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Random-accessing is defined as any technique to accomplish unsched-
é uled seizure of & many-user communications channel; its purpose is

to reduce transmission delay below what can be achieved by sched- BT
uled-accessing or by channel division. Some general principles re- 3]
garding channel division, channel seizure., and the effect of feedback ..
are formulated. The "classical™ approach to random-accessing, i.e.,
ALOHA-1ike techniques. is seen to be subject to instability. A newer.
approach, collision-resolution u!gorithms (CRA's), is shown to avoid
this problem. The analysis of CRA's has led to bounds on the perform-
ance of any random-access system that are briefly discussed. Two new ’
approaches to random-accessing without feedback information are de-
scribed, viz., protocol sequences for the M-user collision channel
and coding for the M-active-out-of-T-user collision channel, Examples
are generously used throughout the paper, and some speculations on
the practicality of the new approaches are offered.

1. INTROOUCTION

Before describing "new approsches to random-access communications”, we should
make clear what we mean by "random-accessing” and what we see as its main pur-
pose. To do this, we must first say a few words about "multiple-accessing" in

general.

A multiple-access technique is any technique that permits two or more senders
to operate on a single communications channel. Time-division multiple-accessing
(TOMA), frequency-division multiple-accessing (FDMA) and code-division multiple-
sccessing(COMA) are well-known myltiple-access schemes of the channel-division
type: i.e.. they divide the single channel into many “smaller” channels, one
for each sender. This division may be fixed. or it may be adjusted from time to
time to correspond to the changing needs of the senders as in so-called "demand
assignment’ schemes. A second class of multiple-access schemes is that of what
we shall call the channel-seizure type. !n this type of multiple~accessing, &
single sender can use the full (time and frequency) resources of the channel
for himself alone on some sort of temporary basis. An example of a channel-
seizure scheme is a token-ring in which, when the "token" arrives at 2 sender's
station on the ring, that sender can remove the token. send his own message as
if he were the only sender on the ring, and then reinsert the token.

A rondom-sccess technique can be defined as a multiple-accessing scheme of the
channel-seizure type (i) in which it can happen that two or more senders may
simultanecusly attempt to seize the channel, and (1i) which provides in some
way for the recovery from such "access conflicts", In a random-access syslem. a

sender generally "takes a chance"” when he attempts to seize the channel, and he
relies on the access protocol to repair the damage when he encounters “bad luck”.”’

In some communication scenarios {as we shall see later). access conflicts can~
not be avoided. More often, however, it is & matter of choice whether or not to
allow access conflicts and hence whether or not to use random-accessing. The
obvious question is: why should Anyone choose to allow such an obviously bad
thing as access conflicts? The answer can be put as a second question: why

should anyone demand that 8 sender always wait for a quarsntee of exclusive

access before he attempts to seize the channel? When traffic on the channel is

!
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light, the bold sender will be almost sure to succeed in his gambleAfor access
and can thus avoid the delay that a timid sender would {ncur, The primany pur-
pose_of random-accessing {s _to reduce the delay between the time that a sender
obtains an informatfon fnput and the time that he transmits this information
successfully over the channel. Random-accessing fs a gamble, but one in which
the odds can be on the side of the player rather than on the side of the "house",
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In Section 2 of this paper, we show why channel seizure is generally preferable
to channel division for multiple-accessing, and we examine the role of channel

ot

feedback information. Section 3 describes the ALOHA approach to random-accessing

T

and points out its virtues and defects., In Section 4, we describe one new ap~

proach to random-accessing, viz. collision resolution, and we contrast it with
the ALOHA approach. Section § considers certain general bounds on the through-
3 put of random-access schemes. Section 6 describes two new approaches to random-

accessing without feedback. Some concluding remarks are given in Section 7.

2. SOME GENERAL MULTIPLE-ACCESS PRINCIPLES

£ The simplest multiple-access channel is surely the two-sender binary adder

3 channel (2SBAC) shown in Fig. 1., Each time instant, each sender sends a binary
digit (0 or 1) and the received digit is the sum (0, 1 or 2) of these two

" numbers, i.e..

Yn = xln & x2n

where Xl" and XZ“ are the binary digits sent by senders 1 and 2, respectively,

at time n and Y" is the received digit. The "wall" shown between the two sgnders“v
in Fig. 1 signifies that ‘the user on one side is not privy to the information )
to be sent on the other side, although the two users are allowed in advance to-’mf

have formulatéd a.common strategy for sending this information.

Fig.1 : The two-sender binary adder channel (2SBAC)
Xin € {0,1}, X5a € {0,1}. Y2 € {0,1,2}

Fig. 2 shows the pentagonal "capacity region" of the 2S8AC, i.e., the region
of rate pairs (R‘. Rz) such that Sender ) can send data at the rate RI (bits
per channel use) and Sender 2 can send at the rate Rz. both with arbitrarily
small error probability.

