propyl]-1-(3-methoxyphenyl)ethylamine, 4Z/5A, as an oil; m / z (rel. int.) $283(\mathrm{M}+, 17), 268$ (71), 164 (13), 135 (100), 121 (21), 105 (27), 91 (26), 77 (14).

Preparation of $4 Y$

 to prepare 3-methyl-3-(2-chlorophenyl)cinnamonitrile. The nitrile was catalytically reduced (palladium hydroxide, acetic acid, 60 p.s.i. hydrogen 2 hr to generate 3 -methyl-3-(2-chlorophenyl)propylamine. An equal molar amount of the amine, 3^{\prime}-methoxyacetophenone and 1.25 molar equivalents titanium (IV) isopropoxide were mixed 4 hr at rt and the intermediate imine treated with an ethanolic sodium cyanoborohydride (5 ml of $1 \mathrm{M}, 5 \mathrm{mmol}$). Work-up and chromatography afforded N-[3-methyl-3-(2-chlorophenyl) propyl]-1-(3-methoxyphenyl)ethylamine, 4y, as an oil; m/z (rel. int.) 283 ($\mathrm{M}^{+}, 17$) 268 (71), 164 (13), 135 (100), 121 (21), 105 (27), 91 (26), 77 (14).
Preparation of $6 T$

A solution of NPS R-568 (30.3 g 100 mmol$)$ in dichloromethane at $-78^{\circ} \mathrm{C}$ was treated dropwise with borontribromide (50 g, 200 mmol). The reaction was stirred 1 hr at rt and poured over ice. The hydrobromide was extracted from the aqueous phase with chloroform. The chloroform solubles were then washed ($4 \times 100 \mathrm{ml}$) with 50% HCl. The chloroform wash was dried over anhydrous magnesium sulfate and concentrated to afford (R) - N-[3-(2chlorophenyl) propyl]-1-(3-hydroxyphenyl) ethylamine hydrochloride as a solid. A solution of sodium hydride 10.48 g, 20 mmol) in dimethylformamide was treated with (R) $-\mathrm{N}-$ [3-(2-chlorophenyl) propyl]-1-(3-hydroxyphenyl) ethylamine hydrochloride ($3.25 \mathrm{~g}, 10 \mathrm{mmol}$) and the reaction stirred 1 hr at rt. The reaction was treated with iodoethane (1.71 g, 11 mmol) and stirred 16 hr at rt. Work-up and chromatography through silica using 3% methanol in chloroform afforded (R)-N-[3-(2-chlorophenyl) propyl]-1-(3-
ethoxyphenyl)ethylamine, 6T, as an oil; m / z (rel. int.) $316(M+1), 302(100), 282$ (11), 196 (5), 178 (7), 149 (74), 121 (34), 103 (25), 91 (28), 77 (29).

Preparation of 6R

5 NPS $R-467$ was used in a similar fashion to prepare (R)-N-(3-phenylpropyl)-1-(3-ethoxyphenyl) ethylamine, 6R, as an oil; m / z (rel. int.) 283 ($\mathrm{M}+10$), 268 (74), 178 (11), 162 (8), 149 (100), 121 (30), 103 (16), 91 (86), 77 (29).

10 Preparation of 3 U
An equal molar mixture of 3,3-diphenylpropylamine ($2.11 \mathrm{~g}, 10 \mathrm{mmol}$), 1^{\prime}-acetonaphthone ($1.70 \mathrm{~g}, 10 \mathrm{mmol}$) and 1.25 equivalents of titanium (IV) isopropoxide $(3.55 \mathrm{~g}$, 12.5 mmol) were stirred 4 hr at rt . The reaction mixture 15 was then treated with a 1 M solution of ethanolic sodium cyanoborohydride ($12.5 \mathrm{ml}, 12.5 \mathrm{mmol}$) and stirred 16 hr at rt. The reaction was diluted with diethyl ether (50 ml) and treated with water ($0.72 \mathrm{ml}, 40 \mathrm{mmol}$). After mixing thoroughly the mixture was centrifuged and the ether layer canted and concentrated to a milky oil. The oil was suspended in diethyl ether and filtered through a $0.45 \mu \mathrm{M}$ CR PTFE Acrodisc. The diethyl ether filtrate was concentrated to afford N-(3,3-diphenylpropyl)-1-(1-naphthyl) ethylamine, 3U, as a clear, colorless oil; m/z (rel. int.) $25365(M+17), 350(19), 181(23), 155(100), 141(25), 115$ (11), 91 (13), 77 (6).

Preparation of 6F

In a similar fashion equal molar amounts 1-(3methoxyphenyl)ethylamine ($1.51 \mathrm{~g}, 10 \mathrm{mmol}), 2^{\prime}$-acetonaphthone $(1.70 \mathrm{~g}, 10 \mathrm{mmol})$ and 1.25 equivalents of titanium (IV) isopropoxide $(3.55 \mathrm{~g}, 12.5 \mathrm{mmol})$ were treated as above. Work-up yielded N-[1-(2-naphthyl)ethyl]-1-(3methoxyphenyl)ethylamine, 6F, as a clear, colorless oil;
81
m/z (rel. int.) 305 ($M+1$), $290(35), 170(49), 155(100)$, 135 (55), 115 (8), 105 (10), 91 (9), 77 (10).

Preparation of 4 G

In a similar fashion equal molar amounts of (R))-15 phenylethylamine, , 1'-acetonaphthone and 1.25 equivalents of titanium (IV) isopropoxide were mixed and the resulting intermediate imine was reduced with ethanolic sodium cyanoborohydride. Work-up and chromatography yielded N -[1-(1-naphthyl)ethyl)-1-phenylethylamine, 4G, as a clear, 10 colorless oil; m/z (rel. int.) 275 ($\mathrm{M}+16$), 260 (79), 155 (100), 127 (27), 105 (70), 77 (32).

Preparation of 4 H

In a similar fashion equal molar amounts of (R)-1phenylethylamine, 2'-acetonaphthone and 1.25 equivalents 15 of titanium (IV) isopropoxide were mixed and the resulting intermediate imine was reduced with ethanolic sodium cyanoborohydride. Work-up and chromatography yielded N -[1-(2-naphthyl)ethyl]-1-phenylethylamine, 4H, as a clear, colorless oil; m/z (rel. int.) 275 (M+,1), 260 (61), 155

Preparation of 6E

In a similar fashion equal molar amounts of 1-(3methoxyphenyl)ethylamine, l'acetonaphthone and $1.25^{\prime \prime}$ equivalents of titanium (IV) isopropoxide were mixed and the resulting intermediate imine was reduced with ethanolic sodium cyanoborohydride. Work-up and chromatography yielded N-1-(1-naphthyl)ethyl-1-(3-methoxyphenyl)ethylamine, 6E, as a clear, colorless oil; m/z (rel. int.) 305 $(M+10), 290(30), 170(43), 155(100), 135(69), 115(9)$, 30105 (15), 91 (14), 77 (18).

Example 19: Pharmaceutical Formulation

Preparation of a pharmaceutical formulation suitable for administering a calcimimetic into a human patient is shown in Table 3.

5

TABLE 3

Ingredient	mg/capsule	g/representative batch of 5,000 capsules
NPS R-568	56.0	280.0
Pregelatinized Starch NF	134.0	670.0
Microcrystalline Cellulose NF	34.0	170.0
Colloidal Silicon Dioxide	1.0	5.0
Total	225 mg	1125 g

Other examples of NPS (R) -568 hydrochloride formulations and dosage forms include those suitable for sustained or extended release, using standard techniques.

Proper dosing can also be carried out using standard techniques. For example, in one set of experiments, 10 400 mg oral doses of NPS (R) -568 hydrochloride showed pharmacological activity in human subjects. Significant levels of the 0 -glucuronide conjugate of 17Q, a principal metabolite of NPS $(R)-568$, was observed in human plasma following oral administration of NPS (R)-568 hydro5 chloride. Thus, the glucuronide conjugate of $17 Q$ may be exerting some beneficial effect.

Using standard techniques other suitable dosage ranges for NPS (R) -568 can be determined.

Suitable dosage ranges, formulations, and dosage forms for other compounds described herein can also be determined by one skilled in art based on the teachings provided in the application.

Other embodiments are within the following claims. Thus, while several embodiments have been shown and described, various modifications may be made, without departing from the spirit and scope of the present inven5 tion.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(vii) PRIOR APPLICATION DATA:
Prior applications total,including applicationdescribed below: 2
(A) APPLICATION NUMBER: U.S: 08/353,784
(B) FIIING DATE: 8 December, 1994
(A) APPLICATION NUMBER: PCT/US/94/12117
(B) FILING DATE: 21 October, 1994
(viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Heber, Sheldon 0.
(B) REGISTRATION NUMBER: 38,179
(C) REFERENCE/DOCKET NUMBER: 215/304
(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE:	$(213) 489-1600$
(B) TELEFAX:	$(213) 955-0440$
(C) TELEX:	$67-3510$

(2) INFORMATION FOR SEQ ID NO: 1:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 5006 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: CDNA to mRNA
(ix) FEATURE:
(A) NAME/KEY:
CDS
(B) LOCATION: 436..3699
(D) OTHER INFORMATION:
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
gCTGCTGTGG CCGGACCCGA AgGCGGGCGC CGGGAGCGCA 40
gCGAGCCAGA CGCGCCTCTC CAAGACCGTG ACCTTGGCAT 80
AgGgagcggg gctgcgccca gtcctgagat cagaccagag 120
CTCATCCTCG TGGAGACCCA CGGCCGAGGG GCCGGAGCTG 160
CCTCTGTGCG AGGGAGCCCT GGCCGCGGCG CAGAAGGCAT 200
CACAGGAGGC CTCTGCATGA TGTGGCTTCC AAAGACTCAA 240
GgACCACCCA CATTACAAGT CTGGATTGAG GAAGGCAGAA 280
ATGGAGATTC AAACACCACG TCTTCTATTA TTTTATTAAT 320
CAATCTGTAG ACATGTGTCC CCACTGCAGG GAGTGAACTG 360
CTCCAAGGGA GAAACTTCTG GGAGCCTCCA AACTCCTAGC 400
TGTCTCATCC CTTGCCCTGG AGAGACGGCA GAACC 435
ATG GCA TTT TAT AGC TGC TGC TGG GTC CTC TTG GCA 471
Met Ala Phe Tyr Ser Cys Cys Trp Val Leu
1

86

CTC Leu	ACC	$\begin{aligned} & \text { TGG } \\ & \text { Trp } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { CAC } \\ & \text { His } \end{aligned}$	ACC Thr	$\begin{aligned} & \text { TCT } \\ & \text { Ser } \end{aligned}$	$\begin{aligned} & \text { GCC } \\ & \text { Ala } \end{aligned}$	$\begin{array}{r} \text { TAC } \\ \text { TYr } \\ 20 \end{array}$	$\begin{aligned} & \text { GGG } \\ & \text { Gly } \end{aligned}$	$\begin{aligned} & \text { CCA } \\ & \text { Pro } \end{aligned}$	GAC	$\begin{aligned} & \text { CAG } \\ & \text { Gln } \end{aligned}$	507
CGA	GCC	CAA	AAG	AAG	GGG	GAC	ATT	ATC	CTT	GGG	GGG	543
$\begin{array}{r} \text { Arg } \\ 25 \end{array}$	Ala	Gln	Lys	Lys	$\begin{array}{r} \text { Gly } \\ 30 \end{array}$	Asp	Ile	Ile	Leu	$\begin{array}{r} \text { Gly } \\ 35 \end{array}$	Gly	
CTC	TTT	CCT	ATT	CAT	TTT	GGA	GTA	GCA	GCT	AAA	GAT	579
Leu	Phe	Pro	$\begin{array}{r} \text { Ile } \\ 40 \end{array}$	His	Phe	Gly		$\begin{array}{r} \text { Ala } \\ 45 \end{array}$	Ala	Lys	Asp	
CAA	GAT	CTC	AAA	TCA	AGG	CCG	GAG	TCT	GTG	GAA	TGT	615
Gln	$\begin{array}{r} \text { Asp } \\ 50 \end{array}$	Leu	Lys	Ser	Arg	$\begin{array}{r} \text { Pro } \\ 55 \end{array}$	Glu	Ser	Val	Glu	$\begin{array}{r} \text { Cys } \\ 60 \end{array}$	
ATC	AGG	TAT	AAT	TTC	CGT	GGG	TTT	CGC	TGG	TTA	CAG	651
Ile	Arg	Tyr	Asn	$\begin{array}{r} \text { Phe } \\ 65 \end{array}$	Arg	Gly	Phe	Arg	$\begin{array}{r} \operatorname{Trp} \\ 70 \end{array}$	Leu	Gln	
GCT	ATG	ATA	TTT	GCC	ATA	GAG	GAG	ATA	AAC	AGC	AGC	687
Ala	Met	$\begin{array}{r} \text { Ile } \\ 75 \end{array}$	Phe	Ala	Ile	Glu	$\begin{array}{r} \text { Glu } \\ 80 \end{array}$	Ile	Asn	Ser	Ser	
CCA	GCC	CTT	CTT	CCC	AAC	TTG	ACG	CTG	GGA	TAC	AGG	723
$\begin{array}{r} \text { Pro } \\ 85 \end{array}$	Ala	Leu	Leu	Pro	$\begin{array}{r} \text { Asn } \\ 90 \end{array}$	Leu	Thr	Leu	Gly	$\begin{array}{r} \mathrm{Tyr} \\ 95 \end{array}$	Arg	
ATA	TTT	GAC	ACT	TGC	AAC	ACC	GTT	TCT	AAG	GCC	TTG	759
Ile	Phe	Asp	$\begin{aligned} & \text { Thr } \\ & 100 \end{aligned}$	Cys	Asn	Thr	Val	$\begin{aligned} & \text { Ser } \\ & 105 \end{aligned}$	Lys	Ala	Leu	
GAA	GCC	ACC	CTG	AGT	TTT	GTT	GCT	CAA	AAC	AAA	ATT	795
Glu	$\begin{aligned} & \text { Ala } \\ & 110 \end{aligned}$	Thr	Leu	Ser	Phe	$\begin{aligned} & \text { Val } \\ & 115 \end{aligned}$	Ala	Gln	Asn	Lys	$\begin{aligned} & \text { Ile } \\ & 120 \end{aligned}$	
GAT	TCT	TTG	AAC	CTT	GAT	GAG	TTC	TGC	AAC	TGC	TCA	831
Asp	Ser	Leu	Asn	$\begin{aligned} & \text { Leu } \\ & 125 \end{aligned}$	Asp	Glu	Phe	Cys	$\begin{aligned} & \text { Asn } \\ & 130 \end{aligned}$	Cys	Ser	
GAG	CAC	ATT	CCC	TCT	ACG	ATT	GCT	GTG	GTG	GGA	GCA	867
Glu	His	$\begin{aligned} & \text { Ile } \\ & 135 \end{aligned}$	Pro	Ser	Thr	Ile	$\begin{aligned} & \text { Ala } \\ & 140 \end{aligned}$		Val	Gly	Ala	
ACT	GGC	TCA	GGC	GTC	TCC	ACG	GCA	GTG	GCA	AAT	CTG	903
Thr	Gly	Ser	Gly	Val	Ser	Thr	Ala	Val	Ala	Asn	Leu	
145					150					155		
CTG	GGG	CTC	TTC	TAC	ATT	CCC	CAG	GTC	AGT	TAT	GCC	939
Leu	Gly	Leu	$\begin{aligned} & \text { Phe } \\ & 160 \end{aligned}$	Tyr	Ile	Pro		$\begin{aligned} & \text { Val } \\ & 165 \end{aligned}$	Ser	Tyr	Ala	
TCC	TCC	AGC	AGA	CTC	CTC	AGC	AAC	AAG	AAT	CAA	TTC	975
Ser	Ser	Ser	Arg	Leu	Leu	Ser	Asn	Lys	Asn	Gln	Phe	
	170					175					180	

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)
88
AAG GAG TTT TGG GAA GAA ACA TTT AAC TGC CAC CTC 1515 Lys Glu Phe Trp Glu Glu Thr Phe Asn Cys His Leu 350 . 355360
CAA GAA GGT GCA AAA GGA CCT TTA CCT GTG GAC ACC 1551
Gln Glu Gly Ala Lys Gly Pro Leu Pro Val Asp Thr
TTT CTG AGA GGT CAC GAA GAA AGT GGC GAC AGG TTT 1587
Phe Leu Arg Gly His Glu Glu Ser Gly Asp Arg Phe 375 380
AGC AAC AGC TCG ACA GCC TTC CGA CCC CTC TGT ACA 1623
Ser Asn Sex Ser Thr Ala Phe Arg Pro Leu Cys Thr$385 \quad 390$ An 395GGg GAt gag anc atc agC agt gic gag acc cct tac1659
Gly Asp Glu Asn Ile Ser Ser Val Glu Thr Pro Tyr 405400
ATA GAT TAC ACG CAT TTA CGG ATA TCC TAC AAT GTG 1695
Ile Asp Tyr Thr His Leu Arg Ile Ser Tyr Asn Val
410 415 420
TAC TTA GCA GTC TAC TCC ATT GCC CAC GCC TTG CAA 1731
Tyr Leu Ala Val Tyr Ser Ile Ala His Ala Leu Gln 425430
GAT ATA TAT ACC TGC TTA CCT GGG AGA GGG CTC TTC1767
Asp Ile Tyr Thr Cys Leu Pro Gly Arg Gly Leu Phe 435440
ACC AAT GGC TCC TGT GCA GAC ATC AAG AAA GTT GAG 1803
Thr Asn Gly Ser Cys Ala Asp Ile Lys Lys Val Glu 445450 455
GCG tGg Cag gic ctg ang cac cta cgg cat cta anc 1839
Ala Trp Gin Val Leu Lys His Leu Arg His Leu AsnTTT ACA AAC AAT ATG GGG GAG CAG GTG ACC TTT GAT1875
Phe Thr Asn Asn Met Gly Glu Gln Val Thr Phe Asp470475480
GAG TGT GGT GAC CTG GTG GGG AAC TAT TCC ATC ATC 1911
Glu Cys Gly Asp Leu Val Gly Asn Tyr Ser Ile Ile 485490
AAC TGG CAC CTC TCC CCA GAG GAT GGC TCC ATC GTG1947Asn Trp His Leu Ser Pro Glu Asp Gly Ser Ile Val
TTT AAG GAA GTC GGG TAT TAC AAC GTC TAT GCC AAG 1983Phe Lys Glu Val Gly Tyr Tyr Asn Val Tyr Ala Lys505510515

							89					
AAG	GGA	GAA	AGA	CTC	TTC	ATC	AAC	GAG	GAG	AAA	ATC	2019
Lys	Gly	Glu	Arg 520	Leu	Phe	Ile	Asn	$\begin{aligned} & \text { Glu } \\ & 525 \end{aligned}$	Glu	Lys	Ile	
CTG	TGG	AGT	GGG	TTC	TCC	AGG	GAG	CCA	CTC	ACC	TTT	2055
Leu	$\begin{aligned} & \operatorname{Trp} \\ & 530 \end{aligned}$	Ser	Gly	Phe	Ser	$\begin{aligned} & \text { Arg } \\ & 535 \end{aligned}$	Glu	Pro	Leu	Thr	$\begin{aligned} & \text { Phe } \\ & 540 \end{aligned}$	
GTG	CTG	TCT	GTC	CTC	CAG	GTG	CCC	TTC	TCC	AAC	TGC	2091
Val	Leu	Ser	Val	$\begin{aligned} & \text { Leu } \\ & 545 \end{aligned}$	Gln	Val	Pro	Phe	$\begin{aligned} & \text { Ser } \\ & 550 \end{aligned}$	Asn	Cys	
AGC	CGA	GAC	TGC	CTG	GCA	GGG	ACC	AGG	AAA	GGG	ATC	2127
Ser	Arg	Asp 555	Cys	Leu	Ala	Gly	$\begin{aligned} & \text { Thr } \\ & 560 \end{aligned}$	Arg	Lys	Gly	Ile	
ATT	GAG	GGG	GAG	CCC	ACC	TGC	TGC	TTT	GAG	TGT	GTG	2163
Ile	Glu	Gly	Glu	Pro	Thr	Cys	Cys	Phe	Glu	Cys	Val	
565					570					575		
GAG	TGT	CCT	GAT	GGG	GAG	TAT	AGT	GAT	GAG	ACA	GAT	2199
Glu	Cys	Pro	$\begin{aligned} & \text { Asp } \\ & 580 . \end{aligned}$	Gly	Glu	Tyr	Ser	Asp 585	Glu	Thr	Asp	
GCC	AGT	GCC	TGT	AAC	AAG	TGC	CCA	GAT	GAC	TTC	TGG	2235
Ala	$\begin{aligned} & \text { Ser } \\ & 590 \end{aligned}$	Ala	Cys	Asn	Lys	$\begin{aligned} & \text { Cys } \\ & 595 \end{aligned}$	Pro	Asp	Asp	Phe	$\begin{aligned} & \text { Trp } \\ & 600 \end{aligned}$	
TCC	AAT	GAG	AAC	CAC	ACC	TCC	TGC	ATT	GCC	AAG	GAG	2271
Ser	Asn	Glu	Asn	$\begin{aligned} & \text { His } \\ & 605 \end{aligned}$	Thr	Ser	Cys	Ile	$\begin{aligned} & \text { Ala } \\ & 610 \end{aligned}$	Lys	Glu	
ATC	GAG	TTT	CTG	TCG	TGG	ACG	GAG	CCC	TTT	GGG	ATC	2307
Ile	Glu	$\begin{aligned} & \text { Phe } \\ & 615 \end{aligned}$	Leu	Ser	Trp	Thr	$\begin{aligned} & \text { G1u } \\ & 620 \end{aligned}$	Pro	Phe	Gly	Ile	
GCA	CTC	ACC	CTC	TTT	GCC	GTG	CTG	GGC	ATT	TTC	CTG	2343
$\begin{aligned} & \text { Ala } \\ & 625 \end{aligned}$	Leu	Thr	Leu	Phe	Ala 630	Val	Leu	Gly	Ile	$\begin{aligned} & \text { Phe } \\ & 635 \end{aligned}$	Leu	
ACA	GCC	TTT	GTG	CTG	GGT	GTG	TTT	ATC	AAG	TTC	CGC	2379
Thr	Ala	Phe	$\begin{aligned} & \text { Val } \\ & 640 \end{aligned}$	Leu	Gly	Val	Phe	$\begin{aligned} & \text { Ile } \\ & 645 \end{aligned}$	Lys	Phe	Arg	
AAC	ACA	CCC	ATT	GTC	AAG	GCC	ACC	AAC	CGA	GAG	CTC	2415
Asn	$\begin{aligned} & \operatorname{Thr} \\ & 650 \end{aligned}$	Pro	Ile	Val	Lys	$\begin{aligned} & \text { Ala } \\ & 655 \end{aligned}$	Thr	Asn	Arg	Glu	$\begin{aligned} & \text { Leu } \\ & 660 \end{aligned}$	
TCC	TAC	CTC	CTC	CTC	TTC	TCC	CTG	CTC	TGC	TGC	TTC	2451
Ser	Tyr	Leu	Leu	$\begin{aligned} & \text { Leu } \\ & 665 \end{aligned}$		Ser	Leu	Leu	$\begin{aligned} & \text { Cys } \\ & 670 \end{aligned}$	Cys	Phe	
TCC	AGC	TCC	CTG	TTC	TTC	ATC	GGG	GAG	CCC	CAG	GAC	2487
Ser	Ser	$\begin{aligned} & \text { Ser } \\ & 675 \end{aligned}$	Leu	Phe	Phe	Ile	$\begin{aligned} & \text { G1Y } \\ & 680 \end{aligned}$	Glu	Pro	Gln	Asp	

							90					
TGG	ACG T	TGC	CGC	CTG	CGC	CAG	CCG	GCC	TTT	GGC	ATC	2523
$\begin{aligned} & \text { Trp } \\ & 685 \end{aligned}$	Thr	Cys	Arg	Leu	$\begin{aligned} & \text { Arg } \\ & 690 \end{aligned}$	Gln	Pro	Ala	Phe	$\begin{aligned} & \text { Gly } \\ & 695 \end{aligned}$	Ile	
AGC	TTC	GTG	CTC	TGC	ATC	TCA	TGC	ATC	CTG	GTG	AAA	2559
Ser	Phe V	Val	$\begin{aligned} & \text { Leu } \\ & 700 \end{aligned}$	cys	Ile	Ser	Cys	$\begin{aligned} & \text { Ile } \\ & 705 \end{aligned}$		Val	Lys	
ACC	AAC	CGT	GTC	CTC	こTG	GTG	TTT	GAG	GCC	AAG	ATC	2595
Thr	Asn A	Arg	Val	Leu	Leu	Val	Phe	Glu	Ala	Lys	Ile	
	710					715					720	
CCC	ACC A	AGC	TTC	CAC	CGC	AAG	TGG	TGG	GGG	CTC	AAC	2631
Pro	Thr S	Ser	Phe	$\begin{aligned} & \text { His } \\ & 725 \end{aligned}$	Arg	Lys	Trp	Trp	$\begin{aligned} & \text { Gly } \\ & 730 \end{aligned}$	Leu	Asn	
CTG	CAG T	TTC	CTG	CTG	GTT	TTC	CTC	TGC	ACC	TTC	ATG	2667
Leu	Gln 7	$\begin{aligned} & \text { Phe } \\ & 735 \end{aligned}$	Leu	Leu	Val	Phe	$\begin{aligned} & \text { Leu } \\ & 740 \end{aligned}$	Cys	Thr	Phe	Met	
CAG	ATT G	GTC	ATC	TGT	GTG	ATC	TGG	CTC	TAC	ACC	GCG	2703
Gln	Ile V	Val	Ile	Cys	Val	Ile	Trp	Leu	Tyr	Thr	Ala	
745					750					755		
CCC	CCC T	TCA	AGC	TAC	CGC	AAC	CAG	GAG	CTG	GAG	GAT	2739
Pro	Pro S	Ser	$\begin{aligned} & \text { Ser } \\ & 760 \end{aligned}$	Tyr	Arg	Asn	Gln	$\begin{aligned} & \text { Glu } \\ & 765 \end{aligned}$	Leu	Glu	Asp	
GAG	ATC A	ATC	TTC	ATC	ACG	TGC	CAC	GAG	GGC	TCC	CTC	2775
Glu	$\begin{aligned} & \text { Ile } \\ & 770 \end{aligned}$	Ile	Phe	Ile	Thr	$\begin{aligned} & \text { Cys } \\ & 775 \end{aligned}$	His	Glu	Gly	Ser	$\begin{aligned} & \text { Leu } \\ & 780 \end{aligned}$	
ATG	GCC	CTG	GGC	TTC	CTG	ATC	GGC	TAC	ACC	TGC	CTG	2811
Met	Ala L	Leu	Gly	$\begin{aligned} & \text { Phe } \\ & 785 \end{aligned}$	Leu	Ile	Gly	Tyr	$\begin{aligned} & \text { Thr } \\ & 790 \end{aligned}$	Cys	Leu	
CTG	GCT	GCC	ATC	TGC	TTC	TTC	TTT	GCC	TTC	AAG	TCC	2847
Leu	Ala	$\begin{aligned} & \text { Ala } \\ & 795 \end{aligned}$	Ile	Cys	Phe	Phe	$\begin{aligned} & \text { Phe } \\ & 800 \end{aligned}$	Ala	Phe	Lys	Ser	
CGG	AAG	CTG	CCG	GAG	AAC	TTC	AAT	GAA	GCC	AAG	TTC	2883
$\begin{aligned} & \text { Arg } \\ & 805 \end{aligned}$	Lys I	Leu	Pro	Glu	$\begin{aligned} & \text { Asn } \\ & 810 \end{aligned}$	Phe	Asn	Glu	Ala	$\begin{aligned} & \text { Lys } \\ & 815 \end{aligned}$	Phe	
ATC	ACC 1	TTC	AGC	ATG	CTC	ATC	TTC	TTC	ATC	GTC	TGG	2919
Ile	Thr P	Phe	$\begin{aligned} & \text { Ser } \\ & 820 \end{aligned}$	Met	Leu	Ile	Phe	$\begin{aligned} & \text { Phe } \\ & 825 \end{aligned}$		Val	Trp	
ATC	TCC	TTC	ATT	CCA	GCC	TAT	GCC	AGC	ACC	TAT	GGC	2955
Ile	$\begin{aligned} & \text { Ser } \\ & 830 \end{aligned}$	Phe	Ile	Pro	Ala	$\begin{aligned} & \text { Tyr } \\ & 835 \end{aligned}$	Ala	Ser	Thr	Tyr	$\begin{aligned} & \text { Gly } \\ & 840 \end{aligned}$	
AAG	TTT	GTC	TCT	GCC	GTA	GAG	GTG	ATT	GCC	ATC	CTG	2991
Lys	Phe	Val	Ser	$\begin{aligned} & \text { Ala } \\ & 845 \end{aligned}$	val	Glu	Val	Ile	Ala 850		Leu	

GCA	G	AGC	'TTT	GGC	TTG	CTG	GCG	TGC	ATC		TTC	3027
Ala	Ala	$\begin{aligned} & \text { Ser } \\ & 855 \end{aligned}$	Phe	Gly	Leu	Leu	$\begin{aligned} & \text { Ala } \\ & 860 \end{aligned}$	Cys	Ile		Phe	
AAC	AAG	ATC	TAC	ATC	ATT	CTC	TTC	AAG	CCA	TCC	CGC	3063
$\begin{aligned} & \text { Asn } \\ & 865 \end{aligned}$	Lys	Ile	Tyr	Ile	$\begin{aligned} & \text { Ile } \\ & 870 \end{aligned}$	Leu	Phe	Lys	Pro	$\begin{aligned} & \text { Ser } \\ & 875 \end{aligned}$	Arg	
AAC	ACC	ATC	GAG	GAG	GTG	CGT	TGC	AGC	ACC	GCA	GCT	3099
Asn	Thr	Ile	$\begin{aligned} & \text { Glu } \\ & 880 \end{aligned}$	Glu	Val	Arg	Cys	$\begin{aligned} & \text { Ser } \\ & 885 \end{aligned}$	Thr	Ala	Ala	
CAC	GCT	TTC	AAG	GTG	GCT	GCC	CGG	GCC	ACG	CTG	CGC	3135
His	$\begin{aligned} & \text { Ala } \\ & 890 \end{aligned}$	Phe	Lys	Val	Ala	$\begin{aligned} & \text { Ala } \\ & 895 \end{aligned}$	Arg	Ala	Thr	Leu	$\begin{aligned} & \text { Arg } \\ & 900 \end{aligned}$	
CGC	AGC	AAC	GTC	TCC	CGC	AAG	CGG	TCC	AGC	AGC	CTT	3171
Arg	Ser	Asn	Val	$\begin{aligned} & \text { Ser } \\ & 905 \end{aligned}$	Arg	Lys	Arg	Ser	$\begin{aligned} & \text { Ser } \\ & 910 \end{aligned}$	Ser	Leu	
GGA	GGC	TCC	ACG	GGA	TCC	ACC	CCC	TCC	TCC	TCC	ATC	3207
Gly	Gly	$\begin{aligned} & \text { Ser } \\ & 915 \end{aligned}$	Thr	Gly	Ser	Thr	$\begin{aligned} & \text { Pro } \\ & 920 \end{aligned}$	Ser	Ser	Ser	Ile	
AGC	AGC	AAG	AGC	AAC	AGC	GAA	GAC	CCA	TTC	CCA	CGG	3243
$\begin{aligned} & \text { Ser } \\ & 925 \end{aligned}$	Ser	Lys	Ser	Asn	$\begin{aligned} & \text { Ser } \\ & 930 \end{aligned}$	Glu	Asp	Pro	Phe	$\begin{aligned} & \text { Pro } \\ & 935 \end{aligned}$	Arg	
CCC	GAG	AGG	CAG	AAG	CAG	CAG	CAG	CCG	CTG	GCC	CTA	3279
Pro	Glu	Arg	$\begin{aligned} & \text { Gln } \\ & 940 \end{aligned}$	Lys	Gln	Gln	Gln	$\begin{aligned} & \text { Pro } \\ & 945 \end{aligned}$	Leu	Ala	Leu	
ACC	CAG	CAA	GAG	CAG	CAG	CAG	CAG	CCC	CTG	ACC	CTC	3315
Thr	$\begin{aligned} & \text { Gln } \\ & 950 \end{aligned}$	Gln	Glu	Gln	Gln	$\begin{aligned} & \text { Gln } \\ & 955 \end{aligned}$	Gln	Pro	Leu	Thr	$\begin{aligned} & \text { Leu } \\ & 960 \end{aligned}$	
CCA	CAG	CAG	CAA	CGA	TCT	CAG	CAG	CAG	CCC	AGA	TGC	3351
Pro	Gln	Gln	Gln	$\begin{aligned} & \text { Arg } \\ & 965 \end{aligned}$	Ser	Gln	Gln	Gln	$\begin{aligned} & \text { Pro } \\ & 970 \end{aligned}$	Arg	Cys	
AAG	CAG	AAG	GTC	ATC	TTT	GGC	AGC	GGC	ACG	GTC	ACC	3387
Lys	Gln	$\begin{aligned} & \text { Lys } \\ & 975 \end{aligned}$	Val	Ile	Phe	Gly	$\begin{aligned} & \text { Ser } \\ & 980 \end{aligned}$	Gly	Thr	Val	Thr	
TTC	TCA	CTG	AGC	TTT	GAT	GAG	CCT	CAG	AAG	AAC	GCC	3423
Phe 985	Ser	Leu	Ser	Phe	$\begin{aligned} & \text { Asp } \\ & 990 \end{aligned}$	Glu	Pro	Gln	Lys	$\begin{aligned} & \text { Asn } \\ & 995 \end{aligned}$	Ala	
ATG	GCC	CAC	AGG	AAT	TCT	ACG	CAC	CAG	AAC	TCC	CTG	3459
Met	Ala	His	$\begin{aligned} & \text { Arg } \\ & 1000 \end{aligned}$	Asn	Ser	Thr	His	$\begin{aligned} & \text { Gln } \\ & 1005 \end{aligned}$	Asn	Ser	Leu	
GAG	GCC	CAG	AAA	AGC	AGC	GAT	ACG	CTG	ACC	CGA	CAC	3495
Glu	$\begin{aligned} & \text { Ala } \\ & 1010 \end{aligned}$	$0^{G l n}$	Lys	Ser	Ser	Asp 1015	${ }^{\text {Thr }}$	Leu	Thr		His 1020	

SUBSTITUTE SHEET (RULE 26)
GGGACTGCAT AAACCAATGA GCTGTATCTG TAATTAATAT 4389
tCCTATATGT AGCTTTATCC TTAGGAAAAT GCTTCTGTTG 4429
tAATAGTCCA TGGACAATAT AAACTGAAAA ATGTCAGTCT 4469
GGTTTATATA AGGCAGTATT ATTGAGCTCT ATTTCCCCAC 4509
CCCACTATCC TCACTCCCAT AAGCTAAGCC TTATGTGAGC 4549
CCCTTCAGGG ACTCAAGGGT CCAGAAGTCC CTCCCATCTC 4589
TACCCCAAAG AATTCCTGAA GCCAGATCCA CCCTATCCCT 4629
gTACAGAGTA AGTTCTCAAT TATTGGCCTG CTAATAGCTG 4669
CTAGGGTAGG AAAGCGTGGT TCCAAGAAAG ATCCACCCTC 4709
AAATGTCGGA GCTATGTTCC CTCCAGCAGT GGTATTAATA 4749
CTGCCGGTCA CCCAGGCTCT GGAGCCAGAG AGACAGACCG 4789
GGGTTCAAGC CATGGCTTCG TCATTTGCAA GCTGAGTGAC 4829
TGTAGGCAGG GAACCTTAAC CTCTCTAAGC CACAGCTTCT 4869
TCATCTTTAA AATAAGGATA ATAATCATTC CTTCCCCTCA 4909
gagctcttat gTggattana cgagataitg tatatanagt 4949
ACTTTAGCCT GGTACCTAGC ACACAATAAG CATTCAATAA 4989
ATATTAGTTA ATATTAT 5006
(2) INFORMATION FOR SEQ ID NO: 2:
(i) SEOUENCE CHARACTERISTICS:
(A) LENGTH: 3809 base pair
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY:
linear
(ii) MOLECULE TYPE: CDNA to mRNA
(ix) FEATURE:
NAME/KEY:(B) LOCATION: 373.3606(D) OTHER INFORMATION:
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
CAACAGGCAC CTGGCTGCAG CCAGGAAGGA CCGCACGCCC 40
SUBSTITUTE SHEET (RULE 26)
TTTCGCGCAG GAGAGTGGAA GGAGGGAGCT GTTTGCCAGC 80
ACCGAGGTCT TGCGGCACAG GCAACGCTTG ACCTGAGTCT 120
TGCAGAATGA AAGGCATCAC AGGAGGCCTC TGCATGATGT 160
GGCTTCCAAA GACTCAAGGA CCACCCACAT TACAAGTCTG 200
GATTGAGGAA GGCAGAAATG GAGATTCAAA CACCACGTCT 240
TCTATTATTT TATTAATCAA TCTGTAGACA TGTGTCCCCA 280
CTGCAGGGAG TGAACTGCTC CAAGGGAGAA ACTTCTGGGA 320
gCCTCCAAAC TCCTAGCTGT CTCATCCCTT GCCCTGGAGA 360
GACGGCAGAA CC ATG GCA TTT TAT AGC TGC TGC TGG 396
Met Ala Phe Tyr Ser Cys Cys Trp 15
GTC CTC TTG GCA CTC ACC TGG CAC ACC TCT GCC TAC 432Val Leu Leu Ala Leu Thr Trp
10
15
GGG CCA GAC CAG CGA GCC CAA AAG AAG GGG GAC ATT 468
Gly Pro Asp Gln Arg Ala Gln Lys Lys Gly Asp Ile
ATC CTT GGG GGG CTC TTT CCT ATT CAT. TTT GGA GTA 504
Ile Leu Gly Gly Leu Phe Pro Ile His Phe Gly Val
GCA GCT AAA GAT CAA GAT CTC AAA TCA AGG CCG GAG 540
Ala Ala Lys Asp Gln Asp Leu Lys Ser Arg Pro Glu
TCT GTG GAA TGT ATC AGG TAT AAT TTC CGT GGG TTT576
Ser val Glu Cys Ile Arg Tyr Asn Phe Arg Gly Phe 65
CGC TGG TTA CAG GCT ATG ATA TTT GCC ATA GAG GAG 612
Arg Trp Leu Gln Ala Met Ile Phe Ala Ile Glu Glu 7075 80
ATA AAC AGC AGC CCA GCC CTT CTT CCC AAC TTG ACG 648
Ile Asn Ser Ser Pro Ala Leu Leu Pro Asn Leu Thr 8590
CTG GGA TAC AGG ATA TTT GAC ACT TGC AAC ACC GTT 684Leu Gly Tyr Arg Ile Phe Asp Thr Cys Asn Thr val720
TCT AAG GCC TTG GAA GCC ACC CTG AGT TTT GTT GCT
Ser Lys Ala Leu Glu Ala Thr Leu Ser Phe Val Ala105110115
CAA AAC AAA ATT GAT TCT TTG AAC CTT GAT GAG TTC 756 Gln Asn Lys Ile Asp Sex Leu Asn Leu Asp Glu Phe$120 \quad 125$
TGC AAC TGC TCA GAG CAC ATT CCC TCT ACG ATT GCT 792
$\begin{aligned} & \text { Cys Asn Cys Ser Glu His } \\ & 130 \text { Ile Pro Ser Thr Ile Ala } \\ & 1450\end{aligned}$
GTG GTG GGA GCA ACT GGC TCA GGC GTC TCC ACG GCA 828
Val Val Gly Ala Thr Gly Ser Gly Val Ser Thr Ala 145 150
GTG GCA AAT CTG CTG GGG CTC TTC TAC ATT CCC CAG 864
Val Ala Asn Leu Leu Gly Leu Phe Tyr Ile Pro Gln155160
GTC AGT TAT GCC TCC TCC AGC AGA CTC CTC AGC AAC 900
Val Ser Tyr Ala Ser Ser Ser Arg Leu Leu Ser Asn 165170175
AAG AAT CAA TTC AAG TCT TTC CTC CGA ACC ATC CCC 936
Lys Asn Gln Phe Lys Ser Phe Leu Arg Thr Ile Pro
AAT GAT GAG CAC CAG GCC ACT GCC ATG GCA GAC ATC 972
Asn Asp Glu His Gln Ala Thr Ala Met Ala Asp Ile 190 195 200
ATC GAG TAT TTC CGC TGG AAC TGG GTG GGC ACA ATT 1008Ile Glu Tyr Phe Arg Trp Asn Trp Val Gly Thr Ile205210
GCA GCT GAT GAC GAC TAT GGG CGG CCG GGG ATT GAG 1044Ala Ala Asp Asp Asp Tyr Gly Arg Pro Gly Ile Glu215220AAA TTC CGA GAG GAA GCT GAG GAA AGG GAT ATC TGC1080Lys Phe Arg Glu Glu Ala Glu Glu Arg Asp Ile Cys225230235
ATC GAC TTC AGT GAA CTC ATC TCC CAG TAC TCT GAT 1116
Ile Asp Phe Ser Glu Leu Ile Ser Gln Tyr Ser Asp240245
GAG GAA GAG ATC CAG CAT GTG GTA GAG GTG ATT CAA 1152
Glu Glu Glu Ile Gln His Val Val Glu Val Ile Gln250255260
AAT TCC ACG GCC AAA GTC ATC GTG GTT TTC TCC AGT 1188
Asn Ser Thr Ala Lys Val Ile Val Val Phe Ser Ser$265 \quad 270$
GGC CCA GAT CTT GAG CCC CTC ATC AAG GAG ATT GTC 1224
Gly Pro Asp Leu Glu Pro Leu Ile Lys Glu Ile Val275280
CGG CGC AAT ATC ACG GGC AAG ATC TGG CTG GCC AGC 1260
Arg Arg Asn Ile Thr Gly Lys Ile Trp Leu Ala Ser285290295
GAG GCC TGG GCC AGC TCC TCC CTG ATC GCC ATG CCT 1296Glu Ala Trp Ala Ser Ser Ser Leu Ile Ala Met Pro300305
CAG TAC TTC CAC GTG GTT GGC GGC ACC ATT GGA TTC
Gln Tyr
310 Phe His Val Val Gly Gly Thr Ile Gly Phe1332
GCT CTG AAG GCT GGG CAG ATC CCA GGC TTC CGG GAA 1368
Ala Leu Lys Ala Gly Gln Ile pro Gly Phe Arg Glu325330
TTC CTG AAG AAG GTC CAT CCC AGG AAG TCT GTC CAC 1404
Phe Leu Lys Lys Val His Pro Arg Lys Ser Val His335340
AAT GGT TTT GCC AAG GAG TTT TGG GAA GAA ACA TTTAsn Gly Phe Ala Lys Glu Phe Trp Glu Glu Thr Phe345350355
AAC TGC CAC CTC CAA GAA GGT GCA AAA GGA CCT TTA 1476
Asn Cys His Leu Gln Glu Gly Ala $\begin{aligned} & \text { Lys Gly Pro Leu } \\ & 365\end{aligned}$
CCT GTG GAC ACC TTT CTG AGA GGT CAC GAA GAA AGT 1512

GGC GAC AGG TTT AGC AAC AGC TCG ACA GCC TTC CGA1548
Gly Asp Arg Phe Ser Asn Ser Ser Thr Ala Phe Arg385390
CCC CTC TGT ACA GGG GAT GAG AAC ATC AGC AGT GTC 1584Pro Leu Cys Thr Gly Asp Glu Asn Ile Ser Ser Val395400
GAG ACC CCT TAC ATA GAT TAC ACG CAT TTA CGG ATA 1620
Glu Thr Pro Tyr Ile Asp Tyr Thr His Leu Arg Ile405410415TCC TAC AAT GTG TAC TTA GCA GTC TAC TCC ATT GCC1656Ser Tyr Asn Val Tyr Leu Ala Val Tyr Ser Ile Ala$420 \quad 425$
CAC GCC TTG CAA GAT ATA TAT ACC TGC TTA CCT GGG 1692
His Ala Leu Gln Asp Ile Tyr Thr Cys Leu Pro Gly 430435440
AGA GGG CTC TTC ACC AAT GGC TCC TGT GCA GAC ATC 1728
Arg Gly Leu Phe Thr Asn Gly Ser Cys Ala Asp Ile445450
AAG AAA GTT GAG GCG TGG CAG GTC CTG AAG CAC CTA Lys Lys Val Glu Ala Trp Gln Val Leu Lys His Leu 455460CGG CAT CTA AAC TTT ACA AAC AAT ATG GGG GAG CAGArg His Leu Asn Phe Thr Asn Asn Met Gly Glu Gln465470475
GTG ACC TTT GAT GAG TGT GGT GAC CTG GTG GGG AAC1836
Val Thr Phe Asp Glu Cys Gly Asp Leu Val Gly Asn 480485TAT TCC ATC ATC AAC TGG CAC CTC TCC CCA GAG GAT 1872Tyr Ser Ile Ile Asn Trp His Leu Ser Pro Glu Asp490495500
GGC TCC ATC GTG TTT AAG GAA GTC GGG TAT TAC AACGly Ser Ile Val phe Lys Glu Val Gly Tyr Tyr Asn505510GTC TAT GCC AAG AAG GGA GAA AGA CTC TTC ATC AACVal Tyr Ala Lys Lys Gly Glu Arg Leu Phe Ile Asn
GAG GAG AAA ATC CTG TGG AGT GGG TTC TCC AGG GAG 1980
Glu Glu Lys Ile Leu Trp Ser Gly Phe Ser Arg Glu 525530535GTG CCC TTC TCC AAC TGC AGC CGA GAC TGC CTG GCAVal Pro Phe Ser Asn Cys Ser Arg Asp Cys Leu Ala540545
GGg AcC AgG AAA GGg ATC ATT GAG GGG GAG CCC ACCGly Thr Arg Lys Gly Ile Ile Glu Gly Glu Pro Thr550555560TGC TGC TTT GAG TGT GTG GAG TGT CCT GAT GGG GAGCys Cys Phe Glu Cys Val Glu Cys Pro Asp Gly Glu
TAT AGT GAT GAG ACA GAT GCC AGT GCC TGT AAC AAG 2124
Tyr Ser Asp Glu Thr Asp Ala Ser Ala Cys Asn Lys 575 580
TGC CCA GAT GAC TTC TGG TCC AAT GAG AAC CAC ACC 2160
Cys pro Asp Asp Phe Trp Ser Asn Glu Asn His Thr585590595TCC TGC ATT GCC AAG GAG ATC GAG TTT CTG TCG TGGSer Cys Ile Ala Lys Glu Ile Glu phe Leu Ser Trp600605
ACG GAG CCC TTT GGG ATC GCA CTC ACC CTC TTT GCC 2232Thr Glu Pro Phe Gly Ile Ala Leu Thr Leu Phe Ala610615620

							98					
GTG	CTG	GGC	ATT	TTC	CTG	ACA	GCC	TTT	GTG		GGT	2268
Val	Leu	Gly	Ile	$\begin{aligned} & \text { Phe } \\ & 625 \end{aligned}$	Leu	Thr	Ala	Phe	$\begin{aligned} & \text { Val } \\ & 630 \end{aligned}$	Leu	Gly	
GTG	TTT	ATC	AAG	TTC	CGC	AAC	ACA	CCC	ATT	GTC	AAG	2304
Val	Phe	$\begin{aligned} & \text { Ile } \\ & 635 \end{aligned}$	Lys	Phe	Arg	Asn	$\begin{aligned} & \operatorname{Thr} \\ & 640 \end{aligned}$	Pro		Val	Lys	
GCC	ACC	AAC	CGA	GAG	CTC	TCC	TAC	CTC	CTC	CTC	TTC	2340
Ala	Thr	Asn	Arg	Glu	Leu	Ser	Tyr	Leu	Leu	Leu	Phe	
645					650					655		
TCC	CTG	CTC	TGC	TGC	TTC	TCC	AGC	TCC	CTG	TTC	TTC	2376
Ser	Leu	Leu	$\begin{aligned} & \text { Cys } \\ & 660 \end{aligned}$	Cys	Phe	Ser	Ser	$\begin{aligned} & \text { Ser } \\ & 665 \end{aligned}$	Leu	Phe	Phe	
ATC	GGG	GAG	CCC	CAG	GAC	TGG	ACG	TGC	CGC	CTG	CGC	2412
Ile	$\begin{aligned} & \text { G1y } \\ & 670 \end{aligned}$	Glu	Pro	Gln	Asp	$\begin{aligned} & \operatorname{Trp} \\ & 675 \end{aligned}$	Thr	Cys	Arg	Leu	$\begin{aligned} & \text { Arg } \\ & 680 \end{aligned}$	
CAG	CCG	GCC	TTT	GGC	ATC	AGC	TTC	GTG	CTC	TGC	ATC	2448
Gln	Pro	Ala	Phe	$\begin{aligned} & \mathrm{Gly} \\ & 685 \end{aligned}$	Ile	Ser	Phe	Val	$\begin{aligned} & \text { Leu } \\ & 690 \end{aligned}$		Ile	
TCA	TGC	ATC	CTG	GTG	AAA	ACC	AAC	CGT		CTC	CTG	2484
Ser	Cys	$\begin{aligned} & \text { Ile } \\ & 695 \end{aligned}$	Leu	Val	Lys	Thr	$\begin{aligned} & \text { Asn } \\ & 700 \end{aligned}$	Arg	Val	Leu	Leu	
GTG	TTT	GAG	GCC	AAG	ATC	CCC	ACC	AGC	TTC	CAC	CGC	2520
Val	Phe	Glu	Ala	Lys	Ile	Pro	Thr	Ser			Arg	
705					710					715		
AAG	TGG	TGG	GGG	CTC	AAC	CTG	CAG	TTC	CTG	CTG	GTT	2556
Lys	Trp	Trp	$\begin{aligned} & \text { G1y } \\ & 720 \end{aligned}$	Leu		Leu	Gln	$\begin{aligned} & \text { Phe } \\ & 725 \end{aligned}$	Leu	Leu	Val	
TTC	CTC	TGC	ACC	TTC	ATG	CAG	ATT	GTC	ATC	TGT	GTG	2592
Phe	$\begin{aligned} & \text { Leu } \\ & 730 \end{aligned}$	Cys	Thr	Phe	Met	$\begin{aligned} & \text { G1n } \\ & 735 \end{aligned}$	Ile	Val			$\begin{aligned} & \text { Val } \\ & 740 \end{aligned}$	
ATC	TGG	CTC	TAC	ACC	GCG	CCC	CCC	TCA	AGC	TAC	CGC	2628
Ile	Trp	Leu	Tyr	$\begin{aligned} & \text { Thr } \\ & 745 \end{aligned}$		Pro	Pro		$\begin{aligned} & \text { Ser } \\ & 750 \end{aligned}$	Tyr	Arg	
AAC	CAG	GAG	CTG	GAG	GAT	GAG	ATC	ATC	TTC		ACG	2664
Asn		$\begin{aligned} & \text { Glu } \\ & 755 \end{aligned}$	Leu	Glu		Glu	$\begin{aligned} & \text { Ile } \\ & 760 \end{aligned}$		Phe		Thr	
TGC	CAC	GAG	GGC	TCC	CTC	ATG	GCC	CTG	GGC	TTC	CTG	2700
$\begin{aligned} & \text { Cys } \\ & 765 \end{aligned}$		Glu	Gly		$\begin{aligned} & \text { Leu } \\ & 770 \end{aligned}$	Met	Ala			$\begin{aligned} & \text { Phe } \\ & 775 \end{aligned}$	Leu	
ATC	GGC	TAC	ACC	TGC	CTG	CTG	GCT	GCC	ATC	TGC	TTC	2736
Ile	Gly	Tyr	$\begin{aligned} & \text { Thr } \\ & 780 \end{aligned}$	Cys	Leu	Leu	Ala	$\begin{aligned} & \text { Ala } \\ & 785 \end{aligned}$		Cys	Phe	

							99					
TTC	TTT	GCC	TTC	AAG	TCC	CGG	AAG	CTG	CCG	GAG	AAC	2772
Phe	Phe	Ala	Phe	Lys	Ser	Arg	Lys	Leu	Pro	Glu	Asn	
	790					795					800	
TTC	AAT	GAA	GCC	AAG	TTC	ATC	ACC	TTC	AGC	ATG	CTC	2808
Phe	Asn	Glu	Ala	$\begin{aligned} & \text { Lys } \\ & 805 \end{aligned}$	Phe	Ile	Thr	Phe	$\begin{aligned} & \text { Ser } \\ & 810 \end{aligned}$	Met	Leu	
ATC	TTC	TTC	ATC	GTC	TGG	ATC	TCC	TTC	ATT	CCA	GCC	2844
Ile	Phe	Phe 815	Ile	Val	Trp	Ile	$\begin{aligned} & \text { Ser } \\ & 820 \end{aligned}$	Phe	Ile	Pro	Ala	
TAT	GCC	AGC	ACC	TAT	GGC	AAG	TTT	GTC	TCT	GCC	GTA	2880
Tyr	Ala	Ser	Thr	Tyr	Gly	Lys	Phe	Val	Ser	Ala	Val	
825					830					835		
GAG	GTG	ATT	GCC	ATC	CTG	GCA	GCC	AGC	TTT	GGC	TTG	2916
Glu	Val	Ile	$\begin{gathered} \text { Ala } \\ 840 \end{gathered}$	Ile	Leu	Ala	Ala	$\begin{aligned} & \text { Ser } \\ & 845 \end{aligned}$	Phe	Gly	Leu	
CTG	GCG	TGC	ATC	TTC	TTC	AAC	AAG	ATC	TAC	ATC	ATT	2952
Leu	$\begin{aligned} & \text { Ala } \\ & 850 \end{aligned}$	Cys	Ile	Phe	Phe	Asn 855	Lys	Ile	Tyr	Ile	$\begin{aligned} & \text { Ile } \\ & 860 \end{aligned}$	
CTC	TTC	AAG	CCA	TCC	CGC	AAC	ACC	ATC	GAG	GAG	GTG	2988
Leu	Phe	Lys	Pro	$\begin{aligned} & \text { Ser } \\ & 865 \end{aligned}$	Arg	Asn	Thr	Ile	$\begin{aligned} & \text { Glu } \\ & 870 \end{aligned}$	Glu	Val	
CGT	TGC	AGC	ACC	GCA	GCT	CAC	GCT	TTC.	AAG	GTG	GCT	3024
Arg	Cys	$\begin{aligned} & \text { Ser } \\ & 875 \end{aligned}$	Thr	Ala	Ala	His	$\begin{aligned} & \text { Ala } \\ & 880 \end{aligned}$	Phe	Lys	Val	Ala	
GCC	CGG	GCC	ACG	CTG	CGC	CGC	AGC	AAC	GTC	TCC	CGC	3060
$\begin{aligned} & \text { Ala } \\ & 885 \end{aligned}$	Arg	Ala	Thr	Leu	$\begin{gathered} \text { Arg } \\ 890 \end{gathered}$	Arg	Ser	Asn	Val	$\begin{aligned} & \text { Ser } \\ & 895 \end{aligned}$	Arg	
AAG	CGG	TCC	AGC	AGC	CTT	GGA	GGC	TCC	ACG	GGA	TCC	3096
Lys	Arg	Ser	$\begin{aligned} & \text { Ser } \\ & 900 \end{aligned}$	Ser	Leu	Gly	Gly	$\begin{aligned} & \text { Ser } \\ & 905 \end{aligned}$	Thr	Gly	Ser	
ACC	CCC	TCC	TCC	TCC	ATC	AGC	AGC	AAG	AGC	AAC	AGC	3132
Thr	$\begin{aligned} & \text { Pro } \\ & 910 \end{aligned}$	Ser	Ser	Ser	Ile	$\begin{aligned} & \text { Ser } \\ & 915 \end{aligned}$	Ser	Lys	Ser	Asn	$\begin{aligned} & \text { Ser } \\ & 920 \end{aligned}$	
GAA	GAC	CCA	TTC	CCA	CAG	CCC	GAG	AGG	CAG	AAG	CAG	3168
Glu	Asp	Pro	Phe	$\begin{aligned} & \text { Pro } \\ & 925 \end{aligned}$	Gln	Pro	Glu	Arg	$\begin{aligned} & \text { Gln } \\ & 930 \end{aligned}$	Lys	Gln	
CAG	CAG	CCG	CTG	GCC	CTA	ACC	CAG	CAA	GAG	CAG	CAG	3204
Gln	Gln	$\begin{aligned} & \text { Pro } \\ & 935 \end{aligned}$	Leu	Ala	Leu	Thr	$\begin{aligned} & \text { Gln } \\ & 940 \end{aligned}$	Gln	Glu	Gln	Gln	
CAG	CAG	CCC	CTG	ACC	CTC	CCA	CAG	CAG	CAA	CGA	TCT	3240
Gln	Gln	Pro	Leu	Thr	Leu	Pro	Gln	Gln	Gln	Arg	Ser	
945					950					955		

SUBSTITUTE SHEET (RULE 26)

Claims

1. An inorganic ion receptor modulating compound having the formula:

wherein Ar_{1} is either naphthyl or phenyl optionally substituted with 0 to 5 substituents each independently selected from the group consisting of, lower alkyl, halogen, lower alkoxy, lower thioalkyl, methylene dioxy, lower haloalkyl, lower haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH} \mathrm{C}_{2}, \mathrm{CN}$, acetoxy, $\mathrm{N}_{\left(\mathrm{CH}_{3}\right)_{2}}$, phenyl, phenoxy, benzyl, benzyloxy, α, α dioxy;
Ar_{2} is either naphthyl or phenyl optionally substituted with 0 to 5 substituents each independently selected from the group consisting of, lower alkyl, halogen, lower alkoxy, lower thioalkyl, methylene dioxy, lower haloalkyl, lower haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}$, and acetoxy;
q is $0,1,2$, or 3 ; and
R is either H, lower alkyl;
and pharmaceutically salts and complexes thereof; wherein said compound modulates one or more inorganic ion receptor activities.
2. The compound of claim 1, said $A r_{1}$ phenyl, if present, has 1 to 5. substituents each independently selected from the group consisting of, isopropyl, $\mathrm{CH}_{3} \mathrm{O}, \mathrm{CF}_{3}$ $\mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}$, and CH_{3};
said $A r_{2}$ phenyl, if present, has 1 to 5 substituents each independently selected from the group consisting of, isopropyl, $\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}$, and CH_{3};
said compound is a calcimimetic; and receptor activity.
3. The compound of claim 2, wherein q is 2, said $A r_{1}$ phenyl having 1 to 5 substituents is present, and said $A r_{2}$ phenyl having 1 to 5 substituents is present.
4. Compound of claim 3, said Ar_{2} phenyl is a metamethoxy phenyl.
5. The compound of claim 2, wherein q is 0 and said Ar 2 naphthyl is present.
6. The compound of claim 5, wherein said Ar phenyl 15 having 1 to 5 substituents is present.
7. The compound of claim 2, wherein q is 2, said $A r_{1}$ phenyl having 1 to 5 substituents is present, and said Ar_{2} naphthyl.
8. The compound of claim 2, wherein said $A r_{1}$ phenyl, if present, has 1 to 5 substituents each independently selected from the group consisting of, $\mathrm{CF}_{3} \mathrm{O}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}$, and CF_{3}; and
said $A r_{2}$ phenyl, if present, has 1 to 5 substituents each independently selected from the group consisting of,
$25 \mathrm{CF}_{3} \mathrm{O}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CH}_{3} \mathrm{O}$, and CF_{3}.
9. The compound of claim 3, wherein said Ar phenyl has 1 to 5 substituents each independently selected from the group consisting of, $\mathrm{CF}_{3} \mathrm{O}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}$, and CF_{3}; and
said $A r_{2}$ phenyl has 1 to 5 substituents each independently selected from the group consisting of, $\mathrm{CF}_{3} \mathrm{O}$, I, $\mathrm{Cl}, \mathrm{F}, \mathrm{CH}_{3} \mathrm{O}$, and CF_{3}.
10. The compound of claim 9, wherein said Ar_{2} phenyl 5 is a meta-methoxy phenyl.
11. The compound of claim 2 , wherein R is CH_{3}.
12. The compound of claim 3 , wherein R is. CH_{3}.
13. The compound of claim 4 , wherein R is CH_{3}.
14. The compound of claim 7, wherein R is CH_{3}

10 15. The compound of claim 11, wherein said compound has the formula:

or pharmaceutically acceptable salts and complexes thereof.
16. An inorganic ion receptor modulating compound

15 having the formula:

SUBSTITUTE SHEET (RULE 26)
wherein $A r_{3}$ is either naphthyl or phenyl optionally substituted with 0 to 5 substituents each independently selected from the group consisting of, lower alkyl, halogen, lower alkoxy, lower thioalkyl, methylene dioxy, 5 lower haloalkyl, lower haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}$, acetoxy, benzyl, benzyloxy, dimethylbenzyl, NO_{2}, CHO , $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$, acetyl, ethylene dioxy;
Ar_{4} is either naphthyl or phenyl optionally substituted with 0 to 5 substituents each independently selected from the group consisting of, lower alkyl, halogen, lower alkoxy, lower thioalkyl, methylene dioxy, lower haloalkyl, lower haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}$, and acetoxy;
R_{8} is either hydrogen or phenyl;
R_{9} is either hydrogen or methyl; and
R_{10} is either hydrogen, methyl, or phenyl;
or pharmaceutically acceptable salts and complexes thereof.
17. An inorganic ion receptor modulating compound having the formula:

wherein $A r_{5}$ is either naphthyl or phenyl optionally substituted with 0 to 5 substituents each independently selected from the group consisting of, lower alkyl, halogen, lower alkoxy, lower thioalkyl, methylene dioxy,
25 lower haloalkyl, lower haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}$, acetoxy, benzyl, benzyloxy, α, α-dimethylbenzyl, $\mathrm{NO}_{2}, \mathrm{CHO}$, $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$, acetyl, ethylene dioxy, $-\mathrm{CH}=\mathrm{CH}$-phenyl;
A_{6} is either naphthyl or phenyl optionally substituted with 0 to 5 substituents each independently

SUBSTITUTE SHEET (RULE 26)
105
selected from the group consisting of, acetyl, loweralkyl, halogen, lower alkoxy, lower thioalkyl, methylenedioxy, lower haloalkyl, lower haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}$.$\mathrm{CN}, ~ c a r b o m e t h o x y, \mathrm{OCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{C}_{2} \mathrm{H}_{5}$ and acetoxy;
R_{11} is hydrogen or methyl; andR_{12} is hydrogen or methyl.
18. A pharmaceutical composition comprising acompound of any of claims $1-17$ and a pharmaceuticalacceptable carrier.
19. A method for treating a patient in need of such treatment comprising the step of administering to said patient a therapeutically effective amount of the pharmaceutical composition of claim 18.
20. The method of claim 19, wherein said patient is 15 a human, said disease is characterized by either, or both, of: (1) abnormal calcium homeostasis, and (2) an abnormal amount of an extracellular or intracellular messenger whose production can be affected by calcium receptor activity; and said compound is a calcimimetic.
21. The method of claim 19, wherein said patient is a human and said disease selected from the group consisting of primary and secondary hyperparathyroidism, Paget's disease, hypercalcemia malignancy, osteoporosis, hypertension, and renal osteodystrophy.

FIG. 1a.

 $2 N$

SUBSTITUTE SHEET (RULE 26)

acminue mer muena

FIG. 1 c .

$$
a_{0}, 15
$$

FIG. 1d.

FIG. 1 g.

Quram 50 nam

SUBSTITUTE SHEET (RULE 26)
00.4

 00 gras.

FIG. 1h.

4T

(2)

145

FIG. 1j.

I6F (1)

FIG. 1 n .

21X

$21 Y$

22J

FIG. 10.

FIG. 1 p.

$25 C$

25E

24L

$24 Y$

$24 x$

253

25A

$25 L$

FIG. 1q.
SUBSTITUTE SHEET (RULE 26)

254

25W

 25x
 $25 Y$

FIG. 1 r.

NPS R-467 . HCl

SUBSTITUTE SHEET (RULE 26)
mp 157.4-158 ${ }^{\circ} \mathrm{C} ;[\alpha]_{0}{ }^{20}+41.7^{\circ}\left(\mathrm{C} 6.11, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}_{\max }(\mathrm{EtOH}) 276$ (ε 1900), sh $282 \mathrm{~nm}(\varepsilon 1700) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.83\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7, \mathrm{C}-\mathrm{CH}_{3}\right), 2.29(2 \mathrm{H}, \mathrm{q}$, $\mathrm{J}=8), 2.51(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6), 2.65(2 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.87\left(3 \mathrm{H}, \mathrm{s},-0 \mathrm{OH}_{3}\right), 4.11(1 \mathrm{H}, \mathrm{br}$ q, CH), $6.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8, \mathrm{~J}=2), 7.05-7.07(3 \mathrm{H}, \mathrm{m}), 7.11-7.21(3 \mathrm{H}, \mathrm{m})$, 7.27-7.32 (2H, m) 9.8 (1H, br s), $10.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 20.3$, $27.0,32.3,44.9,55.3,58.8,111.8,115.3,119.7,125.8,127.9$ (2C), 128.1 (2C), 130.0, 137.2, 139.6, 161.1; GC/El-MS ($t_{R}=9.03 \mathrm{~min}$), m / z (rel. int.) $269\left(M^{+}, 17\right), 254$ (100), 164 (8), 135 (50), 121 (8), 105 (7), 91 (23), 77 (7); HR-El-MS observed $\left(\mathrm{M}^{+}\right) \mathrm{m} / \mathrm{z}$ 269.1796, $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}$ required 269.1780.

FIG. 2.

NPS R-568 $\cdot \mathrm{HCl}$

SUBSTITUTE SHEET (RULE 26)
 sh $282 \mathrm{~nm}(\varepsilon 1900) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.85\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7, \mathrm{C}-\mathrm{CH}_{3}\right), 2.24(2 \mathrm{H}, \mathrm{a}$, $J=8), 2.66(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7), 2.68(2 \mathrm{H}$, br $\mathrm{q}, \mathrm{J}=7), 3.87\left(3 \mathrm{H}, \mathrm{s},-0 \mathrm{OH}_{3}\right), 4.15(1 \mathrm{H}$, br t, J=7, CH), $6.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8, \mathrm{~J}=2), 7.06-7.15(4 \mathrm{H}, \mathrm{m}), 7.23-7.32(3 \mathrm{H}, \mathrm{m})$, $9.85(1 \mathrm{H}, \mathrm{br} s), 10.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;{ }^{13} \mathrm{C}^{\mathrm{N}} \mathrm{NR}\left(\mathrm{CDCl}_{3}\right) \delta 20.2,25.2,30.0,44.7$, 55.6, 58.6, 112.0, 115.3, 119.7, 126.5, 127.4, 129.1, 129.9, 130.0, 133.4, 137.1, 137.2, 160.0; GC/El-MS ($t_{R}=9.93 \mathrm{~min}$), m/z (rel. int.) $303\left(\mathrm{M}^{+}, 2\right), 288$ (100), 268 (17), 196 (4), 164 (8), 135 (56), 126 (21), 103 (9); 91 (7), 77 (7); HR-El-MS observed $\left(M^{+}\right) \mathrm{m} / \mathrm{z} 303.1403, \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{ClNO}$ required 303.1390 .

FIG. 3.

MASS SPECTRA OF NPS COMPOUNDS

 (ELECTRON IMPACT, 70 eV)

FIGURE 4

MASS SPECTRA OF NPS COMPOUNDS

 (ELECTRON IMPACT, 70 eV)

4 G

FIGURE 5

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

4H

FIGURE 6

MASS SPECTRA OF NPS COMPOUNDS

(ELECTRON IMPACT, 70 eV)

4 M

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

$4 N$

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

4 P

FIGURE 9

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

4 T

EIGURE 10

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

4V

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

$4 W$

FIGURE 12

MASS SPECTRA OF NPS COMPOUNDS
(ELECTRON IMPACT, 70eV)

4Y

FIGURE 13

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

$4 Z$

FIGURE 14

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

5 C

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

$6 E$

figure le

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

6 F

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

61

FIGURE 18

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

$6 R$

FIGURE IS

MASS SPECTRA OF NPS COMPOUNDS
 (ELECTRON IMPACT, 70eV)

$6 T$

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

6 V

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

6X

EIGURE 22

EIGURE 23

MASS SPECTRA OF NPS COMPOUNDS
 (ELECTRON IMPACT, 70eV)

$7 X$

FIGURE 24

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

8X

WO 96/12697 MASS SPECTRA OF NPS COMPOUNDS
(ELECTRON IMPACT, 70 eV)

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 27

FIGURE 28

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

EIGURE 32

MASS SPECTRA OF NPS COMPOUNDS
 (ELECTRON IMPACT, 70eV)

Abunaance

FIGURE 33

FIGURE $3 \div$

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 35

FIGURE 37

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

EIGURE

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 41

FIGURE $\because 2$

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 43

FIGURE 44

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

FIGURE 49

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

FIGURE 51

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 53

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 55

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 56

FIGURE 57

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 61

MASS SPECTRA OF NPS COMPOUNDS

 (ELECTRON IMPACT, 70eV)

FIGURE 63

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

WO 96/12697 $65 / 126 \quad$ PCT/US95/13704

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

21D

FIGURE 66

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

21F

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

21M

FIGURE 68
WO 96/12697 $69 / 126$
MASS SPETUS95/13704
(ELECTRA OF NPS COMPOUNDS IMPACT, 70eV)

FIGURE 69

FIGURE 70

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

21Q

FIGURE 72

MASS SPECTRA OF NPS COMPOUNDS
(ELECTRON IMPACT, 70eV)

21Y

EIGURE 73

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

22J

EIGURE 7!

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

22X

FIGURE 75

MASS SPECTRA OF NPS COMPOUNDS
(ELECTRON IMPACT, 70eV)

22Y

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

$22 Z$

MASS SPECTRA OF NPS COMPOUNDS
(ELECTRON IMPACT, 70eV)

23A

FIGURE 78

MASS SPECTRA OF NPS COMPOUNDS

 (ELECTRON IMPACT, 70eV)

24J

MASS SPECTRA OF NPS COMPOUNDS

(ELECTRON IMPACT, 70eV)

24K

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70 eV)

$24 L$

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

24M

MASS SPECTRA OF NPS COMPOUNDS
 (ELECTRON IMPACT, 70eV)

24N

FIGURE 83

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 84

MASS SPECTRA OF NPS COMPOUNDS

(ELECTRON IMPACT, 70 eV)

FIGURE 85

FIGURE 86

MASS SPECTRA OF NPS COMPOUNDS

 (ELECTRON IMPACT, 70eV)

FIGURE 87

FIGURE 8ε

MASS SPECTRA OF NPS COMPOUNDS

 (ELECTRON IMPACT, 70eV)

FIGURE 89

FIGURE 90

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIGURE 91

PCT/US95/13704

MASS SPECTRA OF NPS COMPOUNDS
(ELECTRON IMPACT, 70eV)

FIGURE 92

FIGURE 93

MASS SPECTRA OF NPS COMPOUNDS (ELECTRON IMPACT, 70eV)

FIG. 95.

FIG. 96.
VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% \mathrm{MeOD} / \mathrm{CDCl}_{3}$ ($5 \mathrm{mg} / \mathrm{mL}$). RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	$\delta($ PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3H	1.85	d	$J=6.8$	aliph- CH_{3}
1H	4.05	d	J=13.2	$-\mathrm{CH}_{2}-$
1 H	4.16	d	$\mathrm{J}=13.4$	$-\mathrm{CH}_{2}-$
1 H	5.06	9	$\mathrm{J}=7.0$	aliph-CH-
8 H	7.21-7.47	m	n.a.	
1H	7.54	d	$\mathrm{J}=8.8$	
2 H	7.65-7.73	m	n.a.	
2 H	7.89	d	$\mathrm{J}=7.8$	
1H	8.43	d	$J=7.2$	
1 H	10.47	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
1H	10.84	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

FIG. 97.

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% \mathrm{MeOD}^{(C D C l}{ }_{3}$ ($5 \mathrm{mg} / \mathrm{mL}$). RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.97	d	$\mathrm{J}=6.8$	aliph- CH_{3}
3 H	2.03	d	$J=6.8$	aliph- CH_{3}
1 H	4.17	9	$\mathrm{J}=6.9$	aliph-CH-
1 H	4.81	q	$\mathrm{J}=6.9$	aliph-CH-
2 H	6.77-6.85	m	n.a.	
1H	7.14	bs	n.a.	
4 H	7.33-7.52	m	n.a.	
6 H	7.74-7.94	m	n.a.	
1H	8.69	bs	n.a.	
1 H	10.82	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
1 H	10.89	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

FIG. 98.

FIG. 99.
VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

Cl^{-}

NMR SPECTRA	ARE OF THE HCI SALT IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.	
$\delta(P P M)$	MULTIPLICITY	ASSIGNMENT
20.83	CH_{3}	aliph-CH3
21.87	CH_{2}	aliph-CH3
51.37	CH	$-\mathrm{CH}_{2}-$
57.27	CH	$-\mathrm{CH}-$

121.40 CH
124.65 CH
125.50 . CH
125.82 CH
126.09 CH
126.22 CH
126.62 CH
127.49 CH
128.01 CH
128.76 CH
129.08 CH
$129.25 \quad \mathrm{CH}$
130.19 Q
$132.74 \quad$ Q
132.78 Q
132.95 Q
133.27 Q
133.53

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% ~ M e O D / C D C l_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	$\delta($ PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
6 H	1.17	d	J=7.1	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
3 H	1.86	d	J=6.8	aliph- CH_{3}
1H	2.84	p	$\mathrm{J}=7.0$	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
1 H	3.88	d	$\mathrm{J}=13.3$	- CH_{2-}
1H	3.97	d	$\mathrm{J}=13.3$	- $\mathrm{CH} 2-$
1 H	5.02	9	$\mathrm{J}=6.8$	aliph-CH-
1H	7.03	d	$\mathrm{J}=8.1$	3
1 H	7.17	d	$\mathrm{J}=8.1$	2
3 H	7.40-7.54	m	n.a.	
1H	7.68	dd	$J_{1}=J_{2}=7.9$	$3{ }^{\prime}$
1H	7.89	d	$J=8.3$	4^{\prime} OR 5'
1 H	7.91	d	$\mathrm{J}=8.1$	4^{\prime} OR 5'
1 H	8.41	d	$J=7.1$	2^{\prime}
1 H	10.38	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
1 H	10.77	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

FIG. 100.
VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

Cl^{-}

121.57

125.17
125.94
126.05
126.65
127.05
129.10
130.02
130.39
130.90
132.43
133.71
149.84

CH

CH
CH
CH
CH
Q
CH
CH
Q
CH
Q
Q
Q

FIG. 101.
SUBSTITUTE SHEET (RULE 26)

VARIAN 300 MHz ${ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

Cl^{-}

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% ~ M e O D / \mathrm{CDCl}_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	S δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.92	d	$J=6.6$	aliph- CH_{3}
3 H	3.64	5	n.a.	$-\mathrm{OCH}_{3}$
1H	3.85	d	$\mathrm{J}=13.4$	$-\mathrm{CH}_{2}{ }^{-}$
1 H	3.93	d	$\mathrm{J}=13.5$	$-\mathrm{CH}_{2}-$
1 H	5.04	9	$J=6.9$	aliph-CH-
2 H	6.72 (6.71	calc) d	J=8.3	3
2 H	7.21 (7.10	calc) d	$J=8.0$	2
2 H	7.47-7.55	m	n.a.	
1 H	7.60	d	$\mathrm{J}=8.3$	
1 H	7.69	dd	J=7.9/7.5	$3 '$
1H	7.90	d	$J=7.9$	4^{\prime} OR 5'
1 H	7.92	d	$J=7.7$	4^{\prime} OR 5'
1H	8.42	d	$J=7.3$	$2{ }^{\prime}$
1 H	10.35	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
1 H	10.73	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

FIG. 102.

FIG. 103.
VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCI SALT IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$. ס(PPM) MULTIPLICITY ASSIGNMENT

21.16	CH_{3}	aliph-CH3
47.86	CH_{2}	$-\mathrm{CH}_{2}-$
51.28	CH	$-\mathrm{CH}-$
54.94	CH_{3}	$\mathrm{O}-\mathrm{CH}_{3}$
113.82	CH	$3{ }^{\prime}$
121.47	CH	
121.58	Q	LEFT SIDE arom- $\mathrm{C}-\mathrm{CH}_{2} \mathrm{NH}_{2}$
---	-	
125.03	CH	
125.91	CH	
125.94	CH	
126.68	CH	
129.06	CH	
---	--	
130.25	Q	
---	---	
---	---	
132.27	CH	2'
133.63	Q	$\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$-naphthyl
159.95	Q	arom- $\mathrm{C}-\mathrm{OCH}_{3}$

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

13X HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% \mathrm{MeOD}^{(C D C l}{ }_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	$\delta(P P M)$	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.91	d	$\mathrm{~J}=6.7$	aliph-CH3
1 H	3.75	d	$\mathrm{~J}=13.3$	$-\mathrm{CH}_{2-}$
1 H	3.91	d	$\mathrm{~J}=13.3$	$-\mathrm{CH}_{2}-$
4 H	4.10	m	$\mathrm{n.a}$	$-0-\mathrm{CH}_{2} \mathrm{CH}_{2}-0-$
1 H	5.03	9	$\mathrm{~J}=7.0$	$\mathrm{aliph}-\mathrm{CH}^{-}$

3 H	$6.70-6.80$	m	n.a.
4 H	$7.47-7.56$	m	n.a.

1H	7.66	dd	$\mathrm{J}_{1}=\mathrm{J}_{2}=8.1$	$3{ }^{\prime}$
1H	7.90	d	$J=7.4$	4' OR 5'
1H	7.91	d	$\mathrm{J}=7.4$	4' OR 5'
1H	8.28	d	$J=7.2$	$2{ }^{\prime}$
$1{ }^{1} \mathrm{H}$	10.34	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
1H	10.83	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

FIG. 104.
VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA $\delta(P P M)$	ARE OF THE HCl MULTIPLICITY	$\mathrm{SALT} \mathrm{IN} \mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$. ASSIGNMENT
20.87	CH_{3}	aliph-CH3
47.87	CH_{2}	$-\mathrm{CH}_{2}$ -
51.16	CH	- $\mathrm{CH}-$
63.86	CH_{2}	- $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$
64.09	CH_{2}	$-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-$
117.40	CH	
119.66	CH	
121.45	CH	
122.61	Q	
123.67	CH	
124.83	CH	
125.85	CH	
125.96	CH	
126.76	CH	
129.09	CH	
129.22	CH	
130.31	Q	
132.17	Q	
133.67	Q	
143.28	Q	-0-5-arom
144.17	Q	-0-¢-arom

FIG. 105.
SUBSTITUTE SHEET (RULE 26)

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

14L HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-10 PPM ARE IN 1\% $\mathrm{MeOD} / \mathrm{CDCl}_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM 10-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.236	d	$J=7.0$	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
3 H	1.242	d	$\mathrm{J}=6.9$	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
3 H	1.84	d	$\mathrm{J}=6.8$	aliph- CH_{3}
3 H	1.86	d	$J=6.8$	aliph- CH_{3}
1H	2.88	p	$J=6.8$	$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
1 H	3.97	ba	$J=6.7$	aliph-CH-
1 H	4.77	ba	$\mathrm{J}=6.9$	aliph-CH-
1 H	6.95	d	$\mathrm{J}=8.2$	H-3'
1 H	7.05	d	$J=8.3$	H-2'

1 H	7.26	dd	$J 1=32=7.1$	
1H	7.48	dd	$\mathrm{J} 1=\mathrm{J} 2=7.7$	
1H	7.68	dd	$\mathrm{J}_{1}=\mathrm{J}_{2}=7.7$	
1 H	7.90	d	$J=7.7$	
1H	7.91	d	$\mathrm{J}=7.9$	
1 H	8.24	bd	$J=6.5$	
2 H	10.71	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

FIG. 106.
SUBSTITUTE SHEET (RULE 26)

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-10 PPM ARE IN $1 \% ~ M e O D / C D C l i 3(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM $10-12$ PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	$\delta(P P M)$	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.93	d	$\mathrm{~J}=6.8$	aliph-CH3
3 H	1.94	d	$\mathrm{~J}=6.7$	$\mathrm{aliph}-\mathrm{CH}_{3}$
3 H	3.80	s	n.a.	$-0 \mathrm{CH}_{3}$

$1 H$	4.01	9	$J=7.0$	aliph-CH-
1H	4.82	9	$J=6.9$	aliph-CH-

2 H	$\begin{array}{llll}2 H & 6.73\end{array}$				
2 H	7.07	d	$\mathrm{J}=8.6$	2	2
1H	7.33	dd	$\mathrm{J}_{1}=\mathrm{J}_{2}=7.7$		$7{ }^{\prime}$
1H	7.70	dd	$J_{1}=J_{2}=7.8$		$3 '$
$\begin{array}{lllll}1 H & 7.90 & d & \\ \text { H }\end{array}$					
1 H 7.91 d J=8.0 4' OR 5'					
1H	8.44	bd	$J=5.4$		$2 '$
2 H	10.65	bs	n.a.	alip	$\mathrm{ph}-\mathrm{NH}_{2}+$

FIG. 107.
SUBSTITUTE SHEET (RULE 26)

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

16Q HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% \mathrm{MeOD}^{2} / \mathrm{CDCl}_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3H	1.85	d	$\mathrm{J}=6.7$	aliph- CH_{3}
3 H	2.01	s	n.a.	arom- CH_{3}
3 H	3.77	5	n.a.	$-\mathrm{OCH}_{3}$
1H	3.80	d	J=13.1	$-\mathrm{CH}_{2}-$
1 H	3.97	d	$\mathrm{J}=13.2$	$-\mathrm{CH}_{2}-$
1 H	5.00	9	$\mathrm{J}=6.7$	aliph-CH-
1H 6.69	(6.59	calc) d	$\mathrm{J}=8.4$	5
1 H 6.78	(6.90	calc) bs	n.a.	$2 \cdot$
1H 7.22	(6.88	calc) bd	$\mathrm{J}=8.2$	6^{\prime}

3H 7.44-7.57

1H
7.70
dd
$J=7.6 / 7.8$
3'

$1 H$	7.91	d	$J=8.1$	4^{\prime} OR 5'
$1 H$	7.92	d	$J=8.1$	4^{\prime} OR 5^{\prime}
$1 H$	8.44	d	$J=7.1$	2^{\prime}
$1 H$	10.35	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
$1 H$	10.70	bs	n.a.	aliph $-\mathrm{NH}_{2+}$

FIG. 109.
SUBSTITUTE SHEET (RULE 26)

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-MMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA $\delta($ PPM)	ARE OF THE HCl MULTIPLICITY	$\begin{aligned} & \text { T IN } \mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL}) . \\ & \text { ASSIGNMENT } \end{aligned}$
15.74	CH_{3}	arom- CH_{3}
22.32	CH_{3}	aliph-CH3
47.85	CH_{2}	$-\mathrm{CH}_{2}-$
51.01	CH	- $\mathrm{CH}-$
55.09	CH_{3}	$\mathrm{O}-\mathrm{CH}_{3}$
109.81	CH	5'
121.56	CH	RIGHT SIDE
121.01	Q	LEFT SIDE arom- $\mathrm{C}-\mathrm{CH}_{2} \mathrm{NH}_{2}$
---	---	
125.13	CH	RIGHT SIDE
125.90	CH	
126.03	CH	RIGHT SIDE
126.61	CH	RIGHT SIDE
129.05	CH	RIGHT SIDE
129.72	CH	RIGHT SIDE
130.31	Q	RIGHT SIDE
---	-	
132.44	Q	RIGHT SIDE
133.23	CH	6^{\prime}
133.68	Q	$\mathrm{NH}_{2}-\mathrm{CH}_{2}$-S-naphthyl
158.16	Q	arom- $\mathrm{C}-\mathrm{OCH}_{3}$

FIG. 110.

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-10 PPM ARE IN $1 \% \mathrm{MeOD} / \mathrm{CDCl}_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM $10-12$ PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3H	1.88	d	$\mathrm{J}=6.8$	aliph-CH3
1H	3.85	d	$J=13.4$	$-\mathrm{CH}_{2}-$
1 H	3.94	d	$\mathrm{J}=13.4$	$-\mathrm{CH}_{2}-$
1H	5.06	9	$\mathrm{J}=6.7$	aliph-CH-
2 H	5.90	dd	$\mathrm{J} 1=2.2 ; 32=1.4$	$-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}-$
2 H	6.65	5	n.a.	
1H	6.85	s	n.a.	

2 H	$7.50-7.58$	m	n.a.	
2 H	$7.63-7.70$	m	n.a.	
1 H	7.92	d	$\mathrm{~J}=8.1$	$4^{\prime} \mathrm{OR} 5^{\prime}$
1 H	7.94	d	$\mathrm{~J}=9.5$	$4^{\prime} \mathrm{OR} 5^{\prime}$
1 H	8.12	d	$\mathrm{~J}=6.7$	2^{\prime}
1 H	10.37	bs	n.a.	aliph-NH2+
1 H	10.80	bs	n.a.	aliph-NH2+

FIG. 111.

SUBSTITUTE SHEET (RULE 26)

FIG. 112.

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-10 PPM ARE IN $1 \% \mathrm{MeOD}^{(C D C l} \mathrm{C}_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM 10-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL}$).

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.89	d	$J=6.6$	aliph-CH3
3 H	3.80	5	n.a.	$-\mathrm{OCH}_{3}$
1H	3.85	d	$\mathrm{J}=13.7$	$-\mathrm{CH}_{2}-$
1H	3.95	d	$\mathrm{J}=13.3$	$-\mathrm{CH}_{2}-$
1H	5.09	a	$\mathrm{J}=6.6$	aliph-CH-
1 H	6.84	t	$\mathrm{J}=8.2$	
2 H	7.01-7.08	m	n.a.	
2 H	7.53-7.56	m	n.a.	
2 H	7.64-7.72	m	n.a.	
2 H	7.93	d	$J=7.6$	4^{\prime} OR 5'
1 H	8.19	d	$J=7.1$	2'
1H	10.41	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
1 H	10.82	bs	n.a.	aliph $-\mathrm{NH}_{2}+$

FIG. 113.

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA $\delta(P P M)$	ARE OF THE HCl MULTIPLICITY	SALT IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$. ASSIGNMENT
20.71	CH_{3}	aliph-CH3
47.67	CH_{2}	$-\mathrm{CH}_{2}-$
51.47	CH	$-\mathrm{CH}^{-}$
55.91	CH	$0-\mathrm{CH}_{3}$

113.12 CH
113.13 CH
117.99 CH
118.24 CH
121.30 CH
122.22 Q
122.31 Q
124.61 CH
125.76 CH
126.16 CH
126.92 CH
127.00 CH
129.17 CH
129.47 CH
130.29 Q
$131.92 \quad$ Q
133.73 Q
148.21 Q
148.35 Q
150.01 Q
153.29

Q

FIG. 114.

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

16W HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% ~ M e O D / C D C l_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3H	1.35	t	$\mathrm{J}=6.9$	$-\mathrm{OCH}_{2} \mathrm{CH}_{3}$
3H	1.86	d	$\mathrm{J}=6.8$	aliph-CH3
4 H	3.81-3.96	m		$-\mathrm{CH}_{2}$ AND CH_{2}
1 H	5.00	9	$J=6.7$	aliph-CH-
1H	6.70	d	$J=8.4$	3
1 H	7.19	d	$\mathrm{J}=8.6$	2
2 H	7.44-7.54	m	n.a.	
1H	7.58	d	$\mathrm{J}=8.3$	
1H	7.68	dd	$\mathrm{J}_{1}=\mathrm{J}_{2}=7.7$	$3 '$
1H	7.89	d	$\mathrm{J}=7.7$	4^{\prime} OR 5'
1H	7.91	d	$\mathrm{J}=7.7$	4^{\prime} OR 5'
1 H	8.42	d	$J=7.0$	21
1 H	10.30	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
1 H	10.72	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

FIG. 115.

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCI SALT IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$. $\delta(P P M)$ MULTIPLICITY ASSIGNMENT
14.51
21.20
47.91
51.27
63.16
114.36
121.43
121.52

125.07
125.93
125.99
126.70
129.08

130.29

132.25
132.33
133.67
159.38
CH_{3}
CH_{3}
CH_{2}
CH
CH_{2}
CH
Q
CH

CH
CH
CH
CH
CH

Q

CH
Q
Q
Q H H
 -

Q H,
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-$ aliph-CH3 $-\mathrm{CH}_{2}-$ - $\mathrm{CH}-$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-$
3^{\prime}
LEFT SIDE arom- $-\mathrm{CH}_{2} \mathrm{NH}_{2}$
$\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{C}$-naphthyl arom- $-\mathrm{COCH}_{3}$

FIG. 116.

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

16X HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% ~ M e O D / \mathrm{CDCl}_{3}$ ($5 \mathrm{mg} / \mathrm{mL}$). RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	$\delta(P P M)$	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.87	d	$\mathrm{~J}=6.8$	$\mathrm{aliph}-\mathrm{CH}_{3}$

3 H	2.38	s	n.a.	$-\mathrm{SCH}_{3}$ 1 H
3.82	d	$\mathrm{J=13.4}$	$-\mathrm{CH}_{2}-$ 1 H	3.91

FIG. 117.

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

121.44
121.10

125.81
125.95
125.99
126.77
129.12
129.20
130.30

131.29
132.16
133.67
140.18

CH
CH

CH
Q
CH
CH
CH
CH
Q

CH
Q
Q

2^{\prime} arom- $\mathrm{C}-\mathrm{SCH}_{3}$

FIG. 118.

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% \mathrm{MeOD}^{(C D C l}{ }_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

FIG. 119.

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

FIG. 120.

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-5 PPM ARE IN $1 \% \mathrm{MeOD} / \mathrm{CDCl}_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM 5-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.86	d	$J=7.0$	aliph-CH3
3H	1.99	d	$\mathrm{J}=6.8$	aliph- CH_{3}
3 H	3.87	s	n.a.	$-\mathrm{OCH}_{3}$
1H	3.91	9	$\mathrm{J}=7.0$	aliph-CH-
1 H	4.80	9	$\mathrm{J}=6.7$	aliph-CH-
1H	6.79	dd	$\mathrm{J}_{1}=\mathrm{J}_{2}=8.5$	
1 H	6.89	dd	$\mathrm{J}_{1}=12.0 \quad \mathrm{~J}_{2}=2.0$	
1 H	6.96	d	$\mathrm{J}=8.7$	
1H	7.16	bd	$\mathrm{J}=7.14$	8^{\prime}
1 H	7.34	dd	$J_{1}=J_{2}=8.3$	$7{ }^{\prime}$
$1{ }^{1}$	7.49	dd	$J_{1}=J_{2}=7.2$	6^{\prime}
1H	7.71	dd	$J_{1}=J_{2}=8.1$	$3 '$
1 H	7.90	d	J=8.1	4^{\prime} OR 5'
1H	7.91	d	$\mathrm{J}=7.8$	4^{\prime} OR 5'
1H	8.53	bs	n.a.	$2 '$
1H	10.64	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

117 / 126

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

170 HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.
20.89
21.78
51.26
56.12
56.19
113.44
116.27
116.52
121.31
124.39
124.43
125.24
125.97
126.03 126.45 128.35 128.43 128.98 129.10 130.05 132.45 133.61 147.96 148.10 150.26 153.55
CH_{3}
CH_{3}
CH
CH_{3}
CH
Q
Q
CH
CH
Q
Q
Q
Q
Q
Q
Q
aliph- CH_{3}
arom- CH_{3}
$-\mathrm{CH}-$ $\mathrm{O}-\mathrm{CH}_{3}$
$-\mathrm{CH}-$

FIG. 122.
SUBSTITUTE SHEET (RULE 26)

17P HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-10 PPM ARE IN $1 \% \mathrm{MeOD} / \mathrm{CDCl}_{3}$ ($5 \mathrm{mg} / \mathrm{mL}$). RESONANCES FROM $10-12$ PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.82	d	$\mathrm{J}=6.7$	phenyl- CH_{3}
3 H	1.83	d	$\mathrm{J}=6.7$	naphthyl- CH_{3}
3 H	1.93	s	n.a.	arom-CH3
3 H	3.83	s	n.a.	$-\mathrm{OCH}_{3}$
1 H	3.90	9	$\mathrm{J}=6.9$	phenyl-CH-
1 H	4.74	9	$J=7.0$	naphthyl-CH-
1H	6.52	d	$\mathrm{J}=1.6$	2
1H	6.70	d	$\mathrm{J}=8.5$	5
1 H	7.03	dd	$\mathrm{J}_{1}=8.4, \mathrm{~J}_{2}=2.2$	6
1H	7.17	bd	$\mathrm{J}=9.2$	8'
1 H	7.34	dd	$\mathrm{J}_{1}=\mathrm{J}_{2}=8.4$	$7{ }^{\prime}$
$1{ }^{\text {H }}$	7.51	dd	$J_{1}=J_{2}=8.2$	6^{\prime}
1H	7.68	dd	$J_{1}=J_{2}=7.9$	$3 '$
1 H	7.91	d	J=8.0	4^{\prime} OR 5'
1H	7.92	d	$\mathrm{J}=7.8$	4^{\prime} OR 5'
1H	8.21	bd	$\mathrm{J}=6.6$	$2 '$
1H	8.65	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
1 H	10.58	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

FIG. 123.

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

FIG. 124.

$121 / 126$

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

17X HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-10 PPM ARE IN 1\% $\mathrm{MeOD} / \mathrm{CDCl}_{3}$ ($5 \mathrm{mg} / \mathrm{mL}$). RESONANCES FROM 10-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.86	d	J=7.0	phenyl- CHCH_{3}
3 H	1.90	d	$\mathrm{J}=6.8$	naphthyl- CHCH_{3}
3 H	3.90	s	n.a.	$-\mathrm{OCH}_{3}$
1 H	3.91	9	$J=\sim 6.4$	phenyl $-\mathrm{CHCH}_{3}$
1 H	4.79	9	$\mathrm{J}=6.7$	naphthyl $-\mathrm{CHCH}_{3}$
1H	6.79	d	$J=2.0$	2
1H	6.84	d	J=8.5	5
1H	7.19	bd	J=7.6	8'
1 H	7.26	dd	$J_{1}=8.4, J_{2}=1.7$	6
1 H	7.38	dd	$\mathrm{J}_{1}=\mathrm{J}_{2}=7.0$	$7{ }^{\prime}$
1 H	7.52	dd	$J_{1}=J_{2}=8.1$	6^{\prime}
1 H	7.69	dd	$J_{1}=J_{2}=8.1$	$3 '$
1H	7.92	d	$J=8.2$	4' OR 5'
1 H	7.94	d	$\mathrm{J}=8.1$	4' OR 5'
1 H	8.30	bd	$J=5.0$	$2 '$
2 H	10.72	vbs	n.a.	aliph- $\mathrm{NH}_{2}+$

FIG. 126.

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCl SALT IN $\mathrm{CDCl}_{3}+1 \% \mathrm{MeOD}(20 \mathrm{mg} / \mathrm{mL})$.
$\delta($ PPM)
MULTIPLICITY ASSIGNMENT
20.6
21.7
51.2
55.9
56.2
112.4
121.2
122.5
125.1
125.9
126.2
126.8
127.6
128.4
129.0
129.3
130.1
130.7
132.2
133.7
155.4
CH_{3}
CH_{3}
CH
CH
CH_{3}
CH
CH
Q
CH
CH
CH
CH
CH
Q
CH
CH
Q
CH
Q
Q
Q
> phenyl- CHCH_{3}
> naphthyl $-\mathrm{CHCH}_{3}$
> naphthyl- $-\mathrm{CHCH}_{3}$
> phenyl- CHCH_{3}
> $\mathrm{O}-\mathrm{CH}_{3}$
> 5
> 8^{\prime}

> 2'
> 3'
> 6^{\prime}
> 6 OR 7'
> 6 OR 7^{\prime}
> 4^{\prime} OR 5'
> 4^{\prime} OR 5'

> 2'

> 3

FIG. 127.

VARIAN $300 \mathrm{MHz}{ }^{2} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:

25U HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-10 PPM ARE IN 1\% $\mathrm{MeOD}^{\left(\mathrm{CDCl}_{3}(5 \mathrm{mg} / \mathrm{mL}) \text {. RESONANCES FROM 10-12 PPM ARE IN }\right.}$ $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3 H	1.74	d	$J=6.7$	aliph-CH3
3 H	1.90	d	$J=6.0$	aliph-CH3
3 H	2.23	s	n.a.	arom-CH3
3 H	3.88	s	n.a.	-0CH3
1H	4.25	bd	J=7.3	-CH-
1H	4.90	bq	$J=6.5$	$-\mathrm{CH}-$
1 H	6.87	d	$J=8.4$	
1 H	7.17	bs	n.a.	
1 H ?	7.20-7.27	m	n.a.	
2 H ?	7.35-7.46	m	n.a.	
1 H	7.50	dd	$J 1=\mathrm{J} 2=8.1$	
1 H	7.59	dd	$J 1=32=7.9$	
1 H	7.87	d	$J=6.7$	
1 H	7.89	d	$J=6.6$	
1 H	8.02	d	$J=7.0$	
1H	8.97	bs	n.a.	$-\mathrm{NH}_{2}+-$
1 H	10.83	bs	n.a.	$-\mathrm{NH}_{2}+-$

FIG. 128.

25V HYDROCHLORIDE
NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-10 PPM ARE IN $1 \% \mathrm{MeOD}^{(C D C l} \mathrm{H}_{3}(5 \mathrm{mg} / \mathrm{mL})$. RESONANCES FROM $10-12$ PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	δ (PPM)	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
9 H	1.92	bs	n.a.	phenyl- CH_{3}
				$\begin{gathered} \text { naphthyl }-\mathrm{CH}_{3} \\ \text { arom- } \mathrm{CH}_{3} \end{gathered}$
3H	3.83	s	n.a.	$-\mathrm{OCH}_{3}$
1 H	3.95	bq	$\mathrm{J}=6.0$	phenyl-CH-
1H	4.79	bq	$\mathrm{J}=5.5$	naphthyl-CH-
1H	6.57	bs	n.a.	2
1H	6.71	d	J=8.2	5

2 H	$7.10-7.17$	m	n.a.
1H	$7.30-7.35$	m	n.a.

1H	7.50	dd	$\mathrm{J}_{1}=\mathrm{J}_{2}=7.7$	$6{ }^{\prime}$
1H	7.70	dd	$J_{1}=J_{2}=7.3$	$3 '$
1H	7.91	d	$J=7.8$	4^{\prime} OR 5'
1 H	7.92	d	J=8.0	4^{\prime} OR 5'
1H	8.39	bd	$\mathrm{J}=2.8$?	2'
1H	8.63	bs	n.a.	aliph- $\mathrm{NH}_{2}+$
1H	10.59	bs	n.a.	aliph- $\mathrm{NH}_{2}+$

FIG. 129.

VARIAN $75 \mathrm{MHz}{ }^{13} \mathrm{C}$-NMR SPECTRAL ASSIGNMENT OF:

NMR SPECTRA ARE OF THE HCl SALT IN $\mathrm{CDCl}_{3}+1 \% \mathrm{MeOD}(20 \mathrm{mg} / \mathrm{mL})$.

$\delta($ PPM $)$	MULTIPLICITY	ASSIGNMENT
15.8	CH_{3}	arom-CH3
20.97	CH_{3}	aliph-CH3
22.0	CH	aliph-CH3
51.2	CH	$-\mathrm{CH}-$
55.4	CH_{3}	-0 CH 3
56.6	CH	$-\mathrm{CH}-$
110.3	$?$	
121.8	CH	
125.5	CH	
125.8	CH	
125.2	CH	
126.3	CH	
126.9	CH	
127.0	Q	
127.2	CH	
128.8	Q	
128.9	$?$	
130.3	Q	
131.2	CH	
133.0	Q	
133.7	Q	
158.1	Q	

FIG. 130.

VARIAN $300 \mathrm{MHz}{ }^{1} \mathrm{H}$-NMR SPECTRAL ASSIGNMENT OF:
 Cl^{-}

NMR SPECTRA ARE OF THE HCl SALT. RESONANCES FROM 0-10 PPM ARE IN 1\% $\mathrm{MeOD}^{(C D C l}{ }_{3}$ ($5 \mathrm{mg} / \mathrm{mL}$). RESONANCES FROM 10-12 PPM ARE IN $\mathrm{CDCl}_{3}(60 \mathrm{mg} / \mathrm{mL})$.

\# OF H's	$\delta($ PPM $)$	MULTIPLICITY	COUPLING (Hz)	ASSIGNMENT
3H	1.74	d	$\mathrm{~J}=6.1$	aliph-CH3
3H	1.89	d	$\mathrm{~J}=6.0$	aliph-CH3
3H	2.24	s	n.a.	arom-CH3
3H	3.89	s	n.a.	-0 CH 3
1H	4.27	bq	$\mathrm{J}=6.2$	-CH-
1H	4.92	ba	$\mathrm{J}=5.1$	-CH-

1H	6.89	d	$\mathrm{J}=7.7$	
1H	7.18	bs	n.a.	
1H	7.26	bd	J=7.9	
2 H ?	7.36-7.47	m	n.a.	
1H	7.51	dd	$J 1=32=7.6$	
1H	7.61	dd	$J 1=32=7.5$	
1H	7.88	d	$\mathrm{J}=8.0$	
1 H	7.90	d	$\mathrm{J}=7.5$	
1 H	7.99	d	$\mathrm{J}=6.9$	
1H	9.10	bs	n.a.	$-\mathrm{NH}_{2}+-$
1 H	10.67	bs	n.a.	$-\mathrm{NH}_{2}+-$

FIG. 131.

C(Contimation) DOCUMENTS CONSIDERED TO BE RELEVANT

Cargory ${ }^{\text {a }}$	Citation of document, with indication, where appropariste, of the relevant pasagez	Relevant to crimin No.
X	CHEMICAL ABSTRACTS, vol. 121, no. 19. 7 November 1994 Columbus, Ohio, US; abstract no. 230462, KOMEYOSHI, YUKIO ET AL 'Optically active amines and their manufacture, intermediates, and uses' see RN 158075-03-7, 158075-02-6, 158075-01-5, 158075-00-4, 158074-98-7, 158074-97-6 see abstract \& JP,A,06 116214 (SUMITOMO CHEMICAL CO, JAPAN)	1,17
X	EP,A,0 508307 (SUMITTOMO CHEMICAL CO., LTD., JAPAN) 14 October 1992 see claim 1; examples $12-14,17-23$	$\frac{1,2,5,6,}{17}$
X	DE,A,25 41184 (CHINOIN GYOGYSZER ES VEGYESZET) 15 April 1976 see page 3, compound II, page 8, line 4	16
X	JOURNAL OF MEDICINAL CHEMISTRY, vol. 25, no. 6, 1982 WASHINGTON US, pages 670-679, J. E. CLIFTON ET AL. 'Arylethanolamines derived from Salicylamide with .alpha. and .beta.-adrenoceptor blocking activity.' see page 673, compound 84	1
X	JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS, 1992 LETCHWORTH GB, pages 980-2, G.-Z. WANG ET AL. 'Ruthenium-catalysed transfer hydrogenation of imines by propan-2-01 ${ }^{1}$ see tablel, compounds 1-4, 9 ,	1,17
X	TETRAHEDRON: ASYMMETRY, vol. 2, no. 3, 1991 OXFORD GB, pages 183-186, S. G. DAVIES ET AL. 'Asymetric synthesis of R-.beta.-amino butanoic acid and S-,beta.tyrosine' see page 184, compounds 3,4,5	1,17

PL 1 /US 95/13704

C.Continu	dion) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category ${ }^{\text {a }}$	Cituion of document, with indication, where appropriac, of the relevant passages	Relevant to claim No.
X	CAN. J. CHEM. (1994), 72(7), 1699-704, July 1994 MAJEWSKI, MAREK ET AL. 'Enantioselective deprotonation of protected 4-hydroxycyclohexanones' see page 1700, compounds $6,5,4$, left column, line 1 - line 8 ; see page 1702, right column, last paragraph - page 1703, left column, line 14	1,17
X	TETRAHEDRON, vol. 41, no. 24, 1985 OXFORD GB, pages 6005-11, J. C. G. VAN NIEL ET AL. 'NADH models XXI. Stereoselective reduction of chireal imines with hantzsch ester' see compounds 5a-e, 6a-e	1,17
X	US,A,4 000197 (FREEDMAN HAROLD H ET AL) 8 February 1977 see table I, examples $1,3,5,7,9,11,13$	1
X	DE,B,12 31690 (SANDOZ) 12 December 1967 see examples $2 A, 3 A$	17
P, X	WO,A,95 11221 (NPS PHARMA INC ;NEMETH EDWARD F (US); WAGENEN BRADFORD C VAN (US);) 27 April 1995 see page 9/1, line 5-line 11; claims see figures	$\begin{aligned} & 1-13 \\ & 16-21 \end{aligned}$
P, X	WO,A,95 21815 (ABBOTT LABORATORIES, USA) 17 August 1995 see RN 171349-82-9, 1-Naphthalenemethanamine, .alpha.-methyl-N-[(4-phenoxyphenyl)methyl]	1,5,6
P, X	WO,A,95 18134 (OXFORD ASYMMETRY LTD ;DAVIES STEPHEN GRAHAM (GB); POLYWKA MARIO EU) 6 July 1995 see page 14, preparation 3 and page 4, compound (4)	16
P, X	SYNLETT, no. 9, 1995 STUTTGART DE, pages 961-2, YUKIHIKO HASHIMOTO ET AL. 'Highly diastereoselective addition of organometallic reagents to chiral imines derived from 1-(2-methoxyphenyl)ethylamine' see table 1 , compounds $1,7,8,9$	1,16,17

Box : Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.

Claims Nos:
beceuse they relate to subject matter not required to be searched by this Authority, namely.

Please see attached sheet ./.
2.Claims Nos.:
becuuse they relate to parts of the international application that do not comply with the prescribed requirements to such an exuent that no meaningful international search can be carried out, specificaly:

Please see attached sheet. .
3.

Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentencea of Ruie 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. \square As all required additional search fees were timely paid by the applicant, this international search report covers all searchable ciaims.
2. \square As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos:
4.No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claima Nos.:

Remark on Protest The additional search feen were accompanied by the applicant's protest No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Remark: Although claims 19-21 are directed to a method of treatment of the human body the search has been carrried out and based on the alleged effects of the compounds and/or compositions

The search for the compounds according to claims 1,16 and 17 has been carried out completely , but revealed too many pertinent documents and/or compounds, which for economical reasons can not all be cited. Therefore the search report should not be considered complete for all the claims. The report is complete for the (R)- and (R,R) enantiomers of claim 3-7, 9, 10, 12-15 and for compounds according to claim 16.
The search report is also complete for all compounds used as calcium (ion) receptor modulators.

Patent document cited in search report	$\begin{aligned} & \text { Publication } \\ & \text { date } \end{aligned}$	Patent family member(s)		$\begin{aligned} & \text { Publication } \\ & \text { date. } \end{aligned}$
WO-A-9418959	01-09-94	AU-B- 3777093 EP-A- 0637237 JP-T- 7506380		$\begin{aligned} & 14-09-94 \\ & 08-02-95 \\ & 13-07-95 \end{aligned}$
WO-A-9304373	04-03-93	$A U-B-$ CA-A-EP-A-JP-T-NO-A-WO-A-ZA-A-	$\begin{array}{r} 2588992 \\ 2115828 \\ 0657029 \\ 6510531 \\ 940581 \\ 9511221 \\ 9206360 \end{array}$	$\begin{aligned} & 16-03-93 \\ & 04-03-93 \\ & 14-06-95 \\ & 24-11-94 \\ & 25-04-94 \\ & 27-04-95 \\ & 30-03-93 \end{aligned}$
EP-A-0508307	14-10-92	$\begin{aligned} & \text { CA-A- } \\ & \text { DE-D- } \\ & \text { JP-A- } \\ & \text { US-A- } \end{aligned}$	$\begin{array}{r} 2065476 \\ 69206306 \\ 5201938 \\ 5298660 \end{array}$	$\begin{aligned} & 09-10-92 \\ & 11-01-96 \\ & 10-08-93 \\ & 29-03-94 \end{aligned}$
DE-A-2541184	15-04-76	AR-A-AR-A-AT-B-AT-B-AU-B-AU-B-BE-A-$\mathrm{CH}-\mathrm{A}-$ CH-A-FR-A,B GB-A-JP-A-NL-A-SE-A-	$\begin{array}{r} 210586 \\ 211558 \\ 343101 \\ 337675 \\ 497358 \\ 8495675 \\ 833824 \\ 609323 \\ 596139 \\ 2285865 \\ 1464209 \\ 51059843 \\ 7511183 \\ 7510611 \end{array}$	$\begin{aligned} & 31-08-77 \\ & 30-01-78 \\ & 10-05-78 \\ & 11-07-77 \\ & 07-12-78 \\ & 24-03-77 \\ & 16-01-76 \\ & 28-02-79 \\ & 28-02-78 \\ & 23-04-76 \\ & 09-02-77 \\ & 25-05-76 \\ & 29-03-76 \\ & 26-03-76 \end{aligned}$
US-A-4000197	28-12-76	NONE		
DE-B-1231690		FR-M- FR-A- GB-A- US-A-	$\begin{array}{r} 4380 \\ 1451245 \\ 1087601 \\ 3318952 \end{array}$	$\begin{aligned} & 03-12-66 \\ & 09-05-67 \end{aligned}$
WO-A-9511221	27-04-95	AU-B-	2588992	16-03-93

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGESDefective images within this document are accurate representations of the originaldocuments submitted by the applicant.
Defects in the images include but are not limited to the items checked:
BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
\square OTHER:
\qquad
IMAGES ARE BEST AVAILABLE COPY.
As rescanning these documents will not correct the imageproblems checked, please do not report these problems tothe IFW Image Problem Mailbox.

THIS PAGE BLANK (UspTo)

PCT
WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ${ }^{6}$: C07C $211 / 27,211 / 28,211 / 30$, A61K A1 $31 / 135$	(11) Internatiomal Publication Number: WO $97 / 41090$ (43) International Publication Date: 6 November 1997 (06.11.97)
(21) International Application Number: PCT/US97/07371 (22) International Filing Date: 30 April 1997 (30.04.97) (30) Priority Data: 601016.673 1 May 1996 (01.05.96) (71) Applleant: NPS PHARMACEUTICALS, INC. [US/US]; Suite 240, 420 Chipeta Way, Salt Lake City, UT 84108-1256 (US). (72) Inventors: MOE, Scott, T; 6152 South Vinefield Lane, Salt Lake City, UT 84121 (US). VAN WAGENEN, Bradford, C.: 3969 South 3250 East, Salt Lake City, UT 84124 (US). DELMAR, Eric, G.; 2967 E. St. Mary's Circle, Salt Lake City, UT 84108 (US). TROVATO, Richard; 4636 Stratton Drive, Salt Lake City. UT 84117 (US). BALANDRIN, Manuel, F.; 9184 South Winter Wren Drive, Sandy, UT 84093 (US). (74) Agents: HEBER, Sheldon, O. et al.; Lyon \& Lyon LLP, First Interstate World Center, Suite 4700, 633 W. Sth Street, Los Angeles, CA 90071-2066 (US).	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU IL., IS. JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (GH. KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). Published With international search report.

(54) Title: INORGANIC ION RECEPTOR-ACTIVE COMPOUNDS

(57) Abstract

The present invention features compounds able to modulate one or more activities of an inorganic ion receptor and methods for treating diseases or disorders using such compounds. Preferred compounds can mimic or block the effect of extracellular calcium on a cell surface calcium receptor.

