘has at least two nonzero componénts. For cach B, 0< B <o,
wc define a vector p by

=m4m+ﬂbvm, 1sisM,  (A)

nnd we note that, 1f P> 0 -p; decreases monotomcally from one‘

' to zero as B increases from 0+ to- oo, Hence, there is a umque
value of B, say B, such that 5;p, =1, ie, such that p is a
probabxhty vector. We also note that p = p 1f and only if B = 1.

'
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From (Al), we obtain

2I101-5) -I(B)B:II-'I” (1-2) (A2)
for all i, where
S(B) = g¥- ‘/H 4 +ﬂ(1“p:)] (A3)

Wc note that f(0+)=f(c0)=0 and f(1)=1, and that the
derivative f*(8) is continuous on 0 < 8 < ¢0. A straightforward
differentiation gives

/8) - [}l:p,'— 1]3(/%)

where g(B) > 0 for 0 < 8 < oo, Thus, f/(B8) = 0 if and only if
B = B,. 1i follows that g = B, uniquely maximizes f(B) and
this, because of (A2), proves Lemma 1.

We have now shown that C as defined by (3) can be on thc
buter boundary of € only if p is a probability vector. Suppose
then that p is a probability vector but, the corresponding C is not
on the outer boundary of €. Then, there is a p*, 0 < p* <1,

“stich that

pI10-p) sptT10-pt),  1sisM, (A9
with strict inequality for at least one {, say i =1, By decreasing
only the first component of p*, which increases the right side of '
(A4) for j > 1, we can obtain a new p* such that strict inequality
holds in (A4) for all i. We can then appropriately decrease the
components of p* to obtain a p’, 0 < p’ < 1, such that

(1-1’/)'@: 10-#). 1sisM, (AS)

whcre « < 1. But (AS) 1mphes that p and p’ sausfy (Al) for
some B, 0 < B < co and hence that a = f(B). This, togethcr
twith the fact that p is a probability vector, implies the contradic-
tion a = f(B,) = 1. We conclude that C as defined by {3) is on
the outér boundary of ¥ if and only if p is a probability vector.
Moreover, distinct probability vectors p and p’ must give dis-
tinct corresponding points € and C, respectively, for otherwise
(AS5) would be satisfied with « = 1 and this would again xmply
that p and p’ satisfy (Al) for some B and thus that p=p.

APPENDIX B
PrOOF OF LEMMA 4

A systematlc generator matrix for ari (s, k) hnear code over
ZQ, the. ring of integers modulo @, is a matrix.G 6f the form
= [I, : P] where P is some k X (n— k) matrix over Z,.
Silch a G defines a systemiatic encoding rule in which the infor-
mation vector x = [x;,X,, ***,X] i5 mapped to the codeword
Y = [y, 9. *,¥) in the manner y = xG so that y, = x, for
i=1,2,.--,k. We have said that such a G defines a maximum-

termined when any » — k consécutive components of y are
erased (where position 1 is considered to follow position n).
Equivalently, G specifies an-MEBC code if and only if each set.of
k .consecutive columns of G forms an invertible matrix over Z,
(where column 1 is considered to follow column n). We now
write G, to denote the &k X k submatrix formed by columns,
i,i+1,.++ i+ k—1o0f G, where by column j of G we under-
stand column j — n when j > n. Note that G,y = I,. With this
notation, the £ X n matrix G = [/, : P]is the systematic gener-
ator matrix of a Q-ary MEBC code if and only if the matrix G,

is invertible for 1 < i < #. [A square matrix over Z,, is invertible -

if and only if its determinant, computed over the integers, is an

" erasure-burst-correcting (MEBC) code if x can still be de-""
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integer relatively prime to Q.] Hereafter, all matrices are assumed
to be over Z,.

Proposman 1: The matrix G(,) corresponding to the k X n

matrix G = [/, : P)is invertible for all i with n — k <i < n if
and only if the m X m submatrix L, (G) found in the last m
rows and last m columns of G is mvemble forall m,1 < m < k.

Proof: This proposition follows dxreclly from the fact that,

forn—k<i<n,
é [ A lk+l-n-l]
I PO

where, here and hereafter, A denotes a matrix of appropriate
dimension whose entries are of no interest.

Proposition 2: 1f G is the systematic generator matrix of an
(N, K) MEBC code, then

=1y 6]

(where the superscript T denotes transpose) is the systematic
generator matrix of an (n = N + K, k = N) MEBC code.

Proof: We must show that G, is invertible for 1 <i <'n.
This is trivial for i = 1; for 1 < i < n, we distinguish three cases.
Case I: 1 < i < K+ 1. This gives

0. | &g
G/ =
“ [lk-m A ]

which is clearly invertible.

