

L Dependable Cefnputing
-Tolerant Systerrgeand Feult V

 meme

AHVHEI1WNUWEH?fiEH.l1'|IOS3l'l

Diversity
in Computerized__IQ:-H-ow:an-so Ijgflflflflflllflflllllfifll Vflentrel Systems

BOEING Ex. 1029, p. i

Dependable Computing
and Fault-Tolerant Systems

Edited by §

A. Aviiienis, H. Kopetz, J. C. Laprie

Volume 2

BOEING Ex. 1029, p. ii

U. Voges (ed.)

Software Diversity

in Computerized

Control Systems

Springer-Verlag Wien tNew York

BOEING Ex. 1029, p. iii

Dipl.-Math. Udo Voges, Kernforschungszentrum Karlsruhe GmbH,
Karlsruhe, Federal Republic of Germany

With 41 Figures

This work is subject to copyright.
All rights are reserved,
whether the whole or part of the material is concerned,

specifically those of translation, reprinting, re-use of illustrations,
broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks.
© 1988 by Springer-Verlag/Wien
Printed in Austria

Library of Congress Cataloging-in-Publication Data

Software diversity in computerized control systems.

(Dependable computing and fault-tolerant systems ;
Vol.2)

Contents: Introduction I U.Voges — Railway
applications / G. Haglin - Nuclear applications I
U. Voges. P. Bishop — [etc.]

1. Fault-tolerant computing. 2. Computer software-
Reliability. 3. Automatic conuol—Data processing.
1. Vegas, Udo, 1946- . l1.Ser|es.
QA’i6.9.F38Sfi5 1988 005 87-32367
ISBN 0-387-82014-0 (U.S.)

ISSN 0932-5581

ISBN 3-211-82014-0 Springer-Verlag Wien-New York

ISBN 0-387-82014-0 Springer-Verlag New York-Wien

BOEING EX. 1029, p. iv

Preface

Software Diversity is one of the fault-tolerance means to achieve dependable
systems.

In this volume, some experimental systems as well as real—life applications
of software diversity are presented. The history, the current state-of—the-rart ‘
and future perspectives are given.

Although this technique is used quite successfully in industrial applications,
further research is necessary to solve some open questions. We hope to
report on new results and applications in another volume of this series within
some years.

Acknowledgements

The idea of the workshop was put forward by me ohairpersons of JFIP WG
10.4, J.-C. Laprie, .I. F. Meyer and Y. Tohrna, in January 1986, and the edi-
tor of this volume was asked to organize the workshop.

This volume was edited with the assistance of-the editors of the series, A.
Aviiienis, H. Kopetz and J.-C. Laprie, who also had the function of
reviewers.

Karlsruhe, October 1987 " U. Voges, Editor

BOEING Ex. 1029. D. V

Table of Contents

. Introduction . 1

U. Voges

. Railway Applications . 7

ERICSSON Safety System for Railway Control 11
G. Hagelin

. Nuclear Applications . 23

Use of Diversity in Experimental Reactor Safety Systems 29
U. Voges

The PODS Diversity Experiment . 51
P. G. Bishop

. Flight Applications . 85

AIRBUS and ATR System Architecture and Specification 95
P. Traverse

. University Research . 105

Tolerating Software Design Faults in a Command and
Control System . 109

T. Anderson, P. A. Barrett, D. N. Halliwell, M. R. Moulding

DEDIX 87 —— A Supervisory System for Design Diversity
Experiments at UCLA . 129

A. Aviz"ienz's, M. R. T. Lyu, W. Schiitz, K.-S. Tso, U. Voges

. Modellinglssues . 169

Reliability Modelling for Fault-Tolerant Software

Report on a Workshop Held in Badgasteih, Austria, July 1986 173
B. Littlewood, T. Anderson

. Conclusion . 183

U. Voges

. Annotated Bibliography . 189
U. Voges

BOEING EX. 1029, p. Vi

Tl

BOEING EX. 1029, p. Vii

1

Introduction

BOEING Ex. 1029, p. 1

BOEING EX. 1029, p. 2

Dependable computing is an issue which was already of much concern

before this term got accepted and more widely used [Laprie 1985]. Espe-

cially the aspects of safety and reliability made the application of fault toler-

ance techniques necessary, since complete fault avoidance was impossible to

achieve in general applications.

As the causes for software failures are different from those of hardware, dif-

ferent fault tolerance techniques are necessary. Software diversity is one of
them.

Software Diversity has many faces and many names. It probably started by

simply naming it fault-tolerant programming [Ehnendorf 1972] and later

redundant programming [Aviiienis 1975], but inorder to put more emphasis

on the difference of the solutions, also distinct software (e. g. [Fischler

1975]), dissimilar software (e. g. [Martin 1982]), and dual programming

(e. g. [Ramamoorthy 1981]) were used. In the course of further applica-

tion of this technique, N-Version Programming (NVP) (e. g. [Aviiienis

1977]) and Multi-Version-Software (MVS) (e. g. [Kelly 1982]) were

other terms which were used. Besides Software Diversity NVP and MVS
are now the most often used terms.

Another technique which is very much related to NVP is the Recovery Block

technique [Randell 1975]. The main difference between these two

approaches is that the Recovery Block approach makes use of an acceptance

test and activates the secondary alternate only in case of. a detected error,

while in NVP all versions are activated all the time, and the acceptance test

is replaced by a comparison of the different outputs. For a more complete

comparison see Table 1. "'

As an extension and generalization of this technique‘, the term Design Diver-

sity is emerging, including not only Software Diversity, but also Hardware

Diversity [Aviiienis 1986].

The idea of applying diversity is not as new as it might be expected after

BOEING Ex. 1029, p. 3

4 Voges

Table 1. Comparison Between N-Version Programming and Recovery Blocks

1

L N-Version Programming Recovery Blocks
error detection by comparison _| error detection by acceptance. testing
error correction by masking error correction by recovery

L and voting and activation of secondary alternate
voting and majority decision acceptance testing

(relative test) (absolute test)

majority required A one accepted alternate required

always execution of all alternates execution of n+1 alternates
_L only if n are erroneous

parallel execution normal serial execution normal
serial execution possible parallel execution possible

|__— static rerlttndancy L dynamic redundancy

these remarks. In 1834, Dionysius Lardner writes ([Lardner 1961] p. 177):

The most certain and efiectual check upon errors which arise in the pro-
cess of computation. is to cause the same computations to be made by
separate and independent computers; and this check is rendered still
more decisive if they make their computations by different methods.

But it was also realized that this is not the only solution and that this solution
still contains drawbacks and so Lardner continues:

It is, nevertheless, a remarkable fact, that several computers, working
separately and independently, do frequently commit precisely the same
error; so that falsehood in this case assumes that character of con-.
sistency, which is regarded as the exclusive attribute of truth. Instances
of this are familiar to most persons who have had the management of the
computation of tables.

But because of the application of computer systems in application areas with
high dependability requirements the interest in software diversity has
increased.

This volume contains as a main part written versions of presentations given
on a one-antlua-half day Workshop on "Design Diversity in Action", which
was organized by the IFIP Working Group 10.4 "Reliable Computing and
Fault Tolerance" on June 27 and 28, 1986 in Badenfvienna in Austria.

BOEING EX. 1029, p. 4

Introduction 5

The aim of this workshop was to bring together the greatest diversity of peo-

ple who use software diversity in industrial applications as well as those
which are conducting experiments and evaluations. A list of questions was
sent to the speakers of the workshop in order to have some of the main
points covered from different perspectives.

Since not all experiments and. applications of Software Diversity neither
could be presented at the Workshop nor could be included with separate
papers in this volume, an annotated bibliography is included. Some histori-
cal remarks as well as references to a wide scope of experiments and appli-
cations related to software diversity are mentioned. '

In addition, a report on a workshop .on "Reliability Modelling for Fault-
Tolerant Software" is included in this volume. It contains a list of open
research issues in this area.

It is hoped that in some future time a new workshop on this topic is organ-
ized to draw together further application areas of software diversity, to show
new ways to use it and to inform on gathered experiences. The editor will be
happy to receive any information on additional experiments and applica-
tions.

References

[Aviiicnis 1975] A. Aviiiienis, "Fault-Tolerance and Fault-Intolerance: Complemen-
tary Approaches to Reliable Computing,” in Proe. Intern. Conf. on Reliable Software,
Los Angelcs, CA, USA: 21-23 April 1975, pp. 458-464.

[Aviiienis 197?] A. Aviiienis and L. Chen, “On the Implementation of N-Version
Programming for Software Fault-Tolerance During Program Execution." in Proc. Comp-
sac7.7, Chicago, IL, USA: November 1977, pp. 149-155.

[Aviiiienis 1986] A. Aviaienis and J.-C. Laprie, “Dependable Computing: From Con-
cepts to Design Diversity,” IEEE Proceedings, Vol. 74, No. 5. May 1986, pp. 629-638.

[Elmendorf 1972] W. R. Elrnendorf, "Fault-Tolerant Programming,” in Proc. 2nd
Intern. Syrup. on Fault-Tolerant Computing FTCS’2, Newton, MA, USA: 19-21 June
1972, pp. 79-83.

[Fischler 1975] M. A. Fischler, 0. Firschein, and D. L. Drew, "Distinct Software: An
Approach to Reliable Computing," in Proc. Second USA-Japan Computer Conference,
1975, pp. 573-579.

[Kelly 1982] I. P. J. Kelly, “Specification of Fault-Tolerant Multi-Version Software:
Experimental Studies of a Design Diversity Approach," UCLA, Computer Science
Department, Dos Angeles, CA. USA, Tech. Rep. CSD-320927, September 1982.

BOEING Ex. 1029, p. 5

6 Voges

[Lnprle 1985] J.-C. Laprie, "Dependable Computing and Fault Tolerance: Concepts
and Terminology,” in Proc. 15th Intern. Symp. on Fouft~To£eront Computing FTCS‘ 15 ,
Ann Arbor, MI, USA: 19-21 June 1985, pp. 2-11.

[Lardner 1961] D. Lardner, “Bebbage’s Calculating Engine; From the Edinburgh
Review, July, 1834, No. CXX," in Charles Babbage and His Calculating Engines, E.
Morrison, Ed. Dover Publications, Inc. New York, 1961.

[Martin 1982] D. J. Martin, “Dissimilar Software in High Integrity Applications in
Flight Controls," in Proc. AGARD Symp. on Software Avionics, CPP—330, The Hague,
The Netherlands: September 1982. pp. 36.1—36.13.

[Ramamoorthy 1981} C. V. Rnmarnoorthy, Y. R. Molc, F. B. Bastani, G. H. Chin. and
K. Suzuki, "Application of 5: Methodology for the Development and Validation of Reli-
able Process Control Software," IEEE Trans. on Software Engineering, Vol. SE-‘F. No.

6, November 1981, pp. 537-555.

[Randell 1975} B. Randell, “System Structure for Software Fault Tolerance,” IEEE
Trans. on Software Eng., Vol. SE~1, No. 2, June 1975, pp. 220-232.

BOEING EX. 1029, p. 6

2

Railway Applications

BOEING Ex. 1029, p. 7

WI

BOEING Ex. 1029, p. 8

The application of Software Diversity in industrial applications beyond an

experimental stage was apparently done first in a railway system. This first
system as well as newer developments are described in the following paper

by Hagelin.

Bengt Sterner from the Statens Jamvagar (Swedish State Railways) was one

who encouraged the use of diversity in the Gothenburg system. His involve-

ment in this project can also be seen by the formal specification language

used for the interlocking system [Sterner 1978], which was named STER-
NOL.

In an Italian train control system functionally diverse programs are running

in sequence, and theirresults are compared for error detection [Frullini
1984].

For the Singapore Mass Rapid Transit Railway, part of the system is realized
with two diverse redundant microprocessors having different design objec-
tives and diverse software in order to minimize the number of common

mode failures [Davies 1984].

For licensing purposes for a railway safety system in Germany, not a parallel
development, but an independent reverse development - from program

object code to requirement specification - was performed with final com-

parison of the two documents, original requirements specification and the
back translated one. This is another kind of application of the diversity prin-

ciple [Krebs 1984].

The General Railway Signal Co. of Rochester, NY, USA, designed its com-

puterized interlocking system called Vital Processor Interlocking with a sin-
gle Intel8086 processor running two”: diverse programs written in assembly
language. In case of a failure, a second back-up system (standby spare)
takes over. The system is in operation in two railway companies in USA
[Turner 1987]. '

A similar design is used by the Union Switch & Signal Co. of Pittsburgh,

BOEING EX. 1029, p. 9

10 Vogcs

PA, USA [Turner 1987].

There exist some further applications of Software Diversity in the railway
environment, which, however, have not left the experimental stage, e. g. sys-
tems for a subway train control in Germany [Kapp 1981] and also in France.

Some experimentation was made in Germany by Siemens and the federal
railway systems (DB) with the use of diversity. but up to now the general
opinion has been to rely on identical hardware and software, using simple
redundancy means and applying a rather strict verification and validation
procedure [Schwier 1987].

References

[Davies 1934] P. A. Davies, “The Latest Developments in Automatic Train Conn-"o .” ,
in Proc. Intern. Com’. on Railway Safety Conrroi and Automation Towards the 21:: Con-
tury, London, UK: 25-27 September 1984, pp. 272-279.

[Fruilini 1984] R. Frullini and A. Lazzari, "Use of Microprocessor in Fail-Safe on
Board Equipment,” in Proc. Intern. Conf. on Railway Safety Control‘ and Automation
Towards the 21.5‘: Century, London, UK: 25~2”.-' September 1984, pp. 292-299.

[Kapp 1981] K.-H. Kapp, R. Baum, E. Sartori, and R. I-Iarms, "Sicherheit durch
vollstiindige Diversitiit (Safety through complete Diversity - in German),’’ in Proc.
Focitragttng Prozefirecitner 1981, Miinchen, FRG: Springer-Verlag BerIin«Heide1berg-
New York, 10-11 March 1981, pp. 216-229.

[Krebs 1984] , H. Krebs and U. Haspel, “Ein Verfaluen zur Software-Verifikarion (A
Technique for Software Verification - in German]," Regelungsrechnische Praxis, Vol.
26, 1984, pp. 73-78.

[Schwier 1987] W. Schwier, Private communication, 1987.

[Sterner 1978] B. J. Sterner. “Computerised Interlocking System - a Mu'1Iidimen—
sional Structure in the Pursuit of Safety," IMer:i:E Railway Engineer Inrernarionai,
November/December 1978, pp. 29-30.

[Turner 1987] D. B. Turner, R. D. Burns. and H. Hecht. "Designing Micro-Based
Systems for Fail-Safe 'I‘raveI," IEEE Spectrum, Vol. 24, No. 2, February 1987, pp. 58-
63.

BOEING EX. 1029, p. 10

ERICSSON Safety System

for Railway Control

Gurmar Hagelin
ERICSSON SIGNAL SYSTEMS AB

P.0. Box 42 505

S-126 12 Stockholm

Sweden

1. Introduction

Traditionally, equipment used by railways have been grouped in vital and

non-vital equipment. Vital equipment shall work in a fail-safe way. Inter-

lockings and level crossing units are examples of vital equipment, and the

train dispatching panel is an example of non-vital equipment.

Fail-safe is in signalling industry defined as "a characteristic of a system

which ensures that any malfunction affecting safety will cause thesystem to
revert to a state that is generally known to be safe". A safe state is for

instance a signal showing a stop aspect (red light).

In a very strict way, railway systems can be defined to be fault tolerant.

The fail—safe requirements have forced railway equipment designers to use
special techniques and special components. You cannot use a standard (tele-

phone) relay in fail-safe circuits because there is a risk that two contacts

weld together in a way that carmot be detected. Therefore, special Safety
Relays have been developed.

Special components however are more expensive than standard components

BOEING EX. 1029, p. 11

12 Ijagelin

and relays are nowadays more expensive than electronic components.
Therefore there is a demand to put electronics and computers into vital

equipment. But how do you handle the fail-safe requirement in computer
hardware and software? It is quite impossible to completely avoid faults in

complex software systems, especially in real-time systems. And even if the
software is fault-free, how do you prove that? Therefore you must accept

that there always remain faults in software systems. In vital systems the
effects of these faults must be detected and made non-dangerous.

The ERICSSON solution of this problem is DIVERSITY. This means that

we design two different packages of software. They are both executed in the
process and the results are compared and must be equal. This principle is
now used in computerized Interlockings and Automatic Train Control sys-
tems in use in several countries. In the following chapters I will give short

descriptions of these systems and after that discuss the methods we use at
ERICSSON to" achieve safe systems-.

2. Interlockings

Interlockings are used in railway stations. The purposes of interlockings are
to

0 safeguard the movements of the trains,

0 prevent dangerous situations,

0 handle operator commands,

0 inform the operator(s),
0 control and supervise wayside equipment, like signals and point

machines.

Traditionally, interlockings have been designed with mechanical or electro-
mechanical components. ERICSSON started to work with computerized
interlockings in the middle of the 19'?0’s. The first installation was put into
commercial operation in 1978 in Gothenburg (Sweden).

In 1978 we still used relays in parts of the system to interface the signals and
points. Now we have a second generation of the system in operation. This
second generation is fully electronic.

The basic design of ERICSSON computer interlocltings is shown in Fig. 1.
In the signal box we have the Central Equipment with

0 interlocking computer(s)

BOEING Ex. 1029. p. 12

Railway Control 13

r-....—_..—. — — — — — — — — — — — * — — — — — — —..—.1
CENTRAL EQUIPMENT

H OT

CONCENTRATOR

CONCE NTRATOR

INTERLOCKING
COMPUTER

I/O-UNITS

CONCENTRATOR

I
I
I

I
I
I
I
I

l
I
I

I
I

I
I

 coNcENTRATon

Concentrators are connected to loops
CONCENTRATOR

Fig. 1. Interlocking System Layout

0 operator interface (VDU’s and keyboards)

0 power supplies.

Outdoors in the station area we have concentrators. Signals, point machines

etc are connected to the concentrator. Between the concentrators and the

central equipment we use a serial transmission system, organized in loops.
The concentrators are located close to the controlled objects (to reduce cable

lengths etc). In the concentrators we have

0 transmission equipment and

0 object controllers.

In the first generation we designed the object controllers with relays, in the

second generation they are fully electronic.

The software in the interlocking computer can be divided into three parts

BOEING EX. 1029, p. 13

I4 Hagelin

(see Fig. 2). The programs to handle transmission, operator communication

etc are written in assembler. These programs are "universal" in all installa-
tions.

I TRANSMISSION

;1B5ytes OPERATOR com.

PROGRAMS

110

ray... INTERLOCKING

M, sma

in fntlit Installations D O N ‘I

Fig. 2. Interlocking Memory Layout

The interlocking programs are handling the interlocking conditions in the

stations. These programs are the same in all stations in each market.

Because of different signalling requirements, these programs have to be

adopted to each market (country, railway, company). The interlocking pro-

grams are written in a language.called STERNOL, which is specially

designed to handle signalling problems. STERNOL is a language, restricted

to handle Boolean variables and some very simple arithmetic calculations.

The programs are documented in a way which is similar to traditional relay

diagrams (see Fig. 3).

In the object controllers we use electronics and microprocessors today. The

software in these are written in Assembler and PL/M. Site data, which are

the site description for the general programs, are produced by an off-line sys-

tem. This is the part varying from installation to installation. All site depen-

dent information is contained in this description.

BOEING EX. 1029, p. 14

Railway Control 15

E] -—U6-B—K-3-

Q —K-4 R2-I 1215-i—u|a<>2—-—ua<>3—R4-7 —-R6-6 Tc-a
Tea-2 1'2-taR2-3 1215-a ua-1 Tc-a ja-

f ua-a ue-1 —[l2BS-l—-UH-lT2-B —-izas-Ia

[Z] K-4 rue-2
H<>3—MH-B K-DJ ua-3 K-ElK-S rc-a

T2-a—12a5-a
Ia-a—1aa5-a

E] —K-4-ua-3——Ic-i T2-1 TB-1]—xzas-1 was-1

El
—U8-4 —-TC-1-—K-4 T0-1 T2-l

IDES-IITIZBS-1}-

RG-2 U6-5[:1 —R2-6 —K-4 —u2<>2 —U2<>3 -—[R6-I ua-5as-3 U2-B —us-a —PK-B

E] —ua-5 K-4

’ H<>3—-MM-a K-B U2-2]—[K-5]-[U2-3

Fig. 3. Examples of STERNOL statements

3. ATC

In Railway Technology ATC stands for Automatic Train Control. ATC
shall

0 help and supervise the drivers,

0 warn the drivers and/or apply the brakes in all situations that can be

dangerous.

ATC systems normally have three parts:

0 wayside equipment to pick up information from signals, interlockings
etc,

0 on-board equipment to supervise the driving,

0 transmission between wayside equipment and on-board equipment.

The basic design of the system is shown in Fig. 4. The information from the

signals and interlockings is handled by electronic encoders. In the case of

BOEING EX. 1029, p. 15

I6 Hagelin

computer interlocking, data is fed directly to the beacons without the use of

encoders. The beacons, which are powered from the passing trains, are send-

ing the information to the locomotives. On board of the train microproces-
sors handle the information from the antenna, indicate it to the driver and

process it together with information from the brake conduit. and the

speedometer.

Beacons

Fig. 4. ATC System Layout

The software in the ATC computer is written in Assembler and PL/NI. The

size of thesoftware is about 32k byte.

ERICSSON modern ATC-systems now are in operation in many countries.

The first was operating in Sweden starting 1978.

4. Methods

The basic design principle in ERICSSON Safety Systems is DIVERSITY.

In software this means that vital functions are designed independently by

two teams. Both systems are executed in the processors. The results of the

calculations have to match before they are regarded to be correct.

Fig. 5 shows how diversity is used in the interlocking system. The two

interlocking systems (A and B) are running in the interlocking computer.

The comparators and detectors are built together into units (= object con-

trollers) located in the concentrators. Each signal and point machine in the

station has an individual object controller.

BOEING EX. 1029, p. 16

it

Railway Control 17

CONTROL SYSTEM

INTERLOCKING INTERLOCKING

SYSTEM SYSTEM

A B

COMPARATOR DETECTION
SYSTEM

SIGNALS
POINTS

Fig. 5. Safety Layout of Computer Based Interlocking Systems JZS 750 and JZS 850

Diversity is achieved by

0 terms and

0 design rules.

Diversity is enforced by

0 external coding of data and

b data organization. ,

External coding is achieved by coding the status messages from the object
controllers. The Hamming distance between A- and B-messages is in most

cases equal to 4. The two design teams are manned with different peopie.
People are not allowed to move between the teams: in one of our projects
they were even located in different cities. The teams are producing their own
set of documentation.

However, DIVERSITY is not the only method used in ERICSSON Safety

BOEING EX. 1029, p. 17

18 Hagelin

Systems. Other methods are

use of closed loops,

time (age) checks,

verification and validation,

two redundant clocks, and

HW-checks.

It is very important that safety systems are designed as closed loops. How-T
ever you can never be sure that a loop. really is closed. Therefore it is neces-
sary that any break in the loop is detected and actions are taken towards "the

safe directions". This is handled in the following way in the interlocking. A
command to signals etc has to be recalculated and retransmitted cyclically.
The object controllers "know" this _ and are expecting commands to be
repeated. If the retransmission will stop, for any reason, the object controll-
ers will put signals to stop as a fail-safe operation. To handle the problem
with "too old data", all messages in the transmission network, and some data
in the computers have time tags. These are supervised. Too old data is
regarded as faulty and will cause signals to go to stop.

Safety validations are performed during all phases in development work (see
Fig. 6). Validations are based on Hearings. We also use Fault Tree Analysis
and Fault Effect Analysis. Fault Tree Analysis is based on the questions
"what can be dangerous and what can cause danger". Fault Effect Analysis
is based on the questions "what happens if Fault Effect Analysis is used
both for safety and reliability, but is mostly used for hardware.

We also want to point out that it is very important to have a stringent
development method. In our systems diversity has been used to the greatest
extend within software design. We have very few hardware units which are

designed in a diversified way (just some I/0 circuits).

5. Specifications

A common questions is "How were your products specified". The answer is
that the" specifications mostly were written in clear Swedish language (writ-
ten text). Talking about specifications you must however realize that a
specification can be divided into at least

0 functional requirements and

0 quality requirements (MTBF, probability of dangerous errors etc).

BOEING EX. 1029, p. 18

Railway Control 19

Safety Safety

Reviewing Documents

Requirgmgnts Inspection
Specification Record

Inspection
Record

Activity Documents

System Addition Inspection

Description Record

J
Check

P . . .

ro97:_"‘ Block Block Review Report,
?;:ic;r:- 5Pe¢5 5P°C5 Descr. of _

A A Principles
for Progr.

m °s::=:*
Lists Routines

Module Tests

Block Tests

Test Report
(Checked)

Fig. 6. Work Organization

The last point was (and still is) crucial when we started the work in the
1970’s. Some customers said "New systems shall be as good or better than
old systems". The problem is that nobody can give figures about the old sys-
tems.

BOEING Ex. 1029, p. 19

20 Hagelin

6. Experience

Today, the systems described above are in operation in many installations in

Sweden, Norway, Denmark and Finland. Within the next years they will be

put into operation in some other countries like Switzerland, Turkey and Bul-

garia. !

ERICSSON experience is that diversity DOES pay. ‘The answer to the 5

question "Would we do it again?" is definitely YES. Up till now we have,

after commissioning, detected one error that could have been dangerous in a

Non-Diversity solution.

A common argument against Diversity is that it doubles the development

cost. This is not true for two reasons. The first reason is that the system

development is divided into steps. The cost of the steps

0 program specification,

0 coding and

0 program test

is doubled, but the cost of the steps

0 requirement specification,

0 system specification,

0 test specification and

0 system test

is NOT doubled.

The second reason is that within a safety system you always find parts that

have no safety requirements, for instance the printer interface. You must do

some measurements to isolate these non-fail-safe from the fail-safe parts, but
the work that has to be doubled is reduced.

7. Future

Our future work will go into two directions. The first is to introduce elec-

tronics and computers into fail-safe products that still are designed with

relays. The second will be to introduce more modern techniques into our

existing products. An example here is to use more high-level languages. We

also must put more efforts into specification techniques.

BOEING Ex. 1029, p. 20

Railway Control 21

References

[Andersson 1981] H. Andersson and G. Hagelin: Computer Controlled Interlocking
System, Ericsson Review, No. 2, 1981.

[Andersson 1983] H. Andersson: Experience from the Introduction of ATC in
Sweden, Ericsson Review, No. 1, 1983.

[Lind 1979] O. Berg von Lind: Computers Can Now Perform Vital Functions Safely,
Railway Gazette International, Nov. 1979.

[Nordenfors 1986] D. Nordenfors and A. Sjiiberg: Computer-Controlled Electronic

Interlocking System. ERILOCK 850, Ericsson Review, No. 1, 1986.

[Sj6berg 1981] A. Sjfibergz Automatic Train Control, Ericsson Review, No. 1,
1981.

BOEING Ex. 1029, p. 21

*1

BOEING EX. 1029, p.22

Ty

Wnw

3

Nuclear Applications

BOEING EX. 1029, p. 23

BOEING EX. 1029, p. 24

In the nuclear field, there have been several experiments with the application

of software diversity. Three of them will be described in more detail in the

following two papers. Voges reports on the results gathered in the early

BPI-experiment and the design of the later MIRA-system, both done in

Karlsruhe. Bishop then explains -an experiment conducted by three coun-

tries. Besides these experiments, the following ones should be mentioned.

EPRI

In the late l970’s and early 1980’s, under the direction of the Electric Power

Research Institute (EPRI) of the USA an experiment was made which used

diversity as one of different techniques to be applied in the project

[Rarnamoorthy 1981, Saib 1982]. The aim of the project was to develop a

method for the construction of reliable software, which should be applied to

a realistic nuclear power plant problem.

In this project participants came from The Babcock & Wilcox Company,

Science Applications, Inc., University of California at Berkeley, and General

Research Corporation.

Starting from the functional requirements, two teams developed indepen-

dently a design, using the formal specification language RSL. After the

verification of these designs, each team continued the development with

detailed design, implementation, testing as well as validation and verification

efforts. The final step was the comparison of the outputs of the two pro-

grams.

The main results of this project were: _\

- The use of automated tools can largely assist the development process.

- The savings in testing far outweigh the cost of dual program develop-
ment.

- The methods applied improved the likelihood of detecting errors when
introduced.

BOEING Ex. 1029. p. 25

26 Voges

The interface problems were reduced.

The software correctness was increased compared to more conventional

experience.

CANDU

For the Darlington Generation Station (4x85O MW), which is currently

under construction, a computerized reactor safety shutdown system is

developed. It consists of two components, SDSl and SDS2. Each component
has a similar computer configuration, but is from different manufacturers.

Separate design teams develop the systems. Two programming languages

are used: Fortran and Pascal. The complete system consists of 15 computers
[Popovic 1986].

The previous design, which consisted of a different layout, is also using
diverse hardware, but identical programming languages. So far no shutdown

was due to a software error in those reactors which are running with a com,-

puterized shutdown system.

Halden

Within the Halden Reactor Project, a joint experiment was conducted

between Halden (Norway) and the Technical Research Center V'I'I‘ (Fin-

land). Its aim was the evaluation of different software engineering methods.
The application problem chosen was a reactor control system [Dahll _1979].

The specification was written in plain English. Two independent teams then

started designing the system using different methods, one using structured
flow diagrams, the other one using pseudo—code. The coding was done in
Pascal and Fortran.

In order to check the efficiency of the testing procedures, error seeding tech-

nique was used in addition. The back-to-back test showed to be an efficient
means of error detection.

Based on the experience in this experiment, a second experiment was

designed, which is described in the paper by Bishop. .

References

[Dahll 1979] G. Dahll and J. Lahti, “An Investigation of Methods for Production and
Verification of Highly Reliable Software," in Proc. IFAC Workshop Safecomp'79,
Stuttgart, FRG: 16-18 May 1979, pp. 89-94.

BOEING Ex. 1029, p. 26

Nuclear Applications 2 7

[Popovic 1986] I. R. Popovic, D. C. Chen. and D. B. Burjorjee, “Computer Control in
Candu Plants,” in Symposium on Advanced Nuclear Services, CANICNS Intern. Nuclear
Conference, Toronto. CDN: 8-11 June 1986.

[Ramamoorthy 1981] C. V. Ramamoorthy. Y. R. Mok. F. B. Bastani. G. H. Chin. and
K. Suzuki, “Application of :1 Methodology for the Development and Validation of Re1i~
able Process Control Software," IEEE Trans. on Software Engineering, Vol. SE~7, No.

6, November 1981, pp. 537-555.

[Saib 1932] ’ S. H. Saib, "Validation of Real-Time Software for Nuclear Plant Safety
Applications,” Tech. Rep. EPRI NP-2646, November 1982.

BOEING EX. 1029, p. 27

BOEING EX. 1029, p. 28

Use of Diversity

in Experimental Reactor Safety Systems

Udo Voges

Kernforschungszentrum Karlsruhe GmbH

Institutfiir Datenverarbeitung in der Technik

Postfach 3640, D-7500 Karlsruhe

Abstract

This paper describes two projects which were conducted at the Kemforschungszentrum
Karlsruhe. The flrst was "BPI", a pilot implementation of parts of a reactor safety shut

down system. In this experiment the problem was specified in natural language (Gemian)
with heavy use of mathematical notations. Based on this specification three teams
prepared in parallel three implementations in three different languages.

The results of this experiment show that not only the errors made by the different teams
were different, but also that the error detection capabilities were increased through the
use of different teams. Therefore the overall reliability was higher than in a development
environment without use of diversity.

The second project consisted of the design of the reactor safety shut down system
"MIRA". Analogue to the triple modular redundant hardware structure of the system,
three diverse versions of the application software should be installed. The design of the

system as well as the reasons leading to =,__the incorporation of software diversity are
presented. It is anticipated that not only errors in those pans which are realized diversely
can be tolerated to some extent, but also errors in those parts which are identical in the
redundant system.

BOEING EX. 1029, p. 29

1. Introduction

In computer applications with high dependability requirements, like applica-

tions in safety-related areas, hardware as well as software has to have the

ability to detect errors and to react to error situations. One possibility to

increase the reliability of software is the use of diversity. Therefore some

experiments were conducted at the Kemforschungszentrum Karlsruhe to

evaluate the usability and the value of such an approach.

The first part of this paper reports on an experiment which took place

between 1975 and 1979. After some introductory remarks on related work

and definitions, the reactor protection system and the use of diversity within

it are explained. Following this, the experiment and its results are described.

Finally, possible achievements and experiences are summarized.

30 Voges l

Not only newly developed reactors, but also existing power plants require

the introduction of computerized systems. Maintenance of old systems is too

costly or becomes almost impossible without introduction of modem tech-

nology which involves most often computers. If this change of technology

takes place in safety critical parts, like safety shut-down systems, licensing

authorities are also heavily involved. Within a research project at the Kem-

forschungszentrum Karlsruhe, a part of the hardwired core surveillance sys-

tem should be replaced by a computerized system. In the second part of the

paper the requirements for this system, the hardware structure chosen and

the basic software layout will be described. Fault-avoidance techniques and

fault-tolerance concepts including the diversity aspects which were planned
will be explained. The experience gained in the first experiment was incor-
porated.

For hardware there exists already a broad knowledge of and much experi-

ence in the use of redundancy. Normally, hardware redundancy is realized

by simply replicating identical components or even systems. The different

components are operated in parallel and a majority voter decides on their

results (m-out-of-n-systems with voter). Since the replicated components are

developed according to the same specification and design logic, only aging

errors and production-failures can be detected by this technique. If in addi-

tion logic design errors shall be detected, independent designs have to be

made. This kind of redundancy is called diversity. E.g. in hardware, different

components with identical fimctions are used or different physical effects are

measured for the calculation of a certain quantity.

Simple software redundancy through duplication is nonnally of no help,

since no error and fault tolerance capability is involved: the same errors are

BOEING EX. 1029, p. 30

Reactor Scgfety Systems 31

in the duplicated systems, and aging errors like in hardware do not occur.

