```
\because
```

```
2. If the first byte is xleg and the noxt word is between 0 and
    OXFFFD, inclusive, then the %ORD contains the character
    count.
3. Finally, if the tirst byte is OxFF and the next word is
        OXFFFF, then the rollowing miolim contains the charcteter
        count.
4. RESERVATION: in the futurc, STT may support UNICODE
    CStrings. These are dented by (SYPE OXFF), followed by
    (WORU OXF\GammaFE), follomed by a UNICOJF, chardcter count -- not
    a byte count -- as encoded in 1. 2, and 3. above.
```


4. Low-level Composites

4A. GUID

OSF/DCE Globally Unique ID. GUIDs are also known as UUIDs in the network literature. There is an ISO standard for their format and generation. They must be guaranteed to be unique across space and time. They are a standard patt of the Open Sofluare Foundation's (OSF) Distribuled Computing Environment (DCE). They are necessary for the conect operation of many network protocols, such as Kerberos. It is very unlikely that an STT developer will be working on a platiorn that does not support validated GUID-gencraling software.

The following is a brief synopsis of one GUID-generating algorithm. More delails may be found in the citations below.

If your machine contains a network card with a 48-bit IEEE network card hardware address, this globally unique address will be incorporated into the GUID. Otherwise a random pseudo-address is created from machine state information that is extremely likely to have been affected by truly random events, especially human interaction with devices and the file system. See the Note on Randomness in the Introduction for more.

The following excerpis on net hardware addresses are taken from

```
        Project 802: Local and Metropolitan Area Network Standard
        Draft Standard P&02.1A/D10 1 April }299
        Prepared by the IEEE 02.1
--- bocin quote ---------------------------------------------------------
Page 18: "5. Universal Addresses and Protocol Identi£iers
The IEEE makes it possible for organizations to employ unique
individual LAN MAC addresses, group addresses, and protocol
identifiers. It does so by assigning organizationally unique
identificrs, whjch are 24 bits in length. [...] Though the
organizationally unique identifiers are 24 bits in length, their
true address space is 22 bits. The first bit can be set to 1 or
O depending on the application. The second bit for all
assignments is zero. The remaining 22 bits [...] result in
2**22 (approximately 4 million icentifiers).
[...} The multicast bit. is the least significant bit of the
first octet, A.
f...] 5.1 Organizationaliy Unique Identjfier
```

```
l...] The organizationally uniquc identifier is 24 bits in
length and its bit pattern is shown belos:. Organizationally
unique identifiers are ussigned as 24 bit values with both
Valuer (0,1) being assigned to the first bit and the second bil
being set te 0 indicates that the assignment jr: universal.
Organizationally uniguc identifiers, with the secend bit sel to l
are locally derigned and have no relations:hip to the
IEE!-assigned values (as described hercin).
The organizationally unique identifier is defined to be
```



```
        Always set to zero
        Bit can be set to 0 or 1 depending on application
1...1 5.2 48-Bit Universal LAN Mac Addresses
[...] A 4% bit universal address consisits of two parts. the
first 24 bits cor:espond to the organs%ationally unique
identifier as assigned by the IEEE except that the assignec may
:et the first bit to 1 for group addresses or set it to 0 for
incividual dddresses. The second part, comprising the remaining
2d bits, ls administered locally by the dseignee.
|...]
ccctet: 1 2 0 % 3 0
0011 0101 011: 1011 0001 0010 0000 0000 0000 0000 0000 0001
|
First bit transmitted on the LAN medium. {Also the
Individual/Group Address Bit.) The hexadecimal representation
is: AC-DE-48-0-00-80
The Individual/Group (I/G} Address Blt {lst bit of octet 0) is
uscd to identify the destination address either as an individual
or as a group address. If the Individual/Group Address Bit is
(), it indicates that the address field contains an individual
address. If this bit is 1, the address field contains a group
address that identifies one or more {or all} stations connected
to the LAN. The all-stations broadcast address is a special
pre-defined group address of all l's.
The Universally or Locally Administered Address Bit (2nd bit of
octet 0) is the bit directly following the I/G bit. This bit
indicates whether the address has been assigned by a local or
universal administrator. Universally administered addresses
have this bit set to 0. If this bit is set io 1, the entire
address (1.e.: 48 bits) has been locally administered."
--- end quote --------------------------------------------------
```

Also, see the following
DEC / HP, Network Computing Architecture Remote Procedure Call Run Time Extensions Specification Version SF TX1.0.11 Steven Miller July 23, 1992 (Chapter 10) describes UUID allocation)

A GUID has the following wire fornat:

```
{define-type GUID
    ((DWORD datal)
        {:JORD data2)
        {NORD data3)
        {BY[E[8] det(a4))}
```


4B. XID

Each entity, c.g., cardholder, merchant, bank, in STГ has a GUID. In the Microsoti implementation, the lifetime of this GUID is the lifetime of the installation of the STT software. It is possible for the same entity to have many GUIDs: typically one for every time STT software has been installed.

Transaction-initiating messages sent by an entity are stamped with its current GUID preceded by a QWORD containing a non-decreasing serial number. The composite of a GLID and a qwSerial is called an XID, for transaction ID. Responses to the transaction-initiating message contain the XID of the corresponding initiating message.

STT-compliant applications must guarantee that the serial number never decrease for a given GUID, and that the GUID is generated by validated software when STT software is installed on a machine.
lmplementations must guarantee that the serial number is non-decreasing for each GUID, and, thus. that no two transactions have the same XID.

STT-compliant applications shall guarantee idempotency of the protocol by examining XIDs. For example. a payment server will reject attempts to replay payment requests from merchants. It will detect these attempts by examining the XID of the payment request and XID of the embedded payment instruction. separately signed and encrypted by the cardholder.

An XID has the following wire format:

```
{define-type XID
    {\QNORD SerialNumber`) ;Per-Guid, non-decreasing
        {GUID InstallacionGuiब}),
```


4C. CMoney

All amounts in STT are contained in CMoneys, which appear as follows:

```
(define-type CMoney
    ((WORD CountryCode) ; ISO 4217 Country code.
        (OWORD Amount)}) ; fixed-point with four sccimals
```


4D. DATE

A QWORD representing the number of 100 -nanosecond intervals since midnight UTC at the beginning of 1 Jan 1601 .
(define-type DATE
(QWORD))

4E. TLV

(Tag. Length, Valte) A TLV is a metadata format for generic, self-describing, bytu-packed, streamed.
aggregate data objects.
Messages are composed of TLVs to support forward and backward compatibility. Old sottware will be able to read new messages because it will tags it does not recognize. New software will continuc to read old messages since tags are never removed from the TLV tag space documented below.

The full notation for a TLV is

```
(<Tag> <I.ength> <Value>)
```

where <Tag> is replaced with a member of the Tag Space documented below, <Length> is a byte count for the <Value>, <Value> is replaced with actual netations of the kind shown so far and to follow. This denotes a TLV with the indicated Tag, Length, and Value. There are many cases where the Length equals the sum of the lengths of a set of nested data oblects, and the Value eguals a concatenation of the nested objects. The shorthand

```
(<Tag> <Value>)
```

denotes this case. Since TLV notations tend to beconse deeply nested, it is sometimes convenient to give the value lield a symbolic name for documentation purposes. The name is written in a comment on the same line as the tag:

$$
\begin{array}{ll}
\begin{array}{ll}
\text { (<Tag> } & \text { MY Value's name is "Foo" } \\
\text { <Value>) } & \text {;This is the definition of "Foe" }
\end{array} \text { Then }
\end{array}
$$

Note this differs from the notation for Atoms and Composites, where a symbolic name is enclosed with the type in parentheses. In all these cases, a description of the Value contents is carried out in embedded Cambtidge Notation.

In some cases, the Value is an undifferentiated byte stream. The notation may be further streamlined in these cases by omiting the Value altogether, resulting in nerely

```
(<<ॅag>)
```

()n the wire, all TLVs appear as follows:

(\{DWORD	dwTag)
(DWORD	dwLength)
(BYTE (dwLength]	rgVaive)

4F.TV

(Tag, Value) A TV is an optinized metadata format similar to TLVs except that the length of a TV is either statically known or can be determined by another method, as with CStrings, and therefore the Length field of a TLV is unecessary.

The notation
\{<Tag> <Value>\}
suftices for TVs, with a possible name as a comment.
On the wire, TVs appear as follows:

```
((D:W)KD dwlag)
    (BYTF[kn*wnLength] rgbVilue})
```


4G．RSAKey

This is the type of RSA Encryption and Signature Kcys．SIT RSA motuli have the followinglengths：

Thus，there are four key formats，distinguished by key size．On the wire，RSA keys appear as follows：

The complete RSA Key block typess have the following symbolic names（which are used frequently in the rest of this document）and sizes，including the 12 bytes of overhead documented above：

```
* RSA.2K: 268 B (cbjtsMod = 2(948)
* RSAlK: 140 R (clitsMod = 1024)
* RSA.75K: 108 B (cloitsMod = 768)
* kS\lambda.5k: 76 B (cbitsmod = 512)
```

It is therefore useful to add the following composites to the type system：

```
(defjne-type RSA-commen .
    ((BYTEE[4] "RSA1")
        (DWORD clitsMod)
        (D%(%RD publicExp)))
(define-type RSA2K (RSA-common (BYTE[2561 modulus)))
(define-type RSAIK (RSA-common (BYTF(1281 modulus)))
(define-type RSA.75K (RSA-common (BY1E [96] modulus)))
(define-type ESA.5K (RSA-common {BYTE [64| modulus)))
```


4H．DESKey

This is the RSA Envelope for DES keys and bank card Account Numbers．DESKeys are used to hide DES keys and account numbers from adversaries．The DES keys are generated randomly and used to encrypt bulk financial data．

There is some similarity to RC4Keys，documented further below．It would be possible to document a common abstraction，but it was deemed less confusing to document DESKeys and RC4Keys separately， despite the common elements．

The first 12 bytes are header data in the clear．Following the header data is a 128 －byte，RSA－encrypted DEKB，and then an 8 byte initialization vector．A DEKB is a DESK diffused with ptimal Asymmetric Encryption Padding（ AEP），a method first described by Bellarc and Rogaway［2］for diffusing the contents of RSA envelopes to forestall information－theoretic attacks．

```
Vicroso*: corporation's Secuze Tramsm= . on Zechroiogy
```

All DESKeys are the same length since they are all encrypted with RSAIK keys. All DESKeys are $12+\{28+8=148$ bytes long, with 12 bytes of lixed overhead, 128 bytes of RSA-cnerypted DEKB. and 8 bytis containsing an initialization vector.

First. we describe DESK، then DEKB, and finally DESKey

DESK

A DESK is a plaintext DES key concatenated with a Bank Card Account Number of at most 32 byles. Its format is:

(def'ine-type	Desk		;tetal length $=119$
((1)NORD	8	cbKcyProper)	
(BYTE[8)		rgbKey)	; the DES key proper
(Driord	32	cbBankCardlumber)	; actually, up to 32 bytes;
(BYTE[32]		nCN)	; wank card number
(EYYE: 71)	0	padding: $/ 1$	

Every DESK is 119 bytes long because the RSA modulas for encrypting DES keys in STT is always 128 bytes $=1024$ bits and nine bytes are needed for ()AEP and overflow protection.

Each byte of robKey contains 7 bits of key data +1 check bit in position 1 , as specified in FIPS 81 .
The byte leneth of the bank card number data must be less than or equal to 32. The data format is application-dependent.

DEKB

To diffuse a DESK and. thereby, to create a DEKB:

1. Generate a fresh, 8 -byte, random RC4 key -- the ()AEP key
2. Generate 119 bytes from RC4 using the OAEP key
3. X()R these bytes into DESK, resulting in DiffusedDESK
4. Hash DiffusedDESK with SHA
5. XOR the OAEP key with the hash, resulting in rgbHx
6. Concatenate rgbHx and a byte of overflow space to DiffusedDESK, resulting in DEKB

The plaintext of a DEKB, then, is the following:

```
(define-type DEKB
    ((BYTE[119) DiffusedDESK)
        BYTE[8] rgbHx
        (BYTE 0 padding))) ;prevents overflow when
                        ;exponentiating
```

To reverse the process, recovering a DESK from a DEKB, do the following:

1. Hash DiffusedDESK with SHA
2. XOR robHx with the hash, resulting in the OAEP key
3. Generate 119 bytes from RC4 using the OAEP key
4. X()R these bytes into DiffusedDESK, resulting in DESK

The DESK. finally, may be used to decrypt other, DES-encrypted data outside the RSA envelope.

```
Microsoz Cozporation's Secire Tra:naco. or. Technoiouy
```


The notation (RSAIKE DEKB) refers to the RSA encryption of a DEKB. That is, a DEKB raised to the power of the public key modulo the RSA modulus found in an instance of RSA IK (all DESKeys are encrypled with RSAIKs). To recover DEKB, one nust know the modulus and the secret, RSA private key. Given DEKB, one must further undo OAEP as described to recover a DESK.

4I. RC4Key

This is the RSA Envelope for protecting RC4 keys. These keys are used in the International version of STT for bulk encryption of receipts, the GSO, authorization responses, and credential responses.

There is some similarity to the RSA Envelope fonnat for DES keys and bank card account numbers, documented above. The first 12 bytes of an RC4Key are header data in the clear. Following the header data is an RSA-encrypted REKB and three bytes of salt. A REKB, in the RC4 context, contains a dilitused RC4K. via OAEP, exactly as with DESKeys. An RC4K is an RC4 Plaintext Key Block. REKBs come in three lengths: 128, 96, and 64 bytes, equaling the size of the corresponding RSA modulus. Since nine bytes of the REKB are needed for OAEP and overtlow protection, just as with DESKeys, RC4Ks come in the following sizes: 119,87 , and 55 . Including the 12 bytes of overhead preceding and the three bytes of salt following the REKB, the total lengths of RC4 Keys are 143, 111, or 79 bytes. The size of an RC4Key is known implicitly, by the context of the allowed RSA key length used for its final encryption. First. types for the three kinds of RC4Ks and REKBs are delined, then the types of the three lengths of RC4Keys are defined.

RC4K

There are three different RC4Ks, corresponding to the three RSA modulus sizes for encrypting RC4 keys.

```
(def.ine-type LengthAndKey
    ((DWORD 5} ;STT RC4 keys are always 5 bytes long
        (BYTE[5] rgbKeyProper)),
(define-type RC4K1K (LengthAndKey (BYTE[110] 0 padding)))
(define-type RC4K.75K (LengthAndKey (BYTE[78] 0 padding))}
(define-type RC4K.5K (LengthAndKey (BYTE[46] 0 padding)))
```


REKB

There are three REKB's corresponding to the three RSA modulus sizes:

```
(define-type AEPkeyPad
    ((BYIE{8}}0\mathrm{ rgloHx}
        ; obscured OAEF key
        ;RSA overflow protection
(define-type REKB1K ((BYTE[119] DiffusedRC4K) (OAEYkcyPad)))
```

```
Miciosott Corporation's Secure I:"'ramc=ion Tecnnology
(define-type REKß.75K ((BYTE{87] DiffusedRC4K} (OAEPkeyPad)))
(dofine-type REKB.5K ((BYTE[S5] DiffusedRC4K) (OAEPKeyPad)))
```

Each of these REKBs contains an robEKcy and an OAEPkeyPad. The process for creating a REKB from a RC4K is analogous to the process for creating a DEKB from a DESK. The process is

1. Generate a fresh, 8-byte, random RC4 key -- the ©AEP key
2. Generate 119 bytes from RC4 using the OAEP key
3. XOR these bytes into an RC 4 K , resulting in DiffusedRC4K
4. Hash DiftusedRC4K with SHA
5. XOR the OAEP key with the hash, rcsulting in rgbHx
6. Concatenate rgbHx and a byte of overflow space to DiffusedRC4K, resulting in a REKB

To reverse the process, recovering a RC4K from a REKB, do the following:

1. Hash DiffusedRC4K with SHA
2. XOR rgbHx with the hash, resulting in the ()AEP key
3. Generate 119 bytes from RC4 using the OAEP key
4. XOR these bytes into DiffusedRC4K, resulting in an RC4K

The RC4K. finally, may be used to deciypt other, RC4-encrypted data outside the RSA envelope.
Finally, there are three kinds of Rc4Key:

```
(define-type RC4Keycommon
    ((BYTE 1 keyblocklype)
        (BYTE 2 keyversion)
        (WORT) 16%18 reservediNord)
        (DFiORD 0x00000001 algorithaldentifier)
        (DWORE 0x00014800 keyExchAlgIdOfRSA)),
{o@iine-type RC4Key1K ;totsl1 length = 143
    ((RC4KeyCommon com)
        (RSAIKE RFKBIK) ;RSA-cncrypted REKB
        {BYTE{3] rgbSalt)}} ;Key salt
(define-type RC4Key.75K ;tetal lengLh = 111
    ({RC4KeyCommon com)
        (RSA.75KE REKB.75K) ;RSA-encrypted REKB
        (BYTE[3] rgbSalt))) ;Key salt
(define-type RC4Key.5K :total length = 79
    ({RC4Keycemmon com)
        (RSA.5KE REKB.5K) ;RSA-encrypted REKB
        (BYTE{3} rgbSalt))) ;Key salt
```

The notation (RSA... REKB) refers to the RSA encryption of a REKB. That is, a REKB raised to the power of the public key modulo the RSA modulus found in an RSA 1K, RSA. 75 K , or RSA. 5 K . To recover REKB, one must know the modulus and the secret, RSA private key. Given REKB, one must further undo OAEP as described.

The fina! three bytes of any RC4Key are key salt used to complete an 8 byte RC4 key. The salt is in the clear. Its purpose is to foil quick table lookup attacks that may be feasible with a 40-bit key.

5. TLV/TV Tag Space

This section contains symbolic nantes and numerical values for TLV and TV tags. STT-compliant soltware should not use values that do not appear in this table. A range of keys is set aside for application-dependent use. No version of STT will ever use these tags.