It is easy to see how the point (Rl.Rz).- (1,0) on the capacf(y—reqion boundary
can be achieved., Sender 2 simply always sends O's (and thus Ry = 0) so that
L XI“. and hence Sender 1 can directly send his "raw" information bits over
the channel with no need for coding (R’ = 1). The point (R’.Rz) = (0,1) can be
similary achieved. By agreeing to alternate between these two schemes for ap-
propriate periods, Senders 1 and 2 can achieve any point (R],Rz) such that

R' + iz ~ 1, {.e., at any point on the “time-sharing line" shown in Fig. 2.
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Fig.2: Capacity Region of the 2SBAC of Fig.1

It s almost as easy to see how the point (R'.Rz) = (1, 1/2) on the capacity-
region boundary can be approached. Sender 1 transmits his raw information bits
(Ry = 1). This ceuses the channel seen by Sender 2 to be that shown in Fig. 3,
because, for instance, if Sender 2 should send a | then with probability 1/2
Sender 1 will also send a 1 and 2 will be received, while with probability 1/2
Sender 1 will send & 0 and 1 will be received. But the channel of Fig. 3 s the
familiar binary erasure channel (in which a received 1 is the “erasure symbo1"™)
with erasure probability 6 = 1/2 and capacity C = 1-§ = 1/2, Thus, Shannon's
noisy coding theorem ensures the existence of a coding scheme that will allow
Sender 2 to send information at a rate Rz arbitrarily close to 1/2 with arbi~
trarfly small error probability, After the receiver has decoded Sender 2's
codeword, he can subtract it from the received sequence to obtain the uncoded
sequence that was transmitted by Sender 1. The price of making Rz closer to the
capacity 1/2 is an increasingly longer codeword length or, equivalently, a
longer delay in recovering the information at the receiver. The point (R|.Rz)'-
(1/2.1) can, of course, be similarly approached. By appropriately llternatgpg
between coding schemes, any point (R,.Rz) on the capacity-region boundary line
Ry + Ry = 3/2 between the paints (1. 1/2) and (1/2, 1) can be approached. '
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fig.3 : The binary erasure channel seen by Sender 2 when Sender 1
sends random binary digits over the 2SBAC of Fig.1.

Perhaps the best interpretation of the "wall” shown in fig. 1 is as a prohibition
against seizure of the channel by a single sender. If a single sender is.allowed

to control both X]“ and in. then he can by choosing (x,n.XZ“) to be (0.0),(0,1)

or (1,1) cause Yn to be 0, 1 or 2, respectively, i.e., he can create a noiseless

ternary channel with capacity 10923 (bits per use). By alternating appropr1ate13
between such seizures, two senders could achieve any point on the “seizure H'ne"
shown in Fig. 2 that lies strictly outside the (seizure-prohibited) capacity

356

Pet., Exh

.1017, p. 3



J.L. Massey

Suppose now that there 1s a feedback channel from the receiver to the two send-
ers in Fig. | so that each sender learns the value of Yn immediately after Xln
and Xon have been sent, The point (RI’R2> = (1, 1/2) can now be achieved with
the greatest of ease. Sender 1 still sends his raw information bits (R] = 1)
so that Sender 2 still sees the binary erasure channel of Fig. 3. Sender 2, how-
ever, can now (because of the fee#back of Yn) simply send each of his information
bits repeatedly until it {s received "unerased", f.e., until Y, = 0 when this
information bit {s a 0 or unt{} Yn = 2 when this information bit is a 1. Because
the erasure probability & is 1/2, Sender 2 will be sending {nformation at the
rate RZ = 1-§ = 1/2 bits/use. Moreover, the average delay between first trans-
v mission and successful transmission {s only 2-1 = 1 time instant. Something even
more remarkable, however, results from the availability of feedback (as was
first shown by Gaarder and Wolf [1]): points outside the capacity region of
Fig. 2 can be achieved! This was quite surprising when first discovered because
it had long been known that feedback could not increase the capscity of a single-
sender memoryless channel. The actual capacity }eqion of the 2SBAC with feedback
was only recently determined by Willems [2];: it differs from the capacity region
without feedback, shown in Fig. 2, in that the boundary line between the points
(1. 1/2) and (1/2, 1) is bowed slightly outward (but still well away from the
“seizure line").

1

The simple 2SBAC of Fig. 2 1s a rich source of lessons about multiple-sccessing.
With its help, we have been able to illustrate all of the following general
principles of multiple-access communications:

(1) Channel seizure, when possible, {s the most effective way to utilize a
multiple-access channel.

(2) When channel seizure is prohibited, time-sharing (or other types of channel
division) generally is still sub-optimum in the sense that it cannot be used
to achieve all points in the capacity region.

(3) Feedback, when available., can be exploited to reduce the coding delay and
complexity required to achieve a given transmission rate,

(4) When channel sefzure is prohibited, feedback can also enlarge the capacity
region,

The first of these principles sipports the way that-computer communications .is R

carried out today. Virtually all newer local area networks (LAN's) operate on a

channel seizure basis, sometimes with deterministic access (as in a token ring)

el BT e R e e A e D e e R

and sometimes with random access (as in Ethernet). The third principle suggests
that feedback will play an especially crucial role in random-accessing, because
some kind of “coding" is absolutely necessary to overcome the losses due to

access conflicts.