Therefore the need for diversity is even more important for software than for
hardware.

2. Reactor Safety Systems and Software Diversity

Generally reactor safety systems are designed as hardware m-out-of-n-

systems. This is also the ‘basic principle in the safety system dealt with in

this paper (see Fig. 1) which was designed for a fast breeder reactor for

supervising the fuel element temperature [Jiingst 1976, Gmeiner 1980].

about 200
Thermocouples

about 200
Thermocouples

about 200
Thermocouples

2 out of 3 majority voter

Shut down system

Fig. 1. Scheme of the Computerized Reactor Protection System

The reactor is equipped with about 200 thermocouples for measuring the

coolant temperature, and these are triplicated for redundancy. Therefore the

computer system is also a TMR-system, each line readingone redundancy
line of the thermocouples. After processing the measurements in several

algorithms, a data exchange takes place between the three, and then each one
is perfonning a voting on these data and generating the final result. This in
tum is voted on by a hardware 2-out-of-3 voter which is connected to the

shut down system, including the control rods. The programs are executed

BOEING EX. 1029, p. 31

32 Vages

continuously with a cycle time of about one second, triggered and synchron-

ized by an external clock.

The original design of the system included identical software in the three

computers due to cost reasons. These costs basically divide up into software

development costs and validation and verification costs. With increasing

availability and reliability demands especially the validation and verification
costs increase. But the use of diverse software can limit this increase. On

first sight one might have the impression this is wrong, especially if one

looks at the software development costs, which are multiplied by the number

of diverse programs. But since not all parts in the development process are

done n-fold - in most cases at least the requirements specification is done

only once -, total costs are not as high. In addition, the validation and

verification costs can be lower than n-fold since the outputs of the diverse

programs can be checked against each other instead against the output of a

model which needs to be developed for single version testing. In order to

evaluate the benefits of software diversity in a realistic example, we took the

main parts of the above described system and used diversity in an experi-

mental implementation.

Different levels of diverse programming can be distinguished, which are

listed here with increasing complexity:

- diverse implementation of an algorithm, using different programmers,

but the same language;

- diverse implementation of an _algorithm, using different programmers

and different languages;

- diverse implementation of an algorithm, using different programmers,

different languages and different computers.

The first level of diverse programming was the basis for an investigation

reported in [Aviiienis 1977]. The second level will be described. here. The

third level of diversity does not only concern software, but also hardware. It

requires an additional scale of effort. In general it can be hypothesized that

the probability of common mode errors in the resulting system is decreasing

if the level of diversity in the above list is increasing.

BOEING Ex. 1029, p. 32

Reactor Safety Systems 33

3. Description of the Experiment

3.1 Implementation

The starting point for each single implementation was a common

specification. In order to have the specification as precise, consistent and
complete as possible, we have chosen a formalized specification method
which is similar to the input-process-output approach [Boehm 1974]. The

total program is described as a set of mutual linked processes. Each of these :

processes consists of input, output and states, and each process state is
defined by the actual values of the basic set of variables. One aspect in the

specification is quite important: In addition to the synchronization points at
the end of each program cycle a set of "intemal checkpoints" was specified,
where some intermediate results of the diverse implementations can be com-

pared. These checkpoints give the possibility - as will be explained later - to
detect certain errors in the implementations which could not be detected by

simple comparison of the final program outputs.

For the implementation we used the different languages IFTRAN - an exten-

sion to FORTRAN 66 with structured programming constructs [IFTRAN

1976] - , PASCAL, and PHI2, a macro assembly language which contains

structure macros for "if-then-else", "case", "do-1oop" etc. [PHI2]. These

languages were chosen since they were available on our SIEMENS 330
computer, and on the other hand these languages allowed to a high degree to

follow the programming guidelines [Voges 1975] which were postulated for

this project. Furthermore, by the use of these languages of different levels
(machine level to high level) a special kind of diversity is realized, which

decreases flie probability of common mode errors.

The used specification method proved to support the implementations in the
language IFTRAN, PASCAL, and PHI2. It was often possible to transform
the specification quite naturally into the code of the programming language.
On the other hand, this reduced the possibility of diversity: the programmers

did not have much freedom to choose different solutions, except as forced by

the languages.

The validation method [Geiger 1979.], which was the basis of this experi-
ment, contained not only constructive methods, but also analytical methods,

and here mainly an intensive program test. These tests were carried out in

several phases. First the program was tested by the programmer himself.
Afterwards the program was retested by another person, according to

predefined testing criteria. Besides diverse program development an addi-
tional aspect of diversity was realized by this technique: a diversity of the

BOEING EX. 1029, p. 33

34 Voges

staff during the program development cycle.

As far as possible, the tests made use of automated tools like the test systems
RXVP [RXVP 1985] and SADAT [Voges 1980] and an automatic result
comparitor.

An additional diversity feature was the use of teams with different educa-

tional background (see Fig. 2). The system was specified by a physicist (A).
The three implementations, including the first program test, were made by a
computer scientist (B), an engineer (C), and a mathematician (D). The code

inspection and test was pexfonned by shifting the programs between the

three implementors, and the final system test (acceptance test) was done by
the specifier again.

PASCAL
Program

Development

PHI2
Program

Development

IFTRAN
Program

Development

PASCAL

ProgramTest

PHI2

Program Test

IFTRAN

ProgramTest

System Test i

Fig. 2. System Development and Test

A summary of some characteristic implementation quantities is given in Fig.
3. The. size of the specification was about 50 pages.

BOEING EX. 1029, p. 34

‘was: T

Reactor Safety System 35

IFTRAN PASCAL
Code size (words) 21 251 13 463

Program lines without comments 1 077
Run time normalized

Test runs before acceptance

Fig. 3. Characteristic Figures of the Three Implementations

3.2 Experiences

Besides the aforementioned use of tools during testing another main effort

was to write down a detailed en'or report and analysis for the total experi-

ment. All errors which were detected during the complete project, starting

from specification, were documented on error report forms and analyzed at
the end of the project [Gmeiner 1978]. In the following some of the main

results of this analysis shall be explained.

Fig. 4 shows in form of a graph the relation between the error cause (arrow-
tail) and its detection (arrow-head) concerning the phases of the program

development cycle. 12 of the errors made in the specification were detected

in the specification phase itself (review etc.), another 12 during the design,
16 during implementation and finally 10 only during acceptance testing. This
demonstrates that the specification plays a dominant role. Most of the errors

are closely related to the specification, and the errors induced during this

phase become effective in all following phases. The main error cause was
ambiguity and misinterpretation of the specification. Fig. 5, another
representation of the data of Fig. 4, clearly shows that almost half of the
errors are caused by the specification, but even during testing a not neglect-
able amount of errors are made. Test phase errors were errors i_r1 the test

frame and erroneous manual calculation of test data.

Fig. 6 gives in form of a matrix the relation between the error types and their
detection methods. The total number. of errors seems to be higher in Fig. 6,

because some errors are counted twice if they were detected independently

by different methods. Out of the used methods especially the method of
"automatic result comparison" is interesting, since it is a characteristic
feature for the usefulness of diverse programming. As already mentioned in

BOEING EX. 1029, p. 35

35 Voges

Specification
Design
Im plementation, Module Test. Integration Test
Acceptance Test (by approving Authority, by User)

>—ov'- IIII

Fig. 4. Correlation Between Error Cause and Error Detection

|— 1

Error detection in phase

Error source Total errors

Spec. Design Impl. Acc.T. in phase J

16 10 "J 50} gpecification 12 Design — 10 10 20]
Implementation - 21 8 29

|_Acceptance Test - - 5 5 _l
2 J 12 I12 47i 33J 104

Fig. 5. Error Source and Error Detection

the previous chapter, the specification defined some intermediate check— g
points, which were used during testing. An automated comparison program
checked whether the intermediate results of the three implementations at 3
these checkpoints were identical or not. Most of the errors which were

detected by this method were due to ambiguous specification. The following

BOEING Ex. 1029, p. 36

Reactor Safety Systems 37

example shall explain such an ambiguity and misinterpretation.

Detection method

Error automatic manual desk automatic run time (macro) machine

type result result check test system assembler. based
com- systems (PASCAL) linkage com-

| parison parison
inc

ins

editor tools-I
omplete 2 T 3 16 r - -

specification

ambiguous 3 2 10 -

specification L l-
logical error 4 3 11 - - 10
typing error 1 2 — - 1

interface - - 1 - 1

error I I
other 3 — 6 - ~ 7

implementation

error | l
error in 1 1

error in 2 4

system software

other errors 3 l 13

Fig. 6. Relation Between Error Type and Error Detection Method

testfrarne - h r»

The specification contained the following line:

mm“ s mi, mj s mm“ v i=1,...,20S, v j=1,...,3
The interpretation which was implemented by one programmer was:

mm“ s mi v i=1,...,205

mj Smmax Vj=1,...,3
while another programmer had the following interpretation, which was also
the intended one:

V i=1,.£‘.,205

V j=1,..,.,3

These different interpretations were detected during code inspection by the
person who used the second interpretation and who inspected the code with
the first interpretation.

mlnnl S -<_ mmax

mmm S S mmax

BOEING Ex. 1029, p. 37

38 Voges

A further advantage of diverse programming is the simplification of the test
process. Normally for all test input data the corresponding test output data
have to be computed more or less manually. If a diverse implementation
exists, the results of the two implementations can be checked against each
other, and all errors resulting in different intermediate or final results can be
detected. Thereby it is possible to check the diverse programs just by
automatically generating large amounts of test data and by comparing the
results whether they are identical or not. Only if discrepancies are detected,
it is necessary to check which of the results is incorrect. But it has to be
‘noted that it is not sufficient to use this method alone. All common mode
errors, whose existence can not be neglected, are undetectable by this
method. The application of other error detection methods and tests is there-
fore necessary.

From the total number of detected errors 18 errors (5 14%) were detected by
the automatic comparison program. This seems to he a fairly high number,
especially if one takes into account that all the other testing methods were
used before the three implernentations were compared with each other.
Therefore these errors were probably the hard-to—detect ones.

To conclude it can be said that the automatic comparison program was a
valuable tool for the comparison of the large amount of data. If this com-
patison and evaluation had been done by manual inspection, much more
time would have been needed, and the quality of the comparison probably
would be lower with some chance of overlooking errors.

Another result showed up during the comparison testing: not only the final
binazy results of the three versions were compared, but also some intennedi-
ate results in the _form of arrays. While the binary results agreed, differences
in the intermediate results were detected which led to the detection of errors
in the program. This demonstrated the value of intermediate checking and
the danger of checking only on a binary level with reduced information.

The use of diversity made the detection of several errors possible, and this is
true not only for implementation errors, but also for specification errors. Of
the more than 100 error reports collected during the experiment, no error was
identical in all three implementations, and less than ten were the same in two
implementations.

This experimental system was only a fragment of the complete reactor shut
down system. It was not intended to go into operation. The tests were con-
ducted in a simulated environment, running the three versions sequentially
on one computer (Fig. 7).

BOEING EX. 1029, p. 38

1':-.1

Reactor Safety Systems 39

Pascal

Program

Comparison
result _ _ _ _ _ _ _ _ ..|

""" Comparison 4"

testcases

done?

Fig. 7. Test Execution of the BPI-Programs

BOEING Ex. 1029, p. 39

40 I Voges

4. Design of MIRA

Following these positive experiences with software diversity in the above
described experiment, the development of another reactor safety shut-down

system was started, which included provisions for the use of diversity

[Voges 1982, Voges 1985].

At the liquid metal fast breeder reactor KNK 11 at Karlsruhe, Germany, a

hardwired core surveillance system is installed. Our aim was to substitute

one part of this system, the supervision of the individual fuel element outlet

temperatures of the coolant, by a computerized system called MIRA.

The purpose of the system is the supervision of the local coolant tempera-
tures at each of the 35 individual fuel elements in order to detect local cool-

ing disturbances. If the temperature is exceeding some predetermined or cal-

culated set points, depending on the level a message is given to the operator
or an immediate automatic shut-down is initiated.

Each of the 35 fuel elements is instrumented with three redundant thermo-

couples.

Since this system is part of the safety system, high reliability and availability

requirements are set. This results in a high effort for hardware and especially

for software design and verification which will be more explained in the fol-

lowing. '

4.1 Hardware

The system is subdivided into four subsystems, each of which with a dif-

ferent function. Each subsystem itself consists of three redundant microcom-

puters. There are several links between the computers which are not only

used for information exchange but also for error-detection and fault-

tolerance. Some fault tree analysis has been made for several designs with

different levels of interconnecting the net [Schriefer 1983]. The resulting

structure of the system is shown in Fig. 8. The 35 core positions are instru-

mented with three redundant thermocouples. Each redundancy group sends

its measurements to one computer in the first group (M—1, M-2, M-3). These

computers make the analog/digital conversion and then interchange their

inputs. After having all three redundant measurements in digital form, each

M-computer checks the quality of the measurements and calculates the mean

value for each position. The mean values are sent to the next two groups (A

and F).

The second group (A-l, A-2, A-3) takes the actual mean temperatures,

BOEING EX. 1029, p. 40

Reactor Safety Systems 41

calculates the floating set points and evaluates whether at any position this

floating set point or a fixed set point is exceeded. The results of this evalua-

tion are given to the fourth group (K).

As the second group, the third group (F-l, F-2, F-3) takes the actual mean

temperatures, but in addition it takes the mean local and group temperatures

integrated over a certain time period, thereby taking into account the history
and the trend, too. Again the floating set points are calculated, an evaluation

is made and its results are given to the fourth group (K).

The fourth group (K-1, K-2, K-3) makes a final combined evaluation of the

results of group A and group F. A majority vote is made for each position. If
at any position an unallowed temperature is detected, automatic scram is ini-

tiated by output of a ‘'0'’; if everything is within the limits, a "1" is the out-

put, and operation can continue. '

This final signal is then used by the hardware 2-out-of—3 voter, to act on the

control rods. This voter is designed inherently fail-safe and with high relia-

bility, and it is not triplicated.

The Go=1/Stop=0 signal combination has also a fail-safe feature. In case a

system is not operating, it does not produce any output and therefore its vote
is taken to be "Stop". The dangerous situation arises only in the case when a !
system is constantly producing an output of "1". : 5

Each of the four fimction groups M, A, F and K is triplicated for availability
and reliability reasons. The separation of the four functions into individual
units was made mainly because

- at the beginning of the project the capacity of the available microproces-
sors was limited,

- the design should be extensible for larger reactors and more limit algo-
rithms,

- the functions A and F should be separated because different testing stra-

tegies are needed, and

- communication of intermediate results should be possible to allow

cross-check-points with comparispn of the diverse software.

The hardware of the twelve microcomputers within the system is mainly

identical; the main difference is the amount of I/O-ports due to the different

interconnections. For our realization we have chosen the Siemens SMP E8, a

single board computer based on the Intel 8088 microprocessor chip. This
microcomputer was selected due to the good price-performance relation" and
the small and compact board design. In addition the indirect connections to

BOEING Ex. 1029, p. 41

42 Voges

' - - - ->- Communication for redundancy and control
——'> Data flow

Thermocouples
Microprocessor for mean value calculation
Microprocessor for limit control taking actual values
Microprocessor for limit control taking filtered values
Microprocessor for criteria evaluation
Hardware 2-out-of-3 voter

<7('n)g—l
Fig. 8. Structure of the Computerized Protection System MIRA

BOEING Ex. 1029, D. 42

Reactor Safety Systems 43

the bus via plugs are features which are valuable in the licensing procedure.

Each single board computer consists of

- chassis with power supply

- CPU

- 64k byte main memory (EPROM and RAM)

- I/O interfaces (serial and parallel).

We use no external storage device or other peripheral units in this kernel

system. Only for maintenance there is a possibility to connect some diagnos-

tic aids to an otherwise unused I/O-port.

The interconnections between the microcomputers are not done via a com-

mon bus, but by single point to point connections, to reduce the error propa-

gation possibility. The connections within a redundancy (e.g. M-1=>A-1,

M-l=>F-1, F-1=>K-1,...) are parallel connections, while the connections

between the different redundancies (e.g. M-1<:=>M-2, F-2<=>F-3,...) are using

fiber optic links in order to provide independence and to avoid electrical
interference.

In order to provide the operators with some additional information, a

separate system is set up which gets basic information from this system, and

which keeps records of the data and displays the actual information in dif-
ferent forms on color VDU screens [Elies 1984].

4.2 Software

The main parts of the software for the microcomputers are

- supervisor/operating system,

- communication software, ‘ l

- application software, and E
- self-testing software.

The operating system contains only the parts needed for this application. It is

no special development, but a standard operating system from the manufac-
turer of the hardware. For the licensing, credit will be taken from other com-

mercial use of this operating system. Main parts in this system will be the

I/0-drivers and the task-management.- Since several tasks are running in one

processor, the correct scheduling and also the time are important subjects.

The communication software incorporates the protocol mechanism and also

features for error detection in the transmission. The protocol itself is rather

BOEING EX. 1029, p. 43

44 Voges

simple, since we have only point to point connections and also fixed length
blocks on most lines. The raw data are extended with some redundancy for

error detection as well as time stamps.

The application software consists of the actual problem related programs.

This is the part which will vary in the twelve microcomputers, while the

other software will be identical in all systems. The basic functional descrip-
tion of the four sets was given in the previous section.

fIhe self-testing software runs in the spare time of each computer. Its pur-
pose is to control the correct functioning of the hardware, to check the con-

stant part of the memory, and to test the variable part of the memory. The

results of these checks are reported to the central protocol unit as well as to

the next computer in line. By these self-checks errors shall be detected as

soon as possible in order to have a very low probability of double error
within one unit between maintenance phases. '

4.3 Fault Avoidance

During the software development process, everything has to be done in order
to produce dependable software. Certain guidelines have to be followed, and

there has to be some evaluation, to find out whether the final product

achieves the goals set or not. In the following, we will explain the related
constructive and analytical methods.

Constructive methods. A main problem in the software development is the

specification. Past experience as in the above described experiment shows
that many errors are introduced in this phase, and that these are the errors

which are costly to remove. Some relief is seen if formal specification tech-
niques are applied. Therefore the software requirements specification and the

design use a formal specification technique which is supported by a tool.
This tool checks the consistency and the completeness of the specification as
well as its syntactical correctness [Eckert 1981].

The programming itself will follow programming guidelines which reflect

the state of the art in software engineering [EWICS 1981]. The programming
languages themselves support the ideas of structured programming.

Analytical methods. We can not only trust the success of the constructive

methods, but we have to prove the correctness of the software. Therefore dif-

ferent analytical methods have to be applied parallel to the development of

the code as well as after completion of the coding. This includes the imple-

mentation of a software quality assurance plan [IEEE 1984].

BOEING EX. 1029, p. 44

Reactor Safety Systems 45

Main parts of this plan are reviews and tests, which will also involve the

licensing authorities. The reviews have to start at the very beginning with the

first document produced, the requirements specification. A check is neces-

sary, whether it complies with the global system requirements, in addition to

the tests done with the specification tool.

In later phases of the project, the new documents are compared with the

results of the previous phase which were the input to this phase. Con-

sistency, completeness and correctness are the main points which are looked
at.

The final testing of the code is done in several steps, starting with module

test, then program test, and system test. Each test involves different test data

sources as well as different testing personnel. Statistics are gathered to con-

trol the success of the testing effort [Voges 1983].

4.4 Fault Tolerance

In addition to the above mentioned fault avoidance techniques something

more has to be applied in order to cope with errors. For hardware redun-

dancy, e.g. replication of modules is used, and diversity is the approach we
use for software.

Several means to achieve diverse software were planned, e.g.:

- different development teams,

- different programming languages, and
- different tool sources.

In addition during testing different test data sources should be used for
achieving a broader test coverage.

Within our project the programs should be written in IFTRAN/FORTRAN, F

PASCAL, and PL/M, by different teams with no direct contact to each otherf

The functional description of the program, that is the software requirements

specification, is identical in all three cases. No additional algorithm diversity

as a means of forced diversity is anticipated.

Experience from our previous experin"1ent mentioned above as well as from

other projects [Aviiienis 1984, Bishop 1987] shows that the amount of

identical errors in diverse programs is much smaller than the overall amount
of errors in a single program. If a high amount of testing is done, the largest

portion of the errors will be detected, even of the common source errors. In

addition, use of diverse software during normal operation and not only

BOEING EX. 1029, p. 45

' plausibility checks, control data, information exchange and error checking,

46 Voges

during testing will provide an on-line error-detection possibility.

The positive effects of diverse software are not limited to the tolerance of

software errors itself, but can be extended to the underlying system software

and hardware: since the software is so different, the probability of concurrent
activation of a common error in the system software or hardware is lower
than in the case where identical software was used. This demonstrates that

software diversity increases the overall system reliability.

Additional on-line error-detection techniques applied in this system include

and the self-checking already mentioned earlier.

All incoming data are checked for plausibility that is whether they are within
the expected range. E.g., the outlet temperatures may not be lower than the
inlet temperature. If this is the case, it is due to an instrumentation failure or
a transmission error. '

Between the real measurement data, some additional control data are inter-

spersed. These are processed in the same manner as the normal data and are

handled as if they were additional reactor core positions. The final evaluating
group (K-computers) checks, whether the results at" these positions are the
predetermined, expected ones or not. If they deviate, they reveal some irre-

gularities in the algorithm or other processing parts, which could have

effected the normal data, too.‘ Therefore a message is given to the operators,
and some fail-safe action is necessary.

Within each functional group an information exchange between the redun-
dancies is conducted. The two main reasons for this are error-detection and

fault-tolerance. E.g., F—1 receives the output of M-1 directly from M-1, the
output of M-2 indirectly via F-2, and the output of M-3 via F-'3. These out-

puts are compared. All detected discrepancies are reported to the protocol
units. These can evaluate the messages and detect the source of the

discrepancies, whether it is an M—unit, or a transmission line between the F-

units, e.g. The status _of the reactor with respect to the temperatures and of
the computer system itself is displayed and maintenance is alert in case of
failures.

If the directly received data are considered to be erroneous, one of the

indirectly received but correct data blocks can be used for further processing’.
Therefore single failures on each level can easily be tolerated without

remarkably degrading the complete system. In addition, this comparison of

intermediate results allows error detection between the diverse programs

BOEING EX. 1029, p. 46

Reactor Scy‘ety Systems 47

which could be invisible at the final voting comparison, which is on only one
bit.

4.5 Status

The hardware of the system was installed off—site and is undergoing testing
since mid 1983. It is connected with the reactor core instrumentation via

interfaces and a 1.5 km fiber optic cable. It receives the original reactor

measurements on-line, but is not activating the control rods. The tests

resulted in some redesign of the system, which were assisted by the availa-

bility of new hardware components like fiber optic links. The testing showed
that the overall reliability of the hardware was higher than the reliability data

provided by the manufacturer and based on M11. STD 217C. The data were
collected over a period of three years with about fifteen computer mnning
(including the testing interface). Only a prototype of the software is in the
test now. The further development, including the diverse programs and the

licensing procedure, was cancelled due to new priorities within our research
institute. Therefore, the old hardwired shut-down system will continue to
run.

5. Conclusion

The probability of a common mode failure (the same error identical in all

implementations) is very low if the teams work independently, the languages
have different levels (assembly language and problem oriented language,

e.g.) and the compilers were not designed by the same people. The most

probable reason for a common mode failure is an error in the specification.
Therefore much effort has to be put into correct, consistent and complete for-

mal specification. However, there is a problem in detailing the specifications
too much: detailed specification leads to similar internal program structures

of the different implementations as was seen in our first experiment. Thus

the advantage of diverse programming gets partly lost.

According to our experience one of the main problems in diverse program-

ming is the synchronization of the different programs, especially if the pro-
grams have intermediate checkpoints. These checkpoints have to be
designed explicitly, very carefully and in a detailed manner. They proved to
be valuable especially since we detected a few errors, where final results

agreed and only the intermediate results disagreed. In these cases we have
detected some hidden errors, not activated directly by the test cases.

BOEING EX. 1029, p. 47

48 Voges

Furthermore, the experiment showed that diverse programming detects cer-

tain errors which are unlikely to be detected with other methods.

References

[Aviiienis 1977] A. Aviiienis and L. Chen: On the Implementation of N-Version Pro-

gramming for Software Fault-Tolerance during Program Execution. Proceedings COMP-
SAC ’77, 1977, pp. 149-155.

[Aviiienis 1984] A. Aviiienis and I.P.J. Kelly: Fault Tolerance by Design Diversity:
Concepts and Experiments. IEEE Computer Vol. 17 (August 1984) 8, pp. 67-80.

[Bishop 1987] P.G. Bishop: The PODS Diversity Experiment, this book.

[Boehm 1974] B.W. Boehm: Some Steps toward Formal and Automated Aids to
Software Requirements Analysis and Design. 2nd IFIP Congress, Stockholm, 1974.

[Eckert 1981] K. Eckert and J. Ludewig: ESPRESO-W - Ein Werkzeug fiir die
Spezifikation von Prozelirechner-Software. In: G. Goos (Ed.) Werkzeuge der Program-
rniertechnik, Berlin, Springer-Verlag Berlin-Heidelberg-New York 1981, pp. 101-112.

[Elies 1984] V. Elies: A Protocol System as an Extension of the MIRA Reactor Protec-
tion System. IAEA-Meeting Saclay, F, 1984.

[EWICS 1981] EWICS: Development of Safety Related Software. EWICS TC7 Posi-
tion Paper No. 268, 1981.

[Geiger 1979] W. Geiger, L. Gmeiner, H. Trauboth and U. Voges: Program Testing
Techniques For Nuclear Reactor Protection Systems. IEEE Computer 12 (August 1979)
8, PP- 10-18.

[Gmeiner 1978] L. Gmeiner: Projektbegleitende Fehleraufzeichnung und -auswertung
wtihrend der BESSY-Pilotimplementierung (unpublished 1978).

[Gmeiner 1980] L. Gmeiner and U. Voges: Software" Diversity in Reactor Protection
Systems: An Experiment. Proc. IFAC Workshop SAFECOMP’79, Oxford, Pergamon
Press 1980, pp. 75-79.

[IEEE 1984] IEEE: Standard for Software Quality Assurance Plans, IEEE Std 730,
1984.

[IFFRAN 1976] Structured Programming Preprocessors for FORTRAN. General
Research Corporation, Santa Barbara, 1976.

[Jiingst 1976] U. Iiingst: Design Features of the Fuel Element Computerized Protection
System. IAEA/NPPCI Specialists’ Meeting, Miinchen, 1976.

[PHI2] PI-I12-Programmierhilfe-Makros fiir strukturierte Programmierung. SIEMENS
Programmbeschreibung P71100-J1015-X-X-35. '

[RXV_P 1985] RXVP 80. The Verification and Validation System for FORTRAN.
User’s Manual. General Research Corporation, Santa Barbara, 1985.

BOEING EX. 1029, p. 48

Reactor Safety Systems 49

[Schriefer 1983] D. Schtiefer, U. Vogcs and G. Weber: Design and Construction of at
Reliable Microcomputer-Based LMFBR Protection System. In: Proceedings of Internal.
Workshop on Nuclear Power Plant Control and Instrumentation, IAEA-SM 265, 1983,
pp. 355-366.

[Voges 1975] U. Voges and W. Ehrcnberger: Vorschltige zu Programrniertichtlinien
fiir ein Reaktorschutzsystern. Kfli-Ext. 13fl5-2, Kernforschungszentrum Karlsruhe,
1975.

[Voges 1980] U. Voges, L. Grneiner and A. von Mayrhauscr: SADAT - An Automated
Testing Tool. IEEE ‘Trans. Softw. Eng. SE-6 (May 1980) 3, pp. 286-290.

[Voges 1982] U. Voges, F. Fetsch and L. Gmeincr: Use of Microprocessors in a
Safety-Oriented Reactor Shut-Down System. EUROCON '82. Lyngby. DK, 14-13 June
1982. E. Laugenl. Moeltoft (Eds), Reliability in Electzrical and Electronic Components
and Systems. Amstetdarn: North Holland Publ. Co. 1982, pp. 493497.

[Voges 1983] U. Voges and I. R. Taylor: Systematic Software Testing, In: Proceedings
of EWICS, Schriftenreihe cler Clstenteichischen Computer-Gesellschaft 21 (1933), pp.
165-183.

[Voges 1985] U. Voges: Application of a Fault-Tolerant Microprocessor—Bascd Core
Surveillance System in a German Fast Breeder Reactor. EPRI-Seminar: Power Plant
Digital Control and Fau1t~Tolerant Microcomputers, Scottsdale, AZ, USA, 9-12 April
1985.

BOEING EX. 1029, p. 49

BOEING EX. 1029, p. 50

The PODS Diversity Experiment

P.G. Bishop

Central Electricity Generating Board

Central Electricity Research Laboratories
Leatherhead

Surrey KT22 7SE_

England

1. Introduction

A high integrity system typically has a number of redundant components

operating in parallel to reduce the probability of a system failure. If the
component failures were random, then the probability of several components

failing simultaneously would be much smaller than the failure probability of

any single component. However, should the components contain common
design flaws, then more than one component could fail simultaneously due
to a common cause (a common mode failure). This would increase the pro-

bability of a system failure. For a computer-based system where the same
software "component" is being run in each processor, any software fault is a

potential cause of common mode failure. One method of reducing common
software faults is to use diverse software in each processor (n-version pro-

gramming [Aviiienis 1975]).

The use of software diversity raises a number of issues. D0 diverse pro-

grams contain independent faults or are the faults correlated? Would the
extra effort required to produce diverse software be better spent in attempt-
ing to produce one correct software component? Is the quality of the initial
specification more important than a diverse implementation? ‘The Project on

BOEING Ex. 1029, p. 51

52 Bishop ,

Diverse Software (PODS) was, in part, set up in order to provide some

insight into these questions.

PODS [Bames 1985, Bishop 1986] was a project between the Safety and

Reliability Directorate (SRD) and the Central Electricity Research Labora-

tories of the Central Electricity Generating Board (CEGB) in England, the

Technical Research Centre of Finland (VTT) and the Halden Reactor Project

(HRP) in Norway. The purpose of the project was to determine the effect of

a number of different software development techniques on software reliabil-

ity. The main objectives were:

- To evaluate the merits of using diverse software.

- To evaluate the specification language X—SPEX [Dahll 1983].

- To compare the productivity and reliability associated with high-level

and low-level languages.

In addition, there was a secondary objective to monitor the software

development process, with particular reference _to the creation and detection
of software faults.

2. Experimental Design

To achieve these objectives, an experiment was mounted which simulated a

normal software development process to produce three diverse programs to

the same requirement. The requirement was for a reactor over-power protec-

tion (trip) system. After careful independent development and testing, the

three programs were tested against each other to locate residual faults. All

phases of the project were carefully documented for subsequent analysis.

The structure of the project is summarized in Fig. 1. SRD acted as the "cus-
tomer" while CEGB, HRP and VTT each took the role of software

"manufacturers". The three manufacturers produced their programs indepen-

dently of each other. Further diversity was introduced by placing different

implementation constraints on the manufacturers. Different combinations of

programming language (Fortran 77 or Nord assembly language) and

specification methods (the X language and informal) had to be used by each

team. This also made it possible to compare the different specification tech-

niques and programming languages. An extra element of diversity was

introduced by supplying two different reactor power calculation algorithms.

The constraints were applied ir1 a specific pattern, as shown in Table I, so

that the results of each factor could be assessed individually.

Two different manufacturer’s specifications were independently produced

BOEING Ex. 1029. p. 52

5
The PODS Diversity Experiment 53

' tunamm
spulnmlon E.sun :

 - Spcdilntlon Iwith X-SPEC -!
"ALDEN-WT _. . . i

lnfonnll _
Spetlllutlon -CE RI.

' Acuptlnce .Tail DIM

SID -

AtuptlnnTu!
' DIALDEN

I Acuptunu -I-. T05! -
_- cm _-

r‘ Old-ID]-IIGIK ; Tan Dal:TIII ng _ Gennraluv

WALD! NMLI. I NAIEMALDEN .

Fig. 1. PODS Project Organization

Table 1. Implementation Constraints for Each Team

Main

Team Language Algorithm

Fortran *Polynomia1
Assembly Table

Fortran Table

BOEING EX. 1029, p. 53

54 Bishop

from the customer specification, each reflecting the manufacturers’ interpre-
tations of the customer’s specification. CEGB produced an informal

specification, while HRP and VTT jointly produced a specification in the
language "X". HRP and VTT subsequently took individual copies of this
specification, and the three teams then developed their own programs
independently. Each team followed the same development procedure, con-
sisting of design and code production phases. All three programs then had
to pass a common acceptance test devised by SRD. No communication was
permitted between the teams until the acceptance testing was completed.
This allowed the effectiveness of the specification language "X" and the

informal specification used by CEGB to be compared.

After acceptance testing, the three programs were tested against each other
"back-to-back" in a test environment which could apply large and

comprehensive sets of test data and log any discrepancies in their responses.
The residual faults discovered by this process were then analysed to deter-

mine the performance of the programs with a majority vote for comparison
with the performances of the programs individually.

To enable the software development process to be observed, all participants
maintained records of the amount of effort expended in each of the project

phases. In addition, all faults and modifications were recorded on specially
designed forms for subsequent analysis.

3. Project Management

To ensure that the maximum amount of information was gained from the

experinient the whole project was comprehensively documented and clear
responsibilities where defined for all the team members as shown in Table II.

SRD was responsible for the overall management of the project, and pro-
duced a fonnal project document describing the:

- project objectives,

- project tasks,

- project phases and time-scales

- documentation required,

- document referencing standards,

- fault reporting formats,

- fault classification scheme,

BOEING EX. 1029, p. 54

i SRD

i P. Humphreys
T ‘ I A. Ball

FL, L
The PODS Diversity Experiment 55

Table II. Project Members and Responsibilities

Company Project Activities

 Project Manager

Global QA, Cust. Spec

Acceptance Test Design

Man. Spec, Local Manager

Man. Spec, Design, Code

Local QA

X-Spec, Local Manager

M. Barnes‘

CEGB P. Bishop

D. Esp
P. Rutter

HRP G. Dahll

Test Hamess

O. Hatlevoldt Design, Code

I S. Yoshimura Test Strategy, Local QA
VTT J. Lahti Local Manager, X Spec QA

Local QA

Design, Codei B. Bjarland

- software change control procedure,

— effort recording format.