6. Credentials

STT messages often contain credentials, also called just creds hereatter. An SIT Credential is a binding between a banking account number, such as a cardholder bank card number or a merchant BIN number, and an RSA key-exchange key or RSA signature key. There is an analogy to certificates in other public-key systems. However, credentials are specialized to STr, they do not aftirn general identity, and must not be mistaken for certificates.

Authentication policy is out-of-band for STT. In other words, it is completely up to banks and higher authorities in the trust tree to decide whether to issue credentials. When an acquiring bank receives a credential request from a merchant, the bank must satisfy itself that the merchant is in good standing before issuing an STT cridential. Options for so doing include visiting the merchant face-to-face, checking credential request fields via telephone, fax, or email, and so on. Similarly, issuers must satisfy themselves that cardholder credential requests are valid. Options include a phone call and "mother's maiden name" questions, a sepatate paper mailer to an address on file containing the credential on diskette, or simply checking that the card is not reported lost or stolen. Since STI is transport-independent, it is important for applications to ensure that the credential is delivered to the party who requests it. STT addresses this requirement by packaging new credentials in credential response messages encrypled under the key-exchange key of the requestor. However. this alone does not prevent the requestor from being an impostor.

To reduce sizes of messages that do not need both kinds, key-exchange credentials and signature credentials are separate. A signature credential binds a signature key with an account number and places the pair in the trust hietarchy for an explicit time. A key-exchange credential binds a key-exchange key to an account number and allows others to encrypt data to the owner of the account with some assurance that the owner can be trusted with encrypted data. There are several different kinds of credentials. The Common Fields appear in all credentials. Other fields only appear in certain kinds of credentials. A ciedential is a TLV. Is detailed format follows:

CRD

```
\ILV_GRDTAG" :see expldnation below
    (J'LV_DATA ;Jus:t a container
        (TV_CRDLEVEL WORD) ;see explanation below
        {TV_VERSION (DWORD 0\times00000110)}
        {TV_CREATOR
            ((WORD wReserved) ivendor # assigned by card brand, MS is 1
            (DWORD dwAbilities))) ireserved for vendor
        (TV_CRDSERIALNUM BYTE[16]) ;assigned by Cred creator
        (TV_CRDOWNER Cstring) ;"subject name"
        (TV_ALTERNATE_NAME CString)
        {TV_CRDVALIDITY
            ((DATE GoodFrom)
                (DATE GOOdTHKu))\)
    CDF ;CredType-dependent Fields
    SignatureSection) ;see explanations below
```

In this (somewhat abstracted, and therefore impure) notation, TLV_CRDTAG* refers to one of the following:

```
TEV_CRD_CARDHOLDERSIG Gx00001802 sig cred for cardholder
TLV_CRD_CARDHOLDEREXCH 0x00001803 key exch Cred for cardholder
TLV_CRD_MERCHANTSIG 0x00001804 sig Cred for merchant.
```


EXCH	0×0001805	，
TLV＿CRD＿ACOUJ RERSIO	0×0001808	eig Cred for acquirer：
TLV＿CRD＿ACQU1REREXCH	0×0001809	key exch cred for acquirer
ILV＿CKD＿CAIXCH	0×00001813	key exch cred for bindcry
IWV＿CRL＿CARDISSSjG	0×00001814	sig Cred for card issumer
TLV＿CRD＿CARDISSEXCH	－$\times 00001815$	key exch cred for card issuer
TLV＿CRD＿BMANDCASIC	0×00001818	sig Cred for brand bindery
TLV＿CRD＿BR「N心がF．LXCH	0×00001819	key exch Cred for brand binder．

The TV＿CRDLEVEL is a WORD containing the height of the credential in the trust tree．The height is 0 for leaf credentials．i．e．，cardholders and merchants．Issuers and Acquirers have height 1，meaning they can sign the credentials of leaf entities．Brand Credential Authorities have height 2，meaning they can sign ievel－1 credentials，i．e．，Acequirers and Issuers．

There are difierent Credential Type－Dependent Fields for each type of credential．The following streams are mutually exclusive：any credential may have only one of them．

CDF

For cardholder key－exchange credentials．CDF should be replaced by

（ ${ }^{\text {（TV＿CARDTYOE }}$	（ORD）	；VISA is 2，all others are reserved
（TV＿CRDNCCTHASH	BYTE（20］）	isee explanation below
（TV＿KEY＿I＇）	Dinord）	：ass，igned by key generator／ouner
（TLV＿CRDKFY 76	KSA．5K）	

The TV＿CRDACCTHASH contains the SHA hash of the concatenated card nonce．card account number， and expiration date string－in this specific order

Cardholder Signature Crds have the following CDF：

```
((TV_CARDTYOE FORD) ;VISA is 2, all others are reserved
    {TV_CRDACCTHASH BY'TE[20]} ;as with cardholder Key-exchange creds
    (TV_KEY_IL) DH'(RD) ;assigned by key generator / owner
    (TLV`_CKDKEY 140 RSAIK))
```

Merchant signature Creds have the following CDF：

```
{(TV_CARDTYPE WORD}
    (TLV_MERACCTNUM) ;identifies merchant to acquirer
    (TV_KEY_ID DWORD) ;assigned by key generator / owner
    {TLV'_CRDKEY 140 RSA1K).
```

Acquirer，Issuer，and Brand Bindery creds all share the same CDF formats：

```
({TV_CARDTYEE DWORD)
    (TLV_INSTITUTION_ID) :assigned by cred signer
    (TV_KEY_ID EWORD) ;assigned by key generator / owner
    (TV__CRDROOTNAME CString) ; name of root of trust tree
    (TLV)_CRDKEY 140 RSA1K))
```

The root credential authority key－exchange Cred has the following CDF：

```
((TILV_INSTITUTION_ID)
    (TLV_CRDKEY 140 RSA1K))
```

Merchant key－exchange creds contain the following CDF fields：

```
({IV_CARDTYPE D%RD)
    (TLV_MERACCTNUM) ;identifies merchant to acquirer
    (TV_KEY_ID D'NORD) ;assigned by merchant
    (TLV_CRNKEY 108 RSA.75K)}
    (TV_KEY_lDEX DWORD) ;assijgned by acquirer
    (ILV_CROKEYEX 140 RSAIK))
```

Merchant key-exchange creds include the public key-exchange key of the merchant's acguirer in the TLV_CRDKEYEX. This enables cardholder software to encrypt the PI to the ac:quirer and the GSO to the merchant. The acquirer normally signs this cred, vouching for both keys.

SignatureSection

Following the Credential Type-Dependent ficlds, a cred includes the creds, recursively, of its siening authorities and the signatures created by the signers. Soltware will verify the signature on the cred. then the sienature on the signer's cred, and so on, until a signature by a root key is reached. A lailure at any level of this recursive check must result in a failure to verity the leat signature. See the cryptography section for delails on PKCS \#1 signature fornat.

```
((TLV_SIGNERCIRD)
```

or, in the case of creds signed directly by the Root Credential Authority (normally, these are just sub-authority creds)
(TV_ROOTSICNATURE BYTEI256]) ;PKCS ${ }^{2} 1 \mathrm{sig}$

7. Message Formats

An STT Transaction consists of 2 or, in one case, 4 messages. Every STT message can be assigned unambiguously to its transaction via a globally unique XID. Every STT message has its XID explicitly in a field. but the location of the XID is different in each message type. There are two kinds of messages: upward and downward. Upward messages flow from entities lower in the trust hierarchy to higher entities. Downward messages flow from higher authorities to lower. Downward messages may include piggybacked Emergency messages. Emergency messages support global root key replacement in the (very unlikely) case of root key compromise. A proper implementation of STT will ONLY replace the root key if the Emergency message is signed by the old root and if the user successfully types in the hash of the message from an external, trusted source such as Microsoft's support 800 number or an ad in a prominent newspaper. The signature on the Emergency message prevents denial of service attacks, and the hash check ensures that users act crucial information from a trusted source. All Message content fields are TLV/TVS.

A message may be either signed, dual-signed, or hashed, and finally, it may be encrypted. Any signing or hashing is always done before encryption. Every message component includes a TV_DATA_FLAG, which precedes the message content with a WORD specifying extra processing, as follows:

Bit\#	Mask	Data Form
1	0×0002	SIGNED
2	0×0004	ENCRYPTED
4	0×0010	DUALSIGNED
5	0×0020	HASHED

Bits 1 and 2 are mutually exclusive. That is, a message may be either signed, dual-signed, or hashed. All
other bit mask positions are reserved for enhancements and future versions of STT.
\therefore Details are documented in the following sections. The following types are recognized:

Upward Messages

```
IURURD
AERCRDREU
CrITRCKDKEQ
ATHREQ
```


Downward Messages

```
RCEIP'T
ATHRS?
MERCRDRSP
CMRCRIJRS*
```


Detailed Message Formats

7A. PURORD, or GSO/PI

(Goods \& Services (Order / Payment Instruction)

Sent by cardholder to Merchant, this is an aggregate message containing a hashed GS() followed hy a duai-signed PI. The hashed GS contains a dual-signed GSO core and an unsiened Details tield. The Details field is unsigned because secure signature soltware, without being excessively generic, cannot guarantee display of all formats that might be of interest to merchants and cardholders. Whereas an adversary could tamper with the unsigned Details field through its veil of RC4 encryption, he would not be able to construct a valid hash through that veil without knowing the complete plaintext of the signed GSO core and the Details field.

Typical software scenarios involve a client shopping application interacting with a compatible merchant server application. A shopping protocol must be defined between these applications. For example, the client application must supply a shipping address in a form that the merchant application can interpret. Shopping protocols are out of the scope of STT, but STT provides the Details field for application designers to put higher-fevel protocol infonnation.

A dual signature is an RSA encryption of the hash of the concatenation of two hashes. A dual signature must be generated for the combined GSO and PI, and affixed to each. The same dual signature is affixed to the GSO and to the PI. The procedure is as follows:

```
1. Hash the GS*, producing H(GSO)
2. Hash the PI, producing H(PI)
3. Concatenate the two, in that order, producing
H2 = H(GS0) ( H(PI)
4. Hash H2, producing H(H2)
5. Sign H(H2), i.e., NSA-encrypt it with che private signature
    key, producing S(H(H2))
6. Affix the concatenation of H2 | S(H(H2)) to each of the
    GSO and the PI.
```

To check the dual signature, if you are a merchant and you have the supposed GSO plaintext, call it GSO',

```
1. Hash GSO*, producing H(心S<`')
2. Overwrite the first twenty byter; ; % the H2 received from
    Lhe sender with your ovm H(CSO'), preducing H2'
    Hersh H2', producing H(H2*)
G. RSA-decrypt the S{H(H2)) recejved from the mersage s:onder.
    recovering H(H2.))
5. Compare, bitwise, H{H2') with H{H2}; if they match the
    :jgnaturc is vesified.
```

If you have the ansatz. PI' plaintext (you are an acquirer), do the following:

1. Hash PI', producing $H\left(P I^{\prime}\right)$
2. Overwrite the LAST twenty bytes in the $H 2$ received from the sender with your own $H\left\{\mathrm{Sl}^{\prime}\right)$, preducing H2'"
3. Hash H2''. producing $\mathrm{H}\left(\mathrm{H} 2^{\prime \prime}\right.$ '\}
4. RSA-decrypt the $S(H(H 2))$ reccived from the message render, recovering $\mathrm{H}\langle\mathrm{H} 2\}$)
5. Compare, bitwise, $\mathrm{H}\left(\mathrm{H} 2{ }^{\prime}{ }^{\prime}\right)$ with $\mathrm{H}\left(\mathrm{H}_{2}\right\}$; if they match the signature is verified.

The dual signature is an optimization: it reduces the number of time-consuming signatures the cardholder must compute. Linking of the GSO and PI is accomplished by their sharing a single XID. The XID functions as a shared nonce in this context.

A successful purchasing transaction comprises four messages: a GSO/PI, an AuthRequest, an AuthResponse, and a Receipt. The XID for the transaction is generated by the cardholder when he or she initiates the transaction with the GSO/PI. As an optimization, the AuthResponse does not require the XID of the GSO/PI since it bears the additional XID generated by the merchant for the nested AuthRequest transaction. The outer transaction may be terminated by the merchant, in which case there will be no nested AuthRequest transaction and the merchant will send a negative receipt to the cardholder.

STT's strongest encryption secures the bank card number in the RSA envelope., which is packaged in the DESKey.

```
{TJ_V_PURORD
    {TV_VERSION {DNORD OX\000110}}
    {ILV_oSO
        {TV_KEY_ID DWORD) ffrom Merchant's cred
        {TV_DATA_FLAG (WORO 0x0014)) ;dualhashed and encrypted
        (TINV_KEYBLOCK 111 RC4Key)
        (TLV_ENCRYPTED_DATA ;RC4-encrypted daLa
            ;-\cdots---- The data below is in plaintext form -------
            {TLV_HASHED_DATA
                {TLV_DATA ;"XDataToHash"
                (TLV_HASH_NONCE BYTE[16]); foils known plaintext attack
                (TLV_DUALSIGNED_DATA
                    (TLV_DATA
                                    (TV_CMR_XID XID); of this GSO/PI
                                    (TV_MER_NAME cstring)
                                    TV_CRDSERIALNUM BYTE(16)); from Mer cred
                                    (TV_CMR_AMT CMONeY);authorized by cmr
                                    {TLV`_CRD_CARDHOLDEREXCH)
                                    (TV_CHARGE_SLIF cString)) ;end of TLV_DATA
                (TLV_CRD_CARDHOLDERSIG)
                    (TV_DUALHASH BYTE[40])
                    (TV_SIGNATURE BYTE[12%])) ;sig of DUALHASH
                {TLV_DETAILS)}
                (TV_HASH BYTE[20)))))
    (TLV_PI
        (TV_KEY_ID DWORD) ;Of acquirer from Mercrd
```

```
Microsofc ،osporation's Secuze Transmci.o:, Techmology
```

\because

7B. Merchant Credential Request

```
(TLV_MERCRUREQ
    (IV_VERSION (DWORD *00000110})
    (TV_KEY_ID (DWOR ACquirerkeyId);
    (TV_DATA_FI,AG (FORD *x002A))
    (TLN_KEYBLOCK 148 DESKKEy)
    (TLU_ENCRYPTED_DATA ;i)N.S-encryypted data
    ;------- The data below is in plafntext form -------
        ('ILV_HASHED_BNTA
            (TI.V_DATA
                (IV_XID)
                IIV_CREATOR
                    ((wokD wReserved) ;vendor #. MS is l
                    (DWORD dwAbilities))); reserved Eor vender
                (TV_AI.TERNATE_NAME cstring)
                (TV_CRDOWNER (CString MerchantName))
                (TLV_DATA) ;AppJication-defined
                (TV_KEY_ID requestedKeyId)
                (TLV_SIGKEY RSAlK)
                (TLV_EXCHKEY RSA.75K)) ; end of TLV_DATA
            (TV_HASIS (BYTE{20] HashhOf(atta))))}
```


7C. Cardholder Credential Request

The bank card number goes in the (TLV_KEYBLOCK DESKey), which is the RSA envelope, as with a PI.

```
(TLV_CMRCRDKEQ
    {TV_VERSION (DWORD 0x00000110)}
    (TV_KEY_ID (WOORD IssuerKeyId))
    (TLV_DATA_FLAG (WORD 0x0024))
    (TLV_KEYBLOCK 148 EESKey)
    {TLV_ENCRYPTED_DATA :DES-encrypled data
    ;------- The data below is in plaintext form -------
        (TLV_HASHED_DATA
                (TLV_DATA
            {TV_XID}
            TV_CREATOR
                    ((WORD wReserved) ;vendur #, MS is 1
                (DWORD dwAb\lities););reserved for vendor
            (TV_ALI'ERNATE_NAME cString)
            (TLV_CARDINFO
                    (TLV_BIL,LING_INFO) ;Applieat1on-defired
                    {TV_CARD_NAME (CString NameAsOnCard))
```

```
        (TV_EXP_DATE (CString Expirationnate))
        (TV_ISSUER (cString IseuerName)))
    (TV_KEY_ID requestedkeyId)
    (TLV_SICKEY RSAIK)
    (TLV_EXCHKEY RSA.5K)) ; end of TUV_DATA
(TV_HAS& (BYTE[201 HashofData)))),
```


7D. Merchant Authorization Request (ATHREQ)

This is an aggregate message tied by XID to a GSO/PI and a Receipt. It contains a signed Authorization Request Prefix from the merchant to the acquirer as well as the forwarded PI encrypted by the cardhoider to the acquirer. The PI contains the XID of the original GS()/PI. The purpose of the authorization request prejix is to allow the merchant to tell the acquirer the amount he thinks the cardholder has authorized from the GSO. This prevents cardholders and merchants defrauding each other. Some acquirers allow a small percentage difference in the two amounts to account for iluctuations in freight charges and taxes. The existence or width of this slop is entirely a bank policy issue.

```
(TLV_ATHREQ
    (TV_VERSION (DWORD Ox00000110})
    (TLV゙_MERC)!ANT_RE&UEST
        (TV_KEY_IO (O'NOKD AcquirerKeyId))
        (TV_DATA_FLAG (NORD 0x0006))
        (TLV_KEY8LOCK 148 OESKey)
        (TLV_ENCRYPTEO_DRTA ;DES-encrypted data
        ;--.-- The data below is in plaintext form -...--
            (TLV_SIGNE DATA ;auth request prefix
            (TLV_DATA
                (TV_XID) ; generated by merchant for nested transaction
                        (TV_MER_APIT (CMoney MerchantReques:tedAmount))
                    (TI,V/_CRD_MERCHANTEXCH))
            (TLV_CRD_MERCHANTSIG)
            (TV_SIGNATURE (BYTE[12%l MerchantSig)))))
    (TLV_PI)) ;See PURORD &ection
```