FOR THE PURPOSES OF INFORMATION ONLY							
	Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.						
AL	Albania	ES	Spain	LS	Lesotho	SI	Sloveniz
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	1.0	Luxembours	SN	Sencgal
Au	Australia	CA	Gabon	L.V	Lanvia	SZ	Swaziland
A7.	Azerbaijan	GB	Unixed Kingdom	MC	Mcanco	TD	Chad
BA	Boania and Herzegovina	GE	Georgia	MD	Republic of Moldown	TG	Togo
BB	Barbisdos	CH	Ghanz	MG	Madagatcar	T]	Tajikistan
BE	Belgium	GN	Guines	MK	The former Yugosiav	TM	Terkmenistan
BP	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BC	Bulgaria	HU	Hungry	ML	Mali	TT	Trinidad and Tohago
E	Benin	IR	treland	$\mathbf{M N}$	Mongolin	UA	Uknine
BR	Brazil	[L	Israel	MR	Mauritania	UG	Ugrada
BY	Belarus	IS	Iceland	MW	Malawi	US	United Stues of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekiatin
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vier Nam
CG	Congo	KB	Kenya	NL.	Netheriands	YU	Yugostavia
CH	Switzerland	KG	Kyrgyzatan	No	Norway	2W	Zimbabwe
CI	Coxe d'tyoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	K2	Kazakstan	RO	Ronsaria		
CZ	Crech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	4	Liechtenstein	SD	Sudun		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	IR	Liberia	SC	Singapore		

DESCRIPTION
 Inorganic Ion Receptor-Active Compounds

EIELD OF THE INVENTION

This invention relates to compounds able to modulate one or more inorganic ion receptor activities.
BACKGROUND OF THE TNVENTIONBACKGROUND OF THE TNVENTIONThe references provided herein are not admitted to beprior art to the claimed invention.Certain cells in the body respond not only to chemicalsignals, but also to ions such as extracellular calcium ions(Ca^{2+}). Extracellular $\mathrm{Ca}^{2 \cdot}$ is under tight homeostatic controland regulates various processes such as blood clotting, nerveand muscle excitability, and proper bone formation.Calcium receptor proteins enable certain specializedcells to respond to changes in extracellular Ca ${ }^{2+}$concentration. For example, extracellular Ca^{2+} inhibits thesecretion of parathyroid hormone (PTH) from parathyroidcells, inhibits bone resorption by osteoclasts, andstimulates secretion of calcitonin from C-cells.
PTH is the principal endocrine factor regulating Ca ${ }^{2}$. homeostasis in the blood and extracellular fluids. PTH, by acting on bone and kidney cells, increases the level of Ca^{2+} in the blood. This increase in extracellular $\mathrm{Ca}^{2 *}$ then acts as a negative feedback signal, depressing PTH secretion. The reciprocal relationship between extracellular $\mathrm{Ca}^{2 \cdot}$ and PTH secretion forms an important mechanism maintaining bodily Ca $^{2 \boldsymbol{A}}$ homeostasis.
Extracellular Ca ${ }^{2+}$ acts directly on parathyroid cells to regulate PTH secretion. The existence of a parathyroid cell surface protein which detects changes in extracellular Ca^{2} has been confimed. (Brown et al., Nature 366:574, 1993.)

In parathyroid cells, this protein, the calcium receptor, acts as a receptor for extracellular $\mathrm{Ca}^{2 \cdot}$, detects changes in the ion concentration of extracellular Ca^{2+}, and initiates a functional cellular response, PTH secretion.

Extracellular Ca ${ }^{2+}$ can exert effects on different cell functions, reviewed in Nemeth et al., Cell Calcium 11:319, 1990. The role of extracellular Ca^{2+} in parafollicular (Ccells) and parathyroid cells is discussed in Nemeth, Cell Calcium 11:323, 1990. These cells were shown to express similar calcium receptors. (See Brown et al., Nature 366:574, 1993; Mithal et al., J. Bone Miner. Res. 9, Suppl. 1, s282, 1994; Rogers et al., J. Bone Miner. Res. 9, Suppl, 1, s409, 1994; Garrett et al., Endocrinology 136:5202-5211, 1995.)

The ability of various molecules to mimic extracellular Ca^{2+} in vitro is discussed in references such as Nemeth et al., in "Calcium-Binding Proteins in Health and Disease," 1987, Academic Press, Inc., pp. 33-35; Brown et al., Endocrinology 128:3047, 1991; Chen et al., J. Bone Miner. Res. 5:581, 1990; and Zaidi et al., Biochem. Biophys. Res. Commun. 167:807, 1990.

Nemeth et al., PCT/US92/07175, International Publication Number WO 93/04373, Nemeth et al., PCT/US93/01642. International Publication Number wo 94/18959, and Nemeth et al., PCT/US94/12117, International Publication Number wo 95/11211, describe various compounds which can modulate the effect of an inorganic ion receptor.

SUMMARY OF THE INYENTION

The present invention features compounds able to modulate one or more activities of an inorganic ion receptor and methods for treating diseases or disorders using such
compounds. Preferred compounds can mimic or block the effect of extracellular calcium on a cell surface calcium receptor.

Inorganic ion receptor activities are those processes brought about as a result of inorganic ion receptor activation. Such processes include the production of molecules which can act as intracellular or extracellular messengers.

Inorganic ion receptor-modulating compounds include ionomimetics, ionolytics, calcimimetics, and calcilytics. Ionomimetics are compounds which mimic (i.e., evoke or potentiate) the effects of an inorganic ion at an inorganic ion receptor. Preferably, the compound affects one or more calcium receptor activities. Calcimimetics are ionomimetics which affect one or more calcium receptor activities.

Ionolytics are compounds which block (i.e., inhibit or diminish) one or more activities caused by an inorganic ion at an inorganic ion receptor. Preferably, the compound affects one or more calcium receptor activities. Calcilytics are ionolytics which block one or more calcium receptor activities evoked by extracellular calcium.

Ionomimetics and ionolytics may bind at the same receptor site as the native inorganic ion ligand binds or can bind at a different site (e.g., an allosteric site). For example, NPS $R-467$ binding to a calcium receptor results in calcium receptor activity and, thus, NPS $R-467$ is classified as a calcimimetic. However, NPS $R-467$ binds to the calcium receptor at a different site (i.e., an allosteric site) than extracellular calcium.

A measure of the effectiveness of a compound to modulate receptor activity can be determined by calculating the E_{50} or IC C_{50} for that compound. The $E C_{50}$ is the concentration of a compound which causes a half-maximal mimicking effect. The

IC so $_{0}$ is the concentration of a compound which causes a halfmaximal blocking effect. $E C_{50}$ and IC_{50} values for compounds at a calcium receptor can be determined by assaying one or more of the activities of extracellular calcium at a calcium receptor. Examples of assays for measuring EC_{50} and IC_{50} values are described Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959, and Nemeth et al., PCT/US92/07175, International Publication Number wo 93/04373, (both of these publications are hereby incorporated by reference here) and below. Such assays include oocyte expression assays and measuring increases in intracellular calcium ion concentration ($\left[\mathrm{Ca}^{2+}\right]_{1}$) due to calcium receptor activity. Preferably, such assays measure the release or inhibition of a particular hormone associated with activity of a calcium receptor.

An inorganic ion receptor-modulating compound preferably selectively targets inorganic ion receptor activity in a particular cell. For example, selective targeting of a calcium receptor activity is achieved by a compound exerting a greater effect on a calcium receptor activity in one cell type than at another cell type for a given concentration of compound. Preferably, the differential effect is 10 -fold or greater as measured in vivo or in vitro. More preferably, the differential effect is measured in vivo and the compound concentration is measured as the plasma concentration or extracellular fluid concentration and the measured effect is the production of extracellular messengers such as plasma calcitonin, parathyroid hormone, or plasma calcium. For example, in a preferred embodiment, the compound selectively targets PTH secretion over calcitonin secretion.

Preferably, the compound is either a calcimimetic or calcilytic having an $E C_{50}$ or an $I C_{50}$ at a calcium receptor of
less than or equal to $5 \mu \mathrm{M}$, and even more preferably less than or equal to $1 \mu \mathrm{M}, 100$ nmolar, 10 nmolar, or 1 nmolar using one of the assays described below. More preferably, the assay measures intracellular $\mathrm{Ca}^{2 *}$ in HEK 293 cells transformed with nucleic acid expressing the human parathyroid calcium receptor and loaded with fura-2. Lower EC_{50} or IC_{50} values are advantageous since they allow lower concentrations of compounds to be used in vivo or in vitro. The discovery of compounds with low EC_{50} and IC_{50} values enables the design and synthesis of additional compounds having similar or improved potency, effectiveness, and/or selectivity.

Thus, a first aspect the invention features an inorganic ion receptor-modulating compound having the formula:

STRUCTURE I

wherein $A r_{1}$ is either optionally substituted naphthyl, optionally substituted phenyl, or an optionally substituted heterocyclic aryl, where up to 5 substituents may be present and each substituent is independently selected from the group consisting of: alkyl, alkenyl. halogen, alkoxy, thioalkyl, methylene dioxy, haloalkyl, haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}$, acetoxy, $N(a l k y l)_{z}, ~ p h e n y l, ~ p h e n o x y, ~ b e n z y l, ~ b e n z y l o x y, ~ \alpha, \alpha-~$ dimethylbenzyl, $\mathrm{NO}_{2}, \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$, acetyl, $\mathrm{OCH}_{2} \mathrm{COOH}$, and ethylene dioxy;
Ar_{2} is either optionally substituted naphthyl, optionally substituted phenyl, or an optionally substituted
heterocyclic aryl, where up to 5 substituents may be present and each substituent is independently selected from the group consisting of: alkyl, alkenyl, halogen, alkoxy, thioalkyl, methylene dioxy, haloalkyl, haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}$, $\mathrm{OCH}_{2} \mathrm{COOH}$, ethylene dioxy, and acetoxy;
q is $0,1,2$, or 3;
R_{1} is either H or alkyl; and
R_{2} and R_{3} are each independently either hydrogen, alkyl, or together cycloalkyl or cycloalkenyl;
and pharmaceutically acceptable salts and complexes thereof.

Preferably, the compound is an ionomimetic which modulates one or more inorganic ion receptor activities, more preferably the compound is a calcimimetic.
"Alkenyl" refers to a hydrocarbon chain having 2-6 carbons and at least one double-bond which may be a straight chain, branched, or non-aromatic cyclic. Preferably, the alkenyl has 2-4 carbon atoms.
"Alkyl" refers to a saturated hydrocarbon having 1-6 carbons which may be a straight chain, branched, or cyclic. Preferably, the alkyl has 1-4 carbon atoms.
"Alkoxy" refers to "O-alkyl," where "O" is an oxygen joined to an alkyl.
"Cycloalkenyl" refers to a non-aromatic cyclic hydrocarbon chain having 3-12 carbons and at least one double-bond, and includes multiple ring structures. Preferably, the cycloalkenyl has 3 to 6 carbon atoms.
"Cycloalkyl" refers to a saturated cyclic hydrocarbon chain having 3-12 carbons, and includes multiple ring structures. Preferably, the cycloalkyl has 3 to 6 carbon atoms.
"Thioalkyl" refers to "S-alkyl," where "S" is a sulfur joined to an alkyl.
"Haloalkyl" refers to an alkyl substituted with at least one halogen. Preferably, only the terminal carbon of the haloalkyl is substituted with a halogen and 1 to 3 halogens are present. More preferably, the haloalkyl contains 1 carbon. Preferably, the halogen substitutions are either Cl or F .
"Haloalkoxy" refers to "O-haloalkyl," where "O" is an oxygen joined to a haloalkyl.
"Heterocyclic aryl" refers to an aryl ring system having 1 to 3 heteroatoms as ring atoms in a heteroaromatic ring system and the remainder of the ring atoms are carbon atoms. Suitable heteroatoms include oxygen, sulfur, and nitrogen. Preferably, the heterocyclic ring system is mono- or bicyclic. More preferably, the heterocyclic aryl is either furanyl, thiofuranyl (also known as "thienyl"), benzofuranyl or benzothiofuranyl (also known as "benzothienyl").

Another aspect of the present invention features an inorganic ion receptor-modulating compound having the formula:

STRUCTURE II

Where $A r_{1}, A r_{2}, R_{2}$ and R_{3} are as described for Structure I compounds:
R_{7} is either hydrogen, alkyl or phenyl;
R_{8} is either hydrogen, or alkyl;

8

R, is either hydrogen, alkyl or phenyl; and pharmaceutically acceptable salts and complexes thereof.
preferably, the compound is an ionomimetic modulating one or more inorganic ion receptor activities, more preferably the compound is a calcimimetic.

Another aspect of the present invention features a pharmaceutical composition made up of an inorganic ion receptor-modulating compound described herein and a physiologically acceptable carrier. A "pharmacological composition" refers to a composition in a form suitable for administration into a mammal, preferably a human. Preferably, the pharmaceutical composition contains a sufficient amount of a calcium receptor-modulating compound in a proper pharmaceutical form to exert a therapeutic effect on a human.

Considerations concerning forms suitable for administration are known in the are and include toxic effects, solubility, route of administration, and maintaining activity. For example, pharmacological compositions injected into the blood stream should be soluble.

Pharmaceutical compositions can also be formulated as pharmaceutically acceptable salts (e.g., acid addition salts) and complexes thereof. The preparation of such salts can facilitate the pharmacological use of a compound by altering its physical characteristics without preventing it from exerting a physiological effect.

Another aspect the present invention features a method for treating a patient by using inorganic ion receptormodulating compounds described herein. The method involves administering to the patient a pharmaceutical composition containing a therapeutically effective amount of an inorganic ion receptor-modulating compound. In a preferred embodiment,
the disease or disorder is treated by administering to the patient a therapeutically effective amount of a calcium receptor-modulating compound.

Inorganic ion receptor-modulating compounds, and compositions containing such compounds, can be used to creat different types of patients. A "patient" refers to a mammal in which compounds able to modulate inorganic ion receptor activity will have a beneficial effect including a beneficial prophylactic effect. Suitable patients can be diagnosed using standard techniques known to those in the medical profession.

Preferably, a patient is a human having a disease or disorder characterized by one more of the following: (1) abnormal inorganic ion homeostasis, more preferably abnormal calcium homeostasis; (2) an abnormal level of a messenger whose production or secretion is affected by inorganic ion receptor activity, more preferably affected by calcium receptor activity; and (3) an abnormal level or activity of a messenger whose function is affected by inorganic ion receptor activity, more preferably affected by calcium receptor activity.

Diseases characterized by abnormal calcium homeostasis include hyperparathyroidism, osteoporosis and other bone and mineral-related disorders, and the like (as described, e.g., in standard medical text books, such as "Harrison's Principles of Internal Medicine"). Such diseases are treated using calcium receptor-modulating compounds which mimic or block one or more of the effects of extracellular $\mathrm{Ca}^{\mathbf{2}}$ on a calcium receptor.

By "therapeutically effective amount" is meant an amount of a compound which relieves to some extent one or more symptoms of a disease or disorder in the patient; or returns
to normal either partially or completely one or more physiological or biochemical parameters associated with or causative of the disease or disorder. Thus, a therapeutically effective amount can be an amount effective to prophylactically decrease the likelihood of the onset of a disease or disorder.

In a preferred embodiment, the patient has a disease or disorder characterized by an abnormal level of one or more calcium receptor-regulated components and the compound is active on a calcium receptor of a cell selected from the group consisting of: parathyroid cell, bone osteoclast, juxtaglomerular kidney cell, proximal tubule kidney cell, distal tubule kidney cell, central nervous system cell, peripheral nervous system cell, cell of the thick ascending limb of Henle's loop and/or collecting duct, keratinocyte in the epidermis, parafollicular cell in the thyroid (c-cell), intestinal cell, platelet, vascular smooth muscle cell, cardiac atrial cell, gastrin-secreting cell, glucagonsecreting cell, kidney mesangial cell, mammary cell, beta cell, fat/adipose cell, immune cell, GI tract cell, skin cell, adrenal cell, pituitary cell, hypothalamic cell, and cell of the subfornical organ.

More preferably, the cells are chosen from the group consisting of: parachyroid cell, central nervous system cell, peripheral nervous system cell, cell of the thick ascending limb of Henle's loop and/or collecting duct in the kidney, parafollicular cell in the thyroid (c-cell), intestinal cell, GI tract cell, pituitary cell, hypothalamic cell, and cell of the subfornical organ.

In a preferred embodiment, the compound reduces the level of parathyroid hormone in the serum of the patient. More preferably, the level is reduced to a degree sufficient
to cause a decrease in plasma Ca $^{2 \boldsymbol{}}$. Most preferably, the parathyroid hormone level is reduced to that present in a normal individual.

Patients in need of treatment using the compounds described by the present invention can be diagnosed by standard medical techniques, such as blood or urine analysis. Examples of such medical techniques include detecting a deficiency of protein whose production or secretion is affected by changes in inorganic ion concentrations, and by detecting abnormal levels of inorganic ions or hormones which effect inorganic ion homeostasis.

Various examples are used throughout the application. These examples are not intended in any way to limit the claimed invention.
other features and advantages of the invention will be apparent from the following figures, detailed description of the invention, examples, and the claims.

BRIEF DESCRIPTION OF THE DRAWING
Figure 1 provides the chemical structures of different ionomimetic compounds.

Figure 2 provides the chemical structures of different ionomimetic compounds.

Figure 3 provides the chemical structures of different ionomimetic compounds.

Figure 4 provides the chemical structures of different ionomimetic compounds.

DESCRIRTION OF THE PREFERRED EMRODIMENTS
The present invention features compounds able to modulate one or more inorganic ion receptor activities. Preferably, the compounds can mimic or block an effect of an
extracellular ion on a cell having an inorganic ion receptor, more preferably, the extracellular ion is Ca^{2+} and the effect is on a cell having a calcium receptor. Most preferably, the compounds can mimic the effect of extracellular Ca^{2+} on a cell having a calcium receptor.

While the compounds described herein are believed to be able to act at an inorganic ion receptor, preferably a calcium receptor, unless otherwise explicitly stated in the claims that a compound exerts an effect by acting at a receptor, there is no intention to limit the claimed methods to those requiring modulation of receptor activity. Rather, the compounds are characterized by their ability to modulate inorganic ion receptor activity in vivo or in vitro.
I. CALCIUM RECEPTORS

Calcium receptors are present in different cells. The pharmacological effects of the following cells, in response to extracellular Ca^{2+}, is consistent with the presence of a calcium receptor: parathyroid cell, bone osteoclast, juxtaglomerular kidney cell, proximal tubule kidney cell, distal tubule kidney. cell, central nervous system cell, peripheral nervous system cell, cell of the thick ascending limb of Henle's loop and/or collecting duct, keratinocyte in the epidermis, parafollicular cell in the thyroid (C-cell). intestinal cell, trophoblast in the placenta, platelet, vascular smooth muscle cell, cardiac atrial cell, gastrinsecreting cell, glucagon-secreting cell, kidney mesangial cell, mammary cell, endocrine and exocrine cells in the pancreas, fat/adipose cell, immune cell, GI tract cell, skin cell, adrenal cell, pituitary cell, hypothalamic cell, and cell of the subfornical organ.

Abstract

The presence of a calcium receptor on the following cells have been confirmed using physical data, such as hybridization with nucleic acid encoding a calcium receptor: parathyroid cell, central nervous system cell, peripheral nervous system cell, cell of the thick ascending limb of Henle's loop and/or collecting duct in the kidney, parafollicular cell in the thyroid (c-cell), intestinal cell, GI tract cell, pituitary cell, hypothalamic cell, cell of the subfornical organ, and endocrine and exocrine cells in the pancreas.

The calcium receptor on these different cell types may be different. It is also possible that a cell can have more than one type of calcium receptor. Comparison of calcium receptor activities and amino acid sequences from different cells indicate that distinct calcium receptor types exist. For example, calcium receptors can respond to a variety of di- and trivalent cations. The parathyroid cell calcium receptor responds to calcium and Gd*, while osteoclasts respond to divalent cations such as calcium, but do not respond to Gd^{3+}. Thus, the parathyroid cell calcium receptor is pharmacologically distinct from the calcium receptor on the osteoclast.

On the other hand, the nucleic acid sequences encoding calcium receptors present in parathyroid cells and C-cells indicate that these receptors have a very similar amino acid structure. Nevertheless, calcimimetic compounds exhibit differential pharmacology and regulate different activities at parathyroid cells and c-cells. Thus, pharmacological properties of calcium receptors may vary significantly depending upon the cell type or organ in which they are expressed even though the calcium receptors may have similar or even identical structures.

Calcium receptors, in general, have a low affinity for extracellular Ca^{2+} (apparent K_{d} generally greater than about 0.5 mM). Calcium receptors may include a free or bound effector mechanism as defined by Cooper, Bloom and Roth, "The Biochemical Basis of Neuropharmacology", Ch. 4, and are thus distinct from intracellular calcium receptors, e.g., calmodulin and the troponins.

Calcium receptors respond to changes in extracellular calcium levels. The exact changes depend on the particular receptor and cell line containing the receptor. For example, the in vitro effect of calcium on the calcium receptor in a parathyroid cell includes the following:

1. An increase in internal calcium. The increase is due to the influx of external calcium and/or to mobilization of internal calcium. Characteristics of the increase in internal calcium include the following:
(a) A rapid (time to peak <5 seconds) and transient increase in $\left[\mathrm{Ca}^{2+}\right]_{1}$ that is refractory to inhibition by $1 \mu \mathrm{M} \mathrm{La}^{3+}$ or $1 \mu \mathrm{M} \mathrm{Gd}^{3+}$ and is abolished by pretreatment with ionomycin (in the absence of extracellular $\mathrm{Ca}^{2 \cdot}$);
(b) The increase is not inhibited by dihydropyridines;
(c) The transient increase is abolished by pretreatment for 10 minutes with 10 mM sodium fluoride;
(d) The transient increase is diminished by pretreatment with an activator of protein kinase C (PKC), such as phorbol myristate acetate (PMA), mezerein or (-)indola =am V. The overall effect of the protein kinase C activator is to shift the concentration-response curve of calcium to the right without affecting the maximal response; and
(e) Pretreatment with pertussis toxin (100
$\mathrm{ng} / \mathrm{ml}$ for >4 hours) does not affect the increase.
2. A rapid (< 30 seconds) increase in the formation of inositol-1,4,5-triphosphate or diacylglycerol. Pretreatment with pertussis toxin ($100 \mathrm{ng} / \mathrm{ml}$ for >4 hours) does not affect this increase;
3. The inhibition of dopamine- and isopro-terenol-stimulated cyclic AMP formation. This effect is blocked by pretreatment with pertussis toxin (100 ng/ml for > 4 hours); and
4. The inhibition of PTH secretion. Pretreatment with pertussis toxin ($100 \mathrm{ng} / \mathrm{ml}$ for >4 hours) does not affect the inhibition in PTH secretion.

Using techniques known in the art, the effect of calcium on other calcium receptors in different cells can be readily determined. Such effects may be similar in regard to the increase in internal calcium observed in parathyroid cells. However, the effect is expected to differ in other aspects, such as causing or inhibiting the release of a hormone other than parathyroid hormone.

IL_ INORGANIC ION RECERTOR-MODULATING COMPOUNDS

Inorganic ion receptor-modulating compounds modulate one or more inorganic ion receptor activities. preferred inorganic ion receptor-modulating compounds are calcimimetics or calcilytics. Inorganic ion receptor-modulating compounds can be identified by screening compounds which are modeled after a compound shown to have a particular activity (i.e., a lead compound).

A preferred method of measuring calcium receptor activity is to measure changes in $\left[\mathrm{Ca}^{2+}\right]_{1}$. Changes in $\left[\mathrm{Ca}^{2+}\right]_{1}$ can be measured using different techniques such as by using

HEK 293 cells transduced with nucleic acid expressing the human parathyroid calcium receptor and loaded with fura-2; and by measuring an increase in Cl^{-}current in a Xenopus oocyte injected with nucleic acid coding for a calcium receptor. (See Nemeth et al., PCT/US93/01642, International Publication Number wo 94/18959.) For example, poly(A)• mRNA can be obtained from cells expressing a calcium receptor, such as a parathyroid cell, bone osteoclast, juxtaglomerular kidney cell, proximal tubule kidney cell, distal tubule kidney cell, cell of the thick ascending limb of Henle's loop and/or collecting duct, keratinocyte in the epidermis, parafollicular cell in the thyroid (C-cell), intestinal cell. central nervous cell, peripheral nervous system cell, platelet, vascular smooth muscle cell, cardiac atrial cell, gastrin-secreting cell, glucagon-secreting cell, kidney mesangial cell, mammary cell, beta cell, fat/adipose cell, immune cell, and GI tract cell. Preferably, the nucleic acid is from a parathyroid cell, C-cell, or osteoclast. More preferably, the nucleic acid encodes a calcium receptor and is present on a plasmid or vector.

In a preferred embodiment, the compound has an EC_{50} or IC $_{50}$ less than or equal to $5 \mu \mathrm{M}$ at one or more, but not all cells chosen from the group consisting of: parathyroid cell. bone osteoclast, juxtaglomerular kidney cell, proximal tubule kidney cell, distal tubule kidney cell, central nervous system cell, peripheral nervous system cell, cell of the thick ascending limb of Henle's loop and/or collecting duct, keratinocyte in the epidermis, parafollicular cell in the thyroid (C-cell), intestinal cell, platelet, vascular smooth muscle cell, cardiac atrial cell, gastrin-secreting cell, glucagon-secreting cell, kidney mesangial cell, mammary cell, beta cell, fat/adipose cell, immune cell, GI tract cell, skin
cell, adrenal cell, pituitary cell, hypothalamic cell, and cell of the subfornical organ. More preferably, the cells are chosen from the group consisting of parathyroid cell, central nervous system cell, peripheral nervous system cell, cell of the thick ascending limb of Henle's loop and/or collecting duct in the kidney, parafollicular cell in the thyroid (c-cell), intestinal cell, GI tract cell, pituitary cell, hypothalamic cell, and cell of the subfornical organ. The presence of a calcium receptor in this group of cells has been confirmed by physical data such as in situ hybridization and antibody staining.

Preferably, inorganic ion receptor-modulating compounds mimic or block the effects of an extracellular ion on a cell having an inorganic ion receptor, such that the compounds achieve a therapeutic effect. Inorganic ion receptormodulating compounds may have the same, or different, effects on cells having different types of inorganic ion receptor morphology (e.g., such as cells having normal inorganic ion receptors, a normal number of inorganic ion receptors, an abnormal inorganic ion receptor, and an abnormal number of inorganic ion receptors).

Calcium receptor-modulating compounds preferably mimic or block all of the effects of extracellular ion in a cell having a calcium receptor. However, calcimimetics need not possess all the biological activities of extracellular $\mathrm{Ca}^{2 \boldsymbol{}}$. Similarly, calcilytics need not block all of the activities caused by extracellular calcium. Additionally, different calcimimetics and different calcilytics do not need to bind to the same site on the calcium receptor as does extracellular $\mathrm{Ca}^{2 \cdot}$ to exert their effects.

Inorganic receptor-modulating compounds need not effect inorganic receptor activity to the same extent or in exactly
the same manner as the natural ligand. For example, a calcimimetic may affect calcium receptor activity to a different extent, to a different duration, by binding to a different binding site, or by having a different affinity, compared to calcium acting at a calcium receptor.

A. Ionomimetics

Different compound are described by Nemeth et al., PCT/US92/07175, International Publication Number WO 93/04373. Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959, Nemeth et al., PCT/US94/12117, International Publication Number WO 95/11211, and Van Wagenen et al. PCT/US95/13704 (each of these references are hereby incorporated by reference herein). Different generic groups are described herein, preferably, these groups exclude each of the specific compounds described in these prior international applications (i.e., the specific compounds described in PCT/US92/07175, PCT/US93/01642, PCT/US94/12117, and PCT/US95/13704, are preferably excluded from the different generic and subgeneric formula provided herein).

1. Structure I Compounds

Structure I compounds able to modulate calcium receptor activity have the following formula:

STRUCTURE I

Where $A r_{1}$ is either optionally substituted naphthyl, optionally substituted phenyl, or an optionally substituted heterocyclic aryl, where up to 5 substituents may be present and each substituent is independently selected from the group consisting of : alkyl, alkenyl, halogen, alkoxy, thioalkyl, methylene dioxy, haloalkyl, haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}$, acetoxy, $N(a l k y l)_{2}, ~ p h e n y l, ~ p h e n o x y, ~ b e n z y l, ~ b e n z y l o x y, ~ \alpha, ~ \alpha-~$ dimethylbenzyl, NO_{2}, $\mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$, acetyl, $\mathrm{OCH}_{2} \mathrm{COOH}$, and ethylene dioxy. In one embodiment of the present invention Ar, is either an optionally substituted naphthyl, or a substituted phenyl, having 1 to 4 substituents, more preferably Ar_{1} is either an unsubstituted naphthyl or a substituted phenyl; more preferably, $A r_{2}$ is a substituted phenyl; preferably each Ar_{1} substituent is independently selected from the group consisting of: isopropyl, $\mathrm{CH}_{3} \mathrm{O}, \mathrm{CF}_{3}$ $\mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}$, and CH_{3}. In another embodiment of the present invention $A r_{1}$ is an optionally substituted heterocyclic aryl. Preferred heterocyclic aryl substituents are independently selected from the group consisting of: isopropyl, $\mathrm{CH}_{3} \mathrm{O}, \mathrm{CF}_{3} \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}$, and CH_{3}. Preferred heterocyclic aryls are either furanyl, thiofuranyl, benzofuranyl, or benzothiophenyl;
$A r_{2}$ is either optionally substituted naphthyl, optionally substituted phenyl, or an optionally substitured heterocyclic aryl, where up to 5 substituents may be present and each substituent is independently selected from the group
consisting of: alkyl, alkeny1, halogen, alkoxy, thioalky1, methylene dioxy, haloalkyl, haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}$, $\mathrm{OCH}_{2} \mathrm{COOH}$, ethylene dioxy, and acetoxy; In one embodiment Ar_{2} is preferably either an optionally substituted naphthyl, or a substituted phenyl having 1 to 4 substituents, more preferably $A r_{2}$ is either an unsubstituted naphthyl or a substituted phenyl; more preferably, Ar_{2} is a substituted phenyl with a substituent in the meta position, even more preferably, $A r_{2}$ is mono substituted with a substituent in the meta position; preferably each Ar_{2} substituent is independently selected from the group consisting of: isopropyl, $\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}$, and CH_{3}, more preferably a $\mathrm{CH}_{3} \mathrm{O}$ is located in the meta position. In another embodiment of the present invention Ar_{2} is an optionally substituted heterocyclic aryl. Preferred heterocyclic aryl substituents are independently selected from the group consisting of: isopropyl, $\mathrm{CH}_{3} \mathrm{O}, \mathrm{CF}_{3} \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}$, and CH_{3}. Preferred heterocyclic aryls are either furanyl, thiofuranyl, benzofuranyl, or benzothiophenyl;
q is $0,1,2$, or 3 ; in alternative embodiments q is 0 or $2 ;$
R_{1} is either H or alkyl; when R_{1} is alkyl in alternative embodiments the alkyl is methyl, or the alkyl has more than one carbon atom, preferably 2 to 4 carbon atoms;
R_{2} and R_{3} are each independently either hydrogen, alkyl, or together cycloalkyl or cycloalkenyl; preferably, R_{2} and R_{3} are each independently either hydrogen or alkyl, provided that at least one of R_{2} and R_{1} is not hydrogen, preferably, R_{2} is alkyl, more preferably R_{2} is methyl;
and pharmaceutically acceptable salts and complexes thereof.

In a more preferred embodiment the compound has following formula:

STRUCTURE IA

Where $A r_{1}, A r_{2}, R_{1}, R_{2}$, and R_{3} are as described above for structure I compounds, including preferred embodiments.

In another more preferred embodiment the compound has the formula:

Structure IR

Where $A r_{1}, R_{1}, R_{2}$, and R_{3} is as described above for Structure I compounds including preferred embodiments;
each X and Z is independently selected from the group consisting of : alkyl, alkenyl, halogen, alkoxy, thioalkyl, methylene dioxy, haloalkyl, haloalkoxy, $\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}$, $\mathrm{OCH}_{2} \mathrm{COOH}$, ethylene dioxy, and acetoxy; more preferably each x and z is independently selected from the group consisting of: isopropyl, $\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}, \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}$, and CH_{3};
n and m are each independently $0,1,2$, or 3 , provided that n and m together are no more than 5 ; preferably n and m are each independently 0 or 1 , more preferably, 0.
2. Structure II Compounds

Structure II compounds have the formula:

STRUCTURE II

Where $A r_{1}, A r_{2}, R_{3}$ and R_{4} are as described above for Structure I compounds, including preferred embodiments;
R_{7} is either hydrogen, alkyl or phenyl; preferably hydrogen;
R_{θ} is either hydrogen, or alkyl; preferably hydrogen;
R_{g} is either hydrogen, alkyl or phenyl; preferably hydrogen or alkyl, when R, is alkyl in alternative embodiments the alkyl is methyl, or the alkyl has more than one carbon atom, preferably 2 to 4 carbon atoms;
and pharmaceutically acceptable salts and complexes thereof.
3. Calcimimetic Activity

The ability of compounds to mimic the activity of Ca^{2+} at calcium receptors can be determined using procedures known in the art such as those described by Nemeth et al.,

PCT/US93/01642, International Publication Number wo 94/18959. For example, calcimimetics possess one or more and preferably
all of the following activities when tested on parathyroid cells in vitro:

1. The compound causes a rapid (time to peak < 5 seconds) and transient increase in intracellular calcium concentration that is refractory to inhibition by $1 \mu \mathrm{M} \mathrm{La}{ }^{3+}$ or $1 \mu \mathrm{M} \mathrm{Gd}^{3+}$. The increase in $\left[\mathrm{Ca}^{2+}\right]_{\perp}$ persists in the absence of extracellular Ca^{2+}, but is abolished by pretreatment with ionomycin (in the absence of extracellular Ca^{2+});
2. The compound potentiates increases in $\left[\mathrm{Ca}^{2+}\right]_{1}$ elicited by submaximal concentrations of extracellular Ca^{2+};
3. The increase in $\left[\mathrm{Ca}^{2+}\right]_{4}$ elicited by extracellular $\mathrm{Ca}^{2 \cdot}$ is not inhibited by dihydropyridines;
4. The transient increase in $\left[\mathrm{Ca}^{2+}\right]_{1}$ caused by the compound is abolished by pretreatment for 10 minutes with 10 mM sodium fluoride;
5. The transient increase in $\left[\mathrm{Ca}^{2+}\right]_{1}$ caused by the compound is diminished by pretreatment with an activator of protein kinase C (PKC), such as phorbol myristate acetate (PMA), mezerein or (-)-indolactam V. The overall effect of the protein kinase C activator is to shift the concentrationresponse curve of the compound to the right without affecting the maximal response;
6. The compound causes a rapid (< 30 seconds) increase in the formation of inositol-1,4,5-triphosphate and/or diacylglycerol;
7. The compound inhibits dopamine- or isopro-terenol-stimulated cyclic AMP formation;
8. The compound inhibits PTH secretion;
9. Pretreatment with pertussis toxin ($100 \mathrm{ng} / \mathrm{ml}$ for >4 hours) blocks the inhibitory effect of the compound on cyclic AMP formation, but does not effect increases in
[Ca$\left.{ }^{2+}\right]_{i,}$ inositol-1,4,5-triphosphate, or diacylglycerol, nor decreases in PTH secretion;
10. The compound elicits increases in Cl current in Xenopus oocytes injected with poly(A)*-enriched mRNA from bovine or human parathyroid cells, but is without effect in Xenopus oocytes injected with water, or liver mRNA; and
11. Similarly, using a cloned calcium receptor from a parathyroid cell, the compound will elicit a response in Xenopus oocytes injected with the specific cDNA or mRNA encoding the receptor.

Different calcium activities can be measured using available techniques. Parallel definitions of compounds mimicking Ca^{2+} activity on other calcium responsive cell, preferably at a calcium receptor, are evident from the examples provided herein and Nemeth et al., PCT/US93/01642, International Publication Number wo 94/18959.

Preferably, the compound as measured by the bioassays described herein, or by Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959, has one or more, more preferably all of the following activities: evokes a transient increase in internal calcium, having a duration of less that 30 seconds (preferably by mobilizing internal calcium); evokes a rapid increase in $\left[\mathrm{Ca}^{2+}\right]_{1}$, occurring within thirty seconds; evokes a sustained increase (greater than thirty seconds) in $\left[\mathrm{Ca}^{2+}\right]_{1}$ (preferably by causing an influx of external calcium) ; evokes an increase in inositol-1,4,5triphosphate or diacylglycerol levels, preferably within less than 60 seconds; and inhibits dopamine- or isoproterenolstimulated cyclic AMP formation.

The transient increase in $\left[\mathrm{Ca}^{2}\right]_{\mathrm{i}}$ is preferably abolished by pretreatment of the cell for ten minutes with 10 mM sodium fluoride, or the transient increase is diminished by brief
pretreatment (not more than ten minutes) of the cell with an activator of protein kinase C, preferably, phorbol myristate acetate (PMA), mezerein or (-) indolactam V.
B. Calcilytics

The ability of a compound to block the activity of extracellular calcium at a calcium receptor can be determined using standard techniques based on the present disclosure. (See, also Nemeth et al., PCT/US93/01642, International Publication Number wo 94/18959.) For example, compounds which block the effect of extracellular calcium, when used in reference to a parathyroid cell, possess one or more, and preferably all of the following characteristics when tested on parathyroid cells in vitro:

1. The compound blocks, either partially or completely, the ability of increased concentrations of extracellular Ca ${ }^{2 \cdot}$ to:
(a) increase $\left[\mathrm{Ca}^{2 \cdot}\right]_{1}$,
(b) mobilize intracellular Ca^{2+},
(c) increase the formation of inositol-1,4,5triphosphate,
(d) decrease dopamine- or isoproterenolstimulated cyclic AMP formation, and
(e) inhibit PTH secretion;
2. The compound blocks increases in Cl - current in Xenopus oocytes injected with poly(A)*-mRNA from bovine or human parathyroid cells elicited by extracellular $\mathrm{Ca}^{2 \cdot}$ or calcimimetic compounds, but not in Xenopus oocytes injected with water or liver mRNA;
3. Similarly, using a cloned calcium receptor from a parathyroid cell, the compound will block a response in Xenopus oocytes injected with the specific CDNA, mRNA or

CRNA encoding the calcium receptor, elicited by extracellular $\mathrm{Ca}^{2 \cdot}$ or a calcimimetic compound.

Parallel definitions of compounds blocking Ca^{2+} activity on a calcium responsive cell, preferably at a calcium receptor, are evident from the examples provided herein and Nemeth et al., PCT/US93/01642, International Publication Number wo 94/18959.
III. TREATMENT OF DISEASES OR DISORDERS

Diseases or disorders which can be treated using compounds able to modulate inorganic ion receptor activity include one or more of the following types: (1) those characterized by abnormal inorganic ion homeostasis, preferably calcium homeostasis; (2) those characterized by an abnormal amount of an extracellular or intracellular messenger whose production can be affected by inorganic ion receptor activity, preferably calcium receptor activity; (3) those characterized by an abnormal effect (e.g., a different effect in kind or magnitude) of an intracellular or extracellular messenger which can itself be ameliorated by inorganic ion receptor activity, preferably calcium receptor activity; and (4) other diseases or disorders in which modulation of inorganic ion receptor activity, preferably calcium receptor activity, will exert a beneficial effect, for example, in diseases or disorders where the production of an intracellular or extracellular messenger stimulated by receptor activity compensates for an abnormal amount of a different messenger. Examples of extracellular messengers whose secretion and/or effect can be affected by modulating inorganic ion receptor activity include inorganic ions, hormones, neurotransmitters, growth factors, and chemokines.

Examples of intracellular messengers include cAMP, cGMP, IP_{3}, and diacylglycerol.

In a preferred embodiment, the compound is used to treat a disease or disorder characterized by abnormal bone and mineral homeostasis, more preferably calcium homeostasis. Extracellular Ca^{2+} is under tight homeostatic control and controls various processes such as blood clotting, nerve and muscle excitability, and proper bone formation. Abnormal calcium homeostasis is characterized by one or more of the following activities: (1) an abnormal increase or decrease in serum calcium; (2) an abnormal increase or decrease in urinary excretion of calcium; (3) an abnormal increase or decrease in bone calcium levels, for example, as assessed by bone mineral density measurements; (4) an abnormal absorption of dietary calcium; (5) an abnormal increase or decrease in the production and/or release of messengers which affect serum calcium levels such as parathyroid hormone and calcitonin; and (6) an abnormal change in the response elicited by messengers which affect serum calcium levels. The abnormal increase or decrease in these different aspects of calcium homeostasis is relative to that occurring in the general population and is generally associated with a disease or disorder.

Diseases and disorders characterized by abnormal calcium homeostasis can be due to different cellular defects such as a defective calcium receptor activity, a defective number of calcium receptors, or a defective intracellular protein acted on by a calcium receptor. For example, in parachyroid cells, the calcium receptor is coupled to the G_{1} protein which in turn inhibits cyclic AMP production. Defects in G_{i} protein can affect its ability to inhibit cyclic AMP production.

Diseases or disorders which can be treated by modulating calcium receptor activity are known in the art. For example. diseases or disorders which can be treated by modulating calcium receptor activity can be identified based on the functional responses of cells regulated by calcium receptor activity.

Functional responses of cells regulated by calcium receptor are know in the art, including PTH secretion by parathyroid cells, calcitonin secretion by C-cells, and bone resorption by osteoclasts. Such functional responses are associated with different diseases or disorders. For example, hyperparathyroidism results in elevated levels of PTH in the plasma. Decreasing the plasma levels of PTH offers an effective means of treating hyperparathyroidism. Likewise, increasing plasma levels of calcitonin is associated with an inhibition of bone resorption. Inhibiting bone resorption is an effective treatment for osteoporosis. Thus, modulation of calcium receptor activity can be used to treat diseases such as hyperparathyroidism, and osteoporosis.

Those compounds modulating inorganic ion receptor activity, preferably calcium receptor activity, can be used to confer beneficial effects to patients suffering from a variety of diseases or disorders. For example, osteoporosis is an age-related disorder characterized by loss of bone mass and increased risk of bone fracture. Compounds can be used to block osteoclastic bone resorption either directly (e.g., an osteoclast ionomimetic compound) or indirectly by increasing endogenous calcitonin levels (e.g., a c-cell calcimimetic). Alternatively, a calcilytic active on the parathyroid cell calcium receptor will increase circulating levels of parathyroid hormone, stimulating bone formation.

All three of these approaches will result in beneficial effects to patients suffering from osteoporosis.

In addition, it is known that intermittent low dosing with PTH results in an anabolic effect on bone mass and appropriate bone remodeling. Thus, compounds and dosing regimens evoking transient increases in parathyroid hormone (e.g., intermittent dosing with a parathyroid cell ionolytic) can increase bone mass in patients suffering from osteoporosis.

Additional diseases or disorders can be identified by identifying additional cellular functional responses, associated with a disease or disorder, which are regulated by calcium receptor activity. Diseases or disorder which can be treated by modulating other inorganic ion receptors can be identified in an analogous manner.

Different diseases can be treated by the present invention by targeting cells having a calcium receptor. For example, primary hyperparathyroidism (HPT) is characterized by hypercalcemia and abnormal elevated levels of circulating PTH. A defect associated with the major type of HPT is a diminished sensitivity of parathyroid cells to negative feedback regulation by extracellular Ca^{2+}. Thus, in tissue from patients with primary HPT, the "set-point" for extracellular $\mathrm{Ca}^{2 \cdot}$ is shifted to the right so that higher than normal concentrations of extracellular Ca^{2+} are required to depress PTH secretion. Moreover, in primary HPT, even high concentrations of extracellular Ca^{2+} often depress PTH secretion only partially. In secondary (uremic) HPT, a similar increase in the set-point for extracellular Ca* is observed even though the degree to which $\mathrm{Ca}^{2 \cdot}$ suppresses PTH secretion is normal. The changes in PTH secretion are paralleled by changes in $\left[\mathrm{Ca}^{2 \cdot}\right]_{1}$: the set-point for
extracellular Ca^{2+}-induced increases in $\left[\mathrm{Ca}^{2+}\right]_{1}$ is shifted to the right and the magnitude of such increases is reduced. Patients suffering from secondary HPT may also have renal osteodystrophy. Calcimimetics appear to be useful for treating both abnormal PTH secretion and renal osteodystrophy in such patients.

Compounds that mimic the action of extracellular Ca^{2+} are beneficial in the long-term management of both primary and secondary HPT. Such compounds provide the added impetus required to suppress PTH secretion which the hypercalcemic condition alone cannot achieve and, thereby, help to relieve the hypercalcemic condition. Compounds with greater efficacy than extracellular Ca^{2+} may overcome the apparent nonsuppressible component of PTH secretion which is particularly troublesome in the major form of primary HPT caused by adenoma of the parathyroid gland. Alternatively, or additionally, such compounds can depress synthesis of PTH, as prolonged hypercalcemia has been shown to depress the levels of preproPTH mRNA in bovine and human adenomatous parathyroid tissue. Prolonged hypercalcemia also depresses parathyroid cell proliferation in vitro, so calcimimetics can also be effective in limiting the parathyroid cell hyperplasia characteristic of secondary HPT.

Cells other than parathyroid cells can respond directly to physiological changes in the concentration of extracellular Ca^{2+}. For example, calcitonin secretion from parafollicular cells in the thyroid (C-cells) is regulated by changes in the concentration of extracellular $\mathrm{Ca}^{\mathbf{2 +}}$.

Isolated osteoclasts respond to increases in the concentration of extracellular Ca^{2+} with corresponding increases in $\left[\mathrm{Ca}^{2+}\right]_{1}$ that arise partly from the mobilization of intracellular Ca^{2+}. Increases in $\left[\mathrm{Ca}^{2+}\right]_{1}$ in osteoclasts are
associated with the inhibition of bone resorption. Release of alkaline phosphatase from bone-forming osteoblasts is directly stimulated by calcium.

Renin secretion from juxtaglomerular cells in the kidney, like PTH secretion, is depressed by increased concentrations of extracellular $\mathrm{Ca}^{2 \cdot}$. Extracellular Ca^{2+} causes the mobilization of intracellular Ca^{2+} in these cells. Other kidney cells respond to calcium as follows: elevated Ca^{2+} inhibits formation of $1,25(\mathrm{OH})_{2}$-vitamin D by proximal tubule cells, stimulates production of calcium-binding protein in distal tubule cells, and inhibits tubular reabsorption of $\mathrm{Ca}^{2 \cdot}$ and $\mathrm{Mg}^{2 \cdot}$ and the action of vasopressin on the thick ascending limb of Henle's loop (MTAL), reduces vasopressin action in the cortical collecting duct cells, and affects vascular smooth muscle cells in blood vessels of the renal glomerulus.

Calcium also promotes the differentiation of intestinal goblet cells, mammary cells, and skin cells; inhibits atrial natriuretic peptide secretion from cardiac atria; reduces cAMP accumulation in platelets; alters gastrin and glucagon secretion; acts on vascular smooth muscle cells to modify cell secretion of vasoactive factors; and affects cells of the central nervous system and peripheral nervous system.

Thus, there axe sufficient indications to suggest that $\mathrm{Ca}^{\mathbf{2 +}}$, in addition to its ubiquitous role as an intracellular signal, also functions as an extracellular signal to regulate the responses of certain specialized cells. Compounds of this invention can be used in the treatment of diseases or disorders associated with disrupted $\mathrm{Ca}^{2 *}$ responses in these cells.

Specific diseases and disorders which might be treated or prevented, based upon the affected cells, also include
those of the central nervous system such as seizures, stroke, head trauma, spinal cord injury, hypoxia-induced nerve cell damage such as in cardiac arrest or neonatal distress, epilepsy, neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease, dementia, muscle tension, depression, anxiety, panic disorder, obsessive-compulsive disorder, post-traumatic stress disorder, schizophrenia, neuroleptic malignant syndrome, and Tourette's syndrome; diseases involving excess water reabsorption by the kidney such as syndrome of inappropriate ADH secretion (SIADH), cirrhosis, congestive heart failure, and nephrosis; hypertension; preventing and/or decreasing renal toxicity from cationic antibiotics (e.g., aminoglycoside antibiotics); gut motility disorders such as diarrhea, and spastic colon; GI ulcer diseases; GI diseases with excessive calcium absorption such as sarcoidosis; and autoimmune diseases and organ transplant rejection.

While calcium receptor-modulating compounds of the present invention will typically be used in therapy for human patients, they may also be used to treat similar or identical diseases in other warm-blooded animal species such as other primates, farm animals such as swine, cattle, and poultry; and sports animals and pets such as horses, dogs and cats.
IV. ADMINISTRATION
The compounds described by the present invention can be
formulated for a variety of modes of administration,
including systemic and topical or localized administration.
Techniques and formulations generally may be found in
Remington's Pharmaceutical sciences, $18^{\text {th }}$ ed., Mack Publishing
Co.. Easton, PA, 1990 (hereby incorporated by reference
herein).

Suitable dosage forms, in part, depend upon the use or the route of entry, for example, oral, transdermal, transmucosal, or by injection (parenteral). Such dosage forms should allow the compound to reach a target cell whether the target cell is present in a multicellular host or in culture. For example, pharmacological compounds or compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and dosage forms which retard the compound or composition from exerting its effect.

Compounds can also be formulated as pharmaceutically acceptable salts and complexes thereof. Pharmaceutically acceptable salts are non-toxic salts in the amounts and concentrations at which they are administered. The preparation of such salts can facilitate the pharmacological use by altering the physical characteristics of the compound without preventing it from exerting its physiological effect. Useful alterations in physical properties include lowering the melting point to facilitate transmucosal administration and increasing the solubility to facilitate administering higher concentrations of the drug.

The pharmaceutically acceptable salt of the different compounds may be present as a complex. Examples of complexes include an 8 -chlorotheophylline complex (analogous to, e.g., dimenhydrinate:diphenhydramine 8 -chlorotheophylline (1:1) complex; Dramamine) and various cyclodextrin inclusion complexes.

Pharmaceutically acceptable salts include acid addition salts such as those containing sulfate, hydrochloride, fumarate, maleate, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexylsulfamate and
quinate. Pharmaceutically acceptable salts can be obtained from acids such as hydrochloric acid, maleic acid, sulfuric acid, phosphoric acid, sulfamic acid, acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, fumaric acid, and quinic acid.

Pharmaceutically acceptable salts also include basic addition salts such as those containing benzathine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine, procaine, aluminum, calcium, lithium, magnesium, pocassium, sodium, ammonium, alkylamine, and zinc, when acidic functional groups, such as carboxylic acid or phenol, are present. For example, see Remington's pharmaceutical Sciences, $18^{\text {th }}$ ed., Mack Publishing Co. Easton, PA, p. 1445. 1990. Such salts can be prepared using the appropriate corresponding bases.

Pharmaceutically acceptable salts can be prepared by standard techniques. For example, the free-base form of a compound is dissolved in a suitable solvent, such as an aqueous or aqueous-alcohol in solution containing the appropriate acid and then isolated by evaporating the solution. In another example, a salt is prepared by reacting the free base and acid in an organic solvent. (See, e.g., PCT/US92/03736, hereby incorporated by reference herein.)

Carriers or excipients can also be used to facilitate administration of the compound. Examples of carriers include calcium carbonate, calcium phosphate, various sugars such as lactose, glucose, or sucrose, or types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols and physiologically compatible solvents. Examples of
physiologically compatible solvents include sterile solutions of water for injection (WFI), saline solution and dextrose.

The compounds can be administered by different routes including intravenous, intraperitoneal, subcutaneous, intramuscular, oral, topical (transdermal), or transmucosal administration. For systemic administration, oral administration is preferred. For oral administration, for example, the compounds can be formulated into conventional oral dosage forms such as capsules, tablets, and liquid preparations such as syrups, elixirs, and concentrated drops.

Alternatively, injection (parenteral administration) may be used, for example, intramuscular, intravenous, intraperitoneal, and/or subcutaneous administration. For injection, the compounds of the invention are formulated in liquid solutions, preferably, in physiologically compatible buffers or solutions, such as saline solution, Hank's solution, or Ringer's solution. In addition, the compounds may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms can also be produced.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration, for example, may be through nasal sprays, buccal or sublingual tablets, rectal suppositories, or vaginal suppositories.
For topical administration, the compounds of the invention can be formulated into ointments, salves, gels, or creams, as is generally known in the art.
The amounts of various compounds to be administered can be determined by standard procedures taking into account factors such as the compound $\mathrm{IC}_{50}, \mathrm{EC}_{50}$, the biological halflife of the compound, the age, size and weight of the patient, and the disease or disorder associated with the patient. The importance of these and other factors to be considered are known to those of ordinary skill in the art. Generally, it is an amount between about 0.01 and $50 \mathrm{mg} / \mathrm{kg}$, preferably 0.01 and $20 \mathrm{mg} / \mathrm{kg}$ of the animal to be treated.

V_ EXAMRLES
Examples are provided below illustrating different aspects and embodiments of the present invention. These examples are not intended to limit the claimed invention. Included in these examples are synthesis protocols illustrating techniques which can be used to synthesize different compounds described herein. Other compounds falling within the generic groups described herein can be prepared using standard techniques.

Example__Assaying Calcium Receptor Activity

The ability of different compounds to modulate calcium receptor activity are described in this example. other methods which can be used to measure calcium receptor activity are known in the art.

Recombinant HEK 293 4.0-7 cells containing a calcium receptor were constructed as described by Rogers et al., J. Bone Miner. Res. 10 Suppl. 1:S483, 1995 (hereby incorporated by reference herein). The recombinant cells were loaded with
fura-2 by incubating the cells in Dulbecco's modified Eagle's medium buffered with 20 mM HEPES containing about $5 \mu \mathrm{M}$ fluo3/AM for one hour at room temperature. Cells were then rinsed with Hank's balanced salt solution buffered with 20 mM HEPES containing $1 \mathrm{mM} \mathrm{CaCl} 1_{2}$ and $1 \mathrm{mM} \mathrm{MgCl} 1_{2}$. Compounds to be tested were then added to the cells and fluorescence was measured (excitation and emission wavelengths of 340 and 510 nm, respectively). Table I provides results for different compounds.

Table I

Compound	$E C_{50}(\mathrm{nM})$
26A	52 (1)
6 X	286
26B	10900
26C	22000
26D	47 (3)
26E	77 (3)
26F	15 (3)
26G	11 (3)
26H	36 (1)
261	126 (1)
26J	47 (1)
27E	12000
27 F	230
27\%	70
27H	2750
280	2500
$27 J$	1100
27K	3800
27L	>100000
27M	1800
27N	960
270	29
27P	1600
27Q	23
27R	2550
27 S	210
27 T	2900
27 U	210

Compound	$E_{50}(\mathrm{nM})$
27 V	140
27 W	1500
27 X	22
27 Y	12
$27 Z$	16
28 A	9.5
28 B	24
28 C	270
28 D	7300
28 E	810
28 F	660
28 G	602
28 H	3000
28 I	1200
28 J	1100
28 K	57
28 L	73000
28 M	170
28 N	303

Example 2: Synthesis of 26D. $(R, R)-N-(1-E t h y l-4 \cdot-i o d o p h e n y 1)$ -1-11-naphthyl)ethylamine hydrochloride

The synthesis of the title compound (26D) was accomplished in a one-pot, two-step reaction sequence by reductive amination of the imine formed from the commercially available 4'-iodoacetophenone and (R)-naphthyl-1-ethylamine. The reduction of the imine diastereoselectively was conducted under similar conditions as previously reported (Tetrahedron Lett. (1985) 41, 6005-6011.).

A mixture of 4'-iodoacetophenone ($0.25 \mathrm{~g}, 1.0 \mathrm{mmol}$), (R)-naphthyl-1-ethylamine ($0.17 \mathrm{~g}, 1.0 \mathrm{mmol})$, and Ti(i-PrO) ($0.38 \mathrm{~mL}, 1.1 \mathrm{mmol}$) in abs. EtOH (5 mL) was refluxed for 18 h . Diethyl-1,4-dihydro-2,6-dimethyl-3.5-pyridine decarboxylate $(0.25 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ were then added to the reaction mixture and the reflux was continued for an additional 18 h . The reaction mixture was then cooled to
ambient temperature, $\mathrm{H}_{2} \mathrm{O}$ (3 mL) and diethyl ether (10 mL) were added and the mixture was centrifuged (3000 rpm) to remove the inorganic salts. The supernatant was decanted away from the pellet and the volatiles were removed under reduced pressure. The resulting residue was chromatographed on silica gel (elution with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide the purified product as its free base. This material was converted to its hydrochloride salt. The salt was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to provide GC/MS-pure material.

Example 3: Synthesis of 26E $\left(R_{1} R\right)-N$ - (1-Ethusl-4'-ethoxy-3'-methylpheny1)-1-(1-naphthyl)ethylamine hydrochloride

The synthesis of the title compound (26E) was accomplished in a three-step, two-pot reaction sequence. Commercially available 4-hydroxy-3-methylacetophenone was o-alkylated with ethyl iodide $/ \mathrm{K}_{2} \mathrm{CO}_{3} /$ acetone. This ketone was subsequently reacted with (R)-naphthyl-1-ethylamine in the presence of Ti(i-PrO), to provide the imine. This imine was reduced in high diastereoselective yield by catalytic hydrogenation with Raney-nickel.

A mixture of 4-ethoxy-3-methylacetophenone $(2.0 \mathrm{~g}, 11.2$ mmol), (R)-naphthyl-1-ethylamine ($2.0 \mathrm{~g}, 11.2 \mathrm{mmol}$), Ti(i-Pro). $(4.2 \mathrm{~mL}, 14.1 \mathrm{mmol})$, and EtOH (10 mL) were stirred at $60^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was then transferred to a Parr hydrogenation flask, Raney-nickel (100 mg ; washed with EtOH, 3 x 20 mL) was added, and the mixture was hydrogenated at 50 psig. $25{ }^{\circ} \mathrm{C}$, for 4 h . The reaction mixture was then filtered (Celite/fritted glass), the catalyst was washed (EtOH, 20 mL), and the filtrate was evaporated under reduced pressure to provide the crude product. This material was purified by silica gel chromatography (elution with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The free base
was converted to its hydrochloride salt to provide 1.1 g (27\%) of a white solid.

Examole_4: Symthesis of 26F. $(R, R)-N-\left(1-\right.$ Propyl-4'-methoxy- $^{\prime}=$ methylphenyl)-1-(1-naphthyl)ethylamine hydrochloride

The synthesis of the title compound (26F) was accomplished in a four-step, three-pot reaction sequence. Commercially available 3 -methyl-p-anisaldehyde was reacted with ethylmagnesium bromide to provide its phenylpropanol derivative. This alcohol was then oxidized to the corresponding ketone in the usual manner with PCC. This ketone was subsequently reacted with (R)-naphthyl-1-ethylamine in the presence of $\mathrm{Ti}(\mathrm{i}-\mathrm{PrO}$), to provide the imine. This imine was reduced in high diastereoselective yield by catalytic hydrogenation in the presence of Raney-nickel.

In a manner similar to the synthesis of 26 E , a mixture of 4 -methoxy-3-methylpropiophenone (5.7 g, 31.7 mmol$)$, (R)-naphthyl-1-ethylamine ($5.2 \mathrm{~mL}, 31.7 \mathrm{mmol}$), Ti(i-Pro) (11.8 $\mathrm{mL}, 39.6 \mathrm{mmol}$) , and EtOH (30 mL) were reacted as above to form the imine which was subsequently reduced under catalytic hydrogenation conditions over Raney-nickel. The crude product was purified by silica gel chromatography (elution with 10:1, hexane/EtOAc). The free base was converted to its hydrochloride salt to provide 0.50 g (4\%) of a white solid.

Example 5: Synthesis of : 5 G. $(R, R)-N-$ (1-Ethyl-4'-methoxy-3' -bromophenyl)-1-(1-naphthy ethylamine hydrochloride

The synthesis of the itle compound (26G) was accomplished in a four-step, three-pot reaction sequence. Commercially available 3 -bromo-4-methoxybenzaldehyde was reacted with methylmagnesium bromide to provide its phenylethanol derivative. This alcohol was then oxidized to the corresponding ketone in
the usual manner with pyridinium chlorochromate (PCC). This ketone was subsequently reacted with (R)-naphthyl-1-ethylamine in the presence of $\mathrm{Ti}(\mathrm{i}-\mathrm{PrO})$, to provide the imine. This imine was reduced in high diastereoselective yield using diethyl-1,4-dihydro-2,6-dimethyl-3,5-pyridine decarboxylate.

In a manner similar to the synthesis of 26D, a mixture of 3-bromo-4-methoxyacetophenone (3.0 g, 13.1 mmol$)$.
(R)-naphthyl-1-ethylamine ($2.1 \mathrm{~mL}, 13.1 \mathrm{mmol}$), and $\mathrm{Ti}(\mathrm{i}-\mathrm{PrO})$. (4.7 mL, 15.7 mmol$)$ in abs. EtOH (100 mL) was reduced with diethyl-1,4-dihydro-2,6-dimethyl-3,5-pyridine decarboxylate in the presence of $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$. The resulting crude material was converted to its hydrochloride salt. The salt was purified by precipitation from diethyl ether/hexane to provide GC/MS-pure material ($0.6 \mathrm{~g}, 11 \%$) as a white solid.

Example 6: Synthesis of 26H_26I, and 26J. (R)-N-(3-phenyl-2-propenyl)-1-(1-naphthyllethylamine hydrochloride. $(R)-N-(2-$ methyl-3-phenyl-2-propenyl)-1-(1-naphthyl)ethylamine hydrochloride. and (R)-N-(2-methoxy-3-phenyl-2-propenyl) -1-(1-naphthy1)ethylamine hydrochloride

The syntheses of the title compounds were accomplished in three, two-step, one-pot reaction sequences. Commercially available cinnamaldehyde, 2 -methyl-trans-cinnamaldehyde, and 2-methoxycinnamaldehyde, respectively, were reacted with (R) -naphthyl-1-ethylamine in the presence of $\mathrm{Ti}(i-\mathrm{PrO})$ to provide the corresponding imine. These imines were reduced using sodium cyanoborohydride to provide the title compounds in high overall yields.

Example 7: Physical Data

Table II provides physical data for some of the compounds described herein. Gas chromatographic and mass spectral data
were obtained on a Hewlett-Packard 5890 Series II Gas
Chromatograph with a 5971 Series Mass Selective Detector
[Ultra-2 Ultra Performance Capillary Column (crosslinked 5\% Ph Me silicone); column length, 25 m , column i.d., 0.20 mm , film
thickness, $0.33 \mu \mathrm{~m}$; He flow rate, $60 \mathrm{~mL} / \mathrm{min}$; injector temp., 250 ${ }^{\circ} \mathrm{C}$; temp. program, $20^{\circ} \mathrm{C} / \mathrm{min}$ from 125 to $325{ }^{\circ} \mathrm{C}$ for 10 min , then held constant at $325{ }^{\circ} \mathrm{C}$ for 6 min$]$.

TABLE II

Compound	GC rt	m / z
$25 Z$	8.32	285
26 A	8.75	286
26 B	8.51	288
26 C	9.60	346
26 D	11.08	401
26 E	10.71	333
26 F	10.56	333
26 G	9.09	385
26 H	10.95	287
26 I	10.98	301
26 J	11.79	317

Additional Gas chromatographic and mass spectral data were obtained on a Hewlett-Packard 5890 Series II Gas Chromatograph with a 5971 Series Mass Selective Detector [Ultra-2 Ultra Performance Capillary Column (crosslinked 5\% phenyl methyl silicone); column length, 25 m , column i.d., 0.20 mm ; He flow rate, $60 \mathrm{~mL} / \mathrm{min}$; injector temp., $250^{\circ} \mathrm{C}$; gradient temperature program, $20^{\circ} \mathrm{C} / \mathrm{min}$ from 125 to $325{ }^{\circ} \mathrm{C}$ for 10 min , then held constant at $325{ }^{\circ} \mathrm{C}$ for 6 min .

Compound 26Z, rt $=10.22^{\prime}, \mathrm{m} / \mathrm{z}$ (rel. int.) 331 ($\mathrm{M}+15$), 316 (56), 182 (9), $168(5), 156(20), 155(100), 154(28), 153$

```
    (18), 152 (8), 141 (11), 133 (43), 131 (5), 129 (11), 128 (18),
    127 (15), 117 (9), 115 (13), 115 (13), 105 (8), 91 (7).
        Compound 27A, rt = 10.13', m/z (rel. int.) 331 (M+,18),
    316 (76), 182 (10), 176 (5), 168 (10), 167 (5), 156 (17), 155
``` (100), \(154(57), 153(27), 152(14), 141(14), 134(7), 133\) (58), \(133(58), 131(7), 129(14), 128(21), 127(23), 126(5)\), 119 (5), 117 (12), \(116(5), 115(18), 105(10), 91(12), 77(5)\). Compound 27D, rt \(=9.411, m / z\) (rel. int.) \(292(\mathrm{M}+5)\), 171 (7), 160 (7), 157 (9), 147 (6), 146 (9), 145 (66), 143 (7), 134 (7), \(133(20), 132(11), 131(13), 129(10), 119(11), 117(25)\), \(116(100), 115(14), 115(14), 105(10), 103(5), 91(16), 89\) (17), 77 (8).

Compound 27E, \(\mathrm{rt}=7.81 \mathrm{~m}, \mathrm{~m} / \mathrm{z}\) (rel. int.) \(283(\mathrm{M}+, 3), 268\) (100), 176 (16), \(150(14), 149(39), 148(7), 135(7), 134(11)\), 121 (19), \(118(6), 117(6), 115(6), 109(10), 105(8), 104\) (11), 103 (9), \(92(12), 91(75), 79(9), 78(10), 77(21), 77\) (21), 65 (15), 51 (5), 42 (6), 41 (6).

Compound 27F, rt \(=7.38^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) 365 (\(\mathrm{M}+\mathrm{i}\)), 231 (6), \(230(31), 216(28), 215(59), 214(17), 190(15), 174\) (25), 136 (41), 135 (100), \(134(14), 129(13), 128(15), 127(9), 119\) \((9), 117(6), 114(9), 109(10), 105(21), 104(7), 103(18), 91\) (21), 91 (10), 79 (11), 78 (7), 77 (19), \(68(12), 65(6), 42\) (9), 0 (0).

Compound 27G, rt \(=7.45^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) 365 (M+.4), 231 (8), \(230(49), 216(44), 215(86), 213(27), 190(23), 187(6)\), 175 (6), \(174(31), 136(37), 135(100), 134(14), 130(8), 129\) (11), 128 (13), 127 (9), \(120(7), 120(7), 116(5), 115(8), 109\) (8), 105 (19), \(103(13), 92(8), 91(16), 79(8), 77(13), 68\) (9), 0 (0).

Compound 27H, rt \(=10.44^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(317(\mathrm{M}+8\)), 170 (9). 162 (5), 155 (19), 154 (28), 153 (14), 152 (9), 148 (5),
```

147 (13), 146 (100), 134 (7), 129 (6), 128 (18), 127 (21), 126

```
\((7), 115(12), 115(12), 103(7), 102(6), 89(8), 77(8)\).
 Compound 27J, rt \(=9.88^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) 337 (\(\mathrm{M}+, 2\)), 323
 (22), 322 (100), \(210(26), 196(9), 184(12), 182(11), 170\)
(13), 169 (53), \(168(31), 167(14), 165(10), 154(22), 153\)
(41), \(152(32), 150(9), 141(53), 129(27), 128(34), 127(62)\),
126 (20), 124 (98), \(115(24), 103(23), 91(15), 89(18), 77\)
(23), 42 (11), 41 (9), 0 (0).
 Compound \(27 \mathrm{~K}, \mathrm{rt}=9.03^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(342(\mathrm{M}+, .1), 327\)
(40), 325 (41), 308 (14), 306 (21), 204 (17), 202 (31), 174
\((43), 173(26), 172(66), 171(26), 139(11), 138(15), 137\)
\((20), 127(33), 124(100), 117(10), 115(12), 111(11), 103\)
\((37), 102(41), 101(30), 98(12), 91(11), 89(28), 77(35), 75\)
(21), 63 (12), 51 (10), \(0(0)\).
 Compound 27L, rt \(=8.84^{\circ}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(264(\mathrm{M}+24), 145\)
 \((100), 145(7), 119(29), 118(26), 118(16), 117(7), 116(5)\),
102 (37), 92 (10), \(91(41), 90(41), 77(6), 76(9), 75(14), 75\)
(14), 65 (5), 64 (21), 63 (23), 51 (8).
 Compound 27M, rt \(=8.48^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(305(\mathrm{M}+, .0), 291\)
 \((6), 290(31), 164(28), 136(17), 135(100), 120(6), 111(7)\),
 111 (7), \(105(16), 103(9), 98(7), 92(6), 91(13), 79(8), 77\)
 (12), 65 (5), 63 (5).
 Compound 27N, rt \(=8.81\), m/z (rel. int.) \(294(M+6), 279\)
 (100), 187 (5), \(164(7), 144(7), 136(16), 135(75), 135(75)\),
 134 (11), \(130(15), 121(6), 120(7), 117(11), 116(36), 115\)
 \((6), 105(18), 104(14), 103(30), 102(7), 92(9), 91(19), 90\)
 \((6), 89(17), 79(10), 78(7), 77(23), 65(6), 63(6)\).
 Compound 270, rt \(=9.33^{\prime}\), m/z (rel. int.) 347 (M+,1), 304
 (58), 192 (6), \(156(14), 156(14), 155(100), 154(22), 153\)
 (22), \(152(9), 150(24), 149(16), 148(23), 135(28), 129(9)\),
 128 (14), 127 (15), 115 (9), 91 (8), 77 (6).

Compound 27p, rt \(=9.231\), m/z (rel. int.) 347 (M+,.0), 304 (100), 177 (3), \(156(12), 155(87), 154(12), 153(15), 152(6)\), \(150(20), 149(10), 148(12), 128(6), 127\) (6).

Compound 27Q, rt \(=9.64 \mathrm{~m}, \mathrm{~m}\) (rel. int.) \(361(\mathrm{M}+, .1), 304\) (54), 156 (17), 155 (100), 153 (17), \(152(7), 151(5), 150(40)\), 148 (12), \(135(27), 129(7), 128(9), 127(9), 115(7), 91(5)\), 91 (5).

Compound 27R, rt \(=9.16^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(294(\mathrm{M}+3\)), 279 (100), 187 (5), \(164(6), 136(24), 135(77), 121(10), 120(6)\). \(117(5), 116(33), 105(15), 104(7), 103(15), 92(6), 91(14)\), \(91(14), 89(10), 79(8), 78(5), 77(14), 65(5)\).

Compound 27S, rt \(=9.271, m / z\) (rel. int.) \(338(M+, 0), 323\) \((7), 322(38), 164(9), 162(7), 160(25), 158(37), 136(25)\), 136 (6), \(135(100), 134(16), 124(7), 122(6), 120(8), 120\) \((7), 115(8), 105(19), 104(5), 103(16), 102(11), 101(9), 92\) \((10), 91(19), 89(8), 79(10), 78(6), 77(17), 65(6), 63(6)\), 0 (0).

Compound 27U, rt \(=8.651, \mathrm{~m} / \mathrm{z}\) (rel. int.) \(385(\mathrm{M}+3\)), 230 (16), \(230(16), 216(12), 215(55), 214(15), 210(12), 174\) (19), \(156(23), 155(100), 154(27) .153(24), 152(12), 140\) \((5), 129(15), 128(25), 127(22), 126(5), 115(12), 109(5)\), 68 (5).

Compound 27V, rt = 8.59', m/z (rel. int.) \(385(\mathrm{M}+3) .230\) (14), 216 (9), 215 (49), 214 (13), \(210(5), 174\) (17), 156 (23), 155 (100), \(154(25), 153(26), 152(11), 130(5), 129(19), 129\) (19), 128 (27), \(127(26), 115(14), 109(6), 101(5), 77(5), 69\) (7).

Compound 27W, rt \(=8.88^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(371(\mathrm{M}+, 2), 356\) (100), \(244(20), 184(5), 182(5), 170(8), 169(24), 168(14)\), 167 (8), \(160(5), 159(46), 154(11), 153(24), 153(24), 152\) (15), \(150(6), 141(26), 133(9), 129(11), 128(13), 127(19)\), 126 (5), 115 (6), 109 (10).

Compound 27X, rt \(=10.611, m / z\) (rel. int.) \(419(M+, .0)\), 406 (50), \(404(20), 403(100), 402(11), 401\) (51), 263 (6), 250 (27), 248 (55), \(246(29), 169(9), 167(7), 156(5), 155(14)\), 154 (16), 153 (12), 153 (12), 152 (6), 128 (9), 127 (9).

Compound 27Y, \(\mathrm{rt}=10.21^{1}, \mathrm{~m} / \mathrm{z}\) (rel. int.) \(375(\mathrm{M}+4), 361\) (20), 360 (100), \(359(15), 358(78), 279(7), 217(11), 206\) (23), \(205(7), 204(93), 202(74), 170(13), 168(8), 156(12)\), \(155(38), 154(53), 153(37), 152(21), 141(11), 129(16), 128\) (37), 127 (41), 126 (21), 123 (20), 115 (14), \(89(28), 77(10)\), 75 (10), 63 (8), \(0(0)\).

Compound 27Z, rt \(=11.10^{\circ}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(466(M+, .1)\), 451 (60), \(450(13), 449\) (61), 311 (9), 309 (11), 296 (97), 295 (8), 294 (100), \(169(29), 168(9), 167(24), 156(20), 155(56)\), 154 (74), \(153(45), 152(27), 151(8), 141(13), 129(21), 128\) (52), 127 (61), 126 (18), 115 (18), \(89(43), 77(13), 75\) (14), 74 (9), 63 (16), 0 (0).

Compound 28A, rt \(=10.73 \mathrm{l}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(421(\mathrm{M}+4), 408\) (33), 407 (21), 407 (21), 406 (100), 279 (9), 265 (7), 252 (22), \(251(6), 250(70), 156(6), 155(20), 154(25), 153(19), 152\) (11), 141 (6), 129 (7), 128 (18), 127 (21), 126 (10), 123 (11), 115 (7), 89 (16).

Compound 28B, \(\mathrm{rt}=10.75^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(417(\mathrm{M}+3), 274\) (5). 261 (16), \(261(16), 247(10), 246(100), 156(7), 155(29)\), 154 (35), 153 (19), 152 (11), 141 (6), 129 (8), 128 (23), 127 (23), 126 (7), \(115(8), 105(9), 91(7), 90(16), 89(9), 77\) (15).

Compound 28C, \(r t=8.73^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) 317 (\(\mathrm{M}+, .1\)), 303 (12), 302 (62), \(282(9), 178(6), 149(22), 148(100), 148(7)\), \(135(9), 131(6), 127(16), 124(46), 119(12), 117(6), 115\) (8), \(104(6), 103(24), 102(6), 92(9), 91(65), 90(7), 89\) (18), 78 (6), 77 (25), 65 (19), 63 (11).

Compound 28D, rt \(=8.73^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(317(\mathrm{M}+, .1), 303\) (14), 302 (71), 282 (11), 178 (6), 149 (23), 149 (23), 148 (100), 135 (9), 131 (6), 127 (14), 124 (42), 119 (10), 117 (5), 115 (7), 103 (19), \(92(8), 91(56), 90(5), 89(14), 78(6), 77\) (19), 65 (16), 63 (7).

Compound \(28 E, r t=9.33^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(338(M+2), 325\) \((7), 324(35), 323(11), 323(11), 322\) (54), 164 (9), 161 (15), \(159(23), 136(30), 135(100), 121(15), 120(5), 105(14), 103\) (10), 92 (5), 91 (11), 79 (7), 77 (11).

Compound \(2 \mathrm{BF}, \mathrm{rt}=9.11^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(338(\mathrm{M}+1), 325\) (7), 324 (39), 323 (11), 322 (59), 164 (10), 161 (19), 161 (19), \(159(29), 136(27), 135(100), 121(11), 120(6), 115(5), 105\) \((17), 103(12), 102(7), 101(5), 92(6), 91(14), 89(6), 79\) (9), 77 (14), 65 (5).

Compound 28G, rt \(=7.1^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(251(\mathrm{M}+, 6), 236\) \((43), 156(6), 155(26), 154(32), 153(24), 152(18), 152(18)\), 151 (6), 141 (8), 129 (11), 128 (25), 127 (31), 126 (11), 115 \((12), 95(12), 82(6), 81(100), 77(8), 53(27), 51(6)\).

Compound 28H, rt \(=7.31^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(251(\mathrm{M}+, 9), 236\) (100), \(208(7), 170(10), 168(8), 156(5), 155(26), 154\) (39), 153 (27), 152 (19), 152 (19), 151 (6), 141 (8), \(129(9), 128\) \((22), 127(29), 126(10), 115(9), 94(5), 82(5), 81(77), 53\) (13).

Compound 28I, rt \(=8.20^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(267(\mathrm{M}+6\)), 252 (36), 156 (6), 155 (21), 154 (15), 153 (15), 152 (10), 141 (7). \(129(7), 128(15), 127(16), 126(5), 115(8), 112(16), 98(8)\), \(98(8), 98(6), 96(100), 53(5), 44(6)\).

Compound 28J, rt \(=8.23^{\prime}, \mathrm{m} / 2\) (rel. int.) \(267(\mathrm{M}+, 6), 251\) (56), 170 (11), \(155(25), 154(31), 153(23), 153(23), 152\) \((16), 151(5), 141(7), 129(9), 128(22), 127(26), 126(9)\), \(115(10), 111(7), 110(7), 98(6), 97(8), 96(100), 85(5), 77\) (5). 53 (6). 44 (9).

Compound 28K, rt \(=9.28\) ', \(\mathrm{m} / \mathrm{z}\) (rel. int.) \(315(\mathrm{M}+42), 301\) \((5), 300(23), 160(19), 156(19), 155(78), 154(42), 153(27)\), 152 (15), \(146(16), 145\) (100), 144 (19), 141 (6), 129 (11), 128 (24), 127 (31), 127 (31), 126 (8), 118 (7), 117 (14), 116 (8), 115 (41), 91 (12), 89 (9), 77 (7).

Compound 28L, rt \(=7.411, \mathrm{~m} / \mathrm{z}\) (rel. int.) \(319(\mathrm{M}+.6), 318\) \((8), 159(15), 147(12), 146(100), 132(6), 131(5), 130(7)\), 119 (6), 117 (13), 115 (10), 109 (8), \(105(6), 104(16), 103\) (11), 91 (8), 78 (8), 77 (8). 42 (8).

Compound 28M, rt \(=10.76^{\circ}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(372(\mathrm{M}+2), 360\) \((8), 359(10), 358(44), 357(16), 356(68), 169(6), 168(29)\), 167 (8), \(160(32), 158(51), 156(17), 155(100), 154(29), 153\) (34), 152 (18), 151 (6), 141 (9), 129 (18), 128 (25), 127 (28), 126 (8), 124 (7), 122 (9), 115 (19), 102 (6), 101 (7), \(89(10)\), 77 (7), 0 (0).

Compound 28N, rt \(=7.40^{\prime}, \mathrm{m} / \mathrm{z}\) (rel. int.) \(270(\mathrm{M}+, 6), 136\) (62), \(135(100), 133(20), 120(12), 120(8), 106(5), 105(34)\), 103 (18), 103 (18), \(103(6), 91(28), 91(23), 79(11), 79(5)\), 78 (11), 77 (22), 76 (5), 64 (10), 63 (5), 62 (7).

Other embodiments are within the following claims.
Thus, while several embodiments have been shown and described, various modifications may be made without departing from the spirit and scope of the present invention.

\begin{abstract}
1. An inorganic ion receptor-modulating compound having the formula:
\end{abstract}

wherein \(A r_{1}\) is either optionally substituted naphthyl, optionally substituted phenyl, or an optionally substituted heterocyclic aryl, wherein up to 5 substituents may be present and each substituent is independently selected from the group consisting of: alkyl, alkenyl, halogen, alkoxy, thioalkyl, methylene dioxy, haloalkyl, haloalkoxy, \(\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}\), acetoxy, \(\mathrm{N}(\mathrm{alkyl})_{2}\), phenyl, phenoxy, benzyl, benzyloxy, \(\alpha, \alpha-\) dimethylbenzyl, \(\mathrm{NO}_{2}, \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})\), acetyl, \(\mathrm{OCH}_{2} \mathrm{COOH}\), and ethylene dioxy;
\(A r_{2}\) is either optionally substituted naphthyl, optionally substituted phenyl, or an optionally substituted heterocyclic aryl, wherein up to 5 substituents may be present and each substituent is independently selected from the group consisting of: alkyl, alkenyl, halogen, alkoxy, thioalkyl, methylene dioxy, haloalkyl, haloalkoxy, \(\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}, \mathrm{OCH}_{2} \mathrm{COOH}\), ethylene dioxy, and acetoxy;
q is 0, 1, 2, or 3;
\(R_{1}\) is either \(H\) or alkyl; and
\(R_{2}\) and \(R_{3}\) are each independently either hydrogen, alkyl, or together cycloalkyl or cycloalkenyl;
and pharmaceutically acceptable salts and complexes thereof ;
```

wherein said compound is an ionomimetic modulating one or more inorganic ion receptor activities.

```
2. The compound of claim 1, wherein \(A r_{1}\) is said optionally substituted heterocyclic aryl.
3. The compound of claim 2, wherein said \(\mathrm{Ar}_{1}\) optionally substituted heterocyclic aryl is selected from the group consisting of: furanyl, thiofuranyl, benzofuranyl, and benzothiophenyl.
4. The compound of claim 3, wherein
\(R_{2}\) and \(R_{3}\) are each independently hydrogen, alkyl, or together either cycloalkyl, provided that at least one of \(R_{2}\) and \(\mathrm{R}_{3}\) is not hydrogen;
wherein said compound is a calcimimetic modulating one or more calcium receptor activities.
5. The compound of claim 4, wherein \(R_{2}\) is not hydrogen.
6. The compound of claim 5, wherein \(R_{2}\) and \(R_{3}\) are both methyl.
7. The compound of any of claims 1-5, wherein \(R_{3}\) is hydrogen.
8. The compound of any of claims 1-7, wherein \(R_{1}\) is alkyl.
9. The compound of claim 8, wherein said \(R_{1}\) alkyl has more than one carbon atoms.
10. The compound of any of claims 1-7, wherein \(R_{2}\) is hydrogen.
11. The compound of any of claims \(1-10\), wherein \(A r_{2}\) is a substituted phenyl.
12. The compound of claim 11, wherein said \(\mathrm{Ar}_{2}\) substituted phenyl has one to four independently selected substituents, provided that at least one substituent is located in the meta position.
13. The compound of claim 11, wherein said \(\mathrm{Ar}_{2}\) substituted phenyl has 1 to 4 substituents each independently selected from the group consisting of: isopropyl, \(\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}\), \(\mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}\), and \(\mathrm{CH}_{3}\).
14. The compound of claim 11, wherein said \(\mathrm{Ar}_{2}\) substituted phenyl has 1 to 4 substituents each independently selected from the group consisting of: isopropyl, \(\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}\), \(\mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}\), and \(\mathrm{CH}_{3}\), provided that at least one substituent is located in the meta position.
15. The compound of any of claims 1-8, wherein \(\mathrm{Ar}_{2}\) is said optionally substituted naphthyl.
16. The compound of claim 15, wherein \(A r_{2}\) is an unsubstituted naphthyl.
17. The compound of claim 15, wherein \(A r_{2}\) is a substituted naphthyl.
18. The compound of claim 17, wherein said \(\mathrm{Ar}_{2}\) substituted naphthyl has 1 to 4 independently selected substituents.
19. The compound of claim 17, wherein said \(\mathrm{Ar}_{2}\) 5 substituted naphthyl has 1 to 4 independently selected substituents selected from the group consisting of: isopropyl, \(\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}\), and \(\mathrm{CH}_{3}\).
20. The compound of claim 17, wherein said \(A r_{2}\) substituted naphthyl has 1 substituent selected from the group consisting of: isopropy1, \(\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}\), and \(\mathrm{CH}_{3}\).
21. The compound of any of claims \(1-20\), wherein \(q\) is 2.
22. The compound of any of claims \(1-20\), wherein \(q\) is 0 .
23. An inorganic ion receptor-modulating compound having the formula:

wherein \(A r_{1}\) is either optionally substituted naphthyl, optionally substituted phenyl, or an optionally substituted heterocyclic aryl, wherein up to 5 substituents may be present and each substituent is independently selected from the group consisting of: alkyl, alkenyl, halogen, alkoxy, thioalkyl, methylene dioxy, haloalkyl, haloalkoxy, \(\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}\),
acetoxy, benzyl, benzyloxy, \(\alpha, \alpha\)-dimethylbenzyl, \(\mathrm{NO}_{2}, \mathrm{CHO}\), \(\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}), \mathrm{N}(a l \mathrm{kyl})_{2}\), acetyl, \(\mathrm{OCH}_{2} \mathrm{COOH}\), and ethylene dioxy;
\(\mathrm{Ar}_{2}\) is either optionally substituted naphthyl, optionally substituted phenyl, or an optionally substituted heterocyclic aryl, wherein up to 5 substituents may be present and each substituent is independently selected from the group consisting of: alkyl, alkenyl, halogen, alkoxy, thioalkyl, methylene dioxy, haloalkyl, haloalkoxy, \(\mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}, \mathrm{OCH}_{2} \mathrm{COOH}\), ethylene dioxy, and acetoxy;
\(R_{2}\) and \(R_{3}\) are each independently either hydrogen, alkyl, alkenyl or together cycloalkyl or cycloalkenyl;

R , is either hydrogen, alkyl or phenyl;
\(R_{\mathrm{g}}\) is either hydrogen, or alkyl;
R, is either hydrogen, alkyl or phenyl;
and pharmaceutically acceptable salts and complexes thereof;
wherein said compound is an ionomimetic modulating one or more inorganic ion receptor activities.
24. The compound of claim 23, wherein
\(A r_{1}\) is said optionally substituted heterocyclic aryl,
\(R_{2}\) and \(R_{3}\) are each independently hydrogen, alkyl, or together either cycloalkyl, provided that at least one of \(R_{2}\) and \(R_{3}\) is not hydrogen;
\(R\), is hydrogen;
\(R_{0}\) is hydrogen; and
\(R_{9}\) is either hydrogen or lower alkyl;
wherein said compound is a calcimimetic modulating one or more calcium receptor activities.
25. The compound of claim 24, wherein \(R_{2}\) is not hydrogen.
26. The compound of claim 25, wherein \(R_{2}\) and \(R_{3}\) are both methyl.
27. The compound of any of claims 23-25, wherein \(\mathrm{R}_{3}\) is hydrogen.
28. The compound of any of claims 23-27, wherein \(\mathrm{R}_{1}\) is alkyl.
29. The compound of claim 28, wherein said \(R_{1}\) alkyl has more than one carbon atom.
30. The compound of any of claims 23-27, wherein \(R_{1}\) is hydrogen.
31. The compound of any of claims 23-30, wherein \(A r_{2}\) is a substituted phenyl.
32. The compound of claim 31, wherein said \(\mathrm{Ar}_{2}\) substituted phenyl has one to four independently selected substituents, provided that at least one substituent is located in the meta position.
33. The compound of claim 31, wherein said \(A r_{2}\) substituted phenyl has 1 to 4 substituents each independently selected from the group consisting of: isopropyl, \(\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}\), \(\mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}\), and \(\mathrm{CH}_{3}\).
34. The compound of claim 31, wherein said \(A r_{2}\) substituted phenyl has 1 to 4 substituents each independently selected from the group consisting of: isopropyl, \(\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}\),
\(\mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}\), and \(\mathrm{CH}_{3}\), provided that at least one substituent is located in the meta position.
35. The compound of any of claims 23-30, wherein \(A r_{2}\) is an optionally substituted naphthyl.
36. The compound of claim 35, wherein \(A r_{2}\) is an unsubstituted naphthyl.
37. The compound of claim 35, wherein \(A r_{2}\) is a substituted naphthyl.
38. The compound of claim 37, wherein said \(\mathrm{Ar}_{2}\) substituted naphthyl has 1 to 4 independently selected substituents.
39. The compound of claim 38, wherein said \(\mathrm{Ar}_{2}\) substituted naphthyl has 1 to 4 independently selected substituents each selected from the group consisting of: isopropyl, \(\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}\), and \(\mathrm{CH}_{3}\).
40. The compound of claim 30, wherein said \(A x_{2}\) substituted naphthyl has 1 substituent selected from the group consisting of : isopropyl, \(\mathrm{CH}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{Br}, \mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}\). and \(\mathrm{CH}_{3}\).
41. A calcium receptor-active compound selected from the group consisting of : 25Z, 26A, 26B, 26C, 26D, 26E, 26F, 26G, 26H, 26I, 26J, 26K, 26L, 26M, 26N, 26O, 26P, 26Q. 26R, 26S, 26T, 26U, 26V, 26W, 26X, 26Y, 26Z, 27K, 27L, 27M, 27N, 27H, 28K, and pharmaceutically acceptable salts and complexes thereof.

\title{
42. The compound of claim 41, wherein said compound is selected from the group consisting of: 26A, 26D 26 F , and 26 G .
}
43. A pharmaceutical composition comprising the compound of any of claims \(1-42\) and a pharmaceutical acceptable carrier.
44. A method for treating a patient in need of such treatment comprising the step of administering to said patient a therapeutically effective amount of the compound of any of claims 1-42.
45. The method of claim 44, wherein said disease is characterized by either, or both, of: (1) abnormal calcium homeostasis, and (2) an abnormal amount of an extracellular or intracellular messenger whose production can be affected by calcium receptor activity; and said compound is a calcimimetic.
46. The method of claim 44, wherein said disease is selected from the group consisting of: primary and secondary hyperparathyroidism, Raget's disease, hypercalcemia malignancy, osteoporosis, hypertension, and renal osteodystrophy.
47. The method of claim 46, wherein said disease is selected from the group consisting of primary and secondary hyperparathyroidism.
48. A method of decreasing serum PTH in a patient comprising the step of administering to said patient an effe tive amount of the compound of any of claims 1-42.
49. The method of claim 48, wherein serum PTH level is reduced co a degree sufficient to cause a decrease in plasma \(\mathrm{Ca}^{2+}\)

284

\(6 \times\)
s

201

26

26K

262

Fig. 1
SUBSTITUTE SHEET (RULE 26)

\(26 Z\)

Fig. 2

SUBSTITUTE SHEET (RULE 26)

Fig. 4
SUBSTIITE SHEET (RULE 26)

