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1
METHODS FOR GENETIC MODIFICATION

OF HEMATOPOIETIC PROGENITOR CELLS
AND USES OF THE MODIFIED CELLS

This application claims benefit of U.S. Provisional Appli-
cation No. 60/304,127, filed Jul. 10, 2001, U.S. Provisional
Application No. 60/304,283, Jul. 10, 2001, U.S. Provisional
Application No. 60/343,484, filed Dec. 21, 2001, and U.S.
Provisional Application No. 60/386,063, filed Jun. 4, 2002,
the contents of all of which are hereby incorporated by
reference.

Throughout this application various publications are ref-
erenced in parenthesis. Full citations for these publications
may be found listed alphabetically at the end of the speci-
fication immediately preceding the claims. The disclosures
of these publications in their entireties are hereby incorpo-
rated by reference into this application in order to more fully
describe the state of the art to which this invention pertains.

FIELD OF THE INVENTION

The present invention relates to gene therapy, particularly
as applied to hematopoietic progenitor (HP) cells, to trans-
duced cells and methods of obtaining them, and to methods
of using.

BACKGROUND OF THE INVENTION

Gene therapy refers to the use of genetic sequences and
their introduction into cells to alter the genetic makeup ofthe
cells and thereby change the properties or functioning of
those cells. Gene therapy may be used, for example, to
correct a genetic defect by providing to the cells a good copy
of a gene that functions as desired, or to provide a gene that
encodes an RNA or protein that inhibits an undesired
cellular or pathogen activity.

Gene therapy may be aimed at any of a variety of diseases
in which there is a genetic aspect. Of particular interest are
diseases of the blood or immune systems since the hemato-
poietic cells are relatively easy to collect from a subject,
allowing for ex vivo procedures to be used. These include
hemoglobinopathies, defects of leukocyte production or
function, immune deficiencies, lysosomal storage diseases
and stem cell defects such as Fanconi’s anemia, chronic
granulomatous disease, Gaucher’s disease, G6PD deficiency
etc. Many of these disorders have been successfully treated
by allogeneic bone marrow cell transplants (Parkman 1986).
However, the requirement for immune suppression or the
occurrence of immunologic effects such as graft rejection
are a disadvantage of allogeneic bone marrow transplanta-
tion. Gene therapy of hematopoietic stem cells has been
suggested as an alternative means of treating disease affect-
ing the hematopoietic system in humans.

Despite early promise of success in gene therapy in
humans, clinical success has been very difiicult to achieve
despite a massive effort in the last decade (Mountain, 2000).
This is due at least in part to low efficiencies of gene transfer,
an inability to modify enough cells, an inability to target
appropriate cell types, and a lack of persistence of the
desired effect in human subjects.

Gene therapy ofhuman hematopoietic stem (HS) cells has
proven to be difficult to carry out in practice (Kohn et al
1998, Halene and Kohn 2000, Kume et al 1999). In most
trials in humans, the level of gene-containing peripheral
blood leukocytes has been low and these have been short-
lived, suggesting a failure to transduce reconstituting HS
cells (Bordignon et al 1995, Kohn 1995, Kohn et al 1998,
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Dunbar et al 1995, Hoogerbrugge et al 1996). This is related
in part to the relatively few HS and hematopoietic progenitor
(HP) cells in the body (Bertolini et al 1998, Reis 1999) and
the requirement that the cells be activated when using some
murine retroviral vectors for transduction. This is related to

the low level of amphotropic receptors in quiescent human
HS cells (Bodine et al 1998). Most human HS cells are
quiescent, are relatively slow to respond to stimulation (Hao
et al 1996, Gothot et al 1998) and when induced to divide,
tend to lose long term repopulating capacity (Traycolf et al
1998). Almost all gene therapy attempts in humans using HS
cells have up to now suffered from these two basic problems:
insufiicient numbers of HS cells that are totipotent and
capable of long term engraftment have been transduced in
order to have a therapeutic effect, and, secondly, the trans-
duced cells have not persisted to provide modified hemato-
poietic cells long term.

The most promising trial of gene therapy into human HP
cells involved the transfer of a gene into children with
X-linked severe combined immunodeficiency (SCID) which
led to the reconstitution of an immune system with gene-
containing T-lymphocytes (Cavazzana-Calvo et al 2000;
Hacein-Bey-Abina et al 2002). That trial used CD34+ cells
from bone marrow of pediatric patients (<12 months) and
delivered more than 106 transduced cells per kg. The
number of CD34’' cells (per kg weight) that can be isolated
from children, particularly of low weight, is much higher
than in adults. Thymopoiesis is also more active in children.
Furthermore, this study is unusual in that thymopoiesis in
the SCID-X1 context results only from CD34+ cells that
contain the exogenous gene (Cavazzana-Calvo et al 2001).
In some ways, this study is analogous to those where
myeloablation is carried out in that the infused cells can fill
the physiological space that is unoccupied in the SCID
patient. Early studies with allogeneic bone marrow trans-
plantation showed that HS cell engraftment was not sus-
tained in patients that were not myeloablated, primarily
because of the continued presence of the recipient HS cells
(Parkman 1986). Therefore, conclusions drawn from prior
engraftment studies using human HS cells in an ablative
context carmot be simply transferred to the non-ablative
system.