7E. Merchant Receipt (RCEIPT)

Signed receipt from the merchant to the cardholder. The TV_RCPT_FLAG WORD holds a code that indicates whether the transaction were successful. The following values are defined for the TV_RCPT_FLAG:

```
0 - Approved / Card OK
1 - Declined
2 - No Reply
3-Call Issuer
1 - Amount Error
S - Expired Card
6 - Invalid Transaction
7 - System Error
(TLV_RCEIPT
    (TV__VERSION (DWORD 0x00000110))
    (TV_KEY_ID (DWORD CardholderkeyId))
    (TV_DATA_FLAG (WORD 0x0006})
    (TLV_KEYBLOCK 76 RCAKEY)
    (F'LV_ENCRYPTED_DATA ;RC4-encrypted data
    ;=----- The data below is in plaintext form --.....
        (TLV_SIGNED_DATA
            (TLV_DATA
                {TV_XID (XID OfOriginalGSO)}
```

```
(TV_RCPT_AMI {CMoney))
(TV_RCPT_FLAG {W`/凉 RecciptFlags})
(TV_RCPT_MSG (CString MessagcFromNerchant)))
(TLV_CR[)_MERCHANTSIG)
(TV_SICNATURE. {BYTE(128] MerchantSig}))))
```


7F. Acquirer Authorization Response (ATHRSP)

Signed authorization response from the acquirer so the merchant. This indicates to the merchant whether the cardholder's bank card is good. The XID of the original GS() is omitled, as an optimization, since the XID of the corresponding AuthRequest identifies the message uniquely. The following values are defined for the TV_ATHRSP_CODE:

```
0 - Approved / Card OK
1 - Declined
2. - No Reply
3 - Call Cardholder's issuing bank
1 - Amount Error
5 ~ - ~ C u r d h e l d e r ' s ~ c a r d ~ h a s ~ e x p i r e d ~
ó - Invalid Transaction
7 Syotem Error
(TLV_ATHRSP
    (TV_VERSION (DWORB x|O000110})
    (TV_KFY_ID (DiNORD MerchantkeyId))
    (IV_DATA_FLAS; (NORDV 0x0006))
    (TLV_KEYBLOCK 111 RC\Key)
    ITlN_ENCRYPTED_DATN ;RC4-encrypted data
    ;------- The data melow is in plaincext form -------
        |LV_SICINED_DATA
            (TLV_DATA
                (TV_XID (XID OfOriminal\lambdauthRequest))
                (TV_ATIIRSP_CODE WORD)
                (TLV_DNTA)) ; \lambdapplication-defined
            (TLV_CRD_ACQUIRERSIG}
            (TV_SIGINATURE (BYTE(12.8] \lambdacquircrsig)))|)
```


7G. Merchant Credential Response

The TV_CRDRSP_CODE WORD holds a code indicating whether the credential were issued. If the W()RD is non-zern, credentials are not present in the response. The following values are defined for the WORD:

```
    - Credential issued; no error
    1 - Contact credentialing authority (one level up the tree)
    2 - Try again or contact credentialing authority
    3 - Expired Card {cardholder credential)
    4 - System Error; contact credentialing authority
(TLV_MERCRDRSP
    (TV_VERSION (BNORD Ox0000110))
    (TV_KEY_ID ('WORD 0))
    (TV_DATN_FLAG ('NORD ex0004)}
    (TLV_KEYBLOCK 111 RC4Key)
    (TLV_ENCRYPTED_DAT\lambda ;RC4-encrypted data
    ------- The data below is in plaintext form ----..-
        (TV_CRDRSP_CODE WORD)
        {TV_XID (XID OfCorrespondingCrdRequest})
        (TLV_CRD_MERCHANTSIG)
        {TLV_CRD_MERCHANTEXCH)})
```

```
Mic:wnožt corporarion's Secune Z.nstaccion Feclnology
```


7H. Cardholder Credential Response

The TV_CRDRSP_CODE WORD holds a code indicating whether the credential were issued. If the We)RD is non-zero, credentials are not present in the response. The following values are delined for the W()RD:

0 - Credential issucd; no error
1 - Contact credentialing authority (one level up the tree)
2 - Try agaln or contact credentialing authorlty
3 - Expired Card (carohelder eredential)

- System Exror; contact eredentialing authority
(TJN_CNRCRITRSP
(TV_VERSTUN (D:NORD 0 0000001101)
(TV_KEY_ID (DiVORD 0))
(TV_DATĀ_FLAG (NORD 0x00?4))
(TLV_KEYBLOCK 79 RC4Key)
\{TLV_ENCHYPTEU_DATA ;RC4-encrypled dată
;------- The data kelo’ is in plaintext form -------
(TV_CRDRSP_CODE WOKD)
(TV_XID (XIU OfCorrespondingCrdRequest))
(TLV_CAED_NONCE (BYTE[16] Nonce))
\{TLV_CRD_CAKTNHOLDERSIG\}
\{TI.V_CRD_CARDHOLDEREXC(\}))\}

8. Cryptography

8A. Encryption for US/Canada only

This is work in progress. A high-level summary is that US/Canada versions of STT will use triple-DES (3DES) for all encrypted messages and will put Bank Card Account Numbers in the RSA envelopc of one ol the 3DES keys, just as with the International version.

88. Encryption for the International Version

Two bulk encryption algorithms are used in International SIT. RC4 and DES.

1. SIT uses RC4 encryption with 8-byte keys. of which 3 bytes are salt, in the clear. See the RC4Key enary under the Low Level Composites section of this document. RC4 is a stream cipher; there are no pad bytes and the encrypted data is the same size as the plaintext data.
2. SIT uses the Cipher Block Chaining (CBC) mode of DES, as defined in Federal Information Processing Standard FIPS 81 . The key is 8 bytes long, with each byte having a parity bit in position 0 . Thus there are 56 bits of random key. SIT uses an all-zero byte Initialization Vector (IV). A maximum of 8 bytes of padding is applied to every plaintext message encrypted with DES to pad the message to a length that is a multiple of 8 bytes. Pad byles have a value of
```
x = 8 - {(length of the plaintext) mod 8}
```

and the number of pad bytes is also x. For example, if the plaintext message was 17 bytes long, then each of the 7 bytus of pauding coutains the value $0 x 07$. If x is 0 , then there are 8 bytes, each containing $0 \mathrm{x}(08$. Padding is appended to the end of the plaintext before encryption and is stripped of f after decryption.

8C. Signatures

STT uses PKCS \#1 Encryption block formatling for RSA signatures. Total length is 128 bytes for the signature (1024 -bit modulus), except for signatures by the root key, which are twice as long. The following are the plaintexts:

```
{TV_SIGNATURE
    (BYTE[20] Hashofvata) ;Hash of the data being signed
    {PYTE 0) ;parser initiclizer
    (BYTE[10S] 0xfc) ;padding
    (BYTE <x0l) ;recom. for private key encryptions
    (BYTE 0)) ;overflow protection for RSA
ITV_RUOTSIGNATURE
    (BYIE[20] HashofData) ; Hash of the data being signed
    (BYTE 0) ;parser initializer
    {BYTEL233] 0xff} ;padding
    {BYTE 0xl) ;recom. for privale key encryptions
    (@YTE 0)) ;everflow protection for RSA
```


8D. Hashing

All hashes in STT ar 20-byte SHA hashes. See Federal Information Processing Standard FIPS 181 tor the specification of SHA hashes.

9. Protocols

9A. Entities

Cmr - Cardholder
Mer - Merchant
Iss - Issuing Bank, signs Cmr Crds
Acq - Acquirer Bank, signs fier Crds, also Payment server
Mer - Merchant
Brand - Card Brand Binder, signs Iss Crds and Acq Crds
Root - Signs Brand Crds

9B. Messages

```
TLV_PUROR[)
TLV_MERCRDREQ
TLV_CMRCRDREQ
TLV_ATHREQ
TLV_RCEIPT
TLV_ATHRSP
TLV_MERCRDRSP
TLN_CMRCRDRSP
```


9C. Protocol Quick List

1. Card Registration. Seguentially, a) Cmr sends CMRCRDREQ to Iss
b) Iss sends CMRCRDRSP to Cmr
2. Merchant Registration. Sequentially,
a) Mer sends MERCRDREQ to Acq
b) Acq sends MERCRDRSP to Mer
3. Purchasing, sequentially
a) Cmr sends PURORD to Hor
b) धither
(1) Mer sends ATHREQ to Acq
(2) Acq siends AIHRSP to Mer
(3) Mer f.ends RCEIPI to Cmr
c) or
(1) Mer sends RCEIPT to Cmr

9D. Protocol Descriptions

Registration

Merchant Registers with Acquirer

Merchants (or their processing agents) must register with their Acquirers, which have been previously registered with their brand bindery, to be able w accept transactions on a particular brand's cards and pass them on their (the Merchant's) Acquirer.

IMPORTANT NOTE

The signer of the Merchant Credential must operate the payment server. This version of STT cannot separate the Credential Server for merchants from the Payment Server operated by the Acyuizer. The reason is that the signer of the Merchant's Credential inserts its public key so the cardhelder may encrypt PIs to the Acquirer Payment Server. This version of STT dees not support export of the public key from the Payment Server. Nor import of a Payment Server public key into a Merchant Credential Server. Such key export and key import would be required to suppert separation.

Message Types

```
TLV_MERCRDREQ - the credentidl request message sent by the
    merchant to the brand bindery
INV_MERCRDRSP - the credential reguest rosponse mescage sent by
    the acquirer back lo merchatnt
```

Cardholder Registers with Card Issuer
Cardholders must register their cards. They do this by registering directly with ans issuing bindery. This bindery is operated by their bank, or its agent (which could be the brand itself, for example Visa, MasterCard, American Express)

Message Tyipes

```
TLV_CMRCRDREQ - the credential request message sent by the
    cardholder to the bindery that íssues the eardholder's card
    credential
TLV_CMRCRDRSP - the credential request response message sent by
    the bindery back to the cardholder for the registered card
```


Purchase and Authorization

This is the only two-step or nested transaction in STT.

Once all parties to a transaction are registered. initial distribution of credentials may occur. Distribution of credentials is N()T defined as part of the STT protocol because it is part of the basic (and variabie) business relationships between participants (sec Initial Credential Distribution, below).

Given that segistration and credential distribution has taken place, a purchase transaction may occur. In STT. this is a thee-way communication between a cardholder, a merchant, and an acquiker. The back-ind communication between the acequirer and the banking system is neither defined nor affected by STT. It exists today.

The flow begins with a cardholder sending a request to a merchant to purchase goods or services. This inctudes the "Goods and Services Order" (GS()) and "Payment Instruction" (PI). The GSO is processed locally by the merchant, while the PI is passed on to the acquirer for authorization of the means of payment. SIT does not specify the "back end" of the acquirer server, that is, the mechanism by which the acquirer processes the authorization request. Presumably, existing banking systems networks and protocols will be used. The response from the acquirer to the merchant is back in-band for S7T. as is the tinal legof the transaction. consisting of a seceipt from merchant to cardholder.

Message Types

```
TLV_PURORD - the purchase request sent by the cardholder to the
    merchant. This includes both the'GSo and the PI. See the
    section on encryption for details on encryption and signing.
TLV_ATHREQ - The E'I, along with additional merchant informat fon
    is: semt from t.he mershant to the acquiser
TLV_ATHRSP - The result of mrocessing the PI {accomplished
    synchronously, but out of the STT protocol specification) is
    sent from the acquirer to the merchant
TLV_RCEIPT - The receipt (as specified by the merchant) is semt
    back to the cardholder.
```


Seftlement

TBD
Not curtently defined in the STT Protocol.

Credential Distribution

Ciedential format is defined by STT, but the means of distribution, i.e., the transport, is not specified. Webbased scenarins are most likely and will be suppored directly by Microsoft's implementations.

9E. Message Flows

Registration

Merchant Registration with Acquirer

Cardholder Registration with Issuer

Purchase

10. References

[]] "A Method for Obiaining Digital Signatures and Public Key Crypınsystems" R.L. Rivest. A. Shamir. L. Adelman, MIT Laboratory for Computer Science and Department of Mathematics, S. L. Graham, R. L. Rivest ed. Communications of the ACM, February 1978 (Vol 21, No. 2) pages 120-126.
[2] "Optimal Asymmetric Encryption", M. Bellare and P. Rogaway, Eurocrypt '94.

11. Appendix

ISO 4217 Currency Country Codes

This is not part of STT proper. Interpretation of these fields is an application issuc. The following is a non-authoritative sample of popular currencies.

```
36 Australian Dollar; 2; Australla, Christmas Is.,
    Cocos Is., Keeling Is., Heard Is., McDonald I\varepsilon.,
    Kiribati, Nauru, Norfolk Is., Tuvalu
40
Austrian Schllling; 2; Austria
```

```
i. 56 Belgian Franc; 0; Belgium
Canadian Dollar; 2; Canada
156 Yuan Renminbi; 2; china
281) Deutsche Mar<< 2; Germany
300 Drachma; 0; Greece
344 Hong Kong Dollar; 2; Hong Kong
Forint; 2; Hungary
3s* Rupiah; 2; Indones,ia
372 Irish Pound; 2; 1reland
376 Shekel; 2; Israel
380 Italian Lira; 0; Italy, San Narino, Vatican City
392 Yen; 0; Japan
410 Non; * Korea, kep. of koren, South Korea
442 Luxembourg Franc; 0; Luxembourg
$84 Mexican Nuevo Peso; 2; Mexjc*
328 Hetherlands Guilder; 2; Nctherl.ands
$20 Fortuguese Escudo; 0; Rortugal
74 Spanish Peseta; ; spain, Andorro
752 Swedish Krona; 2; Sweden
756 Swiss Franc; 2; Switzerland, Liechtenstein
818 Egyptiam Pound; 2; Egypt 826; Pound Sterling; 2;
Egyptian Pound; 2; Egypt 826; Pound Sterling; 2
U.S. Dollar; 2; United States, US, USA, U.S.,
    U.S.A., Guam, American Samea, Nalke IS., U.S. Misc.
    Pas. Is., Panama Canal Zene, British Virgin 1s.,
    Johnston Is., Marianas, Is., S&ipan, MidweiY Is:.
```


MPI Family Report (Family Bibliographic and Legal Status)

In the MPI Family report, all publication stages are collapsed into a single record, based on identical application data. The bibliographic information displayed in the collapsed record is taken from the latest publication.

Report Created Date: 2012-02-21
Name of Report:
Number of Families: 1

Comments:

Table of Contents

1. US6105013A 20000815 DALLAS SEMICONDUCTOR US

Method, apparatus, system and firmware for secure transactions

Family1

18 records in the family, collapsed to 15 records.

AU702508B2 19990225 [no drawing available]
(ENG) Method, apparatus, system and firmware for secure transactions

Assignee: DALLAS SEMICONDUCTOR
Inventor(s): CURRY STEPHEN M ; LOOMIS DONALD W ; FOX CHRISTOPHER W

Application No: AU 7374596 A
Filing Date: 19960926
Issue/Publication Date: 19990225

Abstract: (EN spec prov secu reco		inventio ectronic ent via a ectronicall ons for l	s to an electro is capable of p encrypted tech module is cap ew, and creati
riority Data	451	50929	594983961
IPC (Intern		$\begin{aligned} & \text { G09C00 } \\ & \text { G07F00 } \end{aligned}$	06Q02000; G0
Legal Status:			
Date	+/-	Code	Description
20020502	(-)	MK14	PATENT CE PAID) OR E

MicroPatent Patent Index - an enhanced INPADOC database

AU7374596A 19970417

(ENG) Method, apparatus, system and firmware for secure transactions

Assignee: DALLAS SEMICONDUCTOR
[no drawing available]
Inventor(s): CURRY STEPHEN M ; LOOMIS DONALD W ; FOX CHRISTOPHER W

Application No: AU 7374596 D
Filing Date: 19960926
Issue/Publication Date: 19970417

```
Abstract: (ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.
Priority Data: US 45109519950929 P Y; US 5949839619960131 A Y; US 961547119960926 W W N;
IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710
\begin{tabular}{llll} 
Legal Status: & & \\
Date & \(+/-\) & Code & Description \\
20020502 & \((-)\) & MK14 & PATENT CEASED SECTION 143(A) (ANNUAL FEES NOT \\
& & & PAID) OR EXPIRED
\end{tabular}
```


CA2232791A1 19970403

(ENG) METHOD, APPARATUS, SYSTEM AND FIRMWARE FOR SECURE TRANSACTIONS

Assignee: DALLAS SEMICONDUCTOR US

[no drawing available]
Inventor(s): FOX CHRISTOPHER W US ; LOOMIS
DONALD W US ; CURRY STEPHEN M US
Application No: CA 2232791 A
Filing Date: 19960926
Issue/Publication Date: 19970403

Abstract

ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 45109519950929 P Y; US 5949839619960131 A Y; IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710

MicroPatent Patent Index - an enhanced INPADOC database

Publication Language: ENG

Legal Status: Date	$+/-$	Code	Description
20030403	$(+)$	AFNE	NATIONAL PHASE ENTRY Effective date: 19980323;
20030403	$(+)$	AFNE	NATIONAL PHASE ENTRY Effective date: 19980323;
20030403	$(-)$	FZDE	DEAD Effective date: 20020926;
20030403	$(-)$	FZDE	DEAD Effective date: 20020926;

CN1198233A 19981104

(ENG) Method, apparatus, system and firmware for secure transactions
Assignee: DALLAS SEMICONDUCTOR US [no drawing available]

```
Inventor(s): CURRY STEPHEN M US ; LOOMIS DONALD
    W US ; FOX CHRISTOPHER W US
```