Further documents defined the quality control procedures and the testing

strategies. Some of the major aspects of the project management are dis-

cussed in the following sections.

3.1 Project Phases

The project was organised into phases to provide a structured approach to

project control. The phases comprised: 5

- customer specification,

- manufacturer specification,

- design, -2‘,

- coding,

- acceptance testing,

- back-to-back testing.

The end of each phase was regarded as a "milestone" in the progress of the

project. No phase was considered to be complete until all the documentation

BOEING EX. 1029, p. 55

56 Bishop

required for the phase was released. Any Subsequent faults diS°°V°r°d in 3

released item had'to be documented and processed using a formal change
control procedure. Due to an oversight, the project control document did not

specify that faults occurring within the manufacturers’ development phases
should also be recorded. In the event, both CEGB and HRP did record this

information, but V’IT did not. As a result, some of the analyses of the
software development process had to be restricted to the CEGB and HRP
teams.

3.2 Quality Control

Quality assurance guidelines, based upon the EEA quality assurance guide
[EEA 1981], were issued to each team by SRD. The guidelines provided the

ground rules from which each team derived its own quality assurance pro-
cedures. During the software development, each team had to produce the
following documents:

- local project control plan,

- local quality assurance plan,

-_ description of work done in each phase,

- quality assurance applied to each phase,

- design document,

- description of design methodology,

- man-hour and fault report documentation.

An independent quality assurance representative was nominated for each

development site to verify that the software development conformed to the
agreed project standards.

3.3 Test Documentation

During the acceptance and back-to-back test phases the following informa-
tion was recorded:

- copies of all the different program versions,

.— fault reports and change notes,

- copies of all test data sets for acceptance and back-to-back testing,
- logs of all failures,

4 listings of each version of the test harness program,
- man-hours of effort

BOEING EX. 1029, p. 56

The PODS Diversity Experiment 57

This level of documentation makes it possible to repeat existing tests, or

conduct new tests on any of the post-development program versions.

3.4 Fault Classification Scheme

A structured fault reporting scheme was devised which permitted faults to be
described from different viewpoints, (e.g. the cause of the fault, the effect,
the detection method etc). The form was designed to be computer-based. It

had a regular syntax where the main categories and sub-categories were
defined by key-words. The user could also include unstructured infonnation
using text strings. An example form is shown in Fig. 2. The form was
accompanied by a document defining the fault reporting syntax and the
meaning of each term.

4. The Customer Specification

In the customer specification phase, SRD produced an informal customer’s
requirement specification (PODSPEC). This specified a realistic reactor trip
system, incorporating the following functions: '

- reactor power calculation based on analogue input data,

- calibration using encoded thumb-wheel switch data,

- primary and secondary trip logic,

- test mode,

- ROM integrity check,

- diagnostic indications,

- initialization on request.

Fig. 3 summarizes the main data flows and processing functions which had
to be implemented.

The customer specification also contained the following performance

requirements:

- a maximum response time of 500 milliseconds from a change in the pri-
mary input signal to a corresponding change in the output signal,

- a failure to trip on demand of no more than 1 in 10,000.

SRD created and maintained separate versions of their requirement

specification for each team. These versions were independently modified
when faults were reported by the teams to prevent any unintended transfer of
information during the development process. This independence of fault

BOEING Ex. 1029, p. 57

58

PODS ERROR RECORD
IDENTIFICATION

local ref number : PERAC 100eg
master ref number : 772
title ; 9L / range error flag
version g 4
C°“Pa“Y : CERL
reporter : DGE

CREATION

item type I DESIGN
item name : CERLDES
item version 3 1
item internal ref = N-A
phase : DESIGN /date: 17-10-33 /time: 7??
mental activitY 3 ANALYSE
operation on item 3 CREATE
error classification 1 DOCUMENT:CONTENT:INCORRECT
error description ‘ "In the design, the analog input/output range error

error cause
DISCOVERY

item type
item name
item version
item internal ref
phase
discoverer
method
error indication

CONSEOUENCE
internal function
external effect

V failure typeCHANGE
phase
changer
items changed
description

VALIDATION
phase
validator
method

RELATED ITEMS
detection report
error report
change reportother

flag (RE) was not implemented according to its
CERLSPEC definition. The effect of a range error
in output DL is not taken into account.
CERLDES version 0 did include DL range error
in RE, and it was intended to perpetuate it in
CERLDES version 1 (see PERDC 120) but it was
omitted from CERLDES 1 in the event.

: HUHAN:FORGET

: PROGRAM
: CERLPROG
: 1.2.4
I N-A
: LACTST
: DGE
: TEST:ACCEPT:ACCTEST2
: Test failures

ldate: 15-11-83 /time: 77?

: ERROR FLAG LOGIC

: "The analog input/output range error flag RE is not
set when all analogue inputs are in
range but DL is range-limited inside the program."DANGER

LACTST /date: 15-11-B3 /time: 7??D63
DISCOVERY-ITEM
"Hake range check on DL in subroutine SIGPROC
(vhere DL is calculated) and set a new flag
REDL accordingly. Rename previous RE flag as
REIN (RE for Ifiputs). Hake RE-REIN"0R' REDL."

/date: 15-11-83: LACTST /time: 1??
: DGE
: TEST:ACCEPT:UNOFFICIAL:UNRECORDED

: 7??
:~ local ref: AC 10
:~ local ref: AC 10

/master ref: 7??
/master ref: 77?

Fig. 2. Example Fault Record

reporting was retained until the completion of the acceptance testing phase.

BOEING EX. 1029, p. 58

The PODS Diversity Experiment 59

I’ [III I10llllll I.Bu‘! ll-OI-I)

IIDCISIOI

(l|I'.l:II.1l.I\’) n' tum 'tlI:l".|umuuu
{lllllI.'I.n|.llI

E utun
l unuuenu

(u.|.nu H]
[c.u.nu\ I}
(run: Iul tall}

IIYIIIAI. VAIIAILIS

n. {nI.l..|ltI]
c| (cmn1nr. uummu wrrlru
u tamunnur rut}a1 tenures}IIIWI 585351133

II All DIGITAL IO
Al‘ I!

K G! K II
III! MAXIII M II II.

CI.

counsel

llllocvl.
‘K0 IIIGHM.‘ GHVIIIW.

'l.IH'l'l DI'I'I'D'I

lIII!—fl|'-0|} IA tacmu.-‘nlnn-r.u.)

&,..[:: ::ss::a. }lo (twin 0!!) n (Inf ll nocuu) otrmrn
0| (IIl'Ill!II'l1 ‘II (I'll? IUD)

‘flu nu: -nun Dc ‘fin “HuiL: r: I! theII Innu-

Fig. 3. Data Flows within the Trip System

5. The Manufacturers Specification

5.1 X Specification

X-SPEX [Dahll 1983] is a system which consists of two parts, the

specification language X and a computerized specification tool SPEX. The
aim of this system is to describe the customer requirements using a formal
language (X) aided by the SPEX tool which can check for completeness and
consistency in the specification. X is an entity - relationship - attribute type
specification language based on RSL [Alford 1977] and adopts part of its ter-
minology. A specification written in X consists of a set of entities with
specified attributes which are linked together by relationships. Using the _
SPEX tooi, entities. relationships and attributes can be added, modified and
deleted within a database. The database can be subjected to a number of

analyses to check for completeness and consistency.

The X specification was produced by members of the HRP team, while V'I'I'
performed the quality control checks. The process of writing the
specification in X revealed deficiencies in the definition of the interfaces and
the exact response of the the trip system to different stimuli. A number of
different quality checks were applied to check for internal consistency and
compatibility with the customer specification. At that stage, SPEX had not
been fully developed, so some of the checks were performed manually.

BOEING EX. 1029, p. 59

60 Bishop

After the formal release of the X specification, separate copies were issued
to HRP and VTT. Subsequent revisions to the specifications were made
independently by the two teams.

5.2 CEGB Specification

CEGB did not use a specification language, but it did attempt to produce a
concise and unambiguous interpretation of the customer’s requirement
specification. CEGB considered that some aspects of the customer
specification were too low-level (i.e. specifying how .the software should be
implemented rather t_han the real requirements). Most of these
implementation-specific features were excluded from the CEGB
specification.

The customer’s requirement specification was analysed using peer-group
inspections [Pagan 1976]. The trip logic was re-formulated using Boolean
logic definitions and state machine diagrams [Minsky 1967] which were
considered to provide a clearer and more abstract definition of the

customer’s requirements. This approach encouraged a higher level of
analysis leading to the discovery of potential problems in the customer
specification of the trip logic.

6. Software Production

All teams subsequently produced their programs based on their own
specifications- Software development methods recommended by Myers
[Myers 1976] were used by all teams. This involved documentation and

inspection at each stage of development. All teams used a top-down design
approach where a complete software design was produced and inspected
before detailed design and coding commenced. The various techniques
employed by the teams are summarized in Table III.

Since the X language is intended to be used at any level of detail, some
aspects of the manufacturers functional specification were expanded to form
a design specification. The design was then transcribed into Nessi-

Slmeiderman diagrams. A section of the X specification produced by HRP
is shown in Fig. 4.‘

BOEING EX. 1029. p. 60

The PODS Diversity Experiment 61

Table III. Summary of Software Development Methods

Yourdon-

Constantine

Flow-charts

Data Flow

matrix

Pseudo-codePseudo-code

FORTRAN 77 Nord Assembly FORTRAN 77

Language

Module test Module test

System tests System tests

Symbolic Symbolic

debug debug

Inspections Inspections Inspections

System tests
7. Acceptance Testing

In the acceptance testing phase, each of the three programs was submitted to

a common set of tests defined by the customer, SRD. The objective of the

acceptance testing was to provide coverage of the input domain and the
internal states of the software in an economical manner. A total of 672 indi-

vidual test cases were produced, grouped into sequences of systematic'tests

and randomly selected test data.

7.1 Systematic Tests

Data sets were derived to test the software for compliance with the customer

specification in the following areas:

- reactor power algorithm

- trip logic and alarm indications

- internal integrity checks

- calibration changes

- test mode operation

In each test set, data was generated to test for correct operation with both

valid and invalid input data.

BOEING Ex. 1029, p. 61

62 Bishop

ALPIIA: TRANSFER_INPUT_DATA.

INPUTS:
DATA: FXIN
DATA: VTIN
DATA: CTIN
DATA: NTIN
DATA: RPIN
DATA: DIGINI
DATA: DIGIN4.

OUTPUTS:
DATA: H
DATA: VT
DATA: CT
DATA: NT
DATA: RP
DATA: GT
DATA: G!
DATA: NA
DATA: TI
DATA: OR
DATA: INPUT_ERROR
DATA: DIGINI.

REFERRED_BT:
SUBNET: TRIP_COMPUTATION.

DESCRIPTION:
‘THE INTEINAL DATA ARE CALCULATED FROM THE
DATA IN THE INPUT INTERFACES ACCORDING TO THE FORMULA GIVENIN THE FUNCTION BELOW. IF ANY OF. THE VARIABLES IS OUTSIDE ITS
RANGE. AS DEFINED IN THE DATA ELEMENTS, THEN INPU‘|'_ERROR IS
TRUE, AND THE PARAMETER SHALL BE SET TO THE HCEEDED RANGE LIMIT‘

DITERED: IJIOBIOB.

ECTERDLDI: G_DAHLL.

COMPLETENESS: CRANGEABLE.

FUNCTION:
PX:-l‘KIN'I60I4095~5
VT:=VTIN'160/I095-5

:ICfIN'520/4095-10
U'l.':0flTIN'S2O/I095-10
RP :-TUE_NEARE5'l'_INTEGER_T0 (RP IN ' 100/4095)

:-‘THE NUMDE1 FORMED DY DIGIN![8.,I5]"110/255-5
GP:-‘TEE NUMBER FORMED BI DIGIN1[0..5]"H0/255-5
NA:=DIGIN1[5]
TI:=DIGIlH[J]
OB:-DIGINH 1]
DIGINAU]:-0
If (TlIERE_IS X, X NEMBER_0}' (PX.VT:°T,lfl.RP,GT,GP]:NOT X VA1.UE_IN ‘ITS RANGE AS DEFINED IN ITS SPECIFICATION‘)

X:-‘TUE EXCEEDED RANGE LIMIT‘
INPU'l'_fl.ROR: ITRUE

OTHERWISE
INPUT_ERROR: -FALSE

END

IF (NOT RP MEHBER_l1|P (16,20.2'I,J2,3J,H,53,73))
RP:I“l"fi.i1 ||lE'.|I3ER_OI' (‘|€,29;27,J2,JJ,H,5J,73) VHICR IS NEAREST RP‘
INPUT_fllROll:-TRUE

END
END.

Fig. 4. Example X Specification

BOEING EX. 1029, p. 62

The PODS Diversity Experiment 63

7.2 Random Tests

The random tests were designed to permit the variation of as many inputs as

possible over their full range. A uniform distribution was used for each

input parameter, giving equal weighting to the selection of any value over

the full range of each parameter.

7.3 Testing

The HRP program was tested in a single stage using the NORD computer at

Halden, while the CEGB and VTT acceptance testing was performed in two

stages. First, both teams constructed their own local test harness which was

used to apply the SRD acceptance test data. On satisfactory completion of

the acceptance tests, both companies had to transfer their programs to run on

the HRP NORD computer. In practice there were minor faults in the test

data that were only resolved with SRD when the CEGB and VTT programs

were re-accepted at Halden.

8. Back-to-Back Test Phase

Once the three programs had passed the customer acceptance tests on the

HRP computer, they were tested against each other "back-to-back" to detect

residual faults. The back-to-back test harness, shown schematically in Fig.

5, was designed to apply common input data to all three trip programs and

then check the resultant output values. Program faults were revealed by

discrepancies between the outputs of the three programs. Since the main

purpose of the experiment was to detect software discrepancies between the

programs the test harness was made extremely simple. Each program was

implemented as a subroutine which was linked into the main test hamess.

Identical test data could therefore be applied to all three subroutines and the

results could be compared once the three subroutines had completed. This

approach avoided all the synchronisation problems that can occur if the test

harness and the three trip programs were implemented as independent pro-
grams.

8.1 Strategy for Test Data Selection it

The test philosophy for back-to-back testing was developed by an indepen-

dent member of the HRP team. The tests were designed to be as comprehen-

sive as possible, and comprised a series of systematic checks designed to

uncover particular types of faults, and checks employing pseudo-random
input data. The systematic test data values were derived using a variety of

BOEING Ex. 1029, p. 63

64 Bishop

Discrepancy

Fig. 5. The Back-to-Back Test Harness

different techniques:

- Equivalence partitioning was used to divide the input domain into a

finite number of equivalence classes. Test data was designed to cover as

many valid equivalence classes as possible, to maximize the effective-

ness of a finite number of tests. Invalid equivalence classes (which

relate to faulty input data) were designed to be tested one at a time to

avoid masking effects.

- Boundary value analysis was used to derive test cases at the boundaries

of input and output equivalence classes.

- Decision tables were used to take into account possible combinations of

input conditions, output conditions and internal program states. '

On the basis of these analyses, the following series of 2472 systematic tests

were designed:

BOEING Ex. 1029, p. 64

The PODS Diversity Experiment 65

- Domain coverage check. 979 tests were constructed to test as many

features of the main tr-ip algorithm as possible.

- Hysteresis check. To avoid any "jittering" of limit check signals when

_ the computed power is near a limit, a hysteresis band was specified.
E Once a limit had been triggered, it would not be cleared until the power
' fell below a lower limit value. 200 tests were devised to test this

feature.

- ROM corruption check. 112 test cases were devised to check that the
software had detected a change in the "pseudo ROM" region.

- Thumb-wheel data check. The calibration parameters were entered on

thumb-wheels. The values on individual thumb-wheels were converted

to internal parameters. 322 different tests were defined to check that the
values were correctly converted, and that faulty input values were recog-
nised.

- Reactor power coverage check. 859 tests cases were used to check the

computation of the reactor power.

One of the advantages of software diversity is that the programs can be
tested against each other using large amounts of arbitrary test data. The test
harness was designed to produce arbitrary, but repeatable, sequences of test
data using its own pseudo-random number generator. Test data sequences
could be generated which conformed to any of the following distributions:

- Unifonn over the input domain

- Gaussian over the input domain

- Rectangular around domain boundaries

- Gaussian around domain boundaries

These distributions could be applied with either a single initialization

demand at the beginning of the test sequence, or with random initialization
demands throughout the test. '

The total mnnber of systematic and random tests applied during back-to-

back testing comprised 665,288 test cases.

.*

8.2 Testing Procedure

A formal test procedure was adopted to ensure the correctness and con"-
sistency of testing. Whenever the programs disagreed, a group diagnosis of
the cause was made, with SRD making the final judgement. The program

failure together with its cause was recorded on a computer file, and the pro-
grammers completed change notices for the program modifications. The

BOEING EX. 1029, p. 65

H in la “1

66 - Bishop

modified programs were tested against the SRD acceptance test data and, if

successful, the three programs were tested together, starting again from the
beginning of the back-to-back test sequence.

9. Subsequent Testing

9.1 Failure Rate Measurement Tests

Additional back-to-back test runs were performed at a later date in order to

establish a relative failure rate for each individual fault detected during
back-to-back testing. In these test runs, uniformly distributed random input
data was applied to successive versions of each program running against a
"golden" program (a final version of the trip program). It should be noted

that a uniform distribution was not representative of nonnal operating condi-
tions but, in principle, it was capable of activating every known fault. The
failure rates for each fault were calculated from incremental changes in
overall failure rate, after considering known fault interactions.

To'assess the sensitivity of the failure rate to the input test data, similar tests

were applied to the first post-acceptance version of each program using a
pseudo-random Gaussian distribution and systematic test data.

9.2 Fault Seeding

To assess the effectiveness of the test data employed. faults were deli-

berately seeded into the HRP program, and then tested back-to-back against
the "golden" versions of the CEGB and V'IT programs using acceptance and
back-to~back test data.

10. Analysis of Software Diversity

10.1 Faults Detected in Back-to-Back Testing

The faults discovered during back-to-back testing are assumed to correspond
to the faults that would have been discovered during in-service‘ operation of
the trip system, since they were not detected by the acceptance tests. The
assessment of the benefit of diversity is based on an analysis of these faults.

The distribution of the faults between the three teams is shown in Fig. 6.
Seven. different residual faults were found; six were caused by problems in
the original customer specification while one related to an ambiguity in the
X specification. In addition, two faults were accidentally introduced while

making corrections. No faults were traced back to the implementation

BOEING EX. 1029. p.66

The PODS Diversity Experiment 67

4-11;. III’). ttttf III!’
4

nu

 lriflllll 'lflllfll 3:111:11. -«.n;..-:1:- 0:11:11: 11:11:11: -411:1;-1: u-11111;’;-;-.cppo_n1r -pin-1:;-1:4-11:.-r.an -_trAu-.r:::ru-r.JJIJJIIJJII illllllllla 514-A-.u-1:1n

* Correction Induced Faults

Fig. 6. Distribution of Faults Detected in Back-to-Back Testing

phases.

Details of the faults discovered in back-to-back testing are shown in Table

IV. Faults 6 and 7 were common to two programs and would have won a

majority vote causing an overall system failure. Faults 1 and 2 were mutu-
ally exclusive and the other faults were independent, so they could only
cause a failure on a single channel and would have been out-voted. The pro-

gram faults marked with an asterisk have been classified as dangerous. A
dangerous failure was defined as a trip or alarm signal failing to operate or
the computed power level being too low.

10.2 Failure Rates of the Faults

The failure rates derived from the additional back-to-back tests using uni-
form pseudo-random data are shown in Table V.

This shows the probability of failure per test-case, and gives an indication of
the fraction of the total input domain that is capable of activating the fault.

BOEING EX. 1029, p. 67

Bishop

Table IV. Faults Discovered in Back—to-B ack Testing

"I

Team Description Cause _u
V error flag logic ambiguous customer spec
H error flag logic ambiguous customer spec
C error flag logic ambiguous customer spec
C correction to 3 modification

C trip limit calc ambiguous customer spec
V,H power calculation incorrect customer spec
V,H sec trip logic incorrect customer spec
V power calculation ambiguous X spec

,__V correction to 8 modification

* Fail-danger faults

Table V. Failure Rates Using Uniform Random Data

T

Program Failure Rate

LVersions F CEGB HRP VTT |—Maj. Vote
c1,H1,v1 .01 . .25 .0018 .0008
C1,H1,V2 .01 .25 .0008 .0008

c1,H2,v2 .01 .0008 .0008 .0008

C2,H2,V2 .70 .0008 .0008 .0008
C3,H2,V2 .0006 .0008 .0008 .0008

C4,H2,V2 .0000015 .0008 .0008 .0008

_ C4,H3,V3 .0000015 .00009 .0001 .00009

C4,H4,V4 .0000015 .0000015 .0000O66 0000015

C4,H4,V5 .0000015 .0000015 .106 .0000015

,_c4,H4,v6 .0000015_}_.0000015 0000015 .0000015

The failure rate for version 4 of the VTT program is an estimate based on a

single failure observed during the main part of back-to-back testing. Unlike
the other faults, it was not activated by the uniform pseudo-random test data
as the number of test cycles employed was too small to reveal a fault with

such a low probability of failure. The final failure rate figure of 0.0000015 is

BOEING Ex. 1029, p. 68

f

The PODS Diversity Experiment 69

a limiting value calculated from the reciprocal of the number of back-to-back
test cases employed.

,.._m_,=J
‘The two common faults (6 and 7) had a combined failure rate of 0.0008.
These faults could not be excluded by majority voting. The remaining faults
were all diverse so that, although the total failure rate of all the faults in ver-

sion (Cl, H1, V1) was around 0.26, the failure rate_after majority voting was
only 0.0008. The majority vote failure rate stayed at this "plateau" level
until faults 6 and 7 were removed. This effect is shown clearly in Fig. 7'.

10° = ass52 vrr
‘ "' Vote

10'‘

10-2

tO"3

10"‘
FailuresperTestCase

1o"5

1 2 I5 4- 5 6 7 8 9 10

System Version

Fig. 7. System Failure Rate with Majority Vote

To check the sensitivity of the failure rate to the distribution of test values
over the input domain, further back-to—back measurements were made on
programs Cl, H1. V1 using three different types of bacl<«to-back test data
(Table VI). The large variations in the failure rate highlight the fact that it is
only possible to assess the failure rate of software for a specific mode of use.
For example, the high failure rate of the HRP program was related to the
processing of invalid input data. When a Gaussian distributiohtawas used, the
probability of out-of-range input values was reduced, so the failure rate was
lower.

A comparison of two different test sequences with the same unifonn random
distribution produced very similar failure rates. This suggests that a proba-
bilistic input distribution may be an adequate way of representing the mode

BOEING EX. 1029, p. 69

Table VI. Variation of the Failure Rate with Test Type

Failure Rate

CEGB HRP VTT '

.043 .53 .023

.010 .25 .002

.002 .069 .088

Test

Type J Cases
Systematic 2472
Uniform 65000

Gaussian 65000

of use. However more measurements would be needed to validate this
hypothesis.

10.3 The Cost of Diversity

The amount of effort expended on the mainstream project activities is shown
in Table VII.

Table V_II. Effort Expended on Project Activities

Man-Hours Expended
Activity SRD CEGB HRP VTT

 Proj. Management

Customer spec. 280

Manufac. spec.+ QA 43

Design + QA 110

Code Production 155

Acceptance 86 45

Back.-to-back tests 264 119

MOTH development —
Test data dev.

The majority of the project management effort was devoted to the organisa-
tion of the experiment and should not be considered part of the normal
software development process. The effort expended by the three teams on

BOEING Ex. 1029, p. 70

The PODS Diversity Experiment 71

the specification, design, code production and acceptance phases was 1892
hours, so the average effort for one team would be 631 hours. However the

cost of the customer requirement specification and acceptance test design

was essentially independent of the number of versions and required a total of
366 hours of effort. The comparative cost of a single development would 3,
therefore be 997 hours compared with 2258 hours for three-fold diversity. '3

If the back-to-back testing phase is regarded as part of the development pro-
cess rather than in-service operation, then there are no comparable figures
for the additional verification and testing required to detect the same set of

residual faults for a single program development. We intend to examine the

performance of alternative fault detecting methods in a later experiment. I

11. Impact of Specification Techniques

11.1 Experimental Difficulties

The reactor trip system was not complex enough to exercise more than a

small part of the X specification facilities. In addition, although CEGB did
not use a specification language, the customer requirements were analysed in
some depth to locate potential problems. CEGB also tried to raise the

customer's requirement specification to a higher level of abstraction using

state transition diagrams. In this respect the experimental requirements were

not fulfilled because CEGB’s approach to specification was not informal

enough.

11.2 The X Specification Language

The X specification language enabled the function and organization of the

trip software to be specified in detail, describing all the component parts and
their interactions. Using the computer-aided tool SPEX a variety of con-

sistency checks and analyses could be made. The X specification was pre-

cise, unambiguous and easy to interpret. Only one fault in the X

specification persisted into the back-to-back test phase and this was due the
use of free text (which is permitted in X) rather than a rigorous mathematical

definition. HRP also used X as a -soiftware design aid and, as such, it was
quite successful. It was easy to translate the X specification into a program.

11.3 CEGB Specification Approach

The customer’s requirement specification described the primary and secon-

dary trip logic using terms similar to a conventional sequential programming

BOEING EX. 1029, p. 71

72 Bishop

language (e.g. if condition then else ...). However the order of the condi-

tions differed between the main body of the specification and a flowchart

example. This lead to a specification inconsistency. In the CEGB manufac-

turer specification, the trip logic was re-formulated using Boolean logic and

state machine diagrams. As a consequence a number of apparently unneces- _!

sary states were found in the customer_’s primary and secondary trip logic. '

Fig. 8 shows the CEGB specification of the secondary trip logic, compared

with that derived from the PODSPEC example. These problems were

reported but never properly resolved. The apparently unnecessary states

were removed from the CEGB specification. This gave rise to test "failures"

in the CEGB version of the trip ‘logic during acceptance testing.

Discrepancies were also detected in the secondary trip logic during ba'ck-to-

back testing. However, on analysis it was agreed that the initial customer

specification was erroneous, resulting in a common secondary trip logic fault

in the HRP and VTT programs.

CEGB DL 2 ,5

Fig. 8. Comparison of the Secondary Trip Logic

11.4 Comparison of Methods

The two specification methods appear to be complementary. The re-

formulation of the customer requirements in more abstract terms showed up

BOEING Ex. 1029, p. 72

The PODS Diversity Experiment I 73

potential faults in the customers statement of requirements, while the X
specification helped to ensure that the software specification was intemally
consistent and complete. The manually-produced CEGB specification did

not suffer from any major intemal inconsistencies or omissions, but these

could have occurred in a more complex specification.

12. Analysis of Programming Language

12.1 Number of Coding Faults

More than a hundred coding faults were reported by the three teams during

the code production phase, but they were detected either by local testing or

by acceptance testing. No coding faults were detected in the subsequent

back-to- back tests. The apparent lack of residual coding faults can probably

be attributed to the lack of complexity in the system, enabling fairly exhaus-

tive testing and inspection to be carried out. In general such testing may not
always be possible. In these circumstances it is probable that the number of

residual coding faults would be related to the number of errors made during

code production, and so the numbers of faults created in the code production

phase have been examined for each of the three teams (Table VIII).

Table VIII. Coding Faults for Fortran and Assembly Language Programs

Language Faults Code Lines/Fault

CEGB Fortran 25 34

Assembly 87 22
Fortran 5* 95

* VTT did not record faults made during code production

Since VTT did not record faults within the code production phase, only the

faults in the CEGB and HRP programs can be compared. From this com-

parison it would seem that the use of a high level language reduced the
number of coding faults by at least a factor of 3. Since the assembly

language program was about three times longer than the Fortran programs,
this was consistent with observations from other sources [Lipow 1982] that

the number of faults per line is similar regardless of the programming

language.

BOEING EX. 1029, p. 73

74 Bishop

12.2 Programming Effort

For the purposes of the analysis shown in Table IX. Pregmmming “/35
defined as coding plus development testing (both module and integration).
Other activities such as manufacturer’s specification and local test harness
production were not included.

Table IX. Man-hours of Programming Effort

CEGB HRP VTT

(Fortran) (Assembly) (Fortran)

58 150 74

4 46 36

75 96 45

137 292 155

Coding

Code QA

Dev. Testing

Total

It would appear that the HRP assembly language program took about twice
as long to write as the equivalent FORTRAN programs.

12.3 Program Length

The CEGB and VTT Fortran programs were considerably shorter than the
assembly language program produced by HRP. The characteristics of the
programs produced by each team are summarized in Table X.

Table X. Program Characteristics

Team Modules Code Lines

35 859 Fortran 3235

27 1906 Assembly 3407
17 477 Fortran 797

BOEING EX. 1029. D. 74

The PODS Diversity Experiment 75

12.4 Performance

The performance of each program, running on the NORD computer is shown
in Table XI.

Table XI. Run-Time Performance of Each Program

Response (msecs)
Mode CEGB HRP VTT

Initialize

Calibrate

Init.&Ca1.

Nonnal

T
All the programs responded within the specified time of 500 milliseconds.

The CEGB program response times are relatively constant in all modes.

This was probably due to a design decision to avoid as much conditional

coding as possible, so that a large proportion of the initialization code was

executed on every program cycle. In nonnal operation, the HRP assembly

language program was nearly three times as fast as the equivalent VTT pro-

gram which had the same reactor power algorithm and initialization strategy.

12.5 Faults in Support Tools

No faults were discovered in the VAX VMS Fortran compilers used by

CEGB and V'I'I‘ for local development. One commonly expected declara-

tion check was absent from the pre-release NORD assembler used by HRP.

In addition two faults were discovered in a pre-release version of the NORD

Fortran compiler used by CEGB during re-acceptance.

13. Analysis of the Software Development

.i

13.1 Faults Reported

The faults reported by each team are summarized in Table XII.

The number of distinct faults in the SRD specification is difficult to deter-

mine, as the fault reports from each team tended to overlap, but not pre-

cisely. Around 90 distinct faults were attributed to the customer’s

BOEING Ex. 1029, p. 75

76 ' Bishop

Table XII. Faults Reported by Each Team

Faults Reported in: CEGB HRP VTT

Customer specification 68 43

Manufacturer specification 53 42

Design specification 19 26

Coding _ 26 ' 87 _

Acceptance modification 6 0 '
Back-to-back modification 1 0

Test data 1 0

Support software 2 0

Total 176 198

requirement specification.

Fig. 9 shows the persistence of faults between the phase of creation and the

phase of detection. It can be seen that the most persistent faults originated in

the customer’s requirement specification.

13.2 Detection of Faults During Development

The effectiveness of the different methods employed to detect faults during

development is shown in Table XIII. '

The HRP team performed the greatest number of inspections, and this is

reflected in the higher proportion of faults detected by this method. The

CEGB team noted that proper inspections required considerable initial

preparation and this activity should have been incorporated into the develop-

ment schedule. It would also have been desirable to have had an indepen-

dent inspection team available from the beginning'of the project. This

would have minimized the need to provide and understand all the back-

ground information required for an inspection.

Table XIV shows the proportion of known faults detected within the phase

where they were created. The proportion detected is quite high. This can

probably be attributed to the quality assurance programme employed during

development.

BOEING EX. 1029, p. 76

The PODS Diversity Experiment

77

CEGB

i,._.|
HRP

Customer
Requlremenl--.-.1-K --_..E:..._...__. .

' unrecorded

Fig. 9. Fault Persistence Between Phases

13.3 Post-Development Fault Detection

The numbers of faults detected by tl1€\‘' acceptance and back-to-back tests are
shown in Table XV. '

For comparison, the same test data and procedures were used to locate 30
seeded faults in the "golden" version of the HRP program. The seeded faults
were created manually, and inserted into the following types of code:

BOEING EX. 1029, p. 77

Table XIII. Fault Detection Methods

Detection i Faults Found
Method CEGB HRP VTT

Inspection 26 28

Walkthrough 14 1

Individual checks 81 27

Translation 4 1

Test 47 17

Other 4 -

Total 176 76

Table XIV. Fault Detection Efficiency per Phase

Fraction of Faults

Detected *

Manufacturer spec.

Design
Code Production

* VTT did not record faults occurring within a phase

- computation of an expression,

_- branch conditions,

- constants definitions,"

- initialization.

Faults were detected by comparing the outputs of the HRP program with the

outputs of the "golden" CEGB and VTT programs. The test data was

applied in the normal back-to-back test sequence. When a fault was

detected, the program was corrected and the tests were repeated from begin- ;
ning. Table XVI shows that 25 of the faults were detected by the test data.

An analysis of the remaining 5 faults showed that they could not have been

BOEING EX. 1029, p. 78

The PODS Diversity Experiment 79

Table XV. Faults Detected During the Test Sequence

Known

Test Data Faults

Remaining

Acceptance 57

B-B Systematic 9
B-B Uniform Random 5

B-B Rectangular/Boundary 2
B-B Gaussian Random 0

B-B Gaussian/Boundary 0

Table XVI. Seeded Faults Detected by the Development Test Sequence

Seeded I

Faults Faults

Remaining Detected

 Acceptance

B-B Systematic
B-B Uniform Rand.

found by testing. One fault, for example, was in defensive code which
should never be executed, while another fault affected a constant that was
not used.

Both sets of results indicate that the acceptance test data was quite efficient,

finding around 85% of the known faults that were capable of detection. The
back-to-back tests successfully detected the remaining seeded faults, giving
some confidence in the coverage of the test data.

Direct comparisons between the various types of test are difficult to make
because the faults were removed as they were detected, leaving fewer faults

for each successive test sequence. It would be interesting to examine
whether back- to-back testing using random data is more effective at locat-

ing faults than the systematic tests. Random testing enables a large number

BOEING EX. 1029, p. 79

80 Bishop

of tests to be applied, but it cannot detect a fault which is common to all pro-

grams. However, this form of testing would obviously be much easier to

design and apply, so reducing the cost of testing. An analysis of the relative

effectiveness of the tests will require further experiments where the fault

detection capability and coverage of the individual tests are measured for all

three programs.