\section*{INTERNATIONAL SEARCH REPORT}

INTERNATIONAL SEARCH REPORT
\begin{tabular}{|c|c|c|}
\hline & INTERNATIONAL SEARCH REPORT & Intert nal Application No PCT/US 97/07371 \\
\hline \multicolumn{3}{|l|}{C(Cunomumion) DOCUMENTS CONSIDERED TO BE RELEVANT} \\
\hline Category \({ }^{\circ}\) & & Relevant of dam No o. \\
\hline X & \begin{tabular}{l}
WO 9304373 A (NPS PHARMACEUTICALS) 4 \\
March 1993 \\
cited in the application \\
see claims 1,25-35,99-102, figures
\[
36 b-d, 36 f, 36 j-t
\]
\end{tabular} & \[
\begin{aligned}
& 1,2,4,5, \\
& 7-17,21 \\
& 22,43-49
\end{aligned}
\] \\
\hline X & \begin{tabular}{l}
JOURNAL OF MEDICINAL CHEMISTRY, \\
vol. 29, no. 1, January 1986, WASHINGTON US, \\
pages 112-125, XP002037080 \\
ANTON STÜTZ ET AL.: "Synthesis and Structure-Activity Relationships of Naftifine-Related Allylamine Antimyotics" see page 117, table II1, compound 34
\end{tabular} & \[
\begin{aligned}
& 23,27 \\
& 30,43
\end{aligned}
\] \\
\hline X & ```
EP O 092 787 A (SCHERING) 2 November 1983
see page 10, line 12 - page 11, line 23;
claim }
``` & \[
\begin{aligned}
& 1,4,5,7 \\
& 8,21
\end{aligned}
\] \\
\hline X & DE 3541181 A (BASF) 27 May 1987 see claim 1; examples 94-100,104 & \(1,4,7,8\)
\(10-14,21\) \\
\hline X & \begin{tabular}{l}
DATABASE CROSSFIRE \\
Beilstein Informationssysteme GmbH, \\
Frankfurt DE \\
XP002037081 \\
see Beilstein Registry Number 7348908 \\
\& J. CHEM. RES. MINIPRINT, \\
vol. 10, - 1981 \\
pages 3529-3549,
\end{tabular} & 1,21 \\
\hline X & \begin{tabular}{l}
database crossfire \\
Beilstein Informationssysteme GmbH, \\
Frankfurt DE \\
XP002037082 \\
see Beilstein Registry Number 2756413 \\
\& ARZMEIM. FORSCH., \\
vol. 17, 1967, \\
pages 1145-1149,
\end{tabular} & \[
\begin{aligned}
& 1,7 \\
& 1 \theta-14,21
\end{aligned}
\] \\
\hline X & \begin{tabular}{l}
DATABASE CROSSFIRE \\
Beilstein Informationssysteme GmbH, \\
Frankfurt DE \\
XP002037083 \\
see Beilstein Registry Number 67934ij9 \& J. CHEM. SOC. CHEM. COHNUN., 1995, pages 1421-1422,
\end{tabular} & \[
\begin{aligned}
& 1,4,5,7 \\
& 10,16,22
\end{aligned}
\] \\
\hline
\end{tabular}


Box I Observations where certain claims were found unsearehable (Continuation of item i of first sheet)

This International Seareh Report has not been emblished in respect of certain claims under Artich 17(2)(1) for the following reasons:
1. X Claimz Nos.:
because they relate to subject maucer not required to be cearehed by this Authority, namaly.
Remark: Although claim(s) 44-49 is(are) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. \(X\) Claima Nox: 1-40, 43-49
because they relate to parts of the Incermational Application that do not comply with the presaribed requirements to such an extent that no meaningful internazional search ean be cerried out, speeficeliy:
see annex
3.Cinims Not:
becmuse they are dependent chims and are not drafted in wocordmes with the second and third semences of Rule 6.4(a).

Bex II Ohervations where unity of invention is lacking (Continuation of item \(\mathbf{2}\) of first aheas)

This International Searching Authority found multiple inventions ia this international applizenion, us followz:
1. Aa all required additional seareh tees were timely paid by the applicant, this Intermational Sesarch Report covers all yenrehnble chama.
2.As all searchable elaims could be searched without effort justifying an additional fee, this Authoriny did not invite payment of any additional fee.
3.As onily zome of the required udditional search fees were tituely paid by the applicent, this Intemational Search Report covers only those claims for which feas ware paid, specifically chams Nos:
4. \(\square\) No required additional search fees were cimely paid by the applicant. Consequently, this International Search Report is restrieted to the invention first mentionsed in the claims; it is covered by chams Nos:

\section*{Recmark en Protest}

The additional search feas were accompanied by the applicuar's provestNo protent ecocmpmind the payment of sdditional search fees.

Form PCT/ISA/210 (continualion of first sheet (1)) (July 1992)

\section*{FURTHER INFORMATION CONTINUED FROM PCTISN210}

The definition of the substituents in the claims 1 to 40 and 43 to 49 is too general and encompasses too broad a range of possible combinations of different chemical groups, only partly supported by the examples given in the descriptive part of the application. Guided by the spirit and the descriptive part of the application the search has been based on the examples (cf Art. 6 PCI) and the claims 1 to 40 and 43 to 49 have been searched incompletely. Even this incomplete search revealed too many pertinent documents, which for economical reasons could not all be cited in the search report. All documents disclosing inorganic ion receptor-active compounds, which have been retrieved during the incomplete search are cited in the search report.


INTERNATIONAL SEARCH REPORT
\begin{tabular}{l|l|l|}
\hline taformation on pakent farily menbers & PCT/US 97/07371
\end{tabular}


\section*{(12). DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITÉ DE COOPERATION EN Matiere de brevets (PCT)}
(19) Organisation Mondiale de la Propriété
Intellectuelle
(43) Date de la publication internationale 17 mai 2001 (17.05.2001)


PCT

(10) Numéro de publication internationale WO 01/34562 A1
(51) Classification internationale des brevets \({ }^{7}\) : C07C 311/18, 311/29, 211/30, A61K 31/135, \(31 / 18\)
(21) Numéro de la demande internationale:

PCT/FR00/03104
(22) Date de dépoft international:

8 novembre 2000 ( 08.11 .2000 )
(25) Langue de dépôt:
français
français
(30) Données relatives à la priorité: 99/14050

9 novembre 1999 (09.11.1999)
FR
(71) Déposant (pour tous les Etats désignés sauf US): CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS) [FR/FR]; 3, rue Michel-Ange, F-75794 Paris Cedex 16 (FR).
(72) Inventeurs; et
(75) luventeurs/Déposants (pour US seulement): RUAT, Martial [FR/FR]; 2, rue du Clos St Cyr, F-92340 Bourg-la-Reine (FR). POTIER, Pierre, Jean-Paul,

Serge, Jacques [FR/FR]; 14, avenue de Breteuil, F-75007 Paris (FR). DODD, Robert [FR/FR]; 17, rue du Faubourg Montmartre, F-75009 Paris (FR). DAUBAN, Philippe, Marcel [FR/FR]; 71, nue Edouard Branly, F-91700 Sainte-Geneviève des Bois (FR). FAURE, Hélìne, Véronique [FR/FR]; 84, allee des Fours Blancs, F-91190 Gif-sur-Yvette (FR).
(74) Mandataires: MARTIN, Jean-Jacques etc.; Cabinet Regimbeau, 20, rue de Chazelles, F-75847 Paris Cedex 17 (FR).
(81) Etats désignés (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(84) États désignés (régional): brevet ARIPO (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
[Suite sur la page suivante]
(54) Titte: ARALKYL-1,2-DIAMINES HAVING CALCIMIMETIC ACTIVITY AND PREPARATION MODE
(54) Titre: ARALKYLE-1,2-DLAMINES POSSEDANT UNE ACTIVITE CALCIMIMETIQUE ET LEUR MODE DE PREPARATION

(57) Abstract: The invention concerns compounds of general formula (I) wherein: \(\mathbf{X}\) represents a \(\mathrm{SO}_{2}\) or \(\mathrm{CH}_{2}\) group; R1 represents a bydrogen or halogen atom or an alkoxy, aryl aralkyl group or an alkyl group substituted or not with one or several halogen atoms, \(n\) is equal to 0 , 1 or 2 , and R 2 represents a hydrogen or halogen atom or an alkyl or alkoxy group, and their salt with a pharmaceutically acceptable acid. The invention also concerns the method for preparing said compounds, pharmaceutical compositions containing them and their use as modulator of
CaSR activity and as medicine particularly designed for treating diseases or physiological disorders involving modulation of CaSR activity.
(57) Abrégé: La présente invention concerne donc les composés de formule générale (1) dans laquelle: le groupe X représente un groupe \(\mathrm{SO}_{2}\) ou \(\mathrm{CH}_{2}\); le groupe R 1 représente un atome d'hydrogène ou d'halogène ou un groupe alkoxy, aryle, aralkyle ou un groupe alkyle substitué ou non par un ou plusieurs atomes d'halogènes; \(n\) est égale à 0,1 ou 2, et le groupe \(\mathbf{R} 2\) représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alkoxy, et leur sel avec un acide pharmaceutiquement acceptable. Elle concerne également leur préparation. les compositions pharmaceutiques les comprenant et leur utilisation comme modulateur de l'activité CaSR et comme médicament destiné de préférence au traitement des maladies ou des désordres physiologiques faisant intervenir la modulation de l'activite des CaSR.

\section*{}

\section*{Publiée:}
- Avec rapport de recherche internationale.

En ce qui concerne les codes à deux lettres et autres abréviations, se référer anx "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

\section*{TITRE: ARALKYLE-1,2-DIAMINES POSSEDANT UNE} ACTIVITE CALCIMIMETIQUE ET LEUR MODE DE PREPARATION

La présente invention décrit une nouvelle classe de composés, les aralkylleur utilisation comme modulateur de l'activité des récepteurs aux ions \(\left(\mathrm{Ca}^{2+}\right)_{e}\) et \(\left(\mathrm{Mg}^{\mathbf{2 +}}\right)_{e}\) ou CaSR pour Calcium Sensing Receptor et comme médicament destiné de préférence au traitement des maladies ou des désordres physiologiques faisant intervenir la modulation de l'activité des CaSR.
10 Ces composés présentent donc une activité calcimimétique, c'est à dire capable de produire ou d'induire des réponses biologiques observées par les variations de la concentration des ions calcium extracellulaires \(\left(\mathrm{Ca}^{2+}\right)_{e}\) et des ions magnésium extracellulaires \(\left(\mathrm{Mg}^{2+}\right)_{e}\).

Les ions ( \(\left.\mathrm{Ca}^{2+}\right)_{e}\) et \(\left(\mathrm{Mg}^{2+}\right)_{\epsilon}\) jouent un rôle majeur dans l'organisme car ils régulent l'homéostasie caicique dont dépendent les fonctions vitales de l'organisme. Ainsi, les hypercalcémies, c'est à dire des états ou les ions \(\left(\mathrm{Ca}^{2+}\right)_{e}\) sont au-dessus du seuil moyen, ont une incidence majeure sur de nombreuses fonctions telles que les fonctions cardiaques, rénales ou intestinales. Elles affectent profondément le système nerveux central (voir revue Chattopadhyay et al, Endocr. Review, 1998).

Les CaSR sont des protéines sensibles aux ions \(\left(\mathrm{Ca}^{2+}\right)_{e}\) et \(\left(\mathrm{Mg}^{2+}\right)_{e}\) et sont présentes dans les glandes parathyroïdiennes, thyroïdiennes, le rein, l'intestin, les poumons, les cellules osseuses, le cerveau, la moelle épinière, l'hypophyse, l'estomac, les kératinocytes (Brown et al, Nature, 1993 ; Ruat et al, Proc. Natl. Acad. Sci., USA, 1995 ; voir revue Brown et al, Ann. Rev. Med., 1998). Ces protéines sont codées par un seul gène isolé dans différentes espèces animales. Elles appartiennent à la famille des récepteurs couplés aux protéines \(G\) à sept domaines transmembranaires, et présentent des homologies de structure avec les récepteurs métabotropiques du glutamate, des récepteurs \(\mathrm{GABA}_{\mathrm{B}}\), des récepteurs hypothétiques aux phéromones et du goût. Des mutations activatrices ou inhibitrices du gène chez l'homme sont responsables de maladies génétiques extrêmement graves qui provoquent des hypocalcémies ou des hypercalcémies (Pollack et al, Cell, 1993 ; Pollack et al, Nature Genetic, 1994 ; voir revue Brown et al, Ann. Rev.

Med., 1998). Les fonctions liées à l'expression de ces protéines dans les tissus ne sont pas encore toutes connues et font l'objet d'une très grande activité de recherche, particulièrement en ce qui concerne les CaSR présents dans les glandes parathyroïdiennes, thyroïdiennes, le rein, l'intestin, la moelle épinière, le cerveau et Commun., 1997).

Il a été montré que les ions \(\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}\), mais aussi \(\mathrm{Ba}^{2+}\) dans des gammes de concentrations millimolaires stimulent les CaSR. L'activation des CaSR pourrait être induite dans le cerveau par les peptides \(\beta\)-amyloides, qui sont impliqués dans des maladies neurodégénératives telles que la maladie d'Alzheimer (Ye et al, J.
25 Neurosci. Res., 1997).
Le composé NPS R-568 (1), ligand allostérique du CaSR, appartient à la première et, jusqu'à présent, seule famille de molécules organiques de petite taille \((\mathrm{M}<600)\), interagissant avec ce récepteur. Cette arylalkylamine a été développée à partir de la structure de la Fendiline (2), un puissant activateur du CaSR de la glande parathyroïdienne.



Les composés PHD selon la présente invention, ont une structure différente de ceux de cette famille par la présence d'un groupement


Ce groupement représente un site d'interaction de cette molécule avec les récepteurs CaSR

L'hyperparathyroïdie secondaire est observée lors d'insuffisance rénale chronique et se caractérise par une hyperplasie des glandes parathyroïdiennes et une entre 20-50 \% la prolifération cellulaire observée dans la glande parathyroïdienne chez un modèle de rat reproduisant l'insuffisance rénale chronique (Wada et al, J. Clin. Invest., 1997). Ces études démontrent qu'un composé calcimimétique, actif vis-à-vis du récepteur au calcium présent sur la glande parathyroïde, peut-être considéré comme un outil thérapeutique intéressant pour traiter certaines formes augmentation de la PTH circulante. L'insuffisance rénale est aussi accompagnée d'ostéodystrophie rénale qui se caractérise par des désordres osseux avec un fort ou un faible renouvellement de la masse osseuse (ostéitis fibrosa, osteomalacia). L'agent NPS-R-568 réduit ou élimine l'ostétis fibrosa chez le rat (Wada et al, Kidney International, 1998) et réduit les concentrations de PTH chez des patients 5 (hommes) souffrant d'insuffisance rénale chronique (Antansen et al, Kidney International, 1998). Ce composé a été utilisé par voie orale avec succès pour abaisser les concentrations de PTH et des ions \(\mathrm{Ca}^{2+}\) libres sériques chez la femme ménopausée souffrant d'hyperparathyroïdie primaire (Silverberg et al, New Engl. J. Med., 1997). Dans une autre étude, le composé NPS-R-568 a permis de réduire

\section*{d'hyperparathyroïdies primaires et secondaires.}

Durant des essais cliniques, (Phase I - II) la société NPS Pharmaceutical a observé une bio-disponibilité faible du composé NPS-R-568 ainsi que des effets cliniques variables suivant les individus qui pourraient provenir de polymorphisme
du gène codant pour le CaSR chez l'homme (Nemeth et al, Trends Endoc. Metab, 1999). Dans cette invention, les molécules synthétisées présentent des avantages par rapport au composé NPS-R-568 car leur structure fait apparaître plusieurs sites d'interaction avec le CaSR. composé de structure voisine du NPS R-568, s'est avéré plus sélectif vis à vis des récepteurs de la parathyroïde comparativement à ceux de la glande thyroïde. Cette sélectivité peut s'expliquer par des différences liées aux tissus ce qui suggère que des molécules calcimimétiques spécifiques d'un tissu peuvent être synthétisées et avoir des importances cliniques considérables. Du fait de la présence de nouveaux groupements capables d'interagir avec le CaSR ou avec son système de transduction, les molécules de la présente invention se révélent intéressantes en clinique.

L'ostéoporose est une maladie multifactorielle qui dépend notamment de l'âge et du sexe. Si les femmes ménopausées sont très fortement touchées, l'ostéoporose s'avère de plus en plus un problème chez l'homme âgé, et il n'existe pas pour l'instant de traitements vraiment satisfaisants. Son coût social pourrait s'alourdir encore dans les prochaines années, particulièrement dans notre société européenne ou la durée de vie s'allonge. L'ostéoporose est actuellement traitée par les cestrogènes, la calcitonine ou les biphosphonates qui préviennent la résorption osseuse sans stimuler une nouvelle croissance osseuse. Des données plus récentes démontrent que des augmentations intermittentes de la PTH ou de ses dérivés, sont efficaces dans le traitement de l'ostéoporose et permettent de remodeler l'os en stimulant la formation osseuse (Whitfield et al, 1999). Cette nouvelle voie thérapeutique du traitement de l'ostéoporose apparaît très intéressante bien que des problèmes majeurs soient liés à l'utilisation de l'hormone PTH tels que la voie d'injection, mais aussi l'apparition de tumeurs observées récemment durant des essais cliniques chez l'homme. La sécrétion intermittente de PTH endogène peut être obtenue par le blocage du récepteur au calcium. Le blocage de la sécrétion de PTH par les agonistes du CaSR peut être suivie par une augmentation rapide de la PTH (effet rebond), qui est alors bénéfique dans le traitement de l'ostéoporose.

Ainsi, les molécules décrites dans l'invention s'avèrent utiles pour moduler l'activité du CaSR dans la glande parathyroïde, la thyroïde, les cellules osseuses,
l'estomac, le poumon, le rein, l'hypophyse, le cerveau. Elles s'avèrent aussi utilisables pour modifier l'activité de CaSR présents dans l'hypothalamus, les aires olfactives, l'hippocampe, pour traiter des maladies démyélinisantes associées à l'expression des CaSR dans les oligodendrocytes.

La présente invention décrit donc de nouvelles molécules destinées à traiter les désordres biologiques liés à des perturbations de l'activité des CaSR telles que les hyperparathyroïdies primaires et secondaires, l'ostéoporose, les maladies cardiovasculaires, gastro-intestinales, endocrines, neurodégénératives, ou encore certains cancers où les ions \(\left(\mathrm{Ca}^{2+}\right)_{e}\) sont anormalement élevés. L'absence totale de molécules calcimimétiques en clinique, et les problèmes rencontrés en phase I-II pour les calcimimétiques de première génération, soulignent l'intérêt des molécules décrites dans l'invention, celles-ci ayant de plus un site d'interaction supplémentaire avec les récepteurs CaSR.

La présente invention concerne donc les composés de formule générale 1 :


I
dans laquelle :
le groupe X représente un groupe \(\mathrm{SO}_{2}\) ou \(\mathrm{CH}_{2}\),
le groupe RI représente un atome d'hydrogène ou d'halogène ou un groupe alkoxy, aryle, aralkyle ou un groupe alkyle substitué ou non par un ou plusieurs atomes d'halogènes,
n est égale à 0,1 ou 2 ,
et le groupe R 2 représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alkoxy,
et leur sel avec un acide pharmaceutiquement acceptable.
De préférence, les composés selon l'invention sont représentés par la formule générale (II) :


II
dans laquelle :
le groupe X représente un groupe \(\mathrm{SO}_{2}\) ou \(\mathrm{CH}_{2}\), alkoxy, aryle, aralkyle ou un groupe alkyle substitué ou non par un ou plusieurs atomes d'halogènes,
et \(n\) est égale à 0,1 ou 2 .
De façon encore plus préférentiel, le groupe R1 est un noyau benzo ou 10 alkylbenzo fusionné

Des exemples de composés préférés selon l'invention sont ceux ayant pour formule (III) :


III
15 ou (IV) :


IV

> ou (V) :

v
ou (VI) :


VI
Les acides pharmaceutiquement acceptables sont des acides non toxiques, y compris les acides organiques et inorganiques. De tels acides incluent l'acide acétique, benzènesulfonique, benzoïque, citrique, éthanesulfonique, fumarique, gluconique, glutamique, bromhydrique, chlorhydrique, lactique, maléique, malique, mandélique, méthanesulfonique, mucique, nitrique, pamoique, pantothénique, phosphorique, succinique, sulfurique, tartarique et paratoluènesulfonique. L'acide chlorhydrique est particulièrement préféré.

Par le terme de groupe alkyle, on entend les groupes alkyles de 1 à 4 atomes de carbones, linéaires ou ramifiés, substitués ou non substitués. Un exemple préféré de groupes alkyles est le groupes \(\mathrm{CH}_{3}\). Un exemple préféré de groupe alkyle substitué par des atomes d 'halogène est le groupe \(\mathrm{CF}_{3}\).

Par le terme de groupe alkoxy, on entend les groupes alkoxys de 1 à 4 atomes de carbones, linéaires ou ramifiés, substitués ou non substitués. Un exemple préférés de groupes alcényles est \(\mathrm{OCH}_{3}\).

Par le terme de groupes aryles on entend des cycles aromatiques ayant de 4 à 8 atomes de carbones, substitués ou non substitués, ayant un seul ou plusieurs noyau aromatiques. Les cycles aromatiques peuvent être accolés ou fusionnés entre
eux ou fusionné au cycle aromatique présent dans la molécule de départ. Un exemple de groupe aryle préféré est un groupe benzo fusionné.

Par le terme de groupes aralkyles on entend des groupes aryles, définis comme ci-dessus, liés au groupe phényle par l'intermédiaire d'un groupe alkyle
b) un groupement arylsulfonyle est introduit sélectivement sur une de ses fonctions amines du composé obtenu.
- Dans le cas où X représente le groupe CH 2 le procédé de préparation comporte les étapes suivantes :
25 a) un groupement arylbenzyle est introduit sélectivement sur une des fonctions amines du composé de formule (VII)
b) le composé obtenu subit une réaction de déprotection.

Le composé de formule (VII) est obtenu par ouverture nucléophile par la 1-(1-naphtyl)éthylamine de la 2-benzyl-1-(p-nitrobenzènesulfonyl)aziridine de formule génėrale (VIII) :


5
VIII
dans laquelle :
le groupe \(\mathbf{R} 2\) représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alkoxy.

Le composé de formule (VIII) est obtenu par réaction entre une oléfine de 10 formule générale (IX) :


IX
dans laquelle :
le groupe R 2 représente un atome d'hydrogène ou d'halogène ou un groupe 15 alkyle ou alkoxy
et \(\mathrm{Phl}=\mathrm{NSO}_{2} \mathrm{Ph}-p-\mathrm{NO}_{2}\) en présence de \(\mathrm{Cu}^{1 \text { ou II }}\) et de \(\mathrm{CH}_{3} \mathrm{CN}\).
La présente invention concerne également les compositions pharmaceutiques comprenant à titre de principe actif un des composés définis cidessus et un excipient approprié. Ces compositions peuvent être formulées pour 20 I'administration aux mammifères, y compris l'homme. La posologie varie selon le traitement et selon l'affection en cause. Ces compositions sont réalisées de façon à pouvoir être administrées par la voie digestive ou parentérale.

Dans les compositions pharmaceutiques de la présente invention pour l'administration orale, sublinguale, sous-cutanée, intramusculaire, intraveineuse, transdermique, locale ou rectale, l'ingrédient actif peut être administré sous formes unitaires d'administration, en mélange avec des supports pharmaceutiques classiques, aux animaux ou aux êtres humains. Les formes unitaires d'administration appropriés comprennent les formes par voie orale telles que les comprimés, les gélules, les poudres, les granules et les solutions ou suspensions orales, les formes d'administration sublinguale et buccale, les formes d'administration sous-cutanée, intramusculaire, intraveineuse, intranasale ou intraoculaire et les formes d'administration rectale.

Lorsque l'on prépare une composition solide sous forme de comprimés, on mélange l'ingrédient actif principal avec un véhicule pharmaceutique tel que la gélatine, l'amidon, le lactose, le stéarate de magnésium, le talc, la gomme arabique ou analogues. On peut enrober les comprimés de saccharose ou d'autres matières appropriées ou encore on peut les traiter de telle sorte qu'ils aient une activité prolongée ou retardée et qu'ils libèrent d'une façon continue une quantité prédéterminée de principe actif.

On obtient une préparation en gélules en mélangeant l'ingrédient actif avec un diluant et en versant le mélange obtenu dans des gélules molles ou dures. actif conjointement avec un édulcorant, un antiseptique, ainsi qu'un agent donnant du goût et un colorant approprié.

Les poudres ou les granules dispersibles dans l'eau peuvent contenir l'ingrédient actif en mélange avec des agents de dispersion ou des agents mouillants, ou des agents de mise en suspension, de même qu'avec des correcteurs du goût ou des édulcorants.

Pour une administration rectale, on recourt à des suppositoires qui sont préparés avec des liants fondant à la température rectale, par exemple du beurre de cacao ou des polyéthylèneglycols.

Pour une administration parentérale, intranasale ou intraoculaire, on utilise des suspensions aqueuses, des solutions salines isotoniques ou des solutions stériles et injectables qui contiennent des agents de dispersion et/ou des agents mouillants pharmacologiquement compatibles.

Le principe actif peut être formulé également sous forme de microcapsules, éventuellement avec un ou plusieurs supports additifs.

La présente invention concerne également l'utilisation des ces composés et des compositions pharmaceutiques les comprenant comme modulateur de l'activité

\section*{5 du CaSR}

Le CaSR peut se trouver dans la glande parathyroïde, la thyroïde, les cellules osseuses, l'estomac, le poumon, le rein, l'hypophyse, le cerveau, l'hypothalamus, les aires olfactives ou l'hippocampe.

Les composés selon la présente invention sont de préférence plus sélectifs dans leur utilisation vis à vis des récepteurs de la parathyroïde comparativement à ceux de la glande thyroïde.

Les composés selon l'invention et les compositions pharmaceutiques les comprenant peuvent être utilisés comme médicament, en particulier pour le traitement des maladies ou des désordres physiologiques liés à des perturbations de
15 l'activité des CaSR. De façon encore plus particulière, ces maladies ou désordres physiologiques sont du type hyperparathyroïdies primaires ou secondaires, ostéoporose, maladies cardio-vasculaires, gastro-intestinales, endocrines, neurodégénératives ou certains cancers où les ions \(\left(\mathrm{Ca}^{2+}\right)_{e}\) sont anormalement élevés. L'hyperparathyroïdie secondaire est plus particulièrement observée lors
20 d'insuffisance rénale chronique.
La préparation des composés selon l'invention, décrite dans le schéma cidessous, implique l'ouverture nucléophile par la 1-(1-naphtyl)éthylamine (5) de la 2-benzyl-1-(p-nitrobenzènesulfonyl)aziridine (4), synthétisée en une étape à partir de l'oléfine 3. Selon l'ordre de la séquence de réactions de déprotection et protection effectuée sur le dérivé 6 , il est alors possible d'introduire sélectivement un groupement arylsulfonyle ou benzyle sur une des fonctions amines. Un des intérêts de cette chimie originale est de pouvoir incorporer facilement un grand nombre de substituants variés R1 et R2.


Les exemples de synthèse suivants, donnés à titre non limitatif, illustrent
5 l'invention.

\section*{Synthèse de la 2-Benzyl-1-(p-nitrobenzènesulfonyl)aziridine 4.}

A une solution de trifluorométhanesulfonate de cuivre (I) ( \(500 \mathrm{mg} ; 0,9\) mmole) dans 20 ml d'acétonitrile distillé, en présence de tamis moléculaire activé, sont successivement ajoutés, à \(0^{\circ} \mathrm{C}\) sous argon, l'allylbenzène ( \(1,60 \mathrm{ml} ; 12\) mmoles) et, par portions de 1 g sur une période de 36 heures, \(\mathrm{PhI}=\mathrm{NSO}_{2} \mathrm{Ph}-p-\mathrm{NO}_{2}(4,85 \mathrm{~g}\); 12 mmoles ). Le mélange hétérogène, de couleur marron puis verte, est agité à \(0^{\circ} \mathrm{C}\) pendant 72 heures avant d'être filtré sur silice (Eluant : acétate d'ethyle) pour enlever le tamis moléculaire et les sels de cuivre. Après évaporation des solvants, le résidu huileux jaune est purifié par chromatographie sur silice (Eluant : heptane /
15 acétate d'éthyle : 7/2) pour donner \(1,76 \mathrm{~g}(5,53\) mmoles; \(46 \%)\) d'un solide légèrement coloré.
Point de fusion : \(107^{\circ} \mathrm{C}\) (litt : \(107-108^{\circ} \mathrm{C}\) ).
Synthèse du \(N^{2}\)-[1-(1-naphtyl)éthyll]- \(N^{2}\)-(4-nitrobenzènesulfonyl)-3-phényl-propane-1,2-diamine 6.

A une solution de l'aziridine 4 ( \(956 \mathrm{mg} ; 3,0\) mmoles) dans 7 ml de THF sont successivement additionnées la triéthylamine ( \(0,020 \mathrm{ml} ; 0,15 \mathrm{mmole}\) ) et la 1 -(1-naphtyl)éthylamine \(5(0,970 \mathrm{ml} ; 6,00 \mathrm{mmoles})\). Après 2 jours d'agitation à température ambiante, le milieu est concentré avant d'être purifié sur colonne de
silice (Eluant : heptane / acétate d'éthyle : 2 / 1). \(1,38 \mathrm{~g}\) ( 2,82 mmoles ; 94\%) du composé 6 est isolé sous la forme d'une mousse jaune.
Point de fusion : \(125-126^{\circ} \mathrm{C}\)
Analyse élémentaire : \(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}\). \(1 / 3 \mathrm{H}_{2} \mathrm{O}\) : Calculé : C, 65,\(44 ; \mathrm{H}, 5,63 ; \mathrm{N}\), 58,\(48 ; \mathrm{S}, 6,47\). Trouvé : C, 65,\(27 ; \mathrm{H}, 5,28 ; \mathrm{N}, 8,36 ; \mathrm{S}, 6,86\).

Synthèse du \(N^{2}\)-(3,4-diméthoxybenzènesulfonyl)- \(N^{1}\)-[1-(1-naphty)éthyll]-3-phénylpropane-1,2-diamine PHD 321.

Le sulfonamide 6 ( \(435 \mathrm{mg} ; 0,888\) mmole) est chauffé, à \(50^{\circ} \mathrm{C}\) sous argon, dans une solution de thiophénol ( \(0,270 \mathrm{ml} ; 2,63 \mathrm{mmoles}\) ) et de carbonate de potassium ( \(490 \mathrm{mg} ; 3,54\) mmoles) dans 10 ml d'un mélange 49/1 d'acétonitrile/DMSO. Après 6 heures de réaction, le milieu est concentré avant d'être purifié sur colonne de silice (Eluant : acétate d'éthyle / méthanol : 7/3) pour donner 250 mg ( 0,821 mmole ; \(92 \%\) ) de produit de déprotection.
94 mg ( \(0,308 \mathrm{mmole}\) ) de ce composé en solution dans 3 ml de dichlorométhane sont
15 mis en réaction en présence de 2 équivalents de triéthylamine ( \(0,087 \mathrm{ml} ; 0,619\) mmole) et de 1,1 équivalent de chlorure de 3,4-diméthoxybenzènesulfonyle ( 80 mg ; 0,34 mmole). Après 24 heures d'agitation à température ambiante, le mélange est purifié sur colonne de silice (Eluant : heptane / acétate d'éthyle: \(40 / 60\) ) pour donner 140 mg ( 0,277 mmole ; \(90 \%\) ) de PHD 321 sous la forme d'une huile incolore. Celle-ci, traitée par une solution d'acide chlorhydrique gazeux dans le dichlorométhane, est transformée en solide blanc correspondant au chlorhydrate du produit attendu.
Point de fusion : \(186^{\circ} \mathrm{C}\)
Spectrométrie de masse (IC) : m/z : \(505[\mathrm{M}+\mathrm{H}]^{+}\)
25 Synthèse du \(N^{2}\)-(2-Chlorobenzyl)- \(N^{l}\)-[1-(1-naphtyl)éthyl]-3-phénylpropane-1.2diamine PHD 307.

Le sulfonamide 6 ( \(88 \mathrm{mg} ; 0,180 \mathrm{mmole}\) ) en solution dans \(1,5 \mathrm{ml}\) de DMF est traité à \(0^{\circ} \mathrm{C}\) sous argon par 2 équivalents de \(\mathrm{K}_{2} \mathrm{CO}_{3}\) ( \(50 \mathrm{mg} ; 0,361\) mmole) et 1,1 équivalent de bromure de 2-chlorobenzyle ( \(0,026 \mathrm{ml} ; 0,200 \mathrm{mmole}\) ). Après 6
30 heures de réaction de \(0^{\circ} \mathrm{C}\) à température ambiante, le milieu est filtré sur colonne de silice (Eluant : heptane / acétate d'éthyle: \(6 / \mathrm{l}\) ) pour conduire à \(81 \mathrm{mg}(0,132\) mmole ; 73\%) d'un solide blanc. Ce dernier est chauffé à \(50^{\circ} \mathrm{C}\) sous argon dans un mélange de thiophénol ( 3 eq.) et de \(\mathrm{K}_{2} \mathrm{CO}_{3}\) ( 4 eq.) en solution dans \(1,5 \mathrm{ml}\)
d'acétonitrile/DMSO : 49/1. Après 20 heures de réaction, la chromatographie sur colonne de silice (Eluant : heptane / acétate d'éthyle : 1/3) permet d'isoler 45 mg ( 0,105 mmole ; \(80 \%\) ) d'une huile incolore. Par traitement dans une solution \(\mathrm{d}^{\prime} \mathrm{HCl}_{\mathrm{gaz}}\) dans \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\), le chlorhydrate de PHD 307 est isolé sous la forme d'une poudre

Point de fusion : \(129^{\circ} \mathrm{C}\)
Spectrométrie de masse (FAB) : m/z : \(429[\mathrm{M}+\mathrm{H}]^{+}\)
Activité sur des cellules transfectées exprimant le récepteur sensible aux ions \(\left(\mathrm{Ca}^{2+}\right) \mathrm{e}\)

L'activité calcimimétique des composés a été estimée en mesurant l'accumulation d'inositols phosphates tritiés induite par \(10 \mu \mathrm{M}\) de chacun des composés en présence de 2 mM de \(\mathrm{Ca}^{2+}\) dans les cellules CHO (CaSR) (Ferry et al, Biochem Biophys Res Commun, 1997).

Cette activation a été comparée à celle induite par le composé NPS-R-568, un calcimimétique de référence et utilisé à une concentration de \(10 \mu \mathrm{M}\) (Tableau 1) (Ferry et al, Biochem Biophys Res Commun, 1997 ; Nemeth et al, Proc Natl Acad Sci USA, 1997).

Les composés PHD 307, 320, 321 et 323 , utilisés à une concentration de 10 \(\mu \mathrm{M}\) présentent une activité allant de 90 à \(100 \%\) de celle obtenue par 10 mM de \(\mathrm{Ca}^{2+}\), alors que le NPS-R-568 présente une activité de \(100 \%\) à la même concentration. Dans cette série chimique certains composés tels PHD 90, 128, 129, 125, sont dépourvus d'activité calcimimétique à cette concentration (Tableau 1).

La comparaison de la structure des composés PHD 181 et PHD 182 d'une part et PHD 206 et PHD 217 d'autre part, indique que le groupement naphtyle conduit à une activité supérieure par rapport au groupement 3-méthoxyphényle.

Dans le tableau 1, l'activité calcimimétique des composés PHD est comparée à celle d'un composé de référence, le NPS-R-568 utilisé à la même concentration et dans les mêmes conditions expérimentales. Cette activité est exprimée en pourcentage de l'activité de 10 mM de \(\mathrm{Ca}^{2+}\). Les moyennes \(\pm\) erreurs standards de 2 à 5 manipulations indépendantes sont indiquées. Les expériences ont été réalisées en présence de 2 mM de \(\mathrm{Ca}^{2+}\).

Tableau 1 : accumulation d'inositols phosphates tritiés dans les cellules \(\mathrm{CHO}(\mathrm{CaSR})\) induite par les composés PHD et le composé calcimimétique NPS R-568
\begin{tabular}{|c|c|c|c|}
\hline Composé
\[
(10 \mu \mathrm{M})
\] & \begin{tabular}{l}
Formule brute \\
Masse molaire (point de fusion)
\end{tabular} & Structure & Accumulation
\(\mathrm{d}^{\prime}\left({ }^{3} \mathrm{H}\right)\)-IP
\% de la
réponse
10 mM Ca
\(\pm\) E.S. \\
\hline  & \[
340,29
\] &  & \[
106=15
\] \\
\hline PHD 87 & \[
\begin{gathered}
\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} . \mathrm{HCl} \\
476,00
\end{gathered}
\] & 

 & \(8 \pm 4\) \\
\hline PHD 90 & \[
\begin{gathered}
\mathrm{C}_{17} \mathrm{H}_{\mathbf{2 2}} \mathrm{N}_{2} \cdot \mathbf{2 H C l} \\
\mathbf{3 2 7 , 3 0} \\
\hline
\end{gathered}
\] &  & \(3 \pm 2\) \\
\hline PHD 121 & \[
\begin{gathered}
\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} . \mathrm{HCl} \\
445,01
\end{gathered}
\] &  & \(23 \pm 15\) \\
\hline PHD 124 & \[
\begin{gathered}
\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S} . \mathrm{HCl} \\
526,05
\end{gathered}
\] &  & \(27 \pm 11\) \\
\hline
\end{tabular}

\section*{BEST AVAILABLE COPY}

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Composé } \\
(10 \mu \mathrm{M})
\end{gathered}
\] & Formule brute Masse molaire (point de fusion) & Structure & \[
\begin{array}{|c}
\text { Accumulation } \\
\mathrm{d}^{\prime}\left({ }^{3} \mathrm{H}\right) \text {-IP } \\
\% \text { de la } \\
\text { réponse } \\
10 \mathrm{mM} \mathrm{Ca} \\
\pm \mathrm{ES} \\
\hline
\end{array}
\] \\
\hline PHD 178 B & \[
\begin{gathered}
\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} . \mathrm{HCl} \\
460,05
\end{gathered}
\] &  & \(22 \pm 10\) \\
\hline \[
\text { PHD } 181
\] &  &  & \[
68 \pm 9
\] \\
\hline PHD 182 & \(\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} . \mathrm{HCl}\)
475,05 &  & \(36 \pm 12\) \\
\hline \[
\text { PHD } 202
\] &  &  & \[
78 \pm 10
\] \\
\hline PHD 203 & \[
\begin{gathered}
\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S} . \\
515,50 \\
\hline
\end{gathered}
\] &  & \(38 \pm 20\) \\
\hline PHD 204 & \[
\begin{gathered}
\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SSi} . \\
\mathrm{HCl} \\
505,19
\end{gathered}
\] &  & \(34 \pm 1\) \\
\hline
\end{tabular}

\section*{BEST AVAILABLE COPY}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Composé } \\
(10 \mu \mathrm{M})
\end{gathered}
\] & \begin{tabular}{l}
Formule brute \\
Masse molaire (point de fusion)
\end{tabular} & Structure & \[
\begin{gathered}
\text { Accumulation } \\
\mathrm{d}^{\prime}(3 \mathrm{H})-\mathrm{IP} \\
\% \text { de la } \\
\text { réponse } \\
10 \mathrm{mM} \mathrm{Ca} \\
\pm \mathrm{ES} \\
\hline
\end{gathered}
\] \\
\hline \[
\text { PHD } 206
\] &  &  & \[
80+12
\] \\
\hline PHD 217 & \[
\begin{gathered}
\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} . \mathrm{HCl} \\
491,05
\end{gathered}
\] &  & \(34 \pm 5\) \\
\hline PHD 218 & \[
\begin{gathered}
\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} . \mathrm{HCl} \\
525,11
\end{gathered}
\] &  & \(39 \pm 1\) \\
\hline \[
\text { PhD } 230
\] &  &  & \[
65 \pm 2
\] \\
\hline PHD 235 & \[
\begin{gathered}
\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{HCl} \\
555,14
\end{gathered}
\] &  & \(37 \pm 5\) \\
\hline \[
\text { PHD } 242
\] &  &  & \[
60 \pm 4
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Composé } \\
(10 \mu \mathrm{M})
\end{gathered}
\] & \begin{tabular}{l}
Formule brute \\
Masse molaire (point de fusion)
\end{tabular} & Structure & Accumulation
\(\mathrm{d}^{\prime}\left({ }^{3} \mathrm{H}\right)\)-IP
\(\%\) de la
réponse
10 mM Ca
\(\pm \mathrm{ES}\) \\
\hline PHD 267 & \[
\begin{gathered}
\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{HCl} \\
541,11
\end{gathered}
\] &  & \(45 \pm 1\) \\
\hline PHD 271 & \[
\begin{gathered}
\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} \cdot \mathrm{HCl} \\
\mathbf{5 5 5 , 0 9}
\end{gathered}
\] &  & \(47 \pm 2\) \\
\hline PHD 280 & \[
\begin{gathered}
\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} . \mathrm{HCl} \\
434,99 \\
\hline
\end{gathered}
\] &  & \(30 \pm 2\) \\
\hline \[
\text { PifB } 285
\] &  &  & \[
80+8
\] \\
\hline PHD 288 & \[
\begin{gathered}
\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S} . \mathrm{HCl} \\
420,99
\end{gathered}
\] &  & \(45 \pm 3\) \\
\hline \[
\text { RHD } 301
\] &  &  & \[
79 \pm 10
\] \\
\hline PHD 304 & \begin{tabular}{l}
\[
\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} . \mathrm{HC}
\] \\
I
549,06
\end{tabular} &  & \(29 \pm 2\) \\
\hline
\end{tabular}

\section*{BEST AVAILABLE COPY}
\begin{tabular}{|c|c|c|c|}
\hline Composé
\[
(10 \mu \mathrm{M})
\] & Formule brute Masse molaire (point de fusion) & Structure & \[
\begin{gathered}
\text { Accumulation } \\
\mathrm{d}^{\prime}(3 \mathrm{H})-\mathrm{IP} \\
\% \text { de la } \\
\text { réponse } \\
10 \mathrm{mM} \mathrm{Ca}^{2+} \pm \\
\text { ES }
\end{gathered}
\] \\
\hline PHD 306 & \[
\begin{gathered}
\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} . \mathrm{HCl} \\
549,06
\end{gathered}
\] &  & \(48 \pm 9\) \\
\hline 21. &  &  & \[
9848
\] \\
\hline PHD 308 &  &  & \[
83 \pm 4
\] \\
\hline \[
\text { PHD } 312
\] &  &  & \[
78 \pm 6
\] \\
\hline PID 316 & \[
\frac{\mathrm{C}_{2} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SmCl}}{\sqrt{6}}
\] &  & \[
78 \pm 1
\] \\
\hline PHD 317 & \[
\begin{gathered}
\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S} \\
361,47 \\
\hline
\end{gathered}
\] &  & \(29 \pm 13\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Composé
\[
(10 \mu \mathrm{M})
\] & \begin{tabular}{l}
Formule brute \\
Masse molaire (point de fusion)
\end{tabular} & Structure & \[
\begin{gathered}
\text { Accumulation } \\
\mathrm{d}^{\prime}\left({ }^{3} \mathrm{H}\right)-\mathrm{IP} \\
\% \text { de la } \\
\text { réponse } \\
10 \mathrm{mM} \mathrm{Ca}^{2+} \pm \\
\mathrm{ES}
\end{gathered}
\] \\
\hline PHD 318 & \[
\begin{gathered}
\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} . \mathrm{HCl} \\
531,12
\end{gathered}
\] &  & \(34 \pm 2\) \\
\hline PHD 319 & \[
\begin{gathered}
\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} . \mathrm{HCl} \\
531,12
\end{gathered}
\] &  & \(31 \pm 7\) \\
\hline  &  &  & \[
5
\] \\
\hline  &  &  & Systik \\
\hline PHD 322 & \[
\begin{gathered}
\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} . \mathrm{HCl} \\
418,99
\end{gathered}
\] &  & \(57 \pm 6\) \\
\hline Rimsisw &  &  &  \\
\hline
\end{tabular}

Ces exemples de composés et les résultats obtenus avec eux sont indiqués à titre non limitatif et illustrent l'invention.

\section*{BEST AVAILABLE COPY}

\section*{Spécificité de l'activité de ces molécules}

Les molécules PHD, utilisées à une concentration de \(10 \mu \mathrm{M}\) ne conduisent pas ou peu à l'accumulation \(\left.\mathrm{d}^{1}{ }^{3} \mathrm{H}\right] \mathrm{IP}\) dans des cellules \(\mathrm{CHO}\left(\mathrm{WT}^{*}\right)\) témoins ce qui suggère leur spécificité d'action vis-à-vis du CaSR (Tableau 2). Les cellules \(5 \mathrm{CHO}\left(\mathrm{WT}^{*}\right)\) ont été tranfectées avec le plasmide seul et n'expriment pas le CaSR.

L'accumulation d'inositols phosphates tritiés est exprimée en pourcentage du taux de base observé en présence de \(2 \mathrm{mM} \mathrm{Ca}{ }^{2+}\) ( \(100 \%\) ) dans les cellules CHO(WT*) ou CHO(CaSR). Les composés PHD 301, 307, 308, 312 et 321 et NPS-R-568 induisent peu ou pas d'accumulation \(\mathrm{d}^{1}\left[{ }^{3} \mathrm{H}\right]\) IP dans les cellules CHO (WT*).

10 Les composés PHD 301, 307, 308, 312, et 321 et NPS-R-568 induisent une forte accumulation \(\mathrm{d}^{\prime}\left[{ }^{3} \mathrm{H}\right] I \mathrm{P}\) dans les cellules \(\mathrm{CHO}(\mathrm{CaSR})\)

Tableau 2 : Accumulation d'inositols phosphates tritiés dans les cellules CHO(WT*) induite par les composés PHD et le composé calcimimétique NPS R-568
\begin{tabular}{|c|c|c|c|}
\hline Composé
\[
(10 \square \mathrm{M})
\] & Structure & \multicolumn{2}{|l|}{Accumulation \(\mathrm{d}^{\prime}\left({ }^{3} \mathrm{H}\right)\)-IP \(\%\) du taux basal.} \\
\hline \begin{tabular}{l}
NPS R- \\
568
\end{tabular} &  & \(119 \pm 9\) & \(454 \pm 33\) \\
\hline PHD 301 &  & \(119 \pm 6\) & \(304 \pm 18\) \\
\hline PHD 307 &  & \(134 \pm 11\) & \(393 \pm 28\) \\
\hline PHD 308 &  & \(124 \pm 9\) & \(314 \pm 13\) \\
\hline PHD 312 &  & \(121 \pm 6\) & \(383 \pm 39\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\left\lvert\, \begin{gathered}
\text { Composé } \\
- \\
(10 \square \mathrm{M})
\end{gathered}\right.
\] & Structure & \multicolumn{2}{|l|}{Accumulation \(\mathrm{d}^{\prime}\left({ }^{3} \mathrm{H}\right)\)-IP \% du taux basal.} \\
\hline PHD 321 &  & \(124 \pm 4\) & \(446 \pm 22\) \\
\hline
\end{tabular}

Ces exemples de composés et les résultats obtenus avec eux sont indiqués à titre non limitatif et illustrent l'invention.

\section*{REVENDICATIONS}
1. Arylalkyl-1,2-diamine de formule générale (I) :


5
dans laquelle :
le groupe X représente un groupe \(\mathrm{SO}_{2}\) ou \(\mathrm{CH}_{2}\),
le groupe R1 représente un atome d'hydrogène ou d'halogène ou un groupe alkoxy, aryle, aralkyle ou un groupe alkyle substitué ou non par un ou plusieurs atomes d'halogènes,
n est égale à 0,1 ou 2 ,
et le groupe R 2 représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alkoxy,
et leurs sel avec un acide pharmaceutiquement acceptable, sous forme de mélange racémique ou de leurs isomères optiquement purs.
2. Arylalkyl-1,2-diamine selon la revendication l caractérisé en ce qu'il est représenté par la formule générale (II) :


II
20 dans laquelle :
le groupe X représente un groupe \(\mathrm{SO}_{2}\) ou \(\mathrm{CH}_{2}\),
le groupe R1 représente un atome d'hydrogène ou d'halogène ou un groupe alkoxy, aryle, aralkyle ou un groupe alkyle substitué ou non par un ou plusieurs atomes d'halogènes,
et \(n\) est égale à 0,1 ou 2 . le groupe Rl est un noyau benzo ou alkylbenzo fusionné
4. Arylalkyl-1,2-diamine selon les revendications 1 et 2 caractérisé en ce qu'il est représenté par la formule (III) :


III
5. Arylalkyl-1,2-diamine selon les revendications 1 et 2 caractérisé en ce qu'il est représenté par la formule (IV) :


IV
6. Arylalkyl-1,2-diamine selon les revendications 1 et 2 caractérisé en ce qu'il est représenté par la formule (V) :


V
7. Arylalkyl-1,2-diamine selon les revendications 1 et 2 caractérisé en ce qu'il est représenté par la formule (VI) :


VI
8. Procédé de préparation des arylalkyl-1, 2-diamines de formule (1) dans laquelle X représente le groupe \(\mathrm{SO}_{2}\) selon les revendications 1 à 3 et 5 caractérisé en ce qu'il comporte les étapes suivantes :
a) le composé de formule (VII) :


VII
dans laquelle :
le groupe R 2 représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alkoxy

15 subit une réaction de déprotection
b) un groupement arylsulfonyle est introduit sélectivement sur une de ses fonctions amines du composé obtenu.
9. Procédé de préparation des arylalkyl-1,2-diamines de formule (I) dans laquelle X représente le groupe CH 2 selon les revendications 1 à 4,6 et 7
20 caractérisé en ce qu'il comporte les étapes suivantes :
a) un groupement arylbenzyle est introduit sélectivement sur une des fonctions amines du composé de formule (VII)
b) le composé obtenu subit une réaction de déprotection.
10. Procédé de préparation selon les revendications 8 et 9 caractérisé en ce que le composé de formule (VII) est obtenu par ouverture nucléophile par la 1-(1naphtyl)éthylamine de la 2-benzyl-1-(p-nitrobenzènesulfonyl)aziridine de formule
dans laquelle :
le groupe R 2 représente un atome d'hydrogène ou d'halogène ou un groupe alkyle ou alkoxy
et \(\mathrm{PhI}=\mathrm{NSO}_{2} \mathrm{Ph}-p-\mathrm{NO}_{2}\) en présence de \(\mathrm{Cu}^{\mathrm{I}}\) ou II et de \(\mathrm{CH}_{3} \mathrm{CN}\). revendications 1 à 7 et un support pharmaceutique approprié.
13. Utilisation des composés selon les revendications 1 à 7 et 12 comme modulateur de l'activité du CaSR
14. Utilisation selon la revendication 13 caractérisée en ce que le CaSR se trouve dans la glande parathyroïde, la thyroïde, les cellules osseuses, l'estomac, le poumon, le rein, l'hypophyse, le cerveau, l'hypothalamus, les aires olfactives ou l'hippocampe.
15. Utilisation selon les revendications 13 et 14 caractérisée en ce que ces composés sont plus sélectifs vis à vis des récepteurs de la parathyroïde comparativement à ceux de la glande thyroïde.
16. Composé selon les revendications 1 à 7 et 12 pour son utilisation comme médicament.
17. Utilisation des composés selon les revendications 1 à 7 et 12 pour la fabrication d'un médicament destiné au traitement des maladies ou des désordres physiologiques liés à des perturbations de l'activité des CaSR.
18. Utilisation selon la revendication 17 caractérisée en ce que les maladies ou les désordres physiologiques sont du type hyperparathyroïdies primaires ou 15 secondaires, ostéoporose, maladies cardio-vasculaires, gastro-intestinales, endocrines, neurodégénératives ou certains cancers où les ions ( \(\left.\mathrm{Ca}^{2+}\right)_{c}\) sont anormalement élevés.
19. Utilisation selon la revendication 18 caractérisée en ce que l'hyperparathyroïdie secondaire est observée lors d'insuffisance rénale chronique.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{INTERNATIONAL SEARCH REPORT information on patent family mombers} & Inta :onam Appleation No
PCT/FR 00/03104 \\
\hline Patent document clted in search report & & \[
\begin{aligned}
& \text { Publication } \\
& \text { date }
\end{aligned}
\] & & Patent family member(s) & Publication cate \\
\hline WO 9741090 & A & 06-11-1997 & \begin{tabular}{l}
AU \\
CA \\
EP \\
JP \\
US
\end{tabular} & 2822997 A
2253407 A
0907631 A
2000509395 T
5981599 A & \[
\begin{aligned}
& 19-11-1997 \\
& 06-11-1997 \\
& 14-04-1999 \\
& 25-07-2000 \\
& 09-11-1999
\end{aligned}
\] \\
\hline
\end{tabular}

RAPPORT DE RECHERCHE INTERNATIONALE


Formulairn PCTISN210 (deuximme louilo) (iulilet 1002)

RAPPORT DE RECHERCHE INTERNATIONALE
Renselonemente relatite aux membres de families de brovers
\begin{tabular}{|c|c|c|c|}
\hline Document brevet cité au rapport de recherche & Date de publication & Membre(s) de la famille de brevet(s) & Date de publication \\
\hline WO 9741090 A & 06-11-1997 & AU 2822997 A & 19-11-1997 \\
\hline & & CA 2253407 A & 06-11-1997 \\
\hline & & EP 0907631 A & 14-04-1999 \\
\hline & & JP 2000509395 T & 25-07-2000 \\
\hline & & US 5981599 A & 09-11-1999 \\
\hline
\end{tabular}

THIS PAGE BLANK (uspto)
(19)

Europalisches Patentamt
European Patent Office
Office eurropéen des brevets


EUROPEAN PATENT APPLICATION
published in accordance with Art. 158(3) EPC
(43) Date of publication: 04.08.1999 Bulletin 1999/31
(21) Application number: 97929555.7
(22) Date of filing: 08.07.1997
(84) Designated Contracting States: AT BECH DE DK ES FFR GB GRIEIT LILUMC NL PT SE
(30) Priority: 08.07.1996 JP 17831596 27.12.1996 JP 35039396 24.04.1997 JP 10777897
(71) Applicants:
- KIRIN BEER KABUSHIKI KAISHA Chuo-Ku, Tokyo 104 (JP)
- NPS PHARMACEUTICALS, INC. Salt Lake City Utah 84108 (US)
(51) Int. Cl. \({ }^{6 .}\) C07C 211/30, C07C 211/29, C07C 211/27, C07C 217/14, C07C 225/16, C07C 237/04, C07C 323/23, C07C 317/26, C07D 209/08, C07D 209/12, C07D 209/14
(86) International application number: PCT/JP97/02358
(87) International publication number: WO 98/01417 (15.01.1998 Gazette 1998/02)
(72) Inventors:
- SAKAI, Teruyukl, Kirin Beer Kabushild Kaisha Takasakl-shi, Gunma 370-12 (JP)
- TAKAMI, Atsuya,

Kirin Beer Kabushiki Kaisha
Takasaki-shi, Gunma 370-12 (JP)
- NAGAO, Rika,

Kirin Beer Kabushikd Kaisha
Takasaki-shi, Gunma 370-12 (JP)
(74) Representative:

VOSSIUS \& PARTNER
Slebertstrasse 4
81675 Manchen (DE)

\section*{(54) CALCIUM RECEPTOR-ACTIVE COMPOUNDS}
(57) A novel calcium receptor active compound having the formula is provided:
\(A r_{1}-\left[C R^{1} R^{2}\right]_{p}-X-\left[C R^{3} R^{4}\right]_{q}\left[C R^{5} R^{5}\right]-N R^{7}-\left[C R^{8} R^{9}\right]-A r_{2}\)
wherein:
\(\mathrm{Ar}_{1}\) is selected from the group consisting of aryl, heteroaryl, bis(arylmethyl)amino, bis(heteroaryimethyl) amino and arylmethyl(heteroaryimethyl)amino; \(X\) is selected from the group consisting of oxygen, sulfur, sulfinyl, sulfonyl, carbonyl and amino;
\(R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}, R^{7}, R^{6}\) and \(R^{9}\) are, for example, hydrogen or alkyl;
\(\mathrm{Ar}_{2}\) is selected from the group consisting of aryl and heteroaryl; \(p\) is an integer of from 0 to 6 , inclusive; and, \(q\) is an integer of from 0 to 14, inclusive.

\section*{Description}

\section*{Field of the Invention}

5 [0001] This invention relates to the design, development, composition and use of novel molecules able to modulate the activity of inorganic ion receptor.

\section*{Background of the Invention}
[0002] Certain cells in the body respond not only to chemical signals, but also to ions such as extracellular calcium ions ( \(\mathrm{Ca}^{2+}\) ). Changes in the concentration of extracellular \(\mathrm{Ca}^{2+}\) (referred to herein as \({ }^{[ }\left[\mathrm{Ca}^{2+}\right]\) ") alter the functional responses of these cells. One such specialized cell is the parathyroid cell which secretes parathyroid hormone (PTH). PTH is the principal endocrine factor regulating \(\mathrm{Ca}^{2+}\) homeostasis in the blood and extracellular fluids.
[0003] PTH, by acting on bone and kidney cells, increases the level of \(\mathrm{Ca}^{2+}\) in the blood. This increase in \(\left[\mathrm{Ca}^{2+}\right]\) then acts as a negative feedback signal, depressing PTH secretion. The reciprocal relationship between \(\left[\mathrm{Ca}^{2+}\right]\) and PTH secretion forms the essential mechanism maintaining bodily \(\mathrm{Ca}^{2+}\) homeostasis.
[0004] Extracellular \(\mathrm{Ca}^{2+}\) acts directly on parathyroid cells to regulate PTH secretion. The existence of a parathyroid cell surface protein which detects changes in \(\left[\mathrm{Ca}^{2+}\right]\) has been confirmed. Brown et al., 366 Nature 574,1993 . In parathyroid cells, this protein acts as a receptor for extracellular \(\mathrm{Ca}^{2+}\) ("the calcium receptor"), and detects changes in \(\left[\mathrm{Ca}^{2+}\right]\) and to initiate a functional cellular response, PTH secretion.
[0005] Extracellular \(\mathrm{Ca}^{2+}\) can exert effects on different cell functions, reviewed in Nemeth ef al., 11 Cell Calcium 319, 1990. The role of extracellular \(\mathrm{Ca}^{2+}\) in parafollicular ( C cells) and parathyroid cells is discussed in Nemeth, 11 Cell CaI cium 323, 1990. These cells have been shown to express similar \(\mathrm{Ca}^{2+}\) receptor. Brown et al., 366 Nature 574, 1993; Mithal et al., 9 Suppl. 1 J. Bone and Mineral Res. s282, 1994; Rogers et al., 9 Suppl. 1 J. Bone and Mineral Res. s409, 1994; Garrett et al., 9 Suppl. 1 J . Bone and Mineral Res. \(\mathrm{s} 409,1994\). The role of extracellular \(\mathrm{Ca}^{2+}\) on bone osteoclasts is discussed by Zaidi, 10 Bioscience Reports 493, 1990. in addition keratinocytes, juxtaglomerular cells, trophoblasts, pancreatic beta cells and fat/adipose cells all respond to increases in extracellular calcium which likely reflects activation of calcium receptors of these cells.
[0006] The ability of various compounds to mimic extracellular \(\mathrm{Ca}^{2+}\) in vitro is discussed by Nemeth et al., (spermine and spermidine) in "Calcium-Binding Proteins in Health and Disease", 1987, Academic Press, Inc., pp. 33-35; Brown et al., (e.g., neomycin) 128 Endocrinology 3047, 1991; Chen et al., (diltiazem and its analog, TA-3090) 5 J . Bone and Mineral Res. 581, 1990; and Zaidi et al., (verapamil) 167 Biochem. Biophys. Res. Commun, 807, 1990 Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959, Nemeth et al., PCT/US92/07175, International Publication Number WO 93/04373, Nemeth et al., PCT/US94/12117, International Publication Number WO 95/11221 and Nemeth et al., PCT/US95/13704, International Publication Number WO \(96 / 12697\) describe various compounds which can modulate the effect of an inorganic ion on a cell having an inorganic ion receptor, preferably modulate the effects of calcium on a calcium receptor.
[0007] The object of the present invention is to provide a novel inorganic ion receptor active compound having the structure different from the compounds described above.

\section*{Disclosure of the Invention}
[0008] The present invention features molecules which can modulate one or more activities of an inorganic ion receptor. Preferably, the molecule can mimic or block the effect of extracellular \(\mathrm{Ca}^{2+}\) on a calcium receptor. The preferred use of such molecules is to treat diseases or disorders by altering inorganic ion receptor activity, preferably calcium receptor activity.
[0009] The present invention provides a novel calcium receptor active compound of the formula:
\[
\begin{equation*}
\operatorname{Ar}_{1}-\left[C R^{1} R^{2}\right]_{P}-X-\left[C R^{3} R^{4}\right]_{q}-\left[C R^{5} R^{6}\right]-N R^{7}-\left[C R^{8} R^{9}\right]-A r_{2} \tag{1}
\end{equation*}
\]
wherein:
\(\mathrm{Ar}_{1}\) is selected from the group consisting of aryl, heteroaryl, bis(arylmethyl)amino, bis(heteroarylmethyl)amino and arylmethyl(heteroarylmethyl)amino;
X is selected from the group consisting of oxygen, sulfur, sulfinyl, sulfonyl, carbonyl and amino;
\(\mathbf{R}^{1} \mathbf{R}^{2}, \mathbf{R}^{3}, \mathbf{R}^{4}, \mathbf{R}^{5}, \mathbf{R}^{6}, \mathbf{R}^{3}\) and \(\mathbf{R}^{9}\) are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, trihalomethyl, aryl, heteroaryl, heteroalicyclic, halogen, hydroxy, alkoxy, thioalkoxy, aryloxy, thioaryloxy, carbonyl, thiocarbonyl, C-carboxyl, O-carboxyl, C-amido, N -amido, O-carbamyl, N -carbamyl, O -

\section*{EP 0933354 A1}
thiocarbamyl, N -thiocarbamyl, cyano, nitro, amino and \(N R^{10} \mathrm{R}^{11}\); wherein,
\(\mathbf{R}^{10}\) and \(\mathbf{R}^{11}\) are independently selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, carbonyl, trihaloacetyl, sulfonyl, trihalomethanesulfonyl and, combined, a five- or six-member heteroalicyclic ring containing at least one nitrogen;
any two adjacent "R" groups may be combined to form five- or six-member fused cycloalkyl groups;
\(R^{7}\) is selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, halogen, cyano, hydroxy, alkoxy, O -carboxyl, trihaloacetyl and trihalomethanesulfonyl:
\(\mathrm{Ar}_{2}\) is selected from the group consisting of aryl and heteroaryi:
\(p\) is an integer of from 0 to 6 , inclusive; and,
\(q\) is an integer of from 0 to 14, inclusive;
or a pharmaceutically acceptable salt or hydrate of said compound.
[0010] As used herein, the term "aryl" refers to an all-carbon monocyclic or fused ring polycyclic (i.e., rings which share adjacent pairs of carbon atoms) groups in which one or more of the rings has a completely conjugated pi-electron system. Examples, without limitation, of aryl groups, are phenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl, and indanyl. The aryl group may be substituted or unsubstituted. When substituted, the substituted group(s) is preferably one or more selected from halogen, trihalomethyl, alkyl, alkenyl, alkynyl, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, cyano, nitro, carbonyl, thiocarbonyl, C-carboxy, O-carboxy, O-carbarnyl, N-carbamyl, O-thiocarbamyl, N -thiccarbamyl, C -amido, N -amido, sulfinyl, sulfonyl, S -sulfonamido, N -sulfonamido, trihalomethanesulfonamido, amino and \(N R^{10} R^{11}\) wherein:
\(R^{10}\) and \(R^{11}\) are independently selected from the group consisting of hydrogen, alkyl, cycioalkyi, aryl, carbonyl, sulfonyl, trihalomethanesulfonyl, and, combined, a five- or six-member heteroalicyclic ring which heteroalicyclic ring may be unsubstituted or substituted with one or more halogens.
[0011] A "heteroaryl" group refers to a monocyclic or fused ring (i.e., rings which share an adjacent pair of atoms) group having in the ring(s) one or more atoms selected from the group consisting of nitrogen, oxygen and sulfur and, in addition, at least one of the rings has a completely conjugated pi-electron system. Examples, without limitation, of heteroaryl groups are pyrrole, furan, dibenzofuran, carbazole, acridine, thiophene, imidazole, benzimidazole, oxazole, thiazole, phenothiazine, triazole, thiadiazole, pyrazole, benzoxazole, benzthiazole, indole, benzofuran, indazole, pyridine, pyrimidine, quinoline, isoquinoline, quinazoline, purine, phthalazine and flavone. The heteroaryl group may be substituted or unsubstituted. When substituted, the substituted group(s) is preferably one or more selected from alkyl, cycloalkyl, halogen, trihalomethyl, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, cyano, nitro, carbonyl, thiocarbonyl, sulfonamido, C-carboxy, O-carboxy, sulfinyl, sulfonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N -thiocarbamyl, C-amido, \(N\)-amido, S -sulfonamido, N -sulfonamido, trihalomethanesulfonamido, amino and \(\mathrm{NR}^{10} \mathrm{R}^{11}\) where \(\mathrm{R}^{10}\) and \(R^{11}\) are previously defined herein.
[0012] As used herein, the term "alkyl" refers to a saturated aliphatic hydrocarbon including straight chain and branched chain groups. Preferably, the alkyl group has 1 to \(\mathbf{2 0}\) carbon atoms. More preferably, it is a medium size alkyl having 1 to 10 carbon atoms. Most preferably, it is a lower alkyl having 1 to 4 carbon atoms. The alkyl group may be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more individually selected from cycloalkyl, aryl, heteroaryl, heteroalicyclic, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, cyano, halogen, carbonyl, thiocarbonyl, O-carbamyl, N-carbamyl, O-thiocarbamyl, N-thiocarbamyl, C-amido, N-amido, C-carboxy, O-carboxy, nitro, sulfonamido, trihalomethanesultonamido, amino and \(N R^{10} R^{11}\) where \(R^{10}\) and \(R^{11}\) are previously defined herein. More preferably, the alkyl group is a medium or lower alkyl which is optionally substituted with one or more groups independently selected from halogen, hydroxy, nitro, cyano and unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens; an unsubstituted lower alkyl; and a lower alkyl substituted with one or more halogens.
[0013] A "cycloalkyl" group refers to an all-carbon monocyclic or fused ring (i.e., rings which share an adjacent pair of carbon atoms) group wherein none of the rings has a completely conjugated pi-electron system. Examples, without limitation, of cycloalkyl groups are cyclopropane, cyclobutane, cyclopentane, cyclopentene, cyclohexane, cyclohexadiene, cycloheptane and, cycloheptatriene. A cycloalkyl group may be substituted or unsubstituted. When substituted, the substituent group(s) is preferably one or more individually selected from alkyl, aryl, heteroaryl, heteroalycyclic, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, cyano, halogen, carbonyl, thiocarbonyl, C-carboxy, O-carboxy, O-carbamyl, N-carbamyl, C-amido, N -amido, S -sulfonamido, N -sulfonamido, nitro, amino and \(N R^{10} \mathrm{R}^{11}\), where \(R^{10}\) and \(R^{11}\) are previously defined herein. Preferably the cycloalkyl group is selected from unsubstituted cyclopropane, unsubstituted cyclopentane, unsubstituted cyclohexane, and cyclopropane, cyclopentane and cyclohexane substituted with one or more groups independently selected from halogen, nitro, cyano, hydroxy, unsubstituted lower alkoxy, C-carboxyl wherein R" is unsubstituted lower alkyl and O-carboxyl wherein R" is unsubstituted lower alkyl.
[0014] An "alkenyl" group refers to an alkyl group, as defined herein, consisting of at least two carbon atoms and at least one carbon-carbon double bond. A "lower alkenyl" group refers to a lower alkyl group containing at least one dou-

\section*{ble bond.}
[0015] A "cycloalkenyl" group reters to a cycloalkyl group which contains one or more double bonds in the ring wherein the double bonds do not produce a completely conjugated pi-electron system within the ring.
[0016] An "alkynyl" group refers to an alkyl group, as defined herein, consisting of at least two carbon atoms and at least one carbon-carbon triple bond. A "lower alkynyl" group refers to a lower alkyl group containing at least one triple bond.
[0017] A "hetercalicyclic" group refers to a monocyclic or fused ring group having in the ring(s) one or more atoms selected from the group consisting of nitrogen, oxygen and sulfur. The rings may also have one or more double bonds. However, none of the rings has a completely conjugated pi-electron system. The heteroalicyclic ring may be substituted or unsubstituted. When substituted, the substituted group(s) is preferably one or more selected from alkyl, cycloalkyl, halogen, trihalomethyl, hydroxy, alkoxy, aryloxy, thiohydroxy, thioalkoxy, thioaryloxy, cyano, nitro, carbonyl, thiocarbonyl, C -carboxy, O-carboxy, O-carbamyl, N -carbamyl, O-thiocarbamyl, N -thiocarbamyl, sulfinyl, sulfonyl, S -sulfonamido, N sulfonamido, C -amido, N -amido, amino and \(\mathrm{NR}^{10} \mathrm{R}^{11}\) where \(\mathrm{R}^{10}\) and \(\mathrm{R}^{11}\) are previously defined herein.
[0018] A "phenyl" group refers to a six-member ring aryl group.
[0019] A "benzyl" group refers to a phenyl- \(\mathrm{CH}_{2}-\) group.
[0020] A "hydroxy" group refers to an - OH group.
[0021] An "alkoxy" group refers to both an -O-alkyl and an - O -cycloalkyl group, as defined herein; preferably an alkoxy group refers to a methoxy or trihalomethoxy.
[0022] A "trihalomethoxy" group refers to a \(Y_{3} \mathrm{CO}\) - group with \(Y\) as defined herein; preferably \(Y\) is fluorine.
[0023] A "benzyloxy" refers to a benzyl-O- group.
[0024] An "aryloxy" group refers to both an -O-aryl and an - O -heteroaryl group, as defined herein. A "phenoxy" group
refers to an aryloxy group in which the aryl group is a phenyl group. A "thiohydroxy" group refers to an -SH group.
[0025] A "thioalkoxy" group refers to both an S-alkyl and an -S-cycloalkyl group, as defined herein.
[0026] A "thioaryloxy" group refers to both an - S -aryl and an -S-heteroaryi group, as defined herein.
[0027] A "carbonyl" or "acyl" group refers to a \(-\mathrm{C}(=0)-\mathrm{R}\) " group, where R " is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, heteroaryl (bonded through a ring carbon) and heteroalicyclic (bonded through a ring carbon), as defined herein.
[0028] An "formyl" group refers to a carbonyl group wherein \(R\) " is hydrogen.
[0029] An "acetyl" group refers to a carbonyl group wherein R " is \(\mathrm{CH}_{3}\).
[0030] A "thiocarbonyl" group refers to a \(-\mathrm{C}(=\mathrm{S})-\mathrm{R}\) " group, with R " as defined herein.
[0031] A "trihalomethyl" group refers to a \(-\mathrm{CY}_{3}\) group wherein Y is a halogen group; preferably Y is fluorine.
[0032] A "rihaloacety" group refers to a \(\mathrm{Y}_{3} \mathrm{CC}(=0)\) - group with Y as defined herein.
[0033] A "C-carboxyl" group refers to a - \(\mathrm{C}(=0) \mathrm{O}-\mathrm{R}\) " groups, with R " as defined herein.
[0034] An "O-carboxyl" group refers to a \(\mathrm{R} " \mathrm{C}=\mathrm{O}) \mathrm{O}\) - group, with R " as defined herein.
[0035] An "acetoxy" group refers to an O-carboxyl group in which R " is \(\mathrm{CH}_{3}\).
[0036] A "carboxylic acid" group refers to a C-caboxyl group in which R " is hydrogen.
[0037] A "halo" or "halogen" group refers to fluorine, chlorine, bromine or iodine.
[0038] A "trihalomethanesulfinyl" group refers to a \(Y_{3} \mathrm{CS}(=\mathrm{O})_{2}\) - groups with Y as defined above.
[0039] A "trihalomethanesultonamido" group refers to a \(\mathrm{Y}_{3} \mathrm{CS}(=0)_{2} \mathrm{NR}^{10}\) - group with Y and \(\mathrm{R}^{10}\) as defined herein.
[0040] A "sulfinyl" group refers to a \(-S(=O)-R\) " group, with \(R\) " as defined herein or \(R^{\prime \prime}\) may not exist if both \(S\)-bonds are already in use internally in a particular molecule.
[0041] A "sulfonyl" group refers to a \(-\mathrm{S}(=\mathrm{O})_{2} \mathrm{R}\) " group, with R " as defined herein or R " may not exist is both S -bonds
45 are already in use internally in an particular molecule.
[0042] An "S-sulfonamido" group refers to a \(-S(=O)_{2} N R^{10} R^{11}\) with \(R^{10}\) and \(R^{14}\) as defined herein.
[0043] An \(" N\)-sulfonamido" group refers to a \(R^{10} S(=O)_{2} N R^{11}\) - group, with \(R^{10}\) and \(R^{11}\) as defined herein.
[0044] An " \(O\)-carbamyl" group refers to a - OC \(=O\) ) NR \({ }^{10} R^{11}\) group with \(R^{10}\) and \(R^{11}\) as defined herein..
[0045] An "N-carbamyl" group refers to a \(\mathrm{R}^{10} \mathrm{OC}(=0) N \mathrm{R}^{11}\) - group, with \(\mathrm{R}^{10}\) and \(\mathrm{R}^{11}\) as defined herein.
[0046] An " O -thiocarbamyl" group refers to a - \(\mathrm{OC}(=S) N R^{10} \mathrm{R}^{11}\) group with \(\mathrm{R}^{10}\) and \(\mathrm{R}^{11}\) as defined herein.
[0047] An \({ }^{0} \mathrm{~N}\)-thiccarbamyl" group refers to a \(\mathrm{R}^{10} \mathrm{OC}(=S) N R^{11}\) - group, with \(\mathrm{R}^{10}\) and \(\mathrm{R}^{11}\) as defined herein.
[0048] An "amino" group refers to an \(-\mathrm{NR}^{10} \mathrm{R}^{11}\) group, with \(\mathrm{R}^{10}\) and \(\mathrm{R}^{11}\) as defined herein.
[0049] A "C-amido" group refers to a \(-C(=O) N R^{10} R^{11}\) group with \(R^{10}\) and \(R^{11}\) as defined herein.
[0050] An "N-amido" group refers to a \(R^{10} C(=O) N R^{11}\) - group, with \(R^{10}\) and \(R^{11}\) as defined herein.
[0051] A "nitro" group refers to a \(-\mathrm{NO}_{2}\) group.
[0052] A "methylenedioxy" group refers to a- \(\mathrm{OCH}_{2} \mathrm{O}\) - group in which the two oxygens are covalently bonded to adjacent carbon atoms of an aryl or heteroaryl group.
[0053] An "ethylenedioxy" group refers to a \(-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\) - groups in which the two oxygens are covalently bonded to

\section*{EP \(0933 \mathbf{3 5 4}\) A1}
adjacent carbon atoms of an aryl or heteroaryl group.
[0054] Preferably, in the formula (1), \(\mathrm{R}^{5}\) is selected from the group consisting of hydrogen, unsubstituted lower alkyl and lower alkyl substituted with one or more halogens; \(R^{1}, R^{2}, R^{3}, R^{4}, R^{5}, R^{6}\) and \(R^{7}\) are hydrogen; and \(R^{8}\) and \(R^{9}\) are independently selected from the group consisting of hydrogen, unsubstituted alkyl, lower alkyl substituted with one or y \(\mathrm{Ar}_{1}\) is selected from the group consisting of phenyl, naphthyl, indolyl, fluorenyl, dibenzofuranyl, carbazolyl, benzoxa-zole-2-yl, benzthiazole-2-yl, pyridin-4-yl, quinolin-2-yl and dibenzylamino and \(\mathrm{Ar}_{2}\) is selected from the group consisting of phenyl, naphthyl, quinolin-4-yl, pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyrimidinyl, furan-2-yl, furan-3-yl, thiophen-2-yl, oxy, trihaloacetyl and nitro, and \(\mathrm{Ar}_{2}\) is selected from the group consisting of optionally substituted phenyl and optionally substituted naphthyl. Even more preferably, \(\mathrm{Ar}_{2}\) is 3 -methoxyphenyl or unsubstituted naphithyl. Preferably, \(\mathbf{R}^{\mathbf{8}}\) is hydrogen, \(\mathrm{R}^{9}\) is methyl and X is oxygen or sulfur.
[0055] In another aspect, the present invention provides a compound of the formula:
\[
\begin{equation*}
\mathrm{Ar}_{3}-\left(\mathrm{CHR}^{12}\right)_{\mathrm{r}}-\mathrm{Q}-\left(\mathrm{CH}_{2}\right)_{\mathrm{s}}-\mathrm{CHR}^{13}-\mathrm{NH}^{-C R^{14} \mathrm{R}^{15}-\mathrm{Ar}_{4}} \tag{2}
\end{equation*}
\]
wherein:
\(\mathrm{Ar}_{3}\) is selected from the group consisting of aryl and heteroaryl optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, unsubstituted lower alkenyl, lower alkenyl substituted with one or more halogens, halogen, hydroxy, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, unsubstituted lower thioalkoxy, nitro, formyl, acetoxy, acetyl, \(-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})-,-\mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\), cyano, -N (lower alkyl), phenyl, phenoxy, benzyl, benzyloxy, methylenedioxy, ethylenedioxy, \(\alpha\), \(\alpha\)-dimethylbenzyl, and \(-\mathrm{OCH}_{2} \mathrm{COOH}\);
\(\mathrm{Ar}_{4}\) is selected from the group consisting of aryl and heteroaryl optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, unsubstituted lower alkenyl, lower alkenyl substituted with one or more halogens, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, hydroxy, lower thioalkoxy, halogen, methylenedioxy, ethylenedioxy, acetoxy, \(-\mathrm{OCH} 2 \mathrm{COOH},-\mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\), cyano, and \(-\mathrm{CH}_{2} \mathrm{OH}\);
\(r\) is an integer of from 0 to 6 , inclusive:
\(s\) is an integer of from 0 to 14, inclusive:
Q is selected from the group consisting of oxygen, sulfur, carbonyl and -NH-;
\(\mathrm{R}^{13}\) is hydrogen or lower alkyl; and
\(R^{14}\) and \(R^{15}\) are independently selected from the group consisting of hydrogen, alkyl and, combined, cycloalkyl and cycloalkenyl;
or a pharmaceutically acceptable salt or hydrate of said compound.
[0056] Preferably, in the formula (2), \(\mathrm{Ar}_{3}\) is selected from the groups consisting of unsubstituted phenyl, phenyl substituted with one or more groups selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, halogen, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, nitro, dimethylamino and unsubstituted phenyl, and optionally substiuted naphthyl; and \(\mathrm{Ar}_{4}\) is selected from the groups consisting of unsubstituted phenyl, phenyl substituted with one or more groups selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, and halogen, and optionally substituted naphthyl.
[0057] In another aspect, the present invention provides a compound of the formula:
\[
\begin{equation*}
\mathrm{Ar}_{5}-\left(\mathrm{CHR}^{16}\right)_{t}-\mathrm{W}-\left(\mathrm{CH}_{2}\right)_{u}-\mathrm{CHR}^{17}-\mathrm{NH}-\mathrm{CH}\left(\mathrm{R}^{18}\right)-\mathrm{Ar}_{6} \tag{3}
\end{equation*}
\]
wherein:
Ar is aryl, dicyclic or tricyclic heteroaryl, arylmethyl(aryimethyl)amino, heteroarylmethy(heteroarylmethyl)amino or aryimethyl(heteroarylmethy) amino optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, unsubstituted lower alkeny, halogen, hydroxy, unsubstituted lower alkoxy, unsubstituted lower thioalkoxy, lower alkyl substituted with one or more halogens, lower alkenyl substituted with one or more halogens, lower alkoxy substituted with one or more halogens, nitro, formyl, acetoxy, acetyl, \(\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \cdot-\mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\), cyano, \(-\mathrm{N}(\) unsubstituted lower alkyl) 2 . phenyl, phenoxy, benzyl, benzyloxy, \(\alpha, \alpha\)

\section*{EP 0933354 A1}
-dimethylbenzyl, methylenedioxy, ethylenedioxy and \(-\mathrm{OCH}_{2} \mathrm{COOH}\);
\(\mathrm{Ar}_{6}\) is aryl or dicyclic or tricyclic heteroaryl optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, unsubstituted lower alkenyl, lower alkenyl substituted with one or more halogens, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, halogen, hydroxy, unsubstituted lower thioalkoxy, lower thioalkoxy substituted with one or more halogens, benzyloxy, methylenedioxy, ethylenedioxy, acetoxy, \(-\mathrm{OCH}_{2} \mathrm{COOH},-\mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\), cyano, and \(-\mathrm{CH}_{2} \mathrm{OH}\);
\(t\) is 0 or 1 ;
\(u\) is an integer of from 0 to 11 , inclusive;
W is selected from the group consisting of oxygen, sulfur, sulfinyl, sulfonyl, carbonyl and amino;
\(\mathrm{R}^{16}\) and \(\mathrm{R}^{17}\) are H or unsubstituted lower alkyl; and
\(R^{18}\) is unsubstituted lower alkyl;
or a pharmaceutically acceptable salt or hydrate of said compound.
[0062] An "abnormal" state is characterized by a level of a property that is statistically different from the level of that property observed in patients not suffering from a particular disorder. Thus, for example, the term "abnormal" as it relates to inorganic ion concentrations refers to a concentration of the ion in question which would be recognized by members of the medical community as being outside the normal range of such ion concentration in healthy patients.
[0063] As used herein, the terms "treat", "treating" and "treatment" refer to a method of alleviating, abrogating, and/or having a prophylactic effect with regard to, a disease or disorder and/or one or more, preferably all, its attendant symptoms.
[0064] In another aspect, the present invention provides a method for the treatment or prevention of primary and secondary hyperparathyroidism, renalosteodystrophy, hypercalcemia malignancy, osteoporosis, Paget's disease and [0065] The term "administering" as used herein refers to a method for introducing a compound of this invention in vitro or in vivo. Thus, for example, the importance of inorganic ion receptor activity can be studied and associated diseases and disorders prevented or treated by the compounds and methods set forth herein. Cells existing outside the organism
can be maintained or grown in cell culture dishes. In this context. the ability of a particular compound to affect an inorganic ion receptor activity can be determined; i.e., the IC50 or EC50, preferably the EC50, of a compound, defined below, before the use of the compounds in complex multicellular living organisms such as a human is attempted. For cells outside the organism, multiple methods exist, and are well-known to those skilled in the arts, to administer compounds including, but not limited to, cell micro-injection, transformation and numerous carrier techniques.
[0066] For cells harbored within a multicellular living organism, myriad methods also exist, and are likewise wellknown to those skilled in the art, to administer compounds including, but not limited to, oral, parenteral, dermal, injection and aerosol applications.
[0067] The present invention features a method for the modulation of one or more activities of an inorganic ion recepor using the compounds disclosed herein. Preferably, the inorganic ion receptor is a \(\mathrm{Ca}^{2+}\) this invention can either mimic (including potentiation) or block the effect of extracellular \(\mathrm{Ca}^{2+}\) on a calcium receptor. The preferred use of such compounds is to treat selected disorders by modulating the inorganic ion receptor activity. In particular the compounds of this invention can be used to treat the indicated disorders by modulating \(\mathrm{Ca}^{2+}\) receptor activity.
[0068] Extracellular \(\mathrm{Ca}^{2+}\) is under tight homeostatic control and controls various processes such as blood clotting, nerve and muscle excitability, and proper bone formation. Calcium receptor proteins enable certain specialized cells to respond to changes in extracellular \(\mathrm{Ca}^{2+}\) concentration. For example, extracellular \(\mathrm{Ca}^{2+}\) inhibits the secretion of parathyroid hormone from parathyroid cells, inhibits bone resorption by osteoclasts, and stimulates secretion of calcitonin from C-cells.
[0069] Compounds modulating inorganic ion receptor activity can be used to treat diseases or disorders by affecting one or more activities of an inorganic ion receptor resulting in a beneficial effect to the patient. For example, osteoporosis is an age related disorder characterized by loss of bone mass and increased risk of bone fracture. Compounds blocking osteoclastic bone resorption either directly (e.g., a osteoclast ionmimetic compound) or indirectly by increasing endogenous calcitonin levels (e.g., a C-cell ionmimetic), and/or by decreasing parathyroid hormone levels (e.g., a parathyroid cell ionmimetic) can retard bone loss and, thus, result in beneficial effects to patients suffering from osteoporosis.
[0070] In addition, it is known that intermittent low dosing with PTH results in an anabolic effect on bone mass and appropriate bone remodeling. Thus, compounds and dosing regiments evoking transient increases in parathyroid hormone (e.g., intermittent dosing with a parathyroid cell ionlytic) can increase bone mass in patients suffering from osteoporosis.
[0071] Additionally, diseases or disorders characterized by a defect in one or more inorganic ion receptor activities may be treated by the present invention. For example, certain forms of primary hyperparathyroidism are characterized by abnormally high levels of parathyroid hormone and decreased parathyroid gland responsiveness to circulating calcium. Calcium receptor modulating agents can be used to modulate parathyroid cell responsiveness to calcium.
[0072] Preferably, the compound modulates calcium receptor activity and is used in the treatment of diseases or disorders which can be affected by modulating one or more activities of a calcium receptor. Preferably, the disease or disorder is characterized by abnormal bone and mineral homeostasis, more preferably calcium homeostasis.
[0073] Abnormal calcium homeostasis is characterized by one or more of the following activities: (1) an abnormal increase or decrease in serum calcium; (2) an abnormal increase or decrease in urinary excretion of calcium; (3) an abnormal increase or decrease in bone calcium levels, for example, as assessed by bone mineral density measurements; (4) an abnormal absorption of dietary calcium; and (5) an abnormal increase or decrease in the production and/or release of circulating messengers or hormones which affect calcium homeostasis such as parathyroid hormone and calcitonin. The abnormal increase or decrease in these different aspects of calcium homeostasis is relative to that occurring in the general population and is generally associated with a disease or disorder.
0074 ] More generally, a molecule which modulates the activity of an inorganic ion receptor is useful in the treatment of diseases characterized by abnormal inorganic ion homeostasis. Preferably, the molecule modulates one or more effects of an inorganic ion receptor. Inorganic ion receptor modulating agents include ionmimetics, ionlytics, calcimimetics, and calcilytics.
[0075] Ionmimetics are molecules which mimic the effects of increasing ion concentration at an inorganic ion receptor.
\[
50
\] or more calcium receptor activities and preferably binds to a calcium receptor.
[0076] lonlytics are molecules which reduce or block one or more activities caused by an inorganic ion on an inorganic ion receptor. Preferably, the molecule inhibits one or more calcium receptor activities. Calcilytics are ionlytics which inhibit one or more calcium receptor activities evoked by extracellular calcium and preferably bind to a calcium receptor. [0077] Inorganic ion receptor modulating agents can be formulated as pharmacological agents or compositions to facilitate administration in a patient. Pharmacological agents or compositions are agents or compositions in a form suitable for administration into a mammal, preferably a human. considerations concerning forms suitable for administration are known in the art and include toxic effects, solubility, route of administration, and maintaining activity.
[0078] Other aspects of the present invention feature methods for using the agents described herein for treating diseases or disorders by modulating inorganic ion receptor activity. Patients in need of such treatments can be identified by standard medical techniques, such as routine blood analysis. For example, by detecting a deficiency of protein whose production or secretion is affected by changes in inorganic ion concentrations, or by detecting abnormal levels of inorganic ions or hormones which effect inorganic ion homeostasis.
[0079] Therapeutic methods involve administering to the patient a therapeutically effective amount of an inorganic ion receptor modulating agent. In preferred embodiments these methods are used to treat a disease or disorder characterized by abnormal inorganic ion homeostasis, more preferably a disease or disorder characterized by abnormal calcium homeostasis. Diseases and disorders characterized by abnormal calcium homeostasis include hyperparathyroidism, osteoporosis, renalosteodystrophy and other bone and mineral-related disorders, and the like (as described, e.g., in standard medical text books, such as "Harrison's Principles of Internal Medicine"). Such diseases and disorders are treated using calcium receptor modulating agents which mimic or block one or more of the effects of \(\mathrm{Ca}^{2+}\) and, thereby, directly or indirectly affect the levels of proteins or other molecules in the body of the patient.
[0080] By "therapeutically effective amount" is meant an amount of an agent which relieves to some extent one or more symptoms of the disease or disorder in the patient; or returns to normal either partially or completely one or more physiological or biochemical parameters associated with or causative of the disease or disorder.
[0081] In a preferred embodiment, the patient has a disease or disorder characterized by an abnormal level of one or more calcium receptor regulated components and the molecule is active on a calcium receptor of a cell selected from the group consisting of parathyroid cell, bone osteoclast, juxtaglomerular kidney cell, proximal tubule kidney cell, distal tubule kidney cell, central nervous system cell, peripheral nervous system cell, cell of the thick ascending limb of Henle's loop and/or collecting duct, keratinocyte in the epidermis, parafollicular cell in the thyroid (C-cell), intestinal cell, trophoblast in the placenta, platelet, vascular smooth muscle cell, cardiac atrial cell, gastrin-secreting cell, glucagonsecreting cell, kidney mesangial cell, mammary cell, beta cell, fat/adipose cell, immune cell and Gl tract cell.
[0082] More preferably, the cell is a parathyroid cell and the molecule reduces the level of parathyroid hormone in the serum of the patient, even more preferably the level is reduced to a degree sufficient to cause a decrease in plasma \(\mathrm{Ca}^{2+}\), most preferably the parathyroid hormone level is reduced to that present in a normal individual.
[0083] Thus, the present invention features agents and methods useful in the treatment of diseases and disonders by modulating inorganic ion receptor activity. For example, the molecules of the present invention can be used to target calcium receptors on different cell types that detect and respond to changes to external calcium. For example, molecules mimicking external calcium may be used to selectively depress secretion of parathyroid hormone from parathyroid cells, or depress bone resorption by osteoclasts, or stimulate secretion of calcitonin from C-cells. Such molecules can be used to treat diseases or disorders characterized by abnormal calcium homeostasis such as hyperparathyroidism, renalosteodystrophy and osteoporosis.
[0084] Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof and from the claims.

\section*{Brief Description of Drawings}
[0085]
Fig. 1 shows the structures of the compounds of the present invention synthesized in Examples 1 to 23.
Fig. 2 shows the scheme of the synthesis of the compound of the present invention of the formula (1) wherein X is 0.

Fig. 3 shows the scheme of the synthesis of the compound of the present invention of the formula (1) wherein X is S.

Fig. 4 shows the scheme of the symthesis of the compound of the present invention of the formula (1) wherein \(\mathrm{Ar}_{1}\) is benzothiazole or benzoxazole.
Fig. 5 shows the structures of the compounds of the present invention synthesized in Examples 24 to 26 and the scheme of the synthesis thereof.
Fig. 6 shows the structures of the compounds of the present invention synthesized in Examples 27 to 32 and the scheme of the synthesis thereof.
Fig. 7 shows the structures of the compounds of the present invention synthesized in Examples 33 to 36 and the scheme of the synthesis thereof.
Fig. 8 shows the structures of the compounds of the present invention synthesized in Examples 37 to 40 and the scheme of the synthesis thereof.
Fig. 9 shows the structures of the compounds of the present invention synthesized in Examples 41 and 42 and the scheme of the synthesis thereof.
Fig. 10 shows the structures of the compounds of the present invention synthesized in Examples 43 to 56.

\section*{EP 0933354 A1}

Fig. 11 shows the structures of the compounds of the present invention synthesized in Examples 57 to 70.
Fig. 12 shows the structures of the compounds of the present invention synthesized in Examples 71 to 84.
Fig. 13 shows the structures of the compounds of the present invention synthesized in Examples 85 and 86. Fig. 14 shows the structure of the compound of the present invention synthesized in Example 88 and the scheme of the synthesis thereof.
Fig. 15 shows the structures of the compounds of the present invention synthesized in Examples 89 and 90 .
Fig. 16 shows the structure of the compound of the present invention synthesized in Examples 91 to 93 and the scheme of the synthesis thereof.
Fig. 17 shows the structures of the compounds of the present invention synthesized in Examples 94 to 96 and the scheme of the synthesis thereof.
Fig. 18 shows the structures of the compounds of the present irvention synthesized in Examples 97 to 100 and the scherne of the symthesis thereot.
Fig. 19 shows the structures of the compounds of the present invention synthesized in Examples 101 to 103 and the scheme of the synthesis thereof.
Fig. 20 shows the structures of the compounds of the present invention synthesized in Examples 104 to 106 and the scheme of the synthesis thereof.
Fig. 21 shows the structures of the compounds of the present invention synthesized in Examples 107 to 109 and the scheme of the synthesis thereof.
Fig. 22 shows the structures of the compounds of the present invention symhesized in Examples 110 to 112 and the scheme of the synthesis thereof.
Fig. 23 shows the structures of the compounds of the present invention synthesized in Examples 113 to 115 and the scheme of the synthesis thereof.
Fig. 24 shows the structures of the compounds of the present invention synthesized in Examples 116 to 118 and the scheme of the synthesis thereof.
Fig. 25 shows the structures of the compounds of the present irvention synthesized in Examples 119 to 121 and the scheme of the synthesis thereof.
Fig. 26 shows the structures of the compounds of the present invention synthesized in Examples 122 to 134.
Fig. 27 shows the structures of the compounds of the present invention synthesized in Examples 135 to 147.
Fig. 28 shows the structures of the compounds of the present invention synthesized in Examples 148 to 189.
Fig. 29 shows the structures of the compounds of the present invention synthesized in Examples 190 to 231.
Fig. 30 shows the structures of the compounds of the present invention synthesized in Examples 232 to 271. Fig. 31 shows the structures of the compounds of the present invention synthesized in Examples 272 to 313. Fig. 32 shows the structures of the compounds of the present invention synthesized in Examples 314 to 355. Fig. 33 shows the structures of the compounds of the present irvention synthesized in Examples 356 to 387. Fig. 34 shows the structures of the compounds of the present invention synthesized in Examples 388 to 407. Fig. 35 shows the structures of the compounds of the present invention synthesized in Examples 408 to 413. Fig. 36 shows the structures of the compounds of the present invention synthesized in Examples 416 to 428. Fig. 37 shows the structures of the compounds of the present invention synthesized in Examples 429 to 441. Fig. 38 shows the structures of the compounds of the present invention synthesized in Examples 442 to 455. Fig. 39 shows the structures of the compounds of the present invention synthesized in Examples 456 to 469. Fig. 40 shows the structures of the compounds of the present invention synthesized in Examples 470 to 480. Fig. 41 shows the structures of the compounds of the present invention synthesized in Examples 481 to 490. Fig. 42 shows the structures of the compounds of the present invention synthesized in Examples 491 to 495. Fig. 43 shows the structures of the compounds of the present invention synthesized in Examples 496 to 504. Fig. 44 shows the structures of the compounds of the present invention synthesized in Examples 505 to 517. Fig. 45 shows the structures of the compounds of the present invention synthesized in Examples 518 to 529. Fig. 46 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K -2027 was administered.
Fig. 47 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K -2052 was administered.
Fig. 48 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K -2076 was administered.
Fig. 49 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2087 was administered.
Fig. 50 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invertion K - 2117 was administered.
Fig. 51 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2240 was administered.

\section*{EP 0933354 A1}

Fig. 52 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention \(\mathrm{K}-2243\) was administered.
Fig. 53 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2246 was administered.

Fig. 54 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2247 was administered.
Fig. 55 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2250 was administered.
Fig. 56 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2257 was administered.
Fig. 57 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2259 was administered.
Fig. 58 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2262 was administered.
Fig. 59 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2263 was administered.
Fig. 60 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2264 was administered.
Fig. 61 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2265 was administered.
Fig. 62 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2266 was administered.
Fig. 63 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2267 was administered.
Fig. 64 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2269 was administered.
Fig. 65 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention \(\mathrm{K}-2270\) was administered.
Fig. 66 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2271 was administered.
Fig. 67 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2272 was administered.
Fig. 68 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2279 was administered.
Fig. 69 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2280 was administered.
Fig. 70 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2281 was administered.
Fig. 71 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2282 was administered.
Fig. 72 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2283 was administered.
Fig. 73 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2284 was administered.
Fig. 74 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention \(\mathrm{K}-2286\) was administered.
Fig. 75 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2287 was administered.
Fig. 76 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2288 was administered.
Fig. 77 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2289 was administered.
Fig. 78 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2290 was administered.
Fig. 79 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2291 was administered.
Fig. 80 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2292 was administered.

Fig. 81 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention \(\mathrm{K}-2293\) was administered.
Fig. 82 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2294 was administered.

Fig. 83 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2296 was administered.
Fig. 84 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention \(\mathrm{K}-2297\) was administered.
Fig. 85 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2298 was administered.
Fig. 86 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2299 was administered.
Fig. 87 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2300 was administered.
Fig. 88 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2301 was administered.
Fig. 89 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2302 was administered.
Fig. 90 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2303 was administered.
Fig. 91 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2304 was administered.
Fig. 92 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention K-2305 was administered.
Fig. 93 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present invention \(\mathrm{K}-2309\) was administered.
Fig. 94 shows changes in the plasma \(\mathrm{Ca}^{2+}\) level of the rats to which the compound of the present irvention K-2310 was administered.
Fig. 95 shows changes in the serum PTH level of the rats to which the compound of the present invention K-2076, K-2117 or K-2259 was administered.
Fig. 96 shows relative changes in the serum PTH level of the rats to which the compound of the present invention K-2076, K-2117 or K-2259 was administered to the pre-administration level.

\section*{Preferred Embodiments of the Invention}
[0086] The present invention describes inorganic ion receptor modulating agents able to mimic or block an effect of an inorganic ion at an inorganic ion receptor. The preferred use of inorganic ion receptor modulating agents is to treat a disease or disorder by modulating inorganic ion receptor activity. Preferably, the molecules are used to treat diseases or disorders characterized by abnormal ion homeostasis, more preferably abnormal calcium homeostasis. Other uses of inorganic ion receptor modulating agents, such as diagnostics uses, are known in the art. Nemeth et al., PCT/US93/01642, international Publication Number WO 94/18959.

\section*{1. CALCIUM RECEPTORS}
[0087] Calcium receptors and nucleic acid encoding calcium receptors are described by Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959. Calcium receptors are present on different cell types such as parathyroid cell, bone osteoclast, juxtaglomenular kidney cell, proximal tubule kidney cell, distal tubule kidney cell, central nervous system cell, peripheral nervous system cell, cell of the thick ascending limb of Henle's loop and/or collecting duct, keratinocyte in the epidermis, parafollicular cell in the thyroid (C-cell), intestinal cell, trophoblast in the placenta, platelet, vascular smooth muscle cell, cardiac atrial cell, gastrin-secreting cell, glucagon-secreting cell, kidney mesangial cell, mammary cell, beta cell, tat/adipose cell, immune cell, and Gltract cell. The calcium receptor on these cell types may be different. Ht is also possible that a cell can have more than one type of calcium receptor.
[0088] Comparison of calcium receptor activities and amino acid sequences from different cells indicate that distinct calcium receptor types exist. For example, calcium receptors can respond to a variety of di- and trivalent cations. The parathyroid calcium receptor responds to calcium and \(\mathrm{Gd}^{3+}\), while osteoclasts respond to divalent cations such as calcium but does not respond to \(\mathrm{Gd}^{3+}\). Thus, the parathyroid calcium receptor is pharmacologically distinct from calcium receptor on the osteoclast.
[0089] On the other hand, the nucleic acid sequences encoding calcium receptors present in parathyroid cells and C-
cells indicate that these receptors have a very similar amino acid structure. Nevertheless, calcimimetic compounds exhibit differential pharmacology and regulate different activities at parathyroid cells and C -cells. Thus, pharmacological properties of calcium receptors may vary significantly depending upon the cell type or organ in which they are expressed even though the calcium receptors may have similar structures.
5 [0090] Calcium receptors, in general, have a low affinity for extracellular \(\mathrm{Ca}^{2+}\) (apparent \(\mathrm{K}_{d}\) generally greater than about 0.5 mM ). Calcium receptors may include a free or bound effector mechanism as defined by Cooper, Bloom and Roth, "The Biochemical Basis of Neuropharmacology", Ch. 4, and are thus distinct from intracellular calcium receptors, e.g., calmodulin and the troponins.
[0091] Calcium receptors respond to changes in extracellular calcium levels. The exact changes depend on the par-
[0096] The \(\mathrm{EC}_{50}\) is the concentration of the molecule which evokes a hali-maximal effect. The \(\mathrm{IC}_{50}\) is the concentration of molecule which causes a hali-maximal blocking effect. The \(\mathrm{EC}_{50}\) or \(\mathrm{IC}_{50}\) can be determined by assaying one or
more of the activities of an inorganic ion at an inorganic ion receptor. Preferably, such assays are specific to a particular tion of molecule which causes a half-maximal blocking effect. The \(E \mathrm{C}_{50}\) or \(\mathrm{IC}_{50}\) can be determined by assaying one or
more of the activities of an inorganic ion at an inorganic ion receptor. Preferably, such assays are specific to a particular calcium receptor. For example, assays which measure hormones whose production or secretion is modulated by a particular inorganic ion receptor are preferred.
[0097] Increases in \(\left[\mathrm{Ca}^{2+}\right]\); can be detected using standard techniques such as by using fluorimetric indicators or by ticular receptor and cell line containing the receptor. For example, the in vitro effect of calcium on the calcium receptor in a parathyroid cell include the following:
1. An increase in internal calcium. The increase is due to the influx of external calcium and/or mobilization of internal calcium. Characteristics of the increase in internal calcium include the following:
(a) A rapid (time to peak < 5 seconds) and transient increase in \(\left[\mathrm{Ca}^{2+}\right]_{\text {; }}\), that is refractory to inhibition by 1 mM \(\mathrm{La}^{3+}\) or \(1 \mathrm{mM} \mathrm{Gd}^{3+}\) and is abolished by pretreatment with ionomycin (in the absence of extracellular \(\mathrm{Ca}^{2+}\) );
(b) The increase is not inhibited by dihydropyridines;
(c) The transient increase is abolished by pretreatment for 10 minutes with 10 mM sodium fluoride;
(d) The transient increase is diminished by pretreatment with an activator of protein kinase \(C\) (PKC), such as phorbol myristate acetate (PMA), mezerein or ( - -indolactam V . The overall effect of the protein kinase C activator is to shift the concentration-response curve to calcium to the right without affecting the maximal response; and
(e) Treatment with pertussis toxin ( \(100 \mathrm{ng} / \mathrm{ml}\) for \(\mathbf{>} \mathbf{4}\) hours) does not affect the increase.
2. A rapid (< 30 seconds) increase in the formation of inositol-1,4,5-triphosphate or diacylglycerol. Treatment with pertussis toxin ( \(100 \mathrm{ng} / \mathrm{ml}\) for \(>4\) hours) does not affect this increase;
3. The inhibition of dopamine- and isoproterenol-stimulated cyclic AMP formation. This effect is blocked by pretreatment with pertussis toxin ( \(100 \mathrm{ng} / \mathrm{ml}\) for \(>4\) hours); and
4. The inhibition of PTH secretion. Treatment with pertussis toxin ( \(100 \mathrm{ng} / \mathrm{ml}\) for \(>4\) hours) does not affect the inhibition in PTH secretion.
[0092] Using techniques known in the art, the effect of calcium on other calcium receptors in different cells can be readily determined. Such effects may be similar in regard to the increase in internal calcium observed in parathyroid cells. However, the effect is expected to differ in other aspects, such as causing or inhibiting the release of a hormone other than parathyroid hormone.

\section*{II. INORGANIC ION RECEPTOR MODULATING AGENTS}
[0093] Inorganic ion receptor modulating agents either evokes one or more inorganic ion receptor activities, or blocks one or more inorganic ion receptor activities caused by an extracellular inorganic ion. Calcium receptor modulating agents can mimic or block an effect of extracellular \(\mathrm{Ca}^{2+}\) on a calcium receptor. Preferred calcium receptor modulating agents are calcimimetics and calcilytics.
[0094] Inorganic ion receptor modulating agents can be identified by screening molecules which are modeled after a molecule shown to have a particular activity (i.e., a lead molecule). Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959.
[0095] Preferred inorganic ion receptor modulation agents described by the present invention have considerably low \(\mathrm{EC}_{50}\) values. measuring an increase in \(\mathrm{Cl}^{-}\)current in a Xenopus oocyte injected with nucleic acid coding for a calcium receptor. Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959. For example, poly(A) \({ }^{+}\)mRNA can be obtained from cells expressing a calcium receptor, such as a parathyroid cell, bone osteoclast, juxtaglomerular kidney cell, proximal tubule kidney cell, distal tubule kidney cell, cell of the thick ascending limb of Henle's loop and/or collect-
ing duct, keratinocyte in the epidermis, parafollicular cell in the thyroid (C-cell), intestinal cell, central nervous system cell, peripheral nervous system cell, trophoblast in the placenta, platelet, vascular smooth muscle cell, cardiac atrial cell, gastrin-secreting cell, glucagon-secreting cell, kidney mesangial cell, mammary cell, beta cell, tat/adipose cell, immune cell, and GI tract cell. Preferably, the nucleic acid is from a parathyroid cell, C-cell, or osteoclast. More prefer- ably, the nucleic acid encodes a calcium receptor and is present on a plasmid or vector.
[0098] Preferably, the molecule is either a calcimimetic or calcilytic having an \(\mathrm{EC}_{50}\) or \(\mathrm{IC}_{50}\) at a calcium receptor of less than or equal to 5 mM , and even more preferably less than or equal to \(1 \mathrm{mM}, 100 \mathrm{nmolar}, 10 \mathrm{nmolar}\), or 1 nmolar. Such lower \(\mathrm{EC}_{50}\) 's or \(\mathrm{IC}_{50}\) 's are advantageous since they allow lower concentrations of molecules to be used in vivo or in vitro for therapy or diagnosis. The discovery of molecules with such low \(E C_{50}\) 's and \(I C_{50}\) 's enables the design and synthesis of additional molecules having similar potency and effectiveness.
[0099] In preferred embodiments the calcium receptor modulating agent is a calcimimetic which inhibits parathyroid hormone secretion from a parathyroid cell in vitro and decreases PTH secretion in vivo; stimulates calcitonin secretion from a C -cell in vitro and elevates calcitonin levels in vivo; or blocks osteoclastic bone resorption in vitro and inhibits bone resorption in vivo.
[0100] In another preferred embodiment the calcium receptor modulating agent is a calcilytic which evokes the secretion of parathyroid hormone from parathyroid cells in vitro and elevates the level of parathyroid hormone in vivo.
[0101] Preferably, the agent selectively targets inorganic ion receptor activity, more preferably calcium receptor activity, in a particular cell. By "selectively" is meant that the molecule exerts a greater effect on inorganic ion receptor activity in one cell type than at another cell type for a given concentration of agent. Preferably, the differential effect is 10 -fold or greater. Preferably, the concentration refers to blood plasma concentration and the measured effect is the production of extracellular messengers such as plasma calcitonin, parathyroid hormone or plasma calcium. For example, in a preferred embodiment, the agent selectively targets PTH secretion over calcitonin secretion.
[0102] In another preferred embodiment, the molecule has an \(\mathrm{EC}_{50}\) or \(\mathrm{IC}_{50}\) less than or equal to 1 mM at one or more, but not all cells chosen from the group consisting of parathyroid cell, bone osteoclast, juxtaglomerular kidney cell, proximal tubule kidney cell, distal tubule kidney cell, cell of the thick ascending limb of Henle's loop and/or collecting duct, central nervous system cell, peripheral nervous system cell, keratinocyte in the epidermis, parafollicular cell in the thyroid (C-cell), intestinal cell, trophoblast in the placenta, platelet, vascular smooth muscle cell, cardiac atrial cell, gastrinsecreting cell, glucagon-secreting cell, kidney mesangial cell, mammary cell, beta cell, fatadipose cell, immune cell and Gl tract cell.
[0103] Preferably, inorganic ion receptor modulating agents mimic or block all of the effects of extracellular ion in a cell having an inorganic ion receptor. For example, calcium receptor modulating agents preferably mimic or block all of the effects of extracellular ion in a cell having a calcium receptor. Calcimimetics need not possess all the biological activities of extracellular \(\mathrm{Ca}^{2+}\), but, rather, at least one such activity is mimicked. Similarly, calcilytics need not reduce or prevent all of the activities caused by extracellular calcium. Additionally, different calcimimetics and different calcilytics do not need to bind to the same site on the calcium receptor as does extracellular \(\mathrm{Ca}^{2+}\) to exert their effects.

\section*{A. Calcimimetics}
[0104] The ability of molecules to mimic or block the activity of \(\mathrm{Ca}^{2+}\) at calcium receptors can be determined using procedures known in the art and described by Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959. For example, calcimimetics possess one or more and preferably all of the following activities when tested on parathyroid cells in vitro:
1. The molecule causes a rapid (time to peak < 5 seconds) and transient increase in \(\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}\) that is refractory to inhibition by \(1 \mathrm{mM} \mathrm{La}{ }^{3+}\) or \(1 \mathrm{mM} \mathrm{Gd} d^{3+}\). The increase in \(\left[\mathrm{Ca}^{2+}\right]_{i}\) persists in the absence of extracellular \(\mathrm{Ca}^{2+}\) but is abolished by pretreatment with ionomycin (in the absence of extracellular \(\mathrm{Ca}^{2+}\) );
2. The molecule potentiates increases in \(\left[\mathrm{Ca}^{2+}\right]_{i}\) elicited by submaximal concentrations of extracellular \(\mathrm{Ca}^{2+}\); 3. The increase in \(\left[\mathrm{Ca}^{2}{ }^{2}\right]_{i}\) elicited by extracellular \(\mathrm{Ca}^{2+}\) is not inhibited by dihydropyridines;
4. The transient increase in \(\left[\mathrm{Ca}^{2+}\right]_{i}\) caused by the molecule is abolished by pretreatment for 10 minutes with 10 mM sodium fluoride;
5. The transient increase in \(\left[\mathrm{Ca}^{2}{ }^{2}\right]_{i}\) caused by the molecule is diminished by pretreatment with an activator of protein kinase \(C\) (PKC), such as phorbol myristate acetate (PMA), mezerein or (-)-indolactam V. The overall effect of the protein kinase \(C\) activator is to shift the concentration-response curve of the molecule to the right without affecting the maximal response;
6. The molecule causes a rapid (< 30 seconds) increase in the formation-of inositol-1,4,5-triphosphate and/or diacylglycerol;
7. The molecule inhibits dopamine- or isoproterenol-stimulated cyclic AMP formation;
8. The molecule inhibits PTH secretion;
9. Pretreatment with pertussis toxin ( \(100 \mathrm{ng} / \mathrm{ml}\) for \(>4\) hours) blocks the inhibitory effect of the molecule on cyclic AMP formation but does not effect increases in \(\left[\mathrm{Ca}^{2+}\right]_{\text {; }}\), inositol-1,4,5-triphosphate, or diacylglycerol, nor decreases in PTH secretion;
10. The molecule elicits increases in \(\mathrm{Cl}^{r}\) current in Xenopus oocytes injected with poly \((\mathrm{A})^{+}\)- enriched mRNA from bovine or human parathyroid cells, but is without effect in Xenopus oocytes injected with water, or rat brain or liver mRNA; and
11. Similarly, using a cloned calcium receptor from a parathyroid cell, the molecule will elicit a response in Xenopus oocytes injected with the specific cDNA or mRNA encoding the receptor.
[0105] Different calcium activities can be measured using available techniques. Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959. Parallel definitions of molecules mimidxing \(\mathrm{Ca}^{2+}\) activity on other calcium responsive cell, preferably at a calcium receptor, are evident from the examples provided herein and Nemeth et al., PCTNS93/01642, International Publication Number WO 94/18959.
[0106] Preferably, the agent as measured by the bioassays described herein, or by Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959, has one or more, more preferably all of the following activities: evokes a transient increase in internal calcium, having a duration of less that 30 seconds (preferably by mobilizing internal calcium) ; evokes a rapid increase in \(\left[\mathrm{Ca}^{2+}\right]_{\text {i }}\), occurring within thirty seconds; evokes a sustained increase (greater than thirty seconds) in \(\left[\mathrm{Ca}^{2}\right]_{\mathrm{i}}\) (preferably by causing an influx of external calcium); evokes an increase in inositol- \(1,4,5-\mathrm{tr}\) phosphate or diacylglycerol levels, preferably within less than 60 seconds; and inhibits dopamine- or isoproterenol-stimulated cyclic AMP formation.
[0107] The transient increase in \(\left[\mathrm{Ca}^{2}\right]_{\mathrm{i}}\) is preferably abolished by pretreatment of the cell for ten minutes with 10 mM sodium fluoride, or the transient increase is diminished by brief pretreatment (not more than ten minutes) of the cell with an activator of protein kinase C , preferably, phorbol myristate acetate (PMA), mezerein or ( - --indolactam V .

\section*{B. Calcilytics}
[0108] The ability of a molecule to block the activity of external calcium can be determined using standard techniques. Nemeth et al., PCT/US93/01642, International Publication Number WO 94/18959. For example, molecules which block the effect of external calcium, when used in reference to a parathyroid cell, possess one or more, and preferably all of the following characteristics when tested on parathyroid cells in vitro:
1. The molecule blocks, either partially or completely, the ability of increased concentrations of extracellular \(\mathrm{Ca}^{\mathbf{2 +}}\) to:
(a) increase \(\left[\mathrm{Ca}^{2+}\right]_{\text {i }}\)
(b) mobilize intracellular \(\mathrm{Ca}^{2+}\),
(c) increase the formation of inositol-1,4,5-triphosphate,
(d) decrease dopamine- or isoproterenol-stimulated cyclic AMP formation, and
(e) inhibit PTH secretion;
2. The molecule blocks increases in \(\mathrm{Cl}^{-}\)current in Xenopus cocytes injected with poly (A) \({ }^{+}\)mRNA from bovine or human parathyroid cells elicited by extracellular \(\mathrm{Ca}^{2+}\) or calcimimetic compounds, but not in Xenopus oocytes injected with water or liver mRNA;
3. Similarly, using a cloned calcium receptor from a parathyroid cell, the molecule will block a response in Xenopus oocytes injected with the specitic cDNA, mRNA or cRNA encoding the calcium receptor, elicited by extracellular \(\mathrm{Ca}^{2+}\) or a calcimimetic compound.
[0109] Parallel definitions of molecules blocking \(\mathrm{Ca}^{2+}\) activity on a calcium responsive cell, preferably at a calcium receptor, are evident from the examples provided herein and Nemeth et al., PCT/US93/01642, International Publication

\section*{Ш. TREATMENT OF DISEASES OR DISORDERS}
[0110] A preferred use of the compounds described by the present invention is in the treatment or prevention of different diseases or disorders by modulating inorganic ion receptor activity. The inorganic ion receptor modulating agents of the present invention can exert an affect on a inorganic ion receptor causing one or more cellular effects ultimately producing a therapeutic effect.
[0111] Different diseases and disorders can be treated by the present invention by targeting cells having an inorganic

\section*{EP 0933354 A1}
ion receptor, such as a calcium receptor. For example, primary hyperparathyroidism (HPT) is characterized by hypercalcemia and elevated levels of circulating PTH. A defect associated with the major type of HPT is a diminished sensitivity of parathyroid cells to negative feedback regulation by extracellular \(\mathrm{Ca}^{2+}\). Thus, in tissue from patients with primary HPT, the "set-point" for extracellular \(\mathrm{Ca}^{2+}\) is shifted to the right so that higher than normal concentrations of extracellular \(\mathrm{Ca}^{2+}\) are required to depress PTH secretion. Moreover, in primary HPT, even high concentrations of extracellular \(\mathrm{Ca}^{2+}\) often depress PTH secretion only partially. In secondary (uremic) HPT, a similar increase in the set-point for extracellular \(\mathrm{Ca}^{2+}\) is observed even though the degree to which \(\mathrm{Ca}^{2+}\) suppresses PTH secretion is normal. The changes in PTH secretion are paralleled by changes in \(\left[\mathrm{Ca}^{2+}\right]_{j}\) : the set-point for extracellular \(\mathrm{Ca}^{2+}\)-induced increases in \(\left[\mathrm{Ca}^{2}\right]_{i}\) is shifted to the right and the magnitude of such increases is rectuced.

解 are beneticial in the long-term management of both primary and secondary HPT. Such molecules provide the added impetus required to suppress PTH secretion which the hypercalcemic condition alone cannot achieve and, thereby, help to relieve the hypercalcemic condition. Molecules with greater efficacy than extracellular \(\mathrm{Ca}^{2+}\) may overcome the apparent nonsuppressible component of PTH secretion which is particularly troublesome in adenomatous tissue. Alternatively or additionally, such molecules can depress synthesis of PTH, as prolonged hypercalcemia has been shown to depress the levels of preproPTH mRNA in bovine and human adenomatous parathyroid tissue. Prolonged hypercalcemia also depresses parathyroid cell proliferation in vitro. so calcimimetics can also be effective in limiting the parathyroid cell hyperplasia characteristic of secondary HPT.
[0113] Cells other than parathyroid cells can respond directly to physiological changes in the concentration of extracellular \(\mathrm{Ca}^{2+}\). For example, calcitonin secretion from parafollicular cells in the thyroid ( C -cells) is regulated by changes in the concentration of extracellular \(\mathrm{Ca}^{2+}\).
[0114] Isolated osteoclasts respond to increases in the concentration of extracellular \(\mathrm{Ca}^{2+}\) with corresponding increases in \(\left[\mathrm{Ca}^{2+}\right]_{i}\) that arise partly from the mobilization of intracelludar \(\mathrm{Ca}^{2+}\). Increases in \(\left[\mathrm{Ca}^{2+}\right]_{i}\) in osteoclasts are associated with the inhibition of bone resorption. Release of alkaline phosphatase from bone-forming osteoblasts is directly stimulated by calcium.

15] Renin secretion from juxtaglomerular cells in the kidney, like PTH secretion, is depressed by increased concentrations of extracellular \(\mathrm{Ca}^{2+}\). Extracellular \(\mathrm{Ca}^{2+}\) causes the mobilization of intracellular \(\mathrm{Ca}^{2+}\) in these cells. Other kidney cells respond to calcium as follows: elevated \(\mathrm{Ca}^{2+}\) inhibits formation of \(1,25(\mathrm{OH})_{2}\)-vitamin D by proximal tubular cells, stimulates production of calcium-binding protein in distal tubular cells, and inhibits tubular reabsorption of \(\mathrm{Ca}^{2+}\) and \(\mathrm{Mg}^{2+}\) and the action of vasopressin on the medullary thick ascending limb of Henle's loop (MTAL), reduces vasopressin action in the cortical collecting duct cells, and affects vascular smooth muscle cells in blood vessels of the renal glomerulus.
[0116] Calcium also promotes the differentiation of intestinal goblet cells, mammary cells, and skin cells; inhibits atrial natriuretic peptide secretion from cardiac atria; reduces cAMP accumulation in platelets; alters gastrin and glucagon secretion; acts on vascular smooth muscle cells to modify cell secretion of vasoactive factors; and affects cells of the central nervous system and peripheral nervous system.
[0117] Thus, there are sufficient indications to suggest that \(\mathrm{Ca}^{2+}\), in addition to its ubiquitous role as an intracelluar signal, also functions as an extracellular signal to regulate the responses of certain specialized cells. Molecules of this invention can be used in the treatment of diseases or disorders associated with disrupted \(\mathrm{Ca}^{2+}\) responses in these cells.

Speciric diseases and disorders include those of the central nervous system such as seizures, stroke, head trauma, spinal cord injury, hypoxia-induced nerve cell damage such as in cardiac arrest or neonatal distress, epilepsy, neurodegenerative diseases such as Alzheimer's disease, Huntington's disease and Parkinson's disease, dementia, muscle tension, depression, anxiety, panic disorder, obsessive-compulsive disorder, post-traumatic stress disorder, schizophrenia, neuroleptic malignant syndrome, and Tourette's syndrome; diseases involving excess water reabsorption by the kidney such as syndrome of inappropriate ADH secretion (SIAH), cirhosis, heart failure, and nephrosis; hypertension; preventing and/or decreasing renal toxicity from cationic antibiotics (e.g., aminoglycoside antibiotics); gut motility disorders such as diarrhea, and spastic colon; Gl ulcer diseases; Gl absorption diseases such as sarcoidosis; and autoimmune diseases and organ transplant rejection. Whis inorganic ion receptor modulating agents of the present invention will typically be used in therapy human patients, they may be used to treat similar or identical diseases or disorders in other warm-blooded animal species such as other primates, farm animals such as swine, catte, and poultry; and sports animals and pets such as horses, dogs and cats.

\section*{Y. ADMINISTRATION}
[0120] A compound of the present invention, or its pharmaceutically acceptable salt, hydrate or prodrug, can be administered to a human patient per se, or in pharmaceutical compositions where it is mixed with suitable carriers or
excipient(s). Techniques for formulation and administration of drugs may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. Administration of ionmimetics and ionlytics is discussed by Nemeth, et al., PCT/US93/01642, International Publication No. WO 94/18959.
[0121] A "pharmaceutical composition" refers to a mixture of one or more of the compounds described herein, or phar- maceutically acceptable salts, hydrates or prodrugs thereof, with other chemical components, such as physiologically acceptable carriers and excipients. The purpose of a pharmacological composition is to tacilitate administration of a compound to an organism.
[0122] A "prodrug" refers to an agent which is converted into the parent drug in vivo. Prodrugs are often useful because, in some situations, they may be easier to administer than the parent drug. They may, for instance, be bioavailable by oral administration whereas the parent drug is not. The prodrug may also have improved solubility in pharmacological compositions over the parent drug. An example, without limitation, of a prodrug would be a compound of the present invention wherein it is administered as an ester (the "prodrug") to facilitate transmittal across a cell membrane where water solubility is not beneficial, but then it is metabolically hydrolyzed to the carboxylic acid once inside the cell where water solubility is beneficial.
[0123] As used herein, an "ester" is a carboxyl group, as defined herein, wherein \(R\) " is any of the listed groups other than hydrogen.
[0124] As used herein, a "physiologically acceptable carrier" refers to a carrier or diluent that does not cause significant irritation to an organism and does not abrogate the biological activity and properties of the administered compound.
[0125] An "excipient" refers to an inert substance added to a pharmacological composition to further facilitate administration of a compound. Examples, without limitation, of excipients include calcium carbonate, calcium phosphate, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.
[0126] Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, or by injection. Such forms should allow the agent to reach a target cell whether the target cell is present in a multicellular host or in culture. For example, pharmacological agents or compositions injected into the blood stream should be soluble in the concentrations used. Other factors are known in the art, and include considerations such as toxicity and forms which prevent the agent or composition from exerting its effect.
[0127] Agents can also be formulated as pharmaceutically acceptable salts (e.g., acid addition salts) and complexes thereof. The preparation of such salts can facilitate the pharmacological use by altering the physical characteristics of the agent without preventing it from exerting its physiological effect. Examples of useful alterations in physical properties include lowering the melting point to facilitate transmucosal administration and increasing the solubility to facilitate administering higher concentrations of the drug.
[0128] For systemic administration, oral administration is preferred. Alternatively, injection may be used, e.g., intramuscular, intravenous, intraperitoneal, and subcutaneous. For injection, the molecules of the invention are formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the molecules may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms can also be produced.
[0129] Systemic administration can also be by transmucosal or transdermal means, or the molecules can be administered orally. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration may be through nasal sprays, for example, or using suppositories. For oral administration, the molecules are formulated into conventional oral administration dosage forms such as capsules, tablets, and tonics. [0130] For topical administration, the molecules of the invention are formuiated into ointments, salves, gels, or creams, as is generally known in the art.
[0131] Generally, a therapeutically effective amount is between about 1 nmole and 3 mmole of the molecule. preferably 0.1 nmole and 1 mmole depending on its \(\mathrm{EC}_{50}\) or \(\mathrm{IC}_{50}\) and on the age and size of the patient, and the disease or disorder associated with the patient. Generally it is an amount between about 0.1 and \(50 \mathrm{mg} / \mathrm{kg}\), preferably 0.01 and 20 \(\mathrm{mg} / \mathrm{kg}\), animal to be treated.

\section*{Examples}
[0132] Examples of the synthesis of the compounds of the present invention are described below. However, it is to be understood that the present invention is not restricted by the exemplified compounds.
[0133] In Examples 1 to 23, compounds represented by Fig. 1 were synthesized. The compounds of the present invention represented by the formula (1) wherein \(X\) is \(O\) were synthesized in accordance with the scheme of Fig. 2 with the use of 2-, 3- or 4-chlorophenol as the starting material. The compounds of the present invention represented by the formula (1) wherein \(X\) is \(S\) were synthesized in accordance with the scheme of Fig. 3 with the use of 2-or 4 -chlorothi-
ophend as the starting material. However, methylene chloride was used as the solvent in some cases. The compounds of the present invention represented by the formula (1) wherein \(\mathrm{Ar}_{1}\) is benzthiazole or benzoxazole were synthesized in accordance with the scheme of Fig. 4.
[0134] In Examples 24 to 36, the compounds of the present invention were synthesized in accordance with the
[0139] \(548 \mathrm{mg}(4.25 \mathrm{mmol})\) of 3 -chlorophenol was dissolved in 10 ml of acetonitrile. After adding thereto 652 mg ( 4.72 mmol) of potassium carbonate and \(0.56 \mathrm{ml}(4.69 \mathrm{mmol})\) of 1,4 -dibromobutane at room temperature, the mixture was reacted while heating to \(80^{\circ} \mathrm{C}\) under reflux for 3 hours. After the completion of the reaction, the reaction mixture was allowed to stand at room temperature and water was added thereto followed by separating extraction with ethyl acetate. 50 The organic layer thus obtained was washed with a saturated aqueous solution of sodium chloride and dried over sodium sulfate. Then the organic layer was concentrated under reduced pressure and the residue thus obtained was purified by silica gel column chromatography ( 50 g ; hexane/acetone \(=12: 1\) ) to thereby give \(846 \mathrm{mg}(3.31 \mathrm{mmol})\) of the compound \(Z\) as a colorless and transparent syrup at a yield of \(88.3 \%\).
[0140] Next, 846 mg ( 3.31 mmol ) of the compound 7 obtained above was dissolved in 18 ml of acetonitrile. After adding thereto 523 mg ( 3.78 mmol ) of potassium carbonate and 550 mg ( 3.64 mmol ) of ( \(R\) )-3-methoxy-a-methylbenzylamine at room temperature, the mixture was stirred while heating to \(90^{\circ} \mathrm{C}\) under reflux for 12 hours. After the completion of the reaction, the reaction mixture was allowed to stand at room temperature and water was added thereto. Then it was subjected to separating extraction with ethyl acetate and washed with a saturated aqueous solution
of sodium chloride. The organic layer thus obtained was dried over sodium sulfate and concentrated under reduced pressure. The residue thus obtained was purified by silica gel column chromatography ( 100 g ; chloroform/methanol = 50 : 1) to thereby give 481 mg ( 1.46 mmol ) of the compound \(\underline{8}\) as a pale yellow and transparent syrup at a yield of 45.0\%.

MS m/z :333. 1 H -NMR d: 1.35 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{Jm} 6.5 \mathrm{~Hz}\) ), 1.57-1.67 (2H, m), 1.73-1.83 (2H, m), 2.46-2.60 (2H, m), 3.74 (1H, q). \(3.81(3 \mathrm{H}, \mathrm{s}), 3.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}), 6.85-6.86(1 \mathrm{H}, \mathrm{m}), 7.5-7.18(1 \mathrm{H}, \mathrm{dd}\), \(\mathrm{J}=2.7 \mathrm{~Hz}\) ), 7.22-7.26(1H, m).

\section*{Example 5: Synthesis of compound 10}
[0141] The two steps described above were repeated but substituting the 1,4 -dibromobutane with 1,5 -dibromopentane to thereby give the desired compound 10.

MS m/z : 347. \(1 \mathrm{H}-\mathrm{NMR} d: 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}), 1.43-1.56(4 \mathrm{H}, \mathrm{m}), 1.72-1.77(2 \mathrm{H}, \mathrm{m}), 2.43-2.56(2 \mathrm{H}, \mathrm{m}), 3.73(1 \mathrm{H}\), \(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 6.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=8.5 \mathrm{~Hz}), 6.70-6.79(1 \mathrm{H}, \mathrm{m}), 6.86-6.91(4 \mathrm{H}\), \(\mathrm{m}), 7.17\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0 \mathrm{~Hz}\) ), 7.22 -7.26 ( \(1 \mathrm{H}, \mathrm{m}\) ).

Example 6: Synthesis of compound 12
[0142] The two steps described above were repeated but substituting the 1,4 -dibromobutane with 1,6 -dibromohexane to thereby give the desired compound 12 .

MS m/z : 361. 1H-NMR d: 1.35 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\) ), 1.33-1.53 ( \(6 \mathrm{H}, \mathrm{m}\) ), 1.72-1.77 ( \(2 \mathrm{H}, \mathrm{m}\) ), 3.73 ( \(1 \mathrm{H}, \mathrm{m}\) ), 3.81 ( \(3 \mathrm{H}, \mathrm{s}\) ). \(3.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 6.74-6.79(2 \mathrm{H}, \mathrm{m}), 6.86-6.91(4 \mathrm{H}, \mathrm{m}), 7.17(\mathrm{HH}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.22-7.26(1 \mathrm{H}, \mathrm{m})\).

\section*{Example 7: Synthesis of compound 14}
[0143] 362 mg ( 2.82 mmol ) of 4-chlorophenol was dissolved in 5 ml of acetonitrile. After adding thereto 429 mg ( 3.10 \(\mathrm{mmol})\) of potassium carbonate and \(0.36 \mathrm{ml}(3.01 \mathrm{mmol})\) of dibromobutane at room temperature, the mixture was reacted while heating to \(80^{\circ} \mathrm{C}\) under reflux for 3 hours. After the completion of the reaction, the reaction mixture was allowed to stand at room temperature and water was added thereto followed by separating extraction with ethyl acetate. The organic layer thus obtained was washed with a saturated aqueous solution of sodium chloride and dried over sodium sulfate. Then the organic layer was concentrated under reduced pressure and the residue thus obtained was purified by silica gel column chromatography ( \(\mathbf{5 0} \mathrm{g}\); hexane/acetone \(=12: 1\) ) to thereby give \(414 \mathrm{mg}(1.62 \mathrm{mmol})\) of the compound 13 as a colorless and transparent syrup at a yield of \(69.4 \%\).
[0144] Next, 846 mg ( 3.31 mmol ) of the compound 13 cbtained above was dissolved in 18 ml of acetonitrile. After adding thereto 523 mg ( 3.78 mmol ) of potassium carbonate and \(550 \mathrm{mg}(3.64 \mathrm{mmol})\) of \((\mathrm{R})-3\)-methoxy-a-methylbenzylamine at room temperature, the mixture was stirred while heating to \(90^{\circ} \mathrm{C}\) under reflux for 12 hours. After the completion of the reaction, the reaction mixture was allowed to stand at room temperature and water was added thereto. Then it was subjected to separating extraction with ethyl acetate and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over sodium sulfate and concentrated under reduced pressure. The residue thus obtained was purified by silica gel column chromatography ( 100 g ; chloroform/methanol \(=50\) : 1) to thereby give 481 mg ( 1.46 mmol ) of the compound 14 as a pale yellow and transparent syrup at a yield of \(45.0 \%\).

MS \(\mathrm{m} / \mathrm{z}: 333.1 \mathrm{H}-\mathrm{NMR}\) d: \(1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.56-1.67(2 \mathrm{H}, \mathrm{m}), 1.73-1.83(2 \mathrm{H}, \mathrm{m})\), 2.46-2.60(2H, m), 3.72\(3.76(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 6.77 .6 .79(3 \mathrm{H}, \mathrm{m}), 6.88-6.90(2 \mathrm{H}, \mathrm{m}), 7.19-7.26(3 \mathrm{H}, \mathrm{m})\).

Example 8: Synthesis of compound 16
[0145] The two steps described above were repeated but substituting the 1,4 -dibromobutane with 1,5 -dibromopentane to thereby give the desired compound 16.

MS m/z : 347. 1H-NMRd: \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.43-1.56(4 \mathrm{H}, \mathrm{m}), 1.71-1.77(2 \mathrm{H}, \mathrm{m}), 2.42-2.55(2 \mathrm{H}, \mathrm{m}), 3.72(2 \mathrm{H}\), \(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 6.76-6.80(3 \mathrm{H}, \mathrm{m}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 7.19-7.26(3 \mathrm{H}, \mathrm{m})\).

\section*{EP 0933354 A1}

\section*{Example 9: Synthesis of compound 18}
[0146] The two steps described above were repeated but substituting the 1,4 -dibromobutane with 1,6 -dibromohexane to thereby give the desired compound 18 .
[0147] 330 mg ( 2.28 mmol ) of 2-chlorothiophenol was dissolved in 6.5 ml of methylene chloride. After adding thereto \(0.35 \mathrm{ml}(2.51 \mathrm{mmol})\) of triethylamine and \(0.23 \mathrm{ml}(2.26 \mathrm{mmol})\) of 1.3 -dibromopropane at room temperature, the mixture was reacted while heating to \(45^{\circ} \mathrm{C}\) under reflux for 6 hours. After the completion of the reaction, \(0.30 \mathrm{ml}(2.15 \mathrm{mmol})\) of triethylamine was dropped again into the reaction at room temperature. Then 350 mg ( 2.31 mmol ) of (R)-3-methoxy5 a-methylbenzylamine was added thereto and the resulting mixture was stirred while heating to \(90^{\circ} \mathrm{C}\) under reflux for 12 hours. After the completion of the reaction, the reaction mixture was allowed to stand at room temperature and water was added thereto. Then it was subjected to separating extraction with ethyl acetate and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over sodium sulfate and concentrated under reduced pressure. The residue thus obtained was purified by silica gel column chromatography ( 50 g ; chloroform/methanol \(=65: 1\) ) to thereby give \(102 \mathrm{mg}(0.304 \mathrm{mmol})\) of the compound 20 as a pale yellow and transparent syrup at an overall yield of the two steps of \(13.2 \%\).

MS m/z : 335. 1H-NMR d: \(1.35(3 \mathrm{H}, \mathrm{d} . \mathrm{J}=6.7 \mathrm{~Hz}), 1.79-1.86(2 \mathrm{H}, \mathrm{m}), 2.55-2.69(2 \mathrm{H}, \mathrm{m}), 2.91-3.03(2 \mathrm{H}, \mathrm{m}), 3.74(1 \mathrm{H}\), q. J=6.7Hz), \(3.81(3 \mathrm{H}, \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.88-6.90(2 \mathrm{H}, \mathrm{m}), 7.07-7.11(1 \mathrm{H}, \mathrm{m}), 7.18-7.26(3 \mathrm{H}\), m), \(7.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz})\).

\section*{Example 11: Synthesis of compound 22}
[0148] The two steps described above were repeated but substituting the 1,3-dibromopropane with 1,4-dibromopentane to thereby give the desired compound 22.

MS m/z : 349. 1H-NMR d: \(1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.58-1.72(4 \mathrm{H}, \mathrm{m}), 2.43-2.56(2 \mathrm{H}, \mathrm{m}), 2.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.72\) \((1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 6.87-6.88(2 \mathrm{H}, \mathrm{m}), 7.07-7.10(1 \mathrm{H}, \mathrm{m}), 7.18-7.26(3 \mathrm{H}, \mathrm{m}), 7.35\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}\) ).

\section*{Example 12: Synthesis of compound 24}
[0149] The two steps described above were repeated but substituting the 1,3 -dibromopropane with 1,5 -dibromopentane to thereby give the desired compound 24.

MS m/z : 363. 1H-NMR d: \(1.34(3 H, d, J=7.0 \mathrm{~Hz}), 1.42-1.55(4 \mathrm{H}, \mathrm{m}), 1.64-1.72(2 \mathrm{H}, \mathrm{m}), 2.40-2.53(2 \mathrm{H}, \mathrm{m}), 2.90(2 \mathrm{H}\), \(t, J=7.5 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 6.77-6.79(1 \mathrm{H}, \mathrm{m}), 6.87-6.91(2 \mathrm{H}, \mathrm{m}), 7.07-7.10(1 \mathrm{H}, \mathrm{m}), 7.18-7.26\) (3H, m), 7.35 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ).

\section*{Example 13: Synthesis of compound 26}
[0150] The two steps described above were repeated but substituting the 1,3-dibromopropane with 1,6-dibromohexane to thereby give the desired compound 26.

MS m/z : 377. \(1 \mathrm{H}-\mathrm{NM}\) d d: \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.41-1.50(4 \mathrm{H}, \mathrm{m}), 1.64-1.70(2 \mathrm{H}, \mathrm{m}), 2.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 3.72\) (1H, q, J=6.5Hz), \(3.81(3 \mathrm{H}, \mathrm{s}), 6.77-6.79(1 \mathrm{H}, \mathrm{m}), 6.88-6.89(2 \mathrm{H}, \mathrm{m}), 7.06-7.11(1 \mathrm{H}, \mathrm{m}), 7.19-7.26(3 \mathrm{H}, \mathrm{m}), 7.35\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ).

\section*{Example 14: Synthesis of compound 28} \(1.60 \mathrm{ml}(11.5 \mathrm{mmol})\) of triethytamine and \(0.63 \mathrm{ml}(4.10 \mathrm{mmol})\) of 1,3 -dibromopropane at room temperature, the mixture was reacted while heating to \(45^{\circ} \mathrm{C}\) under reflux for 3 hours. After the completion of the reaction, the methylene chloride
was once removed under reduced pressure and the residue was dissolved in 9 ml of acetonitrile. Next, 500 mg ( 3.62 mmol ) of potassium carbonate was added thereto at room temperature and 350 mg ( 2.31 mmol ) of ( R )-3-methoxy-amethylbenzylamine was dropped thereinto. Then the resulting mixture was stirred while heating to \(90^{\circ} \mathrm{C}\) under reflux for 12 hours. After the completion of the reaction, the reaction mixture was allowed to stand at room temperature and aqueous solution of sodium chioride. The organic layer thus obtained was dried over sodium sulfate and concentrated under reduced pressure. The residue thus obtained was purified by silica gel column chromatography ( 75 g ; chloroform/methanol \(=65: 1\) ) to thereby give \(397 \mathrm{mg}(1.13 \mathrm{mmol})\) of the compound 28 as a pale yellow and transparent syrup at an overall yield of the two steps of \(33.1 \%\).

MS m/z : 335. 1H-NMR d: \(1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.72-1.78(2 \mathrm{H}, \mathrm{m}), 2.50-2.55(1 \mathrm{H}, \mathrm{m}), 2.56-2.64(1 \mathrm{H}, \mathrm{m}), 2.86-\) \(2.97(2 \mathrm{H}, \mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 6.77-6.79(1 \mathrm{H}, \mathrm{m}), 6.85-6.89(2 \mathrm{H}, \mathrm{m}), 7.22-7.25(4 \mathrm{H}, \mathrm{m})\).

Example 15: Synthesis of compound 30
[0152] The two steps described above were repeated but substituting the 1,3-dibromopropane with 1,4-dibromobutane to thereby give the desired compound \(\mathbf{3 0}\).

MS m/z : 363. 1H-NMR d: \(1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.39-1.49(2 \mathrm{H}, \mathrm{m}), 1.60(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.39-2.44(1 \mathrm{H}, \mathrm{m}), 2.86\) ( \(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\) ), \(3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 6.77-6.79(1 \mathrm{H}, \mathrm{m}), 6.87-6.88(2 \mathrm{H}, \mathrm{m}), 7.20-7.26(5 \mathrm{H}, \mathrm{m})\).

Example 16: Synthesis of compound 32
[0153] The two steps described above were repeated but substituting the 1,3-dibromopropane with 1,5-dibromopentane to thereby give the desired compound 32 .

MS m/z : 377. 1H-NMR d: \(1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}), 1.27-1.48(4 \mathrm{H}, \mathrm{m}), 1.60(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.39-2.44(1 \mathrm{H}, \mathrm{m}), 2.46-\) \(2.51(1 \mathrm{H}, \mathrm{m}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 7.21-\) \(7.26(5 \mathrm{H}, \mathrm{m})\).

Example 17: Synthesis of compound 34
[0154] The two steps described above were repeated but substituting the 1,3-dibromopropane with 1,6-dibromohexane to thereby give the desired compound 34 .

MS m/z : 349. 1H-NMR d: \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.52-1.67(6 \mathrm{H}, \mathrm{m}), 2.40-2.45(1 \mathrm{H}, \mathrm{m}), 2.48-2.53(1 \mathrm{H}, \mathrm{m}), 2.86(2 \mathrm{H}\), \(t, J=7.0 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 6.86-6.88(2 \mathrm{H}, \mathrm{m})\)

\section*{Example 18: Synthesis of compound 36}
[0155] \(440 \mathrm{mg}(2.63 \mathrm{mmol})\) of 2-mercaptobenzothiazole was dissolved in 9 ml of methylene chioride. After adding thereto \(1.1 \mathrm{ml}(7.89 \mathrm{mmol})\) of triethylamine and \(0.35 \mathrm{ml}(2.93 \mathrm{mmol})\) of 1,4 -dibromobutane at room temperature, the mixture was reacted at the same temperature for 12 hours. After the completion of the reaction, the methylene chloride was once removed under reduced pressure and the residue was dissolved in 8 ml of acetonitrile. Next, 800 mg ( 5.79 mmol ) of potassium carbonate was added thereto at room temperature and 320 mg ( 2.12 mmol ) of (R)-3-methoxy-amethylbenzylamine was dropped thereinto. Then the resulting mixture was stirred while heating to \(90^{\circ} \mathrm{C}\) under reflux for 12 hours. After the completion of the reaction, the reaction mixture was allowed to stand at room temperature and water was added thereto. Then it was subjected to separating extraction with ethyl acetate and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over sodium sulfate and concentrated under reduced pressure. The residue thus obtained was purified by silica gel column chromatography ( 70 g ; chloroform/methanol \(=50: 1\) ) to thereby give \(267 \mathrm{mg}(0.72 \mathrm{mmol})\) of the compound 36 as a pale yellow and transparent syrup at an overall yield of the two steps of \(27.1 \%\).

MS m/z: \(3721 \mathrm{H}-\) NMR d: \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.61-1.68(2 \mathrm{H}, \mathrm{m}), 1.82-1.88(2 \mathrm{H}, \mathrm{m}), 2.46-2.60(2 \mathrm{H}, \mathrm{m}), 3.32(2 \mathrm{H}\), \(t, J=7.5 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 7.21-7.30(2 \mathrm{H}, \mathrm{m}), 7.38-7.42\) ( \(1 \mathrm{H}, \mathrm{m}\) ), \(7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})\).

\section*{EP \(0933 \mathbf{3 5 4}\) A1}

\section*{Example 19: Symthesis of compound 38}
[0156] 409 mg ( 2.45 mmol ) of 2-mercaptobenzothiazole was dissolved in 4 ml of acetonitrile. After adding therato 690 \(\mathrm{mg}(4.99 \mathrm{mmol})\) of potassium carbonate and \(0.32 \mathrm{ml}(2.68 \mathrm{mmol})\) of 1,5 -dibromopentane at room temperature, the mix- sium carbonate was added thereto again and \(260 \mathrm{mg}(1.72 \mathrm{mmol})\) of ( R ) 3 -methoxy-a-methylbenzylamine was dropped thereinto. Then the resulting mixture was stirred while heating to \(90^{\circ} \mathrm{C}\) under reflux for 12 hours. After the completion of the reaction, the reaction mixture was allowed to stand at room temperature and water was added thereto. Then it was subjected to separating extraction with ethyl acetate and washed with a saturated aqueous solution of sodium chioile the chined give 215 mg ( 0.57 mmol ) of the compound 38 as a pale yellow and transparent syrup at an overall yield of the two steps of \(45.0 \%\).

MS m/z: 386. 1H-NMR d: \(1.33(3 H, d, J=6.5 H z), 1.44-1.56(4 H, m), 1.78-1.84(2 H, m), 2.42-2.51(2 H, m), 3.32(2 H\), \(t, J=7.3 \mathrm{~Hz}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.26-\) \(7.30(1 \mathrm{H}, \mathrm{m}), 7,39-7.42(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz})\).

\section*{Example 20: Synthesis of compound 40}
[0157] The two steps described above were repeated but substituting the 1,5-dibromopentane with 1,6-dibromohexane to thereby give the desired compound 40 .

MS m/z : 400. 1H-NMR d: \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.43-1.50(6 \mathrm{H}, \mathrm{m}), 1.80(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.40-2.52(2 \mathrm{H}, \mathrm{m}), 3.32\) \((2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 7.22-7.30(2 \mathrm{H}, \mathrm{m}), 7.40\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}\) ), \(7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})\).

\section*{Example 21: Synthesis of compound 42}
[0158] \(467 \mathrm{mg}(3.09 \mathrm{mmol})\) of 2-mercaptobenzothiazole was dissolved in 7 ml of acetonitrile. After adding thereto 527 mg ( 3.81 mmol ) of potassium carbonate and \(0.41 \mathrm{ml}(3.43 \mathrm{mmol})\) of 1,4 -cibromobutane at room temperature, the mixture was stirred at the same temperature for 12 hours. After the completion of the reaction, 4.4 ml of acetonitrile and 420 mg ( 3.04 mmol ) of potassium carbonate were added thereto again and 320 mg ( 2.12 mmol ) of ( R )-3-methoxy-amethylbenzylamine was dropped thereinto. Then the resulting mixture was stirred while heating to \(90^{\circ} \mathrm{C}\) under reflux for 12 hours. After the completion of the reaction, the reaction mixture was allowed to stand at room temperature and water was added thereto. Then it was subjected to separating extraction with ethyl acetate and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over sodium sulfate. Then the organic layer was concentrated under reduced pressure and the residue thus obtained was purified by silica gel column chromatography ( 50 g ; chloroform/methanol \(=60: 1\) ) to thereby give \(147 \mathrm{mg}(0.41 \mathrm{mmol})\) of the compound 42 as a pale yellow and transparent syrup at an overall yield of the two steps of \(13.4 \%\).

MS m/z : 356. 1H-NMR d: \(1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7), 1.61-1.68(2 \mathrm{H}, \mathrm{m}), 1.81-1.89(2 \mathrm{H}, \mathrm{m}), 2.46-2.59(2 \mathrm{H}, \mathrm{m}), 3.28(2 \mathrm{H}\),
\(t, J=7.5 \mathrm{~Hz}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 6.88-6.89(2 \mathrm{H}, \mathrm{m}), 7.21-7.28(3 \mathrm{H}, \mathrm{m}), 7.42(1 \mathrm{H}\),
\(d, J=8.0 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})\).
Example 22: Synthesis of compound 44
[0159] The two steps described above were repeated but substituting the 1,4 -dibromobutane with 1,5 -dibromopentane to thereby give the desired compound 44.

MS m/z : 370. 1H-NMR d: \(1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.46-1.56(4 \mathrm{H}, \mathrm{m}), 1.81(2 \mathrm{H}, \mathrm{m}), 2.41-2.53(2 \mathrm{H}, \mathrm{m}), 3.29(2 \mathrm{H}, \mathrm{t}\). \(\mathrm{J}=7.3 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 6.86-6.89(2 \mathrm{H}, \mathrm{m}), 7.20-7.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})\). 7.42 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 7.59 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}\) ).

\section*{Example 23: Synthesis of compound 46}
[0160] The two steps described above were repeated but substituting the 1,4-dibromobutane with 1,6 -dibromohexane to thereby give the desired compound 46.

MS m/z : 384. 1H-NMR d: \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.32-1.62(6 \mathrm{H}, \mathrm{m}), 1.81(2 \mathrm{H}, \mathrm{qq}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.40-2.52(2 \mathrm{H}, \mathrm{m}), 3.29\) ( \(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}\) ), \(3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}\) ), \(3.81(3 \mathrm{H}, \mathrm{s}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 7.21-7.29(3 \mathrm{H}, \mathrm{m}), 7.43\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), \(7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ).

Example 24: Synthesis of compounds 52 and 53
[0161] To a solution of 25 g ( 122.4 mmol ) of 5-methoxygramine 47 in 500 ml of ethanol was added 21.5 g ( 568.3 mmol, 4.6 moleq.) of sodium tetrahydroborate and the mixture was stirred under heating for 5.5 hours. After the completion of the reaction, ammonium chloride was added to the reaction mixture. Then the mixture was stirred at room saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained crystals were purified by column chromatography (silica gel, chloroform-ethyl acetate) to thereby give \(17.31 \mathrm{~g}(87.8 \%)\) of colorless prism crystals 48.
[0162] To a solution of 17.3 g of the compound 48 ( 107.5 mmol ) in 500 ml of absolute tetrahydrofuran was added 20 \(\mathbf{g}\) ( \(500 \mathrm{mmol}, 4.6 \mathrm{moleq}\).) of \(52.9 \%\) sodium hydride and the mixture was stirred at room temperature for 1.5 hours. Then \(30 \mathrm{~g}(\mathrm{~d}=1.333,157.4 \mathrm{mmol}, 1.5\) moleq.) of tosyl chloride was added thereto and the resulting mixture was stirred at room temperature for 6 hours. After the completion of the reaction, the reaction mixture was poured into water under ice-cooling and extracted with ethyl acetate. The ethyi acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained crystals were purified by column chromatography (silica gel, chloroform-ethyl acetate) to thereby give \(\mathbf{3 6 . 8} \mathbf{g}\) ( \(82.8 \%\) ) of colorless prism crystals 49.