Other reports of human clinical trials for gene therapy of
hematopoietic progenitor cells are less positive. Kohn et al
1999 reported results of a clinical trial using bone-marrow
derived CD34+ cells from pediatric patients (8-17 yrs)
transduced with a gene encoding an RRE decoy (RNA
molecule) against HIV. This trial failed to achieve significant
transduction and engraftment of progenitor cells. In another
trial, patients with breast or ovarian cancer were treated with
HP cells after transduction with a marker gene, after myeloa-
blation, but only transient presence of marked cells was
observed (Bagnis et al 2002). A clinical trial including three
patients with Gaucher disease showed presence of the gene-
containing vector in peripheral blood and bone marrow up to
3 months post-infusion but at very low levels (Dunbar et al
1998). In another example, a trial with five patients suffering
from Chronic Granulomatous Disease (CGD) was carried
out whereby the p47phox gene was introduced into CD34+
cells from peripheral blood. Although corrected neutrophils
were found in peripheral blood during the first few months
after infusion, they were undetectable at 6 months post-
infusion (Malech et al 1997). Further, a trial to correct
Fanconi Anemia where the complementation group C gene
was inserted into CD34+ cells resulted in only transient
detection of the gene in the patients post-infusion (Liu et al
1 999).
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The poor results in these trials may reflect the lack of a
survival advantage of the corrected cells compared to the
uncorrected cells, in contrast to the X-linked SCID case.
Furthermore, in most of these examples, the manipulated
cell populations were administered to patients with no or
partial myeloablation, requiring that the transduced cells
compete with the resident stem cells to engraft.

Other factors may be operating as well. HS cells can be
reduced in number in patients with HIV infection (Marandin
et al 1996), making it more difficult to obtain sufficient
numbers of such cells. Moreover, HS cells of HIV-infected
individuals are compromised in their replication and clono-
genic capacities and show an enhanced propensity to apo-
ptosis (Vignoli et al 1998, Zauli et al 1996). Mobilization of
peripheral blood HP cells using granulocyte colony-stimu-
lating factor (G-CSF) was demonstrated in HIV-infected
individuals (Law et al 1999). Maximal mobilization was
achieved after 4 days of G-CSF administration. The leuka-
pheresis product contained approximately 3><106 CD34+
cells per kg. Law et al did not transduce the isolated CD34+
cells nor show that the isolated CD34+ cells were capable of
engrafting a subject long term. They merely speculate that
gene therapy of HP cells might provide a cure for HIV
infection. They also comment that discussion of the number
of stem cells required for gene therapy ofAIDS is premature
because of many uncertainties, including the engraftment
potential of the genetically modified cells, the need for
chemotherapy, the need for myeloablation or not, the
requirement to establish a niche for the infused cells, and the
unknown response of the microenvironment in the marrow
of AIDS patients after infusion of cells.

The minimum number of CD34’' cells from peripheral
blood required for efficient restoration of the hematopoietic
system, particularly platelet recovery, in the context of
myeloablation has been suggested to be 2.0><106 cells per kg
of weight of a subject (Zimmerman 1995). However, the
number required for efficient engraftment when not perform-
ing myeloablation was unknown prior to this invention. It
was unknown whether a “niche” had to be established for the

infused cells, or the effect of competing, resident cells in the
marrow. As mentioned above, this was particularly true in
the context of HIV infection.

Many studies have used model animal systems, particu-
larly in mice, to improve the methods for transduction and
increase engraftment. However, although murine HS cells
can be efficiently transduced with retroviral vectors, efforts
to translate findings from the murine system to applications
for human HS cells have revealed major difficulties (Halene
and Kohn 2000; Richter and Karlson 2001).

A further difficulty for therapeutic application of gene
therapy is in scaling up procedures to obtain sufficient
transduced cell numbers (Schilz et al, 2000). Schilz et al
measured transduction efficiency and engraftment in a
mouse model, but it is unclear how the conclusions might
apply to human subjects.

Each of these factors is addressed by the present inven-
tion.

SUMMARY OF THE INVENTION

This invention provides a composition suitable for admin-
istration to a human subject comprising a pharmaceutically
acceptable carrier and at least 1.63><106 CD34+ hematopoi-
etic cells per kg of body weight of the human subject to
whom the composition is to be administered, at least 0.52><
106 of such CD34+ hematopoietic cells being transduced by
a viral construct which expresses an anti-HIV agent.
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This invention also provides a method of inserting into
hematopoietic cells of a human subject a gene of interest
comprising:

a) mobilizing CD34+ hematopoietic progenitor cells into
the blood of the human subject;

b) isolating leukocytes from the subject by apheresis;
c) isolating CD34+ hematopoietic cells from the isolated

leukocytes by an immunoselective method;
d) subjecting the CD34’' hematopoietic cells of step c) to

a transduction process with a gene of interest in the
presence of an agent that colocalizes the cells with a
transduction vector;

e) determining the total number of CD34’' hematopoietic

cells after step d), and if the total number is at least
1.63><10 cells per kg of body weight of the human
subject, then proceeding to step f), and if the total
number of CD34’' hematopoietic cells after step d) is
less than 1.63><106 cells per kg of body weight of the
human subject, then performing at least steps b)-d) and
combining the CD34’' hematopoietic cells; and

f) delivering to the subject the CD34’' hematopoietic cells,
thereby inserting into hematopoietic cells of the human

subject a gene of interest.
This invention further provides a use of the composition

comprising a pharmaceutically acceptable carrier and at
least 1.63><106 CD34+ hematopoietic cells per kg of body
weight of a human subject to whom the composition is to be
administered, at least 0.52><106 CD34+ of such cells per kg
being transduced with a viral construct which expresses an
anti-HIV agent, for the manufacture of a medicament for the
treatment of the human subject infected with HIV.

