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simplex processor to 10“° per hour for a multi-
processor that uses parallel hybrid redundancy. For
those functions requiring fault masking a triplex
level of redundancy is provided. For low criticall-
ty functions or noncritical functions, the GPCs may
be duplex or simplex. Parallel hybrid redundancy is
used for extremely high levels of fault tolerance
and/or for longevity (long mission durations). GPCs
can also be made damage tolerant by physically dis-
persing redundant GPC elements and providing secure
and damage tolerant communications between these
elements. Within AIPS, computers of varying levels
of fault tolerance can coexist such that less reli-
able computers are not a detriment to higher reli-
ability computers.

The overall framework in which AIPS operates can
be characterized as a limited form of a fully dis-
tributed multicomputer system. A fully distributed
fault and damage tolerant system must satisfy
several requirements. The following subsections
describe these requirements and characterize the
AIPS architecture in the context of these require-
ments.

2.2 FUNCTION MIGRATION

A fully distributed system must have a multi-
plicity of resources which are freely assignable to
functions on a short-term basis [3]. AIPS has mul-
tiple processing sites; however. they are not freely
assigned to functions on a short-term basis. During
routine operations the General Purpose Computers at
various processing sites are assigned to perform a
fixed set of functions, each computer doing a unique
set of tasks. However, in response to some internal
or external stimulus, the computers can be reas-

signed to a different set of functions. This
results in some functions migrating from one proc-

essing site to another site in the system. Under
certain conditions, it may also result in some func-
tions being suspended entirely for a brief time
period or for the remainder of the mission. In AIPS
this form of limited distributed processing is
called semi-dynamic function migration.

The internal stimuli that result in function

migration may consist of detection of a fault in the
system, a change in the system load due to a change
in mission phase, etc. An example of an external
stimulus is a crew initiated reconfiguration of the
system.

2.3 RESOURCE TRANSPARENCY

Another characteristic of a fully distributed

system is that the multiplicity of resources should
be transparent to the user. To a large extent, this
is true in the AIPS. Function migration is trans-

parent to the function and the person implementing
that function in software. Interfunction communi-
cation is handled by the operating system such that
the location of the two communicating functions is
also transparent to both. The two functions could
be collocated in a GPC or they may be executing in
different GPCs. Indeed, at one time they may be col-
located. while at a later time one of them may have
been migrated to another site. This transparency is
achieved through a layered approach to interfunction
communication. One of these layers determines the
current processing site of the function to which one
wishes to communicate. If it is another GPC, anoth-
er layer in the communication hierarchy is invoked
that takes care of appropriate IC bus message for-
mattinq and interface to the bus transmitters and
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Figure 1. AIPS Architecture: A Software View

receivers, that is, the physical layer. This lay-
ered approach is responsible for hiding the exist-
ence of multiple computers from the applications
programmer .

2.4 SYSTEM CONTROL

Another characteristic of a totally distributed

system is that the system control is through multi-
ple cooperating autonomous operating systems. The
AIPS operational philosophy differs considerably in
this regard. The overall AIPS system management and
control authority is vested in one GPC at any given
time. This GPC is called the Global Computer. All
other GPCs are subservient to this GPC as far as sys-
tem level functions are concerned. However, all the
local functions are handled quite independently by
each computer. This philosophy is more akin to a
hybrid of hierarchical and federated systems. This
is explained in the following.

Under normal circumstances each GPC operates

fairly autonomously of other computers. Each GPC
has a Local Operating System that performs all the
functions necessary to keep that processing site
operating in the desired fashion. The local operat-
ing system is responsible for an orderly start and
initialization of the GPC, scheduling and dispatch-

ing of tasks. input/output services, task synchroni-
zation and communication services. and resource

management. It also is responsible for maintaining
the overall integrity of the processing site in the
presence of faults. This involves fault detection,
isolation, and reconfiguration (FDIR). The local
operating system performs all of the redundancy man-
agement functions including FDIR, background self
tests, transient and hard fault analysis. and fault
logging.

The services provided by local operating systems
at various processing sites are similar although
they may differ in implementation. For example, the
multiprocessor version of the operating system must
take into account the multiplicity of processors
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for task scheduling. Similarly, it must also con-
sider the more complex task of redundancy management
and cycling of spare units. The uniprocessor oper-
ating system can also have different variations
depending upon the level of redundancy and the I/O
configuration.

The Local Operating System in each computer
interfaces with the Network Operating System. The
Network Operating System is responsible for system
level functions. These include an orderly start and
initialization of various buses and networks, commu-
nication between processes executing in different
computers, system level resource management, and
system level redundancy management. System level
resources are the GPCS, the I/O, IC, and the HM bus-
es, and the shared data and programs stored in the
mass memory or in some other commonly accessible
location. System redundancy management includes
FDIR in the I/O and IC node networks, correlation of
faults in GPCs (both transient and hard faults),
reassignment of computers to functions (function
migration), and graceful degradation in case of a
loss of a processing site.

Some of the functions of the Network Operating

System are centralized the Global Computer. The
Global Computer is responsible for system start,
resource management, redundancy management, and
function migration. It needs status knowledge of
all processing sites and it must be able to command
other GPCs to perform specific functions. This com-
munication is accomplished via the Network Operating
System, a portion of which is resident in each com-
puter. The Global Computer does not participate in
every system level transaction. Some of the system
level functions performed by the Network Operating
System may involve only a pair of nonglobal GPCs.

One of the GPCs is designated to be the Global
Computer at the system bootstrap time. However,
this designation can be changed during system opera-
tion by an internal or an external stimulus.

2.5 DATA BASE

Another important attribute of a distributed
system is the treatment of the data base. The data
base can be completely replicated in all subsystems
or it can be partitioned among the subsystems. In
addition. the data base directory can be centralized
in one subsystem, duplicated in all subsystems, or
partitioned among the subsystems. The AIPS approach
is a combination of these.

GPCs will
This can be

For the mass memory data base, all
contain a directory of the MMU contents.
implemented as a ‘directory to the directory‘ in
order to limit the involvement of GPCs in the direc-

tory change process. The MMU directory will be
static over extended intervals.

The data base that reflects the global system
state will be maintain ed by the Global Computer in
its local memory. A copy will be maintained by any
alternate Global Computer, also in local memory.

The data base that reflects the distribution of

functions among GPCs will be contained in all GPCS.

2.5 FAULT TOLERANCE

There is a considerable amount of hardware

redundancy and complexity associated with each of
the elements shown in Figure 1} This redundancy
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allows each hardware element to be reliable, fault

tolerant, and damage tolerant. From a software
viewpoint, however. this underlying complexity of
the system is transparent. This is true not only in
the context of the applications programs but for
most of the operating system as well; however, those
elements of the operating system that are concerned
with fault detection and recovery and other redun-
dancy management functions have an intimate know-
ledge of the underlying complexity.

Hardware redundancy in the AIPS is implemented
at a fairly high level, typically at the processor,
memory, and bus level. There are two fundamental
reasons for providing redundancy in the system: one,
to detect faults through comparison of redundant
results, and two, to continue system operation after
component failures. Processors, memories, and buses
are replicated to achieve a very high degree of
reliability and fault tolerance. In some cases cod-
ed redundancy is used to detect faults and to pro-
vide backups more efficiently than would be possible
with replication.

The redundant elements are always operated in
tight synchronism which results in exact replication
of computations and data. Fault detection coverage
with this approach is one hundred per cent once a
fault is manifested. To uncover latent faults, tem-

poral and diagnostic checks are employed. Given the
low probability of latent faults, the checks need
not be run frequently.

Fault detection and masking are implemented in
hardware, relieving the software from the burden of
verifying the correct operation of the hardware.
Fault isolation and reconfiguration are largely per-
formed in software with some help from the hardware.
This approach has flexibility in reassigning
resources after failures are encountered, and yet it
is not burdensome since isolation and reconfigura-

tion procedures are rarely invoked.

2.7 DAMAGE TOLERANCE

One of the AIPS survivability related require-
ments is that the information processing system be
able to tolerate those damage events that do not
otherwise impair the inherent capability of the
vehicle to fly, be it an aircraft or a spacecraft.

The requirement for damage tolerance will be
applied to redundant GPCs, intercomputer communi-
cations, and to communication links between GPCs and
sensors, effectors, and other vehicle subsystems.

The internal architecture of the redundant com-

puters supports the damage tolerance requirement in
several ways. The links between redundant channels
of a computer are point-to-point. That is, each
channel has a dedicated link to every other channel.
Second, these links can be several meters long.
This makes it possible to physically disperse redun-
dant channels in the target vehicle. The channel
interface hardware is such that long links do not

pose a problem in synchronizing widely dispersed
processors.

For communication between GPCs and between a GPC
and I/O devices a damage and fault tolerant network
is employed. The basic concept of the network is as
follows.

The network consists of a number of full duplex
links that are interconnected by circuit switched
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nodes to form a conventional multiplex bus. In
steady state. the network configuration is static
and the circuit switched nodes pass information
through them without the delays which are associated
with packet switched networks. The protocols and
operation of the network are identical to a multi-
plex bus. Every transmission by any subscriber on a
node is heard by all the subscribers on all the nodes
just as if they were all linked together by a linearbus.

The network performs exactly as a virtual bus.
However, the network concept has many advantages
over a bus. First of all, a single fault can disable
only a small fraction of the virtual bus, typically
a link connecting two nodes, or a node. The network
is able to tolerate such faults due to a richness of

interconnections between nodes. By reconfiguring
the network around the faulty element, a new virtual

bus is constructed. Except for such reconfigu-
rations, the structure of the virtual bus remains
static.

The nodes are sufficiently smart to recognize
reconfiguration commands from the network manager
which is one of the GPCs. The network manager can
change the bus topology by sending appropriate
reconfiguration commands to the affected nodes.

Second, weapons effect induced damage or other
damage caused by electrical shorts, overheating, or
localized fire would affect only subscribers in the
damaged portion of the vehicle. The rest of the net-
work. and the subscribers on it, can continue to
operate normally. If the sensors and effectors are

themselves physically dispersed for damage tolerance
or other reasons and the damage event does not
affect the inherent capability of the vehicle to
continue to fly, then the control system would con-
tinue to function in a normal manner or in some
degraded mode as determined by sensor/effector
availability. The communication mechanism, that is,
the network itself, would not be a reliability bot-tleneck.

Third. fault isolation is much easier in the

network than in multiplex buses. For example, a
remote terminal transmitting out of turn, a rather
common failure mode, can be easily isolated in the
network through a systematic search where one termi-
nal is disabled at a time. This, in fact, is a stan-
dard algorithm for isolating faults in the network.

Fourth, the network can be expanded very easily
by adding more nodes. In fact, nodes and subscrib-
ers to the new nodes (I/O devices or GPCs) can be
added without shutting down the existing network.
In bus systems, power to buses must be turned off
before new subscribers or remote terminals can be
added.

Finally, there are no topological constraints
which might be encountered with linear or ring bus-es.

2.8 SOURCE CONGRUENCY

An important consideration in designing AIPS is
the interface between redundant and simplex ele-
ments. This interface design is crucial in avoiding
single point faults in a redundant system. One must
perform source congruency operations on all simplex
data coming into a redundant computer. It is not

202

sufficient to distribute simplex data to redundant
elements in one step. The redundant elements must
exchange their copy of the data with each other to
make sure that every element has a congruent value

of the simplex data. The AIPS architecture not only
takes this requirement into account but also pro-
vides efficient ways of performing simplex source
congruency through a mix of hardware and software.
The simplex to redundant interface is also the place
where the applications programmer gets involved in
the processor redundancy and the applications code
complexity multiplies. The AIPS processor level
architecture is designed such that it separates the
source congruency and computational tasks into two
distinct functional areas. This reduces the appli-
cations code complexity and aids validation.

2.9 MASS MEMORY

The mass memory in AIPS provides the following
capabilities.

1. System Cold Start/Restart.

2. Function Migration Support.

3. Overlays for local memory of General Purpose
Computers.

4. System Table Backup.

5. Storage for system-wide common files.

6. Program Checkpointing.

3 Q EBQQE-QE_§QNcEEI 51515”

To demonstrate feasibility of the Advanced
Information Processing System concept described in
the preceding sections, a laboratory proof-of-con-
cept system will be built. Such a system is now in
the detailed design phase. The POC system config-
uration is shown in Figure 2. It consists of five
processing sites which are interconnected by a tri-
plex circuit switched network. Four of the five
GPCs are uniprocessors, one simplex, one duplex, and
two triplex processors. The fifth GPC is a multi-
processor that uses parallel hybrid redundancy. The
redundant GPCs are to be built such that they can be
physically dispersed for damage tolerance. Each of
the redundant channels of a GPC could be as far as 5
meters from other channels of the same GPC.

Each of the triplex fault tolerant processors
(FTPs) and the fault tolerant multiprocessor (FTMH
interfaces with three nodes of the Intercomputcr
(IC) node network. The duplex and the simplex pro-
cessors interface with two and one nodes, respec-
tively.

The mass memory is a highly encoded memory that
interfaces with the GPCs on a triplex multiplex bus.

The Input/Output is mechanized using a 16 node
circuit switched network that interfaces with each
of the GPCs on 1 to 6 nodes depending on the GPC
redundancy level.

Redundant system displays and controls are driv-
en by the Global Computer and interface through the
I/O network.

Each GPC has a Local Operating System and a por-
tion of the Network Operating System. For the
proof-of-concept system, initially the FTMP will be

BOHNG

Ex.1031,p.257



BOEING 
Ex. 1031, p. 258

 ——1 TO ALL
MASS ' PROCESSORS
MEMDRV FTMP

System
Figure 2. AIPS Proof-of-Concept

Configuration

the Global Computer.

3.1 ARCHITECTURE OF AIPS BUILDING BLOCKS

Architecture of the major hardware building
blocks of the AIPS Proof-of-Concept System config-
uration is described in the following sections.

 

The architectural description of the FTP is divided
into three sections: Software View, Hardware View,
and External Interfaces.

3.1.1.1 Fault Tolerant Processor: Software View

The FTP or the uniprocessor architecture from a
software viewpoint appears as shown in Figure 3.
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Fault Tolerant
Architecture: Software View
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Figure 3. Processor

The uniprocessor can be thought of as consisting
Of two separate and rather independent sections: the
°°mPutational core and the Input/Output channel.
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The computational core has a conventional pro-
cessor architecture. It has a CPU, memory (RAM and
ROM), a Real Time Clock, and interval timer(s). The
Real Time Clock counts up and can be read as a memory
location (a pair of words) on the CP bus. Interval
timers are used to time intervals for scheduling
tasks and keeping time—out limits on applications
tasks (task watchdog timers). An interval timer can
be loaded with a given value which it immediately
starts counting down and when the counter has been
decremented to zero, the CPU is interrupted with a
timer interrupt. A watchdog timer is provided to
increase fault coverage and to fail-safe in case of
hardware or software malfunctions. The watchdog
timer resets the processor and disables all its out-
puts if the timer is not reset periodically. The
watchdog timer is mechanized independently of the
basic processor timing circuitry.

There also appears on the processor bus a set of
registers, called the data exchange registers.
These are used in the redundant fault tolerant pro-
cessor to exchange data amongst redundant process-
ors. From a software viewpoint, this is the only
form in which hardware redundancy is manifested.

On a routine basis the only data that needs to be
exchanged consists of error latches and cross chan-
nel comparisons of results for fault detection.
These operations can be easily confined to the pro-
gram responsible for Fault Detection, Isolation, and
Reconfiguration. Voting of the results of the
redundant computational processors is performed by
the Input/Output processors. Therefore. the remain-
ing pieces of the Operating System software and the
applications programs need not be aware of the
existence of the data exchange registers. The task
scheduler and dispatcher, for example, can view the
computational core as a single reliable processor.

The other half of the processor is the
Input/Output channel. The I/O channel has a CPU
(same instruction set architecture as the CP), memo-
ry (RAM and ROM), a Real Time Clock. and an Interval
Timer(s). This part of the I/O channel is identical
to the CP except that it has less memory than the CP.

The IOP has interfaces to the intercomputer bus,
one or more I/0 buses, and memory mapped I/O
devices. The CP and the IOP also have a shared
interface to the system mass memory. These external
interfaces of the FTP will be discussed in the next
two sections.

The IOP and CP exchange data through a shared
memory. The IOP and CP have independent operating
systems that cooperate to assure that the sensor
values and other data from Input devices is made
available to the control laws and other applications
programs running in the CP in a timely and orderly
fashion. Similarly, the two processors cooperate on
the outgoing information so that the actuators and
other output devices receive commands at appropriate
times. This is necessary to minimize the transport
lag for closed loop control functions such as flight
control and structural control.

The CP and IOP actions are therefore synchro-
nized to some extent. To help achieve this syn-
chronization in software, a hardware feature has
been provided. This feature enables one processor
to interrupt the other processor. By writing to a
reserved address in shared memory the CP can inter-
rupt the IOP and by writing to another reserved
location the IOP can interrupt the CP. Different
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meanings can be assigned to this interrupt by leav-
ing an appropriate message, consisting of commands
and/or data, in some other predefined part of the
shared memory just before the cross-processor inter-
rupt is asserted.

For routine flow of information in both
directions, the shared memory will be used without
interrupts but with suitable locking semaphores to
pass a consistent set of data. The interrupts can be
used to synchronize this activity as well as to pass
time critical data that must meet tight response
time requirements. In order to assure data consist-
ency it is necessary that while one side is updating
a block of data the other side does not access that
block of data. This can either be implemented
through semaphores in software or through double
buffering. Hardware support for semaphores, in the
form of test 8 set
IOPs and CPs.

instruction, is provided in the

There are many attractive features of this
architecture from an operational viewpoint. The
most important of these is the decoupling of compu-
tational stream and the input/output stream of tran-
sactions. The computational processor is totally
unburdened from having to do any I/O transaction. To
the CP all I/0 appears memory mapped. And this not
only includes I/O devices but also all other comput-
ers in the system as well. That is, each sensor,
actuator, switch, computer, etc. to which the FTP
interfaces can simply be addressed by writing to a
word or words in the shared memory.

Data from other processing sites is received by
each IOP on the redundant IC buses, hardware voted,
and then deposited in their respective shared memo-
ries. Simplex source data such as that from I/O
devices, local processors, etc. is received by the
single I/O processor that is connected to the target
device. This data is then sent to the other two I/O
processors using the IOP data exchange hardware.
The congruent data is then deposited in all three
shared memory modules. In either case, the computa-
tional processors obtain all data from outside that
has already been processed for faults and source
congruency requirements by the I/O processors.

The data exchange mechanism appears to the soft-
ware as a set of registers on the processor bus.
Data exchange between redundant processors takes
place one word at a time. Two types of data
exchanges are possible: a simplex exchange or a vot-
ed exchange. The purpose of a simplex exchange is to
distribute congruent copies of data that is avail-
able only in one channel of the FTP to all other
channels. The purpose of a voted exchange is to com-
pare and vote computational results produced by
redundant processors. In the FTP architecture,
these exchanges are mechanized as follows.

To perform a voted exchange, each processor
writes the value to be voted in a transmit register

called X_V. Writing to this register initiates a
sequence of events in hardware which culminates with
the voted value being deposited in the receive reg-
ister of each processor. The processor can read the
receive register at this point to fetch the voted
value. The whole transaction takes of the order of 5
microseconds. The hardware is designed to lock out
access to the receive register while the exchange is
in progress. If the processor tries to read the
receive register before the transaction has com-
pleted, the processor hangs up. As soon as the data
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becomes available, the processor is released and the
register read cycle completes normally. The proces-
sor wait is transparent to the software. It is not
necessary to time the interval between writing of
the transmit register and reading of the receive
register in software. The two operations can be
performed as a sequence of two instructions without
an intermediate wait.

To perform a simplex exchange, the data to be
transmitted is written to one of the simplex trans-
mit registers. In the triple redundant version of
the FTP there are three such registers. They are
called X_A, X_B, and X_C. X_A is used to transmit
simplex data from channel A to all others. Similar-
ly X_B transmits data from B and X_C transmits data
from C. Writing to one of these registers initiates
a sequence of events in hardware which culminates
with a congruent copy of the data word being depos-
ited in the receive register of each processor. The
receive register can be read at this point by each
processor to fetch the congruent copy of the simplexdata.

It has been pointed out earlier that the soft-
ware appearance of the redundant FTP is the same as
that of a simplex processor. All redundant process-
ors have identical software and execute identical
instructions at all times. This architecture is
carried forth in the data exchange hardware and
software as well. The data exchange hardware is
designed such that all redundant processors execute
identical instructions when exchanging data. As an
example, consider a simplex source transmission from
channel A. Assume that channel A has a sensor value
in its internal memory location, called MEMORY. that
it needs to send to channels B and C. This requires
execution of the following sequence of four
instructions:

LOAD R0,HEMORY
STORE R0,X_A
LOAD R0,X_R
STORE R0,MEHORYJ>(A)l\)-'~

The data to be transmitted is fetched from memory
(instruction 1) and written to transmit register X_A
(instruction 2). All three processors execute these
instructions. However, only processor A's value is
transmitted to the receive register of A, B, and C.
Transmissions from B and C are ignored by the hard-
ware. This will be explained in the next section

which deals with the FTP architecture from a hard-
ware viewpoint. In instruction 3 all processors
read their receive register (X_R) to accept the con-
gruent value of the data transmitted by A. In
instruction 4 this value is transferred to an inter-
nal memory location.

Voted data exchange requires a similar sequence
of instructions. The only difference is that in
instruction 2, rather than storing the value in one
of the simplex transmit registers, it is stored in
the voted exchange register, X_V.

3.1.1.2 Fault Tolerant Processor: Hardware View

The triplex FTP architecture from a hardware view-
point appears as shown in Figure 4.

There are three identical hardware channels.
Each channel has a computational processor, an I/O
processor, and some hardware that is shared by the
CP and the IOP. The internal details of the CP and
the IOP such as the CPU, memory, timers, etc., have
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Figure 4. Fault Tolerant Processor
Architecture: Hardware View

been described in the preceding section. They are
not shown in Figure 4 so that other details such as
the redundancy dimension be shown more clearly.

The common hardware consists of a shared memory,
data exchange registers, and the mass memory

interface. The shared memory is used exchange
information between the CP and the IOP while the

data exchange registers are used to exchange infor-
mation between redundant copies of the CP or IOP.
Common hardware access conflicts between the CP and

the IOP are resolved by a bus arbitrator. The bus
arbitration logic is designed such that each channel
resolves the conflict in favor of the same processor
(that is, either the IOP or the CP) deterministical-
ly. This is necessary to maintain tight synchronism
between redundant copies of processors. This is
only one of several conditions necessary for syn-
chronous operation. Stated in more general terms,
two hardware conditions are necessary. First of all
there should be a common time base that is used by
all channels for timing events. Second, all timing
events should be deterministic in nature. If these
two hardware conditions are met, the redundant chan-
nels can be synchronized. Once they are synchro-
nized, they will stay synchronized if all channels
execute identical software.

the

To obtain a common time base, the oscillators in
redundant channels are phase locked to each other.
To assure that all timing events are deterministic,
it is necessary to use a synchronous bus internal to
each processor. As an example, when a CPU refer-
ences a memory location on the bus the memory cycle
should complete in a fixed time interval. This does
not necessarily imply that all memory cycles should
take the same time. It is possible in the FTP archi-
tecture to mix different types of memories, such as
PROM and RAH, which may have different access times.

The only necessary condition is that access to a
given location always take the same length of time.
This also applies to any I/O activity performed by
the processor. The hardware is built such that when
a processor accesses a device available in only one
Channel the other processors wait the same length oftime.
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A very important aspect of the FTP architecture
is the interconnection hardware between redundant

channels. This hardware serves three purposes.
First of all, it provides a path for distributing
simplex data available in only one channel to all
other channels. Second, it provides a mechanism for
comparing results of the redundant channels. And
third, it provides a path for distributing and com-
paring timing and control signals such as the fault
tolerant clock and external interrupts.

To distribute simplex data from one channel to
all others without introducing single point faults
in the design, it is necessary to adhere to source
congruency requirements. One of these dictates that
in order to tolerate single faults it is necessary
to provide four fault containment regions. In the
triplex FTP architecture six fault containment
regions are provided. The triplex processor pro-
vides the basic three fault containment regions.
Three additional regions are provided in the form of
interstages which receive data from processors and
rebroadcast them back to processors. The inter-
stages are mechanized such that they have independ-
ent voltage and timing reference. This assures that
faults in processors would not propogate to inter-
stages and vice versa. Since an interstage is
essentially a buffer with receivers and transmit-
ters, it is relatively a small and simple piece of
electronics. It is, therefore, much more convenient
to provide three additional fault containment
regions rather than just one as required for source
congruency. It also makes the FTP architecture sym-
metric.

As explained in the preceding section, the data
exchange hardware appears as a set of five registers
on the processor bus. Four of these (X_A, X_B, X_C,
and X_V) are the transmit registers and the fifth
one is the receive register, X_R. For simplex
source exchanges, say, a ‘from A’ exchange, data in
X_A register in channel A is transmitted to the
three interstages. The interstages rebroadcast this
data to every processor. The three copies received
by each processor are voted in hardware on a
bit-by-bit basis. The voted result is deposited in
X_R. For voted exchanges, each channel writes the
data to be voted in X_V register. Writing to X_V
results in the data being transmitted to the chan-
nel's own interstage.' The second half of the opera-
tion is the same as for simplex exchange. In both
cases, the exchange hardware masks any single faults
while voting on three copies and also records the
source of fault in an error latch. The error latch
can be read by software as a memory location.

3.1.1.3 Fault Tolerant Processor: External Inter-
faces

The external devices that interface with the FTP are
the mass memory, the Intercomputer network, and the
I/O network.

Figure 4 shows the interface between a triplex
FTP and the triply redundant mass memory bus. This
interface hardware is shared in each channel by the
CP and the IOP. Each channel of the FTP is enabled
on one of the three buses. The FTP transmits com-

mands and data synchronously on three buses to the
mass memory where they are received and voted in
hardware. The interface hardware performs the nec-
essary parallel to serial data conversion, appends
cyclic redundancy check byte (CRC), and transmits
serial data on the bus. Each processor channel lis-
tens to all three mass memory buses. Data received
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from the mass memory is voted in hardware on a
bit-by—bit basis. Any disagreements on the mass
memory bus are recorded in error latches for later
analyis by software. Any CRC failures are also
recorded separately. Voted data is then converted
from serial to parallel format.

Figure 5 shows the interface between a triplex
FTP and the triply redundant Intercomputer

Network.
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Figure 5. FTP Interface to IC and I/O Networks
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The IC network interface is dedicated to the I/O
processor. Other than that, it is very much like the
mass memory interface. Each IOP listens to all
three IC networks but can transmit on only one IC
network. The IC network interface circuitry is

responsible for parallel to serial data conversion,
resolving network contention. and transmitting data
on the network. In the other direction. the network
interface hardware listens to three bit streams.
deskews them, votes and masks single faults and con-
verts the voted bit stream from serial to parallel.
It stores any disagreements on the networks in error
latches or registers. Non compliance with the net-
work protocol is also recorded separately for each
of the three networks.

An IOP also interfaces to one or more 1/0 net-
works. This interface is different from the IC net-
work interface to the extent that the I/O networks
may not be redundant. Redundant I/0 networks inter-
face with the FTP the same way as the IC network
nodes. For simplex I/O networks, it is necessary
that when the processor is communicating with an I/O
device all other processors execute the same soft-
ware and wait identical lengths of time to stay syn-
chronized. Also, any data received from the I/O
devices must be distributed to all other processors

using the data exchange registers. Although an I/O
network may not be redundant, an FTP may have more
than one connection to an I/O network through multi-
ple IOPs.

An I/O network may be dedicated so that only
those I/O devices that are used solely by this FTP
are on this network. Or the I/O network may be a
shared network that connects multiple computers to
shared I/O devices.

Finally, an IOP may also have local dedicated
I/O devices that can be accessed directly by the IOP
as memory locations. The memory mapped I/0 may con-
sist of local switches, discretes, A/Ds, D/As and
interrupt driven devices. This interface differs
from dedicated I/O bus interface in the sense that
I/0 signals on the bus may be already conditioned
and processed by a local processor and the IOP
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interfaces through this bus to the local processor
which may control a number of I/O devices.

Although it is possible to interface interrupt
driven I/O devices to the IOPs, none will be
included in the proof-of-concept system.

An IOP may transmit on an IC bus, a shared I/0
bus, or a dedicated I/O bus only if it is enabled to
do so by a majority of the IOPs. An IOP can also
disable itself any time.

The interface of an FTP to the IC buses is some-
what different if the FTP redundancy level is not
the same as the IC redundancy level. For example, if
the FTP is a duplex system rather than a triplex then
there will be only two IOPs, one IOP per channel.
Each IOP will listen to and vote on all three IC bus-
es and it will transmit on one IC bus. Transmissions
from duplex processors will, therefore, be heard
only on two out of three buses. Similarly, simplex
processors will listen to all buses but will trans-
mit on only one bus. Voting logic in the bus inter-
face circuits is suppressed when the transmitting
processor is simplex. It is necessary to rely on
compliance with bus protocol to detect errors.

The next topic of discussion is the interface of
the system in degraded mode. The FTP can degrade in
3 ways, failure of an IOP, failure of a CP, and the
failure of the shared hardware.

when an IOP fails, the IC bus interface would

degrade from triplex to a duplex configuration.
Each of the other two IOPs would listen to all three
IC buses but transmissions from this FTP would be
heard by other computers only on two buses. At the
receiving sites fault masking would be replaced by
fault detection. Since there is some inherent coded
redundancy in data being transmitted on each bus.
one can hope to identify the second fault with fair-
ly high coverage. This would normally be the case
when communicating to a dual-redundant computer on
the network under normal circumstances.

The other effect of the failure of an I/O pro-
cessor is the loss of I/O devices attached to that

processor. Actually only those I/O devices that were
connected only to the failed processor would be
lost. If the I/O devices are cross-strapped to oth-
er IOPs through the I/O bus, for example, they would
still be accessible via the other I/O processors.

Finally, the loss of an IOP also means that the
CP attached to that IOP does not have access to any

inputs. In other words, failure of any element in a
channel can be considered the same as failure of the
whole channel. That is, if an IOP, a DPH or a CP
fails in a channel one could shut down all the ele-
ments in that channel of the FTP. Although this is
the most convenient way to operate the system from a

system software viewpoint, one can use more sophis-
ticated strategies to obtain reliability from the
system. This, however, is achieved at the expense
of more complex system software.

Specifically, if an IOP fails then the corre-
sponding CP loses access to data being provided by
that IOP through the shared memory. But since the
CPs are cross-strapped to each other through data
exchange hardware it is possible to provide the tar-
get CP the voted value of the inputs to the other two
CPs. The same can be done on the IOP side when a CP
fails. If the shared memory fails either side can
get around the fault by cross-exchanging data. This
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will be the POC system operational strategy.

The following two sections describe the software

appearance of the multiprocessor and the redundancy
and fault tolerance dimension of the machine,
respectively.

3.1.2.1 Multiprocessor Software Appearance

The multiprocessor discussion is divided into
three parts: processors, shared memory, and the
external interfaces. These three parts are dis-
cussed in the following sections.

34142a14J__EBQ££5§DB§__The multiprocessor architec-
ture from a software viewpoint appears as shown in
Figure 6. This figure does not show the redundancy
dimension of the computer.: FTMP, from a software
viewpoint, appears as a conventional, homogeneous
multiprocessor. There are a number of processing
elements that have access to a common memory, called
the shared memory. Each processor has a local memo-

ry which is composed of Read Only Memory (ROM) and
Read/Write Memory. Although not all of the programs
are always resident in the local memory, they must
be loaded there from the shared memory before they
can be executed. The local PROM is used to hold the
bootstrap loader, cold start and restart programs,
frequently executed parts of the operating system,
and high frequency applications programs. All other
programs are loaded into the RAM on a demand basis.

GLOBAL I/O BUS
 

 

 
MASS MEMORY BUS

INTERCOMPUTEH BUS

01:- av-

MULTIPROCESSOR BUS

I >
REAL TIME

CLOCK
MULNPROCESSOR

CONTROL
REGISTERS

SHAREDMEMORY

Figure 6. FTMP Architecture: A Software View

Each processor has internal interval timer(§
that can be set to any 16-bit value under program
control. The interval timer decrements this count

and interrupts the processor when the count reaches
zero. Interval timers can be used for scheduling
highest frequency tasks and also as task watchdog
timers.

Communication between processors can be via the
shared memory or it can be via Interprocessor Commu-
nication (IPC) Buffers. The shared memory path is
the slower of the two paths. The sender can write
the message in the shared memory, but it does not
arrive at its destination until the receiving pro-
cessor reads its mail box. An alternative to this is

the IPC Buffer. A processor can write to any other
RFDcessor's buffer. The receiving processor is
Interrupted when one of the buffer locations is
written into. The receiving processor's IPC Inter-
rupt Handler can then read the message in its buff-
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er. The buffer length is of the order of 16 words.
That is, it is not a large memory array. For large
data transfers, shared memory would still be used

although one could pass a shared memory pointer
using the IPC mechanism.

34j_LZ41.2_§flAB£jLJEMQB1_: The shared memory can be
accessed by the processors using the multiprocessor
bus. Contention for the bus amongst multiple pro-
cessors is resolved in hardware. The hardware also

provides the capability to test and set a word in the
shared memory in a single atomic operation. Access
to data elements that are shared amongst multiple
processes can be limited to one process at a time by
associating a lock or semaphore with each shared
data set.

Although the shared memory appears as a single
monolithic unit to the software, it should be noted
here that it is, in fact, composed of several seg-
ments. Such a segmented shared memory, coupled with
dedicated buses from processors to memory units,
makes it appear as a multiported memory. All seg-
ments of the shared memory can be accessed simulta-
neously if different processors happen to request
access to different segments. This feature should
be taken into account when locking data sets in the
shared memory.

There are several other elements of the multi-
processor that can be accessed by the processors
using the memory bus. One of these is the Real Time
Clock (RTC). The Real Time Clock is a 32-bit counter
that counts up. The RTC can be set to a given value
by writing to its 'memory' address. It can be read
as a two word value on the memory bus also. Reading
the high order word automatically latches the low
order word so that the 32-bit value of the RTC is
read as a consistent set.

IPC buffers also appear as shared memory
addresses as far as write operations are concerned.
They can only be written to on the multiprocessor
bus. They can be read only by the host processor on
the internal processor bus.

Other registers in the shared memory address
space can be grouped under the heading of Multi-
processor Control Registers. Their functions
include:

1. Memory Relocation (write Only): This assigns
a shared memory module to a given address
space.

Triad Identification (Write Only on multi-
processor bus, Read Only on processor bus):
This assigns a processor to a triad.

CPU Control (Write Only on multiprocessor
bus, Read Only on processor bus): This con-
trols various CPU operations such as reset.
go, etc.

Bus Selection (write Only on multiprocessor
bus): This tells each processor and memory
which buses to listen to.

Error Latch (Read Only on system bus): It
records disagreements on the multiprocessor
bus.

3a142.143__EXI£BNAL__lNI£R£A££i_;
faces of the FTMP consist of

External inter-
interfaces to other
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interface to I/O devices
through I/0 nodes, and interface to Mass Memory
through Mass Memory buses. Not all FTHP processors
have all external interfaces. Some processors may,
in fact, have none of these interfaces. These pro-
cessors perform only computational function in the
FTMP.

GPCs through IC nodes,

At any given time, one processor triad is
assigned to communicate on the IC network. Bus
interface hardware performs a bit by bit majority
vote on incoming redundant data. Each processor
then should have an identical copy of the incoming
data. For simplex data, the voting is bypassed and
it is necessary to perform source congruency. This
is done by simply writing the simplex data into
shared memory. Voters in the shared memory perform
majority voting on three copies of the word received
from the three processors. The voted data then
becomes the congruent value of the simplex word.

Mass memory interface is functionally identical
to the IC network interface.

The FTMP also has interfaces to one or more I/0
networks. The I/O networks may or may not be redun-
dant. One of the processor triads, with approriate
I/0 interfaces. is assigned to the task of managing
I/O devices.

3.1.2.2 Multiprocessor Redundancy 5 Fault Tolerance
Features

As alluded to in the previous section, there is
a considerable amount of complexity in the hardware
that is largely transparent to the software but is
responsible for making the machine fault tolerant.
This complexity arises from two related features of
the multiprocessor. One, every element in the sys-
tem is replicated to some level. Every major ele-
ment is at least triplicated, and some have even a
higher level of redundancy. Two, all redundant
operations must be compared to detect faults and to
mask faults where appropriate. The fault detection
and masking requires considerable amount of inter-
connections between redundant elements. These two

attributes of the machine, viz., redundancy and
intercommunication, are largely responsible for the
multiprocessor complexity.

However, the redundant hardware elements are
organized in such a fashion that this complexity is
not carried over into the software. In fact, the
other attribute of the machine, viz., the intercon-
nection of the redundant elements, is what makes the
hardware complexity transparent to the user. This
should become clearer as the hardware architecture

is described in the following sections.

3L1¢2,2J1__EBQ§E§$QR$_; Processor in the multi-
processor, CPs or IOPs, operate in groups of three,
called triads. The three members of a triad are

tightly synchronized using a fault tolerant clock.
(The clock operation is described in another sec-
tion.) Processor organization is such that any
three processors can be formed into a triad with
some exceptions such as the constraints that may be
introduced by packaging and external bus interface
considerations. Other than these constraints, a
processor element can be used as a member of a CP
triad or an IOP triad. A processor may be a member of
a CP triad at one time and it may be a member of an
IOP triad at some other time.

allOnce the available processors have been
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formed into CP and IOP triads, the remaining proces-

sors (spares). can be used to ‘shadow' normally
operating triad members. A shadow processor is
tightly synchronized with the three active members
of the triad and executes the same instructions as
the active members. It listens to all the buses to
obtain the same input data as the active members.
However, it is not enabled to transmit on any bus.

Each processor has a number of control registers
which are either processor specific or triad specif-
ic. All of these registers have a ‘Write To‘ address
that is an extension of the shared memory address
space. They also have a ‘Read From‘ address that is
an extension of the processor‘s local memory address
space. An example of a triad specific register is
the IPC (Interprocessor Communication) Buffer. An
example of a processor specific register is the
Triad Identification (ID) Register. Addresses of
processor specific registers have a Processor ID
field in the ‘Write To‘ address. Addresses of triad
specific registers have a Triad ID field in the
‘Write To‘ address.

There are a number of other system control and
status registers that are accessed in a manner simi-
lar to the processor control registers. Examples of
these will be given where relevant.

3t1s2s2s2.§HAB£D_fiEflQB1_: The shared memory in the
multiprocessor is triplicated and operates as one
contiguous triad. Physically, it is partitioned
into several smaller segments and the level of rep-
lication is at the segment level. A processor and a
shared memory segment are packaged together in a box
or Line Replaceable Unit (LRU). They share such
items as the fault tolerant clock, LRU power supply,
etc.

Associated with each memory segment is a Memory
Relocation Register (MRR). This register is analo-
gous to the Processor Triad ID Register in that it
allows one to identify the memory triad to which a
memory module belongs. The MRR forms the high order
part of the address to which the associated memory
module responds. The MRR itself has an LRU specific
address and can be written to on the multiprocessor
bus. Thus, one can group any three memory modules to
form a shared memory triad by relocating them to the
same address space.

34142.1LjLEBQ££iiQB;fl£flDB1_lNI£B£A£E_: The proces-
sors and shared memory segments are fully
cross—strapped. Each box or LRU containing a pro-
cessor and a shared memory is connected to every
other LRU using dedicated buses. The
processor-shared memory communication works as fol-
lows.

Assume there are N LRUs in the multiprocessor.
when a processor triad wishes to write shared memo-
ry. each member broadcasts appropriate address,
data, and commands on its transmit bus. Each member
of the target memory triad receives three copies of
address, etc. It selects 3-out-of—N transmit buses
to listen to this processor triad using information
from Bus Select registers. The three copies are
then voted by each member of the memory triad and
appropriate action (such as storing the data) taken.
Any disagreements are latched in the Processor Error
Latches indicating the identity of the disagreeing
processor.

For a memory read operation, the first half of
the transaction is similar to the write operation.
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Each member of the memory triad broadcasts the data
to the three requesting processors. Each processor
in the requesting triad then receives three copies
of the data which it votes in hardware and also
latches identity of any disagreeing memory unit in
its Memory Error Latch.

As indicated earlier there are a number of mul-

tiprocessor control and status registers. More
examples of these have now been cited (HRR, Error
Latches, Bus Select Registers). These registers are
assigned addresses in an extended shared memory
address space. They can be accessed by any process-
or triad just as if they were shared memory
locations. The interface hardware to select Trans-
mit Buses, vote on incoming processor requests, etc.
can be the same hardware that is used to access the
shared memory in a given LRU. This not only saves
hardware but also makes use of the existing proces-
sor-memory 'bus' that cross-straps all LRUs. In
fact. this same communication medium can be used to
write to the Interprocessor Communication Buffers.
Such an arrangement also makes the software appear-
ance of the machine rather straightforward.

3 1.2.2.4 EIME QLQCKING : The tight synchroniza-
tion between processor elements is maintained using
standard fault tolerant clocking techniques (analog
phase locked loop or digital compensation) developed
previously. The multiprocessor fault tolerant clock
functions as follows.

Each processor and shared memory in every LRU
has a common oscillator. Four of these oscillators,
called the active elements, are chosen to form the

quad-redundant fault tolerant clock. (Four clock
elements are necessary to tolerate all single point
clock failures). Any four operating oscillators can
be chosen as active elements. The active clocks are
distributed to every processor and memory LRU in the
system. Each active element listens to the other
three active clocks and locks itself to the majori-
ty. The nonactive clocks phase lock to any three out
of four active clocks. If an active elements fails,
it is replaced by a previously inactive element. In
other words, every clock is sent to every LRU in the
system. Since the basic philosophy is to have dedi-
cated paths rather than multiplex buses, there is a
dedicated clock bus that goes from every LRU in the
system to every other LRU.

Each LRU in effect listens to three active ele-

ments and synchronizes itself to the majority. This
clock is then used for all internal timing events

such as processor clocking, memory clocking, decre-
menting of the interval timer, and incrementing of
the real time clock.

The real time clock is a 32-bit counter. Such a
counter exists in every LRU and is accessible on the
system memory bus. Real time clocks in all the LRUs
respond to the same system memory address. RTC
counters always respond to write (or set) requests.
Thus all the real time clocks in the FTHP can be set

to a given time simultaneously. Once set, they all
count up at the same rate since they are clocked by
the fault tolerant clock. During normal operation,
three of the counters are selected to be active.
There is an RTC Select Register in every LRU that
determines which three RTCs to listen to. When one
Of the counters fails, it is replaced by another

Operating RTC counter by updating all RTC SelectRegisters in all LRUs.
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 : The multiprocessor
interfaces to the external world through three dif-
ferent types of buses. Interface to other General
Purpose Computers is via the IC network. Interface
to the I/O devices is via the I/O network. And inter-
face to the Mass Memory is via the HM bus.

The IC network is triply redundant and consists
of three layers of a circuit switched node network.
Three of these nodes, one from each layer. interface
with the multiprocessor. On the multiprocessor side
one processor triad interfaces with the triplex IC
network (also referred to as the IC bus) at any given
time. For data transmission, each member of this
triad (called the IC triad) transmits on one bus.
For receiving data, each IC triad processor listens
to all three IC buses, deskews the data and votes on
the three copies in hardware. Any bus disagreements
trigger IC Error Latches in the processor-bus inter-
face hardware. The identity of the disagreeing bus
is stored in the Error Latch. Before performing bit
by bit voting on incoming data, each serial data
stream is checked for compliance with the bus proto-
col. Any deviations are recorded in error regis-
ters. The error latches and the protocol error

registers can be read by a processor triad on the
multiprocessor bus. If the data source GPC is not
redundant, then voting circuitry is bypassed. Sim-
plex source congruency is performed on the incoming
data by writing it to shared memory and reading it
back again. Since the IC bus is a contention bus,
the FTHP contends for access to the bus with the oth-
er GPCs using a distributed arbitration algorithm
known as the Laning Poll. One of the FTHP triads
that is enabled on the IC bus participates in this
poll.

The I/0 bus is a single layer, circuit switched
network. At any given time, one processor triad
(called the IOP triad) is assigned to interface with
the I/O network. The IOP triad operates in a fashion
similar to the IC triad. However, there is one major
difference in that only one IOP processor transmits
on the I/O bus at any given time. All three I/0 pro-
cessors listen to the I/O bus and perform source

congruency on all incoming data by writing it to the
shared memory. Since the I/O bus is a contention
bus, they all participate in the bus arbitration by
each member listening to the bus but only one of them
actually transmitting on the bus. Laning Poll is
used to arbitrate I/0 bus conflicts.

Interface to the mass memory triplex bus is very
much similar to the IC bus interface.

The transmissions from a processor on the IC,
I/O and MM buses are gated through enabling gates.
The purpose of the enabling gates is to protect the
buses from runaway processors that can not otherwise
be turned off. The enabling gates allow a processor
to transmit only if a majority of the processors
agree to do so. Each processor sends an enabling
signal to every other processor. These enabling
signals are voted upon to create a master enable
signal in each LRU. If the multiprocessor is built
with some slots initially unoccupied, the master
enable signal is created by voting enable signals
from only those processors which are present. Each
LRU also produces a presence signal to indicate
whether it is populated. The presence signal is
also helpful in writing FDIR software and therefore
should be made available as part of some LRU specif-
ic control register.
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The circuit switched nodes of the IC and the I/O
networks are identical. For the proof—of-concept
system each node will have five identical ports.
The node will interface with other nodes, GPCs, and

I/O subscribers (displays etc.) through these ports.
All ports will be identical in terms of their abili-
ty to interface with any of the aforementioned enti-ties.

The Intercomputer communication network for the
proof-of—concept system configuration consists of
three identical layers of a circuit switched net-
work. Each layer consists of five nodes. Each node
services one GPC. Although it is possible to ser-
vice several GPCs from one node provided the node
has enough ports to do this, this is not the case for
the POC system configuration.

The three layers of the IC network are totally
independent and are not cross—strapped to each oth-
er. The initial no-fault configuration of the three
layers is identical although it does not have to be
so. That is, after a link failure in one layer the
virtual bus configuration of that layer would change
as the network is reconfigured around the failed
link. The other two layers do not have to be recon-
figured to make their virtual bus path identical to
the third one. The fault detection, isolation. and
reconfiguration of the IC network are the responsi-
bility of the Global Computer. Nodes keep track of
any transmission errors which are protocol related
and inform the Global of these errors when queried
by the Global. This error data is analyzed by the
Global to determine source of transient faults on
the network. The nodes also respond to status que-
ries with the status of the node and the ports. Oth-
er than this, the nodes are totally passive circuit
switching devices. They listen for node reconfig-
uration commands from all ports whether or not that
port is active.’ Valid reconfiguration commands must
be preceded by a Gateman code. Reconfiguration com-
mands are addressed to individual nodes although
they are heard by all nodes.

The principles of operation of the I/O network
are same as that of the IC network. The I/O network
configuration for the POC system consists of a sin-
gle layer of 16 nodes. This network can be config-
ured either as a single global I/O network or as
several regional I/0 networks. Both configurations
will be used in the POC system to demonstrate the
global and regional I/O bus features of the AIPS
system. System displays and controls would be
attached to the I/O nodes.

3_._1_.4_t1ass_L1.:ms2rL

The AIPS proof—of-concept system mass memory
requirements can be satisfied by Winchester disks,
magnetic bubble memory, or Electrically Erasable ROM
(EEROH) semiconductor memory. The choice will be

made during preliminary design. The mass memory
redundancy scheme will depend on this choice. If
the decision is to use the disk or the magnetic bub-
ble memory the memory will be replicated. Each copy
will interface to the triplex mass memory bus
through its own bus interface circuitry. The inter-
face will be responsible for receiving redundant
commands, address, and data from GPCs and performing
deskewing, voting, and fault detection on the incom-
ing data. Voted data will be stored in the memory.
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Each interface would also respond to the memory read
requests on one of the three mass memory buses. If
the memory is implemented as EEROM, the fault toler_
ance will be provided through encoding rather thantriplication.

The mass memory interfaces will restrict access
to mass memory by simplex GPCs to read-only oper-
ations. A 'Hass Memory bus hog‘ capability wil
also be provided in support of semaphores or locks
associated with shared data in the mass memory. A
GPC will be able to retain control of the HM bus,
after gaining access to ‘it, for multiple memory
transactions. One can read a memory location, modi-
fy it, and write it back as a single atomic opera-tion.

A4flJflmflAB1_

An advanced information processing architecture has
been defined for a broad range of aerospace vehi-
cles. It is highly fault tolerant and damage toler-
ant and has a number of other desirable attributes
such as graceful degradation, growth, and an ability
to accept technology upgrade. A proof-of-concept
configuration is in detailed design phase. This
will be followed by fabrication, programming. test
and evaluation phases to prove key AIPS concepts.
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Abstnagt

Fault-tolerant software techniques discussed in
this paper are the subject of research at many
universities and industry. The research is
directed toward further development and enhance-
ment of the known techniques. such as recovery
blocks and multi—version programming. development
of tools for implementing fault-tolerant software
techniques. and development of new techniques.
The sources of software faults are described.

Descriptions of the primary techniques are
followed by an assessment of the current state-
of-the-art of fault-tolerant software. Research
needed to further the development and application
of fault-tolerant software is discussed.

Introduction

Fault-tolerant software techniques have been the
subject of research for the past decade since it
became apparent that the cost and time required to
produce fault-free software for complex systems
using conventional development and testing methods
still did not result in software completely free
of faults. Fault-tolerant software design
techniques have been developed to be used in the
design and development of software and hardware
required for implementing the techniques. A
software fault is defined as a design defect in
the software. where the term "design defect"
encompasses all deficiencies introduced during the
software life cycle.

The software faults which the fault-tolerant
software is to detect and recover from may be due
to incorrect specification. incorrect algorithm.
incorrect logic. coding and other mistakes.
Manifestation of the software fault places the
system in an erroneous state which may cause the
system to fail. A failure occurs whenever the
external behavior of a system does not conform to
that prescribed by the system specifications (1).
Figure 1 represents the relationship between
fault-tolerant software events.

Software fault tolerance is the ability of a
system to provide uninterruptible operation in the
presence of software faults through multiple
implementations (i.e.. redundancy) of a given
functional process.

Eackgrggnd

It is extremely expensive to produce fault—free
software. The primary methods used to attempt to
Produce fault-free software are based upon the
Principles of structured design and programming
followed by extensive testing. One of the
problems with this approach is that of determining
when all of the software faults have been found
and corrected so that the software can be
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delivered and put into operational use. Many
attempts have been made to develop a model which
can be applied to the software and results
gathered from tests to estimate and measure the
number of faults remaining in the program. These
attempts have resulted in most models being

immediately subjected to criticism since they do
not fit a software development effort other than
the specific one from which the data was collected
to demonstrate the model. Nevertheless. model
development efforts continue and are being made a
part of formal software quality assurance programs
(2.3).

To date. software faults are still being found in

operational digital systems developed using the
methods described in the previous paragraph.

Consequently. operational phase software
maintenance has become a fact of life with

significant effort required for locating and
correcting residual software faults still present
from the development phase as contrasted with the
effort devoted to the addition of new functions.

In the process of removing the residual software
faults. additional faults are often introduced

which cause a repeat of the fault location and
correction steps in a seemingly endless process.
If it were truly possible to produce fault-free
software. the operational phase effort could be
completely devoted to the addition of software
implemented functions required by changes in the
operational mission requirements. Unfortunately.
this is not the case today.

TFF53§Et§_fi§nager, **Research Scientist, Member of the IEEE
C°P¥|‘ighl © American Institute of Aeronautics and

Astronautics, lnc., 1984. All rights reserved.
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Software faults exist and are manifested as

errors. The effort required for locating and
correcting these errors has resulted in high
software life cycle costs. Software life cycle
costs must be controlled and even reduced and
reliability increased.

Software must not cause loss of life. vehicle. or
systems functions in real—time digital systems.
Software must provide the functions needed to
safely accomplish the mission at all times. In
order to meet this requirement while minimizing
software life cycle costs. new approaches to
software development and new tools are required.
Fault-tolerant software is one such approach whose
time has come.