[0163] \(17 \mathrm{ml}(\mathrm{d}=2.698,183.1 \mathrm{mmol})\) of boron tribromide was dropped into a solution of \(28.43 \mathrm{~g}(90.25 \mathrm{mmol})\) of the compound 49 in 800 ml of methylene chloride at an internal temperature of 0 to \(5^{\circ} \mathrm{C}\). The mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was poured into water under ice-cooling and extracted with methylene chloride. The methylene chloride layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained crystals were purified by column chromatography (silica gel: \(\mathbf{4 0 0} \mathrm{g}\), chlorotorm-methanol \(=1000: 1\) ) to thereby give \(16.46 \mathrm{~g}(60.6 \%)\) of colorless prism crystals 50.
[0164] To a solution of \(16.46 \mathrm{~g}(54.7 \mathrm{mmol})\) of the compound 50 in 300 ml of acetonitrile were added \(11.2 \mathrm{ml}(\mathrm{d}=\) the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 2.5 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained crystals were purified by column chromatography (silica gel, n -hexane-acetone) to thereby give \(18.34 \mathrm{~g}(79.7 \%)\) of colorless prism crystals 51.
[0165] To a solution of \(200 \mathrm{mg}(0.48 \mathrm{mmol})\) of the compound 51 in 3 mJ of acetonitrile were added 142.52 mg ( 0.95 mmol, 2.0 moleq.) of ( R )-3-methoxy-a-methylbenzylamine and \(131.3 \mathrm{mg}(0.95 \mathrm{mmol}, 2.0 \mathrm{moleq}\).) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate distilling off the solvent under reduced pressure, the obtained yellowish brown residue was dissolved in 3 ml of ethanol and 1 ml of a \(35 \%\) aqueous solution of potassium hydroxide was added thereto. Then the mixture was stirred under heating at an external temperature of \(80^{\circ} \mathrm{C}\) for 2 hours. After the completion of the reaction, the reaction mixture was concentrated, poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(122.6 \mathrm{mg}(93.8 \%)\) of a colorless oil 52.

MS m/z:338( \(\left.\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d:} 1.36\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.97\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,12.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.30\left(3 \mathrm{H} \mathrm{s}, \mathrm{CH} \mathrm{H}_{3}\right)\), \(2.67\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.74\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.77(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 3.78(3 \mathrm{H}, \mathrm{s}\), \(\left.\mathrm{OCH}_{3}\right), 4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.78\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.9 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 6.82\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.9 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J}\) \(\left.=1.8 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 6.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 6.94\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2} \cdot \mathrm{H}\right), 6.99\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{C}_{4} \cdot \mathrm{H}\right), 7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}\) \(=7.9 \mathrm{~Hz}, \mathrm{C}_{7} \cdot \mathrm{H}\) ), \(7.23\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{5} \cdot \mathrm{H}\right), 7.81(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})\).
[0166] To a solution of \(200 \mathrm{mg}(0.48 \mathrm{mmol})\) of the compound 51 in 3 ml of acetonitrile were added 162.7 mg ( 0.95 mmol, 2.0 moleq.) of (R)-1-(1-naphthyl)ethylamine and \(131.3 \mathrm{mg}(0.95 \mathrm{mmol}, 2.0\) moleq.) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was

\section*{EP 0933354 A1}
washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained yellowish brown residue was dissolved in 1 ml of ethanol and 1 ml of a \(35 \%\) aqueous solution of potassium hydroxide was added thereto. Then the mixture was stirred under heating at an external temperature of \(80^{\circ} \mathrm{C}\) for 2 hours. After the completion of the reaction, the reaction mixture was concen-
[0169] To a solution of \(200 \mathrm{mg}(1.1 \mathrm{mmol})\) of 2 -hydroxyfluorene 57 in 3 ml of acetonitrile were added 0.22 ml ( \(d=\) \(1.333,2.2 \mathrm{mmol}, 2.0 \mathrm{moleq}\).) of 1.3 -dibromopropane and \(182.0 \mathrm{mg}(1.32 \mathrm{mmol}, 1.2 \mathrm{moleq}\).) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained crystals were purified by column chromatography (silica gel, \(n\) -hexane-ethyl acetate) to thereby give \(202.4 \mathrm{mg}(73.3 \%)\) of a colorless prism crystals 58.
\({ }^{1} \mathrm{H}\)-NMR d: \(2.35\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.1,12.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.64(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH} 2), 3.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{C}_{9}-\mathrm{H}_{2}\right), 4.17(2 \mathrm{H}, \mathrm{t}, \mathrm{J}\) \(\left.=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.93\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.3 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 7.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.23\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 7.34\) \(\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{7} \mathrm{H}\right), 7.50\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{1} \cdot \mathrm{H}\right), 7.67\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{C}_{8} \cdot \mathrm{H}\right), 7.69\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{C}_{5} \cdot \mathrm{H}\right)\).
[0170] To a solution of \(100 \mathrm{mg}(0.33 \mathrm{mmol})\) of the compound 58 in 3 ml of acetonitrile were added 49.5 mg ( 0.33 mmol, 1.0 moleq.) of (R)-3-methoxy-a-methylbenzylamine and 54.7 mg ( \(0.40 \mathrm{mmol}, 1.2\) moleq.) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica
gel, ethyl acetate-n-hexane) to thereby give 216.6 mg ( \(88.0 \%\) ) of a colorless oil 59.

MS m/z : \(373\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d:} 1.36\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{HzCH} \mathrm{H}_{3}\right), 1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.65\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\), \(2.73(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,12.2 \mathrm{~Hz}, \mathrm{CH}), 3.77(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 3.78(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 3), 3.85(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2), 4.07(2 \mathrm{H}, \mathrm{q}\), \(\left.J=5.5 \mathrm{~Hz}, \mathrm{C}_{9} \cdot \mathrm{H}_{2}\right), 6.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.3 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 6.89\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{C}_{2} \cdot \mathrm{H}\right), 6.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{4} \cdot \mathrm{H}\right)\), \(6.90\left(1 \mathrm{H}_{1}, \mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{C}_{2} \cdot-\mathrm{H}\right), 7.06\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{4} \cdot{ }^{\prime} \cdot \mathrm{H}\right), 7.22\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{5} \cdot \mathrm{H}\right), 7.22\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{6} \cdot{ }^{\prime} \mathrm{H}\right), 7.33\) \(\left(1 H, t, J=7.3 \mathrm{~Hz}, \mathrm{C}_{7}^{\prime} \cdot H\right), 7.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{1} \cdot \cdot \mathrm{H}\right), 7.65\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{8}^{\prime} \cdot \mathrm{H}\right), 7.68\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{5} \cdot-H\right)\).

\section*{Example 27: Synthesis of compound 62}
[0171] To a solution of \(500 \mathrm{mg}(3.89 \mathrm{mmol})\) of o-chlorophenol 60 in 3 ml of acetonitrile were added \(0.39 \mathrm{ml}(\mathrm{d}=1.989\), \(3.89 \mathrm{mmol}, 1.0\) moleq.) of 1.3 -dibromopropane and \(591.2 \mathrm{mg}(4.28 \mathrm{mmol}, 1.1\) moleq.) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(824.0 \mathrm{mg}(84.9 \%)\) of a colorless oil 61 .
[0172] To a solution of \(200 \mathrm{mg}(0.66 \mathrm{mmol})\) of the compound 61 in 3 ml of acetonitrile were added 148.5 mg ( 0.99 mmol, 1.5 moleq.) of ( \(R\) )-3-methoxy-a-methylbenzylamine and 136.8 mg ( \(0.99 \mathrm{mmol}, 1.5 \mathrm{moleq}\).) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(222.6 \mathrm{mg}(87.1 \%)\) of a colorless oil 62 .

MS m/z : \(319\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.37\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.99\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,12.2 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2}\right), 2.67(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7\), \(\left.13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.75\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.75-3.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}, 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.09(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.8\right.\), \(\left.6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.77\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.3 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 6.89\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 6.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}\right), 6.90\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\) ), \(6.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{3}{ }^{\prime}-\mathrm{H}\right.\) ), \(7.20\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.8,7.3 \mathrm{~Hz}, \mathrm{C}_{5}{ }^{\prime}-\mathrm{H}\right), 7.22(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}\), \(\left.\mathrm{C}_{5} \cdot \mathrm{H}\right), 7.4\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.9 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right)\).

\section*{Example 28: Synthesis of compound 65}
[0173] To a solution of 500 mg ( 3.89 mmol ) of m -chlorophenol 63 in 3 ml of acetonitrile were added \(0.39 \mathrm{ml}(\mathrm{d}=1.989\), \(3.89 \mathrm{mmol}, 1.0\) moleq.) of 1.3 -dibromopropane and \(591.2 \mathrm{mg}(4.28 \mathrm{mmol}, 1.1\) moleq.) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was puritied by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(884.2 \mathrm{mg}(91.1 \%)\) of a colorless oil 64 .
[0174] To a solution of \(200 \mathrm{mg}(0.66 \mathrm{mmol})\) of the compound 64 in 3 ml of acetonitrile were added 148.5 mg ( 0.99 mmol, 1.5 moleq.) of (R)-3-methoxy-a-methylbenzylamine and 136.8 mg ( \(0.99 \mathrm{mmol}, 1.5 \mathrm{moleq}\).) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under rectuced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(229.3 \mathrm{mg}(89.7 \%)\) of a colorless oil 65 .

MS m/z:319(M+). \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.35\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.88-1.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.61(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}\), \(\left.\mathrm{CH} \underline{H}_{2}\right), 2.70\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.96-4.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)\), \(6.75\left(1 \mathrm{H}, d, J=7.9 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 6.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 6.80(1 \mathrm{H}, \mathrm{s}), 6.88-6.92(3 \mathrm{H}, \mathrm{m}), 7.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}\), \(\left.\mathrm{C}_{5} \cdot-\mathrm{H}\right), 7.23\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right)\).

\section*{Example 29: Synthesis of compound 68}
[0175] To a solution of \(500 \mathrm{mg}(3.89 \mathrm{mmol})\) of p-chlorophenol 66 in 3 ml of acetonitrile were added \(0.39 \mathrm{ml}(d=1.989\), \(3.89 \mathrm{mmol}, 1.0 \mathrm{moleq}\).) of 1,3 -dibromopropane and \(591.2 \mathrm{mg}(4.28 \mathrm{mmol}, 1.1 \mathrm{moleq}\).\() of potassium carbonate and the\) resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the

\section*{EP \(0933 \mathbf{3 5 4}\) A1}
reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distiling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(876.5 \mathrm{mg}(90.3 \%)\) of a colorless oil 67 .
[0176] To a solution of \(200 \mathrm{mg}(0.66 \mathrm{mmol})\) of the compound 67 in 3 ml of acetonitrile were added 148.5 mg ( 0.99 mmol, 1.5 moleq.) of (R)-3-methoxy-a-methylbenzylamine and 136.8 mg ( \(0.99 \mathrm{mmol}, 1.5\) moleq.) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(293.1 \mathrm{mg}(87.2 \%)\) of a colorless oil 68 .

> MS m/z : \(319\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(90 \mathrm{MHz}) \mathrm{d}: 1.35\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.91\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.4,12.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.67(2 \mathrm{H}\), \(\left.d t, J=2.4,6.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}), 6.70-6.91(5 \mathrm{H}\), m), 7.14 ( \(3 \mathrm{H}, \mathrm{m}\) ).

\section*{Example 30: Synthesis of compound 71}
[0177] To a solution of 500 mg ( 2.71 mmol ) of 3 -hydroxybenzofuran 69 in 5 ml of acetonitrile were added 0.55 ml (d \(=1.989,5.43 \mathrm{mmol}, 2.0 \mathrm{moleq}\).) of 1.3 -dibromopropane and \(750.1 \mathrm{mg}(5.43 \mathrm{mmol}, 2.0 \mathrm{moleq}\).) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(804.3 \mathrm{mg}(77.0 \%)\) of colorless prism crystals 70 .
[0178] To a solution of 800 mg ( 2.62 mmol ) of the compound 70 in 5 ml of acetonitrile were added 590.2 mg ( 3.93 mmol, 1.5 moleq.) of (R)-3-methoxy-a-methylbenzylamine and 543.7 mg ( \(3.93 \mathrm{mmol}, 1.5 \mathrm{moleq}\).) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sutfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(880.8 \mathrm{mg}(89.5 \%)\) of a colorless oil 71.

> MS m/z:375(M+). \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.38\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.70\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,14.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\), \(2.77\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.80(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.10-4.17(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.79\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.3 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\) ), \(6.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 6.92\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{4} \cdot \mathrm{H}\right), 7.02(1 \mathrm{H}, \mathrm{dd}, J=2.5\), \(\left.8.6 \mathrm{~Hz}, \mathrm{C}_{3} \cdot-\mathrm{H}\right), 7.24\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.33\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 7.41\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{C}_{1}{ }^{\circ}-\mathrm{H}\right), 7.45(1 \mathrm{H}\), dt, \(\left.J=1.2,7.3 \mathrm{~Hz}, \mathrm{C}_{7} \cdot-\mathrm{H}\right), 7.46\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{5} \cdot-\mathrm{H}\right), 7.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{C}_{4} \cdot-\mathrm{H}\right), 7.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{8} \cdot-\mathrm{H}\right)\).

\section*{Example 31: Synthesis of compound 74}
[0179] To a solution of 300.0 mg ( 2.16 mmol ) of 2-naphthol 72 in 3 ml of absolute tetrahydrofuran were added 300 ml ( \(\mathrm{d}=1.537,2.16 \mathrm{mmol}, 1.0 \mathrm{moleq}\).) of 3 -bromo-1-propanol and 622.7 mg ( \(2.37 \mathrm{mmol}, 1.1 \mathrm{moleq}\).) of triphenylphosphine. Then a solution of \(0.41 \mathrm{ml}(\mathrm{d}=1.106,2.37 \mathrm{mmol}, 1.1 \mathrm{moleq}\) ) of DEAD in 3 ml of absolute tetrahydrofuran was added thereto and the resulting mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give 551.8 mg ( \(100 \%\) ) of a colorless oil 73.
[0180] To a solution of \(200 \mathrm{mg}(0.75\) muml) of the compound 73 in 5 ml of acetonitrile were added 169.8 mg ( 1.13 mmol, 1.5 moleq.) of (R)-3-methoxy-a-methylbenzylamine and 156.5 mg ( \(1.13 \mathrm{mmol}, 1.5 \mathrm{moleq}\).) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was puriiled by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(230.8 \mathrm{mg}(\mathbf{~} 91.3 \%)\) of a colorless oil 74 .

MS m/z : \(335\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.41\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.13\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,12.8 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2}\right), 2.73(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7\).
\(\left.11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.85\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 4.23(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}\) \(\left.=1.2,6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.80\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,7.9 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 6.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 6.92\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right)\), \(6.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.24\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.39\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{6} \cdot-\mathrm{H}\right), 7.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4} \cdot-\right.\) \(\mathrm{H}), 7.48\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.2,7.9 \mathrm{~Hz}, \mathrm{C}_{3} \cdot-\mathrm{H}\right), 7.52\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.2,7.9 \mathrm{~Hz}, \mathrm{C}_{7} \cdot \mathrm{H}\right) .7 .83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{5} \cdot-\mathrm{H}\right), 8.22(1 \mathrm{H}\), d, \(J=7.9 \mathrm{~Hz}, \mathrm{C}_{8} \cdot \mathrm{H}\) ).

\section*{Example 32: Synthesis of compound 77}
[0181] To a solution of \(300 \mathrm{mg}(1.87 \mathrm{mmol})\) of 2-naphthalenethiol 75 in 5 ml of methylene chloride were added 0.23 ml ( \(\mathrm{d}=1.989,2.25 \mathrm{mmol}, 1.2\) moleq.) of 1.3 -dibromopropane and \(0.31 \mathrm{mg}(\mathrm{d}=0.726,2.25 \mathrm{mmol}, 1.2\) moleq.) of triethylamine and the resulting mixture was stirred under heating at an external temperature of \(40^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with a \(5 \%\) aqueous solution of hydrochloric acid, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distiling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(241.3 \mathrm{mg}(\mathbf{4 5 . 9} \%)\) of a colorless oil 76.
[0182] To a solution of \(241 \mathrm{mg}(0.86 \mathrm{mmol})\) of the compound 76 in 5 ml of acetonitrile were added 193.0 mg ( 1.29 mmol, 1.5 moleq.) of (R)-3-methoxy-a-methylbenzylamine and 177.8 mg ( \(1.29 \mathrm{mmol}, 1.5 \mathrm{moleq}\).) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give 209.8 mg ( \(\mathbf{6 9 . 7 \%}\) ) of a colorless oil 7 .

MS \(\mathrm{m} / \mathrm{z}: 351\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 1.38\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.01\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.73(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7\), \(\left.25.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.80(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.79\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.3 \mathrm{~Hz}, \mathrm{C}_{6}-\right.\) H), \(6.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 6.92\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.02\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5,7.3 \mathrm{~Hz}, \mathrm{C}_{3} \cdot \mathrm{H}\right), 7.24(1 \mathrm{H}, \mathrm{t}, \mathrm{J}\) \(\left.=7.3 \mathrm{~Hz}, \mathrm{C}_{5} \cdot \mathrm{H}\right), 7.33\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{6}^{\prime} \cdot \mathrm{H}\right), 7.41\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{C}_{1} \cdot-\mathrm{H}\right), 7.45\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.2,7.3 \mathrm{~Hz}, \mathrm{C}_{7} \cdot \mathrm{H}\right), 7.46\) \(\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{4} \cdot \mathrm{H}\right), 7.55\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{5} \cdot-\mathrm{H}\right), 7.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{8} \cdot \mathrm{H}\right)\).
[0183] To a solution of \(500 \mathrm{mg}(3.76 \mathrm{mmol})\) of 5 -hydroxyindole 78 in 5 ml of acetonitrile were added 833.9 mg ( \(\mathrm{d}=\) \(1.989,4.13 \mathrm{mmol}, 1.1 \mathrm{moleq}\).) of 1,3 -dibromopropane and \(570.9 \mathrm{mg}(4.13 \mathrm{mmol}, 1.1\) moleq.) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(586 \mathrm{mg}(61.4 \%)\) of a colorless oil 79.
\({ }^{1} \mathrm{H}\)-NMR d: \(2.33\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.1,12.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2}\right), 4.13\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.47(1 \mathrm{H}\), \(\left.\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 6.85\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,8.5 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 7.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.17\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right)\), \(7.26\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}\right), 8.03(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})\).
[0184] To a solution of \(200 \mathrm{mg}(0.79 \mathrm{mmol})\) of the compound 79 in 3 ml of acetonitrile were added 118.1 g ( 0.79 mmol , 1.5 moleq.) of (R)-3-methoxy-a-methylbenzylamine and \(130.6 \mathrm{mg}(0.94 \mathrm{mmol}, 1.2\) moleq.) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(40^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give \(265.1 \mathrm{mg}(82.8 \%)\) of a colorless oil 80 .

MS m/z:324(M+). \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.38\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.01\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,12.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.67(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7\), \(\left.11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.74\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.78(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{3}\right), 4.02-4.09(2 \mathrm{H}\), \(\left.\mathrm{m}, \mathrm{CH}_{2}\right), 6.47\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{C}_{3} \cdot-\mathrm{H}\right), 6.78\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,7.9 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 6.83\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,8.5 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 6.90\) \(\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 6.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4} \cdot \mathrm{H}\right), 7.09\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C}_{4} \cdot \mathrm{H}\right), 7.18\left(1 \mathrm{H}, \mathrm{t}, J=3.1 \mathrm{~Hz}, \mathrm{C}_{2} \cdot \cdot \mathrm{H}\right)\), \(7.23\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{C}_{7} \cdot \mathrm{H}\right), 8.07(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})\).

\section*{Example 34: Synthesis of compound 83}
[0185] To a solution of 400 mg ( 2.35 mmol ) of 4 -phenytphenol 81 in 5 ml of acetonitrile were added 0.48 ml ( \(\mathrm{d}=1.989\), \(4.7 \mathrm{mmol}, 2.0\) moleq.) of 1.3 -dibromopropane and 389.7 mg ( \(2.82 \mathrm{mmol}, 1.2\) moleq.) of potassium carbonate and the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give 564.9 mg ( \(82.5 \%\) ) of colorless prism crystals 82 .
[0186] To a solution of \(300 \mathrm{mg}(1.03 \mathrm{mmol})\) of the compound 82 in 4 ml of acetonitrile were added 309.3 mg ( 2.06 mmol, 2.0 moleq.) of (R)-3-methoxy-a-methylbenzylamine and 284.9 mg ( \(2.06 \mathrm{mmol}, 2.0 \mathrm{moleq}\).) of potassium carbonate and the resulting mixture was stirred under heating at an external temperature of \(60^{\circ} \mathrm{C}\) for 4 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was puritied by column chromatography (silica gel, ethyl acetate-n-hexane) to thereby give 311.9 mg ( \(83.8 \%\) ) of colorless prism crystals 83 .

MS m/z : \(361\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 1.36\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz} \mathrm{CH}_{3}\right), 1.93-2.01(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 2.65(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}\), \(\left.\mathrm{CH}_{2}\right), 2.73\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.77(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 3), 4.02-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)\), \(6.79\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.3 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 6.90\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 6.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 6.95(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.4\), \(\left.9.2 \mathrm{~Hz}, \mathrm{C}_{3} \cdot-\mathrm{H}\right), 7.24\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 7.30\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{4}{ }^{\prime \prime}-\mathrm{H}\right), 7.42\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{3}{ }^{\prime \prime}, 5^{\prime \prime}-\mathrm{H}\right), 7.51\) ( \(\left.2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=2.4,9.2 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime \prime}, 6^{\prime \prime}-\mathrm{H}\right), 7.55\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.2,7.3 \mathrm{~Hz}, \mathrm{C}_{2}^{\prime} \cdot 6^{\prime}-\mathrm{H}\right)\).

Example 35: Synthesis of compound 88
[0187] To a solution of \(600 \mathrm{mg}(4.0 \mathrm{mmol})\) of (R)-3-methoxy-a-methylbenzylamine 84 in 5 ml of methylene chloride were added \(662.4 \mathrm{mg}(d=1.176,4.4 \mathrm{mmol}, 1.1\) moleq.) of ethyimalonyl chloride and \(0.66 \mathrm{mf}(d=0.726,4.8 \mathrm{mmol}, 1.2\) moleq.) of triethylamine and the resulting mixture was stirred at room temperature for 2 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with methylene chloride. The methylene chloride layer was washed with a \(5 \%\) aqueous solution of hydrochloric acid, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained crystals were purified by column chromatography (silica gel, \(n\)-hexane-ethyl acetate) to thereby give 790.0 mg ( \(98.4 \%\) ) of colorless prism crystals 85.
\({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.23\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.73(3 \mathrm{H}, \mathrm{s}\), \(\left.\mathrm{OCH}_{3}\right), 4.12\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.04(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,14.0 \mathrm{~Hz}, \mathrm{CH}), 6.72\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.9 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 6.79\) \(\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 6.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.18\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{5} \cdot \mathrm{H}\right), 7.36(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})\).
[0188] To a solution of 897.6 mg ( 3.39 mmol ) of the compound 85 in 5 ml of ethanol was added 2 ml of a \(10 \%\) aqueous solution of sodium hydroxide and the resulting mixture was stirred under heating at an external temperature of 80 \({ }^{\circ} \mathrm{C}\) for 1 hour. After the completion of the reaction, the reaction mixture was concentrated and acidified with a \(5 \%\) aqueous solution of hydrochloric acid. Then the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with a \(5 \%\) aqueous solution of hydrochloric acid, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained crystals were was puritied by column chromatography (silica gel, n-hexane-ethyl acetate) to thereby give 790.0 mg ( \(98.4 \%\) ) of colorless prism crystals 86.
\({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}\) : \(1.47\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.27\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{3}\right), 5.05(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7\), \(14.0 \mathrm{~Hz}, \mathrm{CH}), 6.78\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,7.9 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 6.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C}_{2}+\mathrm{H}\right), 6.86\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4} \cdot \mathrm{H}\right), 7.23\) \(\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{5} \cdot \mathrm{H}\right), 7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{NH})\).
[0189] To a solution of 400 mg ( 1.68 mmol ) of the compound 86 in 5 ml of dimethylformamide were added 278.5 mg ( \(1.86 \mathrm{mmol}, 1.1\) moleq.) of (R)-3-methoxy-a-methylbenzylamine and 389.5 mg ( \(2.02 \mathrm{mmol}, 1.2 \mathrm{moleq}\).) of WSCxHCl and the resulting mixture was stirred at room temperature for 1 hour. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained crystals were purified by column chromatography (silica gel, n-hexane-ethyl acetate) to thereby give \(615.4 \mathrm{mg}(98.5 \%)\) of colorless prism crystals 87 .

MS m/z: 370(M+). \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.42\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.15(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 3.75\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{3}\right), 5.04(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}\) \(=7.9,14.7 \mathrm{~Hz}, \mathrm{CH}), 6.77\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,7.9 \mathrm{~Hz}, \mathrm{C}_{6,6}-\mathrm{H}\right), 6.80\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C}_{2}, 2 \cdot \mathrm{H}\right), 6.83\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4}\right.\), \(4-\mathrm{H}), 7.20\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{5}, 5^{-H}\right), 7.47(2 \mathrm{H}, \mathrm{s}, \mathrm{NH})\).
a solution of \(100 \mathrm{mg}(0.270 \mathrm{mmol})\) of the compound 87 in 5 ml of absolute tetranydroluran was addec 0.59 \(\mathrm{ml}(0.59 \mathrm{mmol}, 1.2 \mathrm{moleq}\).) of a 1 mol solution of boron trihydride in tetrahydrofuran. The resulting mixture was heated to room temperature and then stirred for 3 hours. After the completion of the reaction, the reaction mixture was poured into water, acidified with a \(5 \%\) aqueous solution of hydrochloric acid and then extracted with ethyl acetate. The hydrochloric acid layer was made alkaline by adding a \(5 \%\) aqueous solution of sodium hydroxide and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of socium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, n-hexane-ethyl acetate) to thereby give \(76.3 \mathrm{mg}(82.6 \%)\) of a colorless oil 88.

MS m/z : \(342\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.43\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.62\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.46(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7\), \(\left.13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.54\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.70(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 3.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{3}\right), 6.77(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}\) \(\left.=2.4,7.3 \mathrm{~Hz}, \mathrm{C}_{6,6^{\circ}}-\mathrm{H}\right), 6.86\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{C}_{2}, 2^{-} \cdot \mathrm{H}\right), 6.87\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{4}, 4^{-} \cdot \mathrm{H}\right), 7.23\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C}_{5,} 5^{-2}\right.\) H).

\section*{Example 36: Synthesis of compound 93}
[0191] To a solution of 600 mg ( 3.5 mmol ) of ( \(R\) )-1-(1-naphthyl)ethylamine 89 in 5 ml of methylene chloride were added \(580.3 \mathrm{mg}(\mathrm{d}=1.176,3.85 \mathrm{mmol}, 1.1 \mathrm{moleq}\) ) of ethylmalonyl chloride and \(0.59 \mathrm{ml}(\mathrm{d}=0.726,4.2 \mathrm{mmol}, 1.2\) moleq.) of triethylamine and the resulting mixture was stirred at room temperature for 2 hours. After the completion of the reaction, the reaction mixture was poured into water and extracted with methylene chloride. The methylene chloride layer was washed with a \(5 \%\) aqueous solution of hydrochloric acid, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the obtained crystals were purified by column chromatography (silica gel, \(n\)-hexane-ethyl acetate) to thereby give \(662.9 \mathrm{mg}(66.5 \%)\) of colorless prism crystals 90.
\({ }^{1} \mathrm{H}\)-NMR d: \(1.16\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.24\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.7,26.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.07\) \(\left(2 \mathrm{H}, \mathrm{G}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.89(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.3,14.6 \mathrm{~Hz}, \mathrm{CH}), 7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{NH}), 7.38(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}\), \(\left.\mathrm{C}_{3}-\mathrm{H}\right), 7.44\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{C}_{6}-\mathrm{H}\right), 7.45\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{H}\right), 7.46\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}\right), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}\) \(\left.=7.9 \mathrm{~Hz}, C_{4}-H\right), 7.79\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, C_{5}-\mathrm{H}\right), 8.03\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{8}-\mathrm{H}\right)\).
[0192] To a solution of 662.5 mg ( 2.32 mmol ) of the compound 90 in 5 ml of ethanol was added 2 ml of a \(10 \%\) aqueous solution of sodium hydroxide. The resulting mixture was stirred under heating at an external temperature of \(80^{\circ} \mathrm{C}\) for 1 hour. After the completion of the reaction, the reaction mixture was concentrated, acidified with a \(5 \%\) aqueous solution of hydrochloric acid. The reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with a \(5 \%\) aqueous solution of hydrochloric acid, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained crystals were purified by column chromatography (silica gel, n -hexane-ethyl acetate) to thereby give 596.0 mg ( \(99.8 \%\) ) of colorless prism crystals 91.
\({ }^{1} \mathrm{H} \cdot \mathrm{NMR}\) d: \(1.66\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.20\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=18.3,29.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.91(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,14.7 \mathrm{~Hz}, \mathrm{CH})\), \(6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{NH}), 7.43\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{3} \cdot \mathrm{H}\right), 7.48\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{6} \cdot \mathrm{H}\right), 7.49\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{2^{*}}\right.\) \(\mathrm{H}), 7.53\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.2,7.9 \mathrm{~Hz}, \mathrm{C}_{7}-\mathrm{H}\right), 7.77\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{4}-\mathrm{H}\right), 7.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}\right), 8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}\) \(=7.9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{B}} \cdot \mathrm{H}\) ).
[0193] To a solution of 400 mg ( 1.56 mmol ) of the compound 91 in 5 ml of dimethylformamide were added 293.2 mg ( \(1.71 \mathrm{mmol}, 1.1\) moleq.) of ( R )-1-(1-naphthyl)ethylamine and 359.2 mg ( \(1.87 \mathrm{mmol}, 1.2 \mathrm{moleq}\) ) of WSCXHCl and the resulting mixture was stirred at room temperature for 1 hour. After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distiling off the solvent under reduced pressure, the obtained crystals were purified by column chromatography (silica gel, n-hexane-ethyl acetate) to thereby give \(615.1 \mathrm{mg}(96.4 \%)\) of colorless prism crystals 92. [0194] To a solution of \(100 \mathrm{mg}(0.24 \mathrm{mmol})\) of the compound 92 in 5 ml of absolute tetrahydrofuran was added 0.54 ml ( \(0.54 \mathrm{mmol}, 2.2 \mathrm{moleq}\) ) of a 1 mol solution of boron trihydride in tetrahydrofuran. The resulting mixture was heated to room temperature and then stirred for 3 hours. After the completion of the reaction, the reaction mixture was poured into water, acidified with a \(5 \%\) aqueous solution of hydrochloric acid and then extracted with ethyl acetate. The hydro-

\section*{EP 0933354 A1}
chloric acid layer was made alkaline by adding a \(5 \%\) aqueous solution of sodium hydroxide and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained residue was purified by column chromatography (silica gel, n-hexane-ethyl acetate) to thereby give \(82.0 \mathrm{mg}(88.0 \%)\) of a colorless cil g 3 .
\(\mathrm{MS} \mathrm{m/z}: 382\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.47\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.72\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.62(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7\), \(\left.13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.68\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,11.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.60(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7, \mathrm{CH}), 7.45\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{3}, 3-\mathrm{H}\right), 7.48\) (2H. dt, J \(\left.=1.8,7.9 \mathrm{~Hz}, \mathrm{C}_{6}, 6-\mathrm{H}\right), 7.50\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{7}, 7^{-H}\right), 7.60\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{2}, 2^{-H}\right), 7.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}\) \(\left.=7.9 \mathrm{~Hz}, \mathrm{C}_{4}, 4^{-H}\right), 7.87\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.9 \mathrm{~Hz}, \mathrm{C}_{5}, 5-\mathrm{H}\right), 8.16\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{C}_{8}, 8-\mathrm{H}\right)\).

Example 37: Synthesis of compound 103
Compound 102:
[0195] To a solution of 6-hydroxyflavone 101 ( \(300 \mathrm{mg}, 1.26 \mathrm{mmol}\) ) in acetonitrile ( 5 ml ) were added 1,3-dibromopropane ( \(0.26 \mathrm{ml}, \mathrm{d}=1.989,2.52 \mathrm{mmol}, 2.0 \mathrm{~mol}\) eq.) and potassium carbonate ( \(208.8 \mathrm{mg}, 1.51 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and the resulting mixture was stirred under heating at an outer temperature of \(60^{\circ} \mathrm{C}\) for 4 hours.
[0196] After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The residue thus obtained was purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give 361.8 mg ( \(80.0 \%\) ) of the compound 102 as colorless prisms.

MS m/z : 375(M+ \(\left.{ }^{+}\right){ }^{1} \mathrm{H}-\mathrm{NMR}\) 8: \(2.34-2.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2}\right), 3.62(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH} 2), 4.22(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH} 2)\). \(6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.51(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.92(1 \mathrm{H}, \mathrm{dd}\), \(J=1.8,7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.44-7.53(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \operatorname{Ar}-\underline{\mathrm{H}}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{d}=7.9 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.86(\mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.91-7.93(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})\), \(8.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

\section*{Compound 103:}
[0197] To a solution of the above compound 102 ( \(125.8 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) in acetonitrile ( 3 ml ) were added (R)-(+)-(1-naphthyl)ethylamine ( \(50 \mathrm{mg}, 0.29 \mathrm{mmol}\) ) and potassium carbonate ( \(60.5 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.5 \mathrm{~mol}\) eq.) and the resulting mixture was stirred under heating at an outer temperature of \(40^{\circ} \mathrm{C}\) for 6 hours.
[0198] After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The residue thus obtained was purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give \(67.1 \mathrm{mg}(89.5 \%)\) of the compound 103 as a colorless oil.

MS \(m / z: 449\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.55\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.04\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.07(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.82(2 \mathrm{H}, \mathrm{m}\), \(\left.\mathrm{CH}_{2}\right), 4.15\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 6.82(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), 7.44-7.53(7H, m, Ar-H), \(7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\underline{\mathrm{H}}), 7.91-7.93(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\underline{H}), 8.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz} \mathrm{Ar}-\underline{H})\).

Example 38: Synthesis of compound 106
Compound 105:
[0199] To a solution of 9-hydroxyfluorene 104 ( \(500 \mathrm{mg}, 2.74 \mathrm{mmol}\) ) in toluene ( 5 ml ) were added 3-bromo-1-propanol ( \(0.273 \mathrm{ml}, \mathrm{d}=1.537,3.02 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and p-toluenesulfonic acid hydrate ( \(5.1 \mathrm{mg}, 0.027 \mathrm{mmol}, 0.01 \mathrm{~mol}\) eq.) and the resulting mixture was stirred at room temperature for 1 hour.
[0200] After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride. Atter drying over sodium sulfate, the solvent was distilled off under reduced pressure. The residue thus obtained was purified by column chromatography [silica gel, \(n\)-hexane/ethyl acetate] to thereby give the compound 105 ( \(723.4 \mathrm{mg}, 87.0 \%\) ) as a colorless oil.

Compound 106:
[0201] To a solution of the above compound 105 ( \(106.2 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) in acetonitrile ( 3 ml ) were added (R)-(+)-(1-naphthy) ethylamine ( \(50 \mathrm{mg}, 0.29 \mathrm{mmol}\) ) and potassium carbonate ( \(48.4 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and the
[0207] To a solution of 5-hydroxyindole 110 ( \(500 \mathrm{mg}, 3.76 \mathrm{mmol}\) ) in acetonitrile ( 5 ml ) were added 1,3-dibromopropane ( \(833.9 \mathrm{mg}, \mathrm{d}=1.989,4.13 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and potassium carbonate ( \(570.9 \mathrm{mg}, 4.13 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and the resulting mixture was stirred under heating at an outer temperature of \(60^{\circ} \mathrm{C}\) for 4 hours.
[0208] After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl aceresulting mixture was stirred under heating at an outer temperature of \(60^{\circ} \mathrm{C}\) for 6 hours.
[0202] After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The residue thus obtained was purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give \(33.7 \mathrm{mg}(76.1 \%)\) of the compound 106 as a colorless oil.

MS m/z: \(393\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} 8: 1.47\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.70-1.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.60-2.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.26(2 \mathrm{H}\), \(\left.t, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 5.59(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\) \(\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.46(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\underline{H}), 7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\underline{H}), 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\underline{H}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{Ar} \cdot \underline{H})\), \(7.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

\section*{Example 39: Synthesis of compound 109}

\section*{Compound 108:}
[0203] To a solution of 2-hydroxybenzofuran 107 ( \(500 \mathrm{mg}, 2.71 \mathrm{mmol}\) ) in acetonitrile ( 5 ml ) were added 1,3-dibromopropane ( \(0.55 \mathrm{ml}, \mathrm{d}=1.989,5.43 \mathrm{mmol}, 2.0 \mathrm{~mol}\) eq.) and potassium carbonate ( \(750.1 \mathrm{mg}, 5.43 \mathrm{mmol}, 2.0 \mathrm{~mol}\) eq.) and the resulting mixture was stirred at an outer temperature of \(60^{\circ} \mathrm{C}\) for 4 hours.
[0204] After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The residue thus obtained was purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give 804.3 mg ( \(77.0 \%\) ) of the compound 108 as colorless prisms.

\section*{Compound 109:}
[0205] To a solution of the above compound 108 ( \(106.9 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) in acetonitrile ( 3 ml ) were added (R)-(+)-1-(1-naphthyl)ethyiamine ( \(50 \mathrm{mg}, 0.29 \mathrm{mmol}\) ) and potassium carbonate ( \(60.5 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.5 \mathrm{~mol}\) eq.) and the resulting mixture was stirred under heating at an outer temperature of \(60^{\circ} \mathrm{C}\) for 6 hours.
[0206] After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The residue thus obtained was purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give \(67.2 \mathrm{mg}(58.3 \%)\) of the compound 109 as a colorless oil.

MS m/z: 395(M+). \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.53\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.02-2.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.78-2.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.13-\) \(4.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 7.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H})\), \(7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.44-7.51(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), 7.87(1H, dd, J=2.4, 9.7H, Ar-H), 7.89(1H, d, J=7.9Hz, Ar-H), 8.22(1H, d, J=8.6Hz, Ar-H).

Example 40: Synthesis of compound 112

\section*{Compound 111:} tate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The residue thus obtained was purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give \(586 \mathrm{mg}(61.4 \%)\) of the compound 111 as a colorless oil.

\section*{EP 0933354 A1}
\({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.70\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.63\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.13(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH} 2), 6.47(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}\), Ar-H), \(6.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.26(1 \mathrm{H}, \mathrm{d}\), \(J=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.03(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})\).

\section*{Compound 112:}
[0209] To a solution of the above compound 111 ( \(65.3 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.5 \mathrm{~mol}\) eq.) in acetonitrile ( 3 ml ) were added \((R) \cdot(+)-1-(1-\) naphthyl) ethylamine ( 29.3 mg .0 .17 mmol ) and potassium carbonate ( \(35.5 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.5 \mathrm{~mol}\) eq.) and the resulting mixture was stirred under heating at an outer temperature of \(60^{\circ} \mathrm{C}\) for 6 hours.
[0210] After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride. Atter drying over sodium sultate, the solvent was distilled off under reduced pressure. The residue thus obtained was puritied by column chromatography [silica gel, ethyl acetaten-hexane] to thereby give \(36.5 \mathrm{mg}(62.0 \%)\) of the compound 112 as a colorless oil.

MS m/z: \(344\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.52\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.99-2.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.76-2.86\left(2 \mathrm{H}, \mathrm{m}_{1} \mathrm{CH}_{2}\right), 4.05-\) \(4.12(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}\) ) , \(4.67(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}), 6.47(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) .7 .17(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}) .7 .26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) .7 .44-7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.10(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.20(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).

Example 41: Synthesis of compound 117

\section*{Compound 114:}
[0211] To a solution of (R)-(+)-1-(1-naphthyl)ethylamine ( \(600 \mathrm{mg}, 3.5 \mathrm{mmol}\) ) in dichloromethane ( 5 ml ) were added ethylmalonyl chloride 113 ( \(580.3 \mathrm{mg}, 3.85 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and triethylamine ( \(0.59 \mathrm{ml}, \mathrm{d}=0.726,3.85 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and the resulting mixture was stirred at room temperature for 2 hours.
[0212] After the completion of the reaction, the reaction mixture was poured into water and extracted with dichloromethane. The dichloromethane layer was washed successively with a \(5 \%\) aqueous solution of hydrochloric acid, water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The crystals thus obtained were purified by column chromatography [silica gel, ethyl ace-tate/n-hexane] to thereby give \(662.9 \mathrm{mg}(66.5 \%\) ) of the compound 114 as colorless prisms.
\({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.16\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.60\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.24\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17.7,26.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\), \(4.07\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.89(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.3,14.6 \mathrm{~Hz}, \mathrm{CH}), 7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{NH}), 7.38(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz})\), Ar-H, \(7.44(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{Ar}-\underline{H}), 7.46(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, \mathrm{Ar}-\underline{H}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}\), \(\mathrm{Ar}-\mathrm{H}) 8.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

\section*{Compound 115:}
[0213] To a solution of the above compound 114 ( \(662.5 \mathrm{mg}, 2.32 \mathrm{mmol}\) ) in ethanol ( 5 ml ) was added a \(10 \%\) aquequs solution of sodium hydroxide ( 1 ml ) and the resulting mixture was stirred under heating at an outer temperature of 80 \({ }^{\circ} \mathrm{C}\) for 1 hour.
[0214] After the completion of the reaction, the reaction mixture was concentrated, acidified with a \(5 \%\) aqueous solution of hydrochloric acid, poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed successively with a \(5 \%\) aqueous solution of hydrochloric acid, water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The crystals thus obtained were purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give 659.5 mg of the compound 115 as colorless prisms.
\({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{\delta}: 1.66\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.20\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=18.3,29.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.91(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.7,14.7 \mathrm{~Hz}, \mathrm{CH})\), \(6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{NH}), 7.43(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.53(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=1.2,6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\). \(7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

\section*{Compound 116:}
[0215] To a solution of the above compound 115 ( \(50 \mathrm{mg}, 0.19 \mathrm{mmol}\) ) in \(\mathrm{N}, \mathrm{N}\)-dimethyltormamide ( 3 ml ) were added

\section*{EP 0933354 A1}
(R)-(+)-1-(1-naphthyl)ethylamine ( \(45.0 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and WSC \(\cdot \mathrm{HCl}(44.9 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and the resulting mixture was stirred at room temperature for 1 hour.
[0216] After the completion of the reaction, the reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The crystals thus obtained were purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give \(61.6 \mathrm{mg}(70.5 \%)\) of the compound 116 as colorless prisms.
\({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.43\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.72\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{CH} 2), 4.36(2 \mathrm{H}, \mathrm{q}\), \(\left.J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.32-6.01(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{d}\), \(J=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.44-7.56(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{d}\), \(J=9.2 \mathrm{~Hz}, \operatorname{Ar}-\underline{H}), 8.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 8.11(\mathrm{TH}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\underline{H}), 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{Ar}-\underline{H})\).

Compound 117:
[0217] To a solution of the above compound \(116(50 \mathrm{mg}, 0.11 \mathrm{~mol})\) in tetrahydrofuran ( 3 ml ) was added a 1 M solution of borane-tetrahydrofuran ( \(0.24 \mathrm{ml}, 0.24 \mathrm{mmol}, 2.2 \mathrm{~mol}\) eq.) under ice-cooling. Then the temperature was elevated to room temperature and the mixture was stirred for 6 hours.
[0218] After the completion of the reaction, water was poured into the reaction mixture. Then the mixture was acidified with a \(5 \%\) aqueous solution of hydroctloric acid and extracted with ethyl acetate. The layer of the \(5 \%\) aqueous solution of hydrochloric acid was made alkaline by adding a \(5 \%\) aqueous solution of sodium hydroxide and then extracted with ethyl acetate. After washing with water and a saturated aqueous solution of sodium chloride and drying over sodium sulfate, the solvent was distilled off under reduced pressure. The crystals thus obtained were purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give \(18.0 \mathrm{mg}(88.0 \%)\) of the compound 117 as a colorless oil.

MS m/z: \(421\left(\mathrm{M}^{+}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.38\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)\), \(2.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.29\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.29\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.79(1 \mathrm{H}, \mathrm{q}\), \(J=6.1 \mathrm{~Hz}, C H), 6.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.27(1 \mathrm{H}\), \(d, J=1.8 \mathrm{~Hz}, \operatorname{Ar}-\underline{H}), 7.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \operatorname{Ar}-\underline{H}), 7.39(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.46(3 \mathrm{H}, \mathrm{m}, \operatorname{Ar}-\underline{H}), 7.65(1 \mathrm{H}, \mathrm{d}\), \(J=10.4 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H})\), \(8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar}-\underline{H})\).

Example 42: Synthesis of compound 123
Compound 119:
[0219] 2-Methoxycarbonythiophenol 118 ( 9.7 g ) was dissolved in \(\mathrm{N}, \mathrm{N}\)-dimethylformamide ( 200 ml ) and sodium hydride ( \(60 \%\) ) ( 2.7 g ) was added thereto at \(0^{\circ} \mathrm{C}\). When foaming was ceased, ( \(\pm\) )-2-tert-butoxycarbonylamino-1-meth-anesulfonyloxy-2-phenylethane ( 20.0 g ) was added thereto and the resulting mixture was stirred at room temperature for 12 hours.
[0220] After the completion of the reaction, ammonium chloride was added thereto in excess and the reaction mixture was extracted with ethyl acetate. The extract was washed with a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the crystals thus obtained were purified by column chromatography [silica gel, ethyl acetate/n-hexane] to thereby give 16.0 g of the compound 119.

Compound 120:
[0221] The above compound 119 ( 1.9 g ) was dissolved in diphenyl ether and p-toluenesulfonic acid hydrate ( 100 mg ) was added thereto. The resulting mixture was heated at 250 to \(260^{\circ} \mathrm{C}\) for 40 minutes.
[0222] After cooling by allowing to stand, it was purified by column chromatography and eluted with ethyl acetate/nhexane to thereby give 700 mg of the compound 120.

Compound 121:
[0223] The above compound 120 ( 150 g ) was dissolved in tetrahydrofuran and lithium aluminum hydride ( 310 mg ) was added thereto. The resulting mixture was then heated under reflux for 5 hours.
[0224] After the completion of the reaction, sodium sulfate decahydrate was added in excess thereto and the mixture was filtered through celite. The filtrate was concentrated and thus 330 mg of the compound 121 was obtained.

\section*{EP 0933354 A1}

\section*{Compound 122:}
[0225] The above compound 121 ( 3.0 g ) and triethylamine ( 1.5 g ) were dissolved in tetrahydrofuran and acryloyl chloride ( 1.2 g ) was added thereto under ice-cooling. After stirring the mixture at room temperature for 30 minutes, a satu-

\section*{Example 44: Synthesis of K-2004}
[0230] 4-Bromophenol ( \(570 \mathrm{mg}, 3.29 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 11 ml ) and then potassium carbonate ( 1.08 TLC, potassium carbonate ( \(455 \mathrm{mg}, 3.29 \mathrm{mmol}\) ) and ( \(R\) ) \(-(+)-3\)-methoxy- \(\alpha\)-methylbenzylamine ( \(400 \mathrm{mg}, 2.64 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 18 hours.
[0231] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol = 100:1) to thereby give \(422 \mathrm{mg}(1.11 \mathrm{mmol})\) of the compound K-2004 as a pale yellow syrup at a yield of \(43 \%\).

500 MHz NMR \(7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}), 6.77-6.88(3 \mathrm{H}, \mathrm{m}), 6.73(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})\), \(3.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{Jm} 7.0 \mathrm{~Hz}), 2.46-2.59(2 \mathrm{H}, \mathrm{m}), 1.73-1.83(2 \mathrm{H}, \mathrm{m}), 1.56-1.67(2 \mathrm{H}, \mathrm{m})\),
\[
1.51(1 \mathrm{H}, \mathrm{~s}), 1.34(3 \mathrm{H}, \mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=377,379 .
\]

\section*{Example 45: Synthesis of K-2005}
-Bromophenol ( \(710 \mathrm{mg}, 4.10 \mathrm{mmol}\) ) was dissolved in acelonitile ( 11 mi ) and then potassium carbonate ( 710 \(\mathrm{mg}, 5.14 \mathrm{mmol}\) ) and 1,5 -dibromopentane ( \(0.44 \mathrm{ml}, 4.55 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred under heat-reflux at \(95^{\circ} \mathrm{C}\) for 4 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(455 \mathrm{mg}, 3.29 \mathrm{mmol}\) ) and ( R ) \(-(+)-3\)-methoxy- \(\alpha\)-methylbenzylamine ( \(370 \mathrm{mg}, 2.45 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 24
[0233] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography at a yield of \(31 \%\).

500 MHz NMR \(7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~J}=8.5 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 6.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}\), \(J=1.5 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{m}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.36-2.55(4 \mathrm{H}, \mathrm{m}), 1.55-\) \(1.77(2 \mathrm{H}, \mathrm{m}), 1.43-1.57(2 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=391,393\).

\section*{Example 46: Synthesis of K-2006}
[0234] 4-Bromophenol ( \(500 \mathrm{mg}, 2.89 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ) and then potassium carbonate ( 540
The resulting mixture was stirred under heat-reflux at \(95^{\circ} \mathrm{C}\) for 4 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(400 \mathrm{mg}, 2.89 \mathrm{mmol}\) ) and ( \(R\) ) \(-(+)-3-\) methoxy- \(\alpha-\) methylbenzylamine ( \(270 \mathrm{mg}, 1.79 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 24 hours.

After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was puritied by silica gel column chromatography (chloroform: methanol \(=100: 1)\) to thereby give \(364 \mathrm{mg}(0.896 \mathrm{mmol})\) of the compound K-2006 as a pale yellow syrup at a yield of \(50 \%\).

500 MHz NMR \(7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.88-6.89(1 \mathrm{H}, \mathrm{m}), 6.88(1 \mathrm{H}, \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{dd}\), \(J=8.0 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}), 6.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 3.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.41-2.53(2 \mathrm{H}\), m), 1.71-1.77(2H, m), 1.35-1.52(7H, m), 1.34(3H, d, J=7.0Hz), m/z=405, 407.

\section*{Example 47: Synthesis of K-2007}
[0236] 4-Bromophenol ( \(490 \mathrm{mg}, 2.83 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ) and then potassium carbonate (495 \(\mathrm{mg}, 3.58 \mathrm{mmol})\) and 1,7 -dibromoheptane ( \(0.53 \mathrm{ml}, 3.10 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred under heat-reflux at \(95^{\circ} \mathrm{C}\) for 4 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(400 \mathrm{mg}, 2.89 \mathrm{mmol}\) ) and ( \(R\) )-(+)-3-methoxy- \(\alpha\)-methylbenzylamine ( \(300 \mathrm{mg}, 1.98 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95{ }^{\circ} \mathrm{C}\) for additional 24 hours.
[0237] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. saturated aqueous solution of sodium chloride. The organic layer thus cbtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chlorotorm: methanol = \(100: 1\) ) to thereby give \(150 \mathrm{mg}(0.36 \mathrm{mmol})\) of the compound \(\mathrm{K}-2007\) as a pale yellow syrup at a yield of \(18 \%\).

500 MHz NMR \(7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{~J}=7.8 \mathrm{~Hz}), 6.90-6.93(2 \mathrm{H}, \mathrm{m}), 6.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}\), \(J=1.8 \mathrm{~Hz}), 6.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.79-3.80(1 \mathrm{H}, \mathrm{m}), 2.43-2.54(2 \mathrm{H}, \mathrm{m}), 1.70-\) \(1.84(2 \mathrm{H}, \mathrm{m}), 1.20-1.56(9 \mathrm{H}, \mathrm{m}), 1.41(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=419,421\).

Example 48: Synthesis of K-2010
[0238] 3-Trifluoromethythiophenol ( \(615 \mathrm{mg}, 3.45 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 12 ml ) and then potassium carbonate ( \(467 \mathrm{mg}, 3.38 \mathrm{mmol}\) ) and 1.4 -dibromobutane ( \(0.46 \mathrm{ml}, 3.85 \mathrm{mmol}\) ) were successively added thereto at room the reaction by TLC, potassium carbonate ( \(210 \mathrm{mg}, 1.52 \mathrm{mmol}\) ) and ( \(R\) )-(+)-3-methoxy- \(\alpha\)-methylbenzylamine ( 360 mg , 2.38 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 18 hours.
[0239] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(180 \mathrm{mg}(0.47 \mathrm{mmol})\) of the compound K-2010 as a pale yellow syrup at a yield of \(20 \%\).

500 MHz NMR 7.51 ( \(1 \mathrm{H}, \mathrm{s}\) ), \(7.35-7.44(3 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.76-6.78\) (1H, \(m), 3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.50-2.55(1 \mathrm{H}, \mathrm{m}), 2.42-2.47(1 \mathrm{H}, \mathrm{m}), 1.55-1.71(4 \mathrm{H}, \mathrm{m})\), \(1.45(1 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=383\).

\section*{Example 49: Synthesis of K-2011}
[0240] 3-Trifluoromethylthiophenol ( \(600 \mathrm{mg}, 3.37 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 12 ml ) and then potassium carbonate ( \(540 \mathrm{mg}, 3.96 \mathrm{mmol}\) ) and 1,5 -dibromopentane ( \(0.50 \mathrm{ml}, 3.67 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 5 hours. After confirming the completion of the raaction by TLC, potassium carbonate ( \(240 \mathrm{mg}, 1.74 \mathrm{mmol}\) ) and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( 300 mg , 1.98 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 18 hours.
[0241] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(220 \mathrm{mg}(0.55 \mathrm{mmol})\) of the compound K-2011 as a pale yellow syrup at a yield of \(28 \%\).

500 MHz NMR \(7.51(1 \mathrm{H}, \mathrm{s}), 7.45-7.44(1 \mathrm{H}, \mathrm{m}), 7.35-7.40(2 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.88(2 \mathrm{H}, \mathrm{m})\), \(6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.47-2.52(1 \mathrm{H}, \mathrm{m}), 2.40-2.45(1 \mathrm{H}, \mathrm{m})\), \(1.61-1.67(2 \mathrm{H}, \mathrm{m}), 1.41-1.52(5 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} \mathrm{z}=397\).

\section*{Example 50: Synthesis of K-2012}
[0242] 3-Trifluoromethylthiophenol ( \(515 \mathrm{mg}, 2.89 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ) and then potassium carbonate ( \(440 \mathrm{mg}, 3.18 \mathrm{mmol}\) ) and 1,6 -dibromohexane ( \(0.45 \mathrm{mi}, 2.93 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 5 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(270 \mathrm{mg}, 1.95 \mathrm{mmol}\) ) and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( 260 mg , 1.72 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 24 hours.
[0243] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1)\) to thereby give \(272 \mathrm{mg}(0.66 \mathrm{mmol})\) of the compound \(K-2012\) as a pale yellow syrup at a yield of \(38 \%\).

500 MHz NMR \(7.51(1 \mathrm{H}, \mathrm{s}), 7.43-7.45(1 \mathrm{H}, \mathrm{m}), 7.35-7.40(2 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=7.5 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m})\), \(6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.46-2.51(1 \mathrm{H}, \mathrm{m}), 2.40-2.44(1 \mathrm{H}, \mathrm{m})\), \(1.61-1.67(2 \mathrm{H}, \mathrm{m}), 1.38-1.50(7 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=411\).

Example 51: Synthesis of K-2015
[0244] 2-Bromobenzenethiol ( \(445 \mathrm{mg}, 2.35 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ) and then potassium carbonate ( \(420 \mathrm{mg}, 3.04 \mathrm{mmol}\) ) and 1 -bromo-2-chloroethane ( \(0.22 \mathrm{ml}, 2.64 \mathrm{mmol}\) ) were successively added thereto at room tem- After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sul-
fate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sul-
fate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(207 \mathrm{mg}(0.57 \mathrm{mmol})\) of the compound \(\mathrm{K}-2015\) as a pale yellow syrup at a yield of \(34 \%\). perature. The resulting mixture was stirred at the same temperature for 4 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(315 \mathrm{mg}, 2.28 \mathrm{mmol}\) ) and ( R ) \(-(+)-3\)-methoxy- \(\alpha\)-methylbenzylamine ( 250 mg , 1.65 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 120 hours.
[0245] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature.

500 MHz NMR \(7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.18-7.26(4 \mathrm{H}, \mathrm{m}), 6.87-6.88(2 \mathrm{H}, \mathrm{m}), 6.78-6.81(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.04(2 \mathrm{H}\), \(t, J=7.0 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.67-2.81(2 \mathrm{H}, m), 1.73(1 \mathrm{H}, \mathrm{s}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / z=365,367\).

\section*{Example 52: Synthesis of K-2016}
[0246] 2-Bromobenzenethiol ( \(517 \mathrm{mg}, 2.73 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ) and then potassium carbonate ( \(475 \mathrm{mg}, 3.44 \mathrm{mmol}\) ) and 1.3 -dibromopropane ( \(0.31 \mathrm{ml}, 3.05 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 4 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(352 \mathrm{mg}, 2.76 \mathrm{mmol}\) ) and (R)-(+)-3-methoxy- \(\alpha\)-methylbenzylamine ( 250 mg , 1.65 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 12 hours.
[0247] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(249 \mathrm{mg}(0.66 \mathrm{mmol})\) of the compound K-2016 as a pale yellow syrup at a yield of \(\mathbf{4 0} \%\).

500 MHz NMR \(7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.22-7.26(3 \mathrm{H}, \mathrm{m}), 7.00(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=7.5 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}\), \(J=7.5 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{s}), 6.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.90-3.02(2 \mathrm{H}, \mathrm{m}), 2.55-\) \(2.69(2 \mathrm{H}, \mathrm{m}), 1.80-1.86(2 \mathrm{H}, \mathrm{m}), 1.46(1 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=379,3.81\).

\section*{Example 53: Synthesis of K-2017}
[0248] 2-Bromobenzenethiol ( \(505 \mathrm{mg}, 2.67 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ) and then potassium carbonate ( \(445 \mathrm{mg}, 3.22 \mathrm{mmol}\) ) and 1.4 -dibromobutane ( \(0.35 \mathrm{ml}, 2.93 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 4 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(330 \mathrm{mg}, 2.39 \mathrm{mmol}\) ) and ( \(R\) )-(+)-3-methoxy- \(\alpha\)-methylbenzylamine ( \(250 \mathrm{mg}, 1.65\) mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 12 hours.
[0249] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was puritied by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(311 \mathrm{mg}(0.79 \mathrm{mmol})\) of the compound \(K-2017\) as a pale yellow syrup at a yield of \(48 \%\).

500 MHz NMR \(7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.19-7.25(3 \mathrm{H}, \mathrm{m}), 7.00(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}), 6.87-6.88(2 \mathrm{H}, \mathrm{m})\), \(6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.43-2.56(2 \mathrm{H}, \mathrm{m}), 1.68-\) \(1.73(2 \mathrm{H}, \mathrm{m}), 1.68-1.73(2 \mathrm{H}, \mathrm{m}), 1.58-1.67(2 \mathrm{H}, \mathrm{m}), 1.47(1 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=393,395\).

Example 54: Synthesis of K-2018
[0250] 2-Bromobenzenethiol ( \(445 \mathrm{mg}, 2.35 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ) and then potassium carbonate ( \(407 \mathrm{mg}, 2.95 \mathrm{mmol}\) ) and 1.5 -dibromopentane ( \(0.31 \mathrm{ml}, 2.60 \mathrm{mmol}\) ) were successively added thereto at room temperreaction by TLC, potassium carbonate ( \(330 \mathrm{mg}, 2.39 \mathrm{mmol}\) ) and ( R ) \(-(+)-3-\) methoxy- \(\alpha\)-methylbenzylamine ( 220 mg , 1.46 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 12 hours.
[0251] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1)\) to thereby give \(307 \mathrm{mg}(0.75 \mathrm{mmol})\) of the compound K -2018 as a pale yellow syrup at a yield of \(52 \%\).

500 MHz NMR \(7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 7.18-7.25(3 \mathrm{H}, \mathrm{m}), 6.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=7.5 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m})\), \(6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.90(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.41-2.51(2 \mathrm{H}, \mathrm{m}), 1.65-\) \(1.69(2 \mathrm{H}, \mathrm{m}), 1.44-1.53(5 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=409\).

Example 55: Synthesis of K-2027 ( \(\mathrm{N}-\{5-(4\)-chlorophenyl)thio]pentyl \(]-\mathrm{N}-[(1 \mathrm{R})-1\)-(1-naphthyl)ethyi]amine)
[0252] 4-Chlorobenzenethiol ( \(550 \mathrm{mg}, 3.80 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 6.0 ml ) and then potassium carbonate ( \(520 \mathrm{mg}, 3.76 \mathrm{mmol}\) ) and 1,5 -dibromopentane ( \(0.52 \mathrm{ml}, 3.82 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(241 \mathrm{mg}, 1.74 \mathrm{mmol}\) ) and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine ( \(0.31 \mathrm{ml}, 1.92 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(95^{\circ} \mathrm{C}\) for additional 12 hours.
[0253] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1)\) to thereby give \(288 \mathrm{mg}(0.75 \mathrm{mmol}\) ) of the compound K-2027 as a pale yellow syrup at a yield of \(40 \%\).

500 MHz NMR \(8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}\), \(d, J=7.5 \mathrm{~Hz}), 7.45-7.52(3 \mathrm{H}, \mathrm{m}), 7.19-7.23(4 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.50-2.61(2 \mathrm{H}, \mathrm{m})\), \(1.41-1.63(7 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=383\).

\section*{Example 56: Synthesis of K-2030}
[0254] 3-Chlorophenol ( \(420 \mathrm{mg}, 3.27 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 9.0 ml ) and then potassium carbonate ( 1.19 g. 8.61 mmol ) and 1 -bromo-2-chloroethane ( \(0.41 \mathrm{ml}, 4.93 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at \(70^{\circ} \mathrm{C}\) for 24 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(1.70 \mathrm{~g}, 12.3 \mathrm{mmol}\) ) and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine ( \(0.45 \mathrm{ml}, 2.79 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 120 hours.
[0255] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(321 \mathrm{mg}(0.99 \mathrm{mmol})\) of the compound K-2030 as a pale yellow syrup at a yield of \(35 \%\).
\(500 \mathrm{MHz} \mathrm{NMR} 8.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.46-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.89-3.93(2 \mathrm{H}, \mathrm{m}), 6.76-6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.5 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}), 4.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz})\), \(4.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}), 2.90-3.00(2 \mathrm{H}, \mathrm{m}), 1.78(1 \mathrm{H}, \mathrm{s}), 1.53(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=325\).

Example 57: Synthesis of K-2033
[0256] 4-Nitrobenzenethiol ( \(470 \mathrm{mg}, 3.03 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 7.0 ml ) and then potassium carbonate ( \(450 \mathrm{mg}, 3.26 \mathrm{mmol}\) ) and 1,4 -dibromobutane ( \(0.36 \mathrm{ml}, 3.01 \mathrm{mmol}\) ) were successively added thereto at room tempera- tion by TLC, potassium carbonate ( \(250 \mathrm{mg}, 1.81 \mathrm{mmol}\) ) and (R)-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( \(250 \mathrm{mg}, 1.65\) mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 12 hours.
[0257] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over antydrous sodium sultate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform: methanol \(=150: 1\) ) to thereby give \(206 \mathrm{mg}(0.57 \mathrm{mmol})\) of the compound \(\mathrm{K}-2033\) as a yellow syrup at a yield of \(35 \%\).

500 MHz NMR \(8.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.29(2 \mathrm{H}, d, J=9.0 \mathrm{~Hz}), 7.24(1 \mathrm{H}, d d, J=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})\), \(6.87(1 \mathrm{H}, \mathrm{s}), 6.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.44-\) \(2.60(2 \mathrm{H}, \mathrm{m}), 1.71-1.76(2 \mathrm{H}, \mathrm{m}), 1.60-1.66(3 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=360\).

\section*{Example 58: Synthesis of K-2034}
[0258] 4-Nitrobenzenethiol ( \(520 \mathrm{mg}, 3.35 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 7.0 ml ) and then potassium carbonate ( \(492 \mathrm{mg}, 3.56 \mathrm{mmol}\) ) and 1.5 -dibromopentane ( \(0.46 \mathrm{ml}, 3.38 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 3 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(300 \mathrm{mg}, 2.17 \mathrm{mmol}\) ) and ( R )-(+)-3-methoxy- \(\alpha\)-methylbenzylamine ( 300 mg , 1.98 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 12 hours.
[0259] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over antydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol = \(150: 1\) ) to thereby give \(102 \mathrm{mg}(0.27 \mathrm{mmol})\) of the compound \(\mathrm{K}-2034\) as a yellow syrup at a yield of \(14 \%\).

500 MHz NMR \(8.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{~J}=7.8 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m})\), \(6.77 \cdot 6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.49-2.52(1 \mathrm{H}, \mathrm{m}), 2.41-2.45(1 \mathrm{H}, \mathrm{m})\). \(1.67-1.72(2 \mathrm{H}, \mathrm{m}), 1.45-1.53(5 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=374\).

\section*{Example 59: Synthesis of K-2035}
[0260] 4-Nitrobenzenethiol ( \(460 \mathrm{mg}, 2.96 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 7.0 ml ) and then potassium carbonate ( \(432 \mathrm{mg}, 3.13 \mathrm{mmol}\) ) and 1,6 -dibromohexane ( \(0.46 \mathrm{ml}, 2.99 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 3 hours. After contirming the completion of the reaction by TLC, potassium carbonate ( \(120 \mathrm{mg}, 0.86 \mathrm{mmol}\) ) and ( R )-(+)-3-methoxy- \(\alpha\)-methylbenzylamine ( \(230 \mathrm{mg}, 1.52\) mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 12 hours.
[0261] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was puritied by silica gel column chromatography (chloroform : methanol = \(150: 1\) ) to thereby give \(133 \mathrm{mg}(0.342 \mathrm{mmol})\) of the compound \(\mathrm{K}-2035\) as a yellow syrup at a yield of \(23 \%\).

500 MHz NMR 8.12(2H, d, Jm9.0Hz), 7.29(2H, d, J=9.0Hz), 7.24(1H, dd, J=8.0Hz), 6.88(1H, d, J=8.0Hz), 6.88(1H, s), \(6.77-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.40-2.53(2 \mathrm{H}, \mathrm{m}), 1.67-1.73(2 \mathrm{H}, \mathrm{m})\), \(1.41-1.50(5 \mathrm{H}, \mathrm{m}), 1.25-1.36(2 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=388\).

\section*{EP 0933354 A1}

Example 60: Synthesis of K-2040
[0262] 4-Fluorobenzenethiol ( \(520 \mathrm{mg}, 4.06 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(864 \mathrm{mg}, 6.26 \mathrm{mmol}\) ) and 1,4 -dibromobutane ( \(0.49 \mathrm{ml}, 4.12 \mathrm{mmol}\) ) were successively added thereto at room tem-
reaction by TLC, potassium carbonate ( \(320 \mathrm{mg}, 2.32 \mathrm{mmol}\) ) and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( 310 mg , 2.05 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 12 hours.
[0263] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(170 \mathrm{mg}(0.51 \mathrm{mmol})\) of the compound \(\mathrm{K}-2040\) as a pale yellow syrup at a yield of \(25 \%\).

500 MHz NMR \(7.28-7.32(2 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}), 6.95-6.70(2 \mathrm{H}, \mathrm{m}), 6.86-6.87(2 \mathrm{H}, \mathrm{m}), 6.76-\) \(6.79(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, q, J=6.5 \mathrm{~Hz}), 2.83(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}), 2.47-2.52(1 \mathrm{H}, \mathrm{m}), 2.39-2.44(1 \mathrm{H}\), m), \(1.52-1.64(5 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=333\).

\section*{Example 61: Synthesis of K-2041}
[0264] 4-Fluorobenzenethiol ( \(590 \mathrm{mg}, 4.61 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(340 \mathrm{mg}, 2.46 \mathrm{mmol}\) ) and 1,5 -dibromopentane ( \(0.63 \mathrm{ml}, 4.62 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 3 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(340 \mathrm{mg}, 2.46 \mathrm{mmol}\) ) and ( \(R\) )-( + )-3-methoxy-a-methylbenzylamine ( 350 mg , 2.31 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 12 hours.
[0265] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1)\) to thereby give \(245 \mathrm{mg}(0.71 \mathrm{mmol})\) of the compound \(K-2041\) as a pale yellow syrup at a yield of \(31 \%\).

500 MHz NMR \(7.29-7.32(2 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.96-6.99(2 \mathrm{H}, \mathrm{m}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.77-\) \(6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.83(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.45-2.50(1 \mathrm{H}, \mathrm{m}), 2.38-2.43(1 \mathrm{H}, \mathrm{m}), 1.54-\)
\(1.60(2 \mathrm{H}, \mathrm{m}), 1.38-1.48(3 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=347\).

\section*{Example 62: Synthesis of K-2045}
[0266] 3-Bromobenzenethiol ( \(650 \mathrm{mg}, 3.44 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(524 \mathrm{mg}, 3.79 \mathrm{mmol}\) ) and 1 -bromo- 2 -chloroethane ( \(0.29 \mathrm{ml}, 3.48 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 3 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(280 \mathrm{mg}, 2.02 \mathrm{mmol}\) ) and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( 420 mg , 2.78 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 120 hours.
[0267] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=185\); 1) to thereby give \(395 \mathrm{mg}(1.23 \mathrm{mmol})\) of the compound \(\mathrm{K}-2045\) as a pale yellow syrup at a yield of \(44 \%\).

500 MHz NMR \(7.43(1 \mathrm{H}, 8), 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.19(1 \mathrm{H}\), dd, \(J=7.5 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}), 6.87(1 \mathrm{H}, d, J=7.5 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{s}), 6.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, ~ s), 3.74(1 \mathrm{H}\), \(q, J=6.5 \mathrm{~Hz}), 3.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.66-2.77(2 \mathrm{H}, \mathrm{m}), 1.68(1 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / 2=365,367\).

\section*{Example 63: Synthesis of K-2046}
[0268] 3-Bromobenzenethiol ( \(580 \mathrm{mg}, 3.06 \mathrm{mmol}\) ) was dissolved in acetonitrile \((9.0 \mathrm{ml}\) ) and then potassium carbonate ( \(432 \mathrm{mg}, 3.13 \mathrm{mmol}\) ) and 1,3 -dibromopropane ( \(0.31 \mathrm{ml}, 3.05 \mathrm{mmol}\) ) were successively added thereto at room tem- perature. The resulting mixture was stirred at the same temperature for 5 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(280 \mathrm{mg}, 2.02 \mathrm{mmol}\) ) and (R)-(+)-3-methoxy- \(\alpha\)-methylbenzylamine ( 230 mg , 1.52 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0269] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was puritied by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give 213 mg ( 0.56 mmol ) of the compound K-2046 as a pale yellow syrup at a yield of \(37 \%\).

500 MHz NMR , \(7.40-7.41(1 \mathrm{H}, \mathrm{m}), 7.18-7.28(3 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.76-\) \(6.79(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.88(2 \mathrm{H}, \mathrm{m}), 2.49-2.54(1 \mathrm{H}, \mathrm{m}), 2.41-2.46(1 \mathrm{H}, \mathrm{m}), 1.54-1.69(2 \mathrm{H}\), \(\mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=379,381\).

\section*{Example 64: Synthesis of K-2047}
[0270] 3-Bromobenzenethiol ( \(470 \mathrm{mg}, 2.49 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(347 \mathrm{mg}, 2.51 \mathrm{mmol}\) ) and 1,4 -dibromobutane ( \(0.30 \mathrm{ml}, 2.51 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 5 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(320 \mathrm{mg}, 2.32 \mathrm{mmol}\) ) and ( R )- \(-(+) \cdot-3\)-methoxy- \(\alpha\)-methylbenzylamine ( 200 mg , 1.32 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0271] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus dbtained was dried over anhydrous sodium sultate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(185 \mathrm{mg}(0.47 \mathrm{mmol})\) of the compound \(\mathrm{K}-2047\) as a pale yellow syrup at a yield of \(36 \%\).

500 MHz NMR \(7.19-7.28(3 \mathrm{H}, \mathrm{m}), 7.02-7.13(2 \mathrm{H}, \mathrm{m}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.77(1 \mathrm{H}, \mathrm{q}\), \(\mathrm{J}=6.5 \mathrm{~Hz}), 1.76-1.79(2 \mathrm{H}, \mathrm{m}), 2.89-3.01(2 \mathrm{H}, \mathrm{m}), 2.60-2.65(1 \mathrm{H}, \mathrm{m}), 2.51-2.56(1 \mathrm{H}, \mathrm{m}), 2.31-2.42(2 \mathrm{H}, \mathrm{m}), 1.52(1 \mathrm{H}, \mathrm{s})\), \(1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=393,395\).

\section*{Example 65: Synthesis of K-2048}
[0272] 3-Bromobenzenethiol ( \(530 \mathrm{mg}, 2.80 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(395 \mathrm{mg}, 2.86 \mathrm{mmol}\) ) and 1,5 -dibromopentane ( \(0.38 \mathrm{ml}, 2.78 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stired at the same temperature for 2 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(213 \mathrm{mg}, 1.54 \mathrm{mmol}\) ) and (R). \((+)-3\)-methoxy- \(\alpha\)-methylbenzylamine ( 200 mg ,
1.32 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0273] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sultate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(226 \mathrm{mg}(0.55 \mathrm{mmol})\) of the compound \(\mathrm{K}-2048\) as a pale yellow syrup at a yield of \(42 \%\).

500 MHz NMR \(7.41(1 \mathrm{H}, \mathrm{s}), 7.18-7.28(3 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=7.5 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{s})\), \(6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, q, J=6.5 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.47-2.51(1 \mathrm{H}, \mathrm{m}), 2.40-\) \(2.43(1 \mathrm{H}, \mathrm{m}), 1.62(2 \mathrm{H}, \mathrm{m}), 1.40-1.50(5 \mathrm{H}, \mathrm{m}), 1.234(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})\).

\section*{Example 66: Synthesis of K-2049}
[0274] 3-Bromobenzenethiol ( \(600 \mathrm{mg}, 3.17 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(500 \mathrm{mg}, 3.62 \mathrm{mmol}\) ) and 1.6 -dibromohexane ( \(0.50 \mathrm{ml}, 3.25 \mathrm{mmol}\) ) were successively added thereto at room tem- reaction by TLC. potassium carbonate ( \(205 \mathrm{mg}, 1.48 \mathrm{mmol}\) ) and (R)-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( 250 mg , 1.66 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0275] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1)\) to thereby give \(267 \mathrm{mg}(0.63 \mathrm{mmol})\) of the compound \(\mathrm{K}-2049\) as a pale yellow syrup at a yield of \(38 \%\).

500 MHz NMR \(7.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8 \mathrm{~Hz}, \mathrm{~J}=1.8 \mathrm{~Hz}), 7.19-7.27(3 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}\), m), \(6.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 2.39-2.51(2 \mathrm{H}, \mathrm{m})\), \(1.50-1.65(2 \mathrm{H}, \mathrm{m}), 1.25-1.49(7 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})\).

\section*{Example 67: Synthesis of K-2050}
[0276] 3-Bromobenzenethiol ( \(525 \mathrm{mg}, 2.78 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(325 \mathrm{mg}, 2.36 \mathrm{mmol}\) ) and 1.7 -dibromoheptane ( \(0.47 \mathrm{ml}, 2.75 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(182 \mathrm{mg}, 1.32 \mathrm{mmol}\) ) and ( R )-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( 210 mg , 1.39 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0277] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over antydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol = \(150: 1\) ) to thereby give \(260 \mathrm{mg}(0.60 \mathrm{mmol})\) of the compound \(\mathrm{K}-2050\) as a pale yellow syrup at a yield of \(43 \%\).

500 MHz NMR \(7.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{~J}=2.0 \mathrm{~Hz}), 7.23-7.27(2 \mathrm{H}, \mathrm{m}), 7.18-7.21(1 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}\), \(J=8.0 \mathrm{~Hz}), 6.90-6.93(2 \mathrm{H}, \mathrm{m}), 6.80(\mathrm{TH}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.77-3.80(1 \mathrm{H}, \mathrm{m}), 2.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz})\), 2.42-2.54(2H, m), 1.58-1.64(2H, m), 1.50-1.55(1H, m), 1.35-1.45(4H, m), 1.42(3H, d, J=7.5Hz), 1.21-1.29(4H, m), \(\mathrm{m} / \mathrm{z}=4.35,437\).

\section*{Example 68: Synthesis of K-2051}
[0278] 3-Bromobenzenethiol ( \(610 \mathrm{mg}, 3.22 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(490 \mathrm{mg}, 3.55 \mathrm{mmol}\) ) and 1.8 -dibromooctane ( \(0.59 \mathrm{ml}, 3.20 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(218 \mathrm{mg}, 1.58 \mathrm{mmol}\) ) and ( \(R\) )-(+)-3-methoxy- \(\alpha\)-methybenzylamine ( 250 mg . 1.66 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0279] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(170 \mathrm{mg}(0.38 \mathrm{mmol})\) of the compound K-2051 as a pale yellow syrup at a yield of \(24 \%\).

500 MHz NMR \(7.41-7.42(1 \mathrm{H}, \mathrm{m}), 7.19-7.27(3 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{~J}=7.8 \mathrm{~Hz}), 6.90-6.92(2 \mathrm{H}, \mathrm{m}), 6.79(1 \mathrm{H}\), dd, \(J=7.8 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.76-3.82(1 \mathrm{H}, \mathrm{m}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 2.42-2.53(2 \mathrm{H}, \mathrm{m}), 1.59-1.65(2 \mathrm{H}, \mathrm{m})\), \(1.49(1 \mathrm{H}, \mathrm{m}), 1.41(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.36-1.43(4 \mathrm{H}, \mathrm{m}), 1.22-1.28(6 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=449,451\).

\section*{Example 69: Synthesis of K-2052 (N-\{5-[(4-iuluorophenyl)thio]pentyl]-N-[(1R)-1-(1-naphthyl)ethyl]amine)}
[0280] 4-Fluorobenzenethiol ( \(460 \mathrm{mg}, 3.60 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(500 \mathrm{mg}, 3.62 \mathrm{mmol}\) ) and 1.5 -dibromopentane ( \(0.50 \mathrm{ml}, 3.67 \mathrm{mmol}\) ) were successively added thereto at room tem- reaction by TLC, potassium carbonate ( \(210 \mathrm{mg}, 1.52 \mathrm{mmol}\) ) and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine ( \(300 \mathrm{mg}, 1.86 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0281] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature.
After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1)\) to thereby give \(210 \mathrm{mg}(0.57 \mathrm{mmol})\) of the compound \(K-2052\) as a pale yellow syrup at a yield of \(31 \%\).

500 MHz NMR \(8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.41\) \(7.50(5 \mathrm{H}, \mathrm{m}), 7.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.82(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.56-2.57(2 \mathrm{H}, \mathrm{m}), 2.37-2.43(2 \mathrm{H}\), \(\mathrm{m}), 1.40-1.59(5 \mathrm{H}, \mathrm{m}), 1.46(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=367\).

\section*{Example 70: Synthesis of K-2055}
[0282] 4-Trifluoromethylbenzenethiol ( \(408 \mathrm{mg}, 2.29 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(330 \mathrm{mg}, 2.39 \mathrm{mmol}\) ) and 1.3 -dibromopropane ( \(0.23 \mathrm{ml}, 2.28 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(172 \mathrm{mg}, 1.25 \mathrm{mmol}\) ) and (R)-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( \(210 \mathrm{mg}, 1.39 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0283] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over antrydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(122 \mathrm{mg}(0.33 \mathrm{mmol})\) of the compound \(\mathrm{K}-2055\) as a pale yellow syrup at a yield of \(\mathbf{2 4 \%}\).

500 MHz NMR \(7.44-7.50(2 \mathrm{H}, \mathrm{m}), 7.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~J}=8.5 \mathrm{~Hz}), 7.17-7.20(1 \mathrm{H}, \mathrm{m}), 6.85-\) \(6.88(2 \mathrm{H}, \mathrm{m}), 6.77-6.79(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.70-3.74(1 \mathrm{H}, \mathrm{m}), 1.77-1.83(2 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.25-\) \(1.26(1 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=369\).

\section*{Example 71: Synthesis of K-2056}
[0284] 4 -Trifluoromethylbenzenethiol ( \(487 \mathrm{mg}, 2.74 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(374 \mathrm{mg}, 2.71 \mathrm{mmol}\) ) and 1.4 -dibromobutane ( \(0.33 \mathrm{ml}, 2.77 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(172 \mathrm{mg}, 1.25 \mathrm{mmol}\) ) and ( R )-( + )-3-methoxy- \(\alpha\)-methybenzylamine ( 250 mg , 1.65 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0285] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1)\) to thereby give \(152 \mathrm{mg}(0.40 \mathrm{mmol})\) of the compound \(\mathrm{K}-2056\) as a pale yellow syrup at a yield of \(24 \%\).

500 MHz NMR \(7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.88(2 \mathrm{H}, \mathrm{m})\), \(6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.92-2.95(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.55-1.73(4 \mathrm{H}, \mathrm{m}), 1.47(1 \mathrm{H}, \mathrm{s})\), \(1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.50-2.55(1 \mathrm{H}, \mathrm{m}), 2.42-2.47(1 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=383\).

\section*{EP \(0933 \mathbf{3 5 4}\) A1}

\section*{Example 72: Synthesis of K-2057}
[0286] 4-Trifluoromethylbenzenethiol ( \(560 \mathrm{mg}, 3.15 \mathrm{mmol}\) ) was dissolved in acetonitrite ( \(\mathbf{1 0 . 0} \mathbf{~ m i}\) ) and then potassium carbonate ( \(440 \mathrm{mg}, 3.19 \mathrm{mmol}\) ) and 1.5 -dibromopentane ( \(0.43 \mathrm{ml}, 3.16 \mathrm{mmol}\) ) were successively added thereto at tion of the reaction by TLC, potassium carbonate ( \(240 \mathrm{mg}, 1.74 \mathrm{mmol}\) ) and ( \(R\) ) - \((+)-3-\) methoxy- \(\alpha\)-methylbenzylamine ( \(290 \mathrm{mg}, 1.92 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0287] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over antydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(129 \mathrm{mg}(0.32 \mathrm{mmol})\) of the compound K -2057 as a pale yellow syrup at a yield of \(17 \%\).
\((260 \mathrm{mg}, 1.72 \mathrm{mmol})\) were add
\(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0291] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1)\) to thereby give \(204 \mathrm{mg}(0.48 \mathrm{mmol})\) of the compound \(K\)-2059 as a pale yellow syrup at a yield of \(28 \%\).

500 MHz NMR \(7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{~J}=6.0 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m})\), \(6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}), 2.94(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.39-2.51(2 \mathrm{H}, \mathrm{m}), 1.62-1.68(2 \mathrm{H}, \mathrm{m})\), \(1.34-1.48(9 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=425\).

\section*{Example 75: Synthesis of K-2061}
[0292] 3-Chlorobenzenethiol ( \(460 \mathrm{mg}, 3.18 \mathrm{mmol}\) ) was dissolved in acetonitrile \((10.0 \mathrm{ml})\) and then potassium carbonate ( \(440 \mathrm{mg}, 3.19 \mathrm{mmol}\) ) and 1,3 -dibromopropane ( \(0.32 \mathrm{ml}, 3.15 \mathrm{mmol}\) ) were successively added thereto at room tem- perature. The resulting mixture was stirred at the same temperature for 2 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(210 \mathrm{mg}, 1.52 \mathrm{mmol}\) ) and ( R )- \((+)-3-\) methoxy- \(\alpha\)-methylbenzylamine ( 300 mg , 1.99 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0293] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anthydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(272 \mathrm{mg}(0.81 \mathrm{mmol})\) of the compound K-2061 as a pale yellow syrup at a yield of \(41 \%\).

500 MHz NMR \(7.11-7.27(5 \mathrm{H}, \mathrm{m}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.77-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.89\) \(3.01(2 \mathrm{H}, \mathrm{m}), 2.60-2.65(1 \mathrm{H}, \mathrm{m}), 2.51-2.56(1 \mathrm{H}, \mathrm{m}), 1.75-1.81(2 \mathrm{H}, \mathrm{m}), 1.47(1 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=335\).

\section*{Example 76: Synthesis of K-2066}
[0294] 2,5-Dichlorobenzenethiol ( \(575 \mathrm{mg}, 3.21 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 11.0 ml ) and then potassium carbonate ( \(440 \mathrm{mg}, 3.19 \mathrm{mmol}\) ) and 1-bromo-2-chloroethane ( \(0.26 \mathrm{ml}, 3.12 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(225 \mathrm{mg}, 1.63 \mathrm{mmol}\) ) and ( R ) \(-(+) \cdot 3\)-methoxy- \(\alpha\)-methylbenzylamine ( \(340 \mathrm{mg}, \mathbf{2 . 2 5 \mathrm { mmol } \text { ) were added at room temperature to the reaction system and the resulting mixture was stirred at }}\) \(100^{\circ} \mathrm{C}\) for additional 100 hours.
[0295] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1)\) to thereby give \(182 \mathrm{mg}(0.51 \mathrm{mmol})\) of the compound \(\mathrm{K}-2066\) as a pale yellow syrup at a yield of \(23 \%\).

500 MHz NMR \(7.21-7.30(3 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 6.88-6.89(2 \mathrm{H}, \mathrm{m}), 6.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz})\), \(3.81(3 \mathrm{H}, \mathrm{s}), 3.76(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{hZ}), 3.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.72-2.83(2 \mathrm{H}, \mathrm{m}), 1.66(1 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})\), \(\mathrm{m} / \mathrm{z}=355,357\).

\section*{Example 77: Synthesis of K-2075}
[0296] 2-Bromobenzenethiol ( \(702 \mathrm{mg}, 3.71 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 14.0 ml ) and then potassium carbonate ( \(525 \mathrm{mg}, 3.80 \mathrm{mmol}\) ) and 1,5 -dibromopentane ( \(0.50 \mathrm{ml}, 3.67 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(247 \mathrm{mg}, 1.79 \mathrm{mmol}\) ) and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine ( \(0.30 \mathrm{ml}, 1.86 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100{ }^{\circ} \mathrm{C}\) for additional 24 hours.
[0297] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over antydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=200: 1\) ) to thereby give \(144 \mathrm{mg}(0.34 \mathrm{mmol})\) of the compound \(\mathrm{K}-2075\) as a pale yellow syrup at a yield of \(18 \%\).

500 MHz NMR \(8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}) .7 .45-\) \(7.53(4 \mathrm{H}, \mathrm{m}), 7.13-7.25(2 \mathrm{H}, \mathrm{m}), 6.99(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.5 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{t}\), \(J=7.5 \mathrm{~Hz}), 2.52-2.63(2 \mathrm{H}, \mathrm{m}), 1.66-1.71(2 \mathrm{H}, \mathrm{m}), 1.45-1.59(5 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=427\).

\section*{EP 0933354 A1}

\section*{Example 78: Synthesis of K-2076 (N-[(1R)-1-(1-naphthyl)ethyl]-N-(5-\{[4-(trifluoromethy))phenyl]thio\}pentyl)amine)}
[0298] 4-Trifluoromethylbenzenethiol ( \(510 \mathrm{mg}, 2.861 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 12.0 ml ) and then potassium carbonate ( \(400 \mathrm{mg}, 2.89 \mathrm{mmol}\) ) and 1,5 -dibromopentane ( \(0.39 \mathrm{ml}, 2.86 \mathrm{mmol}\) ) were successively added thereto \(\mathrm{ml}, 1.73 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0299] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. o After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated equeous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=180: 1)\) to thereby give \(53 \mathrm{mg}(0.13 \mathrm{mmol})\) of the compound \(\mathrm{K}-2076\) as a pale yellow syrup at a yield of \(7 \%\).

500 MHz NMR 8.18(1H, d, J=8.5Hz), 7.87(1H, d, J=7.0Hz), 7.74(1H, d, J=6.5Hz), 7.63(1H, d, J=6.5Hz), 7.45\(7.52(5 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.93(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.51-2.63(2 \mathrm{H}\), \(\mathrm{m}), 1.63-1.69(2 \mathrm{H}, \mathrm{m}), 1.44-1.56(5 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=417\).

\section*{Example 79: Synthesis of K-2078}
[0300] 3.4-Dichlorobenzenethid ( \(469 \mathrm{mg}, 2.62 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(400 \mathrm{mg}, 2.89 \mathrm{mmol}\) ) and 1,3 -dibromopropane ( \(0.27 \mathrm{ml}, 2.67 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(180 \mathrm{mg}, 1.30 \mathrm{mmol}\) ) and ( R )-( + )-3-methoxy- \(\alpha\)-methylbenzylamine \((240 \mathrm{mg}\), 1.59 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0301] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was puritied by silica gel column chromatography (chloroform : methanol = \(150: 1\) ) to thereby give \(143 \mathrm{mg}(0.39 \mathrm{mmol})\) of the compound \(\mathrm{K}-2078\) as a pale yellow syrup at a yield of \(25 \%\).

500 MHz NMR \(7.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{~J}=6.5 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}\), \(J=1.5 \mathrm{~Hz}), 6.85-6.88(2 \mathrm{H}, \mathrm{m}), 6.77 \cdot 6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.88-3.00(2 \mathrm{H}, \mathrm{m}), 2.50-\) \(2.64(2 \mathrm{H}, \mathrm{m}), 1.71-1.81(2 \mathrm{H}, \mathrm{m}), 1.52(1 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=369,371\).

\section*{Example 80: Synthesis of K-2079}
[0302] 3.4-Dichorobenzenethiol ( \(556 \mathrm{mg}, 3.11 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 12.0 ml ) and then potassium carbonate ( \(412 \mathrm{mg}, 2.99 \mathrm{mmol}\) ) and 1.4 -dibromobutane ( \(0.37 \mathrm{ml}, 3.10 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(242 \mathrm{mg}, 1.75 \mathrm{mmol}\) ) and ( R )-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( \(\mathbf{2 8 0} \mathbf{~ m g}\), 1.85 mmol ) were added at room termerature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0303] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sultate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol = \(150: 1\) ) to thereby give \(156 \mathrm{mg}(0.41 \mathrm{mmol})\) of the compound \(\mathrm{K}-2079\) as a pale yellow syrup at a yield of \(22 \%\).

500 MHz NMR \(7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=7.5 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}\), \(\mathrm{J}=2.5 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{s}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{t}\). \(J=7.0 \mathrm{~Hz}), 2.41-2.54(2 \mathrm{H}, \mathrm{m}), 1.53-1.68(4 \mathrm{H}, \mathrm{m}), 1.46(1 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=383,385\).

\section*{Example 81: Synthesis of K-2080}
[0304] 3,4-Dichlorobenzenethiol ( \(515 \mathrm{mg}, 2.88 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 11.0 ml ) and then potassium carbonate ( \(410 \mathrm{mg}, 2.97 \mathrm{mmol}\) ) and 1.5 -dibromopentane ( \(0.39 \mathrm{ml}, 2.86 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(230 \mathrm{mg}, 1.66 \mathrm{mmol}\) ) and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-methylbenzylamine ( 260 mg , 1.72 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0305] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(250 \mathrm{mg}(0.63 \mathrm{mmol})\) of the compound K-2080 as a pale yellow syrup at a yield of \(37 \%\)

500 MHz NMR \(7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.22-7.25(1 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{~J}=8.5 \mathrm{~Hz})\), \(6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{t}\), \(\mathrm{J}=8.0 \mathrm{~Hz}), 2.39-2.52(2 \mathrm{H}, \mathrm{m}), 1.59-1.64(2 \mathrm{H}, \mathrm{m}), 1.38-1.51(5 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=395,397\).

\section*{Example 82: Symthesis of K-2082}
[0306] 3,4-Dichlorobenzenethiol ( \(720 \mathrm{mg}, 4.02 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 15.0 ml ) and then potassium carbonate ( \(550 \mathrm{mg}, 3.98 \mathrm{mmol}\) ) and 1,7-dibromoheptane ( \(0.64 \mathrm{ml}, 3.75 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After contirming the completion of the reaction by TLC, potassium carbonate ( \(230 \mathrm{mg}, 1.66 \mathrm{mmol}\) ) and ( \(R\) )-( + ) -3 -methoxy \(-\alpha\)-methylbenzylamine ( 360 mg , 2.38 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0307] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(253 \mathrm{mg}(0.59 \mathrm{mmol})\) of the compound \(K-2082\) as a pale yellow syrup at a yield of \(25 \%\).

500 MHz NMR \(7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}), 7.31(\mathrm{HH}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.22-7.25(\mathrm{HH}, \mathrm{m}), 7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz})\), \(6.88-6.90(1 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{~J}=8.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{t}\), \(\mathrm{J}=7.3 \mathrm{~Hz}), 2.40-2.52(2 \mathrm{H}, \mathrm{m}), 1.58-1.64(2 \mathrm{H}, \mathrm{m}), 1.48(1 \mathrm{H}, \mathrm{s}), 1.34-1.64(2 \mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.24-1.33(4 \mathrm{H}\), \(\mathrm{m}), \mathrm{m} / \mathrm{z}=425,427\).

\section*{Example 83: Synthesis of K-2084}
[0308] 2,6-Dichlorobenzenethiol ( \(540 \mathrm{mg}, 3.02 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 11.0 ml ) and then potassium carbonate ( \(420 \mathrm{mg}, 3.04 \mathrm{mmol}\) ) and 1,3-dibromopropane ( \(0.31 \mathrm{ml}, 3.05 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, potassium carbonate ( \(234 \mathrm{mg}, 1.69 \mathrm{mmol}\) ) and ( R ) \(-(+)-3\)-methoxy- \(\alpha\)-methylbenzylamine ( 230 mg , 1.52 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0309] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over antydrous sodium sultate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chlorotorm : methanol \(=150 ; 1\) ) to thereby give \(182 \mathrm{mg}(0.49 \mathrm{mmol})\) of the compound K -2084 as a pale yellow syrup at a yield of \(32 \%\).

500 MHz NMR \(7.6(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=8.0 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{s}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}), 2.89-2.98(2 \mathrm{H}, \mathrm{m}), 2.52-2.64(2 \mathrm{H}, \mathrm{m})\), \(1.65-1.71(2 \mathrm{H}, \mathrm{m}), 1.46(1 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=369,371\).

\section*{EP \(0933 \mathbf{3 5 4}\) A1}

\section*{Example 84: Synthesis of K-2085}
[0310] 2,6-Dichlorobenzenethial ( \(500 \mathrm{mg}, 2.79 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10.0 ml ) and then potassium carbonate ( \(400 \mathrm{mg}, 2.90 \mathrm{mmol}\) ) and 1.4 -dibromobutane ( \(0.33 \mathrm{ml}, 2.76 \mathrm{mmol}\) ) were successively added thereto at room the reaction by TLC, potassium carbonate ( \(230 \mathrm{mg}, 1.65 \mathrm{mmol}\) ) and ( \(R\) )-(+)-3-methoxy-a-methylbenzylamine ( 250 mg , 1.65 mmol ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 24 hours.
[0311] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol = \(150: 1\) ) to thereby give \(293 \mathrm{mg}(0.76 \mathrm{mmol})\) of the compound \(\mathrm{K}-2085\) as a pale yellow syrup at a yield of \(46 \%\).

500 MHz NMR \(7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{Jm}=7.5 \mathrm{~Hz}, \mathrm{Jm} .7 .5 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.85-\) \(6.87(1 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{s}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.38-2.51(2 \mathrm{H}\), m), \(1.51-1.63(4 \mathrm{H}, \mathrm{m}), 1.49(1 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})\).
[0312] 3 -Trifluoromethylbenzenethiol ( \(670 \mathrm{mg}, 3.76 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 14.0 ml ) and then potassium carbonate ( \(516 \mathrm{mg}, 3.73 \mathrm{mmol}\) ) and 1.4 -dibromobutane ( \(0.45 \mathrm{ml}, 3.77 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred under ice-cooling for 2 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(300 \mathrm{mg}, 2.17 \mathrm{mmol}\) ) and ( R\()-(+)-1-(1\)-naphthy) ethylamine \((0.30 \mathrm{ml}, 1.86 \mathrm{mmol})\) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 12 hours.
[0313] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=150: 1\) ) to thereby give \(298 \mathrm{mg}(0.74 \mathrm{mmol})\) of the compound K-2087 as a pale yellow syrup at a yield of \(40 \%\).

500 MHz NMR \(8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.86 \mathrm{~m} .88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.45-7.52(4 \mathrm{H}\), m), \(7.41-7.43(1 \mathrm{H}, \mathrm{m}), 7.33-7.39(2 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.92(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.60-2.65(1 \mathrm{H}, \mathrm{m}), 2.52-\) \(2.57(1 \mathrm{H}, \mathrm{m}), 1.63-1.72(4 \mathrm{H}, \mathrm{m}), 4.54(1 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=403\).

Example 86: Synthesis of K-2117 ((R)-N-[1-(1'-naphthyl)ethyl]-2-(2',5'-dichlorophenylthio)ethylamine)
[0314] 2,5-Dichlorobenzenethiol ( \(5.10 \mathrm{~g}, 28.5 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 30 ml ) and then potassium carbonate ( \(4.20 \mathrm{~g}, 30.4 \mathrm{mmol}\) ) and 1 -bromo-2-chloroethane ( \(2.45 \mathrm{ml}, 29.4 \mathrm{mmol}\) ) were successively added thereto at room temperature. The resulting mixture was stirred under ice-cooling for 2 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(4.0 \mathrm{~g}, 28.9 \mathrm{mmol}\) ) and ( R )-( + )-1-(1-naphthyl)ethylamine ( \(3.70 \mathrm{ml}, 22.9 \mathrm{mmol}\) ) were added at room temperature to the reaction system and the resulting mixture was stirred at \(100^{\circ} \mathrm{C}\) for additional 120 hours.
[0315] After the completion of the reaction, the reaction mixture was cooled by allowing to stand at room temperature. After pouring water thereinto, the mixture was subjected to separatory extraction with chloroform and washed with a saturated aqueous solution of sodium chloride. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=200: 1\) ) to thereby give \(5.70 \mathrm{~g}(15.2 \mathrm{mmol})\) of the compound \(\mathrm{K}-2117\) as a pale yellow syrup at a yiedd of \(66 \%\).

500 MHz NMR \(8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.85-7.87(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.44-7.52(4 \mathrm{H}\), m), \(7.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 7.20(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{~J}=8.5 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{q}, J=6.5 \mathrm{~Hz}), 3.09(2 \mathrm{H}\), \(m), 2.82-2.91(2 \mathrm{H}, \mathrm{m}), 1.68(1 \mathrm{H}, \mathrm{s}), 1.51(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=375,377\).

\section*{EP 0933354 A1}

Example 87: Synthesis of \(\mathrm{K}-2117\) hydrochloride
[0316] The compound \(\mathrm{K}-2117\) ( \(7.01 \mathrm{~g}, 18.6 \mathrm{mmol}\) ) was dissolved in a \(30 \%\) hydrochloric acid-methanol solution ( HCl MeOH ) ( 40 ml ) and stirred at room temperature for 5 minutes.
5 [0317] After the completion of the reaction, the reaction system was concentrated in situ under reduced pressure to thereby completely remove the hydrochloric acid-methanol solution. The residue was filtered through a Kiriyama funnel and the resulting crystals were washed with hexane. Thus \(5.87 \mathrm{~g}(14.2 \mathrm{mmol})\) of \(\mathrm{K}-2117\) hydrochloride was obtained in the form of white crystals at a yield of \(76 \%\).
\(\mathrm{m} / \mathrm{z}=375,377\). \({ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}) 10.97\) ( \(1 \mathrm{H}, \mathrm{bs}\) ), 10.30 ( \(1 \mathrm{H}, \mathrm{bs}\) ), 8.18 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.32 \mathrm{~Hz}\) ), 7.88-7.97 ( \(3 \mathrm{H}, \mathrm{m}\) ), 7.53\(7.66(3 \mathrm{H}, \mathrm{m}), 7.31(\mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.56 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.36 \mathrm{~Hz}, \mathrm{~J}=8.56 \mathrm{~Hz}), 5.23-5.27(1 \mathrm{H}\). \(\mathrm{m}), 3.55-3.61(2 \mathrm{H}, \mathrm{m}), 2.95-3.10(2 \mathrm{H}, \mathrm{m}), 2.04(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.60 \mathrm{~Hz})\).

Example 88: Synthesis of K-2177
[0318] Dibenzylamine ( \(1.0 \mathrm{~g}, 0.51 \mathrm{mmol}\) ) and triethylamine ( \(0.85 \mathrm{ml}, 0.61 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(0.505 \mathrm{~g}, 0.56 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) was added under-ice cooling thereto. The resulting mixture was stirred at room temperature for 30 minutes.
[0319] After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride. After drying over sodium sulfate, the solvent was distilled off under reduced pressure. The crystals thus obtained were purified by column chromatography (silica gel, chloroform-methanol) to thereby give colorless prisms ( \(1.085 \mathrm{~g}, 85.0 \%\) ).
[0320] The compound thus obtained ( \(50 \mathrm{mg}, 0.20 \mathrm{mmol}\) ) and ( R )-(+)-1-(1-naphthyl)ethylamine ( \(41.0 \mathrm{mg}, 0.24 \mathrm{mmol}\), 1.2 mol eq.) were dissolved in chloroform-methanol ( 2 ml ) and allowed to stand at room temperature for 1 week was puritied by column chromatography (silica gel, chloroform-methanol) to thereby give 50.9 mg of K -2177 as a colorless oil at a yield of \(60.5 \%\).

MS m/z: 422(M+). \({ }^{1} \mathrm{H}-\mathrm{NMR}\) ס: \(1.53\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60-2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.86-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.42(2 \mathrm{H}\), s, \(\mathrm{CH}_{2}\) ) \(4.62(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}\) ) \(, 4.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 7.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.27-\) \(7.36(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.45-7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{dd}\), \(J=1.8 .6 .7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

\section*{Example 89: Synthesis of \(\mathrm{K}-2246\) ( \(\mathrm{N}-[(1 \mathrm{R})-1-(1-\) naphthyl)ethyl] N -(4-[[4-(trifluoromethyl)pheny]]thio\}buty)amine)}
[0322] 960 mg ( 5.39 mmol ) of 4 -trifluoromethythiophenol was dissolved in 8 ml of acetonitrile. Subsequently, 802 mg ( 5.80 mmol ) of potassium carbonate and \(0.65 \mathrm{ml}(5.44 \mathrm{mmol}\) ) of 1,4 -dibromobutane were added thereto at room temperature and the obtained mixture was stirred at the same temperature for 30 minutes. After confirming the completion of the reaction by TLC, 5 ml of acetonitrile, 693 mg ( 5.01 mmol ) of potassium carbonate and \(0.49 \mathrm{ml}(2.96 \mathrm{mmol})\) of (R)-(+)-1-(1-naphthyl)ethylamine were added thereto at room temperature and the obtained mixture was stired at \(85^{\circ} \mathrm{C}\) for 12 hours.
[0323] After the completion of the reaction, the mixture was cooled by allowing to stand at room temperature and water was poured thereinto. Next, it was subjected to separating extraction with chloroform and a saturated aqueous solution of sodium chloride and the organic layer thus obtained was dried over sodium sulfate. Further, the organic layer was concentrated under reduced pressure and the obtained residue was purified by silica gel column chromatography \((80 \mathrm{~g}\), chlorotorm/methanol \(=200 / 1)\) to thereby give \(210 \mathrm{mg}(0.52 \mathrm{mmol}, 17.6 \%)\) of \(\mathrm{K}-2246\) as a pale yellow transparent syrup.
[0324] Subsequently, the K-2246 thus obtained was dissolved in a \(10 \%\) solution of hydrochloric acid in methanol, stirred for 5 minutes and then concentrated as such under reduced pressure. The crystals thus formed were washed with diethyl ether to thereby give \(104 \mathrm{mg}(0.24 \mathrm{mmol}, 8.1 \%\) ) of K -2246 hydrochloride as white crystals.
\({ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}) 10.6(1 \mathrm{H}, \mathrm{bs}), 10.1(1 \mathrm{H}, \mathrm{bs}), 8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.08 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.52 \mathrm{~Hz}), 7.90-7.96(2 \mathrm{H}, \mathrm{m})\), 7.55-7.67 (3H, m), 7.39-7.41 (2H, m), 7.17-7.19 (2H, m), 5.17-5.24 (1H, m), 2.73-2.84 (4H, m), 2.11-2.18 (2H, m), \(2.06(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.60 \mathrm{~Hz}), 1.57 \cdot 1.62(4 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=403\).

\section*{EP 0933354 A1}
\(\mathrm{g}(7.40 \mathrm{mmol})\) of potassium carbonate and \(0.80 \mathrm{ml}(5.87 \mathrm{mmol})\) of 1,5 -dibromopentane were added thereto at room temperature and the obtained mixture was stirred at the same temperature for 1 hour. After confirming the completion of the reaction by TLC, 8 ml of acetonitrile, \(853 \mathrm{mg}(6.17 \mathrm{mmol})\) of potassium carbonate and \(0.60 \mathrm{ml}(3.63 \mathrm{mmol})\) of (R)-(+)-1-(1-naphthyl) ethylamine were added thereto at room temperature and the obtained mixture was stirred at \(85^{\circ} \mathrm{C}\) for

\section*{ent syrup}
[0327] Subsequently, the K-2076 thus obtained was dissolved in a \(10 \%\) solution of tydrochloric acid in methanol, stirred for 5 minutes and then concentrated as such under reduced pressure. The crystals thus formed were washed with diethyl ether to thereby give \(115 \mathrm{mg}(0.25 \mathrm{mmol}, 6.9 \%)\) of K-2076 hydrochloride as white crystals.
\({ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}) 10.55(1 \mathrm{H}, \mathrm{bs}), 10.01(1 \mathrm{H}, \mathrm{bs}), 8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.08 \mathrm{~Hz}), 7.89-7.99(3 \mathrm{H}, \mathrm{m}), 7.52-7.66(3 \mathrm{H}, \mathrm{m})\), \(7.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.32 \mathrm{~Hz}), 7.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.32 \mathrm{~Hz}), 5.19(1 \mathrm{H}, \mathrm{bs}), 2.82(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.08 \mathrm{~Hz}), 2.74(2 \mathrm{H}, \mathrm{bs}), 2.04(3 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=6.36 \mathrm{~Hz}), 1.96-2.04(2 \mathrm{H}, \mathrm{m}), 1.50-1.57(2 \mathrm{H}, \mathrm{m}), 1.30-1.38(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=417\).

Example 91: Synthesis of K-2243 (N1,N1-di(4-chlorobenzyl)-3-\{[(1R)-1-(1-naphthyl)ethyl]amino\}propanamide)
[0328] To \(500 \mathrm{mg}(3.56 \mathrm{mmol})\) of p-chlorobenzaldehyde and \(503.6 \mathrm{mg}(3.56 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) of p-chlorobenzylamine was added \(1.26 \mathrm{ml}(4.27 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\) ) of titanium tetraisopropoxide and the obtained mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in methanol and 538.7 mg ( \(14.24 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) of sodium boron hydride was added thereto. The obtained mixture was stirred at room temperature for 12 hours.
[0329] After the completion of the reaction, the solvent was distilled off under reduced pressure. Ethyl acetate and water were poured into the residue, and filtered through celite. The residue was washed with ethyl acetate and then the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained oil was purified by column chromatography (silica gel, chloroform) to thereby give \(819 \mathrm{mg}(86.6 \%)\) of the compound 124 as a colorless oil.

MS m/z:266. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) 8:3.74 (4H, d, J=2.7, \(\mathrm{CH}_{2} \times 2\) ), 7.24-7.30 (8H, \(\left.\mathrm{m}, \mathrm{Ar}-\mathrm{H}\right)\).
[0330] 500 mg ( 1.88 mmol ) of the above-mentioned compound 124 and 0.31 ml ( \(2.26 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) of triethylamine were dissolved in chloroform and \(187.1 \mathrm{mg}(2.07 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) of acryloyl chloride was added thereto under ice-cooling. The obtained mixture was then stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium suffate. After distilling off the solvent under reduced pressure, the obtained oil was purified by column chromatography (silica gel, chloroform) to thereby give \(570.3 \mathrm{mg}(94.4 \%)\) of the compound 125 as a colorless oil.

MS mzz:320. \({ }^{1} \mathrm{H}-\mathrm{NMF} \delta: 4.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.77\) (1H, dd, J=2.7, 9.8Hz, \(\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.52(1 \mathrm{H}, \mathrm{d}\), \(\left.\mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.54\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.08(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.29\) ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0331] \(100 \mathrm{mg}(0.31 \mathrm{mmol})\) of the above-mentioned compound 125 and \(64.2 \mathrm{mg}(0.38 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) of (R)-( + )( 1 -naphtthy) ethylamine were dissolved in chloroform/methanol (4:1) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography (silica gel, chloroform) to thereby give 106.6 mg ( \(69.5 \%\) ) of K-2243 as a colorless oil.

MS m/z:491. \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{\delta}: 1.51\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.84-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.35(2 \mathrm{H}\), \(\left.\mathrm{s}, \mathrm{CH}_{2}\right), 4.53(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.66(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.27(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}+\mathrm{H}), 7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.47(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.49(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H} \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~A}-\mathrm{H})\).

Example 92: Synthesis of K-2257 (N1,N1-di[4-(trifluoromethoxy)benzyl]-3-f(1R)-1-(1-naphthy)ethy]]amino\}propanamide)
[0332] To \(500 \mathrm{mg}(2.62 \mathrm{mmol})\) of \(p\)-(trifluoromethoxy)benzylamine and 497.3 mg ( \(2.62 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) of \(p\)-(trif- luoromethoxy) benzaldehyde was added \(0.926 \mathrm{ml}(3.14 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) of titanium tetraisopropoxide and the obtained mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in methanol and 396.5 mg ( \(10.48 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) of sodium boron hydride was added thereto. The obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. Ethyl acetate and water were poured into the residue and filtered through celite. The residue was washed with ethyl acetate and then the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained oil was purified by column chromatography (silica gel, chloroform) to thereby give \(835.2 \mathrm{mg}(87.5 \%)\) of the compound 126 as a colorless oil.

MS m/z:365. \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 3.80\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \times 2\right), 7.17(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.36(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0333] \(500 \mathrm{mg}(1.37 \mathrm{mmol})\) of the above-mentioned compound 126 and \(0.23 \mathrm{ml}(1.64 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) of triethylamine were dissolved in chloroform and 136.3 mg ( \(1.51 \mathrm{mmol}, 1.1 \mathrm{~mol} \mathrm{eq}\).) of acryloyl chloride was added thereto under ice-cooling. The obtained mixture was then stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained oil was purified by column chromatography (silica gel, chloroform) to thereby give 519.3 mg ( \(90.5 \%\) ) of the compound 127 as a colorless oil.

MS m/z:419. \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.79\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,9.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.53(1 \mathrm{H}, \mathrm{d}\), \(\left.\mathrm{J}=2.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.15-7.31(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}+\mathrm{H})\).
[0334] \(450 \mathrm{mg}(1.07 \mathrm{mmol})\) of the above-mentioned compound 127 and 220.7 mg ( \(1.29 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) of (R)-(+)-(1-naphthyl)ethylamine were dissolved in chloroform/methanol (4:1) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography (silica gel, chloroform) to thereby give 363 mg ( \(57.3 \%\) ) of K-2257 as a colorless oil.

MS m/z:590. \({ }^{1} \mathrm{H}\)-NMR \(\delta: 1.50\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.84-2.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.41(2 \mathrm{H}\), \(\left.\mathrm{s}, \mathrm{CH}_{2}\right), 4.57\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.65(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.12-7.29(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.44-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.66(1 \mathrm{H}\), d, \(J=6.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

Example 93: Synthesis of K-2259 (N1,N1-di[4-(trifluoromethyl)benzyl]-3-\{[(1R)-1-(1-naphthyl)ethyl]amino\}propanamide)
[0335] To 500 mg ( 2.85 mmol ) of p-(trifluoromethyl)benzylamine and \(497.1 \mathrm{mg}(2.85 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) of p-(trifluor-omethyl)-benzaldehyde was added 1.01 ml ( \(3.43 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) of titanium tetraisopropoxide and the obtained mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in methanol and 431.3 mg ( \(11.4 \mathrm{mmol}, 4.0 \mathrm{~mol} \mathrm{eq}\).) of sodium boron hydride was added thereto. The obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. Ethyl acetate and water were poured into the residue and filtered through celite. The residue was washed with ethyl acetate and then the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent under reduced pressure, the obtained oil was purified by column chromatography (silica gel, chloroform) to thereby give \(458.7 \mathrm{mg}(48.3 \%)\) of the compound 128 as a colorless ail.

MS m/z:333. \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 3.86\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \times 2\right), 7.47(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.59(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H})\).
[0336] 450 mg ( 1.35 mmol ) of the above-mentioned compound 128 and 0.23 ml ( \(1.62 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) of triethylamine were dissolved in chloroform and \(134.4 \mathrm{mg}(1.48 \mathrm{mmol}, 1.1 \mathrm{~mol} \mathrm{eq)} \mathrm{of} \mathrm{acryloyl} \mathrm{chloride} \mathrm{was} \mathrm{added} \mathrm{thereto}\). under ice-cooling. The obtained mixture was then stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling

\section*{EP 0933354 A1}
off the solvent under reduced pressure, the obtained oil was purified by column chromatography (silica gel, chloroform) to thereby give \(519.3 \mathrm{mg}(99.3 \%)\) of the compound 129 as a colorless oil.

MS m/z:387. \({ }^{1} \mathrm{H}-\mathrm{NMR} 8: 4.59(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.80\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.7,8.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.54(1 \mathrm{H}, \mathrm{d}\), \(\left.\mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.23-7.64(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})\).
[0337] \(800 \mathrm{mg}(2.06 \mathrm{mmol})\) of the above-mentioned compound 129 and 424.0 mg ( \(2.48 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) of (R)-(+)-(1-naphthyl)ethylamine were dissolved in chloroform/methanol (4:1) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography (silica gel, chloroform) to thereby give \(580.7 \mathrm{mg}(50.3 \%\) ) of K-2259 as a colorless oil.

MS m/z:558. \({ }^{1} \mathrm{H}-\mathrm{NMR} 6: 1.51\left(3 \mathrm{H}_{1} \mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.85-2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.47(2 \mathrm{H}\), \(\left.\mathrm{s}, \mathrm{CH}_{2}\right), 4.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.65(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.23(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), 7.44-7.51 (3H, m, Ar-H), \(7.55(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74\) (1H, d, J=8.1Hz, Ar-H), 7.87 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,8.1 \mathrm{~Hz}, A r-H\) ), \(8.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

Example 94: Synthesis of K-2247 (N1-benzyl-N1-(4-chlorobenzyl)-3-\{[(1R)-1-(1-naphthyl)ethyl]amino\}propanamide)
[0338] To 4-chlorobenzaldehyde ( \(500 \mathrm{mg}, 3.56 \mathrm{mmol}\) ) and benzylamine ( \(381.2 \mathrm{mg}, 3.56 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(1.26 \mathrm{ml}, 4.27 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(538.7 \mathrm{mg}, 14.24 \mathrm{mmol}, 4.0 \mathrm{~mol} \mathrm{eq}\).) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 201 ( \(572.6 \mathrm{mg}, 69.5 \%\) ). MS m/z.231.
[0339] The dibenzylamine compound 201 ( \(300 \mathrm{mg}, 1.29 \mathrm{mmol}\) ) and triethylamine ( \(0.22 \mathrm{ml}, 1.55 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(128.9 \mathrm{mg}, 1.42 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 202 ( \(372.1 \mathrm{mg}, 100.0 \%\) ). MS m/z: 285.
[0340] The conjugated ketone compound 202 ( \(100.3 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and (R)-(+)-1-(1-naphthyl)ethylamine ( \(50 \mathrm{mg}, 0.29 \mathrm{mmol}\) ) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2247 ( 64.5 mg . \(40.2 \%\) ).

MS m/z: 456, \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.53\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60-2.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.86-2.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2}\right), 4.39(2 \mathrm{H}\), \(\left.d, J=18.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.58\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{CH}), 7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.12(1 \mathrm{H}\), \(d, J=6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.28-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.46-7.51\) (3H, m, Ar-H), \(7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.8,7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.17\) (1H, d, J=7.9Hz, Ar-H).

\section*{Example 95: Synthesis of K-2248}
[0341] To 2-naphthaldehyde ( \(500 \mathrm{mg}, 3.20 \mathrm{mmol}\) ) and benzylamine ( \(343.1 \mathrm{mg}, 3.20 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(1.13 \mathrm{ml}, 3.84 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(484.2 \mathrm{mg}, 12.8 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for

\section*{EP 0933354 A1}
vent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 203 ( \(769.1 \mathrm{mg}, 97.1 \%\) ). MS m/z: 247.
[0342] The dibenzylamine compound 203 ( \(500 \mathrm{mg}, 2.02 \mathrm{mmol}\) ) and triethylamine ( \(0.34 \mathrm{ml}, 2.43 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(201.3 \mathrm{mg}, 2.22 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was mide)
[0347] To benzaldehyde ( \(300 \mathrm{mg}, 2.83 \mathrm{mmol}\) ) and 3,4 -dichlorobenzylamine ( \(497.7 \mathrm{mg}, 2.83 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was 5 added titanium tetraisopropoxide ( \(1.00 \mathrm{ml}, 3.39 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(428.2 \mathrm{mg}, 11.32 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained res-

\section*{EP 0933354 A1}
idue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium suffate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel,
[0348] The dibenzylamine compound 207 ( \(300 \mathrm{mg}, 1.13 \mathrm{mmol}\) ) and triethylamine ( \(0.189 \mathrm{ml}, 1.35 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(112.3 \mathrm{mg}, 1.24 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer a colorless oil 208 ( \(358.3 \mathrm{mg}, 99.3 \%\) ). MS m/z: 320.
[0349] The conjugated ketone compound \(208(100 \mathrm{mg}, 0.31 \mathrm{mmol})\) and ( \(R\) )-( + )-1-(1-naphthyl)ethylamine ( 64.2 mg , \(0.38 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol (4:1) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2250 ( \(96.5 \mathrm{mg}, 62.9 \%\) ).

MS m/z: 491, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{\delta}: 1.51\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.49-2.68(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 2.82-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.38(2 \mathrm{H}\), d, J=32.4 Hz, CH2 \(), 4.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.67(1 \mathrm{H}, \overline{\mathrm{d}}, \mathrm{J}=42.5 \mathrm{~Hz}, \mathrm{CH}), 4.66(1 \mathrm{H}, \mathrm{G}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.11(1 \mathrm{H}, \mathrm{d}\), \(J=6.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.21-7.41(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.43-7.51\) ( \(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), \(7.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0\), \(7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

\section*{Example 98: Synthesis of K-2251}

Example 99: Synthesis of K-2252
[0350] To benzaldehyde ( \(300 \mathrm{mg}, 2.83 \mathrm{mmol}\) ) and 2,4-dichlorobenzylamine ( \(497.7 \mathrm{mg}, 2.83 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(1.00 \mathrm{ml}, 3.39 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethand and sodium boron hydride ( \(428.2 \mathrm{mg}, 11.32 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 209 ( \(469 \mathrm{mg}, 62.4 \%\) ). MS m/z: 266.
[0351] The dibenzylamine compound 209 ( \(300 \mathrm{mg}, 1.13 \mathrm{mmol}\) ) and triethylamine ( \(0.189 \mathrm{ml}, 1.35 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(112.3 \mathrm{mg}, 1.24 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the cil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 210 ( \(311.6 \mathrm{mg}, \mathbf{8 6 . 3 \%}\) ). MS m/z: 320.
[0352] The conjugated ketone compound 210 ( \(100 \mathrm{mg}, 0.31 \mathrm{mmol}\) ) and ( \(R\) )-( + )-1-(1-naphthyl)ethylamine ( 64.2 mg , \(0.38 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform) to thereby give a colorless oil K-2251 (126.7 mg, 82.6 \%).

MS m/z: 491, \({ }^{1} \mathrm{H}-\mathrm{NMR} 6: 1.51\) ( \(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.5,6.6 \mathrm{~Hz} \mathrm{CH}_{3}\) ), 2.51-2.53 (1 \(\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\) ), 2.64-2.68 (1 \(\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\) ). 2.84\(2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.46\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.60\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.65-4.68(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.69(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.13\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.17-7.39(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), \(7.44-7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}), 7.67\) ( \(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\), Ar-H), 7.73 ( \(1 \mathrm{H}, \mathrm{dd}\), \(J=3.7,7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0353] To benzaldehyde ( \(500 \mathrm{mg}, 4.71 \mathrm{mmol}\) ) and 3 -chlorobenzylamine ( \(667.2 \mathrm{mg}, 4.71 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(1.67 \mathrm{ml}, 5.65 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride \((712.7 \mathrm{mg}, 18.84 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for

\section*{EP \(0933 \mathbf{3 5 4}\) A1}

12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 211 ( \(930.5 \mathrm{mg}, 85.2 \%\) ). MS m/z: 231.
[0354] The dibenzylamine compound 211 ( \(500 \mathrm{mg}, 2.16 \mathrm{mmol}\) ) and triethylamine ( \(0.36 \mathrm{ml}, 2.59 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) were dissolved in chloroform and acryloyl chloride ( \(214.8 \mathrm{mg}, 2.37 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the compas washed with , was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was puritied by column chromatography [silica gel, chloroform] to thereby give a colorless oil 212 ( \(308.5 \mathrm{mg}, 50.0 \%\) ). MS m/z: 285.
[0355] The conjugated ketone compound 212 ( \(100 \mathrm{mg}, 0.35 \mathrm{mmol}\) ) and ( R\()-(+\) )-1-(1-naphthyl)ethylamine ( 71.8 mg ,
wek Al, 12 mol week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2252 ( \(85.0 \mathrm{mg}, 53.2 \%\) ).

MS m/z: 456, \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.50\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.61\left(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.1,21.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.82-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)\), \(4.40\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=19.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.60\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.66(1 \mathrm{H}, \mathrm{Q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.13(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), 7.20-7.37 ( \(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), \(7.43-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.86\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 8.17 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).

Example 100: Synthesis of K-2253
[0356] To 3-chlorobenzaldehyde ( \(500 \mathrm{mg}, 3.56 \mathrm{mmol}\) ) and 3 -chlorobenzylamine ( \(503.7 \mathrm{mg}, 3.56 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(1.26 \mathrm{ml}, 4.27 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(538.7 \mathrm{mg}, 14.24 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chroma5 tography [silica gel, chloroform] to thereby give a colorless oil 213 ( \(756.5 \mathrm{mg}, 80.3 \%\) ). MS m/z: 266.
[0357] The dibenzylamine compound 213 ( \(500 \mathrm{mg}, 1.88 \mathrm{mmol}\) ) and triethylamine ( \(0.31 \mathrm{ml}, 2.26 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(187.1 \mathrm{~g}, 2.07 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 214 ( \(595.3 \mathrm{mg}, 98.8 \%\) ). MS m/z: 320.
[0358] The conjugated ketone compound 214 ( \(100 \mathrm{mg}, 0.31 \mathrm{mmol}\) ) and ( \(R\) )-( + )-1-(1-naphthyl)ethylamine ( 64.2 mg , \(0.38 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform\(/\) methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was puritied by column chromatography [silica gel, chlorotorm] to thereby give a colorless oil K-2253 ( \(96.5 \mathrm{mg}, 62.9 \%\) ).

MS mb: 491, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{\delta}: 1.51\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.58\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.85-2.97(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.38(2 \mathrm{H}\), \(\left.\mathrm{s}, \mathrm{CH}_{2}\right), 4.57\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.65(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}\), \(\operatorname{Ar}-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.20(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.23-7.27(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.44-7.49(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}\), \(\mathrm{Ar}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H})\).

\section*{Example 101: Synthesis of K-225}
[0359] To 2-chlorobenzaldehyde ( \(500 \mathrm{mg}, 3.56 \mathrm{mmol}\) ) and 2-chlorobenzylamine ( \(503.6 \mathrm{mg}, 3.56 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(1.25 \mathrm{ml}, 4.27 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and socium boron hydride ( \(538.7 \mathrm{mg}, 14.2 \mathrm{mmol}, 4.0 \mathrm{~mol} \mathrm{eq}\).) was added thereto. Then the obtained mixture was stirred at room ternper-

\section*{EP 0933354 A1}
ature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium shed with water and a caturated aqueous solution of codium chloride and dried over codium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 216 ( \(391.7 \mathrm{mg}, 81.2 \%\) ). MS m/z: 320.
[0361] The conjugated ketone compound 216 ( \(100 \mathrm{mg}, 0.31 \mathrm{mmol}\) ) and (R)-(+)-1-(1-naphthy])ethylamine ( 64.2 mg , \(0.38 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2254 (72.7 mg, \(47.4 \%\) ).

MS m/z: 491, \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.49\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.53-2.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.83-2.93(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 4.57(2 \mathrm{H}\), s, \(\left.\mathrm{CH}_{2}\right), 4.64\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.13-7.38(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.44-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.66(1 \mathrm{H}\), \(d, J=6.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

\section*{Example 102: Synthesis of K-2256}
[0362] To 4-fluorobenzaldehyde ( \(484.2 \mathrm{mg}, 3.90 \mathrm{mmol}\) ) and 4 -fluorobenzylamine ( \(500 \mathrm{mg}, 3.90 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(1.38 \mathrm{ml}, 4.68 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\). ) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(590.1 \mathrm{mg}, 15.6 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temper* ature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 217 ( \(783.2 \mathrm{mg}, \mathbf{8 4 . 0 \%}\) ). MS m/z: 233.
[0363] The dibenzylamine compound 217 ( \(500 \mathrm{mg}, 2.15 \mathrm{mmol}\) ) and triethylamine ( \(0.36 \mathrm{ml}, 2.58 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(213.6 \mathrm{~g}, 2.36 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 218 ( \(572.6 \mathrm{mg}, 86.8 \%\) ). MS m/z: 287.
[0364] The conjugated ketone compound 218 ( \(800 \mathrm{mg}, 1.63 \mathrm{mrnol}\) ) and (R)-(+)-1-(1-naphthyl)ethylamine ( 33.7 mg , \(1.95 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2256 (375.1 mg, 48.2 \%).

MS m/z: 458, \({ }^{1} \mathrm{H}-\mathrm{NMR} 6: 1.50\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.84-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.36(2 \mathrm{H}\), \(\left.\mathrm{s}, \mathrm{CH}_{2}\right), 4.54(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.66(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{CH}), 6.95-7.09(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}+\mathrm{H}), 7.17\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.43-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87(1 \mathrm{H}\), \(\mathrm{dd}, \mathrm{J}=2.4,7.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

Example 103: Synthesis of K-2261
[0365] To 3-chlorobenzaldehyde ( \(992.7 \mathrm{mg}, 7.06 \mathrm{mmol}\) ) and 4-chlorobenzylamine ( \(1 \mathrm{~g} .7 .06 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(2.5 \mathrm{ml}, 8.47 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(1.0683 \mathrm{~g}, 28.4 \mathrm{mmol}, 4.0 \mathrm{~mol} \mathrm{eq}\).) was added thereto. Then the obtained mixture was stirred at room temperature for

12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the sol- vent was distilled off under reduced pressure. The oil thus obtained was puritied by column chromatography (silica gel, chloroform] to thereby give a colorless oil 219 ( \(1.5847 \mathrm{~g}, 84.4 \%\) ). MS m/z: 266.
[0366] The dibenzylamine compound \(219(1.3 \mathrm{~g}, 4.89 \mathrm{mmol})\) and triethylamine ( \(0.82 \mathrm{ml}, 5.86 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(486.6 \mathrm{mg}, 5.38 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distiling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 220 ( \(1.2967 \mathrm{~g}, 82.7 \%\) ). MS m/z: 320.
[0367] The conjugated ketone compound \(220(1 \mathrm{~g}, 3.13 \mathrm{mmol})\) and (R)-(+)-1-(1-naphthyl)ethylamine ( \(642.2 \mathrm{mg}, 3.75\) \(\mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2261 ( \(624.8 \mathrm{mg}, 40.7 \%\) ).

MS m/z: 491, \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.50\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.54-2.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.82-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.36(2 \mathrm{H}\), \(\left.\mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.65(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.13(2 \mathrm{H}\), \(\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.18-7.31(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \cdot \mathrm{H}), 7.44-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.73\) ( \(1 \mathrm{H}, \mathrm{d}\), \(J=8.1 \mathrm{~Hz}\), Ar-H), \(7.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

Example 104: Synthesis of K-2262 (N1-(2-chlorobenzy)-N1-(4-chlorobenzyl)-3-f(1R)-1-(1-naphthyl)ethyl]amino\}propanamide)
[0368] To 2-chlorobenzaldehyde ( \(992.7 \mathrm{mg}, 7.06 \mathrm{mmol}\) ) and 4 -chlorobenzylamine ( \(1 \mathrm{~g}, 7.06 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(2.5 \mathrm{ml}, 8.47 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(1.0683 \mathrm{~g}, 28.4 \mathrm{mmol}, 4.0 \mathrm{~mol} \mathrm{eq}\).) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gei, chloroform] to thereby give a colorless oil \(221(673.6 \mathrm{mg}, 40 \%)\). MS m/z: 266 .
[0369] The dibenzylamine compound 221 ( \(600 \mathrm{mg}, 2.26 \mathrm{mmol}\) ) and triethylamine ( \(0.38 \mathrm{ml}, 2.71 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(224.6 \mathrm{mg}, 2.48 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was puritied by column chromatography [silica gel, chloroform] to thereby give a colorless oil 222 ( \(684.2 \mathrm{mg}, 94.8 \%\) ). MS m/z: 320.
[0370] The conjugated ketone compound 222 ( \(500 \mathrm{mg}, 1.56 \mathrm{mmol}\) ) and ( R ) \(\cdot(+) \cdot 1 \cdot(1-\) naphthyl \()\) ethylamine ( 321.1 mg , \(1.88 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was puritied by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2262 ( \(552.4 \mathrm{mg}, 72.0\) \%).

MS mz: 491, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{\delta:} 1.56\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.51-2.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.83-2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2}\right), 4.43(1 \mathrm{H}\), \(\mathrm{s}, \mathrm{CH}_{2}\) ) \(4.48\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.68-4.72(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.73\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.05\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar} \mathrm{H}\) ), 7.15 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.20-7.39 ( \(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), 7.45-7.52 ( \(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), 7.68 ( \(1 \mathrm{H}, \mathrm{d}\), \(J=6.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

Example 105: Synthesis of K-2264 (N1-(3,4-dichlorobenzy))-N1-[(4-trifluoromethyl)benzy]]-3-[[(1R)-1-(1-naph-thyl)ethyl)-aminojpropanamide)
[0371] To 3.4 -dichlorobenzaldehyde ( \(1 \mathrm{~g}, 5.71 \mathrm{mmol}\) ) and 4 -trifluoromethylbenzylamine ( \(1 \mathrm{~g}, 5.71 \mathrm{mmol}, 1.0 \mathrm{~mol} \mathrm{eq}\).)

\section*{EP 0933354 A1}
was added titanium tetraisopropoxide ( \(2.02 \mathrm{ml}, 6.86 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and the mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(864.6 \mathrm{mg}, 22.86 \mathrm{mmol}, 4.0 \mathrm{~mol} \mathrm{eq}\).) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chlorotorm) to thereby give a colorless oil 223 ( \(1.668 \mathrm{~g}, 87.4 \%\) ).

MS m/z: 334, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 3.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,8.3 \mathrm{~Hz}, \mathrm{Ar} \mathrm{H}), 7.39(2 \mathrm{H}, \mathrm{d}\), \(8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.45 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.46 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.59 ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).
[0372] The dibenzylamine compound 223 ( \(800 \mathrm{mg}, 2.39 \mathrm{mmol}\) ) and triethylamine ( \(0.4 \mathrm{ml}, 2.87 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(238.4 \mathrm{mg}, 2.63 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 224 ( \(930 \mathrm{mg}, 100.0 \%\) ).
```