This invention yet further provides a kit comprising
a) an amount of an agent capable of mobilizing hemato-

poietic progenitor bells in a human subject;
b) a culture medium including at least one cytokine

acceptable for culturing CD34+ hematopoietic cells;
c) a retroviral vector comprising nucleotides having a

sequence that in a cell gives rise to a ribozyme having
the sequence 5'-UUA GGA UCC UGA UGA GUC
CGU GAG GAC GAA ACU GGC UCC-3' (SEQ ID
NO.:1) (Rz2); and

d) tissue culture vessels coated on their inside with a
recombinant fibronectin fragment. A package compris-
ing the kit and instructions for its use is also provided
by this invention.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1(A). Replication Cycle of a Typical Retrovirus.
A) Virus binds to cell surface receptors on the target cell and

the genomic RNA enters the target cell following fusion
and viral uncoating.

B) Reverse transcription occurs resulting in the conversion
of viral RNA into cDNA.

C) cDNA enters the nucleus and is converted into a circular
form.

D) The cDNA then becomes integrated into the host cell
genome.

(E) Transcription of the provirus to produce viral RNA and
mRNA.

(F) Translation produces viral proteins.
(G) The viral core is formed from the virally encoded

proteins and viral RNA packaged.
(H) The core obtains a membrane and exits the cell by

budding through the cell membrane.
FIG. 1(B). Proposed mode of action of invention. The

ribozyme can act at any of several points in the life cycle of
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the HIV-1 virus. It can cleave the genomic RNA after
uncoating and before reverse transcription, or it can cleave
viral transcripts in the nucleus or cytoplasm to inhibit
translation of viral proteins, or it can cleave newly-formed
genomic RNA prior to or during assembly.

FIG. 2. Scientific rationale for use of ribozyme gene
transfer to treat HIV/AIDS. A. Normal CD34+ hematopoi-
etic progenitor cells give rise to lymphocytes and mono-
cytes/macrophages that can be infected by HIV-1 and these
infected cells generate HIV-l particles before dying. B.
CD34+ hematopoietic progenitor cells transduced with the
ribozyme gene give rise to lymphocytes and monocytes/
macrophages that express the ribozyme gene. The therapeu-
tic ribozyme cleaves HIV-1 RNA and inhibits HIV-l repli-
cation in these two key cell types.

FIG. 3. Schematic of hematopoiesis. The CD34+ hemato-
poietic progenitor cells give rise to cells of increasing
maturity through intermediate progenitor cells. Key cells in
terms of HIV/AIDS infection are CD4+ T-lymphocytes and
the monocytes/macrophages (asterisked). All of the cells
shown schematically are hematopoietic cells.

FIG. 4. Location of Rz2 target site. A: Schematic of HIV-1
genome showing location of replicative, regulatory and
accessory genes. B: Ribozyme sequence (SEQ ID. NO.: 1)
together with the complementary target (SEQ ID. NO.: 18)
and hybridizing sequence within the tat gene. Cleavage
occurs immediately 3' of the triplet GUA. C: Location of the
GUA target sequence in the genes encoding Tat and Vpr
proteins.

FIG. 5. Schematic Representation of CD34+ Phase I
Clinical Trial. Ten subjects with HIV-1 infection were
enrolled. The LNL6 and RRz2 vector were separately intro-
duced into autologous CD34+ hematopoietic cells. Both
populations of cells were infused into the patients without
myeloablative treatment.

FIG. 6. Effect of retronectin on transduction. This shows

schematically how retronectin facilitates retroviral transduc-
tion by bringing the CD34+ cells into close proximity to the
retroviral vector.

FIG. 7. Long-term vector presence and expression.
Semiq-uantitative PCR analysis was performed in leukocyte
subsets using primers directed against the neoR gene that
overlap the Rz2 sequence in the RRz2 vector. PCR products
for LNL6 and RRz2 are 174 and 216 base pairs respectively,
and include a tract of the untranslated terminus of the neoR

gene. (A) LNL6 and RRz2 vector sequences in peripheral,
blood mononuclear cells (PBMC), bone marrow mono-
nuclear cells (BMMC), T-lymphocytes and monocytes in
patient 5 two years after infusion of transduced CD34+ cells.
(B) short- and long-term expression ofboth LNL6 and RRz2
in PBMC in 3 representative patients, as measured by
RT-PCR. Expression was assessed in a reverse-trascriptase
(RT+) nested polymerase chain reaction using radiolabelled
primer. For each sample, a reaction that did not contain
reverse-transcriptase (—RT) was included. (C) Detection of
vector sequences in naive T-lymphocytes—the gel shows
PCR analysis for LNL6 and RRz2 vector sequences in CD4+
and CD8+ T-lymphocytes, and in naive T-lymphocytes sub-
sets selected from peripheral blood in patient 7 two years
after infusion of transduced CD34+ cells. (D), (E) and (F)
detection of vector sequences in naive T-lymphocytes. Gel
shows PCR results for LNL6 and RRz2 vector sequences in
CD4+ and CD8+ T-lymphocytes, and in naive T-lymphocytes
subsets selected from peripheral blood in 3 patients. Vector
sequences were detected in naive T-cell subsets as early as
4 weeks post-infusion (panel F), and long-term detection is
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shown in panels E and D, at 2.5 and 2 years after infusion
of transduced CD34+ cells respectively.