Sources of Software Egults

The success of any fault-tolerant software
technique is critically dependent upon the
effectiveness of the employed error detection
techniques (1). If an erroneous state is not
detected. the fault causing this error will not be
tolerated. An understanding of the underlying
source of faults can be an aid in designing and
analyzing error detection techniques.

A software fault is a design defect which is
directly or indirectly caused by a human mistake
and can occur in every phase of the software
life-cycle. Faults in a system specification.
e.g.. imprecisely stated or missing functions. are
due to a human's inability to correctly translate
a problem into a description of a system-level
solution. These faults are propagated and new
faults are introduced into the subsequent software
specification. software design. source code. and
object code. With the increased usage of software
tools. the number of faults that are directly
introduced by the software engineer can poten-
tially be decreased. However. the tool itself can
insert an indirect fault (referred to as indirect

because a human originally programmed the tool).
Past occurrences of this have been mainly
restricted to compiler bugs. Indirect faults may
increase with the use of automated tools and. like

compiler bugs. may be extremely difficult to
detect and isolate.

M9Ih9fl§_9f_H§DQJ1DQLf_yl$§

Methods for handling software faults can be
separated into fault prevention and fault-tolerant
techniques (4.1). Fault prevention methods
include design methodologies for dealing with the
complexity of hardware and software. the use of
highly reliable components. and comprehensive
testing. Usually. fault prevention methods are
utilized prior to system deployment. Fault-
tolerant software techniques attempt to automatic-
ally overcome software faults without external
intervention. The primary usefulness of fault-
tolerant software techniques is to handle faults
that remain after the system is in operation. but
it is also useful in detecting system specifi-
cation and software faults during development.
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The process or steps that a fault-tolerant system
goes through have been described in different
terms (5.4.1). We will follow the terminology of
Reference 1 for purposes of illustration.

The four steps of a fault-tolerant system are:
Error detection. damage assessment. recovery. and
fault treatment. The capability to detect errors
is the crux of any fault-tolerant technique.
Since it is doubtful that any error detection
technique will occur concurrently with the
encountering of a software fault. an assessment of
the extent of damage (i.e.. changes in state
information) must take place prior to attempting
error recovery. Often. damage assessment assump-
tions are a part of the design of the fault-
tolerant software system. Error recovery returns
the systan from a erroneous to a correct state.
Finally. fault treatment attempts to eradicate the
source of all this trouble. the fault itself. and
return the system to service.

Fault-To_”§§nt So__wa[e Teghnjgugs

Each of the ten fault-tolerant software techniques
identified from the literature have been placed in
the four categories shown in Table 1. Within the
four category headings, multi-version software.
recovery blocks. and exception handlers are
themselves fault-tolerant software techniques.
The following brief description of each technique
should provide some reasoning for the selected
categorization.

Table 1. Categorization of Fault-Tolerant
Software Techniques

(1) Multi-Version Software

(2) CRAFTS (Foodtaster)

(3) Recovery Blocks

(4) Deadline Mechanism

(5) Dissimilar Backup Software

Hybrid Multi-Version Software and
Recovery Blocks Techniques

(6) Tandem

(7) Consensus Recovery Blocks

(8) Exception Handlers

(9) Robust Data Structures
(10) Hardened Kernel

Multi-Version software is an updated term for
N-Version programming (6). Multi-Version software
is defined as the execution of two or more
alternate versions of a software component and the
selection of a final result or a fault by a
decision algorithm. For example. if the decision
algorithm is a simple majority vote. three
software versions are necessary to mask a software

fault. Figure 2 is a graphic depiction of the
above description. The goal in developing the
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MULTI—VERSION SOFTWARE

alternate versions is software faults that may
exist in one version not be contained in the other
version(s). The two reported methods of
developing alternate versions are by independent

programming teams (6) and by forcing explicit
differences in the versions (7.8).

The CRAFTS (Cranfield Algorithm for Fault-Tolerant
Software). or Foodtaster as it is sometimes
referred to. was originated by Morris and Shepard
(9). CRAFTS is a form of multi-version software
which is fault—tolerant with just two alternate
versions of the software. The two alternates
execute. and if the results do not agree. each
alternate is compared against an extrapolated
value obtained from the last three results.
Whichever alternate has the least error between

the extrapolated and the current result. within
some predetermined maximum deviation. is used.
Obviously. this technique is restricted to use in
applications of continuous output functions.

Recovery blocks (10) can be regarded as analogous
to hardware fault-tolerant ‘stand-by sparing‘. As

the software component produces a result. checks
are made on the acceptability of the result.
Should one of these checks detect an anomaly. a
spare alternate software component is switched in
to replace the faulty component. Prior to
executing the alternate. the system state must be
returned from an erroneous state to an error-free
state. This is accomplished by backward recovery
restoring a previously accepted error-free state.
This process continues until a result is accepted
or no more alternates exist. i.e.. the software
component failed. The alternate software
component is produced as described earlier.
Figure 3 presents a graphical interpretation of
the recovery blocks‘ operation.

The deadline mechanism (11) adopts the same
structure as the recovery block but it performs a
specific type of acceptance check. The deadline
mechanism relys on violation of timing speci-
fications to detect software errors.

Dissimilar backup software has the same basic
structure as a recovery block system but with only
one alternate and a fairly severe backward
recovery scheme. When an error is detected by the
embedded acceptance tests. a minimum amount of
current data are available for use by the backup
alternate. Therefore. the subsequent backward
recovery is not as severe as a 'cold' restart. yet
is not as incremental as that proposed for the
recovery block.

The different means by which multi-version
Software and recovery blocks accomplish the
Process or steps of a fault—tolerant system have
allowed researchers to combine their apparent
strengths and avoid apparent weaknesses to create
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hybrid techniques. Two such techniques are tandem
(12) and the consensus recovery block (13).

Tandem uses the comparison of two alternate
versions to provide error detection similar to
multi-version software. This was chosen because

of the doubts surrounding verifying the error
coverage provided by the acceptance test of
recovery blocks (14.15). Based on the observation
that errors will occur rarely. tandem opts for
just two versions to be executed each cycle to
minimize resource consumption (time or hardware).
Therefore. masking--as in multi-version
software--is not feasible. The recovery scheme
chosen is backward recovery because of it's
comprehensiveness in purging erroneous data.
After rolling back to an error-free state.
continued service is attempted through the
selection of a different pair of alternates.
Figure 4 presents the functional flow of tandem.

The consensus recovery block operates similiar to
multi-version software that has a voter for a

decision algorithm (refer to Figure 2). The
difference occurs when a majority of alternate
versions do not agree. This would be a failure
state in the case of multi-version software.
However. in a consensus recovery block the
individual alternate's results are presented to an

acceptance in a predetermined order until a result

is accepted or all results are rejected. Figure 5
presents a diagram of consensus recovery block
operation.
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The exception handler is a category of fault-
tolerant software that uses forward error
recovery. A software component's execution is
monitored for errors by software and/or hardware
checks. These errors are explicitly monitored
for. i.e.. they are anticipated. Upon detecting
an error . the exception handler uses forward
recovery to compensate for the erroneous state
information so that a result is available to the

calling routine and operation can continue. The
classic example is that of a divide-by—zero error.
The exception handler can set the result to the
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largest number representable by the system.
Figure 6 is a simplistic flow of an exception
handler.

Robust data structures build onto existing data
structures, redundant structural information to
allow for error detection and recovery (16).
Error detection checks can either be concurrent
with access to the data structure or periodic by
execution of an audit routine. Robust data
structures use forward recovery to restore the
erroneous structural information from the existing
redundant information.

Hardened kernel (17) is a term used to describe a

software organization which distinguishes between
essential and non-essential software components.
The essential software components are logically
placed together in a kernel. All non-essential
software components can be viewed as being
attached to the kernel. The non-essential
software components are monitored for errors. If
an error is detected. the non-essential software
component is aborted and is not scheduled for
future use. the entire software
system can continue albeit. in a
degraded capacity.

In this manner.

operation»

  
EXCEF HON HIXNDLERSFIb‘l|R' 6.

Eault-Tg]erant_§9___are I§§__§

Fault-tolerant software acceptance has been slowed
due to the various issues which have been devel-

oped by those playing the role of the devil's
advocate. Some of these issues can be attributed

to assumptions made by the proponents of fault-
tolerant software. Other issues have been in the

form of questions which reflect the lack of a data
base for fault-tolerant software. Each of these
issues is discussed in the following paragraphs.

A_s._symI2;Li9ns

Appljgatjgggg Fault-tolerant software has been
primarily proposed for applications which require
the system to provide continuous correct software
operation in the presence of software faults. In
the case of real-time digital control systems such
as a flight control system. this requires that any

 

n< r
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fault-tolerant software method not impact the
time-critical response of the closed loop system.
This requirement has. in the past. eliminated
consideration of some fault-tolerant software
techniques which utilize backward recovery such as
recovery blocks (18). The application dictates
the performance requirements of the fault-
tolerant software and must be thoroughly
understood and the requirements carefully and
thoroughly established prior to selection of a
specific technique. In the past. the selection of
a fault-tolerant technique may have been based
upon incomplete requirements which resulted in the
wrong technique being selected and hence a "black
eye" for fault-tolerant software. Not all
techniques are applicable to all problems.

Reliability. Reliability advantages over fault-
intolerant software are assumed by many potential
users to be the primary reason for using fault-
tolerant software. Unfortunately. many of these
potential users ignore the fact that fault-
tolerant software should provide continuous
service in the presence of software faults whereas
the fault-intolerant software would fail to
provide continuous service in the presence of
software faults. As a result. attempts have been
made to mathematically prove that fault-tolerant
software is more reliable than fault-intolerant
software. Few well-conceived and controlled
experiments have been conducted to acquire usable

data to validate proposed models or identify
deficiencies of these models (19. 20). The

majority of models for software reliability were
developed for existing fault-intolerant software.
These reliability models of fault-intolerant
software are limited to attempting to estimate the
reliability of single modules when applied to
estimating the reliability of fault-tolerant
software.

Recognizing the limitations of trying to apply
fault-intolerant software reliability models to
fault-tolerant software. researchers have begun to
attempt to develop reliability models for fault-
tolerant software. No single model has been
developed that fits all fault-tolerant software
techniques. Most of the models described in the
open literature have been developed for a specific
technique such as N-version programming, the
recovery block. or hybrid techniques. Since many
of these models have not been fully validated. the
reliability of fault-tolerant software still
remains an open issue.

Most critics of fault-tolerant software

believe that it costs more than software developed
using traditional fault-intolerant software. When
life cycle cost is considered (not Just develop-
ment cost), fault-tolerant software has been shown

to promise significant cost savings (21). Until
experimental data is available to validate the
results of models. the cost of fault-tolerant
software will remain an issue.

Questions/i\.rv-ue_I;s_

Battelle recently completed a study of fault-
tolerant software (22) which not only describes
the various fault-tolerant software techniques.
but also synopsizes the recent reliability
modeling efforts. This study answered some of the
questions about fault-tolerant software and
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pointed out the need for further research to
develop answers to some of the questions.
Important findings of this report are contained in
the remainder of this paper.

Does fault-tolerant software really work? That
is. does fault-tolerant software provide error
detection. damage assessment. recovery. and fault
treatment for software faults? In the few real-
time applications found (22), the evidence is
clear that fault-tolerant software techniques do
work.

Is fault-tolerant software more reliable than
fault-intolerant software? Models to estimate the
reliability of each fault-tolerant software
technique are immature and do not permit any
conclusion other than fault-tolerant software.

properly developed. is more reliable than fault-
intolerant software (22).

What constitutes properly developed fault-tolerant
software? Research indicates that the majority of
faults stem from software requirements definition
mistakes. Consequently. formal tools are being
developed and used to develop the software
requirements and specifications (23;24.25»19).
The development activities which follow are
somewhat dependent upon the fault-tolerant
software technique being implemented. Specific
differences in test and integration methods for
multiversion versus similar redundancy exist (18).
These differences will continue to exist just as
differences exist in the process of developing
fault-intolerant software due to differences in

software development tools. company procedures»
and individuals’ training and education.

Is one fault-tolerant software technique better
than another? A blanket statement that one

technique is better than another would be
incorrect. There are applications where one

technique may be better than another based upon
real-time control performance considerations (18).
The selection of a technique is dependent upon
many considerations of which reliability is one.
A mixture of techniques may be used in a total
system such as an avionics system. For example.
N-version programming might be used for the flight
control function and recovery blocks might be used
for the navigation function. The interaction of
two such functions, though implemented using
different fault-tolerant software techniques. is
easily handled by the data exchange controlled by
the executive software.

B_es__a.rg_N§ ed.e_d_ _f9r_£fll1;_-I9J§ran_t_§9fIw_aJ"_e

The tools available for developing fault-tolerant
software are either the same software development
tools used for fault-intolerant software or deriv-
atives of these tools. While these traditional
software development tools are constantly having
new features added. such as the capability to
generate well—structured applications source code,
other programs support environment tools which
would be useful for developing fault-tolerant
software still require development. These include
automatic data collection for software errors;

data analysis and error classification tools. and
associated database management tools.

ambiguity and misinterpretation of the specifica-
tion (19). Research on the development of
specification languages and their application to
fault-tolerant software is being sponsored by both

government agencies and industry. Results to date
indicate that none of the existing specification

languages available are sufficiently automated.
are difficult to understand, and are severely

limited in power (19). The need for an automated
specification language tool clearly exists. but
the development of a good tool is still needed.

Automatic test generation tools are needed.
Currently, test case software is either generated
using manual techniques or test program generators
derived from the traditional fault-intolerant
software development tools. While better than
manual methods. the tools are far from optimum for
fault-tolerant software. In a similar sense.
automatic fault insertion programs for fault-
tolerant software are needed.

Integration of fault-tolerant software modules is
currently a manual decision process. Tools which
aid both top—down and bottom—up integration are
needed. These tools should interface with the

data acquisition tools. and provide the capability
for rapid integration and make use of the features
of the fault-tolerant software techniques being
integrated to reduce the integration mistakes and
minimize integration time and cost.

Summary_§Qg Conclusions

Fault—tolerant software for digital systems will

significantly impact future systems development
and use. To date. fault-tolerant software

techniques have been employed only when a definite
reliability advantage was required over fault
intolerant software.

Models to estimate the reliability of each fault-
tolerant software technique are immature and do
not permit any conclusion other than fault-
tolerant software, properly developed, is more
reliable than fault—intolerant software. Tools

required to support development of fault tolerant
software are also immature or non—existent. A

modeling and experimental test program should be
undertaken to provide the foundation for the
development of tools needed to cost-effectively
develop and use fault-tolerant software.

fl9L<D_Q1lJ§.dQlLQni
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Ab_s_tL.as;_t

The system concept and requirements for an
Advanced Information Processing System (AIPS) are
briefly described but the emphasis of this paper is
on the evaluation methodologies being developed and
utilized in the AIPS program. The evaluation tasks
include hardware reliability, maintainability and
availability (RMA), software reliability, perform-
ance and performability. Hardware RNA and software
reliability are addressed with Markov modeling tech-
niques. The performance analysis for AIPS is based
on queueing theory. Performability is a measure of
merit which combines system reliability and perform-
ance measures. The probability laws of the perform-
ance measures are obtained from the Markov
reliability models. Scalar functions of this law
such as the mean and variance provide measures of
merit in the AIPS performability evaluations.

Introduction

The design, evaluation, implementation, vali-
dation and verification of an Advanced Information

Processing System (AIPS) [1] , [2] has been under-
taken by the C.S. Draper Laboratory via the sponsor-
ship of NASA. The goal of this program is to develop
and demonstrate a system architecture and the asso-
ciated design and evaluation methodologies which can
effectively serve the need for advanced information
processing and control over a broad range of future
NASA missions. The AIPS is designed to provide a
fault tolerant and damage tolerant data processing
architecture that meets both aeronautical and space

vehicle application requirements. The requirements
for seven different applications are described in
the AIPS System Requirements [3]. The requirements
can be divided into two categories: quantitative
and qualitative. Examples of the former are proces-
sor throughput, memory size, transport lag, mission
success probability, and so on. Examples of the
latter are graceful degradation, growth and change
tolerance, integrability, etc. The AIPS architec-
ture is intended to satisfy the quantitative
requirements and also have attributes that make it
responsive to the qualitative requirements.

The system is comprised of fault- and damage-to-
lerant ‘building blocks‘ which include processing
elements (i.e., Fault-Tolerant Processors (FTPs) and
Fault-Tolerant Multiprocessors (FTMPs)),
i”PUt/output (IO) networks, an intercomputer (IC)
Detwork. a power distribution system, and the system

coherent system. The system is managed by a set of
global functions which allocate tasks to individual
processing sites, perform system level redundancy
management and reconfiguration, maintain knowledge
of the system state for distribution to the compo-
nent elements and provide intercomputer communi-
cations. Redundancy management, task scheduling,
and other local services at individual processing
sites are handled by local operating systems.

The architecture permits application designers
to select the appropriate set of these elements and
configure a specific processing system for their
application. Design and evaluation methodologies to
facilitate the architecture selection trade studies

are being developed. This paper describes the pres-
ent status and direction of future developments of
the procedures and tools for the evaluation of hard-
ware RNA, software reliability, performance and per-
formability. This paper is a revised version of
Sections 2.2 through 2.6 of [4] wherein a more com-
plete set of references may be found.

In ultra-reliable computer systems such as FTMP
[5] sufficient hardware redundancy is provided to
ensure that the dominant contribution to system
unreliability is not the depletion of resources but
rather the inability to accommodate (i.e., detect,
isolate and reconfigure) all faults in a timely man-
ner, i.e., imperfect fault coverage. Recent efforts
to obtain more accurate reliability predictions have
led to the development of sophisticated
computer-aided reliability programs, such as CARE
III [6] and HARP [7] , which expedite the modeling of
the fault-handling processes but provide little
assistance in reducing the effort required to model
the fault-occurrence process. For many systems, the
formulation of the fault-occurrence model can repre-
sent a considerable effort. In particular, the
architectures arising from the AIPS concept are a
class of systems where this modeling effort is sub-
stantial.

Several features of AIPS architectures make the

associated RHA evaluations more complex than previ-
ous analyses of ultra-reliable computer systems.
First, a building block of an AIPS architecture may
itself be an ultra-reliable system, e.g., an FTHP.

s°ft“are that ties thfise eiemefits t°Q€the' ‘D 3 Since the unreliability driver for this subsystem is

1 Member AIAA the inability to achieve perfect fault coverage, the‘ RNA evaluations should utilize state-of-the-art

2 Member IEEE fault-handling behavior models. Second, an AIPS' architecture can be an ultra-reliable system with
3 respect to some system function without the utiliza-
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tion of an ultra-reliable processing site. This
high function reliability is achieved via fgngjign
migggjign, i.e., more than one processing site is
capable of supporting the computations and I0
required for a particular function. In this case
the unreliability driver is not necessarily a lack
of fault coverage within a processing site but per-
haps a depletion of resources allocated to a partic-
ular function or unsuccessful function migration.

Hence, less sophisticated but conservative
fault-handling models for processing elements will
often suffice and the analysis effort shifts to
accurately modeling function migration and the
depletion of resources, i.e., constructing the fault
occurrence model.

The formulation of fault occurrence models for

systems exploiting function migration is complicated
by the introduction of sequence dependent failure
modes. Since successful function migration is
dependent upon the level of cooperation among the
processing sites involved, the availability of the
IC network must be considered in evaluating function
reliability. Sequence dependency arises because it
matters whether the IC network fails before or after
function migration is required. Similarly, the
sequence of component failures determines whether an
(a priori specified) candidate reconfiguration is
attainable and hence, whether a particular function
migration will be attempted.

A third feature of the AIPS architecture which

complicates reliability evaluations is the utiliza-
tion of nodal networks for inter-computer communi-
cation and 10. The reliability evaluation of
communications networks is a non-trivial problem
which the AIPS Technology Survey [8] identified as
an issue to be resolved. In addition, fault accom-
modation considerations dictate a design wherein the
processing sites are not cross-strapped to the IC
network. There is also no requirement that the IO
network be cross-strapped to processing sites. The
absence of cross-strapping among subsystems greatly
increases the complexity of the analyses.

In summary, computer-aided reliability evalu-
ation programs are available to facilitate the mod-
eling of fault-handling processes, but corresponding
computer-aided engineering tools for reducing the
efforts required to construct fault occurrence mod-
els are unavailable. This is a shortcoming in the
present context because the construction of fault
occurrence models for AIPS architectures requires a
formidable effort. Succinctly then, the problem to
be addressed is the development of computer-aided
engineering tools to support the formulation of
fault-occurrence models for AIPS architectures and

integrate these efforts with previous and on-going
efforts in fault-handling behavior modeling.

E”! E I . ll 0 I . E EIES E I.

The advantages and flexibility of Markov models
favor their selection as the basis for an RMA evalu-

ation methodology. A major problem with Markov mod-
eling, however, concerns the potential for a large
number of states which may arise during the model
formulation and yield an intractable model. This
is, in fact, the situation when a s'ng e Markov mod-
el is constructed for an entire AIFS architecture.

Several techniques exist which may be utilized to
address the state proliferation problem. These
include behavioral and structural decomposition,
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model truncation, and various state aggregation
techniques.

Eehaxi9LaJ_des9mn2§i1i2n is a temporal decompos-
ition of the system model into fault-handling and
fault-occurrence models. This decomposition is
based on the observation that the time constants of
the fault-occurrence process are several orders of
magnitude larger than those of the fault-handling
process. Behavioral decomposition was utilized in
the development of CARE III and HARP. These efforts
will be exploited in a manner indicated below.

The ‘building block‘ character of the AIFS con-
cept naturally suggests the exploitation of struc-
tural decomposition in the analysis of AIPS
architectures. §tLug;gL§1_g;;gmgg§i;j;uLconsists of
dividing a system into smaller independent subsys-
tems, analyzing the subsystems via independent Mar-
kov models and then combining the subsystem results
combinatorially to obtain results for the system.
This requires that subsystem failures be mutually
exclusive, i.e., failures of components in one sub-
system do not imply changes in the state transitions
of Markov models for other subsystems. This
requirement is satisfied in AIPS architectures if
the subsystems are the basic AIPS ‘building blocks,‘
i.e., FTPs, FTMPs and nodal networks. An advantage
of this decomposition is the opportunity to analyze
the general purpose computers (i.e., FTPs and FTMP§
with existing computer-aided reliability programs
such as CARE III. This is possible because the for-
mulation of a fault-occurrence model for an FTP or
FTMP involves a reasonable level of effort whereas a

prohibitive effort would be required to construct a
fault-occurrence model for an entire AIPS architec-

ture. Thus the fault-handling modeling efforts
embodied in CARE III and/or HARP can be exploited.

A difficulty is encountered, however, in the
application of structural decomposition to AIPS
architectures when each ‘building block‘ is associ-
ated with an independent Markov model. This diffi-
culty arises in the formulation of the combinatorial
equation which combines the subsystem results into a
system result. The combinatorial equation formu-
lation is very complicated due to the presence of
sequence dependent failure modes introduced by func-
tion migration and the inherent lack of cross-strap-
ping among AIPS ‘building blocks.‘ To mitigate this
difficulty, guidelines for a structural decompos-
ition which balances the complexity of the Markov
models and combinatorial equation will be developed.
In addition, the Markov model and combinatorial
equation formulations will be supported by compu-
ter-aided engineering tools.

To address the reliability evaluation of the
circuit-switched nodal networks present in the AIPS
architectures, a Markov model-based solution which
determines the network unreliability while account-
ing for all network elements has been proposed. The
approach is illustrated in Figure 1 for a two-fault
tolerant system. In this diagram each circle
represents a unique state and each column of states
is associated with a failure level, labeled iF, whe-
re i is the minimum number of failures required to
reach a state at that failure level. The arrowed

lines represent possible transitions from each
state. Intra-failure level transitions and transi-

tions from higher to lower failure levels have not
been shown. Transitions with the El label always
utilize exact transition probabilities while transi-
tions labeled Ai may be approximate for reasons
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explained below.
sition paths does not
have equal probabilities.

FUNCTIONAL
\/

 
LOWER BOUND
UPPER BOUND

= P(SL‘l)
- P(SL1) + P(SL2)

P(X) - probability of being in state X

Figure 1. Markov Model for Evaluation of
Two-Fault Tolerant Network

State aggregation and model truncation are
exploited to substantially reduce the number of
states required in the model formulation. Sjajg
§ggL§gfl1iQfl is the technique of aggregating dissimi-
lar system configurations [4] in a common state
without compromising the integrity of the analysis.
Two state aggregation techniques are implicit in
Figure 1. An obvious aggregation occurs at the
three-failure level where all functional configura-
tions are aggregated into a single state; it is not
necessary to delineate the specific functional con-
figurations arising at the three-failure level which
represents a considerable savings in analysis.
State aggregation is also performed at the two-fai-
lure level by aggregating into a common state all
two-failure configurations which have the same tran-
sition probability to the system failure (loss)
state, SL1. In performing this aggregation approxi-
mations may be introduced along the paths labeled
A1. These approximations arise because the config-
urations which are aggregated on the basis of system
failure transitions do not necessarily have an equal
complement of hardware. Notice that this aggre-
gation technique is a variation of the rule [9] to
the effect that states which have the same exit

transition probabilities can be aggregated without
affecting the integrity of the analysis.

flQde1_jLun§atiQn refers to the practice of trun-
cating a Markov model formulation at a failure level
below the maximum failure level for which func-

tional/operational configurations exist. Model
truncation is implemented by defining any configura-
tion associated with, say, the Nth failure-level to
be a system failure state. This failure level trun-
cation is motivated by the observation that only
those failure sequences which significantly affect
the unreliability estimate need to be explicitly
m°deled; the probability of N failures decreases
rapidly as N increases. Notice that model trun-
cation is a conservative approximation because func-
tional configurations arising from N or more
failures are counted as system failures. The con-
servative nature of model truncation is also depend-
ent on the selection of the probabilities associated
with the transitions labeled A1 and A2 in Figure 1.

Specifically, care must be taken to select conserva-
tlVe approximations for these transition probabili-
ties in order to guarantee conservative
unreliability estimates for any failure rates input
to the model. This is particularly important when

The same label on different tran-

imply that these transitions
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sensitivity analyses are to be performed. Guide-
lines for the selection of these approximate transi-
tions can be found in [10].

In order to assess the impact of the conserva-
tive approximations introduced by model truncation
and the state aggregation techniques, lower and
upper unreliability bounds can be derived. Refer-
ring to Figure 1, for example, a lower unreliability
bound is obtained by examining the probability of
being in state SL1. This system failure contrib-
ution establishes a lower bound because all failure

sequences leading to system loss have not been
counted (i.e., system losses due to four or more
failures were neglected) and no approximations have
been introduced to the transition probabilities
leading to this state. An upper bound for the sys-
tem's unreliability is obtained by summing the prob-
abilities associated with states SL1 and SL2. This

establishes an upper bound because 1) there exist
system configurations with four or more failures
which are not system losses but which are counted as
system losses, and 2) only exact or conservative
transition probabilities are used for the Ai transi-
tions.

This methodology was applied to a 22-node,
38-link I0 network designed for GNC functions of a
manned space vehicle [11] . The first unreliability
contributions occurred at the three-failure level as

in Figure 1, which illustrates the model formulation
for this example. The results indicate that the
unreliability bounds were tight for shorter mission
times (< 10 hours) but separated for longer mission
times as the probability of four or more failures
significantly increased. To tighten the bounds for
longer mission times, the model would have to be
truncated at a higher failure level, i.e., at the
fifth-failure level. This would require consider-
able manual effort since the effort involved in car-

rying out the model formulation to the
fourth-failure level was already significant. For-
tunately, the basis of the methodology (i.e., iden-
tifying and tracking the occurrence of the dominant
minimal cut sets) is amenable to automation. A com-
puter-aided engineering tool to support network
reliability evaluation is presently being developed.
A secondary effort in this area will be the formu-
lation of a state aggregation technique which can be
exploited at the two-failure level when the model is
truncated at the five-failure level. when the model
is truncated at the five-failure level, the state

aggregation techniques described above are applica-
ble to the third and fourth failure levels. The
observation that there can be many, many configura-
tions at the two-failure level motivates the effort

to define an appropriate state aggregation tech-
nique.

The preceding discussions were primarily appli-
cable to reliability evaluations. Maintainability
and availability studies will build upon the reli-
ability oriented developments. Haintainability can
be readily assessed by exercising reliability and
availability models with various repair and mainte-
nance scenarios. Methodologies and tools to facili-
tate availability analyses are, however, less
available than their reliability counterparts. For
example, neither CARE III nor HARP can support
availability analyses. Fortunately, the use of Har-
kov modeling techniques for reliability evaluation
facilitates the extension to availability studies
[12]. Undoubtedly a number of issues requiring fur-
ther resolution will arise in cases for which avail-

ability is the parameter of primary interest.
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For digital systems with extremely high reli-
ability (of the order of 10'7 to 10”° failures per
hour), the assumption that the unreliability of the
software can be neglected is unwarranted. An ana-
lytical method to evaluate the reliability of the
system software is therefore necessary. Since the
mechanism underlying software failures is not fully
understood, it is appropriate to define what is
meant here by software reliability.

The reliability of a program (as a function of
time t) is the conditional probability that the pro-
gram yields correct outputs within some prespecified
tolerances in the execution interval (0,t) for all

possible inputs from the user environment, given
that the hardware is in a specified operational
state.

Software reliability is thus defined in a manner
which is analogous to hardware reliability, where
the notion of execution time replaces the notion of
operating time. This hypothesis is not universally
accepted and others (e.g., [16]) have assumed that
software reliability is not a function of execution
time. Later it will be shown how the proposed soft-
ware model can be formulated to accommodate both
cases.

Since this definition is probabilistic, an
underlying assumption is that the time associated
with the occurrence of a software failure is a ran-

dom variable. The justification for this assumption
is that even though a software failure may be attri-
buted to a programming error which escaped detection
during the program verification cycle, this error
does not result in a software failure each time the

code containing the error is executed. Otherwise,
the error would have been removed during testing.
Such errors persist because it is impractical to
test all the possible conditions under which the
code can be executed.

The definition of software reliability implies
that it is dependent on the operational state of the
hardware. Although the error rate is expected to be
low and constant in the operational phase of soft-
ware development [13], it has been suggested [14]
that the number of software errors increases as the
state of the hardware deteriorates. Hence the sys-

tem unreliability due to software will be predicted
from the results of the software reliability models
developed for the operational phase and the hardware
reliability model (see Software/Hardware Reliabil-
ity section).

Relatively few software reliability models have
been considered for the operational phase [15], the
most promising one being the Markov model [16]
,[17]. A Markov model takes a microscopic approach
to reliability evaluation by breaking a program into
discrete modules with known attributes. The reli-

ability of the overall program is then predicted by
taking into account the structure of the software.

The Markov model approach assumes that the soft-
ware has been written in a modular form such that the

decomposition into modules is unambiguous and the
following two conditions are met:

independent, I.e., the
in one module does

1. failures are
of a failure

Module
occurrence
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not cause a failure to occur in another mod-
ule.

In a given processor, module executions are
mutually exclusive in time. This rules out
the possibility of simultaneous failures in
different modules when those modules are exe-
cuted by the same processor. In a multiproc-
essing environment simultaneous multiple
module failures can occur but the probability
of occurrence is small relative to single
failures (similar to simultaneous hardware
failures).

It is also assumed that each module can be char-

acterized by three attributes:

1. Execution time. In many cases this attribute
is not deterministic.‘ In such cases, an
expected value will be used. It should be
noted that in those cases in which the exe-

cution times vary as the result of failure
modes, the mean value of the execution time
is not significantly affected by these rela-
tively low probability events.

2. Reliability. Module reliability is defined
as the probability of failure per unit exe-
cution time. This is probably the most dif-
ficult attribute to obtain quantitatively,
since it depends on such attributes as the
length of the module and its complexity as
well as the richness of its inputs.

3. Transition probabilities. This attribute
represents the exit probabilities from each
module and can be obtained from the structure

of the program and the reliabilities of the
individual modules.

The first step in establishing the Markov model
is the definition of the states. If the software is

decomposed into p modules, p states will be required
to represent the execution of the modules. An addi-
tional state will be required to represent the fail-
ure state. This state will be the only absorbing
state [9] in the model when software reliability is
modeled as a function of execution time. Conse-

quently, this model does not have a steady state
solution, and the probability of software failure
thus monotonically increases with time; however,
errorless software can be accounted for with an

appropriate choice of initial conditions. To remove
the dependence of software reliability upon exe-
cution time, an additional absorbing state, which
represents the reliability of the software, is
included; in this case a steady state reliability
prediction is obtained. If, following a module fai-
lure, the software is reinitialized q times before a
software failure is declared, q additional states
will be needed when the restarts begin with the
first module of the program. If the reinitializ-
ations begin with the module in which the error is
detected, pxq additional states will be required.

The second step is to define the single-step
state transition probabilities among the n states.
In general the transitions among the first p states
can be determined directly from the data flow in the
program and the individual module reliabilities.
when software reliability is a function of execution
time, there is a transfer from the pth state to State
1 to represent the cyclic execution of the code. For
software reliability evaluations which are independ-
ent of execution time there is a transition from the

pth state to the reliability absorbing state which
represents successful termination of the program

BOHNG

Ex.1031,p.275

 
 



BOEING 
Ex. 1031, p. 276

 
aim”

-.um—~wn:,—._..aw.‘

with correct program output. There is also a trans-
fer from each of the first p states to the first
reinitialization state(s) in‘order to model the fai-
]ure and recovery process. The transition probabil-
ities representing successful and unsuccessful
reinitializations are also required.

The propagation of the single-step state transi-
tion matrix is performed via the basic Markov proc-
ess relations [9]. However, unlike Markov
reliability models for hardware, each transition in
the above model does not represent the same time
interval. Each block has a different (possibly not
deterministic) execution time. The transformation
from M transitions to time can be done using averag-
ing techniques. This is justified due to the large
number of transitions (approximately 107) in obser-
vation intervals of reasonable size. An application
of this method to software which was developed for a
fault-tolerant process controller is given in [18].

Since the Markov model merely reflects the
structure of the software, its construction is
straightforward albeit potentially tedious. The
more difficult problem is to derive the failure rate
of each module. This must be done during the design
and validation phases of the software development
by collecting and processing error rate data.
Unfortunately, the input data to most models is gen-
erated long after these phases have been completed
[14], thus reducing confidence in the model pred-
ictions because of the incomplete input information.
In order to avoid such problems in the AIPS program,
error data collection will begin as soon as any mod-
ule is available. Procedures will be established to
fulfill the data collection function in such a way
that compliance will be assured. First, the config-
uration management tools in the Ada Programming Sup-
port Environment will be used for configuration
control. and AIPS project management will emphat-
ically insist that all software changes be made
through this system. Secondly, data collection
regarding software errors will be managed in an
automated fashion, and a cross-reference system
between reported errors and software changes will be
maintained to ensure that all errors are reported
and that all detected errors are corrected.

Important procedures to be emphasized during the
data collection phase are:

0 Errors that were discovered by inspection as
well as those discovered via simulation will
be included.

0 Both execution and calendar time will be
recorded whenever an error is discovered.

0 The effects of each error on the overall sys-
tem will be verified.

SE ,1 E]. .1.

Methodologies based on Markov modeling were pro-
posed for evaluating hardware reliability and the
reliability of software during the operational
Phase. This section addresses the combined soft-
ware/hardware reliability evaluation problem.

Let

PFH(t) = probability of system failure due to the
hardware before or at time t

PFS(t) = probability of system failure due to the
software before or at time t

221

PFU(t) = probability of system failure due to
failures which cannot be unequivocally assigned
to either hardware or software before or at time
t

The system is working (possibly in a degraded mode)
if none of the above failures have occurred
[19],[20]. Let R(0 represent the reliability of
the system at time t. Then

Rlt) = [1- P,,,(t)] [1 - P,S(t)] [1- PF,,(t)]

Since it was assumed in the previous section that
the software reliability depends on the hardware

status, PFS(t) will be defined as

PFS = Prob(Software failure/No hardware failures)
x Prob(No hardware failures)

+ Prob(Software failure/Degraded hardware)
x Prob(Degraded hardware)

hLm 

In order to evaluate the performance of a par-
ticular AIPS design,it is necessary to select the
quantitative indices which will be used to describe
the performance. Since the AIPS is intended to be a
multipurpose real-time information processing
architecture for a variety of aerospace and space
vehicles, many of the quantitative performance
indices which apply to mainframe computers and
time-sharing systems will not be applicable. For
example, many of the AIPS application requirements
[3] include descriptions of information processing
workloads which are relatively static and merely
repetitive in nature. Under these circumstances,
the system throughput, which is frequently used as a
performance measure of a time-sharing system, is not
a good measure of AIPS performance because as long
as the throughput exceeds the workload the system
specification for throughput will be satisfied
although other aspects of the system performance
(such as relative utilizations of devices or the
delays associated with the processing tasks) may be
undesirable. Instead, the performance evaluation
studies conducted so far have emphasized the average
time delays in processing the various tasks and the
utilizations (percentage of time busy) of the proc-
essing sites and data communication elements as
indicators of AIPS performance. The use of time
delays as a performance measure is justified by
analysis of real-time control computer performance
in [21]. The following paragraphs briefly describe
the methodology which has been developed to generate
numerical performance results for AIPS architec-
tures. It is assumed in these analyses that all the
system elements are working at all times. The next
section will address the issue of performance when
faults have degraded the system capabilities.

There are two fundamentally different philoso-
phies for scheduling the tasks that make up the AIPS
workload. One is the quasistatic task assignment
philosophy wherein for a given mission phase each
task is assigned permanently (except for contingen-
cies induced by faults or emergencies) to a partic-
ular processing site. The other is the dynamic task
allocation strategy which involves assigning each
task, as it becomes necessary to execute it, to the
first available processor subject to a priority
structure. These task scheduling strategies and the
workload they engender for a particular applicaton
have been described in [22] through [24].
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The system operation proceeds approximately as
follows. Each task in the workload must be executed

at a given rate. At its scheduled time for exe-
cution, the task enters the queue of the appropriate
priority to await an available processor. In the
quasistatic task assignment case, it simply enters
the queue for the processing site to which it is
assigned. Once a processor (or the assigned proces-
sor) becomes available, the task begins execution.
The first step in its execution is a request by the
executing processor to the shared memory for the
program code which is necessary to execute the task
if this code does not reside in the processor's
cache memory. This request to shared memory joins a
queue with the requests from all of the other proc-
essing sites for the use of the data communications
network connecting the processors to the shared mem-
ory. Once the program code has been transmitted,
the processor will generally initiate a second
request to shared memory for the data necessary to
execute the task. Upon the satisfaction of this
request, the processor executes the task and then,
in general, makes a third request to shared memory,
this time to write the output data for use by other
tasks. The delay which occurs in executing each
task then consists of a scheduling delay in obtain-
ing a processor (particularly in the dynamic task
allocation case), as many as three delays associated
with contention for the shared memory, and the delay
in actually executing the program code.

Queueing theory provides the basis for the meth-
odology used to calculate the measures of perform-
ance for AIPS architectures. Unfortunately, the
variety of execution rates and the variety of sizes
of the tasks to be executed by the AIPS makes the
direct application of the theory presented in [25]
and [26] impossible. As a result, it is necessary
to introduce some approximations in order to apply
queueing theory to the operation of the AIPS. For
the quasistatic task assignment case, it is first
assumed that the tasks are prioritized for each pro-
cessor in descending order of execution rate and
that the processing of lower rate tasks is inter-
rupted (without penalty) in order to process higher
rate tasks. It is also assumed that no interruption
can occur while a processor is awaiting the servic-
ing of a shared memory request. These two assump-
tions eliminate the need for a processor queue for
each processing site because they imply that the
processing rate for a particular task is merely
reduced by the nonavailability of the processor due
to the execution of higher priority tasks and the
associated idle time while awaiting service of memo-
ry requests. The memory requests are assumed to be
serviced on a first-come first-served (FCFS) basis.
In order to apply queueing theory to the memory
requests, it is necessary that they all arrive with
a common average rate. In light of the various task
execution rates, this is not true of the AIPS.
Therefore, the approximation is made that each
request generated by a task with an execution rate
lower then the highest such rate actually consists
of several requests of proportionately smaller size
at the highest execution rate. This highest rate
then becomes the common arrival rate for the memory
request queue. The variety of request sizes (after
the scaling to obtain the common arrival rate) is
handled via the use of bulk queueing theory [25].
Here, the requests are assumed to consist of some
integer multiple of a standard block size. The
blocks are analogous to "customers” in standard
queueing theory parlance. Thus, when a request
arrives at the shared memory queue, it is repres-

222

ented by the arrival of an integer-valued number of
blocks. with these assumptions, it is now possible
to apply the formulas for bulk queues given in [25]
to calculate average delay times and other related
results.

More details on the performance evaluation meth-
odology for the quasistatic task assignment case can
be found in [27] . It should be noted that an
implicit assumption is made in the application of
queueing theory to this problem, namely that the
task execution times are random and obey a Poisson
distribution with average rate equal to the exe-
cution rate for the task. This is generally not true
of the operation of the AIPS. However, the average
delay results and average utilizations are unaf-
fected by the invalidity of this assumption. The
second order statistics of the delay times produced
by queueing theory will, however, be affected by
this assumption and hence are not calculated.

The dynamic task allocation case presents fur-
ther difficulties because additional queues must be
introduced into the model to reflect the behavior of
the task scheduling algorithm. The tasks are
assumed to have priorities assigned to them in
decreasing order of execution rate and it is assumed
that higher rate tasks always interrupt lower rate
tasks, similar to the quasistatic case. Here, how-
ever, the analysis of the time required for process-
ing becomes quite difficult for all but the highest
rate tasks because the possibility exists that tasks
may be interrupted on one processor and resumed on
another. This means that the analysis involves the
investigation of a multiple priority, pre-emptive
interrupt and resume queue where the various priori-
ty classes all have different average arrival rates.
At present, approximate results are being generated
for the behavior of the task scheduler in terms of

the average delay to servicing of a given task.
Investigations will follow on the interaction of the
task scheduler with the shared memory queue.

E E ‘.1. _ E 1. .1. ,E E I .

In the previous section, system performance was
defined in the traditional way, namely, as how well
the system is performing given that all of its ele-
ments are operating within their specification.
This definition is proper for a simplex system, but
is incomplete for a fault-tolerant system.

A simplex system operates under a fixed set of
rules and ceases performing when any of its compo-
nents fails. Therefore the performance of simplex
systems can be defined in the traditional way and is
typically specified and evaluated on the basis of
one or several scalar measures of merit.

A fault-tolerant system, on the other hand, is
able to adapt to failures of its components in a
planned, systematic way. Consequently, depending on
the failure status of the system's components,
fault-tolerant systems can operate in any one of
several modes or gpeLa1ign§1_§1a;g§. Thus a fault-
tolerant system usually represents a set of differ-
ent  J£nm operating under
possibly different sets of rules (algorithms), each
with its own performance level. Since the opera-
tional state of a fault-tolerant system can change
at arbitrary times, the value of a scalar perform-
ance measure will change accordingly. Hence, a
“complete” measure of fault-tolerant system perform-
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is a unified performance-reliability measure,
bility [28].

ance

which quantifies a system's performa

The approach to be taken in the AIPS program to
evaluate the performability of a fault-tolerant sys-
tem is based on ideas suggested in [29] through [32]
and requires that those performance measures be
characterized as stochastic processes. The develop-
ment of the probability laws for these stochastic
processes is based upon the following three observa-
tions:

1. For a given mission of finite duration there
exists a sequence of states, the Qflfififljlflflfll
§3§;g_hi§;gL1, that defines the system opera-
tion during the mission.

The value of a performance measure at any

given time may either depend on the opera-
tional state history or depend only on the
current operational state. In both cases
traditional scalar performance measures
exist. This one-to-one correspondence is
established by noting that for a given opera-
tional state or state history the system can
be viewed as an equivalent-simplex system,
and consequently the value of the measure for
that given operational state or state history
is equal to its value for the corresponding
equivalent-simplex system.

The evolution of the operational states as a
function of time can be modeled as a finite-
state random process. Consequently, the
probability mass function of the operational
states is the state probability vector of the
system Markov reliability model. Thus a Mar-
kov reliability model can be used to deter-
mine the probability of occurrence of each
operational state and each possible state
history [31].

It therefore follows that associating the probabili-

ty of each operational state or state history with
the corresponding value of the scalar performance
measure provides a complete probabilistic character-
ization of the measure as a stochastic process [31]

When the performance measure depends only on the
current operational state, knowledge of the state
probability vector for all values of time of inter-
est U.e., the solution of the Markov reliability
model) and the mapping of system states to values of
the performance measure completely establishes the
measure's probability law. when the performance
measure depends on the state history, however, the
determination of the measure's probability law
requires additional computation. In this case the
state history probabilities must be calculated and
associated with the corresponding value of the per-
formance measure.

In order to establish the probability of experi-
e“Cln9 a particular state history the time interval
Of interest is divided into K subintervals. These

subintervals are defined by the rate at which fault
detection and isolation (FDI) tests are performed
and it is assumed that any change in the system's

§perational state occurs at the beginning of a sub-
lnterval. Thus, there is a total of K times at which
a state transition may occur. For a Markov model of
N states an upper bound on the number of possible
State histories is, therefore, NK. Even for reason-
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ably small values of N and K, N“ will be large; con-
structing the probability laws for large K and N
would be prohibitively time-consuming. This computa-
tion can be substantially reduced by reducing N
and/or K.

Among the approximation techniques by which N
can be reduced are state aggregation and model trun-
cation which were described earlier in the RMA Eval-
uation Methodologies section. The value of K can be
reduced by introducing the notion of mission phases.
Rather than dividing the interval of interest into
subintervals corresponding to FDI decision inter-
vals, it can be divided into a smaller number of
intervals, M << K, with each of these intervals cor-
responding to a mission phase. Although the opera-
tional state can actually change at each FDI time
during a mission phase, the number of possible state
histories is reduced to a manageable size by assum-

ing that state changes occur only at the beginning
of mission phases. Then in evaluating the perform-
ance measures for a particular state history, tran-
sitions to state Si, which represents the state of

the system at the end of phase i, are assumed to
occur at the beginning of that phase. Hence the
effect of this assumption on the numerical results
which are obtained is conservative [29] .

Although the probability law of a scalar per-
formance measure completely defines the performance
of a fault-tolerant system with respect to the given
scalar measure, evaluating system performance by
means of this law can be difficult. Therefore, a
scalar function of this law (such as the mean and
variance of the measure) is suggested as a measure
of merit to be used in the specification and evalu-
ation of the performance of a fault-tolerant system.

Once the performability measure has been defined
and its derivation mechanized, it can be used (fl
for design tradeoffs with respect to components,
namely, choice of components, their quality (per-
formance, reliability), and the level of redundancy,
and (2) for design tradeoffs with respect to the
redundancy management architecture, namely, the FDI
algorithms and the failure thresholds. A more
detailed description of the approach can be found in
[31] and [32].

For the AIPS program the Markov reliability mod-
els will provide the state's probability vector at
any given time for any given mission. The tradi-
tional performance measures will be derived using
queueing theory models. It will be necessary to
reduce each of the performance characteristics,
(e.g., various task delays and processor and bus
utilizations) into a corresponding single scalar
measure for each operational state. Then the per-
formability can be computed using the numerical con-
siderations discussed in the previous paragraphs.
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method for the synchronization
fault-tolerant computer system is

reliability requirement of
precludes the use of most

methods. The method

presented utilizes formal design proof to uncover
design and coding errors and experimentation to
validate the assumptions of the design proof. The
experimental method is described and illustrated
by validating an experimental implementation of
the Software Implemented Fault Tolerance (SIFT)
clock synchronization algorithm. The design proof
of the algorithm defines the maximum skew between
any two nonfaulty clocks in the system in terms of
theoretical upper bounds on certain system
parameters. The quantile to which each parameter
must be estimated is determined by a combinatorial

A validation
subsystem of a .
presented. The high
flight crucial systems
traditional validation

analysis of the system reliability. The
parameters are measured by direct and indirect
means, and upper bounds are estimated. A
nonparametric method based on an asymptotica distribution is used to

estimate the upper bound of a critical system
parameter. Although the proof process is very
costly, it is extremely valuable when validating
the crucial synchronization subsystem.

property of the tail of

Introduction 

Clock synchronization is an essential function in
fault-tolerant multicomputer systems. Most fault-
tolerant flight control systems utilize exact-
match voting algorithms that depend critically
upon the synchronization of the redundant
computing elements. In many systems, the entire
communication mechanism depends fundamentally on
maintaining adequate synchronization between the
replicated system clocks. Therefore, any
validation effort must carefully analyze the

synchronization subsystem of a fault-tolerant
computer system.

This paper investigates the problem of validating
the fault-tolerant clock synchronization algorithm
used in the SIFT system, an experimental fault-
tolerant computer system designed for flight-
crucial applications. Weaknesses of classical
validation methods are discussed, and a new method
of validation relying on formal design proof and
experimental testing is introduced.

The Validation Method

Due to the criticality of synchronization systems,
_ credible methods of validation must be developed

for these systems. However, severe requirements
for flight-crucial systems, such as a probability

‘ §f_fai1ure not to exceed 10"° for a ten-hour
f}18ht. preclude the use of classical life testing

13$ an assessment method. Typical alternatives to
-}lfe testing, such as combinatorial analyses or

Mafkov models, are inadequate because they assume
f§1l9Pe independency. Although the clocks are

‘physlcally separated, clock failures are not

This paper is declared a work of the U.S.

A VALIDATION METHODOLOGY FOR FAULT-TOLERANT CLOCK SYNCHRONIZATION
84-2648

Sally C. Johnson
Ricky W. Butler

NASA Langley Research Center
Hampton, Virginia 23665

independent because each clock uses values from
the other clocks in the system to remain

synchronized with them. Because of this failure
dependency, a fault-tolerant clock synchronization
algorithm is used to prevent the propagation of a
clock failure to another clock in the system. The
validation process must establish the correctness
of this algorithm in a system context. One must
be assured that a single faulty clock cannot
compromise the system reliability. Thus, the
following failure modes must be considered:

1. A majority of clocks fail before time T.
2. An error exists in the system design.
3. An error occurred in coding the

synchronization algorithm.
M. Even though none of the above have occurred,

the design assumptions have been exceeded.

calculations can help only in

estimating the probability of failure mode 1
above. To avoid the possibility of failure mode
2, SRI International developed a new algorithm and
a mathematical proof characterizing the

performance of this algorithm in terms of certain
system parameters. If a mechanical verification
of the proof were performed (i.e., using formal
software verification methods and automatic
theorem provers), this failure mode could
virtually be eliminated. The use of code
verification could also eliminate failure mode 3.
However, the possibility of a mode A failure must
be considered. Fortunately, the formal proof

process encapsulates precisely the design
assumptions in the form of a set of axioms. Thus,
the following validation method is appropriate:

Combinatorial

1. Mathematically prove a theorem which
characterizes the guaranteed maximum clock
skew in terms of measurable system

parameters defined through formal axioms.
2. Mechanically verify that the implementation

code correctly implements the algorithm.
3. Experimentally verify the axioms required in

the desi gn proof .

Although the SIFT synchronization code has not yet
been mechanically checked, a mathematical design
proof has been performed on the algorithm. The
mechanical proof will be performed by SRI
International under NASA contract NAS1-17067
during 198A and 1985. In the following section
this algorithm and its proof will be discussed.

SRI Clock Synchronization Algorithm

To discuss the SRI clock synchronization algorithm
properly, a few definitions and some notation must
be introduced. The theory in this section was
developed by SRI under the SIFT development
contract NAS1-15H28 (1).