13.4 Project Organization

Most of the problems encountered during the project were related to

difficulties in communication or information processing. These problems

had to be solved as the project progressed. On the basis of this experience,

we would recommend that in any similar project:

- The organization, documentation, and terminology should be defined

and understood by all parties at the outset.

-. Good communication charmels should be established between all par-

ties. Frequent meetings should be held and telex, telefax and electronic

mail should be employed to reduce response times.

- Computers should be used for project support. All docmnentation, pro-

ject management information and experimental data should be stored on

a computer in a fonn which can be easily maintained and analysed.

14. Conclusions

It is not possible to draw general conclusions from the results of a single

experiment, but within the context of this experiment, we present the follow-

ing conclusions.

Diverse implementation

The use of diversity was beneficial in the following respects:

- Diverse implementation was effective in reducing the failure rate. A

trip system composed of three diverse acceptance-tested programs com-

bined with majority voting had a significantly lower failure rate than the

failure rate of any individual program, when tested with random input
data.

- Diverse implementation also provided an economic way of carrying out

a large number of tests. The diverse programs lent themselves to

automatic testing by comparing of their responses to randomly gen-

erated input values.

BOEING Ex. 1029. p. 80

The PODS Diversity Experiment 81

However, some disadvantages were also observed:

- Diverse implementation did not eliminate all common faults. Out of the
seven residual faults, two faults were common.

- The cost of diverse implementation was at least twice that of a single
program development.

Specification

- The computer-based forrnal specification language "X" was useful both
in specification and design. However, the exampie application was
insufficiently complex for a complete assessment to be made.

- Most of the residual faults were caused by the requirement specification.

It is likely that these could have been reduced if better methods of
acquiring, analysing and specifying the requirement had been used.

Comparison of languages

- Assembly language programming required about twice as much coding

effort and generated three times as many coding faults as Fortran pro- {
gramming. -

Software development

- Careful use of recommended development and testing methods elim-
inated design and coding faults soon after they arose, and no implemen-
tation faults were detected in the final programs.

15. Future Work

The PODS project raisedseveral questions that could not be tackled within
the original time-scales. For example, we do not know if the residual faults
(and possibly others) could have been found by more analysis or different
testing approaches, and we do not know if alternative approaches could have
been more cost-effective.

A follow-up project, called STEM, has been launched to examine this area in
more detail. STEM is an acronym for Software Test and Evaluation
Methods project and it will make use of the existing versions of the PODS
trip software, which contain known faults. The software will be checked
using a variety of static and dynamic techniques in order to assess their rela-
tive effectiveness and efficiency at detecting faults. These techniques will
include:

BOEING Ex. 1029, p. 81

82 Bishop

- manual inspection

- code analysis tools

- test coverage measurement

- test strategies using realistic, random, and systematic test data.

The effort required for each technique will also be measured so that realistic
comparisons can be made between alternative methods.

STEM is also examining the existing faults within the PODS programs to
measure the properties of software faults that are relevant to software relia-

bility modelling. The PODS programs are a useful experimental vehicle
since they possess internal states which vary between execution cycles,‘ a
common feature of real-time software. The overall model for software

failures is shown schematically in Fig. 10. We expect that internal state
effects and different input distributions will both have an impact on the-
observed failure rate, as our preliminary results have indicated (Table VI).
The main aspects that will be investigated are:

- the correlation between independent faults.

- the distribution of failure probabilities for the population of faults.

- the validity of bug-seeding as an estimator of residual faults.

- the relationship between the input distribution and the failure rate.

- the predictive ability of some of the existing software reliability models.

The results of this study should be reported in 1987.

The PODS experiment also confirmed that the initial functional specification
is a very significant source of persistent, common mode faults. CEGB has

mounted a project to- study the specification of a safety interlocking system
using mathematically formal specification and analysis techniques.

Acknowledgements

The author wishes to acknowledge:

A. Ball (SRD),

M. Barnes (SRD),

P. Humphreys (SRD),

D. Esp (CEGB),

P. Rutter (CEGB),

G. Dahll (HRP),

BOEING Ex. 1029, p. 82

The PODS Diversity Experiment 83

Inter-na.-l State

I'n.pru.tState
ii '. I

91

Input Distribution of Bugs Observed
Distribution in the Progrctm State Space Failure

Probability

Fig. 10. Schematic Diagram of Fault Activation

O. Hatlevoldt (HRP),

S. Yoshimura (NAIG/HRP),

J. Lahti (VTT), and

B. Bjarland (V'IT)

for their contributions to the PODS project. The author also thanks the Hal-

den Reactor Project and the Halden UK Control and Instrumentation Liaison
Committee for their support.

This contribution is based on a paper published in the September 1986 issue
of the IEEE Transactions on Software Engineering [Bishop 1986].

References

[Alford 1973] R. W. Alford. "A Requirement Engineering Methodology for Real-Time
Processing Environments", IEEE Trans. on Software Engineering, Vol. SE3, No. 1,
January 1973.

[Aviiienis 1975] A. fwiiienis, "Fault~.'I‘olerance and Fault-Intolerance, Complementary
Approaches to Reliable Computing", Proe. 1975 Int. Conf. Reliable Software. Los
Angeles, 1975.

[Barnes 1985] M. Barnes et al, "PODS (The Project on Diverse Software)", OECD Hal-
den Reactor Report, I-IPR-323, 1985.

[Bishop 1986] P. G. Bishop et al, "PODS - A Project on Diverse Software", IEEE Trans.

BOEING Ex. 1029, p. 83

84 Bishop

on Software Engineering, Vol. SE-12, No. 9, pp. 929-940.

[Dahll 1983] G. Dahll and J. Lahti, "The Specification System X-SPEX", IFAC Confer-

ence "Safety of Computer Control Systems", Cambridge, UK, pp. 111-118, 1983.

[BEA 1981] "Guide to the Quality Assurance of Software", Electronic Engineering Asso-
ciation, 1981.

[Fagan 1976] M. E. Pagan, "Design and Code Inspections to Reduce Errors in Program
Development", IBM Systems Ioumal, No. 3, pp. 182-211, 1976.

[Lipow 1982] M. Lipow, "Number of Faults per Line of Code", IEEE Trans. on Software
Engineering, Vol. SE—8, No. 4, July 1982.

[Minsky 1967] M. L. Minsky, Computation, Finite and Infinite Machines, Prentice Hall,
1967.

[Myers 1976] G. J. Myers, Software Reliability Principles and Practices, Wiley, 1976.

[Nassi 1973] I. Nassi and B. Shneiderman, ACM Sigplan Notices, 8 (August 1973) 8, pp. I
12-26. -

[Yourdan 1975] E. Yourdon and L. Constantine, Structured Design, Yourdon Inc, 1975.

BOEING EX. 1029, p. 84

4

Flight Applications

BOEING EX. ‘I029, p. 85

BOEING EX. 1029, p. 86

This chapter gives an overview on some applications in the aircraft indus-

tries. The paper by Traverse presents some detail on the use of Software

Diversity by Aerospatiale. Besides in the Airbus, software diversity is also

applied in other aircraft enviromnents.

At the Workshop, two further presentations were given, by Wright from

GEC Avionics and Yount from Sperry. Since their contributions could not

be included in this volume, a brief report on their talks is given here.

Nigel Wright gave a talk on the use of software diversity in the Airbus A3_lO

[Wright 1986]. The slat/flap control system of the A310 consists of two

functionally identical computers with diverse hardware (see Fig. 1). They are

manufactured by the Flight Controls Division of GEC Avionics Ltd. in

Rochester, UK. Within each computer, two diverse programs are executed

whose results are compared via an AND-logic (see Fig. 2). For the syn-

chronization of the two versions, the AND-logic has a 350 ms window.

The diversity architecture was chosen because

high integrity requirements exist,

the availability is a less stringent requirement,

the extent of the task and the ability to use avionic grade microproces-

sors, and

the certification risk.

The diversity was ensured by independent design teams, use of diverse

hardware and separate host facilities for the software design enviromnent

(see Fig. 3). Besides applying very rigorous testing before the release of the
system, there is a continuous real tirneitest during the use of the system.

The disadvantages like doubled software size, doubled design documenta-

tion, extra host system equipment and lower availability were overcome by

the advantages like higher safety, lower certification risk, clarification of the

specification, configuration control and continuous real time test.

BOEING Ex. 1029, p. 87

88 _ Voges

PlLOT'S DUAL
SELCTOR compursns IInIc(>I1)'3¢zULIc

\,

wme PFIOTECTION
MICROSWITCHES

Fig. 1. A310 System Configuration (Flap only illustrated) [Wright 1986]

LANE 1
PROCESSING

COMMAND

SENSOR
UNIT

HYDRAULIC
MOTOR !

LANE 2

PROCESSING

SLAT/FLAP CONTROL COMPUTER

Fig. 2. Slat/Flap Control System Principle [Wright 1986]

Furthermore, the diverse redundancy was preferred to the similar redun-

dancy, e. g. because the similar redundancy has a higher risk of an

undetected design error adversely affecting the system safety.

The use of software diversity made the application of high level languages

possible, since two different languages were used and therefore compiler

validation was considered unnecessary. The use of high level languages

BOEING Ex. 1029, p. 88

Flight Applications 89

TECHNICAL
SPECIFICATION

 S.R.D
(LANE 1)‘

MODULE
DESIGN

SOFTWARE
MODULES
(LANE 1)

MODULE
DESIGN

FUNCTIONAL

TEST
PROCEDURE

PRUGFI A M M E
STORE

{LANE 2)

OUTPUT
CONSOLIDATION

OUTPUT

HARDWARE

Fig. 3. Software Development Process [Wright 1986]

increased the software productivity.

As a further fault tolerance means, the outputs of the two programs are com-

pared not only with each other, but also with an estimate generated from the
previous cycle. The best of these data is output to the actuators.

The system was certified in March 1983. Since its introduction to airline ser-
vice, only one revision to the software was necessary, mainly due to perfor-
mance improvements. No erroneous deployment of the surfaces was
reported. and the reliability of the computers (in the sense of MTBF) is
exceeding the expectations.

Several aspects of this approach are also described in [Martin 1981, Martin
1982, Hills 1983, Hills 1985].

The next presentation was given by Yount on the projects at Sperry
Corporation (now Honeywell - Sperry Commercial Flight Systems Division)
on software diversity [Yount 1986]. He described the system SP-300 which
is in use in several Boeing aircraft and a new system for future aircraft,

which is in development.

The autopilot flight director system SP-300 for the Boeing 737-300 aircraft

BOEING Ex. 1029, p. 89

90 Voges

was developed by Sperry [Williams 1983]. The SP-300 AFDS consists of

two redundant computers. Each computer again contains two diverse proces-
sors (microchip versus bit slice design technique) from different manufactur-
ers. One processor is mainly controlling the pitch axis, the other one the roll

axis. The software for the two processors was developed by independent
teams. Part of the functionality is identical, so that a comparison check can
be made.

Furthermore, Sperry developed a dual redundant system with diverse

hardware and diverse software [Yount 1985b]. This system design is sup-
posed to be used in future Boeing aircraft.

The system consists of two flight control computers (FCC), each containing
three diverse redundant CPUs which again are programmed in a diverse way
(see Fig. 4). This system can tolerate single systematic faults within one
design unit (CPU + software).

FGC1

INPU1 I-
CONVERSION

INPUTCOMVNSIHN

O U T l'IJ Y }comp: nsrow

Q3»-I’ nu rpm
cancel! your

ND I-‘EMU!!!’I ND IIDIIHID L

FGC2 m ‘T‘']

mm I Imvur no MEMORY ‘ -jun guns.”

CONVERSION AND CDNYIIOL I Lnnugfipmu
|\

no Mmonv ‘

AND comnm -

>——@ 1
NOTE: FCC VALID IF M1 OR M2 '- VALID

INPUT
CONVERSION

Fig. 4. Sperry’s Dual Architecture [Yount 1986]

The development process by which Sperry tries to reduce the amount of gen-
eric faults is shown in Fig. 5.

The main advantage of diversity is seen to be the gain in overall system reli-
ability.

BOEING EX. 1029, p. 90

7 I
Flight Applications 91

CUSTOMER SPECIFICATION
AND FUNCTIONAL
REQUIREMENTS

SPERRV
SVSYEMS

ENGINEERING PROTECTION FROMGENERIC FAULT5
BELOW THIS LEVEL

SOFTWAREDE SIG NE II
IC-CPUI

5°"W“’“ HARDWARE
DESIGNER ,,Es,G,,,E,,Imcpun

SOFTWARE BOI-'I'WARE SOFTWARE DESIGNER DESIGNER DESIGNER
CODERITESTER COOERITESTER CODERITESTER IA-CPU) IB-CPUI IC-CFUI

Fig. 5. Protection from Generic Software and Processor Faults [Yount 1986]

SOFTWARE
DESIGNER

IA-CFUI

Further references to the work by Sperry are [Yount 1984, Yount 1985a].

The Boeing 757/767 is equipped with a yaw damper making use of two ver-

sion programming [Yount 1985a].

Further references to the use of diversity in the airplane industry includes

[Garman 1981, Hack 1983, Hitt 1984, Hofer 1983]. '

Besides the use of diversity for on-line purposes the parallel development of

a second system for testing purposes only is also reported [Stocker 1983].

Within the papers from the aircraft industry, the use of the term dissimilar

software is diversity.

Aircraft flight control systems developed by Rockwell Collins use dual

diverse microprocessors as well as software diversity. They are in use in
fail-safe systems as well as in fail-passive systems [Tumer 1987].

This wide variety of use of software diversity in a safety critical environment
demonstrates the applicability of this technique and a strong belief by these
industries that this technique is a cost-effective and necessary technique to

increase the dependability of the system.

References

[Garman 1981] J. R. Garman, “The ’Bug’ Heard ’Round the World,” ACM Sigsoft
SEN, Vol. 6, No. 5, October 1981, pp. 3-10.

BOEING EX. 1029, p. 91

92 Voges

[Hack 1983] J. P. Hack, “Digitale Elektronik in Verkehrsflugzeugen (Digital Elec-
tronic in Airplanes - in German),” in DGLR-Symposium, Kbln, Germany: 25-26 October
1983.

[Hills 1983] A. D. Hills, “A 310 Slat and Flap Control System Management and
Experience,” in Proc. 5th DASC, November 1983. I

[Hills 1985] A. D. Hills, “Digital Fly-by-wire Experience,” in Nata AGARD Conf.,
Edmunds AFB, CA, USA: October 1985.

[I-Iitt 1984] E. F. I-Iitt and J. J_. Webb, “A Fault-Tolerant Software Strategy for Digital
Systems,” AIAA/IEEE 6th Digital Avionics Systems Conference, 3-6 December 1984, pp.
21 1-216.

[Hofer 1983] H. Hofer, “Erfahrungen mit Flight Standard Software (Experience with
Flight Standard Software - in German),” in Proc. DGLR-Symposium, Koln, Gennany:
25-26 October 1983.

[Martin 1981] D. J. Martin, “Dissimilar Redundancy for Fly-by—wire Secondary
Flight Controls,” in Proc. Advanced Flight Controls Symposium, Colorado Springs, CO,
USA: 1981.

[Martin 1982] D. J. Martin, “Dissimilar Software in High Integrity Applications in
Flight Controls,” in Proc. AGARD Symp. on Software Avionics, CPP—330, The Hague,
The Netherlands: September 1982, pp. 36.1—36.13.

[Stocker 1983] I. Stocker and J. Rauch, “CSTS: Ein Software-Testsystem fiir den
Tornado-Autopiloten (CSTS : A Cross Software Test System for the Tornado Autopilot - I
in German),” in Proc. DGLR-Symposium, Koln, Gennany: 25-26 October 1983. ‘

[Turner 1987] D. B. Turner, R. D. Burns, and H. Hecht, “Designing Micro-Based

Systems for Fail-Safe Travel,” -IEEE Spectrum, Vol. 24, No. 2, February 1987, pp. 58-
63. '

[Williams 1983] J. F. Williams, L. J. Yount, and J. B. Flannigan, “Advanced
Autopilot-Flight Director System Computer Architecture for Boeing 737-300 Aircraft,”
in Proc. Fifth Digital Avionics Systems Conference, Seattle, Washington, USA: 30

. October - 3 November 1983.

[Wright 1986] N. C; J. Wright, “Dissimilar Software,” in Workshop ‘Design Diver-
sity in Action‘, Baden, Austria: 27-28 June 1986.

[Yount 1984] L. J. Yount, “Architectural Solutions to Safety Problems of Digital
Flight-Critical Systems for Commercial Transports,” in Proc. of the AIAA/IEEE 6th

Digital Avionics Systems Confi, Baltimore, MD, USA: 3-6 December 1984, pp. 28-35.

[Yount 1985a] L. J. Yount, “Generic Fault-Tolerance Techniques for Critical Avion-
ics Systems,” in Proc. AIAA Guidance and Control Conference, Snowmass, CO, USA:
June 1985.

BOEING EX. 1029, p. 92

Flight Applications 93

[Yount 1935b] L. J. Yount, K. A. Liebcl, and B. IL Hill, “Fault Effect Protection and
Partitioning for Fly-by—Wire and Fly-by—Light Avionics Systems.” in Proc.
AIAAIACMKNASA/IEEE Computers Er:/1ero.vpace V Conference, Long Beach. CA, USA:
October 1985, pp. 275-284.

[Yount 1986] L. J. Yount, “Use of Diversity in Boeing Airplanes,” in Workshop
’Design Diversity in Action‘, Baden, Ausuia: 27-28 June 1986.

BOEING Ex. 1029, p. 93

BOEING EX. 1029, p. 94

AIRBUS and ATR

System Architecture and Specification

Pascal Traverse

AEROSPATIALE

316, Route de Bayonne
31 060 Toulouse Cedex

France

1. Introduction

Design diversity is widely used on board of the aircraft for which

AEROSPATIALE has the design responsibility. Indeed, all the aircraft

currently in production, and all the aircraft designed since the end of the 70’s

are using dissimilar software. The current (mid-1986) number of such air-

craft is 120 AIRBUS, and 20 ATR.42. A lot of different functions are com-

puterized with dissimilar software. The principal ones are the automatic and

electric flight control systems ("automatic pilot" and "Fly by Wire"), and the

flight instruments. ~

It is needed to cope with a large set of different faults to reach the dependa-

bility objectives of a computer-base'd_\avion_ics system. Different techniques
are used, design diversity being one of them. For more information on these

techniques, see [Rouquet 1986].

Design diversity is particularly targetted to tolerate design faults in order to

reach safety and reliability objectives. Side effects are the tolerance of some

external physical faults, and an efficient help to remove software errors

(doing a so called "back-to-back" test, i.e. running all the different programs

BOEING Ex. 1029, p. 95

' Therefore, if one of the programs is faulty, this will be detected by compar-

I

96 Traverse

in parallel, with a comparison of the output).

This paper will deal basically with design diversity. With this focus, the glo-
bal architecture of the on board computing system is presented, with the

specification process, and the accrued experience. An annex lists most of the
means that are used to have a high level of diversity.

The terms on dependability and design diversity used in, this paper are
intended to be coherent with the taxonomy published in [Aviiienis 1986].

2. System Architecture

The dependability objectives for functions like:

- Fly by Wire

- Automatic flight control

- Flight instruments

are twofold:

- safety: a failed computer must not be able to send a wrong output. This
leads to a safe-shutdown requirement.

- reliability: these functions must be continuously available, and have
therefore to befault-tolerant.

2.1 Design Fault Detection and Tolerance

The safety requirement is fulfilled using as a building-block a pair of. compu-
tation channels. Each channel contains (at least) one CPU, input/output dev-

ices, and its own program. Typically, only one of the two channels is con-
trolling the output of the equipment. This channel is called the "control" or
"command" channel and the other the "monitor" one (see Fig. 1).

In fact, each channel is monitoring the other, and is able to shut-down the

whole computer. This shut-down is designed to be safe. Design diversity is
used in the sense that the two charmels have different programs.

ing the output of the two programs. If the discrepancy is above some thres-
hold and persists after a few retries, the computer shuts itself down.

Comparison between the two channels is not the only error detection
mechanism. Acceptance and exception testing, and watchdogs are also used.
The "command" processor, and the "monitor" processor are often of the
same type. Because of the two different programs, it is very likely that a

BOEING EX. 1029, p. 96

Airbus and ATR System Architecture 97

BUS

MONITOR |

L _— -—-n —
COMMAND —\

BUS

Fig. 1. Basic Layout of Computer

microprocessor design error would behave as a software error of one of the
programs. More, as the used processors are hardened versions of commer-
cial ones, it can be argued that they are extensively tested.

The tolerance to design faults is achieved using a (electro) mechanical back-
up, or a design fault-tolerant computing system, as for the "fly-by—wire"
A320. -7'

We will use the two examples of the roll control of the A310, and of the

pitch control of the A320, to illustrate the two design fault-tolerance
approaches.

BOEING EX. 1029, p. 97

- manually controlled. Therefore, the loss of the automatic flight control

98 Traverse

2.2 A310 Roll Control

The implentcntation of this function is depicted on Fig. 2. Four computers
are involved and each of the four is composed of two computation channels,
as defined to reach the safety requirements (Paragraph 2.1).

AILERONS

(FCC: Flight Control Computer
EFCU: Electric Flightcontrol Unlt)

Fig. 2. A310 Roll Control

The aircraft is controlled on the roll axis using a pair of ailerons and 5 pairs
of spoilers. The aircraft is controlled either in a manual mode, or in an
automatic one. The automatic flight control system is composed of two
"Flight Control Computers" (FCC1 & FCC2). Only one of them is active at
a time, the other one being a spare. If both computers are lost, the aircraft is

BOEING EX. 1029. D. 98

Airbus and ATR System Architecture 99

system is not dangerous for the aircraft (except during a short period of an
automatic landing in bad weather conditions).

Computers are also involved in the manual control mode. Two "Electrical
Flight Control Units" (EFCU1 & EFCU2) are used to control the spoilers. If
both of these ‘computers are lost, the pilot can still control the aircraft using
the ailerons, with a reduced authority, as the spoilers are no more available.

2.3 A320 Pitch Control

The A320 is, as far as we know, the first aircraft using a computing system
able to tolerate design faults. Diversity is such that two different types of

computers are used, one (named ELAC) manufactured by THOMSON-CSF,
based on 68000 type processors, the other (named SEC) by SFNA and
AEROSPATIALE with 80186 processors. Of course, each computer is built

with two computation channels and two different programs. Therefore, four
different programs are used.

Apart from these computers, a limited mechanical back-up can be used. The
design objective is for the computing system to be sufficiently reliable, in
order not to use this mechanical back-up.

Four computers are used to control the aircraft on the pitch axis: ELAC1,
ELAC 2, SECl, SEC2 (see Fig; 3).

At each time, only one is needed to have the full authority. The- computer in
charge of the pitch axis is periodically sending "I am alive" like messages to
the other computers. If this computer fails, it shuts itself down, and this will
be detected by the other computers. According to a predefined priority. one
of them will take the control of the pitch axis.

Something that can happen in case of a design fault is for one type of com-
puters to shut itself down. In this case, one computer of the other type has to
take the control. The whole system is thus able to tolerate design faults.

The Fly by" Wire system is intended to improve the safety of the aircraft. It
will provide a protection against windshear, a protection of the flight
envelope, and an alleviation of the burden of the pilots.

More details about the A320 Fly by Wire system can be found in [Ziegler

1984, Corps 1985]. -

BOEING EX. 1029. p. 99

‘l

100 Traverse

 SIDE STICK

E LEVATO R

(ELAC: Elevator and Alleron Computer

SEC: speller and Eleutor computerTHS: Trlmmnble Horizontal Suhlllzer
MECH TRIM: Mxhnnical Link between the Pilot

and the THS)

 SIDE STICK

Fig. 3. A320 Pitch Control

3. Specification Process

The specification process is based on some kind of formal specification and
of rapid prototyping. The formal aspect is based on a high degree of modu-

larity and of the use of logic symbols (AND, OR), and transferoperators

(filters, integrators). The operational logic and the control laws of an equip-
ment are specified in a graphical form, using these symbols. The rapid proto-

typing aspect comes from the fact that either the specifications are execut-

able (operational logic), or simulated (control laws), and from the fact that

the specification changes are normal during the environmental testing in iron

birds (i.e. almost a grounded aircraft), and even after the first flights. In fact,

apart from an unexpected event, the only expected specification changes are

parameter tuning‘ after the first flight.

BOEING EX. 1029, p. 100

Airbus and ATR System Architecture 101

The operational logic part of the specification is automatically programmed.
When dissimilar software is used, their coding algorithms are different, as

are their logic operator coding libraries.

A criticality level is a part of a software specification. To each level
corresponds a software development and testing plan, as defined in
[DO178A 1985]. Because of the use of dissimilar software, it is allowed by
the Airworthiness Authorities to downgrade the criticality level, in a few
cases. This is not allowed for the Fly by Wire A320, and for any Automatic
Flight Control System, if intended to land in bad weather condition.

There is not standard design diversity specification. The general practice is
to require:

- different software design teams

— different languages

- the equipment. manufacturer has to define programming rules in order to
' increase the diversity between the control and monitor programs.

Most of the rules used to enforce diversity are listed in the annex.

4. Experience

Our experience with safety computer is now noticeable (see Table 1).

A310, A300-600 ATRJI2

Inservicevear Em
Numberomrcraftma1—

woooo 450000 J

c°mrmerTvves=H

Table 1. Experience

 II

 On Line Computers 5
 1

‘ One more on extended range aircraft
2 EFCU, FCC,...

3 Computers that are on board and normally used; hot and cold spares are not counted

Numerous functions are implemented with dissimilar software and this
involves numerous equipment manufacturers. Each of the computers

BOEING EX. 1029, p. 101

102 Traverse '

mentioned in Table 2 is of the type depicted by Fig. 1, with two diverse pro-
grams. Our record is satisfactory. No aircraft crashed or even came close to '
this situation.

Table 2. Number of Types of Computers Using Diverse Software

. , A.310

1, SPERRY

1, Thomson CSF 1,Thomson CSF 1, SPERRY

1 Extended range aircraft; only
2 Almost complete for the A320. only partial for the others
3 AEROSPATIALE has not the design responsibility

The quality of the software is good. For the computers mentioned in Fig. 2,
either no software error has been reported (EFCU, 8 kW per program), or the

only ones that have been detected are benign (FCC, 120 kW). As for related
software error (an error in both versions of a software), not even one has

been reported. Report mechanisms are the pilots and on-line error logging
devices. '

As these errors are benign, we rather live with them until it is decided to

release a new software version (with more accurate maintenance function,

new functionalities requested by airlines). As the approach for diversity
specification and enforcement is successful on the A310, no major change
has been done on the A320 on this point.

BOEING EX. 1029, p. 102

F-

Airbus and ATR System Architecture 103

5. Conclusion

Design diversity will be used on our next aircraft: ATR.'?2, AIRBUS 330
and AIRBUS 340. At this time, it seems that having two different versions
of a software had not been necessary in operation, due to the high quality of

each program. On the other hand,

- design diversity is helping us to find some specification ambiguities, and
to test the software, and

- we feel more confident having different programs rather than relying on

a single one.

References

[Aviiienis 198m A. Aviiienis and J. C. Laprie: Dependable Computing: From Concepts
to Design Diversity. Proceedings of the IEEE Vol. 1'4, No. 5, May 1986, pp. 629-638.

[Corps .1985] S. G. Corps: A320 Flight Controls. Proceedings of the 29th Symposium of
the"Society of Experimental Test Pilots". September 1935.

IDOUSA 1935] Software Considerations in Airborne Systems and Equipment
Certification. Radio Technical Commission for Aeronautics (R.T.C.A.), No. D0l'l'8A,
March 1935. Also published by the European Organization for Civil Aviation Electronics
(EUROCAE) No. ED-12.

[Rouquet 1986] I. C. Rouquet and P. J. Traverse: Safe and Reiiable Computing on board
of AIRBUS and ATR Aircraft. Proceedings of SAFECOMP '86, October 1986, SAR-
LAT, France, pp. 93-97.

[Ziegler 1984] B. Ziegler and M. Durandeau: Flight Control System on Modern Civil
Aircraft. Proceedings of the International Council of the Aeronautical Sciences
(ICAS’84), Toulouse, France, September 1984.

Annex

Diversification means

The diversification means are tentatively classified. It has to be noted that all

the computers are not using all the listed means, but only a sub-set. Basically
the goal is to have two different software development processes. from the
software specification to the programming tools, including the software
designers. Diversity is enforced in tvi/o general cases: on alternatives (two
possible algorithms, for example) to avoid both design teams to make the
same choice, and when a point in the specification is felt to be complex.
Examples of the later are trigonometric computation (use of polar coorcli~
nates in one channel, Cartesian ones in the other) or numerical functions (a
function can be tabulated", or defined by an equation).-

BOEING EX. 1029. p. 103

104 Traverse

Hardware

- Different microprocessors

- One more microprocessor in the control charmel

- Two different types of computer

Project organization

- Different Software Design Teams

(One in Paris and one in Toulouse as an extreme case)

- Two test sets designed by two different teams

- Different optimization goals: Timing performance vs program size

Inherent differences

- Hardware differences

- Some functions are required in only one channel

- Different input

- Different necessary precision

12 bits for the control

8 bits for the monitoring

- Function in the control channel, inverse function in the monitoring
channel

Forced differences

- Different languages

- PASCAL - ASSEMBLER

- PLM - ASSENIBLER

- Division of the instmction into two sub-sets

- Different automatic programming tools

-- Different software specifications

- Different algorithms

- Different flowchaits f

- A function can be tabulated or calculated '

- Interrupts allowed in only one channel

- Trigonometric functions (polar coordinate vs Cartesian)

BOEING EX. 1029, p. 104

5

University Research

BOEING EX. 1029, p. 105

M

BOEING EX. 1029, p. 106

In this section two different research efforts are described. The first one

deals with the most recent experiment with Recovery Blocks, the largest

experiment and realization of this technique known so far.

The second paper describes the DEDIX-system, which can be used as an

operating environment for N-version programs. This system, which was

developed at UCLA in a multi year effort, proved to be portable. In a test

installation, it is also running under Ultrix on Vax/785 at KfK Karlsruhe in

Germany.

There have been many other experiments with software diversity of one kind

or the other. Some of them are referenced in the following two papers.

Besides those, the following shall be mentioned.

In an experiment by the University of Virginia and the University of Califor-

nia at Irvine 27 versions of a program - a part of a launch interceptor prob-

lem - were implemented by 27 teams. In the first analysis of 1 million test

runs with these versions, the (hypothetical) assumption of complete indepen-

dent failure behavior of the independently generated versions was shown to

be false, as was generally expected [Knight 1985].

-Further analysis of the data showed that N-version systems can reduce the

probability of failure. The failure probability for a three version system

decreased from 0.000 698 for a single version to 0.000 036 7 for a three ver-.

sion system [Knight 1986].

References

[Knight 1985] J. C. Knight, N. G. Leveson, L. D. St.Iean, “A Large Scale Experi-
ment in N-Version Programming," in Proc. 15th Intern. Symp. on Fault-Tolerant Com-

puting FTCS’15, Ann Arbor, MI, USA: 19-21 June 1985, pp. 135-139.

[Knight 1986] J. C. Knight and N. G. Leveson, “An Empirical Study of Failure Pro-
babilities in Multi-Version Software,” "in Proc. 16th Intern. Symp. on Fault-Tolerant

Computing FTCS'1 6, Wien, A: 1-4 July 1986, pp. 165-170.

BOEING EX. 1029, p. 107

In

BOEING EX. 1029, p. 108

Tolerating Software Design Faults
in a Command and Control System

Tom Anderson

CSR, University ofNewcastle upon Tyne

Peter A. Barrett

MARI, Newcastle upon Tyne

Dave N. Halliwell

CAP Scientific, London

Michael R. Moulding

Royal Military College ofScience, Shrivenham

1. Introduction

The process ofsoftware development is usually described in terms of a pro-

gression from user requirements to the final code, passing through intermedi-

ate stages such as specification, design, and validation. Of course, progress

through these stages is rarely unidirectional, and "final code" must be con-

sidered to be a misnomer given the demand for subsequent software mainte-

nance. An engineering approach to software development should enable

software to be produced on time, within budget, and in accordance with user

requirements. One important aspect of these requirements concerns the reli-
ability of the software. Software reliability requirements can be expressed in

a number of ways, of which the simplest, perhaps, is to impose an upper

limit on the measured rate of failure over a specified interval.

Given that reliability criteria can (and should) be imposed on software

BOEING EX. 1029, p. 109

1 10 Anderson et al
systems, how can these standards of reliability be achieved? Fortunately,

there is a wide range of techniques available to the software developer, all

intended to enhance software reliability. These techniques may be categor-

ised as follows [Anderson 1981]:

1) techniques to avoid making mistakes - such as design methodologies
and notations - referred to as fault avoidance;

2) techniques to find and remove mistakes - such as design reviews, ‘code

inspection, program analysis, testing, and verification, all followed by

debugging or redesign - referred to as fault removal; and

3) techniques to cope with mistakes - defensive programming based on

redundancy - referred to as fault tolerance.

The major obstacle impeding the construction of reliable software according

to engineering principles is the shortage of data on the effectiveness of these

various techniques. Fault tolerance techniques have played a major role in

the development of reliable hardware systems [Carter 1985, Lala 1985], but

have been much less widely used to cope with the possibly more serious

problem of software reliability. Over the last ten years there has been consid-

erable research activity addressing a range of issues in the field of software

fault tolerance (see, for example, [Anderson 1981, Anderson 1987, Aviiienis

1984, Slivinski 1984 and Welch 1983]). One outcome of this research has

been the identification of specific notations and mechanisms for providing

tolerance to software faults, including recovery blocks [Anderson 1976,

Homing 1974, Lee 1978, Randell 1975] and N-version programming

[Aviiienis 1977, Chen 1978].