FIG. 8. Summary of vector detection by PCR in 10
patients. Cells were examined by PCR for LNL6 or RRz2
vector detection up to 36 months post-infusion. Cell types
were bone marrow mononuclear cells, peripheral blood
mononuclear cells (PBMC), granulocytes, T-lymphocytes
and monocytes as indicated. Data are shown for each patient
as labeled in the Y-axis. Longer-term gene marking was
observed after the use of the fibronectin fragment (CH-296),
which resulted in an increase in transduction efiiciency (see
table 1). The presence or absence of vector detection is
indicated by circles, without regards to vector copy number:
black, both vectors detected; open, neither vector detected;
circle with vertical stripe, ribozyme vector only detected;
circle with horizontal stripe, LNL6 control vector only
detected.

FIG. 9. Comparison between the kinetics of vector decay
in T-lymphocytes and bone marrow mononuclear cells.
Comparison of rate of decay of vector copies across T-lym-
phocytes and bone marrow mononuclear cells (BMMC)
shows increased persistence of RRz2 marking in T-lympho-
cytes compared to that of LNL6 (A). LNL6 marking is
shown in (B). Plots show vector marking level represented
as percent of baseline, where baseline is defined as the
average of vector copy numbers at weeks 4 and 12 for each
cell type (diamond and line: T-lymphocytes, open squares
and black line: BMMC). (C) and (D) show the plots depict-
ing the linear relationship between RRz2transduced CD34+
cell dose, and difference between LNL6 and RRz2 copy
number (protection index) in T-lymphocytes (C) and PBMC
(D), (E), (F), (G) and (H) show the comparison between the
kinetics of vector decay in T-lymphocytes and bone marrow
mononuclear cells, and correlation with transduced-CD34+
cell dose infused. Ribozyme-induced protection against
HIV-related cell depletion was assessed by comparing the
decay of RRz2 and LNL6 vector DNA in cells vulnerable
and nonvulnerable to HIV infection. Panel E shows detec-

tion of RRz2 and LNL6 vectors by PCR in CD4+ T-lym-
phocytes for patient 7 at the time points indicated. Radio-
activity volumes for each band were normalized to known
standards run in the same PCR reaction (not shown), and the
ratio of RRz2 to LNL6 (values shown under each gel) was
plotted against time (panel F). As a negative control for
RRz2 protection, the plot of BMMC (which contain mostly
cells invulnerable to HIV infection) is shown in panel F
(PCR gels not shown). Trends over time in the ratio of RRz2
marking to LNL6 marking were estimated by linear regres-
sion, with P values reflecting the difference from a change
rate of 0 (expected if RRz2 and LNL6 marking decay at
equivalent rates).

In this patient, the ratio of RRz2 to LNL6 marking in
BMMC remained approximately constant over time
(slope:0.0005, difference from 0, P:0.28l). In contrast,
RRz2 marking increased relative to LNL6 marking over
time in HIV-vulnerable T lymphocytes (slope:0.0036, dif-
ference from 0, P:0.008). The difference between trend lines
was statistically significant (P<0.0006). To determine
whether the magnitude of differential decay in LNL6 vs.
RRz2 gene marking for a given patient was related to the
number of RRz2-transduced cells infused, the difference
between decay slopes of each vector for was correlated
(spearman rar1k) with the number of RRz2-transduced
CD34+ cells reintroduced. Patient-specific decay slopes for
LNL6 and RRz2 marking were calculated by linear regres-
sion, and the difference between these slopes (RRz2—LNL6)
was taken as an indicator of RRz2-mediated protection.

Benitec — Exhibit 1015 — page 32



Benitec - Exhibit 1015 - page 33

US 7,345,025 B2

7

Panels G and H show the plots depicting this linear rela-
tionship and confidence intervals (dotted lines) between
RRZ2-transduced CD34+ cell dose, and difference between
LNL6 and RRZ2 copy number (protection index) in T-lym-
phocytes (plot H) and PBMC (plot G).

FIG. 10. Absolute CD4+ cell counts (A) and viral loads
(B) in study patients. Absolute CD4+ cell counts per mm3
(A) and viral loads (B) in HIV RNA copies per ml of blood
are shown for patient Nos. l-l0 through the study. An initial
increase in viral load was observed at day l post-infusion in
some patients who discontinued antiretroviral therapy dur-
ing the period of mobilization. Drug discontinuation or
substitution of nucleoside reverse transcriptase inhibitors for
non-nucleoside reverse transcriptase inhibitor or protease
inhibitor was included in the protocol to prevent potential
inhibition of MMLV reverse transcriptase during transduc-
tion. Occasional rises in viremia were corrected after modi-

fication of antiretroviral therapy.
FIG. 11. Long-term marking of hematopoietic cell popu-

lations in Patient #005 from the Phase I Autologous CD34+
study. Shown in the gel are PCR amplified bands from LNL6
and RRZ2 marked cells in bone marrow and peripheral blood
populations 2 years post-infusion.

FIG. 12. Gene Expression in Peripheral Blood Mono-
nuclear Cells in 4 patients from the Phase I autologous
CD34+ cell study. Expression of both LNL6 and RRZ2 is
shown for 2 patients at 2 years post-infusion. Expression
was assessed in a reverse transcriptase-nested PCR reaction
using radiolabelled primer. For each sample, a reaction that
did not contain RT (—RT) was included. Presence or absence
of RT is indicated.

FIG. 13. Long-term marking of T-lymphocyte (CD4+,
CD8+) sub-populations in Patient #007. Results show the
marking in naive and memory CD4+ and CD8+ lymphocytes
1 year post-infusion of the autologous LNL6 or RRZ2
transduced CD34+ cells.

FIG. 14. Schematic design of an RNAi with multiple-
targeting ability. The RNA transcript contains three RNAi
units each containing sense (lA, 2A, 3A) and antisense (lB,
2B, 3B) segments separated by spacers (SP). The RNAi
units are flanked by self cleaving hammerhead and hairpin
ribozymes, which cleave at the positions indicated byarrows.