Application No: CN 96197307 A
Filing Date: 19960926

Issue/Publication Date: 19981104

```
Abstract: (ENG) The present invention relates to an electronic module used for secure transactions. More
    specifically, the electronic module is capable of passing information back and forth between a service
    provider's equipment via a secure, encrypted technique so that money and other valuable data can be
    securely passed electronically. The module is capable of being programmed, keeping track of real time,
    recording transactions for later review, and creating encryption key pairs.
Priority Data: US 45109519950929 P Y; US 5949839619960131 A Y;
IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710
```

Legal Status:			
Date	+/-	Code	Description
29080484	()	COB	

EP1020821A3 20000802
EP1020821A2 20000719
(ENG) Method, apparatus, system and firmware for secure transactions

Assignee: DALLAS SEMICONDUCTOR US
Inventor(s): CURRY STEPHEN M US ; LOOMIS DONALD
W US ; FOX CHRISTOPHER W US
Application No: EP 00109707 A
Filing Date: 19960926
Issue/Publication Date: 20000802

Abstract

ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: EP 9693599319960926 A 3 Y; US 45109519950929 P Y; US 5949839619960131 A Y;
Related Application(s): 96935993.4086276919970403
IPC (International Class): G07F00710

Designated Countries:

Publication Language: ENG
Filing Language: ENG
Agent(s): BROOKES \& MARTIN 00100141 High Holborn House 52/54 High Holborn London, WC1V 6SE GB

Date of Deferred Publication of Search Report:
--20000802
Legal Status:

Date 20000719 ()	Code AC	Description DIVISIONAL APPLICATION (ART. 76) OF: Corresponding patent document: 862769; Country code of corresponding patent document: EP;	
20000719	$(+)$	AK	DESIGNATED CONTRACTING STATES: Kind code of corresponding patent document: A2; List of designated states: AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE; DESIGNATED CONTRACTING STATES: Kind code of corresponding patent document: A3; List of designated states: AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE; CLASSIFICATION (CORRECTION) : 7G 07F 7/10 A, 7H 04L
20000802	$(+)$	AK	RIC1
20000802	()	A/08 B;	

EP0862769A2 19980909

(ENG) METHOD, APPARATUS, SYSTEM AND FIRMWARE FOR SECURE TRANSACTIONS

Assignee: DALLAS SEMICONDUCTOR US
[no drawing available]
Inventor(s): CURRY STEPHEN M US ; LOOMIS DONALD
W US ; FOX CHRISTOPHER W US
Application No: EP 96935993 A
Filing Date: 19960926
Issue/Publication Date: 19980909
Abstract: (ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 45109519950929 P Y; US 5949839619960131 A Y; US 961547119960926 W W N;
IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710

Designated Countries:

Publication Language: ENG
Filing Language: ENG
Agent(s): Sanders, Peter Colin Christopher 00035571 Brookes Batchellor 1 Boyne Park Tunbridge Wells Kent TN4 8EL GB

Date of Deferred Publication of Search Report:
--19970515
Legal Status:

Date 19980909 $(+)$ $(+)$	Code $17 P$	Description REQUEST FOR EXAMINATION FILED Effective date: 19980427;	
19980909	$(+)$	AK	DESIGNATED CONTRACTING STATES: Kind code of corresponding patent document: A2; List of designated states: AT
			BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE;
20000301	$(+)$	17Q	FIRST EXAMINATION REPORT Effective date: $20000113 ;$ 20021009
	$(-)$	18D	DEEMED TO BE WITHDRAWN Effective date: 20020403;

IL123851A 20010111 IL123851D0 19981030

(ENG) METHOD, APPARATUS, SYSTEMS AND FIRMWARE FOR SECURE TRANSACTIONS

Assignee: DALLAS SEMICONDUCTOR US
[no drawing available]
Application No: IL 12385196 A
Filing Date: 19960926
Issue/Publication Date: 20010111

Abstract

ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 45109519950929 P Y; US 5949839619960131 A Y; US 961547119960926 W W N; IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710

Legal Status:

Date	$+/-$	Code	Description
20010520	$(+)$	FF	PATENTS GRANTED
20010724	$(+)$	KB	PATENTS RENEWED
20030212	$(+)$	KB	PATENTS RENEWED
20070724	$(-)$	MM9K	PATENT NOT IN FORCE DUE TO NON-PAYMENT OF

JPH11513509A 19991116

NotAvailable

Application No: JP 51365296 T
Filing Date: 19960926
Issue/Publication Date: 19991116

> Abstract: (ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.
> Priority Data: US 961547119960926 W W N; US 45109519950929 P Y; US 5949839619960131 A Y;
> IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710

Legal Status: There is no Legal Status information available for this patent

MX9802375A 19981129

(ENG) METHOD, APPARATUS, SYSTEM AND FIRMWARE FOR SECURE TRANSACTIONS.

Assignee: DALLAS SEMICONDUCTOR US
[no drawing available]
Inventor(s): CURRY STEPHEN M US ; LOOMIS DONALD
W ; FOX CHRISTOPHER W
Application No: MX 9802375 A
Filing Date: 19980326
Issue/Publication Date: 19981129

Abstract

ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 45109519950929 P Y; US 5949839619960131 A Y; IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710

Publication Language: SPA
Legal Status: There is no Legal Status information available for this patent

TR9800565T1 19980622

(TUR) Guevenli parasal islemleri gerçeklestirmeye mahsus yoentem, cihaz, sistem ve bellenim.
Assignee: DALLAS SEMICONDUCTOR US [no drawing available]
Inventor(s): CURRY STEPHEN M US ; LOOMIS DONALD
W US ; FOX CHRISTOPHER W US
Application No: TR 9800565 T
Filing Date: 19960926
Issue/Publication Date: 19980622
Abstract: (ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 45109519950929 P Y; US 5949839619960131 A Y;
IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710

Legal Status: There is no Legal Status information available for this patent

MicroPatent Patent Index - an enhanced INPADOC database

Abstract

ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing encrypted information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 35419819980106 A N; US 5950149619960131 A 3 Y; US 45109519950929 P Y;
Related Application(s): 60/004510 19950929 US
IPC (International Class): G07F00708; H04L00932; G06Q02000; G07F00710
ECLA (European Class): H04L00932S; G06Q02000K2C; G07F00708C2; G07F00708C2B; G07F00710D; G07F00710D4E; G07F00710D4E2; G07F00710E; H04L00932T

US Class: 713178

Publication Language: ENG
Filing Language: ENG
Agent(s): Jenkens \& Gilchrist, A Professional Corporation
Examiner Primary: Swann, Tod R.
Examiner Assistant: Smithers, Matthew

US Post Issuance:

--US Litigations: Maxim Integrated Products, Iinc Maxim Integrated Products,
Iinc E.D. Texas 4:12cv00006 ; Jack Henry \& Associates, Inc. Jack Henry \& Associates, Inc. Kansas 2:12cv02018 ; Maxim Integrated Products, Inc. Maxim Integrated Products,
Inc. E.D. Texas 4:12cvb00010 ; Maxim Integrated Products, Inc. Maxim Integrated Products,
Inc. E.D. Texas 4:12cv00005 ; Maxim Integrated Products, Inc. Maxim Integrated Products,
Inc. E.D. Texas 4:12cv00017
Assignments Reported to USPTO:
Reel/Frame: 21253/0637 Date Signed: 20080610 Date Recorded: 20080717
Assignee: MAXIM INTEGRATED PRODUCTS, INC. 120 SAN GABRIEL DRIVE SUNNYVALE CALIFORNIA 94086

Assignor: DALLAS SEMICONDUCTOR CORPORATION
Corres. Addr: NORTHWEBER \& BAUGH LLP ATTN: MICHAEL V. NORTH 2479 E. BAYSHORE RD, SUITE 707 PALO ALTO, CA 94303

Brief: MERGER

Legal Status: Date 20041208 () Code	Description $2008022 T$	()	RFPAM
		SISLP	Year of fee payment: 4;
		New owner name: MAXIM INTEGRATED PRODUCTS, INC.,	
		CALIFORNIA; : MERGER;ASSIGNOR:DALLAS	
			SEMICONDUCTOR
		CORPORATION;REEL/FRAME:021253/0637; Effective date:	
		20080610;	
20081120	()	FPAY	Year of fee payment: 8;

US6105013A 20000815

(ENG) Method, apparatus, system and firmware for secure transactions

Assignee: DALLAS SEMICONDUCTOR US
Inventor(s): CURRY STEPHEN M US ; LOOMIS DONALD
W US ; FOX CHRISTOPHER W US
Application No: US 4119098 A
Filing Date: 19980310
Issue/Publication Date: 20000815

Abstract: (ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 411909819980310 A N; US 5949839619960131 A 1 Y; US 45109519950929 P Y;
Related Application(s): 08/594983 199601315748740 US GRANTED
IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710

ECLA (European Class): H04L00932T; G07F00708C2; G07F00708C2B; G07F00710D; G07F00710D4E2; G07F00710E

US Class: 705065; 235379; 380030; 705075; 713156; 713173; 713174
Publication Language: ENG
Filing Language: ENG
Agent(s): Jenkens \& Gilchrist
Examiner Primary: Gregory, Bernarr E.

US Post Issuance:

--US Certificate of Correction: 2001111320011204 a Certificate of Correction was issued for this patent
--US Litigations: Jack Henry \& Associates, Inc. Jack Henry \& Associates, Inc.
Kansas 2:12cv02018 ; Maxim Integrated Products, Inc. Maxim Integrated Products,
Inc. E.D. Texas 4:12cvb00010 ; Maxim Integrated Products, Inc. Maxim Integrated Products,
Inc. E.D. Texas 4:12cv00005 ; Maxim Integrated Products, Inc. Maxim Integrated Products,
Inc. E.D. Texas 4:12cv00017

Assignments Reported to USPTO:

Reel/Frame: 21253/0637 Date Signed: 20080610 Date Recorded: 20080717
Assignee: MAXIM INTEGRATED PRODUCTS, INC. 120 SAN GABRIEL DRIVE SUNNYVALE CALIFORNIA 94086

Assignor: DALLAS SEMICONDUCTOR CORPORATION
Corres. Addr: NORTHWEBER \& BAUGH LLP ATTN: MICHAEL V. NORTH 2479 E. BAYSHORE RD, SUITE 707 PALO ALTO, CA 94303
Brief: MERGER

Legal Status:

Date	$+/-$	Code	Description
20011113	()	CC	CERTIFICATE OF CORRECTION
20040306	()	RFAM	Year of fee payment: 4;
20080210	()	SBAP	Year of fee payment: 8;
20080717	()	AS	New owner name: MAXIM INTEGRATED PRODUCTS, INC.,
			CALIFORNIA; : MERGER;ASSIGNOR:DALLAS
			SEMICONDUCTOR
		CORPORATION;REEL/FRAME:021253/0637; Effective date:	

US5748740A 19980505

(ENG) Method, apparatus, system and firmware for secure transactions

Assignee: DALLAS SEMICONDUCTOR US
Inventor(s): CURRY STEPHEN M US ; LOOMIS DONALD W US ; FOX CHRISTOPHER W US

Application No: US 59498396 A
Filing Date: 19960131
Issue/Publication Date: 19980505

Abstract: (ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 5949839619960131 A Y; US 45109519950929 P Y;
IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710

ECLA (European Class): H04L00932T; G07F00708C2; G07F00708C2B; G07F00710D; G07F00710D4E2; G07F00710E

US Class: 705065; 235379; 380030; 705075; 713156; 713173; 713174
Publication Language: ENG
Filing Language: ENG
Agent(s): Jenkens \& Gilchrist, P
Examiner Primary: Gregory, Bernarr E.

US Post Issuance:

--US Expiration Date: 2002050520020702 DUE TO FAILURE TO PAY MAINTENANCE FEES
--US Certificate of Correction: 19990216
Assignments Reported to USPTO:
Reel/Frame: 07959/0932 Date Signed: 19960412 Date Recorded: 19960429
Assignee: DALLAS SEMICONDUCTOR CORPORATION 4401 S. BELTWOOD PARKWAY DALLAS TEXAS 75244

Assignor: CURRY, STEPHEN M.; LOOMIS, DONALD W.; FOX, CHRISTOPHER W.
Corres. Addr: JENKENS \&GILCHRIST, P.C. STEVEN R. GREENFIELD 1445 ROSS AVENUE, SUITE 3200 DALLAS, TX 75202-2799
Brief: ASSIGNMENT OF ASSIGNORS INTEREST(SEE DOCUMENT FOR DETAILS).
Reel/Frame: 24666/0786 Date Signed: 20080609 Date Recorded: 20100712
Assignee: MAXIM INTEGRATED PRODUCTS, INC. 120 SAN GABRIEL DRIVE SUNNYVALE CALIFORNIA 94086

Assignor: DALLAS SEMICONDUCTOR CORPORATION
Corres. Addr: NORTHWEBER \& BAUGH LLP 2479 E. BAYSHORE RD. SUITE 707 PALO ALTO, CA 94303
Brief: MERGER (SEE DOCUMENT FOR DETAILS).

Legal Status:			
Date	+/-	Code	Description
19960429	()	AS	New owner name: DALLAS SEMICONDUCTOR
			CORPORATION, TEXAS; : ASSIGNMENT OF ASSIGNORS
			INTEREST;ASSIGNORS:CURRY, STEPHEN M.;LOOMIS, DONALD W•FOX, CHRISTOPHER
			W.;REEL/FRAME:007959/0932; Effective date: 19960412;
19960429	()	AS02	ASSIGNMENT OF ASSIGNOR'S INTEREST New owner name: DALLAS SEMICONDUCTOR CORPORATION 4401 S. BELTWOOD; Effective date: 19960412;
19960429	()	AS02	ASSIGNMENT OF ASSIGNOR'S INTEREST New owner name: CURRY, STEPHEN M.; Effective date: 19960412;
19960429	()	AS02	ASSIGNMENT OF ASSIGNOR'S INTEREST New owner name: LOOMIS, DONALD W.; Effective date: 19960412;
19960429	()	AS02	ASSIGNMENT OF ASSIGNOR'S INTEREST New owner name: FOX, CHRISTOPHER W.; Effective date: 19960412;

MicroPatent Patent Index - an enhanced INPADOC database

19960429	()	AS02	New owner name: DALLAS SEMICONDUCTOR
19960429	()	AS02	CORPORATION 4401 S. BELTWOOD; Effective date: 19960412; New owner name: CURRY, STEPHEN M.; Effective date: 19960412;
19960429	()	AS02	New owner name: LOOMIS, DONALD W.; Effective date: 19960412;
19960429	()	AS02	New owner name: FOX, CHRISTOPHER W.; Effective date: 19960412;
19990216	()	CC	CERTIFICATE OF CORRECTION
20020㕲	())	RTAPH	EXPIRED DUE TO FAILURE TO PAY MAINTENANCE FEE Effective date: 20020505;
20100712	()	AS	New owner name: MAXIM INTEGRATED PRODUCTS, INC.,CALIFORNIA; : MERGER;ASSIGNOR:DALLAS SEMICONDUCTOR CORPORATION;REEL/FRAME:24666/786; Effective date: 20080609;
20100712	()	AS	New owner name: MAXIM INTEGRATED PRODUCTS, INC., CALIFORNIA; : MERGER;ASSIGNOR:DALLAS SEMICONDUCTOR CORPORATION;REEL/FRAME:024666/0786; Effective date: 20080609;

US5805702A 19980908

(ENG) Method, apparatus, and system for transferring units of value

Assignee: DALLAS SEMICONDUCTOR US
Inventor(s): CURRY STEPHEN M US ; LOOMIS DONALD W US ; FOX CHRISTOPHER W US

Application No: US 59501496 A
Filing Date: 19960131
Issue/Publication Date: 19980908

Abstract: (ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing encrypted information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 5950149619960131 A Y; US 45109519950929 P Y;
IPC (International Class): G07F00708; H04L00932; G06Q02000; G07F00710
ECLA (European Class): G06Q02000K2C; G07F00708C2; G07F00708C2B; G07F00710D4E;
G07F00710D4E2; G07F00710D4T; G07F00710E; H04L00932T
US Class: 705066
Publication Language: ENG

Filing Language: ENG

Agent(s): Jenkens \& Gilchrist
Examiner Primary: Tarcza, Thomas H.
Examiner Assistant: White, Carmen D.