Nevertheless, the utilisation of this approach in practical systems remains

rather limited, although dual-software systems have been constructed for a

number of critical systems [Hagelin 1987, Martin 1982]. Again, the main

reason for this may well be the lack of data on how effective this particular

approach is in improving reliability. To date, the evaluation of software fault

tolerance has either been performed by statistical modelling techniques

[Bhargava 1981, Eckhardt 1985, Gmarov 1980, Laprie 1984, Migneault

1982, Scott 1983] or by empirical studies of multiple versions of software

modules [Aviiienis 1984, Kelly 1983, Knight 1986]. Both of these modes

of evaluation have their limitations. The modelling approach is often bede-

v_illed by unjustified assumptions and/or unquantifiable parameters, whereas

the empirical approach has usually had to be applied to relatively small

modules (because of cost considerations). Nevertheless, both approaches

have indicated the potential for significant gains in software reliability from

the use of fault tolerance techniques.

BOEING EX. 1029, p. 110

Tolerating Software Design Faults 11]

This chapter reports on a three-year project conducted at the University of
Newcastle upon Tyne in conjunction with the Microelectronics Applications
Research Institute (MARI). The aims of this project were:

1) to refine and develop software fault tolerance techniques for use in con-
current and real-time systems;

2) to confirm the utility of these techniques in a practical context;

3) to determine and quantify the effectiveness of the techniques for
enhancing software reliability; and

4) to measure the cost and overheads incurred as a consequence of adopt-

ing fault tolerance.

In order that the results of the project could be considered applicable and

relevant to current practical systems it was decided to implement, for evalua- 1

tion purposes, an application system of reasonable scale, constructed by pro-
fessional programmers to normal commercial standards. The application
selected was a medium-scale naval command and control system, engineered

to be as realistic as possible, but_ incorporating software fault tolerance capa-

bilities based on recovery blocks and "conversations" [Homing 1974, Ran-
dell 1975].

An experimental programme was designed which involved executing the
application software with a simulated tactical environment using a large
number of action scenarios. Two modes of execution were available,

depending on whether the fault tolerance features were enabled or disabled.
Data from these experiments were analyzed to provide a number of quantita-

tive assessments of the improvement in reliability arising from the use of
fault tolerance. In fact, the results ‘of this analysis suggest that software fault

tolerance can prove very effective in coping with the consequences of faults
in software.

This chapter provides an overview of the experimental configuration,
describes the programme of experiments, summarises the data obtained from
the experiments, and presents the analysis of and results derived from these
data. Information on costs is briefly lsummarised in the conclusions. Project

reports [Anderson 1985, Anderson 1984] provide full details of the experi-
mental configuration and programme andialso supply more details on costs.

2. Experimental System Configuration

The hardware configuration for the experimental system is_ illustrated in Fig.
1. Three DEC computers are employed to support the following sections of

the system.

BOEING EX. 1029, p. 111

112 Anderson et al

Program Development

VT100
Elemonlcs

Slmulalor
Console

Command
Console

Fig. 1. Hardware configuration

A. Command (PDP-11/45)

This machine supports the command and control system itself. The software

is written in the Coral language and runs under a project-developed

MASCOT executive. (MASCOT is a design methodology for software con-

struction and testing; the MASCOT executive is an operating system which
supports and controls pseudoconcurrent processes and their interactions

[Mascot 1980].) The command and control system was designed according

to MASCOT techniques, and documented to the standard defined by JSP

188 (the U.K. Ministry of Defence standard for military systems); the

involvement of the Royal Navy was sought to ensure that the system would

be realistic in scale and functionality. The command and control system

takes its input from simulated radar, sonar, and inertial navigation systems,
displays the information from these sensors on a label plan display (LPD - a

simulated radar display overlaid with track markers), and interacts with an

operator, allowing him to conduct a "vectac" - a vectored attack on a hostile
submarine by means of a helicopter armed with a torpedo. The command
and control system consists of approximately 8000 lines of Coral source
code, structured into 14 concurrent activities as indicated in Fig. 2. The

command and control system and its interfaces are summarised pictorially in

Fig. 3.

BOEING EX. 1029, p. 112

Tolerating Software Design Faults 113

BIAIIIG
AND VDU DISPLAYS

KEVIOAIII
I IOVSTICI

I-)"XllIII| xz—r

ozbzgon nu-Qv-zcn

xz—r

Fig. 2. Software Cdnfiguration for the PDP-11/45 (Command)

xmrozbxmm>mwmg zam-oz)-Imr-ov-zonuzbggofi
Fig. 3. MAS COT ACP Diagram of Command and Control Subsystem

BOEING EX. 1029, p. 113

114 Anderson et al

B. Simulator (LSI-11/23)

The software running on this machine (again written in Coral and running
under MASCOT) holds a data representation of the tactical environment and

simulates the sensors which provide the input to the command and control
system (see Fig. 4). The details of the tactical scenario to be used for a run
are read from a remote data file.

TEX!’ DISPIAVS

 IIMUKATOI
COMO\E
HANDLER

no-V):-:_g—M "‘"O"‘ZOF|

S
E
R
I
A
L

Fig. 4. Software Configuration for the LSI-11/23 (Simulator)

C. File Server (PDP-11/45)

This machine provides file service facilities to the command and control sys-
tem and to the simulator system. In particular, it is used for logging the mon-
itoring data generated by the command and control system and to hold
details of the scenarios which drive the simulator.

In addition to the software mentioned above, various items of support
software (MASCOT ru.n—t'tme executive, communications software, man-

machine interface software, test and development software) were developed
by the project. -

Software-fault tolerance was incorporated into the command and control

software only, in the form. of acceptance tests executed on completion of
critical tasks, and as alternate modules of independent design which could be
executed in the event of an acceptance test detecting a problem. Automatic

BOEING Ex. 1029, p. 114

t “’ s W
Tolerating Software Design Faults 115

state restoration was available to attempt to eradicate errors from the system.
These facilities were extended to provide recoverable "dialogues" between

multiple processes. A dialogue is an explicit embodiment of, and notation
for, a restricted form of the concept of a conversation [Randell 1975], which
is, in turn, aniextension to concurrent systems of the recovery block tech-
nique. As such, the dialogue construct could be used to impose restraints,
appropriate to a MASCOT system, on the provision of recovery to con-
current activities, while still permitting interprccess communication.

The MASCOT operating system was modified and extended to provide
recovery capabilities for processes and for information recorded in the
shared data areas used for process interaction. These recovery mechanisms
utilised a special-purpose hardware device, called the recovery cache [Lee
1980], which enables state restoration to be performed very quickly (the
recovery cache may be thought of as providing a highly optimised imple-
mentation of checkpointing for multiple processes).

The provision of design fault tolerance in the command and control software
was constrained in the degree of diversity possible by the size of the imple-
mentation team. Three individuals made possible the "independent" design

and construction of an acceptance test, a primary and a secondary altemate
and this was the structure used in almost every case. Separate members of
the team were not isolated (this would have been completely impractical in

the context of the project) but the need for a strict discipline precluding
cooperation or consultation on the design and implementation of the separate
elements of the dialogue structures was very clearly understood. However,
no attempt was made to enforce diversity other than by encouragement (and
perhaps some general guidance) from the design consultant.

The actual tasks for which alternate algorithms and acceptance tests were

provided were as follows:

1. Associating an input radar message with an existing track.

2. Updating a track using radar data.

3-6. Tasks corresponding to the above. but for sonar and OSLG (own
ship log and gyro) activities. .\

7. Vectac mid-course control.

8. Vectac course update calculation (nested in 7). .

9. Vectac final approach.

10. Track classification.

BOEING EX. 1029, p. 115

115 Anderson et al

11. Track location. _

12-13. Track table house-keeping activities.

In addition to the above, an enclosing system level dialogue" (utilising
recovery and retry but without any alternate algorithm) fonned an extra line

of defence encompassing all of the above dialogues, thereby providing a
degree of tolerance to faults detected by means of supplementary assertions
embedded in code which was otherwise unprotected.

3. Experimental Programme

In order to measure flie effectiveness of the software fault tolerance tech-

niques in enhancing reliability, a series of experimental runs were performed
using various tactical scenarios to drive the simulator system. Three phases
of experimentation were conducted. For each phase of experirnentation the
application software was frozen; that is, no changes were made to the com.-
mand and control software during a phase of the experiments.

The first phase of experiments involved two versions of the command and

control system. In version one, the software fault tolerance was enabled and

operated normally. whereas in version two, fault tolerance was disabled by
the simple expedient of forcing all run-time checks to return a positive (i.e.
OK) response.

It was originally intended that each experiment would consist of a pair of
nms, one conducted with fault tolerance enabled, the other with fault toler-

ance switched off. The intention was that the unrecoverable run would

proceed along a similar path to the fault-tolerant rim until an event occurred.

The unrecoverable run would then provide data on the consequences of that
event in a fault-intolerant system. A test exerciser subsystem (automatic
operator) was constructed to run in conjunction with the command and con-

trol software in an attempt to provide a consistent operator reaction and
thereby ensure repeatability. Experience soon showed, however, that the sys-
tern did not provide the levels of repeatability required for such a method:

two runs started in a similar manner were likely to follow quite different
paths. The causes of this lack of repeatability are well understood and centre
around the unpredictability of the external interfaces to the command and

control system. In particular, the communications protocol used to interface
with the simulator (which uses a combination of check-sums, tirne-outs, and

retransmissions to ensure that no messages are lost or corrupted) is such that
the ordering of the stream of messages from the simulated environment can-
not be guaranteed to be the same for two runs conducted under similar

BOEING Ex. 1029, p. 116

Toleratirrg Software Design Faults 1171

conditions.

Because of these problems, fewer fault-intolerant runs were performed, and
only in the first experimental phase. However, the fault-intolerant nms were

used to provide information which enabled accurate predictions to be made
of the effects.of any event in the fault-intolerant version. Furthermore, meas-

urement of the reliability of the two versions enabled a direct confirmation to
be obtained of the improvement in reliability due to fault tolerance. For

phases two and three it was felt that our knowledge of the system was ade-
quate to dispense with this confirmation, so all runs in these phases were
performed with fault tolerance enabled.

In the second phase of experiments the same command and control software
was used as for the first. In part, the intention was to confirm the results of

phase one. More importantly, however, the first phase identified numerous
problems with the MASCOT recovery software, and these were corrected for
phase two. Since the success of the fault tolerance techniques is utterly
dependent on the recovery mechanisms, the results from phase two should
more accurately reflect the benefits possible from fault tolerance in practice.

In the third phase of experiments, the command and control software was

modified by replacing a number of modules with new versions written by

inexperienced programmers. These versions were expected to contain a
greater number and wider range of faults than the original modules. Further-
more, where original modules were retained, the sequencing of alternates in

recovery blocks was reversed, so that the backup alternates were used as pri-

mary alternates (and vice versa). Any faults in the recovery mechanisms
identified during phase two were rectified before phase three.

Two further phases of experimentation were envisaged, and one of these was

attempted. The intention was to evaluate the effectiveness of the fault toler-
ance techniques at different levels of reliability, and thereby investigate
whether their effectiveness diminished (or increased) at higher reliability

levels. To this end, all faults identified in the application system during

phase one were rectified to yield a more reliable version of the command and
control software. Unfortunately, this system proved too reliable, in that

failure data were generated much too slowly. This phase of experimentation

was therefore tenninated unsuccessfully.

Time and financial limitations precluded the last phase of experimentation,
in which it was plarmed to utilise an unreliable version of the application

system derived from incompletely tested modules, which had been archived

during the development of the command and control software.

BOEING EX. 1029, p. 117

118 Anderson et al

Each phase of experiments consisted of a number of runs of the command

and control system for which tactical scenarios were enacted on the simula-

tor. Each run was monitored by the support system and was carefully

observed by an operator. Each time an event occurred (an event is either a

system failure or the detection of an error in the state of the system) the

entire system ‘would halt, and the operator would first log the incident and

then analyze the error and attempt to identify the fault which caused it. The
run would then be continued to see if fault tolerance would enable a failure

to be averted, or if the failure would nevertheless occur. The system itself

also recorded data to monitor events; the categorisation of events presented
in the next section is based on these two sources of information. A run was

considered to have finished when the scenario was completed, or when a

failure occurred which prevented the system from continuing.

The tactical scenarios used to drive the simulator were prepared manually,

with the assistance and guidance of Royal Navy personnel. Each scenario

must define many conditions, such as the state of wind and tide, and specify

the movement and attributes of friendly and hostile units, including an

enemy submarine. The set of scenarios were intended to provide an approxi-

mation to the usage profile of the command and control application when "in

action" against the submarine. Naval staff were asked to validate scenarios

to ensure that they were realistic and typical.

4. Experimental Programme Results

The results from the experimental programme are presented in two sections;

the first section gives a summary of the events which occurred in the fault-

tolerant runs (for each of the three phases), whereas the second section

presents overall statistics for the two versions of the system in phase one.

A. Summary of the Fault-Tolerant Runs

The results in this section consist of a summary of the events which occurred

during the fault-tolerant I'1lIlS of the experimental programme where an event

is defined to be either an observed failure or the detection by internal checks

of a suspected error in the state of the system.

In order to analyze the data from each run it was necessary to determine

whether or not each event would have resulted in failure had the system con-

tained no fault tolerance features. Usually, the answers to such questions

were obvious, but whenever there was any doubt surrounding the outcome of

a particular event in a fault-intolerant system, the option was available to run

BOEING EX. 1029, p. 118

Tolerating Software Design Faults 119

the system in fault-intolerant mode and attempt to recreate the event in ques-

tion. The effects of the event would then be directly observable. This was

not found to be necessary in phases two and three of the experiments.

The following categories were used to group events according to their out-
come.

Events which yield an improvement in reliability over the fault-

intolerant system:

1) events in which an error was detected, the system state was restored,

and an alternate was successfully executed, thus averting failure.

Events for which no change in reliability is produced in comparison to

the fault-intolerant system:

2) events in which the system state was restored unnecessarily, but no

failure resulted;

3) events in which the system state was restored successfully, but then the

system failed (as it would have done hi the absence of fault tolerance);

4) events in which an unsuccessful attempt to restore the system state led

to a system failure (but the system would have failed anyway);

5) events in which no error was detected and the system failed (as it would

have done in the absence of fault tolerance). '

Events which result in a deterioration in reliability in comparison to the

fault-intolerant system:

6) events in which defective fault tolerance (an unsuccessful, unnecessary

state restoration) caused the system to fail.

Events for which the outcome is uncertain:

7) events in which the effect on the system was unclear.

Table I enumerates the event counts for each of these seven categories, in

each of the three phases of experiments. Over the entire programme of 163

runs of the fault-tolerant system, 250 events were analysed, and classified as

shown in the first section of the table. The second section of Table 1 pro-

vides a breakdown of the 98 events which occurred as the first event of a run
of the system (indicating that in 65 of the runs no events were recorded -
these runs were therefore fruitless in terms of yielding evidence of the

recovery capability of the fault tolerance techniques). The distinction
between all events and first events is made to factor out any effects which

might arise due to considering events which occurred after the fault-

intolerant system would have failed - and could therefore be considered

BOEING EX. 1029, p. 119

120 Anderson et al

inadmissible in comparing the two versions of the system.

Table I. Event Counts

Phase 1 Phase 2 Phase 3

Total Number of Runs: 43

Summary ofAll Events

1) Recovery averting failure 40

2) Unnecessary recovery 4

3) Recovery followed by failure 0

4) Defective recovery 13

5) Failure with no recovery 0

6) Failure caused by recovery 4

7) Outcome unclear 4

Total events: 65

Summary ofFirst Events

-1) Recovery averting failure

2) Unnecessary recovery

3) Recovery followed by failure

4) Defective recovery

5) Failure with no recovery

6) Failure caused by recovery

7) Outcome unclear

-l>-U.>O\D©-fix]
Total first events: 27

The data from Table I is analysed later in this chapter to produce the results

summarised in Table III. Events in category 2 are ignored in that analysis, so

it should be noted here that although urmecessary recoveries didtake place,

they occurred infrequently. Careful modification of an operational system

would be expected to minimise the incidence of spurious recovery.

An attempt was made to categorise the different errors which led to recovery

and failure events, but no clear picture emerged. The most common form of

BOEING EX. 1029, p. 120

Tolerating Software Design Faults __ 121

error detection (perhaps not surprisingly in a real-time system) was a form of

timeout enforced by the MASCOT system. In particular, this prevented

infinite looping when invalid circular data structures were ‘erroneously

formed in the main track table. Other common error categories were invalid

track associations (usually to a deleted track), queueing errors, errors which

generated hardware. traps and errors caused by a defective acceptance test.

B. Comparative Data for Fault-Tolerant and Fault-Intolerant Runs

Data in the previous section relate solely to runs of the fault-tolerant version

of the system, and assessment of the impact of fault tolerance on system reli-

ability depends upon the analysis and categorisation of the events which

took place. In this section, data are presented which enable a direct com-

parison to be made between the overall reliability of the two versions of the

system. This may seem to provide a superior approach to comparative

evaluation, but the reader is cautioned that due to a variety of factors (dis-

cussed below) the implications to be drawn from these data must be stated

less finnly than those based on the data of the preceding section. Because of

this limitation, the data for this section were only collected during phase one.

Table 11 presents a summary of phase one of the experiments for both ver-

sions of the command and control system. It records the total number of

experimental runs of each version, the total elapsed time during execution of

these runs, the total number of failures which occurred, and the number of

runs which were completed without a failure of the command and control

system (i.e. either completion of the scenario or premature _termination due
to a failure elsewhere).

Table II. Comparative Data

‘ Fault Tolerant Fault Intolerant

 Total runs 43 17

Total run time 50 42l‘3s 28 0573
Total failures 19 25

Failure-free runs 24 8

A number of points must be taken into consideration when analysing the
data in Table II.

BOEING EX. 1029, p. 121

122 Anderson et al
1) First the nature of a run should be considered. A run begins with a

period of relative inactivity, during which little other than object and

screen updating and object classification takes place, and during which

very few events occur. This is followed by a phase during which the

system supplies the operator with information enabling him to guide an

anned helicopter to engage a target submarine, referred to as a "vectac"

(vector and attack), which constitutes a period of intense activity during

which events are much more likely to occur. After the vectac the sys-

tem returns to relative inactivity until either a further vectac takes place

or the run is stopped. During the experimental programme, in order to

restrict runs to a manageable duration, and to ensure an adequate rate of

occurrenpe of events, the periods of inactivity before and after a vectac
were artificially curtailed. This was clone by running the simulation in

"fast run" mode until shortly before the vectac=-was due to commence,

then ending the run shortly after the vectac had completed (assuming

‘ that the system continued to run until this point). This curtailment has

the effect that, since the system is likely to suffer few, if any, failures

during periods of relative inactivity, any reliability measurements based

on timing figures (for example MTBF) will appear far worse than they

otherwise would. Thus, such figures might give a less favourable

impression for the proportion of events successfully recovered.

2) The lack of repeatability between runs (discussed earlier), the conse-

quent lack of a one-to-one correspondence between fault-tolerant and

fault-intolerant runs, and the divergence of the two systems when an

event occurs, means that the implications of a direct comparison

between the two systems are not as definitive as are the experimental

results presented in the previous section.

3) To ensure that these data corresponded to all of the experimental runs in

phase one, judgements were made concerning the four events in

category 7 (outcome unclear). These events were classified as two

failures (one in each of categories 4 and 6) and two spurious recoveries.

(The experimenters were reasonably confident that this classification

was accurate, but the assigmnent was less certain than the original

categorisation.)

4) The figures are heavily weighted by one particular nm in which 16 of
the total of 25 fault—intolerant failures occurred. This run was in no way

a "freak"; all the failures were explained by known faults. However, the

frequency of occurrence of such runs will clearly affect the overall sys-

tem reliability. Unfortunately, there is insufficient data from the fault-

intolerant nms to deduce the probability that such a run will occur.

BOEING Ex. 1029, p. 122

Tolerating Software Design Faults I23

5. Analysis of Results

A number of different approaches can _be adopted for estimating the increase

in reliability which can be attributed to the provision of fault tolerance in the

command and control system. Three approaches, characterising different

aspects of reliability, are presented in the following sections. The first

approach is based on estimating the "coverage" achieved by the fault toler-

ance techniques; that is, what proportion of potential failures are success-

fully averted thanks to software fault tolerance? The second approach pro-
vides a direct estimate of the mean time between failures for both versions of

the system, while the tlnrd quantifies the proportion of missions successfully

completed for the two versions of the system.

A. Coverage Analysis

The principal measure of the effectiveness of software fault tolerance was

taken to be the "coverage" factor of these techniques; that is, the proportion

of failures which would have occurred in a fault-intolerant system that are

successfully averted by means of fault tolerance. To be more precise, for

situations in which the fault-intolerant system would fail, coverage

represents the probability that the fault-tolerant system will nevertheless

continue to operate without failing. The required probability can be easily

estimated from the data of Table I, and thus relies solely on event counts.

The coverage factor is calculated as the ratio of the number of failures

averted (event category 1) to the number of potential failures (event

categories 1, 3, 4, and 5). Events in category 2 (spurious recovery) and

category 7 (unclear events) are disregarded. Events in category 6 (failures

introduced by fault tolerance) cannot be ignored, but are excluded from the
initial calculation.

Thus, considering all events in phase one of the experiments, the coverage

achieved by fault tolerance is estimated to be 40/53, which is approximately

0.75. This is the maximum likelihood estimate. A Bayesian analysis using
the beta distribution indicates that the value estimated can be asserted to

exceed 0.67 with 90 percent confidence. These figures should be abated to

take into account the four failures caused; by fault tolerance. The simplest

approach regards these failures as "own goals" and subtracts them from the

successes of category 1. An amended coverage estimate of 0.68 is then
obtained.

Table III presents these coverage estimates for the three phases of experi-
mentation. The estimates have been calculated for the two sets of data,

BOEING Ex. 1029, p. 123

124 Anderson et al

namely, all-event data and first-event data.

Table III. Failure Coverage

Phase 1 Phase 2 Phase 3

l_All Events
Raw coverage 0.75 0.60 0.81

Bayesian 90 percent point 0.67 0.52 0.77

Abated coverage 0.68 0.53 0.81

First Events

Raw coverage 0.44 0.65 0.83

Bayesian 90 percent point 0.29 0.53 0.74

Abated coverage 0.25 0.55 0.83

B. Failure Rate Analysis

Simple arithmetic applied to the data in Table 11 yields the following results:

Failure rate for the fault-tolerant system: 1.36/h

Failure rate for the fault-intolerant system: 3.21/h

Ratio (fault-tolerant/fau1t-intolerant): 0.42

Making the standard, although often unjustified, assumption that the mean
time between failures (MTBF) can be calculated as the reciprocal of the

failure rate yields the following alternative presentation of these results:

MTBF for fault-tolerant system: 0.74h

MTBF for fault-intolerant system: 0.3lh

Ratio (fault-tolerant/fault-intolerant): 2.36

These results may be compared to’ those of the previous section by using the

change in failure rate to provide an estimate for the coverage of failures by
means of fault tolerance.

Failure coverage: (3.21-1.36)/3.21 = 0.58

This value of 0.5 8 should be compared to the estimate of 0.68 (abated cover-

age, all events, phase one) presented in the previous section. The agreement

BOEING EX. 1029, p. 124

Tolerating Software Design Faults _ 125

is reasonably close, and the measurements are mutually supportive. How-
ever, it should be remembered that the comparison between the fault—tolerant
and fault-intolerant runs is by no means exact because of the inability to pre-
cisely repeat any individual run. In phases two and three, the failure rate for
the fault-tolerant system improved to 0.88/h and 0.58/h (MTBF l.l4h and
l.72h).

C. Successful Missions

A further comparison between the two versions of the system may be made
by examining the proportion of runs which were completed without a failure
arising from the command and control system. Again, from Table II, it can
be seen that the fault-tolerant system is more successful, although the

improvement is much less marked.

Proportion of fault-tolerant runs which
completed without failing: 56%

Proportion of fault-intolerant runs which
completed without failing: 47%

Ratio (fault-tolerant/fault-intolerant) 1.19

6. Discussion and Conclusion

The results of the previous section show clearly that for this application, in
these experiments, the incorporation of software fault tolerance has yielded a
substantial increase in reliability. Over the entire programme of experiments
(phases 1-3), the event counts of Table I show that 222 failures could have
occurred due to "bugs" in the software of the command and control system.
But of these 222 potential failures, only 5? (9 in category 3, 48 in category
4) actually happened - the other 165 were masked by the use of software
fault tolerance (category 1). This represents an overall success rate of 74
percent. (The same calculation restricted to first events yields the slightly
lower figure of 67 percent.)

Examination of the results from the first phase of experiments suggested that
much better results could be achieved if the underlying recovery mechan-
isms could be brought to an adequate staiidard of reliability. Essentially, the
project was relying on prototype recovery mechanisms (the recovery cache
and the MAS COT recovery software) to support the provision of fault toler-
ance at the application level. This situation would most certainly not be typi-
cal of an operational system, where the recovery facilities should be at least
as reliable as the hardware itself. It was hoped that improvement to the

BOEING EX. 1029, p. 125

Overheads in system operation were measured as: 33 percent extra code

126 Anderson et al

recovery routines for phase two would produce" improved results, but in fact
this effect was not observed until phase three. Projections suggest that with

further improvements to the recovery software a coverage factor of over 90

percent could have been achieved.

The discrepancy between the results for all events and first events is very

marked for phase one, but is minimal in phases two and three. The most

likely explanation is that the results for all events in phase one are rather

better than they would otherwise be as a result of multiple recovery

successes occurring in sequence. This phenomenon did occur in one spectac-

ular case in phase one" where a series of 12 successful recoveries in rapid

succession in a single run helped boost the figures (and, to some extent, pro-

ject morale).

Of course, these gains were achieved at a cost, paid in capital costs to sup-

port fault tolerance, development costs to incorporate fault tolerance, and

run-time and storage costs to make use of fault tolerance.

The capital cost for supporting fault tolerance consisted of the costs of

acquiring a hardware recovery device, for developing recovery software and

incorporating this in the MASCOT operating system, and devising an inter-

face by which dialogues and recovery blocks could interact with the operat-

ing system. The project expended approximately 1000 man-hours on these

tasks, but the aim for the future would be that recovery facilities should be

available on systems for critical applications on payment of a limited prem-

ium to the system manufacturer.

The supplementary development cost of incorporating fault tolerance in the

command and control system was approximately 60 percent. This covered

the provision of the acceptance tests and alternate modules used in recovery

blocks and dialogues. The figure of 60 percent is probably rather high,

reflecting the novelty of the techniques employed and their unoptimised util-

isation in this particular application. Against the increased development cost

must be offset any gains resulting from economies in testing the software.

memory, 35 percent extra data memory, and 40 percent additional run-time

(although the system still had to meet its real-tirne constraints). The run-

tirne overhead was incurred largely as a penalty for the synchronisation of

processes for consistent recovery capability: data collection for state restora-

tion purposes only contributed about 10 percent of the run-time overhead.

By tuning the system to optimise real-tirne response this overhead could be

substantially reduced.

BOEING Ex. 1029, p; 126

Tolerating Software Design Faults 127

Our overall conclusion is that these experiments have shown that by means

of software fault tolerance a significant and worthwhile improvement in reli-

ability can be achieved at acceptable cost. We look forward to an indepen-
dent confirmation of this result, preferably in the context of a system to be
used in earnest. I

Acknowledgement

This chapter is a revised version of a paper originally published in IEEE
Transactions on Software Engineering, Vol. SE-11, No. 12, Dec. 1985, pp.
1502-1510. Pennission to include it in this volume is hereby acknowledged.

References

[Anderson 1985] T. Anderson and P. A. Barrett, "Fault Tolerance Project Report: Results
and Conclusions from the Second and '['l1ircI Experimental Programmes", University of

Newcastle upon Tyne, Proj. Rep. 4844/DD.17/3, 1985.

[Anderson 1976] T. Anderson and R. Kerr, "Recovery Blocks in Action: A System Sup-
porting High Reliability". in Proc. Second Int. Conf. Software Eng., San Francisco, CA,
1976. pp. 447-457.

[Anderson 1981] T. Anderson and P. A. Lee, Fault Tolerance: Principles and Practice.
Englewood Cliffs. NJ: Prentice-Hall 1981.

[Anderson 1984] T. Anderson et al., "Fault Tolerance Project Report: Results and Con-
clusions from the Experimental Programme", University of Newcastle upon Tyne, Proj.
Rep. 4844/DD.17/2, 1984.

[Anderson 1987] T. Anderson, "Design Fault Tolerance in Practical Systems", in
Software Reliability: Acltievement and Assessment, Littlewood (Ed-). Oxford:
Blackwell Scientific, 1987.

[Aviiicnis 1977] A. Aviiienis and L. Chen, "On the lrnplernentation of N-Version Pro-
gramming for Software Fault Tolerance During Program Execution", in Proc. COMP-
SAC 77, Chicago, IL, 1977, pp. 149-155.

[Aviiicnis 1984] A. Aviiienis and J. P. J. Kelly, "Fault Toleranceby Design Diversity:
Concepts and Experiments", Computer, vol. 17, pp. 67-80, August 1934.

[Bhargava 1981] B. Bhargava, "Software Reliability in Real-Time Systems", in Proc.
NCC, Chicago, IL, 1981, pp. 297-309.

[Carter 1985] W. C. Carter. "Hardware Fault Tolerance", in Resilient Computing Sys- ,
terns, T. Anderson (Ed). New York: Wiley. 1985, pp. 11-63.

[Chen 1978] L. Chen and A. Aviiienis, "N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation", in Dig. F1"CS—8,Tou1ouse, France, 1978.
pp. 3-9.

[Eckhardt 1985] D. E. Eckhardt and L. D. Lee, "A Theoretical Basis for the Analysis of
Multi Version Software Subject to Coincident Errors", IEEE Trans. Software Eng., vol.

BOEING Ex. 1029, p. 127

128 Anderson et al
SE-11, pp. 1511-1517, December 1985.

[Grnarov 1980] A. Grnarov et al., "On the Performance of Software Fault Tolerance Stra-
tegies", in Dig. FTCS-10, Kyoto, Japan, 1980, pp.251-253. .

[Hagelin 1987] G. Hagelin, "ERICSSON Safety Systems for Railway Control", in this
volume. .

[Horning 1974] I. J. Homing et al., "A Program Structure for Error Detection and
Recovery", in Lecture Notes in Computer Science 16. New York: Springer—Verlag, 1974,
pp. 171-187.

[Kelly 1983] J. P. J. Kelly and A. Aviiienis, -"A Specification Oriented Multiversion
Software Experiment", in Dig. FTCS-13, Milan, Italy, 1983, pp.120—126.

[Knight 1986] J. C. Knight and N. G. Leveson, "An Empirical Study of Failure Probabili-
ties in Multi-Version Software", in Dig. F'I‘CS-l6, Vienna, Austria, 1986, pp. 165-170.

[Lala 1985] P. K. Lala, Fault Tolerant and Fault Testable Hardware Design. Englewood
Cliffs, NJ: Prentice Hall, 1985.

[Laprie 1984] J.-C. Laprie, "Dependability Evaluation of Software Systems in Opera-
tion," IEEB Trans. Software Eng., vol. SE-10, pp. 701-714, June 1984.

[Lee 1978] P. A. Lee, "A Reconsideration of the Recovery Block Scheme", Comput. 1..
vol. 21, no. 4, pp. 306-310, 1978.

[Lee 1980] P. A. Lee et al., "A Recovery Cache for the PDP-1l", IEEE Trans. Comput.,
vol. C-29, pp. 546-549, Iune 1980.

[Martin 1982] D. J. Martin, "Dissimilar Software in High Integrity Applications in Flight
Controls", in Proc. AGARD Symp. Software Avionics, The Hague, The Netherlands,

1982. PP- 36:1-36:13.

[Mascot 1980] Mascot Suppliers Ass., The Official Handbook of MASCOT, Royal Sig-
nals and Radar Establishment, Malvern, England, 1980.

[Migneanlt 1982] G. E. Migneault, "The Cost of Software Fault Tolerance", in Proc.
AGARD Symp. Software Avionics, The Hague, The Netherlands, 1982, pp. 37:1-37:8.

[Randell 1975] B. Randell, "System Structure for Software Fault Tolerance", IEEE
Trans. Software Eng., vol. SE-1, pp. 220-232, June 1975.

[Scott 1983] R. K. Scott et al., "Modelling Fault-Tolerant Software Reliability“, in Proc.
3rd Symp. Reliability Distrib. Software Database Syst., Clearwater Beach, FL, 1983, pp.
15-27."

[Slivinski 1984] T. Slivinski et al., "Study of Fault Tolerant Software Technology", Man-
dex Inc., Rep. NASA Langley Res. Cen., 1984.

[Welch 1983] H. O. Welch, "Distributed Recovery Block Performance in a Real-Time

Control Loop", in Proc. Real-Time Sys. Symp., Arlington, VA, 1983, pp. 268-276.

BOEING EX. 1029, p. 128

Design Diversity Experiments at UCLA

Algirdas Aviz"ienis, Michael R. T. Lyu, Werner Schiitz,

DEDIX 87 - A Supervisory System for

Kam-Sing Tso, Udo Voges

Dependable Computing and Fault-Tolerant Systems Laboratory
UCLA Computer Science Department -I

University of California i
Los Angeles, CA 90024, USA

Abstract

To establish a long-term research facility for further experimentai investigations of
design diversity as a means of achieving fault-tolerant systems, the DEDIX (Dfisign 5
Diversity experiment) system, a distributed supervisor and testbed for rnu1t.'t—version E
software, was designed and implemented by researchers at the UCLA Dependable Com-
puting and Fault—Tolerant Systems Laboratory. DEDIX is available on the Oiyrnpus
local network. which utilizes the Locus distributed operating system to operate a set of
several VAX l1;’?50 computers at the UCLA Center for Experimental Computer Science.
DEDIX.’ is portable to any machine which runs a Unix operating system. The DEDIX
system is described and its appjications are discussed in this paper. A review of current
research is also presented.