MS m/z: 388, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ d: $4.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=42.0 \mathrm{~Hz}, \mathrm{CH} 2), 4.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=39.0 \mathrm{~Hz}, \mathrm{CH} 2), 5.79-5.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, 6.53-6.60 (2H, m, CH=CH2 $), 7.23-7.45(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$.

```
[0373] The conjugated ketone compound 224 ( \(800 \mathrm{mg}, 2.06 \mathrm{mmol}\) ) and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine ( 387.7 mg , \(2.26 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2264 (807.4 mg, 70.1 \(\%\) ).

MS m/z: 559, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.51\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.59\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.85-2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2}\right), 4.41(2 \mathrm{H}\), \(\left.d, J=42.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.58\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=38.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.66(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.22(1 \mathrm{H}\), \(d, J=8.3 \mathrm{~Hz}, A r-H), 7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.44-7.52(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.59(1 \mathrm{H}, \mathrm{d}\), \(J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.9,6.6 \mathrm{~Hz}, \mathrm{Ar} \mathrm{H}), 8.17\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).

Example 106: Synthesis of K-2265 (N1,N1-di(3,4-dichlorobenzyl)-3-II(1R)-1-(1-naphthyl)ethylfaminolpropanamide)
[0374] To 3,4-dichlorobenzaldehyde ( \(500 \mathrm{mg}, 2.86 \mathrm{mmol}\) ) and 3,4 -dichlorobenzylamine ( \(0.382 \mathrm{ml}, 2.86 \mathrm{mmol}\) ) was added titanium tetraisopropoxide ( \(1.51 \mathrm{ml}, 5.14 \mathrm{mmol}, 1.8 \mathrm{~mol}\) eq.) and the mixture was stirred at room temperature for 28 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(443 \mathrm{mg} .11 .44 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for \(\mathbf{2 0}\) hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added chloroform and water and the mixture was filtered through celite. The residue was washed with chloroform and the washing liquor was combined with the filtrate and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, hexane: ethyl acetate ( \(9: 1-4: 1\) )] to thereby give a colorless oil 225 ( \(712.2 \mathrm{mg}, 74.3 \%\) ).

MS m/z: 335, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 3.74\left(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7, \mathrm{CH}_{2} \times 2\right), 7.17(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.39(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\) H). 7.44 ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).
[0375] The dibenzylamine compound 225 ( 315 mg .0 .94 mmol ) and triethylamine ( \(0.16 \mathrm{ml}, 1.13 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(94 \mathrm{mg}, 1.04 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 1 hour. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil

226 (347.1 mg, \(94.9 \%\) ).
MS m/z: 389, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 4.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.58\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.9,6.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.52(1 \mathrm{H}, \mathrm{d}\), \(\left.\mathrm{J}=5.9 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.23\)
[0379] The conjugated ketone compound \(228(800 \mathrm{mg}, 2.26 \mathrm{mmol})\) and ( R\()-(+)-1-(1-n a p h t h y l)\) ethylamine ( 425.4 mg , \(2.48 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained 55 was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2266 (981.5 mg, 82.8 \(\%\) ).

MS mz: 524, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.52\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.57-2.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.84-2.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.41(2 \mathrm{H}\),

\section*{EP 0933354 A1}
\(\left.d_{1} J=23.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=24.9 \mathrm{~Hz}, \mathrm{CH}\) ) , \(4.67(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.13(1 \mathrm{H}\), d. J=8.3Hz, Ar-H), 7.21 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.26-7.31\) ( \(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), 7.44.7.51 ( \(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \mathrm{H}\) ), 7.55 ( \(1 \mathrm{H}, \mathrm{d}\). \(J=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, A r-\mathrm{H}), 7.67(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,6.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 8.17 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).55 \(\%\) ).

Example 108: Synthesis of K-2267 (N1-(4-chlorobenzyl)-N1-(3.4-dichlorobenzyl)-3-f(1)R)-1-(1-naphthyl)ethyl]amino\}propanamide)
[0380] 4-Chlorobenzylamine ( \(1 \mathrm{~g}, 7.06 \mathrm{mmol}\) ) and 3,4 -dichloro-benzaldehyde ( \(1.36 \mathrm{~g}, 7.77 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) were dissolved in methanol and \(\mathrm{MgSO}_{4}(1.02 \mathrm{~g}, 8.47 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and AcOH ( 10 drops ) were added thereto. Then the obtained mixture was stirred at room temperature for 2 hours. After the completion of the reaction, sodium boron hydride ( \(334.0 \mathrm{mg}, 8.83 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added under ice-cooling to the reaction mixture. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with ethyl acetate. The ethyl acetate layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 229 ( \(1.6777 \mathrm{~g}, 79.2 \%\) ).

MS m/z: 279, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(3.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,8.1 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.24(2 \mathrm{H}, \mathrm{d}\), \(J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0381] The dibenzylamine compound \(229(800 \mathrm{mg}, 2.66 \mathrm{mmol})\) and triethylamine ( \(0.45 \mathrm{ml}, 3.19 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(265 \mathrm{mg}, 2.93 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. Atter the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 230 ( \(768.9 \mathrm{mg}, 81.4 \%\) ).

MS m/z: 333, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(4.47\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.9 \mathrm{~Hz}, \mathrm{CH} 2), 5.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.2,9.0 \mathrm{~Hz}\), \(\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.50\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.2,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.57\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.08-7.46(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})\).
[0382] The conjugated ketone compound \(230(600 \mathrm{mg}, 1.69 \mathrm{mmol})\) and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine ( 347.2 mg , \(2.03 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2267 (721.3 mg, 81.1

MS m/z: 504, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d:} 1.51\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.55-2.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.84-2.97(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 4.35(2 \mathrm{H}\), \(\left.d, J=18.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}, \mathrm{CH} 2), 4.66(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.13(1 \mathrm{H}\), \(d, J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.27-7.29(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{d}\), \(J=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.45-7.50(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar} \cdot \mathrm{H}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{dd}\), \(J=2.2,8.3 \mathrm{~Hz}, A r-H), 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}\), Ar \(-H\) ).

\section*{Example 109: Synthesis of K-2270 (N1,N1-di(4-methoxybenzyl)-3-II(1R)-1-(1-naphthyl)ethytlaminoppropanamide)}
[0383] To 4-anisaldehyde ( \(0.447 \mathrm{ml}, 3.67 \mathrm{mmol}\) ) and 4-methoxybenzylamine ( \(0.479 \mathrm{ml}, 3.67 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium tetraisopropoxide ( \(1.30 \mathrm{ml}, 4.40 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and the mixture was stirred at room temperature for 10 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(555 \mathrm{mg}, 14.68 \mathrm{mmol}, 4.0 \mathrm{~mol} \mathrm{eq}\).) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through celite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 231 ( \(762.7 \mathrm{mg}, 80.9 \%\) ).

MS \(\mathrm{m} / \mathrm{z}: 257,{ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d:} 3.73\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.80\left(6 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.86(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.25(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}\),

\section*{Ar-H).}
[0384] The dibenzylamine compound 231 ( \(500 \mathrm{mg}, 1.95 \mathrm{mmol}\) ) and triethylamine ( \(0.33 \mathrm{ml}, 2.33 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(195 \mathrm{mg}, 2.15 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chioroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chlorotorm layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 232 ( \(602.8 \mathrm{mg}, 99.4 \%\) ).

MS m/z: 311, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d:} 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.43\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.73(1 \mathrm{H}\), dd, \(\left.J=2.2,10.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.48\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.62\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \mathrm{H}_{2}\right), 6.85\) \((2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.88(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.08(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H})\).
[0385] The conjugated ketone compound \(232(450 \mathrm{mg}, 1.45 \mathrm{mmol})\) and ( R ) \(-(+)-1-(1-\) naphthyl)ethylamine ( 297 mg , \(1.74 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 2 weeks. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2270 (366.9 \(\mathrm{mg}, 52.5 \%\) ). Subsequently, the obtained \(\mathrm{K}-2270(244.5 \mathrm{mg}, 0.51 \mathrm{mmol})\) was dissolved in a \(10 \%\) solution of hydrochloric acid/methanol and stirred for 10 minutes. Then it was concentrated as such under reduced pressure. The crystals thus formed were recrystallised from ethanolwater to thereby give K-2270 hydrochloride ( \(150.7 \mathrm{mg}, 57.3 \%\) ) as colorless crystals.

MS m/z: 482, \({ }^{1} \mathrm{H}\)-NMR d: \(1.58\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.63-2.75(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.86-2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.79(3 \mathrm{H}\), \(\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.5 \mathrm{~Hz}, \mathrm{CH} 2), 4.75\) ( \(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}\) ) \(6.83(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.14\) ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.46-7.53(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.88(1 \mathrm{H}\), d. \(J=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

Example 110: Synthesis of K-2272 (N1-(3,4-dichlorobenzyl)-N1-[4-(trifluoromethoxy)benzyi)-3-\{[(1R)-1-(1-naph-thyl)ethyll-aminolpropanamide)
[0386] 3.4-Dichlorobenzylamine ( \(0.379 \mathrm{ml}, 2.84 \mathrm{mmol}\) ) and 4-(trifluoromethoxy)benzaldehyde ( \(503.6 \mathrm{mg}, 3.56 \mathrm{mmol}\), 1.0 mol eq.) were dissolved in methanol and \(\mathrm{MgSO}_{4}(410.2 \mathrm{mg}, 3.41 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and AcOH (3 drops) were added thereto. Then the obtained mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, sodium boron hydride ( \(134 \mathrm{mg}, 3.55 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added to the reaction mixture. Then the obtained mixture was stirred at room temperature for 10 minutes. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with chloroform. The chloroform layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, hexane : ethyl acetate ( \(9: 1-4: 1\) )] to thereby give a colorless oil 233 ( \(777.3 \mathrm{mg}, 78.2 \%\) ).

MS m/z: 350, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 3.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.18(2 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0387] The dibenzylamine compound 233 ( \(500 \mathrm{mg}, 1.43 \mathrm{mmol}\) ) and triethylamine ( \(0.238 \mathrm{ml}, 1.71 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(142 \mathrm{mg}, 1.57 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 234 ( \(\mathbf{4 5 4 . 6} \mathrm{mg}, 78.7 \%\) ).

MS m/z: 404, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 4.50\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=19.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.61\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=21.7 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2}\right), 5.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.7,9.5 \mathrm{~Hz}\), \(\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.53\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.7,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.16-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})\), 7.32 (1H, s, Ar-H), 7.41 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).

\section*{EP 0933354 A1}
[0388] The conjugated ketone compound 234 ( \(350 \mathrm{mg}, 0.87 \mathrm{mmol}\) ) and (R)-(t)-1-(1-naphthyl)ethylamine ( 178 mg , \(1.04 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol (4:1) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was puritied by column chromatography [silica gel, chloroform) to thereby give a colorless oil K-2272 ( \(360.7 \mathrm{mg}, 72.4\) \%). Subsequently, the obtained K-2272 ( \(250 \mathrm{mg}, 0.435 \mathrm{mmol}\) ) was dissolved in a \(10 \%\) solution of hydrochloric acid/methanol and stirred for 10 minutes. Then it was concentrated as such under reduced pressure. The crystals thus formed were recrystallised from ethanol/water to thereby give K-2270 hydrochloride ( \(230.2 \mathrm{mg}, \mathbf{8 6 . 5 \%}\) ) as coloriess crystals.

MS m/z: 575, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.60\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.60-2.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.88-3.02(2 \mathrm{M}, \mathrm{m}, \mathrm{CH} 2), 4.37(2 \mathrm{H}\), \(\left.d, J=22.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz} \mathrm{CH} 2), 4.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.72-4.82(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.13(1 \mathrm{H}, \mathrm{d}\), \(J=8.8 \mathrm{~Hz}\), Ar-H), \(7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{d}\), \(J=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3,9.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.47\) \(7.55(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

Example 111: Synthesis of K-2283 (N1-(4-chlorobenzyl)-N1-[4-(trifluoromethoxy)benzyl)-3-\{[(1R)-1-(1-naphthyl)ethyl]aminolpropanamide)
[0389] 4-(Trifluoromethoxy)benzaldehyde ( \(0.555 \mathrm{ml}, 3.88 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and 4 -chlorobenzylamine ( 0.430 ml , 3.53 mmol ) were dissolved in methanol and \(\mathrm{MgSO}_{4}(509.89 \mathrm{mg}, 4.24 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and AcOH (3 drops) were added thereto. Then the obtained mixture was stirred at room temperature for 10 minutes. After the completion of the reaction, sodium boron hydride ( \(167 \mathrm{mg}, 4.41 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added to the reaction mixture. Then the obtained mixture was stired at room temperature for 10 minutes. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with chloroform. The chloroform layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, hexane : ethyl acetate ( \(9: 1-4: 1\) )] to thereby give a colorless oil 235 ( \(1.092 \mathrm{~g}, 98.1 \%\) ).

MS m/z: 315, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(3.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.29(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}\), \(\mathrm{Ar}-\mathrm{H}), 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0390] The dibenzylamine compound 235 ( \(500 \mathrm{mg}, 1.58 \mathrm{mmol}\) ) and triethylamine ( \(0.265 \mathrm{ml}, 1.90 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(158 \mathrm{mg}, 1.74 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 40 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colortess oil 236 ( \(521.3 \mathrm{mg} .89 .3 \%\) ).

MS m/z: 369, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 4.50\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.61\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.78(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,9.5 \mathrm{~Hz}\), \(\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.50\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.7,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.57\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\), Ar-H), 7.15-7.21 (4H, m, Ar-H), \(7.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\) H).
[0391] The conjugated ketone compound 236 ( \(400 \mathrm{mg}, 1.08 \mathrm{mmol}\) ) and (R)-(+)-1-(1-naphthyl)ethylamine ( 222 mg , \(1.30 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 8 days. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was puritied by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2283 ( \(452.0 \mathrm{mg}, 77.4\) \%). Subsequently, the obtained K-2283 ( \(248.9 \mathrm{mg}, 0.46 \mathrm{mmal}\) ) was dissolved in a \(10 \%\) solution of hydrochloric acid/methanol and stirred for 15 mirutes. Then it was concentrated as such under reduced pressure. The crystals thus formed were washed with diethyl ether to thereby give K-2283 hydrochloride ( \(235.0 \mathrm{mg}, \mathbf{8 8 . 5} \%\) ) as colorless crystals.

MS m/z: 540, \({ }^{1} \mathrm{H}\)-NMR d: \(1.60\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.62-2.74\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.87-2.99(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 4.38(2 \mathrm{H}\), d. \(\left.J=4.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.55\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.75-4.80(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.12(2 \mathrm{H}, \mathrm{d}\), \(J=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.27(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar} \mathrm{H}), 7.30(1 \mathrm{H}, \mathrm{d}\), \(J=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.45-7.53(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.77\) (1H, d, J=8.1Hz, Ar-H), 7.88 (1H, dd,
\(J=2.0,7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.14\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).

Example 112: Synthesis of K-2289 (N1-(4-chlorobenzyl)-N1-(4-methoxybenzy)-3-\{(1R)-1-(1-naphthyl)ethyllaminojpropanamide)
[0392] 4-Chlorobenzaldehyde ( \(564 \mathrm{mg}, 4.01 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and 4 -methoxybenzylamine ( \(476 \mathrm{mg}, 3.64 \mathrm{mmol}\) ) were dissolved in methanol and \(\mathrm{MgSO}_{4}(525.8 \mathrm{mg}, 4.37 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and \(\mathrm{AcOH}(5\) drops) were added thereto. Then the obtained mixture was stirred at room temperature for 40 minutes. After the completion of the reaction, sodium boron hydride ( \(172 \mathrm{mg}, 4.55 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added to the reaction mixture. Then the obtained mixture was stirred at room temperature for 15 minutes. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with chloroform. The chloroform layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, hexane : ethyl acetate (9:1-4:1)] to thereby give a colorless oil 237 ( 711.8 mg , \(74.8 \%\) ).

MS m/z: 261, \({ }^{\top} \mathrm{H}-\mathrm{NMR}\) d: \(3.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.28(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0393] The dibenzylamine compound 237 ( \(501.4 \mathrm{mg}, 1.92 \mathrm{mmol}\) ) and triethylamine ( \(0.32 \mathrm{ml}, 2.30 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(191 \mathrm{mg}, 2.11 \mathrm{mmol}, 1.1 \mathrm{~mol} \mathrm{eq}\).) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 238 ( \(557.2 \mathrm{mg}, 91.9 \%\) ).

MS m/z: 315, \({ }^{1} \mathrm{H} N M R\) d: \(3.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 4.44\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.57\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\), \(5.75\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.7,10.3 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.48\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.7,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,16.6 \mathrm{~Hz}\), \(\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{d}\), \(J=6.3 \mathrm{~Hz}, A r-H), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.32(2 \mathrm{H}, \mathrm{d}\), \(J=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).
[0394] The conjugated ketone compound \(238(414 \mathrm{mg}, 1.31 \mathrm{mmol})\) and ( \(R\) )-( + ) 1 - (1-naphthyl)ethylamine ( 270 mg , \(1.57 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 12 days. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2289 (441.8 mg, 69.3 \(\%\) ). Subsequently, the obtained K-2289 ( \(269.4 \mathrm{mg}, 0.55 \mathrm{mmol}\) ) was dissolved in a \(10 \%\) solution of hydrochloric acid/methanol and stirred for 10 minutes. Then it was concentrated as such under reduced pressure. The crystals thus formed were recrystallized from ethanol/water to thereby give K-2289 hydrochloride ( \(270.1 \mathrm{mg}, 93.2 \%\) ) as colorless crystals.

MS mz: 486, \({ }^{1} \mathrm{H}\)-NMR d: \(1.56\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.57-2.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)\), 2.84-2.95 (2H,m, \(\left.\mathrm{CH}_{2}\right), 3.80(3 \mathrm{H}\), \(\left.d, J=2.2 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 4.33\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.52\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.70-4.74(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.83(1 \mathrm{H}, \mathrm{d}\), \(J=9.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.46-7.52\) ( \(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), 7.71 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.4,6.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.15\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).

Example 113: Synthesis of K-2290 (N1-(4-methoxybenzyl)-N1-[4-(trifluoromethyl)benzyl)-3-[[(1R)-1-(1-naphthyl)ethyl]amino\}propanamide)
[0395] 4-(Trifiluoromethyl)benzaldehyde ( \(1.269 \mathrm{~g}, 7.29 \mathrm{mmol}\) ) and 4-methoxybenzylamine ( \(1 \mathrm{~g}, 7.29 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) were dissolved in methanol and \(\mathrm{MgSO}_{4}(1.0530 \mathrm{~g}, 8.75 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and AcOH ( 10 drops ) were added thereto. Then the obtained mixture was stirred at room temperature for 2 hours. After the completion of the reaction, the reaction mixture was dissolved in methanol and sodium boron hydride ( \(344.7 \mathrm{mg}, 9.11 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with ethyl acetate. The ethyl

\section*{EP 0933354 A1}
acetate layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sultate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 239 ( \(1.40 \mathrm{~g}, 65.0 \%\) ).

MS m/z: 295, \({ }^{1} \mathrm{H}-\) NMR d: \(3.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\)
[0396] The dibenzylamine compound 239 ( \(1.30 \mathrm{~g}, 4.40 \mathrm{mmol}\) ) and triethylamine ( \(0.74 \mathrm{ml}, 5.28 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chlorotorm and acryloyl chloride ( \(438.3 \mathrm{mg}, 4.84 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was puritied by column chromatography [silica gel, chloroform) to thereby give a colorless oil 240 ( \(974.7 \mathrm{mg}, 63.5 \%\) ).

MS m/z: 349, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(3.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 4.53\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=52.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.61\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=45.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\), 5.77 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,10.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\) ), \(6.49\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0 .16 .6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.5,16.6 \mathrm{~Hz}\), \(\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{d}\), \(J=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.27\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.35 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.56 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.61 ( \(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=7.3 \mathrm{~Hz}\), Ar-H).
[0397] The conjugated ketone compound 240 ( \(874.7 \mathrm{mg}, 2.50 \mathrm{mmol}\) ) and (R)-(+)-1-(1-naphthyl)ethylamine ( 513.9 \(\mathrm{mg} .3 .00 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2290 (1.005 g. \(77.2 \%\) ).

MS m/z: 520, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.51\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.55\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.67\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\), \(2.82-2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.79\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 4.39\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=28.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .4 .57\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=30.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\) 4.64-4.70 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\) ), \(6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}), 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.12\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.21 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) .7 .43-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) .7 .54\) ( 1 H , \(\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}, 7.68(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.7,8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.86\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.4,7.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 8.17 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).

\section*{Example 114: Synthesis of K-2291 (N1-(4-chlorobenzy))-N1-(2-naphthylmethyl)-3-f(1R)-1-(1-naphthyl)ethyllaminojpropanamide)}
[0398] To 2-naphthaldelyde ( \(500 \mathrm{mg}, 3.20 \mathrm{mmol}\) ) and 4 -chlorobenzylamine ( \(0.389 \mathrm{ml}, 3.20 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) was added titanium isopropoxide ( \(1.70 \mathrm{ml}, 5.76 \mathrm{mmol}, 1.8 \mathrm{~mol}\) eq.) and the obtained mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was dissolved in ethanol and sodium boron hydride ( \(485 \mathrm{mg}, 12.82 \mathrm{mmol}, 4.0 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for \(\mathbf{2 9}\) hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. To the obtained residue were added ethyl acetate and water and the mixture was filtered through cefite. The residue was washed with ethyl acetate and the washing liquor was combined with the filtrate and extracted with ethyl acetate. The ethyl acetate layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 241 ( \(767.4 \mathrm{mg}, 85.2 \%\) ).

MS m/z: 281, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(3.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0 \mathrm{~Hz}\), Ar-H), 7.42-7.49 (3H, m, Ar-H), 7.75 (1H, s, Ar-H), 7.81 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.82 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.83 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).
[0399] The dibenzylamine compound 241 ( \(506.7 \mathrm{mg}, 1.80 \mathrm{mmol}\) ) and triethylamine ( \(0.301 \mathrm{ml}, 2.16 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(179 \mathrm{mg}, 1.98 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After dis-

\section*{EP 0933 354 A1}
tilling off the solvent, the oil thus obtained was puritied by column chromatography [silica gel, chloroform] to thereby give a coloriess oil 242 ( \(\mathbf{6 5 2 . 4} \mathrm{mg}, 100 \%\) ).

> MS m/z: 335, \({ }^{1} \mathrm{H}\)-NMR d: \(4.58\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=65.9 \mathrm{~Hz}, C H_{2}\right), 4.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=52.0 \mathrm{~Hz}, \mathrm{CH}\) ), 5.76 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,10.2 \mathrm{~Hz}\), \(\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.53\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.54\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH} \underline{H}_{2}\right) .7 .10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}\), Ar-H), 7.21-7.35 (4H, m, Ar-H), 7.47-7.62 (3H, m, Ar-H), 7.79-7.86 (3H, m, Ar-H).

[0400] The conjugated ketone compound 242 ( \(\mathbf{5 0 0} \mathrm{mg}, 1.49 \mathrm{mmol}\) ) and ( R )-(+)-1-(1-naphthyl)ethylamine ( 307 mg , \(1.79 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 13 days. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2291 ( \(521.1 \mathrm{~g}, 69.0 \%\) ). Subsequently, the obtained K-2291 ( \(394.1 \mathrm{mg}, 0.78 \mathrm{mmol}\) ) was dissolved in a \(10 \%\) solution of hydrochloric acid/methanol and stirred for 15 minutes. Then it was concentrated as such under reduced pressure. The crystals thus formed were recrystallized from ethanolwater to thereby give K-2291 hydrochloride ( \(358.7 \mathrm{mg}, 85.1 \%\) ) as colorless crystals.

MS m/z: 506, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.56\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.61-2.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.88-3.01\left(2 \mathrm{H}, \mathrm{m}_{1} \mathrm{CH}_{2}\right), 4.38(1 \mathrm{H}\), \(\left.\mathrm{s}, \mathrm{CH} \mathrm{H}_{2}\right) .4 .55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{H}_{2}\right) .4 .62\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2}\right) .4 .75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .4 .70-4.76(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.05\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.16 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.28 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.30 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.447.58 ( \(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), 7.69-7.89 ( \(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), 8.10-8.17 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ).

Example 115: Synthesis of K-2294 (N1-(3,4-dichlorobenzy)-N1-(4-methylbenzy)-3-f[(1R)-1-(1-naphthyl)ethyl]amino]propanamide)
[0401] 3.4-Dichlorobenzaldehyde ( \(1.555 \mathrm{~g}, 8.25 \mathrm{mmol}\) ) and 4-methylbenzylamine ( \(1 \mathrm{~g}, 8.25 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) were dissolved in methanol and \(\mathrm{MgSO}_{4}\) ( \(1.1920 \mathrm{~g}, 9.90 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and AcOH ( 10 drops ) were added thereto. Then the obtained mixture was stirred at room temperature for 2 hours. After the completion of the reaction, the reaction mixture was dissolved in methanol and sodium boron hydride ( \(390.2 \mathrm{mg}, 10.30 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with ethyl acetate. The ethyl acetate layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was puritied by column chromatography [silica gel, chloroform] to thereby give a colorless oil 243 ( \(1.5942 \mathrm{~g}, 69.2 \%\) ).

MS m/z: 280, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d:} 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.73(4 \mathrm{H}, \mathrm{s}, \mathrm{CH} \times 2), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0\), \(8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.19\) (2H, d, J=8.1Hz, Ar-H), 7.37 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.43 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).
[0402] The dibenzylarmine compound 243 ( \(1.4942 \mathrm{~g}, 5.35 \mathrm{mmol}\) ) and triethylamine ( \(0.89 \mathrm{ml}, 6.42 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) were dissolved in chloroform and acryloyl chloride ( \(532.6 \mathrm{mg} .5 .88 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 244 ( \(1.6587 \mathrm{~g}, 92.9 \%\) ).

MS m/z: 334, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d:} 2.34\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.46\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.58\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\), 5.76 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,10.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\) ) \(6.48\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,16.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,16.8 \mathrm{~Hz}\), \(\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.04(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.31(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\) H). 7.37 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).
[0403] The conjugated ketone compound 244 ( \(1.5587 \mathrm{~g}, 4.67 \mathrm{mmol}\) ) and ( R )-(+) \() \cdot 1-(1\)-naphthy) \()\) ethylamine ( 959.6 mg , \(5.60 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol (4:1) and allowed to stand at room temperature for 1 week. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil \(\mathrm{K}-2294\) ( 2.1115 g .89 .3 \%).

MS m/z: 505, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d:} 1.50\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.34\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.52\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=3.4,9.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\), \(2.63\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right) .2 .74-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) .4 .35\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=22.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.53\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\),

\section*{EP 0933354 A1}
4.62-4.68 ( 1 H m CH ), 6.99 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.04 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.14\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.26\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), 7.43-7.52 (3H, m, Ar-H), 7.68 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}\) ), 7.72 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.85 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}\), Ar-H), 8.17 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ). eq.) were dissolved in methanol and \(\mathrm{MgSO}_{4}(1.1920 \mathrm{~g}, 9.90\) mmol, 1.2 mol eq.) and AcOH ( 10 drops) were added thereto. Then the obtained mixture was stirred at room temperature for 2 hours. After the completion of the reaction, the reaction mixture was dissolved in methanol and sodium boron hydride ( \(390.2 \mathrm{mg}, 10.30 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added thereto. Then the obtained mixture was stirred at room temperature for 12 hours. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with ethyl acetate. The ethyl acetate layer was washed with a saturated aqueous solution of sodium hydrogencabonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 245 ( \(1.6877 \mathrm{~g}, 73.2 \%\) ).

MS m/z: 279, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.21\) ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.46(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0405] The dibenzylamine compound 245 ( 1.5877 g .5 .68 mmol ) and triethylamine ( \(0.95 \mathrm{ml}, 6.82 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(565.96 \mathrm{mg}, 6.25 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the cil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 246 ( \(1.5568 \mathrm{~g}, 82.0 \%\) ).

MS m/z: 333, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(2.34\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=26.8 \mathrm{~Hz}, \mathrm{CH} 2), 4.65\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=22.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right)\), \(5.76\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.7,10.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.49\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.7,16.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.64(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,16.8 \mathrm{~Hz}\), \(\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.17(2 \mathrm{H} \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.35(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.56(2 \mathrm{H}, \mathrm{d}\), \(J=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0406] The conjugated ketone compound 246 ( \(1.4568 \mathrm{~g}, 4.36 \mathrm{mmol}\) ) and ( R )-(+)-1-(1-naphthy) ethylamine ( 896.8 mg , \(5.24 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 1 week After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K -2299 ( \(884.4 \mathrm{mg}, 40.1\) \%).

MS m/z: 504, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.51\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.33\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.53(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=6.1,19.31 \mathrm{~Hz}\), \(\left.\mathrm{CH}_{2}\right), 2.66\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.77-2.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.40\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=19.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.59(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=24.9 \mathrm{~Hz}\), \(\mathrm{CH}_{2}\) ), 4.65-4.69 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\) ), \(7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.08\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.12 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\) H). 7.14 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.20 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.30 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.43-7.51 ( \(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), \(7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.2,8.1 \mathrm{~Hz}\), Ar-H), 7.86 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 8.17 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).

\section*{Example 117: Synthesis of K-2300 (N1,N1-di(4-methylbenzyi)-3-\{(1R)-1-(1-naphthyl)ethy]Jaminojpropanamide)}
[0407] 4-Tolualdehyde ( \(500 \mathrm{mg}, 3.56 \mathrm{mmol}\) ) and 4-methylbenzylamine ( \(503.6 \mathrm{mg}, 3.56 \mathrm{mmol}, 1.0 \mathrm{~mol}\) eq.) were dissolved in methanol and \(\mathrm{MgSO}_{4}\) ( \(514.2 \mathrm{mg}, 4.27 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) and ACOH ( 3 drops) were added thereto. Then the obtained mixture was stirred at room temperature for 50 minutes. After the completion of the reaction, sodium boron hydride ( \(168.3 \mathrm{mg}, 4.45 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added to the reaction mixture. Then the obtained mixture was stirred at room temperature for 15 minutes. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with chloroform. The chloroform layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column
chromatography [silica gel, hexane : ethyl acetate ( \(9: 1-4: 1\) )] to thereby give a colorless oil \(247(819.4 \mathrm{mg}, 88.2 \%)\).

MS m/z: 225, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d}: 2.33\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \times 2\right), 3.75\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH} \mathrm{H}_{2} \times 2\right), 7.13(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.22(4 \mathrm{H}, \mathrm{d}\), \(J=7.8 \mathrm{~Hz}\), Ar -H ).
[0408] The dibenzylamine compound 247 ( \(500 \mathrm{mg}, 2.22 \mathrm{mmol}\) ) and triethylamine ( \(0.372 \mathrm{ml}, 2.67 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(221 \mathrm{mg}, 2.44 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 248 ( \(\mathbf{5 3 4 . 5 \mathrm { mg } , 8 6 . 3 \% \text { ). }}\)

MS m/z: 279, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.71(1 \mathrm{H}, \mathrm{dd}\), \(\left.J=2.2,10.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.47\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.60\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.05\) ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}\), Ar-H), 7.13-7.17 (6H, \(\mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ).
[0409] The conjugated ketone compound 248 ( \(400 \mathrm{mg}, 1.43 \mathrm{mmol}\) ) and ( \(R\) ) \(\cdot(+) \cdot 1 \cdot(1\) naphthyl) ethylamine ( 295 mg , \(1.72 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform\(/\) methanol ( \(4: 1\) ) and allowed to stand at room temperature for 2 weeks. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2300 ( 372.5 \(\mathrm{mg}, 57.9 \%\) ). Subsequently, the obtained \(\mathrm{K}-2300(253.6 \mathrm{mg}, 0.56 \mathrm{mmol})\) was dissolved in a \(10 \%\) solution of hydrochloric acid/methanol and stirred for 15 minutes. Then it was concentrated as such under reduced pressure. The crystals thus formed were recrystallized from ethanol/water to thereby give K-2300 hydrochloride ( \(113.7 \mathrm{mg}, \mathbf{4 1 . 4} \%\) ) as color less crystals.

MS m/z: 450, \({ }^{1} \mathrm{H}-\mathrm{NMR} \mathrm{d:} 1.57\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.60-2.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)\), 2.85-2.97 ( \(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\) ), \(4.35\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=14.6 \mathrm{~Hz}, \mathrm{CH} 2), 4.74(1 \mathrm{H}, \mathrm{q}\), \(J=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.11(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.45-7.52(3 \mathrm{H}\), \(\mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) .7 .87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.14(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

Example 118: Synthesis of K-2309 (N1-(3,4-dichlorobenzyl)-N1-(4-methoxybenzyl)-3-[I(1R)-1-(1-naphthyl)ethyl)amino\}propanamide)
[0410] 3,4-Dichlorobenzaldehyde ( \(702 \mathrm{mg}, 4.01 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and 4 -methoxybenzylamine ( \(0.476 \mathrm{ml}, 3.64\) mmol) were dissolved in methanol and \(\mathrm{MgSO}_{4}(525.8 \mathrm{mg}, 4.37 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and ACOH ( 5 drops) were added thereto. Then the obtained mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, sodium boron hydride ( \(172 \mathrm{mg}, 4.55 \mathrm{mmol}, 1.25 \mathrm{~mol} \mathrm{eq}\).) was added to the reaction mixture. Then the obtained mixture was stirred at room temperature for 20 minutes. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with chloroform. The chloroform layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, hexane : ethyl acetate ( \(9: 1-4: 1\) )] to thereby give a colorless oil 249 ( 827.0 mg , \(76.8 \%\) ).

MS m/z: 296, \({ }^{1} \mathrm{H}-\mathrm{NMRR}\) d: \(3.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{3}\right), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}\), Ar-H).
[0411] The dibenzylamine compound 249 ( \(711.2 \mathrm{mg}, 2.41 \mathrm{mmol}\) ) and triethylamine ( \(0.402 \mathrm{ml}, 2.89 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(240 \mathrm{mg}, 2.65 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 45 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 250 ( \(837.2 \mathrm{mg}, 99.3 \%\) ).

\section*{EP 0933354 A1}

MS m/z: 350, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.50\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=44.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=49.3 \mathrm{~Hz}, \mathrm{CH} 2), 5.78(1 \mathrm{H}\), dd, \(\mathrm{J}=1.7,10.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\) ), 6.59 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.7,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\) ), 6.65 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\) ) 6.89 ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.07 ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.09 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.30(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.38\) ( \(1 \mathrm{H}, \mathrm{d}\), \(J=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

0415] The conjugated ketone compound 252 ( \(685.1 \mathrm{mg}, 1.96 \mathrm{mmol}\) ) and ( R ) \(-(+)-1-(1\)-naphthyl)ethylamine (403 mg, \(2.36 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 12 days. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2310 (777.8 \(\mathbf{m g}, 76.3\) \%). Subsequently, the obtained \(\mathrm{K}-2310(539.0 \mathrm{mg}, 1.04 \mathrm{mmol}\) ) was dissolved in a \(10 \%\) solution of hydrochioric acid/methanol and stirred for 15 minutes. Then it was concentrated as such under reduced pressure. The crystals thus formed were recrystallized from ethanol/water to thereby give \(\mathrm{K}-2310\) hydrochioride ( \(493.0 \mathrm{mg}, 85.1 \%\) ) as colortess crystals.

MS m/z: 520, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.52\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.34\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.62(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=5.9,21.7 \mathrm{~Hz}\), \(\left.\mathrm{CH}_{2}\right), 2.84-2.96(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 4.38\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.56\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.67(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}), 7.00(2 \mathrm{H}\), d, \(J=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.07-7.18\) ( \(4 \mathrm{H} \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), \(7.22(2 \mathrm{H}, \mathrm{d} . \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(7.44-7.51\) ( \(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\) ), 7.68 ( \(1 \mathrm{H}, \mathrm{d}\), \(J=6.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}\), Ar-H), \(7.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

Example 120: Synthesis of K-2311
[0416] 4-(Trifluoromethoxy)benzaidehyde ( \(0.573 \mathrm{ml}, 4.01 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) and 4 -methoxybenzylamine ( 0.476 ml , 3.64 mmol ) were dissolved in methanol and \(\mathrm{MgSO}_{4}\) ( \(525.8 \mathrm{mg}, 4.37 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and AcOH ( 5 drops) were added thereto. Then the obtained mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, sodium boron hydride ( \(172 \mathrm{mg}, 4.55 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added to the reaction mixture. Then the obtained mixture was stirred at room temperature for 30 minutes. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with chloroform. The chloroform layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, hexane : ethyl acetate ( \(9: 1-4: 1\) )] to thereby give a colorless oil 253 ( \(944.0 \mathrm{mg}, 83.4 \%\) ).

MS m/z: \(311,{ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(3.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(7.17(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).
[0417] The dibenzylamine compound 253 ( \(766.5 \mathrm{mg}, 2.46 \mathrm{mmol}\) ) and triethylamine ( \(0.411 \mathrm{ml}, 2.95 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(245 \mathrm{mg}, 2.71 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 45 minutes. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distilling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 254 ( \(749.0 \mathrm{mg}, 83.4 \%\) ).

MS m/z: \(365,{ }^{1} \mathrm{H}\)-NMR \(\delta: 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} \mathrm{H}_{3}\right), 4.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}, \mathrm{CH} 2), 4.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.4 \mathrm{~Hz}, \mathrm{CH}), 5.76(1 \mathrm{H}\), dd, \(\left.J=2.0,10.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.49\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.0,16.8 \mathrm{~Hz} \mathrm{CH}=\mathrm{CH}_{2}\right), 6.65\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,16.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.84\) \((1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.18\) ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \operatorname{Ar}-\mathrm{H}\) ), 7.27 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}\), Ar \(-H\) ).
[0418] The conjugated ketone compound 254 ( \(612.8 \mathrm{mg}, 1.68 \mathrm{mmol}\) ) and ( \(R\) ) \(\cdot(+)-1 \cdot(1-n a p h t h y l)\) ethylamine ( 345 mg , \(2.01 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform/methanol ( \(4: 1\) ) and allowed to stand at room temperature for 12 days. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil K-2311 ( \(668.3 \mathrm{mg}, 74.2\) \%).

MS m/z: 536, \({ }^{1} \mathrm{H}-\mathrm{NMR}\) d: \(1.53\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.55-2.73\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.84-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{H}_{2}\right), 3.79(3 \mathrm{H}\), \(\left.\left.d, J=3.2 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 4.36\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz}, \mathrm{CH})_{2}\right), 4.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}, 6.82\) \((1 H, d, J=8.8 \mathrm{~Hz}, \hat{A r}-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.13-\) \(7.18(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.45-7.51(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.70(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.74(1 \mathrm{H}, \mathrm{d}\), \(J=8.3 \mathrm{~Hz}, A r-H), 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\).

\section*{Example 121: Synthesis of K-2312}
[0419] 4-Hydroxybenzaldehyde ( \(490 \mathrm{mg}, 4.01 \mathrm{mmol}, 1.1 \mathrm{~mol} \mathrm{eq}\).) and 4 -methoxybenzylamine ( \(0.476 \mathrm{ml}, 3.64 \mathrm{mmol}\) ) were dissolved in methanol and \(\mathrm{MgSO}_{4}(525.8 \mathrm{mg}, 4.37 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) and AcOH ( 5 drops) were added thereto. Then the obtained mixture was stirred at room temperature for 45 minutes. After the completion of the reaction, sodium boron hydride ( \(172 \mathrm{mg}, 4.55 \mathrm{mmol}, 1.25 \mathrm{~mol}\) eq.) was added to the reaction mixture. Then the obtained mixture was stirred at room temperature for 10 minutes. After the completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was extracted with chloroform. The chloroform layer was washed with a saturated aqueous solution of sodium hydrogencarbonate, water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate and the solvent was distilled off under reduced pressure. The oil thus obtained was purified by column chromatography [silica gel, chloroform/methanol] to thereby give a colorless oil 255 ( \(858.9 \mathrm{mg}, 97.1 \%\) ).

\section*{EP 0933354 A1}

MS m/z: 243, \({ }^{1} \mathrm{H}\)-NMR \(\delta: 3.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.77\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 3), 6.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})\), \(6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.26\) ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ).
[0420] The dibenzylamine compound 255 ( \(521.4 \mathrm{mg}, 2.15 \mathrm{mmol}\) ) and triethylamine ( \(0.359 \mathrm{ml}, 2.57 \mathrm{mmol}, 1.2 \mathrm{~mol}\) eq.) were dissolved in chloroform and acryloyl chloride ( \(214 \mathrm{mg}, 2.36 \mathrm{mmol}, 1.1 \mathrm{~mol}\) eq.) dissolved in chloroform was added thereto under ice-cooling. The reaction mixture was stirred at room temperature for 1 hour. After the completion of the reaction, the reaction mixture was poured into water and extracted with chloroform. The chloroform layer was washed with water and a saturated aqueous solution of sodium chloride and dried over sodium sulfate. After distiling off the solvent, the oil thus obtained was purified by column chromatography [silica gel, chloroform] to thereby give a colorless oil 256 ( \(\mathbf{3 7 5 . 5} \mathrm{mg}, 58.8 \%\) ).

MS m/z: 297, \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 3.80\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{OCH}_{3}\right), 4.44(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.1 \mathrm{~Hz}, \mathrm{CH} 2), 4.56\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}, C \mathrm{H}_{2}\right)\), \(5.76\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.2,10.2 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.48\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.2,7.1,16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.64(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=3.2,10.2\), \(\left.16.6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.85\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(6.89(1 \mathrm{H}\), d, J=8.5Hz, Ar-H), 6.98 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.08 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}\) ), 710 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}\) ), 7.19 ( 1 H , d, J=8.5Hz, Ar-H).
[0421] The conjugated ketone compound 256 ( \(260.2 \mathrm{mg}, 0.88 \mathrm{mmol}\) ) and ( R )-( + )-1-(1-naphthyl)ethylamine ( 180 mg . \(1.05 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}\).) were dissolved in chloroform\(/\) methanol ( \(4: 1\) ) and allowed to stand at room temperature for 13 days. After the completion of the reaction, the solvent was distilled off under reduced pressure and the oil thus obtained was purified by column chromatograpty [silica gel, chloroform/methanol] to thereby give a colorless oil K-2312 (177.4 \(\mathrm{mg} .43 .3 \%\) ).

MS m/z: 468, \({ }^{1} \mathrm{H}-\mathrm{NMR} \delta: 1.61\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.63-2.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.81-2.88(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2), 2.95(1 \mathrm{H}\), d, \(\left.J=5.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.78\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.22\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.27\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=30.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.81-\) 4.86 ( \(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}\) ) 6.72 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 6.74 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), \(6.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.83(1 \mathrm{H}\), \(d, J=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 6.98\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\) ), 7.02 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H}\) ), 7.10 ( 1 H , d, J=8.5Hz, Ar-H), 7.45-7.54 (3H, m, Ar-H), \(7.77(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.11(1 \mathrm{H}, \mathrm{d}\), \(J=8.1 \mathrm{~Hz}, \mathrm{Ar} \cdot \mathrm{H})\).

\section*{Example 122: Synthesis of K-2280 ( \(N-[5-[(4-m e t h o x y p h e n y 1)\) thio]pentyl-N-f(1R)-1-(1-naphthyl)ethyl]amine)}
[0422] 4-Methoxythiophenol ( \(753 \mathrm{mg}, 5.37 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ). To the obtained solution were successively added at room temperature potassium carbonate ( \(754 \mathrm{mg}, 5.46 \mathrm{mmol}\) ) and 1.5 -dibromopentane ( 0.73 ml , 5.35 mmol ) and the reaction mixture was stirred at room temperature for 3 hours. After confirming the complation of the reaction by TLC. potassium carbonate ( \(931 \mathrm{mg}, 6.75 \mathrm{mmol}\) ) and (R)-(+)-1-(1-naphthy)ethylamine ( \(0.52 \mathrm{ml}, 3.22 \mathrm{mmol}\) ) were added at the same temperature to the reaction system. Further, the reaction mixture was stirred at \(85^{\circ} \mathrm{C}\) for 12 hours. After the completion of the reaction, the mixture was cooled by allowing to stand at room temperature and water was added thereto. Next, the reaction mixture was subjected to separatory extraction with chloroform and a saturated aqueous solution of sodium ctiloride and washed. The organic layer thus obtained was dried over antydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=200: 1\) ) to thereby give a pale yellow, syrupy compound \(K-2280\) as a free compound. Subsequently, 5 ml of \(10 \%\) hydrochloric acid/methanol was poured into the K-2280 obtained above and allowed to stand for 3 minutes followed by concentration. The pale yellow crystals thus obtained were subjected to Kiriyama's filtration and the precipitate was washed with diethyl ether. Thus \(210 \mathrm{mg}(0.55 \mathrm{mmol}\), yield: \(20.6 \%\) ) of K - 2280 hydroctloride was obtained as white crystals.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.49\) ( \(1 \mathrm{H}, \mathrm{bs}\) ). 9.98 ( \(1 \mathrm{H}, \mathrm{bs}\) ), 8.24 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.32 \mathrm{~Hz}\) ), 7.98 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.56 \mathrm{~Hz}\) ), 7.94 ( \(1 \mathrm{H}, \mathrm{dd}\), \(\mathrm{J}=8.04 \mathrm{~Hz}, \mathrm{~J}=1.48 \mathrm{~Hz}\) ), 7.90 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.28 \mathrm{~Hz}\) ), 7.52-7.68 ( \(3 \mathrm{H}, \mathrm{m}\) ), 7.19-7.23 (2H, m), 6.73-6.77 (2H, m), 5.14-5.24 \((1 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 2.67-2.75(2 \mathrm{H}, \mathrm{m}), 2.65(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.20 \mathrm{~Hz}), 2.02(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.84 \mathrm{~Hz}), 1.91-1.99(2 \mathrm{H}, \mathrm{m}), 1.38-\) 1.46 (2H, m), 1.21-1.35 (2H, m), m/z=379.

\section*{}
[0423] \(2,4,5\)-Trichlorothiophenol ( \(770 \mathrm{mg}, 3.61 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ). To the obtained solution were successively added at room temperature potassium carbonate ( \(560 \mathrm{mg}, 4.05 \mathrm{mmol}\) ) and 1.4 -dibromobutane ( 0.43 \(\mathbf{m l}, 3.60 \mathrm{mmol}\) ) and the reaction mixture was stirred at room temperature for 3 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(\mathbf{5 4 5} \mathrm{mg} .3 .94 \mathrm{mmol}\) ) and ( R )-(+)-1-(1-naphthy) ethylamine ( \(\mathbf{0 . 4 1 \mathrm { ml } , 3 . 9 4}\)
mmol ) were added at the same temperature to the reaction system. Further, the reaction mixture was stirred at \(85^{\circ} \mathrm{C}\) for 12 hours. After the completion of the reaction, the mixture was cooled by aliowing to stand at room temperature and water was added thereto. Next, the reaction mixture was subjected to separatory extraction with chloroform and a saturated aqueous solution of sodium chloride and washed. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=200: 1\) ) to thereby give a pale yellow, syrupy compound K-2281 as a free compound. Subsequently, 10 ml of \(10 \%\) hydrochloric acid/methanol was poured into the K-2281 obtained above and allowed to stand for 5 minutes followed by concentration. The pale yellow crystals thus obtained were subjected to Kiriyama's filtration and the precipitate was washed with diethyl ether. Thus 280 mg ( 0.59 mmol , yield: \(15.0 \%\) ) of K-2281 hydrochloride was obtained as white crystals.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.64(1 \mathrm{H}, \mathrm{bs}), 10.07(1 \mathrm{H}, \mathrm{bs}), 8.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~J}=0.7 \mathrm{~Hz}), 8.01(1 \mathrm{H}, \mathrm{d}=8.3 \mathrm{~Hz}), 7.90-7.95(2 \mathrm{H}\), m), 7.52-7.68 (3H, m), \(7.36(1 \mathrm{H}, \mathrm{s}), 7.11(1 \mathrm{H}, \mathrm{s}), 5.20-5.26(1 \mathrm{H}, \mathrm{m}), 2.76(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.76-2.82(2 \mathrm{H}, \mathrm{m}), 2.87\) \((3 H, d, J=6.8 \mathrm{~Hz}), 1.53-1.63(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=437,439\).

Example 124: Synthesis of K-2282 (N-[(1R)-1-(1-naphthyl)ethyl]-N-[5-[(2,4,5-trichlorophenyl)thio]pentyl]amine)
[0424] 2,4,5-Trichlorothiophenol ( \(1.53 \mathrm{~g}, 7.15 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 15 ml ). To the obtained solution were successively added at room temperature potassium carbonate ( \(1.083 \mathrm{~g}, 7.84 \mathrm{mmol}\) ) and 1.5 -dibromopentane ( \(0.98 \mathrm{ml}, 7.19 \mathrm{mmol}\) ) and the reaction mixture was stirred at room temperature for 2.5 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(1.00 \mathrm{~g}, 7.25 \mathrm{mmol}\) ) and ( R )-(+)-1-(1-naphthyl)ethylamine ( 0.69 ml , 4.27 mmol ) were added at the same temperature to the reaction system. Further, the reaction mixture was stirred at 85 \({ }^{\circ} \mathrm{C}\) for 12 hours. After the completion of the reaction, the mixture was cooled by allowing to stand at room temperature and water was added thereto. Next, the reaction mixture was subjected to separatory extraction with chloroform and a saturated aqueous solution of sodium chloride and washed. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=200: 1\) ) to thereby give a pale yellow, syrupy compound \(K-2282\) as a free compound. Subsequently, 15 ml of \(10 \%\) hydrochloric acid/methanol was poured into the K-2282 obtained above and allowed to stand for 5 minutes followed by concentration. The pale yellow crystals thus obiained were subjected to Kiriyama's filtration and the precipitate was washed with diethyl ether. Thus \(283 \mathrm{mg}(0.58 \mathrm{mmol}\), yield: \(13.5 \%\) ) of K-2282 hydrochloride was obtained as white crystals.

400MHz-NMR 10.55 ( \(1 \mathrm{H}, \mathrm{bs}\) ), 10.03 ( \(1 \mathrm{H}, \mathrm{bs}\) ), 8.25 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}\) ), 8.00 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}\) ), \(7.90-7.95\) ( \(2 \mathrm{H}, \mathrm{m}\) ), \(7.54-7.68(3 \mathrm{H}, \mathrm{m}), 7.37(1 \mathrm{H}, \mathrm{s}), 7.16(1 \mathrm{H}, \mathrm{s}), 5.17-5.26(1 \mathrm{H}, \mathrm{m}), 2.73-2.82(4 \mathrm{H}, \mathrm{m}), 1.97-2.05(2 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=6.6 \mathrm{~Hz}), 1.52-1.60(2 \mathrm{H}, \mathrm{m}), 1.31-1.45(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=451,453\).

Example 125: Synthesis of K-2287 (N-f(1R)-1-(1-naphthyl)ethyl]-N-(4-\{[4-(trifluoromethoxy)phenyl)thio]buty)amine)
[0425] 4-Trifluoromethoxythiophenol ( \(908 \mathrm{mg}, 4.68 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ). To the obtained solution were successively added at room temperature potassium carbonate ( \(679 \mathrm{mg}, 4.91 \mathrm{mmol}\) ) and 1,4 -dibromobutane ( \(0.568 \mathrm{ml}, 4.69 \mathrm{mmol}\) ) and the reaction mixture was stirred at room temperature for 5 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(710 \mathrm{mg}, 5.14 \mathrm{mmol}\) ) and ( \(R\) )-( + )-1-(1-naphthy) ethylamine ( 0.53 \(\mathrm{ml}, 3.28 \mathrm{mmol}\) ) were added at the same temperature to the reaction system. Further, the reaction mixture was stirred at \(90^{\circ} \mathrm{C}\) for 12 hours. After the completion of the reaction, the mixture was cooled by allowing to stand at room temperature and water was added thereto. Next, the reaction mixture was subjected to separatory extraction with chloroform and a saturated aqueous solution of sodium chloride and washed. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=200: 1\) ) to thereby give a pale yellow, syrupy compound K-2287 as a free compound. Subsequently, 10 ml of \(10 \%\) hydrochloric acid/methanol was poured into the K-2287 obtained above and allowed to stand for 5 minutes followed by concentration. The pale yellow crystals thus obtained were subjected to Kiriyama's filtration and the precipitate was washed with hexane. Thus 245 mg ( 0.54 mmol , yield: \(16.5 \%\) ) of K-2287 hydrochloride was obtained as white crystals.

400MHz-NMR 10.58 ( \(1 \mathrm{H}, \mathrm{bs}\) ), 10.07 ( \(1 \mathrm{H}, \mathrm{bs}\) ), \(8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}\) ), \(8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}\) ), \(7.90-7.96(2 \mathrm{H}, \mathrm{m})\), 7.52-7.67 (3H, m), 7.15-7.19 (3H, m), 7.02-7.04 (2H, m), 5.19-5.24 (1H, m), 2.73-2.76 (4H, m), 2.06-2.17 (2H, m), \(2.06(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.41-1.59(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=419\).

\section*{EP 0933354 A1}

Example 126: Synthesis of K-2288 ( \(\mathrm{N}-(\) (1R)-1-(1-naphthyl)ethyl]- N -(5-\{[4-(trifiuoromethoxy)phenyl)thio)pentyl)amine)
[0426] 4-Trifhoromethoxythiophenol ( \(995 \mathrm{mg}, 5.12 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ). To the obtained solution were successively added at room temperature potassium carbonate ( 715 mg .5 .17 mmol ) and 1.5 -dibromopentane ( \(0.70 \mathrm{ml}, 5.14 \mathrm{mmol}\) ) and the reaction mixture was stirred at room temperature for 5 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(770 \mathrm{mg}, 5.57 \mathrm{mmol}\) ) and ( R ) \(-(+)-1-(1-\) naphthyl \()\) ethylamine ( 0.58 \(\mathrm{ml}, 3.59 \mathrm{mmol}\) ) were added at the same temperature to the reaction system. Further, the reaction mixture was stirred at \(85^{\circ} \mathrm{C}\) for 12 hours. After the completion of the reaction, the mixture was cooled by allowing to stand at room temperature and water was added thereto. Next, the reaction mixture was subjected to separatory extraction with chloroform and a saturated aqueous solution of sodium chloride and washed. The organic layer thus obtained was dried over anhydrous sodium sultate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol \(=200: 1\) ) to thereby give a pale yellow, syrupy compound K-2288 as a free compound. Subsequently, 10 ml of \(10 \%\) hydrochloric acid/methanol was poured into the K-2288 obtained above and allowed to stand for 5 minutes followed by concentration. The pale yellow crystals thus obtained were subjected to Kiriyama's filtration and the precipitate was washed with hexane. Thus \(313 \mathrm{mg}(\mathbf{0 . 6 7} \mathbf{~ m m o l}\), yield: \(\mathbf{1 8 . 7} \%\) ) of K-2288 hydrochloride was obtained as white crystals.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.53(1 \mathrm{H}, \mathrm{m}), 10.03(1 \mathrm{H}, \mathrm{bs}), 8.24-8.26(1 \mathrm{H}, \mathrm{m}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.52-7.67(3 \mathrm{H}, \mathrm{m}), 7.19-\) \(7.23(2 \mathrm{H}, \mathrm{m}), 7.04-7.07(2 \mathrm{H}, \mathrm{m}), 5.15-5.25(1 \mathrm{H}, \mathrm{m}), 2.76(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.69-2.78(2 \mathrm{H}, \mathrm{m}), 2.03(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz})\), \(1.92-2.04(2 \mathrm{H}, \mathrm{m}), 1.49(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{~J}=7.4 \mathrm{~Hz}), 1.27-1.38(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=433\). Example 127: Synthesis of \(\mathrm{K}-2293\) (N-44-[(4-chlorophenyl)thio]butyl]-N-[(1R)-1-(1-naphthyl)ethyl]amine)
[0427] 4-Chlorothiophenol ( \(782 \mathrm{mg}, 5.41 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 10 ml ). To the obtained solution were successively added at room temperature potassium carbonate ( \(850 \mathrm{mg}, 6.15 \mathrm{mmol}\) ) and 1,4 -dibromobutane ( 0.65 ml , 5.44 mmol ) and the reaction mixture was stirred at room temperature for 5 hours. After confirming the completion of the reaction by TLC, potassium cabonate ( \(775 \mathrm{mg}, 5.61 \mathrm{mmol}\) ) and ( R ) \(-(+) \cdot 1-(1-n a p h t h y l)\) ethylamine ( \(0.62 \mathrm{ml}, 3.84 \mathrm{mmol}\) ) were added at the same temperature to the reaction system. Further, the reaction mixture was stirred at \(85^{\circ} \mathrm{C}\) for 24 hours. After the completion of the reaction, the mixture was cooled by allowing to stand at room temperature and water was added thereto. Next, the reaction mixture was subjected to separatory extraction with chloroform and a saturated aqueous solution of sodium chloride and washed. The organic layer thus obtained was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methanol = \(200: 1\) ) to thereby give a pale yellow, syrupy compound K-2293 as a free compound. Subsequently, 10 ml of \(10 \%\) hydrochloric acid/methanol was poured into the K-2293 obtained above and allowed to stand for 5 minutes followed by concentration. The pale yellow crystals thus obtained were subjected to Kiriyama's filtration and the precipitate was washed with diethyl ether. Thus 420 mg ( 1.03 mmol , yield: \(\mathbf{2 6 . 9 \%}\) ) of K-2293 hydrochloride was obtained as white crystals.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.58(1 \mathrm{H}, \mathrm{bs}), 10.05(1 \mathrm{H}, \mathrm{bs}), 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}\), \(\mathrm{J}=1.2 \mathrm{~Hz}), 7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.04 \mathrm{~Hz}), 7.52-7.67(3 \mathrm{H}, \mathrm{m}), 7.12-7.16(2 \mathrm{H}, \mathrm{m}), 7.06-7.10(2 \mathrm{H}, \mathrm{m}), 5.16-5.25(1 \mathrm{H}, \mathrm{m})\), \(2.70-2.74(4 \mathrm{H}, \mathrm{m}), 2.06-2.15(2 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.40-1.57(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=369\).

\section*{Example 128: Synthesis of K-2240 (N-[(1R)-1-(1-naphthyl)ethyl]-N-(3-\{[4-(trifluoromethyl)phenyl)thio)propyl)amine)}
[0428] K-2240 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol and 1,4-dibromobutane respectively by 4 -trifluoromethylthiophenol and 1,3-dibromopropane. \(m / z=389\).

Example 129: Synthesis of K-2263 ( \(N-\{4-[(4\)-fluorophenyl)thiojbutyl\} \(N-\{(1 R)-1-(1\)-naphthyl)ethyl]amine)
[0429] K-2263 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4 -chlorothiophenol by 4 -fluorothiophenol.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.57(1 \mathrm{H}, \mathrm{bs}), 10.04(1 \mathrm{H}, \mathrm{bs}), 8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.52 \mathrm{~Hz}), 7.90-7.96(2 \mathrm{H}, \mathrm{m})\), 7.52-7.67 (3H, m), 7.15-7.20 (2H, m), 6.86-6.92 (2H, m), 5.19-5.22 (1H, m), 2.67-2.77 (2H, m), \(2.69(2 \mathrm{H}, \mathrm{t}\), \(\mathrm{J}=7.1 \mathrm{~Hz}\) ), \(2.05-2.15(2 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.36-1.54(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=353\).

\section*{EP \(0933 \mathbf{3 5 4}\) A1}

Example 130: Synthesis of K-2269 (N-\{4-[(3-methoxyphenyl)thio]butyl\}-N-[(1R)-1-(1-naphthyl)ethyl]amine)
[0430] K-2269 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol by 3-methoxythiophenol.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.58(1 \mathrm{H}, \mathrm{bs}), 10.06(1 \mathrm{H}, \mathrm{bs}), 8.24-8.26(1 \mathrm{H}, \mathrm{m}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.88-7.94(3 \mathrm{H}, \mathrm{m}), 7.53-\) \(7.67(3 \mathrm{H}, \mathrm{m}), 7.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}), 6.71-6.74(2 \mathrm{H}, \mathrm{m}), 6.64(1 \mathrm{H}, \operatorname{ddd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz})\), \(5.15-5.25(1 \mathrm{H}, \mathrm{m}), 2.70-2.79(2 \mathrm{H}, \mathrm{m}), 2.75(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.07-2.16(2 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.43-1.60\) \((2 H, m), m / z=365\).

Example 131: Synthesis of K-2271 (N-[[4-(5-ethoxy-1,3-benzothiazol-2-yl)thio]butyl-N-[(1R)-1-(1-naphthyl)ethyl]amine)
[0431] K-2271 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol by 6-ethoxy-2-mercaptobenzothiazole.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.56(1 \mathrm{H}, \mathrm{bs}), 10.04(1 \mathrm{H}, \mathrm{bs}), 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.87-7.92(2 \mathrm{H}, \mathrm{m})\), \(7.52-7.70(4 \mathrm{H}, \mathrm{m}), 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{~J}=2.2 \mathrm{~Hz}), 5.20-5.28(1 \mathrm{H}, \mathrm{m}), 4.02(2 \mathrm{H}, \mathrm{dd}\), \(J=13.9 \mathrm{~Hz}, \mathrm{~J}=7.1 \mathrm{~Hz}), 3.27(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{~J}=7.1 \mathrm{~Hz}), 2.20-2.60(4 \mathrm{H}, \mathrm{m}), 2.12-2.23(2 \mathrm{H}, \mathrm{m}), 2.06(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz})\), 1.76-1.87 (2H, m), \(1.42(3 H, t, j=6.8 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=436\).

Example 132: Synthesis of K-2279 ( \(\mathrm{N}-\{[5-(3-\) methoxyphenyl)thio]pentyl]-N-[(1R)-1-(1-naphthyl)ethyl]amine)
[0432] K-2279 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol and 1,4-dibromobutane respectively by 3-methoxythiophenol and 1,5-dibromopentane.

400 MHz -NMR 10.51 (1H, bs), \(9.99(1 \mathrm{H}, \mathrm{bs}), 8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.89-7.99(3 \mathrm{H}, \mathrm{m}), 7.54-7.67(3 \mathrm{H}, \mathrm{m}), 7.10(1 \mathrm{H}\), \(\mathrm{dd}, \mathrm{J}=7.9 \mathrm{~Hz}, \mathrm{~J}=7.9 \mathrm{~Hz}), 6.75-6.79(2 \mathrm{H}, \mathrm{m}), 6.61-6.65(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=0.7 \mathrm{~Hz}), 5.14-5.24(1 \mathrm{H}, \mathrm{m})\). \(3.72(3 \mathrm{H}, \mathrm{s}), 2.68-2.79(4 \mathrm{H}, \mathrm{m}), 2.03(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.93-1.99(2 \mathrm{H}, \mathrm{m}), 1.47-1.54(2 \mathrm{H}, \mathrm{m}), 1.24-1.38(2 \mathrm{H}, \mathrm{m})\), \(\mathrm{m} / \mathrm{z}=379\).

Example 133: Synthesis of K-2284 (N-[(1R)-1-(1-naphthyl)ethyl]-N-(5-\{[2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl]thio]pentyl)amine)
[0433] K-2284 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4 -chlorothiophenol and 1,4-dibromobutane respectively by 2,3,5,6-tetrafluoro-4-trifluoromethythiophenol and 1,5-dibromopentane.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.54(1 \mathrm{H}, \mathrm{bs}), 10.43(1 \mathrm{H}, \mathrm{bs}), 8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.90-7.96(2 \mathrm{H}, \mathrm{m})\), 7.55-7.67 (3H, m), 5.15-5.25 (1H, bs), 2.91 (2H, t, J=7.2Hz), 2.70-2.80 (2H, m), 2.04 (3H, d, J=6.6Hz), 1.93-2.02 \((2 \mathrm{H}, \mathrm{m}), 1.48(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{~J}=7.4 \mathrm{~Hz}), 1.26-1.41(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=489\).

Example 134: Synthesis of K-2286 (N-\{6-[(4-chlorophenyl)thio]hexyl\}-N-\{(1R)-1-(1-naphthyl)ethyl]amine)
[0434] K-2286 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 1,4-dibromobutane by 1,6 -dibromohexane. \(\mathrm{m} / \mathrm{z}=397\).

Example 135: Synthesis of K-2292 (N-[(1R)-1-(1-naphthyl)ethyl]-N-(7-\{[2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyllthiofheptyl)amine)
[0435] K-2292 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4 -chlorothiophenol and 1,4-dibromobutane respectively by 2,3,5,6-tetrafluoro-4-trifluorometylthiophenol and 1,7-dibromopentane.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.48(1 \mathrm{H}, \mathrm{bs}), 9.98(1 \mathrm{H}, \mathrm{bs}), 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz})\), \(7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.54-7.68(3 \mathrm{H}, \mathrm{m}), 5.21(1 \mathrm{H}, \mathrm{bs}), 2.92(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.74(2 \mathrm{H}, \mathrm{bs}), 2.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz})\), \(1.97(2 \mathrm{H}, \mathrm{bs}), 1.42-1.50(2 \mathrm{H}, \mathrm{m}), 1.23-1.38(2 \mathrm{H}, \mathrm{m}), 1.17(4 \mathrm{H}, \mathrm{bs}), \mathrm{m} / \mathrm{z}=517\).

Example 136: Synthesis of K-2295
[0436] K-2295 hydrochloride was dbtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol and 1,4-dibromobutane respectively by 2,4,5-trichlorothiophenol and 1 -bromo-2-chloroethane.

400MHz-NMR 10.94 (1H, bs), 10.31 ( \(1 \mathrm{H}, \mathrm{bs}\) ), 8.17 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), 7.88-7.96 (3H, m), 7.55-7.65 (3H, m), 7.42 \((1 \mathrm{H}, \mathrm{s}), 7.29(1 \mathrm{H}, \mathrm{s}), 5.20-5.28(1 \mathrm{H}, \mathrm{m}), 3.47-3.59(2 \mathrm{H}, \mathrm{m}), 2.92-3.07(2 \mathrm{H}, \mathrm{m}), 2.03(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=409\).

\section*{Example 137: Synthesis of K-2296 (N-[[5-(2,5-dichlorophenyl)thio]pentyl]-N-[(1R)-1-(1-naphthyl)ethyl]amine)}
[0437]. K-2296 hydroctloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol and 1.4-dibromobutane respectively by 2,5-dichlorothiophenol and 1,5-dibromopentane.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.63(1 \mathrm{H}, \mathrm{bs}), 10.08(1 \mathrm{H}, \mathrm{bs}), 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 8.01(1 \mathrm{H}, \mathrm{d},=8.5 \mathrm{~Hz}), 7.90-7.94(2 \mathrm{H}, \mathrm{m}), 7.52-\) \(7.68(3 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 6.98-7.02(2 \mathrm{H}, \mathrm{m}), 5.18-5.28(1 \mathrm{H}, \mathrm{m}), 2.75-2.84(2 \mathrm{H}, \mathrm{m}), 2.77(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz})\). \(2.12-2.20(2 \mathrm{H}, \mathrm{m}), 2.07(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.56-1.67(4 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=417\).

Example 138: Synthesis of K-2297 ( \(\mathrm{N}-((1 \mathrm{R})-1\)-(1-naphthyl)ethyl \(]-\mathrm{N}-(4-\{[2,3,5,6\)-tetrafluoro-4-(trifluoromethyl)phenyl]thio\}butyl)amine)
[0438] K-2297 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4 -chlorothiophenol by 2,3,5,6-tetrafluoro-4-trifluoromethylthiophenol.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.59(1 \mathrm{H}, \mathrm{bs}), 10.08(1 \mathrm{H}, \mathrm{b}), 8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}\), \(J=1.2 \mathrm{~Hz}), 7.55-7.67(3 \mathrm{H}, \mathrm{m}), 5.18-5.23(1 \mathrm{H}, \mathrm{m}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.70-2.82(2 \mathrm{H}, \mathrm{m}), 2.04-2.13(2 \mathrm{H}, \mathrm{m}), 2.05\) (3H, d, J=6.6Hz), 1.47-1.60 (2H, m), m/z=475.

Example 139: Synthesis of K-2298 (N-\{4-[(2,5-dichlorophenyl)thio]butyl\}-N-[(1R)-1-(1-naphthyl)ethyl]amine)
[0439] K-2298 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol by 2,5-dichlorothiophenol.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.64\) (1H, bs), 10.09 ( 1 H , bs), 8.26 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), 8.01 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), \(7.89-7.94\) ( \(2 \mathrm{H}, \mathrm{m}\) ), 7.52-7.68 (3H, m), \(7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}), 5.18-5.28(1 \mathrm{H}, \mathrm{m}), 2.73-2.85(2 \mathrm{H}, \mathrm{m})\), \(2.76(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.16(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{~J}=7.2 \mathrm{~Hz}), 2.07(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.52-1.68(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=403\).

Example 140: Synthesis of K-2301 (N-[(1R)-1-((1-naphthyl)ethyl]-N-(6-[[4-(trifluoromethoxy)phenyl]thio\}hexyl)amine)
[0440] K-2301 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4 -chlorothiophenol and 1,4 -dibromobutane respectively by 4 -trifluoromethoxythiophenol and 1,6-dibromohexane.

400 MHz -NMR \(10.53(1 \mathrm{H}, \mathrm{bs}), 10.00(1 \mathrm{H}, \mathrm{bs}), 8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.89-7.95(2 \mathrm{H}, \mathrm{m})\), 7.52-7.68 (3H, m), 7.21-7.24 (2H, m), 7.05-7.08 (2H, m), 5.21 ( \(1 \mathrm{H}, \mathrm{bs}\) ), \(2.70-2.78(2 \mathrm{H}, \mathrm{m}), 2.76(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz})\), \(2.06(3 H, d, J=6.6 \mathrm{~Hz}), 1.92-2.02(2 \mathrm{H}, \mathrm{m}), 1.46-1.54(2 \mathrm{H}, \mathrm{m}), 1.17-1.35(4 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=447\).

Example 141: Synthesis of K-2302 ( \(\mathbf{N}\)-\{4-\{(2,4-dimethylphenyl)thio]butyl\}-N-[(1 R)-1-(1-naphthyl)ethyl)amine)
[0441] K-2302 hydrochioride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4 -chlorothiophenol by 2,4 -dimethylthiophenol.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.60(1 \mathrm{H}, \mathrm{bs}), 10.05(1 \mathrm{H}, \mathrm{bs}), 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.84 \mathrm{~Hz})\), \(7.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.51-7.66(3 \mathrm{H}, \mathrm{m}), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 5.15-5.24\) ( 1 H , m), 2.70-2.78 (2H, m), \(2.66(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.22(6 \mathrm{H}, \mathrm{s}), 2.07-2.13(2 \mathrm{H}, \mathrm{m}), 2.05(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.40-1.55(2 \mathrm{H}\), \(\mathrm{m}), \mathrm{m} / 2=363\).

[0442] K-2303 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4 -chlorothiophenol and 1,4 -dibromobutane respectively by 2,4 -dimethytthiophenol
\(400 \mathrm{MHz}-\mathrm{NMR} 10.51(1 \mathrm{H}, \mathrm{bs}), 10.00(1 \mathrm{H}, \mathrm{bs}), 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}\), \(J=1.2 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.53-7.67(3 \mathrm{H}, \mathrm{m}), 7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{s}), 6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz})\), \(5.14-5.23(1 \mathrm{H}, \mathrm{m}), 2.67-2.78(2 \mathrm{H}, \mathrm{m}), 2.67(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.24(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.92-\) \(2.01(2 \mathrm{H}, \mathrm{m}), 1.43-1.51(2 \mathrm{H}, \mathrm{m}), 1.27-1.34(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=377\).

Example 143: Synthesis of K-2304 (N-[4-[(4-methylphenyl)thio]butyl)-N-[(1R)-1-(1-naphthyl)ethyl)amine)
[0443] K-2304 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol by 4-methylthiophenol.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.55(1 \mathrm{H}, \mathrm{bs}), 10.03(1 \mathrm{H}, \mathrm{bs}), 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{d}=7.1 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.93-7.95(1 \mathrm{H}, \mathrm{m}), 7.89\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), \(7.06-7.86(5 \mathrm{H}, \mathrm{m}), 6.96-6.99(2 \mathrm{H}, \mathrm{m}), 5.18-5.22(1 \mathrm{H}, \mathrm{m}), 2.68-2.77(2 \mathrm{H}, \mathrm{m}), 2.69(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz})\),
\(2.25(3 \mathrm{H}, \mathrm{s}), 2.04-2.14(2 \mathrm{H}, \mathrm{m}), 2.04(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.37-1.55(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=349\).
Example 144: Synthesis of K-2305 (N-\{5-\{(4-methylphenyl)thio]pentyl\}-N-\{(1R)-1-((1-naphthyl)ethyl]amine)
[0444] K-2305 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol and 1,4-dibromobutane respectively by 4-methylthiophenol and 1,5-dibromopentane.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.50(1 \mathrm{H}, \mathrm{bs}), 9.99(1 \mathrm{H}, \mathrm{bs}), 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}\), \(\mathrm{J}=1.2 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.52-7.66(3 \mathrm{H}, \mathrm{m}), 7.11-7.13(2 \mathrm{H}, \mathrm{m}), 6.98-7.00(2 \mathrm{H}, \mathrm{m}), 5.18(1 \mathrm{H}, \mathrm{bs}), 2.68-2.73\) \((2 \mathrm{H}, \mathrm{m}), 2.71(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.24(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.91-1.99(2 \mathrm{H}, \mathrm{m}), 1.42-1.50(2 \mathrm{H}, \mathrm{m}), 1.26-1.34\) (2H, m), m/z=363.

\section*{Example 145: Synthesis of K-2275}
[0445] K-2305 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol and 1,4-dibromobutane respectively by 3 -trifluoromethylthiophenol and 1-bromo-2-chloroethane.

400MHz-NMR \(10.88(1 \mathrm{H}, \mathrm{bs}), 10.25(1 \mathrm{H}, \mathrm{bs}), 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 7.87 \cdot 7.95(3 \mathrm{H}, \mathrm{m}), 7.52-7.65(3 \mathrm{H}, \mathrm{m}), 7.40\) (1H, bs), 7.31-7.34 (2H, m), 7.21-7.26 (1H, m), 5.18-5.28 (1H, m), 3.53 (2H, t, J=7.7Hz), 2.91-3.06 (2H, m), 2.01 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.84 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=375\).

\section*{Example 146: Synthesis of K-2314}
[0446] K-2314 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4-chlorothiophenol by 4-methoxythiophenol.
\(400 \mathrm{MHz}-\mathrm{NMR} 10.55(1 \mathrm{H}, \mathrm{bs}), 10.03(1 \mathrm{H}, \mathrm{bs}), 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.89-7.95(2 \mathrm{H}, \mathrm{m})\),
7.52-7.68 (3H, m), 7.15-7.18 (2H, m), 6.71-6.75 (2H, m), 5.18-5.22 (1H, m), 3.74 (3H, s), 2.67-2.76 (2H, m), 2.64
(2H, t, J=7.1Hz), 2.03-2.15 (2H, m), \(2.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.32-1.50(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=365\).
Example 147: Synthesis of K-2008
[0447] K-2008 hydrochloride was obtained as white crystals by the same method as the one employed for the synthesis of K-2293 but replacing the 4 -chlorothiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine respectively by 3-trifluoromethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-methylbenzylamine. \(\mathrm{m} / \mathrm{z}=355\).

\section*{Example 148: Synthesis of S-1}
[0448] 2,5-Dimethylthiophenol ( \(580 \mathrm{mg}, 4.20 \mathrm{mmol}\) ) was dissolved in acetonitrile ( 6 ml ). To the obtained solution were successively added at room temperature potassium carbonate ( \(785 \mathrm{mg}, 5.68 \mathrm{mmol}\) ) and 1 -bromo-2-chloroethane ( 0.35 \(\mathrm{ml}, 4.21 \mathrm{mmol}\) ) and the reaction mixture was stirred at room temperature for 2.5 hours. After confirming the completion of the reaction by TLC, potassium carbonate ( \(730 \mathrm{mg}, 5.28 \mathrm{mmol}\) ) and (R) \(-(+)-3\)-methoxy- \(\alpha\)-benzyimethylamine ( 500 \(\mathrm{mg}, 3.30 \mathrm{mmol}\) ) were added at the same temperature to the reaction system. Further, the reaction mixture was stirred at \(90^{\circ} \mathrm{C}\) for 24 hours. After the completion of the reaction, the mixture was cooled by allowing to stand at room temperature and water was added thereto. Next, the reaction mixture was subjected to separatory extraction with chloroform and a saturated aqueous solution of sodium chloride and washed. The organic layer thus obtained was dried over anhydrous sodium sultate and concentrated under reduced pressure. The organic residue was purified by silica gel column chromatography (chloroform : methand =200:1) to thereby give a pale yellow, syrupy compound \(\mathrm{S} \mathbf{- 1}\) ( \(\mathbf{3 3 2} \mathbf{~ m g , ~} 1.05\) mmol, yield: \(\mathbf{3 1 . 8 \%}\) ).
\(500 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{s}), 6.86-6.90(3 \mathrm{H}, \mathrm{m}), 6.75-\) \(6.78(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H} \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{q} . \mathrm{J}=6.5 \mathrm{~Hz}), 2.95-3.03(2 \mathrm{H}, \mathrm{m}), 2.68-2.77(2 \mathrm{H}, \mathrm{m}), 2.32(3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s})\), \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=315\).

\section*{Example 149: Synthesis of S-2}
[0449] S-2 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane by 1,3 -dibromopropane.
\(500 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{s}), 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 6.86-6.88(3 \mathrm{H}, \mathrm{m}), 6.76-\) \(6.78(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.85-2.96(2 \mathrm{H}, \mathrm{m}), 2.53-2.66(2 \mathrm{H}, \mathrm{m}), 2.29(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s})\), 1.74-1.82 (2H, m), 1.33 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=329\).

\section*{Example 150: Synthesis of S-3}
[0450] S-3 was symthesized by almost the same method as the one employed for the symthesis of S-1 but replacing the 1 -bromo- 2 -chloroethane by 1,4 -dibromobutane.
\(500 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}), 7.04(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.85-6.89(3 \mathrm{H}, \mathrm{m}), 6.75-\) \(6.78(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.42-2.55(2 \mathrm{H}, \mathrm{m}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}\), s), \(1.56-1.70(4 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=343\).

\section*{Example 151: Synthesis of S-4}
[0451] S-4 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane by 1,5 -dibromopentane.
\(500 \mathrm{MHz} \cdot{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 6.87 \cdot 6.88(3 \mathrm{H}, \mathrm{m}), 6.76-\) \(6.78(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.40-2.51(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}\), 8), 1.61-1.67 (2H, m), 1.42-1.51 (4H, m), 1.34 (3H, d, J=6.5Hz), m/z=357.

Example 152: Synthesis of S-5
[0452] S-5 was synthesized by almost the same method as the one employed for the symthesis of S-1 but replacing the 1 -bromo-2-chloroethane by 1,6 -dibromohexane.
\(500 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.86-6.89(3 \mathrm{H}, \mathrm{m}), 6.76-\) \(6.78(3 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.39-2.52(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}\), s), 1.61-1.67 (2H, m), 1.39-1.50 (4H), \(1.34(3 H, d, J=7.0 \mathrm{~Hz}), 1.29-1.34(2 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=371\).

Example 153: Synthesis of S-6
[0453] S-6 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane by 1,7 -dibromoheptane.
\(500 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.22\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}\) ), 7.05 ( \(1 \mathrm{H}, \mathrm{s}\) ), 7.03 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}\) ), \(6.80-6.86\) ( \(3 \mathrm{H}, \mathrm{m}\) ), \(6.75-\) \(6.78(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.38-2.51(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}\), \(\mathrm{s})\), 1.60-1.66 (2H, m), 1.37-1.48 (4H, m), 1.34 (3H, d, J=6.8Hz), 1.27-1.30 (4H, m), m/z=385.

\section*{Example 154: Synthesis of S-7}
[0454] S-7 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane by 1,8 -dibromooctane.
\(500 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.23\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}\) ), 7.06 ( \(1 \mathrm{H}, \mathrm{s}\) ), 7.03 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 6.87-6.89 ( \(3 \mathrm{H}, \mathrm{m}\) ), 6.75\(6.78(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.39-2.51(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}\), s), 1.61-1.67 (2H, m), 1.38-1.47 (4H, m), 1.34 (3H, d, J=6.5Hz), 1.23-1.31 ( \(6 \mathrm{H}, \mathrm{m}\) ), m/z=399.

\section*{Example 155: Synthesis of S-8}
[0455] S-8 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the ( R )-(+)-3-methoxy-a-benzylmethylamine by ( R )-(+)-1-(1-naphthyl)ethylamine.
\(500 \mathrm{MHz} \mathrm{F}^{-1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.83-7.87(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.42-\) \(7.51(3 \mathrm{H}, \mathrm{m}), 7.05(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.05(2 \mathrm{H}, \mathrm{t}\), \(\mathrm{J}=6.6 \mathrm{~Hz}), 2.77-2.87(2 \mathrm{H}, \mathrm{m}), 2.32(3 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=335\).

\section*{Example 156: Synthesis of S-9}
[0456] S-9 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 1,3 -dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(500 \mathrm{MHz}{ }^{-1} \mathrm{H}-\) NMR 8.18 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), \(7.83-7.88(1 \mathrm{H}, \mathrm{m}), 7.74\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), 7.64 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}\) ), 7.44\(7.52(3 \mathrm{H}, \mathrm{m}), 7.25(1 \mathrm{H}, \mathrm{s}), 7.06(1 \mathrm{H}, \mathrm{s}), 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.87-\) \(3.00(2 \mathrm{H}, \mathrm{m}), 2.64-2.77(2 \mathrm{H}, \mathrm{m}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s}), 1.81-1.88(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=349\).

\section*{Example 157: Synthesis of S-10}
[0457] S-10 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane and \((\mathrm{R})-(+)-3\)-methoxy- \(a\)-benzylmethylamine respectively by 1,4 -dibromobutane and ( R )-(+)-1-(1-naphthyl)ethylamine.
\(500 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), \(7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.66(1 \mathrm{Hd}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.03(1 \mathrm{H}\), s), 7.01 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}\) ), \(6.86-6.89(1 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.2 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.55-2.65(2 \mathrm{H}, \mathrm{m}), 2.30\) \((3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 1.65-1.70(4 \mathrm{H}, \mathrm{m}), 1.50(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=363\).

\section*{Example 158: Synthesis of S-11}
[0458] S-11 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 1,5 -dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(500 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.45\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), \(8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.64(1 \mathrm{H}\), d, \(J=7.1 \mathrm{~Hz}\) ), \(7.42-7.52(3 \mathrm{H}, \mathrm{m}), 7.01-7.04(2 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{t}\), \(\mathrm{J}=7.3 \mathrm{~Hz}), 2.51-2.63(2 \mathrm{H}, \mathrm{m}), 3.00(3 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}, \mathrm{s}), 1.61-1.68(2 \mathrm{H}, \mathrm{m}), 1.44-1.57(4 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})\). \(\mathrm{m} / \mathrm{z}=377\).

\section*{Example 159: Synthesis of S-12}
[0459] S-12 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 1,6 -dibromohexane and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine.

\section*{EP 0933354 A1}
\(500 \mathrm{MHz} \cdot{ }^{1} \mathrm{H} \cdot \mathrm{NMR} 8.17\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), \(7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 7.64 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}\) ), \(7.40-7.52\) ( 3 H m ), 6.06-6.98 \((2 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.49-2.63(2 \mathrm{H}, \mathrm{m}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.29\) \((3 H, s), 1.59-1.67(2 H, m), 1.46-1.55(2 H, m), 1.49(3 H, d, J=6.6 H z), 1.27-1.46(4 H, m), m / z=391\).

\section*{Example 160: Synthesis of \(\mathrm{S}-13\)}
[0460] S-13 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo- 2 -chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 1,7 -dibromoheptane and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine.
\(500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.41-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 7.04(1 \mathrm{H}, s), 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 4.66(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.84(2 \mathrm{H}, \mathrm{t}\). \(\mathrm{J}=7.3 \mathrm{~Hz}), 2.30(3 \mathrm{H}, \mathrm{s}), 2.29(3 \mathrm{H}, \mathrm{s}), 1.58-1.66(2 \mathrm{H}, \mathrm{m}), 1.53(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.34-1.44(2 \mathrm{H}, \mathrm{m}), 1.26-1.30(4 \mathrm{H}\), \(\mathrm{m}), \mathrm{m} / \mathrm{z}=405\).

\section*{Example 161: Synthesis of S-14}
[0461] S-14 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 1,8-dibromooctane and (R)-\((+)-1-(1-\) naphthyl \()\) ethylamine. \(m / z=419\).

\section*{Example 162: Synthesis of S-15}
[0462] \(\mathrm{S}-15\) was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 1,10 -dibromodecane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.83-7.88(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.40-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.06(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}\), \(J=7.3 \mathrm{~Hz}), 2.50-2.62(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 1.60-1.70(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.20-1.50(14 \mathrm{H}\), m), \(m / 2=447\).

\section*{Example 163: Synthesis of S-16}
[0463] S-16 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzyimethylamine respectively by 1,12-dibromododecane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NM} R \mathrm{R} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.46-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 7.06(1 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{t}\), \(\mathrm{J}=7.4 \mathrm{~Hz}), 2.50-2.63(2 \mathrm{H}, \mathrm{m}), 2.31(3 \mathrm{H}, \mathrm{s}), 2.30(3 \mathrm{H}, \mathrm{s}), 1.61-1.69(2 \mathrm{H}, \mathrm{m}), 1.15-1.55(18 \mathrm{H}, \mathrm{m}), 1.50(3 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=475\).

\section*{Example 164: Synthesis of \(\mathrm{S}-17\)}
[0464] S-17 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol by 2,4-dimethylthiophenol.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NM}\) R \(7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{s}), 6.90-6.92(1 \mathrm{H}, \mathrm{m}), 6.85-\) \(6.88(2 \mathrm{H}, \mathrm{m}), 6.75-6.81(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.93-2.97(2 \mathrm{H}, \mathrm{m}), 2.62-2.74(2 \mathrm{H}, \mathrm{m}), 2.34\) \((3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=315\).

\section*{Example 165: Synthesis of S-18}
[0465] S-18 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,4-dimethylthiophenol and 1,3-dibromopropane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.22\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}\) ), 7.16 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}\) ), \(6.98(1 \mathrm{H}, \mathrm{s}), 6.92-6.95(1 \mathrm{H}, \mathrm{m}), 6.86-\) \(6.88(2 \mathrm{H}, \mathrm{m}), 6.75-6.79(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.80-2.93(2 \mathrm{H}, \mathrm{m}), 2.51-2.65(2 \mathrm{H}, \mathrm{m}), 2.32\) \((3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 1.70-1.81(2 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=329\).

\section*{Example 166: Synthesis of S-19}
[0466] S-19 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 2,4 -dimethylthiophenol and 1,4 -dibromobutane.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.98\) ( 1 H, slike), \(6.93-6.95\) ( \(1 \mathrm{H}, \mathrm{m}\) ), 6.86-6.88 (2H, m), 6.75-6.79(1H, m), 3.80 (3H, s), \(3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 2.40-2.54(2 \mathrm{H}, \mathrm{m})\), \(2.33(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 1.53-1.66(4 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=343\).

\section*{Example 167: Synthesis of S-20}
[0467] S-20 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 2,4 -dimethylthiophenol and 1,5 -dibromopentane.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})\), 6.66-6.89 (2H, m), 6.70-6.79(1H, m), 3.81 (3H,s), 3.71 (1H, q. \(J=6.6 \mathrm{~Hz}), 2.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m})\), \(2.33(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 1.56-1.64(2 \mathrm{H}, \mathrm{m}), 1.35-1.50(4 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=357\).

Example 168: Synthesis of \(\mathrm{S}-21\)
[0468] S-21 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,4-dimethylthiophenol and 1,6-dibromohexane.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{s}), 6.93-6.96(1 \mathrm{H}, \mathrm{m}), 6.87-\) \(6.90(2 \mathrm{H}, \mathrm{m}), 6.75-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.51(2 \mathrm{H}, \mathrm{m}), 2.34\) \((3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 1.56-1.64(2 \mathrm{H}, \mathrm{m}), 1.24-1.50(6 \mathrm{H}, \mathrm{m}), 1.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=371\).

\section*{Example 169: Synthesis of S-22}
[0469] S-22 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 2,4-dimethylthiophenol and 1,7-dibromoheptane.
\(400 \mathrm{MHz} .^{1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{s}), 6.93-6.96(1 \mathrm{H}, \mathrm{m}), 6.87\). \(6.90(2 \mathrm{H}, \mathrm{m}), 6.73-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.37-2.51(2 \mathrm{H}, \mathrm{m}), 2.34\) \((3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 1.56-1.64(2 \mathrm{H}, \mathrm{m}), 1.24-1.46(8 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=385\).

\section*{Example 170: Synthesis of S-23}
[0470] S-23 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,4 -dimethylthiophenol and 1,8-dibromooctane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.99(1 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})\), 6.87-6.89 (1H, m), 6.75-6.79 (1H, m), 3.81 (3H,s), \(3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.82(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m})\), \(2.34(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 1.55-1.64(2 \mathrm{H}, \mathrm{m}), 1.20-1.50(10 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=399\).

\section*{Example 171: Synthesis of S-24}
[0471] S-24 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 2,4 -dimethyithiophenol and
(R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}^{-1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.16 \mathrm{~Hz}), 7.83-7.90(1 \mathrm{H}, \mathrm{m}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.42-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{s}), 6.87-6.90(1 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz})\), \(2.73-2.81(2 \mathrm{H}, \mathrm{m}), 2.34(3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=335\).

\section*{Example 172: Synthesis of S-25}
[0472] S-25 was synthesized by almost the same method as the one employed tor the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and ( R\() \cdot(+) \cdot 3\)-methoxy- \(\alpha\)-benzyimethylamine respectively by 2,4 dimethylthiophenol, 1,3-dibromopropane and (R).(+)-1.(1-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=349\).

\section*{Example 173: Synthesis of S-26}
[0473] S-26 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,4 dimethylthiophenol, 1,6 -dibromohexane and ( R\()\)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.87(1 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.15(1 \mathrm{H}\), \(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{s}), 6.93-6.95(1 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.80(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.48-2.62(2 \mathrm{H}, \mathrm{m}), 2.35\) \((3 \mathrm{H}, \mathrm{s}), \mathbf{2 . 2 7}(3 \mathrm{H}, \mathrm{s}), 1.57-1.63(2 \mathrm{H}, \mathrm{m}), 1.43-1.53(2 \mathrm{H}, \mathrm{m}), 1.25-1.44(4 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=391\).

Example 174: Synthesis of S-27
[0474] S-27 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,4dimethylthiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthy) ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.15(\mathrm{HH}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.87(\mathrm{HH}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}), 7.68-7.78(2 \mathrm{H}, \mathrm{m}), 7.45-7.55(3 \mathrm{H}, \mathrm{m}), 7.15(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=7.8 \mathrm{~Hz}\) ), 6.98 ( \(1 \mathrm{H}, \mathrm{s}\) ), 6.94 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}\) ), 4.69 ( \(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), 2.79 ( \(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\) ), \(2.50-2.63\) ( \(2 \mathrm{H}, \mathrm{m}\) ), 2.33 \((3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s}), 1.14-1.62(13 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=405\).

\section*{Example 175: Synthesis of S-28}
[0475] S-28 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( \(R\) ) \(-(+)\)-3methoxy- \(\alpha\)-benzyimethylamine respectively by 2,4 dimethylthiophenol, 1,8-dibromooctane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.86-7.90(1 \mathrm{H}, \mathrm{m}), 7.70-7.80(2 \mathrm{H}, \mathrm{m}), 7.45-7.55(3 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=7.8 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{s}), 6.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.80(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.50-2.65(2 \mathrm{H}, \mathrm{m}), 2.33\) \((3 \mathrm{H}, \mathrm{s}), 2.27(3 \mathrm{H}, \mathrm{s}), 1.17-1.63(15 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=419\).

\section*{Example 176: Synthesis of S-29}
[0476] S-29 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethytthiophenol by 2,6 -dimethylthiophenol.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.21\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}\) ), 7.05-7.12 ( \(3 \mathrm{H}, \mathrm{m}\) ), 6.83-6.86 ( \(2 \mathrm{H}, \mathrm{m}\) ), 6.73-6.78 ( \(1 \mathrm{H}, \mathrm{m}\) ), 3.80 ( \(3 \mathrm{H}, \mathrm{s}\) ), \(3.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.72-2.82(2 \mathrm{H}, \mathrm{m}), 2.57-2.64(2 \mathrm{H}, \mathrm{m}), 2.51(6 \mathrm{H}, \mathrm{s}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=315\). Example 177: Synthesis of S-30
[0477] S-30 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 2,6 -dimethythiophenol and \(\mathbf{1 , 3}\)-dibromopropane.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H} \cdot \mathrm{NMR} 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}), 7.05-7.09(3 \mathrm{H}, \mathrm{m}), 6.84-6.86(2 \mathrm{H} \mathrm{m}), 6.74 .6 .78(1 \mathrm{H}, \mathrm{m}), 3.80\) ( \(3 \mathrm{H}, \mathrm{s}\) ), \(3.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.62-2.70(2 \mathrm{H}, \mathrm{m}), 2.51-2.60(2 \mathrm{H}, \mathrm{m}), 2.50(6 \mathrm{H}, \mathrm{s}), 1.61-1.70(2 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}\),
\(J=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=329\).

\section*{Example 178: Synthesis of S-31}
[0478] S-31 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,6-dimethylthiophenol and 1,4-dibromobutane.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H} \cdot \mathrm{NMR} 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.04-7.09(3 \mathrm{H}, \mathrm{m}), 6.85-6.88(2 \mathrm{H}, \mathrm{m}), 6.77(\mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}\), \(J=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.61(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}), 2.51(6 \mathrm{H}, \mathrm{s}), 2.39-2.48(2 \mathrm{H}, \mathrm{m}), 1.48-\) \(1.58(4 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=343\).

\section*{Example 179: Synthesis of S-32}
[0479] S-32 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 2,6-dimethylthiophenol and 1,5-dibromopentane.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.06-7.11(1 \mathrm{H}, \mathrm{m}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.75-6.79(1 \mathrm{H}, \mathrm{m}), 3.81\) \((3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.61(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.52(6 \mathrm{H}, \mathrm{s}), 2.38-2.49(2 \mathrm{H}, \mathrm{m}), 1.34-1.54(6 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}\), \(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=357\).

Example 180: Synthesis of S-33
[0480] S-33 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,6-dimethylthiophenol and 1,6-dibromohexane.
\(400 \mathrm{MHz} .{ }^{1} \mathrm{H}-\mathrm{NMR} 7.23\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}\) ), \(7.07-7.11(3 \mathrm{H}, \mathrm{m}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.75-6.79(\mathrm{HH}, \mathrm{m}), 3.81\) \((3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.61(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.52(6 \mathrm{H}, \mathrm{s}), 2.36-2.50(2 \mathrm{H}, \mathrm{m}), 1.21-1.54(8 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}\), d, \(\mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=371\).

\section*{Example 181: Synthesis of S-34}
[0481] S-34 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophend and 1 -bromo-2-chloroethane respectively by 2,6-dimethylthiophenol and 1,7-dibromoheptane.
\(400 \mathrm{MHz}^{-1} \mathrm{H}-\mathrm{NMR} 7.20-7.25(1 \mathrm{H}, \mathrm{m}), 7.07-7.09(3 \mathrm{H}, \mathrm{m}), 6.86-6.90(2 \mathrm{H}, \mathrm{m}), 6.75-6.78(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72\) ( \(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(2.61(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.32 \mathrm{~Hz}), 2.53(6 \mathrm{H}, \mathrm{s}), 2.36-2.50(2 \mathrm{H}, \mathrm{m}), 1.20-1.54(10 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}\), \(J=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=385\).

\section*{Example 182: Synthesis of S-35}
[0482] S-35 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,6-dimethylthiophenol and 1,8-dibromooctane.

400MHz- \({ }^{-1} \mathrm{H}\)-NMR 7.20-7.25 (1H, m), 7.05-7.10 (3H, m), 6.88-6.89 (2H, m), 6.76-6.79 (1H, m), 3.81 (3H, s), 3.73 \((1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.61(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.53(6 \mathrm{H}, \mathrm{s}), 2.37-2.49(2 \mathrm{H}, \mathrm{m}), 1.20-1.55(12 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})\), \(m / z=399\).

\section*{Example 183: Synthesis of S-36}
[0483] S-36 was synthesized by almost the same method as the one employed tor the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,6 -dimethylthiophenol and (R)-(+)-1-(1-naphthyl)ethylamine.

\section*{EP 0933354 A1}
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H} \cdot \mathrm{NMR} 8.15\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), \(7.83-7.90(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.43-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.04-7.12(3 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.77-2.86(2 \mathrm{H}, \mathrm{m}), 2.70(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.50(6 \mathrm{H}, \mathrm{s}), 1.47\) ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=335\).

\section*{Example 184: Synthesis of S-37}
[0484] S-37 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,6dimethylthiophenol, 1,3-dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.

400MHz= \({ }^{1} \mathrm{H} \cdot \mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.84-7.87(1 \mathrm{H}, m), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})\), 7.44\(7.51(3 \mathrm{H}, \mathrm{m}), 7.04-7.11(3 \mathrm{H}, \mathrm{m}), 4.58(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.58-2.73(4 \mathrm{H}, \mathrm{m}), 2.50(6 \mathrm{H}, \mathrm{s}), 1.68-1.75(2 \mathrm{H}, \mathrm{m}), 1.47\) ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=349\).

\section*{Example 185: Synthesis of S-38}
[0485] S-38 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,6 dimethylthiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})\), 7.44\(7.52(3 \mathrm{H}, \mathrm{m}), 7.05-7.11(3 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.61(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.50-2.59(2 \mathrm{H}, \mathrm{m}), 2.50(6 \mathrm{H}, \mathrm{s}), 1.50-\) \(1.64(4 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=363\).

\section*{Example 186: Synthesis of S-39}
[0486] S-39 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 2,6dimethylthiophenol, 1,5-dibromopentane and (R)-(+)*1*(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-}{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.44-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.06-7.08(3 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.61(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.50-2.58(2 \mathrm{H}, \mathrm{m}), 2.51(6 \mathrm{H}, \mathrm{s}), 1.35-\) \(1.55(6 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=377\).

Example 187: Synthesis of S-40
[0487] S-40 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,6 dimethylthiophenol, 1,6 -dibromohexane and ( \(R\) )-( + )-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.85-7.87(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz})\), 7.44\(7.52(3 \mathrm{H}, \mathrm{m}), 7.05-7.09(3 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.50-2.62(4 \mathrm{H}, \mathrm{m}), 2.52(6 \mathrm{H}, \mathrm{s}), 1.23-1.53(8 \mathrm{H}, \mathrm{m}), 1.49\) ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=391\).

\section*{Example 188: Synthesis of S-41}
[0488] S-41 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and ( \(R\) ) \(-(+)\)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,6dimethylthiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl) ethylamine.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMRR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})\), 7.44\(7.53(3 \mathrm{H}, \mathrm{m}), 7.07-7.09(3 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.50-2.62(4 \mathrm{H}, \mathrm{m}), 2.52(6 \mathrm{H}, \mathrm{s}), 1.20-1.53(10 \mathrm{H}, \mathrm{m}), 1.49\) ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=405\).

Example 189: Synthesis of \(\mathbf{S - 4 2}\)
[0489] S-42 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 2,6-

\section*{EP 0933354 A1}
dimethythiophenol, 1,8-dibromooctane and (R)-(+)-1-(1-naphthy) ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.86-7.89(1 \mathrm{H}, \mathrm{m}), 7.74-7.78(2 \mathrm{H}, \mathrm{m}), 7.46-7.54(3 \mathrm{H}, \mathrm{m}), 6.99-7.10(3 \mathrm{H}\), \(\mathrm{m}), ~ 4.70-4.78(1 \mathrm{H}, \mathrm{m}), 2.51-2.62(4 \mathrm{H}, \mathrm{m}), 2.52(6 \mathrm{H}, \mathrm{s}), 1.07-1.84(12 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=419\).

Example 190: Synthesis of S-43
[0490] S-43 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol by 3,4-dimethylthiophenol.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.00-7.07(2 \mathrm{H}, \mathrm{m}), 6.80-6.87(2 \mathrm{H}, \mathrm{m}), 6.75-6.87\) \((2 \mathrm{H}, \mathrm{m}), 6.75-6.78(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.95-2.99(2 \mathrm{H}, \mathrm{m}), 2.63-2.70(2 \mathrm{H}, \mathrm{m}), 2.21(3 \mathrm{H}, \mathrm{s})\), \(2.20(3 \mathrm{H}, \mathrm{s}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=315\).

Example 191: Synthesis of S-44
[0491] S-44 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 3,4 -dimethythiophenol and 1,3 -dibromopropane.
\(400 \mathrm{MHz} .^{1} \mathrm{H}-\mathrm{NMR} 7.20-7.25(1 \mathrm{H}, \mathrm{m}), 7.12(1 \mathrm{H}, \mathrm{s}), 7.01-7.08(2 \mathrm{H}, \mathrm{m}), 6.84-6.88(2 \mathrm{H}, \mathrm{m}), 6.75-6.78(1 \mathrm{H}, \mathrm{m}), 3.80\) \((3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.83-2.95(2 \mathrm{H}, \mathrm{m}), 2.50-2.63(2 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s}), 1.72-1.77(2 \mathrm{H}, \mathrm{m})\), \(1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=329\).

\section*{Example 192: Synthesis of S-45}
[0492] S-45 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 3,4-dimethylthiophenol and 1,4-dibromobutane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.01-7.07(2 \mathrm{H}, \mathrm{m}), 6.85-6.87(2 \mathrm{H}, \mathrm{m}), 6.75-6.78\) \((1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.40-2.52(2 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s})\), \(1.54-1.65(4 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=343\).

\section*{Example 193: Synthesis of S-46}
[0493] S-46 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 3,4 -dimethythiophenol and 1,5 -dibromopentane. \(\mathrm{m} / \mathrm{z}=357\).

Example 194: Synthesis of S-47
[0494] S-47 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol and 1 -bromo-2-chloroethane respectively by 3,4 -dimethythiophenol and 1,6 -dibromohexane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{s}), 7.02-7.08(2 \mathrm{H}, \mathrm{m}), 6.86-6.89(2 \mathrm{H}, \mathrm{m}), 6.75-6.78\) \((1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.50(2 \mathrm{H}, \mathrm{m}), 2.23(3 \mathrm{H}, \mathrm{s}), 2.22(3 \mathrm{H}, \mathrm{s})\), \(1.56-1.62(2 \mathrm{H}, \mathrm{m}), 1.24-1.48(6 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=377\).

\section*{Example 195: Synthesis of S-48}
[0495] S-48 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 3,4 -dimethylthiophenol and 1,7 -dibromoheptane.
\(400 \mathrm{MHz} \cdot{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.22\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}\) ), \(7.11(1 \mathrm{H}, \mathrm{s}), 7.01-7.08(2 \mathrm{H}, \mathrm{m}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.75-6.78\) ( \(1 \mathrm{H}, \mathrm{m}\) ), \(3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.80(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.38-2.50(2 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}, \mathrm{s})\),

\section*{EP 0933354 A1}
\(1.56-1.62(2 H, m), 1.33-1.45(4 H, m), 1.33(3 H, d, J=6.5 H z), 1.24-1.28(4 H, m), m / 2=385\).

\section*{Example 196: Synthesis of S-49}
[010 \(]\) S 49 was the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 3,4-dimethylthiophenol and 1,8-dibromooctane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}\)-NMR 7.21-7.25 (1H, m), \(7.12(1 \mathrm{H}, \mathrm{s}), 7.02-7.08(2 \mathrm{H}, \mathrm{m}), 6.87-6.89(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{s})\), \(6.76-6.78(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.70-3.74(1 \mathrm{H}, \mathrm{m}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}), 2.38-2.50(2 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.21(3 \mathrm{H}\), s), 1.56-1.62 (2H, m), 1.33-1.46 (4H, m), 1.34 (3H,d, J=7.0Hz), \(1.25(6 \mathrm{H}, \mathrm{bs}), \mathrm{m} / \mathrm{z}=399\).

\section*{Example 197: Synthesis of S-50}
[0497] S-50 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3,4 -dimethylthiophend and (R)-(+)-1-(1 naphthyl)ethylamine.

\section*{Example 198: Synthesis of S-51}
[0498] S-51 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3,4 dimethylthiophenol, 1,3-dibromopropane and (R)-(t)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMRR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.43-\) \(7.49(3 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{s}), 6.97 \cdot 7.07(2 \mathrm{H}, \mathrm{m}), 4.58(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.85-2.97(2 \mathrm{H}, \mathrm{m}), 2.61-2.73(2 \mathrm{H}, \mathrm{m}), 2.22\) ( \(6 \mathrm{H}, \mathrm{s}\) ), \(1.76-1.82(2 \mathrm{H}, \mathrm{m}), 1.46(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=349\).

\section*{Example 199: Synthesis of S-52}
[0499] S-52 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3.4dimethylthiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.62(\mathrm{TH}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.44-\) \(7.51(3 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.01-7.07(2 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.50-2.62(2 \mathrm{H}, \mathrm{m}), 1.60-\) \(1.68(4 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / 2=363\).

\section*{Example 200: Synthesis of S-53}
[0500] S-53 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chioroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 3,4dimethylthiophenol, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=7.0 \mathrm{~Hz}), 7.44-7.51(3 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.01-7.09(2 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.50-\) \(2.61(2 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}, \mathrm{s}), 2.24(3 \mathrm{H}, \mathrm{s}), 1.57-1.63(2 \mathrm{H}, \mathrm{m}), 1.41-1.53(4 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{j}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=377\).

\section*{Example 201: Synthesis of S-54}
[0501] S-54 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3,4 dimethylthiophenol, 1,6 -dibromohexane and (R)-( + )-1-(1-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=391\).

Example 202: Synthesis of S-55
[0502] S-55 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3.4-
dimethylthiophenol, 1,7 -dibromoheptane and \((\mathrm{R})-(+) \cdot 1 \cdot(1-\) naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMRR} 8.18\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 7.86 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 7.73 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 7.63 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}\) ), 7.39\(7.51(3 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.01-7.07(2 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.83(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.49-2.59(2 \mathrm{H}, \mathrm{m}), 2.22\) ( \(3 \mathrm{H}, \mathrm{s}\) ), \(2.20(3 \mathrm{H}, \mathrm{s}), 1.28-1.62(10 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=405\).

\section*{Example 203: Synthesis of S-56}
[0503] S-56 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing
the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3,4-
dimethylthiophenot, 1,8 -dibromooctane and (R)-(+)-1-(1-naphthyl)ethylamine.