DETAILED DESCRIPTION OF THE
INVENTION

This invention provides a composition comprising a phar-
maceutically acceptable carrier and at least l.63><l06 CD34+
hematopoietic cells per kg of body weight of the human
subject to whom the composition is to be administered, at
least 0.52><l06 of such CD34+ hematopoietic cells being
transduced with a viral construct which expresses an anti-
HIV agent. Alternatively, the composition comprises at least
about l.7><l06 CD34+ hematopoietic cells per kg, at least
about 0.5><l06 of such cells per kg being transduced with the
viral construct. The composition is suitable for administra-
tion to a human subject. The human subject may be an adult.

The viral construct may be a retroviral construct. The
composition may also be substantially free of cytokines, or
substantially free of virus.

This invention also provides a composition where at least
5><l06 CD34+ hematopoietic cells per kg of body weight of
a human subject to whom the composition is to be admin-
istered are transduced; or comprising at least 9.37><l06
CD34+ hematopojetic cells per kg of body weight of a
human subject, wherein at least 5><l06 of such CD34+
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hematopoietic cells are transduced; or comprising at least
about l0><l06 CD343° hematopoietic cells per kg of body
weight where at least 5><l06 such cells are transduced; or
where the anti-HIV agent is an RNA molecule; or where the
anti-HIV agent is an RNAi molecule; or where the anti-HIV
agent is an antisense molecule; or where the antiHIV agent
is a ribozyme. The ribozyme may comprisenucleotides hav-
ing the sequence 5'- UUA GGA UCC UGA UGA GUC CGU
GAG GAC GAAACU GGC UCC -3' (SEQ ID NO.:l) (Rz2)

In the composition, the transduced CD34+ cells are
capable of engraftment, and of giving rise to progeny cells
for at least 12 months, in the subject. The cells may be in a
primary cell culture.

Also disclosed is a composition comprising a pharmaceu-
tically acceptable carrier and at least l.63><l06 CD34+
hematopoietic cells per kg of body weight of the subject to
whom the composition is to be administered, at least 0.52><
106 of such CD34+ hematopoietic cells being transduced
with a viral construct which expresses an anti-HIV agent,

wherein the composition is produced by a process com-
prising the steps of:

(a) isolating CD34+ hematopoietic cells from the subject;
(b) culturing the CD34+ hematopoietic cells with at least

one cytokine;
(c) transducing the CD34+ hematopoietic cells with the

viral construct which expresses the anti-HIV agent in
the presence of an agent which enhances colocalization
of the cells and the viral construct;

(d) washing the CD34+ hematopoietic cells, and
(e) mixing the CD34+ hematopoietic cells with a phar-

maceutically acceptable carrier, to thereby obtain the
composition. The composition is suitable for adminis-
tration to a human subject.

In the composition, the culturing of step (b) may be
performed in the presence of at least one cytokine, at least
two cytokines or only two cytokines. Step (c) may be
performed in the presence of a recombinant fibronectin
fragment.

This invention also provides a composition comprising a
pharmaceutically acceptable carrier and at least l.63><l06
CD34+ hematopoietic cells per kg of body weight of the
human subject to whom the composition is to be adminis-
tered, at least 0.52><l06 CD34+ of such CD34+ hematopoi-
etic cells being transformed with a gene of interest not found
in the CD34+ cells prior to transformation. The composition
is suitable for administration to a human subject. In this
composition, the numbers of cells can be as defined above.
The subject may be an adult. In this composition, the gene
of interest may express an RNA agent.

This invention yet also provides a composition compris-
ing a pharmaceutically acceptable carrier and at least l.63><
106 CD34+ hematopoietic cells per kg of body weight of a
human subject to whom the composition is to be adminis-
tered, at least 0.52><l06 CD34+ of such CD34+ hematopoi-
etic cells being transformed with a gene of interest not found
in the CD34+ cells prior to transformation,

wherein the composition is produced by a process com-
prising the steps of:

(a) isolating CD34+ hematopoietic cells from the subject;

(b) culturing the CD34+ hematopoietic cells with at least
one cytokine;

(c) transforming the CD34+ hematopoietic cells with a
vector which encodes a gene of interest in the presence
of an agent which enhances colocalization of the cells
and the vector;

(d) washing the CD34+ hematopoietic cells, and
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(e) mixing the CD34+ hematopoietic cells with a pharma-
ceutically acceptable carrier, to thereby obtain the
composition. The composition is suitable for adminis-
tration to a human subject. In this composition, the
numbers of cells can be as defined above. The subject
may be an adult. In this composition, the gene of
interest may express an RNA agent.

This invention further provides a method of inserting into
hematopoietic cells of a human subject a gene of interest
comprising:

a) mobilizing CD34+ hematopoietic progenitor cells into
the blood of the human subject;

b) isolating leukocytes from the subject’s blood by aph-
eresis;

c) isolating CD34+ hematopoietic cells from the isolated
leukocytes by an immunoselective method;

d) subjecting the CD34’' hematopoietic cells of step c) to
a transduction process with a gene of interest in the
presence of an agent that colocalizes the cells with a
transduction vector;

e) determining the total number of CD34’' hematopoietic

cells after step d), and if the total number is at least
l.63><l0 cells per kg of body weight of the human
subject, then proceeding to step f), and if the total
number of CD34’' hematopoietic cells after step d) is
less than l.63><l06 cells per kg of body weight of the
human subject, then performing at least steps b)-d) and
combining the CD34+hematopoietic cells; and

f) delivering to the subject the CD34’' hematopoietic cells,
thereby inserting into hematopoietic cells of the human

subject a gene of interest. The human subject may be an
adult.