It is convenient to define a clock as a function
from real time t to clock time T: C(t) = T. Real
time will be distinguished from clock time by the
use of small letters for the former and capital

G . . . - I
F overnment and therefore IS In the pubhc domain 225

BOHNG

Ex.1031,p.280

 



BOEING 
Ex. 1031, p. 281

letters for the latter. It is sometinas useful to
use the inverse clock function r(T) = C“(T) = t.
Using this inverse function, the concept of
synchronization can be defined:

DEFINITION Two clocks rp and rq are synchronized
to within 6 of each other at time T if

(T) - T ’ 6.
Irp rq( )| <

Next, the notion of a good clock is defined:

DEFINITION A clock r is a good clock during the
interval [T,,T2] if it is a monotonic,
differentiable function on [T,,T2] and there
exists a p such that for all T in [T,,T2]:

|dr/dT(T) — 1| < p/2.

Thus, the drift rate of a good clock from real
time is bounded by p/2, as illustrated in figure
1.

U +p/HT

- r(U
uf
E
“ (1 - 0/2”'6
§ Good clock

mqmn.

God Hme,I

Fig. 1. Definition of a good clock.

A clock synchronization algorithm periodically
resets the clocks in the system. As the
processors synchronize clocks every R seconds,
each processor's time base is a sequence of

(1)
redefined clock functions. Using as the
clock time at the beginning of the i interval,

T(i) = T(0) + iR

and R(i) = the interval [T(i),T(i+1)].

For each such interval there is a new clock
definition:

C(i+1 (i) (i))(t)=c (t)+A

where A(1) is the ith clock correction.

The clock synchronization algorithm requires that
each processor exchange clock values with every
other processor during the subinterval

sci) =[T<i+1> _ ’T<1+1>]’S

which is the last S seconds of the interval R(1).
Since this clock value exchange is subject to
error, it is necessary to introduce a notation and
an axiom which characterizes this error:

AXIOM If processors p and q are nonfaulty and

their clocks are synchronized up to time T(1+1)
then p obtains a value A during the interval

S(i) such that

(1) _
|rp (T, + Aqp) rq “’<T.)[ < e

226

. . i’
for some time To in S( ). Thus, the error in
reading another processor's clock is bounded by L_

The SIFT synchronization algorithm is as follows:

ALGORITHM For all p

(i+1) = C (1) +C A
P P P

where N _
A = (1/N) E A

P r=1 "P

if r v p and |A | < Q then A = Arp rp rp

else A ' = 0PP
where Q = 6 + e.

The following theorem was proved by Leslie Lamport
and Michael Melliar-Smith of SRI International:

THEOREM: If

3m < N

5 ; [N/(N—3m)l(2: + p[R + 2(N—m)s/N1]
6 3 60 + pR
5 << R

6 << e/p

and if up to time T(i+1) no more than m processes
are faulty, then for all p and q:

(i+1)
S1. If up to time T processes p and q are

nonfaulty, then for all T in R(i):
(i) (1)(T) ' (T) < 6

lrp r, I _
S2. If process p is nonfaulty up to time T(l+1),then

|rp(i+1)(T) - rp(i)(T)| < 9.
II

where N
m number of clocks in the system

maximum number of faulty clocks

Assumptions of Design Proof

The design proof effectively establishes the
correctness of the algorithm assuming a set of
axioms is correct. Many of these axioms are well-
established mathematical theorems. Other axioms

define the behavior of the computer system on
which the algorithm executes. For example, the
SR1 design proof assumes every processor can read
another processor's clock to within an error of 5.
The correctness of such assumptions must he
established by experimentation. The following is
a list of the system behavior axioms which are
assumed in the SRI design proof:

1. The maximum drift rate between any two
working clocks is < p.

2. If two processors are nonfaulty then one
processor can read another processor's clock
to within an error of e.

3. The clocks of the system are initially
synchronized to within 6,.

U. The system executes the algorithm every R
seconds and provides enough CPU time for the
algorithm to complete.

Design assumption 3 corresponds to a process that
would occur at system initialization. Since this
process is performed while the aircraft is on the
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ground, it need not be fault-tolerant. Design
assumption A is strongly dependent on the
scheduling method‘ employed in the system, so a
generic method canot be presented for validation
of this assumption. Hence, only the first two
design assumptions will be analyzed in detail.

Each of these assumptions must be established to a
confidence level consistent with the reliability
requirements. Thus, although life testing of the

. system as a whole can be avoided, life testing
must effectively be performed on certain system
parameters. However, the behavior of these low-
level components of the system are typically far
less complex than the system as a whole and are
thus easier to validate. Furthermore, the formal
proof provides a precise statement of exactly
which properties of the system must be measured.

Validation of an Experimental System

The SIFT system was originally implemented on
seven Bendix BDX-930 processors. However,
extracting synchronization data from that system
is currently difficult. To investigate methods of
validation, the SIFT synchronization algorithm was
implemented on four VAX-11/750 computers in the
AIRLAB research facility at NASA Langley Research
Center (2). The validation method was
demonstrated by the following approach:

1. Identify the mathematical parameters of the
system to be validated.

2. Determine the quantile to which each
. parameter must be estimated.
-3. Estimate the parameters to the required

reliability.

H. Determine the guaranteed maximum clock skew
for the system.

5. Determine if this maximum clock skew exceeds
the value assumed in the system design.

zvalidation Step 1

_The first step in validating the system is to
identify the mathematical parameters of the system
_to be validated. Analysis of the system reveals

that all system parameters can be directly
easured or calculated except the maximum read
-rror e and the maximum drift rate p. These two

ystem parameters must be chosen conservatively

‘lgugh to meet the system reliability-quirements.

is defined earlier, 5 is an upper bound on leqp

 
 

 

eqp is defined in terms of real
‘ rather than observable clock time. The
'§1ng formula defining eqp in terms ofn - _

.~rvable clock times may be shown to be a highly

“ate approximation to the theoretical eqp
+e =A

QD qp

. p(t) is the difference between clocks p
-feal time t (i.e., actual skew at t:

It is necessary to characterize eqp in a system
context. In the system, a processor p reads a

processor q's clock by the following method: At a
pre-specified time, processor q reads its clock
and transmits the value Cq(t,) to processor p.
Upon receiving the message, processor p immedi-
ately reads its clock to obtain Cp(t2). As shown
in figure 2, if the exact communication delay

Xqp were known, then the exact skew could be
1 l t d b A = C t - C t - X .Ca cuae Y qp p( 2) q( 1) qp

Read clock

Processor q

Read clock

(Cp(t2))Processor p 
xqp - cp<:2> — cp(t‘)
Aqp - cp<:,) — cq<:,) - Cp(c2) — cq(:,) - xqp

Fig. 2. Calculation of actual skew, Aqp

Thus, the designer of the synchronization system
chooses a value v approximately equal to E(Xqp) to
be used by the system to compute an apparent skew

Aqp by the following formula:
A =Ct -Ct —.

qp p(“) q(‘)V
Because the communication delay is variable, each

calculation of Aqp is subject to an error of Xqp -
v. There are two components to this error:

=x — = x -E(X )]+,
eqp QD V [ QD QD U

where u = E(X ) - v. The first component, X -QP QD

Eixqp), is the variation due to the random nature
of the communication. The second component, u, is
a constant offset due to the system designer's
error in choosing v. Also, it follows from the

above formula that E(eqp) = u.
72%

Bins - 75
55” N - zcoo

Haxirrum value ' 19.959

   

S G 7 8 B 10 1! 12
Xqp, msec

Fig. 3. Histogram of communication delays.

The distribution of may be obtained from
e

QD

measurements of the one-way communication delays.
In the AIRLAB VAX system, a special Pulse Network
was used to measure this delay. Because the delay
for sending a pulse is considerably less variable
than the communication delay for sending a
message, reasonably accurate measurements of the
communication delay were made by the following
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method: One processor's clock was read, and the
value was sent to a second processor. when the
second processor received the message, a pulse was
immediately sent over the Pulse Network to the
first processor. when the first processor
received the pulse, its clock was read again. By
subtracting the first clock value from the second
clock value, the communication delay plus the
pulse delay was measured. Subtracting an estimate
of the mean pulse delay from these values provides
an accurate measurement of the communication

delay. Figure 3 is a histogram of 2000 such

estimates of Xqp's.

Next, a second method is discussed that provides a
means of estimating both 9 and p using the
internal state information of the synchronization
system. The physics of crystal clocks dictates

that the drift rate pqp between any two clocks q
and p is constant over time. Thus, if the system
is run without synchronization, then the following
model describes the system:

qp(T).

where 6qp(O) is the initial skew between clocks q

T=6 o T
Aqp() qp()+°qp +6

and p at time 0, and pqp is the drift rate between
clocks q and p. Since the A ‘s are computed
every R seconds, a set of qp

A (T(1)), i=1, nQP

can be collected where T(l) = T(0) + iR.

A linear least squares analysis can be used to

 

estimate the parameters 6 (O) and p (see fig.QP QPN).

9700 p = 35.5 psec/sec I

a:p= .0251 usec/sec
3 9600U1
:7
.95009.

<0’ 9400
D
U

: 9300c!

5 9200I-

SB 9100<

9000
120 122 124 I26 I28 130 132 134 136

Time. sec

Fig. H. Least squares fit to measured skews.

Let the residuals from the regression be
represented by ¢, and rewrite the above equation:

Aqp(T) = a + ST + ¢.

If the eqp's are distributed with mean zero, then

B is an estimate of pqp, and the residuals have
's.

Suppose that

a = 6qp(O) + u, and the

approximately the same distribution as the e

However,

E(eqp) =
residuals have approximately the same distribution

as - u. Thus, a histogram of e )'s can be

this may not be the case.
u # 0. Then

e
QP

obtained by adding u to the residuals.
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A = A

GP

Next, a simple independent
will be presented. Since

to estimate u
+ e ,

QP QP

+ A .
QP Pq

_A ’PQ

A + A = e + e + A
GP PG QD PG

Furthermore, since A =QP

A + A = e + e .
QD PQ QP PQ

Thus, E(eqp) = E((Aqp + Apq)/2)

E(epq).
Therefore, u can be
average of several observations of

' E(
since eqp)

estimated by the
(A QP

sample
A /2.

+ DQ)
In a properly "tuned" synchronization system u = 0
to minimize the absolute value of the read error.
The following method may be used to "tune" the
synchronization system. As shown previously, the

eqp's consist of two components, the deviation
from the mean communication time and the constant
offset u. Since u can be expressed as follows:

u = E(Xqp) - v = E(Xqp - v) = E(eqp),
the constant offset can be eliminated by simply

to v. The code in
corrected to use

adding the above estimate of u
the implementation may thus
this new value of v.

be

Validation Step 2

In this step, the required quantile to which the
parameters a and p must be estimated is determined
from a reliability analysis of the system.
Analysis of the failure modes discussed previously
reveals that the system reliability depends on the
following three probabilities of failure:

ph = Prob(one or more hardware componentfailures in a processor)
p, = Prob(two nonfaulty clocks drifting apart

faster than p)
p, = Prob(one or more read errors > e

occurring on a specific processor)

obtained from a MIL STD
The probability ph may be failure data. This217D analysis of component
well-known analysis method will not be discussed
here. A processor failure rate of 10‘5/hour will
be assumed. The probability p, is the measurement
error in determining the upper bound p. This
probability may be made arbitrarily small by
increasing the bound and/or increasing the
accuracy of the measurements (e.g., by using a
larger sample size). The probability of failure
p2 arises from the stochastic nature of the
communication system used to read another
processor's clock. This probability may also be
reduced by increasing the bound e; however, this

is done at the expense of increasing the estimated
maximum clock skew, 5. This trade—off is
discussed in detail in the section "Additional
Observations".

Since p, is the probability of a measurement error
rather than an intrinsic failure mode of the

system, p, can be made arbitrarily small by
improving the measurement technique. Therefore, 3
will be chosen such that p, is small in comparison

with ph, and the required quantile for 5 will be
determined from a reliability analysis of the
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system. Typically, a detailed Markov model is
necessary to calculate the reliability of a fault-
tolerant system. However, for simplicity, no
reconfiguration capability in the system is
assumed, and thus a simple combinatorial analysis
can be used to compute the reliability of the
system. Since the algorithm can tolerate m
processor failures, the probability of m + 1
processor failures during the flight must be
determined. The system is thus a 2—out—of—M
system.

1f the probability of processor failure is

D = Dh * P; + Dz,

then the probability of a system failure during a

T—hour mission, psys, is thus given as:
1 - Prob(0 failures) — Prob(1 failure)

ll

psys ll

1 - [g)p°(1-p)“ - (3)p‘(1-p)3
= 6p2 since p is small.

Given a reliability requirement of p S = 1O'9, a
processor failure rate of ph = 1O"5/hour and p, =
1o‘7, then

pg =w/Pays/6 " Dh ‘ D1= 2.8o9x1o".
Since the bound E refers to a single clock read,
the number of clock reads during a mission must be
determined in order to calculate the quantile

' needed for e. Let

p6 = Prob(obtaining a read error > 2 during asingle clock read).

The probability p2 is easily expressed in terms of

pg
0

D2 1 - (3) pa (1-DE)"
where n (N-1)T/R, (i.e., the number of clock
reads a specific processor will make during a
mission of length T). Using the Poisson

' approximation to the binomial,

ll

92 = 1 * Exp(-npe).

IFurthermore, by a Taylor series approximation
(valid since npe << 1),

D2 = nps = (N—1)(T/R)pE.

= N, R = 30 sec, and T = 10 hours, the

9F failures. The design proof has thus reduced

etstrong assumption of independent clock failure
-.independent communication. This analysis makes
_- tf9ng case for avoiding contention—based
‘ @P“lCatiOn protocols in a fault-tolerant

hitecture.

tion Step 3

.§Fd ‘step in validating the system under
_ Elgation is to estimate each parameter to the
firmed reliability.

Estimating p. It was determined in validation
step 2 that p must be estimated such that the
probability of exceeding design assumption 1 is
1O‘7. To determine the probability that this
design assumption is violated, it is necessary tocalculate

PPOb(pqp > p) for some q and p

where p represents the drift rate between clocks
p and q?

If there are n processors in then system being
validated, then there are n = [ ) drift rates. c . . .
between processor pairs. For simplicity, these

will be referred to as pi, i = 1, nc

Using the linear regression analysis on the

Aqp(T(i)) data described previously, a set of
estimates

/\

can be obtained, where pi is an estimate of the
drift rate between processorApair i and 012 is an
estimate of the variance of pi.

From the experimental data, an estimate of the
upper bound of the drift rates, 3, must be
determined such that Pr0b(Max(pi) > B) = a is
sufficiently small. The following estimate is
easily shown to be adequate:

/\

p = Max(ui)

where ui is defined by:1'1
C

Prob(pi > ui) = 1 - a.

THEOREM. Prob(Max(pi) < p ) 2 1 - a.

PROOF: A

Prob(Max(pi) < p)

= Prob(Max(pi) < Max(ui))

= Prob(p, < Max(ui) A p, < Max(ui) A ... A
pn < Max(ui))

Prob(p1 < u, A pz < uz A ... A pn < un))
"V

II

II:1
= 1 - a.

ENDPROOF.

The ui's are easily obtained by use of thefollowing formula:

= +
A t( e)A“i 91 V’ °i

where

v = ns - 2
ns = number of data points used in the

Kegression analysis to obtain pi and
oi.n

6 = ‘S/1 - a
t(v,e) 9 percentage point of student's t

distribution with v degrees of freedom.

For n > 100, t(v,9) may be replaced by a

percentage point of the Standard Normal
distribution.
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( i)

A regression analysis of the A (T ) data
produced the following table: qp

A A A

Processor pair i pi oi ui

12 1 30.02 0.2687 31.H62
13 2 9.01 0.02fl5 9.1U3
1M 3 35.50 0.0251 35.635
23 M 1M.92 0.095H 15.432
24 5 5.M8 0.0390 5.686
3H 6 40.97 0.0851 U1.H27

The 31's were calculated using 31 = Si + t(v,e)3i,where

noe = 1 - 10" = 1 — 1.667x1o““

and v = ns - 2 = 1998.

Thus p, = 10 '7, which is small relative to ph.The maximum drift rate p is chosen as the maximum

ui, thus

3= 111.2127.

Estimating e. In step 2 it was determined that 5

must be estimated as the 1-pa quantile of the read
error distribution, where pa = 7.805x10"°. Twomethods were developed in previous sections to

obtain a histogram of the clock read errors eqp.
F‘ 5 ' h‘ t f = X -
igure IS a is ogram o leqpl I qp V!

obtained from direct measurements of the one-way
communication times. This data will be used to

illustrate the determination of 3.
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Traditional methods of estimating quantiles are
inadequate for inference with respect to the tail
of a distribution. The traditional nonparametric
method would require a sample size on the order of
10° observations to estimate this large a
quantile. Another traditional technique is to
assume an underlying parametric model of the
distribution or assume some special properties of
the distribution. However, any statistical
inference made would be strongly dependent on the
assumption that the experimental data was
generated from the chosen parametric family of
distributions. Clearly, some other method of
estimating properties of the tail of a
distribution is needed.

Fortunately, a statistical method was developed by
Ishay Weissman for the estimation of large
quantiles of the underlying population
distribution from the k largest observations of a
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random sample (H). The major assumption of the
method is that the underlying distribution
function F is in the "domain of attraction" of

some known distribution function G. This property
is satisfied by a large class of distribution
functions including the gamma, Weibull, normal,
exponential, lognormal, and logistic. Therefore,
the method is essentially nonparametric.
Mathematically this assumption is as follows: If

x1, x2, x3,...,xn is a random sample from a

distribution F(x), and if Zn is the largest

observed x, then the distribution function for Zn

is Fn(x). If there exist sequences an > O and bn
for all n and a distribution function G such that

Fn(anx + bn) -> G(x) as n -> w
for all x where G is continuous, then G(x) is an
"extremal distribution function", and F(x) lies in
its "domain of attraction" (5). This distribution
function G must be from one of the following
families of distributions:

LAMBDA(x) = Exp(-e_X), —m < x < m

PHIa(x) = Exp(-x_a), x > 0, a > o
PSIa(x) = EXp(-(-x)a), x < 0, a > 0

The weissman technique uses only the largest k
values of the random sample. The choice of the k
is arbitrary, although it should be small in
comparison to the sample size, e.g. k=10 and
n=1000. The value of k is chosen prior to the
examination of the data.

Once k is chosen and the limiting distribution
family is determined, one of the following
calculations is performed depending on the family.
In each case below the order statistics of the

random sample are represented by X >= X >= ...1n 2n>= X >= ... >= X .
kn nn

CASE 1 ( G = LAMBDA )

1*c/n QUANTILE
an[-ln(c)] + bn

where a = [n
1 (Xin)/k ) — X1 kn

ll

l|l\/IX
b a ln(k) + Xn n kn‘

CASE 2 ( G = PHI )

1-c/n QUANTILE = (k/c)1/a xkn

where 1/a = [ i lll\’lX 1ln(Xin)/k ) — ln(Xkn).

CASE 3 ( G = PSI )

Since case 3 applies only to negative x, it
is not appropriate for this application and
is not discussed in this paper.

The remaining problem is the determination of the
limiting distribution G. It is possible to test
the hypothesis that G = LAMBDA by testing whether
the set of normalized spacings

D , 2D
1,“ ’ ,...,(k-1)D2 n (k-1),n

BOHNG

Ex.1031,p.285



BOEING 
Ex. 1031, p. 286

 
 
 
 

 

 
 

 
 
 
 

 
 

 

 
 
 

 
 

 
 
 

 
 
 
 

 

 

 
 

 
 

are independent, identically distributed
exponential random variables, where

i,n = in _ X(i+1)n'
similarly, the hypothesis that G = PHI can be
tested by determining whether the normalized

spacings of ln(Xin) are independent, identicallydistributed exponential random variables.
- Standard statistical methods, such as the Gini

statistic (6) are available for testing the
exponentiality of a distribution.

The upper bound e for our system was determined
using Weissman's technique as follows. Prior to
examination of the data, k was chosen to be 20,
(i.e., one percent of the sample), as recommended
by weissman. The experimental data best supports
LAMBDA as the limiting distribution; however,
there was no clear rejection of either one of the
limiting distributions. The standardized form of
the Gini statistic was applied to the 19
normalized spacings of the 20 largest observations
from the sample, and the corresponding observed
significance levels for the tests were:

Standardized Observed

Family Gini Statistic significance level
LAMBDA 0.5262 59.2%
PHI 1.uu9 1u.7%

The inability to choose the limiting distribution
with precision is of some concern here. Examining
the test results for various values of k provides
additional insight into discerning the limiting
distribution family. In figure 6, the
standardized Gini statistics for the LAMBDA and

PHI tests using various values of k are plotted.

0 PH!
lest

LAIBDA
.-' test

G

 
 

fkejection' a = 5%
AcceptanceStandardizedGinistatistic,Wk-‘ m

0 20 40 60 80 100 I20

Fig. 6. Tests for limiting distribution family.

The tests show a consistent tendency towards
-selection of the LAMBDA distribution. In fact,

Ifor some values of k there is a strong rejection
of the PHI and strong acceptance of the LAMBDA.

- ‘ A8 k becomes larger, eventually both models are
rejected since weissman's theory only applies to
the tail of a distribution. Although the

-additional information obtained by varying k
jlntuitiveiy leads to a choice of the LAMBDA

_ _distribution, how to use such information has not
7 b§eU formalized statistically..1

Ag alternate solution to the problem of discerning
Ewe-limiting distribution family is to calculate

he 1‘P quantile from both family models and use
hg most conservative value. However, sometimes
i.

the poorly fitting model gives astronomical values
leading to unacceptable answers.

The remaining calculations are performed with the
assumption that LAMBDA is the correct limiting
distribution. The combinatorial analysis has

shown that E must be at least the 1-pt quantile to
meet the system reliability requirements. Using

the LAMBDA case analysis the 1-pg quantile was
estimated to be 15.383 msec. Using this quantile
to estimate the upper bound E,

3 = 15.383 msec.

The conservative nature of this estimate may be
seen by comparison with the maximum observation,
H.H9 msec.

Validation Step U

The directly measured and indirectly estimated
values of the system parameters must be inserted
into the theoretical expression for maximum clock
skew from the theorem:

[N/(N—3m)l(2a + p[R + 2(N—m)s/NJ)
60 + pR

6
6

G Min(R, e/p).AIWIW<

The directly measured and indirectly estimated
values of the system parameters are as follows:

N = H
m = 1

R = 30 sec
S = 615.33H msec
e = 15.383 msec
p = U1.M2657 usec/sec

The maximum clock skew can be computed from these
values as follows:

5 [N/(N - 3m)](2s + p[R + 2(N-m)s/NJ]
123.061 + 1.65706x10"“[30000 + 3(615.33u)/2]
128.185 msec.

Thus, the clocks will remain synchronized to
within 128.185 msec with probability not less than
1-10"’ if the synchronization period is 30 sec.
The contribution of the second term is small
relative to the first. This reveals that in this

implementation, the clocks are much more accurate
than the interprocess communication subsystem.

Validation Step 5

As discussed previously, communication in a real-
time system depends critically on synchronization
being maintained within a certain bound. If the
calculated skew is less than the bound used in the

design of the communication subsystem, then the
synchronization system has been validated.
Otherwise, the real-time system must be redesigned
if the reliability requirements are to be met.
This may be accomplished by either slowing down
the communications system (i.e., waiting longer
for interprocess data) or by making improvements
to reduce p and/or 5. The trade-off between
performance and reliability will be explored in
detail in the next section.

These validation steps can be reversed to compute
system reliability given a specific design value
for the maximum clock skew, 6. Essentially p is
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estimated as above such that p, = 1O‘7. Then 5 is low-level system behavior axioms, (2) perform a
computed from the formula of the theorem, using code proof of the synchronization code, (3)
these values of p and 6. Next, the probability experimentally estimate the probability that the
that e is exceeded, p2, can be computed and hence system behavior axioms will be violated and

psys determined. Thus, the system reliability is include ‘these failure probabilities into a
determined given a specific design choice for the rel1ab1l}ty énalyslé of the syst?m' The sI?T
maximum Clock skew synchronization design proof provided the basis' for step (1). Step (2) has not yet been

A——————<———d‘““°“al Observations ::::?:::d§IAs:)Ei7o:;%1 tsieppegirmfi gigigreljiffu
detail in this paper. The validation theory was

A real-time communication system relies on

synchronization between processors. The minimum
communication time is the maximum communication

delay plus the maximum clock skew, since the
system must wait at least this long to insure a
data value has arrived before accessing it. This
minimum communication time represents the impact
of the synchronization system on the performance
of the real-time system. As shown in figure 7, as

applied to data obtained from an experimental
system in AIRLAB instead of to actual SIFT data.
The goal of this paper is to define a validation
method rather than specifically validate the SIFT
synchronization subsystem. After the development
of the SIFT data retrieval system in early 198M,
this theory will be applied to the SIFT hardware.

The design proof process reduces the performance

3 150 R = 30‘ of the clock synchronization algorithm to an
3 ph = .,o0OE_4 algebraic expression of certain system parameters.

\ v = 6.265 These parameters, defined by formal axioms,140 p = .4l43E~4 represent worst-case bounds on system performance.
By combinatorial analysis, the system reliability
requirements can be translated to reliability
requirements on these bounds. Because the
estimation of a bound of a random variable is

required, statistical methods applicable to the
tail of a distribution are employed. The
estimated parameters are substituted into the
algebraic expression which calculates the worst-
case performance of the synchronization system.
This estimated worst-case performance (given the
specified reliability constraints) is compared

10-10 10-7 10-4 10-1 against the system design value. This validation
Probability of system failure. p5,, process thus yields estimates of both performanceand reliability.

120

100

80Ixniuuncommunicationtime, 
60

Fig. 7. Performance/reliability trade-off.

the reliability requirement is relaxed, the BE£§:§flE3§
performance of the system increases. Also, the ,
performance is a function of the synchronization )1)
period, R, or the fraction of time spent
synchronizing, S/R. This performance/overhead
trade-off is illustrated in figure 8.

Goldberg, Jack, et. al.; Development and
Analysis of the Software Implemented Fault
Tolerance (SIFT) Computer, NASA CR-1721H6,
198%, pp. 1N5-165.
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The validation method presented in this paper §6E;T7E;rYBFE:—T§§§T~EET uu6_uu8_
exploits the precision with which the formal proof
method reduces the complexity of the system to
verifiable axioms about the system behavior. The
validation method introduced in this paper is
essentially to: (1) perform a design proof of the
synchronization algorithm under the assumption of
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Abstract

The dispersed sensor processing mesh (DSPM)
is an experimental, ultrareliable, fault-tolerant
computer communications network that exhibits an
organic—like ability to regenerate itself after
suffering damage. The regeneration is accom-

plished by two routines — grow and repair. This
paper discusses the DSPM concept for achieving
fault tolerance and provides a brief description
of the mechanization of both the experiment and
the six-node experimental network. The main topic
of this paper is the system performance of the

growth algorithm contained in the grow routine.
The characteristics imbued to DSPM by the growth

algorithm are also discussed. Data from an exper-
imental DSPM network and software simulation of
larger DSPM-type networks are used to examine the
inherent limitation on growth time by the growth
algorithm and the relationship of growth time to
network size and topology.

Introduction

The dispersed sensor processing mesh (DSPM)
is an ultrareliable structure for gathering sensor
data and distributing effector data. An ultrare-
liable system requires an ultrareliable communi-
cations structure as a complementary partner to
the ultrareliable computational element. The DSPM
concept is the forerunner to the ultrareliable
input/output (I/O) network specified in Ref. 1 for
Charles Stark Draper Laboratory's advanced infor-
mation processing system (AIPS).

The reliability of the DSPM network is greatly
enhanced by the ability of the DSPM communication
network to reconfigure (2). Two software algo-
rithms —-grow and repair (2,3) —-perform the
reconfiguration task. This paper describes the
growth algorithm resident in the grow routine and
the effects of the growth algorithm on the charac-
teristics of the DSPM network. The characteris-

tics of the experimental DSPM system are explained
in terms of the experimental results, and the
experimental results are used to certify the valid-
ity of the DSPM simulation software. The result-
ing validated DSPM simulation is used to derive
the generic characteristics for a broad range of
DSPM networks.

Concept

Figure 1 depicts a generic DSPM network taken
from several examples given in Ref. 4. The net-

Wérk is formed with nodes (shown as circles),
links (shown as lines), and a central bus control-

}er (each channel of the quadraplex bus controller
ls shown as a rectangle). The growth algorithm
and other network creation and maintenance soft-

This paper is declared a work of the U.S.
‘Government and therefore is in the public domain. 233
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ware reside in the bus controller. The links

carry the network communications, and the nodes
gather and distribute data. A brief description
of the growth algorithm (Fig. 2) is given;
detailed descriptions can be found in Refs. 2
and 3.

Initially, the growth algorithm grows the net-
work to the nodes surrounding the bus controller
by activating the link (shown as a solid line) to
each node (nodes 1, 2, 3, and 4) and making the
node a member of the network. Activating a link
requires that the destination node not be a member
of the network and that it responds to the bus
controller configuration commands.

In each successive growth cycle, the network
is grown from nodes activated in the previous
cycle until each node is attached to the network
through a tree that has the bus controller as its
root. During the growth process, the network is
unavailable to process inputs to a node or outputs
from a node. If faults exist in the links or in

the nodes, the growth algorithm circumvents the
fault in an "organic like“ regeneration of the
network by way of another configuration. The
fault tolerance of the DSPM concept is a result
of the ability of a DSPM network to reconfigure
around failures.

Mechanization

The DSPM system is a complex, experimental
communications system. To obtain valuable data on
practical implementation issues, the ultrareliable
DSPM communication concept was interfaced to a
state-of-the-art fault-tolerant system and the
tests were run on NASA's F-8 Ironbird simulator.

NASA's F-8 digital fly-by-wire (DFBW) Ironbird
simulator provides a safe, yet realistic means of
testing the complex interaction of a highly reli-
able communication network with a state-of-the-

art, triply redundant, digital flight-control
system that contains redundant computers, sensors,
actuators, and flight-critical software (5).

The DSPM experimental system (for additional
details see Refs. 2 and 3) consists of three major
components (see Fig. 3): the F-8 DFBW Ironbird
simulator (with triplex flight-control computer
and control-law software); a central computer with
simulation software; and a six-node (plus a tri-
plex bus controller where each channel is based
on a 5 MHz MC68000 microprocessor) version of the
DSPM network. The bus controller in the experi-
mental system has relatively low performance; a
production system should be expected to run much
faster. The details of the DSPM hardware imple-
mentation are beyond the scope of this paper, but '
are presented in Refs. 2 and 6.
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Experimental Results

The preliminary tests on the DSPM system
measured the actual performance of the growth
algorithm under varied fault conditions (for the
purposes of this paper, a fault is a static fail-
ure of a port to the off condition). Performance
data for the growth algorithm used on the Ironbird
DSPM network (see Fig. 4) is available for all
failure combinations up to three failures per node
for both the adjacent and disjoint node pairs. An
example of data for both an adjacent and a dis-
joint node pair is shown in Fig. 5. The data dis-
closes two characteristics of the DSPM growth
algorithm: (1) the mean growth time is linearly
related to the number of faults, and (2) although
the growth algorithm is deterministic, there is a
wide deviation in the growth time for a given num-
ber of faults.

The deviation in growth time for a given num-
ber of failures on a given node pair is caused by
the different amounts of time needed to process
different types (2) and combinations of faults.
The differences in growth time for configurations
with the same number of failures is because of the

topology of the network, the position of the node
within the network, and the preferential order of
growth (clockwise in DSPM). These deviations are
not generic to the DSPM approach, but are depend-
ent on the topology and the preferential growth
algorithm. However, the relationship of growth
time to inbound versus outbound ports is a generic
DSPM characteristic. Specifically, on the experi-
mental DSPM system, if a failed port is an out-
bound port (it relays bus controller (BC) mes-
sages to other nodes), the growth algorithm spends
approximately 4.8 msec processing the failed port.
If the failed port is an inbound port (it returns
node responses to the BC), the growth algorithm
spends about 7.7 msec processing the failed port.
The fact that an outbound port must be grown
before the inbound port of the next node can be
grown accounts for the difference in growth time.
Thus a fault on an outbound port can always be
detected sooner than a fault on an inbound port.

while the linearity of the growth times are
influenced by the implementation of the hardware
and software in each DSPM-type system, the linear
nature of the growth times is a generic DSPM char-
acteristic. All fully operable DSPM configura-
tions must have exactly the same number of good
links as nodes and, because the growth time for
good links varies very little, the only difference
in growth time is related to the number of faulty
links. While the time required to determine if a
link is faulty varies, depending on whether it is
used as an inbound or an outbound link, the values
are roughly the same, and the relationship turns
out to be approximately linear.

In Fig. 5, note that for a few faults, the
growth times for failure sets on disjoint and
adjacent node pairs are appoximately the same;
but, as more faults are injected, the disjoint
node pair requires more growth time than an adja-
cent node pair. A single fault in a disjoint node
pair appears the same as a single fault in an
adjacent node pair. Therefore, it is not surpris-
ing that the growth times are similar for a few
faults. As the number of faults increase, the
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failures on the disjoint node pair normally dis-

rupt two or more trees while failures on the adja_
cent node pairs, which share a common link, nor-
mally disrupt a single tree.

Naturally, one might ask what happens if more
failures are injected into the network than are
shown in Fig. 5. Can we linearly extrapolate the
growth time? Unfortunately, the answer is no.
There are two reasons for this. First of all,
each nonlatent fault (a latent fault is a fault in
a link with an existing dominate fault or a fault
in a link that will not be activated) causes the
link associated with it to fail during an activa-
tion attempt. Because valid DSPM configurations
must have a good link for each node in the net-
work, the maximum number of failed links (and
therefore nonlatent faults) equal the number of
links minus the number of nodes (see Eq. (1)).

Maximum number of faults

= number of links - number of nodes (1)

For the Ironbird DSPM network that is used on the

F—8 Ironbird simulation (see Fig. 4), the maximum
number of faults is six.

The second reason that the growth time cannot
be linearly extrapolated provides much better
insight into the behavior of the network. Exceed-
ing the maximum number of nonlatent faults replaces
inbound failures with outbound failures. However,
to see this behavior, latent faults that occur in
links where activation attempts occur must be
counted as faults.

As shown in the following maximum growth time
scenario, when all the faults previously defined
are counted, the growth time still does not exceed
the growth time for the maximum number of nonlatent
failures, even when the number of faults exceed the
maximum number of nonlatent failures. Because the

scenario is constructed with a homogenous fault
type (that is, worst case faults), the linear rela-
tionship of growth time is shown without any devia-
tion. An example of maximum growth time is to grow
the DSPM network with the maximum growth time by
using the following heuristic rules to choose a
worst case fault: (1) failures on an inbound port
contribute more to growth time than failures on an
outbound port and (2) growth at a node proceeds
clockwise with port 0 first and port 3 last.

To achieve the maximum growth time we must
grow a network with as many inbound ports failures
as possible and with growth occurring at the most
counterclockwise port possible. The following
growth phases form the maximum growth time sce-
nario for the Ironbird DSPM network.

Phase 1: Grow out of the most counterclock-

wise port of the BC. To force the growth to BC
port 2, the links to BC ports 0 and 1 must be
failed at one end or the other (see Fig. 6(a)).
To obtain the maximum growth time, the first fail-
ure (at an inbound port) is injected at node 1,
port 0 (N1P0) and results in a growth time of
24.8 msec. The process is cumulative. For two
failures, a failure at N4P0 is added to the
failure at N1PO, resulting in a growth time of
31.4 msec.
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Number of failures Fail vector Growth time
1 N1P0
2 N1P0, N4PO

24.8 msec
31.4 msec

Phase 2: Grow out of the most counterclock-

wise port of node 6. Force the growth to N6P3 by
failing N2P2 and N5P2 (see Fig. 6(b)).

Growth time
Number of failures Fail vector

3 N1P0, N4PO, 39.1 msec
N2P2

4 N1P0, N4PO, 46.8 msec
N2P2, NSP1

Phase 3: Grow out of the most counterclock-

wise port of node 4. Force the growth to port 3
of node 4 by failing NSPO (see Fig. 6(c)).

Growth timeNumber of failures Fail vector

5 N1P0, N4P0, 54.5 msec
N2P2, NSP1,
NSPO

Phase 4: Grow out of the most counterclock-

wise port of node 1. Force the growth to port 3
of node 1 by failing N3P0 (see Fig. 6(d)).

Growth timeNumber of failures Fail vector

6 N1PO, N4P0, 62.1 msec
N2P2, NSP1,
NSPO, N3PO

when six maximum growth time faults are

injected into the Ironbird DSPM network, only six
links remain, which is the minimum number of links
required for this network to function. Any addi-
tional failure must be injected into links that
have already failed. Since all the links have
failed at the inbound end, any new failure would
occur at the outbound end and would reduce the

growth time shown in Fig. 7 (each point in Fig. 7
is the accumulation of all the previous failures
plus the failure listed as a label for the point).
Therefore, the maximum growth time occurs at the
maximum number of faults defined by Eq. (1).

Simulation

Research on systems such as the DSPM is expen-
sive. Because of the cost, building large DSPM
systems or systems with special attributes solely
for research is not feasible. As an alternative,
simulation software offers a means of studying
larger networks with different attributes while
still keeping down the cost.

The simulation software was designed to mimic
the detailed growth algorithm flowchart used in
the development of the DSPM. Each block or group
of blocks in the flowchart was timed experimen-
tally to establish the constituent times for the
simulation. Each function in the flowchart was

functionally implemented in the simulation, and
the appropriate time was added to the total simu-
lation time whenever the function was performed.

The validity of the simulation was established
by exhaustively comparing the results of the simu-
lation with the actual data from similar known
situations. After many simulation runs the simu-
lated growth time for a fault-free network was
a good approximation to the actual time. The
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simulation then had to be validated for faulty
configurations.

The simulation was designed to allow the user
to fail links or nodes. Additional tests using

the fault injection capability established the
validity of the simulation in a faulty environ-
ment. Figure 8 demonstrates the accuracy of the
simulation.

In Ref. 2, the DSPM6 network (Fig. 9) is
determined to be the smallest DSPM-type network

acceptable for applications requiring ultrarelia-
bility. Accordingly, DSPM6 is used as the lower
bounds for DSPM network performance. Because
DSPM16 (Fig. 1) appears frequently in literature
(2, 3, and 4), it was arbitrarily chosen as the
upper bound on DSPM performance. The area between
the bounds is filled in with simulated data from
DSPM8 (see Fig. 10) and DSPM11 (see Fig. 11). All
the simulated networks were grown by using a heur-
istic algorithm to achieve near-worst case growth
times.

The fault-free growth times of all the simula-
ted networks is plotted in Fig. 12. Because of
the linear relationship of fault-free growth time
to the number of nodes in the network, and the
linear relationship of incremental growth time and
failure, a simple model of worst case growth time
(G(n,f)) is possible for a network of nodes (n)
and failures (f). The graphical form for such a
model is shown in Fig. 13. The mathematical form
is given as Eq. (2).

G(n,f) = 3.46n + 7.7f in msec (2)

As an example, the worst case growth time for
a 32-node network with five failures is

G(32,5) = 3.46 X 32 + 7.7 X 5 = 149.2 msec (3)

By restricting the growth simulation to the
maximum growth time scenario, the worst case times
are obtained and the growth time relationship is
linear with the number of failures. For all simu-
lated networks, there is a 7.7 msec increment
between failures. For instance, in DSPM6 the dif-
ference in growth time between three failures
(40.2 msec actual) and four failures (47.9 msec
actual) is 7.7 msec.

Given the fault-free growth time for a spe-
cific network, a good approximation of worst case
growth times can be obtained with a straight line
with a slope of 7.7 msec per failure. Further,
the fact that the relationship is true for four
networks representing three different topologies
(DSPM6, DSPM16, and DSPM8/DSPM11) strongly indi-
cates that the linear relationship is a generic
DSPM characteristic.

The growth time of a network should be lin-
early related to the number of links that the net-
work must grow. Because one link must be grown to
every node in the network, the fault-free growth
time of a 16-node network should be twice the

fault-free growth time of an 8-node network. For
DSPM16, the fault-free growth time is 51.6 msec,
which is approximately twice the 24.0 msec fault-
free growth of DSPM8.

Given 149 msec for G(32,5), or even 127 msec

for G(16,10), one could question whether the DSPM
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growth process is fast enough. During the growth
process, no inputs or outputs can traverse the
DSPM network. As a result, the aircraft would be

flying open loop, and any departure would continue
until the process is over and one control-law
update is complete. This break in the control-law
update certainly must be considered in any vehicle
or system design; however, the maximum growth time
is expected to be somewhat shorter given improved
computational hardware that would be readily
available in any operational application.

Conclusions

Tests show that the generic growth charac-
teristics of DSPM-type systems are independent of
the network topology. They also show that growth
time is linearly dependent on the number of nodes
and the number of failures occurring in the DSPM
network. However, tests show that the growth time
increases as the number of failures increase and

the growth time is bounded. As a result of linear
and bounded growth times, the growth time rela-
tionship can be modeled by a simple, accurate
linear equation.

Fig. 1. DSPM16 generic DSPM-type network.
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An Ultrareliable Fault-Tolerant Control System
(UFTCS) concept is described using a systems design
philosophy which allows development of system
structures containing virtually no comon elements.
Common elements limit achievable system reliability
and can cause catastrophic loss of fault-tolerant

system function. The UFTCS concept provides the‘
-' means for removing common system elements by per-

mitting the elements of the system to operate as
independent, uncoupled entities. Multiple versions
of the application program are run on dissimilar

I hardware. Fault tolerance is achieved through the
use of static redundancy management.

Introduction

The use of redundant concepts enables fault—tolerant

systems to be developed which are significantly
more reliable than their simplex counterparts.
Unfortunately, no system can be developed which
can be shown to be entirely free from design error.
Latent faults can exist which will ultimately cause
failure. The first attempt to launch the Space
Shuttle Columbia was aborted as a result of a
latent design fault in a common system feature:
the computer synchronization scheme. Fortunately,
the failure was not catastrophic. However, it was
costly in terms of financial loss, schedule delay,
and prestige.

Fault—tolerant systems which do not contain fea-
tures common to redundant elements are inherently
more reliable than system designs which do contain
common features. The effect of common elements on
fault—tolerant performance generally are not con-
sidered when the reliability of a given system is
calculated. The difference between concepts con-

taining common elements and those not containing
common elements will become apparent when the
reliability of the operational system is assessed.
Common elements are not required in systems where
the redundant elements operate independently.

The objective of our work, both theoretical and
experimental, is to provide proof that fault-
tolerant systems based upon independent operation
of redundant elements is a practical alternative
for fault tolerant system designs. To this end,
laboratory simulations were developed which allowed
investigation of the responses of various control
system structures in the fault—tolerant environ-
ment, and the structuring and analysis of redundant-
data management (Voting) schemes. A typical exam-
ple of an Ultrareliable Fault-Tolerant Control

System (UFTCS) was constructed, using the architec-

ture proposed by Dunn and Meyer (1), to allow
lnvestigations into the theoretical and practical
bases of the concept with operational hardware and
software. The control system implemented in this
eXP€rimental test bed was that of a UH—lH helicop-
tEr- Some results of the experimental research are
Presented which establish an empirical basis indi-

This paper is declared a work of the U.S.
Government and lherefore is in the public domain.

ULTRARELIABLE FAULT-TOLERANT CONTROL SYSTEMS 84-2650

Larry D. Webster, Roger A. Slykhouse, Lawrence A. Booth, Jr.,
Thomas M. Carson, Gloria J. Davis, and James C. Howard

NASA Ames Research Center
Moffett Field, California

cating that ultrareliable systems which employ inde-
pendent, uncoupled redundant elements can be
produced.

Project History

The postulate that UFTCS systems could be developed
from completely independent elements came from
research begun in the mid-1970s at NASA Ames
Research Center. Dunn and Meyer recognized that
significant increases in the computational power of
microelectronics, coupled with similar decreases in
their cost, size, and weight would permit the
development of ultrareliable fault—tolerant system
designs (1). They developed a system structure
which uses an efficient blend of hardware and soft-
ware to achieve fault tolerance based upon indepen-
dent redundant elements. The resulting UFTCS sys-

tem concept consisted of asymptotically stable
independent control elements in a parallel, cross-
strapped system environment. Fault tolerance was
achieved through the use of static redundancy
management (2).

Static redundancy management was previously imprac-
tical because of the enormous penalties of cost,

size, weight, and power incurred in n—module (rep-
licated) redundant systems. Because of this, the
SIFT (3) and FTM(4) fault tolerant programs con-
centrated on hardware conservation techniques based
on dynamic redundancy management. These techniques
trade off hardware size for software and general

system complexity. The current computational power
available in today's microelectronic technology
makes possible the use of N—module, static redun-
dancy in fault—tolerant system concepts.

Using the original work as a basis, the authors
have developed laboratory facilities, simulators,
and an operating experimental test bed capable of
examining the fundamentals of the theoretical work.
The laboratory has the capacity to synthesize and
analyze ultrareliable fault-tolerant systems con-
cepts. The experimental test bed provides a real-
time implementation of a UH-1H helicopter control
system and is used to examine the characteristics
of independently operated fault—tolerant elements.
It consists of autonomous elements configured to

operate independently, in parallel, and can be
arranged in quadruple, triple, or dual redundant
configurations. The UH-1H control algorithm imple-
mented is asymptotically stable (5,6).

Ultrareliable Concepts

Ultrareliable Fault Tolerance-A Definition

Ultrareliability can be achieved in a fault-tolerant
system by eliminating the potential of system fail-
ure due to latent design errors which exist in
functions held "in common" among the redundant ele-
ments. The presence of these latent common faults
in any design can be assumed. Reliability analyses
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of fault-tolerant systems do not account for the
presence of the latent design error (some general
work has, however, been accomplished in this
area (7)). Therefore, the demonstrable reliabil-
ity of a fault—tolerant system which contains com-
mon failure modes will be less than the calculated

reliability due to the presence of latent design
faults. Ultrareliable fault tolerance can be

defined as "a concept which produces ultrareliable
systems that have the capability of delivering
expected reliability."

Ultrareliable Fault Tolerance-The Criteria

Historically, the development of fault-tolerant
systems has been motivated by the persistent need
of the user for ever—increasing system reliability.
Numerous fault—tolerant system concepts have been
developed to satisfy this need. Each fault-
tolerant structure is constructed attempting to

satisfy two basic criteria: (1) the redundant sys-
tem elements must be independent and (2) the redun-
dantly generated outputs must be unambiguous.

It is the relative compliance with these two cri-
teria which determines the inherent reliability of

a given fault-tolerant structure. In the past, it
has not been possible to comply completely with
both criteria for reasons which are discussed
later. Usually, a satisfactory compromise between
compliance and system structure will be reached
which satisfies the second criterion, but only

partially satisfies the first.

On initial consideration, it appears that these
two criteria are mutually exclusive. The first
condition establishes that the redundant elements
must be independent and totally autonomous with no
common features. But the second criterion requires

that the outputs produced by the independent redun-
dant elements cannot be ambiguous. For functioning
elements, the output values which are generated
must be close enough in value throughout time so
that logical comparisons can be made. These com-
parisions are performed by a portion of the system,
usually known as the "voter," which is responsible
for determining the failure status of the redundant
elements.

Independent Elements—-A Historical Perspective

It would seem that independent elements executing,
for example, a flight control algorithm would not
produce control values which could be logically
voted for any length of time. Under certain con-
ditions, this has been experimentally shown to be
the case. The original system architecture of the
AFTI-F16 triplex, fault—tolerant system was struc-
tured such that the elements were independent.
However, tests of the system, as described by
Mackall (8), disclosed significant differences
between redundantly generated control values. The
magnitude and unpredictability of the discrepancies
made channel selection and fault detection virtu-

ally impossible. In attempting to comply with the
first fault—tolerant criterion, it became impossi-
ble to fulfill the second. Steps to correct the
problem were implemented. A second case, described
by Osder (9), disclosed the results obtained from
experimental hardware—in-the-loop simulations of
tri/quadraplex fault-tolerant systems employing
independent elements. As with the AFTI—Fl6 control
system experience, significant differences existing
between independently generated redundant data were

recorded and a method was devised to correct for the
differences. It is interesting to note that both

systems solved the divergence problem by implement-
ing a form of cross-channel equalization to force
the control values generated to conform to each
other. Regardless of the technique employed, the
intent of cross-communications between the redundant
elements is the same. Osder (9) properly describes
the need "to correct static or long—term differences
(between'the control law processors) so that the
channels track . . ."

However, the use of cross-channel communications to
force the generation of votable, redundant, output
sets violates the first premise upon which ultra-
reliable concepts are based: the system elements
must be independent. Cross-channel communications
are needed only if static or long—term differences
between redundant elements exist. Both require-
ments for the development of ultrareliable fault-
tolerant systems are met by a systems concept which
contains independent elements whose outputs do not
produce long—term differences. In the next section,
the mechanism through which these differences are
produced is demonstrated. Several simple techniques
which may be employed to cause long—term differences
between redundant element outputs to effectively
disappear without resort to cross-channel communi-
cation is then displayed in a later section.

Sources of Common Elements 

The generation of fault—tolerant system concepts
based upon independent elements requires the imple-
mentation of certain philosophies which maintain
the independent relationship. By specifying that
the redundant elements must be independent, systems

are produced which are common element free. Common
elements can reside not only in the hardware, but
also in the application programs embedded in the
hardware and the philosophies involving redundancy
management. All three areas of the system structure
contain the human element. The sources of common-

ality in fault—tolerant systems are: (1) use of
global redundancy management schemes, (2) use of
redundancy synchronization, (3) cross-communication
between redundant elements, (4) replication of
identical hardware, and (5) replication of identi-
cal application programs.

Common Element Free Concepts

Unsynchronized Operation. The need for tight syn-
chronization of the redundant elements is predicated
on the requirement that the output values generated
by these elements be votable. Synchronization is
used to force the redundant elements to march in
lock-step, transducing input state variables
together and providing computed outputs for voting
simultaneously. Synchronization is used because it
forces the redundant channels to track, thereby
making the voting process simple. Thus, synchro-
nization fulfills the criterion that the generated
outputs must be unambiguous. However, a synchro-
nized fault—tolerant system violates the criterion
that the redundant elements must be independent.
Because of this, the synchronized system cannot ful-
fill projected reliability as the synchronization
scheme (hardware, software, and human element) rep-
resent an uncalculated common element in which a
latent fault will cause total loss of system func-
tion. Further, synchronized systems tend to con-
tain other sources of common elements such as the
use of identical hardware and application programs.
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To make the resulting system more reliable, unsyn-
chronized redundant elements should be used.

Multiple—Version Redundant Elements. The same
reasoning can be invoked to discuss the use of
(1) identical hardware, (2) identical application
programs, and (3) cross communication. All three
methods of implementing redundancy violate the
independence criterion. The human element is
involved with the development of each. They can,
therefore, contain latent faults embedded into the
design as a result of human error which, when dis-
closed, could lead to catastrophic loss of system
function. The use of cross-channel communication
is unnecessary if the outputs produced are unam-

biguous. The use of identical hardware and appli-
cation programs should be supplanted with the use
of dissimilar redundancy for each item. The voting
techniques implemented need not be identical; dif-
ferent voting philosophies may be used.

Static Redundancy Management. Independent opera-
tion of system elements obviates the use of the
global or dynamic forms of redundancy management.
The philosophy of static redundancy management is
employed instead. Static redundancy management
eliminates the interelement coupling found in fault-
tolerant systems which employ dynamic or analytic
redundancy management. The static method of redun-
dancy management may best be described as manage-
ment wherein nothing of system—wide significance
occurs to the system structure on the advent and
detection of elemental failure.

Static redundancy management eliminates the need
for global redundancy managers performing dynamic
reconfiguration of the system. Statically managed
systems do not have the common element represented
by the global management scheme and are therefore
more reliable. Moreover, static redundancy manage-
ment does not require system-wide knowledge of how
the system can fail, global knowledge of the current
fault status of the system, nor development of any
system-wide reconfiguration strategy. The static
fault managers are autonomous entities which neither
share fault status nor cause any external activity
when failure of system elements are detected.
Basically, it is the function of the manager to
control the flow of redundantly generated data from
"Task A" to "Task B" as shown in Fig. l. Incoming
data sets are correlated by the voter and only
uncorrupted data reach the following task.

In conclusion, fault-tolerant systems employing
independently operated redundant elements controlled
through static redundancy management and whose sys-
tem elements perform different versions of the
application programs (both process and redundancy
management) in dissimilar hardware are inherently
more reliable than those which do not.