```

7.52(3H,m), 7.12 (1H, s), 7.02-7.08 (2H,m), 4.63 (1H,q,J=7.0Hz), 2.84 (2H,t, J=7.3Hz), 2.51-2.62 (2H,m), 2.22
(3H, s), 2.21 (3H, s), 1.56-1.62 (2H, m), 1.50 (3H, d, J=7.0Hz), 1.45-1.55 (2H, m), 1.33-1.42 (2H, m), 1.25-1.28 (6H,
m),m/z=419.

```

\section*{Example 204: Synthesis of S-57}
[0504] S-57 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol by 3,5 -dimethytthiophenol.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{s}), 6.88-6.91(2 \mathrm{H}, \mathrm{m}), 6.82(1 \mathrm{H}, \mathrm{s}), 6.78-6.80(1 \mathrm{H}\), \(\mathrm{m}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.76(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.01-3.06(2 \mathrm{H}, \mathrm{m}), 2.69-2.78(2 \mathrm{H}, \mathrm{m}), 2.28(6 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz})\), \(\mathrm{m} / \mathrm{z}=315\).

\section*{Example 205: Synthesis of S-58}
[0505] S-58 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 3,5-dimethythiophenol and 1,3-dibromopropane.
\(400 \mathrm{MHz} \mathrm{H}^{-1} \mathrm{H}-\mathrm{NMR} 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{s}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.76-6.78(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}\), s), \(3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.86-2.98(2 \mathrm{H}, \mathrm{m}), 2.51-2.65(2 \mathrm{H}, \mathrm{m}), 2.27(6 \mathrm{H}, \mathrm{s}), 1.74-1.81(2 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}\), \(J=6.5 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=329\).

Example 206: Synthesis of S-59
[0506] S-59 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 3,5-dimethylthiophenol and 1,4-dibromobutane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{~J}=7.5 \mathrm{~Hz}), 6.92(2 \mathrm{H}, \mathrm{s}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.75-6.78(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}\), s), \(3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.39-2.54(2 \mathrm{H}, \mathrm{m}), 2.27(6 \mathrm{H}, \mathrm{s}), 1.55-1.68(4 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}\), \(J=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=343\).

\section*{Example 207: Synthesis of S-60}
[0507] S-60 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 3,5-dimethythiophenol and 1,5 -dibromopentane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.92(2 \mathrm{H}, \mathrm{s}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.75-6.78(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}\), \(\mathrm{m}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.39-2.51(2 \mathrm{H}, \mathrm{m}), 2.27(6 \mathrm{H}, \mathrm{s}), 1.58-1.65(2 \mathrm{H}, \mathrm{m}), 1.40-1.49(4 \mathrm{H}\), m), \(1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=357\).

\section*{EP \(0933 \mathbf{3 5 4}\) A1}

\section*{Example 208: Synthesis of S-61}
[0508] S-61 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 3,5-dimethylthiophenol and 1,6-dibromohex-
[0513] S-66 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and ( R\()-(+)-3\)-methoxy- \(\alpha\)-benzylmethylamine respectively by 3,5 dimethylthiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMRR} 8.86\left(1 \mathrm{H}_{1} \mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}\right), 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.44-\) \(7.51(3 \mathrm{H}, \mathrm{m}), 6.92(2 \mathrm{H}, \mathrm{s}), 6.78(1 \mathrm{H}, \mathrm{s}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.86-2.88(2 \mathrm{H}, \mathrm{m}), 2.53-2.64(2 \mathrm{H}, \mathrm{m}), 2.26(6 \mathrm{H}, \mathrm{s})\).

\section*{EP \(0933 \mathbf{3 5 4} \mathbf{A 1}\)}
\(1.60-1.70(4 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=363\).

Example 214: Synthesis of S-67

\section*{Example 219: Synthesis of S-72}
[0519] S-72 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 4-bromothiophenol and 1,3-dibromopropane.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.85-6.88(2 \mathrm{H}\), \(\mathrm{m}), 6.78(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.2 \mathrm{~Hz}), 2.85-2.98(2 \mathrm{H}, \mathrm{m}), 2.50-2.65\)

\section*{EP 0933354 A1}
(2H, m), 1.71-1.81 (2H, m), 1.33 (3H, d, J=6.6Hz), m/z=379, 381.

\section*{Example 220: Synthesis of S-73}
[0520] S-73 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol and 1 -bromo-2-chloroethane respectively by 4 -bromothiophenol and 1,4-dibromobutane.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMRR} 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.23\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}\) ), 7.15 ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}\) ), 6.85-6.88 ( 2 H , m), 6.75-6.79 ( \(1 \mathrm{H}, \mathrm{m}\) ). \(3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.39-2.54(2 \mathrm{H}, \mathrm{m}), 1.51-1.69(4 \mathrm{H}\), m), \(1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=393,395\).

\section*{Example 221: Synthesis of S-74}
[0521] S-74 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 4 -bromothiophenol and 1,5 -dibromopentane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{~J}=8.2 \mathrm{~Hz}), 7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 6.86-6.88(2 \mathrm{H}\), m), 6.76-6.79 (1H, m), \(3.81(3 \mathrm{H}, \mathrm{s}), 3.72\) ( \(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(2.86(2 \mathrm{H}, \mathrm{t} . \mathrm{J}=7.3 \mathrm{~Hz}\) ), 2.38-2.52 (2H, m), \(1.60(2 \mathrm{H}, \mathrm{t}\), \(J=7.3 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}\) ), \(1.36-1.51(4 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=407,409\).

\section*{Example 222: Synthesis of S-75}
[0522] S-75 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol and 1 -bromo-2-chloroethane respectively by 4 -bromothiophenol and 1,6 -dibromohexane.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.23\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}\) ), 7.15 ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}\) ), 6.87-6.89 ( 2 H, \(\mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m}), 1.60(2 \mathrm{H}, \mathrm{tt}\), \(J=7.3 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}), 1.23-1.50(6 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=421,423\).

\section*{Example 223: Synthesis of S-76}
[0523] S-76 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 4 -bromothiophenol and 1,7-dibromoheptane.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 6.78(1 \mathrm{H}\), ddd, \(\mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}\) ), \(3.81(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m}), 1.60\) \((2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}), 1.08-1.50(8 \mathrm{H}, \mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=435,437\).

Example 224: Synthesis of S-77
[0524] S-77 was synthesized by almost the same method as the one employed for the symthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 4-bromothiophenol and 1,8-dibromooctane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.35-7.40(2 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.14-7.18(2 \mathrm{H}, \mathrm{m}), 6.88-6.92(2 \mathrm{H}, \mathrm{m}), 6.74-6.80(1 \mathrm{H}\), \(\mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.39-2.53(2 \mathrm{H}, \mathrm{m}), 1.54-1.64(2 \mathrm{H}, \mathrm{m}), 1.20-1.50(10 \mathrm{H}\), \(\mathrm{m}), 1.38(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=449,451\).

Example 225: Synthesis of S-78
[0525] S-78 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and (R)-( + )-3-methoxy-a-benzyimethylamine respectively by 4-bromothiophenol and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine.

\section*{Example 226: Synthesis of S-79}
[0526] S-79 was synthesized by almost the same method as the one employed for the synthesis of \(\mathbf{S}-1\) but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzyimethylamine respectively by 4bromothiophenol, 1,3 -dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.44\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.32-7.42(2 \mathrm{H}, \mathrm{m}), 7.10-7.15(2 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.83-3.05(2 \mathrm{H}, \mathrm{m}), 2.60-2.77(2 \mathrm{H}, \mathrm{m})\), \(1.76-1.87(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=399,401\).

\section*{Example 227: Synthesis of S-80}
[0527] S-80 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2.5-dimethythiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 4bromothiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.84-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.28 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 7.43-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.33-7.37(2 \mathrm{H}, \mathrm{m}), 7.11-7.16(2 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.50-2.64(2 \mathrm{H}\), m). \(1.58-1.68(4 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=413,415\).

Example 228: Synthesis of S-81
[0528] S-81 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzyimethylamine respectively by 4 bromothiophenol, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.45-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 7.34-7.37(2 \mathrm{H}, \mathrm{m}), 7.11-7.16(2 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.49-2.62(2 \mathrm{H}, \mathrm{m})\), \(1.40-1.65(6 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=427,429\).

Example 229: Synthesis of S-82
[0529] S-82 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-( + )-3-methoxy-a-benzylmethylamine respectively by 4 bromothiophenol, 1,6-dibromohexane and (R)-(+)-1-(1-naphthyl)ethylamine.

\section*{Example 230: Synthesis of S-83}
[0530] S-83 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4bromothiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR} 8.30(1 \mathrm{H}, \mathrm{bs}), 8.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.49-7.59\) ( \(3 \mathrm{H}, \mathrm{m}\) ), 7.33-7.38(2H, m), 7.11-7.15 (2H, m), 4.96(1H, bs), \(2.80(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\) ), 2.54-2.74 (2H, m), 0.95-1.88 \((13 \mathrm{H}, \mathrm{m}), \mathrm{m} / 2=455,457\).

\section*{Example 231: Synthesis of S-84}
[0531] S-84 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4bromothiophenol, 1,8-dibromooctane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 8.35(1 \mathrm{H}, \mathrm{bs}), 8.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.45-7.56\) ( \(3 \mathrm{H}, \mathrm{m}\) ), 7.33-7.39 (2H, m), 7.12-7.18 (2H, m), \(4.82(1 \mathrm{H}, \mathrm{bs}), 2.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.58-2.64(2 \mathrm{H}, \mathrm{m}), 1.00-1.74\) \((15 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=469,471\).

Example 232: Synthesis of S-85
[0532] S-85 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 4-iodophenol and 1,3-dibromopropane.
\(400 \mathrm{MHz}^{-1} \mathrm{H}-\mathrm{NMR} 7.50-7.54(2 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.76(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}\), \(\mathrm{J}=2.5 \mathrm{~Hz}), 6.61-6.65(2 \mathrm{H}, \mathrm{m}), 3.93-4.00(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.72-3.76(1 \mathrm{H}, \mathrm{m}), 2.58-2.70(2 \mathrm{H}, \mathrm{m}), 1.86-1.94(2 \mathrm{H}\),

\section*{EP 0933354 A1}
m), \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=411\).

\section*{Example 233: Synthesis of S-86}
[0533] S-86 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 4-iodophenol and 1,4-dibromobutane.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.50-7.53(2 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{~J}=3.0 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 6.61-\) \(6.64(2 \mathrm{H}, \mathrm{m}), 3.88(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.46-2.58(2 \mathrm{H}, \mathrm{m}), 1.72-1.82(2 \mathrm{H}, \mathrm{m}), 1.55-\) \(1.67(2 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), \mathrm{m} / 2=425\).

\section*{Example 234: Synthesis of S-87}
[0534] S-87 was synthesized by almost the same method as the one employed for the symthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 4-iodophenol and 1,5-dibromopentane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.20-7.25(1 \mathrm{H}, \mathrm{m}), 6.87(2 \mathrm{H}, \mathrm{s}), 6.74-6.80(1 \mathrm{H}, \mathrm{m}), 6.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})\), \(3.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}), 2.40-2.55(2 \mathrm{H}, \mathrm{m}), 1.71-1.77(2 \mathrm{H}, \mathrm{m}), 1.40-1.45(4 \mathrm{H}, \mathrm{m})\), \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=439\).

\section*{Example 235: Synthesis of S-88}
[0535] S-88 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 4-iodophenol and 1,6-dibromohexane.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 7.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 6.77\) ( 1 H , dd, \(J=8.0 \mathrm{~Hz}, J=2.0 \mathrm{~Hz}), 6.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 3.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.41-2.53(2 \mathrm{H}\), m), 1.71-1.76 (2H, m), 1.46-4.50 (2H, m), 1.39-1.45 (2H, m), 1.31-1.38 (2H, m), \(1.34(3 H, d, J=6.5 \mathrm{~Hz}), m / z=453\).

\section*{Example 236: Synthesis of S-89}
[0536] S-89 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2.5 -dimethylthiophenol and 1-bromo-2-chloroethane respectively by 4-iodophenol and 1,7-dibromoheptane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 6.76-6.78(1 \mathrm{H}, \mathrm{m})\), \(6.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.39-2.51(2 \mathrm{H}, \mathrm{m}), 1.70 \cdot 1.76(2 \mathrm{H}\), m), 1.37-1.49 ( \(4 \mathrm{H}, \mathrm{m}\) ), 1.34 (3H, d, J=6.5Hz), 1.25-1.35 ( \(6 \mathrm{H}, \mathrm{m}\) ), \(\mathrm{m} / \mathrm{z}=467\).

Example 237: Synthesis of S-90
[0537] S-90 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 4-iodophenol and 1,8-dibromooctane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.53(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 6.75-6.78(1 \mathrm{H}, \mathrm{m})\), \(6.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.39-2.51(2 \mathrm{H}, \mathrm{m}), 1.71-1.76(2 \mathrm{H}\), m), 1.38-1.47 (4H, m), \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.25-1.35(6 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=481\).

\section*{Example 238: Synthesis of S-91}
[0538] S-91 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethytthiophenol, 1-bromo-2-chloroethane and (R)-(+) 3-methoxy-a-benzylmethylamine respectively by 4 iodophenol, 1,3-dibromopropane and (R)-(+)-1-(1-naphthy)ethylamine.

400MHz. \({ }^{1} \mathrm{H}-\mathrm{NMR}\) 8.17-8.19 ( \(1 \mathrm{H}, \mathrm{m}\) ), \(7.84-7.87(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.61\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}\) ), 7.50-7.53 (2H, m), 7.34-7.49 (3H, m), 6.61 (2H, d, J=9.0Hz), 4.63 (1H, q. J=6.5Hz), 3.95-4.01 (2H, m), 2.69-2.80 (2H, m), \(1.91-1.97(2 H, m), 1.49(3 H, d, J=6.5 H z), m / z=431\).

Example 239: Synthesis of S-92
[0539] S-92 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4iodophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.45-\)
\(7.52(5 \mathrm{H}, \mathrm{m}), 6.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.56-2.69(2 \mathrm{H}, \mathrm{m}), 1.74-1.84(2 \mathrm{H}\),
\(\mathrm{m}), 1.62-1.68(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} \mathrm{z}=445\).

\section*{Example 240: Synthesis of S-93}
[0540] S-93 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4iodophenol, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.45-\) \(7.53(5 \mathrm{H}, \mathrm{m}), 6.63(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.58-4.64(1 \mathrm{H}, \mathrm{m}), 3.85-3.88(2 \mathrm{H}, \mathrm{m}), 2.50-2.65(2 \mathrm{H}, \mathrm{m}), 1.70-1.76(2 \mathrm{H}, \mathrm{m})\), \(1.40-1.55(4 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=459\).

Example 241: Synthesis of S-94
[0541] S-94 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 4iodophenol, 1,6 -dibromohexane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.40-\) \(7.53(5 \mathrm{H}, \mathrm{m}), 6.63(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.87(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.50-2.62(2 \mathrm{H}, \mathrm{m}), 1.70-1.75(2 \mathrm{H}\), \(\mathrm{m}), 1.35-1.60(6 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=473\).

Example 242: Synthesis of S-95
[0542] S-95 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1-bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy-a-benzylmethylamine respectively by 4 iodophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.45-\) \(7.53(5 \mathrm{H}, \mathrm{m}), 6.64(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.87(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.51-2.63(2 \mathrm{H}, \mathrm{m}), 1.78-1.84(2 \mathrm{H}\), m), 1.69-1.75 (2H, m), 1.52 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}\) ), \(1.25-1.45(6 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=487\).

\section*{Example 243: Synthesis of S-96}
[0543] S-96 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 iodophenol, 1,8-dibromooctane and (R)-(t)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.45-\) \(7.54(5 \mathrm{H}, \mathrm{m}), 6.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.51-2.63(2 \mathrm{H}, \mathrm{m}), 1.79-1.85(2 \mathrm{H}\), m), \(1.70-1.75(2 \mathrm{H}, \mathrm{m}), 1.51(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.24-1.43(8 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=501\).

Example 244: Synthesis of S-97
[0544] S-97 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol by 2-napthalenethiol. \(m / z=337\).

\section*{Example 245: Synthesis of S-98}
[0545] S-98 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing

\section*{EP 0933354 A1}
the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2-naphthalenethiol and 1,3-dibromopropane.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 7.75-7.77(1 \mathrm{H}, \mathrm{m}), 7.69-7.73(3 \mathrm{H}, \mathrm{m}), 7.37-7.48(3 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{~J}=8.2 \mathrm{~Hz}), 6.85-\) \(6.88(2 \mathrm{H}, \mathrm{m}), 6.75-6.79(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.98-3.11(2 \mathrm{H}, \mathrm{m}), 2.54-2.68(2 \mathrm{H}, \mathrm{m}), 1.78\) \(1.87(2 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{mz}=351\).

\section*{Example 246: Synthesis of S-99}
[0546] S-99 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 2 -naphthalenethiol and 1,4 -dibromobutane.

400MHz- \({ }^{1} \mathrm{H}-\mathrm{NMR} 7.69-7.78(4 \mathrm{H}, \mathrm{m}), 7.38-7.51(3 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.85-6.88(2 \mathrm{H}, \mathrm{m}), 6.76\) ( \(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}\) ), \(3.79(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.41-2.55(2 \mathrm{H}\), m), \(1.56-1.74(4 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / 2=365\).

Example 247: Synthesis of S-100
[0547] S-100 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2-naphthalenethiol and 1,5-dibromopentane.

400MHz- \({ }^{1} \mathrm{H}-\mathrm{NMR} 7.69 \cdot 7.78(4 \mathrm{H}, \mathrm{m}), 7.37-7.51(3 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.77\) ( \(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}\) ), \(3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.39-2.52(2 \mathrm{H}\), \(m), 1.67(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}), 1.41-1.53(4 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=379\).

\section*{Example 248: Synthesis of \(\mathbf{S - 1 0 1}\)}
[0548] S-101 was synthesized by almost the same method as the one employed for the symthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2-naphthalenethiol and 1,6-dibromohexane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} ~ 7.70-7.78(4 \mathrm{H}, \mathrm{m}), 7.38-7.47(3 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.77\) ( \(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}\) ), \(3.80(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.37-2.51(2 \mathrm{H}\), \(\mathrm{m}), 1.67(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}), 1.39-1.50(4 \mathrm{H}, \mathrm{m}), 1.25-1.35(2 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=393\).

Example 249: Synthesis of S-102
[0549] S-102 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2 -naphthalenethiol and 1,7-dibromoheptane.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 7.70-7.78(4 \mathrm{H}, \mathrm{m}), 7.38-7.47(3 \mathrm{H}, \mathrm{m}), 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}), 6.90-6.95(2 \mathrm{H}, \mathrm{m}), 6.78-\) \(6.81(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.79-3.82(1 \mathrm{H}, \mathrm{m}), 2.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.41-2.54(2 \mathrm{H}, \mathrm{m}), 1.66(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.4 \mathrm{~Hz}\), \(\mathrm{J}=7.4 \mathrm{~Hz}), 1.15-1.55(8 \mathrm{H}, \mathrm{m}), 1.43(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=407\).

Example 250: Synthesis of \(\mathrm{S}-103\)
[0550] S-103 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2 -naphthalenethiol and 1,8-dibromooctane.
 \(J=8.3 \mathrm{~Hz}, \mathrm{~J}=2.7 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.76(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.39-2.52(2 \mathrm{H}, \mathrm{m}), 1.66\) (2H, tt, \(J=7.3 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}\) ), \(1.15-1.55\) ( \(10 \mathrm{H}, \mathrm{m}\) ), \(\mathrm{m} / \mathrm{z}=421\).

\section*{Example 251: Synthesis of S-104}
[0551] S-104 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 -naphthalenethiophenol and (R)-(+)-1-(1-naphthyl)ethylamine. \(m / z=357\).

Example 252: Synthesis of S-105
[0552] S-105 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo- 2 -chloroethane and ( R )-( + )- 3 -methoxy- \(\alpha\)-benzylmethylamine respectively by 2 - naphthalenethiol, 1,3 -dibromopropane and (R)-(+)-1-(1-naphthy)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR}\) 8.14-8.16 ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.84-7.88 ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.75-7.77 ( \(2 \mathrm{H}, \mathrm{m}\) ), 7.68-7.76 (3H, m), \(7.64(1 \mathrm{H}, \mathrm{d}\), \(J=6.6 \mathrm{~Hz}), 7.36-7.48(6 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.00-3.14(2 \mathrm{H}, \mathrm{m}), 2.66-2.79(2 \mathrm{H}, \mathrm{m}), 1.88(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}\), d, \(J=6.6 \mathrm{~Hz}\) ), m/z=371.

\section*{Example 253: Synthesis of S-106}
[0553] S-106 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and ( R )-( \((+)-3\)-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 naphthalenethiol, 1,4 -dibromobutane and \((\mathrm{R}) \cdot(+) \cdot 1-(1-n a p h t h y)\) )ethylamine.

400MHz- \({ }^{1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.84-7.87(1 \mathrm{H}, \mathrm{m}), 7.74-7.77(2 \mathrm{H}, \mathrm{m}), 7.68-7.72(3 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{d}\), \(J=7.1 \mathrm{~Hz}), 7.36-7.51(6 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.52-2.65(2 \mathrm{H}, \mathrm{m}), 1.63-1.76(4 \mathrm{H}, \mathrm{m})\), 1.48 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=385\).

Example 254: Synthesis of S-107
[0554] S-107 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo- 2 -chloroethane and ( R\()\)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 naphthalenethiol, 1,5 -dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.

Example 255: Synthesis of S-108
[0555] S-108 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo- 2 -chloroethane and ( R )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 naphthalenethiol, 1,6 -dibromohexane and \((R)-(+)-1-(1-n a p h t h y l)\) ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74-7.77(2 \mathrm{H}, \mathrm{m}), 7.69-7.73(3 \mathrm{H}, \mathrm{m}), 7.64(1 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=7.1 \mathrm{~Hz}), 7.38-7.52(6 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.49-2.62(2 \mathrm{H}, \mathrm{m}), 1.66(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.4 \mathrm{~Hz}\), \(\mathrm{J}=7.4 \mathrm{~Hz}\) ), 1.27-1.54 ( \(6 \mathrm{H}, \mathrm{m}\) ), \(1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=413\).

\section*{Example 256: Synthesis of S-109}
[0556] S-109 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( R )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 naphthalenethiol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.

400MHz. \({ }^{1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{m}), 7.84-7.87(1 \mathrm{H}, \mathrm{m}), 7.69-7.77(5 \mathrm{H}, \mathrm{m}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.37-7.53(6 \mathrm{H}, \mathrm{m})\), \(4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.48-2.62(2 \mathrm{H}, \mathrm{m}), 1.65(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{~J}=7.4 \mathrm{~Hz}), 1.25-1.52(8 \mathrm{H}, \mathrm{m})\), \(1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=427\).

\section*{Example 257: Synthesis of S-110}
[0557] S-110 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 naphthalenethiol, 1,8 -dibromooctane and ( R )-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.67-7.79(6 \mathrm{H}, \mathrm{m}), 7.37-7.53(6 \mathrm{H}, \mathrm{m}), 4.70(1 \mathrm{H}, \mathrm{q}\). \(\mathrm{J}=6.6 \mathrm{~Hz}), 2.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.50-2.65(2 \mathrm{H}, \mathrm{m}), 1.65(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}), 1.05-1.60(10 \mathrm{H}, \mathrm{m}), 1.57(3 \mathrm{H}\), d, \(J x 6.6 \mathrm{~Hz}\) ), m/z=441.

\section*{EP 0933354 A1}

Example 258: Synthesis of S-111
[0558] S-111 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol by 2 -methoxythiophenol.
[0559] S-112 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol and 1 -bromo-2-chloroethane respectively by 2 -methoxythiophenol and 1,3 -dibromopropane.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 7.21-7.25(2 \mathrm{H}, \mathrm{m}), 7.14-7.19(1 \mathrm{H}, \mathrm{m}), 6.82-6.92(4 \mathrm{H}, \mathrm{m}), 6.77(1 \mathrm{H}, \mathrm{cdd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}\), \(J=1.0 \mathrm{~Hz}), 3.87(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.85-2.98(2 \mathrm{H}, \mathrm{m}), 2.52-2.67(2 \mathrm{H}, \mathrm{m}), 1.73-1.86(2 \mathrm{H}\), \(\mathrm{m}) .1 .33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=331\).

\section*{Example 260: Synthesis of S-113}
[0560] S-113 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol and 1 -bromo-2-chloroethane respectively by 2 -methoxythiophenol and 1,4 -dibromobutane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.21-7.25(2 \mathrm{H}, \mathrm{m}), 7.14-7.19(1 \mathrm{H}, \mathrm{m}), 6.82-6.93(4 \mathrm{H}, \mathrm{m}), 6.75-6.79(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}\), \(\mathrm{J}=1.0 \mathrm{~Hz}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.41-2.55(2 \mathrm{H}, \mathrm{m}), 1.58-1.71(4 \mathrm{H}\), \(\mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=345\).

\section*{Example 261: Synthesis of S-114}
[0561] S-114 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol and 1 -bromo-2-chloroethane respectively by 2 -methoxythiophenol and 1,5 -dibromopentane.

400MHz. \({ }^{1} \mathrm{H}-\mathrm{NMR} 7.21-7.26(2 \mathrm{H}, \mathrm{m}), 7.13-7.18(1 \mathrm{H}, \mathrm{m}), 6.82-6.93(4 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.81\)
( \(3 \mathrm{H}, \mathrm{s}\) ), \(3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m}), 1.56-1.67(2 \mathrm{H}, \mathrm{m}), 1.38-1.53(4 \mathrm{H}, \mathrm{m}), 1.34\) ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=359\).

\section*{Example 262: Synthesis of S-115}
[0562] S-115 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 2 -methoxythiophenol and 1,6-dibromohexane.

400MHz- \({ }^{1} \mathrm{H}-\mathrm{NMR}\) 7.19-7.24 (2H, m), 7.12-7.16 (1H, m), 6.81-6.91 (4H, m), 6.74-6.77 (1H, m), 3.86 (3H, s), 3.79 ( \(3 \mathrm{H}, \mathrm{s}\) ), 3.70 ( \(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), 2.84 ( \(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}\) ), 2.36-2.50 (2H, m), 1.57-1.65 (2H, m), 1.23-1.48 (6H, m), 1.32 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=373\).

\section*{Example 263: Synthesis of S-116}
[0563] S-116 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the \(\mathbf{2 , 5}\)-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 2 -methoxythiophenol and 1,7 -dibromoheptane.

400MHz- \({ }^{1} \mathrm{H}-\mathrm{NMR}\) 7.21-7.27 (2H, m), 7.13-7.18 (1H, m), 6.89-6.97 (4H, m), 6.80-6.85 (1H. m), 3.88 (3H, s), 3.83 \((3 \mathrm{H}, \mathrm{s}), 3.80-3.83(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.85(1 \mathrm{H}, \mathrm{m}), 2.43-2.56(2 \mathrm{H}, \mathrm{m}), 1.36-1.66(6 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}), 1.18-\) \(1.30(4 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=387\).

\section*{Example 264: Synthesis of S-117}
[0564] S-117 was synthesized by aimost the same method as the one employed for the symthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2 -methoxythiophenol and 1,8-dibromooctane.

400MHz- \({ }^{1} \mathrm{H}-\mathrm{NMR} 7.21-7.25(2 \mathrm{H}, \mathrm{m}), 7.13-7.18(1 \mathrm{H}, \mathrm{m}), 6.82-6.94(4 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.81\) \((3 \mathrm{H}, \mathrm{s}), 3.73(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m}), 1.60-1.70(2 \mathrm{H}, \mathrm{m}), 1.20-1.60(10 \mathrm{H}, \mathrm{m}), 1.35\) \((3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=401\).

Example 265: Synthesis of S-118
[0565] S-118 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 -methoxythiophenol and ( R )-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.84-7.87(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), 7.40-\) \(7.51(3 \mathrm{H}, \mathrm{m}), 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~J}=1.7 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{~J}=7.8 \mathrm{~Hz}, \mathrm{~J}=1.7 \mathrm{~Hz}), 6.81-6.88(2 \mathrm{H}, \mathrm{m})\), \(4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.84(3 \mathrm{H}, \mathrm{s}), 3.05(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.73-2.82(2 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=337\).

\section*{Example 266: Synthesis of S-119}
[0566] S-119 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo- 2 -chloroethane and ( R ) \(-(+)-3\)-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 methoxythiophenol, 1,3-dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.82-7.86(1 \mathrm{H}, \mathrm{m}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.43 \cdot\) \(7.50(3 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{HZ}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6 \mathrm{~Hz}\), \(J=1.2 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.1 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.84(3 \mathrm{H}, \mathrm{s}), 2.85-2.99(2 \mathrm{H}, \mathrm{m}), 2.61-2.77(2 \mathrm{H}\), \(\mathrm{m}), 1.78-1.86(2 \mathrm{H}, \mathrm{m}), 1.47(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=351\).

\section*{Example 267: Synthesis of S-120}
[0567] S-120 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-( + )-3-methoxy- \(a\)-benzylmethylamine respectively by 2 methoxythiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthy) ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.44-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.21(\mathrm{HH}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{~J}=1.6 \mathrm{~Hz}), 7.13-7.18(1 \mathrm{H}, \mathrm{m}), 6.89\) (ddd, \(\mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}), 6.82\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}\) ), \(4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.86(3 \mathrm{H}, \mathrm{s}), 2.83-2.88(2 \mathrm{H}, \mathrm{m}), 2.52-2.65(2 \mathrm{H}, \mathrm{m}), 1.64-1.70\) ( \(4 \mathrm{H}, \mathrm{m}\) ), 1.49 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=365\).

Example 268: Synthesis of S-121
[0568] S-121 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 methoxythiophenol, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz})\), \(7.83-7.88(1 \mathrm{H}, \mathrm{m}), 7.71-7.75(1 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.41-7.52\) ( \(3 \mathrm{H}, \mathrm{m}\) ), 7.21 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~J}=1.7 \mathrm{~Hz}\) ), 7.15 ( \(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{~J}=1.7 \mathrm{~Hz}\) ), 6.90 ( 1 H , ddd, \(\mathrm{J}=7.6 \mathrm{~Hz}\), \(J=7.6 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}), 6.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{~J}=1.1 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{q} . J=6.6 \mathrm{~Hz}), 3.87(3 \mathrm{H}, \mathrm{s}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz})\), \(2.50-2.62(2 \mathrm{H}, \mathrm{m}), 1.40-1.48(6 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=379\).

\section*{Example 269: Synthesis of S-122}
[0569] S-122 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( R )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 methoxythiophenol, 1,6 -dibromohexane and \((\mathrm{R}) \cdot(+) \cdot 1-(1\)-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=393\).

\section*{EP 0933354 A1}

Example 270: Synthesis of S-123
[0570] S-123 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and (R)- + +)-3-methoxy- \(\alpha\)-benzyimethylamine respectively by 2 - methoxythiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.15\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), 7.87 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}\) ), \(7.70-7.78\) ( \(2 \mathrm{H}, \mathrm{m}\) ), \(7.41-7.51\) ( \(3 \mathrm{H}, \mathrm{m}\) ), 7.21 ( \(1 \mathrm{H}, \mathrm{dd}\), \(J=7.6 \mathrm{~Hz}, \mathrm{~J}=1.5 \mathrm{~Hz}\) ), \(7.12-7.17(1 \mathrm{H}, \mathrm{m}), 6.90\) ( \(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}\) ), 6.80-6.83 ( \(1 \mathrm{H}, \mathrm{m}\) ), 4.67-4.75 \((1 \mathrm{H}, \mathrm{m}), 3.87(3 \mathrm{H}, \mathrm{s}), 2.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.51-2.64(2 \mathrm{H}, \mathrm{m}), 1.05-1.64(13 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=407\).

Example 271 : Synthesis of S-124
[0571] S-124 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzyimethylamine respectively by 2 methoxythiophenol, 1,8-dibromooctane and (R)-(+)-1-(1-naphthy)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.86-7.89(1 \mathrm{H}, \mathrm{m}), 7.70-7.78(2 \mathrm{H}, \mathrm{m}), 7.46-7.55(3 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{dd}\), \(J=7.6 \mathrm{~Hz}, \mathrm{~J}=1.7 \mathrm{~Hz}\) ), 7.13-7.17 (1H, m), 6.87-6.92 (1H, m), 4.70 ( \(1 \mathrm{H}, \mathrm{bs}\) ). \(3.88(3 \mathrm{H}, \mathrm{s}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.52-\) \(2.64(2 \mathrm{H}, \mathrm{m}), 1.05-1.65(15 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=421\).

\section*{Example 272: Synthesis of S-125}
[0572] S. 125 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5 -dimethyithiol by 3 -methoxythiophenol.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 7.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.83-6.89(4 \mathrm{H}, \mathrm{m}), 6.77(1 \mathrm{H}\), ddd, \(J=8.0 \mathrm{~Hz}, J=2.6 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.5 \mathrm{~Hz}, J=2.6 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{q}\), \(J=6.5 \mathrm{~Hz}), 3.02-3.06(2 \mathrm{H}, \mathrm{m}), 2.67-2.78(2 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=317\).

\section*{Example 273: Synthesis of S-126}
[0573] \(\mathrm{S}-126\) was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the \(\mathbf{2 , 5}\)-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 3 -methoxythiophenol and 1,3 -dibromopropane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.89(3 \mathrm{H}, \mathrm{m}), 6.85(1 \mathrm{H}\), dd, \(\mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{~J}=2.1 \mathrm{~Hz}\) ), 6.78 ( 1 H, ddd, \(\mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}\) ), \(6.70(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{~J}=2.7 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}\) ), \(3.81(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.88-3.02(2 \mathrm{H}, \mathrm{m}), 2.51-2.66(2 \mathrm{H}, \mathrm{m}), 1.74-1.87(2 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}\), d, \(J=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=331\).

Example 274: Synthesis of S-127
[0574] S-127 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 3-methoxythiophenol and 1,4-dibromobutane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMRR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.89(3 \mathrm{H}, \mathrm{m}), 6.83-6.84\) \((1 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 6.69(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}\). \(\mathrm{J}=6.6 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.40-2.55(2 \mathrm{H}, \mathrm{m}), 1.53 \cdot 1.72(4 \mathrm{H}, \mathrm{m}), 1.34(4 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=345\).

Example 275: Synthesis of S-128
[0575] S-128 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol and 1 -bromo-2-chloroethane respectively by 3 -methoxythiophenol and 1,5 -dibromopentane.
\(400 \mathrm{MHz}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR} 7.23\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}\) ), \(7.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.89(3 \mathrm{H}, \mathrm{m}), 6.84(1 \mathrm{H}\), dd, J=4.1Hz, J=4.1Hz), 6.76-6.79 ( \(1 \mathrm{H}, \mathrm{m}\) ), \(6.70(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s})\), \(3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m}), 1.59-1.67(2 \mathrm{H}, \mathrm{m}), 1.37-1.52(4 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}\),
\(\mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=359\).

\section*{Example 276: Synthesis of S-129}
[0576] S-129 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 3-methoxythiophenol and 1,6-dibromohexane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.24\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}\) ), 7.18 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}\) ), \(6.86-6.90(3 \mathrm{H}, \mathrm{m}), 6.83-6.85\) \((1 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 6.69(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=2.6 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}\), \(J=6.6 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.37 \cdot 2.51(2 \mathrm{H}, \mathrm{m}), 1.59-1.67(2 \mathrm{H}, \mathrm{m}), 1.24-1.52(6 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz})\), \(m / z=373\).

\section*{Example 277: Synthesis of S-130}
[0577] S-130 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 3 -methoxythiophenol and 1,7 -dibromoheptane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}\) ), \(7.18(4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz},=8.0 \mathrm{~Hz}), 6.86-6.90(3 \mathrm{H}, \mathrm{m}), 6.76-6.80\) \((1 \mathrm{H}, \mathrm{m}), 6.69(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{t}\). \(\mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m}), 1.58-1.66(2 \mathrm{H}, \mathrm{m}), 1.19-1.49(8 \mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / 2=387\).

Example 278: Synthesis of S-131
[0578] S-131 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 3 -methoxythiophenol and 1,8-dibromooctane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz},=8.0 \mathrm{~Hz}\) ), \(7.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.87-6.91(3 \mathrm{H}, \mathrm{m}), 6.84-6.85\) ( \(1 \mathrm{H}, \mathrm{m}\) ), 6.78 ( \(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=0.8 \mathrm{~Hz}\) ), 6.69 ( \(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=0.8 \mathrm{~Hz}\) ), \(3.81(3 \mathrm{H}, \mathrm{s}), 3.79\) \((3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m}), 1.59-1.70(2 \mathrm{H}, \mathrm{m}), 1.20-1.50(10 \mathrm{H}, \mathrm{m}), 1.35\) ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}\) ) \(\mathrm{m} / \mathrm{z}=401\).

Example 279: Synthesis of S-132
[0579] S-132 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol and ( R\()-(+)-3\)-methoxy- \(\alpha\)-benzylmethylamine respectively by 3 -methoxythiophenol and ( R )-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.15\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}\) ), \(7.85-7.87\) ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.73 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), 7.63 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(7.42-\) \(7.55(3 \mathrm{H}, \mathrm{m}), 7.12-7.16(1 \mathrm{H}, \mathrm{m}), 6.85-6.89(2 \mathrm{H}, \mathrm{m}), 6.69-6.72(1 \mathrm{H}, \mathrm{m}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{s}), 3.08\) \((2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.76-2.87(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=337\).

\section*{Example 280: Synthesis of S-133}
[0580] S-133 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(a\)-benzylmethylamine respectively by 3 methoxythiophenol, 1,3 -dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 7.44-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{~J}=7.8 \mathrm{~Hz}), 6.84-6.89(2 \mathrm{H}, \mathrm{m}), 6.68-6.71(1 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.77\) \((3 \mathrm{H}, \mathrm{s}), 2.91-3.04(2 \mathrm{H}, \mathrm{m}), 2.62-2.76(2 \mathrm{H}, \mathrm{m}), 1.80-1.90(2 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=351\).

Example 281: Synthesis of S-134
[0581] S-134 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3 methoxythiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.

\section*{EP 0933354 A1}
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 7.85-7.88 ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.73 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), \(7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.84 \mathrm{~Hz}\) ), \(7.44-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{~J}=7.8 \mathrm{~Hz}), 6.83-6.88(2 \mathrm{H}, \mathrm{m}), 6.67-6.70(1 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.77\) \((3 \mathrm{H}, \mathrm{s}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.51-2.65(2 \mathrm{H}, \mathrm{m}), 1.59-1.73(4 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=365\).

\section*{Example 282: Synthesis of S-135}
[0582] S-135 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol, 1 -bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3 methoxythiophenol, 1,5 -dibromopentane and ( R )-( + ) -1 -( 1 -naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 7.43-\)
\(7.52(3 \mathrm{H}, \mathrm{m}), 7.17(\mathrm{HH}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}, 6.85-6.88(1 \mathrm{H}, \mathrm{m}), 6.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{~J}=2.1 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{ddd}\), \(J=6.7 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, J=0.7 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.50-2.63(2 \mathrm{H}, \mathrm{m}), 1.59-\) \(1.67(2 \mathrm{H}, \mathrm{m}), 1.40-1.55(4 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=379\).

Example 283: Synthesis of S-136
[0583] S-136 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3 methoxythiophenol, 1,6-dibromohexane and (R)-(+)-1-(1-naphthy) ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.80-7.88(2 \mathrm{H}, \mathrm{m}), 7.73-7.76(1 \mathrm{H}, \mathrm{m}), 7.41-7.53(3 \mathrm{H}, \mathrm{m}), 6.85-6.88(1 \mathrm{H}\), m), \(6.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{~J}=2.1 \mathrm{~Hz}), 6.68\) ( 1 H , ddd, \(\mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=0.9 \mathrm{~Hz}\) ), \(4.67(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.87(2 \mathrm{H}\), \(t, J=7.3 \mathrm{~Hz}), 2.51-2.63(2 \mathrm{H}, \mathrm{m}), 1.25-1.66(11 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=393\).

Example 284: Synthesis of S-137
[0584] S-137 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3 methoxythiophenol, 1,7-dibromoheptane and \((\mathrm{R}) \cdot(+) \cdot 1 \cdot(1\)-naphthyl)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.15\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), 7.86-7.89 ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.75-7.80 (2H, m), 7.45-7.55 (3H, m), \(7.16(1 \mathrm{H}, \mathrm{dd}\), \(\mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}), 6.82-6.88(2 \mathrm{H}, \mathrm{m}), 6.68(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=0.7 \mathrm{~Hz}), 4.70-4.78(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}\), \(\mathrm{s})\), \(2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.52-2.65(2 \mathrm{H}, \mathrm{m}), 1.05-1.65(13 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=407\).

\section*{Example 285: Synthesis of S-138}
[0585] S-138 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethythiophenol, 1 -bromo-2-chloroethane and (R)- -+ )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 3 methoxythiophenol, 1,8 -dibromooctane and ( R )-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.87-7.89(1 \mathrm{H}, \mathrm{m}), 7.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.47-7.55(3 \mathrm{H}, \mathrm{m}), 7.17\) ( \(1 \mathrm{H}, \mathrm{dd}\), \(\mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}), 6.83-6.89(2 \mathrm{H}, \mathrm{m}), 6.68(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{bs}), 3.78(\mathrm{3H}, \mathrm{~s}), 2.88\) (2H, t, J=7.3Hz), 2.53-2.66 (2H. m), 1.00-1.75 ( \(15 \mathrm{H}, \mathrm{m}\) ), \(\mathrm{m} / \mathrm{z}=421\).

Example 286: Synthesis of S-139
[0586] S-139 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiol by 4 -methoxythiophenol.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMRR} 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.75-6.88(5 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.78\) \((3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.88-2.93(2 \mathrm{H}, \mathrm{m}), 2.57-2.70(2 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=317\).

\section*{Example 287: Synthesis of S-140}
[0587] S-140 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 4 -methoxythiophenol and 1,3-dibromopropane.

\section*{EP 0933354 A1}
\(400 \mathrm{MHz} \cdot{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.31\) ( \(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}\) ), 7.23 ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}\) ), \(6.85-6.88(2 \mathrm{H}, \mathrm{m}), 6.82(2 \mathrm{H}, \mathrm{d}\), \(J=8.8 \mathrm{~Hz}), 6.77(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{~J}=2.7 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.77-2.89\) \((2 \mathrm{H}, \mathrm{m})\), 2.49-2.64 (2H, m), 1.64-1.80 (2H, m), 1.32 (3H, d, J=6.6Hz), m/z=331.
[0589] S-142 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 4 -methoxythiophenol and 1,5-dibromopentane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.89(2 \mathrm{H}, \mathrm{m}), 6.83(2 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=8.8 \mathrm{~Hz}), 6.76 .6 .80(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.78(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}\), m), \(1.50-1.60(2 \mathrm{H}, \mathrm{m}), 1.36-1.50(4 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=359\).

Example 290: Synthesis of S-143

\section*{Example 293: Synthesis of S-146}
[0593] S-146 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.85-7.89(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 7.42-\)

\section*{EP \(0933 \mathbf{3 5 4}\) A1}
\(7.52(3 \mathrm{H}, \mathrm{m}), 7.27-7.30(2 \mathrm{H}, \mathrm{m}), 6.75-6.80(2 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.97(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}), 2.68-\) \(2.78(2 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=337\).

\section*{Example 294: Synthesis of S-147}
[0598] S-151 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and ( \(R\) )- ++ )-3-methoxy- \(\alpha\)-benzyimethylamine respectively by 4 methoxythiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.

400MHz. \({ }^{1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.86-7.88(1 \mathrm{H}, \mathrm{m}), 7.71-7.77(2 \mathrm{H}, \mathrm{m}), 7.46-7.54(3 \mathrm{H}, \mathrm{m}), 7.29-7.32(2 \mathrm{H}\), \(\mathrm{m})\). \(6.80-6.84(2 \mathrm{H}, \mathrm{m}), 4.69\) ( \(1 \mathrm{H}, \mathrm{bs}\) ), \(3.80(3 \mathrm{H}, \mathrm{s}), 2.77\) ( \(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}\) ), 2.51-2.64 ( \(2 \mathrm{H}, \mathrm{m}\) ), 1.00-1.64 (13H, m), \(\mathrm{m} / \mathrm{z}=407\).

\section*{Example 299: Synthesis of S-152}
[0599] S-152 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 methoxythiophenol, 1,8-dibromooctane and (R)-(+)-1-(1-naphthy)ethylamine.

400MHz \({ }^{1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.86-7.89(1 \mathrm{H}, \mathrm{m}), 7.71-7.77(2 \mathrm{H}, \mathrm{m}), 7.45-7.54(3 \mathrm{H}, \mathrm{m}), 7.29-7.33(2 \mathrm{H}\), m), \(6.80-6.85(2 \mathrm{H}, \mathrm{m}), 4.66-4.76(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 2.78(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.51-2.64(2 \mathrm{H}, \mathrm{m}), 1.05-1.56(15 \mathrm{H}\), \(m), m / z=421\).

Example 300: Synthesis of S-153
[0600] S-153 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethytthiol by 2,3,5,6-tetrafluorothiophenol.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.21(\mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.96-7.06(1 \mathrm{H}, \mathrm{m}), 6.82-6.86(2 \mathrm{H}, \mathrm{m}), 6.74-6.77(1 \mathrm{H}, \mathrm{m}), 3.80\) ( \(3 \mathrm{H}, \mathrm{s}\) ), \(3.70(1 \mathrm{H}, q, J=6.6 \mathrm{~Hz}), 3.03(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}), 2.55-2.67(2 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=359\).

\section*{Example 301: Synthesis of S-154}
[0601] S-154 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,3,5,6-tetrafluorothiophenol and 1,3-dibromopropane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=8.3 \mathrm{~Hz}), 6.97-7.06\) ( \(1 \mathrm{H}, \mathrm{m}\) ), 6.84-6.87(2H,m), 6.74-6.79(1H,m), 3.81 \((3 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.90-3.03(2 \mathrm{H}, \mathrm{m}), 2.49-2.65(2 \mathrm{H}, \mathrm{m}), 1.66-1.75(2 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz})\), \(\mathrm{m} / \mathrm{z}=373\).

Example 302: Synthesis of S-155
[0602] S-155 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 2,3,5,6-tetrafluorothiophenol and 1,4-dibromobutane.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz} . \mathrm{J}=8.1 \mathrm{~Hz}), 6.97-7.06(1 \mathrm{H}, \mathrm{m}), 6.84-6.88(2 \mathrm{H}, \mathrm{m}), 6.76-6.78(1 \mathrm{H}, \mathrm{m}), 3.81\) ( \(3 \mathrm{H}, \mathrm{s}\) ), \(3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.91(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.37-2.53(2 \mathrm{H}, \mathrm{m}), 1.53-1.63(4 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz})\), \(\mathrm{m} / \mathrm{z}=387\).

\section*{Example 303: Synthesis of S-156}
[0603] S-156 was synthesized by almost the same method as the one employed for the synthesis of \(S-1\) but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,3,5,6-tetrafluorothiophenol and 1,5-dibromopentane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}\) ), \(6.96-7.05(1 \mathrm{H}, \mathrm{m}), 6.85-6.89(2 \mathrm{H}, \mathrm{m}), 6.75-6.79(1 \mathrm{H}, \mathrm{m}), 3.81\) \((3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.91(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.37-2.51(2 \mathrm{H}, \mathrm{m}), 1.50-1.59(2 \mathrm{H}, \mathrm{m}), 1.36-1.46(4 \mathrm{H}, \mathrm{m}), 1.33\) \((3 H, d, J=6.6 H z), m / z=401\).

\section*{Example 304: Synthesis of S-157}
[0604] S-157 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,3,5,6-tetrafluorothiophenol and 1,6-dibromohexane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=8.1 \mathrm{~Hz}), 6.97-7.06(1 \mathrm{H}, \mathrm{m}), 6.86-6.89(2 \mathrm{H}, \mathrm{m}), 6.78-6.79(1 \mathrm{H}, \mathrm{m}), 3.81\) \((3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.91(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.37-2.51(2 \mathrm{H}, \mathrm{m}), 1.51-1.58(2 \mathrm{H}, \mathrm{m}), 1.23-1.49(6 \mathrm{H}, \mathrm{m}), 1.34\) ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=415\).

\section*{Example 305: Synthesis of S-158}
[0605] S-158 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2,3,5,6-tetrafluorothiophenol and 1,7-dibromoheptane.

\section*{EP 0933354 A1}
\(400 \mathrm{MHz}^{1}{ }^{1} \mathrm{H}-\mathrm{NMR} 7.24\) ( \(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}\) ), \(6.97-7.05(1 \mathrm{H}, \mathrm{m}), 6.88-6.90(2 \mathrm{H}, \mathrm{m}), 6.78(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}\), s), \(3.74(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}), 2.91(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.51(2 \mathrm{H}, \mathrm{m}), 1.20-1.58(8 \mathrm{H}, \mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz})\), \(\mathrm{m} / \mathrm{z}=429\).

\section*{Example 306: Synthesis of S-159}
[0606] S-159 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 2,3,5,6-tetrafluorothiophenol and 1,8 -dibromooctane.

400MHz- \({ }^{1} \mathrm{H}\)-NMR 7.22-7.26 (1H, m), 6.97-7.05 (1H, m), 6.89-6.92 (2H, m), 6.78-6.81 (1H, m), \(3.81(3 \mathrm{H}, \mathrm{s}), 3.77\) \((1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.91(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.40-2.54(2 \mathrm{H}, \mathrm{m}), 1.17-1.57(12 \mathrm{H}, \mathrm{m}), 1.40(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=443\).

\section*{Example 307: Synthesis of S-160}
[0607] S-160 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzyimethylamine respectively by \(2,3,5,6\)-tetrafluorothiophenol and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.84-7.89(1 \mathrm{H}, \mathrm{m}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.48(1 \mathrm{H}\), \(d, J=7.1 \mathrm{~Hz}), 7.43-7.52(3 \mathrm{H}, \mathrm{m}), 6.95-7.03(1 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.06(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}), 2.65-2.75(2 \mathrm{H}, \mathrm{m})\), \(1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=379\).

Example 308: Synthesis of S-161
[0608] S-161 was synthesized by almost the same method as the one employed for the synthesis of \(S-1\) but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and (R)*( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrafluorothiophenol, 1,3-dibromopropane and (R)-(t)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 7.44-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 6.95-7.04(1 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.93-3.05(2 \mathrm{H}, \mathrm{m}), 2.61-2.75(2 \mathrm{H}, \mathrm{m}), 1.68-1.78(2 \mathrm{H}, \mathrm{m})\), \(1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=393\).

\section*{Example 309: Synthesis of S-162}
[0609] S-162 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethythiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 2,3,5,6-tetrafluorothiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.87(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.44-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 6.95-7.04(1 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}), 2.48-2.62(2 \mathrm{H}, \mathrm{m}), 1.57 \cdot 1.63(4 \mathrm{H}, \mathrm{m})\), \(1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=407\).

\section*{Example 310: Synthesis of S-163}
[0610] S-163 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy-a-benzylmethylamine respectively by 2,3,5,6-tetrafluorothiophenol, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz})\), 7.44\(7.52(3 \mathrm{H}, \mathrm{m}), 6.95-7.04(1 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.48-2.62(2 \mathrm{H}, \mathrm{m}), 1.38-1.58(6 \mathrm{H}, \mathrm{m})\), \(1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=421\).

\section*{Example 311: Synthesis of S-164}
[0611] S-164 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 2,3,5,6-tetrafluorothiophenol, 1,6-dibromohexane and (R)-(+)-1-(1-naphthyi)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.45-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 6.98-7.02(1 \mathrm{H}, \mathrm{m}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.47-2.62(2 \mathrm{H}, \mathrm{m}), 1.23-1.57(8 \mathrm{H}, \mathrm{m})\), \(1.50(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=435\).

\section*{Example 312: Synthesis of S-165}
[0612] S-165 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 2,3,5,6-tetrafluorothiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.87-7.89(1 \mathrm{H}, \mathrm{m}), 7.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.47-7.56(3 \mathrm{H}, \mathrm{m}), 6.95-7.04\) \((1 \mathrm{H}, \mathrm{m}), 4.79(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.52-2.68(2 \mathrm{H}, \mathrm{m}), 1.02-1.70(10 \mathrm{H}, \mathrm{m}), 1.65(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz})\), \(\mathrm{m} / \mathrm{z}=449\).

Example 313: Synthesis of S-166
[0613] S-166 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrafluorathiophenol, 1,8-dibromooctane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.11\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}\) ), \(7.88-7.91(1 \mathrm{H}, \mathrm{m}), 7.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.44-7.57(3 \mathrm{H}, \mathrm{m}), 6.95-7.03\) ( \(1 \mathrm{H}, \mathrm{m}\) ), \(4.89(1 \mathrm{H}, \mathrm{bs}), 2.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.54-2.72(2 \mathrm{H}, \mathrm{m}), 1.00-1.80(15 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=463\).

Example 314: Synthesis of S-167
[0614] S-167 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethytthiol by 5-chloro-2-mercaptobenzothiazole.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.7 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}), 7.18-7.28(2 \mathrm{H}, \mathrm{m}), 6.86-6.90(2 \mathrm{H}, \mathrm{m})\), 6.74-6.78(1H, m), 3.80(3H, s), 3.77-3.82 (1H, m), 3.43-3.47 (2H, m), 2.85-3.00 (2H, m), \(1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz})\), \(m / z=378\).

Example 315: Synthesis of S-168
[0615] S-168 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 bromo-2-chloroethane respectively by 5-chloro-2-mercaptobenzothiazole and 1,3dibromopropane.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.19-7.27(2 \mathrm{H}, \mathrm{m}), 6.87-6.89(2 \mathrm{H}, \mathrm{m}), 6.77-6.79\) \((1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.33-3.47(2 \mathrm{H}, \mathrm{m}), 2.55-2.72(2 \mathrm{H}, \mathrm{m}), 1.93-2.00(2 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}\), \(\mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=392\).

\section*{Example 316: Synthesis of S-169}
[0616] S-169 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 5-chloro-2-mercaptobenzothiazole and 1,4dibromobutane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.21-7.27(2 \mathrm{H}, \mathrm{m}), 6.87-6.90(2 \mathrm{H}, \mathrm{m}), 6.76-6.79\) \((1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.32(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.45-2.60(2 \mathrm{H}, \mathrm{m}), 1.78-1.90(2 \mathrm{H}, \mathrm{m}), 1.59-1.65\) \((2 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=406\).

Example 317: Synthesis of S-170
[0617] S-170 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2.5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 5 -chloro-2-mercaptobenzothiazole and 1.5dibromopentane.

\section*{EP 0933354 A1}

400MHz- \({ }^{1} \mathrm{H}-\mathrm{NMR} 7.83\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}\) ), 7.63 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}\) ), 7.20-7.27 (2H, m), 6.86-6.87 (2H, m), 6.75-6.78 \((1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}, \mathrm{Jm} .6 .6 \mathrm{~Hz}), 3.31(2 \mathrm{H}, \mathrm{t}, \mathrm{Jm} 7.3 \mathrm{~Hz}), 2.41-2.55(2 \mathrm{H}, \mathrm{m}), 1.80(2 \mathrm{H}, \mathrm{tt}\), \(J=7.3 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}), 1.43-1.57(4 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / 2=420\).
[0623] S-176 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 5 -chloro-2-mercaptobenzothiazole, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMRR} 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.84-7.87(1 \mathrm{H}, \mathrm{m}), 8.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.65(1 \mathrm{H}\), \(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}\) ), \(7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.43-7.52(3 \mathrm{H}, \mathrm{m}), 7.23-7.26(1 \mathrm{H}, \mathrm{m}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.31(2 \mathrm{H}, \mathrm{t}\),

\section*{EP 0933354 A1}
\(J=7.2 \mathrm{~Hz}), 2.56-2.70(2 \mathrm{H}, \mathrm{m}), 1.82-1.90(2 \mathrm{H}, \mathrm{m}), 1.68(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{~J}=7.2 \mathrm{~Hz}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=426\).
Example 324: Synthesis of S-177
5 [0624] S-177 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 5 -chloro-2-mercaptobenzothiazole, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMRR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.82-7.87(2 \mathrm{H}, \mathrm{m}), 7.71-7.42(1 \mathrm{H}, \mathrm{m}), 7.58-7.64(2 \mathrm{H}, \mathrm{m}), 7.41-7.52(3 \mathrm{H}\), \(\mathrm{m}), 7.23-7.26(1 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.30(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.51-2.65(2 \mathrm{H}, \mathrm{m}), 1.79(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\), \(J=7.3 \mathrm{~Hz}), 1.58-1.60(4 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=440\).

Example 325: Symthesis of S-178
[0625] S-178 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( R )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 5 -chloro-2-mercaptobenzothiazole, 1,6-dibromohexane and (R)-(t)-1-(1-naphthy) ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.82-7.88(2 \mathrm{H}, \mathrm{m}), 7.71-7.75(1 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}\), \(J=8.5 \mathrm{~Hz}), 7.42-7.52(3 \mathrm{H}, \mathrm{m}), 7.23-7.26(1 \mathrm{H}, \mathrm{m}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.29(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.51-2.64(2 \mathrm{H}, \mathrm{m})\), \(1.78(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}), 1.32-1.56(6 \mathrm{H}, \mathrm{m}), 1.50(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=454\).

Example 326: Symthesis of S-179
[0626] S-179 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and \((R)-(+)-3\)-methoxy- \(\alpha\)-benzylmethylamine respectively by 5 -chloro-2-mercaptobenzothiazole, 1,7-dibromoheptane and ( R\()-(+)-1-(1\)-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMRR} 8.15(\mathrm{HH}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.86-7.88(1 \mathrm{H}, \mathrm{m}), 7.82-7.83(1 \mathrm{H}, \mathrm{m}), 7.72-7.78(2 \mathrm{H}, \mathrm{m}), 7.62(1 \mathrm{H}, \mathrm{dd}\), \(J=8.6 \mathrm{~Hz}, J=0.5 \mathrm{~Hz}), 7.45-7.55(3 \mathrm{H}, \mathrm{m}), 7.23-7.26(1 \mathrm{H}, \mathrm{m}), 4.71(1 \mathrm{H}, q, J=6.6 \mathrm{~Hz}), 3.29(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.50-2.66\) \((2 \mathrm{H}, \mathrm{m}), 1.71-1.80(2 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.06-1.64(8 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=468\).

Example 327: Synthesis of S-180
[0627] S-180 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and \((R)-(+)-3\)-methoxy- \(a\)-benzylmethylamine respectively by 5 -chloro-2-mercaptobenzothiazole, 1,8 -dibromooctane and ( \(R\) )-( + )-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.15\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), \(7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.71\)
( \(1 \mathrm{H} . \mathrm{d} . \mathrm{J}=6.8 \mathrm{~Hz}\) ), \(7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}\) ), \(7.45-7.54\) ( \(1 \mathrm{H}, \mathrm{m}\) ), \(7.23-7.24\) ( \(1 \mathrm{H}, \mathrm{m}\) ), \(4.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(3.30(2 \mathrm{H}, \mathrm{t}\), \(J=7.3 \mathrm{~Hz}), 2.52-2.65(2 \mathrm{H}, \mathrm{m}), 1.68-1.84(2 \mathrm{H}, \mathrm{m}), 1.56(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.06-1.59(10 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=482\).

Example 328: Synthesis of S-181
[0628] S-181 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiol by 2,3,5,6-tetrachloro-4-mercaptopyridine.
\(400 \mathrm{MHz} .^{1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.84-6.87(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz})\), \(3.06-3.19(2 \mathrm{H}, \mathrm{m}), 2.50-2.66(2 \mathrm{H}, \mathrm{m}), 1.69(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{~J}=7.0 \mathrm{~Hz}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=424,426\).

\section*{Example 329: Synthesis of S-182}
[0629] S-182 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol and 1 -bromo-2-chloroethane respectively by \(2,3,5,6\)-tetrachloro-4-mercaptopyridine and 1,3 -dibromopropane. \(\mathrm{m} / \mathrm{z}=438,440\).

\section*{EP \(0933 \mathbf{3 5 4} \mathbf{A 1}\)}

Example 330: Synthesis of S-183
[0630] S-183 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine and 1,4 -dibromobutane. \(\mathrm{m} / \mathrm{z}=452,454\).

\section*{Example 331: Synthesis of S-184}
[0631] S-184 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by \(2,3,5,6\)-tetrachloro-4-mercaptopyridine and 1,5-dibromopentane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.88(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.05(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz})\), \(3.81(3 \mathrm{H}, \mathrm{s}), 3.71(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{~J}=7.1 \mathrm{~Hz}), 1.36-1.50(4 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}\), \(d, J=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=466,468\).

\section*{Example 332: Synthesis of S-185}
[0632] S-185 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol and 1 -bromo-2-chloroethane respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine and 1,6-dibromohexane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.86-6.89(2 \mathrm{H}, \mathrm{m}), 6.76-6.81(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}\), \(q, J=6.6 \mathrm{~Hz}), 3.05(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.37-2.52(2 \mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{~J}=7.2 \mathrm{~Hz}), 1.23-1.49(6 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}\), d. \(J=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=480,482\).

\section*{Example 333: Synthesis of S-186}
[0633] S-186 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine and 1,7-dibromoheptane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{~J}=8.2 \mathrm{~Hz}), 6.87-6.90(2 \mathrm{H}, \mathrm{m}), 6.76-6.81(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}\), q, \(J=6.6 \mathrm{~Hz}), 3.05(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.51(2 \mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.3 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}), 1.20-1.49(8 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}\). d, \(J=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=494,496\).

Example 334: Synthesis of S-187
[0634] S-187 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol and 1 -bromo-2-chloroethane respectively by \(2,3,5,6\)-tetrachloro-4-mercaptopyridine and 1,8-dibromooctane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.88-6.90(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}\). q. \(J=6.6 \mathrm{~Hz}\) ), \(3.06(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.39-2.53(2 \mathrm{H}, \mathrm{m}), 1.55(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{~J}=7.3 \mathrm{~Hz}), 1.20-1.50(10 \mathrm{H}, \mathrm{m}), 1.35\) ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=508,510\).

\section*{Example 335: Synthesis of S-188}
[0635] S-188 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethythiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine and \((R) \cdot(+) \cdot 1-(1-\) naphthyl)ethylamine. \(m / z=444,446\).

Example 336: Synthesis of S-189
[0636] S-189 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine, 1,3-dibromopropane and (R)-(t)-1•(1-naphthyl)ethylamine.

\section*{EP \(0933 \mathbf{3 5 4} \mathbf{A 1}\)}
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}\) ), \(7.85-7.88\) ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.74 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), \(7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}\) ), 7.44\(7.52(3 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.08-3.21(2 \mathrm{H}, \mathrm{m}), 2.61-2.75(2 \mathrm{H}, \mathrm{m}), 1.69-1.76(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}\), \(J=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=458,460\).
[0637] S-190 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and ( R\()\)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(40 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.82-7.88(1 \mathrm{H}, \mathrm{m}), 7.69-7.75(2 \mathrm{H}, \mathrm{m}), 7.43-7.51(3 \mathrm{H}, \mathrm{m}), 4.04(1 \mathrm{H}, \mathrm{q}\) \(\mathrm{J}=6.6 \mathrm{~Hz}), 2.47-2.70(4 \mathrm{H}, \mathrm{m}), 1.78-1.82(4 \mathrm{H}, \mathrm{m}), 1.53(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=472,474\).

Example 338: Synthesis of S-191
[0638] S-191 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}) .7 .75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.45-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.03(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.49-2.63(2 \mathrm{H}, \mathrm{m}), 1.35-1.60(9 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=486,488\).

\section*{Example 339: Synthesis of S-192}
[0639] S-192 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo- 2 -chloroethane and ( R )-( + )- 3 -methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine, 1,6 -dibromohexane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.86-7.89(1 \mathrm{H}, \mathrm{m}), 7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{bs}), 7.46-7.54(3 \mathrm{H}\), \(\mathrm{m}), 4.69(1 \mathrm{H}, \mathrm{bs}), 3.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.51-2.64(2 \mathrm{H}, \mathrm{m}), 1.25-1.60(11 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=500,502\).

\section*{Example 340: Synthesis of S-193}
[0640] S-193 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5 -dimethylthiophenol, 1 -bromo- 2 -chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.86-7.89(1 \mathrm{H}, \mathrm{m}), 7.70-7.78(1 \mathrm{H}, \mathrm{m}), 7.46-7.55(3 \mathrm{H}, \mathrm{m}), 4.74(1 \mathrm{H}, \mathrm{bs})\), \(3.03(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.50-2.66(2 \mathrm{H}, \mathrm{m}), 1.05-1.65(13 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=514,516\).

Example 341: Synthesis of S-194
[0641] S-194 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo- 2 -chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrachloro-4-mercaptopyridine, 1,8-dibromooctane and (R)-(t)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.86-7.89(1 \mathrm{H}, \mathrm{m}), 7.72-7.78(2 \mathrm{H}, \mathrm{m}), 7.46-7.54(3 \mathrm{H}, \mathrm{m}), 4.72(1 \mathrm{H}, \mathrm{q}\), \(J=7.2 \mathrm{~Hz}), 3.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.52-2.57(2 \mathrm{H}, \mathrm{m}), 1.00-1.56(12 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=528,530\).

\section*{Example 342: Synthesis of S-195}
[0642] S-195 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by \(2,3,5,6\)-tetrafluoro-4-trifluoromethylthiophenol and (R)-(+)-1-(1-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=447\).

Example 343: Synthesis of S-196
[0643] S-196 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing

\section*{EP 0933354 A1}
the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzyimethylamine respectively by 2,3,5,6-tetrafluoro-4-tifluoromethylthiophenol, 1,3-dibromopropane and (R)-(+)-1-(1-naphthy) ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.16\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), \(7.84-7.86\) ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.73 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 7.60 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}\) ), \(7.43-\)
\(7.51(3 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}\), at \(\mathrm{J}=6.2 \mathrm{~Hz}), 3.02-3.15(2 \mathrm{H}, \mathrm{m}), 2.60-2.74(2 \mathrm{H}, \mathrm{m}), 1.67-1.77(2 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}\), \(J=6.2 \mathrm{~Hz}), \mathrm{m} / 2=461\).

\section*{Example 344: Synthesis of S-197}
[0644] S-197 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and (R)-(t)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrafluoro-4-trifluoromethylthiophenol, 1,6-dibromohexane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}\) ), \(7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.45-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.50-2.63(2 \mathrm{H}, \mathrm{m}), 1.48-1.60(4 \mathrm{H}, \mathrm{m}), 1.52(3 \mathrm{H}, \mathrm{d}\), \(J=6.4 \mathrm{~Hz}), 1.26-1.42(4 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=503\).

Example 345: Synthesis of S-198
[0645] S-198 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrafluoro-4-triftuoromethylthiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.45-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 4.65(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.00(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.50-2.63(2 \mathrm{H}, \mathrm{m}), 1.47-1.60(4 \mathrm{H}, \mathrm{m}), 1.52(3 \mathrm{H}, \mathrm{d}\), \(J=6.4 \mathrm{~Hz}), 1.23-1.41(6 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=517\).

Example 346: Synthesis of S-199
[0646] S-199 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,3,5,6-tetrafluoro-4-trifluoromethylthiophenol, 1,8-dibromooctane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.86-7.88(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}), 7.45-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 4.67(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.01(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.51-2.64(2 \mathrm{H}, \mathrm{m}), 1.20-1.70(15 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=531\).

\section*{Example 347: Synthesis of S-200}
[0647] S-200 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzyimethylamine respectively by 2,3,5,6-tetrafluoro-4-trifluoromethylthiophenol, 1,10-dibromodecane and (R) \(\cdot(+) \cdots 1-(1\)-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.51-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.44\) \(7.52(3 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.50-2.62(2 \mathrm{H}, \mathrm{m}), 1.54-1.62(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}\). \(J=6.6 \mathrm{~Hz}), 1.00-1.54(14 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=559\).

\section*{Example 348: Synthesis of S-201}
[0648] S-201 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzytmethylamine respectively by 2,3,5,6-tetrafluoro-4-trifluoromethylthiophenol, 1,12-dibromododecane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NM}\) R \(8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.45-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.03(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.50-2.63(2 \mathrm{H}, \mathrm{m}), 1.20-1.63(18 \mathrm{H}, \mathrm{m}), 1.51(3 \mathrm{H}, \mathrm{d}\), \(J=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=587\).
[0649] S-202 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 2 -isopropythiophenol and (R)-
(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.16\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}\) ), \(7.84-7.87\) ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.72 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 7.63 ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}\) ), \(7.41-\) \(7.54(3 \mathrm{H}, \mathrm{m}), 7.23-7.27(2 \mathrm{H}, \mathrm{m}), 7.13-7.16(1 \mathrm{H}, \mathrm{m}), 7.03-7.07(1 \mathrm{H}, \mathrm{m}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.45-3.54(1 \mathrm{H}, \mathrm{m})\). \(3.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}), 2.81(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.19-1.22(6 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=349\).

\section*{Example 350: Synthesis of S-203}
[0650] S-203 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 isopropylthiophenol, 1,3-dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.43-\) \(7.51(3 \mathrm{H}, \mathrm{m}), 7.22-7.29(2 \mathrm{H}, \mathrm{m}), 7.08-7.17(2 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.42-3.50(1 \mathrm{H}, \mathrm{m}), 2.87-3.00(2 \mathrm{H}, \mathrm{m})\), 2.62-2.76 (2H, m), 1.79-1.86 (2H, m), 1.48 (3H, d, \(J=6.4 \mathrm{~Hz}), 1.18-1.22(6 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=363\).

\section*{Example 351: Synthesis of S-204}
[0651] S-204 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 isopropythiophenol, 1,4-dibromobutane and ( \(R\) )-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.85-7.87(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.44-\) \(7.51(3 \mathrm{H}, \mathrm{m}), 7.22-7.27(2 \mathrm{H}, \mathrm{m}), 7.07-7.18(2 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.44-3.53(1 \mathrm{H}, \mathrm{m}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz})\), \(2.51-2.65(2 \mathrm{H}, \mathrm{m}), 1.63-1.70(4 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.21(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=377\).

Example 352: Synthesis of S-205
[0652] S-205 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 isopropythiophenol, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
> \(400 \mathrm{MHz} \mathrm{-}^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.44-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.22-7.28(2 \mathrm{H}, \mathrm{m}), 7.08-7.18(2 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.42-3.53(1 \mathrm{H}, \mathrm{m}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz})\), 2.49-2.62 (2H, m), 1.59-1.67 (2H, m), 1.40-1.56 (4H, m), \(1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.21(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=391\).

\section*{Example 353: Synthesis of S-206}
[0653] S-206 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol, 1 -bromo-2-chloroethane and ( R )-( + )-3-methoxy- \(\alpha\)-benzyimethylamine respectively by 2 isopropythhiophenol, 1,6 -dibromohexane and ( R )-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.41-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.21-7.29(2 \mathrm{H}, \mathrm{m}), 7.09-7.17(2 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.43-3.53(1 \mathrm{H}, \mathrm{m}), 2.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz})\), 2.49-2.62 (2H, m), 1.58-1.66 (2H, m), 1.45-1.55 (2H, m), 1.25-1.45 (4H, m), 1.49 (3H, m), 1.21-1.23 ( \(6 \mathrm{H}, \mathrm{m}\) ), \(\mathrm{m} / \mathrm{z}=405\).

\section*{Example 354: Synthesis of S-207}
[0654] S-207 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 isopropythiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.44-\)
\(7.52(3 \mathrm{H}, \mathrm{m}), 7.22-7.29(2 \mathrm{H}, \mathrm{m}), 7.09-7.17(2 \mathrm{H}, \mathrm{m}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.43-3.54(1 \mathrm{H}, \mathrm{m}), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz})\), 2.49-2.62 (2H, m), 1.57-1.65 (2H, m), 1.36-1.55 (4H, m), 1.49 (3H, d, J=6.6Hz), 1.25-1.30 (4H, m), 1.20-1.25 (6H. m), \(m / 2=419\).
[0657] S-210 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 2,4,5-trichlorothiophenol and 1,3-dibromopropane.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.44(1 \mathrm{H}, \mathrm{s}), 7.30(1 \mathrm{H}, \mathrm{s}), 7.22-7.25(1 \mathrm{H}, \mathrm{m}), 6.87-6.90(2 \mathrm{H}, \mathrm{m}), 6.77-6.80(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s})\), \(3.74(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.89-3.03(2 \mathrm{H}, \mathrm{m}), 2.54-2.70(2 \mathrm{H}, \mathrm{m}), 1.77-1.85(2 \mathrm{H}, \mathrm{m}), 1.36(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=403\), 405.

\section*{Example 358: Synthesis of S-211}
[0658] S-211 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by \(2,4,5\)-trichlorothiophenol and 1,4 -dibromobutane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.44(1 \mathrm{H}, \mathrm{s}), 7.21-7.27(2 \mathrm{H}, \mathrm{m}), 6.86-6.90(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}\), \(\mathrm{J}=6.6 \mathrm{~Hz}), 2.86-2.91(2 \mathrm{H}, \mathrm{m}), 2.43-2.58(2 \mathrm{H}, \mathrm{m}), 1.58-1.76(4 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=419,421\).

\section*{Example 359: Synthesis of S-212}
[0659] S-212 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 2,4,5-trichlorothiophenol and 1,5-dibromopentane.
\(400 \mathrm{MHz}^{-1} \mathrm{H}-\mathrm{NMR} 7.44(1 \mathrm{H}, \mathrm{s}), 7.21-7.26(2 \mathrm{H}, \mathrm{m}), 6.87-6.90(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}\), \(\mathrm{J}=6.6 \mathrm{~Hz}), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.41-2.55(2 \mathrm{H}, \mathrm{m}), 1.64-1.71(2 \mathrm{H}, \mathrm{m}), 1.43-1.56(4 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz})\). \(\mathrm{m} / \mathrm{z}=431,433\).

\section*{Example 360: Synthesis of S-213}
[0660] S-213 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 2,4,5-trichlorothiophenol and 1,6-dibromohexane.

\section*{EP 0933354 A1}
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.44(1 \mathrm{H}, \mathrm{s}), 7.21-7.26(2 \mathrm{H}, \mathrm{m}), 6.87-6.90(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72(1 \mathrm{H}, \mathrm{q}\) \(\mathrm{J}=6.6 \mathrm{~Hz}), 2.88(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.39-2.53(2 \mathrm{H}, \mathrm{m}), 1.63-1.71(2 \mathrm{H}, \mathrm{m}), 1.28-1.52(6 \mathrm{H}, \mathrm{m}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz})\). \(m / z=445,447\).

\section*{Example 361: Synthesis of S-214}
[0661] S-214 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 2,4,5-tichlorothiophenol and 1,7-dibromoheptane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.44(1 \mathrm{H}, \mathrm{s}), 7.21-7.26(2 \mathrm{H}, \mathrm{m}), 6.87-6.91(2 \mathrm{H}, \mathrm{m}), 6.76-6.80(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}\), \(\mathrm{J}=6.6 \mathrm{~Hz}\) ), 2.89 (2 \(\mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\) ), 2.39-2.53 (2H, m), 1.64-1.71 ( \(2 \mathrm{H}, \mathrm{m}\) ), 1.39-1.48 ( \(4 \mathrm{H}, \mathrm{m}\) ), 1.25-1.37 ( \(6 \mathrm{H}, \mathrm{m}\) ), 1.35 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=459,461\).

Example 362: Synthesis of S-215
[0662] S-215 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol and 1 -bromo-2-chloroethane respectively by \(2,4,5\)-trichlorothiophenol and 1,8 -dibromooctane.
\(400 \mathrm{MHz} .{ }^{.} \mathrm{H}-\mathrm{NMR} 7.44(1 \mathrm{H}, \mathrm{s}), 7.25(1 \mathrm{H}, \mathrm{s}), 7.24(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 6.87-6.90(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}\), m), \(3.81(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.89(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.38-2.52(2 \mathrm{H}, \mathrm{m}), 1.64-1.71(2 \mathrm{H}, \mathrm{m}), 1.40-1.50(4 \mathrm{H}\), m), \(1.35(3 H, d, J=6.6 H z), 1.25-1.35(6 H, m), m / z=473,735\).

\section*{Example 363: Synthesis of S-216}
[0663] S-216 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by \(2,4,5\)-trichlorothiophenol, 1,3 -dibromopropane and ( R\()-(+) \cdot 1\)-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}^{-1} \mathrm{H}-\) NMR \(8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.45-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{s}), 7.29(1 \mathrm{H}, \mathrm{s}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.90-3.05(2 \mathrm{H}, \mathrm{m}), 2.64-2.80(2 \mathrm{H}, \mathrm{m}), 1.81-1.89(2 \mathrm{H}\), \(\mathrm{m}), 1.52(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=423,425\).

\section*{Example 364: Synthesis of S-217}
[0664] S-217 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,4,5-trichlorothiophenol, 1,6-dibromohexane and (R)-(+)-1-(1-naphthy)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.86-7.88(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.45-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 7.44(1 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{s}), 4.65(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.86(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.51-2.66(2 \mathrm{H}, \mathrm{m}), 1.30-1.73\) ( \(8 \mathrm{H}, \mathrm{m}\) ), 1.52 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=465,467\).

\section*{Example 365: Synthesis of S-218}
[0665] S-218 was synthesized by almost the same method as the one employed for the synthesis of S -1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,4,5-trichlorothiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.86-7.88(1 \mathrm{H}, \mathrm{m}), 7.75\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), \(7.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), \(7.45-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{s}), 7.24(1 \mathrm{H}, \mathrm{s}), 4.66(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.51-2.64(2 \mathrm{H}, \mathrm{m}), 1.25-1.70\) \((10 \mathrm{H}, \mathrm{m}), 1.53(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=423,425\).

\section*{Example 366: Synthesis of S-219}
[0666] S-219 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by

\section*{EP 0933354 A1}

2,4,5-trichlorothiophenol, 1,8 -dibromooctane and (R)-(+)-1-(1-naphthy)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), \(7.86-7.89(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{bs}), 7.45-7.53(3 \mathrm{H}\), \(\mathrm{m}) .7 .44\) ( \(1 \mathrm{H}, \mathrm{s}\) ), 7.24 ( \(1 \mathrm{H}, \mathrm{s}\) ), 4.67 ( \(1 \mathrm{H}, \mathrm{bs}\) ), 2.88 ( \(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\) ), 2.51-2.64 ( \(2 \mathrm{H}, \mathrm{m}\) ), \(1.23-1.71\) ( \(15 \mathrm{H}, \mathrm{m}\) ), m/z=493,
[0671] S-224 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1 -bromo-2-chloroethane respectively by 6 -ethoxy-2-mercaptobenzothiazole and 1,7 dibromoheptane.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMRR} 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.9 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{dd}\), \(\mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}), 6.78-6.82(1 \mathrm{H}, \mathrm{m}), 4.06(3 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 3.79-3.85(1 \mathrm{H}, \mathrm{m}), 3.27(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz})\), 2.43-2.56 (2H, m), 1.73-1.80 (2H, m), 1.18-1.57 ( \(1 \mathrm{H}, \mathrm{m}\) ), \(1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=458\).

\section*{Example 372: Synthesis of S-225} 495.

\section*{Example 367: Synthesis of S-220}
[0667] S-220 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 6 -ethoxy-2-mercaptobenzothiazole and 1,3dibromopropane. \(m / z=402\).

Example 368: Synthesis of S-221
[0668] S-221 was symthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 6 -ethoxy-2-mercaptobenzothiazole and 1,4dibromobutane.
\(400 \mathrm{MHz} \cdot{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.20-7.24(2 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}), 6.87-6.89(2 \mathrm{H}, \mathrm{m})\), 6.77 ( 1 H, ddd, \(J=8.0 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}\) ), \(4.06(2 \mathrm{H}, q, J=6.9 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.28(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.45-2.61\) \((2 \mathrm{H}, \mathrm{m}), 1.75-1.88(2 \mathrm{H}, \mathrm{m}), 1.58-1.70(2 \mathrm{H}, \mathrm{m}), 1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=416\).

Example 369: Synthesis of S-222
[0669] S-222 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 6 -ethoxy-2-mercaptobenzothiazole and 1,5 dibromopentane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.20-7.25(2 \mathrm{H}, \mathrm{m}), 6.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}), 6.87-6.90(2 \mathrm{H}, \mathrm{m})\), 6.76-6.77 (1H, m), 4.03-4.11 (2H, m), 3.81 (3H, s), 3.72 (1H, q, J=6.6Hz), \(3.27(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 2.41-2.54(2 \mathrm{H}, \mathrm{m})\), 1.74-1.82 ( \(2 \mathrm{H}, \mathrm{m}\) ), 1.41-1.56 ( \(4 \mathrm{H}, \mathrm{m}\) ), \(1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=430\).

\section*{Example 370: Synthesis of S-223}
[0670] S-223 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 6 -ethoxy-2-mercaptobenzothiazole and 1,6 dibromohexane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.20-7.25(2 \mathrm{H}, \mathrm{m}), 6.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}), 6.88-6.90(2 \mathrm{H}, \mathrm{m})\), \(6.77(1 \mathrm{H}\), ddd, \(\mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}), 4.06(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}), 3.27(2 \mathrm{H}\), \(t, J=7.3 \mathrm{~Hz}), 2.40-2.53(2 \mathrm{H}, \mathrm{m}), 1.74-1.81(2 \mathrm{H}, \mathrm{m}), 1.25-1.53(6 \mathrm{H}, \mathrm{m}), 1.44(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz})\), \(\mathrm{m} / \mathrm{z}=444\).

\section*{Example 371: Synthesis of S-224}
[0672] S-225 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1 -bromo-2-chloroethane respectively by 6 -ethoxy-2-mercaptobenzothiazole and 1,8dibromooctane.

\section*{EP \(0933 \mathbf{3 5 4}\) A1}
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.21-7.24(2 \mathrm{H}, \mathrm{m}), 6.99(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{~J}=2.7 \mathrm{~Hz}), 6.87-6.91(2 \mathrm{H}, \mathrm{m})\), \(6.76-6.80(1 \mathrm{H}, \mathrm{m}), 4.06(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.28(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 1.99-2.53(2 \mathrm{H}\), m), 1.74-1.81 (2H, m), 1.24-1.48 (10H, m), \(1.44(3 H, t, J=7.0 H z), 1.37(3 H, d, J=6.6 H z), m / z=472\).

\section*{Example 373: Synthesis of S-226}
[0673] S-226 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 6 -ethoxy-2-mercaptobenzothiazole and (R)-(+)-1-(1-naphthyl)ethylamine. \(m / z=408\).

Example 374: Synthesis of S-227
[0674] S-227 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzyimethylamine respectively by 6-ethoxy-2-mercaptobenzothiazole, 1,3-dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine. \(m / z=422\).

\section*{Example 375: Synthesis of S-228}
[0675] S-228 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 6 -ethoxy-2-mercaptobenzothiazole, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.84-7.88(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}), 7.65(1 \mathrm{H}\), \(d, J=7.1 \mathrm{~Hz}), 7.44 .7 .52(3 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz})\), \(4.05(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.28(2 \mathrm{H}, \mathrm{dt}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}), 2.55-2.69(2 \mathrm{H}, \mathrm{m}), 1.81-1.90(2 \mathrm{H}, \mathrm{m}), 1.63-1.72(2 \mathrm{H}, \mathrm{m})\), \(1.50(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.43(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=436\).

\section*{Example 376: Synthesis of S-229}
[0676] S-229 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 6-ethoxy-2-mercaptobenzothiazole, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.83-7.88(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.64(1 \mathrm{H}\), \(d, J=7.3 \mathrm{~Hz}), 7.44-7.52(3 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{~J}=2.7 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz})\), \(4.06(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.27(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.52-2.65(2 \mathrm{H}, \mathrm{m}), 1.70-1.82(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 1.44(3 \mathrm{H}\), \(t, J=7.0 \mathrm{~Hz}), 1.41-1.60(4 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=450\).

\section*{Example 377: Synthesis of S-230}
[0677] S-230 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 6-ethoxy-2-mercaptobenzothiazole, 1,6 -dibromohexane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.82-7.88(1 \mathrm{H}, \mathrm{m}), 7.71-7.75(2 \mathrm{H}, \mathrm{m}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}), 7.41-7.53\) \((3 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{~J}=2.7 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.05(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.26\) ( \(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}\) ), \(2.50-2.64(2 \mathrm{H}, \mathrm{m}), 1.73-1.81(2 \mathrm{H}, \mathrm{m}), 1.30-1.55(6 \mathrm{H}, \mathrm{m}), 1.51(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), 1.43(3 \mathrm{H}, \mathrm{t}\). \(\mathrm{J}=7.0 \mathrm{~Hz}\) ), \(\mathrm{m} / \mathrm{z}=464\).

\section*{Example 378: Synthesis of S-231}
[0678] S-231 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 6 -ethoxy-2-mercaptobenzothiazole, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{1}{ }^{1} \mathrm{H} \cdot \mathrm{NMR} 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.86-7.88(1 \mathrm{H}, \mathrm{m}), 7.72-7.78(2 \mathrm{H}, \mathrm{m}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}), 7.45-7.55\) \((3 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.05(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}), 3.25(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.52\) \(2.66(2 \mathrm{H}, \mathrm{m}), 1.64-1.82(2 \mathrm{H}, \mathrm{m}), 1.59(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), 1.43(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.03-1.68(8 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=478\).

\section*{EP 0933354 A1}

Example 379: Synthesis of S-232
[0679] S-232 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzyimethylamine respectively by 6 - ethoxy-2-mercaptobenzothiazole, 1,8 -dibromooctane and (R)-( + ) \(\cdot 1 \cdot(1-\) naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.16\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}\) ), 7.86-7.88 ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.68-7.76 (3H, m), 7.45-7.53 (3H, m), 7.21 (1H, d, \(J=2.4 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 4.06(2 \mathrm{H}, q, J=7.0 \mathrm{~Hz}), 3.27(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz})\), \(2.51-2.64(2 \mathrm{H}, \mathrm{m}), 1.69-1.80(2 \mathrm{H}, \mathrm{m}), 1.54(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), 1.43(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}), 1.20-1.60(10 \mathrm{H}, \mathrm{m}), \mathrm{m} / \mathrm{z}=492\).

\section*{Example 380: Synthesis of S-233}
[0680] S-233 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the \(\mathbf{2 , 5}\)-dimethythiophenol and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,4 -dichlorothiophenol and (R)-(+)-1-(1-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=375\).

\section*{Example 381: Synthesis of S-234}
[0581] S-234 was synthesized by almost the same method as the one employed for the symthesis of S-1 but replacing the 2,5-dimethythiophenol, 1 -bromo- 2 -chloroethane and ( \(R\) )-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by \(2,4-\) dichlorothiophenol, 1,3-dibromopropane and ( R )-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.18\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}\) ), \(7.84-7.89(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.45-\) \(7.56(3 \mathrm{H}, \mathrm{m}), 7.34-7.56(1 \mathrm{H}, \mathrm{m}), 7.33-7.34(2 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.88-3.04(2 \mathrm{H}, \mathrm{m}), 2.63-2.78(2 \mathrm{H}, \mathrm{m})\), \(1.79-1.87(2 \mathrm{H}, \mathrm{m}), 1.50(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=389\).

\section*{Example 382: Synthesis of S-235}
[0682] S-235 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and ( R )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,4 dichlorothiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.18\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), 7.86-7.88 ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.75 ( \(1 \mathrm{H}, \mathrm{bs}\) ), 7.67 ( \(1 \mathrm{H} . \mathrm{bs}\) ), 7.45-7.53 ( \(3 \mathrm{H}, \mathrm{m}\) ), 7.35\(7.36(1 \mathrm{H}, \mathrm{m}), 7.13-7.14(2 \mathrm{H}, \mathrm{m}), 4.61-4.69(1 \mathrm{H}, \mathrm{m}), 2.84-2.89(2 \mathrm{H}, \mathrm{m}), 2.52-2.68(2 \mathrm{H}, \mathrm{m}), 1.48-1.73(7 \mathrm{H}, \mathrm{m})\), \(m / z=403\).

\section*{Example 383: Synthesis of S-236}
[0583] S-236 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethyithiophenol, 1 -bromo-2-chloroethane and ( R\()-(+)-3\)-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,4 dichlorothiophenol, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.86-7.88(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.45-\) \(7.53(3 \mathrm{H}, \mathrm{m}), 7.35-7.37(1 \mathrm{H}, \mathrm{m}), 7.14-7.16(2 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 2.87(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.51-2.64(2 \mathrm{H}, \mathrm{m})\). \(1.60-1.68(2 \mathrm{H}, \mathrm{m}), 1.42-1.58(4 \mathrm{H}, \mathrm{m}), 1.51(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=417\).

\section*{Example 384: Synthesis of \(\mathrm{S}-237\)}
[0684] S-237 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethythiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2,5 dichlorothiophenol, 1,3-dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.84-7.87(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.44-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.19 \cdot 7.25(2 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.90-3.06(2 \mathrm{H}, \mathrm{m}), 2.62-\) \(2.80(2 \mathrm{H}, \mathrm{m}), 1.86(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{~J}=7.0 \mathrm{~Hz}), 1.50(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=389\).

\section*{EP 0933354 A1}

Example 385: Synthesis of S-238
[0685] S-238 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 2,5-
[0690] S-243 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 -trifluoromethoxythiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthy)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.78-7.81(1 \mathrm{H}, \mathrm{m}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.37-\) \(7.45(3 \mathrm{H}, \mathrm{m}), 7.21-7.24(2 \mathrm{H}, \mathrm{m}), 7.03-7.05(2 \mathrm{H}, \mathrm{m}), 4.55(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 2.80(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.41-2.55(2 \mathrm{H}, \mathrm{m})\), \(1.49-1.57(2 \mathrm{H}, \mathrm{m}), 1.18-1.45(8 \mathrm{H}, \mathrm{m}), 1.42(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=461\).

\section*{EP 0933354 A1}

Example 391: Synthesis of S-244
[0691] S-244 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo- 2 -chloroethane and (R)-( + )-3-methoxy- \(a\)-benzylmethylamine respectively by 4 -tri-

Example 392: Synthesis of S-245
[0692] S-245 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol by 2-chlorobenzylmercaptan.

400MHz \({ }^{1} \mathrm{H}-\mathrm{NMR} 7.33-7.38(1 \mathrm{H}, \mathrm{m}), 7.28-7.31(1 \mathrm{H}, \mathrm{m}), 7.47-7.26(3 \mathrm{H}, \mathrm{m}), 6.87-6.88(2 \mathrm{H}, \mathrm{m}), 6.78(1 \mathrm{H}, \mathrm{ddd}\), \(\mathrm{J}=8.1 \mathrm{~Hz}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}\) ), \(3.81(3 \mathrm{H}, \mathrm{s}), 3.77(2 \mathrm{H}, \mathrm{s}), 3.70(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}), 2.57-2.73(4 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}\), \(J=6.5 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=335\).
[0696] S-249 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 -chlorobenzylmercaptan and (R)-(+)-1-(1-naphthyl) ethylamine.
\(400 \mathrm{MHz}^{-1} \mathrm{H}-\mathrm{NMR} 8.16\) ( \(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}\) ), \(7.85-7.87\) ( \(1 \mathrm{H}, \mathrm{m}\) ), \(7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}\) ), \(7.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.44-\) 7.53 (3H, m), 7.24-7.34 (2H, m), 7.13-7.18 (2H, m), 4.60 ( \(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), 3.77 (2H, s), 2.63-2.78 (4H, m), 1.48 ( \(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}\) ), m/z=355.
[0697] S-250 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzyimethylamine respectively by 2 - chlorobenzylmercaptan, 1,3-dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.84-7.88(1 \mathrm{H}, \mathrm{m}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.44-\) \(7.52(3 \mathrm{H}, \mathrm{m}), 7.28-7.34(2 \mathrm{H}, \mathrm{m}), 7.12-7.18(2 \mathrm{H}, \mathrm{m}), 4.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.79(2 \mathrm{H}, \mathrm{s}), 2.45-2.72(4 \mathrm{H}, \mathrm{m}), 1.75-\) \(1.81(2 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=369\).

Example 398: Synthesis of S-251
[0698] S-251 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol by 4-chlorobenzyImercaptan.

400MHz- \({ }^{1} \mathrm{H}-\mathrm{NMR} 7.21-7.26(3 \mathrm{H}, \mathrm{m}), 7.15-7.19(2 \mathrm{H}, \mathrm{m}), 6.85-6.87(2 \mathrm{H}, \mathrm{m}), 6.76-6.80(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.68\) \((1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 2.49-2.67(4 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=335\).

\section*{Example 399: Synthesis of S-252}
[0699] S-252 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 4-chlorobenzylmercaptan and 1,3-dibromopropane.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 7.19-7.27(5 \mathrm{H}, \mathrm{m}), 6.85-6.87(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.69(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz})\), \(3.63(2 \mathrm{H}, \mathrm{s}), 2.35-2.59(4 \mathrm{H}, \mathrm{m}), 1.63-1.73(2 \mathrm{H}, \mathrm{m}), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=349\).

\section*{Example 400: Synthesis of S-253}
[0700] S-253 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 4-chlorobenzylmercaptan and (R)-(+)-1-(1-naphthyl)ethylamine. \(m / z=355\).

\section*{Example 401: Synthesis of \(\mathrm{S}-254\)}
[0701] S-254 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and ( \(R\) )-(+)-3-methoxy-a-benzylmethylamine respectively by 4chlorobenzyimercaptan, 1,3-dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz-}{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}), 7.85-7.88(1 \mathrm{H}, \mathrm{m}), 7.73-7.75(1 \mathrm{H}, d, \mathrm{~J}=8.1 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz})\),
7.45-7.53 (3H, m), 7.17-7.25 (4H, m), \(4.60(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}), 3.61(2 \mathrm{H}, \mathrm{s}), 2.55-2.71(2 \mathrm{H}, \mathrm{m}), 2.37-2.48(2 \mathrm{H}, \mathrm{m})\), \(1.70-1.78(2 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=369\).

\section*{Example 402: Synthesis of S-255}
[0702] S-255 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2 -quinolinethiol and 1,4-dibromobutane.
\(400 \mathrm{MHz} .^{1} \mathrm{H}-\mathrm{NMR} 7.83-7.88(2 \mathrm{H}, \mathrm{m}), 7.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.59-7.63(1 \mathrm{H}, \mathrm{m}), 7.37-7.41(1 \mathrm{H}, \mathrm{m}), 7.15-7.24(2 \mathrm{H}\), m), 6.86-6.90 (2H, m), 6.73-6.78(1H, m), 3.78(3H, s), 3.73 (1H, q, J=6.8Hz), 3.30 (2H, t, J=6.8Hz), 2.47-2.61 (2H, \(\mathrm{m}), 1.58-1.84(4 \mathrm{H}, \mathrm{m}), 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=366\).

\section*{Example 403: Synthesis of S-256}
[0703] S-256 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and 1-bromo-2-chloroethane respectively by 2 -quinolinethiol and 1,5-dibromopentane.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.67-6.70(1 \mathrm{H}, \mathrm{m}), 7.60-7.64(1 \mathrm{H}, \mathrm{m}), 7.38-7.42\)

\section*{EP \(0933 \mathbf{3 5 4}\) A1}
( \(1 \mathrm{H}, \mathrm{m}\) ), \(7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.2 \mathrm{~Hz}, \mathrm{~J}=6.2 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.86-6.90(2 \mathrm{H}, \mathrm{m}), 6.75-6.78(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}\), s), \(3.74(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.32(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.40-2.55(2 \mathrm{H}, \mathrm{m}), 1.76(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{~J}=7.4 \mathrm{~Hz}), 1.44-1.59\) ( 4 H, m), \(1.34(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=380\).

Example 404: Synthesis of S-257
[0704] S-257 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethythiophenol and 1-bromo-2-chloroethane respectively by 2-quinolinethiol and 1.6-dibromohexane.
\(400 \mathrm{MHz}{ }^{-1} \mathrm{H}-\mathrm{NMR} 7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}), 7.61-7.64(1 \mathrm{H}\), m). \(7.38-7.43(1 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{~J}=8.0 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.88-6.90(2 \mathrm{H}, \mathrm{m}), 6.76-6.79(1 \mathrm{H}\), \(\mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.74(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.34(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.41-2.54(2 \mathrm{H}, \mathrm{m}), 1.78(2 \mathrm{H}, \mathrm{tt}, \mathrm{J}=7.2 \mathrm{~Hz}, J=7.2 \mathrm{~Hz})\), \(1.41-1.54(4 \mathrm{H}, \mathrm{m}), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=394\).

Example 405: Synthesis of S-258
[0705] S-258 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 quinolinethiol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR} 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.83-7.87(3 \mathrm{H}, \mathrm{m}), 7.73(\mathrm{IH}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.65-7.70(2 \mathrm{H}, \mathrm{m}), 7.56-7.60\) ( \(1 \mathrm{H}, \mathrm{m}\) ), 7.43-7.52 (3H, m), 7.37-7.42 ( \(1 \mathrm{H}, \mathrm{m}\) ), \(7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.32(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz})\), 2.59-2.75 (2H, m), 1.67-1.87 (4H, m), \(1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=386\).

\section*{Example 406: Synthesis of S-259}
[0706] S-259 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzyimethylamine respectively by 2 quinolinethiol, 1,5-dibromopentane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.83-7.92(3 \mathrm{H}, \mathrm{m}), 7.58-7.74(4 \mathrm{H}, \mathrm{m}), 7.37-7.52(4 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{d}\), \(J=8.4 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.32(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.54-2.66(2 \mathrm{H}, \mathrm{m}), 1.40-1.82(6 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz})\), \(\mathrm{m} / \mathrm{z}=400\).

\section*{Example 407: Synthesis of S-260}
[0707] S-260 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 2 quinolinethiol, 1,6-dibromohexane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR} 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.37-7.82(1 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}), 4.60-4.70(1 \mathrm{H}, \mathrm{m}), 3.30(2 \mathrm{H}, \mathrm{t}\), \(\mathrm{J}=7.4 \mathrm{~Hz}\) ), 2.46-2.83 (4H, m), 1.20-1.77 (9H, m), \(\mathrm{m} / \mathrm{z}=414\).

\section*{Example 408: Synthesis of S-261}
[0708] S-261 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 -methylthiophenol and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.13-8.16(1 \mathrm{H}, \mathrm{m}), 7.83-7.89(1 \mathrm{H}, \mathrm{m}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 7.41-7.52\) ( \(3 \mathrm{H}, \mathrm{m}\) ), \(7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.02-7.05(2 \mathrm{H}, \mathrm{m}), 4.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.02(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}), 2.71-2.82(2 \mathrm{H}, \mathrm{m})\), \(2.29(3 \mathrm{H}, \mathrm{s}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=321\).

\section*{Example 409: Synthesis of S-262}
[0709] S-262 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)- \(++1-3\)-methoxy- \(\alpha\)-benzyimethylamine respectively by 4methylthiopheal, 1,3-dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine.
\(400 \mathrm{MHz} \cdot{ }^{-1} \mathrm{H}-\mathrm{NMR} 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}), 7.83-7.88(1 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.44-\) \(7.51(3 \mathrm{H}, \mathrm{m}), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.04-7.07(2 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}), 2.85-2.96(2 \mathrm{H}, \mathrm{m}), 2.61-2.74(2 \mathrm{H}\), m), \(2.30(3 \mathrm{H}, \mathrm{s}), 1.79(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{~J}=7.1 \mathrm{~Hz}), 1.47(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), \mathrm{m} / \mathrm{z}=335\).

\section*{Example 415: Synthesis of F-37}
[0716] N -(2-(2',5'-Dichlorophenylthio)ethyl)phthalimide (F-8) (7.06 g) was added to ethanol ( 120 ml ). After further adding hydrazine monohydrate ( 6.9 ml ), the obtained mixture was heated under reflux for 1.5 hours. Then it was brought to

\section*{Example 410: Synthesis of S-263}
[0710] S-263 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 5-fluoro-2-mercaptobenzothiazole, 1,5 -dibromopentane and (R)-(+) \(-1-(1-\) naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=424\).

\section*{Example 411: Synthesis of S-264}
[0711] S-264 was synthesized by almost the same method as the one employed for the synthesis of \(\mathrm{S}-1\) but replacing the 2,5-dimethylthiophenol, 1-bromo-2-chloroethane and (R)-(+)-3-methoxy-a-benzylmethylamine respectively by 5-fluoro-2-mercaptobenzothiazole, 1,6-dibromohexane and \((R) \cdot(+) \cdot 1-(1-n a p h t h y l)\) ethylamine. \(\mathrm{m} / \mathrm{z}=438\).

\section*{Example 412: Synthesis of S-265}
[0712] K-2117 (hydrochloride) ( \(110 \mathrm{mg}, 0.267 \mathrm{mmol}\) ) was dissolved in 2.2 ml of toluene (reagent grade). Next, mchloroperbenzoic acid ( \(56.0 \mathrm{mg}, 0.325 \mathrm{mmol}\) ) was added thereto at room temperature and the obtained mixture was stirred at the same temperature for 1 hour.
[0713] After confirming the completion of the reaction by TLC, a saturated aqueous solution of sodium hydrogencarbonate and a saturated aqueous solution of sodium thiosulfate were added thereto at room temperature and the reaction mixture was subjected to separatory extraction with chloroform and a saturated aqueous solution of sodium chloride and washed. The organic layer thus obtained was dried over anhydrous sodium sulfate. The obtained organic layer was further concentrated under reduced pressure and the residue was purified by column chromatography [silica gel, 5 g , chloroform/methanol \(=150 / 1\) ] to thereby give a pale yellow, syrupy compound \(\mathrm{S}-265\) ( \(82 \mathrm{mg}, 0.214 \mathrm{mmol}\), yield: \(\mathbf{7 8 . 3 \% ) .} \mathbf{m} / \mathbf{z}=391\).

\section*{Example 413: Synthesis of S-266}
[0714] K-2117 (hydrochloride) ( \(500 \mathrm{mg}, 0.121 \mathrm{mmol}\) ) was dissolved in 20 ml of toluene (reagent grade). Next, m-chloroperbenzoic acid ( \(58.0 \mathrm{mg}, 0.336 \mathrm{mmol}\) ) was added thereto at room temperature and the obtained mixture was stirred at the same temperature for 8 hours. After confirming the completion of the reaction by TLC, a saturated aqueous solution of sodium hydrogencarbonate and a saturated aqueous solution of sodium thiosulfate were added thereto at room temperature and the reaction mixture was subjected to separatory extraction with chloroform and a saturated aqueous solution of sodium chloride and washed. The organic layer thus obtained was dried over anhydrous sodium sulfate. The obtained organic layer was further concentrated under reduced pressure and the residue was purified by column chromatography [silica gel, 5 g , chloroform/methanol \(=150 / 1\) ] to thereby give a pale yellow, syrupy compound S-266 ( 28 mg , 0.0686 mmol , yield: \(56.7 \%\) ) \(\mathrm{m} / \mathrm{z}=408\).

\section*{Example 414: Synthesis of F-8}
[0715] 2,5-Dichlorothiophenol ( 5 g ) was dissolved in acetonitrile ( 100 ml ). Then N -(2-bromoethylphthalimide) ( 7.8 g ) was added thereto while stirring at \(0^{\circ} \mathrm{C}\). Further, potassium carbonate ( 4.04 g ) was added thereto. After 1 hour, water was added and the resulting mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous solution of sodium chloride, dried over sodium sulfate, filtered and concentrated. The crystals thus obtained were washed with chloroform to thereby give N -( 2 -( \(2^{\prime}, 5^{\prime}\)-dichlorophenylthio)ethyl)phthalimide ( \(\mathrm{F}-8\) ) ( 8.28 g\() . \mathrm{MS} \mathrm{m} / \mathrm{z}\) : \(351\left(\mathrm{M}^{+}\right)\). room temperature and water was added thereto followed by extraction with chloroform. The organic layer was washed with a saturated aqueous solution of sodium chloride, dried over sodium sulfate, filtered and concentrated. The crude product thus obtained was purified by column chromatography (silica gel, chloroform/methanol \(=20: 1\) ) to thereby give 2-(2',5-dichlorophenylthio)ethylamine (F-37) (4.29g). MS m/z : \(221\left(\mathrm{M}^{+}\right)\).
[0717] 2-(2',5'-Dichlorophenythio)ethylamine ( \(\mathrm{F}-37\) ) ( 250 mg ) was mixed with \(3^{\prime}\)-methoxyacetophenone ( 0.15 ml ). After adding titanium tetraisopropoxide ( 0.4 ml ), the mixture was stirred for 3 hours. After adding ethanol ( 3 ml ), sodium room temperature and stirred for 15 hours. The reaction mixture was concentrated and ethyl acetate and water were added thereto. The insoluble matters were filtered off and the organic layer was washed with a saturated aqueous solution of sodium chloride, dried over sodium sulfate, filtered and concentrated. The crude product thus obtained was purified by column chromatography (silica gel, chloroform/methanol \(=50: 1\) ) to thereby give ( \(\mathbf{~}\) )- \(\mathrm{N}-(1-(3\) -methoxyphenyl)ethyl)-2-(2',5'dichlorophenylthio)ethylamine ( \(\mathrm{F} \cdot 12\) ) ( 146 mg ). MS m/z : 355 ( \(\mathrm{M}^{+}\)).

\section*{Example 417: Synthesis of F-13}
[0718] The procedure employed for the synthesis of F-12 was repeated but replacing the 3 '-methoxyacetophenone by \(3^{\prime}, 4^{\prime}\)-dimehtoxyacetophenone to thereby give ( \(\pm\) )-N-(1-(3,4-dimethoxyphenyl)ethyl)-2-(2', 5'-dichlorophenylthio)ethylamine ( F -13). MS m/z:385 ( \(\mathrm{M}^{+}\)).

Example 418: Synthesis of F-14
[0719] The procedure employed for the synthesis of \(\mathrm{F}-12\) was repeated but replacing the 3 '-methoxyacetophenone by \(3^{\prime}\)-methylacetophenone to thereby give ( \(\left.\mathbf{~}\right)\) - N -(1-(3-methylphenyl)ethyl)-2-(2',5'dichiorophenylthio)ethylamine (F14). MS m/z : \(339\left(\mathrm{M}^{+}\right)\).

\section*{Example 419: Synthesis of F-15}
[0720] The procedure employed for the synthesis of F-12 was repeated but replacing the 3 -methoxyacetophenone by 4'-methylacetophenone to thereby give ( \(\mathbf{\pm}\) )- N -(1-(4-methylphenyl)ethyl)-2-(2',5'-dichlorophenylthio)ethylamine (F13). MS m/z: \(339\left(\mathrm{M}^{+}\right)\).

Example 420: Synthesis of F-16
[0721] The procedure employed for the synthesis of \(\mathrm{F}-12\) was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3,4,5\)-trimethoxyacetophenone to thereby give ( \(\pm\) ) N (1-(3,4,5-trimethoxyphenyl)ethyl)-2-(2',5'dichlorophenyithio) ethylamine (F-16). MS m/z: 415 ( \(\mathrm{M}^{+}\)).

Example 421: Synthesis of F-17
[0722] The procedure employed for the synthesis of \(F-12\) was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by 4 '-hydroxyacetophenone to thereby give ( \(\pm\) )- N -(1-(4-hydroxyphenyl)ethyl)-2-(2', \(\mathbf{5}^{\prime}\)-dichlorophenylthio)ethylamine ( F 17). MS m/z: \(341\left(\mathrm{M}^{+}\right)\).

\section*{Example 422: Synthesis of F-18}
[0723] The procedure employed for the synthesis of F-12 was repeated but replacing the 3'-methoxyacetophenone by \(3^{\prime}\)-(trifluoromethyl) acetophenone to thereby give ( \(\left.\mathbf{~}\right)-\mathrm{N}\)-(1-(3-trifiuoromethylphenyl)ethyl)-2-(2',5'-dichlorophenyithio)ethylamine (F-18). MS m/z: \(393\left(\mathrm{M}^{+}\right)\).

\section*{Example 423: Synthesis of F-21}
[0724] The procedure employed for the synthesis of F-12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(4^{\prime}\)-hydroxy- \(3^{\prime}\)-methoxyacetophenone to thereby give ( \(\pm\) )-N-(1-(4-hydroxy-3-methoxyphenyl)ethyl)-2-(2',5'-dichdorophenylthio)ethylamine ( \(\mathrm{F}-21\) ). MS m/z : \(371\left(\mathrm{M}^{+}\right)\).

Example 424: Synthesis of F-22
55
[0725] The procedure employed for the synthesis of \(F \cdot 12\) was repeated but replacing the \(3^{\circ}\)-methoxyacetophenone by 4'-bromoacetophenone to thereby give (土)-N-(1-(4-bromophenyl)ethyl)-2-(2',5'-dichlorophenylthio)ethylamine (F22). MS m/2 : \(405\left(\mathrm{M}^{+}\right)\).

\section*{Example 425: Synthesis of F-23}
[0726] The procedure employed for the synthesis of F -12 was repeated but replacing the 3 '-methoxyacetophenone by \(3^{\prime}\)-bromoacetophenone to thereby give ( \(\mathbf{~}\) )- N -( 1 -( 3 -bromophenyl)ethy) \()-2\)-( 2,5 '-dichlorophenythio)ethylamine ( F -
[0729] The procedure employed for the synthesis of F -12 was repeated but replacing the 3 '-methoxyacetophenone by \(2^{\prime}, 5^{\prime}\)-dichloroacetophenone to thereby give ( \(\pm\) )- N -( 1 -(2,5-chlorophenyl)ethyl)-2-(2', \(5^{\prime}\)-dichlorophenythio)ethylamine (F-30). MS m/z : 395 ( \(\mathrm{M}^{+}\)).

Example 429: Synthesis of F-31
[0730] The procedure employed for the synthesis of F -12 was repeated but replacing the 3'-methoxyacetophenone by \(3^{3}\)-fluoro-4'-methoxyacetophenone to thereby give ( \(\pm\) ) N -(1-(3-fluoro-4-methoxyphenyl)ethyl)-2-(2',5'dichlorophenylthio)ethylamine ( \(F-31\) ). MS m/z: \(373\left(\mathrm{M}^{+}\right)\).

Example 430: Synthesis of F-35
[0731] The procedure employed for the synthesis of F-12 was repeated but replacing the \(3^{3}\)-methoxyacetophenone by \(3^{\prime}\)-(trifluoromethoxy)acetophenone to thereby give ( \(\pm\) )- N -( 1 -(3-trifluoromethoxyphenyi)ettyi) -2 -( \(\mathbf{2}^{2}, 5\) 'dichlorophenylthio)ethylamine ( \(\mathrm{F}-35\) ). MS m/z: \(409\left(\mathrm{M}^{+}\right)\).

Example 431: Synthesis of F-48
[0732] The procedure employed for the synthesis of F-12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}, 4^{\prime}\)-dimethylacetophenone to thereby give ( \(\pm\) )- N -(1-(3,4-dimethylphenyl)ethy) \()-2\)-( \(2^{\prime}, 5^{\prime}\)-dictlorophenyithio)ethylamine (F-48). MS m/z: 353 ( \(\mathrm{M}^{+}\)).

Example 432: Synthesis of F-49
[0733] The procedure employed for the synthesis of \(\mathrm{F}-12\) was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by 2 '-chloroacetophenone to thereby give ( \(\mathbf{~}\) )-N-( 1 -(2-chlorophenyl)ethyl)-2-(2',5'-dichlorophenylthio)ethylamine (F-49). MS m/z: \(359\left(\mathrm{M}^{+}\right)\).

\section*{Example 433: Synthesis of F-50}
[0734] The procedure employed for the synthesis of F -12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}\)-chloroacetophenone to thereby give \(( \pm)-N-\left(1-\left(3-\right.\right.\) chlorophenyl)ethyl) -2 -( \(2,55^{\prime}\)-dichlorophenythio)ethylamine ( \(\mathrm{F}-50\) ). MS m/z: \(359\left(M^{+}\right)\).

\section*{Example 434: Synthesis of F-51}
[0735] The procedure employed for the synthesis of F -12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(4^{-}\)-chloroacetophenone to thereby give \(( \pm)-\mathrm{N}\)-( 1 -(4-chlorophenyl) ethyi)-2-(2, \(5^{\prime}\)-dichlorophenythio)ethylamine ( \(F-51\) ).

\section*{EP 0933354 A1}

MS m/z : \(359\left(\mathrm{M}^{+}\right)\).

\section*{Example 435: Synthesis of F-52}

5 [0736] The procedure employed for the synthesis of F -12 was repeated but replacing the 3 -methoxyacetophenone by \(3^{\prime}\)-fluoroacetophenone to thereby give ( \(\mathbf{~}\) )-N-(1-(3-fluorophenyl)ethyl)-2-(2',5-dichlorophenythio)ethylamine ( F -52). MS m/z: 343 ( \(\mathrm{M}^{+}\)).

\section*{Example 436: Synthesis of F-53}
[0737] The procedure employed for the synthesis of F -12 was repeated but replacing the 3'-methoxyacetophenone by \(4^{\prime}\)-fluoroacetophenone to thereby give ( \(\left.\mathbf{~}\right) \cdot \mathrm{N}-(1-(4\)-fluorophenyl)ethyl)-2.(2',5'-dichlorophenylthio)ethylamine ( F -53). MS m/z: 343 ( \(\mathrm{M}^{+}\)).

Example 437: Synthesis of F-54
[0738] The procedure employed for the synthesis of F-12 was repeated but replacing the 3'-methoxyacetophenone by \(2^{\prime}, 5^{\prime}\)-dimethylacetophenone to thereby give ( \(\left.\mathbf{~}\right)\) - N -(1-(2,5-dimethylphenyl)ethyl)-2-(2', \(5^{\prime}\)-dichlorophenyithio)ethylamine ( \(F-54\) ). MS m/z : 353 ( \(\mathrm{M}^{+}\)).

Example 438: Synthesis of F-55
[0739] The procedure employed for the synthesis of F -12 was repeated but replacing the 3 '-methoxyacetophenone by \(2^{\prime}, 4^{\prime}\)-dimethylacetophenone to thereby give ( \(\left.\mathbf{~}\right)\) - N -(1-(2,4-dimethylphenyl)ethyl)-2-(2', \(5^{\prime}\)-dichlorophenylthio)ethylamine (F-55). MS mz: 353 ( \(\mathrm{M}^{+}\)).

Example 439: Synthesis of F-57
[0740] The procedure employed for the synthesis of F -12 was repeated but replacing the 3 '-methoxyacetophenone by 2',4-dichloroacetophenone to thereby give ( \(\mathbf{~}\) )- N -(1-(2,4-dichloropheny) ethyl)-2-(2',5'dichlorophenythio)ethylamine ( \(F-57\) ). MS m/z: 395 ( \(\mathrm{M}^{+}\)).

\section*{Example 440: Synthesis of F-58}
[0741] The procecture employed for the synthesis of F-12 was repeated but replacing the 3'-methoxyacetophenone by \(3^{\prime}, 4\)-dichloroacetophenone to thereby give ( \(\pm\) )-N-(1-(3,4-dichlorophenyl)ethyl)-2-(2',5-dichlorophenylthio)ethylamine (F-58). MS m/z: 395 ( \(\mathrm{M}^{+}\)).

Example 441: Synthesis of F-63
[0742] \(3^{3}\)-Hydroxyacetophenone ( 200 mg ) was dissolved in acetonitrile ( 4 mI ). After adding ethyl iodide ( 0.2 ml ) and potassium carbonate ( 347 mg ), the mixture was stirred at \(70^{\circ} \mathrm{C}\) for 9 hours. After 9 hours, water and ethyl acetate were added to the reaction mixture followed by separation. The organic layer was washed with a saturated aqueous solution of sodium chloride, dried over sodium sulfate, fittered and concentrated. The crude product thus obtained was purified by silica gel chromatography ( \(n\)-hexane : ethyl acetate \(=\mathbf{8 : 1}\) ) to thereby give \(\mathbf{2 0 4} \mathbf{~ m g}\) of 3 'ethoxyacetophenone. The procedure employed for the synthesis of F -12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{3}\)-ethoxyacetophenone to thereby give ( \(\pm\) )-N-(1-(3-ethoxyphenyl)ethy)-2-(2', \(5^{\prime}\)-dichlorophenylthio) ethylamine ( \(F-63\) ). MS \(\mathrm{m} / \mathrm{z}: 369\) \(\left(\mathrm{M}^{+}\right)\).

Example 442: Synthesis of F-64
[0743] The procedure employed for the synthesis of 3 -ethoxyacetophenone was repeated but replacing the ethyl iodide by n-propyl iodide to thereby give 3'-n-propoxyacetophenone. The procedure employed for the synthesis of F-12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}\)-n-propoxyacetophenone to thereby give ( \(\mathbf{~}\) )- N -( \(1 \cdot(3-\mathrm{n}-\) propoxypheny \({ }^{\prime}\) )ethyl)-2-(2',5'-dichlorophenylthio)ethylamine ( \(F-64\) ). MS m/z: \(383\left(\mathrm{M}^{+}\right)\).

Example 443: Synthesis of F-65
[0744] The procedure employed for the synthesis of \(3^{\prime}\)-ethoxyacetophenone was repeated but replacing the ethyl iodide by \(n\)-butyl iodide to thereby give \(3^{\prime}-n\)-butoxyacetophenone. The procedure employed for the synthesis of \(F\)-12 5 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}-\mathrm{n}\)-butoxyacetophenone to thereby give \(( \pm)-\mathrm{N}-(1-(3-\mathrm{n}-\) butoxyphenyl)ethyl)-2-(2',5-dichlorophenythio)ethylamine (F-65). MS m/z: \(397\left(\mathrm{M}^{+}\right)\).

Example 444: Synthesis of K-2255
[0745] The procedure employed for the synthesis of 3 -ethoxyacetophenone was repeated but replacing the ethyl iodide by \(n\)-hexyl bromide to thereby give 3 ' \(n\)-hexyloxyacetophenone. The procedure employed tor the synthesis of F 12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}-n\)-hexyloxyacetophenone to thereby give \(( \pm)-\mathrm{N}-(1-(3-\) n-hexyloxyphenyl)ethyl)-2-(2',5'-dichlorophenylthio)ethylamine ( K -2255). MS m/z: \(425\left(\mathrm{M}^{+}\right)\).

Example 445: Synthesis of F-67
[0746] The procedure employed for the synthesis of 3 -ethoxyacetophenone was repeated but replacing the ethyl iodide by isopropyl iodide to thereby give 3 '-isopropoxyacetophenone. The procedure employed for the synthesis of \(F\) 12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by 3 -isopropoxyacetophenone to thereby give ( \(\left.\mathbf{~}\right)\) ) N -( \(1-(3-\) isopropoxyphenyl) ethyl)-2-(2;5'-dichlorophenylthio)ethylamine ( \(F-67\) ). MS m/z : 383 ( \(M^{+}\)).

\section*{Example 446: Synthesis of F-68}
[0747] The procedure employed for the synthesis of \(3^{\prime}\)-ethoxyacetophenone was repeated but replacing the ethyl iodide by dodecane iodide to thereby give \(3^{\prime}\)-dodecylxyacetophenone. The procedure employed for the synthesis of \(F\) 12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}-\mathrm{n}\)-dodecyloxyacetophenone to thereby give \(( \pm)-\mathrm{N}-(1-\) (3-n-dodecyloxyphenyl)ethyl)-2-(2',5'-dichlorophenythio)ethylamine (F-68). MS m/z : 509 (M+).

Example 447: Synthesis of F-69
[0748] The procedure employed for the synthesis of \(3^{\prime}\)-ethoxyacetophenone was repeated but replacing the ethyl iodide by isobutyl iodide to thereby give 3 '-isobutoxyacetophenone. The procedure employed for the synthesis of \(\mathrm{F}-12\) was repeated but replacing the 3 '-methoxyacetophenone by 3 '-isobutoxyacetophenone to thereby give ( \(\pm\) )- N -( 1 -(3-iso-butoxyphenyl)ethyl)-2-(2,5'-dichlorophenythio)ethylamine (F-69). MS m/z: 397 ( \(\mathrm{M}^{+}\)).

Example 448: Synthesis of K-2258
[0749] The procedure employed for the synthesis of 3 'ethoxyacetophenone was repeated but replacing the ethyl iodide by 4 -chrolobenzyl bromide to thereby give \(3^{\prime \prime}\) (4-chlorobenzyloxy)acetophenone. The procedure employed for the synthesis of F -12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}\)-(4-chlorobenzyloxy)acetophenone to thereby give ( \(\pm\) )-N-(1-(3-(4-chlorobenzyloxy)phenyl)ethyl)-2(2',5'dichlorophenylthio)ethylamine (K-2258). MS m/z: 465 \(\left(\mathrm{M}^{+}\right)\).

Example 449: Synthesis of F-71
[0750] The procedure employed for the synthesis of 3 'ethoxyacetophenone was repeated but replacing the ethy1 iodide by 2 -chlorobenzyl bromide to thereby give 3 '-(2-chlorobenzyloxy)acetophenone. The procedure employed for the synthesis of \(F\) - 12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by 3 -(2-chlorobenzyloxy)acetophenone to thereby give ( \(\mathbf{~}\) )- N -(1-(3-(2-chlorobenzyloxy)phenyl)ethyl)-2-(2',5'dichlorophenylthio)ethylamine (F-71). MS m/z: 465 \(\left(\mathrm{M}^{+}\right)\).

\section*{Example 450: Synthesis of F-72}
[0751] The procedure employed for the synthesis of 3 'ethoxyacetophenone was repeated but replacing the ethyl iodide by benzyl bromide to thereby give 3' benzyloxyacetophenone. The procedure employed for the synthesis of F-12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}\)-benzyloxyacetophenone to thereby give \((\mathbf{t})\) - \(\mathrm{N}-(1-(3-\) benzyloxyphenyl)ethyl)-2-(2',5-dichlorophenythio)ethylamine (F-72). MS m/z: 431 ( \(\mathrm{M}^{+}\)).

Example 451: Synthesis of F-73
[0752] The procedure employed for the synthesis of \(3^{3}\)-ethoxyacetophenone was repeated but replacing the ethyl iodide by 2,6 -dichlorobenzyl bromide to thereby give 3 '-(2,6-dichlorobenzyloxy)acetophenone. The procedure
[0753] The procedure employed for the synthesis of \(3^{\prime}\)-ethoxyacetophenone was repeated but replacing the ethyl iodide by 1 -bromo-6-chlorohexane to thereby give 3 '-(6-chlorohexyloxy)acetophenone. The procedure employed for the synthesis of F-12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by 3 -( 6 -chlorohexyloxy)acetophenone to thereby give ( \(\pm\) ) N -(1-(3-(6-chlorohexyloxy)phenyl)ethyl)-2.(2',5'-dichlorophenylthio)ethylamine (K-2260). MS m/z : 459 \(\left(\mathrm{M}^{+}\right)\).

\section*{Example 453: Synthesis of F-75}
[0754] The procedure employed for the synthesis of 3'-ethoxyacetophenone was repeated but replacing the ethyl iodide by 1 -bromo-6-chlorohexane to thereby give 3'-(2-chloroethoxy)acetophenone. The procedure employed for the synthesis of F-12 was repeated but replacing the \(3^{\prime}-\) methoxyacetophenone by 3 '.( 2 -chloroethoxy)acetophenone to thereby give ( \(\mathbf{\pm})-\mathrm{N}-(1-(3-(2-c h l o r o e t h o x y) p h e n y l) e t h y l)-2-\left(2^{\prime}, 5\right.\)-dichlorophenylthio)ethylamine (F-75). MS m/2:403 (M).

\section*{Example 454: Synthesis of F-76}
[0755] The procedure employed for the synthesis of 3 -ethoxyacetophenone was repeated but replacing the ethyl iodide by 2 -methylbenzyl bromide to thereby give \(3^{\prime}-(2-\) methylbenzyl)acetophenone. The procedure employed for the synthesis of F-12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}\)-( 2 -methylbenzy)acetophenone to thereby give ( \(\pm\) )- N -(1-(3-(2-methylbenzyl)phenyl)ethyl)-2-(2',5'-dichlorophenythio)ethylamine (F-76). MS m/z: \(445\left(\mathrm{M}^{+}\right)\).
[0757] The procecture employed for the synthesis of F-12 was repeated but replacing the 3 '-methoxyacetophenone by 2-acetyl-5-methylfuran to thereby give ( \(\mathbf{~})\) - N -(1-(2-(5-methyl)furanyi)ethyl)-2-(2',5'dichlorophenylthio)ettrylamine (F78). MS m/z: \(329\left(\mathrm{M}^{+}\right)\).

\section*{Example 457: Synthesis of F-79}
[0758] The procedure employed for the synthesis of \(F-12\) was repeated but replacing the 3 -methoxyacetophenone by 2-acetylfuran to thereby give ( \(\pm\) )- N -(1-(2-furanyl)ethyl)-2-(2',5-dichlorophenylthio)ethylamine (F-79). MS m/z: 315 \(\left(\mathrm{M}^{+}\right)\).

Example 458: Synthesis of F-80
[0759] The procedure employed for the synthesis of \(\mathrm{F}-12\) was repeated but replacing the 3 '-methoxyacetophenone by 2-acetyl-1-methylpyrrole to thereby give ( \(\mathbf{~})-\mathrm{N} \cdot(1-(2-(1-\) methyl \()\) pyrrolyl)ethyl)-2-(2',5-dichlorophenylthio)ethylamine ( \(\mathrm{F}-80\) ). MS m/z: \(328\left(\mathrm{M}^{+}\right)\).

\section*{Example 459: Synthesis of F-81}
[0760] The procedure employed for the synthesis of F-12 was repeated but replacing the 3'methoxyacetophenone by 2 -acetylthiophene to thereby give ( \(\mathbf{~}\) )- N -(1-(2-thienyl)ethyl)-2-(2',5-dichlorophenylthio)ethylamine ( \(\mathbf{F - 8 1}\) ). \(\mathrm{MS} \mathrm{m} / \mathrm{z}\) :

\section*{Example 467: Synthesis of F-92}
[0768] The procedure employed for the synthesis of F-12 was repeated but replacing the 3 -methoxyacetophenone by 3-acetylpyridine to thereby give ( \(\mathbf{~}\) )- N -(1-(3-pyridyl)ethyl)-2-(2',5'dichlorophenylthio)ethylamine (F-92). MS m/z : 326

\section*{Example 460: Synthesis of F-82}
[0761] The procedure employed for the synthesis of F-12 was repeated but replacing the 3'-methoxyacetophenone by 3-acetyl-2,5-dimethylfuran to thereby give ( \(\pm\) )- N -(1-(3-(2,5-dimethyl)furanyl)ethyl)-2-(2',5'dichlorophenylthio)ethylamine (F-82). MS m/z: \(343\left(\mathrm{M}^{+}\right)\).

\section*{Example 461: Synthesis of F-83}
[0762] The procedure employed for the synthesis of F -12 was repeated but replacing the 3 '-methoxyacetophenone by 3 -acetylthiophene to thereby give ( \(\mathbf{~})-\mathrm{N}\)-(1-(3-thienyl)ethyl)-2-( 2 ', \(5^{\prime}\)-dichlorophenylthio)ethylamine ( \(\mathrm{F}-83\) ). MS \(\mathrm{m} / \mathrm{z}\) : \(331\left(\mathrm{M}^{+}\right)\).

\section*{Example 462: Synthesis of F-84}
[0763] The procedure employed for the synthesis of F-12 was repeated but replacing the 3 --methoxyacetophenone by 2-acetyl-5-methylthiophene to thereby give ( \(\pm\) )- N -(1-(2-(5-methyl)thienyl)ethyl)-2-(2',5'dichlorophenylthio)ethylamine (F-84). MS m/z: \(345\left(\mathrm{M}^{+}\right)\).

Example 463: Synthesis of F-85
[0764] The procedure employed for the synthesis of F-12 was repeated but replacing the 3'-methoxyacetophenone by 3-acetyl-1-methylpyrrole to thereby give ( \(\mathbf{~})-\mathrm{N} \cdot(1-(3-(1-\) methyl \()\) pyrrolyl)ethyl)-2-(2',5'-dichlorophenylthio)ethylamine (F-85). MS m/z : \(329\left(\mathrm{M}^{+}\right)\).

Example 464: Synthesis of F-86
[0765] The procedure employed for the synthesis of \(F-12\) was repeated but replacing the 3 -methoxyacetophenone by 5 -acetyl-2,4-dimethylthiazle to thereby give \(( \pm)-\mathrm{N}\)-(1-(5-(2,4-dimethyl)thiazolyl)ethyl)-2-(2', \(5^{\prime}\)-dichlorophenylthio)ethylamine ( \(\mathrm{F}-86\) ). MS \(\mathrm{m} / \mathrm{z}: 360\left(\mathrm{M}^{+}\right)\).

Example 465: Synthesis of F-90
[0766] The procedure employed for the synthesis of \(3^{\prime}\)-ethoxyacetophenone was repeated but replacing the ethyl iodide by cyclohexylmethyl bromide to thereby give \(3^{\prime}\)-(cyclohexylmethoxybenzyloxy)acetophenone. The procedure employed for the synthesis of F -12 was repeated but replacing the \(3^{\prime}\)-methoxyacetophenone by \(3^{\prime}\)-(cyclohexylmethoxy-benzyloxy)-acetophenone to thereby give ( \(\pm\) ) N -(1-(3-(cyclohexylmethoxybenzylaxy)phenyl)ethyl)-2-(2',5'dichlorophenylthio) ethylamine ( \(\mathrm{F}-90\) ). MS m/z:437 ( \(\mathrm{M}^{+}\)).

Example 466: Synthesis of F-91
[0767] The procedure employed for the synthesis of F-12 was repeated but replacing the 3 --methoxyacetophenone by 2-acetylpyridine to thereby give ( \(\mathbf{~}\) )- N -(1-(2-pyridyl)ethyl)-2-(2',5'dichlorophenylthio)ethylamine (F-91). MS m/z:327 \(\left(\mathrm{M}^{+}\right)\).
 \(\left(\mathrm{M}^{+}\right)\).

Example 468: Synthesis of \(\mathrm{F}-93\)
[0769] The procedure employed for the synthesis of \(F\)-12 was repeated but replacing the 3 '-methoxyacetophenone by 4-acetylpyridine to thereby give ( \(\mathbf{~}\) )-N-(1-(4-pyridyl)ethyl)-2-(2',5'dichlorophenythio)ethylamine (F-93). MS m/z : 326

Example 469: Synthesis of F-94
[0770] The procedure employed for the synthesis of \(F-12\) was repeated but replacing the 3 '-methoxyacetophenone \(327\left(\mathrm{M}^{+}\right)\)

Example 470: Synthesis of F-95
[0771] The procedure employed for the synthesis of F-12 was repeated but replacing the 3'-methoxyacetophenone by 3-acetyl-2-(methylaminesulfonyl)thiophene to thereby give ( \(\pm\) )-N-(1-(3-(2-methylaminosulfonyl)thienyl)ethyl)-2-(2',5'dichlorophenythio)ethylamine (F-95). MS m/z : \(425\left(\mathrm{M}^{+}\right)\).

Example 471: Synthesis of F-96
[0772] The procedure employed for the synthesis of \(F-12\) was repeated but replacing the 3 -methoxyacetophenone by 3 -acetylindole to thereby give ( \(\mathbf{\pm}\) )- N -(1-(3-indolyl)ethyl)-2-(2',5'dichlorophenylthio)ethylamine (F-96). MS m/z : 364 \(\left(\mathrm{M}^{+}\right)\).

\section*{Example 472: Synthesis of F-97}
[0773] Di(4-trifluoromethyl)benzylamine ( 450 mg ) was dissolved in methylene chloride ( 10 ml ) and bromoacetic acid ( 186 mg ) was added thereto. After further adding WSC. HCI ( 390 mg ), the reaction mixture was heated under reflux for 30 minutes. Then it was brought back to room temperature and separated into aqueous and ethyl acetate layers. The concentrated. The crude product thus obtained was purified by silica gel chromatography ( \(n\)-hexane : ethyl acetate \(=3\) : 1) to thereby give 510 mg of a bromo compound. This bromo compound ( 500 mg ) was dissolved in acetonitrile ( 10 ml ) and potassium carbonate \((763 \mathrm{mg})\) and \((R)-(+)-1-(1-n a p h t h y l)\) ethylamine \((0.18 \mathrm{ml})\) was added thereto. After further adding tetrabutylammonium iodide ( 41 mg ), the mixture was heated under reflux. After 2 hours, it was brought back to room temperature and separated into aqueous and chloroform layers. The organic layer washed with a saturated aqueous solution of sodium chloride, dried over sodium sulfate, filtered and concentrated. The crude product thus obtained was purified by silica gel chromatography ( n -hexane : ethyl acetate \(=2: 1\) ) to thereby give 280 mg of a F-97. MS m/z : \(544\left(M+1^{+}\right)\).

\section*{Example 473: Synthesis of F-98}
[0774] The procedure employed for the synthesis of F-97 was repeated but replacing the di(4-trifluoromethyl)benzylamine by (4-trifluoromethoxy)benzylamine to thereby give F-98. MS m/z: \(576\left(\mathrm{M}+1^{+}\right)\).

Example 474: Synthesis of F-99
[0775] The procedure employed for the synthesis of F-97 was repeated but replacing the bromoacetic acid by 5bromopentanoic acid to thereby give F-99. MS \(\mathrm{m} / \mathrm{z}: 586\left(\mathrm{M}^{+}\right)\).

Example 475: Synthesis of F-100
[0776] The procedure employed for the synthesis of F-97 was repeated but replacing the di(4-trifluoromethyl)benzylamine by (4-chloro)benzylamine to thereby give F-100. MS m/z: \(476\left(\mathrm{M}^{+}\right)\).

\section*{5 Example 476: Synthesis of F-101}
[0777] The procedure employed for the synthesis of F-99 was repeated but replacing the di(4-trifluoromethyl)benzylamine by di(4-trifluoromethoxy)benzylamine to thereby give F-101. MS m/z: \(618\left(\mathrm{M}^{+}\right)\).

Example 477: Synthesis of F-102
[0778] The procedure employed for the synthesis of F-98 was repeated but replacing the bromoacetic acid by 4-bromobutyric acid to thereby give F-102. MS m/z : \(604\left(\mathrm{M}^{+}\right)\).

Example 478: Synthesis of F-103
[0779] The procedure employed for the synthesis of F-98 was repeated but replacing the bromoacetic acid by 6-bromohexanoic acid to thereby give F-103. MS m/z : \(632\left(\mathrm{M}^{+}\right)\).

Example 479: Synthesis of F-104
[0780] The procedure employed for the synthesis of F-103 was repeated but replacing the di(4-trifluoromethoxy)benzylamine by di(4-trifluoromethyl)benzylamine to thereby give F-104. MS m/z : \(600\left(\mathrm{M}^{+}\right)\).

Example 480: Synthesis of F-105
[0781] The procedure employed for the synthesis of F-101 was repeated but replacing the di(4-trifluoromethyl)benzylamine by di(4-chloro)benzylamine to thereby give F-105. MS m/z: \(533\left(\mathrm{M}+1^{+}\right)\).

Example 481: Synthesis of F-106
[0782] The procedure employed for the synthesis of \(F\) - 102 was repeated but replacing the di(4-trifluoromethoxy)benzylamine by di(4-chloro)benzylamine to thereby give F-106. MS m/z: \(505\left(\mathrm{M}+1^{+}\right)\).

Example 482: Synthesis of F-107
[0783] The procedure employed for the synthesis of F-99 was repeated but replacing the di(4-trifluoromethyl)benzylamine by di(4-chloro)benzylamine to thereby give F-107. MS m/z : \(519\left(\mathrm{M}+1^{+}\right)\).

Example 483: Synthesis of F-108
[0784] The procedure employed for the synthesis of F-98 was repeated but replacing the bromoacetic acid by 8-bromooctanoic acid to thereby give F-108. MS \(\mathrm{m} / \mathrm{z}: 660\left(\mathrm{M}^{+}\right)\).

Example 484: Synthesis of F-109
[0785] The procedure employed for the synthesis of F-108 was repeated but replacing the di(4-trifluoromethoxy)benzyiamine by di(4-trifluoromethyl)benzylamine to thereby give F-109. MS m/z: \(628\left(\mathrm{M}^{+}\right)\).

Example 485: Synthesis of F-110
[0786] The procedure employed for the synthesis of F-108 was repeated but replacing the di(4-tritluoromethyl)benzylamine by di(4-chloro)benzylamine to thereby give F-110. MS m/z : \(561\left(\mathrm{M}+1^{+}\right)\).

Example 486: Synthesis of F-111
[0787] The procedure employed for the synthesis of F-99 was repeated but replacing the di(4-trifluoromethyi)benzylamine by N -(4-irifiluoromethylbenzyl)-N-(3,4-dichlorobenzyl)amine to thereby give F-111. MS \(\mathrm{m} / \mathrm{z}\) : \(587\left(\mathrm{M}+1^{+}\right)\).

Example 487: Synthesis of F-112
[0788] The procedure employed for the synthesis of F -103 was repeated but replacing the di(4-trifluoromethoxy)benzylamine by N -(4-trifluoromethylbenzyl)- N -(3,4-dichlorobenzyl)amine to thereby give F-112. MS \(\mathrm{m} / \mathrm{z}: 601\left(\mathrm{M}+1^{+}\right)\).
55
Example 488: Synthesis of F-113
[0789] The procedure employed for the synthesis of F-97 was repeated but replacing the di(4-trifluoromethy)ben-

\section*{EP 0933354 A1}
zylamine by N -(4-tritluoromethylbenzy)-N-(3.4-dichlorobenzy)amine to thereby give F-113. MS m/z : \(544\left(\mathrm{M}^{+}\right)\).

\section*{Example 489: Synthesis of F-114} the 2,5-dimethythiophenol and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 -tert-butylthiophenol and ( R )-\((+)-1\)-(1-naphthyl) ethylamine. \(\mathbf{m} / \mathbf{z}=363\).

Example 497: Synthesis of S-268
[0798] S-268 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5-dimethylthiophenol, 1 -bromo-2-chloroethane and (R)-(+)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 -tert-butylthiophenol, 1,3-dibromopropane and (R)-(+)-1-(1-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=377\).

\section*{Example 498: Synthesis of S-269}
[0799] S-269 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and \((R)-(+)-3\)-methoxy- \(\alpha\)-benzylmethylamine respectively by \(4-\) teri-butythiophenol, 1,4-dibromobutane and (R)-(+)-1-(1-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=391\).
[0800] S-270 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing

\section*{EP 0933354 A}
the 2,5 -dimethylthiophenol, 1-bromo-2-chloroethane and (R)-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 -tert-butythiophenol, 1,5 -dibromopentane and (R)-(t)-1-(1-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=405\).

\section*{Example 500: Synthesis of S-27}
[0801] S-271 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( R )-( + +)-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 -tert-butythiophenol, 1,6-dibromohexane and (R)-(t)-1-(1-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=419\).

\section*{Example 501: Synthesis of S-272}
[0802] S-272 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( \(R\) )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 -tert-butythiophenol, 1,7-dibromoheptane and (R)-(+)-1-(1-naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=433\).

Example 502: Synthesis of S-273
[0803] S-273 was synthesized by almost the same method as the one employed for the synthesis of S-1 but replacing the 2,5 -dimethylthiophenol, 1 -bromo-2-chloroethane and ( R )-( + )-3-methoxy- \(\alpha\)-benzylmethylamine respectively by 4 -tert-butythiophenol, 1,8 -dibromooctane and \((R)-(+)-1-(1\) naphthyl)ethylamine. \(\mathrm{m} / \mathrm{z}=447\).

Example 503: Synthesis of S-274
[0804] S-274 was synthesized by almost the same method as the one employed for the symthesis of S-265 but replacing the \(K-2117\) by \(K-2027 . m / z=399\).

Example 504: Synthesis of S-275
[0805] S-275 was synthesized by almost the same method as the one employed for the symthesis of S-265 but replacing the \(K-2117\) by \(K-2076 . ~ m / z=433\).

Example 505: Synthesis of S-276
[0806] S-276 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -(tritluoromethoxy)benzaldehyde by 4 -dimethylaminobenzaldehyde.

Example 506: Synthesis of S-277
[0807] S-277 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -tert-butylbenzylamine and 3,4-dichlorobenzaldehyde.

Example 507: Synthesis of S-278
[0808] S-278 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -nitrobenzylamine and 3,4 dichlorobenzaldehyde.

Example 508: Synthesis of S-279
[0809] S-279 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 3,4 -dichlorobenzylamine and 4 -dimethylaminobenzaldehyde.

Example 509: Synthesis of S-280
[0810] S-280 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -(trituoromethoxy)benzaldehyde by 3,4 -dimethoxybenzaldehyde.

Example 510: Synthesis of S-281
[0811] S-281 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -(trifluoromethy))ben-

Example 511: Synthesis of S-282
[0812] S-282 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4-(trifluoromethoxy)benzaldehyde by 3,4 -dimethylbenzaldehyde.

Example 512: Synthesis of S-283
[0813] S-283 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but 5 replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -(trifiuoromethyl)benzylamine and 3,4-dimethylbenzaldehyde.

Example 513: Synthesis of S-284
[0814] S-284 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -(trifluoromethoxy)benzaldehyde by 3,4-methylenedioxybenzaldehyde.

Example 514: Synthesis of S-285
[0815] S-285 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4-methylbenzylamine and 4-(trifluoromethoxy)benzaldehyde respectively by 4 -tert-butylbenzylamine and 4-tert-butylbenzaldehyde.

Example 515: Synthesis of S-286
[0816] S-286 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -(trifluoromethoxy)benzaldehyde by 4 -chlorobenzaldehyde.

Example 516: Synthesis of S-287
[0817] S-287 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -chlorobenzylamine and 4* pyridinecarboxyaldehyde.

Example 517: Synthesis of S-288
[0818] S-288 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -(trifluoromethyl)benzylamine and 4-pyridinecarboxyaldehyde.

Example 518: Synthesis of S-289
[0819] S-289 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4-methylbenzylamine and 4-(trifluoromethoxy)benzaldehyde respectively by 3,4-dichlorobenzylamine and 4-phenyibenzaldetyyde.

\section*{Example 519: Synthesis of S-290}
[0820] S-290 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 3,4 -dimethylbenzylamine and 4-phenylbenzaldehyde.

Example 520: Synthesis of S-291
[0821] S-291 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 3,4 -dimethoxybenzylamine
 replacing the 4-methylbenzylamine and 4-(trifluoromethoxy)benzaldehyde respectively by 3,4-dichlorobenzylamine and 4-methylthiobenzaldehyde.

Example 522: Synthesis of S-293
[0823] S-293 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 3,4 -dimethylbenzylamine and 4-methylthiobenzaldehyde.

Example 523: Synthesis of S-294
[0824] S-294 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 3,4-dimethoxybenzylamine and 4-methylthiobenzaldehyde.

Example 524: Synthesis of S-295
[0825] S-295 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -(trifluoromethyl)benzylamine and 3-chloro-4-fluorobenzaldehyde.

Example 525: Synthesis of S-296
[0826] S-296 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -(trifluoromethoxy)benzaldehyde by 3 -chloro-4-fluorobenzaldehyde.

Example 526: Synthesis of S-297
[0827] S-297 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methybenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -(trifluoromethyl)benzylamine and 4-chloro-3-nitrobenzaldehyde.

Example 527: Synthesis of S-298
[0828] S-298 can be synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -(trifluoromethoxy)benzaldehyde by 4 -chloro-3-nitrobenzaldehyde.

Example 528: Synthesis of S-299
[0829] S-299 was synthesized by almost the same method as the one employed for the synthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -chlorobenzylamine and 5 -methyl-2-thiophenecarboxyaldehyde.

Example 529: Synthesis of S-300
[0830] S-300 was synthesized by almost the same method as the one employed for the symthesis of K-2310 but replacing the 4 -methylbenzylamine and 4 -(trifluoromethoxy)benzaldehyde respectively by 4 -(trifluoromethyl)benzylamine and 5-methyl-2-thiophenecarboxyaldehyde.

\section*{EP 0933354 A1}

Example 530:
[0831] The activities of the compounds of the present invention on calcium receptors were measured. The measurement was performed in accordance with the method described in Example 4 of Nemeth et al., PCT/US95/13704 (Imternational Publication No. WO96/12697). In brief, HEK293 cells were transfected with a plasmid pHuPCaR4.0 containing a human calcium receptor gene and loaded with fluo-3. The loading was carried out by incubating the cells at \(37^{\circ} \mathrm{C}\) for 1 hour in Dulbecco's modified Eagle's medium which contained about \(5 \mu \mathrm{M}\) of fluo-3/AM and had been buffered with 20 mM HEPES. Next, the cells were rinsed with Hank's balanced salt solution which contained \(1 \mathrm{mM} \mathrm{CaCl} l_{2}\) and 1 mM \(\mathrm{MgCl}_{2}\) and had been buffered with 20 mM HEPES. Then each test compound was added to the cells and the fluorescence was measured with the use of an excitation wavelength of \(\mathbf{4 8 5} \mathrm{nm}\) and an emission wavelength of 540 nm . The results are shown in Table 1.

\section*{Table 1}
\begin{tabular}{llll} 
Compound & \(\mathrm{EC}_{50}(\mu \mathrm{M})\) & Compound & \(\mathrm{EC}_{50}(\mu \mathrm{M})\) \\
\hline 2 & 13 & 46 & 0.93 \\
6 & 7.6 & 52 & 0.48 \\
8 & 1.9 & 53 & 1.6 \\
10 & 1.0 & 56 & 0.28 \\
12 & 1.2 & 59 & 1.02 \\
14 & 2.9 & 62 & 0.509 \\
16 & 0.55 & 65 & 0.524 \\
18 & 0.75 & 68 & 0.65 \\
20 & 3.2 & 71 & 0.27 \\
22 & 0.31 & 74 & 7.2 \\
24 & 0.44 & 77 & 1.0 \\
26 & 1.8 & 80 & 0.464 \\
28 & 1.6 & 83 & 1.0 \\
30 & 0.071 & 88 & 3.2 \\
32 & 0.051 & 93 & 0.11 \\
34 & 0.71 & 103 & 0.3 \\
36 & 0.21 & 106 & 0.064 \\
38 & 0.98 & 109 & 0.27 \\
40 & 5.1 & 112 & 0.078 \\
42 & 0.14 & 117 & 0.2 \\
44 & 0.15 & 123 & 0.1
\end{tabular}

Table 1 (cont.)
\begin{tabular}{llll} 
Compound & EC \(_{50}(\mu \mathrm{M})\) & Compound & \(\mathrm{EC}_{50}(\mu \mathrm{M})\) \\
\hline K-2003 & 0.29 & K-2048 & 0.73 \\
K-2004 & 0.42 & K-2049 & 0.83 \\
K-2005 & 0.43 & K-2050 & 0.55 \\
K-2006 & 0.77 & K-2051 & 0.34 \\
K-2007 & 0.47 & K-2052 & 5.7 \\
K-2008 & 0.86 & K-2055 & 0.057 \\
K-2010 & 0.14 & K-2056 & 0.039 \\
K-2011 & 0.21 & K-2057 & 0.41 \\
K-2012 & 0.87 & K-2058 & 0.39 \\
K-2015 & 0.49 & K-2059 & 0.27 \\
K-2016 & 0.36 & K-2061 & 0.15 \\
K-2017 & 0.36 & K-2066 & 0.26 \\
K-2018 & 0.33 & K-2075 & 0.14 \\
K-2027 & 0.39 & K-2076 & 6.2 \\
K-2030 & 0.049 & K-2078 & 0.17 \\
K-2033 & 0.35 & K-2079 & 0.2 \\
K-2034 & 0.061 & K-2080 & 0.77 \\
K-2035 & 0.22 & K-2082 & 2.81 \\
K-2040 & 0.08 & K-2084 & 0.12 \\
K-2041 & 0.1 & K-2085 & 0.13 \\
K-2045 & 0.87 & K-2087 & 0.087 \\
K-2046 & 0.14 & K-2117 & 0.043 \\
K-2047 & 0.13 & K-2177 & 0.075
\end{tabular}

Table 1 (cont.)
\begin{tabular}{llll} 
Compound & \(E_{50}(\mu \mathrm{M})\) & Compound & \(E_{50}(\mu \mathrm{M})\) \\
\hline K-2240 & 0.36 & \(\mathrm{~K}-2267\) & 0.014 \\
K-2243 & 0.092 & K-2268 & 0.089 \\
K-2246 & 0.12 & K-2269 & 0.071 \\
K-2247 & 0.13 & K-2270 & 0.14 \\
K-2248 & 0.078 & K-2271 & 0.14 \\
K-2249 & 0.082 & K-2272 & 0.052 \\
K-2250 & 0.076 & K-2273 & 0.16 \\
K-2251 & 0.051 & K-2274 & 1.2 \\
K-2252 & 0.018 & K-2275 & 0.27 \\
K-2253 & 0.19 & K-2276 & 0.064 \\
K-2254 & 0.088 & K-2277 & 0.93 \\
K-2255 & 9.6 & K-2278 & 2.50 \\
K-2256 & 0.18 & K-2279 & 0.63 \\
K-2257 & 0.039 & K-2280 & 0.27 \\
K-2258 & 0.38 & K-2281 & 0.43 \\
K-2259 & 0.0024 & K-2282 & 0.34 \\
K-2260 & 0.096 & K-2283 & 0.093 \\
K-2261 & 0.026 & K-2284 & 0.36 \\
K-2262 & 0.084 & K-2285 & 0.32 \\
K-2263 & 0.11 & K-2286 & 0.62 \\
K-2264 & 0.016 & K-2287 & 0.062 \\
K-2265 & 0.061 & K-2288 & 0.14 \\
K-2266 & 0.036 & K-2289 & 0.074
\end{tabular}

Table 1 (cont.) the compound of the present invention dissolved in a \(10 \%\) cyclodextrin aqueous solution in a dose of \(30 \mu \mathrm{molkg}\), provided that \(1 \%\) sodium-CMC aqueous solution was used in place of \(10 \%\) cyclodextrin aqueous solution for the compounds marked with ** in Table 2.

Blood of each rat was collected from the tail tip before the administration and 30 minutes and 1, 2, 4, 8 and 24 hours thereafter (or at the time indicated in Table 2), and the plasma \(\mathrm{Ca}^{2+}\) level and serum PTH level were measured. The data of the serum PTH level were statistically processed by the multiple comparison analysis in accordance with Steel's calibration by using the group 1 as the control. The results are shown in Table 2 and Figs. 46-96.

\section*{EP 0933354 A1}

Table 2

Compoun \(\quad\) Plasma \(\mathrm{Ca}^{2+}(\mathrm{mmol} / \mathrm{I})\)
d
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & 0 hr & 1 hr & 2 hr & 4 hr & 8 hr & 24 hr & 48 hr \\
\hline \multirow[t]{3}{*}{K-2027} & mea & 1.427 & 1.197 & 1.102 & 0.995 & 1.048 & 1.363 & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.010 & 0.053 & 0.027 & 0.027 & 0.024 & 0.013 & \\
\hline \multirow[t]{3}{*}{K-2052} & mea & 1.425 & 1.283 & 1.187 & 1.087 & 1.185 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.015 & 0.012 & 0.007 & 0.016 & 0.006 & & \\
\hline \multirow[t]{3}{*}{K-2087} & mea & 1.470 & 1.325 & 1.243 & 1.197 & 1.255 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.008 & 0.015 & 0.009 & 0.012 & 0.008 & & \\
\hline \multirow[t]{3}{*}{K-2240} & mea & 1.415 & 1.302 & 1.272 & 1.175 & 1.230 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.009 & 0.038 & 0.022 & 0.027 & 0.003 & & \\
\hline \multirow[t]{3}{*}{K-2247} & mea & 1.400 & 1.378 & 1.298 & 1.175 & 1.217 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.016 & 0.014 & 0.018 & 0.018 & 0.016 & & \\
\hline \multirow[t]{3}{*}{K-2250} & mea & 1.457 & 1.327 & 1.225 & 1.122 & 1.203 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.014 & 0.030 & 0.022 & 0.010 & 0.019 & & \\
\hline \multirow[t]{3}{*}{K-2255} & mea & 1.413 & 1.328 & 1.212 & 1.177 & 1.232 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.020 & 0.013 & 0.019 & 0.009 & 0.012 & & \\
\hline \multirow[t]{3}{*}{K-2258} & mea & 1.452 & 1.317 & 1.227 & 1.133 & 1.207 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.009 & 0.015 & 0.026 & 0.031 & 0.014 & & \\
\hline K-2262 & mea & 1.413 & 1.390 & 1.260 & 1.138 & 1.142 & & \\
\hline
\end{tabular}

\section*{EP 0933354 A1}
\begin{tabular}{llllllll} 
S.E. & 0.020 & 0.009 & 0.021 & 0.017 & 0.020 & & \\
mea & 1.423 & 1.273 & 1.237 & 1.212 & 1.308 & & \\
n & & & & & & & \\
S.E. & 0.011 & 0.028 & 0.024 & 0.016 & 0.011 & & \\
mea & 1.403 & 1.335 & 1.203 & 1.013 & 0.998 & 1.182 & \(1.240^{=a}\) \\
n & & & & & & & \\
S.E. & 0.015 & 0.019 & 0.019 & 0.019 & 0.021 & 0.027 & 0.017
\end{tabular}

Table 2 (cont.)

5
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compoun d} & & \multicolumn{7}{|c|}{Plasma \(\mathrm{Ca}^{2+}(\mathrm{mmol} / 1)\)} \\
\hline & & 0 hr & 1 hr & 2 hr & 4 hr & 8 hr & 24 hr & 48 hr \\
\hline \multirow[t]{3}{*}{K-2265} & mea & 1.425 & 1.430 & 1.363 & 1.260 & 1.218 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.019 & 0.012 & 0.010 & 0.023 & 0.008 & & \\
\hline \multirow[t]{3}{*}{K-2266} & mea & 1.417 & 1.368 & 1.222 & 1.065 & 1.045 & 1.370 & \\
\hline & n & & & & & & & - \\
\hline & S.E. & 0.020 & 0.021 & 0.036 & 0.023 & 0.017 & 0.009 & \\
\hline \multirow[t]{3}{*}{K-2267} & mea & 1.417 & 1.347 & 1.212 & 1.027 & 1.022 & 1.312 & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.015 & 0.018 & 0.019 & 0.016 & 0.018 & 0.023 & \\
\hline \multirow[t]{3}{*}{K-2269} & mea & 1.450 & 1.152 & 1.140 & 1.097 & 1.173 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.016 & 0.057 & 0.029 & 0.017 & 0.017 & & \\
\hline \multirow[t]{3}{*}{K-2270**} & mea & 1.430 & 1.355 & 1.238 & 1.088 & 1.175 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.012 & 0.014 & 0.019 & 0.016 & 0.020 & & \\
\hline \multirow[t]{3}{*}{K-2271} & mea & 1.428 & 1.278 & 1.227 & 1.128 & 1.197 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.012 & 0.017 & 0.017 & 0.023 & 0.022 & & \\
\hline \multirow[t]{3}{*}{K-2272**} & mea & 1.442 & 1.382 & 1.237 & 1.075 & 1.022 & 1.240 & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.015 & 0.014 & 0.011 & 0.011 & 0.015 & 0.012 & \\
\hline \multirow[t]{3}{*}{K-2279} & mea & 1.443 & 1.200 & 1.155 & 1.130 & 1.210 & 1.445 & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.014 & 0.064 & 0.034 & 0.022 & 0.010 & 0.015 & \\
\hline K-2280 & mea & 1.443 & 1.233 & 1.167 & 1.077 & 1.142 & 1.405 & \\
\hline
\end{tabular}
```