In the method, the agent that colocalizes the cells with a
transduction vector may be a fragment of fibronectin.

In the method, step f) may be performed without myeloa-
blation. Step a) of mobilizing hematopoietic progenitor cells
in the subject may be performed by administering to the
subject an amount of a cytokine sufficient to mobilize the
hematopoietic progenitor cells. In the step of isolating the
leukocytes from the subject’s blood, apheresis may be
performed at least twice.

In the method, the step of subjecting the CD34’' hemato-
poietic cells to a transduction process with a gene of interest
is performed in the presence of a recombinant fibronectin
fragment, which may be recombinant fibronectin fragment
CH-296.

In the method, the gene of interest may encode an
anti-HIV agent. The anti-HIV agent may-be an RNA mol-
ecule; or an RNAi molecule; or an antisense molecule; or a
ribozyme. The ribozyme may comprise nucleotides having
the sequence 5'- UUA GGA UCC UGA UGA GUC CGU
GAG GAC GAAACU GGC UCC -3' (SEQ ID NO.:l) (Rz2)

In an embodiment of the method, in step e), if the total
number of CD34’' hematopoietic cells after step d) is less
than l.63><l06 cells per kg of body weight of the human
subject, then further including a step of cryogenically stor-
ing the CD34’' hematopoietic cells from step d), repeating
steps a)-d), and combining any cryogenically stored cells
with the cells from step d). The specific number of cells to
be obtained may be increased as described above.

In the method, all or almost all of the CD34’' hematopoi-
etic cells of step e) are delivered to the subject, for example
at least 90% of the total number.

The method may further comprise a step of culturing the
isolated CD34+ hematopoietic cells of step c) in the presence
of at least two cytokines or a cytokine mixture.
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The cytokine mixture may comprise one or more cytok-
ines selected from the group consisting of stem cell factor
(SCF) megakaryocyte growth and development factor
(MGDF), Flt-3 ligand (FL, sometimes abbreviated Flt-3),
interleukin 3 (IL-3), granulocyte-macrophage colony stimu-
lating factor (GM-CSF) and thrombopoietin (TPO) The
cytokine mixture may further comprise one or more cytok-
ines selected from the group consisting of interleukin 1
(IL-1), interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin
6 (IL-6), interleukin 7 (IL-7), interleukin 9 (IL-9), interleu-
kin ll (IL-ll), interleukin 12 (IL-12), interleukin 15 (IL-
15), granulocyte colony stimulating factor (G-CSF), mac-
rophage colony stimulating factor (M-CSF), erythropoietin
(EPO), leukemia inhibitory factor (LIF), transforming
growth factor beta (TGF-B), macrophage inhibitory protein
1 (MIP-l), tumor necrosis factor (TNF) and stromal cell-
derived factor 1 (SDF-l).

In a further embodiment of the method, the cytokine
mixture comprises one cytokine selected from a first group
and one cytokine selected from a second group, wherein the
first group consists of SCF, MGDF, FL, IL-3, GM-CSF,
TPO, IL-1, IL-4, IL-5, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15,

G-CSF, M-CSF, EPO, LIF, TGF-[3, MIP-1, TNF and SDF-1,
and wherein the second group consists of MGDF, FL,
GM-CSF, TPO, IL-1, IL-4, IL-5, IL-7, IL-9, IL-11, IL-12,
IL-15, G-CSF, M-CSF, EPO, LIF, TGF-[3, MIP-1, TNF and
SDF-1.

This invention further provides a method of inserting into
hematopoietic cells of a human subject a gene of interest
comprising:

a) mobilizing CD34+ hematopoietic progenitor cells into
the blood of the subject;

b) isolating leukocytes from the subject’s blood by aph-
eresis;

c) isolating CD34+ hematopoietic cells from the isolated
leukocytes by an immunoselective method;

d) determining the total number of CD34’' hematopoietic

cells after step c), and if the total number is at least
l.63><l0 cells per kg of body weight of the human
subject, then proceeding to step e), and if the total
number of CD34’' hematopoietic cells after step c) is
less than l.63><l06 cells per kg of body weight of the
human subject, then performing steps b)-c) and com-
bining the CD34’' hematopoietic cells;

e) subjecting the CD34’' hematopoictic cells of step c) to
a transduction process with a gene of interest in the
presence of an agent that colocalizes the cells with a
transduction vector; and

f) delivering to the subject the CD34’' hematopoietic cells,
thereby inserting into hematopoietic cells of the human

subject a gene of interest. The relevant specifics of this
method may be varied as discussed for the previous
methods.

The invention further provides a method of inserting into
hematopoietic cells of a human subject a gene that expresses
a ribozyme comprising nucleotides having the sequence
5'-UUA GGA UCC UGA UGA GUC CGU GAG GAC GAA

ACU GGC UCC-3' (SEQ ID NO.:l) (Rz2) comprising:
a) mobilizing CD34+ hematopoietic progenitor cells into

the blood of the subject by administering to the subject
an amount of a cytokine sufficient to mobilize the
hematopoietic progenitor cells;

b) isolating leukocytes from the subject’s blood by aph-
eresis, which is performed at least twice;

c) isolating CD34+ hematopoietic cells from the isolated
leukocytesby an immunoselective method;
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d) culturing the isolated CD34+ hematopoietic cells of
step c) for about one day in a culture medium in the
presence of a cytokine;

e) subjecting the CD34’' hematopoietic cells of step dy to
a transduction process with a retrovirus comprising a
vector that gives rise in the cell to a ribozyme com-
prising nucleotides having the sequence 5'- UUA GGA
UCC UGA UGA GUC CGU GAG GAC GAA ACU