Sources of Channel Divergence

Ultrareliable systems can only be generated if the
elements which perform redundant processes are
functionally independent and the outputs they pro-
duce are unambiguous. However, the system design
Practices which have currently attained industry-
wide acceptance do not allow for independent opera-
tion of the redundant elements. The need to pro-

duce unambiguous results has led industry to

flevelop methods which obviate the sources of
channel divergence." These methods also cause

the redundant elements to become highly coupled and

Variation between Personal Clocks.

CORRELATED
DATA

/
A AND B ARE TASKS
V IS VOTING PROCESS

 
REDUNDANTDATA

Fig. 1 Static redundancy management with
independent elements.

dependent. It is clear that other methods need to
be found which allow for both unambiguous output

and independent elements. But it is first neces-
sary to fully understand the origins of channel
divergence and the effect that each source has upon
the magnitude of the divergence between channels.
One important variation in philosophy will be intro-
duced which takes the criterion of unambiguous
results literally. In the fault—tolerant system,
it is not necessary that the agreement between
results, as determined by the system voting ele-
ments, be perfect. It is only necessary that the
results not be ambiguous. It is acceptable to
relax the voting criteria to one which, for exam-
ple, will tolerate long term (lO+ sec) channel dif-
ferences of 1% of full scale, and short term differ-
ences (300 ms) of 3% or 4% of full scale. This
relaxation has little or no effect on field
reliability.

As shown in

Fig. 2, each redundant computer contains a source
of "personal time." The base of this time is usu-
ally a crystal-controlled oscillator within each
computer. It is a practical impossibility that the
relative passage of personal time noted by Com-
puter I will be identical to that noted by Com-
puter 2 or Computer N at any instant. with all
other factors equal, results of computed functions
which are based on personal time will vary from
computer to computer. Digital integration is a
process affected by the computer's perception of
time. Time differences between computers appear as
if the constant of integration is varied between
the N computers. For processes which are cyclic
(roll or pitch control, etc.), the divergence
between results peaks when the cycle peaks and
returns to zero when the cycle returns to its null
point. Channel divergence does not accumulate, and
can be made small through proper specification of
the time accuracy between redundant computers. For
integration processes which are not cyclic, such as
are found in navigation, the perceived differences
in time accumulate. Given sufficient time, channel

divergence (caused by various channels wanting to

241

BOEING

Ex. 1031, p.296



BOEING 
Ex. 1031, p. 297

'—;a

F____.____

  
 

CONTROLLER1

SAMPUNGIN

- CONTROL LAWSPERSONNELTTME

 

  
 
  

  

  
  
 

CONTROLLER2

SAMPLINGI/F -

- CONTROL LAWSCONTTNUOUSSTATEVARIABLES
 

CONTROLLERN

SAMPLING I/F
—

I CONTROL LAWSPERSONNELTTME

 

 

Fig. 2 Independent redundant controllers.

be in different places at the same instant of real
time) will grow until channel failure is declared
by the voter. If mission time is short compared
to the intercomputer time drift rate, then this
effect can be ignored. If mission times are long,
such as in autonavigation spaceflight, this varia-
tion must be taken into account.

Personal Clock Inaccuracies. The personal clocks
shown in Fig. 2 not only vary relative to each
other, but drift relative to the value of real
time. If the application program presumes a knowl-
edge of real time (e.g., a Euler first order inte-
gration) and the real time differs from presumed
time, output variations from proper outputs (those
generated if the presumed time were equal to real
time) occur from the point of view of the voter.
As above, integration errors caused by cyclic oper-
ation of the system return to zero when the system
returns to its initial condition, and noncyclic
errors accumulate.

Bias, Scale, and Nonlinear Factor Variations. The
sampling interfaces shown in Fig. 2 are replicated
and independent. As physical devices, it is not
possible to produce N samplers with identical
properties. Therefore, even if the state variable
set was transduced at exactly the same moment in
real time, it can be assumed that each independent
computer will subsequently not contain exactly
identical digital values for each of the variables.
The differences appear as bias, scale, and non-
linear variations in the sampled input data sets
from computer to computer. When the application
program operates on different data, different
results will be recorded at the voter. When the

control law contains free integrators, the effect
is pronounced as the effect is summed from cycle to
cycle.

PERSONNEL TIME ACTUA‘now

Sampling Skew and Sampling Rate. These two related
parameters have the most pronounced effect on the
channel divergence. State variable dynamics, sam-
pling rates (the data are processed between sam-
ples), and varying sample skews will combine to
produce situations where the channel divergence
varies in what would seem a random manner. How-

ever, if all of the system variables were known,
the process is actually deterministic. A simple
timing diagram, Fig. 3, displays a possible rela-
tionship of the N independent computers shown in
Fig. 2. Note that in independently operated redun-
dant elements, both the sample skew and sample rate
may vary with time.

CONSTANT
SAMPLE

RATE

/ \
COMPUTER1-\ k TT T

CONSTANT\ \sxexw ‘ * X; \ *
VARIABLE\ \ [SKEW T / VARIABLE

T T T SAMPLE’ ‘ RATE

0 50 100 '150 200 250
SAMPLET1ME,MS

Fig. 3 Sample rate and sample skew.
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If redundant processes do not sample dynamic state
variables at the same instant of real time, varia-
tions between redundantly computed outputs will be
recorded by the voter. Sampling skew is the dif-
ference in time between input state variable sam-
ples taken by one redundant computer relative to
the sample time of any other. The sample skew rela-
tionship can be fixed or can vary as a function of
the loop time of the application program. Presume,
for example, that Computer 1 and Computer N have
exactly the same real time sampling rate (say
20 ms) and are identical in all other ways except
that Computer N always samples data 9.3 ms after
Computer 1. As the value of the input data is
changing from instant to instant, Computer N will
"see" different values for sampled variables than
will Computer 1. If a particular parameter is
increasing in value, then Computer N will see a
larger value than will Computer 1. As the output
of the computational process is based upon the
value of the input parameters, the redundant com-
puters must produce output values which are differ-
ent. The instantaneous amount of channel divergence
recorded at the voter is dependent upon the absolute
difference of the variable value between the time

it is evaluated by Computer 1 and Computer N (how
fast the parameter is moving). and how the parameter
is used by the control law.

Two factors dealing with sampling rates affect chan-
nel divergence: the absolute real time sample rate
and the relative sampling rate of one computer to
another. The first factor, in conjunction with
sampling skew, determines the absolute difference
between the value sampled by Computer 1 and the
value sampled by Computer N for state variables
which are dynamic. For a given variable dynamics
and sampling skew, increasing the sampling rate for
all of the redundant computers will cause the abso-
lute value difference between samples to decrease.
Regardless of inter—computer skew, the amount of
channel divergence decreases as sampling rate
increases.
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If the redundant channels have different or dynamic
(e_g., data driven programs) sample rates, the sam-
pling skew of Computer 1 to Computer N will vary
with time. The closer the times are to each other,
the slower the skew varies. This can effect chan-
nel divergence by causing the relationship of the
redundant channels to change with increasing time.
Depending on the dynamics of the sampled data, this
can either increase or decrease channel divergence.

use of Free Integrators. "Integral control” is an
extremely useful tool to the control systems
designer. Its main use is to control long-term
variations in or compensate for incomplete defini-
tion of the state of the plant being controlled.
It provides zero—error, steady state control of
the plant. Integrators also contain the sum of
all past events occurring at the input to the inte-
gration process. If the control laws processed by
the redundant computers of Fig. 2 contain free
integrators, then the sampling, skew, and personal
time differences will cause the output values pro-
duced by the integrators to vary in effectively a
random fashion. For instantaneous input differ-
ences, the same may be said for lead/lag or
constant—gain circuits. The difference with the
pure integrators is that when the input difference
goes to zero, the difference between the integra-
tor outputs will not. The integrator will "remem-
ber" the past history and maintain the difference
indefinitely. Given that the process of channel
divergence owing to integration is effectively a
random one, scenarios can be easily constructed
wherein the integrators cause the channel diver-
gence to increase to indefinitely large values.
Lead/lag and constant-gain elements do not con-
tribute to long-term or steady state channel
divergence.

Nullifying Channel Divergence-A Methodology

The factors which cause channel divergence are a
function of the practical constraints in producing
redundant (replicated) elements, and the skew/
sampling relationship between them. These involve
the method of input data collection of each redun-
dant member. In cycling through the transfer
function, which must be identical from redundant
computer to redundant computer, output values are
produced which are predicated on the sampled value
of the input. At any given instant, the redundant
values produced by independently operated redun-
dancy will be different. To produce unambiguous
results, the tracking error must be kept within
acceptable limits. Unambiguous means, for example,
that the channels track to within 1% of full scale

on average and the instantaneous variations cannot
exceed 4% of full scale. Also the time to declare
a fault can be extended from one or two frames to
several seconds of disagreement. Nothing is lost
through relaxation of the failure—detection param-
eters. The fault-tolerant structure will not prop-

agate improper or faulty data. what is gained is
a relaxed failure criterion which permits the
fault-tolerant system designer to employ design
techniques that do not require common elements in
the system structure: As the results do not have
to agree exactly, different application programs,
different voting routines, dissimilar hardware,
and independent redundant elements may be employed.
Common latent design faults will not then exist if
the concept of static redundancy management is also
employed.

Use of Asymptotically Stable Controllers. The dif-
ferences which are inherent between independently

operated redundant computers cannot be allowed to
cause channel divergence which exceeds a reasonably
small time/magnitude threshold at the voter. The
threshold need not be static, but can be varied as
a function of the dynamics of the voted variables.
Instantaneous differences caused by the mechanics

of data sampling and time generation can be mini-
mized by specifying sufficiently tight tolerance
on the hardware that constitutes these functions.

This specification is the one item over which the
designer has good control. Free, pure integration
terms cannot be allowed in the control system

design. However, the integration terms can be
approximated by lead/lag elements with long time
constants. What is lost is the steady state zero

tracking error feature of control loops which
employ free integrators. What is gained is that
the lead/lag element will "forget" the short-term
differences between redundant channels. Instanta-
neous differences will still exist, but their
effects on channel output will be reduced to zero
as time passes.

A laboratory simulator has been developed which
provides insight into the mechanics of the inde-
pendently operated fault—tolerant processes. It is
a computer model of a dual—redundant, fault—tolerant
system. Redundant-element cycle times, initial
skews, contro1—system parameters, and more may be
varied by the operator. The simulator outputs as
an x-y plot the current state of the input (Input)
and plant (System Output), the values produced by
the redundant control elements (Output A, Output B)
and the difference between the outputs of the two
elements (Error A—B) versus time for each run.
Currently, two simple voting algorithms have
been modeled: (1) Voter Output equals Channel A
Output, and (2) Voter Output equals the average of
the current values of Channel A and Channel B
outputs.

The two models of a simple redundant control system
run on the simulator are displayed in Fig. 4.

The plant being controlled in this example is
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M LE KO+K1 
A s(+q

SYSTEM
INPUT OUTPUT

 
 
  

 

 SAMPLEH Ko+K1
S(+d

Fig. 4 Fault—tolerant system using integral
control.
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represented by a 1/3 + 1 term. A variety of
waveforms may be input to the system. The control
system is built as a unity—gain feedback system
with two redundant controllers and one voter.
Each controller consists of two control elements
in the forward loop. The first is a simple,
constant-gain term. The second may be a free
integration term (1/S) or a lag term (l/S + e) as
determined by the operator. Plots of system
responses to varying parameters of loop times,
skews, voting algorithms, and input waveshapes
were made. The performance of the control ele-
ments using free integrators is compared to the
performance of the control elements which use lag
elements (note that this controller is asymptoti-
cally stable). In this control system, channel
divergence, which results from the redundant chan-
nels responding to different input data, will dis-
appear with the passage of time. However, a price
must be paid for the improvement in performance.
The steady—state error is not zero. Typical
values for K0, K1, and e are, respectively, 2.1,
0.2, and 0.01 or 2.8, 4.0, and 0.1. This will
leave the system with a 0.5% to 2.0% steady—state
error. This steady—state error is sufficiently
small that it is within the overall accuracy of
most flight systems. Additionally, new control-
system designs can be structured to compensate for
the error.

Plots are presented to show the response of the
two types of control systems to various inputs.
These plots demonstrate the effect which sample
skew and sample rate, and bias, scale, and non-
linearities of the sampling interface have on chan-
nel divergence. The response of the integral con-
trol system to a step input is shown in Fig. 5.

K0 = 2.8
K1 = 4.0

= SEC
TSKEW = 0.02 sec

20 +lNPUl'T==0

 
  

 

  

T5

SYSTENIOUTPUT

L0

ERROR (A-B) |NPUTT= 10.0123 secPARAMETERVALUE

Fig. 5 Integral system (Fig. 4) step response.

The voting philosophy adopted here is "choose Chan-
nel A." Channel A sees the step first and produces
an output for the plant. The state value for the
plant, which has started to move, decreases the
magnitude of the error signal seen by Channel B
when it samples the variable 20 ms later. Because
Channel B always samples 20 ms after Channel A
(their clocks are highly accurate and they are run-
ning the same application program), Channel B con-
sistently sees smaller values for the error signal
during most of the transient response time. When

the system has achieved its steady state, a constant
channel divergence of about 15% of the step size has
been introduced into the system. At 10.0123 see,
the value of the input is returned to zero. The
relationship of sample time to system dynamics is

important. If the input in Fig. 5 had been
returned to zero at exactly 10.0000 sec, the steady-
state channel divergence generated by the step input
would go to zero. However, using the scenario of
Fig. 5, bringing the input back to zero causes an
increase in the steady—state channel divergence to
302 of the amplitude of the original step. Notice
that the system has returned to its original null
state, but the output values of the redundant chan-
nels have become highly divergent. The steady-
state channel divergence is due solely to the pres_
ence of the integrator term (4.0/S) "remembering"
the different sequence of input events as seen by
each channel.

  
 
 

 

INPUT T =10.0123 sec
OUTPUTA ‘ ——PARAMETERVALUE
-I-SAMPLE = 0.05 sec

TSKEW = 0.02 sec

 ll.._I:l_._l 1__L1:4

0 2 4 6 8 10 12 14 16 18 20
TIME, sec

Fig. 6 Asymptotic system step response (Fig. 5).

Now, compare the response of Fig. 5 to that of
Fig. 6. Exactly the same conditions and sequence
of events were established for this simulation,
except that the integrator has been replaced by a
(4.0/S + 0.1) term. The response of this term is
slightly slower than that of the integrator. The
steady—state gain has decreased from infinity to
40.0. But notice the significant effect this slight
modification to the integration term has made. The
channel divergence generated by the asymptotically
stable controller at Time = 0.0+ is much less
than that generated by the integral control system.
Further, the channel divergence decays to zero as
Channel B "forgets" the different sequence of input
events and begins to operate solely on the currently
available information. The response of the plant

(system output) to the two controllers (integral
versus asymptotic) is virtually indistinguishable.
At 20.0 sec, the asymptotically stable redundant
controllers have reduced the channel divergence to
0.0% of the value of the step (versus 30% for the
integral control system). The voter must tolerate
instantaneous channel divergence which may be very

large (three units for the first 20 ms after the
advent of the step in Fig. 6). The average channel
diVeYSen°e f°r asymptotically stable redundant con-
trollers, however, can be made very small.

Increased Sampling Rate. As stated earlier, the
channel divergence which can be expected from
independently operated redundant elements is very
heavily dependent upon the dynamics of the input
relative to the sampling rates of the redundant

244

BOHNG

Ex.1031,p.299



BOEING 
Ex. 1031, p. 300

 

 

 

 

 

elements if the samples are not taken concurrently.
This is brought forth in Figs. 7 and 8. In the
former, the sampling rate of both redundant ele-
ments is 50 ms with Channel B's sampling time
skewed 20 ms after Channel A. The voter algorithm
is "Choose A." A sinusoidal input is injected into
the system. The dynamics of the input and plant are
sufficient to cause the channel divergence to oscil-
late about zero with a peak magnitude of about
0.25 unit. Notice that as the rate of change of
the input decreases, the value of the channel diver-

gence decreases, thus clearly demonstrating the
sensitivity of channel divergence to input dynam-
ics. The simulation shown in Fig. 8 is equivalent
to that of Fig. 7 except the sampling period of the
redundant elements has been decreased to 10 ms.
Notice that decreasing the sampling period to 10 ms
decreased the channel divergence to 20% of its
original value. This demonstrates that the channel
divergence is also sensitive to the sampling rate.
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K1 = 0.2

= SEC
= SEC

6 = 0.05

.OUTPUTANc
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Fig. 7 Asymptotic system—-sine response with slow
sampling rate.
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Control Time. The time at which state variables

are sampled is of utmost importance to the amount
of channel divergence which will be experienced.
To a lesser extent, the relative variation in time-
keeping between elements will also affect channel
divergence. Obviously, if the redundant channels
can be made to sample at nearly the same time,
channel divergence will be created only as a result
of the variations in the sampling interfaces dis-
cussed above. This can be accomplished without
resort to cross communication between channels.

Each redundant element can be given access to a
redundant clock whose time data enters the system
in exactly the same way as any sensed variable.
If the redundant elements are programmed such that
state variables are to be sampled at each 50 ms
boundary and if the latency of the redundant time
data is small, it can be shown that the sampling
time of the redundant elements can be made to

approximately converge. The coincidence of the
sampling would depend solely on the uncertainty in
each element of the actual value of time. Control-

ling time will eliminate the drift of time between
computers for long—duration missions. The applica-
tion programs would return to being frame-based.
However, the redundant elements are still indepen-
dent entities. Channel divergence is significantly
decreased and the use of asymptotically stable con-
trollers is still required.

Experimental Tests

A working example of a UFTCS system has been con-
figured and tested at NASA Ames Research Center.
It is a microprocessor-based, quadraplex, redundant
control system configured with independently oper-
ated redundant elements. Sampling times were delib-
erately made highly asynchronous with cycle times of
the application program being data driven and vary-
ing from 35 to 52 ms. Total real time control of
all four axes of a UH—lH helicopter is provided
both in simulation and flight test.

Manned Flight Simulations

Laboratory and manned simulation testing of the
device have proven highly successful. Several hun-
dred simulated "flight" hours have been logged to
date. The four channels have demonstrated accept-
able, votable, levels of channel divergence. Fig-
ure 9 shows an expanded View of the four redundant

I
P9 N

1
N (A)

  
|
N -D COMMANDER

COMMANDEDPO&TKNLdw
30 32 34 36 38 40 42 44 46 4%

TIME, sec

Fig. 9 UH—lH pedal position——midvalue select
voter.
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controls for the pedal axis during 18 sec of a
500 sec flight in the manned flight simulator. The
voting algorithm employed was a version of midvalue
select. The control theory employed was that
described by Meyer and Cicolani in Ref. 6. As can
be seen, the redundant control values generated
remain well within 0.05° of each other. Over the

entire flight, and other flights, the redundantly
generated control values for each of the four axes
remain within 0.l° of being consistent.

Calculated Reliability of the Test System

A detailed reliability analysis of the UFTCS struc-
ture was conducted by Curry/Frey of Search Tech-
nology and Vandervelde of MIT. The hardware devel-
oped for the test system was used as a model, and
the study considered potential configurations com-
bining quadruplet, pentad, and hexad members. Vot-
ing philosophies considered that simple voters would
allow the system to fail to two operating, and
"smart" voters could allow the system to fail to
one remaining operative.

The results of the analysis show that the probabil-
ity of system failure for the first 10 hr of a
helicopter flight using a pentad UFTCS (excluding
the unreliability of the actual sensors and the
actuation hydraulics) with simple voters is
8.6 X 10711. The system is based on microcomputer
technology with the total volume of a pentad UFTCS
controller being less than a small suitcase, with
the elements dispersed throughout the controlled
environment. In the air-transport environment,
under the same conditions, the probability of sys-
tem failure is 2.9 X l0'11. In space applications,
such as the Space Station, the 2 week unattended
probability of failure is 2.4 X l0_7. As the sys-
tem contains virtually no common elements and is
not subject to latent common design failure, the
delivered reliability of these systems should
approach the calculated figures.

Conclusions

Fault—tolerant control systems can be configured
from independent, autonomous, redundant elements.
Made from dissimilar hardware, processing different
versions of the application programs, and control-
ling system-fault status through the use of static
redundancy management, these systems assume the
property of ultrareliability. Systems so struc-
tured do not possess sources of latent common-

design faults, and their demonstrated field reli-
ability will approach predicted system reliability.

Channel divergence normally encountered in fault-
tolerant systems using independent redundant ele-
ments is caused by sampling and time differences
between channels and the use of integral control

theory. Based on experimental evidence, channel
divergence can be decreased to levels which are
readily voted through (1) the use of asymptotically
stable control laws, (2) sampling rates which are
adequately rapid relative to the frequency response
of the total system, and (3) forcing sampling times
to converge.

References

(l) W. Dunn, J. Johnson, and G. Meyer, "A Fault
Tolerant Distributed Microcomputer Structure
for Aircraft Navigation and Control," Four-
teenth Asilomar Conf. Circ. Syst. Comp.,
IEEE Cat. No. 80CHl625-3, Nov. 1980

(2) E. Yeh, "Applied Computation Theory, Analysis
and Modeling," Prentice Hall, pp. 352-359,
1976

(3) J. Wensley, L. Lamport, J. Goldburg, M. Green,
K. Levitt, P. Melliar-Smith, R. Shostak, and
C. Weinstock, ”SIFT: Design and Analysis of a
Fault Tolerant Computer for Aircraft Control,"
Proc. IEEE, Vol. 66, No. 10, pp. 1240-1255,
Oct. 1978

(4) A. Hopkins, Jr., T. Smith, III, and J. Lala,
”FTM-A Highly Reliable Fault Tolerant Multi-
processor for Aircraft," Proc. IEEE, Vol. 66,
No. 10, pp. 1221-1239, Oct. 1978

(5) G. Meyer, L. Hunt, and R. Su, "Design of a
Helicopter Autopilot by Means of Linearizing
Transforms," Advances Guid. Cont. Syst.,
Advisory Group for Aerospace Res. & Dev.,
pp. 4-1 to 4-11, AGARD-CP-321, 1982

(6) G. Meyer and L. Cicolani, "Application of Non-
linear System Inverses to Automatic Flight
Control Design-System Concepts and Flight
Evaluations," Theory Appl. Optimal Cont. Aero-
space Syst., Advisory Group for Aerospace
Res. & Dev., pp. 10-1 to 10-29, AGARD-AG—25l,
1980

(7) R. Luppold, E. Gai, and B. Walker, "Effects of
Redundancy Management on Reliability Modeling,"
Proc. 1984 Amer. Cont. Conf., pp. 1763-1770,
June 1984

(8) D. Mackall, "AFTI-F16 Digital Flight Controls
System Experience," First Annual NASA Aircraft
Controls Workshop, NASA Langley Res. Cen.,
Oct. 1983

(9) S. Osder, "Generic Faults and Design Solutions
for Flight-Critical Systems,” In: Guidance
and Control Conference, Coll. Tech. Papers
(A82-38926 19018), New York, Amer. Inst. Aeron.
and Astron., pp. 509-518, Aug. l982

246

BOHNG

Ex.1031,p.301



BOEING 
Ex. 1031, p. 302

SESSION 9 SIGNAL PROCESSING

Chairmen:

Dr. Gerald Palatucci

Naval Air Development Center

Dr. Bjorn Bjerede

Linkabit Corp.

This session deals with both the algorithmic and computational aspects of communications signal
processing, including techniques for filtering and frequency hopping.

BOEING

Ex. 1031, p. 302



BOEING 
Ex. 1031, p. 303

BOEING

Ex. 1031, p. 303



BOEING 
Ex. 1031, p. 304

SIGNAL PROCESSING USING DIGITAL LATTICE FILTERS 84-2651

Leonard Chin

Naval Air Development Center
Warminster, Pennsylvania

Abstract

The "order recursive" feature of a digital lattice
filter is discussed relative to the solution of a
linear prediction problem using Levinson's algo-
rithm in the determination of the order and coef-
ficients of the autoregressive model. It is shown
that the number of filter sections can be added or
deleted without recomputing the coefficients of the
remaining sections. Other benefits such as numeri-
cally stable, computationally efficient, etc. can
also be derived from the lattice structure.

Introduction

The term Wdigital filter" is commonly used when
referring to the counterpart of an analog filter
having one of the ladder structures. In the past
20 years, many books and articles have been written
on the subject of digital filters of the ladder
form. However the interest in digital filters of
the lattice form was not emerged until 1971 when
Fettweis [1] introduced the "wave digital filter."
Subsequently the study of properties of this filter
was followed by investigators [2-ll] who have shown
that lattice digital filters have very low quanti-
zation noise and they are relatively insensitive to

perturbations made to the multiplier coefficients
of the filter. Currently the study of implementa-
tion of lattice filter was conducted by others

[12-19] who have developed algorithms for many
applications including transient analysis, spectral
analysis, adaptive processing of time series, adap-
tive prediction and control, equalization of digi-
tal communication channels, etc.

Generally speaking, the use of lattice filters to
process a certain class of stochastic signals (wide
sense stationary) has a number of advantages over
the ladder filters. The purpose of this paper is
to demonstrate one of the many advantages. Namely
the "order recursive" feature associated with
Levinson's algorithm in the determination of the
order and coefficients of the autoregressive model
relative to the linear prediction problem.

The Linear Prediction Problem

Let x(k) be a digital signal that is predictable
from linear combinations of past inputs and outputs
of a system described as follows:

N M

W‘) = ' X ai x(k-i)+GW(k) + Z b, w(k—j) (1)
i =1 j=l 3

where w(k) and x(k) are inputs and outputs respec-

tively; ai for lSi$N, bj for lsjfh and the gain G

18974

“ -n

Define: Y(z) = ;E: y(n)z ; where Y(z) is then=-m

Z-transform of y(n).

H(z) = X Z) ; where H(z) is the transfer
function of the system.

Then from equation (1):

 i=1 3

H(z) = G N (2)
l +Z a1 2-1i=1

In equation (2), the roots of the numerator poly-
nominal and the roots of the denominator polynom-
inal are the zeros and poles of the model (equation
(1)) respectively. The pole-zero model specified
in equation (2) is called ARMA (autoregressive
moving average) and the two special cases are:

1. MA (moving average) - all zero model

ai=0forl$i5N

2. AR (autoregressive) — all pole model

bj = 0 for l 5 j S M
For the purpose of demonstrating the unique proper-
ties of lattice filters relative to linear predic-
tion problems, consider only special case 2, i.e.,
equation (1) is reduced to

N

x(k) + Z ai x(k-i) = (Mk) (3)i=1

Given measurement x(k), a sta-Problem statement:

tionary process, find 5. such that the mean square1

error (e) is minimized. e is defined as

N

e(k) = x(k) + Z ai x(k-i) (4)i=1

Applying the Orthogonality Principal [20] minimiz-

ing E[e2(k)] is equivalent to set

are parameters of the hypothesized system. N

Equation (1) can be specified in the frequency E { x(k) + E: 3. x(k-i) } x(k-j) = 0 (5)
domain by taking the Z-transform on both sides of i=1 1
equation (1).

Copyright © American Institute of Aeronautics and
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which yields

ai Rx (j—i) = —Rx(j), j=l,2,...,N (6)lb4z

in which Rx(’) is the autocorrelation function.
Equation (6) is the well known Yule—Walker
equation which can be written in matrix form:

R (0) R (1) .. R (N—1) a R (1)x x x l X

Rx(l) R (O) ... R (N—2) 5 RX(2)
X X (7)

. ° . n = ‘ 'I

. . . .

R (N—1) - - - R (0) a R (N)x x x

using short-hand notations, equation (7) can be
written as

N -l N
2" = — (R ) P (3)

. . N . . .
in which R is a Toeplitz matrix.

Mathematically the solution of equation (8) is

straightforward. In fact ai will form a stable
set, i.e., the characteristic equation

N -1
1 + Z: ai z = 0 (9)i=1

will have all zeros inside the unit circle in the

z-plane. Computationally, Rx(k) will be approxi—mated by

(10)

L4 H -1

1 \
Rx(k)31 E 5 x(n) x(n+k)n=O

where L is the length of the data sequence.
However, solving equation (8) in a straightforward
manner will experience the following disadvantages.

l. A matrix inversion is required.

2. Rx(j—i) must be computed in a batch.

3. N (the order of the model) must be known
a priori.

The last disadvantage is most serious in terms of
computation burden. Specifically in order to find
N such that the mean square error (equation (4)) is
minimum, equation (8) has to be solved repeatedly
for various values of N. To this end, one is
searching for a systematic and recursive method of
determining N as well as estimating the coeffic-

ients (ai) of the filter.

The Levinson Algorithm and
The Digital Lattice Filter

The Levinson Algorithm was specially designed to
solve equation (8) in such a manner that it will
avoid all three disadvantages cited above. The
purpose of this section is to show that the Levin-
son Algorithm can be conventionally implemented
using digital filters of a lattice structure.

Assume m to be the order of the model, then

3“ = ( al 33 ... 3 ) (11)

where the superscript m denotes the order of the
th

model. In terms of the m order, equation (7)becomes

RX(O) RX(m—l) 51 Rx(1)

' I . = — . (l2A)

R (m—1) R (O) 3 R (m)x x X

Since [Rm] the correlation matrix is Toeplitz,
equation (12A) can also be written as follows:

R (0) ... R (m—1) 5 R (m)X X X

. . : = — I (123)

R (m—l) R (0) 5 R (1)x x l x

In order to establish a recursive relationship
m+l

between am and a
increase by 1.

, let m in equation (l2A)

' m+l

248

R (0) ... R (m—1) Rx(m) a R (1)
x x I 1 x

I I I . . (13)
R (m—l) R (0) R (1) a”*1 R (m)

x x L x m x
m+l

RX(m) ... Rx(l) I Rx(0) am+fl Rx(m+1)

The desired recursive relationship is obtained
by rewriting equation (13) using the indicated
partitions.
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gx(o) Rx(m—l) 51 Rx(m)
‘ ' +1 ' _
. . . + a$+1 . —

Rx(m—1) RX(0) 33331 Rx(1)

R (1)X

_ I (IAA)

R (m)X

M m+l m+l
ai Rx(m+1-i) + am+1 Rx(O) = —Rx(m+l) (14B)i=1

.1 .

Premultiply euation (IQA) by [Rm] , then substi-
tute equations (12A) and (l2B) into it, yields the
following result:

m+l m ,m

al am a1

' ‘m+l ' _
. - am+1 — . (15)

m+l m ,m

am 31 am

Define 5: = §:+1 = 1 and a$:i = pm+1, the
following set of recursive equations obtained from

equation (15) will be used to solve for §?+1

m+l
In order to solve equation (16) recursively, these
coefficients must be determined first. To this
end, we take the digital filtering approach.
Specifically let's multiply equation (l6B) by- -1 . . .
z 1 (z is a unit delay) and sum over index 1.

a0 = a0 (16A)

1 .

a”1” = 5': + pm+1 a§+1_i , 1=l,2,...,m (l6B)

p is called the Partial Correlation Coefficients.

ITI - 1" "ID
“‘ <' 1)

Define:

-1 _E _i
Fm(z ) = Z_ 3‘: z (13)i=0

-1 -1 m A _ '_1 _
Gm(z ) = z a:+1_i z (1 )+ z "‘ (19)1-1

Equation (17) can be written as

-1 -1 _

Fm+1 (z ) = Fm (z ) + pm+1 Gm (z 1) (20)

Equation (20) is called the "forward equation," it

alone is insufficient to solve for Pm+l. An
additional relationship derived from equation
(l6B), replacing i by (m+l-i), is called the
"backward equation":

zG (2-1) = G (2 )+P F (z ) (21)m+l m m+l m

A lattice structure can be used to implement

equations (20) and (21) which yields Pm+l. Then

knowing pm+ , we can use equation (16) to solve1

+1 .

for d: . However in order to solve for pm+l’
—l -1 . . m

Fm(z ) and Gm(z ) which are functions of fii,
have to be known. A more practical way of com—

puting pm+1 recursively without requirng the
explicit form of Fm and Gm is to make use of the
available data. Specifically the error associated

with the estimate of the observed data.

Let the "forward" estimate be

249

m

2(k) = — Z g“? x(k—i) <22)
i=1 1

Define:

e‘I:(k') = x<k> -200 (23)
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Combining equations (22) and (23) yields

[I1

e§(k) = 2: g? x(k—i) (24)i=0

which is the error of the forward estimate.
Similarly, let the "backward" estimate be

m—l

2(k—m—1) = 2: K? x(k-m+i) (25)i=0

where

~m m 1

hi = am_i+1 , 1 = 1, 2, ..., m (26)

Using a similar definition as equation (23), the
error of the backward estimate is

m-1

e: (k) = x(k—m) + 2: h? x (k—m+i) (27)i=0

Define:

m —k
E? (z) = :3 e? (k) z (28)k=O

Combining equations (24), (18) and (28) yields

E: (2) = Fn (z_l) x <2) (29)

where

m -1
X(z) = 2: x(i) z (30)i=0

Similarly, define

m m -k
Eb (Z) = e: (k) z (31)k=0

Combining equations (27), (19) and (31) yields

E: (z) = z c (z’1) x (z) (32)U

Study of equations (29) and (32) shows that §;(z)m

and Eb(z) propagate through the lattice network in

the same way as Fm(2‘1) and Gm(z—l) given by

equations (20) and (21). In order to show this,
multiply equations (20) and (21) by X(z), make use
of the results given by equations (29) and (32),
we obtain the following pair of desirable
equations.
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e?+l(k) = e:(k) + pm+1 e:(k—l) (33A)

e:+1(k) = e:(k-1) + pm+1 e?(k) (333)

which can be implemented using a lattice structue
given in Figure 1.

It remains to show that pm+1 is computed based on
the knowledge of the forward and backward errors.

Specifically pm+1 is estimated by minimizing

either the mean square value of ef(k) or eb(k).
A straightforward minimization procedure using

equations (33A) and (338) yields

E ( egik) e$(k—l)E
p = - ————-———;—-—————§7-r (34A)

E { [ eb(k—l) 1 f

b E { em(k) em(k—1)l~ _ f b I
"ma" ‘ ‘fififfif (343)

E 1 [ ef(k) ] .

where ‘f and 5b are the optimal estimates ofPm+1 m+l
the forward and backward partial corelation coef-
ficients. Combining equations (34A) and (34B)
yields

-25 { em(k) em(k—l)}
5 = (35)m+l

E {[e‘§<k—1> 12 }+ E4[[§f(1<) 12}

Equation (35) together with equations (l6A) and
(l6B) constitute the Levinson algorithm with ini-
tial conditions given by equations (24) and (27).
The iterative process continues until (J -J )=m+l m

constant, where Jm is the mean square error of

e¥(k) or e$(k) for k = 0, 1, ... L-1; L is the
number of data points. When the residual error
(J -J ) reaches a steady state value. N ism+l m
determined to be equal to m.
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It was

Conclusion

shown in this paper that for a class of
wide sense stationary signals, a digital lattice
filter can be built, based on Levinson's

algorithm, to solve a linear predictive problem;
specifi
ficient
figure
was dem
section

puting
Another
coeffic
matrix
matrix
would b
insensi
the lad
bounded
latice
tion, i
mentati
conveni
tal lat
method

eE(k)

  

cally determination of the order and coef-
s of the AR model. As it can be seen from

1, the special feature of "order recursive"
onstrated. That is, the number of filter
s can be added or deleted without recom-
the coefficients of the remaining sections.
feature is that the computation of these

ients associate with an NXN covariance

requires only N operations. 31f direct
inversion methods are used, N operations

e required. The computation is relatively
tive to quantization errors as compared to
der filters because the coefficients are

by the magnitude of one. Also because the
structure is a modular pipeline construc-
t facilitates fixed point arithmetic imple-
on. These advantages, together with the
ence in filter initializing, make the digi-
tice filter a very practical and efficient
for many applications.

e%(k)

  
e:(k)

Figure l. A Lattice Structure Implementation
of the Levinson Algorithm
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Abstract

This paper explores the 3PPliC3ti°n pulsed tone on one of two pseudo—random
of digital signal processing techniques to frequencies in the UHF band. The tone
YePlaCe and eVen imPf0Ve FeCeiVer func‘ duration is 9 msec so that the optimal
tions which are Conventionally Derfefmed detector bandwidth should be approximately
bY analog eiYCUitTY- All signals d0Wn' 111 Hz. However, the systmem must operate
Stream Of the last IF Stage are Processed in an air-to-air environment involving
digit3llY- The IF Proeessing Syetem Under high speed, high performance aircraft so
consideration consists of several compon- that a doppler uncertainty in the trans-
ents- A pre-processor samples the mitted frequency of +/- 1750 Hz must be
22 kilohertz wide IF. The resulting dealt with. In addition, the system must
Sequenee is then di8it3llY Hilbert trans‘ operate using a host UHF receiver which
formed to produce the in-phase and quad- has a final IF bandwidth of 22 KHz. Thus
rature components of an analytic signal. the objeecive of the proposed digital
Several cascaded stages of filtering and signal processor is to provide a
deCim3ti0n f0l10W t0 PF0dUCe 3 basebend synthesized 111 Hz matched filter which
signal with a bandwidth of 7 kilohertz and can be tuned within a 3500 Hz doppler
within which the information is known to uncertainty window. The expected
reside. but With an 3 PIi0ri unknewn processing gain achieved by using a
d0PPleT Shift- The Second Stage Of the synthesized matched filter is 15 dB with
system accomplishes further bandwidth respect to using a 3500 Hz IF (analog or
compression by processing a spectral digital),
representation of the signal via a real
time Fourier transform followed by This paper will present the pre-
decielen l0RiC- Performance iS analyzed liminary design considerations, and some
and design issues are diSCUS5ed- results of a theoretical performance

analysis.
Introduction

Description of DSP
This paper describes a preliminary

design for a digital signal processor The DSP is shown schematically in
which will be used to enhance the perform- Fig, 1, For the purpose of this discus-
ance of a particular low data rate commun- Sign the DSP will be considered to be

ication receiver. The receiver in ques- composed of the foliowing processing
tion must detect the transmission of a blocks: analog to digital conversion

(A/D) and basebanding block; decimation

* Member IEEE

F“' ""‘ " " " " " " " " _‘ '1
A/D and Basebanding Block

I C05 "/2 k  
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DECIMATE
 

  
I
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IF 455 KHZ COMPLEX22 KHz

Bandwidth] DFT
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FIGURE 1

DSP PROCESSING BLOCKS
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and filtering block; discrete Fourier
transform (DFT) block; and the detection
block. Each of these blocks and the con-
siderations that led to their design will
be discussed in turn.

A/D and Basebanding:

Several A/D schemes could be used to

digitize the 455 KHz IF (22 KHz 3 dB Band-
width) signal which must be processed.
For reasons of processing speed and ease
of implementation, a 1.82 MHz sampling
rate was chosen. This is exactly four
times the IF frequency and leads to
considerable simplication in the
translation to baseband of the digitized
signal. An eight bit flash A/D converter
will be used to provide 48 dB SNR at the
output.

After digitization, quadrature demod-
ulation is used to form inphase and qua-
drature phase channels at baseband (1).
The inphase channel is obtained by multi-
plying each sample by a digital
representation of the cosine of the IF
frequency. However, since the IF
frequency is exactly one quarter of the
sampling frequency the cosine values are
given by cos ( kn/2 ) which can have the
values of +1, 0, and -1 thus obviating the
need for an actual multiplication. The

quadrature phase channel is formed by
first shifting the signal by n/2 and
then multiplying by the sine of the IF
frequency. Because of the selection of
the sampling rate this is accomplished by
a simple time delay and then multiplica-
tion by +1, 0, and -1.

Decimation and Filtering Block:

At this point the sampling rate is
much higher than required by the signal

which is contained within a 3.5 KHz band-
width about the origin and a 3 dB noise
bandwidth of 22 KHz. In addition of
course, performing spectral analysis at
this point would require a 16,000 point
DFT! To make the DFT problem more man-

ageable, decimation and filtering must
first be carried out. Decimation will
decrease the size requirement of the DFT
while at the same time the filtering will
reduce the noise bandwidth of the signal.

The decimation and filtering of the

signal will be carried out in four steps,
each step successively reducing the sample
rate and the noise bandwidth. The process
is done successively in order to reduce
the number of multiplications required by
the digital FIR filters. The process is
shown in Fig. 2. The first step is to
perform a decimation by 16, reducing the
sampling rate to 113.75 KHz. A FIR low
pass filter and decimation by 2 reduces
the sampling rate to 56.87 KHz and the
50 dB noise bandwidth to approximately
28 KHz. The low pass filter and decima-
tion operation is repeated twice more, as
shown in Fig. 2 so that the final sampling
rate is 7109 Hz, and the final noise band-
width (50 dB) is 3.55 kHz. The final out-

put from the decimation and filtering
process consists of 64 samples.

Figure 2 also shows the filter order
for each FIR and the resulting number of
multiplies (2) that are required at each
stage. Based on using a 200 nsec.
multiplier-accumulator, the approximate
processing times required at each filter
stage are .8 msec, .8 msec and .2 msec
respectively. Thus a total time of
approximately 2 msec is required for the
decimation and filtering block. If a

single multiplier were used to perform all
of the filtering in both the in-phase and

 
  1.82 H}-I7. 113.75 KHz
   
 

DECIHATE
r16  

56. 87 KHz 71119 Hz

Filter Order: 7”“ Order FIR 16th Order FIR 12‘“ Order FIR
Passband (50 dB)’ 28.414 KHz 7.109 KHz 3.55 1012
No. Multipliesz lo 8 6
No. Samples (Input) 16,381» 10210 512 128

FIGURE 2

LOW PASS FILTER AND DECIMATE BLOCK
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quadrature phase channels, approximately
4 msecs would be required.

Using an extended precision multi-
ply/accumulator results in round-off noise
of 53 dB below the signal after each
multiply (3). With a total of 18 multi-
plies in the decimation and filtering
process this amounts to a round-off SNR of
about 40 dB.

DFT Block:

The decimated and filtered inphase

and quadrature phase channels are input to
a complex DFT for the purpose of providing
a final filtering operation before detec-
tion of the desired signal. Since the
goal is to produce as fine a resolution as
possible, no windowing will be perfomed.
In this case the resolution is given by
the sample rate, Fs, divided by the number
of samples or 111 Hz. The peak sidelobe
in this case is -13 dB (4) so that two
adjacent signals will only be resolved if
their amplitudes differ by no more than 13
dB. Since the primary concern is to
detect a single 111 Hz tone burst in the
presence of noise the small amplitude dif-
ference is acceptable.

The hardware implementation of the
DFT has not been decided as yet, however,
special purpose hardware is available,
such as the Texas Instruments TMS32010

which can perform a complex 64 point DFT
in approximately .8 msec. (5).

Detection Block

The detection block will consist of a

complex multiplication to square the out-
puts of the DFT and then decision logic to
determine on which of two dwells (Mark or
Space dwells) the 9 msec pulse was
transmitted. Two decision logics have
been considered: A single bit decision
which is based on which of the two fre-

quencies has the single largest output
from the DFT; and a multibit technique
which attempts to track the change in
doppler offset and then make decisions
based on examining only the appropriate
DFT output for the Mark and Space frequen-
cies. ~An analysis of the expected (theo-
retical) performance of these two
approaches is outlined below and the
results are compared to those of a true
matched filter.

Analysis of Detection Alternatives

Two detection schemes are consid-

ered. The simplest involves a comparison
of all squared DFT spectral amplitudes.
Each of the Mark and Space .dwells con-
stitute M such amplitudes. A bit decision
is made based on which (Mark or Space)
dwell contains the largest spectral
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component. This approach has a relatively
low implementation complexity.

An alternative approach, one which
compensates for rather than tolerates
doppler shifts, involves doppler acquisi-
tion and tracking. At each dwell, an
estimate of the signal's doppler shift is
generated and used to identify the DFT
spectral components closest in frequency
to this estimate. The selected Mark and
Space spectral components are then
processed in a binary detection scheme
involving magnitude comparison. All other
spectral components are ignored.

Both of the above approaches are
discussed here. Their performances are
compared to matched filtered non-coherent
FSK for which the bit error rate is

1 - Y/2
Pe=§e

where Y = Eb/N0 is the bit energy

contrast ratio (6).

Multibit Detection Scheme

For FSK signals, either the mark or
the space channel contains signal plus
noise; the other channel contains noise
only. Detection consists in determining
which channel contains the signal. The
noise only channel has a voltage r with

Rayleigh statistics 2
P(r) = Eve -I /ZNN (2)

while the signal + noise channel voltage
follows the Rician distribution

-r2/2N -A2/2N
P(r) = e e I0(rA/N) (3)

E.
N

where N is the noise variance, A is signal
amplitude, and I is the modified Bessel
function of the f rst kind.

A simple detection procedure consists
in spectrally analyzing each of Mark and
Space waveforms with an M-point complex
discrete Fourier transform. Specifically,
the I and 0 sequences of figure 1 each
contribute M (real) points to the DFT
during a Mark (or Space) dwell. This
implies M = TW, where T is the dwell
duration and W is the doppler bandwidth to
be analyzed. A Mark (or a Space) is
declared according to which dwell produces
the spectral component of largest
magnitude.

Each of the M complex DFT outputs
represents the spectral contribution in a
bandwidth equal to the signal bandwidth.
Prior to comparison, the square of the
modulus for each spectral ouptut is
computed by complex multiplication. This
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2 2

transformation, V * r /ZN ,yields a
simple distribution for noise only

P(x) = e'* (4)

and for signal plus noise

P(V) = e“V + Y’ :0 /Z7§’. (5)
Assuming a Mark is transmitted, a bit

detection error arises when the maximum
squared modulus occurs as one of the Space
spectral outputs. Of the M Mark outputs,
one is y-distributed as per equation (5),
and the remaining M-1 are x-distributed as
per equation (4). All of Space outputs
are x-distributed. An error occurs when
one of the space x exceeds y and all of
the M-1 mark x's. The corresponding
probability is

p(u) = [3 [P(y<x) - P(x1<x) - P(x2<x)

0°-P(xM_1<x)] e—xdx (6)
where

P(xk<x) = I: e _tdt = 1-e -X (7)
and

P(y < x) = jg e'(V + Y) 10/Ayy dv .(8)

Equation (6) readily reduces to

=

eY/(k+2)
“ “7E¥TT?E$f74

which in turn reduces to the familiar
result (1) for M = 1. Equation (9) is the
probability that one of the x exceeds y as
well as (M—1) x variables. A wrong bit
detection decision will be made if the
maximum noise modulus belongs to any of

the M Space outputs. Since there are M
equally likely ways in which this can
occur, each with probability P(2M-1), the
resulting bit error rate is

(9)

P = M P (2M-1) .
b (10)

Results for M=l (matched filter), 8,
16 and 32 are shown in figure 3. The

performance degradation, compared to
matched filtering, amounts to only 2 to 3
dB. Furthermore, the additional degrad-
ation incurred by doubling M rapidly
decreases with increasing M.

Binary Detection Scheme 

Assuming no acceleration, the effect
of doppler is to displace spectral lines,
thus introducing leakage in the measured
spectrum. This has several effects:
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BitErrorRate

1. decreases the magnitude of the
signal's spectral response,

2. introduces sidelobes, and

3. changes the statistics of Mark
spectral outputs to correlated
Rician variables.

In the doppler adaptive approach, the
DFT output believed to correspond to the
doppler-shifted signal is computed from
bit to hit. Comparison of the correspond-
ing Mark and Space outputs is used to
decide which signal was sent. Since all
other 2M-2 outputs are ignored, the
presence of sidelobes and the difficulties
of correlated Rician variables are of no

consequence. The only effect on detection
is the effective decrease in signal
power. The fraction of signal power
remaining due to a shift of v Hertz is

-4 0 4 8 13 lb

Eb/No (dB)

Figure 3: Multibit Detection
Scheme Performance
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S(v) = l_ sin2(nv)
N2 sin2(uv/M)

where M as before is the number of DFT
bins used in the detection process.

(11)

The detection bit error rate is found

by scaling Y in equation (1) by S(v) and
averaging over all v. Since V is uni-
formly distributed (all doppler shifts
equally likely), the resulting bit error
rate is

Pb(Y) = fé/gxp [-% Y S(v)] dv (12)
This function is compared to matched
filtering on figure 4. The resulting

degradation amoungs to only 2 dB at a biterror rate of 10- .

Conclusion

A digital signal processing technique
has been designed which greatly improves
the performance of a low data rate com-
munications receiver. Based on this
preliminary design it appears feasible to
implement this scheme with a minimum of

hardware (although the hardware actually
implemented will be traded off against the
software complexity). Work is ongoing to
implement this design in the laboratory as
a proof of concept. The actual hardware/
software implementation and the results of
performance testing will be published in a
future paper.
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ABSTRACT

The implementation of new computational
techniques in digital signal processors will have a
major impact on avionics system design. Applica-
tions algorithms will require significantly fewer
multiplications and benefit from increased accura-
cy. This will open up new possibilities for more
complicated sensor data analysis. Novel computa-
tional techniques abound and inventors’ claims are
astounding. The evaluation, practical implementa-
tion, and integration of these techniques with new
hardware technology is a significant undertaking.
Modern computer aided engineering (CAE) tools are
essential for design alternative analysis. Simu-
lation of hardware implementations with local
engineering workstation technology is feasible and
eliminates expensive prototype development. One
can design with VHSIC components that may not exist
and optimize technology insertion advantages.

INTRODUCTION

Advances in signal processor performance have
traditionally been linked to the integrated circuit
revolution and architectural innovations. The
industry and DOD are being driven to greater
efforts in these areas by the spectacular computa-
tional requirements for such applications as
synthetic aperture radar (SAR), image generation
and enhancement, and adaptive nulling. The Very

High Speed Integration Circuit (VHSIC) and Enhanced
Modular Signal Processor (EMSP) programs are two
familiar, realizable examples of this expanded
emphasis. In addition, multisensor and multimode
applications demand more processor flexibility that
can only be achieved with increased programmabil—
ity. Unfortunately, this feature has an adverse
effect on throughput when the standard local
arithmetic architectures are utilized.

The great breakthrough of the early 1960s was
the Fast Fourier Transform (FFT) algorithm. It is

recognized, that this algorithm was essential for
the development of modern real-time signal process-
ing applications. Twenty years later, the FFT
butterfly is still the computational kernel of
existing and future signal processor designs. New
projects estimate their computational loading based
on the use of the FFT algorithm; processors are

then designed to meet these throughput require-
ments. Recently, a wide variety of theoretical
results related to alternative computational
algorithms was published. All these techniques
rely heavily on mathematical concepts from number
theory, combinatorial analysis, and abstract
algebra. Therefore, little has been done with
respect to practical hardware implementations [1].

The primary goal of most of these techniques
is to reduce the multiplication burden of the
standard processing functions (convolution and

C°PYI’ighl © American Institute of Aeronautics and

DFT). There are three fundamental approaches
(approximation, rearrangement, and substitution)
being utilized to achieve these results. Ap-
proximation methods are primarily used for generat-
ing special mathematical functions. Numerical
analysis techniques modified for the binary domain
have been applied to such functions as CORDIC and
high performance complex magnitude circuits [2].
The emphasis of this paper will be on the rear-
rangement and substitution approaches.

At first glance, these techniques offer
significant advantages in realtime avionics proc-
essing environments. However, each algorithm comes
with unique overhead penalties. The practical
implementation of a particular scheme must consider
the tradeoff between overhead and performance gain

with respect to the target processor architecture.
The use of laboratory breadboards to evaluate these
alternatives is time—consuming and expensive. The

only realistic approach is to use sophisticated CAE
techniques and hardware [2,3]. Modern engineering
workstation (EWS) technology coupled with powerful
computers is essential for the modeling, simu-
lation, and performance comparisons of the alterna-
tive designs.

The Discrete Fourier Transform (DFT) has been
the target of many new computational approaches.
Most performance improvements for this function are
based on rearrangements of the original equations.
Application of the Winograd technique [4] and prime
factor algorithm (PFA) [5] to the DFT is examined
in the first section. The specific case of the

24-point transform is used to illustrate the effect
of overhead and computational architectures.