3. THE ALOHA APPROACH TO RANDOM~ACCESSING

.The ALOHA system, devised by Abramson [3] and his colleagues at the University

of Hawaii, was the first random-access system: its spproach underiies most
present~-day random-access systems, e.g. Ethernet.To illustrate the ALOHA approach,
we now describe the ALOHA system, including the modification of "time slotting"
that was introduced by Roberts (4].

Suppose that all data to be sent is in the form of “packets”, all of which have
. the same length (measured in transmission time on the seized channel) that we

take ta be the unit of time. We define the time interval (n-1) <t <ntobe

the n-th channel "slot". "Time-slotting" means that senders can transmit packets

L,
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only by beginning transmission at a slot boundary. Thus, transmitted packets
from two senders will either overlap completely at the receiver or not at all,

The channel model postulated by Abramson was that, when 2 or more transmitted

packets overlap at the receiver, then they mutually destroy one another, but
otherwise packets are received error-free. Moreover, there is feedback from the
receiver at the end of each slot so that all users learn whether or not a colli-

sion occurred (collision/no-collision binary feedback).

The information-generation model postulated by Abramson was that of a very
large number (essentially infinite) of identical sources, each with an asso-
ciated sender, such that the number of new fnformation packets generated during
any slot is a Poisson random variable with mean A (packets/slot), independent
of previously generated packets. The essentially infinite number of senders
means that access conflicts cannot be entirely avoided, i.e., random-accessing
becomes a necessity. {In fact. the original operational ALOHA system had a very
small number of transmitters so that random-accessing was a matter of choice,

made by Abramson and his colleagues for the express purpose of reducing access

delay. ]

The random-access protocol devised by Abramson was ingeniously simplg. A new
packet must be transmitted in the slot immediately following that in which it

was generated, When a collision occurs,each "colliding” sender must retransmit
in & randomly-selected later slot, Each such sender. of course, independently

makes this random selection of retransmission delay.

Abramson's analyiis of the ALOHA system was equally ingenious, if not rigorous.
He postulated that the retransmission policy could be shaped in such a way that
the number of retransmitted packets in any slot would also be a Poisson random
variable. independeni from slot to slot and independent of the new-packet ge-
neration process, with a mean of A (packets/slot). Because the sum of independ-
ent Poisson random varisbles is again Poisson, this implies that the total
number of packets transmitted in any slot is also a Poisson random variable with
mean A‘ =A+A. Because the throughput T of successful packets at the receiver
is the fraction of slots in which exactly one packet is transmitted, it follows
that t is just the probability that a Poisson random variable with mean At takes

on the value 1, i.e., 5

; (1)

Equation (1), which is the so-called throughput equation for slotted-ALOHA, fis
shown graphically in Fig, 4. It is easy to check from (1) that 1t is maximize#

when A‘ « 1 (packet/slot), which seems quite natural, and that this maximum is

-1
trag =& & .368 (packets/slot).,

i -1
which seems quite fundamental. It is common to say that e is the "capacity of
the slotted-ALOHA channel”, but, as we shall see, this description is misleading.

The reader may (and should) be disturbed by the fact that the new-packet arrival
rate A appears nowhere in the throughput equation (1). To bring A into the pic~
ture, one must invoke the equilibeium hypothesis which states that packets are

entering and leaving the system at the same rate, i.e..

T = A
t

A,
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Fﬁ.l : Graphical dcpicﬁon of the throughput equation for slotted-ALOHA.

This seems similar to the constancy assumption for the retransmission rate, but
in fact neither assumption implies the other.The equilibrium hypothesis is real-
1y an expression of the hope that the ALOHA system {s stable. f.e.. that the
queue of packets awaiting retransmission is not steadily growing at a positive
rate A-t1 (packets/slot). Such a positive growth rate is not inconsistent with

a constant retransmission rate if the retransmission delay is chosen randomly

in a way to depend on how many times the given packet has been previously trans-
mitted unsuccessfully. The equilibrium hypothesis should in fact be called the
stability hypothesis for ALOHA.

It is easy to argue from Fig. 4 that the ALOHA system cannot be stable for a

retransmission policy that does not take into account the number of previous un-

successful transmissions. Suppose that the arrival rate A satisfies A < e'] as

shown in Fig. 4. lf equilibrium prevails, then the traffic rate At will be *tl

as shown in Fig. 4. This is of course an "average" rate and, over any fixed

‘Tength interval, the actual rate will fluctuate about this mean. [f the actual

traffic rate moves a little above At]. the actua) throughput increases a~little -

above A, Thus, packets Teave the system faster than they arrive, which causes

the actual traffic rate to move back down to Atl' Hence, the point (r.l‘) - o .
(A.At‘) is a conditionally stable point, i.e., it is stable under small fluc- ;.._f i
tuations. But if a large fluctuation causes the actual traffic rate to move to £
the right of At? in Fig. 4, then the actual throughput decreéses below A. Thus,