S.E. }0.01

```

```

n
S.E. }0.01
K-2282** mea 1.435 1.425 1.298 1.168 1.078 1.230*b
n
S.E. }0.01
mea
n
S.E. }00.016 0.015 0.014 0.013 0.014

```

\section*{EP \(0933 \mathbf{3 5 4}\) A1}

Table 2 (cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compoun d} & & \multicolumn{7}{|c|}{Plasma Ca \({ }^{2+}\) (mmol/l)} \\
\hline & & 0 hr & 1 hr & 2 hr & 4 hr & 8 hr & 24 hr & 48 hr \\
\hline \multirow[t]{3}{*}{K-2284} & mea & 1.428 & 1.377 & 1.267 & 1.152 & 1.102 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.018 & 0.011 & 0.025 & 0.025 & 0.020 & & \\
\hline \multirow[t]{3}{*}{K-2286} & mea & 1.405 & 1.318 & 1.218 & 1.088 & 1.098 & 1.390 & 1.412 \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.017 & 0.015 & 0.018 & 0.021 & 0.018 & 0.008 & 0.014 \\
\hline \multirow[t]{3}{*}{K-2287} & mea & 1.403 & 1.180 & 1.042 & 0.955 & 0.950 & 1.200 & 1.392 \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.013 & 0.019 & 0.017 & 0.019 & 0.006 & 0.041 & 0.012 \\
\hline \multirow[t]{3}{*}{K-2288} & mea & 1.405 & 1.190 & 1.057 & 0.955 & 0.905 & 1.162 & 1.387 \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.012 & 0.018 & 0.020 & 0.018 & 0.009 & 0.020 & 0.015 \\
\hline \multirow[t]{3}{*}{K-2289**} & mea & 1.407 & 1.270 & 1.173 & 1.003 & 1.093 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.013 & 0.018 & 0.022 & 0.017 & 0.025 & & \\
\hline \multirow[t]{3}{*}{K-2290**} & mea & 1.380 & 1.428 & 1.248 & 1.063 & 1.055 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.007 & 0.014 & 0.028 & 0.019 & 0.033 & & \\
\hline \multirow[t]{3}{*}{K-2291**} & mea & 1.410 & 1.298 & 1.247 & 1.130 & 1.132 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.017 & 0.041 & 0.022 & 0.021 & 0.019 & & \\
\hline \multirow[t]{3}{*}{K-2292} & mea & 1.412 & 1.375 & 1.252 & 1.152 & 1.108 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.014 & 0.007 & 0.012 & 0.015 & 0.015 & & \\
\hline K-2293 & mea & 1.408 & 1.245 & 1.152 & 1.068 & 1.088 & & \\
\hline
\end{tabular}

\section*{EP 0933354 A1}
n
S.E. \(0.012 \quad 0.039 \quad 0.022 \quad 0.020 \quad 0.014\)

K-2294** mea 1.410 1.357 1.255 1.117 1.022
n
\(\begin{array}{llllll}\text { S.E. } & 0.018 & 0.014 & 0.022 & 0.026 & 0.015\end{array}\)
\(\begin{array}{llllllll}K-2296 * * & \text { mea } & 1.410 & 1.340 & 1.195 & 1.113 & 1.083\end{array}\)
n
S.E. \(0.0130 .009 \quad 0.0130 .014 \quad 0.016\)
\(\begin{array}{llllll}\text { mea } & 1.405 & 1.393 & 1.305 & 1.172 & 1.082\end{array}\)
n
\(\begin{array}{llllll}\text { S.E. } & 0.016 & 0.010 & 0.022 & 0.016 & 0.022\end{array}\)

\section*{EP 0933 354 A1}

Table 2 (cont.)

Compoun \(\quad{\text { Plasma } \mathrm{Ca}^{2+}(\mathrm{mmol} / \mathrm{l})}\)
d
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & 0 hr & 1 hr & 2 hr & 4 hr & 8 hr & 24 hr & 48 hr \\
\hline \multirow[t]{3}{*}{K-2298} & mea & 1.405 & 1.348 & 1.265 & 1.187 & 1.100 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.015 & 0.015 & 0.030 & 0.024 & 0.017 & & \\
\hline \multirow[t]{3}{*}{K-2299} & mea & 1.395 & 1.287 & 1.192 & 0.998 & 0.983 & \(1.382^{\circ}\) & \\
\hline & \(n\) & & & & & & & \\
\hline & S.E. & 0.015 & 0.013 & 0.021 & 0.019 & 0.014 & 0.013 & \\
\hline \multirow[t]{3}{*}{K-2300**} & mea & 1.395 & 1.293 & 1.158 & 0.958 & 1.022 & \(1.397^{\circ}\) & . \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.014 & 0.015 & 0.019 & 0.022 & 0.014 & 0.020 & \\
\hline \multirow[t]{3}{*}{K-2301} & mea & 1.397 & 1.237 & 1.165 & 1.077 & 1.075 & \(1.350^{*}\) & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.009 & 0.030 & 0.017 & 0.024 & 0.019 & 0.010 & \\
\hline \multirow[t]{3}{*}{K-2302**} & mea & 1.412 & 1.238 & 1.130 & 0.978 & 1.010 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.014 & 0.019 & 0.013 & 0.016 & 0.016 & & \\
\hline \multirow[t]{3}{*}{K-2303} & mea & 1.415 & 1.255 & 1.165 & 1.020 & 1.032 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.018 & 0.021 & 0.018 & 0.010 & 0.023 & & \\
\hline \multirow[t]{3}{*}{K-2304} & mea & 1.382 & 1.262 & 1.157 & 1.053 & 1.065 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.014 & 0.029 & 0.023 & 0.006 & 0.012 & & \\
\hline \multirow[t]{3}{*}{K-2305} & mea & 1.415 & 1.242 & 1.170 & 1.098 & 1.202 & & \\
\hline & n & & & & & & & \\
\hline & S.E. & 0.015 & 0.018 & 0.013 & 0.025 & 0.022 & & \\
\hline K-2309 & mea & 1.428 & 1.320 & 1.207 & 1.018 & 0.963 & \(1.332^{\text {-a }}\) & \\
\hline
\end{tabular}
n
2. The compound, salt or hydrate of claim 1 wherein: \(\mathrm{R}^{5}\) is selected from the group consisting of hydrogen, unsubstituted lower alkyl and lower alkyl substituted with one or more halogens; and \(\mathrm{R}^{6}\) and \(\mathbf{R}^{7}\) are hydrogen.
3. The compound, salt or hydrate of claim 2 wherein \(R^{5}\) is hydrogen.
4. The compound, salt or hydrate of claim 3 wherein \(R^{1}, R^{2}, R^{3}\) and \(R^{4}\) are hydrogen.
18. A prodrug of any of said compounds of claims 1 through 17. inclusive.
19. A compound of the formula:
\[
\mathrm{Ar}_{3}-\left(\mathrm{CHR}^{12}\right)_{\mathrm{r}}-\mathrm{Q}-\left(\mathrm{CH}_{2}\right)_{\mathrm{s}}-\mathrm{CHR}^{13}-\mathrm{NH}^{2}-\mathrm{CR}^{14} \mathrm{R}^{15}-\mathrm{Ar}_{4}
\]
wherein:
\(\mathrm{Ar}_{3}\) is selected from the group consisting of aryl and heteroaryl optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, unsubstituted lower alkenyl, lower alkenyl substituted with one or more halogens, halogen, hydroxy, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, unsubstituted lower thioalkoxy, nitro, formyl, acetoxy, acetyl, \(-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})-,-\mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\), cyano, \(-\mathrm{N}(\text { lower alkyl })_{2}\), phenyl, phenoxy, benzyl, benzyloxy, methylenedioxy, ethylenedioxy, \(\alpha\), \(\alpha\)-dimethylbenzyl, and \(-\mathrm{OCH}_{2} \mathrm{COOH}\);
\(\mathrm{Ar}_{4}\) is selected from the group consisting of aryl and heteroaryl optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, unsubstituted lower alkenyl, lower alkenyl substituted with one or more halogens, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, hydroxy, lower thioalkoxy, halogen, methylenedioxy, ethylenedioxy, acetoxy, \(-\mathrm{OCH}_{2} \mathrm{COOH},-\mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\), cyano, and \(-\mathrm{CH}_{2} \mathrm{OH}\);
\(r\) is an integer of from 0 to 6 , inclusive;
\(s\) is an integer of from 0 to 14, inclusive;
Q is selected from the group consisting of oxygen, sulfur, carbonyl and -NH -;
\(\mathrm{R}^{13}\) is hydrogen or lower alkyl; and
\(\mathbf{R}^{14}\) and \(\mathbf{R}^{15}\) are independently selected from the group consisting of hydrogen, alkyl and, combined, cycloalkyl and cycloalkenyl; or a pharmaceutically acceptable salt or hydrate of said compound.
20. The compound, salt, hydrate or prodrug of claim 19 wherein:
\(\mathrm{Ar}_{3}\) is selected from the groups consisting of unsubstituted phenyl, phenyl substituted with one or more groups selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, halogen, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, nitro, dimethylamino and unsubstituted phenyl, and optionally substituted naphthyl;
\(\mathrm{Ar}_{4}\) is selected from the groups consisting of unsubstituted phenyl, phenyl substituted with one or more groups selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, and halogen, and optionally substituted naphthyl;
\(R^{14}\) is selected from the group consisting of unsubstituted lower alkyl and lower alkyl substituted with one or more halogens; and
\(R^{15}\) is hydrogen.
21. The compound, salt, hydrate or prodrug of claim 20 wherein:
\(\mathrm{Ar}_{3}\) is selected from the groups consisting of unsubstituted phenyl, phenyl substituted with one or more groups selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, halogen, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, nitro, dimethylamino and unsubstituted phenyl, and unsubstituted naphthyl;
\(\mathrm{Ar}_{4}\) is selected from the groups consisting of unsubstituted phenyl, phenyl substituted with one or more groups selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, and halogen, and unsubstituted naphthyl;
\(r\) is 0 or 1 , wherein when \(r\) is \(1, R^{12}\) is hydrogen.
22. The compound, salt or hydrate of claim 21 wherein \(s\) is and integer of from 1 to 8 , inclusive.
23. The compound, salt or hydrate of claim 21 wherein \(s\) is and integer of from 1 to 5 . inclusive.
24. The compound, salt or hydrate of claim 23 wherein \(Q\) is selected from the group consisting of oxygen and sulfur.
25. The compound, salt or hydrate of claim 24 wherein \(R^{13}\) is selected from the group consisting of hydrogen and methyl.
26. The compound, salt or hydrate of claim 25 wherein \(R^{13}\) is hydrogen and \(R^{14}\) is methyl.
27. The compound, salt or hydrate of claim 26 wherein said compound is the R enantiomer.
28. A prodrug of any of said compounds of claims 19 through 27, inclusive.

\section*{29. A compound of the formula:}
\[
\operatorname{Ar}_{5} \cdot\left(\mathrm{CHR}^{16}\right)_{t}-\mathrm{W}-\left(\mathrm{CH}_{2}\right)_{u}-\mathrm{CHR}^{17}-\mathrm{NH}-\mathrm{CH}\left(\mathrm{R}^{18}\right)-\mathrm{Ar}_{6}
\]
wherein:
\(\mathrm{Ar}_{5}\) is aryl, dicyclic or tricyclic heteroaryl, arylmethyl(arylmethy)amino, heteroarylmethyl(heteroarylmethyl) amino or aryimethyl(heteroarylmethyl)amino optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, unsubstituted lower alkenyl, halogen, hydroxy, unsubstituted lower alkoxy, unsubstituted lower thioalkoxy, lower alkyl substituted with one or more halogens, lower alkenyl substituted with one or more halogens, lower alkoxy substituted with one or more halogens, nitro. formyl, acetoxy, acetyl, \(-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})-,-\mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\), cyano, \(-\mathrm{N}(\text { unsubstituted lower alkyl })_{2}\), phenyl, phenoxy, benzyl, benzyloxy, \(\alpha\), \(\alpha\)-dimethylbenzyl, methylenedioxy, ettylenedioxy and \(-\mathrm{OCH}_{2} \mathrm{COOH}\);
\(\mathrm{Ar}_{6}\) is aryl or dicyclic or tricyclic heteroaryl optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, lower alkyl substituted with one or more halogens, unsubstituted lower alkenyl, lower alkenyl substituted with one or more halogens, unsubstituted lower alkoxy, lower alkoxy substituted with one or more halogens, halogen, hydroxy, unsubstituted lower thioalkoxy, lower thioalkoxy substituted with one or more halogens, benzyloxy, methylenedioxy, ethylenedioxy, acetoxy, \(\mathrm{OCH}_{2} \mathrm{COOH},-\mathrm{C}(=\mathrm{O}) \mathrm{NH}_{2}\), cyano, and \(-\mathrm{CH}_{2} \mathrm{OH}_{\text {; }}\)
\(t\) is 0 or 1 ;
u is an integer of from 0 to 11, inclusive:
W is selected from the group consisting of oxygen, sulfur, sulfinyl, sulfonyl, carbonyl and amino;
\(\mathrm{R}^{16}\) and \(\mathrm{R}^{17}\) are H or unsubstituted lower alkyl; and
\(R^{18}\) is unsubstituted lower alkyl;
or a pharmaceutically acceptable salt or hydrate of said compound.
30. The compound, seft or hydrate of claim 29 wherein:

Ar \({ }_{5}\) is phenyl, indole, benzothiazole, benzoxazole, dibenzofuran, carbazole, pyridine, fluorene, quinoline, naphthalene, chromenone, tetrahydrobenzothiazepine, dibenzylamino, benzyl(naphthylmethy)amino, benzyl(pyridylmethyl)amino, thienylmethy(benzyl)amino, furylmethyl(benzyl)amino or N -alkylpyrrolylmethyl(benzy)amino optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, halogen, unsubstituted lower alkoxy, lower alkyl substituted with one or more halogens, lower alkoxy substituted with one or more halogens, nitro, dimethylamino and unsubstituted phenyl; and
\(\mathrm{Ar}_{6}\) is thiophene, furan, pyrrole, phenyl, naphthalene, pyridine, pyrazine or thiazole optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyt, halogen. unsubstituted lower alkoxy, lower alkyl substituted with one or more halogens, lower alkoxy substituted with one or more halogens, hydroxy and benzyloxy optionally substituted with halogen or methyl; \(R^{16}\) and \(R^{17}\) are H or methyl; and \(R^{18}\) is methyl.
31. The compound, salt or hydrate of claim 30 wherein:

Ar \({ }_{5}\) is phenyl, benzothiazole, benzoxazole, dibenzofuran, carbazole, pyridine, quinoline or naphthalene optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, halogen, unsubstituted lower alkoxy, lower alkyl substituted with one or more halogens and lower alkoxy substituted with one or more halogens;
\(\mathrm{Ar}_{6}\) is phenyl or naphthalene, wherein said phenyl is optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkoxy. lower alkoxy substituted with one or more halogens and benzyloxy optionally substituted with halogen or methyl:
\(t\) is 0 ;
\(\mathbf{u}\) is an integer of from 1 to 8 , inclusive;
W is sulfur; and
\(R^{17}\) is H .
32. The compound, salt or hydrate of claim 31 wherein:
\(\mathrm{Ar}_{5}\) is selected from the group consisting of phenyl optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, halogen, unsubstituted lower alkoxy, lower alky substituted with one or more halogens and lower alkoxy substituted with one or more halogens;
\(\mathrm{Ar}_{6}\) is 3 -methoxyphenyl or \(\alpha\)-naphttry;; and
\(\mathbf{u}\) is an integer of from 2 to 6 , inclusive.
33. The compound, salt or hydrate of claim 30 wherein:
\(\mathrm{Ar}_{5}\) is dibenzylamino, benzyl(naphthylmethyl)amino or benzyl(pyridylmethyl)amino optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, halogen, unsubstituted lower alkoxy, lower alkyl substituted with one or more halogens and lower alkoxy substituted with one or more halogens;
\(\mathrm{Ar}_{6}\) is naphthyl or methoxyphenyl;
\(t\) is zero;
u is an integer of from 0 to 8 , inclusive;
\(W\) is carbonyl; and
\(R^{17}\) is \(H\).
34. The compound, salt or hydrate of claim 33 wherein:
\(\mathrm{Ar}_{5}\) is dibenzylamino optionally substituted with one or more groups independently selected from the group consisting of unsubstituted lower alkyl, halogen, unsubstituted lower alkoxy, lower alkyl substituted with one or more halogens and lower alkoxy substituted with one or more halogens;
\(\mathrm{Ar}_{6}\) is 3 -methoxyphenyl or \(\alpha\)-naphthyl; and u is 1 .
35. The compound, salt or hydrate claimed in any one of claims 29-34 wherein said compound is the \(R\) enantiomer.
36. (R)- \(\mathrm{N}-\left[1-\left(1^{\prime}\right.\right.\)-naphthyl)ethyl \(]-2\)-( \(2^{\prime}, 5^{\prime}\)-dichorophenylthio)ethylamine, \(\quad \mathrm{N}-[(1 \mathrm{R})-1-(1\)-naphthyl)ethyl \(]-\mathrm{N}-(5-\{[4\)-(trifluoromethoxy)phenyl)thio\}pentyl)amine, \(N-[(1 R)-1\)-(1-naphthyl)ethyl] N -(4-\{[4-(trifluoromethoxy) phenyl]thio\}butyl)amine, \(\quad N-\{4-[(2,4-\) dimethylphenyl)thio]butyi\}- \(\mathrm{N}-[(1 R)-1-(1-\) naphthyl)ethyl]amine, \(\quad \mathrm{N}-[(1 R)-1-(1-\) naphthyl)ethyl]- \(\mathrm{N}-(5-\{[4\)-(trifluoromethyl) phenyl]thio\}pentyl)amine, \(N-[(1 R)-1-(1-\) naphthyl) ethyl \(]-\mathrm{N}-\{4-[(2,4,5\)-trichlorophenyl)thio]butyl\}amine, N -\{5-[(4-chlorophenyl)thio]pentyl\}-N-[(1R)-1-(1-naphthyl)ethyl]amine, N -\{5-[(2,4-dimethylphenyl)thio]pentyl \(]-N-[(1 R)-1\)-(1-naphthyl)ethyl]amine, \(\quad N-[(1 R)-1-(1-n a p h t h y l)\) ethy \(]\) - \(\mathrm{N}-(4-\{[4\) (trifluoromethyl)phenyl] thio]butyl)amine, \(\mathrm{N}-\{4-[(4-\) methylphenyl)thio]butyl\}- \(\mathrm{N}-[(1 \mathrm{R})-1-(1-\) naphthyl)ethyl]amine, \(\mathrm{N}-\{4-\) [(4-chlorophenyl)thio]butyl]-N-[(1R)-1-(1-naphthyl) ethyl]amine, \(N \cdot[(1 R)-1-(1-n a p h t h y l) e t h y l]-N \cdot(6-\{[4-\) (trifluoromethoxy)phenyl]thio\}hexyl)amine, \(N-\{5-[(4-\) methoxyphenyl)thio]pentyl\}- \(N-[(1 R)-1-(1-\) naphthyl)ethylfamine, \(N-[(1 R)-1-(1-\) naphthyl)ethyl] \(N-\{5-[(2,4,5\)-trichlorophenyl) thio \(])\) penty \(]\) amine, \(\quad N-\{(1 R)-1-(1\)-naphthyl)ethyl] \(N-(4-\{[2,3,5,6-\) tetrafluoro-4-(trifluoromethyl)phenyl]thio]butyl)amine, \(\quad N-\{5-[(2,5\)-dichloropheny \()\) thio \(]\) pentyl \(]-N-\{(1 R)-1-(1-\) naphthyl) ethyllamine, \(\quad \mathrm{N}\)-\{5-[(4-fluorophenyl)thio]pentyl\}- \(\mathrm{N}-[(1 \mathrm{R})-1-(1-\) naphthyl)ethy]amine, \(\quad \mathrm{N}\)-\{6-[(4-chlorophenyl)thio \(]\) hexyl \(\}-\mathrm{N}-[(1 \mathrm{R})-1-(1\)-naphthyl)ethyl]amine, \(\quad \mathrm{N}-\{4-[(3-\) methoxyphenyl)thio \(]\) butyl \(\}-\mathrm{N}-[(1 \mathrm{R}) \cdot 1-(1-\) naphthyl)ethyl]amine, \(\mathrm{N}-\{5-[(4-\) methylphenyl)thio \(]\) pentyl \(\}-\mathrm{N}-[(1 R)-1\)-(1-naphthyl)ethyl]amine, \(\mathrm{N}-[4-[(2,5\)-dichlorophenyl)thio \(]\) butyl \()-N-[(1 R)-1-(1-\) naphthyl) ethyl]amine, \(\quad N-[(1 R)-1-(1-\) naphthyl)ethy \(]-N-(5-\{[2,3,5,6\)-tetrafluoro-4-(trifluoromethyl)pheny \(]\) thiolpentyl)amine, \(\quad N-[(1 R)-1-(1-n a p h t h y l)\) ethy \(]-N-(7-\{[2,3,5,6\)-tetrafluoro-4(trifluoromethyl)phenylithio\}heptyl)amine, \(\quad N-\{[4-(5-e t h o x y-1,3\)-benzothiazol-2-y \(\mid\) )thio \(]\) buty 1\(\}-\mathrm{N}-[(1 R)-1-(1\)-naphthyl) ethyl]amine, \(\quad \mathrm{N}\) - \([5-(3-\) methoxyphenyl)thio]pentyl]- \(\mathrm{N}-[(1 \mathrm{R})-1\)-(1-naphthyl)ethyl]amine, \(\quad \mathrm{N}-[(1 \mathrm{R})-1\)-(1-naphthyl)ethyl \(]-N-(3-\{[4\) (trifluoromethyi)phenyl]thio\}propyl)amine, \(\quad N-[(1 R)-1-(1\)-naphthyl)ethyl \(]-N-(4-\{[3-\) (trifluoromethyl)phenyl]thio]butyl)amine, \(N-\{4-[(4-\) fluorophenyl)thio]butyl\}-N-[(1R)-1-(1-naphthyl)ethyl]amine, , N1-(4-methylbenzyl)-N1-[4-(trifluoromethoxy)benzyl]-3-\{[(1R)-1-(1-naphthyl)ethyl]amino]propanamide, \(\quad \mathrm{N} 1, \mathrm{~N} 1\)-di(4-methylbenzyl)-3-\{[(1R)-1-(1-naphthyl)ethyl]amino\}propanamide, N 1 -( 3,4 -dichlorobenzyl)-N1-(4-methoxybenzy)-3[ (1R)-1-(1-naphthyl)ethyl]amino\}propanamide, \(\quad \mathrm{N} 1-(4-m e t h y l b e n z y l)-N 1-[4-(t r i f l u o r o m e t h y l)\) benzy \(]-3-[[(1 R)-1-(1-\) naphthyl)ethyl]amino\}propanamide, \(\quad \mathrm{N} 1\)-( 3,4 -dichlorobenzyl)-N1-[4-(trifluoromethyl)benzyI]-3-\{[(1R)-1-(1-naphthyl)ethyl]amino\}propanamide, N 1 -(4-chlorobenzyl)-N1-(4-methoxybenzyl)-3-[I(1R)-1-(1-naphthyl)ethyl]amino\}propanamide, \(\quad N 1\)-(4-chlorobenzyl)-N1-(3,4-dichlorobenzyl)-3-l((1R)-1-(1-naphthyl)ethyl]amino\}propanamide, N1( 3,4 -dichlorobenzyl)-N1-[4-(trifluoromethoxy)benzyl)-3-\{[(1R)-1-(1-naphthyl)ethyl]amino\}propanamide, \(\quad \mathrm{N} 1\)-(3,4-dichlorobenzyl)-N1 -(4-methylbenzyl)-3-\{[(1R)-1-(1-naphthyl)ethyl]amino\}propanamide, N1,N1-di[4-(trifluorometh-

\section*{EP \(0933 \mathbf{3 5 4}\) A1}
 \(3-[(1 \mathrm{R})-1-(1\)-naphtthyi)ethyl]aminolpropanamide, N 1 -(4-methoxybenzy \()-\mathrm{N} 1-[4\)-(trifluoromethy) benzy \(]-3-[(1 \mathrm{R}) \cdot 1-\) (1-naphthy)ethyl]aminołpropanamide, N1,N1-dil4-(trifluoromethyl)benzyll-3-[I(1R)-1-(1-naphthyl)ethyl]amino\}propanamide, \(\mathrm{N} 1, \mathrm{~N} 1\)-di(4-chlorobenzy)-3-I(1R)-1-(1-naphthyl)ethyl]aminojpropanamide, \(\mathrm{N} 1, \mathrm{~N} 1\)-di( 4 -methoxyben-
48. The method of claim 47 wherein said cell is a parathyroid cell, a juxtaglomerular kidney cell, a proximal tubule kidney cell, a parafollicular thyroid cell, a bone osteoclast, a keratinocyte or a placental trophoblast. zyl) -3 f[(1R)-1-(1-naphthyl)ethyl]aminojpropanamide, \(\quad \mathrm{N} 1\)-benzyl-N1-(3,4-dichlorobenzyl)-3-f(1R)-1-(1naphthyl)ethy]amino\}propanamide, \(\quad \mathrm{N} 1\)-(4-chlorobenzy))-N1-(2-naphthylmethyl)-3-[(1R)-1-(1-naphthyl)ethyl]aminojpropanamide, N1-(2-chlorobenzyl)-N1-(4-chlorobenzyl)-3-[(1R)-1-(1-naphthyl)ethyl)]amino\}propanamide, N 1 -benzyl-N1-(4-chlorobenzyl)-3-[(1R)-1-(1-naphthyl)ethy]amino\}propanamide, N 1 -(4-ctlorobenzyl)N 1 -[4-(trifluoromethoxy)benzyl]-3-f( 1 R\()-1\)-(1-naphthyl)ethyl]amino]propanamide, or \(\mathrm{N} 1, \mathrm{~N} 1\)-di(3,4-dichlorobenzyl)-\(3-[(1 \mathrm{R})-1(1-\) naphthyl)ethy]amino\}propanamide, or a salt or hydrate thereof.
37. A pharmaceutical composition comprising said compound, salt or hydrate of any of claims 1 through 36 , indusive.
38. A method of treating a patient comprising administering to said patient a therapeutically effective amount of one or more of said compounds of said claims 1 through 37.
39. The method of claim 38 wherein said patient is suffering from a disease or disorder characterized by either or both of (1) abnormal calcium homeostasis and, (2) an abnormal amount of an intracellular or extracellular messenger whose production can be affected by calcium receptor activity.
40. A method for modulating the PTH level in a patient comprising administering to said patient an effective amount of said compound of claims 1 through 37.
41. The method of claim 40 wherein said effective amount of said compound of claims 1 through 37 reduces said PTH level in a patient.
42. The method of claim 41 wherein said patient has an abnormally high PTH level and effective amount of a compound of claims 1 through 37 reduces said PTH level in said patient to a degree sufficient to cause a decrease in plasma \(\mathrm{Ca}^{2+}\).
43. A method for reducing the PTH level in a patient to a level present in a normal individual comprising administering to said patient an effective amount of said compound of claims 1 through 37.
44. A method for modulating parathyroid hormone secretion in a patient comprising administering to said patient an effective amount of said compound of claims 1 through 37.
45. The method of claim 44 wherein said effective amount of said compound of claims 1 through 37 reduces said parathyroid hormone secretion in said patient.
46. The method of claim 45 wherein said patient has an abnormally high parathyroid secretion and said therapeutically effective amount of said compound of claims 1 through 37 reduces said parathyroid hormone secretion in said patient to a degree sufficient to cause a decrease on plasma \(\mathrm{Ca}^{2+}\).
47. A method for modulating one or more \(\mathrm{Ca}^{2+}\) receptors activities in a cell comprising administration of one or more of said compounds, salts, or hydrates of said claims 1 through 37 to said cell.
49. A method for treating or preventing a disorder selected from the group consisting of hyperparathyroidism, renal osteodystrophy, hypercalcemia malignancy, osteoporosis, Paget's disease and hypertension comprising administering to a patient suffering from said disorder a therapeutically effective amount of said compound of claims 1 through 37.
50. The method of claim 49 wherein said hyperparathyroidism is primary hyperparathyroidism.
51. The method of claim 49 wherein said hyperparathyroidism is secondary hyperparathyroidism.
52. A pharmaceutical composition for treatment of primary and secondary hyperparathyroidism comprising the compound, salt or hydrate claimed in any one of claims 29-36.
53. A pharmaceutical composition for treatment of renalosteodystrophy comprising the compound, salt or hydrate claimed in any one of claims 29-36.
54. A pharmaceutical composition for treatment of hypercalcemia comprising the compound, salt or hydrate claimed in any one of claims 29-36.
55. A pharmaceutical composition for treatment of hypercalcemia malignancy comprising the compound, salt or hydrate claimed in any one of claims 29-36.
56. A pharmaceutical composition for treatment of osteoporosis comprising the compound, salt or hydrate claimed in any one of claims 29-36.




ڤ




Fig. 1


Fig. 2


Fig. 3


Fig. 4


\section*{EP \(0933 \mathbf{3 5 4}\) A1}
\[
\begin{aligned}
& \text { i }
\end{aligned}
\]
\[
\begin{aligned}
& \underset{\sim}{x} \\
& \begin{array}{c}
\infty \\
\stackrel{\infty}{\stackrel{1}{4}} \\
\dot{x} \\
\underset{\sim}{u}
\end{array} \\
& \text { Ex. } 29 \\
& \text { Ex. } 30 \\
& \begin{array}{ll}
\bar{m} & \underset{\sim}{x} \\
\underset{\sim}{x} & \underset{\sim}{x}
\end{array}
\end{aligned}
\]




Cx.36
(in

Fig. 7



\(\stackrel{\rightharpoonup}{\boldsymbol{m}}\)


Fig. 9


K-2003



K-2005


K-2006


K-2007


K-2010


K-2011

K-2012


K-2016

K-2017



K. 2030

Fig. 10

\section*{EP 0933354 A1}

K. 2033


K-2034


K-2035


K-2040


K-2041


K-2045



K-2047


K-2048


K-2049


K-2050





K-2055

Fig. 11


K-2056


K-2057


K-2058


K-2059


K-2061





K-2076



K-2079


K-2080


K-2082



K-2085

Fig. 12



Fig. 13

Fig. 14

\(K\)-2246

\(K-2076\)

Fig. 15




Fig. 16

\(\stackrel{\rightharpoonup}{\boldsymbol{a}}\)


Fig. 17

\(\stackrel{\rightharpoonup}{\Phi}\)



Fig. 19




Fig. 20




Fig. 21




Fig. 22




Fig. 23




Fig. 24

251
252
K-2310



Fig. 25


Fig. 26

EP 0933354 A1


K-2302


K-2295


K-2304

K-2305


K-2275

K-2314








Fig. 27


\(\begin{array}{lll}S 8: \mathrm{n}=1 & S 11: \mathrm{n}=4 & S 14: \mathrm{n}=7 \\ S 9: \mathrm{n}=2 & S 12: \mathrm{n}=5 & S 15: \mathrm{n}=9 \\ S 10: \mathrm{n}=3 & S 13: \mathrm{n}=6 & S 16: \mathrm{n}=11\end{array}\)


S17: \(\mathrm{n}=1 \quad S 20: \mathrm{n}=4\)
S18: \(\mathrm{n}=2 \quad S 21: \mathrm{n}=5\)
S19: \(\mathrm{n}=3 \quad S 22: \mathrm{n}=6\)

\(\begin{array}{ll}S 24: \mathrm{n}=1 & S 27: \mathrm{n}=6 \\ S 25: \mathrm{n}=2 & S 28: \mathrm{n}=7 \\ S 26: \mathrm{n}=5 & \end{array}\)


S29: \(n=1\)
S32: \(\mathrm{n}=4\)
\(S 35: n=7\)
\(S 30: \mathrm{n}=2 \quad S 33: \mathrm{n}=5\)
\(S 31: \mathrm{n}=3 \quad S 34: \mathrm{n}=6\)


S36: \(\mathrm{n}=1\)
S39: \(n=4\)
S42: \(n=7\)
\(S 37: \mathrm{n}=2 \quad S 40: \mathrm{n}=5\)
\(S 38: n=3 \quad S 41: n=6\)
S23: \(\mathrm{n}=7\)

S


S38. \(n=3 \quad\) S4I: \(n=6\)
Fig. 28

\begin{tabular}{ll}
\(S 43: n=1\) & \(S 46: n=4\) \\
\(S 44: n=2\) & \(S 47: n=5\) \\
\(S 45: n=3\) & \(S 48: n=6\)
\end{tabular}


S50: \(\mathrm{n}=1 \quad S 53: \mathrm{n}=4\)
S56: \(n \neq 7\)
S51: \(\mathrm{n}=2 \quad S 54: \mathrm{n}=5\)
S52: \(\mathrm{n}=3 \quad S 55: \mathrm{n}=6\)


S57: \(\mathrm{n}=1 \quad\) S60: \(\mathrm{n}=4\)
S63: \(\mathrm{n}=7\)
S58: \(\mathrm{n}=2 \quad\) S61: \(\mathrm{n}=5\)
\(S 59: \mathrm{n}=3 \quad S 62: \mathrm{n}=6\)


S64: \(\mathrm{n}=1 \quad\) S67: \(\mathrm{n}=4\)
S70: \(\mathrm{n}=7\)
S65: \(\mathrm{n}=2 \quad S 68: \mathrm{n}=5\)
S66: \(\mathrm{n}=3 \quad S 69: \mathrm{n}=6\)

\(S 71: \mathrm{n}=1 \quad S 74: \mathrm{n}=4\)
S77: n=7
S72: \(\mathrm{n}=2 \quad S 75: \mathrm{n}=5\)
\(S 73: \mathrm{n}=3 \quad S 76: \mathrm{n}=6\)


S78: \(n=1\)
S81: \(\mathrm{n}=4\)
S84: n=7
S79: \(\mathrm{n}=2 \quad S 82: \mathrm{n}=5\)
\(S 80: n=3 \quad S 83: n=6\)
Fig. 29

\section*{EP 0933354 A1}




\begin{tabular}{lll}
\(S 104: \mathrm{n}=1\) & \(S 107: \mathrm{n}=4\) & \(S 110: \mathrm{n}=7\) \\
\(S 105: \mathrm{n}=2\) & \(S 108: \mathrm{n}=5\) & \\
\(S 106: \mathrm{n}=3\) & \(S 109: \mathrm{n}=6\) &
\end{tabular}

S111: \(\mathrm{n}=1 \quad\) S114: \(\mathrm{n}=4 \quad\) S117: \(\mathrm{n}=7\) S112: \(\mathrm{n}=2 \quad S 115: \mathrm{n}=5\)
S113: \(\mathrm{n}=3 \quad S 116: \mathrm{n}=6\)

\begin{tabular}{lll}
\(S 118: \mathrm{n}=1\) & \(S 121: \mathrm{n}=4\) & \(S 124: \mathrm{n}=7\) \\
\(S 119: \mathrm{n}=2\) & \(S 122: \mathrm{n}=5\) & \\
\(S 120: \mathrm{n}=3\) & \(S 123: \mathrm{n}=6\) &
\end{tabular}

Fig. 30

\section*{EP 0933354 A1}

\begin{tabular}{lll}
\(S 125: n=1\) & \(S 128: n=4\) & \(S 131: n=7\) \\
\(S 126: n=2\) & \(S 129: n=5\) & \\
\(S 127: n=3\) & \(S 130: n=6\) &
\end{tabular}

\(S 132: \mathrm{n}=1 \quad S 135: \mathrm{n}=4 \quad S 138: \mathrm{n}=7\)
S133: \(\mathrm{n}=2 \quad S 136: \mathrm{n}=5\)
S134: \(\mathrm{n}=3 \quad\) S137: \(\mathrm{n}=6\)





\(\begin{array}{ll}S 160: n=1 & S 163: n=4 \\ S 161: n=2 & S 164: n=5 \\ \text { S162: } n=3 & \text { S165: } n=6\end{array}\)

Fig. 31




\begin{tabular}{lll}
\(S 195: \mathrm{n}=1\) & S198: \(\mathrm{n}=6\) & \(S 201: \mathrm{n}=11\) \\
S196: \(\mathrm{n}=2\) & \(S 199: \mathrm{n}=7\) & \\
\(S 197: \mathrm{n}=5\) & S200: \(\mathrm{n}=9\) &
\end{tabular}

\begin{tabular}{ll}
\(S 202: n=1\) & \(S 205: n=4\) \\
\(S 203: n=2\) & \(S 206: n=5\) \\
\(S 204: n=3\) & \(S 207: n=6\)
\end{tabular} S208: \(\mathrm{n}=7\) S203: \(n=2 \quad S 206: n=5\) \(S 204: n=3 \quad S 207: n=6\)

Fig. 32




Fig. 33

S241:n=1 S244: \(\mathrm{n}=7\)
\(S 242: n=2\)
\(S 243: n=6\)

\(S 245: \mathrm{n}=2 \quad S 248: \mathrm{n}=6\)
S246: \(n=3\)
\(S 247: n=5\)

S249: \(\mathrm{n}=2\)
S250: \(n=3\)

S251: \(\mathrm{n}=2\)
\(S 252: \mathrm{n}=3\)

S253: \(n=2\)
S254: \(\mathrm{n}=3\)

\(S 255: n=3\)
\(S 256: n=4\)
\(S 257: n=5\)

S258: \(\mathrm{n}=3\)
S259: \(\mathrm{n}=4\)
S260: \(\mathrm{n}=5\)

Fig. 34

\section*{EP 0933354 A1}

S261: n=1
S262: \(\mathrm{n}=2\)


S265


Fig. 35

EP 0933354 A1







F-15






Fig. 36














Fig. 37

\section*{EP \(0933 \mathbf{3 5 4} \mathbf{A 1}\)}














Fig. 38













F-92



Fig. 39











Fig. 40











Fig. 41






Fig. 42

\[
\begin{array}{ll}
S 267: \mathrm{n}=1 & S 271: \mathrm{n}=5 \\
S 268: \mathrm{n}=2 & S 272: \mathrm{n}=6 \\
S 269: \mathrm{n}=3 & S 273: \mathrm{n}=7 \\
S 270: \mathrm{n}=4 &
\end{array}
\]


Fig. 43










S286

Fig. 44







S299

Fig. 45

Plasma \(\mathrm{Ca}^{2+}\) (mmol/l)

EP 0933354 A1






Plasma \(\mathrm{Ca}^{2+}(\mathrm{mmol} / \mathrm{l})\)


Fig. 53 Time (hr)




Plasma \(\mathrm{Ca}^{2+}(\mathrm{mmol} / \mathrm{I})\)



Fig. \(60 \quad\) Time (hr)


\section*{Fig. 61 Time (hr)}

Fig. 62 Time (hr)

Plasma \(\mathrm{Ca}^{2+}(\mathbf{m m o l} / \mathrm{l})\)


Fig. \(65 \quad\) Time (hr)

EP 0933354 A1


Time (hr)
Fig. 67
Plasma \(\mathrm{Ca}^{2+}(\mathrm{mmol} / \mathrm{l})\)


Fig. 69 Time (hr)

EP \(0933 \mathbf{3 5 4} \mathbf{A 1}\)





Fig. \(74 \quad\) Time (hr)



Fig. \(76 \quad\) Time (hr)





fras \(\quad\) Tm (m)
Plasma \(\mathrm{Ca}^{2+}(\mathrm{mmol} / \mathrm{l})\)



Time (hr)
Plasma \(\mathrm{Ca}^{2+}\) (mmol/l)

EP 0933354 A1


EP 0933354 A1

Time (hr)
Fig. 86

Plasma \(\mathrm{Ca}^{2+}\) ( \(\mathrm{mmol} / \mathrm{l}\) )

Plasma \(\mathrm{Ca}^{2+}\) (mmol/l)


Time (hr)
Fig. 89
Plasma \(\mathrm{Ca}^{2+}(\mathrm{mmol} / \mathrm{l})\)

Fig. \(90 \quad\) Time (hr)

EP 0933354 A1


EP 0933354 A1


EP 0933354 A1


\section*{Changes in serum PTH ( \(\mathrm{pg} / \mathrm{ml}\) )}


Relative changes in serum PTH (\% of pre-dose)


Fig. 96

\section*{EP 0933354 A1}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{INTERNATIONAL SEARCH REPORT} & Imternational application No. PCT/JP97/02358 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
A. CLASSIFICATION OF SUBIECT MATTER \\
Int. Cl \({ }^{6}\) C07C211/30, C07C211/29, C07C211/27, C07C217/14, C07C225/16, C07C237/04, C07C323/23, C07C317/26, C07D209/08, \\
According to International Patest Classification (IPC) or to both national dassifiction and IPC
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{B. FIEIDS SEARCHIED} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Minimum documenstion mearched (clazzification syatew followed by classifiction zymbola) \\
Int. C1 \({ }^{6}\) C07C1/00-409/44, C07D201/00-521/00, A61K6/00-49/04
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Documenuxion scarched other than minimum documeartion to the extent chat such docurnems are induded in we fields rearched} \\
\hline \multicolumn{4}{|l|}{Electronic data base consuated dariag the iaternstional search (banse of data base and, where pracicable, search urms uned) CAS ONLINE} \\
\hline \multicolumn{4}{|l|}{C. DOCUMENTS CONSIDERED TO BE REIEVANT} \\
\hline Category* & Cituion of document, with indication, where app & ppropriate, of the relevam passages & Relevant to claim No. \\
\hline X

X

X
X & \begin{tabular}{l}
JP, 6-510531, A (NPS Phamac November 24, 1994 (24. 11. \& wo, \(93 / 04373\), A1 \& AU, 922 \& 2A, 9206360, A \& CN, 107133 \& NO, 9400581 , A \& EP, 657029 \& AU, 673500, B \\
WO, 94/18959, A1 (NPS Pharm. September 1, 1994 (01. 09. \& AU, 937770, A \& EP, 637237 \& JP, 7506380, A \\
WO, \(96 / 12697\), A1 (NPS Pharm May 2. 1996 (02. 05. 96) \& AU, 9641957 , A \& EP, 787122 \\
Takano et al. 'A facile rout tetrahydroisoquinoline alkal mediated cyclization', Heter p. 47-52
\end{tabular} & ```
ceuticals Inc.),
94)
25889, A
333, A
29. Al
Inc.),
94)
7. Al
Inc.),
22, A1
te to
loids via sulfoxide
rocycles, 35(1)(1977)
``` &  \\
\hline \multicolumn{4}{|l|}{X Further documents are listed in the continustion of Bax C. \(\square\) See pateat family anoex.} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{2}{|l|}{Date of the actual completion of the international search September 29. 1997 (29. 09. 97)} & \multicolumn{2}{|l|}{Date of mailing of the international search report October 21. 1997 (21. 10. 97)} \\
\hline \multicolumn{2}{|l|}{Name and mailing teddress of the ISN Japanese Patent Office Fracimile No.} & \begin{tabular}{l}
Authorized officter \\
Telephone No.
\end{tabular} & \\
\hline
\end{tabular}

Form PCT/SAM210 (secood sbeen) (July 1992)

Intermatiocal application No.
PCT/JP97/02358
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{C (Continuation). DOCUMENTS CONSDERED TO BE RELEVANT} \\
\hline Category* & Cimtion of document, with indication, where appropriste, of the relevant passages & Relevant to chaim No. \\
\hline X & Riley et al. 'Synthesis and \(\alpha\)-adrenolytic activity of chiral N-aralkyl-B-haloethylamines', J. Pharm. Sci., 65(4) (1976) p. 544-547 & \[
\begin{array}{r}
1-17 \\
19-27 \\
29-36
\end{array}
\] \\
\hline X & Chem. Abstr., Vol. 63 (1965) (Columbus, OH, USA). abstract No. 2928 b , Wellcome Foundation Ltd. 'Quaternary ammonium compounds', GB 982,572 & \[
\begin{array}{r}
1-17 \\
19-27 \\
29-36
\end{array}
\] \\
\hline X & Chem. Abstr., Vol. 60 (1964) (Columbus, OH, USA), abstract No. 11246 g , Robert P. Halliday et al. 'Evaluation of certain hypotensive agents. V. Substituted polymethylene diamines', J. Pharm. Sci., \(53(1)(1964)\) p. 19-23 & \[
\begin{array}{r}
1-17 \\
19-27 \\
29-36
\end{array}
\] \\
\hline X & \begin{tabular}{l}
Chem. Abstr., Vol. 60 (1964) (Columbus, OH, USA), abstract No. 1692c, Jerry E. Robertson et al. \\
'Hypotensives. VI. Disubstituted \\
alkylenediamines and related compounds*, J. Med. Chem., 6(6) (1963) p. 805-807
\end{tabular} & \[
\begin{array}{r}
1-17 \\
19-27 \\
29-36
\end{array}
\] \\
\hline X & Chem. Abstr., Vol. 60 (1964) (Columbus, OH, USA), abstract No. 4920f, L. Schusteritz et al. 'Structure and action o piperazine and ethylenediamine derivatives', ArzneimittelForsch., 9 (1959), p. 628-633 & \[
\begin{array}{r}
1-17 \\
19-27 \\
29-36
\end{array}
\] \\
\hline X & Chem. Abstr., Vo1. 53 (1959) (Columbus, OH, USA), abstract No. 12303 e , Joseph L. Szabo et al. 'Heterocyclic diamines and salts', US2,876,236 & \[
\begin{array}{r}
1-17 \\
19-26 \\
29-36
\end{array}
\] \\
\hline X & Chem. Abstr., Vol. 53 (1959) (Columbus, OH, USA) abstract No. 9251b, Joseph L. Szabo et al. 'Aliphatic diamines and their salts', US2,868,833 & \[
\begin{array}{r}
1-17 \\
19-27 \\
29-36
\end{array}
\] \\
\hline X & Chem. Abstr., Vol. 53 (1959) (Columbus, OH, USA). abstract No. 8788d, Roy S. Hauslick et al. Diaralkylenediamine' US2,770,653 & \[
\begin{array}{r}
1-17 \\
19-27 \\
29-36
\end{array}
\] \\
\hline X & Chem. Abstr., Vol. 51 (1957) (Columbus, OH, USA). abstract No. 7428i, Lee C. Cheney 'Purification of streptomycin', US2,767,168 & \[
\begin{array}{r}
1-17 \\
19-27 \\
29-36
\end{array}
\] \\
\hline
\end{tabular}

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Box I Observadons where certath ctaims were found unsearchable (Continuation of tem 1 of arst sheet)
This international search report has aot been ertablished in respecer of cetruin chaims mader Article 17(2)(a) for the following remsons:
1. [X] Claims Nos: \(38-46\)
because they relare to subject manter not required to be searched by this Authority, namely: They pertain to methods for treatment of the human or animal body by surgery or therapy, as well as diagnostic methods.
2.