Implementation of such techniques will affect
future signal processing systems design. More
exotic algorithms and their possible impact on
digital avionics design are discussed next. They
are based upon replacing difficult operations with
simple ones. Substituting shifts for multiplica-
tions is one attractive approach that must be
carefully evaluated, since more tedious operations
may be introduced. The third section discusses the
possibility of entirely eliminating multiplications
from certain filtering operations. Finally, the
impact of advanced CAE techniques on signal proc-
essing system design is analyzed. Sophisticated
technology and applications inevitably have led to
the development of this industry. Powerful CAE
tools (hardware and software) can be a significant
advantage in integrating new techniques and tech-
nologies (VLSIC/VHSIC) into modern avionics
systems.

DISCRETE FOURIER TRANSFORM

The DFT is probably calculated more than any
other discrete function in digital avionics signal

processing systems. No other calculation has
received as much researchers‘ attention. The FFT

Astronautics, Inc., 1984. All rights reserved. 257

BOHNG

Ex.1031,p.314



BOEING 
Ex. 1031, p. 315

algorithm is the first practical application of a
rearrangement-scheme applied to the DFT; since 1963
it has had a tremendous impact on the aerospace
industry. New signal processing systems are still
designed around the FFT butterfly. A large segment
of VHSIC technology is targeted for FFT imple-
mentation [6]. As a subject for technical journal
articles, this algorithm ranks number one even
today. However, recent research has led to two
promising, similar approaches — the Winograd
algorithm (WDFT) and PFA — that further reduce the
computational burden.

The standard metric used to compare DFT
algorithms is the number of complex multiplications
required. Results for a given transform length, N,

can be summarized as: 20 Direct DFT — O(N )
0 FFT — O(N log N)
o WDFT/PFA — O(N).

when it comes to practical implementation, however,
there are other factors that also must be con-

sidered. The FFT is severely restrictive with
respect to transform lengths, which are usually
selected as powers of two for maximum efficiency.
All rearrangement algorithms require data permu-
tations. The FFT bit reversal requirement is
really not a major obstacle. These two negative
features are more than offset by the processing
gain and the fact that the FFT algorithm is easily
mechanized in terms of standard arithmetic kernels.

Large transforms are computed using a simple data
flow scheme. Variable transform lengths within the
same processor are easily accommodated.

The situation with respect to the Winograd DFT
is not so straightforward. The WDFT has a number
of advantages that makes it a strong candidate for
FFT replacement. It has excellent multiplication
gain, but in addition, a larger set of transform
lengths are available to the user. General complex
multiplications are not required, only real or
imaginary times complex. The WDFT expandability is
based upon the nested multiply property. By
cleverly replacing scalars with vectors and mul-
tiplies with short transforms, an iterative ap-
proach to longer transforms can be implemented.
These advantages are gained at the cost of extra
overhead, especially the input/output (I/O) and
programmability areas. I/O data permutations
(Winograd weave) are computed via the Chinese
Remainder Theorem (CRT) and are a function of
transform length. In addition, input and output
permutations are different for the same length.
Different transform lengths are not achieved
through simple replication of a computational
kernel and the data flow is not as orderly as for
the FFT algorithm. The basic WDFT computational
flow is shown in Fig. 1.

Figure 1 describes the data flow, but does not
give any indication of control complexity. To
illustrate the process, consider the example of a
24-point WDFT.

As the sampled data arrives to be processed,
it is stored according to the Winograd weave
addressing scheme shown in Table 1. This can be
viewed as a sequence of address offsets from the
location of the first sampled data point, an
operation that effectively divides the data into
three vectors of eight samples each, according to
the data sample indices given in Table 2. Note
that the 24 data samples are labeled 0 to 23.
next step is to create three auxiliary vectors:

The

INPUT
LENGTH DATA

INPUT
WINOGRAD

WEAVE

VECTOR
ACCUMULATE

VECTOR
SCALE

FUNDAMENTAL
DFTs

VECTOR
ACCUMULATE

OUTPUT
WINOGRAD

WEAVE

OUTPUTDATA
1255-001 D

Fig. 1 WDTF Flow Chart

Table 1 Input 24-Point Winograd Weave Address Offsets

SAMPLE ADDR SAMPLEI ADD}?
0 0 8 8 18 16

 
11

with a simple vector add/subtract instruction.
These vectors must then be scaled according to:

"2
7, =0’ 13 = B

O -3/Zul,
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Table 2 V24-Point DFT Input Sample Locations

VECTOR
COMPONENT

 
1255-003D

Note that the scale factors are real or pure

imaginary. At this point, three 8-point DFTs are
executed on the scaled vectors to create:

M0 = DFT8(vO), M1 = DFT8(v1), M2 = DFT8(v2).

One important feature of the algorithm at this
stage is that these internal (or nested) DFTs can
be executed with the same or different algorithm,
an advantage for implementing this technique in
signal processors with FFT—based arithmetic archi-
tectures. DFT outputs are then accumulated via:

A = M + M + M2, A2 = M0 + M1 - M2.A0=Mo’ 1 0 1

The output data relationship to these vectors is
given in Table 3. Table 4 lists the output sample
address offsets required to unweave the data if the

vectors A0, A1, and A2 are concatenated in order.
Table 3 24-Point DFT Output Sample Location

VECTOR
COMPONENT

 
1255-0040

It is instructive to compare the number of
arithmetic operations for four possible 24-point
DFT implementation alternatives. The full Winograd
approach utilizes a nested 8-point DFT that re-
quires four real multiplies and 52 real additions.
The two vector accumulate stages are assumed to be
executed in the most efficient manner and so

require 48 real additions each. A hybrid approach
using an 8-point FFT algorithm for the three nested
8-point DFTs is a realistic alternative to the full
Winograd technique. An 8-point FFT requires 12

Table 4 Output 24-Point Winograd Unweave Address Offsets

 
1255-005D

radix—2 butterfly operations (each with four real
multiplies and six real additions). The PFA is
another method for executing DFTs using cyclic
convolution and a multidimensional approach. It
requires data permutations similar to the WDFT but
does not have the nesting property. A 24-point DFT
executed using the PFA requires eight 3-point DFTS
followed by three 8-point DFTs. This illustrates
the major difference between these two techniques -
nested DFTs for the WDFT as opposed to DFTS for
each prime factor of the transform length for the
PFA. The fourth approach is to use a 32-point
radix-2 FFT by appending eight zeros to the 24-
point data set. Table 5 summarizes these results.
The direct DFT is included for comparison. The

operation column is the number of real arithmetic
operations required and is just the sum of the
first two columns. Assume a worst case situation
(add time = multiply time) and define a relative
efficiency factor as:

FFT REAL ARITHMETIC OPERATIONS

E = ALGORITHM REAL ARITHMETIC OPERATIONS

Table 5 Summary Comparison of 24-Point DFT Algorithms

  
 
 
 
 

 

 

REAL

ALGORITHM EFFICIENCY
MULTWLL ADDL OPERA
CATIONS TlONS TIONS

WINOGRAD/PFA 44 2.7 

HYBRID WINOGRAD/FFT

FFT

D|RECT

1255-0060

The values in the last column of Table 5 are the

number of 24-point DFTs that can be calculated in
the time required to calculate the same function
with an FFT implementation. Although the efficien-
cy numbers are impressive, the user must account
for the additional overhead required by some of
these new algorithms. Different arithmetic and
control architectures may have a significant effect
on the computational gains realized in any particu-
lar situation. Realization of a programmable
transform length WDFT could be a significant signal
processing technology breakthrough. However, more
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work must be done to evaluate and tradeoff various
alternatives based upon modern and future hardware
and software capability. The only reasonable
method for doing this is to use some of the new CAE
technology, which is discussed in the last section.

-EXOTIC SUBSTITUTION ALGORITHMS

This class of algorithms can be separated into
two categories, transforms and alternate informa-
tion representation. Exotic transforms, such as
the number theoretic transform (NTT), the polynomi-
al transform, and the Galois Field transform, are
similar in structure to the DFT, but do not require

general complex multiplication operations. If the
ultimate reason for using a particular transform is
to execute linear convolutions (FIR filters), then
the transform variable domain is not being used.

Typically in this situation, using the FFT algo-
rithm has been less costly than direct implementa-
tion. However, because we are not interested in
recovering frequency information, alternate trans-
forms that satisfy the cyclic convolution property
would give satisfactory results. All transforms
mentioned have been designed to replace the general
multiplication with some shifting operation.
Although this is an extremely desirable substi-
tution, the side effects have to be carefully
evaluated before any implementation decision is
made. On the other hand, if the data word lengths
can be significantly reduced before doing any
arithmetic, then these operations can be executed
faster. The residue number system (RNS) represen-
tation is one method of accomplishing this that
replaces long data word processing with several
parallel short data word channels [7]. Because
this is essentially a coding technique, it depends
upon the CRT for decoding back into useable
formats.

Specifically, the RNS technique is based on
interpreting incoming data as integers and encoding
them in terms of their residues with respect to a

set of relatively prime moduli. The selected set
of moduli, when multiplied together, determines the
process's allowable dynamic range. All arithmetic
operations are executed in the residue representa-
tion. Unfortunately, not all discrete functions
fit within this restriction. Calculation of FIR
filters is the best application; a practical
approach to the implementation has been described
[1]. FIR filter dynamic range is easy to estimate
and a relatively simple analysis will determine the
optimum moduli set. It is conceivable that this
procedure can be done in real time to enable
adaptive resource (channel) allocation. when this
approach is considered for avionics system imple-
mentation, a residue representation frees the
designer from normal arithmetic problems, i.e.,
overflow, rounding, and truncation. All results
are exact until final decoding. At this point,
required word lengths for CRT implementation can be
quite long. For example, consider the moduli set
(256, 15, 13, 11, 7) with a dynamic range of
3843840. with 8-bit data and coefficients, the

longest FIR filter than can be executed without
decoding ambiguity is of length 59. The shortest
allowable filter is determined by the decoding

speed, processing speed, and pipeline configura-
tion. Final output data is 22 bits long, but the
active decoder only has to process 14-bit data.

Transforms based on advanced algebraic con-

cepts are derived for the express purpose of
replacing multiplications with shifting operations

while simultaneously satisfying the convolution
theorem. NTTS have been discussed [8,9] that
satisfy these criteria. When NTTS are considered
for application to practical signal processing
situations, a number of problems arise. The
transform length and data word length are intimate-
ly related, because all arithmetic must be executed
modulo and integer. Normally, modulo arithmetic
requires a division operation or some equivalent
procedure for calculating appropriate residues.
Unless there is some easy way of calculating these
residues, the advantages gained by the shifting
operations would be lost in the modulo arithmetic.
This disadvantage can be overcome by selecting the
moduli as a Mersenne prime, i.e., a prime of the
form Zq-1. Arithmetic for the Mersenne Number
Transform (MNT) is trivial — one's complement
addition in a q—bit word and a q—bit rotation for
multiplication by powers of two. Unfortunately,
because q is a prime, there is no fast MNT similar
to the FFT relationship to the DFT. Fermat Number
Transforms (FNTS) are an attempt to generate a NTT
with the required symmetry to facilitate a fast
transform algorithm. Although this property was
achieved, the simple arithmetic inherent with the
MNT was lost.

The other exotic transforms have similar

properties, each with its share of advantages and
disadvantages. Application of these techniques
depends on the practicality of implementation. The
algorithms mentioned in this section have another
advantage in addition to speed: the results are all
exact. None of the accuracy problems inherent with
normal arithmetic - truncation, roundoff, overflow
— occur when using advanced algebraic techniques
and modulo arithmetic. This feature may have

significant advantages for future processing
systems requiring high precision.

MULTIPLlER—LESS FILTERING

The typical response of a computer—aided
filter design program to engineering specifications
is a list of coefficients - the impulse response
for FIR filters or the second order IIR filter
section constants. While most design aids will

attempt to minimize the filter length and some will
include a wordlength sensitivity analysis, the
recommended implementation will involve general
arithmetic operations - multiplication, addition,
and delay. If addition execution is significantly
faster than that of a multiplication (which is the
case when fixed point arithmetic is used), then
filters without multiplications may have a speed
advantage over the general case.

Specifically, restrict the allowable mul-
tiplications to include only shifts, i.e., mul-
tiplications by powers of two. The resulting
filter lengths may be longer than those produced
with the standard design approaches, but the
implementation speeds could be considerably faster.
Although the benefits sound attractive, the design
process for a given set of engineering specifica-
tions is not that well defined. Eliminating

multiplications is a severe restriction, so appli-
cations may be limited to certain classes of
filters. A potential problem for the design
engineer is the availability of useful CAE tech-
niques for multiplier-less filter synthesis.

An interesting and fundamental approach to the
design problem for linear phase FIR filters is
described in Ref. 10. A set of basic multiplier-
less filters are cataloged for use as building
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blocks in the design process. Actually, the first
six entries in the fundamental filter menu are
special cases of: N—1

H(z) = 2:: (tz_p)nn=0

where the amplitude of the frequency response
function is given in Table 6. The approach then,
is to combine selected building blocks from the
menu using the subfilter architecture technique
[11], but without general multiplications. At
present, a heuristic design procedure, based upon a
knowledge of the zeroes and the effects of cascad-
ing or paralleling building blocks, can be used.
Automating this procedure is possible, but obtain-
ing an optimum design would require a very sophis-
ticated CAE tool.

Table 6 General Multiplier-Less Filter Building Block
Frequency Response Amplitude Function

HLTER NON
LENGTH ALTERNATING ALTERNATING

$N(fiNm $N(fiNM
EVEN

ODD

1255-0070

The point is, that the task of the digital
avionics systems engineer is becoming more com-
plicated. With throughput at a premium in future
systems, special filtering techniques such as
described here must be considered. The ability to

predict the future performance characteristics of
avionics signal processors is no longer a straight-
forward extrapolation of previous implementations.
A clever design team can squeeze more out of a
particular hardware realization by substituting
multiplier—less filters for the standard types. In
fact, wherever a programmable processor is being
utilized in present systems, it may be possible to
increase performance by using this approach. The
technique is attractive, since it does not require
new mathematical functions (e.g., residue arithme-
tic) to be implemented in real time.

   
 
  
 

 

SIN (Trip) C0S(11fp)  
COS (7rfNp)

 
COS (1rfp)

COMPUTER—AIDED ENGINEERING APPLICATION

The generic techniques described in this paper
have not been seriously evaluated by the processor
manufacturers for eventual implementation. Prob-
lems associated with carrying out detailed engi-
neering investigations are formidable. The mathe-
matical basis requires specialized knowledge of
sophisticated theories not normally available in
the average electronic design environment. A great
deal of preliminary analysis must be performed

r before any practical design can be contemplated.
All computer analysis programs have to be developed
from scratch because no existing software libraries
contain the required routines. The mathematician
and the hardware engineer must work together to
Produce a feasible design. At this point, a
Prototype can be developed that will demonstrate
the performance of the particular technique. This
3PProach is very time—consuming, inflexible, and
may not give a true evaluation of the final imple-
mentation. There has been no experience with these
techniques, so one would expect many hardware

iterations before finalizing any design. Because
we are dealing with extremely complex implemen-
tations, this development method is not feasible.
The approach to take is accurate simulation of the
design utilizing computer resources.

Computer technology is not new to the aero-
space industry. CAD/CAM systems have proved
themselves in vehicle design and manufacturing

processes over the past decade. However, it is
only recently that an organized effort to bring the
same benefits to the electronics industry has

developed. Specifically, Ewss were designed for
the integrated circuit market, but include a number
of features that would make them useful in the

systems integration environment. Those properties
of Ewss that are especially valuable in this
respect are: hierarchical representation, behavior-
al modeling, higher order language programming,
inter resource communication, local simulators,

local timing verification, and sophisticated
graphics.

The engineer can create a design using the
top—down approach which maintains system integrity,
both vertically and horizontally. Behavioral
modeling is a means of functionally implementing
sophisticated circuitry without defining the -
component level representation. Complicated
devices can be incorporated quickly, and various
alternatives can be explored efficiently. A major
feature of the EWS is the ability to locally
simulate the operation of a design. Complicated
results from sophisticated signal processing
circuits cannot be verified by hand. The ability
to write software to analyze the simulator results
is an important property. This approach can be
applied to any design level, and is only bounded by
the physical limits of the computing resources.

Utilizing EWS technology is an ideal method
for evaluating realizations of new computational
techniques. Analysis, simulation, and timing
verification can be integrated within a local
computing environment. Rapid interaction with the
results enables a flexible approach to optimizing
designs and evaluating interrelationships with
existing system blocks. If one wants to commit to
actual hardware, the mechanisms are already in
place. when VHSIC specifications are complete,
these same tools can be used for technology in-
sertion and applications experimentation. To
illustrate this concept, consider the simple
example of the common TRW multiply and multiply
accumulate chips. A behavioral model is created on
an appropriate EWS based on vendor specifications.
Symbols and model (Fig. 2) are fused and stored in
a universally accessible file for application in
potential designs. For example, one can design a
digital filter or a 3-point WDFT around the use of
these chips and verify performance characteristics
without building a hardware prototype.

CONCLUSION

Digital signal processing performance improve-
ments are not limited to those arising from new
hardware architectures and integrated circuit
technologies. New computational techniques will
have a major impact on avionics systems design.
Signal processing intensive applications can
benefit from using implementation algorithms with
the minimum number of arithmetic operations.
Several cases were described that illustrate their
relative merits. The WDFT and PFA algorithms are
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Fig. 2 Basic TRW Multiply Accumulate EWS Model

significantly less computationally—intensive than
the FFT. The RNS representation and NTTs offer
attractive approaches to the standard FIR filter
execution. Multiplier-less filters is a less
exotic alternative that may be easier to under-
stand. In all cases, the theory is difficult and
practical implementation in a flexible format must
be carefully evaluated. CAE technology is a low
cost, reasonable means for examining new designs
and applications. Simulation of implementation
schemes with local EWSS is feasible from the device

to the system level. One can design with compo-
nents (e.g., VHSIC) or subsystems that do not exist
and optimize system level advantages. Because new
computational techniques are independent of the
high level macro-instructions for generating ap-
plication algorithms, this approach to performance
enhancement is essentially technology transparent.
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SELF ADAPTIVE FILTERING OF ENVIRONNENTAL NOISES FROM SPEECH*

D. Graupe*, J. Grosspietsch*** and S. Basseas***

ABSTRACT

This paper describes work on the design, testing and evaluation of a self-adaptive filter to filter
environmental noises from speech when noise and speech parameters may arbitrarily vary (as they do) and are
a-priori unknown and when no access is available to noise alone or to speech alone, but only the sum of
gpeech plus noise, is available. The above situations are typical to what exists in almost any mili-
tary/navy situation, in aircraft, hangar, helicopter and even office or cafeteria.

The study was performed in two directions, one, a time—domain design and the other a frequency-domain
design. Although these two designs are in theory directly inter-transformable, real—time realization pre-
sents computational-speed and other problems to the time-domain design that do not exist in the frequency-
domain designs.

Performance tests on improvement via filtering in signal—to-noises-ratio (SNR) and in intelligibility
(for mono-syllable standard word lists) in a wide range of noises, all point out to the superiority of the
frequency-domain design, whose real—time on—line realization is also the simplest.

Indeed, performance tests, as presented in the paper, show SNR improvements via the frequency-domain
design from 6.7 to 25.5 db for a multitude of noises throughout the spectrum, and where the input SNR
(prior to filtering) varies from -5 to -20 db.
in cafeteria/cocktail situations.

The lOdb or higher improvement was the more common one, even

lntelligibility—scores were equally impressive, as is tabulated, and reached, in cafeteria situations,
an improvement from a 32% correct score prior to filtering to a 90% score after frequency-domain filtering,
the average improvement being 21% (for a single-syllable words). Listening comfort, though not quantita-
tively measurable, was most impressive, this being a major aspect in fatigue when listening in a noisy
environment. Ther performance of the resulting filter thus points to providing considerable intelligibi-
lity, SNR and listener—comfort improvements under the widest possible noise situations, when noise is a-
priory unknown and inaccessible, as it is under real world conditions and especially in military/navy en-
vironments.

1. INTRODUCTION

This paper describes work on self-adaptive fil-
tering of speech from enivronmenta] noises. This
work, is an extension and rigorization of previous
work at IntelliTech, Inc., on self-adaptive filter-
ing of speech from noise when applied to hearing
aids.

The present research has taken two parallel
design directions, on based on a frequency-domain
approach and one on a time—domain approach. Both
designs have been subsequently tested for signal-
to—noise ration (SNR) improvements and for intel-
ligibility (with vs. without self-adaptive filter-
ing) when using standard single-syllable unrelated

* This work was performed at IntelliTech, Inc.
This work was supported in part by NADC,
Warminster, PA, under Contract N62269-83—R-0087.

** Dept. of Electrical and Computer Engineering,
Illinois Inst. of Technology and IntelliTech,
Inc., Northfield, Il 60093

IntelliTech, Inc., Northfield, Il
*>\'*

60093

Copyright © American lnstilule of Aeronautics and
Astronautics, Inc., I984. All rights reserved.
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word lists, considering a broad range of noise
situations usually of high level noises, covering
the frequency spectrum of interest in military ap-
plication of up to 4KHz. The noises include also
strong cafeteria/cocktail noises, and babble noise
situations as well as various high-frequency and

low~frequency noises that are common in aircraft
and helicopter environments and in machine shops,
hangar, etc.

2 . METHOD

2.1 General Analysis

The self-adaptive filtering problem is that of
filtering a signal s(t) from noise n(tJ when access
is available only to’a measurement signal y(t) where

y(t) = s(t) + ntt) ; t = time (1)

and wnere no prior parameter information 15 avail-
able on either s(t) or n(tL-see Fig. 4. ‘The above
problem can only be solved if some discriminant
feature exists to facilitate discrimination and

separation of (some) speech from noise. Fortunate-
ly, this situation exists in speech vs. most envi-
ronmental noise situations, since speech phonemes,
and hence speech parameters - spectral or time-
domain (not necessarily its power), vary abruptly
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at every 5 to 100 milliseconds (and do so in a
rather chaotic manner).

In contrast, the parameters of most eviron-
mental noises vary rather slowly over these time
ranges. The latier is true even for noises such as
cocktail party noise or babble noise (several per-
sons speaking simultaneously), since an averaging
effect on the various speech phonemes of the vari-
ous speakers takes place, which is further assisted
by room acoustics, to dampen the rate of change
of the parameters of these noises. Whereas the
degree of stationarity is not the only discriminant
feature that can be used for discrimination as re-
quired in the above self—adaptive filtering pro-
blem [2, Ch. 11], it is adequate in speech/noisesituations.

speech Figure 1

 V -fin
“oft k 1
Filtering

  
 

 
  weN1u=uATmu oi)ssmmnou or ’

-‘PI-‘Es’!//N-3;<>G PARAM-
5Te'ns 1. ADM’ rn mm

0F F; on FiL'rER ‘

Observing the situation of Eq. (l),we can only
identify a mathematical model for the measurement
of y(t). A time domain such model for discrete
time yk (kAt=t; k=O,l,2,...; t=time interval)
may be given by a pure autoregressive (AR) time-
series equation:

(2)

W.

3fl ‘ égh a;9L-z + L”;
wk being inaccessiule second—moment-ergodic white’ , .t. —

noise s W Vk:P (MW : 3E[ * 2° {O Vkvé/== )
Of course, other models such as MA (moving-average),
ARMA (mixed autoregressive-moving—average), AC (au-
tocorrelation model), or frequency domain models,
say, FT (Fourier transform) models, are also ade-
quate. The parameters for the model for ya , say
the AR parameter ai for the model of Eq. (5) are all
that can be directly identified.Ph3wever, for ade-
quate filtering of s and/or nk, sucli as the
Wiener-Levinson filter [3] or the extended Kalman
filter (noting the non-white noise character of nk
[2,{Hi_1OJ, we require both the parameters of sk
and nk. llet, via Ch. 11 of [2], we can obtain the

parameters of nk given the parameters of yk and of
sk. Furthermore, using an approach, as proposed by
Tsypkin [4] or Widrow [5] (see Ch. 10 or [2]),we
may design a semi-adaptive filter where a-priori
knowledge of speech parameters alone or noise para-
meter alone is still required.

  
   

From the above it is obvious that the deriva-
tion of at least the parameter of speech or of
noise is a pre-requisite to filtering of noise from
speech. lb derive such parameters we must first
identify the parameters of a model for the measure-
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which is the only accessible data

sequence. Whic of the various models one actually
identifies, is mainly a matter of convenience and
speed, since the various models are linearly inter-
transformable. In our designs we have identified
an DFT (discrete FT) model in the frequency-domain
and AR and AC models in the time domain, all of

which are directly applicable to WF (Wiener Filter)algorithms.

ment sequenceiyhl

Once the parameters of a model for y have been
identified, the task of obtaining,from the latter
parameters,modeh for s and/or for nk must be solved,
sk and nk denoting the speech and noise sequences,
respectively. This separation of parameters is
based on the property of speech mentioned earlier,
that speech phonemes, i.e. speech parameters,vary
in a rather chaotic manner every 5 to 200 milli-

seconds, whereas environmental noises are usually
relatively stationary over these time intervals.

Hence, if we identify a set of parameters for yk and
note the changes in the identified parameters over
time, then, and assuming the identification to be
sufficiently accurate, the variation in the values
of these parameters is due to speech. If, say, the
autocorrelation (AC) parameters Ri(y) of yk are con-
sidered, namely A

R-,(3) : Eflgk 31,.-;];i=o,r,2,...m (4)
such that 4

5 go 21,- g,--, -,,+ my) (5)
—>denoting convergence in probability when yk is

econd moment ergodic [2], then one can show (see
Tablei) that Ri(s), i>0, i.e. Ri of {sk} vary in
their sign from one speech phoneme to another. Fur-
thermore, for unvoiced speech phonemes (phonemes
of consonants), the average of Rj(S) over several
different phonemes is, due to this sign variation,
close to zero. Furthermore, by [6, Ch.6], the power
of unvoiced speech phonemes lies mostly above 1500
Hz, these phonemes being of considerably lower
energy than those of voiced speech. Therefore, by
Table 2, the average of R.(y) for yk=sk+nk, over se-
veral unvoiced segments 0 sk (these last each bet-
ween some 5 to 50 mil1isec.), is more or less equal
to Ri(n), i.e. to R1 of the relatively far more
stationary noise. Hence, to identify Ri(n) of nk,

it approxi.matelyA§:;ltl:1RS:‘;3;)f:5|-‘orv RJH) (>9 (6)fif€[....] denoting‘ave aging of h unvoiced phonemes
taken over an interval TiD§,t being the length of a
phoneme. Noting that a speech phoneme usually lasts
between 5 and 200 m.sec., we set T at 330 m.sec.,
a duration over which Ri(n) is assumed to be (more
or less) constant. Now, to determine that Ri(y) of
Eq. (6) are chosen from unvoiced phonemes,-or, if
possible (and ewm better) from speech-less, i.e.
from "noise only” sub—intervals, each of a 7.5 to

15 m.sec. duration (a typical duration for an un-
V0iCfiiPh0neme).we only consider these I where
Ro(y) is the lowest over the T milliseconds total

interval. Observe that, by the low power of Ri(n)
in these h sub—intervals, any error in evaluating
Ri(n) according to Eq. (6) is very small.

Once R.(n), i>0,are available, we still do not
have all parameters of sk or even of n (specifi-
cally we do not have the Ro(n) parameter). Hence,
in order to derive the remaining parameters as re-
qured if any WF (Wiener filter) or its equivalent
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is to be employed, we em-

ploy the relation [2,Ch. ll];

E9°:]='3T:r7,'V+W
E ha‘ I.” _ (7)
[]z};q] ' E%b7a?54Vr

E[/2'/:-.-,]= 7 ;v
where W and V are the

variances of ufiivk, re-
spectively, which, in turn,
are the white-noise resi-
duals of linear time series

model, for s and nk
respectivelynand where
7;’/1 relate to ARMA, MA
and AR models for yk, nk
and sk respectively as in2.

[1 The AR, MA and ARMA
parameters of Eq.(7) inter-
relate, via polynominal
division [2, Ch. 8], where-
as the Ri parameters and
the AR parameters inter-
relate via the Yule—walker

equation [2, Ch. 2]. The
latter derivations of Eq.
(7) thus complete the

identification of Ri(n),
Ri(s), for setting the
parameters fioF a Wiener
filter (WF) equation to
obtain an LS (least-

Squares) filtered estimate

sk of sk frp, yk, s.t.

F.» I
In our design, and since

phonemesfsklare to be
short-lived, then in order

to allow resetting of fi
according to their indi-

vidual Ri(s) values, we
assume that Ri(s) satisfy a
long-term average flat

spectrum. Indeed, by [6. Ch.6] we know that the
long—term average spectrum of sk is not flat but
decreases with frequency. However, since the
inforwnation content of speech increases with fre-

quency IB, Ch. 6), the flat spectrum assumption
appears justified. Hence fi are chosen to
satisfy [3]:

which yields:W1

g:o

as long as E[sknP]= 0 Vk,P

min E—KS>,,*f,()']§,§._E[(5u‘?;.~)1] = O (9_a)

Z €‘[‘J«‘)«—;+a] ‘ E[‘~5»-J; "‘ 0:
as is obviously the

case. Alternatively, if the long—term flat

spectrum assumption for sk is dropped, a semi-
adaptive version of Eq- (9), can be employed“

Table 1

Typical Autocorrelation Coefficients R0 to R5_______________________________________________

for Certain Speech Phonemes
(Sampling Interval: p.l m.sec.)

Phonemes R0 R1 R2 1 R3 5 anI 
   

‘Voiced !
ah 1.33.~1 1.07,-4! u.53.-§«-2.uu,-2z—8.o8,-2 -1.01,-1

goo 5.3M,-2! 5.06,-2 4.36,-2? 3.u1,-2‘ 2.2u,—2 1.15,-2
nae 8.29,—25 5.M2,-2 7.77,-3;-5.17,_3: 1.68,—2: 3.76,-2
=ee 1.83,-1, 1.96,—2i—7.06,-3; 1.u3,-2: u.11,-2[—8.19,—3  Unvoiced

.v 6.04,-2 l.68,—2 -2.28,-3 1.18,-24—l.75,-3:—M.93,—3
Iz 7.3u,—2 -3.60,-2 2.28,-2 -1.25,-2. 2.51,—2 -1.20,-2
ish 1.15,-2 -u.96,—2 -2.33,-2 5.22,-2'—2.25,-2§ 5.19,—3
j u.o5,-3 2.21,—3l 2.15,-3 2.03,-3 3.o9,—3I 2.17,—3

Comment: 6.04,—2 means 6.04 x lO'2

Table 2

  
 
  

 
 

 

 

Change in R: (Autocorrelation Coefficients) Over Several 7.5 m.sec
Segments of a Speech Sentence Imbedded in Near-Stationary Noise

vs. Ri for Same Noise Without Speech

noise: 2.H - 3.0 KHz (filtered white noise)

 
 

1 (8.)

fsentence & 1.ou,-1}-u.91,-2
jNoise at 6.02,-2|-1.36,-2
ian unvoiced

ispeech segment

}Av“e: R I-J Ta;
' (b)
Sentence &

[Noise at a 4.01,-l
‘voiced speech se;ment

(c)
3Noise Alone:
Same noise

as in (a)
Ave. R For (C)

1.22,—1
9.06,-2

:*5.02,-2 means 5.02 x l0'2

namely [2, Ch. 11];

_.k_’ _

V (Sampling Interval: 0.1 m.sec., data length: 7.5 m.sec.)

R2 R3 1 R“ RI

6-99,-2!—2.69.-3
9.05.-2:—1.o6,—2

8.05 -2 -1.90,-2

1.66,—l_-1.09,-1
N.58,-1 -1.26,-l

5

8.48,-2 -2.51,-2
-7-73;-2 2.26,-2 5.89,-2 -2.49,-2

1.06 -1 -7.62 -3 -9.22 -4 2.15 -2 7.19 -2 -2.50,—2

it My. ~VV)Y~*3m
where fk is the k'th-stage estimate 6% the vector:

Ex ,9 (10-13)
T denoting transposition,_}k and En“ being vectors
satisfying

(9-5) 2.2 The Time—Domain Filter (ran;
 

5:. g 1?»«—m]T; Bung [?n(°)" Rp$m)]T (10-0)

By the derivation above, thé)set of equations

tive filtering, where Eq. (1) describes the
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Ex.

(1), (5), (6). (76), (8) and either (9) or (10).
is the complete set of equations to perform adap-

measurement model, where Eqs. (6) and (7) yield
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Comment:
 

the noise parameters over the appropriate sub-

intervals I as above, where either Eq. (9) or '7 [NO-J,.)] (12)
(10) yields the WF fi parameters from the Ri(n) ‘
parameters thus obtained, and where Eq. (8) is the where the functional relation Ti is such that the
subsequent Wiener filtering operation to yield the higher NGWi), the lower is Fi. However, by the
filtered estimate Qk of sk as required. non-flat distributions of speech power vs.

In that filtering algorithm we bunch together frequency and of speech intelligibility vs.
the h:U minimal sub-intervals, as discussed in frequency [6, Ch.6] — see table M, appropriate
Sect. 2.1. For speeding-up of computation, biasing is included in Vi.
minimal R0(y) are Used to approximate R (n)- The exact ‘Pi have been experimentally fitted
C°mPUtati0nal results Of comparing Ro(n? and R0(y) via testing SNR (signal—to-noise ratio) improve-
at these minima, for cases of speech plus noise ment and via intelligibility experiments, to
vs. cases where only noise is present in yk, show optimize SNR and htelligibility performance in a
this approximation to be valid (see Table 2). In heuristic manner, noting that no exact theory
this design, the order m + l = 8 was selected via exists for this purpose. Biases, due to the
performance testing as in Table 6 of Sect. 3.3 distributions of Table 4, have also been
below and via comparing fi parameters of Eq. (8) heuristically incorporated in the time-domain
for different m, as in Table 3. The sampling rate design; in parall elity to 1,h€: freqLzency—
is 10,000/sec. domain case. The FDAF f‘ilter‘s order M or

Eq. (ll) was chosen as 8 following SNR and
2-3 The Frequency—Domain Filter(%DflF) intelligibility tests of the kind discussed in

Since the time-domain and the frequency— Sect. 3 below:
domain models for sk and nk are linearly inter-
transformable via the Fourier or the inverse— Table M
Fourier transform, it is evident that the analysis Distribution of Speech Power and
of Sect. 2.1 above holds also in the frequency Intelligibilit vs. Fre uenc * 

 
   

  
  
 

  
    

   
 
 
 
 
   

    
  
  

domain. In that case, y is identified in terms Speech Speech
of its spectral components, which in discrete fre— Power: Intelligibility:
quency form are &%u&),(u, denoting a discrete Frequency % Lying in Lying in
frequency (angular frequency), and Y((Ui) reDre- Hz Fre . Ran e Fre . Range
sentfijig yk attnj. The WF eq. (8) now becomes: 62-125 1

A AA l25—25O l
= _ 250-500 3S“ :4?» (11) 500-1000 35

F1 denoting the frequency domain WF parameters, 1000-2000 35
SK being the FDAF estimate of sk andpg 2000_mm0 13
bring the FDAF fi1ter's order. u0OO_8000 12

The WF parametersfiame obtained, in paral— almost all 50% of power 50% of un-
lelity to fi of Eq. (8), via an identification voiced- lies at below intelligi-
procedure that is also parallel to that of the speech's N50 Hz bility at
time domain case, and where Ri(y) are replaced by ener y at ab0Ve l”00 H2

 
   

 
Peak intel-

ligibility at
1000 Hz

their spectral equivalents. almost allaunvoiced—

IEEl§_§ speech's energy
Com arison of Filter Parameters of e . (8) at above 1500 HZ
for different filter orders (typical date sets) - ;EE;3;E§EET§6‘&h_ 6 of £6-1 .._..

3. PERFORMANCE TESTING: PROCEDURES AND RESULTS___________________._____.._______________________

Peak power at
500 Hz  

  
  

 

  

 

H.913 -1 means 4.913 x 10
Filter order m + l:

Filter Parameter ' 3.1 Testing procedures - SNR
5-359,-1 5-”10:‘1 To obtain a concrete and reproducible measure

—U.608,—2 -U-53”.-2 of performance of the various designs of the self-
l.859,-l l-35“.-1 adaptive filter above, and to evaluate the effects

-1.035,-l l.0N7,-l of certain design parameters and to set them for
—l.594,—l -1-732,-1 best performance, we compared changes in SNR
—l.357,—3 -4-283,-3 (signal—to-noise ratio) for situations of speech
—5.790,—3 l-249.-2 (signal) imbedded in noise, when measured directly
1.792,-2 8.452,-3 (unfiltered) and when passed through the version

4.U85{-2 of the filter that is teted.

-l.703,—2 To get a good understanding of the filter's
n he e tests er r e t in

Observe the °1°seneSs °f f0 to f“ for m + 1 = 6’ 8’ 10 :§i::sm:tc:iffer:nce freq3en:iezpwitfignuihegrange
(n°t‘ H) of speech frequencies of interest. In this

manner, one can evaluate the performance of the

filter throughout the spectrum. Furthermore,
since certain very unpleasant noises cover a range
of frequencies and have somewhat non-stationary
properties, but are extremely common, such as

  

 
Hence, in parallelity to Eqs. (7) of the

time-domain design, N(u&) determines Fi of Eq.
(11) via minimizing the variance as in Eq. (9-3)

with respect to F1 (rather than with respect to fi
in the time-domain case), to yield:
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babble noises (several persons speaking simul-
taneously) or cocktail/cafeteria noises, these
have been also tested for SNR improvement via
filtering. We comment that although these noises
are rather close to speech (especially babble
noise), a parameter—averaging effect takes place
-with regard to these noises’ parameters, which is
due to the fact that several phonemes of different

parameters are uttered simultaneously, this
averaging being aided by room acoustics. Hence,
our basic noise—stationarity assumptions of Sect.
2 do still hold, at least partly, such that im-
provement is expected and was indeed achieved via
our design.

In all cases, no prior knowledge of

parameters was assumed. when passing the yk =
sk+nk signal through the filter, we did however
have the computer store and record the filter's

parameter settings. Subsequently, and to obtain
an accurate SNR measurement in the "filtered"
mode, we forced the filter to be frozen at the
above stored parameters while we fed speech alone
through the filter thus set, and then we fed noise
alone through it. We recorded both pure (speech)
signal RMS (root-mean-square) values at filter's
input and at its output and the pure noise RMS
such values, to derive the SNR ratio at input
(prior to filtering) and at output (after
filtering).

The above tests were also repeated at

different input-SNR ratios for the same type of
noise, since the biasing of the filter and its
gain policy setting (Eq. (12), Sect. 3.2).

3.2 Testing Procedures - Intelligibility
A somewhat less repeatable but nonetheless

important and indicative performance test to
evaluate the filter is the intelligibility test.
Here one tests intelligibility scores for
sequences of words imbedded in noise when filtered
vs. when not filtered. To obtain a fairly
dependable such evalution, we used sequences of
standard single-syllable word lists (NU 6,
Northwestern University) which are widely used and

widely accepted word lists [l]. These lists span
the speech spectrum. Also by their single-
syllable feature, there is no indication in one
phoneme on the previous or next one. Hence, the
listener cannot guess the word if a phoneme is
lost. Again no word is related to the other in
any content—sense or sentence-sense.

Our scores were of an examined volunteer

correctly writing down the word from the list as
he hears it. Any error was counted as wrong.
Hence, writing "hurl" for "girl," or "sheep" for
"get" both receive a zero score. However, for
better evaluating performance, we also observed

the number of phonemes which were wrongly
identified; Here, "hurl" for "girl" is a one-

Dhoneme error, while "sheep" for "get" is a three-
phoneme error. Obviously, in conversation
situations, only rarely will one—phoneme errors
affect sentence understanding or even word under-
standing. One would never mistake "The girl is 5
Years old" for "the hurl is 5 Years old."

3-3 Performance Results — SNR

d The SNR (signal-to-noise-ratio) testsescribed in Section 3.1 above, lead to the

results as summarized in Table 5 below:

Table 5
IMPROVEMENT IN SIGNAL-TO—NOISE-RATIO (in dB)*

via the various filter designs

  
 

 

 
 oe of Noise

250- M00 Hz

Im-rovement via Filter in dB*

1200-1700 Hz
2400-3000 Hz

TDAF** FDAF** I

Noise Noise

Babble
Cafeteria .

Signal-to—noise ratio (SNR) in dB is a logarithmic

scale of 20-logl0( signal/noise). Hence a signal-

 

  
 

  
 

 

 
 

  
  

 

  

  
  
  

to—noise ratio of l is an SNR of 0 dB. A ratio
of 2 is an SNR of 6 dB, a ratio of 3 is SNR of
10 dB and a ratio of 10 is 20 dB, etc.

**TDAF: time—domain adaptive filter; FDAF:
frequency—domain adaptive filter; HAF:
aid adaptive filter.

Hearing-

In Table 5 comparison is made between the
TDAF and the’FDAF of Section 2, and whose design
is given in App. A and B, respectively, the RDAF
employing an 8 parameters Wiener filter, i.e.
m+l=8 in Eq. (8) of Sect. 2.1, and the FDAF simi-
larly employing q=8 in Eq. (11) of Sect. 2.2.
Also, comparison is made with a hearing-aid-
applied adaptive filter (HAF), which is a con-
strained version of the present designs, where

only q=3 parameters are employed, (up to 5 1'01‘
some noise situations), and which was further
simplified to allow its realization in a below 250
microwatt, single-CMOS chip employing a 1.1 to 1.4
VDC supply (conventional hearing—aid battery), for
use in conventional behind—the—ear or inside-the-
ear hearing aids.

Table 5 clearly illustrates the supggigg

 §-
Observe that the accuracy of the measurements
is i4dB. Hence, even in the babble-noise
situation, where the FDAF is the weakest, as can
be expected (see our discussion on that noise in
Sect. 3.2 above), it performs almost as well as
the second best design for that noise, namely the
TDAF design. In other situations, all of which
are of importance to the navy, probably as much or
more than babble noise, the FDAF outperforms the
HAF in every category, as could be expected, by
anything from l dB to 29 dB. Finally, it improves
on "no-filtering" by 6.7 to 25.5 dB, considering
all the noises tested.

Table 6

SNR Im-rovement for TDAF of Various Orders
Noise 1700-2400 Hz/speech & noise test
SNR at input (unfiltered): -11.8 dB

 

 

 

 

Table 6 is enclosed below to justify our
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choice of order of m+l=8 for the TDAF design.
Indeed, if the same best performance is achieved
for several orders, the lowest of these orders
should be chosen. However, for better resolution
in cases of very narrow—band noises, we chose
m+l=8 rather than 6. In practice such very narrow
band environmental noises are rare. If they occur-
and a somewhat wider band is thus affected by fil-

tering, intelligibility is hardly affected, as is
illustrated in Table 7 of Sect. 3.U below. Hence
a choice of m+l=8 is considered as a good com-
promise, to adequately be valid even if noise is
very narrow band in one or several spectral
regions.

3.4 Performance Results - Intelligibility Scores
The intelligibility test resuts, performed as

described in~Sect. 3.2, are summarized in Table 7,
when using mono-syllabic NU-6 (Northwestern
Univ.), word-lists #1 to #4, Forms A to D.

 Table 7
Intelligibility Test Scores:

NU Mono-syllabic Word List

 
FDAF:

 
 

 

_. —
“oof fully correct word recognition

*Unfiltered **Filtered
(1) For people with normal hearing, results from

filon same HAF
(2) Test for 600-800 Hz noise
(3) Tests by R. LaRose, on same HAF,

Noise of l200-lM00 Hz _
(N) Test by R. LaRose, on same HAF
(5) Test by R. Larose, on same HAF
'6) Test for l[00-2UOO Hz

At no-noise, the score with the same word lists

fi?DAj§ was not 100% but only 90%, since, when using
this monosyllabic words, tape, in 10% of the words
a l—phoneme error occurred when even when no noise
was present. The filter is, of course, completely
transparent at no noise conditions, such that
speech is unaltered by the filter at no-noise.
Hence, the latter no-noise score was independent
of the filter being on or its being by-passed.

For correct interpretation of Table 7, all
scores for the FDAF must thus be mu]_t3'_p1j_c_-d by a
correction factor of 1.11 (i.e., for cafeteria
noise, the score was 35% unfiltered and 100%
filtered). A similar correction, by of 1.035 is
required for the HAF filter, since the HAF tests
were done with a higher quality play—back system.
Note that no such intelligibility tests were
possible with the TDAF design, since this system
is not running in real time, as was discussed in
Sect. 2 above.

The intelligibility test results above
indicate again that the FDAF outperforms the HAF
design in all categories but for babble noise. We
comment that in the case of babble noise using the

FDAF, 56% of words were recognized with either no
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error or with one phoneme being wrong (say, "nag"
vs. "nap"), whereas without filter, only H2% were
similarly recognized in the babble‘noise (FDAF)
test tabulated in Table 7. It is important to
observe that there is no exact correspondence
betwen SNR improvement and intelligibility im-
provement, though they go in the same direction.
when comparing Table 5 (SNR performance) with
Table 7 (intelligibility scores), we note that
FDAF outscored HAF in all noises in Table 5, and
it outscored HAF in all but babble noise, in in-

telligibility scores. Furthermore, whereas FDAF
yielded improvements vs. no-filtering at all, in
every category both in Table 5 and 7 (SNR and
intelligibility) HAF yielded improvement in every
intelligibility score category in Table 7, but was
slightly inferior (3.8 dB) in the 1200-1700 Hz SNR
test, though yielding improvement in every other
SNR test. Interestingly, HAF yielded improved
intelligibility even in the 1200-1700 Hz range.

R. Conclusions
In conclusion we observe that the present

FDAF design is beyond doubt the best of the
designs considered, both with respect to its
improvement in §fl§ which is_outstanding in every
gategpry (from an improvement by 25.5 dB in SNR
vs. no filtering, for both 1200-1200 Hz and 2H00-
3000 Hz noises, to a 6.7 to 8.4 dB improvement for
the most difficult noise to filter, i.e., babble
noise-see Table 5 of Sect. 3.3), and with respect
to its improvement in single-phoneme word-list
intelligibility scores (up to an improvement for
Cafeteria noise from 32% unfiltered to 90%
filtered, noting that at no-noise conditions
intelligibility for same list is only 90%!) The
TDAF also outperformed, on the average, the
simplified HAF design in SNR tests. However, the
FDAF design is the obvious choice. outscored the
simplified HAF, by improving on the HAF
performance by an additional 29 dB for 1200-1700
Hz (though even for this noise, the HAF's
intelligibility scores show doubling the score vs.
"no-filtering"), by an additional 10 dB for 250-
N00 Hz noise and ZUOO-3000 Hz noise, and by an
additional 2 to M dB for babble noise.

Regarding the intelligibility tests with
single-syllable words, it is obvious that any of
the intelligibility-score during normal con-
versation, or even with single short sentences,
would be far superior when the equivalent score
(same conditions otherwise) with single-syllable
word list that are also unrelated in content.

We also comment that, though not quanti-
tatively measurable, all tests clearly pointed to
a very considerable improvement in listener's

comfort while using the filter when in a noisy
environment, relative to the unfiltered condi-
tion. This li§tgner:g9mfort is a most important
aspect in listener-fatigue under noise, which is
of great relevance to military situations re-

quiring high degrees of concentration of pilot,e c.

The FDAF design tested was a real-time on-

line design, which lends itself to a portable
(flyable on board of a helicopter or fighter
plane) realization.
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ihstract

A DAMN scheme is presented in which users gain ac-
cess to a CUMA message channel via randoml‘ select-

ed lrequency Hopped Multiple access (FUNK) request
channels. The numher of messagt channels that can
he assigned is limited to a maximum value in order
to limit error prohahilities due to noise and co-

channel interference. The prohlem of synchroni:a—
tion of frequency Hopped signals is considered and
a theoretical performance analysis of the scheme is
presented. User generated interference with white
gaussian noise hackground is considered. Measures
of the FHUAMA scheme performance evaluated were the
maximum numher of messagc channels, the message
channel occupancies, the handwidth utilization and
the prohahilitv of channel acquisition.

1. Introduction

lrequency—Hopped communication svstems are spread
spectrum systems in which the spreading of the spec
trum is achieved hy hopping the frequency of the
carrier signal at regular intervals in a predeter-
mined hopping pattern. These waveforms have some
properties which make them useful in multiple ac-
cess systems. The inherent frequency diversitv
makes these systems resistant to frequency selec-
tive fading and also to tone jamming.

Coding schemes for lrequencv Hopped Spread §pectrum
Multiple access (FHSNPH) communications have recei-
ved some attention in the literature [l,3,3|. Most
codes are selected so that a given frequency occurs
not more than once in a pattern of hops. Applica-
tions of FHMA schemes to mohile communication have
also heen presented. in [J] two coding schemes
were presented in which data was transmitted using
predetermined hop patterns. \n analysis was car-
ried out at high Signal—to-\oise ratios for hit er-
ror prohahilities when a certain numher of users
were accessing the channels. in analysis of one of
the coding schemes of [J] in a Raleigh fading en-
vironment at low signal to noise ratios was carried
out in [S]. in the coding scheme presented in [0]
data was transmitted hy hiphase modulation of the
carrier hr the digital signal. A comparison of the
lUSS stheme with IM/channel reuse schemes in a cell-
ular environment was also done

in hoth [J] and [5] the analysis of the schemes were
carried out assuming a certain fixed numher of users
on the channels. \ynchroni:ation hetween the trans-
mitted frequeucy hopped patterns and the pattern
detectors at the receivers was assumed. in an en-
vironment where users are randomly accessing the
channels, synchroni:ation is an important aspect of
the detection and decoding prohlem. The numher of
users at any time on the channels is also a random
quantity. In this paper a UAMA scheme is presented
that uses 1U channels for hoth request and message
transmission. The random nature of the channel use
is considered and a solution to the synchroni:ation
prohlem suggested.

*The research reported in this paper was supported
in part hy the U.§. National Science loundation
under hrant [C5 S3—USoJ3.
('op_srighl 3 /\Hl(’I'i(‘1Inll1\li!U|(‘l)f »\L'ronuiiiics and

Astronautics. lnc.. I984. \|| rights rcscrxcd.

Brook, \ew York 11794

The structure of the orerall scheme is similar to
that of [8]. Requests for message channels are made
over collision type request channels. If these re-
quests are received successfully at a central pro-
cessor and if message channels are availahle, a
message channel assignment is made. Request chan-
nels presented in previous literature [0,lU] were
simple Aloha channels in which each request occupied
a separate portion of the total bandwidth. A request
was lost if there was an overlap in time hetween the
transmissions of two requests using the same channel
when FHMA request channels are used there need not
mecessarilv he a loss of information when two re-
quests overlap.

Some prohlems arise due to the nature of the coding
used in [4,5,o]. Since frequencies over the whole
handwidth are shared hy all users, certain identifi-
ahle frequency hop patterns arise due to the trans-
missions of different users. This could lead to er-
rors in decoding. It is seen intuitively and has
heen shown in [4,5] that errors of this origin in-
crease with the numher of users. Hence it may he
desirahle to limit the numher of users at any time
so that the prohahilitv of this kind of error is
limited to a predetermined value. hemand assignment
of the message channels is suggested.

in section ii a hrief discussion of the method of
coding is giien. In III a solution to the synchron-
i;ation prohlem is presented and an analysis of the
flow of requests in the system carried out. In sec-
tion IV, the receiver at the central processor is
descrihed and in T an analysis of the overall schemeis carried out.

ll. Coding scheme

in the paper hy Linarsson [J], a method of codingiwu
heen presented in which the interference hetween
users of two different channels is minimized when
these users are synchroni;ed to eath other at the
chip or frequencv hop level. This coding has heen
used in our HAM} scheme. \ mort detailed explana-
tion of the coding can he found in [4].

Using this code, Q channels are generated from Q car-
rier frequencies. lath of the Q channels COHEHLDS Q
different hop patterns called symhols which can he
used to transmit log3Q hits of data. The numher of
hops in each pattern, L, is the same for all chan-
nels and is predetermined to he anvthing from I to
Q—I. The code is illustrated hy an example with Q:S
and i=3. If the frequencies of the carriers are
numhered U to J, the 5 channels can he represented
hy the sequences of hops shown helow.