packets leave at a slower rate than they enter, which causes a further increase o
in the actual traffic rate, a further decrease in actual throughput. etc. The N
system never returns to the point (A.xt]). put rather drifts relentlessly to-

ward the catastrophic "unconditionally stable" point (T.At) = (0.=). The maxi-

mum stable- throughput of a fixed-policy ALOHA system is O,

The virtue of the ALOHA approach is its simplicity, its Achilles' heel is its
instability. In fact, it is possible to devise retransmission policies that
stabilize an ALOHA system, cf, [5), but the protocol then loses its simplicity.
Most practfc:T ALOHA-type random-access systems appear in fact to be unstable.
These systems incorporate some kind of time-out feature that switches the syﬁtem
* to agnon-random type of accessing to clear away the backlog of traffic when the
channéi is jsmmed with collisions, then switches back again to the basic ALOHA
protocol. Again this means some loss of simplicity in the access protcéo1.,as
well as SOMe'performance anomalies. Published simulations of ALOHA-type systems

Pet., Exh. 1017, p. 6



Randont-Access Communications

1nvariably sppear to have been purged of any anomalies. {f indeed any occurred.
In fact, there is vsually very little information provided with such simulations
about what tatal time perjod was simylated, whether time-out provisions were i
included. etc.. so that it is generally very difficult to determine the real :
meaning of the simulated performance results that are presented.

4, COLLISTON~RESOLUTION ALGORITHMS

Concern over the instability of most ALOHA-like protocols led some researchers

to search for random-access schemes that were provably stable. The breaktﬁrought

in these efforts was made in 1977 by J, Capetanakis [6], then an H.1.T. doctoral

student working with Prof, R, Gallager, and independently achieved shortly therg—
after by two Soviet researchers, B, Tsybakov and V. Hiihailov (7]. The essence °

of their contributions was the “collision-resolution approach™ to random-sccess-

ing. which we now consider.

The channel model assumed for collision resolution is the same as that for
slotted-ALOHA, namely a time-slotted colliston-type channel with some form, of
feedback to the senders at the end of each slot. We will assume the same binary
(collision/no-collision) feedback as for slotted-Aloha {as Capetanskis also
sssumed; Tsybakov and Mikhailov considered tetnary {collision/success/idle)
feedback]. The information-generation model is the same.as for slotted-ALOHA,
i.e,, essentially-infinitely many identical sources, each with an associated
sender, such that the number of new packets generated tn each slot is an inde-

pendent Poisson random variable with mean ).

A collision-resolution algorithm can be defined as a random-access protocol such:
that, whenever a collision occurs, then at some later time (provided A is not
too large) all senders will simultaneously learn from the feedback information
that all packets involved in that collision have now been successfully trans-
mitted. The crux of collision resolution fs the exploitation of the feedback
information to control the “random" retransmission process in such a way that

chaotic retransmission can never occur. Because there is no upper bound on the
number of packets that initially collide, 1t was not at al) obvious that colli- -
sion-resolution algorithms existed-before-the first such algorithms were pre—
sented by Capetanakis and by Tsybakov and Mikhailov. .

As an example of a collision-resolution algorithm, we now describe the binary
stack algorithm, which is essentially Capetanakis’ binary "tree algorithm”,

but we prefer the terminology “stack algorithm" introduced by Tsybakov and
Mikhailov. The terminology “"binary” stems from the fact that every sender is
assumed Lo have & fair "hinary coin"(with "0" on one side and “1" on the other)’
which he flips whenever his packet is involved in & collision. The term "stack"
comes from the fact that one can conveniently visualize the operation of the
algorithm in terms of the conceptual stack shown in Fig. 5.

Suppose at the outset that the stack is empty, i.e., that S = 0. Suppose also
that the access gate is openéd and some number X of senders then enter the
“eurrent sendnﬁg box”, which is just the conceptual location of all senders who
will send packets in the current slot, Perhaps X = 2 or X = O or even X =

6 x 102%; for the moment, we assume only that X > 2 so that a collision ("C"
occurs in this slot. Then these colliding senders flip their binary coins,
th;;é vho flip "0” remain in the "current sending box” (i.e.. they again trans~
mit in the next slot) while those who f1ip "1" are pushed down (conceptually).

360
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into level 1 of the stack, The stack size is now S = 1, The general rule is: if
“C", then S « S + 1. One sees that now about X/2 of the original X colliding
senders will remain in the "current sending box" while about X/2 will be pushed
5 ' down into the stack. For the moment, we assuse the blocked-access protocol,
which states that the “access ;Ate' is closed at the ln1tig} collision and
remains closed until all senders learn that the original X colliding packsts
have a1l been successfully transmitted. The same process of stack growth and
concomitant “thinning out" of the “current sending box" continues until the
feedback “no-collision™ ("NC") occurs. which means that either 1 sender or none
had been in the "current sending box”. This is the signal for the stack to be
pushed upward one level so that senders who were in level 1 of the conceptual

I

stack are now again in the "current sending box" and the stack size is reduced
by 1. The general rule fs: {f "KC” and S > 0, then $ « S - 1. After some time,
because the above process will “thin out” crowded levels in the steck, the stack
size will again reach S = 0, If now no collision occurs, this means that all of

TR IR

the original X senders must have successfully sent their packets. (1f a colli-

ey

sion occurs, the previous process continues.) The general rule is: §f “NC" and
S = 0, .then the collision is resolved.