1. Introduction

By early 1970s significant progress had been made in the development of
systems that tolerate physical faults that are due to random failures of com-
ponents or physical interference with the hardware of a system. At that time
it became clear that design faults, especially as represented by software

‘ ‘bugs”, presented the next challenge to the researchers in fault tolerance. A

BOEING EX. 1029, p. 129

‘employs functionally equivalent, yet independently developed software com-

I30 Aviz'ienis et al

research effort to attain tolerance of design faults by means of multi-version

software was started at UCLA in early 1975. The method was first described

as “redundant programming” at the April 1975 lntemational Conference on

Reliable Software in Los Angeles [Aviiienis 1975], and was renamed as

“N-version programming” in the course of the next two years [Aviiienis

1977]. The name “Mu1ti-Version Software” (MVS) has also been used.

The entire UCLA design diversity research effort through mid-1985 has

been summarized in [Aviiienis 1985b].

The N-version programming approach to fault tolerant software systems

ponents. These components are executed concurrently under a supervisory

system that uses a decision algorithm based on consensus to determine final

output values. From its beginning in 1975, the fundamental conjecture of the

MVS approach at UCLA has been that errors due to residual software faults

are very likely to be masked by the correct results produced by the other ver-

sions in the system. This conjecture does not assume independence of errors,

but rather a low probability of their concurrence and similarity. MVS sys-

tems achieve reliability improvements through the use of redundancy and

diversity. A “dimension of diversity” is one of the independent variables in

the development process of an MVS system. Diversity may be achieved

along various dimensions, e.g., specification languages, specification writers,

programming languages, programmers, algorithms, data structures, develop-

ment environments, and testing methods.

The scarcity of previous results and an absence of formal theories on N-

version programming in 1975 led to the choice of an experimental

approach: to choose some conveniently accessible programming problems,

to assess the applicability of N-version prograrmning, and then to proceed to

generate a set of programs. Once generated, the programs were executed as

N-version software units in a simulated multiple-hardware system, and the

resulting observations were applied to refine the methodology and to build

up the concepts on N-version programming. The first detailed assessment of

the research approach and a discussion of two sets of experimental results,

using 27 and 16 independently written programs from a software engineer-

ing class, was published in 1978 [Chen 1978].

This exploratory research demonstrated the practicality of experimental

investigation and confirmed the need for high quality software specifications.

As a consequence, the first aim of the next phase of UCLA research (1979-

82) was the investigation of the relative applicability of three distinct

software specification techniques: formal (OBJ), semiforrnal (PDL), and in

BOEING Ex. 1029. p. 130

DEDIX 87 131

English.

Other aims were to investigate the types and causes of software design

faults, to propose improvements to software specification techniques and
their use, and to propose future experiments for the investigation of design
fault tolerance in software and in hardware [Kelly 1983. Aviiienis 1984].

In the course of the experiments at UCLA it became evident that the usual
general-purpose campus computing services were poorly suited to support
the systematic execution, instrumentation, and observation of N-version
fault-tolerant software. In order to provide a long-term research facility for

experimental investigations of design diversity as a means of achieving
fault-tolerant systems, researchers at the UCLA Dependable Computing and
Pau1t—Tolerat1t Systems Laboratory have designed and implemented the pro-
totype DEDIX (Dllsign Dlversity cxperiment) system, a distributed supervi-
sor and testbed for multiple-version software [Aviiienis 1985a]. DEDIX is

supported by the Olympus Net local network at the UCLA Center for Exper-
imental Computer Science which utilizes the UNIX-based Locus distributed
operating system to operate a set of VAX ll/750 computers.

The purpose of DEDIX is to supervise and to observe the execution of N
diverse versions of an application program functioning as a fau1t-to1erantN-
version software unit. DEDIX also provides a transparent interface to the

users, versions, and the input/output system, so that they need not be aware
of the existence of multiple versions and recovery algorithms. The prototype
DEDIX system has been operational since early 1985. Several modifications
have been introduced since then, most of them intended to improve the

speed of the execution of N-version software. The first major test of DEDIX
has been the experimentation with the set of five programs produced at
UCLA for the NASA-sponsored Four-University N-version software project.
A complete overview of the structure and of the applications of DEDIX at
UCLA is presented in this paper.

1.1 Functional Requirements of DEDIX

The principal functional requirements of DEDIX are as follows:
.5 _ ._

Distribution: the versions must be able to execute on separate physical sites

in order to take advantage of physical isolation between sites, to benefit from

parallel execution, and to survive a crash of a minority of sites.

Transparency: the application programmer must not be required to write
special software to take care of the multiplicity, and a version must be able

BOEING EX. 1029, p. 131

V

132 Aviz"z'enis et al

to run in a system with any allowed value of N without modifications.

Decision making: a reliable decision algorithm that determines a single

consensus result from the multiple version results must be provided. The

algorithm must be able to deal with specified allowable differences in

numerical values and with slightly different formats (e.g. misspellings) in

human-readable results; additionally, the user must be able to choose

between different decision algorithms and even -- with some more effort --

be able to incorporate a special decision algorithm of his own. If a consensus

cannot be obtained, an alternate decision must be provided.

Recovery and/or reconfiguration: DEDIX must support recovery attempts
for the minority of disagreeing versions. It also must implement

reconfiguration decisions that remove failed versions or sites when recovery
is not available or does not succeed. When a consensus does not result, an

alternate outcome (safe shutdown, or invocation of a backup system) must

be implemented.

Environment: DEDIX must run on the distributed Locus environment at

UCLA [Popek 1981] and must be easily portable to other UNIX systems.

DEDIX must be able to run concurrently with all other normal activities of
the local network.

1.2 Related Research

The DEDIX system can be considered as a network-based generalization of

SIFT [Wensley 1978] that is able to tolerate both physical and design faults

in software and in hardware. Both have similar partitioning, with a local exe-

cutive and a decision algorithm at each site that processes broadcast results,

and a copy of the global executive at each site that takes consistent recovery

and reconfiguration decisions by majority vote. DEDIX is extended to allow

some diversity in results and in version execution times. SIFT is a, frame

synchronous system that uses periodically synchronized clocks to predict

when results should be available for a decision. This technique does not

allow the diversity in execution times and unpredictable delays in communi-

cation that can be found in a distributed N-version environment, especially

when it is shared with other jobs. Instead, a synchronization protocol is used

in DEDIX which does not make reference to global time within the system.

Another approach to fault-tolerant software is the Recovery Block technique,

in which alternate software versions are organized in a manner similar to the

dynamic redundancy (standby sparing) technique used in hardware [Ander-

son 1981]. The objective of the recovery block technique is to perform

BOEING EX. 1029, p. 132

DEDIX 87 133

software design fault detection during runtime by an acceptance test per-
formed on the results of one version, as opposed to comparing results from
several versions. If the test fails, an alternate version is executed to imple-
ment recovery. Several major research activities related to N-version pro-
gramming and recovery block techniques have been reported [Anderson
1985, Cristian 1982, Kelly 1986, Kim 1984, Rarnamoorthy 1981, Voges
1982].

2. Functional Description of the DEDIX System

2.1 Services and Structure

DEDIX together with the diverse program versions has the ability to tolerate
software design and implementation faults. DEDIX and the versions interact
with each other and with their environment, i.e., a user, so that together they
can be seen as a fault-tolerant multi-version system. DEDIX itself is a super-
visor that does not add any application relevant functions to the system.

The purpose of DEDIX is to supervise and to observe the execution of N
diverse versions of an application program functioning as a fault-tolerant N-
version software unit, DEDIX also provides a transparent interface to the
users, the versions, and the inputfoutput -system so that they need not be
aware of the existence of multiple versions and recovery algoritlims. An
abstract view of DEDIX as a multiversion system withN versions is given in

Fig, 1. Generally speaking, DEDIX provides the following services:

- it handles communications from the user and distributes them to all
active versions;

- it handles requests from the versions to have their results (cc-
vectors) processed, and returns consensus results to the versions and to
the user;

- it executes decision algorithms and determines consensus results, or
invokes alternate decisions if a consensus does not exist;

- it manages the input and output operations for the versions; and
- it makes reconfiguration and recovery decisions about the handling
of faulty versions. '

Partitioning of DEDIX. The DEDIX system can be located either in a sin-
gle computer that executes all versions sequentially, or in a multicomputer
system running one (or more) versions at each site. If DEDIX is supported
by a single computer, it is vulnerable to hardware and software faults that

BOEING Ex. 1029, p. 133

134 Aviiienis er al

USER INTERFACE

VERSION 1

ETHERNET

Fig. 1. DEDIX as a Multiversion System

affect the host computer, and the execution of N-version software units is

relatively slow. In a computer network environment, the system is parti-
tioned to protect against most hardware faults. This has been done by pro-
viding each site with its own local DEDIX software, while an intersite com-

munication facility is common to all computers. The DEDIX design is suit-
able for any specified number N 2 2 of sites and versions, and currently
accommodates the range 2 S N S 20, with provisions to reduce the number

of sites and to adjust the decision algorithm upon the failure of a version or a
site.

The manifestation of faults. A hardware or software fault will affect a pro-
gram version and it may also affect the underlying system. DEDIX is

designed to be able to identify a malfunctioning site and to tolerate botl1
cases of fault effects, provided that the errors can be detected. In the first

case, when the errors and the faults can be isolated to a version only, the site
will attempt to recover the internal state of the local version with decision

results. In the second fault case, the site usually will not be able to recover

by itself and a global reconfiguration decision is necessary. All version

faults will manifest themselves as either "incorrect results", or "missing

BOEING EX. 1029, p. 134

DEDIX 87 135

results".

For example, a missing result from a site can be caused by an erroneous ver-
sion, which is in an infinite loop, a deadlocked operating system, a hardware
fault causing an error in the DEDIX software, etc. A missing result at a site
might also be caused by an excessive communication delay, i.e., the result is
produced but does not reach the other sites in time. In this case, the sending
site will detect the discrepancy between what it sent and what the other sites
observed.

VERSION

DEDIX

DECISION GLOBAL

FUNCTION EXECUTIVE

F T

1 MESSAGE HANDLER .
l T

F Locus
Fig. 2. Functional Structure of DEDIX

Structure. The services of DEDIX are partitioned into three functional

modules as shown in Fig. 2 and described in more detail next. They are:

- a Local Executive (LE), which is the DEDIX interface to the local :
version and provides input/output facilities. It also supervises local
recovery or reconfiguration actions for the local version. - ’
- a Decision Function (DF), which compares a set of results from the
different versions to produce a decision result, which is either a con-
sensus result or a decision that a consensus does not exist.

- a Global Executive (GE), which monitors the execution at all sites
and versions and supervises global recovery and reconfiguration in case

BOEING Ex. 1029, p. 135

136 ' Aviiienis et al

of version failures or a lack of consensus.

2.2 The Local Executive ’

The Local Executive (LE) contains the DEDIX interface to the version. The

version interacts with DEDIX via calls to cross-check functions (cc-

functions) and recovery points [Tso 1987b]. The incorporation of these calls

is the main adjustment a user has to make in comparison to running his pro-
gram in a nonnal (single version) environment. The exact form of these calls

is described in Section 3.2. The point of interaction is called cross-check

point (cc-point) and the transfered information accordingly cross-check vec-
tor (cc-vector). '

At cc-points, the cc-functions take the results from the version in fonn of a

cc-vector, translate them to a standard format and pass them to the Decision

Function after adding some more identification information. The consensus

results produced by the Decision Function are passed back to the disagreeing

versions by the LE for recovery. Input and output are also handled by the
Local Executive. Furthermore, the LE has some fault tolerance features.

When the Decision Function indicates that the consensus result is not unani-

mous, or when some unrecoverable exception is signaled from the local ver-

sion or some other source, the LE will try to recover locally from the fault,
report the problem to the Global Executive and, if it is considered as fatal to

the site, shut down the site. There are three classes of exceptions that are i
considered, as discussed below.

Functional exceptions are specified in the functional description of DEDIX

and are independent of the implementation. Among them are deviations
from an unanimous result, the case when a communication link is discon-

nected, and the case when a cc-vector is completely missing. For these

exceptions the Local Executive will attempt to keep the site active, possibly

terminating the local version, while keeping the input/output operating.

Implementation exceptions are dependent on the specific computer system,

language, and implementation technique chosen. All UNIX signals, such as

segmentation faults, process termination, invalid system call, etc., belong to

this class. Other examples are all the exceptions defined in DEDIX, such as

signaling when a function is called with an invalid parameter, or when an

inconsistent state exists. Most of these exceptions will force an orderly shut-

down of a site in order to be able to provide data for analysis. WExceptions generated by the local version. The local version program is

BOEING Ex. 1029. p. 136

DEDIX 87 137

likely to include facilities for exception handling, and some of the exceptions

may not be recoverable within the version. These exceptions are sent to the
Local Executive which will terminate the local version, while keeping the
site alive.

2.3 The Decision Function

The Decision Ftmction is used to determine a single consensus result from

the N version results. The Decision Ftmction may utilize only a subset of all

N results for a decision; for example, the first result that passes an accep-

tance test may be chosen. In case a consensus result cannot be determined, a

‘higher level recovery procedure needs to be invoked, that is determined by
the Global Executive.

DEDIX provides a generic decision algorithm which may be replaced by the

user’s custom algorithm, provided that the interfaces are preserved. This

allows application-specific decision algorithms to be incorporated in those

cases where the standard decisions are inappropriate, or insufficiently pre-
cise.

The current decision algorithm searches for a consensus by applying one of

the following comparisons to the version results:

(1) exact (bit by bit) - allowing an identical match "only;

(2) numerical - integer and real number comparisons with an allowed

range of deviation for ‘ ‘similar’ ’ results;

(3) with “cosmetic” corrections - allowing for minor (defined) char-

acter string differences that may be caused by misspelling or character
substitution.

2.4 The Global Executive

The Global Executive (GE) is activated when a recovery point.(r-point) is

executed. Each r-point has a unique r-point identifier (xp-id) [Tso 1987b].

At first, the GE performs the following actions to determine if global
recovery is necessary: 1) compares the rp-ids delivered by the versions, 2)

exchanges error reports with other Global Executives, and 3) determines

which versions have failed, i.e., disagree‘ with the consensus.

Error reports. Every Global Executive has an error report table, with one

entry for each site. This entry is an error counter for that site. The GE incre-
ments the counter for a site, whenever that site has either a disagreeing or

missing result at a cc-point. This means that the GE does distinguish

BOEING Ex. 1029. p. 137

‘errors at the cc-points, and 2) those with incorrect or missing rp—ids. Each

138 I Aviiienisetal
between a missing result and a delayed result. Since sites might get different
numbers of results due to varying communication delays, sites may have

somewhat different error reports. The exchange and comparison of error

reports ensure a consensus among the GEs at various sites on which versions
have failed. If no failed version is detected, the GE merely resets the error

report table and the versions continue their execution. Otherwise, global
error recovery is initiated.

Two types of failed versions are distinguished: 1) those that have detected

Global Executive of a good version signals the state-output exception
handler of its local version to output the internal state at that rp-id. These

states are compared by the Decision Function to obtain the Decision State.
Each failed version of the first type is recovered by invoking its state-input

exception handler to input the Decision State. After the exchange of internal
states, actions of the global error recovery are completed and execution of
the versions is resumed. A failed version of the second type is first aborted

by its Global Executive. The version is then restarted by its GE at the r-
point with the decision rp-id. The restarted version also inputs the Decision
State by invoking the state-input exception handler before its execution is
resumed.

The reconfiguration decision. If a version has produced errors at two or

more consecutive r-points, reconfiguration (by shutdown) needs to be ini-
tiated. If the shutdown applies to a site, each Local Executive instructs its

message receivers to stop receiving from that site. If the shutdown applies to
a version, its Local Executive terminates the local version and stops sending

messages. In both cases, the new number of expected results is adjusted

accordingly by the Decision Function at all sites. After a version is shut
down, the site will still collect messages and operate input/output, but it will
not deliver them to the local version. The Decision Function and the Global

Executive at a site are not affected if only the local version is shut down.

2.5 The Message Handler

Since Locus does not supply all the message handling routines needed for
DEDIX, an interface between the described three functional modules of

DEDIX and the Locus operating system is necessary. This message handler
(MH) interface consists of two layers: the Synchronization layer and the
message Transport layer, where the Synchronization layer is the DEDIX~
dependent pan of the message handler, while the message Transport layer is
DEDIX-independent and depends on the service provided by the underlying

BOEING EX. 1029, p. 138

DEDIX 87 139

operating system.

2.5.1 The Synchronization Layer

For each physically distributed site, the Synchronization Layer (SL) broad-

casts results (using the Transport Layer) and collects messages with the ver-

sion results ("cc-vectors") from all other sites. The SL only accepts results
that are botl1 broadcast within a certain time interval and that arrive within

the same time interval. The collected results are delivered to the functional

modules at the site. The SL accepts a new set of version results when every

site has confirmed that all or enough of the previous results have been
delivered.

The sites of DEDIX need to be event-synchronized in order to ensure that

results from corresponding cc-points are compared. Otherwise, if two sets of

results from two different cc-points are compared, the Decision Ftmction

might wrongly conclude that some of the versions or sites are faulty. Tradi-

tionally, this synchronization has been obtained by referring to a common

clock or set of clocks. The SIFT system [Melliar-Smith 1982] is one exam-

ple of such a clock synchronous system. In SIFT it is predicted when the

results should be available for a comparison. To ensure that the results are

available in SIFT, several design measures are taken to eliminate all

unpredictable delays, such as using a fully connected communication struc-

ture, using strict periodic scheduling, not allowing external interrupts (only

clock interrupts are allowed _for scheduling), and regularly synchronizing the
clocks.

The local network system and the diverse versions have the following

characteristics which make the clock synchronous technique impractical in
DEDIX:

- the versions can have different execution times between the cross-

check points;

- the versions will run concurrently with other network activities,

which means that sites temporarily can be heavily loaded, and hence

prolong the time to execute some versions;

- the Ethernet communication network has inherently varying message

transport delays.

A synchronization protocol is designed to provide the event-synchronization
service. It ensures that the results that are compared by the Decision Func-

tion are from the same cross-check point (cc-point) in each version. The ver-

sions are halted until all of them have reached the same cc-point, and they

BOEING EX. 1029, p. 139

140 Aviiienis et at

are not started again until the results are exchanged and a decision is made.

To be able to detect versions that are in an infinite loop, or otherwise too

slow, a time-out technique is used by the protocol.

The use of this synchronization protocol is based on the assumptions that:

(a) correctly working versions produce exactly the same number of
cc—vectors in the same order;

(b) correctly working versions have compatible execution times, i.e.,

they will produce results within a specified time-out interval;

(c) "missing" or disagreeing results do not exist for a majority of ver-
sions.

The specification and verification of the protocol is described in [Gunning-

berg 1985].

Time-out function. The only way to detect that a version did not produce a

result when it was supposed to, or that the result is "stuck" somewhere in the

communication system, is to use a time-out function, i.e., to require that

every version must produce a result within a time-out interval. Two time-

out techniques have been considered. The first technique is similar to the

tirne-acceptance test in the recovery block technique. A time-out function is

started at the beginning of each segment of computation and all versions

must produce results within the specified time interval in order to pass the

tirne-acceptance test. The length of the interval can either be adjusted to

each segment of computation or to a "worst case" interval for all segments.

In the second technique, the time-out interval is started when a majority of

results have arrived at a site. For example, the time-out is started when the

third result arrives in a configuration with five active versions. This tech-

nique is based on a comparison between relative execution times instead of

using an absolute time, as in the first technique. The time-out is of course

terminated if all results arrive before the time-out interval expires. A mal-

functioning version sending results too early will not cause any problems,

since they will not start the time-out. Interestingly, the problem is similar to

"comparing results with skew": the median number (result number 3 out of

5) constitutes the closest to the "ideal value" and the skew corresponds to the

time interval. One advantage with this technique, compared to the previous,

is that there is no need to assign an individual time-out for each segment of

computation. This is an advantage, since the execution time might depend on

an a priori unpredictable input, which might put the computation into a loop

of long duration. Furthermore, since the time between different cc-points

may vary and the sequence of the cc-points is not predetermined, the

BOEING Ex. 1029, p. 140

DEDIX 87 I41

synchronization would need complex infonnation to adjust the individual
time-out intervals. I

Both techniques can exist together in DEDIX, and the choice may depend on i
the application, the input/output, the computing environment, and the real I
time requirements. Both techniques require that version computations
should start almost at the same time at each site and that user input also must

arrive within the defined time interval. In the current DEDIX system, the

second technique is implemented, due to the operating environment and the ,
type of computations. The time interval is set by the user and can be quite ‘
wide, since all versions are suspended until the time interval has expired or
until all results have arrived. This suspension is possible since currently

there is no real time requirement within DEDIX. The system would need
some modifications to accommodate the time-acceptance test technique.

2.5.2 The Transport Layer

The Transport Layer (TL) controls the communication of messages. It hides
the system primitives that are actually employed from its user modules. The
TL makes sure that no message is lost, duplicated, damaged, or misad-

dressed, and it preserves the ordering of sent messages.

The requirements of the Transport Layer are specified in terms of response |
time, throughput, and reliability of service. In order to satisfy the reliability

requirement, in most practical situations a redundant communication struc-
ture needs to be used. Currently, a single ring structure of -inter-process

UNIX pipes is employed due to the limitation on the number of pipes per
process. Since this implementation does not tolerate a site crash, a redun-
dant interconnection structure is under implementation at the present time.

2.6 Possible Configurations of DEDIX

Given the fundamental functional modules of DEDIX that were described

above (LE: Local Executive; DF: Decision Function; GE: Global Executive;

SL: Synchronization Layer; TL: message Transport Layer), several
configurations of DEDIX can be implemented. "

a) For standard operation all three functions, LE, DF, and GE, reside
on the same site, and all are present in the same number as the versions.
This leads to the standard DEDIX configuration as shown in Fig. 3, with

one SL and one TL servicing all three functions.

b) It is possible to have fewer GE modules than versions, even only
one GE, that could reside on a separate ' site""with its own

BOEING Ex. 1029, p. 141

142 Aviiienis er al

Synchronization and Transport modules, while the LE and DF are shar-

ing their SL and TL modules, as shown in Fig. 4.

c) It is possible to have DF not associated with each version, e.g., have
fewer DFs, or even only one DF. This DF can also be located on a

separate site, as shown in Fig. 5.

d) Generally, it is possible to construct specialized hardware units

which contain separately the functions LE, DF, and GE. Only the LE
module needs to have the capability of running a version.

VERSION

LOCAL DECISION GLOBAL

EXECUTIVE FUNCTION EXECUTIVE

SYNCHRONIZATION
Fig. 3. The Standard DEDDC Configuration on One Site

The structure of DEDIX is adaptable for different applications. Depending
on the reliability requirements and the reliability of the versions and the

hardware, the decision algorithm and the reconfiguration possibilities, a spe- .

cial arrangement and solution can be chosen. The configurations of Fig. 4 '
and Fig. 5 have actually been used at UCLA for specific experiments.

3. Current Implementation of DEDIXA prototype of DEDIX began operation in early 1985 [Aviiienis 1985a]. It 1
has been implemented using the C programming language and is running in ‘

BOEING EX. 1029, p. 142

DEDIX 87 143

SITE 1 SITE 2 SITE 3 SITE 4

r VERSION 1 { VERSION 2 N VERSION 3

I SL 7 SL J

TL ‘ TL F TL } TL

Fig. 4. 3 Sites with 3 Versions, LE, and DF, Site 4 with single GE

FE U3El
GE

SL

1

SITE 1 SITE 2 SITE 3 SITE 4

 {VERSION 2

) LE ‘ LE N

‘ SL \ SL

E
Fig. 5. 3 Sites with 3 Versions, Site 4 with DF and GE

VERSION 3

TL

LE ’

SL 4 SL

TL r

the Locus environment at UCLA. Several modifications and refinements

have been incorporated in DEDIX since 1985, mostly to improve the speed
of N-version execution. The current standard realization has one LE, DF, and
GB for each version, running on the same site as the version. It is also

BOEING EX. 1029, p. 143

144 ' Aviiienis et at

possible to execute multiple versions (and therefore also multiple DEDIX
replicas) on one site - a single VAX 11/750 machine.
3.1 The User Interface

The user interface of DEDIX allows users to debug the system as well as the
versions, to monitor the operations of the system, to apply stimuli to the sys-
tem, and to collect data during experiments. Several commands are provided
to the user, as discussed below.

Breakpoint. The break command enables the user to set breakpoints. At a
breakpoint, DEDIX stops executing the versions and goes into the user inter-
face, where the user can enter commands to examine the current system
states, examine past execution history, or inject faults to the system. The
remove command deletes breakpoints set by the break command. The con-

tinue command resumes execution of the versions at a breakpoint. The user
may terminate execution using the quit command. The user is allowed to

inject faults to the system by changing the system states, e.g., the cc-vector,
by using the modify command.

Monitoring. The user can examine the current contents of the message
passing through the Transport layer by using the display command. Since
every message is logged, the user may also specify conditions in the display
command to examine any message logged previously. The user can also
examine the internal system states by using the show command, e.g., to
examine the breakpoints which have been set, the results of the decision
algorithm, etc.

Statistics collection. The user interface gathers data and collects statistics
of the experiments. Every message that passes the transport layer is logged
into a file with a time-stamp. This enables the user to do post-execution
analysis or even to replay the experiment. Statistics such as elapsed time,
system time, number of cc-points executed, and their decision outcomes are
also collected. -

3.2 The Version Interface

Cross-cheek functions. The programmer of a version must incorporate
calls to the Cross.-Check Functions (cc-functions) in order to make use of the

support provided by DEDIX. These calls have to be included at logically
identical cross-check points (cc-points) in the different versions which are
going to communicate via DEDIX. Therefore, the cc-points have to be
defined in the common specification of the versions. The cc~function calls

BOEING EX. 1029, p. 144

DEDIX 87 _ 145

have the following structure: ccpoint (ccid, format, arguments). The parame-
ter list is called cc-vector. The ccid is the identification of the cc-point. The

format is a string of characters identifying the types of the variables con-
tained in the arguments and the kind of decision algorithm which is to be
applied to these variables. Possible variable types are character, integer, real,
etc. The possible decision algorithms are described in Section 2.3.

The identity number of the cross-check point is passed on to the cc-function,
to make sure that only information belonging to the same cc-point is com-

pared by the Decision Function. Three different cc-fimction calls are possi- '
ble: ccinput for input of data (instead of a standard input read statement),
ccoutput for output of data (instead of a standard output write statement),
and ccpoint for error recovery.

The ccinput call. The input to the versions is initiated via this call. The
Decision Function checks whether all versions agree on the format of the

input. In case of a single input, the input is distributed to all versions. In case
of multiple versions of input, e.g. by redundant sensors, it is possible that
either each version receives its related input, or that the Decision Function

checks the inputs and chooses a consensus value for common distribution.

The ccoutput call. All outputs of the N-version software unit must be made
via DEDIX and therefore must pass through the Decision Function. The
results or data from the versions can be a collection of integers, character

strings, and real numbers. Along with this data, a selection can be made on
which kind of consensus decision shall be used for the outputs. Different

consensus for different parts of the output may be specified.

The ccpoint call. This call is made if a cross-check between the versions is
desired, but no input or output is required. Again, a decision is made on the
version results, and the consensus result is passed back to the versions.

Recovery points. Complete error recovery of failed versions is performed
at recovery points (r-points). Associated with each r-point in_ each version
are: a recovery point id (rp-id), which uniquely identifies the r-point, and
two exception handlers, the state-input exception handler and the state-
output exception handter, that are required to input and to output the internal
state of the version (version state) in a specified format. The r-point call has

the following structure: rpoint (rpid), where the rpid is the identification of
the r-point.

BOEING EX. 1029, p. 145

146 Aviz"iem'.\' er al

4. Research Applications of DEDIX

The N-version software research at UCLA has two major long-tenn objec-
tives:

(1) to develop the principles of implementation and experimental
evaluation of fault-tolerant N-version software units; and

(2) to devise and evaluate supervisory systems for the execution of N-
version software in various environments.

Both objectives are strongly supported by the experimental use and the con-

tinuing evolution of the DEDIX supervisory system. Some key aspects of

the research applications of DEDIX are discussed below, and some recent

specific results - in subsequent sections.

4.1 Implementation and Evaluation ofN-Version Software

The N-version implementation studies that are supported by DEDIX address

the problems of: 1) methods of specification, and the verification of

specifications; 2) the assurance of independence of versions; 3) partitioning

and matching, i.e., good choices of cc—points, r—points, and cc-vectors for a

given problem; 4) the means to recover a failed version; 5) efficient methods

of modification for N-version units; 6) evaluation of effectiveness and of

cost; 7) the design of experiments.

Initial specification and partitioning. The most critical condition for the

independence -of design faults is the existence of a complete and accurate

specification of the requirements that are to be met by the diverse designs.
This is the “hard core” of this fault tolerance approach. Latent defects, such

as inconsistencies, ambiguities, and omissions, in the specification are likely
to bias otherwise entirely independent programming or logic design efforts

toward related design faults. The most promising approach to the production

of the initial specification is flie use of formal, very-high—level specification

languages that are discussed in Section 6. When such specifications are exe-

cutable, they can be automatically tested for latent defects and serve as pro-

totypes of the programs suitable for assessing flie overall design. With this

approach, perfection is required only at the highest level of specification; the

rest of the design and implementation process as well as its tools are not

required to be perfect, but only as good as possible within existing resource
constraints and time limits.

The independent writing and subsequent comparisons of two specifications,
using two formal languages, is the next step that is expected to increase the

BOEING Ex. 1029, p. 146

DEDIX 87 147

dependability of specifications beyond the present limits. Our current inves-
tigation of specification methods is discussed in Section 6. It is also impor-
tant to note that a formal specification must specify the following

application-specific features needed by N-version execution: 1) the initial
state of the program; 2) the inputs to be received; 3) the location of cross-
check and recovery points (partitioning into modules); 4) the content and

format of the cross-check vector at each cc-point and r-point (outputs are

included here); 5) the algorithms for internal checking and exception han-

dling within each version; and '6) the time constraints to be observed by each

program module.

Independence of version design efforts. The approach that is employed to
attain independence of design faults in a set of N programs is maximal

independence of design and implementation efforts. It calls for the use of
diverse algorithms, programming languages, compilers, design tools, imple-

mentation techniques, test methods, etc. The second condition for indepen-

dence is the employment of independent (noninteracting) programmers or

designers, w'it11 diversity in their training and experience. Wide geographical =

dispersion and diverse etlmic backgrounds may also be desirable. DEDIX I
provides a suitable environment to study the effectiveness of efforts to attain
diversity and independence, of versions. Recent experimental results and
plans for future experiments are reviewed in Section 5.

Recovery of failed versions. A problem area that has been addressed

recently [Tso 1987a] is the recovery of a failed version in order to allow its
continued participation in N-version execution. Since all versions are likely
to contain design faults, it is critically important to recover versions as they
fail rather than merely degrade to N-l versions, then N-2 versions, and so on

to shutdown. Recovery of a given version is difficult because the other
(good) versions are not likely to have identical internal states; they may
differ drastically in internal structure while satisfying the specification. The
Community Error Recovery (CER) approach offers a systematic two-level
method of forward recovery for failed versions [Tso 1987b]. Recent results

of an experimental evaluation of CER using DEDIX are presented in Section
5.

Modification of N-version software. It"'is evident that the modification of

software that exists in multiple versions is more difficult. The specification is

expected to be sufficiently modular so that a given modification will affect
only a few modules. The extent to which each module is affected can then be
used to determine whether the existing versions should be modified accord-

ing to a specification of change, or the existing versions should be discarded

BOEING Ex. 1029, p. 147

_148 Aviiienis et al

and new versions generated from the appropriately modified specification.
DEDIX-based experiments are currently being plarmed to gain insights into
the criteria to be used for a choice.

Assessment of effectiveness. The usefulness of the N-version approach

depends on the validity of the conjecture that residual software faults in

separate versions will cause very few, if any, similar errors at the same cc-

points. Large—scale experiments need to be carried out in order to gain evi-
dence on the nature of faults encountered in independently developed pro-

gram versions. The “mail order software” approach offers significant prom-

ise to provide versions to be evaluated using DEDIX. An “international mail

order” experiment is being plarmed, in which the members of research

groups from several countries will use a formal specification to write

software versions. It is expected that the software versions produced at

widely separated locations, by programmers with different training and
experience who use different programming languages, will contain substan-

tial design diversity. In further experiments, it may be possible to utilize the

rapidly growing population of free"-lance programmers on a contractual basis

to provide module versions at their own locations. This approach would

avoid the need to concentrate programming specialists, have a low overhead

cost, and readily allow for the withdrawal of individual programmers.

Cost investigations. The generation of N versions of a given program

instead of a single one shows an immediate increase in the cost of software

prior to the verification and validation phase. The question is whether the

subsequent cost will be reduced because of the ability to employ two (or
more) versions to attain mutual validation under operational conditions. Cost

advantages may accrue because of 1) the faster operational deployment of

new software; and 2) replacement of costly verification and validation tools

and operations by a generic N-version environment (such as DEDIX) in
which the versions validate each other while executing useful work. The loss

of performance due to the presence of fault tolerance mechanisms, such as

decision algorithms and recovery points also needs to be assessed.

Design of experiments. Several design issues of design diversity experi-

ments need to be carefully resolved. They include: exploring different

dimensions of diversity, incorporating efficient error detection and recovery'

algorithms, and avoiding commonalities in the design effort. The software

versions produced in these experiments need to be subject to controlled con-

ditions that approximate the development methodologies and environments

used by advanced industrial facilities. There should be extensive logging of

work periods and events such as error detection, specification questions and

BOEING EX. 1029, p. 148

DEDIX 87 ' 149

answers, and test suite execution. The experiment leaders need to provide a

complete high-level, high-quality specification. At all stages, questions
about the specifications are submitted by electronic mail, reviewed by the
experiment leaders, and answered by electronic mail. The rule of "written
communication only" makes it possible to control and analyze the informa-
tion flow. The detennination that a question revealed a flaw in the I

specifications causes changes to be broadcast to all programmers at all sites. |
The deliverable items include a design document, a series of compiled pro-
grams representing the results of the top down development at each abstrac-
tion layer, a test plan and test log, and the final program. The delivered
software is then subjected to an adequate acceptance test to ensure its qual-
1ty.