GGC UCC -3' (SEQ ID NO. :1) (RZ2) in the presence
of a recombinant fibronectin fragment;

f) determining the total number of CD34’' hematopoletic

cells after step e), and if the total number is at least
1.63><10 cells per kg of body weight. of the human
subject, then proceeding to step g), and if the total
number of CD34’' hematopoietic cells after step e) is
less than 1.63><106 cells per kg of body weight of the
human subject, then again performing steps b)-e) and
combining the CD34’' hematopoietic cells; and

g) delivering to the subject, without myeloablation, the
CD34’' hematopoietic cells,

thereby inserting into hematopoietic cells of the human
subject a gene that expresses the ribozyme. The rel-
evant specifics of this method may be varied as dis-
cussed for the previous methods.

Also provided is a method of preparing the compositions
described above, comprising:

a) mobilizing CD34+ hematopoietic cells into the blood of
the subject;

b) isolating leukocytes from the subject’s blood by aph-
eresis;

c) isolating the CD34’' hematopoietic cells from the
isolated leukocytes by an immunoselective method;

d) subjecting the CD34’' hematopoietic cells of step c) to
a transduction process with a gene of interest in the
presence of an agent that colocalizes the cells with a
transduction vector; and

e) determining the total number of CD34’' hematopoietic
cells after step d), and if the total number of CD34+
hematopoietic cells after step d) is less than 1.63><106
cells per kg of body weight of the human subject, then
again performing steps b)-d) and combining the CD34’'
hematopoietic cells.

Also provided is a use of a composition comprising a
pharmaceutically acceptable carrier and at least 1.63><106
CD34+ hematopoietic cells per kg of body weight of a
human subject to whom the composition is to be adminis-
tered, at least 0.52><106 CD34+ of such cells per kg being
transduced with a viral construct which expresses an anti-
HIV agent, for the manufacture of a medicament for the
treatment of the human subject infected with HIV.

Also provided isa kit comprising elements for use in
carrying out the described methods. A specific embodiment
of a kit comprises

a) an amount of an agent capable of mobilizing hemato-
poietic progenitor cells in a human subject;

b) a culture medium including at least one cytokine
acceptable for culturing CD34+ hematopoietic cells;

c) a retroviral vector comprising nucleotides having a
sequence that in a cell gives rise to a ribozyme having
the sequence 5'- UUA GGA UCC UGA UGA GUC
CGU GAG GAC GAA ACU UGC UCC-3' (SEQ ID
NO.:1) (RZ2); and

d) tissue culture vessels coated on their inside with a
recombinant fibronectin fragment.

Yet further provided is a package comprising the
described kits and instructions for the use of the kits.
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In a further embodiment of the described method, the total
combined time taken for the steps of culturing and trans-
ducing the CD34’' hematopoietic cells is not more than about
three days, that is, the time during which the cells are in a
culture medium at 37° C. in the presence of added cytokines
(at normal levels) is not more than about three days. Alter-
natively, the time during which the cells are in culture media
in the presence of more than one cytokine is not more than
three days. The transduction of the cells may be performed
in the presence of a recombinant fibronectin fragment
CH-296 or an equivalent agent.

The compositions and methods of this invention can be
used to treat any of a variety of diseases in which there is a
genetic aspect. Of particular interest are diseases of the
blood or immune systems. These include hemoglobinopa-
thies, defects of leukocyte production or function including
cancers, immune deficiencies such as HIV, viral infections,
lysosomal storage diseases and stem cell defects such as
Fanconi’s anemia, chronic granulomatous disease, Gauch-
er’s disease, G6PD deficiency etc. They also include infec-
tious diseases such as AIDS/HIV infection or acquired
disease such as cancers or cardiovascular diseases.

The present invention relates to gene therapy, particularly
as applied to hematopoietic progenitor (HP) cells, to trans-
duced cells and methods of obtaining them, and to methods
of using them to provide prolonged engraftment of modified
hematopoietic cells in human subjects. The invention par-
ticularly relates to ex vivo gene therapy of HP cells for
treatment or prevention of HIV infection. The invention
provides compositions of transduced HP cells that comprise
sufficient numbers of totipotent cells capable of providing
therapeutic benefit. In one embodiment, this invention pro-
vides compositions of transduced human HP cells and
methods of gene therapy against HIV in order to give rise,
in human subjects, to protected T-lymphocytes.

In the context of viral infection, particularly HIV infec-
tion, significant therapeutic benefit is provided by the inven-
tion through increased long term survival ofmodified T-lym-
phocytes in the human subject and thereby increased
numbers of T-lymphocytes and improved immune function,
leading to lower viral replication and viral load.

In a further embodiment, the transduced human HP cells
of the composition or system are capable of long-term
engraftment when infused into a patient, giving rise to
differentiated hematopoietic cells for at least 12 months after
infusion, preferably at least 24 months and even more
preferably at least 30 months after infusion. In a further
embodiment, the transduced human HP cells are capable of
long-term engraftment when infused into an autologous
subject. In a further embodiment, the transduced human HP
cells are capable of long-term engraftment when infused into
a subject without myeloablation.