£ :
&
A
' T
“C™ and “0" O CURREN ACCESS Worsd of
SENDING BOX GATE Senders
uCﬁ md ul“ I INCH
Level 1
Level 2 ucr
CONCEPTUAL : “‘NC"
'STACK £
’ Level § STACK SIZE COUNTER

Fig.s : Cornceptual diagram of the “binary stach algorithm™
for collision resolution.

The binary stack algorithm is clearly simple to implement. When involved in a
collision, a sender need only generate a binary random variable (“0" or "1")
so a minimum of retransmission "randomization" is required. His only other re-
quirements are to maintain two counters, one of which gives his own position in
the stack (if he were a party to the collision) while the other keeps track
of the stack size S so that he knows when the collision has been resolved. The
big question of course is: how effective is this random-access protocol?

Perhaps the main theoretical advantage of the colliston-resolution approach
over the ALOHA approach to random-accessing 1is that the former lends itself to
precise (and reasonably simple) analysis as we now demonstrate for the binary
stack algorithm with blocked-access. Letting Y be the number of slots needed to
resolve the original collision of X senders, then the quantity of principal in-~
terestsis LN = E[Y|X = N], the average number of slots needed to resolve &
collision of N transmitters., We see that lo - L]- 1 as then there is nq_in{t(al

Pet., Exh. 1017, p. 8



Access Communications

collision. We see further that

Laleglgety) eg(l+ty) o
ss, after the initial collision, with probability 1/2 the two senders will flip
the same binary number leaving no one in the "“current sending box" ‘and both
1n level ) (or vice verss), while with probability 1/2 they will flip different
binary numbers leaving 1 sender in the “current sénding box" and 1 sender in
level )1 of the stack. Solving for L2 gives '

LZ -5

slots required on the average to resolve a collisfon of 2 packets. It {s easy
to write the general recursion for LN and to show that the solution satisfies

by
2.8810¢< ~ + < 2.8867, N> & @)

the interested reader is referred to [8] for detatls of this argument. The con-
clusion to be drawn from (2) is quite remarkable: whenever the initial collision
is moderately large, then just about 2,89 slots will be required to “service"
each of the packets involved in this initial collision. This means that the
algorithm will be stable (the “server" will not drop hopelessly behind in ser-
ving customers) provided only that

A< 27%537 & .346 (packets/slot)

whereas it will be unstable f
A3 5—5%75 = .347 (packets/slot).

Thus., the maximum stable throughput of the binary stack algorithm with dblocked-
access is just gbout .346 packets/slot. Moreover, this stability holds not only
for the assumed Poisson arrival process, but for yirtua}!y any arrival process
that can be characterized by an average arrival rate A (packets/slot). This
robustness (or, equivalently, insensitivity to the statistics of the arrival
process) is, or should be, an attractive practical festure of many collision~

_resolution algorithms,

To examine the role placed by the "blocked-access protocol"™ in the above analysis,
we first observe that the binary stack algorithm never makes any assumption in
advance about the occupancy of the “current sending box" or any of the S stack
Yevels. There could just 2s well be none or 6 x 1023 senders in any of these
locations as far as the binary stack algorithm is concerned. This means that
there is no reason to block new senders from entering the "current sending box"
at any time. The free-access protocol leaves the "access gate” of Fig., 5 open
at all times. Free-access has the practical advantage that senders need to
monitor the channel feedback only after they become "actéve" in the transmitting
process. Intuition suggests that free-access should also give a better through-
put’ than blocked-access. Unfortunately, free-access also complicates.the analysis,
but Mathys and Flajolet have shown that the binary stack algorithm with free-
sccess has a maximum stable throughput of A = .360 (packets/slot). More sur- K
prisingly, they showed also that the ternary stack algorithm (in which ‘senders :
flip a fair three-sided coin after a collision, moving into levels 1 or 2 if

~ they flip "1" or "2" while S {s increased by 2) with free-access has an even
larger maximum stable throughput of

A= 40 (packets/s’lod.

e i,
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(Because this maximum stable throughput exceeds e-‘ x 368, we see that it is

indefensible to call ¢! the “capacity of the slotted-ALOHA channel.) Mathys
and Flajolet also showed that this ternary stack algorithm with free-access

has a better delay vs. throughput characteristic than does either the binary
stack algorithm or the usual ALOHA algorithm (when analyzed assuming optimistic-
ally that the equilibrivm hypothesis holds. (9]

Many other collision-resolution algorithms have been proposed that have maximum
stable throughputs exceeding .40% (packets/slot) -~ the current record for binary
(collision/no-colliston) feedback is .4493 packets/slot {10]. However, the
ternary stack algorithm with free-accéss appears to us to be the best practical
choice by virtue of its simplicity, its robustness and its relatively high
maxinym stable throughput. It also seems to us to be a  better practical

choice than any ALOHA-like algorithm for random-accessing on the collision
channel with feedback, and we wonder why algorithms of the latter type are still

being proposed for new random-access systems,

The reader interested in delving mare deeply into the mathematics needed for a
precise analysis of collision-resolution algorithms will find the recent book
{11] by Hofri to be a useful source of information.