To measure the extent of design diversity and to assess potential reliability I
increases under large-scale, controlled experimental conditions, two major
projects are underway: The NASA/Four-University experiment (initiated in
the summer of 1985) and the UCLA/Honeywell Experiment (to be con-
ducted during the second half of 1987). Descriptions of these two experi-
ments are presented in the following Section 5.

4.2 Investigations of Supervisory Systems

The research concerned with N-version supervisory systems, as exemplified

by DEDIX, deals with: 1) the functional structure of supervisors; 2) fault-
tolerant supervisor implementation, including tolerance of design faults; 3)
instrumentation to support N-version software experiments; 4) efficient
implementation, including custom hardware architectures to support real-
time execution; and 5) methods of supervisor evaluation.

N-version execution supervision and support. Implementation of N-
version fault-tolerant software requires special support mechanisms that

need to be specified, implemented, and protected against failures due to phy-
sical or design fau1ts.'These mechanisms fall into two categories: those
specific for the application program being implemented, and those that are
generic for the N-version approach. _The specific support is part of the ver-
sicn specification. The generic class pf support mechanisms forms the N-
version execution supervision enviroiunent that includes: 1] the decision

algorithm; 2) assurance of input consistency; 3) interversion communication;
4) version synchronization and enforcement of timing constraints; 5) local
supervision for each version; 6) the global executive and decision function
for the recovery or shutdown of faulty versions; and 7) the user interface for
observation, debugging, injection of stimuli, and data collection during N-

BOEING EX. 1029, p. 149

150 Aviiienis et at

version execution of application programs. The nature of the generic sup-

port mechanisms has been illustrated in the discussions of the DEDIX N-

version supervisor system that was described in preceding Sections 2 and 3.

The continuing use of DEDIX leads to further insights that result in
refinements and enhancements of DEDIX functional structure and its

efficiency.

Protection of the supervisory environment. The success of design fault

tolerance by means of N-version software depends on uninterrupted and

fault-free service by the N-version supervision and support environment.

Protection against physical faults is provided by the physical distribution of

N versions on separate machines and by the implementation of fault-tolerant

communication linkages. The SIFT system [Wensley 1978] and DEDIX are

suitable examples in which the global executive is also protected by N-fold

replication. The remaining problem is the protection against design faults

that may exist in the support environment itself. This may be accomplished

by N-fold diverse implementation of the supervisor. To explore the feasibil-

ity of this approach, the prototype DEDIX is currently undergoing formal

specification. Subsequently, this specification will be used to generate

diverse multiple versions of the DEDIX software to reside on separate physi-

cal nodes of the system. The practicality and efficiency of the approach
remain to be determined. Some results are discussed in Section 6 of this

paper.

Architectural support. Current system architectures were not conceived

with the goal of N-version execution; therefore, they lack supporting instruc-
tions and other features that would make N-version software execution

efficient. For example, the special instructions “take majority vote” and

‘ ‘check input consistency” would be very useful. The practical applicability

on N-version software in safety-critical real-tirne applications hinges on the

evolution of custom-tailored instruction sets and supporting architectures.

The current DEDIX implementation supported by Locus is likely to be too

slow for this purpose. Despite this limitation, the functional architecture of

DEDIX can be used with faster transport service and faster scheduling poli-
cies in a real-tirne system, while Locus can be used to simulate real-tirne
execution.

BOEING EX. 1029, p. 150

DEDIX 87 151

5. Testing Tools, Experience, and Results

5.1 Programs for Demonstration and Testing

‘This section describes the existing multiversion programs for DEDIX which

were developed to test DEDIX and to demonstrate its capabilities. The most
important characteristics of these application programs are also given. Most
of the programs were written in the C programming language.

The Airport Scheduler simulates an airport database and is based on the
specification used in [Kelly 1983]. Typical operations include: scheduling or
canceling a flight, changing certain flight data (e.g. departure time), reserv-
ing a seat, and looking up information in the database. There exist three ver-
sions: one version implements the database using arrays, the second one uses
linked lists. Both versions are written in C, and the third version is identical

to the first, except that it is written in Pascal. These three programs demon-
strate the concept of design diversity and are suitable to test DEDIX after
modifications.

The programs arcade and arc__io can be used to test tl1e implementation of
the cross-check fimctions. A number of borderline cases are explored. Furth~

ermore, calls which violate the specification of these ftmctions are made in ,
order to test the robustness of DEDIX. Examples are: calls without cross- ;

check vectors, with inconsistent cc-point identifier, wrong format string, or I
inconsistencies between fonnat string and cc-vector. '

The program cv tests the implementation of the Decision Function. It reads
test cases from a file, applies them to the decision algorithm, and stores the
decision result in an output file. A "file with some 100 standard test cases is
available, as are the expected results from these test cases. Three versions
exist which differ in that they read different files.

Name is a sample demonstration program that reads an integer, performs
some "complicated" computations involving arrays of integer and real
numbers, and that finally selects a string (name) from a table for display.
Four versions exist: three mutated ones with different built-in data tables,

and one that simulates an infinite loop. ‘

The program power computes a to the power of b for two b11ilt—in numbers a
and b. It is designed to exercise the number-handling features of DEDIX.
Twenty different bugs (e.g. different numerical constants, typing errors,
wrong use of cc-functions) have been injected into the program and can be
invoked. Thus 220 different versions can be generated. These versions serve

BOEING EX. 1029, p. 151

152 Aviiienis er al

as mutants for the validation of DEDIX by mutation testing.

Test is a test program to test the basic functions of DEDIX. It is similar to

arcade and arc_io, but is better documented and tests more thoroughly.
Standard test cases and their expected -results are available. In addition, there

exists a shell script that repeatedly executes these test cases in different

configurations (single machine, distributed) or with different run time

options of DEDIX.

Time is a demonstration program that reads the clock of the machine it is

mnning on, converts it into a string and displays it. It also asks interactively
whether that process should be repeated. Time demonstrates that diverse

versions can have synchronized clocks. Naturally, this program is only use-
ful when DEDIX is distributed, i.e. each version runs on a different machine.

Table 1 summarizes the characteristics of the above mentioned testing pro-
grams. ‘

Table 1. Multiversion Programs for Demonstration and Testing Purposes

Number of Lines of Code Language Main Purpose
Versions (approx.)

470 | C, Pascal demonstrationarcade. arc_io 350 C I test - cc-function.-5
100 C test - voter

60 C demonstration H

515 C test - number handling.
‘ mutation testing

'—‘ 300 C test - all basic
functions

7 I 20 C demonstration]

5.2 Proper Specification and Testing of Fault Tolerance Mechanisms

It was noted earlier that the N-version error detection and recovery mechan-

isms for each version, including cross-check points and recovery points,
need to be defined in the software requirement specification. To avoid res-

tricting design diversity, the programmers may be given a choice where to

place the cc-points in their programs. The sequence in which the cc-points
occur and the variables involved should be specified, and it should be

required that the variables of each cc-point be computed but not used before

the cc-point is reached. The programmers are also required to use the (possi-

bly modified) values returned by the DEDIX supervisor in all subsequent

BOEING EX. 1029, p. 152

DEDIX 87 153

computations.

The acceptance test should adequately test the recovery capability. It should

ensure that the cc-points are placed in the right sequence, and output values

are checked in right places during the execution of each version. Possible

design faults that are related to cc-points fall into two categories:

1. Incorrectly located cc-points. Some programmers might place cc-points

before the final values are calculated. These cc-points are placed too

early. Also, some versions might use computed values before passing

them to the decision function. These cc-points will occur too late.

2. Unused returned values. This fault could ‘occur when a version uses an

internal variable in place of a state variable. The value of the internal

variable is assigned to the state variable of the cc-vector before the co-

point is called, but subsequent computations are still based on the value
of that internal variable.

These faults can be detected by specially designed tests. The output values

should be checked at the cc-points. This will detect the incorrect placement

of cc-points. Also, specific tests should be included that deliberately retum

new values to some cc-points. The results of the next cc-point should then be

checked to verify that the returned values are actually used. These prepara-

tions are necessary for the proper execution of multi-version software in the
DEDIX enviromnent.

5.3 DEDIX in the NASA/Four-University Multiversion Software Experi-
ment

The NASA Langley Research Center is sponsoring the NASA/Four-
University experiment in fault-tolerant software which has been underway

since 1984. During the summer of 1985, the NASA experiment employed 40

graduate students at four universities to design, code and document 20

diverse software versions of a program to manage redundancy and to com-

pute accelerations for a redundant strapped down inertial measurement unit

(RSDIMU). The analysis of this software currently engages researchers at

six sites: UCLA, the University of Illinois at Urbana-Champaign, North
Carolina State University, and the University of Virginia, as well as the

Research Triangle Institute (RTI), and Charles River Analytics (CRA).

Empirical results from this experiment will be jointly published by the
cooperating institutions after the verification, certification, and final analysis

phases are complete. While the joint results still await publication, some

independent results from the UCLA effort have been reported in [Kelly

BOEING Ex. 1029, p. 153

154 Aviiienis et al

1986].

During the summer of 1985, each of the four universities employed ten gra-

duate students to design, code and document five software versions in ten

weeks. At the end of this effort, each of these 20 software versions was

required to pass a preliminary acceptance test that used 75 test cases. At

UCLA, a long and careful validation phase including extensive testing of the

versions followed the 10-week software generation phase. During validation,

many errors and ambiguities in the specifications and the software versions

were revealed. The specifications were subsequently refined. The five

UCLA versions have since been further debugged by the original program-

mers and have passeda final (UCLA) certification test that consisted of 200

random test cases, 55 hand-made test cases of special value test data and

extremal value test data, and special test cases for verifying the recovery

mechanism. The size of the five resulting software versions ranged from

1677 to 2794 lines of Pascal statements. The scope of this discussion is lim-

ited to the specific testing done at UCLA that employed DEDIX. The pur-

pose of the tests was to evaluate the new CER forward recovery method

[Tso 1987b]. Only the five certified versions from UCLA were used in these
tests. 5

A Test Case Generator (TCG) was used throughout the evaluation of i
recovery to generate random test cases. After the TCG had generated the .'
data for a test case, all five individual versions were executed consecutively, i
using the same input data. If a majority of similar results exists, they are ‘

used to decide the reference output which is further checked by the known

TCG output values to ensure its consistency. At the same time, individual

version failures are identified. This failure information is used to generate

"interesting" 3-version combinations (triplets) using the assumption that all

majority versions behave identically for that test case. This means that tri-

plets with two good versions, such as (G1, G2, B), (G1, G3, B), and etc., are

treated as one, i.e., (G, G, B), and many triplets can be eliminated from

further testing. The interesting triplets are then executed in a three-version

configuration under DEDIX supervision. The decision results are passed

back to the failed versions for partial recovery at the cc-point level. Decision

results of the triplets without recovery are obtained simply by comparing

individual version outputs of the combinations. The decision results, both a)

without recovery and b) with recovery, are then used to detennine the effec-

tiveness of the recovery. The process then is repeated for further test cases.

A total of 200,000 test cases were employed in recovery evaluation.

BOEING EX. 1029, p. 154

DEDIX 87 155

5.3.1 Faults Discovered and Errors Observed During Testing

During the recovery evaluation process, several faults were found in the five
UCLA certified versions. Table 2 lists these faults and their effects on the

outputs, i.e., the errors seen at cc-points.

The fault uclal-1 manifested itself during the testing because of the use of a

Pascal compiler in the testing harness, while a Pascal interpreter was used in

the program development and certification processes. Obviously, the inter-

preter initializes variables in a Pascal procedure, while the compiler does
not. Since this fault failed the version more than half of the time, it was

taken out in our evaluation. One of the display functions is to display the

five most significant digits and the decimal point of a floating point number.

Two versions failed to round the numbers correctly, although not in the same

way. Both versions ucla3 and ucla4 made wrong system failure decisions,
but for two different reasons. Thus the faults are different, but both versions

produced coincident and identical errors at the cc-point for 96 out of the
200,000 test cases.

Failures of the individual versions. The result of a version running a test

case is defined as erroneous if one or more of its output values (out of a total

of 64 element values) differs from the reference values defined previously.

We also say that the version fails on that test case. Table 3 shows the

observed failures for the individual program versions for the 200,000 test

cases, and their sizes in number of Pascal statements;

It must be noted that the failure probability depended very much on the test

case generator, and on the range of variation ("skew") that is allowed when

results are compared. We consider that the versions tested in this evaluation
were under stress because the test cases were sampled randomly from the

largest possible input space. In actual flight, extremal input ‘data are much

less likely to happen than routine data.

Coincident failures of the versions. Two versions are said to fail coin-

cidently if they both fail (produce erroneous values of the same element) for

the same test case. These coincident errors may be similar or distinct. It

was observed that more than two versions did not fail for the same test case
during the 200,000 test runs. There was one coincident error between uclal
and ucla3, and there were 110 coincident errors between ucla3 and ucla4.

Similar errors of the versions. It should be noted that the results of the

versions which fail coincidently may not be similar. Similar results are

defined to be two or more results (good or erroneous) that are within the

BOEING Ex. 1029, p. 155

156 Aviiienis et al

Table 2. Characteristics of Discovered Faults

Label Fault Error at cc-point

uclal-1 incorrect uninitialized incorrect

algorithm variable sensor status

uclal-2 incorrect bad display incorrect

algorithm rounding display

uclal-3 incorrect overflow handled incorrect

algorithm incorrectly display

ucla2 no fault discovered

ucla3-1 spec mis— individual instead of incorrect

interpretation average slopes used sensor status

ucla3-2 spec mis— wrong frame incorrect

interpretation of reference used sensor status

ucla3-'3 spec wrong system incorrect

ambiguity failure decision system status

ucla3-4 incorrect bad display incorrect

algorithm rounding display

ucla3-5 incorrect overflow incorrect

algorithm not handled display

ucla4-1 spec wrong system incorrect

ambiguity failure decision system status

ucla5 no fault discovered

range of variation that is allowed by the decision algorithm. When two or
more similar results are erroneous, they are called similar errors [Aviiienis

1985b]. It was found that only ucla3 and ucla4 had similar errors which
occurred for 96 test cases.

5.3.2 Results of CC-Point and R-Point Recovery

The effectiveness of partial recovery at cc-points was evaluated by

BOEING EX. 1029, p. 156

DEDIX 87 157

Table 3. Failures of Individual Versions

 Number of Failure

Failures Probability

SizeVersion

 2016 0.000005

1685 0.000000

1962 0.003510

2794 0.001415

1677 0.000000

comparing the firm! decision results of a 3-version RSDIMU software
module (triplet) executed without the cc-point recovery provision and the
one executed with the cc-point recovery provision. This was the first oppor-

tunity to perform cc-point recovery as an experiment.

Table 4. Classification of Triplet Decisions

Final Individual

Decision Version Results

lGooD3 G G G
GOOD2 G G B

The final decision of a triplet falls into five categories as shown in Table 4.

Explanation

All three results are good (G).

Only two results are good. The error

(B) of the failed version is masked.

NOMAJ B1 B2 G All three results are different from each

B1 B2 B3 other. This decision is a fail-safe stop.

BAD2 B B G A similar error (B) occurs in two

B B B1 versions.

LBAD3 B B B A similar error in all three versions.

Table 5 summarizes the consequences of including the cc-point recovery
over the 200,000 test cases. Almost 90% of the changed decisions of the 3-
version RSDIMU module are from GOOD2 to GOOD3, meaning that errors

which occurred in a single. version of the triplets had been recovered suc-

cessfully by cc-point recovery. The improvement "of a decision from
GOOD2 to GOODS should not be diminished by the fact that the decision

results of the two decisions are the same, and the change is only on the

BOEING Ex. 1029, p. 157

I58 Aviz"iem's et al

confidence level. This improvement makes the 3-version MVS system fully

recovered and ready to tolerate another fault that may happen in the subse-

quent computations. There are 64 decisions in the GOOD3 —-> GOOD3

category although the triplets include one or two failed versions. This occurs

because our analysis considers the System Status and Estimated Accelera-

tion results only, and these failed versions were able to compute them

correctly, but failed in the Display Driver.

Table 5. Consequences of CC—Point Recovery

Without With Triplets of 2 G Triplets of 1 G
recovery recovery and 1 B versions and 2 B versions

There are nine triplets which had their decisions improved from NOMAJ to

GOOD3. This improvement happens when two different versions fail at dif-

ferent cc-points. Without recovery, the triplet produced a NOMAJ decision;

with recovery, it first recovered a failed version at an earlier cc-point, then

the fully recovered triplet recovered another failure later. Since the

RSDIMU module has only five computations, and most of the observed

errors occurred after the second one, the case in which a ‘fully recovered tri-

plet recovered from a second fault happened rather rarely.

In the 96 triplets that had their decisions changed from BAD2 to BAD3 the

good version was forced to fail in the same way by an attempted recovery.

However, similar errors already existed in a majority of versions, and the

MVS system is assumed to fail, in either case. The two triplets that have

their decisions changed from NOMAJ to BAD3 are dangerous because the

3-version MVS system has been changed from a fail-safe state to an unsafe
state.

The most frequent similar errors observed during the testing are due to the
case in which both versions ucla3 and uc1a4 declare that the RSDIMU sys-

tem failed. This decision sets all sensor status to non-operative and the

estimated accelerations to zero. The program faults (ucla3-3 and uc1a4-1 in

BOEING Ex. 1029, p. 158

DEDIX 87 159

Table 2) are due to extra checks on conditions that should not happen

according to the original RSDIMU specification. This specification was

changed during the course of program development and certification. How-
ever, it should be noted that such outputs lead to a fail-safe response of shut-

ting down the system hr the RSDIMU application. Detailed discussion of the

results appears in [Tso 1987b].

Recovery points were not specified in the RSDIMU specification. However,

a new program can be easily composed in which the RSDIMU module is the
first module, with an auxiliary (AUX) module added. Then a recovery point '
is inserted between them. The AUX module contains nothing but a new cc-

point used to check if the AUX module is indeed reached and started with a
correct version state. The version state at the beginning of the AUX module

was defined to be the collection of all the eleven output variables and of two

other variables in the RSDIMU module found to be common to all the ver-

sions. One of them is the id number of the failed face, and the other is the

threshold that determines a sensor failure. With the version state defined,

state input and output exception handlers were implemented and used by" all
five versions.

DEDIX was used for testing because recovery at the recovery point level

requires a sophisticated N-version supervisor to keep track of errors detected
at the cc-points, to invoke the exception handlers, and to restart an aborted
version. All the test cases that caused some versions to fail during previous

cc-point recovery testing were used to test triplets of the instrumented pro-

grams for r-point recovery. The evaluation is similar to the previous one that
considered RSDIMU system improvement with cc-point recovery. The pre-

vious evaluation examined the final results (System Status and Estimated

Acceleration) of a 3-version RSDIMU module. In this evaluation we exam-

ined the version state after the recovery point.

The results of all possible consequences of a DEDIX test run executing a tri-

plet of instrumented versions (containing either one, or two bad versions) are
shown in Table 6. Each version consists of the RSDIMU module, an r-

point, and the AUX module. Table 6 shows that for triplets with only one
bad version, 983 of the 986 version states of the bad versions were recovered
correctly at the recovery point, and there were 3 cases in which DEDIX gave
the "No Majority" decision because of disagreement in comparing version
states. The good versions used to fonn the triplet were the first two good
versions chosen in the order of their version identifiers, therefore they

always were different versions. It was found in those 3 test runs that
although uclal had produced good outputs at the cc-points in the RSDIMU

BOEING EX. 1029, p. 159

160 Aviiienis et al

module, in fact it had an erroneous internal state that was revealed by the

two additional variables included in the version state specification.

All 98 triplets of one good and two bad versions that had produced BAD3

decisions with cc-point recovery (see Table 5) had the "No Majority" deci-

sion while comparing the version states. This happened because the two ver-

sions both had incorrectly concluded for different reasons that the RSDIMU

module failed, and thus had produced similar errors at the cc-point that

were due to dzfiferent faults. However, the two common non-output vari-
ables differed and therefore a BAD3 majority decision was avoided. This

occurrence shows that r-point checking is more effective than only cc-point

checking since the BAD3 cc-point decisions were properly detected at the r-
point.

Table 6: Consequences of R-Point Recovery

Triplets with Triplets with
1 B Version 2 B Versions

0

Possible

Consequence

 0 No majority at the cc-points
in the RSDIMU module

No majority in comparing

the r-point ids

 No majority in comparing

the version states at r-point

GOOD3 decision at the

"cc-point in the AUX module

GOOD2 decision at the

cc-point in the AUX module

NOMAI decision at the

-cc-point in the AUX module

BAD2 decision at the

cc-point in the AUX module

BAD3 decision at

|‘cc-point in the AUX module

There are also three test runs of triplets with 2 bad versions that produced the

GOOD3 decision at the last cc-point. This happened because the errors of

BOEING Ex. 1029, p. 160

DEDIX 87 ‘ I 161

the two bad versions had occurred at different cc-points and were success-

fully recovered by cc-point recovery (Table 5).

Since control flow errors were not observed in the 200,000 test runs, more

testing was conducted through error seeding. The goal was to verify the
effectiveness of the restart mechanism of the r-point. Faults of the following

two categories were seeded: 1) Program exceptions, such as "division by

zero" and "index out of range," and 2) control flow faults, such as "infinite
loop'' and "incorrect branching" that lead to some cc-point being incorrectly

called or skipped.

Most of the faults that were seeded into the versions were chosen from faults

that were eliminated during the certification process. Testing was conducted

with triplets consisting of two good versions combined with a version with a
seeded fault. It was found that in all the hundred different test runs that were

performed, the failed versions were restarted with a correct version state
after the recovery point.

5.4 The UCLA/Honeywell Fault-Tolerant Software Experiment

To gain further insights into the effectiveness and methodology of applying

multi-version software systems, UCLA and the Honeywell - Sperry Com-

mercial Flight Systems Division have agreed to conduct a joint study of
multi-version software design during the second half of 1987. The applica-

tion is the digital flight control system for future commercial airliners, as
exemplified by the system being developed by Honeywell for potential use

in the McDonnel-Douglas MD-11 aircraft.

The objectives of the UCLA/I-Ioneywell project to study the N-version flight

control system design are as follows:

- To conduct studies and experiments related as closely as practical to the

industrial environment ir1 terms of procedures and types of problems.

- To develop a practical and effective set of ground rules for multi-version
software development in an industry environment. These ground rules
will be directed toward the elimination of significant similar errors in

the versions. ,

- To estimate the effectiveness of niiilti-version software in an industrial

environment of a specified type.

The extent and purpose of the multiversion software is:

(a) The software provides automatic pitch control of commercial air-

craft during final approach.

BOEING Ex. 1029. p. 161

Cl
162 Aviiienis er al

(b) The elements of the control loop are control law, airplane, sensors

mounted on airplane, landing geometry, and wind disturbances. .

(c) Independent two-programmer teams will program the control laws,
based on a software requirements document, i.e., the software

specification.

(d) The aircraft and wind turbulence are to be modeled on VAX ;

machines. The operation of flight simulation will be monitored by
DEDIX to observe the execution of a multi-version software system.

For the software development phase, six teams of two graduate student pro-
grammers each will work in the software development phase for 12 weeks

during the summer of 1987. Software engineering techniques to build high
quality software will be strictly followed. The six teams will be coordinated

" by the UCLA research team, using an electronic mail communication facil-

ity. A standard industrial design review, code review, and a test review will

be conducted. The expected length of code produced in this software
development phase should exceed 2000 lines.

Several dimensions of design diversity have been considered for achieving
diversity among these programs. The attention will be focused on the use of

different programming languages and their effects on the diversity in multi-

version software. The languages are C, Pascal, Modula-2, Ada, Lisp, and
Prolog.

In the evaluation of resulting multi-version software systems, closed loop
testing of multiple executions with random inputs will be conducted. Mil-
lions of test runs will be executed in the DEDIX environment for suitable

aircraft control and flight simulation. Statistical data related to execution of 3

multi-version software systems will be gathered for the evaluation of the
effectiveness of DEDIX.

6. Specification Issues

Significant progress has occurred in the development of formal specification
languages, methods, and tools since our previous experiments [Kelly 1983,
Aviiienis 1984]. Our current goal is to compare and assess the applicability
to practical use by application programmers of several formal program
specification methods. The leading candidates are:

(1) The Larch family of specification languages developed at MIT and
the DEC Western Research Center [Guttag 1985];

BOEING EX. 1029, p. 162

DEDIX 87 163

(2) The OBI specification language developed at UCLA and SRI
International [Goguen 1979];

(3) The Ina Jo specification language developed at SDC [Locasso
1980];

(4) The executable specification language "PAISLey" developed at
AT&T Bell Laboratories [Zave 1986].

The study focuses on the assessment of the following aspects of the
specification languages: (1) The purpose and scope, i.e., the problem
domain; (2) completeness of development; (3) quality and extent of docu-
mentation; (4) existence of support tools and environments; (5) executability
and suitability for rapid prototyping; (6) provisions of notation to express
timing constraints and concurrency; (7) methods of specification for excep-
tion handling; and (8) extensibility to specify the special attributes of fault-
tolerant multi-version software.

The goal of the study is the selection of two or more specification languages
for the subsequent experimental assessment of their applicability in the
design of fault-tolerant multi-version software. Two major elements of the
experiment will be:

(1) the concurrent mutual verification of two specifications by sym-
bolic execution and mutual interplay;

(2) an assessment of the practical applicability of the specifications, as
they are used by application programmers in an N-version software
experiment.

The next step in DEDDC development will be a formal specification of parts
of the current DEDIX prototype (implemented in C): the Synchronization
Layer, the Decision Function, and the Local and Global Executives. Among
them, the Larch specifications of the Decision Function [Tai 1986] and of
the Synchronization Layer have been constructed. The specification will
provide an executable prototype of the DEDIX supervisory system. This
functional specification should allow not only the migration to real-tirne sys-
tems, but also -the use of multi-version software techniques for the fault-
tolerance mechanisms of DE.DIX't11ern_se1ves. The goal is a DEDD{ system

that supports design diversity in application programs and which is itself
diverse in design at each site.

Independent specifications of some DEDIX system modules in two or more
formal languages will serve to compare the merits of the methods. Further
research is planned in the application of dual diverse formal specifications to

BOEING Ex. 1029, p. 163

I64 Aviiienis et al

eliminate similar errors that are traceable to specification faults and to
increase the dependability of the specifications. ’

7. Other Current Research Activities

7.1 Improvement of DEDIX

This section discusses some observed deficiencies of DEDIX and offers

some thoughts about improving them. Current activities are also mentioned,
where appropriate.

The most visible shortcoming of DEDIX is the execution overhead which

results in rather long waiting times for the user. There are two possible ways
to improve the situation: one is to create a "custom DEDIX" which is

tailored to a specific application. Functions that are not needed can be

removed, and the versions can be compiled into DEDIX instead of creating
another process for each version to be executed. That reduces greatly the
amount of time spent with interprocess communication. The second

approach is to look for more efficient implementations of these parts of
DEDIX that are used most. Due to the layered design it should be relatively

easy to replace a layer with a more efficient one, without affecting the others. l
Since most time is spent on message passing, an investigation of a more |
efficient implementation of the transport layer is under way.

Another observation is that DEDIX supports only standard input and output.
Thus the ability to manipulate files is limited to redirecting the input and the
output. Of course, it is possible for a version to use all the file manipulating
operations that are provided by the operating system. However, the cheek-

ing and correcting facilities of DEDIX would be essentially bypassed in this
case. Furthermore, different versions may not read and/or write the same

file(s) because that would result in an almost certainly unpredictable interac-
tion between the versions. A solution would be to provide cross-check func-
tions for file IIO, similar to those now provided for standard I/O. However,
the following considerations lead to the conclusion that this is not too

urgent: diverse software is likely only to be required and applied in systems
with ultra-high reliability requirements, e.g. autopilots, flight control sys-
tems, air traffic control systems, or nuclear power plant control systems. Sys-
tems of these kinds are usually computation intensive, rather than data and

I/O intensive. Thus it can be expected that it will be sufficient to support
standard I/O for most of these systems.

Furthermore, the versions are limited to sequential programs all of which

BOEING Ex. 1029, p. 164

DEDIX 87 165

must execute all the specified cross-check points in the same order. In many
cases the sequence of cc-points is given by the data flow of the computation
to be performed. However, in case there are several independent submodules
which could be executed in any order, a specific sequence of these indepen-
dent computations has to be specified and all versions have to adhere to it.
This, to a certain extent, limits the degree of diversity that could be achieved.
Presently, neither a study examining whether this restriction is a severe one
or not, nor a method to overcome it, exist. Of course, it is easy if DEDIX
only observes the computed results, without trying to correct them — we just
postpone the analysis until all versions have terminated.

7.2 Extension of DEDIX Capabilities

Byzantine faults [Lamport 1982) are defined as faulty behavior that may
prevent agreement about the current (global) system state among the sites of
a distributed system. Examples of such behavior include:

- sending more or fewer messages than required to by the protocol,

- sending messages too late or too early,

- sending different (inconsistent) information to different sites, or

- maliciously cooperating with another malicious site.

The Synchronization Layer of DEDIX provides considerable protection
against the first two examples of faulty behavior. Since the topology of the
current implementation is a ring structure, a_ site cannot send different infor-
mation to different sites, but it can alter the information that it is supposed to

forward. At the present time, DEDIX does not deal with other types of
Byzantine (malicious) faults. Methods to tolerate them are known [Lamport
1982] and could be included in the Transport layer. A study is currently in
progress that will provide some experimental data on the time and complex-
ity overhead of these methods.

In order to build an elegant, highly reliable system which is tolerant to both
hardware and software design faults, a study is in progress how to build a
DEDIX system on top of a XEROX Worm enviromnent [Shoch 1982]. The
key idea is that the Worms bring a special philosophy to building distributed,
fault-tolerant systems. This philosophy gives each individual unit a high
degree of autonomy and a desire to complete its task and to take an active
part in the activity of the whole system; and further, takes a network service
approach to the resources available in the system.

BOEING EX. 1029, p. 165

166 ' Aviz"ienis et al

8. Conclusion

This paper has presented an overview of a major effort to develop a research
environment for software design diversity research at the UCLA Dependable
Computing and Fault-Tolerant Systems Laboratory. The complete DEDIX
prototype has been implemented, and it is being used to execute, test, and
evaluate multiversion software. Some new research efforts also have been
initiated.

Acknowledgment

The research described in this paper has been supported by a grant from the
Advanced Computer Science program of the U.S. Federal Aviation
Administration, by NASA contract NAG1-512, and by NSF grant MCS 81-
21696. Professor Algirdas Aviiienis, Director of the UCLA Dependable
Computing and Fault-Tolerant Systems Laboratory, has served as Principal
Investigator since the inception of the DEDIX project.

The original concept and implementation of DEDIX, as described in
[Aviiienis 1985a], has benefited from major contributions of several indivi-
duals who were visiting researchers at UCLA in the 1983-85 period. A large
part of the DEDIX implementation is due to Lorenzo Strigini, who is
currently at the IEI-CNR, Pisa, Italy. The communication and synchroniza-
tion protocols are the contribution of Per Gurmingberg, presently at the
Swedish Institute of Computer Science, Stockholm, Sweden. The original
decision function was designed and implemented by Pascal Traverse, now at
Aerospatiale, Toulouse, France. John P. J. Kelly, now at the University of
California, Santa _Barbara, contributed extensive consultation on issues of
experimentation and software engineering.

All authors of this paper are presently engaged in DEDIX-related research
activities at UCLA, except as noted next. Udo Voges edited the first draft of
this paper prior to retuming to his permanent position at the Kem-
forschungszentrum Karlsruhe, Federal Republic of Germany. Karn Sing Tso
has recently assumed a position at the Jet Propulsion Laboratory, Pasadena,
California, U.S.A. We also wish to acknowledge the idea of fusing the
XEROX Worm and DEDIX concepts, which is due to Nick Lai, a staff
member at the UCLA Center for Experimental Computer Science.

References

[Anderson 1981] T. Anderson and P. A. Lee, “Fault Tolerance: Principles and Prac-
tice,” Prentice Hall International, London, England, 1981.

BOEING EX. 1029, p. 166

DEDIX 87 167

[Anderson 1985] T. Anderson, P. A. Barrett, D. N. I-Ialliwell, D. N. and M. R. Mould-
ing, "An Evaluation of Software Fault Tolerance in a Practical System,” Digest of
FTCS-15, the 15th Internotionoi Symposium on Fouit—Toieraru Computing. Ann Arbor,
Michigan, June 1985, pp. 140-145.

[Aviiicnis 1975] A. Aviiienis, “Fault~Tolerant and Fault-Intolerance: Complementary
Approaches to Reliable Computing,” Proceedings of the 1975 international Conference
on Reliable Software, Los Augeles, April 1975, pp. 458-464.

[Avifienis 1977] A. Aviiienis and L. Chen, "On the Implementation of N-version Pro-
gramming for Software Fault Tolerance During Execution," Proceedings of the ist
IEEE-CS International Computer Software and Appiicotions Conference (COMPSAC
77), Chicago, November 1977, pp. 149-155.

[Aviiienis 1984] A. Avifienis and J. P. J. Kelly, “Fault-Tolerance by Design Diversity:
Concepts and Experiments," Computer, Vol. 17, No. 8, August 1984, pp. 67-80.

[Aviiienis 19353.] A. Aviiienis, P. Gunningberg, I. P. J. Kelly, L. Strigini. P. J.
Traverse, K. S. Tso, and U. Voges, “The UCLA DEDIX System: A Distributed Testbed
for Multiple-Version Software," Digest of FTCS-15, the 15th International Symposium
on Fault-Tolerant Computing, Ann Arbor, Michigan, June 1985. pp. 126-134.

[Aviiienis 1935b] A. Aviiienis, "The N—Version Approach to ‘Fault-Tolerant
Software," IEEE Transactions on Software Engineering, Vol. SE«11, No. 12, December
1985, pp. 1491-1501.

[Chen 1978] 1... Chen and A. Aviiienis, “N-version Programming: A Fault Tolerance
Approach to Reliability of Software Operation,” Digest ofFTCS-8, the Stir international
Symposium on Fouitffoierant Computing, Toulouse, France, June 1973, pp. '3-9.