Case 2: k <i<n. Because n+ 1 —i<n~— k=K, this

gives

o [ 4 r,-x-l]
= T .
Lywi-(G)' | O
But G specifies an (N, K) MEBC code so Proposition 1 ensures
that L,,,_,(G) is invertible and thus also its transpose is invert-

ible. Hence, G{y is also invertible. .

Case 3: K+ 1 < i < k. This gives

" 0 Ik
Bin = [ 5

lk 1+1
It follows that Gy 18 mvemb]e if and only if the KX K
submatrix consisting of rows i — K,i — K+ 1,-++,i — 1 of G
is invertible. But this submatrix is the transpose of G,_ x» Which,
because G specifies an MEBC code, is invertible.

If G = [I :' P] specifies an (N, K) MEBC code, then obvi-
ously the matrix G’ = [I,, : G”] specifies an (n = N + K, k =
N) code. 'I'hislfact, together with’ Proposition 2, implies the
following key result.

Proposition 3: If G is the systematic generator matrix of an
(N, K) MEBC code and ¢ is any positive integer, then

G =ty dy: - DIy G7]

GT
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) cychc code wﬂ.h thesc parameters ensts

generator matrix of an (n gN4 K, k = N) MEBC code. -
Proposiuon 3 implies the validjty of the MEBC code constru
tion described in Subsection V-F.-If -k is not a divisor of n, on
first uses  Proposition 3 to- reduce the problem of constructing an:
(ny k) MEBC ‘code to that ‘of construchng an (N, K) MEBC
code, where N = k and whe;e K is the remainder when n is: &
divided by &. One intérates this procedure until X is a dmsor of

N. For N = gk, theKXquatﬁxG [T 2 Tt oo IK] ;
is tnvmlly the systema generator matnx of an (N, K ) MEBC
code,

Remark Proposxt_lo

matically an MEBC code Thus; the constmclion of MEBC cod
ngcn here wotild- appear;to. be o'f mtexest, in the case were Q ‘is
primé power, only when the: paramcters nand k are such that n

; u
[1] C.E/ Sbannon, “‘l‘wo-way oommumcauon channels, in Proc. 4th'}
S

611-644, 1961, i
2] . L. Massey, Capacty codmg for lhe ooﬂlsxon chahnel'
 “without feedback,” ‘presented’at the Information- Theory Con-%.
t‘crencc, Oberwolfach, Germany, Apr. 4-10, 1982. - 3
{3] K. A. Post, “Convexity of. the non-achievible rate region for the
", collisioh channei without” feedback this issue.
[f’ A. D:Wynér, “The ‘wite-taj 'channel ] BeII Sys Tech. J., vol. 54,
i3]

pp. 135521387, Oct. 1975, 4 -0+ s
T..-M. Cover,- “Broadcast chaunels,“ IEEE Tmm. lnfarm 77|eory,
- vol. IT-18, pp. 2-14,'Jan. 1972, "
(6] L. G: -Roberts, ** Dynamic: alfocation of satellite capacity through'
- +'packet reservadons,", Prog..'Nat. Computcr Canf pp. 711 71.‘_,_,
1973.. .
[7] «N. Abramson, “T'h OHA systema—Anolher alternative for
" computer communications,in ‘AFIPS" Con/ Proc, Fall Joxnt
Compiter Conf., vol. 37, pp.-281-~285, 1970. “
(8] N. Abramson, "Packet swxlch!ng with sa!elhtes." in’ AI-‘IPS Con/
Proc., Nauonal Cor Conf. ,yol 42,'pp. 695-702, 1973,

9 L. Klelnmck. ‘Queueing' System Vol A1 CoMpuler Applicanons
..~ New York: Wiley, 1976.
[10] - . K. Wolf, “Adding two in! rmauon symboh !o oertain nonblnary

"BCH codes.and som apphcadom,” Bell Sys Tech. J., vol. 48, PP
" 2405-2424, 1969,
[11] B. S. Tsybakov.and V..A, kha.{lov, “Ergodicity of a synchronous
: ALOHA" system,”  Prob Peredachl‘ Inform., vol 15 no. 4, pp-
73-87, Oct.~Déc.; 1979.
(12] I Huber and A: Shah, " Sxmple asynchmnous mulﬂplex system-:for
unidirectional low-data-rate. lransmissxon," IEEE Trans; Commun.,
vol. COM-23, pp. 675-, b S . L
13 11 Massey. “The'capacity of the collision channel without feed-
- back,” in Abstracts of Papers, IEEE Int. Symp. Information Theory
. Les Afcs, France, June 21225, "1982,'p. 101, -

(14] B.S. Tsyba]ﬁov andN BL lkhan , “Packet switching in a channei
" Probl, - Peteda hi In/orm vol. 19, no. 2, pp

69-84, Apr.-Iune,v1983.
[15] D. L. Cohn, private commi

iiqg, Apr. 1982, v

Pet., Exh. 1018, p. 13