S. UPPER BOUNDS ON MAXIMUM STABLE THROUGHPUT

"Our discussion of collision-resolution algorithas may have raised the question
in the reader's mind: what is the capacity of the collisfon channel with feed-
back or, equivalently, what is the largest possible maximum stable throughput
that can be achieved for Poisson arrivals? It is known that the answer depends
in general on the kind of feedback available so we continue to consider only
binary (collision/no-collision) feedback. Some ingenious and complex arguments

- “have been used-to obtain upper bounds on the maximum stable throughput. Rather
than describing the best bound, we illustrate the general idea by describing
a very simple bound due to Kelly [12]). i
Kelly's -bound actually applies only to algorithms (such as the ALOHA algorithm
or any collision-resolution algorithm with free-access) with the immediate-
f?%sf;tfgﬁimiision property that-a newly-generated packet must be transmitted
in the slot immediately following that in which it was generated. Suppose such
an algorithm is operating stably for Poisson new arrivals with a mean of A

‘(packets/slot). Let P be the fraction of slots in which at least one packet
is retransmitted. Then, because the number of new senders in any slot is inde-
pendent of the number of retransmitted packets in that slot, it follows that
the fraction of slots with exactly one packet (i.e., the throughput t)
satisfies

T Ae-x(l—pr)+ pre'\

with equality when at most 1 packet is retransmitted in any slot (i.e., per-
fect scheduling of retransmissions). But stability implies t = X and thus

~X -
Ag ke (1-p) + 0, (3)
if the system is stable. It is readily checked that the choice P, = 1 maximizes
- A for which (3) can be satisfied. Thus
rge? (4)

is required for stability. The largest A satisfying (4) is Kelly's bound on
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maximum stable throughput, namely

Aoay < 5671 packets/slot, « (5)

that holds for any random-access algorithm with immediate-first-transmission.
In fact, our argument has never used the assumption of binary (collision/no-

i collision) feedback so that Kelly's bound (S) applies to any random-access
algorithm with immediate~first-transmission on the collision channel with any
kind of feedback.

By using similar but much more intricate arguments, Tsybakov and Likhanov [13]

have recently proved that, for any random-access algorithm, the maximum stable

throughput on the collision channel with binary (collision/no-collision) feed-
- back satisfies

X & .5683 (packets/slots) . (6)

for a Poisson new arrival process. This 1s significantly greater than the
argast stable throughput yet achieved, .4493 (packets/slot). The "capacity” of
the ALOHA channel with binary (collision/no~collision) feedback lies somewhere
between 4493 and 5683 (packets/slot), which 1s the most that can bg said to-
day. ‘ : *

The thoughtful reader may well ask: why are we giving so much attention to
maximum stable throughput when the real purpose of random accessing is small
(average) delay? The incomplete answer is this. The maximum stable throughput
of a random-access algorithm is the smallest throughput where the (average)
delay becomes infinite, Thus if one algorithm has a larger maximum stable
throughput than another, then it will also have a better delay-throughput
characterstic for all sufficiently large throughputs, The complete answer is
that one hopes that if the first algorithm is reasonably simple (so that the
large maximum stable throughput was not achieved by "trickery" that used high
arrival rates to special advantage) then the first algorithm will have a better
delay~throughput characteristic for all throughputs. The previous discussion of
the ternary stack algorithm shows that there is some justification for this

hope.

6. RANDOM-ACCESS WITHOUT FEEDBACK

We now consider some quite recent developments in random-accessing that deal
with the situation where there is no feedback to notify senders whether or not
their packets have suffered collisions. At first glance, it might seem that
random-accessing would be impossible 1n this situation. The “"trick™ that makes

1t possible 13 for the senders to send redundant packets so that the information’
packets can still be recovered at the receiver when some of the packets are lost

through collisions,

6.1 The M-Sender Collision Channel without feedback

Again we assume a time-slotted collision channel, but now with no feedback to

the senders, Rather than essentially infinite, we suppose there is s given

number M (M > 2) of senders, each with its own information source. We further

‘ assume that. although the senders are slot-synchronized, they are unsynchronized

at any higher level, i.e., they may all have a different idea of which slot if

slot 1. The senders can be thought of as having clocks that "tick” together at
Ly
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clock boundaries but are otherwise unsynchronized. Because there {s no feed-