US Post Issuance:

--US Certificate of Correction: 19990406

Assignments Reported to USPTO:

Reel/Frame: 08095/0854 Date Signed: 19960412 Date Recorded: 19960418
Assignee: DALLAS SEMICONDUCTOR CORPORATION 4401 S. BELTWOOD PARKWAY DALLAS TEXAS 75244

Assignor: CURRY, STEPHEN M.; LOOMIS, DONALD W.; FOX, CHRISTOPHER W.
Corres. Addr: JENKENS \& GILCHRIST, P.C. STEVEN R. GREENFIELD 1445 ROSS AVENUE, SUITE 3200 DALLAS, TX 75202-2799
Brief: ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).
Reel/Frame: 21253/0637 Date Signed: 20080610 Date Recorded: 20080717
Assignee: MAXIM INTEGRATED PRODUCTS, INC. 120 SAN GABRIEL DRIVE SUNNYVALE CALIFORNIA 94086

Assignor: DALLAS SEMICONDUCTOR CORPORATION
Corres. Addr: NORTH WEBER \& BAUGH LLP ATTN: MICHAEL V. NORTH 2479 E. BAYSHORE RD, SUITE 707 PALO ALTO, CA 94303
Brief: MERGER

Legal Status:			
Date	+/-	Code	Description
19960418	()	AS	New owner name: DALLAS SEMICONDUCTOR
			CORPORATION, TEXAS; : ASSIGNMENT OF ASSIGNORS
			INTEREST;ASSIGNORS:CURRY, STEPHEN M.;LOOMIS, DONALD W.;FOX, CHRISTOPHER
			W.;REEL/FRAME:008095/0854; Effective date: 19960412;
19960418	()	AS02	ASSIGNMENT OF ASSIGNOR'S INTEREST New owner name: DALLAS SEMICONDUCTOR CORPORATION 4401 S. BEL TWOOD; Effective date• 19960412;
19960418	()	AS02	ASSIGNMENT OF ASSIGNOR'S INTEREST New owner name: CURRY, STEPHEN M.; Effective date: 19960412;
19960418	()	AS02	ASSIGNMENT OF ASSIGNOR'S INTEREST New owner name: LOOMIS, DONALD W.; Effective date: 19960412;
19960418	()	AS02	ASSIGNMENT OF ASSIGNOR'S INTEREST New owner name: FOX, CHRISTOPHER W.; Effective date: 19960412;
19960418	()	AS02	New owner name: DALLAS SEMICONDUCTOR
			CORPORATION 4401 S. BELTWOOD; Effective date: 19960412;
19960418	()	AS02	New owner name: CURRY, STEPHEN M.; Effective date: 19960412;
19960418	()	AS02	New owner name: LOOMIS, DONALD W.; Effective date: 19960412;
19960418	()	AS02	New owner name: FOX, CHRISTOPHER W.; Effective date: 19960412;

19990406	()	CC
20080717	()	AS

CERTIFICATE OF CORRECTION
New owner name: MAXIM INTEGRATED PRODUCTS, INC., CALIFORNIA; : MERGER;ASSIGNOR:DALLAS
SEMICONDUCTOR
CORPORATION;REEL/FRAME:021253/0637; Effective date: 20080610;

WO9712344A3 19970515
WO9712344A2 19970403
(ENG) METHOD, APPARATUS, SYSTEM AND FIRMWARE FOR SECURE TRANSACTIONS

Assignee: DALLAS SEMICONDUCTOR US
Inventor(s): CURRY STEPHEN M ; LOOMIS DONALD W ; FOX CHRISTOPHER W

Application No: US 9615471 W
Filing Date: 19960926
Issue/Publication Date: 19970515

Abstract

ENG) The present invention relates to an electronic module used for secure transactions. More specifically, the electronic module is capable of passing information back and forth between a service provider's equipment via a secure, encrypted technique so that money and other valuable data can be securely passed electronically. The module is capable of being programmed, keeping track of real time, recording transactions for later review, and creating encryption key pairs.

Priority Data: US 45109519950929 P Y; US 5949839619960131 A Y; ```IPC (International Class): G09C00100; G06Q02000; G06Q05000; G06Q01000; G06Q04000; G07F00708; G07F00710```

Designated Countries:

----Designated States: (national) AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES
FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM
-----Regional Treaties: (ARIPO) AP KE LS MW SD SZ UG
----EPO Extension States: (EPO) EP AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE
----Elected States (PCT): (OAPI) OA BF BJ CF CG CI
Publication Language: ENG
Filing Language: ENG
Agent(s): MAXWELL, Roger, L. Jenkens \& Gilchrist, P.C., Suite 3200, 1445 Ross Avenue, Dallas, TX 75202 US

Legal Status:		
Date	$+/-$	Code
19970403	$(+)$	AK

Description
DESIGNATED STATES Kind code of corresponding patent document: A2; List of designated states: AL AM AT AU AZ BA

19970403	(+)	AL
19970515	(+)	AK
19970515	(+)	AL
19970723	()	121
19971218	()	DFPE
19980323	()	ENP
19980330	()	ENP
19980330	(+)	WWE
19980427	(+)	WWE
19980730	()	REG
19980909	(+)	WWP
19990726	(+)	WWP
20020313	(-)	WWW
20020403	(-)	WWW

BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM; DESIGNATED COUNTRIES FOR REGIONAL PATENTS Kind code of corresponding patent document: A2; List of designated states: KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI; DESIGNATED STATES Kind code of corresponding patent document: A3; List of designated states: AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM; DESIGNATED COUNTRIES FOR REGIONAL PATENTS Kind code of corresponding patent document: A3; List of designated states: KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI;
EP: THE EPO HAS BEEN INFORMED BY WIPO THAT EP WAS DESIGNATED IN THIS APPLICATION REQUEST FOR PRELIMINARY EXAMINATION FILED PRIOR TO EXPIRATION OF 19TH MONTH FROM PRIORITY DATE (PCT APPLICATION FILED BEFORE 20040101) ENTRY INTO THE NATIONAL PHASE IN: Corresponding country code for PRS Code (EP REG): CA; Corresponding patent document: 2232791; Kind code of corresponding patent document: A;
ENTRY INTO THE NATIONAL PHASE IN: Corresponding country code for PRS Code (EP REG): JP; Corresponding patent document: 1997 513652; Kind code of corresponding patent document: A;
WIPO INFORMATION: ENTRY INTO NATIONAL PHASE Corresponding patent document: 1019980702358; Country code of corresponding patent document: KR;
WIPO INFORMATION: ENTRY INTO NATIONAL PHASE Corresponding patent document: 1996935993; Country code of corresponding patent document: EP;
REFERENCE TO NATIONAL CODE Corresponding country code for PRS Code (EP REG): DE; Corresponding EP Code 1 for PRS Code (EP REG): 8642;
WIPO INFORMATION: PUBLISHED IN NATIONAL OFFICE Corresponding patent document: 1996935993; Country code of corresponding patent document: EP; WIPO INFORMATION: PUBLISHED IN NATIONAL OFFICE Corresponding patent document: 1019980702358; Country code of corresponding patent document: KR; WIPO INFORMATION: WITHDRAWN IN NATIONAL OFFICE Corresponding patent document: 1019980702358; Country code of corresponding patent document: KR;
WIPO INFORMATION: WITHDRAWN IN NATIONAL OFFICE Corresponding patent document: 1996935993; Country code of corresponding patent document: EP;

USPTO Maintenance Report

Patent Bibliographic Data	02/21/2012 01:38 PM Patent Number: 6105013			
Issue Date:	08/15/2000	Application Number:	Filing Date:	09041190

（19）BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
（3）Offenlegungsschrift
© DE 4406602 A 1
（21）
Aktenzeichen：
Anmeldetag：
P 4406602.3
1． 3.94
（a）Offenlegungstag：
（6）Int．Cl．${ }^{6}$ ：
H 04L 9／32
H 04 M 11／00
H 04 M 3／42
G 07 C 9／00
（11）Anmeider：
Deutsche Bundespos？Telekom， 53175 Bonn，DE
（22）
Erfinder：
Kowalski，Bernd，Dipl．－Ing．， 57072 Siegen，DE；Stolz， Helmut，Dipl．－Ing．， 57080 Siegen，DE
（58）Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften：

DE	4138861 A 1
US	5274699
US	5239583
US	5222140
US	5202921
US	4679226
EP	$21401 \mathrm{B1}$
EP	0451695 A 2
EP	$346180 \mathrm{A1}$
SU	1732362 AI
SU	1163744 AI

BELLER，Michael，J．；

et．al．：Privacy and Authenica－tion on a Postable Communications System．In：IEEE Journal on Selected Areas in Communications，Vol．11，No． 6.
Aug．1993，S．821－829；
ALLERBECK，Mechthild；
FISCHER，Norbert：Mobile Kom－munikation mit HICOM－Chipkarte．In：telcom repoit 9，1986，H．4， S．270－273：
ARNDT，Gerhard；
LUEDER，Reinhard：Bewegungsfesiheit in allen Netzen．in：telcom report 16，1993，H．2，S．67－69； GABEL，J．：Die Chipkarte im Funktelefonnetz C．In： ntz Bd．41，1988，H．10，S．586－589；

54）Sicherheitssystem zum Identifizieren und Authentisieren von Kommunikationspartnern
Die etfindungsgemäße Lösung betrifft ein Sicherheitssy－ stem，das eine eindeutige Identifizierung und Authentisie－ rung von Kommunikationspartnern ermōglicht und somit die notwendige Sicherheit für den Austausch von vertraulichen Informationen gewährleistet．
Voraussetzung ist，daß alle Kommunikationspartner mit einem individuellen Sicherheitsmodul ausgestattet sind und über sicherheitstechnische Einrichtungen STE verfügen．Der Verbindungsaufbau wird von den STE übernommen．Dabei wird gepräft，ob beim Kommunikationspar tner ebenfalls eine aktivierte STE vorhanden ist．Mit dieser STE wird ein Informationsaustausch und ein Authentikations－und Schlüs－ selaustauschprotokoll vorgenommen．Danach erfolgt eine persōnliche Authentizierung und die Betriebsartentschei－ dung einschließlich evさl．erforderlicher Schlüsselvereinba－ rung．
Mittels der ezfindungsgemäßen Lōsung werden sowohl die Sicherhelt der Kommunikationspartner als auch die Sicher－ heit des Kartenterminals in die Prüfung auf Informationssi：－ cherheit einbezogen．

Beschreibung

Die Erfindung betrifft ein Sicherheitssystem zum Identifizieren und Authentisieren von Kommunikationspartnern der im Oberbegriff des Patentanspruch I năher definierten Art, welche die Informationssicherheit mit Sicherheitsmechanismen von hoher Wirksamkeit erreicht. Sie schatzzt insbesondere gegen die Bedrohungen:

> - Verlust der Vertraulichkeit (Schutz vor unbefugter Preisgabe von Informationen)
> - Verlust der Integrität (Schutz vor unbefugter Änderung von Informationen)
> - Verlust der Anonymităt (Schutz vor unbefugter Preisgabe der Identităt).

Zusătzlich bietet ein Kommunikationssystem, das mit diesen Einrichtungen ausgestattet ist, die Möglichkeit, daß der Zugriff auf Computersysteme, die in diesem Kommunikationsnetz betrieben werden, gesichert wird,

Bestehende Kommunikationsinfrastrukturen verfügen im allgemeinen nicht über ausreichende Mechanisinen, daß Kommunikationspartner sich gegenseitig eindeutig identifizieren und authentisieren können, um anschließend und vertraulich Informationen auszutauschen. Erst durch erhebliche Eingriffe in die benutzten Kommunikationssysteme kőnnen die Partner nach vorherigen Verabredungen notwendiger Parameter die Prozesse aktivieren, die z. B. durch kryptographische Verfahren, einen vertrauenswürdigeren Informationsaustausch gestatten und in der Regel noch zusatzliche Maßnahmen notwendig machen. Geeignete kryptographische Verfahren gestatten grundsătzlich eine vertrauliche Kommunikation.
Durch den Einsatz von geeigneten Sicherheitsmodulen (wie z. B. Chipkarten) ist eine Identifikation von Benutzern auf eine höchst vertrauenswiirdige Weise mōglich.

Geeignete Chipkarten lassen den Zugriff auf interne Funktionen und Daten nur dann zu, wenn sich ein Benutzer gegenüber der Chipkarte durch ein Merkmal oder Geheimnis (persönliche Geheimzahl, Fingerprint, etc.) eindeutig identifiziert. Far die Identifikation des Benutzers gegenüber der Chipkarte muß ein Kartenterminal verwendet werden. Auch die Sicherheit des Kartenterminals muß in die Betrachtung der Informationssicherheit einbezogen werden. Das Kartenterminal hat sich deshalb ebenfalis gegenüber der Chipkarte des Benutzers eindeutig zu identifizieren.

Mit der vorliegenden Erfindung soll ein vom Kommunikationssystem unabhăngiges Sicherheimsystem geschaffen werden, das die Identifikation von Benutzern mit einer Chipkarte bei Einsatz eines Chipkartenterminals mit der gegenseitigen Authentikation von Benutzern, dem Parameteraustausch für den Einsatz kryptographischer Verfahren und deren Anwendung fiir den vertraulichen Informationsaustausch zwischen Kommunikationspartnern verknüpft. Dazu soll kein Eingriff in die bestehenden Kommunikationssysteme notwendig sein.

Diese Aufgabe wird erfindungsgemă B entsprechend dem Kennzeichen des Patentanspruchs 1 gelöst.
Vorteilhafte Weiterbildungen der Erfindung sind in den Kennzeichen der Patentansprüche 2 bis 8 beschrieben.

Unter Verwendung eines individuellen und personalisierbaren Sicherheitsmoduls (z B. einer Chipkarte) und
den Sicherheitsfunktionen von sicherheitstechnischen Einrichtungen (kurz STE) wird der authentische und vertrauliche Informationsaustausch in Kommunikationssystemen, - hierzu zăhlen sămtliche Daten- und Computernetze im lokalen wie auch im Weitverkehrsbetrieb - für die digitale Ubertragung von Daten und Sprache gewãhrleistet.
Die sicherheitstechnischen Einrichtungen sind gemäß dieser Erfindung in bestehende Kommunikationsinfrastrukturen als aktive Komponenten integrierbar und kōnnen zusätzlich einen gesicherten Zugriff auf vorhandene Informationssysteme gewăhrleisten. Für diese Informationssysteme sollen keine oder nur minimale Erweiterungen oder Konfigurationsănderungen notwendig werden.

Wichtiges technisches Merkmal der STE ist, daß Benutzer sich eindeutig mit Hilfe von personalisierten Si cherheitsmodulen identifizieren und authentisieren méssen. Es ist allerdings auch möglich, daß die Funktionalität eines personalisierten Sicherheitsmoduls in die STE integriert wird.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen nảher erlăutert. In den zugehörigen Zeichnungen zeigen die:

Fig. 1 eine Identifikation und Authentisierung der personalisierbaren Sicherheitsmodule und der sicherheitstechnischen Endeinrichtungen,

Fig. 2 eine Grundstruktur einer systemunabhängigen sicherheitstechnischen Endeinrichtung bzw. Security Base und die

Fig. 3 einen Einsatz von STE und Security Base als systemunabhāngige Sicherheitseinrichtungen Voraussetzung flir die authentische und vertrauliche Kommunikation ist, daB alle Kommunikationspartner (Teilnehmer) mit einem individuellen Sicherheitsmodul (Chipkarte) ausgestattet sind und Ober eine STE verfügen.

Will ein Teilnchmer sicher mit einem Partner kommunizieren, so muß er eine gültige Chipkarte in die STE oder einen Kartenleser der STE einführen. Der Teilnehmer muß sich gegenüber der Chipkarte durch Eingabe eines persð̆nlichen Merkmals (z B. PIN = persönliche Identifikationsnummer) identifizieren. Die Chipkarte authentisiert sich mit einem geeigneten Verfahren gegenüber der STE und die STE authentisiert sich gegenüber der Chipkarte, so daß alle Komponenten ihre Authentizität beweisen können.

Die hierfir zum Einsatz kommende Methode kann ein sogenanntes "challenge-response" Verfahren sein, das mittels eines Chiffrieralgorithmus und eines Ge heimnisses (Schliissel) zwischen den Komponenten eine verschlüsselte Zufallszahl austauschen (Authentisierungsparameter) und dadurch der Gegenseite den Besitz des Geheimnisses beweis, ohne daß dieses selbst preisgegeben werden muß. So kann die Chipkarte eine von der STE erhaltene verschlusselte Zufallszahl dechiffrieren und an die STE zurickschicken, womit die Chipkarte beweist, daß sie im Besitz eins Geheimnisses ist (korrekter Entschlüsselungsschlüssel) und somit ihre Authentizităt beweist. Die Authentikation der STE gegenïber der Chipkarte 従uft analog.

Aus Sicherheitsgründen und praktischen Erwăgungen soll die STE, die systemunabhăngig ist, weil sie gemăß dieser Erfindung als systemunabhängige Komponente in die bestehende Infrastruktur integriert wird, mðglichst direkt zwischen der bestehenden Kommunikationseinrichtung und dem AnschluB dieser an das Kommunikationsnetz installiert werden.

Versucht nun die Kommunikationseinrichtung eine

Verbindung zu einem Partner aufzubauen, so wird die STE seibständig aktiv und schaltet sich in den Kommunikationsfluß ein. Zunächst versucht die STE Informat:onen mit dergegenseitigen STE des Kommunikationspartners auszutauschen.

Gelingt dies nicht, (weil die z. B. gegenseitige STE nichr aktiviert wurde oder nicht vorhanden ist), so läuft die Kommunikation in gewohnter Form ab, wobei die STE eine Warnfunktion aktiviert. Diese Warnung an den Benutzer kann auf einem Display, curch Signallampen, einem Signalton oder ähnlichem ausgef0hrt werden.

Wird von der STE eine gegenseitige STE erkannt, so wird mit Hilfe eines Authentikations- und Schlitsselaustauschprotokolls ein Verschluisselungsschlüsse! (Sitzungsschlüsse:) für ein Chiffrierverfahren zwischen beiden STE ausgehandelt. Das für die Erfinciung verwencete Authensikationsprotokoll bietet dabai die sichere gegenseitige Authentikation der Chipkarten der Kommunikationspartner, den verwendeten sicherheitstechnischen Endeintichtingen (STE) und übernimmt den Schlüsselaustausch. Dazu werden sogenannte "publickey" Verfahrea eingesetzt.

Diese Verfahren zeichren sich dadurch aus, daß 汇r die Veaschlüsselung ein anderer Schlüssel als für die Entschlüsselung verwendet wird. Daher kann einer der beiden Schlussel für eine Verifikation veröffentlicht werdea. Die Authentizität der verwendeten öffentlichen Scalilissel wird durch die Priufung einer elektronischen Unterschrift eires Zertifikates, das den Teilnetmerschliussel inklusive der Teilnehmeridentität anci Zusatzinformationen enthält, gewährleistet. Dieses Zertifikat wird von einer vertrauenswürdigen dritten Instanz herausgegeben, die auch als Ausgabestelle der verwendeten Sicherheitsmodule wirken kann.

Die Identität des Kommunikationspartners, basierend a af derm in die STE eingeführten Sicherheitsnodul, wird der jeweiligen Gegenseite angezeigt, so daß nur mit dem Einverständnis des STE-Benutzers eine Kommunikationmit dem Partner möglich wird. Dazu verfiigt die Erfindurg über eine Eingabefunktion, die entweder uber das angeschlossene Kommunikationsendgerät oder direkt an der STE betātigt werden kann.