Channel Sequences Used

rnnni,ii:ii,(:i3i,i3i:i,ii3ii
(1i1i,(:3ii'i,(3ii.ii,i.i:3),('<ii:i
(332 ,(3i1‘).(i1iii,iii3.1i,(1ii3i
(333),!1U3i,{0Zl),{llUi,{Zli)
iiiii,(ni3i,ii3:i,(:uii,(3ZHi

‘.,i..'./ll4'—'
\ fiame is defined as the time period for which a
symbol is transmitted. it is seen that the frequen-
ticq of the carriers transmitted on two different
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channels coincide in only one chip of a given frame.
This is called the one—coincidence property. It is
also seen that the symbols of any one channel are
cyclic or shortened cyclic shifts of each other.
Hence two users of the same channel, out of frame
sync with each other could transmit the same car-
rier frequency in anything from 1 to L hops of a
frame. Since the coincidences between users of the
same channel depend on the data transmitted, there
may not be a loss of information in the event of a
collision between them. This property of the chan-
nels could be used to an advantage when sending re-

quests. Since requests occur at random times and
involve the selection of random request channels,
the possibility exists that two or more requests
are sent on the same channel and that the times of
transmission of these requests overlap. If the
above method of coding is used, this need not nec-
essarily lead to a loss of the transmitted informa-
tion. Hence FH request channels are used in this
scheme.

In our implementation, the frequencies of the re-
quest channel cover a bandwidth different from that
covered by the frequencies of the message channel.
Hence there is no interference between the two.

III.Synchronizationand Fkw ofRequests in the Scheme

Most literature on FHMA mobile communication has
not dealt with the crucial aspect of frame syn-
chronization in randomly accessed systems.

In this scheme we assign one of the Q symbols in a
channel as the "channel recognition symbol”. This

symbol is used only to signal start of transmission
using a certain channel. No data is transmitted
through this symbol and frame synchronization of
the symbols that are transmitted subsequently is
based on its detection. Information is transmitted

using the Q—l symbols that are left in a channel.
For the given example, the symbols 000, 111, 222,
333 and 444 could serve as the channel recognition

symbols of the respective channels. The number of
bits of data transmitted per symbol now is 1og2(Q-D.

Let 21 and 22 be the number of bits of information
per symbol on the request and message channels re-
spectively and L1 and L2 denote the number of hops
per symbol on these channels.

The coding scheme used in the design of the chan-
nels demands that the number of frequencies used
must be a prime number or a power of a prime num-
ber. If 11 and R2 are parameters that are given,
Q1 and Q2, the number of frequencies in the request
channels and message channels respectively are
chosen to be the smallest integers that satisfy
the conditions

£1 2
+ 1 and Q2 3 2 2Q1 3 2 + l, (1) and (2)

and the condition of being prime or a power of a
prime number. In the further analysis of the sch-
eme we approximate (1) and (2) by the equalities.
The structure of the overall DAMA scheme is shown

in Fig. 1. It represents the flow of requests and
the assignment of message channels in the system
channel assignment are made at a central processor
that receives the requests from all the users si-
multaneously. A user wishing to gain access to a
message channel begins by selecting a request chan-
nel at random and then transmitting the "channel

recognition symbol" of that channel. This is fol-
lowed by the transmission of the information that
the central processor needs in order to assign a
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message channel. This is done by transmitting K syn»
bols of information in the K succeeding frames where

t%%—J + 1 if N/11 is not an integer1
K = (3)

—g— if N/ll is an integer.1

N being the length of the request in bits of data.

L J is a sumbol representing the nearest integer
less than the given real number.

The data transmitted on the request channel may in-
clude the user's identification, the intended final
destination of the message and the length of the
message to be transmitted. N was taken to be a con-
stant in our analysis.

If a request is decoded successfully at the central
processor and a message channel is available, an as-
signment is made. This message channel assignment
is then broadcast over a single reverse broadcast
channel to which all users listen. It is assumed

that the probability of the user receiving its as-
signment over this broadcast channel is one. If all
the message channels are being used no channel as-
signment is possible and no broadcast is made. The
user then retransmits its request after a random
waiting period.

The arrival times of new requests for message chan-
nels are assumed to be poisson distributed with AT
being the average arrival rate of new requests in
arrivals/sec.

If the delay in the retransmissions of unsuccessful
requests are random and sufficiently long, the total
arrival rate of requests at the central processor
can also be considered poisson distributed. Then if
X is the total average arrival rate of requests at
the central processor in arrivals/sec, it can be
shown that

AT = ‘Y Pdet.Pnblo ' (4)

where Pdet is the probability of successfully decod-
ing a request and Pnblo is the probability of there
being a message channel available.

At equilibrium, the rate at which new requests are
made should be the rate same as the rate at which
message channels are assigned.

Then occupancy of the message channels is given by

om = (KT/R2)(Nm/Cm). (5)

where R2 is the rate of data transmission on the
message channels and Nm is the average length of a
message in bits. Cm is the total number of message
channels available.

From (5) total traffic in the message channels is
given by

aT = (KT/R2)'Nm - (6)

Using the Erlang B formula

Pnblo = 1 _ B(Cm’ao) ’ (7)
where

s S k
B(s,a) = (a /s!)/ E a /k! (3)k=O

and a0 is the traffic that impinges on the centralprocessor

3T = ao(1 ' B(Cm’ao)) = ao'pnblo (9)
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Using (4), (6) and (9),

ao = (RY/R2).pdet'Nm (10)
C , the number of message channels, is chosen so
twat the bit error probability in these channels is
limited to a certain value.

A measure of performance of a DAMA scheme is the
overall bandwidth utilization S, which is given by,

S = (Occupancy of the message channels). (Frac-
tion of the total bandwidth assigned to these
message channels) (11)

s = om(1 — v) (12)
where v is the fraction of the bandwidth assigned
to request channels. The minimum request and mess-

age channel bandwidths required are given by'(Ql-R1)
and (Q,-R7) where R, is the rate of data transmis-
sion in request channels.
If the data burst rates are the same in both the

request and message channels, R1 = R, (13)
and

(1’\)) : Q2/(Q:_)+Q1) (14)

Using the approximations for Q1 and Q, and (5), (12)
and (14), '

Z 9 0

s = (AT/R2)(Nm/Cm)[(2 2+1)/c(242+1>+(2 1+1))] (15)
Another measure of performance of the DAMA scheme is
Pcha, the probability of a user getting a message
channel when a request is made. The expected num-
ber of transmissions before a message channel when
a request is made. The expected number of trans-

missions before a message channel is assigned, NT,
given by the expression

N” = 1/PI

Pcha = Pdet.Pnblo

cha (16)

(17)

P Ct depends upon the structure of the receiver used
ag the central processor to decode requests and the
protocols used in this decoding. Once this and the
other parameters are calculated, the overall system
can be analyzed.

lV. Detection and Decoding of Requests

The central processor receives requests from all po-
tential users of the message channels. These re-
uests are also corru ted by noise in the systemQ J .

which is assumed to be white gaussian. The problem
at the receiver is to decode the symbols belonging
to the different channels on a frame by frame basis.

The first stage in decoding a request is to detect
the “channel recognition symbol" that is transmitted
and associate it with the correct channel. In our

scheme this is accomplished by a bank of noncoherent
matched filters or correlators matched to this sym-

bol. An example of a correlator bank matched to the
pattern 000 is shown in Fig. 2.

Once the start of a request transmission is detected,
a tracker is initiated which decodes the data trans-

mitted in the K succeeding frames on this channel.
This tracker decodes the request on a frame by frame
basis and the overall performance of the receiver
depends upon the approach used for decoding and also
the protocols involved. Using noncoherent matched
filters or correlators, a record is made of the fre-
quencies of all those carriers used in the request
channels that are detected during each chip of a
given frame. A symbol belonging to the channel is

'the receiver is (2’

now detected by the tracker if the pattern of a11
the frequencies corresponding to that symbol is de_
tected in the frame.

Cochannel interference and noise could cause a sym_
bol to be detected in a channel even if it was not

transmitted by the user of interest. Let Pfsy de_
note this probability. A request transmission is
assumed to be missed if the “channel recognition
symbol” is not detected or if more than one symbgl
belonging to the given channel is detected in any
one of the K frames of the request.

Requests that are made using different channels en-
gage different trackers. Overlapping requests on
the same channel, out of frame synchronization with
each other, engage different trackers also. In the
case where more than one request is detected using
the same channel, in frame sync, and overlapping in
transmission times, tracking of all these requests
is done using the same tracker from the start of the
first detected request to the end of the K frames of
the last detected request. A timing diagram for the
case of two such users is shown in Fig. 3. Each of

the overlapping requests can be detected by decoding
the K symbols detected from the start of that re-
quest transmission on the tracker. Using this ar-
rangement it is seen that the maximum number of
trackers needed to detect all possible requests inV

1+1)-L1.
The thresholds for the noncoherent matched filters

used in these trackers are chosen so that the proba-
bility of detection of a tone transmission approach-
es unity. The probability of not detecting a trans-
mitted symbol tends to zero. This reduces the prob-
ability of missing a request transmission to the
probability of detecting one or more false symbols
belonging to the particular channel in a given frame
due to noise and cochannel interference.

The probability of a symbol not being falsely de-

tected is (1-Pfsy). when a symbol is being trans-
mitted in a frame, the probability that no other
symbol belonging to the same channel is detected in

R

2 1-
this frame is given by (l-Pfsy) since there are
(2 1-1) symbols left in the channel. Then Pdet is
the probability that no false symbol is detected in
any of the k request frames.

291 K
det = [(1 ' Pfsy) 1

If two or more users access the same request chan-
nel within K frames of each other, in frame synchro-
nization, more than one symbol belonging to that
channel is detected in one or more frames of each

request. Hence all overlapping requests are lost.

This factor is accounted for in Pfs)

P (18)

A false alarm is the detection of a request trans-
mission at the central processor when none is actu-
ally transmitted. In the occurrence of such an
event, if the decoded request information makes
sense, a message channel could be allocated to a
non-existant user.

Prob. of getting exactly one false symbol belonging
to a channel in a frame in the absence of an actual
transmission in that channel is given by the ex-

°'1 <0‘ 1
pression 2 -Pfsy(l - Pfsy) . The probability
of getting exactly one false symbol in K successive
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 . £1 2£1—1 K
frames is then [2 -Pfsy-(1-Pfsy) ] .

If Pfs is the probability of detecting a "channel
recognition symbol” when one is not transmitted,
Pfa, the probability of a false alarm is given by

2 “1 K
2 ‘11 (19)Pfa = Pfs'[2 l.pfsy'(1'Pfsy)

For the protocols used, it was found that Pfa was
very small at the traffic levels of interest. When
Pfsy is small at the higher signal to noise ratios,
Pfa is obviously reduced. At lower signal to noise
ratios, even if Pfsy is higher, the probability of
getting exactly one false symbol in a frame is small
and the probability of this occurrence for K suc-
cession frames is significantly lower. Even when
false requests are detected, there are parity
checks for the overall request data transmitted.
The probability of these matching is very small
for false requests. Hence the effects of false
alarms on the overall system for the protocol cho-
sen is found to be negligible.

Derivation of expressions for Pfsy and Pfs

Using the definition of arrival rates introduced
earlier, average arrival rate of requests at the
central processor per hop interval is

cxy/R1)-(21/L1) (20)
False symbols can be detected in a frame due to
other users of the same channel who are in frame
sync with our frame of reference. This could be
caused by requests made in any one of the K preceed—
ing frames, in frame sync with the frame of refer-
ence and using the same channel.

Using (20), the average arrival rate of such re-
quests then is

2
l

K c)Y/R1) (21/L1)/(2 + 1) (21)
The average arrival rate of requests that form a
particular symbol in a given frame,

l l

A = K-(AY/R1)-(£1/L1)/((2 1+1)-2 1) (22)x

Using the poisson distribution, the probability of
getting a particular symbol in the frame due to
these requestsiis P0 where

—)
_ x

PO — l — e (23)
The average arrival rate of all other requests over
channels other than the one containing the symbol
of interest and who could cause some frequency to
be detected in a particular slot is given by the
expression

1 2
1 1

cK+1)-11-2 ()Y/R1)/(2
+1). (24)

using the same arguments as those used for (21).

Using the same approach as for (22) average arrival
rate of these users who could cause a particular1

frequency out of (2 1+1) possible frequencies to be
detectedxin a particulag chip1

A), = (E13411. (K...1)._i____ . _f!:1__
1 (2 1+1)

(25)

(211+1)
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P = P0 + (l—P0)'P'£5, (26)

with P0 given by (23)
P‘ is the probability of the false symbol being
found in a frame but not due to other requests on
the same channel, in frame synchronization with the
frame of interest. Let P1 denote the probability of
a particular symbol being formed due to a combina-
tion of users of the same channel, one chip out of
frame sync with the frame of reference and other
users of the request channel as shown in Fig. 4.

Since symbols of a particular channel are cyclic or
shortened cyclic shifts of each other, in the worst
case, the requests on the same channel, one chip out
of frame sync could transmit tones corresponding to
the first (L1—l) frequencies of the required symbol
in the frame of reference. Using reasoning similar-A

to that used for (23), this probability is (l—e X).

The Lth frequency in the frame could be formed
either by same channel requests whose frames begin
at the 2nd, 3rd,......,(L—l)th or Lth chip of our
frame of reference, by requests on all other chan-

nels (which contribute to Ky) or by the false detec-
tion of a frequency transmission due to noise pres-
ent which is assumed to be white gaussian with one
sided spectral density n.

In our analysis we assume that the detection and
tracking of the tones transmitted in both the re-
quest and message channels is done using noncoher—
ent matched filters. In order to ensure that a
transmitted tone is nearly always detected, the
thresholds for the filters are chosen so that the
miss probability of the weakest possible user whose
tone is to be detected in 10-5. Then, using stand-
ard analysis techniques

b 2 2

-5 i xe—(X +a )/Zdx \J
(27)

o

with a=(2'(Eb/n)°(21/L1))1/zwhereEh/nisthe signal-
to-noise ratio of the weakest signal to be detected
in energy per bit of data per hertz. b is the
threshold of the matched filter and is the only un-
known in (27). Using the value of b solved for in
this equation, the probability of a false exceedence
of a threshold, P , is given byfchip

—x2/2
Pfchip = fw xe dx (28)b

It can be shown that

F1=(l~e_xX)[(1—e_xx(L1—l))+e-xX(L1—1l((l—e \y)
—l

+ e Y-pfChip)] (29)
Examining (26) further

Pfsy = PO+(l—P0)[Pl+(l—P1)P"] (30)
where P” is the probability of the symbol being
formed in a frame but not due to requests on the
same channel in frame sync or one chip out of frame
sync with the frame of reference.

Define Pi as the probability of the symbol being
formed by same channel users i chips out of frame
sync with the frame of reference. It has been
shown that
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Li
jrl

_ Y _
Pfsy — P0+ Z Pj[ H (1 Pi)] . (31)J=O 1=O

-A (L -i) -R_(L —i) —\
P.=x.[(l-e X 1 )+e “ 1 (l—e V)-1 1

i—l
._l ._

i=1
-1 ~l —) -3

with x=l—e X and y=e x((l—e y)+e yPfChip).xi=x
except when i=Ll for which value Xi-‘=1.
Similarly,

L1 j_l

pfS—p1S+ j v]s[.n (1—piS)] (33)]=2 1=l

—A A (L -1) —A (L —i) —\

Pig=(l—e l[(l—e 1 1 )+e 1 1 (l—e 2)-
i—l

l ("-1)
< 5 xsysJ +yS 1 >1 <34)
j=1

—X -2 —X -1

with xS=(1—e 1), ys=e l((l—e 2)+e 2PfChip) and
9

ll=(XY/R1)(ll/Ll)/(24l+l) and A2=(AY/Rl)((k+1)-Rl-

01 Q
2 +k£l)/(2vl+1)2.

If as a design parameter we specify that the hop
rates in the request and message channels are thesame

0 = "
Ll/.1 L2/L2 (35)

Under this condition, the request and message chan-
nel frequency detector thresholds can also be cho-
sen to be the same. Probabilities of false thres-
hold exceedences are also the same on both channels.

Then, Pb(e), the bit error probability in the mess~
age channels, using the detection algorithm of [5]
is given by

(12-1) 9
vb<e>=<2 /<2 2—1»[1— Z <pm<j>/<j+1>>1 <36)

<2 '—1—j>
with Pm(j)=( )zj(l—z)

L2 9
z=(Py+(l—Py)P ) where py=(1—(1—(1/(2 2+1)))”)fchip

and M is the number of users on the message chan-
nels.

V. Analysis_of the Overall Scheme

The aim of the design was to allocate frequency
hopped message channels as efficiently as possible.
Efficiency, depending on the system objectives
could be measured by p , S, or P . The parame-_ 1 _ cha
ters of the design to be decided on are l1,l2,L1
and L2. These are calculated using (35) and where
applicable, the equation based on the bandwidth(W)
and date rate(R) constraints.

_ ).1 0 9.2 P
W/R—(2 +l)Ll!hl+(2 +1)L2/.2 (37)
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N, NW and Eb/n are characteristics of the communiCa_
tion system which are given.

For the above parameters, the maximum number of
message channels, Cm, is chosen so that the worst
cases Pb(e) as given from (36) is less than lO"3.

The measures of performance were calculated assumig
that the request strategy was working at the level
where its throughput XSVS was maximum.

X5yS=¥ax(lT/R1)
“Y

This optimum exists due to the nature of the request
channels in which the number of requests that are
lost due to collisions increases with the traffic

levels. In the initial study pm, S and P h were
plotted as functions of L1 for different va ues of
11 and 12 using (35) and other equations. Values

of N=l28 and Nm=2048 were used and the analysis car-
ried out for different signal—to—noise ratios. This
initial study concerned itself with an understand-
ing of the variation in the performance with the
design parameters. The results of this study can
be found in [12]. Here, we have also presented an
example of the design of a FHDANA communication sys-
tem which is designed to support a certain maximum
number of users under certain conditions.

(38)

Figures 5 to 9 show the results of a study where
bandwidth and data rate constraints of W=2O Mhz and
R=32 kbps were used. The operating conditions cor-
respond to a system with no external noise, N=l28
and Nm=2048. Fig. 5 shows that the number of poss—
ible users increases with 12 conditional to the
changes in the hopping rates. For a given 12, a
system with ll=8 has a lower hopping rate in the
message channel than a system with l1=7 and as a
consequence, supports less simultaneously transmit-
ting users. Calculations are based on (35), (36)
and (37). From Fig. 6 it is seen that for the
smaller values of 12 the carried traffic is limited
by the number of message channels whereas for the

higher values of 12 the limitation is due to the
throughput of the request channels. The carried
traffic could also decrease for higher values of 12
due to lower hopping rates. Figures 7,8 and 9 show
the variation of S, pm and Pcha respectively with
11 and 12. These can be analysed based on the re-
sults in Figures 5 and 6.

To design a practical scheme a decision is first
made on the maximum number of active users thatneed

to be supported simultaneously and the traffic lev-

els that are of interest. Combinations of 12 and
12 that satisfy this requirement are found and de-
pending on the other parameters of interest to be
optimized one of these combinations is selected for
design.
Conclusion

A DAMA scheme using FHMA channels for request and
message channels is presented. A method of synch-
ronization of random requests at a receiver was in-
troduced. The analysis was carried out for the
case where several geographically separated users
were communication or attempting to communicate
with a central facility. Errors due to white
gaussian noise and interference from other users
were considered.

The protocols of the scheme were very stringent and
although this reduced the probability of the detec-
tion of requests, it also reduced the level of
false alarms. It is suggested that where error
correction coding is possible, the protocols could
be eased and probabilityes of detection improved.
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ENHANCED TCAS II SIGNAL PROCESSOR DEVELOPMENT

8. James Lyons
Margaret A. Martin

Allied Bendix Aerospace
Bendix Communications Division

Baltimore, Maryland 21204

Abstract

A methodology for computer simulation aided hard-
ware design has been developed and was used suc-
cessfully in the design and systems integration of
the Enhanced Traffic Alert and Collision Avoidance

system (TCAS 11). Both hardware (low-level) simu-
lation and statistical function (high-level) simu-
lation were used to guide and finalize the hardware
design. The low-level simulation (LLS) was needed
to guide the detailed hardware design of the signal
processor. However, the LLS was three orders of
magnitude too slow to test the integration and
functioning of the signal processor with the total
Enhanced TCAS II system. A high-level simulation
(HLS), which provided the same statistical response
as the low-level simulation, was written and
tested. The HLS did not provide the same response
as the LLS to a given ATCRBS or Mode S reply sig-
nal, but the reply response (range, angle, alti-
tude, amplitude measurements) to a statistically
significant set of replies was comparable for the
two simulations.

Three parallel efforts directed toward development
of the LLS, the HLS, and hardware design and test
were coordinated to yield the finalized TCAS signal
processor design. Hardware test results show that
the signal processing and decoding perfonnance was
predicted by the LLS. Flight tests results with
the collision avoidance system show that the HLS
functioned to predict the system performance.

Design Methodology

The signal processor development leading to the
tested hardware was accomplished by following

twelve ordered steps. There was, of course, itera-
tion of these steps so that the results from the
low-level simulation, the high-level simulation, or
the hardware design could cause changes in pre-

viously completed steps. This paper consists of a
brief discussion of the procedure and results of
the following 12 development steps:

1. Formulate Functional Block Diagrams

2. Develop LLS Specification Flow Diagrams

3. write LLS Programs

4. Run LLS Program and Obtain Preliminary
Signal Processor Evaluation

5. Develop Preliminary Hardware Design

c°PY"i8hl © American Institute of‘Aeronautics and
Astronautics, Inc., 1984. All rights reserved.

6. Finalize LLS Program and Obtain Signal
Processor Performance Evaluation

7. write HLS Specification and Generate HLS
Statistical Tables Using LLS

8. write HLS Program

9. Integrate HLS Program into TCAS II System
Simulation and Obtain Test Results

10. Finalize Hardware Design

11. Fabricate and Test Signal Processor

12. Flight Test Signal Processor in TCAS II
Sytem

Formulate Functional Block Diagrams

As an aid to understanding the functional interface
of the signal processor in the TCAS II system,
Figure 1 is provided showing the total system block
diagram. The interrogator processor for handling
Mode S and ATCRBS signals is represented by block
number 3 of Figure 1. Figure 2 is the signal pro-
cessor block diagram, which was initially con-
figured from FAA requirements on TCAS operation.
The video quantizer and digitizer form our best
estimate of the leading edge position of all true
reply pulses even when they are overlapped by other
pulses. The Mode S and ATCRBS processors decode
the replies (DABS and the more recent Mode S nomen-
clature are used interchangeably in this paper).
Azimuth, range, amplitude, and data from the
decoder are passed through a buffer to an 8086
microprocessor. Data to/from the system central
computer is passed through the IEEE 796 multibus.

#

l |FMMMMM|Il!!!‘l|BOTTOM I ATCRBS/MODE S INTERROGATORARRAY INTERROGATORI
RECEIVERS

SIGNAL
ANTENNA PROCESSOR 

SUPPRESSION BUS OWN SHWS DATA

Figure 1. TCAS II System Block Diagram

277

BOHNG

Ex.1031,p.334



BOEING 
Ex. 1031, p. 335

LLS Specification Flow Diagrams

A low-level simulation (LLS) specification was
generated from the block diagram and FAA require-
ments. The LLS is a computer simulation of the
hardware functions to be designed. This simulation
is self-sufficient in that it includes subroutines

for RF signal generation, IF filtering, the log re-
ceiver, and monopulse measurement, as well as the
functions in the signal processor. Hence, the LLS
was used to aid the monopulse receiver design, as
well as signal processing. As an example of the
type of information provided by the LLS specifica-
tion, the video quantizer part of the total speci-

related logical operations. Each block, or module,
corresponds to at least one top-level subroutine
within the main calling program. The subroutines
were executed iteratively, with each iteration
corresponding to one delta t of simulation time.

Figure 4 shows the block diagram resulting from the
modularization of the ATCRBS/DABS LLS specification
flow diagrams. The following gives a brief
description of the functions included in each of
the blocks in Figure 4.

SIGNAL + NOISE: Generate all ATCRBS and DABS
signals, with noise, for one delta t increment.

fication is included in Figure 3. Footnotes on the
dynamic minimum triggering level (DMTL) function
are also shown for ATCRBS and DABS. Figure 3 is
one of five sheets of specification flow diagrams
generated during the signal processor development.

BUTTERNORTH FILTER: Filter the signal received
from both sum and difference beams.

MONOPULSE PROCESSING: Obtain azimuth monopulse
measurement for one delta t and pass measurement
through delay line to maintain synchronization with

write LLS Programs digitized data.

The LLS specification flow diagrams (Figure 3) are
modularized into functional blocks that "group"

LOG RECEIVER: Pass signal sample through math
model of log receiver.

CLOCK TRANSMIT

 
 
 
  

  

mucosa

INTERRDGATOR - - - —-— — -jm — - "W310 lSIGNAL 1 sum

PROCESSOR E:g§é§ASB'i,“85 REP” “cm
' ATCRES DATA 1; “WW

I \ LE , ATEHBS _ ' mo or mun:— UEEDDERJID . INTEHHUPT

| .3311 8.0 8,276 MH1

MONOPULSE I

a.2faMH1
PROCESSORflMONOPULSE :1 0

u vluru E -      MICROPROCESSOR
CONTROL  

     
   

  
  
  

 
 

 

  
    
   

 

 

 

     

 
SFLF TEST SELECT I

OABS SOUITTER SELECT I
OAHS ATCRB5 SELECT I

 
MONOPUlST
AMPLITUOTPROCESSOR  

CONTROL

 

_ AMPLITUDE
“L195 — -.iuN(IPULSE DATA SELECT

=~o~nvu%sF:1_ 1AMPLITUDE AMPLITU .- P SE-' NW5
:3 H II pfmgpssufl I:—j m,g”~JULuE , ,,,,mU,,,
gg RSLSAZ GATE SELECTU AMPLITUDE FIFD IATIIRBSIEO 7 DATA 7 ISX 15
ga mm 5 37., -I I

g; um IS: R5._s vmgn ,,Af,‘f;V'nN F ‘_u 1 AMPLITUDE DATA W35 “A”
“‘ - our Imlm ' M“

u 1. L L molnzrn "E um“ ILOG —— H SUV 1 C DAES DATA I

A I MWDA VIDEO DABSUITCH LUCK I I
" EA8S»ATCH’.'S 1 . Ium I ‘_ I

ATCRBSIU SELECT 1 TRANSMHTER

 
SWITCHING

ATCRBSREAOY 1 CONTROL
sun or must IMTERRUPT 1 WHOM
RANGE smear 1 T0" “"_lE""“Mm BEAM s.eui.~1:

“A” ‘5 PROCESSOR |INTERROGATOR

mo CLEAR 1 coNTR()L IMONO AMPLSELEC7 ,

nmsnmennuw 1 PRUGMM

OABS DATA SELECT 1 | ‘MDSELF TESTSELECT V 1
15::

DABSSUUITTERSEL 1 ml,' 1DABS’ATCR8S SEL MULTIBUS
POWER SUPPLY 

TO FROM
BOTTOM ANTENNA

BEAM STEERING

Figure 2. Interrogator Signal Processor
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E.

II

InL

I
I

AMPLITUDE PROCESSING: Obtain amplitude measurement
and pass measurement through delay line to maintain
synchronization with digitized data.

COUPLING CAPACITOR: Pass signal sample through
math model of coupling capacitor.

VIDEO DELAY: Pass signal sample through 86-ns
video delay line.

@ VIDEO 

  
 

LOG IL‘(T)I

ILIMSEC
TIMECONSTANT

AC
COUPLED

FOR STEP INPUT

A1=LDG Izml  

 

 

 
  

 

 

 

  

 

DELAYIDQnsnsec
 A1=L0G IS(T)1

A2=L0GI2XT-D1H

 nwr

A3=A1—A2
PS=1IFA3>6DB‘
PS=UIFA3<6DB

  DIFF

A4= A2- A1
NS=1 IF A4>5DB*

 
 
 

MTL THRESHOLD
= —79DBM

OV =1 IF A1\/—79OBII’I
°V‘°'FA1<—moaM* DMTL

 
 
 NS = 0 IF A4<GOB

 
 
 

DELAY (D2) =0.5 11 SEC

+ mFF

A5=A5—A1
cAc= IIFAE >ana
CAC=0lFAE§0DB

A1‘ LOG |XIT)I

 
 

‘ DMTL (ATCRBS)

IF A1 >(MTL THRESHOLD) + (DITCHLOCK LEVEL)SET:

MTLNEw=MTLOLD+IA1—(MTLflLD+DHCHLOCKLEVELH
HOLD MTLNEWFOR22pSEC UNLESS
A1 MTLNEw+(mTCHLDCKLEVEUISREDWRED
IN THIS CASE RESET MTL NEW AS BEFORE

AND RENEW LOCK FOR ZZIJSEC.
DITCHLOCK LEVEL =12DB

‘ DMTL (DABS)
DITCH LOCK LEVEL = GDB
LOCK 3pSEC ON SINGLE PULSE
SET DITCHLOCK ON P4 PULSE OF MODE S
DECODE — DITCHLOCK EIIIJSEC
FOR PREAMBLE DECODE

FI9ure 3. Video Quantizer Flow Diagram

VIDEO PULSE QUANTIZER: Determine PS, NS, QV, and
CAC pulse samples.

DIGITIZER: Determine actual leading and trailing
edges, SQV, and insert ELE's as required.

ATCRBS DECODER: Pass ATCRBS signal leading edge
pulses through 101.5-micros delay line; check for
garble types 1, 2, and 3 in the before (B) and
after (A) sections of the delay line; get "phantom"
status. Get validated amplitude and azimuth data.

MODE S PREAMBLE DECODER: Pass MODE 5 leading edge
pulses into preamble detector, and upon detection
enable, synchronize CAC, amplitude and azimuth
data.

MODE 8 DECODER: Receive synchronized CAC,
amplitude, and azimuth data; validate CAC pulses;
determine amplitude and azimuth values; decode text
and address bits.

INPUT
PARAMETERS

SIGNAL
+NOISE

""—— —' -—“ FIGURE 5A
BUTTERWORTH

FILTER

 

  
 

 
  

 

MONOPULSE
PROCESSING

AMPLITUDE
PROCESSING

FIGURE SB

  
LOG

RECEIVER

—"‘ "“'—"“‘ FIGURE SA
COUPLING

CAPACITOR

VIDEO
DELAY LINE

——-—-——- HGURESB

VIDEOPULSE
OUANTQER

ov

 
  
 

  
 

ll

FIGURE BC

NOT SHOWN

NS
NOT SHOWNrim
   

   
 

MODES MODES
OIGITIZER PREAMBLE MESSAGEDECODER DECODER 

ATCRBS
DECODER

Figure 4. Low-Level Simulation Block Diagram
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Test LLS Program

Upon completion of the coding and testing of all
LLS modules, they were linked in the main LLS
program for testing of the total signal processor
LLS program. The first concern in testing the LLS
program was to detect any problems in the timing
and interactions between the modules. Included in

the tests performed during these preliminary stages
is the generation of a single pulse and the study
of processing results as that pulse is passed
through the modules of the simulation.

A single pulse, with 75 nanoseconds 10 to 90 per-
cent rise time and 135 nanoseconds 90 to 10 percent
fall time and a 3 dB width of 0.45 microseconds,
was passed through the system and the processing
results after each stage of Figure 4 were recorded.

The first stage output, corresponding to an input
pulse amplitude of -50 dBm, is shown in Figure 5A.
The pulse amplitude is -39 dBm, with noise set to
-96 dBm after the Butterworth filter. Figure 5B
shows the output of the Butterworth filter after
receiving the signal plus noise. The filter is a
four-pole Butterworth with a 3—dB bandwidth of 8
MHz.

The log amplifier output, the video pulse quantizer
(VPQ) input, and part of the VPQ output are shown
in Figures 6A thru 6C.

Develop Preliminary Hardware Design

The LLS specifications were used to guide the pre-
liminary hardware paper design, as well as guide
the programming of the low-level simulation. Fig-
ure 7 shows the preliminary ATCRBS decoder design.
The function of the decoder is to detect replying
ATCRBS transponder bracket pulse pairs (20.3-micro-
second separation) and to decode the data pulses

 

 

um
SIGNAL PLUS NOISE, SIGNAL AT —39dBm.
NOISE AT —96dBm AFTER FILTERqnm

.4um
EE

D —suoo

tam

—wum
one use 030 030 120 150

TIME (MICROSECONDS)
um

0UTPUTOF4POLEBUTTERWOHTH HLTER
_2ggg 3dBBANDW|DTH=8MHz

.4uw

3
° tum

anon

“"“°°ono ozu 050 030 120 150TIME TMICHOSECDNDS)

Figure 5. Signal Generator (without and with
Noise) and Filter Output
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between the bracket pulses. Bracket decoding oc_
curs at the shift register taps marked F1 and F2,
Outside the F1 and F2 taps are taps B1 thru B28 and
A1 thru A28. The function of the outside taps is
to detect garble and phantoms. A subject reply
with bracket pulses at F1 and F2 is said to be
garbled if an overlapping reply is detected at a
spacing that could cause the data pulses to be
erroneously decoded. Another function of the shift
register taps outside F1 and F2 is to determine if
the subject reply with bracket pulses at F1 and F2

is false (phantom). The phantom bracket decode may
be caused by two closely spaced replies.

Finalization of LLS and Performance Evaluation 

The performance evaluation of the signal processor
using the LLS provided results which were used to
modify the LLS specification and program. Also
contributing to the finalization of the LLS was
feedback from the preliminary hardware design of
the signal processor. Figure 8 shows the LLS
sensitivity curve for detection of F1 and F2 pulse
pairs of an ATCRBS reply (ATCRBS Bracket Detec-
tion). The detection threshold was set at -79 dBm
to obtain the test results illustrated in Figure 8.

5.00

A) LOG AMPLIFIER OUTPUT

 
-00 0.30 0.60 0.90 1.0 - 1.50

TIME (MICROSECONDS)

B)ACCOUPLE

000 can oso 030 L20 L50
TIME(M|CROSECONDS)

am

C)ouANnzEpvmEo
:- oI:

5*’ aa

DIGITIZEDOUTPUT
-dNI ‘I:‘o33
0.00

0.00

 
TIME (MICRDSECONDS)

Figure 6. Log Amplifier, Delayed and Undelayed AC
Couple, and Quantized Video Output
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for -79 dBm Threshold

 
 

The 2-dB increase in signal level required to
change the probability of bracket detection from 10
to 90 percent is characteristic of high quality
reply receivers and decoders. The slope of this
curve is primarily dependent upon noise interfer-
ence with the signal detection.

write HLS Specification Flow Charts and
Generate HLS Statistical Parameters Using LLS

The LLS was found to be three orders of magnitude
too slow to function with the total TCAS II system

simulation. This was because every second of data
simulated through the signal processor required
processing of 83 million samples of the reply sig-
nals. In order to test the collision avoidance

function of TCAS 11 through the Los Angeles en-
vironmental model, it became necessary to write a
second program for the signal processor. This pro-
gram was called the High Level Simulation (HLS).
The HLS responded statistically the same as the
LLS. The results for a given reply of the LLS and
the HLS were not the same, but over a sufficiently
Ififge Set of replies the response of both programs
was the same.
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Figure 7. Preliminary ATCRBS Decoder Design

Lg Specification flow charts for the HLS were written.
These flow charts showed the form of the sta-

_ tistical functions that were required to complete
3 as the HLS. The LLS was used to generate the actual
Q statistical function. Variables and ranges of
5 0 D_ 7%B parameters were included in the specification, but
E "6 T”"E”‘L ‘‘ m statistical tables defining the detection perform-
§ ance for a given level of reply in a given density
g 04 of interfering replies was provided by the LLS.
2 Statistical results for the HLS were collected in
A computer data base lookup tables. The data base

oz format, in terms of tables of matrices necessary to
run the HLS, was defined. Each table corresponds
to a particular HLS decision box and gives the

0 _m H 76 75 answer to this decision box as a function of the
" ' ‘ reply environment.’ For example, the ATCRBS reply

mGNALLEVELHBmI environment is defined in terms of: signal ampli-
tude case, number of replies on the 101.5-micro-

Figure 8. Probability of ATCRBS Bracket Detection second ATCRBS decoder shift_register delay line atthe time of the subject decode, number of simul-
taneous replies (overlapping, including subject),
and the amplitude spread between the strongest
overlapping signal and the subject signal.

A sample of one of these decision box tables is
shown in Table 1. Table 1 gives the initial por-
tion of the decision box tables used to decide

probability of valid bracket detection for a signal
whose amplitude lies between -50 and -70 dBm
(called the -60 dBm signal center case). The first
matrix appearing in this table is labeled "# on
line=1". This means that at the time of the sub-
ject decode, the number of replies on the 101.5-
microsecond shift register delay line was one,
namely, the subject. Therefore, there could not

have been any overlapping signals, and so the data
in columns 2 thru 7, which corresponds to one to
six signals overlapping the subject, are filled
with zeros. Column 1 corresponds to one simul-
taneous signal, which means a clear subject. Data
only appears in the first row of this column be-
cause a clear signal has no overlapping signal, and
so the amplitude spread between the subject and
strongest overlapping reply corresponds to the
weakest dB index (-15, -10). The probability of
valid bracket detection is 0.96 for this subject
environment.
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TABLE 1. -60 dB SIGNAL CENTER: PROBABILITY
OF VALID BRACKET DETECTION

______________________________________________
I ON LINE: IumHutu:nusmiuuuunt

I 2 3 4 5 b 7
I-I5.-I0)0‘7600000000U00O000000
I-I0.-SIOOOOOOOOOODDOOOOOOOOO
I-5. DIOOOOOOOOOOOOOOOOOOOOO
I0. 5)00000000000O000000000
I5.I0)000000000000O00000000
IIO.ISIOOODOOOOOOOOOOOOOOOOO
I UN LIME: 3!!Hifliflufllflflliiflflifllii

I 2 3 4 5 6 7
I-I5.-IOI09I0?4075000000000O00
I-I0.-SIOOOOWIOOOOOOOOOOOOOO
I-5. 0l000O940Hb000000O00O00
I 0. 5l0000‘i308300000000000O
[5.l0I0000H3088000000000000
(I0.I5)00002702200000O0O0000
I ON LINE: bnuiflHumwnituninnun

I 2 3 4 5 6 7
I-I5.-101088096095100050000000
I-I0.-5)00009309|0B80b0000000
I-5. 0)0000890|7208IOE8000000
I 0. SIOOOOBAOBIIOBJOBVOOOOOO
I5.I0)0000770b90Is705b0OO000
I10.I5I0000I30200200I2000D0O
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write HLS Program

Figure 9 shows the first of three sheets of the HLS
program flow diagrams. The total program provided
results 1000 times faster than the LLS. Basically,
the program read the true state of the environment
and reacted statistically the same as the LLS by
referring to lookup tables containing statistics
that the LLS would display for a particular envir-
onmental configuration of reply data. The actual

response was a random selection of responses from
the LLS generated distribution.

Integrate HLS Program into TCAS II S stem__________________________________JL___
Simulation and Obtain Test Results______________________________________

The HLS program was integrated with the rest of the
TCAS II system simulation and allowed running of
programs essentially in real time. That is, 15
minutes of simulation time corresponded roughly to
15 minutes flight of targets in the Los Angelesarea.

Figure 10 shows 77 targets simulated. The coverage
display is a circle of radius equal to 10 nmi. Our
aircraft is at the center with heading toward the
top of the circle.

The velocity vector (speed and
direction) for each aircraf
on each triangle or square.

t is shown by the stick
The length of each

stick is equal to the difference between present
position and the position 25 seconds in the future.
There are 33 targets replying with ATCRBS replies
and 44 replying in Mode S in this simulation. A
collision is predicted in this case and the ad-
visory of own aircraft is to descend.
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Figure 9. Functional Flow of HLS (Sheet 1 of 3)

Finalize Hardware Design_________________________

Finalization of hardware design consisted of
reviewing the high— and low-level simulation
results as well as the preliminary hardware design
before progressing through the following hardware
design steps:

1. Incorporate changes due to LLS results.

2. Incorporate changes due to HLS results.

3. Finalize design schematics for hardware.

4. Flow chart and program interrogator
microprocessor software.
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Figure 10. TCAS II System Simulation DisplaytI
1

.'. Fabricate and Test Signal Processor

Fabrication and test of the signal processor re-
sulted in data that allowed comparison of the
signal processor results and the LLS results. A
sample of those results are presented in Figures 11
and 12. Figure 11 essentially shows agreement be-
tween hardware and LLS decoder sensitivity curves
for bracket decode and valid data decodes. The
slope difference on the curves is attributed to
differences between the noise characteristics for
the LLS and the hardware. Figure 12 shows the
valid decode performance for two closely spaced
replying transponders. The two replies have brack-
et pulses overlapped by about half of a pulse
width. when the amplitude of the two replies is
equal, the system will correctly decode 75 percent
Of the replies as indicated by both the LLS and the
hardware test results. These results exceed the
Initial design goal of 50 percent for this case.
when the subject reply is 10 dB greater in ampli-
tude than the interfering reply, valid decodes for
Yhe Subiect reply approach 100 percent. For the
interference 10 dB greater than the subject reply,
Valld decoding of the subject reply drops to about
25 Percent as expected.

 
 
 
 

 
 

 
 
 
 

 

 

70

0! O  

  
-80 -77 -74 -71

REPLY SIGNAL POWER ldBm)

HARDWARE

PERCENTVALIDDECODES
-71 -88

REPLY SIGNAL POWER (dam)

Comparison of Hardware and LLS
Sensitivity Curves

Figure 11.

Flight Testing of Signal Processor
in TCAS II System

Figure 13 shows the video display of the TCAS II in
the FAA Boeing 707 test aircraft during flight
tests. Figure 13A shows a pilots view of the dis-
play. A magnified view of the display is shown in
Figure 13B with a display radius of 5 nmi. In this
case, the pilot is being alerted to an aircraft
approaching from the port side and 300 ft above own
aircraft. This is a near collision case where own
aircraft is being advised to turn right.

Conclusion

The application of this design/simulation method-
ology has resulted in a viable Traffic Alert and
Collision Avoidance System which has demonstrated,
in flight, the performance that was predicted in
earlier simulations. These simulations provided a
valuable design function and directly influenced
the hardware/software implementation.
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ABSIBAQI

VirTuaIIy every aircrafT being designed Today
includes some form of sofTware-conTroIlabie man/
machine inTerface. Many of The reasons are
obvious, such as, reduced space and weighT
requiremenTs, reduced Training and errors, and
easier reconfiguraTlon. The purpose of This
paper is To discuss one of The newesT enTrles
inTo The field of sofTware—conTro|lab|e man/mach-
ine inTerfaces. This device is commonly called
The programmable pushbuTTon swiTch. This Type of
pushbuTTon includes a display which is also
sofTware—conTroIlable so ThaT IT is Truly a means
of Two-way communicaTion beTween The operaTor and
The sysTem. BoTh The funcTion of The swiTch and
The message on The display can be changed aT any
Time by The sofTware of The hosT sysTem. The
display is a doT maTrix of 16 x 35 doTs (560
ToTal). IT is fully addressable so ThaT any
display can be generaTed which can be drawn on
This size maTrix. The display Technology is LEDs
and The swiTch Tecnology is Hall effecT. This
paper discusses The parTicular advanTages of This
Type of conTrol and how iT may be besT used in
The avionics environmenT. This programmable
pushbuTTon has applicaTlon in The cockpiT, aT
oTher crewsTaTions, in elecTronic surveillance,
in fire conTrol, and in auTomaTic TesT
equipmenT. The programmable pushbuTTon can be
combined wiTh oTher Types of man/machine
inTerface To provide a Truly "user-friendly"
conTrol panel ThaT is also "designer-friendly".

_LiiTflQIIlLlC.IJQli

As avionics sysTems become more complex, The
operaTor/sysTem communicaTons become more criTi—
cal. Modern equipmenT can handle massive amounTs
of informaTion aT lighTening speeds. The inTer-
face wiTh The operaTor increasingly becomes The
area To focus aTTenTion on if furTher communica-
Tions improvemenTs are To be made.(1) OperaTing
modern equipmenT requires more skill and resulTs
in expensive Training. The cosT of an operaTor
error also increases as The cosT of equipmenT
increases.

The firsT porTion of This paper discusses The
design of Two devices inTended To improve The
operaTor/sysTem inTerface: 1) The programmable
display pushbuTTon provides user-friendly commu-
nicaTion for The operaTor; 2) The logic and re-
fresh conTrol uniT provides a convenienT, pracTi-
cal meThod for inTerfacing The programmable dis-
play pushbuTTon inTo The sysTem. The Two devices
TogeTher, as shown in Figure 1, provide an opera-
Tor/sysTem inTerface which helps reduce operaTor
Training, reduces operaTor error and makes The
ToTal sysTem more efflcienT.

Copyright © American Institute of Aeronautics and

The second porTion of The paper discusses sysTem
consideraTions using The programmable dlsplay/
pushbuTTon and a parTicular applicaTlon of These
devices To a mulTifuncTion keyboard.

 

The programmable display pushbuTTon is a mulTi-
funcTion, inTeracTive device for man/machine
inTerface. This device is a combinaTion push-
buTTon swiTch and doT maTrix display for Two-way
communicaTion beTween operaTor and sysTem.

The swiTching porTion of The device is a solid
sTaTe Hall effecT swiTch. IT provides an open
emiTTer, currenT sourcing ouTpuT. The swiTch
operaTes on 5VDC. The swiTch is operaTed by
pushing on The pushbar aT The boTTom of The dis-
play or on The display surface iTse|f. The oper-
aTing force is one To Three pounds on The push-
bar. IT is higher on The display, since The dis-
play pivoTs aT The Top. TacTiIe operaTion is
provided by a spring beam mechanism. The TacTi|e
operaTion is designed for app|icaTions requiring
emphasis on daTa enTry accuracy.(2)

The display porTion of The device is a fully
addressable doT maTrix of discreTe LEDs. The
maTrix is made up of 16 rows by 35 columns. The
560 pixels can be liT in any combinaTion To form
aiphanumerics and/or graphics. The display
operaTes on 5VDC. The maTrix is mulTiplexed, one
row on aT a Time. This allows The 560 pixels To
be individually conTro|Ied wiTh jusT five logic
signal lines. To accomplish This, decoding and
drive elecTronics are provided in The swiTch.
CommunicaTion beTween The programmable display
pushbuTTon and a hosT is via an eighT pin con-
necTor. TTL level logic signals conTrol The
display. The elecTronics are consTrucTed as
mulTi|ayer hybrids. A band—pass fiITer is used
To enhance The display. The fi|Ter also includes
gIare—resisTanT, scraTch-resisTanT, flngerprinT—
resisTanT coaTings. A mask is used above The
LEDs and below The fi|Ter To enhance conTrasT
raTio and keep The pixels clear and sharp.

The display and pushbuTTon are combined in a
sTurdy plasTic housing designed To wlThsTand
shock, vibraTion, and TemperaTure exTremes. The
package is fronT—of-panel sealed againsT liquid
spills. Sealing is accomplished wiTh a fIaT
e|asTomer seal aT The swiTch-panel juncTure and a
flexible seal around The movable display.

The programmable display pushbuTTons are indivi-
dually mounTed in recTangu|ar panel cuTouTs.
Panels can be configured wiTh any desired number
of swiTches. The programmable display pushbuTTon
can be used wiTh or wlThouT The logic and refresh
conTrol uniT.

-_——-—-Fe-.—.—
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LQQLQ_AND_BEEBE§fl_QQNIBQL_UNlI

A logic and refresh conTrol uniT was developed To
faciliTaTe inferfacing The programmable display
pushbuTTon wiTh The hosT, and also To provide
several desired funcTions. One conTrol unif can

lnTerface up To four programmable display push-
buTTons. lnferface To The swifches is via The

same eighT pin connecTor discussed previously.
lnferface To The hosT is via a fiffeen pin
connecfor. Figure 2 illusTraTes how These
devices flT inTo a ToTal sysTem. CommunicaTion
To and from The hosT is wiTh asynchronous serial
signals compaTible wlTh RS422 or RS232 inTer-
faces. CommunicaTion is in 8 biT byTes wiTh one
sTarT biT and one sTop biT. BiT seven is odd
pariTy on Transmissions from The conTrol uniT.
There is no pariTy biT on Transmission from The
hosT.

The logic and refresh conTrol uniT is a single
prinTed circuiT board including a microprocessor,
an EPROM, a refresh conTroller, four RAMs, and
various oTher devices. The conTrol uniT has The

capabi|iTy of performing many funcTions.

A§C11_C9u1eLsi9n - The conTrol uniT can converf
commands for an ASCII subseT of 64 characTers

inTo The signals required by The programmable
display pushbuTTon To generaTe Those characTers.
The conTrol uniT can generaTe These characTers in
Two sizes for Two rows of up To six characTers or
one row of up To Three characTers.

B1iLEai1eLn_MaQp1ng - The conTrol uniT decodes
graphics commands To draw parallel, verTical and
horizonTal lines, or |ighT individual pixels.

B:ighin§ss_QQn1L9i - The conTrol uniT can vary
brighTness of The displays as commanded by The
hosT. The display brighTness is conTrolled by
varying The duTy cycle of The LEDs. The conTrol
uniT can se|ecT 36 differenf duTy cycles.

D1§p1a¥_B1inking - When requesTed by The hosT,
The conTrol uniT can blink a display aT 1.5 Hz.
The blinking is accomplished by swifching The
duTy cycle signal for ThaT programmable display
pushbuTTon. The duTy cycle signal blanks The
display when The signal level is high.

§e1j;Ie§1 - Upon command from The hosT, The con-
Trol uniT will perform a self-TesT of many of lTs
own componenTs and The ouTpuTs of The swiTches.
IT sends To The hosT a self-TesT pass message, or
a se|f—TesT fail message conTalning a failure
descripTion code.

Di§p1a¥_BejLe§hing - The conTrol uniT refreshes
each display aT over 500 Hz. This refresh raTe
is designed To overcome The Traif of refreshed
displays To break up visually when viewed under
high vibraTion. when a display message is
received by The conTrol uniT, The microprocessor
verifies The message and converTs iT To The
proper signals To generaTe ThaT display. The
signals are passed To The refresh conTroller.
The refresh conTroller is a cusfom designed
bipolar IC. The refresh conTroller Then sends
The signals To The RAM for ThaT parTicu|ar
display. When The message is compleTe, The
refresh conTroller is swiTched To The refresh

mode and The displays are Turned on.

286

when a programmable display pushbuTTon is acTua+-
ed, The conTrol uniT will TransmiT a "SwiTch

Depressed" message To The hosT. This message
includes a code idenTifying which swiTch was
depressed.

An lnTerrupT Requesf 0uTpuT signal is available
from The conTrol uniT no more Than five mi|H-
seconds afTer a swifch is acTuaTed. This can be

used as a cue To The hosT To aborT messages being
TransmiTTed by The hosT. The conTrol uniT win
noT TransmiT a "SwlTch Depressed" message when [T
is receiving a message from The hosT.

Q1hgL_Qesign_Eeaiu£es - The conTrol uniT can com-
municaTe aT four baud raTes. The desired raTe is
chosen by moving a jumper on The PC board. The
four raTes are 2.4K, 4.8K, 9.6K and i9.2K baud.

All messages from The hosT are verified by a sum-
check. If The sumcheck is noT correcT, or The
message is invalid for anoTher reason, The
conTrol uniT will send a "ReTry" message To The
hosT. Any display currenfly in RAM will noT be
desTroyed unTil a compleTe valid message has been
received.

The displays can be enabled (refresh mode) by
eiTher an End of Message byTe or an End of Trans-
mission byTe. The choice is made by moving a
jumper on The PC board. The End of Transmission
enable prevenTs The conTrol uniT from displaying
half a display in The evenT The hosT is infer-
rupTed befween messages.

The conTrol uniT's serial ouTpuT can be inhibifed
by a Selecf In signal from The hosT. This allows
The hosT To moniTor several differenf conTrol

uniTs selecfively. This feafure is also chosen
by a jumper on The PC board.