IR RO M AR

TR

back from the channel, the senders can never attain any further synchronization

of their clocks. The senders each have a "protocol sequence generator" that
enfts a binary digit at each clock tick: the sender sends a packet 1f this bit
O is a 1 and keeps silent in that slot ¢f this bit is a O. The task is to choose
the protocol sequences for the M users in such a way that, by proper coding of
the information packets, the receiver can reconstruct the information packet§
from each user reqardless of relative time shifts of the protocol sequences

(corresponding to the senders' different understanding of which slot is the
first stot). This scenario describes the M-sender collision channel without
feedback that was introduced by this writer in 1982 [ll].}The capacity C" isf - —]
‘defined as the maximum rate R in packets/slot such that each user can send

these packets at the receiver with arbitrarily small error probability.] In [14],
it was shown that

information packets at a rate at least R/M and the receiver can reconstruct

1 M-1
= -p) (packets/slot) (&)

and moreover that zero-error probability could be achieved at this rate., Note
that : .

-1
lim -ec = 368

Mo C"

s0 we now see that e‘} is indeed a capacity, but not that of the slotted-ALOHA
channel where feedback is present, but rather that of the M-user collision
channel without feedback when M is essentially infinite. Rather than to des-
cribe the general argument that leads to (7)., we illustrate the main ideas by
considering the special case M = 2,

Far M = 2 users, capacity is achieved by choosing periodic protocol sequences
with period 4 whose first periods are

[v. 1, 0, 0] Sender 1
{1. 0, 1, 0] Sender 2.

(Note that Sender 2's protocol sequence actually has least period 2.) The coding
scheme is very -simple, the Sender simply transmits each packet twice, namely at
the two positions where there are 1's in Lhe next perxod of his protocol se-
quence., Because Sender 1.alwnys sends these two packets in adjaceant slots, it
follows that, whatever is the time offset between the two protocol sequences,
exactly 1 of these packets will be lost in a collision with a packet from

* Sender 2. The same conclusion holds for the two packets sent by Sender 2; exact-
1y one is lost in a collision. Moreover, the receiver knows to whom a success-
fully received packet belongs; if it is adjacent to a collision it came from
Sender 1, otherwise it came from Sender 2. Each sender thus sends information
error-free at a rate of 1 packet every 4 slots so that the senders achieve
R=1/44+1/4 = c, - 1/2 packet per slot.

For larger M, the scheme to achieve C becomes much more complex. In fact, the
protocol sequences have period H" and ruther sophisticated coding schemes are
‘required. More interesting and somewhat surprisingly, the capacity fs still
given by (7) even when the assumption of slot synchronization is removed [14].
i.e., when the M senders are completely unsynchronized. The paper by Massey
and Hathys [15], which also treats the generalization to the case when the M
users wish to send information at different rates, gives full details of the
necessary arguments,

Pet., Exh. 1017, p. 12



£

Kandom-Access Communications

It is illuminating to think upon the M = 2 user scheme described above as &

way of creating a deterministic server for each sender that services information
packets at the rate of 1 packet every & slots. Thus, if the sender 13 receiving
new packets from his information source at any rate A/2 < 1/4 (packet/slot),
then the queue at that sender will not grow without bound. Thus, the system will
be stable if the total arrival rate A is equally distributed between the two
users and satisfies A < 1/2 = ¢ {packets/slot). Conversely, if A > 1/2 = CZ'
then the system will be unstable. Thus, C2 is the maximum stable throughput for
traffic equally divided between the two users. The similar conclusion holds for
all K > 2,

6.2 The M-out-of-T-Sender Collision Channel without Feedback

A very interesting generalization of the previously described model! for random-
accessing without feedback was made by Bassalygo and Pinsker [16]., Their mode)
differs from that of the M-Sender collision channel without feedback only in
that there is assumed to be a total of T senders, but only at most M of these
senders (in advance it is unknown which M) happen to have active information
sources. We urite'C;_to denote the capacity of this “M-out-of~T~sender collision

channel without feedback”. .

By using random coding arguments, Bassalygo and Pinsker proved the quite sur-
prising fact that, when M is fairly large, then CM * e-‘. In other words, it
costs almost nothing in the achievable maximum steble throughput to have de-
signed the protoco) sequences for many more senders than will actually be using
the channel actively. The price of increasing T for fixed M is rather an increase
in the “complexity” of the necessary protocol sequences (i.e., an {ncrease in
the period of these seqhences) and a concomitant increase in the complexity of
the scheme for coding the information packets. As is typical for random coding
arguménts. the work of Bassalygo and Pinsker does not provide any specific
schemes for achieving any given throughput less than C;.. but rather provides a
proof of their existence. Thus, it seems especially appropriate here to illus-
trate the ideas involved .in random~accessing on the M-out-of-T-sender channel,
by describing a very specific scheme,

for our example, we take T =3 and M= 2. We begin by-choosing protocol se-
quences of period N = 19 for the 3 possible senders. We number the N = 19
locations in the first period from 0 to N-1 « 18 and represent the first period
by those locations where this binary sequence of length N contains 1's. We
choose the first periods of the protocol sequences for senders 1, 2 and 3 to be
(0. 1, 8), (0. 2. 16) and ( 0. &, 13), respectively. Note that (0, 1, B), by
our convention, denotes the binary sequence of length N = 19 with a 1 in posi-

‘tighs O, 1 and 8 only.