Nach dem verırauenswürdigen Schleisselaustausch werden die Informationen zwischen den Kommunikationspartnern von STE zu STE mit dem Sitzungsschlüissel chiffriert übertragen.

Die Kommunikationspartner, die mit Chipkarte und STE ausgestattet sirid, können somit ein geschlossenes Netz innerhalb einer offenen Kommunikationsinfrastruktur bilden.

Die Erfinduang kann optimal zusătzlich gemäß der Ansprüche die Möglichkeit bieten, daß durch eine oder mehrere ertsprechend erweiterte STE, sogenannte Se curity Basis (SB), Authentifikationsinformationen und Capabilities an die Kommunikationssys:eme \{beliebige Endeinrichtungen in bestehenden Netzen), nach der Authentikation übertragen werden. Mit Hilfe dieser Benutzerkennungen und Capabilities kann ein Kommunikationssystem die Zugriffsrechte auch von diesen verwalte:en Objekten regeln. Diese Lejstung wird dadurch erbracht, daß die in der SB definierten Benutzerbzw. Teilnehmerkennungen und Capabilities gespeichert und nach dem Ablauf der oben beschriebenen Authentikationsprozedur an das Endgerät übertragen werden.

Die Erfindung sieht vor, daß ein bestehendes Kommunミ̉kationssystem mit einem Modul (Security-Dämon) ausgestattet werden kann, das die Capabilities korrekt
entgegen nimmt und einer Systemverwaltung zur Weiterverarbeitung übergibt.
Eine SB kann zentrale Sicherheitsmanagementaufgaben in einem Kommunikationsnetz übernehmen, indem sie für alle Teilnehmer Capabilities verwaltet

STE und SB verrügen uber Administrationsschnittstellen, die einem autorisierten Systemverwalter Zugang für Konfigurationsmöglichkeiten gestattet. Uber eine derartige Schnittstelle können auch Zertifikate für Benutzer einschließlich öffentlicher Schlïssel geladen werden. STE und SB sind Kommunikationssysteme, deren Kommunikationsfähigkeit an die jeweiligen Systemschnittstellen angepabt werden kann. So können speziell konfigurierte STE/SB in einem z. B. lokalen Netzwerk betrieben werden, wenn die STE/SB für das verwendete Kommunikationsprotokoll mit entsprechender Schnittstelle ausgerdstet wurde. Die Authentikationsund Chiffrierverfahren als zentrale Sicherheitsmechanismen werden unabhangig von der Systemkonfiguration immer mit gleicher Sicherheit bereitgestellt.
Die Sicherheitsfunktionen der STF und SB können auch angeboten werden, wenn nicht ein Sicherheitsmodul von einem Benutzer verwendet wird, sondern ein integraler Bestandteil einer speziel'en STE bzw. SB ist. Die STE und SB wirken dann in einem benutzerlosen automatischen Betrieb. Dieser Betriebsmodus wird einer Gegenstelle während der Verbindungsaufbauphase signalisiert, so daß die Gegenstelle entscheiden kann, ob sic den Veriindungswunsch ablehnt oder annimmt. Auch ist der ausschließlich automatische Betrieb zwischen Kommunikationssystemen möglich.

Jede STE und SB ist eindeutig von einer dritten \ln stanz personalisierbar, so daß sie durch das Authentikationsprotokoll von einer Gegenstelle eindeutig identifiziert und authentisiert werden kann.

STE und SB enthalten eine Protokollierungskomponente, mit der es für den berechtigten Benutzer möglich ist, Ereignisse, wie z. B. berechtigte und unberechtigte oder abgelehnte Verbindungsaufbauten, Konfigurationsänderungen, abgebrochene Ubertragungen usw., nachträglich zu kontrollieren.

Patentansprüche

1. Sicherheitssystem zum Identifizieren und Authentisieren von Kommunikationspartnern für Verbindungen uber Kommunikationsnetze mit digitaler Ubertragung, dadurch gekennzeichnet, daß mindestens allen sichezheitsbedürftigen Kommunikationspartnert, unabhängig vom verwendeten Informationssystem, jeweils an der Schnittstelle zwischen der zu sichernden Kommunikationseinrichtung und dem Kommunikationsnetz, je eine dem Netz angepaßte Sicherheitstechnische Einrichtung (nachfolgend STE) mit Eigenschaften einer Endeinrichtung beziehungsweise eine zur Sicherheitsbasis (nachfolgend SB) erweiterte STE, ein individueller Sicherheitsmodul und ein persönliches Merkmal zugeordnet werden, daß der Verbindungsaufbau von der STE bzw. SB übernommen wird und mit einer Prüfung verbunden ist, ob beim gerufenen Kommunikationspartner ebenfalls eine aktivierte STE bzw. SB erreicht wird und mit dieser ein Informationsaustausch und ein Authentika-tions- und Schlusselausiauschprotokoll vorgenommen werden kann bzw. ob ein Warnsignal zu aktivieren ist, daB erst danach cine persönliche Authentisierung und die Betriebsartenentscheidung ein-
schließlich evtl. erforderlicher Schlüsselvereinbarung durchgefübrt wird.
2 Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet daß die STE bzw. SB für eine automatische Kommunikation mit einem Sicherheits-Management Center (nachfolgend SMC) vorgesehen sind.
2. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet, daß die STE bzw. SB mit Rechtedateien versehen sind, die Eintrăge und evtl. Leistungsmerkmale enthalten, wer in welchen Betriebsarten und evtl. mit welchen Partnern kommunizieren kann.
3. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet daß die STE bzw. SB ïber eine Protokollierungskomponente verfiigen, die relevante Ereignisse aufzeichnet und kontrollfähig gestaltet.
4. Sicherheitssystem nach Anspruch 1 bis 4, dadurch gekennzeichnet daß die Rechtcdateien und Protokollierungskomponenten teils lokal und teils vom 20 SMC und teils von beiden Seiten beeinflußbar sind und daß Ereignisse an das SMC gemeldet werden, 6. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet daß die STE/SB bzw. SMC für ein dezentralcs bzw. zentrales Sichcrheits- und Schlusselmanagement mit gespeicherten Zertifikaten und Schlüsseln vorgesehen sind.
5. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnct daß die STE und SB eine digitale Unterschrift, eine Verilizierung von elektronischen 30 Unterschriften und eine Ver- und Entschlüsselung als integrierten Dienst bereitste!len.
6. Sicherheitssystem nach Anspruch 1, dadurch gekennzeichnet daß die STE/SB und SMC mit optischen bzw. akustischen Signalisierungsmitteln ver- 35 sehensind.

Hierzu 3 Seite(n) Zeichnungen

- Leerseite -

Page 346 of 544

Figur 1

Nummer:
Int. CI. ${ }^{8}$:
Offenlegungstag:

DE 4406602 A1
H 04 L 9/32
7. September 1995

Figur 2

Figur 3

EUROPEAN PATENT APPLICATION

(21) Application number: 85305293.4
(72) Date of filing: 25.07.85
(51) int Cl.4: G07F 7/00
(D) Pnority. 27.07.84 US 635258
(13) Date of publication of application:
26.02.86 Bulletin 86/09
(3)

Designated Contracting Stars:
AT BE CH DE FR GB IT LI LU NL SE
(71) Applicant: Technion Research \& Development Foundation
Senate House Technion Clty
Haifa 32000(IL)
(2) Inventor: Even, Shimon

13 Vitkin St.
34756 Halfa(IL)
Inventor: Goldreich, Oded
42 Pinkas St.
Tel Aviv(IL)
Inventor: Yacobl, Yacov
Moshav Atzmon
Doar-Na Galll Maaravi (20138)(IL)
(74) Represertativa: Bllington, Lawrence Emlyn et al HASELTINE LAKE \& CO Hazilt House 28 Southampton Bulldinga Chancery Lane London WC2A 1AT(GB)

An apparatus for effecting and recording monetary transactions.
(57) Appasatus for effecting and recording menctay transactions including apparetus for regisioring the present value of moriey therein, apoaratus for selectably adjusting the registared value to indicate a payment and recerpt transaction, and identity verification apparatus including asymmetric cryptographic apparatus coupled to the apparatus for adjusting for activation thereof. The appaceus as a whole is provided as an electronic wallet (10) comprising a display (12), a keyboard (14) and a connecting jack (16).

The present invention reiates to an apparatus for effecfing and recording monetary transactions.

Conventional wallets in which one carnes cash money have long been known. One can open the wallet and extract an amount which does not exceed the present value therein, in order to make a payment, or one can receive payment from another party and deposit the received amount in the wallet, to increase the value therein accordingly.

Many methods exist for removing the incorvenience and risks of carying cash in one's wallet. These include personal checks, traveler's checks, vouchers and credit cards, just to name a few. In addition, in order to eliminate the need for proximity during the transaction, methods have boen developed for making payments from afar, such as using the mail system, telegraphing money orders and electronic furid transfer systems.

These systems suffer from a number of dieactvanages. There is no easy way to verify that a payment received is not forged or that it is backed by proper credit (particularity in the case of chacks and credit cards). Payments received cannot easily incorse the cusrent value or fund which is avaifable for making peyments. Electurnic fund transter systems ate not surtable, in their present form, for use by an individual making an ovoryday paymen

There exast a number of so-called French Smast Cards distributed by a number of French companies which enable one to make payments but not to recsive them. They are similar to ordinary automatic credit cards or banking cards, such as BANKOMAT in Europe, but the identification procedure seens to be more reliable since it may involve some cryptogiaphic computations and not merety reading a magnetic tape. The details of their operdtion have not been published.

Davies' Signeture Token described by D.W. Davies in "Use of the 'Signature Token' to Create a Negotizble Document", presented in Crypto 83, Santa Barbara, CA, U.S.A., August 1983 claims to enable the provention of forgeries, but is unable to register the batance of the value available.
U.S. Patent 4,320,387 to Powell discloses apparatus for providing secured communication of information comprising individual units including display of information to be communicated, efectronic circuit means providing automatic security of tansmission Detween relatively iemote units that are inlended to be included in a specinic transter of informetions electrunic information sorage means for recording of comonumicand information, and radiant energy signal transmitting devices for effecting coupling of any wo selected apparctus unis that are to participate in the information transler. Time-base controlled signal encoding is utiized to effect generation of the communication to the iwo selected units and to provide security of transmission. This electronic circuitry includes a timecontul base which is functional to change its contol function in the same amount of time as that which would be required to complete one gransaction in the recording phase of operation.

In operation, a coded signal corresponding to the information to be transierred is transinitled by one apparanus and recaived by the second. The receiving apparatus utilizes the same time-cantul base encoding to encode the daia it expects to receive (i.e., as manually mput by the owner). It then comperes the received encoded data with the encoded expected dala If identical, the transaction
procseds. Since the encoder signal changes over fime, certain fraudulent transactions are prevented since the received encoded data will not accord with the encoded expected data

This apparatus suffers from a number of disadvantages. First, it is possible to typass a portion of the identification system of each apparatus unit thereby lowering the security of the system. Second, and more importantly, knowledge of the time-controt base function gained from any one apparatus unit permits one to engage in many fraudulent transactions, threatening the entire monelay system with collapse. Third, coded identification for all the other units are included in the memory of each unit, requiring a large memory capacity.

A preferred embodiment of the present invention may provide an electronic wallet which permits both payment and receipt of money, which includes an automatic identification system which prevents forgeries and which cannot be bypassed

According to one aspect of the present imertion there is provided an apparatus for eflecting and recording monetary transactions comprising: means for registoring the present value of money therein, means for selectatly adjusting the registered value to selectably indicate payment and receipt, responsive to a manual control input and identity verification means coupled to the means for adjusting for activation thereof.

According to a preferred embodiment of the invention, the means for selectably adjusting includes means for determining whether the transaction is permitted, and means for effecting transfer of value coupled to the means for register* ing present value.

Further according to a preferred embodiment the means for identity verification includes cryptographic maans which may include secret hey encoder means aranged to encode data transmitted by the apparalus, and known key decoder means aranged to decode encoded data received by the apparatus.

Further in accordance with a preibrred embodiment, the apparatus further includes cryptographic owner identification means.

Additionally in accordance with a preferred embodiment, the apparatus further comprises means for destroying the registered information which is actrates by unauthorized physical ently.

There is further provided means for institutional validation of the apparatus.

According to another aspect of the present invention these is provided apparatus for effecting and recurding monetary tansactions including: means for aggistening the presenl moretay value of the apparatus, mesis operive in response to a first manual contol input for idenifying a permitted user; inears operative in response to a second manual contol input for registering the monetary value of a transaction; means for transmitting an encoded output signal corresponding to identification of the apparatus, means for receiving an encoded input signal corresponding to identification of an apparatus with which the transaction is to be effecred; means for decoding and venifing the encoded receved signal; means for transmitting an outpul signal corresponding to the monetery value of the transaction to the apparatus with which the tansartion is to be effectex: rreans for receiving an input signal cortesponding to the monetary value of the transaction from the apparatus with which the transaction is to be effected; means for determin-
ing whether the transaction is permited: means for transmitting an encoded output signal corresponding to the monetary value and direction of the transfer in the transaction to the apparatus with which the transaction is to be effected; means for receiving an encoded input signal corresponding to the monetary value and direction of the transfer in the transaction from the apparatus with which the transaction is to be eflected; means for decoding and ver:fying the received signal; and means for adjusting the registered present value in accordance with the transfer effected by the transaction.

An apparatus of the present invention will be furlier understood and appreciated from the following detailed description taken in conjunction witt the drawings in which:

Fig. 1 is an illustration of an electronic wallet constructed and operative in accordance with an embodiment of the present invention; and

Fig. 2 is a block diagram illustration of the electronic circutry employed in the electronic wallet of Figure 1.

With reference to Fig. 1 there is shown an electronic wallet generally designated 10 constructed and operative in accordance with an embodiment of the present invention. The wallet may have the general appearance of a small pocket calculator, and comprises a display 12 of any conventional design, a keyboasd 14 and a connecting jack or other coupling device 16.

Referting now to Fig. 2 there is shown in block diagram form the electronic circuity employed in the electranic wallet of Figure 1. The circuitry includes a CPU 20 such as a microprocessor, including inputoutput interface and a ROM, for example modet 8041A of Intel Corp., USA, a RAM 22, such as a 64K RAM, model number 2164 and associated controller 24, such as model 8203, both of Intel Corp., and an E2PROM 26, such as an E2PROM, $2 \mathrm{~K} \times 8$, model 2817 of Intel Corp., all coupled by bus 28. The wallet is powered as by batteries (not shown). RAM 22 serves to register the present value of the wallet along with the various transactions in which it has participated, as will be explajned in detail herenbelow. Microprocessor 20 is operative to adjust the present value registered in E2PROM 26 at any given time in accordance with a pre-programmed protocol.

A keytooard 30, which may comprise any conventional keytoard, preferably an alphanumerical keyboard, is coupled to microprocessor 20 for input of transaction date and personal identícation codes. A display 34 , which may comprise any conventional means for providing a visual display, is also coupled to microprocessor 20 tor providing a visible output indication of the transaction data. There is also provided connecting means 38 , such as a connecting jack or any other conventional means for coupling two electuonic wallets for information transfer therebetween.

The electronic wallet also contains a real time clock 40, such as a Time of Day (T.O.D.) Clock, number WD2412, manufactured by Westom Digital Corp., USA, which acts to record the time at which each teansacion of the waliet occurs (30 bits are sutficient to represent time with resolution of seconds over a period of 30 years). The provision of a real time clock permits transactions between any wallets having compatible hardware and compatible tansaction protocol while preventing such fraudulent transactions as improper repetition of a transfer.

In addition, the wallet preferably contains a list of cancelled wallets to prevent receipt of payments fom wallets which have been found to be fraudulent or were reported stolen or lost. Such a list could be supplied to the wallet during validation. By issuing new series of identificaton numbers to the wallets periodically, this list can be kept short.

Preferably the wallet includes an audit trail, a list of all transactions of the wallet since the last validation, including all proofs of payments made to the wallet and receipts of all payments made by the wallet. The audit trail is retained in the RAM of the wallet until the next validation, at which time, the audit trail is transferred to the memoly of the institution where validation occurs, and erased from the wallet. In addition to providing a record of transactions of the wallet, the audit trail also allows computation of the balance of a user who has lost his wallet, by tracing his credits and debits in the audit trails of the wallets with which the transactions occurred.

The wallet is also provided with user identification apparatus, which may comprise any conventional cryptographic system, to prevent unauthorized access to the wallet or tampering therewith. Thus, the owner of a wallet will have, for example, a password which is entered via the keybosed to the wallet to identify him at the start of a transaction.

The wallet also comprises, at any given time, an unforgeable "present value". For purposes of this application, unforgeable is defined as cryptographically signed in such a way as to force one to crack the cipher in order to forge a message. The value of the wallet is registered in the memory of the wallet and any increase or decrease due to receipt or payment of money is carried out and registered in accordance with a certain protocol, the new value being registered as the current present value. A conventional cryptosystem, such as the Data Encryption Standard, "DES Modes of Operation", FIPS PUB 8t, Federal Information Processing Standards Publication, Dec. 2, 1980, may be utilized for encoding and decoding of information transferred from one wallet to the other.

In order to provide unforgeable present values and receipts, an asymmetric or public key encoding system is preferably employed for identity verification throughout the transaction. This means that a secret key, hard wired into Public-Key Functions as Intractable as Factorization". MITACS/TR-212, January 1979.

The various keys and passwords utilized by the owner for user identification, by the wallet for decoding and by the validating institution, will be found in the memory of the wallet. It will be appreciated that the preferred user idenufication and idenity verfication means are also suitable for identification from afar, sxch as through a seleptione line or other means of communication.

It is a paricular feature of the present embodiment that onfy the public keys of the barks or validating instioions and the public key of the owner signed by the bank need be retained in tie memory of the wallet to permit transactions with all other wallets. Thus, a much smaller memory is required than in existing devices.