The four programmable display pushbuTTons are
individually fused and buffered on The conTrol
uniT so ThaT a caTasTrophic failure of one wiH
noT affecT The ofhers. The microprocessor,
EPROM, and refresh conTroller are common To all
The programmable display pushbuTTons.

In The evenT of a loss of power, The RAMs on The
conTrol uniT" will lose The lnformafion for The

currenT display. When The power is resTored, The
conTrol uniT will send an "Acknowledge" message
To The hosT. This can alerT The hosT To resend

The same displays or send new ones.

MULIlEUN£IiQN_KEIBQABQ

The concepT of a soffware reconfigurable display
on a keyboard has been under sTudy for some
Time.(4) The programmable display pushbuTTon is
one of The firsT componenTs To make such a key-
board possible using discreTe swiTches. Using
These devices, a mulTifuncTion keyboard (MFK) has
been developed which safisfies several imporTanT
goals for avionics and CCCI sysTem applicaTions.
These include:

HQsi_independence - Avionics and informafion
sysfems ofTen employ a cenfral hosT compufer for
daTa processing and communicafion wiTh sensors
and conTrols. in numerous cases, Technology
|imiTaTions aT The Time of design and/or sysTem
growTh have produced a currenT slTuaTion in which
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The hosT has liTTle addiTional memory available
and a sofTware configuraTion which is difficulT
To modify. Figure 3 shows a block diagram of a
hosT and MFK configuraTion. in This MFK design,
The keyboard swiTches are combined wiTh an

I auxiliary Thin-film elecTroluminescenT (TFEL)
scraTchpad display which displays operaTor

1" enfries, menus, and responses from The hosT.
I ' Minimal hosT inTeracTion and processing are parT$1 of The MFK design. MFK sofTware and firmware
- sTore The swiTch and display legends, handle The

logic of successive legends and displays upon
swiTch acTivaTion, and process The l/0 wiTh The
hosT. Figure 4 shows an example of The hierarch-
ial logic sysTem ofTen used in an MFK for func-
Tion access. To minimize hosT loading, only The
final swiTch acTivaTion would cause a Transmis-
sion To The hosT. The legend changes and command
logic are parT of The MFK sofTware and firmware.

— The long life of currenT air-

frames generally implies a considerable number of
updaTes and/or revisions in The aircrafT sysTems.

This is parTicu|arly True for weapons, sensor and
communicaTions sysTems in miliTary aircrafT. The
MFK design provides a disTincT separaTion beTween
The background operaTing sysTem and The daTa base
which defines The legends displayed, and The com-

’ mands senT, as a resu|T of operaTor swiTch ac-
Tion. Consequenfiy, The swiTch funcTions and
legends can be easily changed To refiecT revi-
sions or replacemenTs wiThin The original sysTem.

Eauli Qlecange - An obvious poTenTia| problem in
7 an MFK design is The lmpacT on The sysTem of a

swiTch failure. The effecT can be a loss of
access To a whole branch of The sysTem. in a
dedicaTed swiTch array, The lmpacT is more likely
To be iimiTed To a single funcTion. The MFK
design alleviaTes This problem by moniToring The
keyboard for indicaTions of a conTinuous swiTch
closure. if observed, ThaT swiTch is judged
faulTy and The daTa base is auTomaTica||y
reconfigured To bypass The row of swiTches asso-
ciaTed wiTh ThaT logic and refresh conTrol uniT.
A second page of legends is formed, if necessary,
To provide a display of all The original
legends. Similarly, a manual operaTor TesT
permifs The checkouT of proper acTivaTion and
display on each swiTch. During This TesT, a
swiTch which does noT close is deTecTed visually
and by MFK sofTware and a reconfiguraTion To
bypass The swiTch is implemenfed. These design

. feaTures provide a much higher degree of reli-
. abIliTy To The MFK. IT should be noTed ThaT The
' dIscreTe programmable display pushbuTTons permiT

Th‘? TYPG of a bypass, whereas a single ouTpuT
%fi:lCe (e.g., a resisTive Touch screen) would

_ n‘ - A noTiceable delay in The Time
equrred To updaTe The MFK legends requires The

&PeVaT0r To consciously waiT beTween sTeps. This
elay can be annoying in many cases and deTri—

-1 sysTems where a rapid response is

j 200 As a resulT, a keyboard updaTe Time
~~‘ Mg5 OF loss was adopTed as a design goal for

_ K- This response Time has proven To be

I T§faCT°VllY rapid for TesTs conducTed wiTh The_ ' O daTe.

‘nTal in

shown.
four swiTches.

in Figure 5 a picTure of The MFK in operaTion is
The keyboard array comprises five rows of

Each row is conTro|led by an

individual logic and refresh conTrol uniT. The
TFEL display shows a menu of opTions se|ecTable
from The keyboard. NoTe The Two fonT sizes for
keyboard legends. The level selecTor swiTch
permiTs The operaTor To move back To The previous
page of legends or To reTurn To The Top level of
The MFK daTa base. The phoTodiode in The cenTer
of The panel moniTors amblenT lighT and adjusTs
luminance levels on The keyboard LEDs To pro-
grammed vaiues. VariaTions wiThin a predeTer-
mined range of accepTabiliTy are seT wiTh The
inTensiTy conTrol aT The rlghT of The panel.

S.2QiiQLLJ.$_|_QlEl

The programmable display pushbuTTon and The logic
and refresh conTrol uniT provide a significanT
advance in operaTor/sysTem communicaTion. These
devices are sTaTe-of-The—arT Technologies com-
bined and packaged in a way To provide major new
capabiliTies. They give The sysTem designer more
freedom To creaTe. By combining These devices
wiTh microprocessor conTrol|ers and sofTware To
form keyboards and displays such as The MFK, a
reducTion in hardware and space and an improve-
menT in The "user friendliness" of avionics and
informaTion sysTems can be achieved.
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FIGURE 1 - FOUR SWITCHES AND ONE CONTROL UNIT

PDRS

Control K

FIGURE 2 - SWITCHES AND CONTROL UNIT IN A HOST SYSTEM

288

BOEING

Ex. 1031, p. 345 44



BOEING 
Ex. 1031, p. 346

MULTIFUNCTION

   

 
 

  

 

   
 

KEYBOARD

MFK (ONEZ8
CONTROLLER " PROCESSOR
PROCESSOR PERFOURSWITCHES

MFK
CONTROLLER
MEMORY

  

SCRATCHPAD
DISPLAY
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FIGURE 4 - EXAMPLE OF A LOGIC TREE HIERARCHY
USED WITH THE MFK DATA BASE
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FIGURE 5 - MFK KEYBOARD

SHOWING TFEL PANEL & SWITCH ARRAY
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RECENT ADVANCES IN ELECTROLUMINESCENT DISPLAYS
84-2653

APPLICABLE TO FUTURE CREW-STATION INTERFACES
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ABSTRACT

Matrix addressed thin-film electroluminescent

(TFEL) display technology shows great promise for
ultimately replacing the cathode ray tube (CRT) as
the primary, integrated, pictorial display device
in flight decks of future aircraft and spacecraft.
Among the advantages of the TFEL display are:
minimal depth behind the panel, low power
consumption, high environmental tolerance, no
geometric distortion, uniform edge-to-edge
resolution, direct digital signal compatibility,
high reliability, stable phosphor brightness
during long term operation and graceful
degradation. In addition, in the light of recent
developments, TFEL display technology has the
potential for full color. Recent advances in the
development of TFEL displays include: the
integration of a 240 x 320 element panel with a
high performance raster graphics generator for the
display of integrated, pictorial flight displays,
the incorporation of a similar panel in an
advanced simulated navigation control/display
unit, the television video operation of a
512 x 640 element panel, the development of black
(light absorbing) layers for contrast enhancement,
the development of red, green and blue EL

phosphors and establishment of plant production
lines for large area TFEL panels. This paper will
outline programs in which this technology is being
incorporated in cockpit display applications.

INTRODUCTION

Flat panel displays have the potential for vastly
improving many commercial and military systems.
Avionics is a particularly exacting area where

flat panel displays could make a big impact in
freeing 10-12 inches or more of instrument panel
depth for other needs. There are a number of

candidate flat panel display technologies, the
three most likely candidates being plasma, liquid
crystal and thin film electroluminescence,
although some might argue for other candidates
such as vacuum fluorescent. Because of the

reputation that plasma has for substantial power
consumption and weight, it is generally not
Considered to be a good candidate for avionics
application. On the surface, liquid crystal would

be considered to be an excellent candidate because
0f its low power consumption, however with further
a”§I¥S1S. this simplicity breaks down. There is

SBBII Very great difficulty in multiplexing the
di -$00 rows needed for a graphics quality
thzp By. the viewing angle is very limited, and
tendtemperature sensitivity requires heaters which
Th_ to circumvent the apparent power advantage.in film electroluminescent displays on the other

C This Paper is declared :- work of the U.S.overnnient and therefore is in the public domain.
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hand are readily multiplexed, consume very
moderate amounts of power, are temperature
insensitive, are legible in the high ambient light
encountered in aircraft, and can show live video
in addition to graphics. we have chosen this
technology to pursue a variety of applications and
are evaluating its specific application to
avionics. The TFEL video graphic exerciser
described in this paper was designed to meet a
wide variety of application's tests in that it has
a display head which is less than 1-inch thick
which is tethered by a single 8-foot long flat
cable to its small controller box, and is
therefore easily physically configurable for a
variety of installations. The software and
pictures presented on the display is just a small
subset of what can be done with such technology.

TFEL TECHNOLOGY STATUS AND DEVELOPMENT

The major thrust of display development
effort at the Army ERADCOM ET&D Laboratory has
been applied to the thin film electroluminescent
(TFEL) technology because of advantages with
regard to weight, power, legibility and ruggedness
inherent in this approach. TFEL panels are made
up of a number of thin film layers deposited on a
glass substrate. The panel layers are all thin
(on the order of 1,000-3,000 angstroms) which
produces a display thickness determined by the
glass substrate. Light is generated when a
potential of approximately 200 volts is applied
between the rows and columns in a multiplexed
manner. Grey shades are obtained by modulating

the voltage applied to the pixels. As a result of
an Army-NASA tactical video display program with
Hycom and Supertex,live TV/video with full
resolution of 480x640 pixels and 16 grey shades
has been demonstrated. (Ref. 4) Monolithic
circuits that include all of the logic necessary
to shift data in serially and out in parallel and
drivers for the high voltage are now available.
Panels can be built with a black layer between the
rear insulator and the rear electrode where the
black layer typically reflects less than 1% of the
incident light. This allows the panel to be used
in direct sunlight with a pixel illumination of
less than 25 footlamberts, and still provides

adequate contrast to be legible.

FABRICATION

TFEL display panels are fabricated by vapor
deposition of conductive, insulating and phosphor
layers on a glass substrate. Various deposition
techniques, including thermal evaporation,
electron beam evaporation, sputtering and atomic
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layer epitaxy have all been used successfully.
Production deposition systems in use are either
batch type or inline. In a batch type, multiple
substrates are loaded into the chamber at a time.

An inline system processes substrates fed in at
one end into finished panels coming out the other
end. Precise control of the thickness and

uniformity of the various thin film layers is of
utmost importance. This is achieved by monitoring
all of the important process parameters and using
automated control to eliminate variability.

The TFEL display operating with about 200
Volts across about 10,000 Angstroms of film
thickness, must withstand the highest operational
electrical field of any device in use today. For
this reason, the integrity of the insulating
layers in the thin film structure is a most
critical factor in the design. Modern thin film
processes are capable of producing insulators with
the required breakdown resistance over large
areas, however none of these layers are perfect
and minute weak spots do exist. If the entire
film structure is properly designed, these weak
spots will burn out when the device is first
excited leaving microscopic “holes” in some pixels
which are not easily visible and do no further
damage to display operation. Therefore perfect
films are not a requirement of perfect displays as
long as the size and incidence of the
imperfections can be controlled.

DRIVING ELECTRONICS

Monolithic circuits that include high voltage
outputs as well as the logic necessary to shift
data in serially and out in parallel are now
available to drive the rows and columns of TFEL

panels. Drivers for alphanumeric and graphic
applications, operating in an "on - off" mode are
available with 32 and 64 outputs. Video drivers
capable of providing 16 levels of gray shades are
available with 16 outputs.

Power requirements of TFEL displays are
relatively modest but are still capable of being
improved considerably. A 16 square inch graphics
panel using conventional drive circuitry consumes
in the range of 11 to 14 watts. A similar 15
square inch panel using a partial energy recovery
drive scheme has been demonstrated to operate with
a power consumption of 4 to 6 watts. Only about 5
percent of the energy applied to the panel is
consumed in generating light, the remainder being
stored on the panel capacitance. This capacitive
energy is available to be recovered through one of
several efficient drive schemes that have been
demonstrated. Calculations indicate that the

above panels, driven with more complete energy
recovery, would operate in the range of 1 to 2
Watts. This makes the use of these devices in

battery operated equipment a practical
consideration.

PANEL SIZE AND RESOLUTION

Panel sizes under development range from
3 x 5 inches at 64 lines per inch up to
1 meter x 1 meter with 50.8 lines per inch with
various other sizes in between. For many
applications, a panel size of 10 x l2.6 in. with
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10” x 12.6” TFEL Display Panel

50.8 lines per inch is ideal. This 512 x 640 line
panel is capable of displaying a 51 line by 80
character alphanumeric display as well as graphics
and video.

limitations on panel size are determined by
the number of rows that can be driven in a

multiplexed manner and by the electrode time
delays defined by the effective resistance times

capacitance (RC) of the rows. The ability to
multiplex many rows without degrading contrast
depends on the existence of a strong threshold
characteristic separating the on from the off
states in the display medium. The TFEL devices
have a very steep threshold and multiplexing of
more than 500 lines has been demonstrated. Recent

advances in the fabrication of transparent
conductive layers provides an improvement in the
RC time delay by a factor of three. The upper
limit of TFEL panel size is still under
investigation.

COLOR

Until recently, the majority of work in TFEL
devices has centered around a phosphor film made
of zinc sulfide doped with manganese which
produces an amber colored display. This material
is stable, easy to work with and produces good
luminance and efficiency. Zinc sulfide doped with
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terbium fluoride produces a green display with

3510:: *3?‘EhgfmgggazlggénggggdagfioigflfiiEng :5 FIRST LABORATORY TESTS or A HIGH-RESOLUTIONO .

Few” of an Army’ Navy, NASA Supported contract LARGE-SCREEN rm DISPLAY uswc MONOLITHIC omvens
with Tektronix, red and blue phosphors have been
developed. (Ref. 1) Although the luminance and
efficiency of these new phosphors are low in
comparison to the amber and green, they are at a
level that could produce workable displays and _
improvements are expected from further research in
this area. A new effort in this area is intended
to examine the best approaches to combining these
phosphor materials into an operational multicolor
display-
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TRAIISPAIIIIT
RASTER GRAPHICS IN EL

At the Cockpit Systems Branch of NASA,
Langley Research Center, a VGE has been integrated
with an Adage-3000 high~performance,
raster-graphics, programmable display generator
(PDG) and a VAX 11/780 host computer for the
generation and display of integrated, pictorial
primary flight displays (ref. 2).

““"“°”"“ - Existing software for the programmable
um mowum ‘ display generator produced am electronic attitude
,w, m0“Hm_ director indicator (EADI) and an horizontal

situation indicator (EHSI). For use with
high—resolution color CRT displays, these display
formats were provided as 512 x512 picture elements

 
EL APPLICATIONS IN AVIUNICS of resolution, RGB, 30 and 40 Hz interlaced and 60

Hz non-interlaced signals. Since the VGE required
EL displays have been put to use in several NTSC monochrome, composite video as input for

simulator or test vehicle programs. These digitizing the video and displaying it on the 240
programs are aimed at helping move the EL display x 320 line EL panel, the PDG output signal formats
from the laboratory into the cockpit. The had to be adjusted. In order to display the EADI

. displays are being tested in avionics systems in and EHSI on the VGE, the following had to be
- real and simulated cockpit environments. accomplished: 1. scaling of the formats to
i Two of these programs make use of the 240 x 320 picture elements (525 scan-line, 60 Hz,
- Video/Graphics Exerciser (VGE) developed by Hycom non—interlaced video), 2. modification of the
I Inc. under a contract funded by the US Army, Navy, PGD computer program to support the appropriate

Air Force and NASA. The VGE has a 240 x 320 channeling of pixels to required regions of the
element, 6 inch diagonal EL display with a color look-up tables (LUVO's), 3. adjustment
t0UCh-Panel Overlay. of the PDG video amplitude parameters to match

' those of the EL display, 4. conversion of the RGB
color maps to gray-scale color maps, and 5.
use of the green output of each LUVO as a
monochrome NTSC signal.

The above EADI and EHSI displays showed no
missing lines and almost no discernable effect of
missing pixels within lines and grey scale
performance was good. In addition, dynamically,
there was no smearing, streaking, or flicker
effects. These results are quite encouraging.
The Cockpit Systems Branch plans to move forward
into pilot-in-the-loop simulator evaluations once
the final version of the VGE is delivered by
Hycom, Inc. At this time, pixel-clock
synchronization between the VGE and the PDG will
be attempted to reduce pixel-level scintillation
effects experienced in parts of the EADI and EHSI
displays with only video horizontal and vertical
drive level synchronization.
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Advanced Navigation System

Electronic Attitude/Director

Indicator Displayed on 240 x 320
Pixel EL Panel

Development and Integration“ session of this
conference. The EL display of the VGE is used
primarily as a graphic preselect/control device in
which the pilot can use the touch overlay feature
to preview navigational routes such as a map of a
Standard Terminal Arrival Route (STAR) and to
enter waypoints for defining a new route prior to
entering it into the color map display (figure 3).
The pilot can also use the VGE to scroll or zoom
the color map.

QUICKLOOK II AN/ALQ-133 COUNTERMEASURES RECEIVING
SET

A product improvement program for the
Quicklook II is incorporating a 240 x 320 line
TFEL display into the Cockpit Display and Control
System. This unit will be used to perform
preflight, postflight and diagnostic operations
for the AN/ALQ-133 in addition to the inflight
mode of operation in which the system will display
information stored in various mission files and
data files.

Multipurpose Display System

Gmjfizg A multipurpose display system built by
Canadian Marconi Company using a 240 x 320 pixel
EL display is currently being evaluated in a
Boeing LHX simulator at Boeing Vertol Co. ThisElectronic Horizontal Situation . ‘ ’"‘ ’ ' '

Indicator Displayed on 240 x 320 ‘
Pixel EL Panel.

ELIE‘. FUEL

ADVANCED NAVIGATION SYSTEM .7 Léliu p$”$

Another application of EL displays in
avionics systems is the use of the VGE as part of
a navigation controldisplay unit (NCDU) in an
advanced navigational system which is being
evaluated in a transport simulator at the Cockpit
Systems Branch of NASA, Langley Research Center.
The other pilot-interface portions of the NCDU is
a LED multifunction keyboard (MFK) and a
color-coded EHSI (map) display. This advanced
navigational system which provides a simple
method for the pilot to enter new waypoints and
change flight plans, is described in another paper
being given in the "Crew Systems: Systems Canadia“ Mar°°“i M“1t1P“rP°5eDisplay System.

El] E0 ZED ZED
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display system, the CMA-823, has graphics
capability, interfaces with 1553B or ARINC 429
data bus, and has ten software-controlled keys and
five mode keys on the display bezel.

CONCLUSION

Active pursuit of TFEL technology from both a
device development and a systems application point
of view promises near term availability of flat
panel displays offering significant advantages in
the cockpit environment.
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Abstract

Liquid crystal displays are becoming
accepted for aircraft use because of their
obvious advantages of reliability, long—life,
low volume, light weight and low power. These
applications have been restricted to simple
numeric and low information content displays.

the development of amorphous Si thin film
transistors that can be deposited on glass
substrates. A liquid crystal display with a
thin film transistor at each pixel can have
performance equivalent or superior to a CRT.

This paper will describe the
characteristics of a—Si transistors, their
fabrication, and the construction of liquid
crystal displays employing them. Their
application to a variety of display systems,
including reflective, transmissive, projection,
black and white. color, and video, will be
illustrated.

Introductign

During the last three years there has been
remarkable progress toward developing active
matrix liquid crystal displays. These are
displays that employ a thin film transistor
(TFT) or other nonlinear circuit element to
control each pixel in a matrix display. During
this time, at six international display
symposia(l), over 20 organizations have
presented more than 40 papers describing their
work. Highlights include a 4.25 inch diagonal
full color video display from Suwa Seikosha(2).
This 480 X 480 line polysilicon TFT addressed
display has performance comparable to a small
color CRT. A larger 7.23 inch diagonal color
information display addressed by amorphous
silicon (a—Si) from Hosiden Electronics has been
demonstrated(3). Recent commercial active
matrix display product announcements include a
cadmium selenide TFT display module from
Panelvision and a color pocket TV from Suwa
Seikosha.

With several semiconductor technologies
(amorphous silicon, polysilicon, cadmium
selenide. and others) having demonstrated
suitable TFT performance for display
applications, a preferred technology can be
chosen on the basis of yield, reproducibility,
fewest number of mask steps. substrate material
availability and cost, and the applicability to
other devices. Amorphous silicon TFTs can be
formed in a simple process over large areas on

glass substrates and we believe that this will
be the preferred technology(4).

, For many aircraft applications, amorphous
silicon addressed LC displays have the obvious
advantages over CRTs that include lifetime,
volume, weight and ruggedness.

Copyright (27 American Institute of Aeronautics and

Bgsic Device Operation

The basic circuit of a TFT controlled
liquid crystal (LC) display is shown
schematically in Figure 1. Each pixel has a TFT
acting as a switch connected between the
vertical data lines and the liquid crystal pixel
electrode. The gates of each row of TFTS are
connected to a gate line. The second electrode
of the LC pixel capacitor is the common
electrode on the cell coverglass.

Data Lmes

TFT uzrnxm aecuoae

>_ _.__

Scan __ __

Lmes >

>. _ __ _

I I I
l I I
I l I

Figure 1
Schematic of TFT Driven Liquid Crystal Display

In operation the display is addressed a
line at a time; that is, data voltages are
applied to the vertical data lines, then a
voltage sufficient to turn on the FETs is
applied to a gate line. The LC capacitors in
that line then charge to the voltages of the
data lines. The gate line voltage is then
reduced to a level sufficient to turn off the
TFTs, thus storing the data voltages on a line
of LC capacitors. Each line in the display is
addressed sequentially in this manner; then,
polarity of the data voltages is inverted and
the refreshed sequence is repeated to produce an
AC voltage on the liquid crystal pixel.

The minimum performance requirements for
the TFT and the liquid crystal material can
easily be derived as follows:

in order to avoid flicker the LC drive frequency

must be 350 Hz. There are two refresh periods
(T) per cycle, thus T g 10 milliseconds. If
there are N lines in the display the maximum
line address time t is

t=T/N.

Astronautics. lric., l98-4. All rights reserved. 296
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The FET requirements are then: 1) the response
time of the TFT must be short compared to t. 2)
the on current Ion must be sufficient to fully
charge CLC during the line address time. Thatis.

" T ‘_|"- —T— *7?"Vg = — 5.00 volts

Ion > CLC . Von/t’

where V n is the maximum data voltage. 3) the
off or feakage current 10 f must be small enough
that it doesn't cause tgie voltage on CLC to
significantly change between refresh cycles.

Ioff << CLC ' Von/T
CURRENT(AMPS)

The response times of <i—Si TFTs are limited by
the charging time of the gate capacitgnce
through the channel and this is given by L /uv
where L is the channel length and pl is the
effective electron mobility (typically
u = 0.3cm /Vsec). The measured switching time
for a 5 micron channel length device is ~0.25ps
in agreement with the above equation. For a 500
line display, n = 500, the line address time t =

 

  
 

20 microseconds. Therefore these devices easily ‘E13 J. .1 _l ._1 J
meet the first requirement above. 0 4 8 '2 '5 2°DRAIN VOLTAGE

To satisfy the second and third
requirement, the Ion and Ioff current ratio Figure 3

I Off Current vs. Drain Voltage foor an a.-Soion TFI‘ for Temperatures Between 30 C and 90 C
I 3 5000.off

A typical current vs. gate voltage The required magnitudes of 1 and Icharacteristic taken at room temperature is depend on c or equivalently ofile d~1sp£§
5h°Wn in Figure 2' it Shows 10 /Iof ratios resolution. lpocr a 64 lines per inch display CLC
Etentet than 10 can be 3e ieVe - The 1:‘ 1 picofarad; therefore the requirements are
ten1Pe1'9»tnTe de-Pendenee 0t 10 s like the I ) 0.5 microamps and I < 100 picoamps.. . . . _ . . n _ q _ off _'n°b111tY I-1» 15 5o11S11t, 1"n°1'e351nB%Y 3 factor 0f The device shown in Figure 2 with a 6 x 100
3b°“t 2 f1'°'n 30 t° 90 C- of more °°n°e1‘n is micron channel dimensions easily satisfies these
the ten1PeI3tn1‘e dependence °t I 15- Data in requirements. The FET I and I scale with
Figure 3 Shows about on fn°t°f Of inenegse in channel dimensions are prgplortiona ffto W/L where
Iof tt°n1 30 t° 90 C- Bnt eVen at 90 C the W is the channel width. Higher resolution
Iojloff 1"-‘~ti° is |n°1‘e than adequate tn! LC displays use a correspondingly smaller width
display applications. device._T _-T___ F‘ -1

Vd : +1000 volts A basic requirement for the liquid crystalmaterial is that its resistivity must be high
enough that it does not significantly discharge

L=6 microns C _ _ _ .W:10O microns LC in a time T. That is, the LC time constant
1E~06

1: =RC = )T.
LC LC LC PLC ' ELC

This can be met with most commercial field
effect LC materials at room temperature. At
elevated temperatures the time constant 'cLC
decreases dramatically at about the same rate as
the viscosity. To achieve adequate high
temperature time constants proper choice of LC
materials in special purification techniques are
used. Figure 4 shows data on two purified
commercial LC mixtures, a biphenyl and a phenyl
cyclohexane (PCB) mixture. The higher
resistivity and smaller temperature dependence
of the PCH mixture permit its use to about 90°C.

1E—08

1E-10
CURRENT(AMPS

1E-12

GATE VOLTAGE
Figure 2

Typical Drain Current vs. Gate Voltage
for an a-Si TF1‘ 297
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100LIQUIDCRYSTALTIMECONSTANT(ms) 
W__ L__ I I __l _L_ L__ L | |10 20 so 40 so so 70 so so 100

TEMPERATURE (‘’C)

Figure 4
Liquid Crystal Material Time Constant vs.
Temperature for a Purified Biphenyl and

Phenylcyclohexane (PCH) Mixture

Device Fabricatigg

Figure 5 shows a cross-section of an a-Si

FET. The silicon nitride and silicon layers are
deposited in a single pump down by plasma
enhanced chemical vapor deposition (PECVD) using

SiH4 with the additiop of NH3 for the nitride
and PH for the n layer at a substrate
temperaéure of 300°C. Using a plasma instead of
high temperature to decompose the gases permits
high quality films to be deposited at much lower
substrate temperatures than conventional CVD.
At these low temperatures, the deposited films
are amorphous and incorporate between 8 and 20%

hydrogen. The hydrogen passivates the dangling
bonds in the a-Si film resulting in a high
quality semiconductor material. The low
temperature process allows the use of glasssubstrates.

 
 
 

 
7/////////////////////////////ll//A
  

 
 

Gale Melal

Figure 5
Cross Section View of an a—Si

Thin Film Field Effect Transistor
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A cross-section of a LC cell is shown in
Figure 6. On the top of each FET is a thick
light blocking layer, since light absorbed in
the channel of the FET would Cause
photoconductive leakage. The gate electrode
blocks light from the other side. This light
blocking layer acts as distributed LC cell
spacers; it is formed with a thickness equal to
the desired LC layer thickness. The coverglass
is bonded to the substrate with a parameter seal
and the cell is filled with a volume of liquid
crystal material to just fill the cell and the
coverglass is in contact with the spacers. This
technique produces extremely uniform thickness
LC cells with D < 6 microns. These thin cells
are desired for fast LC response time and wide
viewing angle.

Spacer/Llghl BIOCKIHQ Lay:-I
Tvansparem Electrode

Covev Glass
FE‘!

Suoslvale

 LC Man-nal

LC Aluqumem Ldyr,-rs

Figure 6
Cross Section of a TFT Driven Liquid Crystal Cell

Display Applications

The basic a-Si controlled LC displayed
device can be used in a wide variety of
applications ranging from simple reflective
information displays to full color video and as

either direct view or projection displays.
Several of these applications which are useful
for aircraft applications will be describedbelow.

The basic design for a direct view panel
display is shown in Figure 7. For a black and
white binary‘ (no grey scale) information
display, the display cell uses a transmissive
twisted neumatic LC effect. This requires
polarizers on both sides of the cell. A
suitable high brightness light source is a
miniature fluorescent lamp. Figure 8 shows a
photograph of a 2 x 2 inch 100 lines per inch
display with this type of construction. The
performance possible with this system is a
contrast ratio greater than 50:1 and a display
brightness of about 25% of the surface
brightness of the lamp (greater than 1000 ft.L).
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Display Cell
Polarizer

//Diffuser

O

Polarizer \

Reflector

/

O

O

O

Figure 7

Construction of a Transmissive LC Display Using
a TFT Driven Twisted Nematic Display Cell
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Figure 8

Photo of a 2 x 2 inch , 100 lines per inch
a-Si TFT Driven Transmissive LC Display

There are many possible variations to this

‘ design- For Video. grey scale could be
Eitgeved by replacing the binary data drivers
Storedanalog drivers to modulate the voltages

1ac_ On the pixels. Color can be achieved by
£18 ing an array of color filters inside the
thi: :£1cell‘ as shown in Figure 9. Suitable
using dot filter arrays have been demonstrated
selectedyes absorbed into a gelatin film in
h . areas defined by standardp °t°11th°Eraphy techniques(5).

basic

Fluorescent Lamp
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Cover Glass

TFT Substrate

Red Filter

Green Filter

Blue Filter

Common Electrode Liquid Crystal

Figure 9

Liquid Crystal Cell Incorporating
Internal Color Filters

Reflective displays can also be constructed
and are desired where low power consumption is
required. The preferred position for the
reflector is inside the cell rather than behind
the rear glass wall since parallax would be a
severe problem on high resolution displays.
With the reflector inside the cell the twisted
nematic effect could not be used. instead, a
dichroic LC effect which requires either one
front or no polarizer is preferred. For the
simple structure shown in Figure 1, only about
70% of a pixel cell is active area; the
remainder is occupied by drive lines and spaces
and the TFT. Therefore, the reflective contrast
ratio or brightness will be less than for direct
driven reflective LC displays.

An example of a projection display using
the basic transmissive cell is a high brightness
head up display (HUD), Figure 10. Since light
can be generated by an efficient bright source
such as a small high pressure mercury arcslamp,
a display brightness on the order of 10 ft.L
appears possible.

LC Pixel Electrode
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Abstract

Due to the ever increasing complexity of fighter
aircraft, new methods of command and control must
be established to enable the pilot to fulfill his
current and future mission requirements. Voice
recognition and synthesis technologies provide a
powerful new tool to the pilot to optimize aircraft
command and control. The integration of an inter-
active voice system in an aircraft cockpit is a new
discipline that imposes many unknowns and diffi-
culties both in the hardware technology areas and
in the pilot-cockpit interface implementation
areas. Advances in recognizer/synthesizer hardware
development, and in recognition algorithm develop-
ment are progressing rapidly due to the combination
of new hardware technology and the availability of
data acquired from voice recognition flight tests.
The definition of the pilot-synthesizer and
pilot-recognizer interfaces requires further
development and study in order to optimize cockpit
operation in a high workload environment. This
paper details possible methodologies that can be
used in designing and optimizing the pilot-cockpit
interface for an interactive voice system.

Introduction 

As the complexity of fighter aircraft avionics
increases, new problems in command and control
arise that can no longer be successfully addressed
by traditional control and display methodologies.
Automation and Artificial Intelligence techniques
can solve some of these problems by reducing the
amount of raw data that the pilot must mentally
process, but who or what will control these Auto-
mation and AI programs or subsystems?

The concept of the "pilot as a manager" evolves as
avionic systems become more and more sophisticated.
The pilot will not only need to monitor and direct
the various functions, but will need to access
Specific data or ask a subsystem for relational
data (e.g. “what is the highest priority target I
can reach with my remaining fuel?"). If designed
to optimize the pilot-cockpit interface, voice
recognition and synthesis will be an efficient form
of communication for advanced aircraft.

*Member IEEE
+Member AIAA

84-2660

In this paper, three distinct areas of voice
interactive systems will be addressed. First, the
benefits resulting from the use of interactive
voice recognition and speech synthesis as a viable
tool in current and advanced aircraft will be
analyzed. Second, current voice recognition
systems for military aircraft will be discussed
with an emphasis on the AFTI/F-16 Phase I flight
test effort. Finally, a detailed look at how
interactive voice systems can be implemented in
current and future aircraft systems will be under-
taken. The lessons learned from voice command
flight tests on the AFTI/F-16 Phase 1 aircraft will
be examined and possible solutions to operational
problems will be discussed.

why Interactive Voice in the Cockpit?

Today's single-seat tactical missions require a
high performance, coordinated, all weather strike
aircraft which can perform in a hostile, high-
threat environment. The current hands-busy/
eyes-busy mission severely taxes both pilot and
aircraft. Furthermore, as the mission complexity
increases, the ability of the pilot and aircraft to
successfully perform the mission decreases. In the
future, mission requirements in high threat environ-
ments will result in even greater complexity and
workload, potentially compromising the effective-
ness of manned aircraft. By augmenting or auto-
mating certain cockpit functions, it will become
possible to reduce the button and switch workload
of the pilot in order to better use his managerial
skills.

Military aircraft pilots, weapons systems opera-
tors, and helicopter pilots are all faced with the
critical problem of excessive workload. The
evolutionary design of aircraft avionics subsystems
and assorted weapons has resulted in a tremendous
burden being placed on crew members to serve as
real time integrators of aircraft systems in order
to meet mission requirements and nmnage aircraft
systems. A pilot is confronted with a myriad of
displays, controls, and information in the
head—down mode which competes for his attention
with information received out the window and via
radio. The F-16C, for example, has over 200 basic

Copyright() 1984 by Carolyn A. Moore, R. Douglas Moore, and Dr. John C. Ruth.
Published by the American Institute of Aeronautics and Astronautics, Inc. with permission.
Released to AIAA lo publish in all forms. 301
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information arrangements or "pages," each with
numerous possible permutations and combinations
being shown on four displays. The number of pages
will increase dramatically with the addition of new
systems and capabilities. In a highly integrated
ATF cockpit of the 1990's, a conventional display
approach could generate literally hundreds of
"pages" creating an impossible pilot-aircraft
operating interface. During critical mission
phases such as air-to-ground weapon delivery, the
pilot must maintain hands-on/head-up control of the
aircraft. Since the use of his hands and eyes is
maximized and often overloaded during these criti-
cal mission phases, it is difficult and disadvan-
tageous for the pilot to remove his hands from the
stick and throttle and to look around in the

cockpit to control, for example, display modes,
parameter selection and radio communications
control.

It is therefore imperative to optimize the
pilot-cockpit interface by augmenting the selection
and control of displays and switchology in the
avionics suites, and by enhancing perception of
mission/aircraft/threat relationships which might
be exploited or changed to achieve a higher mission
success or survival probability. This will reduce
pilot workload and increase situation awareness.

Speech and hearing are highly efficient means of
communication. They are two of the most under
utilized methods of control in the cockpit. If

properly implemented and thoroughly integrated into
the avionics, voice recognition and speech
synthesis can take advantage of the pilot's speech
and hearing capabilities and help optimize the
pilot-cockpit interface.

General Dynamics‘ Voice Recognition Flight Test

McDonnell Douglas Corporation, Crouzet S.A.
Division Aerospatial, Marconi Avionics Limited and
other aircraft manufacturers have initiated voice
recognition and synthesis avionic integration
programs; however, the General Dynamics Fort North
Division has led the way in airborne implementa-
tions to date.

Since 1981, General Dynamics‘ Fort North Division
has been vigorously evaluating the use of the
pilot's voice as an alternative method of achieving
interaction between the pilot and the weapons sys-
tems. The ultimate goal is to off—load tasks from
the pilot's hands to his voice, thereby enabling
him to exercise hands-on control of the airplane a

higher percentage of the time. This is particu-
larly crucial during critical periods of the
mission.

General Dynamics has structured a three—phased
program to achieve this goal; Phase 0 was a labora-
tory simulation evaluation completed in 1982, which
verified that voice control of certain avionic
functions can reduce pilot workload. Phase I was a
limited airborne environmental flight test complet-

ed in August 1983, which verified voice recognition
operation in the airborne environment and accumu-
lated data for future recognition algorithm
development. These programs were followed by Phase
II, which is a functional utilization evaluation
flight test program. Both Phase I and 11 required
a significant ground simulation effort prior to
flight test. The Phase II simulation study is
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scheduled to be completed in 1984 and Phase II
flight test is scheduled for 1985. A brief analy-
sis of the Phase 1 flight test will now be
discussed.

Phase I

The goals of the Voice Command Phase I flight test
program were: (1) to determine the effects of the
airborne environment on the pilot's voice and on
the recognition algorithm performance, (2) to
develop a reliable Voice Command System (VCS), (3)
to demonstrate feasibility in airborne applica-
tions, and (4) to establish a basis for further
functional studies.

Voice Recognizer Development. A suitable voice
recognition system that cou d withstand the severe
airborne environment had to be built and tested.
In 1981 a survey of various recognizers was
conducted and after basic testing it was realized
that commercial recognizers couldn't cope with the
vibration, ambient noise, G forces, oxygen mask and
breathing noises that occur in the airborne
environment. These environmental factors affect

the speech pattern of the pilot and degrade the
quality of the acoustic speech signal itself
leading to a lower recognition reliability. Since
the system templates were trained in a benign
environment, these degradation factors of the
environment had to be resolved by the voice command
system.

Two vendors were willing to build military quali-
fied prototype recognizers. Each recognizer
underwent strenuous testing in the AMRL laborator-
ies to ensure a minimum recognition accuracy of 50%
using flight test audio tapes consisting of pilots
repeating a predefined vocabulary under varying
noise and G-force conditions. In addition to this

algorithm testing, both recognizers had to meet
flight test hardware specifications.

Voice Function and Vocabulary Section. Since the
main purpose 0 Phase I was to evaluate voice
recognition in an airborne environment, the
pilot-cockpit interface with the voice recognizer
was not configured for a production aircraft.
Rather, a limited subset of avionic functions was
considered in order to ensure safety—of-flight
(e.g., there is no weapon release voice command),
simple pilot operation, and an easy software
implementation.

Table 1 lists the 34 vocabulary words according to
these corresponding functions: mission phase
selection, specific Multifunction Display (MFD)
selection, MFD page selection, MFD page option
control, data entry option control, and MFD
button/numeric data entry selection. Figure 1
shows the AFTI/F-16 cockpit, where the MFD switches
and the Mission Phase switches are identified. By
mechanizing these functions, the pilot will be able
to operate more in a head-up, hands-on manner. The
34 word vocabulary was thoroughly tested in the
General Dynamic Research & Engineering Simulator
and in the AMRL laboratories with both vendor's
recognizers to ensure all rhyming and ambiguous
words had been eliminated.

Most of the Phase 1 functions were very

simplistic-—each voice command corresponded to one
switch depression except for the 'LEFT' and 'RIGHT'
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Table 1 AFTI/F-16 Phase I Voice Command Vocabulary
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Management, Flight
Control Functions and
Video Selection

Mission Phase Control-
Provides Voice Command Control
of the Mission Phase
Pushbuttons

Mission Phase
Control

Fig. 1 AFTI/F-16 Phase I Cockpit Display

command used with a page selection command. For
example, when the pilot requested 'RADAR' for the
MFD Radar page, which MFD was he talking to (see
Figure 1)? The ‘LEFT’ and 'RIGHT' commands speci-
fied the left or the right MFD and were used to
move the Display-of-Interest (DOI) indicator (a
small highlighted square that appeared in the lower
right corner of the MFD). Therefore, after 'LEFT'
or 'RIGHT' was spoken, all following voice commands
addressed that particular MFD.

Vocabulary ease of use can be achieved by creating
a vocabulary and a corresponding rammar/syntax
structure that is easy to remember gespecially in
emotionally stressful situations), concise enough

t° Perform most of the necessary functions, and
consistent. For example, in Phase 1, voice
Commands are analogous to the label of the switch
they _are activating, and only one syntax node
(consisting of the entire vocabulary) and a
vgg-gord grammar structure was needed since the
gut: Ulqry size was small enough. Phase II and
Com e5fi1ve_work at VERAC, Inc. will address a more
wi1§Fe ensive word/grammar/syntax structure that

control a more sophisticated avionics cockpit.

Zgice Reco nizer Control. During Phase 1, current
Ognition technology had progressed to the point

where speaker dependent, isolated word recognition
was possible in the airborne environment. The
problem in Phase I was how to limit what the voice
recognizer "hears". For example, most background
noise (engine, wind microphone, breath, oxygen
mask, and EMI) and pilot conversation must be
eliminated or reduced since the voice recognizer

must respond only to the current command and not to
any miscellaneous noise or conversation. This
problem was solved in three ways: First, a special
amplifier and microphone cable hookup were built in
order to reduce extraneous microphone and intercom
noise: second, the recognition algorithms were
tailored to filter out noise-—especially breath
noise: and third, a hands-on-control (HOC)
Throttle switch (UHF) was used to enable the voice

recognizer to listen to audio inputs (i.e.,
whenever the pilot wanted to voice a command, he
would depress the UHF switch while he was
speaking). In order to provide head-up visual
feedback of the voice recognizer being enabled, a
small square was displayed on the lower right
corner of the Head-Up-Display (HUD) whenever the
UHF switch was depressed.

Voice Template Manipulation. with speaker depen-
dent, isolate wor recognition, all 34 vocabulary
words must be trained and stored for each pilot. A
Data Transfer Unit (DTU) was used to load/save the

pilot's word templates from/to a Data Transfer
Cartridge (DTC). Each pilot carries his DTC with
him and loads his templates into the voice recog-
nizer prior to takeoff.

Voice template (voice prints stored in the recog-
nizers) manipulation was accomplished through
several MFD Voice Control System (VCS) pages:
TRAIN, UPDATE, VERIFY, ACTIVE, and STANDBY. The
TRAIN, UPDATE, and VERIFY mode pages were used to
train, update and verify word templates
respectively. In order to train the vocabulary, a
pilot was required to select the TRAIN mode page
and repeat each vocabulary word three or more times
until the VCS had obtained three good voice

templates. In order to verify the trained words,
the pilot selected the VERIFY mode page, repeated
each vocabulary word once and observed if the
correct word was recognized.

The UPDATE mode is a special subset of the TRAIN
mode. while in a flight, if a pilot noticed a
particular voice command was not being recognized
correctly, the pilot could simply go to the UPDATE
mode and update the word templates once. This
saved time since less word repetitions were needed
to update rather than train a word. It also
resulted in a higher word recognition rate since
new templates were added in with old templates in
the queue to be searched.

The ACTIVE and STANDBY VCS pages were selected
whenever the pilot wanted voice commands to be
acted upon by the avionic computers or to be
deactivated.

Failure/Status Information. The display of
fai|ure7status information was separated into three
areas: (1) Failure information that was critical
to the pilot was displayed on a Pilot Fault List
(PFL) page as various fault entries in the PFL
list. An example of a PFL entry is a total VCS
1553 multiplex bus failure, where the VCS is no
longer communicating with the rest of the system.
(2) Failure information that was necessary for
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maintenance action but not critical enough to
interrupt the pilot was displayed on a Maintenance
Fault List (MFL). An example of this is a partial
VCS bus failure where the VCS can still
communicate. (3) VCS template manipulation
status/failure information was displayed in several
windows on the STANDBY, ACTIVE, TRAIN, UPDATE, and
VERIFY pages. Some examples are LOAD, SAVE,
current recognized word, NOT RECOGNIZED, NEXT, END,
UNTRAINED, etc. The status indicators ‘NEXT’ and
‘END’ were used respectively to signify when a word
was trained and the pilot could increment to the
next vocabulary word, and when the pilot had
trained all of the vocabulary.

Fli ht Test Results. AFTI/F-16 Phase I flight test
resu ts are shown in Figure 2 and 3 for varying
noise levels (96 dB - 110 dB) and varying load
factors (1 g - 5 g). Noise levels were varied
primarily by changing the aircraft altitude (the
lower the altitude, the greater the ambient air
noise), the defog lever setting, the center console
"eyeball" nozzle, and the ECS (Environmental
Control System) settings. Load Factors were varied
by conducting 1-5 G aerial maneuvers while the
pilot was repeating the vocabulary. As expected,
voice distortion was at its greatest when the pilot
was experiencing high G forces. High in-flight
recognition accuracies for the worst case condi-
tions of 5 Gs and 110 dB reflect the tailoring of
the recognition algorithms for the severe airborne
environment.

VOICE COMMAND SYSTEM

Contracmr No, 1

INFLIGHT RECOGNITION ACCURACYFOR NOISE CONDITIONS '
P-room D

"°°91'3.§'°“ Cnnlrlclor No. 2

60

I0

20 
96:18 99:13 'IDOdB 103 ‘I05 108418 1‘I0d8

Nnin lam:

Fig. 2 AFTI/F-16 Phase I Flight Test Results
for Varying Noise Levels

The data from the Phase I flight test program
established the feasibility for the use of a voice
interactive system in the harsh environment of a
high performance tactical fighter. The payoff for
voice will have to be more than just an alternate
means of emulating the manual switchology. One
voice command will have to be able to replace a
sequence of manual switch operations or to provide
control functions that were heretofore unavailable

in a manually controlled cockpit. The Phase II
portion of the General Dynamics‘ program and
programs underway at VERAC, Inc. will address the
operational utility of voice in the aircraft.

VOICE COMMAN D SYSTEM

INFLIGHT RECOGNITION ACCURACY
FOR LOAD FACTOR CONDITIONS

Percent
recognition

I00
Contractor No. ‘I

C]
so Contractor No. 2

40

20 
Load Factor

Fig. 3 AFTI/F-16 Phase 1 Flight Test Results
for Varying Load Factors

Advanced Interactive Voice Implementations
AFTI/F-16 Phase II and Beyond

The main goal of the General Dynamics AFTI/F-16
Phase 11 program and related work at VERAC, Inc. is
to optimize the pilot-cockpit interface, assuming
that voice recognizer technology can progress to
the point where it is even more reliable in the
airborne environment. Voice recognition and speech
synthesis are not viable avionics tools unless they
actually reduce pilot workload, reduce critical
function performance times, improve an already
existing PVI mechanization and allow the pilot to
maintain head-up, hands—on control of the cockpit.
The implementation must, of course, allow the pilot
to operate an interactive voice system with as
little effort as possible.

A simple and consistent system design philosophy is
crucial to the success of any design project. The
ongoing design must be reviewed and evaluated
constantly to ensure that the final product incorp-
orates the design philosophy and goals. Some of
the design guidelines that have been developed are:
(1) keep the number of system inputs and outputs to
a minimum to allow for a simple and efficient
operation, (2) do not distribute basic system
functions over various subs stems (keep high
cohesion within each subsystem), (3) optimize the
system performance and the system response time b
weighting the system mechanization (task—tailoring
so time critical and high payoff commands take the
shortest amount of time to implement, (4) allow the
system and the pilot-cockpit interface to have a
consistent mechanization, (5) apply artificial
intelligence techniques to the System Design and
pilot-cockpit interface, and (6) design the
pilot-cockpit interface to be as natural as possi-
ble (emulate human interaction).
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Voice Recognition Implementation along with a fourth state for data entry, theresulting state-driven grammar structure is shown

For a voice command system, the design of the in Figure 4.
pilot-cockpit interface falls into three
categories: (1) voice—controlled candidate
function selection, (2) vocabulary definition, and
(3) displays and switchology definition. The
selection of candidate functions for voice recog-
nition is very aircraft—dependent and will not be
discussed in this paper; however, possible methodol-
ogies for determining the proper vocabulary,
displays and switchology will now be discussed.

'SELECT'

Vocabular Definition. Five basic areas must be
investigated when defining the vocabulary. These
are determining: (1) vocabulary size, (2) word
ambiguity, (3) the grammar structure, (4) artifi-
cial intelligence implementations (defaultl
heuristic structures), and (5) syntax structures.

'MENU'

Vocabulary size is bounded by several factors: (1)
too large a vocabulary is difficult for the pilot
to remember and use properly, (2) too large a
vocabulary is difficult for a voice recognizer to
search through in an adequate response time, and
(3) too small a vocabulary may not cover all of the
time-critical, high—workload functions that need tobe implemented. Phase 11 uses a 100 word Fig. 4 An Example State-Drivenvocabulary (maximum capability of the recognizer) Grammar Structure
that enables the pilot to control some of the
critical functions, and still remember and easily .use the voice commands, In this state-driven grammar structure, afterexecution of the 4th state, the system is automa-

word ambiguity can be divided into two categories: tieally reset t0 the 15t State egalhs freeing the(1) word ambiguity for the voice recognizer such as pilot from having to reset the system via a specialfor rhyming or non-robust words (peculiar to each switch or keyword. Voice commands are executed asrecognition algorithm), and (2) word ambiguity for each Word is Spokeh to the best Of the V0iCe‘ck execution

the pilot such as voice commands that are not easy ihterPTeteV'$ abliity resulting in GUIand logical for the pilot to use. Ambiguous words times since the interpreter is not waiting for thecan be eliminated from the vocabulary by exhaus— system to be reset. In Figure 4, brackets indicatetively testing how the recognizer and the pilot a word that is not spoken, but is supplied by therespond to vocabulary words under various operating voice interpreter for correct grammar interpre-
conditions. tation.

 
KEYBOARD [NULL]

STATE

Since voice command is an extension of the pilot's what happens when a sentence consists of only anormal verbal response, it is essential that a verb and an element of a Set (e-9- '5ELECTnatural, human-like grammar structure be used. A GROUNDMAP'), or a sentence consists of only a setnatural grammar structure is easy to use because: (e-9- 'RADAR')? The V0iCe interpreter has t0 bethe pilot does not have to learn an unnatural able to ‘fill in‘ all of the missing states-—suchlanguage structure, the pilot does not have to as where there is a ‘null' state (e.g. function hasremember a set of unrelated commands, and the no data entry capability) or an implied state (e.g.language structure can prompt the pilot on what to in the sentence ‘SELECT GROUNDMAP', the radarsay next. display set is implied). This is where defaultstructures come in.

In evaluating the types of candidate functions thatwere needed in a particular advanced cockpit, it Default structures are a very simple artificialwas discovered that all voice functions could be intelligence application where the voice inter-performed by either selecting or cancelling an preter is aware of the current state of theindividual object from a set. Cancelling an object avionics and of what the pilot has already said,may seem redundant since what is really happening and then can make a decision about what should beis that the former object is being reselected, but done for skipped grammar states. In order to dothere are times (especially in stressful this, default values are assigned to particularconditions) where a pilot may want to go quickly grammatical states in particular voice commandback to the status quo without having to reselect sentences. Default values, at least for thisall of the functions he needs. generation of VCS systems, should always benon-critical, non-destructive, unambiguous commands
In order to select/cancel an individual object from that when used will never cause an adverse system' a set, the verb (select or cancel), the set to be response. An example is shown in Figure 5. Allacted upon, and any individual Selection within vocabulary words shown in parentheses are denotedI that set must all be_identified. For example, the as default values which can be spoken or not. IfI Sentence ‘SELECT RADAR MENU‘ has 'SELECT' as the the pilot said ‘PRIORITY‘, the system would respond| verb, 'RADAR' as the set or display type in this the same as if he had said ‘SELECT RADAR PRIORITYcase, and 'MENU' as the specific radar display. If ONE‘--in this case the radar assigns priority

I! these three grammar states are linked together, numbers to all displayed radar targets and locks on
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to the highest.priority target. In order to make
default structures work properly, the parsing of
the grammar must be done very thoroughly. All
possible vocabulary combinations and unique
keywords must be carefully defined. As voice
command systems expand with the ever increasing
complexity of avionics, default structures can
expand into more elaborate and powerful structures.