We consider next the set of distances between two 1's in the protocol sequence
with first period (0, 1, 8) when those two 1's are less than N positions from
each other. This set of distances is seen to be {1, 2, 8._18. 12, 11} as follows
from the fact that the )1 in position O in one period is.distance 8 from the 1

in position 8 of the same period but is distance N-8 = 19-8 = 11 from the 1 in
position B of the previous period. etc. Siﬁilarly. the sets of distances be-
tween 1's in the protocol sequences with first periods (0, 2, 16) and (0, 4. 13)
are (2. 14, 16, 17,5, 3] and (4, 9. 13, 15, 10, 6 }, respectively, The point
to be noticed is that these three sets of distances are pairwise disjoint —

no distance appears. in more than one set! This means that, regardless of the

Loy
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synchronization among the 3 protocol sequences. no two users can collide in
more than one slot in any span of N consecutive slots: because if two protocol
sequences both have a Y corresponding to some slot, then they cannot both have
a | wn some other slot less than K slots distant from the former,

1t follows that if any K = 2 senders are active, then each is guaranteed that
at lessttwo of the three packets that he sends within one period of his proto-
col sequence will be successfully received. Moreover, each sender can send two

N 1information packets error-free (assuming that the packet itself is a binary se-
quence of some fixed length n) in each period simply by sending the information
packets in the first two slots where his protocol sequence has 1's and sending
the bit~by-bit modulo-two sum of these packets as the "redundant packet” in the
remaining slot. If either information packet is lost in a collision, it can be
reco&ered at the receiver by subtracting: the other }nfornnt(on packet from the
redundant packet. It follows that this T = 3 sender protocol-sequence/coding
scheme allows any two senders to be active and each to send information packets
error-free at a rate of 2/N = 2/19 (packets/slot). The total rate of 4/19 211
(packets/slot) is not unreasonably smaller than CZ = 1/2, the best that can be
done with T = M = 2,

6.3 Delay Considerations

It is time to recall once again that the usual purpose of random-accessing is
small (average) delay rather than high throughput. Space does not perﬁit us to
say much about how the “high-throughput" schemes in sections 6.1 and 6.2 can be
modified to reduce delay, but we will give the flavor by considering again the
two sequences, (1, 1, 0, 0] and {1, 0. 1, O], that were used as first perfods
of periodic protocol sequences in section 6.1, The trick to reducing delay is
not to use these sequences periodically but rather to use them only when the
- corresponding sender actually has a new packet to send, filling O's into the
protocol sequence during idle periods. [In general, one also needs to add some
(at most N-1) O’s to the end of each first period of length N to ensure that
the scheme still functions correctly. but no such additional 0's are needed for
this H = 2 scheme.] The coding scheme is unchanged: each sender still sends each
N T 77 informatfon packet twice. One sees that, if the traffic is light, there will
usually be zero transmission delay as the first information packet will get
through correctly. When this packet experiences a collision, the transmission
delay will be 1 slot {f it was from sender 1 and 2 slots if it was from sender 2.

Similar delay considerations apply to the M-out-of-T channel coding schemes. One
sees, moreover, from these arguments that one can allow the set of active senders

to change with time, as long as no more than M are ever active and provided
that there is an idle period of at least N ~ 1 slots between the time that one
out of exactly M active senders ends his activity and the next one begins.

6. CONCLUDING REMARKS

We have described some new approaches to random-accessing, with emphasis on the

collision-resolution approach for the;reason that this approach appears to us

to be an eminently practical one but not yet familiar to many practicioners of

random-accessing. The reader may wonder why we have said nothing about "carrier~
~sensing". "collision detection", and many other techniques that are often used

in practice to improve the efficiency of random-accessing with feedback. Our
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reason for avoiding a discussion of these "fri11s" is that (1) they can be used
just as effectively with the colliston-resolution approach as with the ALOHA
approach to random-accessing, cf. (B8], and (2) their introduction tends to ob-
scure the real issue of random-accessing, viz., how effectively does one handle
access conflicts, The recent book by Bertsekas and Gallager {17] s "must reading"”
for anyone who wants to deepen his understanding of the real tssues.

We have also described two approaches to random-accessing without feedback. This
area is still very much in the research stage, but our guess is that it wil)
also find practical applications. Indeed, when lecturing recently on the material
in section 6.1, we werg pleasantly surprised by the enthusiastic response of a
listener who had wanted to build a rundom-aécess system for the ;emot; collec-
tion of data from a few sensors in his laboratory., but had previously thought

- 1t would be necessary to build a two-way channel so that the sensors could be
provided with feedback after their access attempts. There may be other random-
sccess applications where we are now providing feedback out of assumed necessity
rather than as a practical choice. 1f so, the approaches described in section 6

merit some scrutiny by practicioners of random-accessing.
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