Claims Nos.:
because they relate to parts of the innemational application that do not camply with the prescribed requirements to such an extens that no meaningful incernational search can be carried out, speciffilly:
3.

Claims Nos:
because they are dependent claims and are not drafted in accondence with the second and thind sentences of Rule 6.4(a).
Box 11 Observations where unity of invention is lacling (Continuation of item 2 of first sheet)
This Intemational Searching Authority found multiple inventions in this international application, as follows:
i.

As all required additional search fees were timely paid by the applicant, this intermational search report covers all searchable claims.

2As all searchable clains could be searched withour effor justifying an additional fee, this Authority did nor invite payment of any dditional fer.
3.As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos:
4.No required additional search fees were timely paid by the appliemu. Consequeaty, this internarional sesrch repon is restricred to the invention firs mentioned in the chaims; it is covered by clairas Nos.:

\section*{Remark on Protest \(\square\) The additional search fees were accompanied by the applicarr's protest. \\ No protest accompanied the payment of additional search fees.}

INTERNATIONAL SEARCH REPORT
Intermational application No.
PCT/JP97/02358

\section*{A. (Continuation) CLASSIFICATION OF SUBJECT MATTER}

C07D209/12, C07D209/14, C07D307/91, C07D263/58, C07D311/30, C07D215/36, C07D277/70, C07D281/10, A61K31/40, A61K31/42, A61K31/35, A61K31/34, A61K31/47

\title{
This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record
}

\author{
BEST AVAILABLE IMAGES \\ Defective images within this document are accurate representations of the original documents submitted by the applicant. \\ Defects in the images include but are not limited to the items checked: \\ \(\square\) BLACK BORDERS \\ \(\square\) IMAGE CUT OFF AT TOP, BOTTOM OR SIDES \\ \(\square\) FADED TEXT OR DRAWING \\ \(\square\) BLURRED OR ILLEGIBLE TEXT OR DRAWING \\ SKEWED/SLANTED IMAGES \\ \(\square\) COLOR OR BLACK AND WHITE PHOTOGRAPHS \\ \(\square\) GRAY SCALE DOCUMENTS \\ \(\square\) LINES OR MARKS ON ORIGINAL DOCUMENT \\ \(\square\) REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY \\ \(\square\) OTHER: \\ \(\qquad\) \\ IMAGES ARE BEST AVAILABLE COPY. \\ As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.
}

\section*{THIS PAGE BLANK (UspTo)}

\section*{United States Patent and Trademark Office}

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P. O. Box 1450

Alexandria, Virginia 22313-1450 www.uspto.gov
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline 10/937,870 & 09/10/2004 & Glen Gary Lawrence & A-870 & 1696 \\
\hline \multicolumn{3}{|l|}{FINNEGAN, HENDERSON, FARABOW, GARRETT \& DUNNER} & \multicolumn{2}{|c|}{EXAMNER} \\
\hline \multicolumn{3}{|l|}{LLP} & \multicolumn{2}{|l|}{SAMALA, JAGADISHWAR RAO} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{901 NEW YORK AVENUE, NW WASHINGTON, DC 20001-4413}} & & ART UNIT & PAPER NUMBER \\
\hline & & & 1618 & \\
\hline \multicolumn{2}{|l|}{SHORTENED STATUTORY PERIOD OF RESPONSE} & mail date & \multicolumn{2}{|c|}{DELIVERY MODE} \\
\hline
\end{tabular}

Please find below and/or attached an Office communication concerning this application or proceeding.
If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

\section*{DETAILED ACTION}

\section*{Election/Restrictions}
1. Restriction to one of the following inventions is required under 35 U.S.C. 121:
I. Claims 1-60 and 78-112 are, drawn to a pharmaceutical composition comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipients, classified in class 424, subclass 9.2 .
II. Claims 61-71 are, drawn to a method of making a pharmaceutical composition comprising: forming a granule comprising an effective dosage amount of a calcium receptor-active compound and controlling the particle size of the granule, classified in class 424 , subclass 474,489 .
III. Claims 72-77 are, drawn to a method for the treatment of at least one disease chosen from hyperparathyroidism... , comprising administering to a patient, classified in class 424 , subclass 488.
IV. Claims 113-118 are, drawn to a method of controlling the dissolution rate of a formulation comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipients, classified in class 424, subclass 464 .

The inventions are distinct, each from the other because of the following reasons:
2. Inventions 1 and II are related as product and process of making. The inventions are distinct if either or both of the following can be shown: (1) that the process as
claimed can be used to make another and materially different product or (2) that the product as claimed can be made by another and materially different process (MPEP § 806.05(f)). In the instant case group I is drawn to a pharmaceutical composition comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipients and group II is drawn to a method of making a pharmaceutical composition comprising: forming a granule comprising an effective dosage amount of a calcium receptor-active compound and controlling the particle size of the granule, yet group I, the product can be made by materially process.
3. Inventions I and III (or IV) are related as product and process of use. The inventions can be shown to be distinct if either or both of the following can be shown: (1) the process for using the product as claimed can be practiced with another materially different product or (2) the product as claimed can be used in a materially different process of using that product. See MPEP § 806.05(h). In the instant case group I is drawn to a pharmaceutical composition comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipients and group III is drawn to a method for the treatment of at least one disease chosen from hyperparathyroidism... , comprising administering to a patient, yet the process for using the product can be practiced with materially different product.

In the event that applicant elects group I, the following election of species is required. This application contains claims directed to the following patentably distinct species of the claimed invention (a) excipients and (b) additive:
(a) excipients (claim 31)
i. microcrystalline cellulose
ii. starch
iii. talc
iv. providone
v. crospovidone
vi. magnesium stearate
vii. colloidal silicon dioxide
viii . sodium dodecyl sulfate
(b) additive (claim 43)
i. glidants
ii. lubricants
iii. adherents
4. Because these inventions are independent or distinct for the reasons given above and there would be a serious burden on the examiner if restriction is not required because the inventions require a different field of search (see MPEP §808.02), restriction for examination purposes as indicated is proper.

Applicant is required under 35 U.S.C. 121 to elect a single disclosed species for prosecution on the merits to which the claims shall be restricted if no generic claim is finally held to be allowable.

Applicant is advised that a reply to this requirement must include an identification of the species that is elected consonant with this requirement, and a listing of all claims readable thereon, including any claims subsequently added. An argument that a claim is allowable or that all claims are generic is considered nonresponsive unless accompanied by an election.

Upon the allowance of a generic claim, applicant will be entitled to consideration of claims to additional species which depend from or otherwise require all the limitations of an allowable generic claim as provided by 37 CFR 1.141. If claims are added after the election, applicant must indicate which are readable upon the elected species. MPEP § 809.02(a).

Applicant is advised that the reply to this requirement to be complete must include (i) an election of a species or invention to be examined even though the requirement be traversed (37 CFR 1.143) and (ii) identification of the claims encompassing the elected invention.

The election of an invention or species may be made with or without traverse. To reserve a right to petition, the election must be made with traverse. If the reply does not distinctly and specifically point out supposed errors in the restriction requirement, the election shall be treated as an election without traverse.

Should applicant traverse on the ground that the inventions or species are not patentably distinct, applicant should submit evidence or identify such evidence now of record showing the inventions or species to be obvious variants or clearly admit on the record that this is the case. In either instance, if the examiner finds one of the inventions unpatentable over the prior art, the evidence or admission may be used in a rejection under 35 U.S.C.103(a) of the other invention.
5. Applicant is reminded that upon the cancellation of claims to a non-elected invention, the inventorship must be amended in compliance with 37 CFR 1.48(b) if one or more of the currently named inventors is no longer an inventor of at least one claim remaining in the application. Any amendment of inventorship must be accompanied by a request under 37 CFR 1.48(b) and by the fee required under 37 CFR 1.17(i).

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jagadishwar R. Samala whose telephone number is (571)272-9927. The examiner can normally be reached on 8.30 A.M to 5.00 P.M.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Michael G. Hartley can be reached on (571)272-0616. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

\section*{Application/Control Number: 10/937,870}

\section*{Art Unit: 1618}

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-2721000.

\author{
Jagadishwar R Kamala \\ Examiner \\ Art Unit 1618
}
sir

MICHAEL G. HARTLEY SUPERVISORY PATENT EXAMINER

AMGEN - IP DEPARTMENT
RECEIVED CENTRAL FAX CENTER

\section*{in the united states patent and trademark office}

In re application of: Glen Lawrence et al.
Application No.: 10/937,870
Filed: 09/10/2004

\section*{Title: Rapid Dissolution Formulation of a Calcium Receptor-Active Compound}

Attorney Docket No. A-870-US-NP
Art Unit No.: 1618
Examiner: Jagadishwar R. Samala

\section*{RESPONSE TO}

RESTRICTION REQUIREMENT

Mail Stop: Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, Virginia 22313-1450
Sir/Madame:
This communication is in response to the Office Action mailed April 26, 2007, concerning the above-referenced patent application.

REMARKS
A response to the Office Actlon dated April 26, 2007, is filed herewith.
In the Official Action dated April 26, 2007, the Examiner required restriction to one of four inventions. The Action further required Applicants to elect a single disclosed species from within the group.

Applicants hereby provisionally elect the invention of Group I, claims 1-60 and 78-112 for examination, with traverse. The traverse is based on the fact that for at least some of the groups set forth in the Restriction Requirement, no search is required beyond that for Group I, and so it is submitted that to examine the groups together would not be unduly burdensome. Applicants provisionally elect the following species:

CERTIFICATE OF FACSIMILE TRANSMISSION
I hereby certify that this paper (along with any referred to as being attached or enclosed) (2 pages total) is being facsimille transmitted to the United States Patent and Trademark Office. \(67 / \cdot 273 \cdot 8300\). on the date shgwn below:

Application No.: 10/937,870
Attorney Docket No. A-870-US-NP
(i) microcrystalline cellulose from the (a) excipients group (claim 31), and (ii) lubricants from (b) additive group (claim 43) with traverse. It is submitted that to examine the specles together would not be unduly burdensome.

\section*{CONCLUSION}

The foregoing elections and remarks are believed to constitute a complete response to the restriction requirement of April 26, 2007. Favorable reconsideration of the application is respectfully requested.

The Examiner is invited to contact the undersigned by telephone if the Examiner has any questions or would like to discuss any issues related to this application.

The Commissioner is hereby authorized to charge any additional fees which may be required regarding this application under 37 C.F.R. §§ 1.16-1.17, or credit any overpayment, to Deposit Account No. 01-0523.

Dated: May 29, 2007.
Respectfully submitted,
Olga Mekhovich
Attorney Name, Reg. No. L0066
Attorney for Applicants
AMGEN INC.
1120 Veterans Boulevard
South San Francisco, CA 94080
Phone: (650) 244-2245
Fax: (650) 837-9422

RECEIVED

\section*{IN THE UNITED STATES PATENT AND TRADEMARK OFFICE}

Applicant(s): Glen Lawrence et al.
Serial No.: \(10 / 937,870\)
Filed: September 10, 2004
For: RAPID DISSOLUTION FORMULATION OF A CALCIUM RECEPTOR-ACTIVE COMPOUND

Docket No.: A-870-US-NP
Group Art Unit No.: 1618
Examiner: Jagadishwar R. Samala

\section*{STATEMENT UNDER 37 C.F.R. 3.73(b)}

Amgen Inc. (hereinafter "Amgen"), a corporation of the State of Delaware having a place of business at One Amgen Center Drive, Thousand Oaks, California, 91320, is the assignee of the entire right, title, and interest in the above-identified U.S. patent application. A chain of title from the inventors of the above-identified application to Amgen Inc. is shown below:
1. From: Inventor Tzuchi R. Ju To: Amgen Inc. The document was recorded in the United States Patent and Trademark Office at Reel 017562 , Frame 0756 on Mav 2. 2006.
2. From: Inventors Lawrence, Alvarez and Lin To: Amgen Inc.

The document was recorded in the United States Patent and Trademark Office at Reel 016361 , Frame 0486 on March 8, 2005.

The undersigned, whose title is supplied below, is empowered to sign this statement on behalf of Amgen.

\section*{REVOCATION OF PREVIOUS POWER OF ATTORNEY AND NEW POWER OF ATTORNEY BY ASSIGNEE}

Amgen hereby revokes all previous powers of attorney given in the aboveidentified application and hereby appoints the registered practitioners at Customer Number 30174 to prosecute this application, to make and to transact all business in the Patent and Trademark Office connected therewith.

CERTIFICATE OF FACSIMILE TRANSMISSION
I hereby certify that this paper (along with any referred to as being attached or enclosed) (2 pages total) is being facsimile transmitted to the United States Patent and Trademark Office, \(4,2,27=8200\).

\section*{RECEIVED CENTRĀLFAẌÖONTER PATENT APPLICATION}

\section*{JUN \(\cup 42007\)}

\section*{REQUEST FOR CHANGE OF CORRESPONDENCE ADDRESS}

Please send all future correspondence and direct telephone calls to Customer Number 30174.

Respectfully submitted,

Date May 29, 2007
By

Stuart L. Watt, Vice President, Law Amgen Inc., Assignee

2

Date Mailed: 06/15/2007

\section*{NOTICE REGARDING CHANGE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 06/04/2007.
- The Power of Attorney to you in this application has been revoked by the assignee who has intervened as provided by 37 CFR 3.71. Future correspondence will be mailed to the new address of record(37 CFR 1.33).

Date Mailed: 06/15/2007

\section*{NOTICE OF ACCEPTANCE OF POWER OF ATTORNEY}

This is in response to the Power of Attorney filed 06/04/2007.
The Power of Attorney in this application is accepted. Correspondence in this application will be mailed to the above address as provided by 37 CFR 1.33 .

\section*{EAST Search History}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Ref
\# & Hits & Search Query & DBs & Default Operator & Plurals & Time Stamp \\
\hline S1 & 2 & "6495165".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/13 17:07 \\
\hline S2 & 2 & "6432656".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/04/23 11:38 \\
\hline S3 & 2 & "6399100".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/04/23 11:39 \\
\hline S4 & 2 & "6387404".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/04/23 11:42 \\
\hline S5 & 2 & "6363231".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/04/23 11:43 \\
\hline S6 & 2 & "6342532".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/04/23 11:46 \\
\hline S7 & 2 & "6313146".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/04/23 11:47 \\
\hline 58 & 2 & "6277788".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/04/23 11:47 \\
\hline
\end{tabular}

\section*{EAST Search History}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S9 & 2 & "6228807".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/04/23 11:48 \\
\hline S10 & 2 & "6172091".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/04/23 11:48 \\
\hline S11 & 2 & "6031003".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 18:24 \\
\hline S12 & 23 & (calcimimetic and calcilytic adj compound) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 10:26 \\
\hline S13 & 212 & (calcimimetic calcilytic) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 11:19 \\
\hline S14 & 282830 & (calcimimetic calcilyticand granules) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 10:26 \\
\hline S15 & 144 & (calcimimetic calcilytic and methylcellulose) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 11:37 \\
\hline S16 & 138 & (calcimimetic calcilytic and microcrystallinecellulose) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:10 \\
\hline
\end{tabular}

EAST Search History
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S17 & 0 & (microcrystallinecellulose and calciun adj receptors) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:11 \\
\hline S18 & 32 & (microcrystallinecellulose) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:16 \\
\hline S19 & 23 & S14 and S18 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:14 \\
\hline S20 & 0 & S13 and S18 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:15 \\
\hline S21 & 7645 & (hyperparathyroidism hyperphosphonia hypercalcemia) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:16 \\
\hline S22 & 0 & S18 and S21 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:16 \\
\hline S23 & 43414 & (microcrystalline adj cellulose) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:06 \\
\hline S24 & 1370 & S21 and S23 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:25 \\
\hline
\end{tabular}

\section*{EAST Search History}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S25 & 8 & S13 and S24 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:18 \\
\hline S26 & 699 & (calcium adj receptors) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:19 \\
\hline S27 & 35 & S23 and S26 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 12:19 \\
\hline 528 & 414 & S24 and @py<"2003" & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:01 \\
\hline S29 & 45943 & (microcrystalline adj cellulose avicel) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:27 \\
\hline S30 & 14 & S13 and S29 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:10 \\
\hline S31 & 35 & S26 and S29 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:16 \\
\hline S32 & 21846 & S14 and S23 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:16 \\
\hline
\end{tabular}

\section*{EAST Search History}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S33 & 9 & S32 and calcilytic & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:17 \\
\hline S34 & 8 & S32 and (calcimimetic) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:17 \\
\hline S35 & 14 & S13 and S29 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:17 \\
\hline S36 & 7 & S13 and avicel & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:20 \\
\hline 537 & 1389 & S21 and S29 & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:27 \\
\hline S38 & 422 & S37 and @py<"2003" & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 17:50 \\
\hline S39 & 2 & "5126145".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 13:52 \\
\hline S40 & 2 & "5981599".pn. & \begin{tabular}{l}
US-PGPUB; \\
USPAT; \\
USOCR; \\
EPO; JPO; \\
DERWENT; \\
IBM_TDB
\end{tabular} & OR & ON & 2007/07/16 13:56 \\
\hline
\end{tabular}

\section*{EAST Search History}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S41 & 2 & "6001884".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 14:14 \\
\hline S42 & 2 & "6011068".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 14:15 \\
\hline S43 & 2 & "6172091".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 14:28 \\
\hline S44 & 2 & "6211244".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 14:31 \\
\hline S45 & 2 & "6228807".pn. & \begin{tabular}{l}
US-PGPUB; \\
USPAT; \\
USOCR; \\
EPO; JPO; \\
DERWENT; \\
IBM_TDB
\end{tabular} & OR & ON & 2007/07/16 14:31 \\
\hline S46 & 2 & "6277788".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 14:32 \\
\hline S47 & 2 & "6313146".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/17 13:18 \\
\hline S48 & 2 & "6342532".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 15:16 \\
\hline
\end{tabular}

\section*{EAST Search History}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S49 & 2 & "6363231".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 15:17 \\
\hline 550 & 2 & "6387404".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 15:32 \\
\hline S51 & 2 & "6399100".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 15:34 \\
\hline S52 & 2 & "6495165".pn. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 15:48 \\
\hline 553 & 2 & "20030035836" & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 15:48 \\
\hline S54 & 56 & (cinacalcet) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 17:51 \\
\hline S55 & 2 & WO-9511221-\$.did. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 18:26 \\
\hline S56 & 2 & WO-9912524-\$.did. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 18:27 \\
\hline
\end{tabular}

EAST Search History
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline S57 & 2 & WO-9612697-\$.did. & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/16 18:27 \\
\hline S58 & 45 & (cinacalcet and calcium) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/17 13:20 \\
\hline S59 & 0 & S58 and @py<"2003" & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/17 13:19 \\
\hline S60 & 6014 & (cinacalcet and hyperparathyroidism hyperphosphonia hypercalcemia) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/17 13:43 \\
\hline S61 & 2266 & S60 and @py<"2003" & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/17 13:33 \\
\hline S62 & 55 & S61 and (calcium adj receptor) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/17 13:22 \\
\hline S63 & 56 & (cinacalcet) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/17 14:17 \\
\hline S64 & 22 & (cinacalcet and calcimimetics) & US-PGPUB; USPAT; USOCR; EPO; JPO; DERWENT; IBM_TDB & OR & ON & 2007/07/17 14:19 \\
\hline
\end{tabular}
 P.O. Box 1450
 Alexandria, Virginia 22313-1450
 www.uspto.gov
\begin{tabular}{|c|c|c|c|c|}
\hline APPLICATION NO. & FILING DATE & FIRST NAMED INVENTOR & ATTORNEY DOCKET NO. & CONFIRMATION NO. \\
\hline 10/937,870 & 09/10/2004 & \multirow[t]{5}{*}{Glen Gary Lawrence} & A-870-US-NP & 1696 \\
\hline \begin{tabular}{l}
\[
30174
\] \\
AMGEN INC
\end{tabular} & 07/23/2007 & & \multicolumn{2}{|c|}{EXAMINER} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1120 VETERANS BOULEVARD SOUTH SAN FRANCISCO, CA 94080}} & & \multicolumn{2}{|l|}{SAMALA, JAGADISHWAR RAO} \\
\hline & & & ART UNIT & PAPER NUMBER \\
\hline & & & 1618 & \\
\hline & & & MAIL DATE & DELIVERY MODE \\
\hline & . & & 07/23/2007 & PAPER \\
\hline
\end{tabular}

Please find below and/or attached an Office communication concerning this application or proceeding.
The time period for reply, if any, is set in the attached communication.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Office Action Summary} & Application No.
\[
10 / 937,870
\] & \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant(s) \\
LAWRENCE ET AL.
\end{tabular}} \\
\hline & Examiner Jagadishwar R. Samala & Art Unit
\[
1618
\] & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. \\
Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. \\
If NO period for reply is specified above, thie maximum statutory period will apply and will expire SIX (6) MONTHS from the malling date of this communication. Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely fled, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Status} \\
\hline \multicolumn{4}{|l|}{3) \(\square\) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.} \\
\hline \multicolumn{4}{|l|}{Disposition of Claims} \\
\hline \begin{tabular}{l}
4) \(\boxtimes\) Claim(s) 1-31,39,43,46,47,52-60, \\
4a) Of the above claim(s) \(\qquad\) is \\
5) \(\square\) Claim(s) \(\qquad\) is/are allowed. \\
6)区 \\
Claim(s) \\
1-31,39,43,46,47,52-60, \\
7) \(\square\) Claim(s) \(\qquad\) is/are objected to. \\
8) \(\square\) \\
Claim(s) \(\qquad\) are subject to restrict
\end{tabular} & nd 99 is/are pending in \(n\) from consideration. nd 99 is/are rejected. election requirement. & cation. & \\
\hline \multicolumn{4}{|l|}{Application Papers} \\
\hline 9) \(\square\) The specification is objected to by
10) \(\square\) The drawing(s) filed on is/ar
Applicant may not request that any ob
Replacement drawing sheet(s) including
11) \(\square\) The oath or declaration is objected & pted or b) \(\square\) objected to rawing(s) be held in abey is required if the drawin miner. Note the attach & xaminer.
37 CFR 1
ected to.
Action or & CFR 1.121 (d). TO-152. \\
\hline \multicolumn{4}{|l|}{Priority under 35 U.S.C. § 119} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
12) \(\square\) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). \\
a) \(\square\) All \\
b) \(\square\) Some * c) \(\square\) None of: \\
\(1 . \square\) Certified copies of the priority documents have been received. \\
2. Certified copies of the priority documents have been received in Application No. \(\qquad\) . \\
\(3 . \square\) Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). \\
* See the attached detailed Office action for a list of the certified copies not received.
\end{tabular}} \\
\hline
\end{tabular}

\section*{Attachment(s)}

\footnotetext{
1) \(\boxtimes\) Notice of References Cited (PTO-892)
2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) \(\boxtimes\) Information Disclosure Statement(s) (PTO/SB/08)

Paper No(s)/Mail Date 09/06/2005.
}
4)

Interview Summary (PTO-413) Paper No(s)/Mail Date. \(\qquad\)
5) \(\square\) Notice of Informal Patent Application
6)Other: \(\qquad\)

\section*{DETAILED ACTION}

\section*{Response to Restriction Requirement}

\section*{1. Acknowledgement is made of Applicant's election (with traverse) of Group I claims 1-60} and 78-122, and the species (microcrystalline cellulose and lubricant), in a response filed on May 29, 2007. Applicants traverse the restriction asserting that at least some of the groups set forth in the restriction requirement should be included in group I. Secondly, applicants traverse the requirement to elect a species for search purposes.

The Examiner respectfully disagrees with the Applicants because the composition and method of making, method for treatment and method of controlling the dissolution rate differ materially in elements and from each other and are therefore capable of supporting their own patents. Nevertheless, Examiner may reconsider to rejoin the method claims commensurate in scope with the composition claims when and if the case is found to be in condition for allowance provided those method claims are free of 35 U.S.C. \(\S 112\) first and second paragraph issues (including written description, reach-through claims language and/or scope of enablement issues).

Applicants reserve their right to file a divisional application on the non-elected subject matter.

Claims 1-60 and 78-112 are pending. Claims 61-77 and 113-118 are withdrawn. Claims \(1-31,39,43,46-47,52-60,78-80,83-97\), and 99 are presented for examination and claims 32-38, 40-42, 44-45, 48-51, 81-82, 98, 100-112 are non-elected claims and are withdrawn from consideration.

\section*{Information of Disclosure Statement}
2. Applicant's Information Disclosure Statement (IDS) filed on September 06, 2005 has been considered. Please refer to Applicant's copies of the 1449 submitted herewith.

\section*{Claim Rejections - 35 USC § 112}
1. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.
2. Claims \(1-31,39,43,46-47,52-60\) are rejected under 35 U.S.C. 112 , first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention. Claim 1 and 2 are drawn to a pharmaceutical composition comprising an effective dosage amount of a "calcium receptor-active compound" wherein the calcium receptoractive compound is chosen from calcimimetic compounds and calcilytic compounds. While the examiner acknowledges that the term "calcium receptor-active compound" is mentioned in the instant specification, the term is not defined by the instant specification in a clear and concise manner. The specification only adequately discloses a very limited number of species for this group such as cinacalcet HCl and cinccalcet methanesulfonate. However these are not considered to be representative species for the wide variation of chemical compounds within "calcium receptor-active compound" which may include ionomimetics, ionolytics, bisphosphonate
compounds. As such, the disclosure of the instant specification is not sufficient to support the generic concept of "calcium receptor-active compound" and requires further clarification.

\section*{Claim Rejections - 35 USC § 102}
1. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -
(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
2. Claims 1-5 and 7-11, 18, are rejected under 35 U.S.C. 102(b) as being anticipated by Nemeth et al. (US 6,031,003).

With respect to claims 1-5 and 7-11, Nemeth discloses pharmaceutical composition and use of molecules able to modulate the activity of an inorganic ion receptor, preferably a calcium receptor (see col 1, lines 26-29). And also, the inorganic ion receptor-modulating agents include ionomimetics, ionolyitcs, Calcimimetics, and Calcilytics. Preferably, Calcimimetics are ionomimetics, which affect one or more calcium receptor activities and bind to a calcium receptor (see col. 5 , line 48-56). Further, the molecule is a substituted R-phenypropyl- \(\alpha\) phenethylamine derivative, or a substituted R-benzyl- \(\alpha\)-phenethylamine derivate, having the structure as recited in claim 4 (see col 8, line 21-40). And also, the molecule calcimimetic or calcilytic having an \(\mathrm{EC}_{50}\) or IC 50 at a calcium receptor of less than or equal to \(5 \mu \mathrm{M}\), preferably less than or equal to \(1 \mu \mathrm{M}, 100\) nmolar, 10 nmolar, or 1 nmolar (see col 8, lines 58-65). And also, the agents can be formulated as pharmaceutically acceptable salts such as hydrochlorides, acetate, citrate, methanesulfonate, ethanesulfonate and the like (see col, 62, lines 28-32). And
also, to facilitate administration of the agent, composition includes carriers and excipients such as calcium phosphate, various sugars, cellulose derivatives, vegetable oils, and physiologically compatible solvents (see col, 62, lines 47-53). And for oral administration, the agents are formulated into conventional oral administration dosage forms such as capsules, tablets, and liquid preparations (see col 63 , lines \(8-10\)).

With respect to claims 1 and 7-11, it is the examiner's position that, inherently, the composition advanced by Nemeth provides pharmaceutically acceptable salts of various concentrations to facilitate the pharmacological use by altering the physical characteristic of the agent without preventing it from exerting its physiological effect. Since the essential elements of the Nemeth composition are identical to the instant compositions (that is, excipients like cellulose derivatives, starch, oral dosage forms such as capsules, tablets and further modulation of calcium receptor activity can be used to treat diseases such as primary hyperparathyroidism and secondary hyperparathyroidism0, the composition would inherently have the same physiochemical properties (e.g. dissolution profile) as the composition set forth in the instant application. As such, it is the examiner's position that the composition advanced by Nemeth anticipates the composition enumerated in the instant claim set.
3. Claims 12, 23-29 are rejected under 35 U.S.C. 102(b) as being anticipated by William G. Goodman et al. (J. Am: Soc. Nephrology 13, 1017-1024, 2002).

Goodman discloses calcimimetic agents such as AMG 073 agent (cinacalcet HCl) for lowering the plasma parathyroid hormone levels in hemodialysis patients suffering from secondary hyperparathyroidism due to ESRD (see abstract). And also, repeated daily orally

\begin{abstract}
administered doses of the calcimimetic agent AMG 073 effectively reduce plasma PTH levels, decrease serum phosphorus concentrations, and lower the calcium-phosphorus ion product in hemodialysis patients with secondary hyperparathyroidism (see page 1023). The bioavailability of AMG 073 after oral administration is greater and it exhibits a more consistent pharmacokinetic profile. Cinacalcet HCl has demonstrated efficacy in controlling the hpercalcemia of severe primary HPT and in reducing parathyroid hormone levels in patient with secondary HPT Since all critical elements as required by instant claims are taught by the cited reference and claims are anticipated.
\end{abstract}

\section*{Claim Rejections - 35 USC § 103}
4. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
5. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

\section*{Art Unit: 1618}
6. Claims \(1-31,39,43,46-47,52-60,78-80,83-97\) and 99 are rejected under 35 U.S.C. 103(a) as being unpatentable over William G. Goodman et al. (J. Am. Soc. Nephrology 13, 1017-1024, 2002) in view of Ault et al (US 2002/0123459) or Black et al. (US 2001/0051636) or Krumhar et al. (US \(6,447,809\)).

Goodman discloses as described above.
Goodman meets the claim limitations as described above but fails in include the granules within the composition comprising microcrystalline cellulose, a lubricant, and a color coating materials.

However, it would have been obvious to one of ordinary skill in the art at that time of the invention was made to incorporate additional additives such as microcrystalline cellulose, a lubricant, a color coating materials to increase the therapeutic efficacy when Goodman is taken in view of Ault or Black and Krumhar together teach a enhancement of therapeutic efficacy when a combination of pharmacologically active agents, and to methods of treating and/or preventing diseases particularly osteomalacia, hypercalcemia of malignancy, osteopenia due to bone metastases and hyperparathyroidism (all of these conditions are characterized by bone loss, resulting from an imbalance between the degradation of bone resorption and the formation of new healthy bone) is used to increase the calcium receptor-activity where calcimimetic compounds has undergone thru very same mechanism for the treatment of primary and secondary hyperparathyroidism.
7. Ault discloses a pharmaceutical composition suitable for the oral delivery of calcitonin in an effective amount commonly employed in the treatment of e.g. paget's disease, hypercalcemia and postmenopausal osteoporosis (see abstract and 0023). And composition additionally
comprises excipients, diluents such as microcrystalline cellulose, a lubricant such as magnesium stearate, a colorant, a humectants, surfactant or any combination thereof (see 0048).

Black discloses a pharmaceutical compositions comprising administering a pharmaceutically active agent, with a bisphosphonate in the treatment of paget's disease, osteohalisteresis, osteomalacia hypercalcemia of malignancy, osteopenia due to bone metastases, periodontal diseases, and hyperparathyroidism (see 0001). And also, the compounds are preferably employed in the form of tablets, granules, pills, powders lozenges, sachets elixirs, emulsions, solutions and soft and hard gelatin capsules. (see 0110). The composition further includes suitable carriers, lubricants, diluents, and excipients such as microcrystalline cellulose, talc, magnesium stearate and thereof (see 0111). And also, compositions are preferably formulated in a unit dosage form, each dosage containing from about 1 to 500 mg of the active ingredient (see 0113).

Krumhar discloses a composition for use as a dietary supplements that, when ingested, will reduce bone turnover rate by inhibiting bone resorption while increasing the retention of calcium, phosphorus, and potassium in the human body (see col 4, lines 30-42). And further, the composition is used for treatment of osteoporosis, paget's disease, and hyperparathyroidismconditions of high bone turnover (see col 10, lines 26-30). And further, the composition comprising active ingredient are preferably employed in the form of tablets containing additional excipients and additives, diluents and disintegrant such as microcrystalline cellulose (disintegrants are substance that facilitate the breakup or disintegration of tablet after administration, see col 9, line 23-29), a lubricant such as talc, magnesium stearate, calcium
stearate, stearic acid and hydrogenated vegetable oils (see col 8, lines 56-64), coloring agents (any of the approved certified water-soluble FD\&C dyes, mixtures thereof, see c 019 , lines 8-15).

When these references are taken together, one would have been motivated to extend Goodman's teaching to add additional additives such as microcrystalline cellulose, a lubricant, a color coating materials to maximize therapeutic efficacy. As suggested by cited references, one would have reasonably expected successful addition of secondary ingredients (such as microcrystalline cellulose, a lubricant, a color coating materials) because the effectiveness, extra benefits (i.e., bone resorption) and safety are already well proven and are well suggested by latter references cited.

One would have been motivated to do so, with reasonable expectation of success because it is always desirable to have extended therapeutic modalities to improve patient's compliance by enhancing patient satisfaction and increasing the selection option. The techniques and skills required for making such substitution is conventional knowledge or well within the skills of ordinary artisan as evidenced by these references cited.

The daily dosages are well suggested and minor variations (dissolution profile) can be easily titrated and obtained in order to determine best outcomes, and it is considered to be routine practice especially having dosage suggestions by Goodman work. Said difference would not render the claimed invention patentably distinct, it is obvious because the modification is well within the skilled level of the artisan and considered to be a routine optimization commonly practiced in the art, as evidenced by cited references.

One would have been motivated to combine these references and make the modification because they are drawn to same technical fields (constituted with same ingredients and share

Application/Control Number: 10/937,870
common utilities, and pertinent to the problem which applicant concerns about. MPEP 2141.01
(a).

\section*{Conclusion}
1. No claims are allowed at this time.
2. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Jagadishwar R. Samala whose telephone number is (571)2729927. The examiner can normally be reached on 8.30 A.M to 5.00 P.M.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Michael G. Hartley can be reached on (571)272-0616. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-7869199 (IN USA OR CANADA) or 571-272-1000.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
EXAMINER'S \\
INTIALS \\
\hline
\end{tabular} & & DOCUMENT NUMBER & DATE & name & CLASS & SU8CLASS & FILING DATEIF APPROPRIATE \\
\hline /JS/ & A1 & 5,126,145 & 6/30/1992 & Evenstad et al. & & & \\
\hline & A2 & 5,981,599 & 11/9/1999 & Moe et al. & & & \\
\hline & A3 & 6,001,884 & 12/14/1999 & Nemeth et al. & & & \\
\hline & A4 & 6,011,068 & 1/4/2000 & Nemeth et al. & & & \\
\hline & A5 & 6,031,003 & 2/29/2000 & Nemeth et al. & & & \\
\hline & A6 & 6,172,091 & 1/9/2001 & Cohen et al. & & & \\
\hline & A7 & 6,211,244 & 4/3/2001 & Van Wagenen et al. & & & \\
\hline & A8 & 6,228,807 & 5/8/2001 & Kuchikata et al. & & & \\
\hline & A9 & 6,277,788 & 8/21/2001 & Wright & & & \\
\hline & A10 & 6,313,146 & 11/6/2001 & Van Wagenen et al. & & & \\
\hline & A11 & 6,342,532 & 1/29/2002 & Moe et al. & & & \\
\hline & A12 & 6,363,231 & 3/26/2002 & Manzer et al. & & & \\
\hline & A13 & 6,387,404 & 5/14/2002 & Oshlack et al. & & & \\
\hline & A14 & 6,399,100 & 6/4/2002 & Clancy et al. & & & \\
\hline & A15 & 6,432,656 & 8/13/2002 & Del Mar et al. & & & \\
\hline & A16 & 6,495,165 & 12/17/2002 & Thosar et al. & & & \\
\hline & A17 & 2002/0015735 & 2/7/2002 & Hedden et al. & & & \\
\hline & A18 & 2002/0107406 & 8/8/2002 & Sakai et al. & & & \\
\hline V & A19 & 2003/0035836 & 2/20/2003 & Shanghvi et al. & & & \\
\hline 1 JS & A20 & 2003/0054041 & 3/20/2003 & Lemmens et al. & & & \\
\hline & & & & & & & \\
\hline & & & & & , & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline EXAMINER: \\
\hline \\
EXAMINER: Inital it citation considered, whether or not citation is in conformance with MPEP 609; Drow line through cilation if not in conformance and not considered. Inchude copy of this form with nexi \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { EXAMANER' } \\
\text { INTLALS }
\end{gathered}
\] & & DOCUMENT NUMEER & DATE & COUNTRY & CLASS & SUUE- & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { IRANSLATIOM } \\
& \text { YES HO }
\end{aligned}
\]} \\
\hline /JS/ & B1 & WO 93/04373 & 3/4/1993 & PCT & & & & \\
\hline & B2 & WO 94/18959 & 9/1/1994 & PCT & & & & \\
\hline & B3 & WO 95/11221 & 4/27/1995 & PCT & & & & \\
\hline & B4 & WO 96/12697 & 5/2/1996 & PCT & & & & \\
\hline & B5 & WO 97/41090 & 11/6/1997 & PCT & & & & \\
\hline V & B6 & WO 01/34562 & 5/17/2001 & PCT & & & & \\
\hline /JS/ & B7 & EP 0933354 & 8/4/1999 & EUROPE & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & . & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & . & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline EXAMINER & & & IJaga & ala/ (\(07 / 18\) & & & & \\
\hline EXAMINER: communication & \[
\begin{aligned}
& \text { cititio } \\
& \text { oplican }
\end{aligned}
\] & d, whether of not citation is & ance with MPEP & äabion if not inco & dered & copy & \[
\overline{a m w i}
\] & \\
\hline
\end{tabular}

A-25b (Rev. 070103)

\begin{tabular}{|c|l|l|l|}
\hline \multirow{3}{*}{ Notice of References Cited } & \multicolumn{2}{|l|}{\begin{tabular}{l}
Application/Control No. \\
\(10 / 937,870\)
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant/(s)/Patent Under \\
Reexamination \\
LAWRENCE ET AL.
\end{tabular}} \\
\cline { 2 - 4 } & \begin{tabular}{l}
Examiner \\
Jagadishwar R. Samala
\end{tabular} & \begin{tabular}{l}
Art Unit \\
1618
\end{tabular} & Page 1 of 1 \\
\hline
\end{tabular}
U.S. PATENT DOCUMENTS
\begin{tabular}{|c|c|l|l|l|c|}
\hline\(*\) & & \begin{tabular}{c}
Document Number \\
Country Code-Number-Kind Code
\end{tabular} & \begin{tabular}{c}
Date \\
MM-YYY
\end{tabular} & \multicolumn{1}{|c|}{ Name } & Classification \\
\hline\(*\) & A & US-6,031,003 & \(02-2000\) & Nemeth et al. & \(514 / 579\) \\
\hline\(*\) & B & US-2002/0123459 & \(09-2002\) & Ault et al. & \(514 / 2\) \\
\hline\(*\) & C & US-2001/0051636 & \(12-2001\) & Black et al. & \(514 / 320\) \\
\hline\(*\) & D & US-6,447,809 & \(09-2002\) & Krumhar et al. & \(424 / 602\) \\
\hline & E & US- & & & \\
\hline & F & US- & & & \\
\hline & G & US- & & & \\
\hline & H & US- & & & \\
\hline & I & US- & & & \\
\hline & J & US- & & & \\
\hline & K & US- & & & \\
\hline & L & US- & & & \\
\hline & M & US- & & \\
\hline
\end{tabular}

FOREIGN PATENT DOCUMENTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline * & & Document Number Country Code-Number-Kind Code & Date MM-YYYY & Country & Name & Classification \\
\hline & N & & & & & \\
\hline & 0 & & & & & \\
\hline & P & & & & & \\
\hline & Q & & & & & \\
\hline & R & & & & & \\
\hline & S & & & & & \\
\hline & T & & & & & \\
\hline
\end{tabular}

NON-PATENT DOCUMENTS
\begin{tabular}{|c|c|c|}
\hline\(*\) & & \multicolumn{1}{c|}{ Include as applicable: Author, Title Date, Publisher, Edition or Volume, Pertinent Pages) } \\
\hline\(*\) & \(\cup\) & \begin{tabular}{l}
William G. Goodman, Gerald A. Hladik, Stewart A. Turner, Peter W. Blaisdell, David A. Goodkin, Wei Liu, Yousir M. Barri, \\
Raphael M. Cohen and Jack W. Coburn, The Calcimimetic Agent AMG 073 Lowers Plasma parathyroid Hormone levels in \\
Hemodialysis patients with Secondary Hyperparathyroidism, J. Am. Soc. Nephrology, 13, 1017-1024, 2002.
\end{tabular} \\
\hline & \(\vee\) & \\
\hline & & \\
\hline & \(x\) & \\
\hline
\end{tabular}

\footnotetext{
*A copy of this reference is not being fumished with this Office action. (See MPEP \(\S 707.05(a)\))
}

Dates in MM-YMY format are publication dates. Classifications may be US or foreign.

\section*{BIB DATA SHEET}

CONFIRMATION NO. 1696
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SERIAL NUMBER
\[
10 / 937,870
\] & \multicolumn{2}{|l|}{FILING or 371(c) DATE 09/10/2004 RULE} & \begin{tabular}{l}
CLASS \\
514
\end{tabular} & \multicolumn{2}{|l|}{GROUP ART UNIT
\[
1618
\]} & \multicolumn{2}{|l|}{ATTORNEY DOCKET NO. A-870-US-NP} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
APPLICANTS \\
Glen Gary Lawrence, Thousand Oaks, CA; Francisco J. Alvarez, Newbury Park, CA; Hung-Ren H. Lin, Oak Park, CA; Tzuchi R. Ju, Vernon Hills, IL;
\end{tabular}} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
** CONTINUING DATA \(\qquad\) \\
This appln claims benefit of \(60 / 502,219\) 09/12/2003 \\
** FOREIGN APPLICATIONS * ***** \\
** IF REQUIRED, FOREIGN FILING LICENSE GRANTED ** 11/01/2004
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{} & Met after Allowance sJ. Initials & STATE OR COUNTRY & SHEETS DRAWINGS 0 & TOTAL CLAIMS & & INDEPENDENT
CLAIMS CLAIMS \\
\hline
\end{tabular}

\section*{ADDRESS}

AMGEN INC.
1120 VETERANS BOULEVARD
SOUTH SAN FRANCISCO, CA 94080
UNITED STATES
TITLE
Rapid dissolution formulation of a calcium receptor-active compound
\begin{tabular}{|c|c|c|}
\hline \multirow{6}{*}{FILING FEE RECEIVED 7420} & \multirow{6}{*}{FEES: Authority has been given in Paper No. \(\qquad\) to charge/credit DEPOSIT ACCOUNT No. \(\qquad\) for following:} & \(\square\) All Fees \\
\hline & & 1.16 Fees (Filing) \\
\hline & & \(\square 1.17\) Fees (Processing Ext. of time) \\
\hline & & 1.18 Fees (Issue) \\
\hline & & \(\square\) Other \\
\hline & & \(\square\) Credit \\
\hline
\end{tabular}

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
}

\section*{Applicant(s): Glen Lawrence et al.}

Serial No.: \(\quad 10 / 937,870\)
Filed: \(\quad 09 / 10 / 2004\)

For: \(\quad\) Rapid Dissolution Formulation of a Calcium Receptor-Active Compound

\section*{RESPONSE TO OFFICE ACTION}

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Deair Sir,
In response to the Office Action mailed July 23, 2007, Applicants request a two month extension of time in the shortened statutory period of response and request that the application be amended as follows. A Petition for Extension of Time (in duplicate) is hereby submitted.

Amendments to the claims are reflected in the listing of claims beginning on page 2 of this paper.

Remarks begin on page 13 of this paper.

\section*{CERTIFICATE OF FACSIMILE TRANSMISSION}

I hereby certify that this paper (along with any referred to as being attached or enclosed) (/he pages total) is being facsimile transmitted to the United States Patent and Trademark Office, 571273.8300, on the

Atny. Docket No. A-870-US-NP

\section*{IN THE CLAIMS}

Claims 1-60 and 78-112 are pending. Claims 61-77 and 113-118 are withdrawn. Claims 1-31, 39, 43, 46-47, 52-60, 78-80, 83-97 and 99 are presented for examination. Claims 1-31, 39, \(43,46-47,52-60,78-80,83-97\) and 99 are rejected.

Please enter the following listing of claims, which will replace all prior versions, and listings, of claims in the application:

\section*{Listing of Claims}
1. (Currently Amended) A pharmaceutical composition comprising an effective dosage arnount of a calcimimetic compound or a calcilytic compound and at least one pharmaceutically acceptable excipient,
wherein at least one dosage unit of the composition has a dissolution profile in 0.05 N HCl , measured according to a dissolution test conducted in a USP 2 apparatus at a temperature of about \(37^{\circ} \mathrm{C}\), and at a rotation speed of about 75 r.p.m., which comprises from about \(50 \%\) to about \(125 \%\) of a target amount of the calcilytic compound being released from the composition no later than about 30 minutes from the start of the test.
2. (Canceled)
3. (Currently Amended) The composition according to Claim \(\underline{1} \geq\), wherein the calcimimetic compounds and calcilytic compounds are chosen from compounds of formula (I) and pharmaceutically acceptable salts and forms thereof

wherein:

Atny. Docket No. A-870-US-NP
\(\mathrm{X}_{1}\) and \(\mathrm{X}_{2}\), which may be identical or different, are each a radical chosen from \(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{O}\), \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, \mathrm{Br}_{2}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}, \mathrm{CHF}_{2}, \mathrm{CH}_{2} \mathrm{~F}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}, \mathrm{NO}_{2}\), \(\mathrm{CH}_{3} \mathrm{CH}_{2}\), propyl, isopropyl, butyl, isobutyl, t-butyl, acetoxy, and acetyl radicals, or two of \(\mathrm{X}_{1}\) may together form an entity chosen from fused cycloaliphatic rings, fused aromatic rings, and a methylene dioxy radical, or two of \(X_{2}\) may together form an entity chosen from fused cycloaliphatic rings, fused aromatic rings, and a methylene dioxy radical; provided that \(X_{2}\) is not a 3-t-butyl radical;
n ranges from 0 to 5 ;
m ranges from 1 to 5 ; and
the alkyl radical is chosen from C1-C3 alkyl radicals, which are optionally substituted with at least one group chosen from saturated and unsaturated, linear, branched, and cyclic \(\mathrm{C} 1-\mathrm{C} 9\) alkyl groups, dihydroindolyl and thiodihydroindolyl groups, and 2-, 3-, and 4-piperid(in)yl groups; and the stereoisomers thereof.
4. (Original) The composition according to Claim 3, wherein the calcimimetic compounds and calcilytic compounds are chosen from compounds of formula (II) and pharmaceutically acceptable salts and forms thereof

wherein:
\(\mathrm{X}_{1}\) and \(\mathrm{X}_{2}\), which may be identical or different, are each a radical chosen from \(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{O}\), \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, \mathrm{Br}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}, \mathrm{CHF}_{2}, \mathrm{CH}_{2} \mathrm{~F}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}, \mathrm{NO}_{2}\), \(\mathrm{CH}_{3} \mathrm{CH}_{2}\), propyl, isopropyl, butyl, isobutyl, t-butyl, acetoxy, and acetyl radicals, or two of \(\mathrm{X}_{1}\) may together form an entity chosen from fused cycloaliphatic rings, fused aromatic rings, and a methylene dioxy radical, or two of \(\mathrm{X}_{2}\) may together form an entity chosen from fused cycloaliphatic rings, fused aromatic rings, and a methylene dioxy radical; provided that \(\mathrm{X}_{2}\) is not a 3-t-butyl radical;

Atny. Docket No. A-870-US-NP
\(n\) ranges from 0 to 5 ; and
\(m\) ranges from 1 to 5 .
5. (Original) The composition according to Claim 4, wherein the pharmaceutically acceptable salts and forms thereof are chosen from salts of hydrochloric acid and salts of methanesulfonic acid.
6. (Original) The composition according to Claim 4, wherein the calcimimetic compounds are chosen from cinacalcet, cinacalcet \(\mathrm{HCl}_{\text {, and }}\), cinacalcet methanesulfonate.
7. (Original) The composition according to Claim 1, wherein the dissolution profile comprises from about \(70 \%\) to about \(110 \%\) of the target amount of the calcium receptor-active compound being released from the composition no later than about 30 minutes from the start of the test.
8. (Original) The composition according to Claim 7, wherein the dissolution profile comprises at least about \(75 \%\) of the target amount of the calcium receptor-active compound being released from the composition no later than about 30 minutes from the start of the test.
9. (Original) The composition according to Claim 6, wherein the dissolution profile comprises from about \(70 \%\) to about \(110 \%\) of the target amount of the cinacalcet HCl being released from the composition no later than about 30 minutes from the start of the test.
10. (Original) The composition according to Claim 9, wherein the dissolution profile comprises at least about \(75 \%\) of the target amount of the cinacalcet HCl being released from the composition no later than about 30 minutes from the start of the test.
11. (Original) The composition according to Claim 6, wherein the cinacalcet HCl and cinacalcet methanesulfonate are in a form chosen from amorphous powders, crystalline particles and mixtures thereof.
12. (Currently Amended) The composition according to Claim l , wherein the feepter active calcimimetic compound is cinacalcet HCl .
13. (Original) The composition according to Claim 12, wherein the cinacalcet HCl is in a form chosen from needle-shape particles, rod-shape particles, plate-shaped particles, and mixtures of any of the foregoing.
14. (Original) The composition according to Claim 12, wherein the particle \(\mathrm{D}_{50}\) of the cinacalcet HCl particles is less than or equal to about \(50 \mu \mathrm{~m}\).
15. (Original) The composition according to Claim 12, wherein the cinacalcet HCl particles have a particle \(\mathrm{D}_{50}\) effective to release from about \(70 \%\) to about \(110 \%\) of the target amount of the cinacalcet HCl from the composition no later than about 30 minutes from the start of the test in 0.05 N HCl .
16. (Original) The composition according to Claim 15 , wherein the cinacalcet HCl particles have a particle \(D_{50}\) effective to release at least about \(75 \%\) of the target amount of the cinacalcet HCl from the composition no later than about 30 minutes from the start of the test in 0.05 N HCl .
17. (Original) The composition according to Claim 1 , wherein the composition is in the form of granules.
18. (Original) The composition according to Claim 1 , wherein the composition is in a forn chosen from tablets, capsules, and powders.
19. (Original) The composition according to Claim 17, wherein the granules have a granule \(\mathrm{D}_{50}\) measured using a sieve analysis ranging from about \(50 \mu \mathrm{~m}\) to about \(150 \mu \mathrm{~m}\).

Atny. Docket No. A-870-US-NP
20. (Original) The composition according to Claim 19, wherein the granules have a granule \(\mathrm{D}_{50}\) measured using a sieve analysis ranging from about \(80 \mu \mathrm{~m}\) to about \(130 \mu \mathrm{~m}\).
21. (Original) The composition according to Claim 17, wherein the granules have a granule \(D_{50}\) effective to release from about \(70 \%\) to about \(110 \%\) of the target amount of the calcium-receptor active compound from the composition no later than about 30 minutes from the start of the test in 0.05 N HCl .
22. (Original) The composition according to Claim 21, wherein the granules have a granule \(\mathrm{D}_{50}\) effective to release at least about \(75 \%\) of the target amount of the calcium-receptor active compound from the composition no later than about 30 minutes from the start of the test in 0.05 N HCl .
23. (Original) The composition according to Claim 12, wherein the cinacalcet HCl is present in a therapeutically effective amount for the treatment of at least one of hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product.
24. (Original) The composition according to Claim 12, wherein the cinacalcet HCl is present in an effective dosage amount for the treatment of at least one of hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product.
25. (Original) The composition according to Claim 23, wherein the hyperparathyroidism is chosen from primary hyperparathyroidism and secondary hyperparathyroidism.
26. (Original) The composition according to Claim 24, wherein the hyperparathyroidism is chosen from primary hyperparathyroidism and secondary hyperparathyroidism.

Atny. Docket No. A-870-US-NP
27. (Original) The composition according to Claim 12, wherein the cinacalcet HCl is present in an amount ranging from about \(1 \%\) to about \(70 \%\) by weight relative to the total weight of the composition.
28. (Original) The composition according to Claim 27, wherein the cinacalcet HCl is present in an amount ranging from about \(5 \%\) 'to about \(40 \%\) by weight relative to the total weight of the composition.
29. (Original) The composition according to Claim 28 , wherein the cinacalcet HCl is present in an amount ranging from about \(15 \%\) to about \(20 \%\) by weight relative to the total weight of the composition.
30. (Original) The composition according to Claim 1, wherein the at least one pharmaceutically acceptable excipient is chosen from non-cellulose and cellulose diluents, binders, and disintegrants.
31. (Original) The composition according to Claim 1, wherein the at least one pharmaceutically acceptable excipient is chosen from microcystalline cellulose, starch, talc, povidone, crospovidone, magnesium stearate, colloidal silicon dioxide, and sodium dodecyl sulfate and any combination thereof.

32-38. (Withdrawn)
39. (Original) The composition according to Claim 31, wherein the microcystalline cellulose is present in an amount ranging from about \(25 \%\) to about \(85 \%\) by weight relative to the total weight of the composition.

40-42. (Withdrawn)
43. (Original) The composition according to Claim 1 comprising:

7

Atny. Docket No. A-870-US-NP
(a) from about \(10 \%\) to about \(40 \%\) by weight of cinacalcet HCl or cinacalcet methanesulfonate;
(b) from about \(45 \%\) to about \(85 \%\) by weight of at least one diluent;
(c) from about \(1 \%\) to about \(5 \%\) by weight of at least one binder;
(d) from about \(1 \%\) to about \(10 \%\) by weight of at least one disintegrant; and
(e) from about \(0.05 \%\) to about \(5 \%\) of at least one additive chosen from glidants, lubricants, and adherents;
wherein the percentage by weight is relative to the total weight of the composition.

\section*{44-45. (Withdrawn)}
46. (Original) The composition according to Claim 43, further comprising at least one ingredient chosen from lubricants and clear and color coating materials.
47. (Original) The composition according:to Claim 43 further comprising from about \(1 \%\) to about \(6 \%\) by weight of at least one coating material chosen from clear and color coating materials relative to the total weight of the composition.

48-51. (Withdrawn)
52. (Original) The composition according to Claim 12, wherein the effective dosage amount of cinacalcet HCl ranges from about 1 mg to about 360 mg .
53. (Original) The composition according to Claim 52, wherein the effective dosage amount of cinacalcet HCl ranges from about 5 mg to about 240 mg .
54. (Oniginal) The composition according to Claim 52, wherein the effective dosage amount of cinacalcet HCl ranges from about 20 mg to about 100 mg .

Atny. Docket No. A-870-US-NP
55. (Original) The composition according to claim 52, wherein the effective dosage amount of cinacalcet HCl is chosen from about 5 mg , about 15 , mg , about 30 mg , about 50 mg , about 60 mg , about 75 mg , about 90 mg , about 120 mg , about 150 mg , about 180 mg , about 210 mg , about 240 mg , about 300 mg , and about 360 mg .
56. (Original) The composition according to Claim 12, wherein the therapeutically effective amount of cinacalcet HCl ranges from about 1 mg to about 360 mg .
57. (Original) The composition according to Claim 56, wherein the therapeutically effective amount of cinacalcet HCl ranges from about 5 mg to about 240 mg .
58. (Original) The composition according to Claim 56, wherein the therapeutically effective amount of cinacalcet HCl ranges from 20 mg to 100 mg .
59. (Original) The composition according to claim 56, wherein the therapeutically effective amount of cinacalcet HCl is chosen from about 5 mg , about \(15, \mathrm{mg}\), about 30 mg , about S0 mg, about 60 mg , about 75 mg , about 90 mg , about 120 mg , about 150 mg , about 180 mg , about 210 mg , about 240 mg , about 300 mg , and about 360 mg .
60. (Currently Amended) A pharmaceutical composition comprising an effective dosage amount of a ealeitum recepteretive calcimimetic compound or a calcilytic compound and at least one pharmaceutically acceptable excipient, herein at least one dosage unit of the composition has a dissolution profile in 0.05 N HCl , measured according to a dissolution test conducted in a USP 2 apparatus at a temperature of \(37^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}\), and at a rotation speed of 75 r.p.m., which comprises from \(50 \%\) to \(125 \%\) of a target amount of the ealcium receptor-antive calcimimetic compound or the calcilytic compound being released from the composition no later than 30 minutes from the start of the test.

61-77. (Withdrawn)

Atny. Docket No. A-870-US-NP
78. (Original) A pharmaceutical composition comprising
(a) from about \(10 \%\) to about \(40 \%\) by weight of cinacalcet HCl ;
(b) from about \(45 \%\) to about \(85 \%\) by weight of at least one diluent; and
(c) from about \(1 \%\) to about \(5 \%\) by weight of at least one binder;
wherein the percentage by weight is relative to the total weight of the composition.
79. (Original) The composition according to Claim 78 further comprising from about \(1 \%\) to about \(10 \%\) by weight of at least one disintegrant, wherein the percentage by weight iṣ relative to the total weight of the composition.
80. (Original) The composition according to Claim 78 further comprising from about \(0.05 \%\) to about \(5 \%\) of at least one additive chosen from glidants, lubricants, and adherents, wherein the percentage by weight is relative to the total weight of the composition.

81-82, (Withdrawn)
83. (Original) The composition according to Claim 78 further comprising at least one ingredient chosen from lubricants and clear and color coating materials.
84. (Original) The composition according to Claim 78 further comprising from about \(1 \%\) to about \(6 \%\) by weight of at least one coating material chosen from clear and color coating materials relative to the total weight of the composition.
85. (Original) The composition according to Claim 78, wherein the cinacalcet HCl is in a form chosen from amorphous powders, crystalline particles, matrix particles, and mixtures of any of the foregoing.
86. (Original) The composition according to Claim 78, wherein the cinacalcet HCl is in a form chosen from needle-shape particles, rod-shape particles, plate-shaped particles, and mixtures of any of the foregoing.

\section*{}
87. (Original) The composition according to Claim 78, wherein the particle \(\mathrm{D}_{50}\) of the cinacalcet HCl particles is less than or equal to about \(50 \mu \mathrm{~m}\).
88. (Original) The composition according to Claim 78, wherein the composition is in the form of granules.
89. (Original) The composition according to Claim 78, wherein the composition is in a form chosen from tablets, capsules, and powders.
90. (Original) The composition according to Claim 88 , wherein the granules have a granule \(\mathrm{D}_{50}\) measured using a sieve analysis ranging from about \(50 \mu \mathrm{~m}\) to about \(150 \mu \mathrm{~m}\).
91. (Original) The composition according to Claim 90 , wherein the granules have a granule \(\mathrm{D}_{50}\) measured using a sieve analysis ranging from about \(80 \mu \mathrm{~m}\) to about \(130 \mu \mathrm{~m}\).
92. (Original) The composition according to Claim 78, wherein the cinacalcet HCl is present in a therapeutically effective amount for the treatment of at least one of hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product.
93. (Original) The composition according to Claim 78, wherein the cinacalcet HCl is present in an effective dosage amount for the treatment of at least one of hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product.
94. (Original) The composition according to Claim 92, wherein the hyperparathyroidism is chosen from primary hyperparathyroidism and secondary hyperparathyroidism.
95. (Original) The composition according to Claim 93, wherein the hyperparathyroidism is chosen from primary hyperparathyroidism and secondary hyperparathyroidism.

\section*{Atny. Docket No. A-870-US-NP}
96. (Original) The composition according to Claim 78, wherein the cinacalcet HCl is present in an amount ranging from about \(10 \%\) to about \(30 \%\) by weight relative to the total weight of the composition.
97. (Original) The composition according to Claim 96 , wherein the cinacalcet HCl is present in an amount ranging from about \(15 \%\) to about \(20 \%\) by weight relative to the total weight of the composition.
98. (Withdrawn)
99. (Currently Amended) The composition according to claim 9878 , wherein the microcrystalline cellulose is present in an amount ranging from about \(40 \%\) to about \(75 \%\) by weight, and the starch is present in an amount ranging from about \(5 \%\) to about \(10 \%\) by weight, relative to the total weight of the composition.

100-118. (Withdrawn)

Atny. Docket No. A-870-US-NP

\section*{Remarks}

Claims 1, 3, 12, 60 and 99 have been amended. Applicants believe no new matter is present in the present amendment. Entry of the amendment is thus respectfully requested.

Claim Rejection - 35 USC \$112
Claims 1-31, 39, 42, 46-47, 52-60 stand rejected under 35 U.S.C §112, first paragraph, as allegedly failing to comply with the written description requirement. While Applicants do not concede that this claim has been, or could be properly rejected for failing to comply with the written description requirement, claim 1 is amended to expedite the prosecution of the application. Support for the amendment resides, inter alia, on page 1, section 9 , or claim 2. The amendment does not add new matter, and its entry is respectfully requested.

\section*{Claim Rejection-35 USC §102}

Claims 1-5, 7-11 and 18 stand rejected under 35 USC §102(b) as allegedly being anticipated by Nemeth et al. (USP 6,031,003, herein referred to as '003). Applicants respectfully submit that while Nemeth discloses pharmaceutical composition comprising calcium-receptor modulator agents such as calcimimetics that can be formulated as pharmaceutically acceptable salts such as hydrochloride, acetate and the like, Nemeth does not teach each and every element of the present invention. Patent ' 003 does not disclose pharmaceutical compositions of the same physiochemical properties, such as dissolution profile. The present invention encompasses only pharmaceutical compositions comprising a calcimimetic compound or a calcilytic compound and possessing a certain dissolution profile, which is measured under certain conditions using a defined apparatus. The dissolution profile of the compositions of the instant invention defines the rate of drug release from the inventive composition, the bioavailability of the calcimimetic or calcilytic compound, and, ultimately, its in vivo performance. Patent "003 does not teach pharmaceutical compositions characterized by the same dissolution profile as the pharmaceutical compositions of the present invention.

Claims 12 and 23-29 stand rejected as allegedly being anticipated by William G. Goodman et al. (J. Arm. Soc. Nephrology 13, 1017-1024, 2002). Applicants respectfully submit that Goodman et al. does not teach each and every element of the present invention. Claim 12 depends from claim 1 , and therefore incorporates all limitations of this claim. Goodman et al does not teach pharmaceutical compositions comprising cinacalcet HCl and possessing a cextain

Atny. Docket No. A-870-US-NP
dissolution profile, which is measured under certain conditions using a defined apparatus. Applicants respectfully submit that this rejection should be withdrawn.

\section*{Claim Rejection - 35 USC \(\$ 103\)}

Claims 1-31, 39, 43, 46-47, 52-60, 78-80, 83-97 and 99 stand rejection under 35 USC §103(a) as allegedly being unpatentable over Goodman et al. (supra) in view of Ault et al (US 2002/0123459) or Black et al (US 2001/0051636) or Krumhar et al (USP 6,447, 809).

Applicants respectfully disagree. For the reasons stated above, Goodman et al. does not teach the present pharmaceutical compositions with the defined dissolution profile. Further, neither Ault, nor Black nor Krumhar et al disclose pharmaceutical compositions comprising a compound chemically and physically unrelated to a calcimimetic or a calcilytic compound of the inventive compositions. Thus, one skilled in the art would not be able to combine these references drawn to unrelated compositions which do not possess the dissolution profile of the compositions of the present invention and combine them to arrive to the claimed invention. Applicants thus respectfully request that this rejection be withdrawn.

Reconsideration and the allowance of the pending claims are thus respectfully requested. The foregoing amendments and remarks address each issue raised by the Examiner and Applicants believe they place the claims in condition for allowance. If, however, any issues remain that the undersigned can help resolve, the Examiner is invited to contact her directly at the telephone number below so that they can be promptly resolved.

Please send all future correspondence to
Customer No. 30174
Armgen Inc.
1120 Veterans Boulevard
South San Francisco, CA 94080
Phone: 650-244-2245
Fax: 650-837-9422

Respectfinly submitted,

Limited Recognition No. L0066
Attorney for Applicants
Dated: December 21, 2007

\footnotetext{
NOTE: Signatures of all the tnventare or assigneas of rocord of the entra intereat or thair reprasentaine(s) are requlfed. Submit multiple forms if more than ono slgnature is required, sea below.

Total of
forms are submitted.
 USPTA to process) an application. Confidentiality is governed by 35 U.S.C. 122 end 37 CFR 1.11 and 4.14. This collection is ectimaled to take B minuies to UspTQ to procass) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.11 and 4.14. This collection is estirnaled to take 6 minuias io complate, including gathering, preparing, and submiting the complelod appiceation form to the USPTO. Tirne wial vary dopending upan the individual case. Any U.S. Palent and Trademark Offica. U.S. Depariment of Commance, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED U.S. Palent and Trademark Offiga. U.S. Depanment of Commarce, P. O. Box 1450 , Alexandria, VA 22313-1450. DO NOT SEND F
FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Eor 1450, Alexandira, VA 22313-1450.

If you need asststonce in camplating the fom, call 1-800-pTO-9199 and select opaton 2.
}

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE
U.S. Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450

Alexandria, Virginia 22313-1450
www.uspto.gov
30174 e 01/11/2008

AMGEN INC.
1120 VETERANS BOULEVARD
SOUTH SAN FRANCISCO, CA 94080
\begin{tabular}{|c|c|c|c|}
\hline Application No.: & 10/937,870 & Date Mailed: & 01/11/2008 \\
\hline First Named Inventor: & Lawrence, Glen, Gary & Examiner: & SAMALA, JAGADISHWAR RAO \\
\hline Attorney Docket No.: & A-870-US-NP & Art Unit: & 1618 \\
\hline Confirmation No.: & 1696 & Filing Date: & 09/10/2004 \\
\hline
\end{tabular}

Please find attached an Office communication concerning this application or proceeding.

\section*{Notice of Non-Compliant Amendment (37 CFR 1.121)}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
Application No. \\
\(10 / 937,870\)
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Applicant(s) \\
LAWRENCE ET AL.
\end{tabular}} \\
\hline & \begin{tabular}{l}
Art Unit \\
1600
\end{tabular} & \\
\hline
\end{tabular}
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
The amendment document filed on 21 December, 2007 is considered non-compliant because it has failed to meet the requirements of 37 CFR 1.121 or 1.4. In order for the amendment document to be compliant, correction of the following item(s) is required.
THE FOLLOWING MARKED \((X)\) ITEM \((S)\) CAUSE THE AMENDMENT DOCUMENT TO BE NON-COMPLIANT:
\(\square\) 1. Amendments to the specification:
\(\square\) A. Amended paragraph(s) do not include markings.
\(\square\) B. New paragraph(s) should not be underlined.
C. Other \(\qquad\) _.2. Abstract:
\(\square\) A. Not presented on a separate sheet. 37 CFR 1.72.
B. Other \(\qquad\) _.
\(\square\) 3. Amendments to the drawings:
A. The drawings are not properly identified in the top margin as "Replacement Sheet," "New Sheet," or "Annotated Sheet" as required by 37 CFR 1.121(d).B. The practice of submitting proposed drawing correction has been eliminated. Replacement drawings showing amended figures, without markings, in compliance with 37 CFR 1.84 are required.
\(\square\) C. Other \(\qquad\) _.
4. Amendments to the claims:
\(\square\) A. A complete listing of all of the claims is not present.
B. The listing of claims does not include the text of all pending claims (including withdrawn claims)
C. Each claim has not been provided with the proper status identifier, and as such, the individual status of each claim cannot be identified. Note: the status of every claim must be indicated after its claim number by using one of the following status identifiers: (Original), (Currently amended), (Canceled), (Previously presented), (New), (Not entered), (Withdrawn) and (Withdrawn-currently amended).
D. The claims of this amendment paper have not been presented in ascending numerical order.
E. Other: \(\qquad\) _.
\(\square\) 5. Other (e.g., the amendment is unsigned or not signed in accordance with 37 CFR 1.4): For further explanation of the amendment format required by 37 CFR 1.121, see MPEP § 714.
TIME PERIODS FOR FILING A REPLY TO THIS NOTICE:
1. Applicant is given no new time period if the non-compliant amendment is an after-final amendment or an amendment filed after allowance, or a drawing submission (only) If applicant wishes to resubmit the non-compliant after-final amendment with corrections, the entire corrected amendment must be resubmitted.
2. Applicant is given one month, or thirty (30) days, whichever is longer, from the mail date of this notice to supply the correction, if the non-compliant amendment is one of the following: a preliminary amendment, a non-final amendment (including a submission for a request for continued examination (RCE) under 37 CFR 1.114), a supplemental amendment filed within a suspension period under 37 CFR 1.103(a) or (c), and an amendment filed in response to a Quayle action. If any of above boxes 1 to 4 are checked, the correction required is only the corrected section of the non-compliant amendment in compliance with 37 CFR 1.121.

Extensions of time are available under 37 CFR 1.136(a) only if the non-compliant amendment is a non-final amendment or an amendment filed in response to a Quayle action.
Failure to timely respond to this notice will result in:
Abandonment of the application if the non-compliant amendment is a non-final amendment or an amendment filed in response to a Quayle action; or
Non-entry of the amendment if the non-compliant amendment is a preliminary amendment or supplemental amendment.
Legal Instruments Examiner (LIE), if applicable Henrietta K. Dendy Telephone No: \(\underline{5712720517}\)

\title{
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
}
\begin{tabular}{lll}
Applicant(s): & Glen Lawrence et al. & Docket No.: A-870-US-NP \\
Serial No.: & \(\mathbf{1 0 / 9 3 7 , 8 7 0}\) & Group Art Unit No.: 1618 \\
Filed: & \(09 / 10 / \mathbf{2 0 0 4}\) & Examiner: Jagadishwar R. Samala \\
For: & \begin{tabular}{ll}
Rapid Dissolution Formulation of a \\
Calcium Receptor-Active Compound
\end{tabular} &
\end{tabular}

\section*{RESPONSE TO NOTICE OF NON-COMPLJANT AMENDMENT}

Mail Stop Amendment
Commissioner for Patents
P.O. Box 1450

Alexandria, VA 22313-1450

Dear Sir,
In response to the Notice of Non-Compliant Amendment mailed January 11, 2008,
Applicants hereby submit a complete "Listing of Claims," specifically including the text of the withdrawn claims.

Amendments to the claims are reflected in the listing of claims beginning on page 2 of this paper.

Remarks begin on page 21 of this paper.

\section*{CERTIFICATE OF FACSIMILE TRANSMISSION}

I hereby certify that this paper (along with any referred to as being attached or enclosed) (22 pages total) is being facsimile transmitted to the United States Patent and Trademark Office, 57\%.273.8300, on the

\section*{RECEIVED CENTRAL FAX CENTER}

FEB 042008

\section*{IN THE CLAIMS}

Claims 1-60 and 78-112 are pending. Claims 61-77 and 113-118 ane withdrawn. Claims \(1-31,39,43,46-47,52-60,78-80,83-97\) and 99 are presented for examination. Claims 1-31, 39, \(43,46-47,52-60,78-80,83-97\) and 99 are rejected.

Please enter the following listing of claims, which will replace all prior versions, and listings, of claims in the application:

\section*{Listing of Claims}
1. (Currently Amended) A pharmaceutical composition comprising an effective dosage amount of a calcimimetic compound or a calcilytic compound and at least one pharmaceutically acceptable excipient,
wherein at least one dosage unit of the composition has a dissolution profile in 0.05 N HCl , measured according to a dissolution test conducted in a USP 2 apparatus at a temperature of about \(37^{\circ} \mathrm{C}\), and at a rotation speed of about 75 r.p.m., which comprises from about \(50 \%\) to about \(125 \%\) of a target amount of the ealeium receptive calcimimetic compound or the calcilytic compound being released from the composition no later than about 30 minutes from the start of the test.
2. (Canceled).
3. (Currently Amended) The composition according to Claim 12 , wherein the calcimimetic compounds and calcilytic compounds are chosen from compounds of formula (I) and pharmaceutically acceptable salts and forms thereof

wherein:

Atny. Docket No. A-870-US-NP
\(\mathrm{X}_{1}\) and \(\mathrm{X}_{2}\), which may be identical or different, are each a radical chosen from \(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{O}\), \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, \mathrm{Br}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}, \mathrm{CHF}_{2}, \mathrm{CH}_{2} \mathrm{~F}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}_{2} \mathrm{NO}_{2}\), \(\mathrm{CH}_{3} \mathrm{CH}_{2}\), propyl, isopropyl, butyl, isobutyl, t-butyl, acetoxy, and acetyl radicals, or two of \(\mathrm{X}_{1}\) may together form an entity chosen from fused cycloaliphatic rings, fused aromatic rings, and a methylene dioxy radical, or two of \(X_{2}\) may together form an entity chosen from fused cycloaliphatic rings, fused aromatic rings, and a methylene dioxy radical; provided that \(X_{2}\) is not a 3-t-butyl radical; n ranges from 0 to 5 ;
m ranges from 1 to 5 ; and
the alkyl radical is chosen from Cl-C3 alkyl radicals, which are optionally substituted with at least one group chosen from saturated and unsaturated, linear, branched, and cyclic C1-C9 alkyl groups, dihydroindolyl and thiodihydroindolyl groups, and 2-, 3-, and 4-piperid(in)yl groups; and the stereoisomers thereof.
4. (Original) The composition according to Claim 3, wherein the calcimimetic compounds and calcilytic compounds are chosen from compounds of formula (II) and pharmaceutically acceptable salts and forms thereof

wherein:
\(\mathrm{X}_{1}\) and \(\mathrm{X}_{2}\), which may be identical or different, are each a radical chosen from \(\mathrm{CH}_{3}, \mathrm{CH}_{3} \mathrm{O}\), \(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}, \mathrm{Br}, \mathrm{Cl}, \mathrm{F}, \mathrm{CF}_{3}, \mathrm{CHF}_{2}, \mathrm{CH}_{2} \mathrm{~F}, \mathrm{CF}_{3} \mathrm{O}, \mathrm{CH}_{3} \mathrm{~S}, \mathrm{OH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CONH}_{2}, \mathrm{CN}, \mathrm{NO}_{2}\), \(\mathrm{CH}_{3} \mathrm{CH}_{2}\), propyl, isopropyl, butyl, isobutyl, t-butyl, acetoxy, and acetyl radicals, or two of \(\mathrm{X}_{1}\) may together form an entity chosen from fused cycloaliphatic rings, fused aromatic rings, and a methylene dioxy radical, or two of \(X_{2}\) may together form an entity chosen from fused cycloaliphatic rings, fused aromatic rings, and a methylene dioxy radical; provided that \(X_{2}\) is not a 3-t-butyl radical;

Atny. Docket No. A-870-US-NP
n ranges from 0 to 5 ; and
m ranges from 1 to 5 .
5. (Original) The composition according to Claim 4 , wherein the pharmaceutically acceptable salts and forms thereof are chosen from salts of hydrochloric acid and salts of methanesulfonic acid.
6. (Original) The composition according to Claim 4 , wherein the calcimimetic compounds are chosen from cinacalcet, cinacalcet HCl , and cinacalcet methanesulfonate.
7. (Original) The composition according to Claim 1 , wherein the dissolution profile comprises from about \(70 \%\) to about \(110 \%\) of the target amount of the calcium receptor-active compound being released from the composition no later than about 30 minutes from the start of the test.
8. (Original) The composition according to Claim 7, wherein the dissolution profile comprises at least about \(75 \%\) of the target amount of the calcium receptor-active compound being released from the composition no later than about 30 minutes from the start of the test.
9. (Original) The composition according to Claim 6, wherein the dissolution profile comprises from about \(70 \%\) to about \(\mathrm{I} 10 \%\) of the target amount of the cinacalcet HCl being released from the composition no later than about 30 minutes from the start of the test.
10. (Original) The composition according to Claim 9, wherein the dissolution profile comprises at least about \(75 \%\) of the target amount of the cinacalcet HCl being released from the composition no later than about 30 minutes from the start of the test.
11. (Original) The composition according to Claim 6, wherein the cinacalcet HCl and cinacalcet methanesulfonate are in a form chosen from amorphous powders, crystalline particles and mixtures thereof.
12. (Curently Amended) The composition according to Claim 1, wherein the ealeitmat ғéeptor aetive calcimimetic compound is cinacalcet HCl .
13. (Original) The composition according to Claim 12, wherein the cinacalcet HCl is in a form chosen from needle-shape particles, rod-shape particles, plate-shaped particles, and mixtures of any of the foregoing.
14. (Original) The composition according to Claim 12 , wherein the particle \(\mathrm{D}_{50}\) of the cinacalcet HCl particles is less than or equal to about \(50 \mu \mathrm{~m}\).
15. (Original) The composition according to Claim 12, wherein the cinacalcet HCl particles have a particle \(\mathrm{D}_{50}\) effective to release from about \(70 \%\) to about \(110 \%\) of the target amount of the cinacalcet HCl from the composition no later than about 30 minutes from the start of the test in 0.05 N HCl .
16. (Original) The composition according to Claim 15 , wherein the cinacalcet HCl particles have a particle \(D_{50}\) effective to release at least about \(75 \%\) of the target amount of the cinacalcet HCl from the composition no later than about 30 minutes from the start of the test in 0.05 N HCl .
17. (Original) The composition according to Claim 1, wherein the composition is in the form of granules.
18. (Original) The composition according to Claim 1 , wherein the composition is in a form chosen from tablets, capsules, and powders.
19. (Original) The composition according to Claim 17, wherein the granules have a granule \(\mathrm{D}_{50}\) measured using a sieve analysis ranging from about \(50 \mu \mathrm{~m}\) to about \(150 \mu \mathrm{~m}\),

Atny. Docket No. A-870-US-NP
20. (Original) The composition according to Clain 19, wherein the granules have a granule \(\mathrm{D}_{50}\) measured using a sieve analysis ranging from about \(80 \mu \mathrm{~m}\) to about \(130 \mu \mathrm{~m}\).
21. (Original) The composition according to Claim 17, wherein the granules have a granule \(\mathrm{D}_{50}\) effective to release from about \(70 \%\) to about \(110 \%\) of the target amount of the calcium-receptor active compound from the composition no later than about 30 minutes from the start of the test in 0.05 N HCl .
22. (Original) The composition according to Claim 21, wherein the granules have a granule \(D_{50}\) effective to release at least about \(75 \%\) of the target amount of the calcium-receptor active compound from the composition no later than about 30 minutes from the start of the test in 0.05 N HCl .
23. (Original) The composition according to Claim 12, wherein the cinacalcet HCl is present in a therapeutically effective amount for the treatment of at least one of hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product.
24. (Original) The composition according to Claim 12 , wherein the cinacalcet HCl is present in an effective dosage amount for the treatment of at least one of hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product.
25. (Original) The composition according to Claim 23, wherein the hyperparathyroidism is chosen from primary hyperparathyroidism and secondary hyperparathyroidism.
26. (Original) The composition according to Claim 24, wherein the hyperparathyroidism is chosen from primary hyperparathyroidism and secondary hyperparathyroidism.

Atny. Docket No. A.-870-US-NP
27. (Original) The composition according to Claim 12, wherein the cinacalcet HCl is present in an amount ranging from about \(1 \%\) to about \(70 \%\) by weight relative to the total weight of the composition.
28. (Original) The composition according to Claim 27, wherein the cinacalcet HCl is present in an amount ranging from about \(5 \%\) to about \(40 \%\) by weight relative to the total weight of the composition.
29. (Original) The composition according to Claim 28, wherein the cinacalcet HCl is present in an amount ranging from about \(15 \%\) to about \(20 \%\) by weight relative to the total weight of the composition.
30. (Original) The composition according to Claim 1, wherein the at least one pharmaceutically acceptable excipient is chosen from non-cellulose and cellulose diluents, binders, and disintegrants.
31. (Original) The composition according to Claim 1, wherein the at least one pharmaceutically acceptable excipient is chosen from microcystalline cellulose, starch, talc, povidone, crospovidone, magnesium stearate, colloidal silicon dioxide, and sodium dodecyl sulfate and any combination thereof.
32. (Withdrawn) The composition according to Claim 31, wherein crospovidone is present intergranularly, intragranularly, or a combination thereof.
33. (Withdrawn) The composition according to Claim 31, wherein crospovidone is present intergranularly.
34. (Withdrawn) The composition according to Claim 31, wherein crospovidone is present intragranularly.

\author{
Atny. Docket No. A-870-US-NP
}
35. (Withdrawn) The composition according to Claim 1, wherein the composition comprises microcystalline cellulose and starch in a weight ratio ranging from about \(1: 1\) to about 15:1.
36. (Withdrawn) The composition according to Claim 35, wherein the composition comprises microcystalline cellulose and starch in a weight ratio of about 10:1.
37. (Withdrawn) The composition according to Claim 1, wherein the granules within the composition comprises microcystalline cellulose and starch in a weight ratio ranging from about 1:1 to about 10:1.
38. (Withdrawn) The composition according to Claim 37, wherein the weight ratio between the microcystalline cellulose and the starch in the granules with the composition is about 5:1.
39. (Original) The composition according to Claim 31, wherein the microcystalline cellulose is present in an amount ranging from about \(25 \%\) to about \(85 \%\) by weight relative to the total weight of the composition.
40. (Withdrawn) The composition according to Claim 31, wherein the starch is present in an amount ranging from about \(5 \%\) to about \(35 \%\) by weight relative to the total weight of the composition.
41. (Withdrawn) The composition according to Claim 31, wherein the povidone is present in an amount ranging from about \(1 \%\) to about \(5 \%\) by weight relative to the total weight of the composition.

Atny. Docket No. A-870-US-NP
42. (Withdrawn) The composition according to Claim 31, wherein the crospovidone is present in an amount ranging from about \(1 \%\) to about \(10 \%\) by weight relative to the total weight of the composition.
43. (Original) The composition according to Claim 1 comprising:
(a) from about \(10 \%\) to about \(40 \%\) by weight of cinacalcet HCl or cinacalcet methanesulfonate;
(b) from about \(45 \%\) to about \(85 \%\) by weight of at least one diluent;
(c) from about \(1 \%\) to about \(5 \%\) by weight of at least one binder;
(d) from about \(1 \%\) to about \(10 \%\) by weight of at least one disintegrant; and
(e) from about \(0.05 \%\) to about \(5 \%\) of at least one additive chosen from glidants, lubricants, and adherents;
wherein the percentage by weight is relative to the total weight of the composition.
44. (Withdrawn) The composition according to Claim 43 comprising from about \(0.05 \%\) to about \(1.5 \%\) by weight of at least one glidant relative to the total weight of the composition.
45. (Withdrawn) The composition according to Claim 43 comprising from about \(0.05 \%\) to about \(1.5 \%\) by weight of adherent relative to the total weight of the composition.
46. (Original) The composition according to Claim 43, further comprising at least one ingredient chosen from lubricants and clear and color coating materials.
47. (Original) The composition according to Claim 43 further comprising from about \(1 \%\) to about \(6 \%\) by weight of at least one coating material chosen from clear and color coating materials relative to the total weight of the composition.
48. (Withdrawn) The composition according to Claim 43 comprising
(a) from about \(10 \%\) to about \(40 \%\) by weight of cinacalcet HCl ;
(b) from about \(5 \%\) to about \(10 \%\) by weight of starch;

Atny. Docket No. A-870-US-NP
(c) from about \(40 \%\) to about \(75 \%\) by weight of microcrystalline cellulose;
(d) from about \(1 \%\) to about \(5 \%\) by weight of povidone; and
(e) from about \(1 \%\) to about \(10 \%\) by weight of crospovidone;
wherein the percentage by weight is relative to the total weight of the composition.
49. (Withdrawn) The composition according to Claim 48 further comprising from about \(0.05 \%\) to about \(1.5 \%\) by weight of colloidal silicon dioxide relative to the total weight of the composition.
50. (Withdrawn) The composition according to Claim 48 further comprising from about \(0.05 \%\) to about \(1.5 \%\) by weight of magnesium stearate relative to the total weight of the composition.
51. (Withdrawn) The composition according to Claim 48 further comprising from about \(1 \%\) to about \(6 \%\) by weight of at least one coating material chosen from clear and color coating materials relative to the total weight of the composition.
52. (Original) The composition according to Claim 12, wherein the effective dosage amount of cinacalcet HCl ranges from about 1 mg to about 360 mg .
53. (Original) The composition according to Claim 52, wherein the effective dosage amount of cinacalcet HCl ranges from about 5 mg to about 240 mg .
54. (Original) The composition according to Claim 52, wherein the effective dosage amount of cinacalcet HCl ranges from about 20 mg to about 100 mg .
55. (Original) The composition according to Claim 52, wherein the effective dosage amount of cinacalcet HCl is chosen from about 5 mg , about \(15, \mathrm{mg}\), about 30 mg , about 50 mg , about 60 mg , about 75 mg , about 90 mg , about 120 mg , about 150 mg , about 180 mg , about 210 mg, about 240 mg , about 300 mg , and about 360 mg .
56. (Original) The composition according to Claim 12, wherein the therapeutically effective amount of cinacalcet HCl ranges from about 1 mg to about 360 mg .
57. (Original) The composition according to Claim 56 , wherein the therapeutically effective amount of cinacalcet HCl ranges from about 5 mg to about 240 mg .
58. (Original) The composition according to Claim 56, wherein the therapeatically effective amount of cinacalcet HCl ranges from 20 mg to 100 mg .
59. (Original) The composition according to Claim 56 , wherein the therapeutically effective amount of cinacalcet HCl is chosen from about 5 mg , about \(15, \mathrm{mg}\), about 30 mg , about 50 mg , about 60 mg , about 75 mg , about 90 mg , about 120 mg , about 150 mg , about 180 mg , about 210 mg , about 240 mg , about 300 mg , and about 360 mg .
60. (Currently Amended) A pharmaceutical composition comprising an effective dosage amount of a ealcium receptor active calcimimetic compound or a calcilytic compound and at least one pharmaceutically acceptable excipient, herein at least one dosage unit of the composition has a dissolution profile in 0.05 N HCl , measured according to a dissolution test conducted in a USP 2 apparatus at a temperature of \(37^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}\), and at a rotation speed of 75 r.p.xn., which comprises from \(50 \%\) to \(125 \%\) of a target amount of the ealcium reeeptor active calcimimetic compound or the calcilytic compound being released from the composition no later than 30 minutes from the start of the test.
61. (Withdrawn) A method of making a pharmaceutical composition comprising:
(a) forming a granule comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipient; and
(b) controlling the particle size of the granule such that from about \(50 \%\) to about \(125 \%\) of a target amount of the calcium receptor-active compound is released from the composition no later than about 30 minutes from the start of a test in 0.05 N HCl according to a dissolution test

Atny. Docket No. A-870-US-NP
conducted in a USP 2 apparatus at a temperature of about \(37^{\circ} \mathrm{C}\), and a rotation speed of about 75 r.p.m.
62. (Withdrawn) A method of making a pharmaceutical composition comprising: (a) forming a granule comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipient; and
(b) controlling the particle size of the granule such that from about \(50 \%\) to about \(125 \%\) of a target amount of the calcium receptor-active compound is released from the composition no later than about 30 minutes from the start of a test in 0.05 N HCl according to a dissolution test conducted in a USP 2 apparatus at a temperature of \(37^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}\), and a rotation speed of 75 r.p.m.
63. (Withdrawn) A method of making a pharmaceutical composition comprising:
(a) forming a composition comprising an effective dosage amount of particles of a calcium receptor-active compound and at least one pharmaceutically acceptable excipient; and (b) . controlling the particle size of the calcium receptor-active compound such that from about \(50 \%\) to about \(125 \%\) of a target amount of the calcium receptor-active compound is released from the composition no later than about 30 minutes from the start of a test in 0.05 N HCl according to a dissolution test conducted in a USP 2 apparatus at a temperature of about \(37^{\circ} \mathrm{C}\), and a rotation speed of about 75 r.p.m.
64. (Withdrawn) A method of making a pharmaceutical composition comprising:
(a) forming a composition comprising an effective dosage amount of particles of a calcium receptor-active compound and at least one phamaceutically acceptable excipient; and
(b) controlling the particle size of the calcium receptor-active compound such that from about \(50 \%\) to about \(125 \%\) of a target amount of the calcium receptor-active compound is released from the composition no later than about 30 minutes from the start of a test in 0.05 N HCl according to a dissolution test conducted in a USP 2 apparatus at a temperature of \(37^{\circ} \mathrm{C}\) \(\pm(0.5)^{\circ} \mathrm{C}\), and a rotation speed of 75 r.p.m.

Atny. Docket No. A-870-US-NP
65. (Withdrawn) A method of making a pharmaceutical composition comprising forming a granule comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipient in a granulator,
wherein the granulator has a volume ranging from about 1 L to about 2000 L , and wherein the granulator contains water in a granulation level ranging from about \(10 \%\) to about \(50 \%\) relative to the weight of the dry powders in the granulator.
66. (Withdrawn) The method according to Claim 65, wherein the granulator has a volume ranging from about 65 L to about 1200 L .
67. (Withdrawn) The method according to Claim 65 , wherein the granulator has a volume ranging from about 300 L to about 800 L .
68. (Withdrawn) The method according to Claim 65, wherein the water is in a granulation level ranging from about \(20 \%\) to about \(40 \%\) relative to the weight of the dry powders in the granulator.
69. (Withdrawn) The method according to Claim 65 , wherein the water is in a granulation level ranging from about \(30 \%\) to about \(36 \%\) relative to the weight of the dry powders in the granulator.
70. (Withdrawn) The method according to Claim 65, wherein the granulator has a impeller, whose tip speed ranges from about \(5 \mathrm{~m} / \mathrm{s}\) to about \(10 \mathrm{~m} / \mathrm{s}\).
71. (Withdrawn) The method according to Claim 70, wherein the impeller tip speed ranges from about \(7 \mathrm{~m} / \mathrm{s}\) to about \(9 \mathrm{~m} / \mathrm{s}\).
72. (Withdrawn) A method for the treatment of at least one disease chosen from hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product, comprising administering to a patient in need thereof a pharnaceutical composition

Atny. Docket No. A-870-US-NP
comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipient,
wherein the composition has a dissolution profile in 0.05 N HCl , measured according to a dissolution test conducted in a USP 2 apparatus at a temperature of about \(37^{\circ} \mathrm{C}\), and at a rotation speed of about 75 r.p.m., which comprises from about \(50 \%\) to about \(125 \%\) of a target amount of the calcium receptor-active compound being released from the composition in no later than about 30 minutes from the start of the test.
73. (Withdrawn) The method according to Claim 72, wherein the patient is human.
74. (Withdrawn) The method according to Claim 72, wherein an effective dosage amount of the pharmaceutical composition is chosen from about 5 mg , about 15 mg , about 30 mg , about 50 mg , about 60 mg , about 75 mg , about 90 mg , about 120 mg , about 150 mg , about 180 mg , about 210 mg , about 240 mg , about 300 mg , and about 360 mg .
75. (Withdrawn) A method for the treatment of at least one disease chosen from hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product, comprising administering to a patient in need thereof a pharmaceutical composition comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipient,
wherein the composition has a dissolution profile in 0.05 N HCl , measured according to a dissolution test conducted in a USP 2 apparatus at a temperature of \(37^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}\), and at a rotation speed of 75 r.p.m., which comprises from about \(50 \%\) to about \(125 \%\) of a target amount of the calcium receptor-active compound being released from the composition in no later than about 30 minutes from the start of the test.
76. (Withdrawn) The method according to Claim 75, wherein the patient is human.
77. (Withdrawn) The method according to Claim 75, wherein an effective dosage amount of the pharmaceutical composition is chosen from about 5 mg , about 15 mg , about 30 mg , about

Atny. Docket No. A-870-US-NP

50 mg , about 60 mg , about 75 mg , about 90 mg , about 120 mg , about 150 mg , about 180 mg , about 210 mg , about 240 mg , about 300 mg , and about 360 mg .
78. (Original) A pharmaceutical composition comprising
(a) from about \(10 \%\) to about \(40 \%\) by weight of cinacalcet HCl ;
(b) from about \(45 \%\) to about \(85 \%\) by weight of at least one diluent; and
(c) from about \(1 \%\) to about \(5 \%\) by weight of at least one binder;
wherein the percentage by weight is relative to the total weight of the composition.
79. (Original) The composition according to Claim 78 further cormprising from about \(1 \%\) to about \(10 \%\) by weight of at least one disintegrant, wherein the percentage by weight is relative to the total weight of the composition.
80. (Original) The composition according to Claim 78 further comprising from about \(0.05 \%\) to about \(5 \%\) of at least one additive chosen from glidants, lubricants, and adherents, wherein the percentage by weight is relative to the total weight of the composition.
81. (Withdrawn) The composition according to Claim 80 comprising from about \(0.05 \%\) to about \(1.5 \%\) by weight of at least one glidant.
82. (Withdrawn) The composition according to Claim 80 comprising from about \(0.05 \%\) to about \(1.5 \%\) by weight of adherent.
83. (Original) The composition according to Claim 78 further comprising at least one ingredient chosen from lubricants and clear and color coating materials.
84. (Original) The composition according to Claim 78 further comprising from about \(1 \%\) to about \(6 \%\) by weight of at least one coating material chosen from clear and color coating materials relative to the total weight of the composition.

Atny. Docket No. A-870-US-NP
85. (Original) The composition according to Claim 78, wherein the cinacalcet HCl is in a form chosen from amorphous powders, crystalline particles, matrix particles, and mixtures of any of the foregoing.
86. (Original) The composition according to Claim 78, wherein the cinacalcet HCl is in a form chosen from needle-shape particles, rod-shape particles, plate-shaped particles, and mixtures of any of the foregoing.
87. (Original) The composition according to Claim 78, wherein the particle \(\mathrm{D}_{50}\) of the cinacalcet HCl particles is less than or equal to about \(50 \mu \mathrm{~m}\).
88. (Original) The composition according to Claim 78, wherein the composition is in the form of granules.
89. (Original) The composition according to Claim 78, wherein the composition is in a form chosen from tablets, capsules, and powders.
90. (Original) The composition according to Claim 88, wherein the granules have a granule \(\mathrm{D}_{50}\) measured using a sieve analysis ranging from about \(50 \mu \mathrm{~m}\) to about \(150 \mu \mathrm{~m}\).
91. (Original) The composition according to Claim 90 , wherein the granules have a granule \(D_{50}\) measured using a sieve analysis ranging from about \(80 \mu \mathrm{~m}\) to about \(130 \mu \mathrm{~m}\).
92. (Original) The composition according to Claim 78, wherein the cinacalcet \(\mathbf{H C l}\) is present in a therapeutically effective amount for the treatment of at least one of hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product.

Atny. Docket No. A-870-US-NP
93. (Original) The composition according to Claim 78 , wherein the cinacalcet HCl is present in an effective dosage amount for the treatment of at least one of hyperparathyroidism, hyperphosphonia, hypercalcemia, and elevated calcium phosphorus product.
94. (Original) The composition according to Claim 92, wherein the hyperparathyroidism is chosen from primary hyperparathyroidism and secondary hyperparathyroidism.
95. (Original) The composition according to Claim 93, wherein the hyperparathyroidism is chosen from primary hyperparathyroidism and secondary hyperparathyroidism.
96. (Original) The composition according to Claim 78, wherein the cinacalcet HCl is present in an amount ranging from about \(10 \%\) to about \(30 \%\) by weight relative to the total weight of the composition.
97. (Original) The composition according to Claim 96 , wherein the cinacalcet HCl is present in an amount ranging from about \(15 \%\) to about \(20 \%\) by weight relative to the total weight of the composition.
98. (Withdrawn) The composition according to Claim 78, wherein the at least one difuent is chosen from microcystalline cellulose, starch, and mixtures thereof.
99. (Currently Amended) The composition according to Claim 9878, wherein the microcrystalline cellulose is present in an amount ranging from about \(40 \%\) to about \(75 \%\) by weight, and the starch is present in an amount ranging from about \(5 \%\) to about \(10 \%\) by weight, relative to the total weight of the composition.
100. (Withdrawn) The composition according to Claim 78, wherein the at least one binder is povidone.

Atny. Docket No. A-870-US-NP
101. (Withdrawn) The composition according to Claim 100, wherein the povidone is present in an amount ranging from about \(1 \%\) to about \(5 \%\) by weight, relative to the total weight of the composition.
102. (Withdrawn) The composition according to Claim 78, wherein the at least one disintegrant is crospovidone.
103. (Withdrawn) The composition according to Clain 102, wherein crospovidone is present intergranularly, intragranularly, or a combination thereof.
104. (Withdrawn) The composition according to Claim 102, wherein crospovidone is present intergranularly.
105. (Withdrawn) The composition according to Claim 102, wherein crospovidone is present intragranularly.
106. (Withdrawn) The composition according to Claim 98, wherein the composition comprises microcystalline cellulose and starch in a weight ratio ranging from about 1:1 to about 15:1.
107. (Withdrawn) The composition according to Claim 106, wherein the composition comprises microcystalline cellulose and starch in a weight ratio of about 10:1.
108. (Withdrawn) The composition according to Claim 98, wherein the granules within the composition comprises microcystalline cellulose and starch in a weight ratio ranging from about 1:1 to about 10:1.
109. (Withdrawn) The composition according to Claim 108, wherein the weight ratio between the microcystalline cellulose and the starch in the granules with the composition is about 5:1.

Atny. Docket No. A-870-US-NP
110. (Withdrawn) The composition according to Claim 78 comprising
(a) from about \(10 \%\) to about \(40 \%\) by weight of cinacalcet HCl ;
(b) from about \(5 \%\) to about \(10 \%\) by weight of starch;
(c) from about \(40 \%\) to about \(75 \%\) by weight of microcrystalline cellulose;
(d) from about \(1 \%\) to about \(5 \%\) by weight of povidone; and
(e) from about \(1 \%\) to about \(10 \%\) by weight of crospovidone;
wherein the percentage by weight is relative to the total weight of the composition.
111. (Withdrawn) The composition according to Claim 110 further comprising from about \(0.05 \%\) to about \(1.5 \%\) by weight of colloidal silicon dioxide relative to the total weight of the composition.
112. (Withdrawn) The composition according to Claim 110 further comprising from about \(0.05 \%\) to about \(1.5 \%\) by weight of magnesium stearate relative to the total weight of the composition.
113. (Withdrawn) A method of controlling the dissolution rate of a formulation comprising an effective dosage amount of a calcium receptor-active compound and at least one pharmaceutically acceptable excipient, the method comprising producing the formulation in a granulator which has a volume ranging from about 1 L to about 2000 L , and contains water in a granulation level ranging from about \(10 \%\) to \(50 \%\) relative to the amount of dry powders in the granulator.
114. (Withdrawn) The method according to Claim 113, wherein the calcium receptoractive compound is cinacalcet HCl .
115. (Withdrawn) The method according to Claim 113, wherein the granulator has a volume ranging from about 65 L to about 1200 L .
116. (Withdrawn) The method according to Claim 113, wherein the granulator has a volume ranging from about 300 L to about 800 L .
117. (Withdrawn) The method according to Claim 113, wherein the water is in a granulation level ranging from about \(20 \%\) to about \(40 \%\) relative to the weight of the dry powders in the granulator.
118. (Withdrawn) The method according to Claim 117, wherein the water is in a granulation level ranging from about \(30 \%\) to about \(36 \%\) relative to the weight of the dry powders in the granulator.

\section*{Remarks}

Applicants believe that the requirements of 37 CFR 1.121 or 1.4 have been met by providing a listing of all pending claims (specifically including the withdrawn claims) contained herein. Reconsideration and the allowance of the pending claims are thus respectfully requested.

Applicants believe that no fee is due in connection with this Response. However, should any additional fees be required, the Commissioner is hereby authorized to charge such fees to Deposit Account No, 01-0519. A copy of this sheet is enclosed for such purpose.

If any issues remain that the undersigned can help resolve, the Examiner is invited to contact her directly at the telephone number below so that they can be promptly resolved.

Please send all future correspondence to
Customer No. 30174
Amgen Inc:
1120 Veterans Boulevard South San Francisco, CA 94080 Phone: 650-244-2245
Fax: 650-837-9422

Respectfurtysubmitted,

Olga Mekhovich
Limited Recognition No. L0066
Attomey for Applicants
Dated: February \(4,2008\).

\section*{Remarls}

\section*{COPY}

Applicants believe that the requirements of 37 CFR 1.121 or 1.4 have been met by providing a listing of all pending claims (specifically including the withdrawn claims) contained herein. Reconsideration and the allowance of the pending claims are thus respectfully requested.

Applicants believe that no fee is due in connection with this Response. However, should any additional fees be required, the Cemmisstoneristrereby athorized to charge such fees to Deposit Account No. 01-0519. A copy of this sheet is enclosed for such purpose.

If any issues remain that the undersigned can help resolve, the Examiner is invited to contact her directly at the telephone number below so that they can be promptly resolved.

Please send all future correspondence to
Customer No. 30174
Arngen Inc.
1120 Veterans Boulevard
South San Francisco, CA 94080
Phone: 650-244-2245
Fax: 650-837-9422

Respectfyry) submitted,

Olga Mekhovich
Limited Recognition No. L0066
Attomey for Applicants
Dated: February 4, 2008.

This collection of information is required by 37 CFR 1.16. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14 . This collection is estimated to take 12 minutes to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS
ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.
If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

United States Patent and Trademark Office
UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450

Alexandria, Virginia 22313-1450
www usptogov

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.```