 
 

  
Fig. 5 An Example Sentence Using Default Values

while default values are concerned with the

pilot-cockpit interface (spoken grammar), syntax
structures deal with the voice recognizer to voice
interpreter interface. A syntax structure is a
structure showing the interrelationships between
all syntax nodes. A syntax node is the
partitioning of allowable words by grammatical
element and avionic state (e.g. the list of accept-
able displays in a given avionic state). Current
systems have very rigid syntax structures. For
example, if the word 'RADAR' was spoken while the
interpreter was looking for a verb, the recognizer
would not recognize 'RADAR' since 'RADAR' is not in
the verb syntax node. However, since we have a
grammar/default structure that allows the pilot to
skip over grammatical states, our syntax structures
must be very flexible. Therefore, for intelligent
systems, if a word is not found in one syntax node,
then other syntax nodes can be searched according
to a predefined order for each grammar state.

This allows the pilot not only to skip over words
in a sentence, but also to change his mind in
mid-sentence without any adverse effects. Changing
his mind in mid-sentence will result in a slightly
slower recognizer response since the voice recog-
nizer has to search more syntax nodes, but with a
good syntax node partitioning and a good parser,
the time difference will be imperceptible.

Display and Switchology Definition. The remaining
task in etermining the pi ot-cockpit interface is
the definition of all voice command related

displays and avionic switchology.

In Phase I, the UHF Throttle switch was used to
enable the voice recognizer to listen to audio

inputs. This mechanization was used only as a
flight test workaround since every time a voice
command was spoken, it was broadcast over the UHF
channel. Another problem was observed in Phase I
flight test: having the pilot say 'LEFT' or
‘RIGHT’ in order to select a new display-of-
interest. Quite frequently pilots would forget to

select the appropriate MFD and would be making
display changes on the wrong MFD--this resulted in
the pilots having to look down and reset all of
their MFDs to the desired configuration.

In Phase 11, both problems were simply solved by
expanding the current display-of—interest (D01)
selection switch to include voice. AFTI Phase 11
has two four-position D01 selection switches on the
Side Stick Controller, giving the pilot the
capability to select either MFD, the HUD, and other
subsystems simply by depressing one of the eight
combined switch positions.

Popping a D01 switch (holding the switch down for
less than 0.5 seconds) reassigns the system D01
to the new selected subsystem (there is a DOI
symbol that appears on the current system DOI
display). By holding any of the DOI switches down
for longer than 0.5 second (exact time to be
determined in Phase 11 Research & Engineering
Simulator studies), the voice recognizer is enabled
and a temporary voice D01 is selected (so the pilot
can manipulate a different display from what the
avionics system is looking at) for as long as a D01
switch position is depressed. This mechanization
optimizes the manual/voice interface and eliminates
a display-of—interest syntax node.

In Phase I, quite frequently the pilots would
become confused about where they were in a set of
commands and whether or not the voice recognizer
understood them; a heads-up display of recognizer
status was needed to feed back to the pilot what
the recognizer/interpreter understood. A window in
the lower right-hand corner of the HUD was used to
display the current recognized word if recognized
by the VCS, a not recognized label if the spoken
word was not recognized by the VCS, or the current
recognized word plus a null action indicator if the
spoken word was a valid vocabulary word but the
sentence that was spoken was meaningless to the
voice interpreter.

Pilots like to configure their displays (especially
MFD displays) to a standard configuration through-
out a mission phase. In Phase I every time the
pilot wanted to change any function on a display
page, he had to reselect his previous display
configuration. This is not only annoying and a
waste of time, but it can also be dangerous during
a time critical, high workload situation. In order
to solve this problem in Phase II, temporary
display pages were created in addition to the
existing permanent primary and alternate display
pages.

Temporary display pages allow the pilot to display
important pages quickly without destroying the
existing primary and alternate display configu-
ration.

If a function has an automatic display selection
default value, then whenever the function was
requested, the corresponding display page would
appear as a temporary page. Figure 6 shows a
typical temporary page where the corresponding
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primary, alternate or temporary label is
highlighted depending upon what type of display it
is.

There are three ways to remove a temporary display:
pop the corresponding temporary DOI switch, say
‘CANCEL’ (temporary page name)‘, or request a new
permanent or temporary display. Temporary page
capability allows the pilot greater flexibility in
determining his cockpit configuration. Temporary
display pages may not be suitable for all applica-
tions. Audio feedback or limited visual feedback
(a s ecific window on a page instead of the entire
page) can also be used to feed back information to
the pilot.

 
 
 

Allernale
Display

Primary
Display TempovavyDisplay

Fig. 6 An Example TEMPORARY DISPLAY PAGE

3 eech S nthesis Im lementations 

Speech synthesis integrated with voice recognition
into the cockpit environment will result in a more
complete and optimized pilot-cockpit interface than
would result using voice recognition alone.

Similar to a voice recognition system, there are
three categories that must be considered when
designing the pilot-cockpit interface: (1) synthe-
sizer candidate function selection, (2) synthesizer
vocabulary definition, and (3) the definition of
unique speech synthesis displays and switchology.
Specific candidate functions will not be discussed
in this paper, however, possible methodologies for
determining the proper vocabulary, displays, and
switchology will be discussed.

Vocabular Definition. Vocabulary definition can
be divided into (1) identification of vocabulary
components and their corresponding grammar struc-
tures; (2) prioritization of vocabulary components
and identification of synthesis conventions
(artificial intelligence implementations); (3)
syntax structures definition; and (4) word
ambiguity evaluations.

The identification of vocabulary components is
directly derived from the candidate function
selection and analysis. A basic list of components
that would apply to most 5 nthesis applications is:
W0VdS. phrases, lists soliloquy). and tones.
Next, the characteristic type of each vocabulary
component must be identified. For example, is the
Component a warning, a caution, a status, a

response, or a "repeat input" request (used in
C0"Junction with voice recognition)? For each of
these typed components, a grammar structure must be
ldentified in order to facilitate the interpreta-
tion of the synthesis commands into spoken words,
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and to prepare the pilot for the different types of
responses he will hear (this decreases the amount
of interpretation performed by the pilot).

Basic artificial intelligence implementations for
synthesis are similar to those for recognition.
Essentially, the vocabulary components must be
prioritized and synthesis conventions must be
established. Multiple voices within the cockpit
due to radio communications and communications
between aircraft crew members in nmltiple person
cockpits pose a serious problem for synthesized
speech transmission. Without establishing
component priorities and synthesis conventions,
synthesis would be almost useless and possibly
would endanger the lives of the pilots by blocking
other important communications. An example list of
vocabulary component priorities, in descending
order, is: warning, caution, status, response,
"repeat input".

Artificial intelligence techniques can be used to
implement synthesis conventions. The following
speech suppression conventions are examples of
output command conventions that could be used in
the airborne environment: (1) establish speech
suppression mode so the synthesizer won't speak
unless spoken to, and (2) establish speech suppres-
sion capability at any priority level so the
synthesizer won't speak unless incoming commands
are of a higher priority than the current priority
level. Some example input command conventions
might be (1) put all incoming commands in a
synthesis queue, and (2) the next-to—speak item in
the queue is determined by the item priority and
the time-of-arrival.

Different audible synthesized sounds can be used to
relay information to the pilot; for example, some
sound output conventions are: (1) use tones to
announce new items in the queue (especially if the
incoming commands are of lower priority than the
current priority level and won't be spoken until
the pilot changes the priority level or
empties/lists the queue); (2) use different tones
to announce different types of incoming items into
the queue; and (3) use different types of synthe-
sizer "voices" to portray different types of
messages or priority levels -- there have been many
studies in this area alone e.g., the effectiveness
of male versus female voices.

Interrupt conventions must also be established for
synthesized output. Some interrupt conventions
might be: (1) voice recognizer control switch
(push-to—talk) interrupts synthesized output to
allow the pilot to speak commands; (2) do not
interrupt externally generated voices (e.g., pilot,
radios, intercom — nmltiple crew members) unless
necessary; (3) a word cannot be interrupted; (4) a
word can be overlayed by tones, etc.; (5) a phrase
can be interrupted, and the entire phrase is
repeated after the interruption; (6) a list or
soliloquy of words can be interrupted, and the list
or soliloquy is continued after the interruption
from where the interrupted occurred, and (7) a list
or soliloquy of phrases can be interrupted, and
after the interruption, the phrase that was
interrupted will be repeated entirely before the
list or soliloquy continues. Obviously,
determining the synthesis conventions that will be
used and how they interact with each other is a
very complex process that has direct impacts on the
usability of the system.
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Syntax structures for speech synthesis are similar
to syntax structures for voice recognition except
that the synthesis syntax structures deal with the
speech synthesizer to speech interpreter interface.
One example of an advanced syntax structure for
synthesis might be to use multiple language syntax
nodes for each grammar structure. Therefore,
similarly to each pilot storing his voice
recognition templates on a Data Transfer Cartridge,
the proper language syntax structure can be
selected by the pilot for synthesis output (e.g.,
one pilot may choose English, another French).

This would allow multi-national use of the

synthesis system. The language dependent syntax
nodes could be stored on a Data Transfer Cartridge
for maximum flexibility or preprogrammed into the
voice synthesizer.

word ambiguity is an important factor in developing
an optimal synthesis system. Any rhyming words or
non-robust words for the synthesizer will be hard
for the pilot to understand in a high work load
situation; these words should be eliminated from
the vocabulary. Care should also be taken to
ensure that synthesized words are not ‘spoken’ out
of context. All synthesized words should reflect
the terminology the pilot is familiar with to
increase understandability and ensure optimal
operation.

Displays and Switchology. There are three basic
areas that must be investigated in defining the
displays and switchology: speech synthesizer
control, synthesizer vocabulary word manipulation,
and feedback of failure/status information.

Speech synthesizer control consists of selecting or
displaying the priority levels, synthesis
interrupt conditions, and the queueing of incoming
commands.

Synthesizer vocabulary word manipulation addresses
the problem of allowing a pilot to modify the
synthesized words--e.g., a data transfer cartridge
(DTC) may be used to store customized synthesizer
words in several languages for international use.

The feedback of failure and status information from

the speech synthesizer interpreter to the pilot is
crucial. All critical information must be

displayed on head-up displays or instruments, or
spoken by the speech synthesizer (if it is still
operational) in high priority messages.
Non-critical information can be displayed on
secondary head-up display pages, or on head—down
displays, or through lower priority synthesized
messages or not at all depending upon the type of
data. As stated before, the quality and complete-
ness of failure and status information presented to
the pilot is often the critical factor by which a
speech synthesis system is judged operational or
not.

Future Cockpit Implementations

To fully optimize voice recognition and speech
synthesis implementations, the entire avionics
suite must be designed from the ground up with
recognition and synthesis thoroughly integrated
into it. A future cockpit suite, for example,
might consist primarily of a Helmet Mounted Display
(HMD) and an Interactive Voice System. Pilot input
to the avionic computer systems would be through

308

spoken commands to the voice recognizer and by
manipulating Hands-on-Control switches. The HMD
would provide the pilot the capability to enter
data by “pointing” at objects with a crosshair on
the display. The avionics would output concise
information to the pilot via the speech synthesizer
and the Helmet-Mounted Display. The traditional
hands-busy/eyes-busy workload problems are reduced
because the pilot does not need to look down or
manipulate any non-hands—on-control switches to
control the majority of cockpit functions.
Combining advanced voice recognition and speech
synthesis technologies with other emerging
technologies will effectively reduce pilot workload
and optimize cockpit control.

Summary

The use of voice recognition and synthesis inte-
grated with aircraft cockpit displays is in its
infancy, however, many lessons have been learned to
date. Several simulator studies, e.g., AFTI Phase

0 study, have demonstrated that voice recognition
can reduce pilot workload and increase situation
awareness. The flight test of a voice recognition
system in AFTI/F-16 Phase I proved that the use of
voice recognition is an alternative to manual
switchology in the airborne environment. Ongoing
voice recognition algorithm and hardware develop-
ment is progressing rapidly as the circuitry
undergoes another phase of miniaturization and as
new algorithms are developed based upon the
environmental effects data obtained from flight
test. Phase II and related programs at VERAC, Inc.
and other companies are evaluating the
pilot—cockpit interface and attempting to optimize
it for voice recognition and speech synthesis.
Methodologies for selecting candidate functions,
defining vocabulary, and designing related displays
and switchology are being established. In future
aircraft, voice recognition and speech synthesis
will be an integral part of the avionics suite.
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Abstract

Data base programs, such as the Sperry MAPPER system,
have been used as a verification tool to control and provide
traceability in software development as required by
RTCA/DO-178, Software Considerations in Airborne
Systems and Equipment Certification. Data bases can be
established that associate the verification parameters
for each software module and requirement. These para-
meters are operated upon by the search, sort, match, and
update capabilities of the MAPPER system to extract
reports to control the verification activity and ensure re-
quirement coverage, module coverage, and traceability.
Sperry Flight Systems has used the MAPPER system in the
verification testing of the Boeing 757/767 flight manage-
ment computer (FMC) applications computer program.
MAPPER data bases were used for both system testing
and detailed verification testing. This paper discusses the
techniques and the advantages realized through the use of
these techniques.

The Verification Testing Problem Posed by Large Systems

The software quality goals of traceability and

total_requirements coverage in verification testing
are difficult to attain, but they are more
difficult with a large system. Traceability and
coverage problems inherent in large systems were
resolved on the 757/767 FMC system and detailed
verification testing by the use of automated

requirements data bases. A discussion of these
problems follows.

System requirements documents are typically _
organized by function, with subsections re ating to
submodes and operation in multiple configurations.
As in actual aircraft operation, system testing is
usually conducted by operational simulation
scenarios that simultaneously exercise multiple
functions, each in a single configuration and
submode. with thousands of requirements and

multiple submodes and configurations, it may be
very difficult to confirm that a test has been
conducted on each requirement in the relevant mode

or configuration. Introducing RTCA/DO-178
functional criticality on each requirement, mode,
or configuration adds another dimension to the
coverage and traceability problem.

The detailed verification testing is conducted
using the software specifications and system
specifications. A large modular system may consist
of over 1,000 special-purpose software modules.
Requirements in the system specification may be
supported by complex relationships among many
modules, and a change to a module may affect
numerous functions in the system. Verification
techniques may also vary according to RTCA/DO-178
criticality classification because each module has
a criticality classification associated with the
criticality of the requirements it supports.

C0pyrighl American Institute of Aeronautics and

Unless a sophisticated tracking system is
implemented, controlling the verification technique
according to criticality while accumulating a
record of the verification testing of module and
functional level changes can become a monumental

problem. The Sperry FMC used two sets of data
bases to address these problems: one for systems
testing and the other for the detailed verification
testing.

757/767 FMC System Verification Data Base

A direct approach to the traceability of system
testing was chosen. All requirements designated
for test were entered in a data base. Each
requirement was then tagged with verification
parameters.

A maximum of 15 verification parameters could be
associated with each requirement. The parameters
were divided into three classes: software,
documentation, and test. These parameters provide
the traceability.

The software parameters include the software
component that performs the stated requirement, and
the RTCA/DO-178 criticality of the requirement.
The software parameters provide generalizations in
many cases since the specification is not a
software specification. The criticality assignment
can be made from the specification when the speci-
fication designates the criticality of the
requirements.

The documentation parameters include the following:

0 Specification reference for requirement
0 Test document reference

0 Version of specification
I Change status of the requirement
0 Engine airframe applicability for the test

The test parameters are entered as part of the
verification test preparation. Scenarios are
constructed in the system test by extracting
combinations of these parameters:

Flight phase
System configuration
Guidance mode

Leg transition
Navigation mode
Flight-plan status
Holding-pattern status
Engine—out status

Astronautics, lnc., 1984. All rights reserved.
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Implementation of the System Data Base

The data base, including the requirements and
specification references, is used in developing the
system test. Each requirement is accessed indi-
vidually as to the applicability of the test
parameters; the parameters are then entered.
Applicable combinations of flight-plan lengths,
cruise altitudes, cost indexes, and gross weights
are selected to determine how many scenarios need
to be conducted. Lists of the requirements to be
tested in each flight phase are extracted from the
data base and selected for test in the resulting
scenarios. The test script's paragraph numbers are

inserted in the data base. The scenario test
script is prepared by extracting all requirements
and the selected paragraph for the scenario.

Accomplishment

Using a data base accomplishes two main objectives:
1) it guarantees total requirements coverage, and
2) it assures a traceable reference between each
specified requirement and where the requirement is
tested. Other advantages were also realized by
using this development process.

Quality of Testing

Isolating the test-case design process removes the
distractions of procedure script preparation and
other unrelated requirements.

Training

The tasks of designing tests, writing test scripts,
and debugging tests can be delegated to verifica-
tion team members without any loss in test
coverage.

Bank of Reusable Tests

Economics motivates the writing of tests that can
be rerun to detect regressions in system functions.
It is useful to have the capability to extract
tests that can detect regressions in system
functions that are related to any of the test
parameters.

757/767 Detailed Verification Data Bases

The problems associated with coverage and trace-
ability in the detailed verification testing were
addressed by using two data bases. The data bases
were linked by the functional capability provided
by groupings of software modules called Threads.
The module groupings were entered in a Thread
Matrix data base, while the functional capability
which the threads provided was entered into the
Function Matrix data base. Each data base had
software and functional/documentation verification
parameters associated with the entries.

The Thread Matrix software parameters included the
name of each module and its functional component

membership. The version of each module that had
received FAA certification in a product baseline

The Thread Matrix functional verification param-
eters included the thread name, the RTCA/D0—178
criticality, an indication of the functional test
node which the module supported in the thread, and
an indicator that declared the module as either a
target module whose functions would be actively
tested in the thread or as an included module that
would be passively tested in the thread.

The documentation parameters in the Thread Matrix
included the module specification reference, a
reference to the problem report which caused a
change to the module, and a reference to official
correspondence that initiated a module change.

The Function Matrix data base software parameters
included the functional test node and its func-
tional component membership. Functional parameters
for the Function Matrix included the thread name
that linked it to the supporting modules in the
Thread Matrix, and the RTCA/D0—178 criticality.

Documentation parameters included the reference to
the system software specification, an optional
reference to the external specification, a refer-
ence to the correspondence that may have initiated
a change to the thread functions, and a reference
to the problem reports which resulted in changes to
the thread functions. Reports could be extracted
by any verification parameters in the Thread and
Function Matrix data bases.

Implementation of the Thread and Function Data Bases

The data-base system was implemented to support the
enhancement of an existing certified product
baseline. Hence the data-base parameters for each
module were initialized from data existing in
configuration management files, the system software
collection map, and the RTCA/D0-178 partitioning
document. An analysis was done to subdivide the

system into threads. As the software development
progressed, all changes to each module were ac-
cumulated in the Thread Matrix data base for each
module. The formal verification testing was
initiated by assigning threads to members of the
verification team. Thread test reports were
extracted to control the verification test process.
The thread test reports were spontaneous audits
which summarized the change status of all target
software that supported the system functions.
Changes to a target module that supports multiple
functions prompted verification activity for each
thread whose functions were supported. The verifi-
cation activity was tracked through the matrices by
entering the tested requirements in the matrices
for each thread, along with the version of each
module tested.

Accomplishment

The use of the Thread Matrix and Function Matrix
data bases made it possible to provide a total
accounting of the changes and subsequent verifi-
cation testing performed on all modules in the
757/767 system. Verification testing also
accumulated a summary of all functional testing
that was conducted in the development of a new,

certified product baseline. The Thread Matrix and
Function Matrix solicit a specification reference

was included, along with a record of all subsequent for every change to a moduie or function, This
edl§$ to the m0d9l? and VeF5l°U$ that were fonnat directly supports the traceability
subJected to verification testing. requirements specified in RTCA/D0—178.
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Finally, the verification approaches specified for
the RTCA/D0-178 criticalities ca
tored and enforced by specifying the criticality
with each Thread report. Additional benefits real-
ized through the use of the detailed verification
data bases were easy assessment of verification
staff work loads, generation of a master schedule,
and tracking progress to the master schedule.

Conclusions

The use of data bases in verification testing can
improve the software quality by providing sponta-
neous audits of module and requirements coverage.
In addition, the system requirements data base can
be an effective tool to develop and track system
testing.

Ouflook

The use of automated requirements data bases can
potentially greatly reduce software development
costs while significantly improving the quality of
the software and the associated documentation.
Linking word-processor documentation systems, auto-
mated problem-reporting systems, and configuration-

n be uniformly moni-
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management systems with automated requirements data
bases can substantially reduce the overhead in a
verification testing program. The quality of the
software and documentation can be significantly
improved when automated methods prompt software

engineers to update documentation and to anticipateproblems in re ated software.
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Abstract

The problem of validating and verifying digital
flight control system (DFCS) software is addressed
in this paper. A new specification language
[DIVERS] is proposed, and is the keystone in our
approach. This language consists of keywords where
each keyword represents an element in the block
diagram of a DFCS. DIVERS has a dictionary which
contains all the keywords a DFCS designer might
need. Translator programs convert the system speci-
fications into an executable, high—level language
program. The features of translators are discussed
and are elucidated by examples. This language is
used to describe a typical flight software module.

Introduction

An obvious heuristic approach to validating software
systems is to compare the output of the implemented
system to its specified output. The input to the
system is varied over as much of the specified input
domain as is practicable, and the output is checked
against the specifications. This is often the only
recourse when verifying Digital Flight Control
System (DFCS) software which contains a varied mix
of logic, arithmetic, and input-output operations.
A completely independent simulation of the DFCS may
be needed when checking software against the speci-
fications. The problem of specifying the output of
the DFCS is approached by developing a special pur-
pose high—level language, which makes it easy for
the control system designer, with eventual verifica-
tion in mind, to describe the input—output behavior
of the DFCS at the design stage. The language is
designed to allow for machine translation of the
specifications into an executable program. The
specification language is meant to be simple, yet
general enough, to describe most modern digital
autopilots. For this reason it is not intended as a
language for actual written DFCS code. The latter
is implementation specific and would complicate the
language.

Examples of specification languages are abundantly
available in the literature (1, 2). Reference 1
describes a specification language called ESPRESO
which is tailored toward a formal documentation

setup of the specifications for process control
applications. The language described in Ref. 2,
called SLAN—4, was designed as a formal language for
writing specifications, and was meant to be used
during the development of software systems for
design, communication, and documentation purposes.

The motivation for the development of a specifica—
tion language for DFCS is essentially as a tool for
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verification. In earlier work (3) a technique was
developed for testing DFCS software on a module—by—
module basis. This required the comparison of the
module outputs with those of its model, or bench-
mark, for the same input values. Obviously, this
technique presupposes that a model or benchmark of
the flight software module can be written in a
simple and reliable way. Most DFCS consist of rela-
tively few building blocks used repeatedly and
interconnected in various ways. This feature can
be used to design a special language that describes
DFCS in terms that are familiar to control system
designers. This language should encourage systems
designers to take note of the performance specifi-
cations for the DFCS which can later be used to

check the implemented system. The features of the
proposed language DIVERS (digital flight control
software verification specification language) are
discussed in the following section.

Design Objectiygs

The specification language was designed with the
following goals in mind.

1) The control system designer should find the
language simple and natural to use. Thus its con-
structs should embody terms with which he is famil-
iar. Control engineers tend to describe systems in
block—diagram form using transfer functions or
algebraic equations for each component. Systems
usually have several parallel paths. The specifi-
cation language description should correspond one-
to-one with the block diagram description and
should be recognizable to any control engineer who
does not have special programming knowledge.

2) The language should encourage the system
designer to document his physical insight into sys-
tem performance. The system designer usually has a
strong intuitive insight into the behavior of the
control system. For example, the angle of attack
for most transport aircraft will not exceed 6° in
the positive direction and approximately half that
in the negative. The designer can note this fact
in the system specification. At the system verifi-
cation stage, this fact can be machine—extracted
and used to set up an executable assertion (4).
This is a nontrivial example; there are actual DFCS
implementations where the angle of attack has been
scaled to 360°. The syntax rules imposed on the
designer must be kept to an absolute minimum which
results in a heavier burden being placed on the
translator. The information which cannot be framed

according to the syntax of DIVERS should still be
included as comments. Thus, the objective of any
translator of the language will be to extract as
much information as is possible from any specifica-
tion set.

3) The language should be easy to modify and to
expand. As flight control system components become
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more sophisticated, the language in which they are
described also needs to be updated. The upgrading
of translators should be easily accomplished, with-
out rendering earlier versions obsolete.

The raison d'etre for this specification language is
the verification of DFCS software. As a result, the
design of the language must be based upon a survey
of the features of currently available DFCS systems,
and those which will be available in the future. As
described in this paper, the language is focused on
DFCS which are a digital implementation of essen-
tially analog autopilots. Its features and rules
are informally described.

Language Structure

Upon examining a typical block diagram of a control
system, Fig. 1, it is seen that in order to describe
it in words, a name has to be given to each block
and then the inputs, outputs, and parameter values
have to be mentioned. The number of different names
needed are limited because DFCS systems are composed
of a relatively small number of functional block
types, which appear at different places with differ-
ent parameter values. The names of the blocks are
the keywords of the language, and a list of all the
keywords is maintained in a dictionary. The inputs
and outputs are the variables in the language. The
parameters are constant values, which represent the
gain of a filter or its time constant, or they are
Boolean conditions which determine switching. There
is no ambiguity in the above description because the
keyword determines what the parameter should repre-
sent. Specifically, if the keyword is a switch,
then the parameter will be a string specifying a
Boolean condition.

The syntax for a complete specification of one com-
ponent of a block diagram is as follows:

keyword[input token;parameter tokenzoutput token]

where the input token (a token by definition is a
series of ASCII characters) consists of the names of
the input variables that are separated by commas,
that is,

input token := input variable name 1,...,
input variable name n .

The same convention is followed for the parameter
and output tokens. The input and output variables
are "declared" at the beginning of the specification
text. A declaration is a token of the following
form:

variable name:physical unit, lower limit,
upper limit, fullscale value, type, size;

Here the upper and lower limits are the bounds on
the variable that are expected in practice; the
full-scale value is the maximum value to which the
Variable is scaled. The type indicates whether the
variable is real, integer, or Boolean; size speci-
fies the number of bytes needed to store the varia-
ble. The full-scale value is an absolute value and
it is usually greater than the maximum value.
Variable type is a token of the form

tokenl token2

Where tokenl may be "testvar" or null, and where

token2 is "real," "integer," or "Boolean."
variable types are

Example

testvar real

testvar Boolean

integer

The "testvar" token indicates that the variable
referred to is a variable whose values will need to
be read or modified during verification of the DFCS.
It is an indication to the programmer who is
responsible for coding the DFCS that the specified
variable should explicitly appear in the DFCS code
under the same name. This is a restriction imposed
so that benchmark generation may be automated. The
declaration of each variable includes its physical
unit, bounds, and full-scale value to permit con-
sistency checks of the specifications, and to permit
checks of the scaling for accuracy and precision.

Two other constructs are permitted in the language.
These are comments which take the following form:

/*this is a comment*/

and assertions which are statements about the nor-
mal, expected behavior of variables appear in the
form:

/Sassertion statement$/

For example, suppose the variable ALPHA is expected
to remain within the bounds -0.5 to 0.5 at the
output of a given block; the specification of the
block can be followed by the assertion

/$—0.5 < ALPHA < 0.5 $/

Clearly, the language proposed here is very simple.
This implies that much of the burden of generating
benchmarks from the above specifications falls upon
the language translator program. We will now
describe the functional features of translator
programs.

Features of Translator Programs

A translator will have a database which has two
elements, a dictionary of the keywords that are
currently available, and a macro library for each
keyword. The keywords in the dictionary are
arranged alphabetically. The macro library con-
tains one macro per keyword which is also arranged
alphabetically. Each macro is structured as
follows:

keyword[token1;token2:token3]

macro definition

where the three tokens represent the input, param-
eter, and output strings, respectively. Each string
consists of dummy variable names that are separated
by commas. An alternate form that is allowed for
specifying input and parameter strings is:

(variab1ename,n)

Here the n is an integer which equals the maximum
number of names that are allowed in the input/
parameter string. The idea behind this provision
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is to allow the number of input variables and param-
eters to vary from 1 to n. Since we know that an
input string consists of variable names that are
separated by commas and that are terminated by a
semicolon, the number of variables in the string is
equal to the number of commas plus one. This fea-
ture proves useful, for example, where the output is
the sum of several inputs whose number may vary.

The macro definition consists of code that is writ-
ten in the object/output language of the translator.
This code, written in a high—level language, C, in
our case, describes the action of the keyword in
terms of the dummy input, parameter, and output
variable names. If the dummy variables in the macro
definition are replaced by actual variables, the
resulting code should simulate the keyword. Con-
sider, for example, a summer with the number of
inputs varying from one to ten, that is, a block
with the following characteristic:

1'1

0: 2; C. e,. 1 1l=l

where the

the inputs.
as follows:

ci's are constants, and the ei‘s are
The macro definition for this block is

summer[(alpha,10);(c,10):o]

o = 0;

$[o = o + c * alpha;]

The dollar sign is a unitary operator whose action
is to call for a repetition of the token within the

square brackets. The repetition count is obtained
by scanning the argument list in the keyword for the
number of input variables, alpha, and for the number
of parameters, c, and by taking the lower number as
the count. Thus a call such as

summer[alpha,beta,gamma;10,1.5:sum]

would result in a repetition count of 2.
sion of the keyword will be

The expan-

sum = 0;

sum = sum + 10 * alpha;

sum = sum + 1.5 * beta;

From this example, it is also seen that the keyword
macro is expanded by replacing the dummy variables
by the arguments in the call. Also the variable
"gamma" is not used in the macro expansion. The
translator will report an error.

Since the output of the translator is a complete,
executable C program, the translator must be able to
expand the keyword macros into C statements in
proper order , declare variables, and include input
and output statements for some of these variables at
appropriate points in the program. Only the varia-
bles that are declared "testvar" will appear in
these input—output statements. A "testvar" variable
that is an input to a keyword will appear in an
input statement that precedes the macro expansion for
that keyword in the translator's output program. A
variable that is the output of a keyword will appear

in an output statement that follows the keyword's
macro expansion. A variable that is both an input

of one keyword and the output of another, will
appear in both of the above places. Since each key-
word has both input and output variables, keywords
can be written down in any order. The translator

arranges the keywords into a proper sequence of
keywords so that all inputs to each keyword are
available at the point in the program where the

keyword is translated. To describe the algorithm
for ordering keywords, we introduce the following
notation for keywords:

Ki[ei’j,j = 1,...,£i; pi’k,k = 1,...m : oi]
where

Ki is the ith keyword, i = 1,...,N
N is the total number of keywords

ei,j is the jth input signal to Ki

pi’k is the kth parameter of Ki

oi is the output signal of Ki

ii is the total number of inputs

The algorithm for ordering the keywords into groups
is as follows:

Keyword ordering algorithm

Step 1: Group 1, contains those keywords Ki,
whose input signals ei,j, j = 1,...li are alltestvar.

Step 2: Suppose that groups 1,...,r have already
been determined. A keyword Ki, which has not yet
been ordered belongs to the (r+1)th group if each

of its input signals ei,j, j = 1,...,£i satisfies
one of the following three conditions (mutually
exclusive):

a) ei,j is testvar and, if ei,j = 0a, the
corresponding keyword Ka has already been
ordered.

b) ei,j = 0a; 0a is the output of keyword Ka
that belongs to one of the groups already
ordered, that is, groups 1 through r.

c) ei,j = oh; oh is the output of any history
keyword Kh.

Step 3: Repeat step 2 until all the keywords
Ki,i = 1,...,M that satisfies conditions a, b, c
of 2 have been ordered.

Step 4: If M < N this indicates that some key-
words remain unordered, print an error message.

just a one-
to handleIn condition c, the history keyword is

unit delay. This facility is necessary
situations where the outputs of filters are fed back
as the inputs of other keywords, as for example, in
Fig. 2a. The outputs of the low— and high—pass
filters are fed back to the sumers, through key-
words that are labeled "history" in Fig. 2b. The
output a3.p and the input a3 of this keyword
are related by the difference equation:

a3.p(k) = a3(k - 1) , k > 1,

= 0 : k = 0-
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Once the keywords are properly ordered, they are
expanded in the second pass in terms of the actual
input and output variable names. The necessary
declarations and initialization statements for the
variables are included. Data files that contain

input values for the test variables are created
based upon the types of these variables and the test
pattern desired by the designer. In the next sec-
tion, the use of the language is illustrated through
examples.

Examples

The digital autopilot described in Ref. 3 was used
as the basis for the development of DIVERS. A die-
tionary of keywords that is adequate for describing
this autopilot is given below.

ARCTAN
ARCSINE
ARCOS
COMPARATOR
GAIN
HPF
LPF
LIMITER
SUMER
SWITCH
HISTORY

Two of the keywords, a low-pass filter "LPF" and a
limiter "LIMITER" are described in detail below.

Dictionary.

A block diagram and the difference equation repre-
sentation of the LPF are shown in Fig. 3. The
latter is based upon an Euler integration of the
filter differential equation. The macro for'the LPF1S:

LPF [ input ;

sampling time, time constant :

]output

This keyword is implemented as a C subroutine. Thus,
every time the keyword LPF is seen in the specifica-
tion of a flight software module, the translator
replaces it by a call to the subroutine LPF with the
appropriate arguments. The subroutine is provided
in a library so that it can be linked with the bench-
mark program. The block diagram for the limiter is
shown in Fig. 4. The macro definition for the
limiter is:

LIMITER [input; upper limit, lower limit: output]

The macro expansion for this keyword is:

if (input > upper limit)

output = upper limit;

else if (input < lower limit)

output = lower limit;

else output input;

Figure 1 shows the block diagram of part of a typi-
cal flight software module, called "speed-comp.”
This module performs the computations that are
necessary for angle of attack determination as a
function of take-off and go-around conditions, as
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well as defining angle of attack (AOA) limits. It
also performs autothrottle calculation, i.e., it
computes the acceleration that is necessary to
attain a given speed when the aircraft dynamics,
the existing acceleration, the airspeed, and the
existing constraints that are defined by a prespeci-
fied flight envelope are taken into consideration.
The inputs to the module are simply:

* The
* The
* The
* The

flaps angular position, ”THETA f'H
aircraft angle of attack, "ALPHA'5
longitudinal acceleration, "Ax'k
calibrated airspeed, "CAS'K

Its output consists of:

* A reference angle of attack for further
computations.

* Takeoff, go-around reference flap angle.
* Forward longitudinal acceleration.

The only representative parts of this module which
will be demonstrated are those which have longi-
tudinal acceleration, and calculated airspeed as an
input, and which have longitudinal acceleration as
an output. The specification of the module in
DIVERS is shown below:

40
Variable declarations

cas.m5:hnnts 1 500: -500y 512:

testvar rea1:43

cas.ms.p: knots; 5007 -500a fitfly

teetvar re31s4

1ans.auC.nh2ft/sec#*?v12014493000;

teatvar realvdi

3? tft/sen##?¢ 60 7 3? y3000 » rva]y4 9

a4 2 kn0ts;498y-4987512:rea1v4 i

a5 2knotsu18.7673y~18.7é73yraa1y4 9

z5.d3ft/sevt*?y P50: 0 73000 urns] :4 i

86 ift/HeC$L2v64.4v-64.4a3000vPen]14 my

0.use.ms2kn0ts:fi00y~500s512yIv31y4 9

o.ca5.ms.p2vn0ts;500r"500a519vvnAly4 9

:knntS71000!'l000!10?4vivrl76
.
!

:kH0tU!S6o33!“56933F5l:iY0R114
;
.'
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z4.d:Ft/Wevtflfiv 397 0.0uK0O0

uodmtooomptft/fiwvfimfly1694:0.0~1“'I

1fi‘l”uY

U.fi0L«BVPfi:ft/uPP¥*P!16947053000!

tentvar

Bfnd :f't/‘:3€"‘k.‘**,?! .7550!’-"/9:50l')0r x"(‘#..'1 rv-17

36.6 ift/aHv*#?vE50;0y3000yrwml rd

H4.d€Ft/3wLK*2:B9 .o.o .3ooo,r~¢1

u7.d2ft/59c#*2:339:0.O yxooo..e“1

z6.d 3ft/§nw¥*”,P50 ,o.fi .K000,;\4

z7.d 2ft/5ecY$?yKE9 90.0 :3000»rva

f1aa.arv.dif1vn]ta :12 0:

<»LIMTTER F ma;.m%

300.0 y

"00.0 '

A4 1

/$ 34 .3 488.? $/

GAIN E a4 3

0.335 2

35 1

SUMMER F 35 v ¢4.d 3 :

7W.d

/$ z5.fl "” 750 $/

/*1unS.acc.ob Obtained from GM ‘J |. <:

GAIN F 1onH.arP.oh P

0.5 2

39 J

/$ 39 .= 120 $/

SUMMER F 59 1 a3 3 2

<3!

5‘I\‘c1.

VFW’

A .. .-1 .

e

r(.\‘|'.'~".-9

|~4i

\|-

11.3

u‘:)

I v 4

1 =1

1ahnn1unu -3

fihF4x

'._l

\

.0

-0

/*ThJu L. 3 two w4u swltnhy jL ‘uJt~h-,¥/

/*on when the other comwutur L‘ worF1n«4/

SUTTCH F .6 1 u4ad 3 0.hn' HI 2 I
u4.d 1

/¥when 0.hmx.un tru0yu4.fl :é*/

GAIN F Cufi-MM ?

0.159 t

c¢q.m=4w 1

/$ wa».mn 51" $’

GAIN F u.ra*.mai

0.16? 2

n.v»u.mn.u 1

BUHMFR F vs®.m-.v n.‘;— mc o 3

3’ 1

LIMITFR F 37 f

159 y

15? 1

5H I

/$ AR - 3?.S6 $

SUMMER F £9 :J4.d ? 2

u5.M.P J

$MITCH F “S.M » _U.d F u.hux an 3

vfl-fl 1

LPF E H5.d 5

0¢1.!

5.0 2

u6.fl J

3UMMFfi F -r.d 2 54.6 7

~\n »

HPF F a7.d Q

J.dot.avrd 1

LPF F *5 45

Ool 57

"M01
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designer to describe flight software. This language
specifies the DFCS in a form that is machine trans-

-Zt"m|.I l

 

§LHiMFR [' y6.d v ,_q.d 9 2 latable. It also embodies constructs that enablethe designer to express facts about system pgrfor_

;7,r; ] mance that can later be employed to set up executa-
ble assertions for software verification. The

Hpqr r ~7,.1 . language can be readily updated to express new fea-tures of DFCS by the addition of keywords. The

Oyi , salient features that the language translatorsshould have are described and the language is

93.0 2 applied to a typical DFCS module.
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Fig. l Block diagram for the speed—comp module.
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SUMMER

HISTORY

SUMMER

HISTORY

   
b) with history keywords introduced.a) without history keywords.

Fig. 2 Cross connection of keywords.

1
Z5.D4 ZGAD

LOW PASS FILTER REPRESENTATION

DIFFERENCE EON.:

T|ME—CONSTANT ~ SAMPLING TIME/2 * PAST OUTPUTPRESENT OUTPUT =
TIME—CONSTANT + SAMPLING TIME/2

SAMPLING TIME/2 * (PRESENT INPUT + OLD INPUT)
TIME—CONSTANT + SAMPLING TIME/2

Fig. 3 Representation of a low—pass filter.

a7 a8
Fig. 4 Representation of a limiter.
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Abstract

Traditional manual approaches to software validation

could not produce the required testing rigor within

the inflexible 737-300 Flight Management Computer

System program schedule. In response, an integrated

and highly automated validation test system was

developed based on experience gained from previous

validation efforts. The "user-based" system consists

of three basic elements: I) a specialized simulation

for generating expected results, 2) an automated test

bench that interrogates the operational flight

program "in situ", and 3) a program to document and
compare test results to expected results. The entire

procedure is automated from test case design through

final analysis of the test results. The system has

proved to be an efficient and rigorous validation of

the flight software within a tight time schedule and

limited budget. Further, the user is released from

tedious laboratory testing and allowed to concentrate

on test analysis.

LDLEQQLLCLIQD

In recent years, automated software testing methods

have been suggested as a means to provide rigorous

verification and validation of operational flight

programs without the drain on time and manpower

that manual techniques normally require. Suggested
methods include: specialized simulations, theoretical

"best" approaches to test design, result comparators

and automated test benches. However, in many cases

these automated methods reduce the effort required

in a specific area only to increase the overall testing

effort by expanding the number of test conditions

measured or the required degree of analysis.

The time and budget constraints of the 737-300

Flight Management Computer System (FMCS) project

would not permit manual testing methods or

inefficient automated methods. For example,

approximately one third of the validation program for
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the 737-300 Flight Management Computer was testing
of the performance functions. This was initially

expected to require at least l0,000 separate test

points and hundreds of laboratory test hours for each
new software release. As a result, validation of the

performance functions was considered "risky" and it

was determined that the required testing could only

be accomplished with an integrated, automated

system for preparing expected results, conducting the

laboratory testing and finally, analyzing the results.

The system that was developed is largely the result

of several years of experience in similar testing

efforts. Appropriately therefore, this paper begins

with a discussion of the previous Boeing Co.

validation programs that significantly shaped the

737-300 Flight Management Computer System
validation effort. Next is a detailed discussion of the

specific elements of the performance function

validation testing, including: the plan of test, the

simulation software for generating expected results,

the automated laboratory test system and the
methods used to compare and archive the test results.

The paper concludes with a brief description of the

experience-to-date utilizing this approach.

Bistocy.

mmmmLm . The

Performance Data Computer was originally developed

in the mid-seventies in response to rapidly increasing

fuel costs. The system was designed by Boeing and

the hardware / software vendor, Lear Siegler, Inc. of

Grand Rapids, Michigan, to optimize the performance
of 727 and 737 aircraft via a mixture of stored and

computed speed schedules and throttle setting

targets based on current flight conditions.

Validation testing of the PDCS was one of the first

efforts of its type and thus has played a significant

role in shaping the development of later validation
efforts. The earliest test cases were designed to
test each of the functions of the PDCS at conditions

that were likely to be encountered in normal

Astronautics, lnc., 1984. All rights reserved. 319

BOEING

Ex. 1031, p. 378



BOEING 
Ex. 1031, p. 379

operations. All early testing of the PDCS was

accomplished via manual entries through the Cockpit

Display Unit (CDU) keypad or through test bench
discrete switches and variable potentiometers.

Results were manually recorded from the CDU

responses of the PDCS. This test approach was highly

time-consuming and thus, necessarily limited the
scope and detail of practical testing to about 1000

total test points.

Late in the PDCS development program an automated

test bench was developed. The automated test system

would enter Cockpit Display Unit and aircraft system

inputs, wait an appropriate length of time, read the

CDU responses and compare the test results to

pre-stored expected results. Because this system

was somewhat inflexible and required a great deal of

pre-test effort to convert the manual test cases to

the automated format, it was primarily used to test

only the uniformly-formatted propulsion test cases.

However, the system did provide valuable experience

for development of the 737-300 test system.

 i.

The Performance Navigation Computer System was

developed as one of the earliest "flight

management"-type systems. The original intent was

to integrate PDCS performance information with

navigation and guidance capability in a single
computer for 737-200 aircraft. Limited sales

interest and technical problems forced cancellation

of PNCS development prior to the anticipated system

certification, Again, the accumulated experience
would prove to be valuable.

This system introduced the complexity of navigation

and guidance computations overlayed on the basic

performance information. Using a "flight plan buffer

dump" developed by Lear Siegler for the PNCS

program, much of the performance information could

be captured at each waypoint in the predicted flight

plan. The data could then be analyzed to determine if

aircraft performance was being computed correctly.

However, if an error was found, it was often difficult

to trace it to its origin because the flight plan buffer
dump could not include all of the performance
variables and their intermediate values. The PNCS

performance plan of test did not actually increase the

total number of test points acquired, partly because

of confidence in the previous Performance Data

Computer aircraft and engine models and partly

because the higher-order functions of the PNCS

required significantly greater test and analysis time.

The experience of the PNCS test program suggested an

entirely new approach to validation testing of flight
computer software was required.

320

 m). When the

new generation airliner programs were launched in

the late seventies, it was recognized that testing or

the 757 and 767 would be the most rigorous ever

attempted. This especially applied to the new "glass"

cockpits and flight management systems. in

response, major projects were undertaken to develop

automated testing techniques for validating the

performance functions of the 757/767 Flight

Management System. The first major project was the
creation of a series of programs to generate flight

management system expected results. These series

of programs became the Boeing Standard Programs
(BSP) and are detailed below. Other test tool projects

included the development of an automated test bench

and a test report comparator program. The latter is
also detailed in the discussion below.

The Performance Algorithm Test System (PATS) was

designed to set test conditions and extract results

from the operational flight program (OFP). The OFP

source code is first prepared by adding input and

output routines to translate between the unique FMS
software structure and the PATS driver. This

modified code is then loaded and executed in the

Flight Management Computer hardware according to

commands given in the PATS driver file. Test results
are recorded in a file formatted identically to the

expected results generated by the Boeing Standard

Programs simulation software. The 757/767 work
was a major influence on the development of the
737-300 Flight Management Computer performance
function test program and many of the features of the

system described below were originally developed for
the 757/767 FMS test program.

_..I.

Development of the 737-300 Flight Management

Computer performance function test program began

with the design of an overall plan of test and the
development of requirements for the individual

elements of the test system. The three major

elements required under the plan of test were; I) the

Boeing Standard Programs (BSP) expected results

generator, 2) the Performance Validation Test System
(PVTS) automated test bench and 3) the COMPEX test

results comparator / report generator. The BSP

simulation software would require major revisions to

reflect unique 737-300 Flight Management Computer

design requirements and the 737-300 airframe /
engine combination. The Performance Validation Test
System would have to be developed from the "ground
up" to interact with the new flight computer
hardware. However, the COMPEX report generator
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developed as part of the 757/767 BSP project would

only require user experience.

 e Elan of lest. The performance plan of
test was developed given two major considerations:
1) the experience gained in the PDC5, PNCS and
757/767 FMS test programs, and 2) the timing of

required software deliveries from Lear Siegler. The
plan of test calls for a "bottom-up" approach starting
with module-level validation of the aerodynamic,

propulsion and atmospheric data bases. The "flight
phase" testing level is designed to validate the
integration of data base information. The final
"mission"-level testing is directed at validating the
the complete performance function system. Each
subsequent level of testing is dependent on the
successful validation of the lower levels of testing.

This scheme not only simplifies pinpointing errors,

but also blends well with 737-300 program schedules

that called for the delivery of increasingly capable
software in distinct packages. The plan of test is

depicted graphically in Figure 1.

  
 

FLIGHT ENVELOPE

AERODYNAMIC PROPULSION ATMOSPHERIC
DATA BASE DATA BASE DATA BASE
 
 

  
   

Figure 1 Performance Plan of Test

IbeJ1at.aI2a§e.1e1e1 is designed to check the individual

software modules by varying each of the input
parameters over, and outside, the full range of

possible values, with particular attention to regions

where errors are likely to occur Testing tolerances

are limited to computer "round—off" errors since the

polynomial nature of the data bases eliminates
inexact interpolated or approximate extractions. This
level also verifies the correct computation of the

complete flight envelope defined by the combination
of aerodynamic, propulsion and atmospheric data
bases

 of testing examines the
computation of each separate mode of flight, e.g.,

maximum gradient climb, long range cruise, economy
descent). Intermediate results are compared at each

Performance integration step, rather than simply at
each navigation—defined waypoint. Further, the values
of intermediate parameters, such as thrust and drag,

are checked against expected results derived from the
Boeing Standard Programs. Tolerances at this level
are a combination of the database and FMCS

requirements-specified tolerances.

Ibe mission level of performance function testing is

designed to validate the complete integration of a
flight plan or "mission". This "top-level" testing also
includes examination of performance function

interactions with the other Flight Management

System components. However, the scope of these
tests are limited by separately defined "flight
scenario" tests that are designed to check the

complete range of Flight Management System
component interactions. The intermediate results
examined in the flight phase tests are also available
on this level, but testing tolerances are now based

only on tolerances specified in FMCS requirements.

The Boeing Standard
Programs (BSPs) are a set of mainframe computer
programs originally developed to validate the
performance management functions of the 757/767

Flight Management Computer (FMC) system. The BSPs
consist of nine separate, but inter-related programs

that generate expected results in a format permitting
automated comparsion with test results. Previous

Boeing performance programs were generalized to
support a wide variety of uses and not specifically
tailored to the requirements of flight management
software validation. The programs emulate the nine
functions shown in Table l.

A524 PROPEX Propulsion data base

A525 ATMUSX Atmosphere and wind

prediction

A527 ALTEX Altitude limits calculation

A528 SPEEDX Speed eneration

A529 LEGEX Leg integration calculation
A530 STEPEX Step-cruise optimization

A531 BSPEX Full flight path trajectorg

Table l Boeing Standard Programs

   

   
  

  
   

The BSPs are designed to share common modules
with each other. This is best illustrated in Figure 2.

The solid-lined boxes represent a related set of

routines; the solid-lined boxes inside the larger

dash-lined box (e.g. speed generators, leg

integrators, etc.) are termed "functional" modules
and represent sets of routines used by more than one
BSP. The solid-lined boxes outside the dash-lined
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box are termed "driver" modules and represent

routines which are used by only one BSP (e.g. SPEEDX,

LEGEX, etc.). Arrows point from calling routines to
the routines called.

  
  

 

SPEEDX
A528

FNLIMX
A526

 

Figure 2 BSP System Architecture

Execution of the BSPS requires files containing the

necessary aerodynamic and propulsion coefficients,
and a performance input file that selects the

particular test conditions and functions to be

executed. As flight testing of the 737-300 updated
the available performance data, this new information

could be periodically added to the propulsion and

aerodynamic data bases by editing the coefficient

files. Updated expected results could then be

generated without redesigning the test cases or

recoding the BSP routines.

For the 737-300 FMCS performance validation effort,

the BSPS required a new engine model, an enhanced

aerodynamic model, polynomial speed generators and

additional logic in the phase predictors, and leg

integrators for the specific requirements of the
737-300 FMCS. Since each version of the BSPS is

based on a single engine model, a new BSP version

was created for the 737-300 FMCS program.

However, the other changes were added to the

existing BSPs as selectable options available to all
versions of the BSPs. For example, all versions of

the BSPs currently allow the user to select speed

generation based on 757/767 table look-up methods,

737-300 polynomial equations or generalized
computational methods.

Despite these relatively major changes, the BSPS

were ready for use in a short period of time because
of the extensive 757/767 development work that had

already been completed and validated. In addition, a

generalized version of the BSPs was also available
that premitted preliminary generation of expected

results and even development of the performance

data base equations.

 . The

Performance Validation Test System (PVT ) is an

automated test bench designed to accept Boeing

Standard Program format inputs, execute the

corresponding software modules in the Flight

Management Computer, and record the results in a
format suitable for automated comparsion with

BSP-derived expected results. The system is unique

in several respects. First, the vendor—supplied

operational flight program (0FP) is interrogated
without modification while it is resident in the

vendor-—delivered hardware. This is significant

because it ensures testing of the flight software in

nearly actual operational form. Second, PVTS utilizes
the same inputs to drive the execution of the OFP that
were used to execute the BSP simulation software.

This allows the test engineer to rapidly redesign a

given test case to meet changing requirements and
obtain both the test results and expected results

without having to formulate a separate, and possibly
different, test condition file. Finally, PVTS allows

testing of a single function or a complete series of
functions without user interface except at startup.

This feature relieves the tester from monotonous and

error—prone manual testing, while producing

repeatable results much faster than manually

possible.

The PVTS hardware consists of a VAX l l/780

computer connected to a Lear Siegler, inc.-supplied

Computer Control Unit (CCU) via an eight-bit parallel

bus. The Lear Siegler-developed interface system
allows the VAX to set and examine variables internal

to the Flight Management Computer and execute the
operational flight program (OFP) from breakpoint to

breakpoint. Lear Siegler "symbolic debug" software

looks up the memory addresses of variables allowing
the variables to be accessed by name. The system is

shown in Figure 3.
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Figure 3 PVTS Overall System Diagram
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