[Cristian 1982] F. Cristian, “Exception Handling and Software Fault Tolerance,” IEEE
Transactions on Computers, Vol. C-31, No. 6, June 1932, pp. 531-540.

[Gogucn 1979] J. A. Goguen and J. J. Tardo, "An Introduction to 013]: A Language
for Writing and Testing Formal Algebraic Program Specifications," Proceedings of the
Corgfercncc on the Specification of Reliable Software, Cambridge, MA, April 1979, pp.
170-189. '

[Gurmingberg 1985] P. Gunningberg and B. Pehrson, “Specification and Verification
of a Synchronization Protocol for Comparison of Results," Digest of FTCS-J5, the 15th
Iriternutionoi Symposium on Fault-Tolerant Computing. Ann Arbor, Michigan, June
1985, pp. 172-177.

[Guttag 1985] J. V. Guttag, J. J’. Homing and J. M. Wing, “Larch in Five Easy Pieces,"
Digital Equipment Corporation Systems Research Center, Report No. 5, Palo Alto, Cali-
fornia, July 24, 1985.

[Kelly 1983] J. P. J. Kelly and A. Aviiieniik, “A Specification-Oriented Multi-Version
Software Experiment," Digest of FTCS-13, the 13:}: international Symposium on Fault-
Toieranr Computing, Mi1ano,1tnly, June 1983, pp. 120-126.

[Kelly 1986] J. P. J. Kelly, A. Avi‘z'ienis, B. '1'. Ulety, B. J. Swain, R. T. Lyu, A. Tai and
K. S. Tso, “Multi-Version Software Developrnent,“ Proceedings of the IFAC Workshop
SAFECOMP 86, Sarlat, France, October 1986, pp. 43-49.

BOEING Ex. 1029, p. 167

168 Avlfienis et at

[Kim 1984] K. H. Kiln, "Distributed Execution of Recovery Blocks: An Approach to
Uniform Treatment of Hardware and Software Faults." Proceedings of the 4th IEEE
International Conference on Distributed Computing
Systems, San Francisco, California, May 1984, pp. 526-532.

[Lamport 19821 L. l'..amport, R. Shostak and M. Pease, “The Byzantine Generals Prob-
lern,” ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July
1982, pp. 382-40].

[Locasso 1980] R. Locasso, J. Scheicl, V. Schorre and P. Eggert, “The Ina Jo
Specification Language. Reference Manual," System Development C'orp., Tech. Rep.
TM-6889f000t01, Santa Monica, California, November 1980.

[Melliar-Smith 1982] P. M. Melliar-South and R. L. Schwartz, "Formal Specification
and Mechanical Verification of SIFT: A Fault-Tolerant Flight Control System,” IEEE
Transactions on Computers, Vol. C-31, No. 7, July 1982, pp. 616-630.

[Popek 1981] G. Popck, B. Walker, I. Grow. D. Edwards, C. Kline, G. Rudisin and G.
Thiel, “LOCUS: A Network Transparent, High Reliability Distributed System,"
Proceedings of the 8:}: Symposium on Operating Systems Principies, Pacific Grove, Cali-
fornia, December 1981, pp. 169-177.

[Rarnarnoorthy 1981] C. V. Raotamoorthy, Y. Mok, F. Bastani, G. Chin and K. Suzuki,
“Application of a Methodology for the Development and Validation of Reliable Process

Control Software," IEEE.‘ Transactions on Software Engineering, Vol. SE-7, No. 6,
November 1931, pp. 537-555.

[Shoch 1982] J. F. Shoch and J. A. Jupp, "The ‘Worm’ Programs — Early Experience
with a Distributed Computation,” Communications of the ACM, Vol. 25, No. 3, March
1932. pp. 172-130.

1'Ta.i 1986] A. T. Tai, “A Study of the Application of Formal Specification for Fault-
Tolerant Software,” M.S. thesis, UCLA Computer Science Department, Los Angeles,
California, June 1986.

{Tao 1987a} K. S. Tso, “Recovery and Reconfiguration in Multi-Version Software,”
Phi). dissertation, UCLA Computer -Science Department, University of California. Los
Angeles, March 1987; also Teclmicai Report No. CSD-870013, March 1987.

[T50 1987b] K. S. T50 and A. Aviiicnis, “Community Error Recovery in N-Version
Software: A Design Study with Experimentation," Digest of FI'CS-17, the 17:}: Inter-
national Symposium on Fattlt-Tolerant Comparing, Pittsburgh, Pennsylvania, July 1987'.

[Vegas 1982] U. Voges, P‘. Fetsch and L. Gmeiner, "Use of Microprocessors in a
Safety-Oriented Reactor Shut-Down System,” Proceedings EUROCON, Lyngby, Den-
mark, June 1982, pp. 493-49'.-’.

[Wenslcy 1973} J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P.
M. Mclliar—Srnith, R. E. Shostak and C. B. Weinstock, "SIFT: Design and Analysis of a
Fault—'I‘olerant Computer for Aircraft Control,” Proceedings of the IEEE, Vol. 66, No.
10, October 1973, pp. 1240-1255.

{Zavo 1986] P. Zave and W. Schell, “Salient Features of an Executable Specification
Language and Its Environment," IEEE Transaction on Software Engineering, Vol. SE-

12, No. 2, February 1986.131). 312-325. l

BOEING EX. 1029, p. 168

‘l

6

Modelling Issues

BOEING Ex. 1029, p. 169

BOEING Ex. ‘I029, p. 170

The modelling of fault tolerant systems, especially those incorporating
recovery blocks or multi-version software, is an active research issue. Some

attempts in this direction have been made; examples are [Hecht 1979,

Gmarov 1980, Bhargava 1981, Soneru 1981, Wei 1981, Migneault 1982,
Laprie 1984, Eckhardt 1985, Scott 1987, Littlewood 1987].

In 1986, some thirty invited experts met in Badgastein, Austria, for a three

day workshop to discuss dependability modelling of fault-tolerant software.
The discussions ranged over single version programs, diverse versions and

full diversity with adjudication (fault-tolerance) and included models and

metrics, experiments and real-world practice. In the final sessions, recom-

mendations for future research directions were given.

The following chapter summarises these conclusions.

References

[Bhargava 1981] B. Bhargava, “Software Reliability in Real-Time Systems," in
Proc. National Computer Conference, Chicago: 1981. pp. 297-309. '

[Eckhardt 1985] D. E. Eckhardt and L. D. Lee. "A Theoretical Basis for the Analysis
of Multiversion Software Subject to Coincident Errors," IEEE Trans. on Software
Etigineerirtg, Vol. SE-11, No. 12, December 1985, pp. 1511-1517.

[Gmarov 1980] A. Gmarov. J. Arlat, and A. Aviiienis, “On the Performance of

Software Fault-Tolerance Strategies,” in Proc. 10th Intern. Symp. on Fault-Tolerant
Computing FTCS’10, Kyoto, Japan: 1-3 October 1980, pp. 251-253.

[Hecht 1979] 1-1. Heelit. “Fault-Tolerant Software,” IEEE Trans. Reliability, Vol. R-
23, No. 3, August 1979, pp. 227-232. _;_‘-A

[Laprie 1984] I.-C. Laprie, “Dependability Evaluation of Software Systems in Opera-
tion.“ IEEE Trans. on Software Er1gt'neert‘ng, Vol. SE-10, No. 6. November 1984, pp.
701-714.

[Littlewood 1987] B. Littlewood and D. R. Miller, “A Conceptual Model of the
Effect of Diverse Methodologies on Coincident Failures in Multi-Version Software,” in

BOEING Ex. 1029, p. 171

sity of Illinois, Urbana, IL, USA, Tech. Rep. PhD Dissertation, 1981.

‘F

1 72 Voges

Proc. 3rd Intern. Conf. Fault-Tolerant Computing Systems, Bremerhaven, Germany: 9-
11 September 1987, pp. 263-272.

[Migneault 1982] G. E. Migneault. “'I'he Cost of Software Fault Tolerance,” in Proc.
AGARD Symposium on ‘Sofnvvare for Avioriics, CPP-330, The Hague, The Netherlands:
1982, pp. 37.1-37.8.

[Scott 1987] R. K. Scott, .1. W. Gault, and D. F. McAl]istor, "Fault-Tolerant Software
Reliability Modeling,” IEEE Trans. on Software Engineering, Vol. SE-13, No. 5, May
1987. PP. 582-592.

[Soneru 1981] M. D. Soneru, “A Methodology for the Design and Analysis of Fault-
Tolerant Operating Systems.” Illinois Institute of Teclmology. Chicago. IL. USA, Tecil.
Rep. PhD Dissertation. May 1981‘.

[Wei 1981] A. Y.-W. Wei, "Real-Time Programming with Fault Tolerance,” Univer-

BOEING Ex. 1029. p. 172

Reliability Modelling

for Fault-Tolerant Software

Report on a Workshop

Held in Badgastein, Austria, July 1986

B. Littlewood

Centrefor Software Reliability

City University

Northampton Square

London, EC1V OHB

T. Anderson

Centrefor Software Reliability

The Computing Laboratory

University ofNewcastle upon Tyne, NE] 7RU

1. Introduction: Aims of the Workshop

The overall aims of the workshop were to evaluate the current state of the art

and, through this evaluation, lay the groundwork for future research direc-
tions. .\

In the early discussions of the organising committee it was agreed that the
major output would be a document listing recommendations for research in

this area. To this end it was felt to be important that we avoided the "confer-

ence" format of formal presentation of research papers followed by minimal
discussion. Instead, we encouraged extensive discussion on focussed topics

BOEING Ex. 1029, p. 173

174 Littlewood and Anderson

with only short motivating presentations. This approach was successful
largely as a result of restricting attendance to a small group of invited parti-
cipants, carefully selected for their relevant experience and expertise.

The workshop comprised five half-day sessions. The first three were on the

themes single version programs, diverse versions, and diversity with
adjudication. The organising committee decided that it would be useful to

separate the issues of diversity and adjudication. Similarly, it was thought
that an understanding of each of these stages must necessarily rest upon an
understanding of single version programming.

In the event, our recommendations (which are detailed in the next section)
did not completely fit into these neat divisions. In particular, specification
issues were recognised to be of fundamental importance and so received spe-
cial attention.

As well as the above classification of the problem, we invited participants to
think about the key issue of modelling: the relationship between theory and
practice. We hoped that, on the one hand, the workshop would provide
recommendations for experiments to investigate theoretical hypotheses. On
the other hand, modelling directions would arise from discussion of the
results of experiments and practice.

2. Recommendations for Research

The final session of the workshop began with a strong affirmation of the
potential value of fault-tolerant software approaches. The meeting recog-
nised that much further work is needed in‘ order to assess the magnitude of
the dependability improvement attainable by means of fault-tolerance, and
detailed recommendations for specific research are reported in the following.
It was stated frequently during the meeting that the association of fault toler-

ance solely with ultra-high reliability applications can be misleading; it is
just as likely to find use in more mundane contexts. ‘

Apart from the detailed research recommendations which follow, there was
agreement that an interaction between modelling and experimentation can
help us towards an understanding of the problems, as well as yielding
specific numerical measures.

Detailed recommendations follow. In many cases, explanatory comments
followthe recommendations; in others the recommendations are felt to be
self-explanatory. Absence of these comments does not imply that the
recommendations are less important.

BOEING EX. 1029, p. 174

2.1 Modelling the Single Version Failure Process

During discussion, it became clear ‘that there remained difficulties of
definition and that these were giving rise to misunderstanding. Agreement

here clearly requires better understanding of the failure process of single pro-
grams. In addition, it is obvious that an understanding of fault-tolerant
diverse systems must depend on an understanding of the behaviour of the
component versions from which they are constructed. This seems particu-
larly important for safety critical applications, although it should not be ,
thought that this is the only context in which fault-tolerance is likely to be ‘
relevant.

Reliability Modelling Workshop 175
I

The following areas need investigation:

Formalisation of the input space model

In this model, execution of the program is represented by successive

selection of inputs (points) in an input space. Execution is thus
represented as a trajectory in this space, and faults are represented by
subsets. We currently know very little about the nature of either the tra-

jectories or of t.he fault sets, yet an understanding of the failure process
depends on the interaction between these. We need to answer certain
topological questions concerning "closeness" of inputs identified with a
particular fault, and "closeness" of successively selected inputs during
operational execution. Are trajectories connected paths in a suitably -
chosen topology? Are faults connected sets? Can random walk models
avoid these difficulties? What are the implications for the failure pro-

cess? For example, can we expect error bursts? It seems essential that
these investigations be supported by controlled experiments.

Modelsfor testing, repair and maintenance

Models to incorporate subjective and extraneous knowledge

Most of the current reliability models for single programs are reliability

growth models which use failure data obtained during a period when
faults are being rectified. They do not take any account of other infor-
mation which is usually available, for example, the development metho-

dology, characteristics of the program, and even expert judgements of
the developers. Much of this kind of information is by its very nature
"soft": it concerns influential rather than determining factors. Perhaps
Bayesian statistical approaches, particularly methods for elicitation of
opinion from experts, would be useful. '

BOEING EX. 1029, p. 175

-51

I 76 Littlewood and Anderson

2.2 Single Version Software Testing and Verification

Current methods of testing software do not directly address the problem of
reliability achievement. We do not know whether these methods are in any
sense optimal for the achievement of reliability, nor do we know how to

obtain credible figures for the ultimate user-perceived reliability from such
testing. Similar observations are pertinent for other means of achieving and
assessing software, such as the currently fashionable "formal methods".

The following issues must be addressed:

Experimental evaluation of the reliability benefits from dzfiierent verification
and testing strategies

Development of test bedsfor software testing

Investigation of "accelerated testing" techniquesfor software

It is often argued that testing in a user environment (so called "random
testing") is very inefficient. We need to determine whether this is the

case, and if so, seek methods for improving efficiency whilst retaining
the important advantage of random testing: that it generates data of a
form suitable for the calculation of reliability measures.

Development of an assertion-based testing methodology

Relevant issues here are the use of AI techniques for assertion writing,
an exploration of data dependencies in general testing strategies, and the
use of "watchdogii iimers to execute assertions.

Investigation ofapplicability ofhardware ideas

Examples are: use of graph models of programs to analyse (by fault
simulation) the error environments encountered during actual system
operation; test generation using the D-algorithm for combinational logic
circuits.

2.3 General Issues of Diversity

The success of the fault-tolerant approach clearly depends on the degree to
which we can achieve diversity. However, it is important, even in such an

informal assertion, to distinguish carefully between the different aspects of
diversity: diversity of the development processes used to obtain the versions,

diversity of the actual version implementations, and diversity of the failure
behaviour of these versions. In each case we need to know what we mean

by diversity, how to achieve it, and how to measure the extent of our

BOEING EX. 1029, p. 176

Reliability Modelling Workshop 177

achievement.

Understanding of the diversity ofthe development processes

A clear understanding of what we mean by this kind of diversity is

currently lacking, although most practitioners would be able to make

subjective judgements. We need a definition of diversity which opens

up the possibility of metrication. Only then shall we be in a position to

identify highly orthogonal processes (for example in language, data

structure, algorithm) which might be expected to produce the required

diversity of version and version behaviour. It is possible, even likely,

that process diversity is different for different fault classes. Finally, we

need theoretical models which relate process to product: for example

regarding the versions as random variable outputs of the development

process.

Understanding of the diversity ofparticular implemented versions

Again we need understanding and agreed definitions: what does it mean

to assert that a set of versions is diverse, that one set is "more" diverse

than another? Version diversity must be defined in such a way that we

can obtain a metric or metrics for "degree of diversity". This might, for

example, be based on the structures of the versions. We need to know

how version diversity depends on the diversity of the processes used to

generate the versions; this needs modelling and experimentation. We

also need to understand how diversity depends on other factors, for

example, to what extent do synchronisation points diminish diversity?

How does maintenance affect diversity?

Understanding of the diversity ofoutputfrom difierent versions

Once again we need a definition and measures of degree of diversity.

Simple early models have often used statistical independence of failure

behaviour as a goal. However, it has long been recognised that such

independence would be difficult, if not impossible, to attain. On the

other hand, it may be possible to do better than independence, at least

for certain classes of faults, by using "complementary" versions. In

each case we need to measure what is achieved and thereby investigate

the relationship between diversity'3 of version output and diversity of
processes and versions. Experiments and models are needed for this.

BOEING EX. 1029, p. 177

178 Littlewood and Anderson

2.4 Issues of Fault-Tolerance; Diversity with Adjudication

An understanding of fault-tolerant systems requires more than an under-

standing of single version and diverse version software. It needs, in addi-
tion:

Understanding of the adjudication process

We need an understanding of different adjudication mechanisms, for

example: averaging, consensus, acceptability. We need models for

adjudications which we can combine with models for multi-version

software to produce reliability models for complete fault-tolerant sys-

tems. We need understanding of responses to alarm indications, i.e.

what happens when the adjudicator carmot make a decision?

Understanding offault-tolerant structures

These include, but should not be restricted to, N-version programming

and recovery blocks. Different kinds and degrees of diversity may be

available at different levels of nesting. This raises issues of optimality:

what is the best architecture for a particular problem? Experimental stu-

dies should be conducted of the efficacy of different structures in

delivering reliability.

Understanding offactors aflecting the eflicacy offault-tolerance

To what extent does this depend on the problem? For example, is there

less to be gained from fault-tolerance for a complex problem? Are there

other identifiable factors influencing success? Are there metrics for this

which would allow us to predict the extent of likely success? To what
extent does success depend on the desired reliability level, for example

is there a law of diminishing returns for ultra-high reliability? What is

the impact of the adjudicator: does success depend on the complexity

(and hence likely unreliability) of the adjudicator?

Understanding the problem ofultra-dependability

It is particularly important to distinguish here between achievement and

an assurance that a particular level of dependability has been achieved

in a particular context. Since the issue of ultra-dependability is often

associated with contexts in which failures have catastrophic conse-

quences, it is important to measure what has actually been achieved.

Confidence in the fault-tolerant methodology, and even evidence of its

past successes, will be no substitute for confidence in the dependability

of a particular fault-tolerant system. Can we measure this level of

BOEING Ex. 1029, p. 178

Reliability Modelling Workshop 179

dependability? Can we achieve it? Does achievement of ultra-
dependability require special techniques (what are they?) or merely the

extensive use of ordinary fault-tolerance?

Dependability modelling

We need reliability models which combine version information, prob-

ably obtained from reliability growth modelling, with infonnation about

the particular fault-tolerant structure. These models could be particu-

larly useful if software reusability were to fulfil its promise. Reusable

modules could be expected to become available with very long failure

histories, and therefore have very high assured reliabilities.

2.5 Specification Issues

It became apparent early in our discussions that techniques for the achieve-

ment of software reliability through fault-tolerance depend critically on the

accuracy of the specification.

We decided to widen our brief to include recommendations for research

here:

Investigation ofdiverse specifications

Use ofa specification as the basisfor a simulation model of the environment

The idea here is that the output of the model could be checked against

the real enviromnent, thus checking the specification.

Understanding of the qualities of a specification that engender misinterpre-

tation by implementers

Issues concerning detailed (tight) specification versus global (loose)

specification, particularly as they relate to diversity

Use ofrapid prototyping to refine high-level specifications

Specification ofdependability objectives themselves

2.5 Other Issues I‘.

- The following issues do not easily into earlier headings, and some of
them are relevant to several areas. There is no suggestion that these are less

important.

BOElNG Ex. 1029, p. 179

180 Littlewood and Anderson

Data issues

Many of the unresolved questions depend on observing the behaviour of .

actual systems. Current experimentation inevitably tends to take place

in relatively unrealistic contexts. These interesting results need valida-

tion in the real world. Data should be collected from real systems,

under test in simulators and in operation. The latter is particularly

important and should in- certain cases be enforced by licensing agencies.
It is important that data should be as complete as is practicable, for

example, the occasions on which the user is invoked in operational

fault-tolerant systems should be recorded.

Management and quality control

If, using a hardware analogy, we partition the production of software

into theory; development, manufacturing and maintenance, can we use

standard quality control and product assurance techniques? We need a

life-cycle model of fault-tolerant software. What are the organisational

implications? Can we currently agree on a suite of statistical

tools/models for use during single version development for tracking of

. reliability achievement, deciding when to stop testing, etc? At what

point in the development process should we bind hardware to software

to formulate a system model?

Load dependence

We need to monitor real systems to gain understanding of the extent to

which reliability depends on load. Can we model the dependence so

that the reliability for a particular load can be predicted? Alternatively,

can we design systems in which such dependence is absent?

Modelling offailure criticality with respect to delivered services

Most of the questions which have been posed earlier about reliability

can also be asked about the criticality of failures. For example: how

does it depend on the specification, on the development process, on the

use of multiple error detection mechanisms, on forced versus inherent

diversity, on hardware (transient) faults, etc? We need metrics and

models so that we can extend our reliability statements, which essen-~

tially are only about frequencies of failures, to include predictions

about the consequential costs of failures.

BOEING EX. 1029, p. 180

Reliability Modelling Workshop 181

Comparative evaluation of difierent techniques for dependability achieve-
ment

System dependability can be achieved by the use of several techniques,

either singly or in combination, for example: design fault-tolerance, for-

mal verification, testing. System developers need information on the

comparative efficacy of these approaches so that proper cost-benefit
trade-offs can be made.

Detection offaults by type

Can we steer testing towards particular types of faults, for example,

those with high occurrence rates, those with severe consequences? Can

we do the same for adjudicators? Can we get near 100% protection

against special types of faults, and know that we have done this in a par-

ticular context? Are the faults which remain, after our current fault-

removal techniques have been applied, different in kind from the ones

we successfully remove? If so, in what way?

Supervisory environments

Very dependable environments are essential for the implementation of

diverse computing, both hardware and software.

Relationship between verification and dependability measurement

Formal verification is often thought of as an all-or-nothing exercise. In

practice, for all except very small programs, "verification" stops short of

a complete proof of correctness. Can we get measures of such partial

verification and model their relationship to dependability?

3. Conclusion

In this short chapter we have not attempted to provide a summary of the

intense and wide-ranging discussion which took place during what we hope

and believe to have been a stimulating and productive three days. Instead,

we have concentrated on recording the output from this working meeting in

terms of suggested avenues for further research and investigation. The

theory and practice of software fault tolerance can hardly yet be considered
as well established; if the research proposals presented here are followed up
then our ability to model, and thereby measure and predict, the effect of

diversity and adjudication strategies on software reliability should certainly

improve - in which case the efforts of the workshop participants to disentan-

gle the many relevant factors will have been worthwhile.

BOEING EX. 1029, p. 181

182 Littlewood and Anderson

Acknowledgements

‘The success of the workshop owed everything to our participants. These
were:

Prof. Tom Anderson, Dr. Dorothy M. Andrews, Dr. Jean Arlat, Prof. Al

Avizienis, Mr. Mel Barnes, Dr. William C. Carter, Dr. Alain Costes,

Ms. Janet R. Dunham, Mr. Mike Dyer, Mr. Dave Eckhardt, Dr. Jim W.

Gault, Mr. Jack Goldberg, Mr. Gurmar Hagelin, Prof. Ravi Iyer, Prof.
John P.J. Kelly, Prof. John C. Knight, Prof. Hermann Kopetz, Dr. Jean-
Claude Laprie, Prof. Nancy G. Leveson, Prof. Bev Littlewood, Prof.

David F. McAl1ister, Dr. John McHugh, Prof. John F. Meyer, Mr. Earle
Migneault, Prof. Doug Miller, Mr. Marco Mulazzani, Ms. Phyllis M.
Nagel, Prof. Brian Randell, Dr. Francesca Saglietti, Dr. Lorenzo Stri-

gini, Dr. Pascal J. Traverse, Mr. Udo Voges, Mr. Larry J. Yount. i

The organising committee was Tom Anderson, Jim Gault, Jean-Claude

Laprie, Bev Littlewood and Earle Migneault.

The workshop was funded by the US Army European Research Office.

Grace Palmer was responsible for administration and organisation.

BOEING EX. 1029, p. 182

7

Conclusion

BOEING Ex. 1029, p. 183

1:

BOEING EX. 1029, p. 184

The papers which are included in this volume as well as additional reports

presented at the Workshops in Baden and in Badgastein demonstrate that the

use of Software Diversity in systems with high dependability requirements is

a solution for achieving the anticipated goals.

We have seen that Software Diversity has many faces. It can be applied in

two and in more than two versions, on a small scale (module level) or on a

large scale (system level), as static (N-version programming) or dynamic

redundancy (recovery blocks), for development purposes (testing only) or

use in the final application.

The most often used diversity aspects were one or more of the following:

- independent teams

- different languages

— different algorithms

- different environment.

Sometimes, software diversity is joint by hardware diversity. Hardware

design errors are nowadays considered as possible as software design errors,

raising complexity and integration being one reason.

The use of fault avoidance techniques alone is not sufficient to guarantee the

required level of reliability and safety in high risk applications. Fault toler-

ance techniques have to be used in addition.

Which of the fault avoidance techniques and which of the fault tolerance

techniques should be used together is a question which can not be answered

in general. Application specific judgement is necessary. Software Diversity

is one of the competing fault tolerance techniques. Its merits as well as its

drawbacks have to be evaluated before coming to a conclusion.

This evaluation is not trivial. Many open questions remain, and additional

research and experimentation is necessary to solve them. This includes:

BOEING EX. 1029, p. 185

I86 Voges

- What are the effects of diversity on the system, e. g. related to develop-
ment, management, cost, maintenance, execution?

- How can diversity between solutions be measured?

- In which phases and to what extend should diversity be applied, where
are the highest benefits?

- Which fault avoidance techniques are useful and necessary together
with software diversity?

- Which testing techniques are the best partners to software diversity?

- How can fault tolerance techniques, software diversity in particular, best
be modelled?

Despite these open questions, the application of software diversity in real life
should not be postponed. Sufficient knowledge is present to guarantee an
increase in dependability if this technique is applied correctly. And further-
more, real life use can also assist in getting answers to the above raised ques-
tions.

We hope that in some years from now a new volume on Software Diversity
can report on success and solutions in some of the mentioned areas.

Appendix

IFIP WG 10.4 "Reliable Computing and Fault Tolerance"

Workshop on Design Diversity in Action

27-28 June 1986 in Baden/Vienna(Austria)

Program

Session 1: University Experiments

T. Anderson, Univ. ofNewcastle upon Tyne (GB)

Recovery Block Experiment

J. Kelly, UCLA;J. Knight, UVA (USA)

NASA NCSU/UCLA/UIUC/UVA Experiment

BOEING EX. 1029, p. 186

C,'onclusion 187

Session 2: Nuclear Applications

U. Voges, -Kernforschungszentrum Karlsruhe (D)

Use of Software Diversity in Experimental Reactor Safety Systems

P. Bishop, CERL (GB)

PODS - Project on Diverse Software

U. Voges, KfK (D)

EPRI - Experiment on Software Diversity

Session 3: Railway Applications

G. Hagelin, LM Ericsson (S)

Gothenburg Interlocking System

G. Hagelin, LM Ericsson (S)

Automatic Train Control System

Session 4: Flight Applications

P. Traverse, Aerospatiale (F)

Airbus and ATR System Architecture and Specification

N. Wright, GEC Avionics (GB)

Airbus 310 Implementation Issues

L. Yount, Sperry Corporation (USA)

Use of Diversity in Boeing Airplanes

T. Anderson, U. ofNewcastle (GB)

Other Flight Applications

Session 5: General Discussion

Ad-hoc Brief Contributions from Participants

Discussion on ’Merits and Future of Design Diversity’

BOEING EX. 1029, p. 187

BOEING EX. 1029, p. 188

8

Annotated Bibliography

BOEING EX. 1029, p. 189

BOEING Ex. 1029, p. 190

Annotated Bibliography on Software Diversity

Udo Voges

Kernforschungszentrum Karlsruhe GmbH

Institutfilir Datenverarbeitung in der Technik

Posgfach 3640, D-7500 Karlsruhe 1

Federal Republic of Germany

This annotated bibliography is an attempt to list all relevant material which

is related to software diversity. Nevertheless it will be incomplete and biased

by the author. The author would welcome any further information on publi-
cations and work which should be contained in such a bibliography for later
editions.

BOEING Ex. 1029, p. 191

I92 Voges

1. J. M. Adams, “On the Practicality of Software Redundancy,” in Proc. 20th Hawaii
Intern. Conf. on System Sciences, Vol. 2, pp. 31-40, Kailua-Kona, HI, USA, 6-9
January 1987. '

Software diversity is achieved through procedural and nonprocedural versions of the
same program, with consistency checks between the versions. The advantages and
the problems with this approach are discussed.

2. P. E. Ammann and J. C. Knight, “Data Diversity: An Approach to Software Fault

Tolerance," in Proc. 17th Intern. Symp. on Fault-Tolerant Computing FTCS‘ I7, pp.
122-126, Pittsburgh, PA, USA, 6-8 July 1987.

3. M. Ancona, A. Clematis. G. Dodero, E. B. Femandez, and V. Gianuzzi, “A System

Architecture for Software Fault Tolerance," in Proc. 3rd Intern. Conf. Fault-
Tolerant Computing Systems, Vol. IFB 147, pp. 273-283, Bremerhaven, Germany,
9-11 September 1987.

4. T. Anderson and R. Kerr, “Recovery Blocks in Action: A System Supporting High

Reliability,” in Proc. 2nd Intern. Conf. on Software Engineering, pp. 447-457, San
Francisco, CA, USA, 13-15 October 1976.

A brief account is presented of the recovery block scheme, together with a descrip-
tion of a new implementation of the underlying cache mechanism. A prototype sys-
tern has been constructed to test the viability of these techniques by exccutingxpro-'
grams containing recovery blocks on an emulator for the proposed architecture.

5. T. Anderson and P. A. Lee, Fault Tolerance: Principles and Practice, Prentice Hall,
Englewood Cliffs, NJ, USA, 1981.

This book is a basic introduction into the area of fault tolerance. It introduces dif-

ferent techniques, including the recovery block approach.

6. T. Anderson and J. C. Knight, “A Framework for Software Fault Tolerance in

Real-Time Systems,” IEEE Trans. on Software Engineering, Vol. SE-9, No. 3, pp.
355-364, May 1983.

A classification scheme for errors and a technique for theprovision of software fault
tolerance in cyclic real-time systems is presented. This technique is useful for appli-
cation with the recovery block technique.

7. T. Anderson, “Can Design Faults be Tolerated?,” in Proc. 2nd GI/NTG/GMR-

Fachtagung Fehlertolerierende Rechensysteme, Vol. IFB 84, pp. 426-433, Bonn,
Germany, 19-21 September 1984.

8. T. Anderson, “Fault Tolerant Computing," in Resilient Computing Systems, Ed. T.
Anderson, Collins, London, 1985.

9. T. Anderson, D. N. Halliwell, P. A. Barrett, and M. R. Moulding, “An Evaluation

of Software Fault Tolerance in a Practical System," in Proc. 15th Intern. Symp. on
Fault-Tolerant Computing FTCS'15, pp. 140-145, Ann Arbor, MI, USA, 19-21 June
1985.

Description of an experiment with recovery blocks which demonstrated the increase
of reliability through the use of this technique. (Compare contribution in this book.)

BOEING EX. 1029, p. 192

Annotated Bibliography 193

10. T. Anderson, P. A. Barrett. D. N. Halliwell, and _M. R. Moulding, “Software Fault
Tolerance: An Evaluation,” IEEE Trans. on Software Engineering, Vol. SE-11, No.

12, pp. 1502-1510, December 1985.

This paper describes an experiment at the University of Newcastle upon Tyne with
recovery blocks as software fault tolerance technique. The problem was a naval
command and control system, a real—time system. The results of the experiment
show that a reliability improvement of about 75% could. be achieved. (Compare
contribution in this book.)

11. T. Anderson, "A Structured Decision Mechanism for Diverse Software," in Proc.

'5th Symposium on Reliability in Distributed Software and Database Systems, Pp.
125-129, Los Angeles, CA, USA, 13-15 January 1986.

Description of a decision mechanism which can be used as well for n-version pro-
gramming as well as for recovery blocks. Different strategies for a filter and an ar-
biter are explained, having different application areas.

12. H. S. Andersson and G. Hagelin, “Computer Controlled Interlocldng System,” Er-
icsson Review, No. 2, pp. 74-80. 1981.

The interlocking system of LM Ericsson is described, which is installed in Gotl1en-
burg and Malmia‘, Sweden. It incorporates two independently developed programs,
which run in the same computer, leading to a fail-safe action in case of differences.
(Compare contribution by Hagelin in this book.)

13. J. Arlat, “Design of a Microcomputer Tolerating Faults Through Functional Diver-
sity,’ ’ Dr. Eng. dissertation (in French), National Polytechnic Institute, Toulouse, F,
April 1979.

Design of a system with two diverse microprocessors, a monolithic microprocessor
(TMS 9900) and its emulation at the instruction set level by a bit-slice microproces-
sor (AMD 2900 series) for detecting similar errors and tolerating externally induced
transient faults.

14. A. Aviiienis, “Fault-Tolerance and Fault-Intolerance: Complementary Approaches

to Reliable Computing,” in Proc. Intern. Conf. on Reliable Software, pp. 458-464,
Los'Angeles, CA, USA, 21-23 April 1975.

Fault tolerance and fault intolerance in the system design - hardware as well as

software - are compared with each other. Fault tolerance can be achieved by
hardware redundancy, software redundancy and time redundancy. The use of redun-
dant programming with parallel or sequential execution and a comparison is pro-
posed in analogy to the commonly known and applied hardware redundancy.

15. A. Aviiienis, “Fault-Tolerant Computing - Progress. Problems, and Prospects,” in
Proc. IFIP Information Processing 77, pp. 405-420, Toronto, Canada, August 1977.

This paper presents an integrated View of three main aspects of fault tolerance:
pathology of faults, implementation of tolerance, and analysis of fault tolerant
designs. Several current obstacles to a wider acceptance of fault tolerance in system
design are identified, and some directions for the advancement of the understanding
and use of fault tolerance, including software diversity, are suggested.

BOEING EX. 1029, p. 193