The particular advantage of using a public key cryprosystem is that, even it someone should manage to break the cipher in one wallet to forge transactions therein, he will be unable to subvert the entire barking system. Furthermore, if the wallet is forged, it will be detectable by means of the audit trails discussed above.

Wallet

(Identification) ---~-~------->)

Preferably the wallet also includes means for destryying the information stored therein which is activaled in the event that an attempt is made to penetrate the wallet physically of through some signals other than the legitimale signals used in the user idenufication means or in the protocols. For example, the wallet may be constucted in such a manner that opening it will short circuit the batteries, or destroy the microprocessor, or that x-says or other attempts to tead the encoded information will serve to destry the whole monetary system by unauthorized entry into a wallet.

The wallet is validated through a renewal protecol with an authonzed institution, such as a bark. The complementaly device owned by the institution would read the audit trail of the wallet since ins latest validation, erasing it fiom the wallet, inselt the new value and supply additional information which may be useful. A flow chart of a suitable renewal protocol is given in the following chart.

RENEWAL PROTOCOL

where (DATA)----> indicates the transfer of date in the dinection indicated by the arrow.

Transfers of money are effected by means of a transaction protocol. Operation of the wallet, in genera: tems, is as foltows. For example, suppose i and i have agreed on a payment of v dollars by i to j. Each must first identify himself to his wallet by entering his paesword on the keyboay. Each enters the value v into his wallet and indicates whether it should be paid or recesived. Thus, a traneaction may take place only if both parties agree to in.

The wallets ase now coupled to ane anoters via connecting means which may be a connecting jack or a telephone modem or any other means of coupling the wallets for transmitaing and receiving of information from one another. The transfer of value from i's wallet to j 's is caried out through a proper iansaction piotocol. It will be apprecithod thal such a transter is only permitted if i's wallet has the necessary value, i.e., if the valte of the paying wallet is
greater than or equal to the sum to be paid. The result of the transaction is that the value in i's wallet has beon reduced by v while the value in j 's wallet has increased by v, the sum of the values of the wallets not being changed by the tansaction.

An unforgeable receipt, or cryplographically signed proof of having paid the amount of the transaction, is provided to i's wallet is the form of data encoded by j 's secret code, and registered therein. At the same time, an unforgeable prool of receipt of payment is registered in j's , wallet in the form of date encoded by i's secret code. These proofs of payment and receipts are added to the wallet's audit trail.

A flow chart of an exampte of a suitable transaction protocol including a public key cryptosysem is as follows. TRANSACTION PROTOCOL

```
    Wallet of i
-->(i Password; Pay vi)
Is Vi < vi?
If yes, (EM)-----------------
If no, Dx(ei,i)------------
```

--)(j Password; Receive vj)

$$
\begin{aligned}
& (e i, i):=\operatorname{Ex}(D x(e i, i)) \\
& <----(v j, t, \operatorname{Dx}(e j, j)
\end{aligned}
$$

Is $v i=v j$ and is t reasonable?
If no, (EM)----------------->
If yes, (ej,j):=Ex(Dx(ej,j))
<------------Dj (-vj,t,i).

Di (vi,t,j)----------------->
(v",t", i") : =Ej(Dj(vj,t,j))
If ($\left.v^{\prime \prime}, t^{\prime \prime}, i^{\prime \prime}\right)=(v j, t, i)$,

$$
\text { then } v i:=V i-v i
$$

$$
\begin{gathered}
\left(v^{\prime}, t^{\prime}, j^{\prime}\right):=E i(\operatorname{Di}(v i, t, j)) \\
\text { If }\left(v^{\prime}, t^{\prime}, j^{\prime}\right)=(v i, t, j), \\
\text { then } v j:=v j+v j
\end{gathered}
$$

where: $V y=$ present value of wallet of $y ; v=$ value in transaction involving wallet $y ; t=$ seal time; (DATA)---> $=$ transfer of data in the direction of the arow: and (EM)---> = transmission of an Error Message, teminating the protocol.

Operation of the transaction protocol is as follows, with reference to the transaction protocol flow charl and with further reference to the tansfer of the value v fiom i to j. Assuming a public-key cryptosysiem is used, the public-key of user i is a pair of operators (Ei, Di) each of which is operative to cancol the operation of the other, i.e., for every word W. Ei(Di(W)) = W. Operators Ei and Di serve to encode and decode data being transmitted to and from wallet i. In order to operate Ei, one must use the public-key ei, and in order to operate $D i$, one must use the secret-key di. The knowledge of ei does not help to determine di. Even the owner of a waliet does not know the secret-key, di, stored therein.

The present contents of user j's wallet include ex (the public key of the bank or other renewing institution) and dj (i^{2} s secret key), as well as Dx(ei,j) lis public key certified by the bank and indicating thri this is a valid wallet). t represents real time as measured by the real time clock.

After i and j identify themselves to their wallets by inserting their respective passwords, and have inserted the vaiue of the present transaction, the wallets are coupled to one another to establish communicaton, i.e, direct coupling or vis a teleptone. It will be appreciated that coupting of the wallets may alternatively be effected before user identification.

The value of the desired transaction vi is compared with the current present value Vi of i's wallet to determine whether the transaction is permitted. If vi is greater than Vi_{i}, an error message is sent, thereby terminating the protocol.

If vi is less than or equal to Vi , then i's public key certified by the bank, namely i's public key and identity (ei,i) encoded by operation thereon of the bank's public key (operator Dx) is transmitted to j's wallet. in j's wallet, this data is decoded by the operation of the public key of the barik (Ex).

Upon recerpt of this data, the value j punched into his wallet as boing the amount of the transaction (vj), the real time (\mathbf{t}), and j's public key certified by the bank, namely j's public key and identrity $\left.\left\{\mathrm{e}_{3}\right\}\right\}$ encoded by operation thereon of the bank's secret key (operator Dx) are all transmitted to i's wallet. In i's wallet, j 's public key is decoded by the operation of the public key of the bank (Ex).

Wallet i now compares vi and vj to verify that the value of the transaction is equal. It also compares t received from waliet j with the real time at which it tansmitted its identifying transmission to be sure that no more than a predeter-
mined limited amount of time has passed since initiation of the transaction. If either vi wij or there is a mismatch of real time t (e.g., tim + const), an error message is sent, terminat:ng the protocol.

If $v i=v j$ and t is reasonabie, transfer of the value of the transaction is effected. J sends a receipt to i which includes the value paid by $i(-v i)$, the real time, and the identity of i, all encoded by Di's secret code known only to his wallet). Since $D j$ is secret even to j, this receipt is unforgeable unless the cipher is broken. Similarty, i sends a receipt io j which includes the value receved by j (vi), the real time, and the identity of j , all encoded by Di fi's sectet code known only to his wallet). Since $D i$ is secret even to i, this recsipt is unforgeaple unless the cipher is broken. t preverts illegal duplication of the transaction

In order to insure that the receipls correspond to the expected values and time of the transaction, each of wallets i and J decode the receipt using the public code of the other (Ei and Ej) and compare the decoded data with the axpected values of v, t and i. If they are identical, the new present value of wallet j, Vi, which equals former $\mathrm{Vi}-\mathrm{Vi}$, is registered in the memory of wallet i, and the new present value of waliet $j_{0} V j_{\text {, which equals fonner }} V_{j}+v j$, is registered in the memory of wallet j. To avoid cuting communication before the last tranarission, i.e., when only one recsipt has been sem, secret exchanige mothods can be used, such as those set forth in Blum, M., "How to Exchange Secrel Keys", Procoedings of the 15th Annual ACM Symposium on 7hieory of Computing, and Even, S. Goldreich, O. and Lempel, A. "A Randomized Prolocol for Signing Contracts", Proceedings of Crypto 82, Juiy 1983, between the last two communications.

It will be appreciated that, while each wallet preferably has its own seif-contained power source, the value of the wailet is stored in a non-volatile memory, so that if the battery is inoperaiva, a Jansaction may nol sake place, but the owner of the wallet will not lose his money.

The wallets are prorected against loss of money in case of loss of the wallet or misuse by someone other than the owner, since one must know the password in onder to operate the waliet They are protacted against fraudulent transactions, as by eavesdropping on telephone fines and attempting to duplicate the trancaction, by real time t, which must be reasonable in order for the apparatus to carry out the transaction. Similarty, they are protected agalnst forging a transaction over the ephone lines since a signed or encoded receipt is required to conclude the tansection. And they are prutectod against the coupling of two legitjmate wallets via improper hardware.

It will be appreciated by those skilled in the art that the invertion is not limited to what has bean shown and doscribed hereinabova merely by way of example. Rather, the scope of the invertion is limited solely by the claims which foliow.

Claims

1. Apparatus for effecting and recording monetary transactions comprising: means for registering the present value of money therein; means for selectably adjusting the registered value to selectably indicate payment and receipt, responsive to a manual contol input, and identity veriication means coupled to the means for adjusting for actvation thereof.
2. Apparatus according to claim 1 and wherein said means for selectabty adjusting comprises: means for determining whether the trassection is permitted; and means for effec-
ting transfer of value coupled to the means for registening present value.
3. Apparatus according to claim 2 and wherein said means said means for transmitting comprises secret encoder means for encoding said output signals.

12. Apparatus according to claim 10 or 11 and wherein

each of said means for receiving comprises known decoder means for decoding said input signals.
13. Apparatus according to ciaim 10, 11 or 12, and wherein said means for determining includes means for comparing the value of the transaction with the registered present value.
14. Apparatus according to claim $10,11,12$ or 13 , and wherein said means for determining includes a real time clock and means coupied to said real fome clock and to said means for receivng for determining whether the real time of the transaction falls within a predetermined range.
15. Apparatus according to any one of claim 1 to 9 , wherein said identity verification means includes cryptographic means.
16. Apparatus according to clairn 15, wherein said cryptographic means is an asymmetric cryptographic means.
17. Apparatus according to any preceding claim, which has the genera: size, shape and portability of a pocket calculator.

FIG 1

Page 357 of 544
(21) Application number: 05305293.4
(3) Date of filing: 25.07.85
(5) Int. Cl.4: G07F 7/00
(3) Prionity: 27.07.84 US 635258
(3) Date of publication of application:
26.02.86 Bulletin 86/09
(2) Designated Contracting States:

AT be CH DE FR GB IT LU LU NE

Date of deferred publication of the search report: 21.01.87 Bulletin 87/04
(7) Applicant: Technion Research \& Development Foundation
Senate House Technion Clty
Halfa 32000(IL)
(1) Inventor: Even, Shimon

13 Vitkin St.
30756 Halfa(IL)
inventor: Goldrelch, Oded
42 Plnkas St.
Tel Aviv(ILE)
Inventor: Yacobl, Yacov
Moshav Atzmon
Doar-Na Galll Maaravl (20138)(IL)
(3) Representative: Blilington, Lawrence Emlyn et al
HASELTINE LAKE \& CO Hazlltt House 28 Southampton Buildings Chancery Lane London WC2A 1AT(GB)
(3) An apparatus for effecting and recording monetary transactions.

Apparatus for effecting and recording monetary transactions including apparatus for registering the present value of money therein, apparatus for selectably adjusting the registered value to indicate a payment and receipt transaction, and identity verification apparatus including asymmetric cryptographic apparatus coupled to the apparatus for ad-
justing for activation thereof. The apparatus as a whole is provided as an electronic wallet (10) comprising a display (12), a keyboard (14) and a connecting jack (16).

Fig. 1

EUROPEAN SEARCH REPORT

EUROPEAN PATENT APPLICATION

(21) Applieation number: 85308823.5
(2) Date of filing: 04.12.85
(3) Priority: 12.12 .84 GB 8431381
(43) Date of publication of application: 09.07.86 Bulietin 86/28
(8) Designated Contracting States: DE FR GB IT
(51) Int Cle: G07F 7/10
Applicant International Business Machines
Corporation
Old Orchard Roed
Armonk, N.Y. 10504 (US)
(72) Inventor: Smlth, Peter Rlgby

1 Carpenters
Alrestord Hampshire(GB)
(74) Representative: Appletion, John Edward
jBM Untted Kingdom Patemt Operations Hursley
Park
Winchester, Hants, SO21 2JN(GB)
(5) Securfty module for an electronic funds tansfer system.
(50) A security module for use in an electronic funds tansfer torminal is contained in a temper-resistant housing. The module has a PIN pad and is desigried to encrypt secret data, such as users personal identity numbers (PINs), so that other ferminal processes cannot gain access to it. The encryption functions are carried out in a security controlier which inclides its own microprocessor and encryptiondecryption unit.

SECURITY MODULE FOR AN ELECTRONIC FUNDS TRANSFER SYSTEM

The present invention relates to a security module for an electronic funds transfer system (EFT), and particularly to such a module that is to be used at a point of sale terminal in an EFT network designed to connect a plurality of dispardi retailer's terminals through a switched telecommunications network to a plurality of funds holder's data procsssing contes.

In an EFT system in which mary retailors having separate and different contraclus) retationships with card issuing funds holders and contollers it is neressary for the point of sale terminal to be able to respond uniquely to the different cards that it receives, and reads, from the cand holding users. It is also necressay for the card holders to have confidence in the reteiler's terminais and not be concemed that the retailer is trapping secret information, such as personal identification numbers (PINs), for later fraudulent use.

One system that has been proposed to deal with these problems is described in our UK Patent Applications Nos. $83 / 24918$ and $83 / 24917$. This system ralies on the use of the so-called smart card in which the security operations. encrypoion and decryption of PINs etc., are cormpeted in the card hoider's personal poradte microprocessa mounted in the card. This use of pesonal porkahle ricsur-acassors is obviously a very flexible and secure system, bul compared with the cost of magnetic stripe cards and considering the numbers involved the cost of the smart cand is proving to be a hurdle to its widespread acceptance.

It is an object of the present invention to provide a lechnical solution to the problems of termiral flexibility and security confidence for use in an EFT/POS systern in which the users have issued cards containing information held on a magnetic stripe and who also have a seciet personal identity number, which may, or may not, also be stored on the magnetic stripe.

In braad terms, the present invention provides a technical solution to the problems posed ahove by including with each retail terminal a camper-resistont security module. The security module can be physically included in the terminal rousing or attached by a shoit cable through suitable inpurt/output ports. Each module includes a microprocessor that is controiled to pertorm different message formatting routines depending upon the type and origin of a magnetic stripe card input through a magnetic stripe reader. The module also has incorporated within its structure a PIN pad for a user tio enter security information setch as a PIN.

According to the invention there is provided a security module, for authenticating messages having a plurality of different fornate and Cryptographic authenfocalors, contaned in a temper-proos housing and including two data input devices, a display unit, at least one inpul/ output port for connecting the module to an extemal processor and a security controller, characterised in that the security controller includes: at least one read only memory which stores a state table and a module master encryption key; a control logic unit including a micioprocessor and a control store which stones a plurallity of different contol function soutines invoked by different entries in the state able; means to generate different encryption keys dependant upon a particular control function and a derivative of the module mas. ter key, and means to periorm encryption and decryption operations on messages transmisted to and from the module using keys transmitted to the module encrypted under ons of a number of derivatives of the module master key,
whereby data input to the module at the first of the iwo deta input devices is used to derermine the control function routine that the module is to perform and the encryption key used to encode data input at the second data input device.

According to a second aspect of the invention there is also provided a method of using a security modute in an electronic funds transfer system terminal io secure secret data from other terminal processes, and in which the security module has a data input devico for recaiving secret data comprising the steps of. storing in the module a set of master keys each encryptod under a respectivo function key; transmitting to the security module from a tominal process a function request and a function key; decoding the appropriate master key using the function key, and encoding the seart data using the decoded master key in the security module and transmitting the encoded data to the terminal prousses

In order that the invention may be fully understood a preferred embodiment thereof will now be described with reference to the accompanying drawings in which:

Figure 1 is a schemetic diagram of a portion of an EFT/POS nerwork

Figure 2 is a schematic diagram showing the major components of a security module.

Figure 3 illustates the connection between the security moduie, a POS terminal and a remote application processor.

Figure 4 shows how the security module is shared berween two applications.

Figures 5, 6, and 7 islustrate the consturtion and meonds of operating the security module.

Figures 8, 9, 10 and i1 are flow charts illustrating the operation of the security modute.

Referting now more particularly to the drewings, in order to provide an understanding of the background of the invention there is initially a general discussion on the design of EFT netmosks.

There are many possible designs and ways of defining the equipment at the point-of-sale in EFTPOS. Most of the designs can be characterised by the fact that the EFTPOS "terminal" is a complete system, that is, it is a comptere add-on to the POS equipment. for the purpose of EFTPOS.

Viewed from the Access Contodler (AC) the "torminal" is seen as a system with which the AC has a communice. tions session. In Open System Imeriace (OS!) 1erms, the AC and terminal are two systerns with one or two netwoks (Telecommunication local network and the in-Store network).

Figure 1 shows a retailers connection to an EFT nelwork An instore network 10 nas several EFT/POS terminals connected to it Each unit comprises a retailers point of sale terminad 11 and an associated electronic funds tanster terminal 12. The in-store net 10 is orovided to link the terminals 11 and 12 and the combined POS equipment to the local netwook 14 through a network termination point 13. The focal eecormmunication network 14 has a connection to an access controller (AC) 15.

- The network termination point $\$ 3$ is the retailers connection point to the local network 13, the "phone jack". The combination of 11 and 12 provide the full facilities necessary to perform EFTPOS छansactions.

The EFTPOS "Terminal" in the main will be a distinctive secure unit with a magnetic stripe reader, pin-pad, display, security processor and transaction processor. The terminal is responsible for the whole of the transaction, it includes the terminal application control function which performs EFTPOS in conjunction with the AC. It is also necessary for the terminal to suppoit individually managed keys for any card issuer who wants them.

Previously the terminal has been considered to be responsible for the EFTPOS ransaction in combination with other retailer equipment such as cashier display for lotal value input and most, importantly, for communication to the ietecommunication network and transaction record printing.

The terminal described below appears similar, but has actualiy changed significantly. In this view, the EFTPOS "terminal" as seen from the EFTPOS network is an application running in the retailers equipment making use of a security controller in a secure PIN pad (SPP) or security module.

The security module is available to this application to provide an authentication senvice, its function is to provide a service which allows the card issuer to be satisfied that the correct procedures have been adhered to.

The basic component pars of the security module are shown in Figure 2. The module 20 includes a magnetic stripe reader 21 connected to a security controlier 22. A liquid crystal display is also connected to the controller. Typically the display will have two lines of eighteen charecters. A pin-pad 24 is connected to the controller and coded function requests are received on a line 25 from an application process running in the main terminal processor. A data bus 26 connecis the security controfler to the apolication process which can also have a direct connection to the display.

It may optionally contain a distributed portion of the retaiter equipment application running in a processor with memory.

The security contualier 22 is the only standard component and must be supplied by an authorised source. It must be connected to the pin-pad 24 and magnetic stripe reader 21 in a manner which satisfles the security requirements of EFTPOS, and the security module must be built 10 conform to the security ard physical standards of EFTPOS.

Witkin the retailers equipment (optionally wittin the security module) the terminal system includes a processor (or distributed application on more than one processor). The application supports the management of ciyptographic keys and their storage as defnned by EFTPOS.

The security controiler 22 is a special purpose crypsographic unit It contains two values - an identitication number (SCID) and a master key (SCMK).

The SCID is recorded in the security controller during the manufacture process, the SCMK is instrilled subsequent to manufacture but prior to first installation onto the network by a secure means specified by EFTPOS. A security contuller is regarded as authentic if it produces cryptograms which prove that it contains a valid (SCID, SCMK) pair. The appication processor (or processors) will hold keys encogped under variants of SCMK. The security controller provides a set of functions which will not disclose SCMK. SCMK is held in a secure manner and will be destroyed as a result of any action that might allow SCMK to be discov. ered.

The identification SCID is not secret, in fact, it may be stamped or written onto the seculity module to aid the inventory and maintenance processes.

The application may be allowed direct control of the the application process, vis an intemal bus. This communication may be extended to a distant processor, or patt of the application may be distibuted to a processor within the security module, communicating between parts of the sys-

A set of functions communicated over the SC buses are:
0 -Reset
1-Read MSR

The SC waits for a card to be read, strips out nontransmitted cand data (NCD), stores it in a register and sends the transmitied cand data (TCD) as a response.

Possible responses:

1- Card read + TCD
2 - Mis-read

2-Provide authorisation token

3. Start message authentication check (MAC) calculation
(key provided under variant of SCMK)
4-MAC input data
5-Finish MAC calculation - return MAC
6-Given encrypted CiRN token + key
4. Check PIN

Input authentication token + key
Result indication + confirmation token
Result = 1 PIN OK, + token
2 PIN failure
The secuity controller will refuse to perform this function more
than three times, after this it will require a reset.
8 - Give next key
Input key under variant of SCMK
Output new key under variant of SCMK

The security module contains a record of the function number of the most recent use. It will respond correctly oniy if the current function request is the next in an allowable sequence.

Failure to conform to the correct sequence will render the security module inactive, a state which can only be changed by a 0 . Reset function.

Since the security controller has access to important transaction data, and it generates MAC's, there is a wide range of possibilities for the algorithm for generating next key in function at step 8.

The security scheme may call for the security controller to maintein a symchronised time reference value. If this is the case, then there will need to be a further function to set the time reference and a further key TRK in the secuity controller to authenticate any value set into a time register (TR). The security contoller could retum the TR on function 0 (reset), or yet a further function call.

The security module is used by the application in a manner similar to the use of a set of support subroutines. If the application uses the correct sequence of calls (functions) providing the comect data and keys (encrypted under SCMK variants) then the result will be tokens and MAC's which will collectively allow the card issuer host to authenticate the security module, the cand and card hotder. If incorrectly used, the authentication will fal, and the security module cannot be mis-used in a manner which will subvert the system without access to considerable amorints of other data and collusion of several parties in difierent locations.

This removes the following responsibilities, which are normally considered to be functions of an EFTPOS terminal, from the security module:

Transactior management.
The security module provides services to allow a remote host to be satisfied that a procedure has been forlowed. This is achieved because of the existence of tokens (MAC's and cryptograns) which can only be produced by a valid security module, together with secret information, which has been used in a correct manner.

Recovery responsibility

The prevousty assigned recovery responsibility of the EFTPOS terminal can now be assigned to retailers equipment and applications code.

Key management

The security module need anly have one key (or possibly a small number as indicated by a need for downloaded information such as syrichronised time references). This (or these) keys will be installed by a fred key loading procedure. In EFTPOS this could be a central facility.

Altemative uses of the security module
The security module finds other uses in networks that require cryptographic transmission of information and futher examples are now given as they would apply to an EFTPOS network.

First the use of the security module as an authentication device shared by several applications and secondly the extension of the security module by the addition of a 'state variable' which allows its use in al:emative and exclusive cryptographic schemes.

1) Use by Multiple Applications

The partitioning of function is illustrated in Figure 3 which shows the security module 20 connected over lines 25 and 26 to interface A of a terminal 27 which contrains local application processes and at least a set of cyptographic keys 28 . The terminal is connected through interface B to a processor of remote application processes 29 though a network route indicated as 30 .
interace B is precisely the network appearance of an EFIPOS terminal. Interface A is used to communicate the data which requests the security module to periorm its available functions and to retum the results to the application.

Since the function of the security module is to provide date and tokens which allow a remote application to validate the procedures employed at the local site, it follows that one security modute can be used by any number of local applications, and in tum any number of remote applications for the similar purposes.

The security module represents a serially re-usable resource. It can only be used successtully for a complete legal sequence by one application at any time.

The keys used by the application process will be held at the local processor encrypted under variants of SCMK. the security module's security controller's master key.

Figure 4 shows the security module being made avai. able to two local applications A and 8 . The security module 20 is connected to a teminal 27 which is running two applications A and B. Three remote processors are shown 31,32 and 33 connected through the switch 30 . The security module 20 is used to authenticate procedures and data-for the remote hosts 31,32 and 33 using a combination of applications A and B .

Note: : The keys held at the remote hosts will be encrypted under the appropriate host master keys.

2) Use of Altemative Cryptographic Schemes

The security module as described above is defined as enforcing a single procedure. In particular, it withriolds data read from the card (or other means) which will be retained as secret from the local application and any other components between the security modute and the remote host Primarily for use in personal key (KP) cryptography where KP must be constructed using that secret.

To extend this scheme, it is necessary to allow the - security module to handle several procedures, ie, several sequences of function calls. As an example consider the use of the SC in a second scheme which requires that the entire track 2 of the card be transmitted (encrypted).

To achieve this extension, the security module must contain a 'state variable'. This represents the history of the sequence of functions performed since the last resel operaton. The sequences now contain points at which tre possible next function is one of a set of functions rather than one function, a branch point.

The state of the terminal takes a value depending upon the function requested at any branch point. Thus, the next allowable function is decided by a combination of the last function requested and the value of the state variable. The state variable is updated to represent the new state ance the function is requested. As before, any deviation from the prescribed sequence will result in a security module becortr ing inactive, ie, the previous description has a single state.

To demonstrate this, consider the list of functions described above.

Following a function 1, the application may decide that the card must be handed without personal key cryptog. raphics. It wishes to read all of track 2. Thus, a new function - say 100, may follow function 1.
100. Read all card data Input KEY encrypted under variant variant of SCMK. Retum all of card data (including NCD) encrypted under KEY.

The state variable will take a different value if function 100 follows function 1, than it would if function 2 follows function 1. If tio function foliowing 1 is 100 then the security controller will prohibit the use of functions $2,3,4$, etc. This allows alternative exclusive schemes to be implemented.

In particular, subject to secure design of the functions and stattes, it ailows any schemes to be implemented, irtcluding conflicting schemes such as those which require track 2 of a card to be partially secret together with those that require the whole of track 2 to be made available.

Master Key Variants.
The use of SCMK variants must be selected, based on the requested function and state variable to enforce partitionad use of security controller functions in the security module in alternative schemes. Thus, each scheme must use selected key variants.

The number of the variant to be used can be selected from a table based on the current state and the requested function. The key used in the operation can be formed by deciphering the selected variant number using SCMK. This means that keys in the application will be held in the following form:-

E (D \{SCMK, variant no.), KEY)
Using the notation E (key, data) means data enciphered under key and D (key,ciphertext) means the result of deciphering ciphertext using key.

This approach would allow schemes for separation of function by intended destination. Such a scheme is shown in Figs 6 and 7. The security controller ID and destination data exvacted from the card magnetic stripe track 2 are used to provide a separation of keys.

The security can be enhanced if the key variant is produced by a one-way function in place of the simple decipher operation.

The variant number key is loaded at the same time as the state tablle (ie. at manufacture or installation of keys).

This scheme can be further enhanced by selecting further information from a further vable to generate the destination information prior to producing the master-key variant as above. This latter table can be down-loaded to the security controller periodically (eg. at stert of day). As with other possible down-loaded information the tablle load operation requires authentication using additional keys.

Security Module

The internal components of the security module will now be describe with reference to Figures 5, 6 and 7. The security controller 22 (Figure 2) is shown in more detail in Figure 5 and comprises a state vable 51, which in a preferred embodiment is implemented in a read only memory (ROM) chip, the address is formed by concatenating ousputs from three registers. The registers are shown separateły as State 52, Last Function 53 and Function 54, but in pracuce are pars of a random access store (RAS).

The stale register 52 holds a value which represents the current state of the security controller. The contents of the state register 52 are also availabie to be tested by the control unit 56. One value of the state register contente, for example zero, is designated to indicate that the unit is inactive following an invalid function request sequence. The control unit only permits a RESET function request when the inactive state is detected. The value in the last finction register 53 represents the function performed on the previous cycle of operations of the security module. The value in the function register 54 represents the current function to be performed. The function register 54 receives its input from the application process on line 25 (Frgure 2) and has a direct connection to the last function register 53. The state register 52 receives its input dinectly from the stave table 51.

The output of the state table is split into two fields, one field is entered into the stats register and tiee other is used as the address of a master key mable 55. The master key table provides one of a set of master key values to a user key decipher unit 57. The value depends upan the function currently being perormed and the values entered imo the state teble from the three registers. The master key table could be part of the state table ROM but it is preferred that the values are generated as functions of a single key. Embodiments implementing the preferred system are described betow with reference to Figs 6 and 7.

The operation cycles for each function performed by the security controller ane controlled by a control logic unit 56. The control unit interprets the function request and pruvides the appropriate timing and control signals to route data signals between the other components. The unit comprises a microprocessor and a ROM containing the contol ronstines necessary to provide the required gating and control signals. Each routine is associated with a particular function and will sesult in a different encoding and decoding operation in the controller.

The user key decipher unit 57 deciphers the user key received from the data bus 26 through a buffer store 60 under the control of unit 56. The decipler key is obtained from the master key teble 55. The user key decipher unit implements the decipher function of the Data Encryption Standard (DES).

A working register 58 is loaded with a key produced by the user key decipher unit 57. The working register 58 may also be loaded from the data bus 26 under the control of unit 56 whenever a function routine requires the generation of composite keys, tor example a key constructed from card input data, other user data and a variation of the master key. The value loaded into the working register represents a key in the clear and is not transmiterd out of the security controller. In order to ensure that the clear key exists for the minimum necessary time, at the end of esch cycle the working register is loaded with a string of zeros.

An encryption unit 59 performs the primitive encryption operations needed for the operation of the requested tunction. This unit implements the DES. The keys for the encryption are received from the working register 58. Output from the enclyption unit 59 is fed to a bufler store 60 which temporanily holds all date and intermediate results during the processing required by the requested function.

In operation the security controller reads a value representing a function request into the function register 54. Each function is performed by executing a cycle of operations. The cycle consists of standard initial and final sequences of operations with a main sequence selected on the basis of the requested function. The initial and final sequences are illustrated in the flow-charts of Figures 8 and
9. The reset function is illustrated in Figure 10. The sequerice for the function for reading the date input at the magnetic stripe readed is illustrated in Figure 11, this is given as an example of other function sequences that the control unit follows.

In the following description of the operation of the security controlker the state register contents will indicate a value of zero when an invalid function sequence is requested, this indicates an inacjive state of the moduie.

The steps of the initial sequence (Figure 8) are:
Step 1 (81): Determine whether the function request $=Q_{\text {, }}$ if so them go to the Reset routine (Figure 10), if not then proceed to next step.

Step 2 (82): Determine whether the value in the state register $52=0$, if so then go to step 3 (83), in not then proceed to step 4 (84).

Siep 3 (83): Provide an outp ut failure indication to the terminal processes and to tie display unit. Finish the routine.

Step 4 (84): Strobe the function register.
Siep5 (85): Strobe the state register.
Step 6 (86): Determine whether the value in the state register $52=0$, if so then go to step 3 (83), if not then proceed to select the sequence indicated by the value in the state register.

The steps of the final sequence (Figure 9) are as follows:

Step : (87): Strobe the last function register to preserve the value of the cuirent function request.

Step 2 (88): Set the working register to alk zero contents, 10 erase the clear version of the encryption key used for the current function. End the function.

The reset function consists of one step (89) and that is to strobe the function register, and then go to the final sequence.

The steps for Function 1 (Read the magnetic stripe reader) are shown in Figure 11 and are as follows:

Siep 1 (90): Wait for a card to be read.

Step 2 (91): Read the card, if the read data is satisfactiory then $g 0$ to step 4 , if not then $g 0$ to step 3.

Step 3 (92): Provide an output failure indication the the terminal processes and to the display unit Finish the routine.

Step 4 (93): Determine the card data to be transmitted (TCD). For example the TCD may be defined as those digitis from card back 2 between start sentinel and field separator.

Step 5 (94): Generate an outpert indication that the previous step has been carried out successtully and tansmit it it the terminal procreses.

Step 6 (95): Output the TCD to the terminal on data bus 26, then go to the finai sequence routine (Figure 9).

This sequence will have a series of sub-routines at step 4 each providing a different set of TCD and chosen on the card issuers identity read at step 2.

Other funcion routines follow the same general pattem of the sequences described abowe.

Claints

1. A security module, for authenticating messages having a phurality of different formats and cryplographic authenticators, contained in a tamper-resistant housing and including two data input devices, a display unit, at least one input/output poit for connecting the module to an extemal processor and a security controller, characterised in thet the security controles includes:
at least one igad only mennory which stores a state table and a module master encryption koy.
a control logic unit including a mieroprocessur and a contod store which stores a plurality of different contol funcoion routines invoked by different entries in the state table;
means to generate different enciyption keys dependent upon a particular control function and a derivasive of the module master key; and
meass to perform encryption and decryption operations on messages transmitted to and from the module using keys tansmitted to the module encrypled under one of a number of dorivalives of the module master kay; whereby data input to the module at the first of the two data input devices is used to determime the control function ioutine that the module is to perform and the encrobion key used to encode data input at the second data input device.
2. A seculity module as claimed in claim 1 further characterised in the the secunity controller includes at least three registers:a function register, a last funetion register and a siate register and that the state rable is addressed by using a combination of the current entries in the thee registers.
3. A security module as claimed in claim 1 or daim 2 further characterised in that the seculity contsolifer includes a buffer sture and data input from the two data input devices are stored in the buffer store before being encoded and in which the first data input dovice is a magnetic stripe reader and the second data input device is a PIN pad.
4. A security module as claimed in any one of claims 1,2 or 3 including means to detect when an invalid sequence of functions has been requested for the module to periorm and to invoke an aboit routine when an invalid sequence is debcted.
5. A method of using a security module in an electoric funds transter system terminal io secure secret data from other terminal processes,and in which the security modute has a data input device for receiving secret data comprising the steps of:
stoing in the module a set of master keys each encryptod under a respective function key;
transmitting to the security module from a ferminal process a function request and a function key;
decoding the appropriate master key using the function key; and
encoding the secret data using the decoded master key in the security module and transmitting the encoded data to the terminal processes.
6. A method as claimed in claim 5 in which a single master key is stored in the security module and derivative master keys are generated from the master key using predetermined unction request data received from the terminal processes.
7. A method as claimed in claim 5 or claim 6 in which the terminal has at least a second date input device for receiving data from a user and the operable terminal process is dependant date input at the second data input device.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 8

FIG. 9

FIG. 10

FIG. 11

European Patent Office
Office européen des brevets

0186981
A3
(2) Priority: $\mathbf{1 2 . 1 2 . 8 4 \text { GB } 8 4 3 1 3 8 1}$
(3) Date of publication of application: 09.07 .86 Bulletin $86 / 28$

Designated Contracting States: DE FR GB IT
(3) Date of deferred publication of the search report: 02.11.88 BulletIn 88/44

EUROPEAN PATENT APPLICATION
(7) Application number: 85308823.5
(2) Date of filing: 04.12.85
(51) Int. CI. $\mathbf{4}$ G07F 7/10

Applicant: International Business Machines Corporation
Old Orchard Road
Armonk, N.Y. 10504(US)
(2) Inventor: Smith, Peter Rigby

1 Carpenters
Alresford Hampshlre(GB)
(4) Representative: Appleton, John Edward IBM United Kingdom Limited Intellectual Property Department Hursley Park
Winchester Hampshire SO21 2JN(GB)
(3) Security module for an electronic funds transfer system.
(5) A security module for use in an electronic funds transfer terminal is contained in a tamper-resistant housing. The module has a PIN pad and is designed to encrypt secret data, such as users personal identity numbers (PINs), so that other terminal processes cannot gain access to it. The encryption functions are carried out in a security controller which includes its own microprocessor and encryption/decryption unit.

FIG. 2