Another embodiment provides a composition or system
comprising transduced human HP cells in sufficient numbers
that, when delivered into a human subject, provide long term
engraftment at a level such that at least 0.01% gene-modified
cells of at least one cell type can be detected in the blood or
bone marrow for example, by biopsy. It is preferred that the
cell type be T-lymphocytes or macrophages/monocytes.
Preferably, the level of gene-modified cells is at least 0.1%,
more preferably at least 1% and most preferably at least
10%. It is preferred that the transduced cells are delivered
into an autologous subject. It is preferred that the transduced
cells are delivered in the absence of myeloablation. It is
preferred that long term engraftment occurs for at least 12
months, more preferred at least 24 months, even more
preferred, at least 30 months. It is preferred that the trans-

Benitec — Exhibit 1015 — page 35



Benitec - Exhibit 1015 - page 36

US 7,345,025 B2

13

duced gene is for treatment of diseases other than SCID, for
example cancers and infectious diseases. It is more preferred
that the transduced gene is for treatment or prevention of
HIV infection.

The HP cells for transduction were preferably obtained
from one subject. The CD34+ purity of the transduced
human HP cells (% CD34+) should be at least 65%, pref-
erably at least 90% and more preferably at least 95%. The
percentage transduction should be at least about 10%, pref-
erably at least about 30% and more preferably at least about
50%.

In a further embodiment, the transduced human HP cells
are derived from CD34+ cells isolated from the blood of a

human subject after mobilization of HP cells into the periph-
eral blood. Mobilization can be achieved by the use of
cytokines, preferably one or more from the group consisting
of granulocyte colony-stimulating factor (G-CSF), conju-
gated G-CSF, pegylated G-CSF and granulocyte-macroph-
age colony-stimulating factor (GM-CSF). The cytokine(s)
may further comprise stem cell factor (SCF), interleukin 3
(IL-3), or stromal cell-derived factor-l (SDF-l, Lataillade et
al 2000) or similar acting cytokines. Mobilization may be
assisted by the use of a short course of chemotherapy with
agents such as cyclophosphamide. More preferably, mobi-
lization is carried out using G-CSF or pegylated G-CSF. The
cytokine(s) may be administered daily at an amount of at
least about 10 pg per kg of weight of the subject and more
preferably at about 30 pg per kg. The CD34+ cells may be
collected by apheresis on days 3, 4, 5, 6 or later after
beginning cytokine treatment. Preferably, apheresis is car-
ried out at least twice. The CD34+ cells may be selected by
any of the clinical grade devices known in the art such as the
Isolex 300i cell selection system or the CEPRATE SC Stem
Cell Concentration System.

In a further embodiment, the CD34’' cells are treated prior
to transduction with a cytokine mixture, preferably com-
prising MGDF and SCF, or essentially MGDF and SCF, to
induce entry into cell cycle, preferably at concentrations of
about 100 ng/ml and 50 ng/ml, respectively. It is preferred
that cell cycle induction occur in the absence of added
cytokines IL-3, IL-6 or SCF, or the combination of the three
of these.

The transduced human HP cells contain an introduced

gene which may encode one or more proteins or RNA
molecules, for example antisense molecules, RNAi mol-
ecules, RNA decoys or ribozyme RNA (ie. RNA agents).
The introduced gene may be any introduced gene provided
that the encoded protein or RNA or both alter the properties
of the transduced human HP cells in a desired way compared
to the non-transduced HP cells. In one embodiment, the
introduced gene, when expressed, provides resistance to the
transduced HP cells or to differentiated progeny of these
cells against viral infection, preferably resistance against
HIV infection. More preferably, the introduced gene
encodes antisense or ribozyme RNA capable of inhibiting
HIV-1 replication in cells.

Types of ribozymes which may be directed against viral
infection such as HIV-1 infection or against non-viral dis-
eases include the hammerhead, hairpin, RNAse P, hepatitis
delta virus (HDV), intervening sequence ribozymes of the
Group I or Group II type, or catalytic motifs selected by in
vitro selection methods. The ribozymes are preferably ham-
merhead or hairpin ribozymes, more preferably hammer-
head ribozymes. Such ribozymes are capable of cleaving
RNA molecules associated with the disease.

The invention includes the use of multiple ribozymes (eq.
Ramezam et al 2002), for example a ribozyme with multiple
catalytic domains, or a combination of types of ribozymes.
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This should reduce the likelihood of viral resistance in the

case of treatment of virus infection. It is also preferred that
the ribozyme cleavage site(s) is highly conserved in the viral
target RNA, as is the case for the Rz2 cleavage site.

Any combination of the above is also possible, providing
more than one mechanism of effect.

The transduced human HP cells of the composition or
system are transduced by DNA or a plasmid or viral transfer
vector. It is desired that the introduced gene is integrated into
the cell genome, after reverse transcription if appropriate.
Preferably, the cells are transduced with a retroviral vector,
for example a murine retroviral vector or a lentiviral vector.
More preferably, the retroviral vector is derived from LNL6
(Bender et al. 1987) or other oncoretroviral vector. In a
particular embodiment, the cells are transduced with RRz2.

The introduced gene is expressed in the transduced human
HP cells or progeny cells from a promoter. The promoter
may be constitutively expressed or inducible, for example
being expressed preferentially under favorable conditions or
circumstances. The gene may be transcribed by RNA poly-
merase II (RNApol II promoters) or by RNApolymerase III.

In another embodiment of the invention, the composition
is formulated to be ready for delivery into a human subject.
The great majority of cells should be viable for example
greater than 95% and preferably greater than 98%. The
volume of the composition is preferably from about 10 ml to
about 1000 ml, more preferably from about 100 ml to about
500 ml. The composition comprises a pharmaceutically
acceptable carrier which is preferably a buffered salts solu-
tion comprising a protein agent such as an albumin or
gelatine and/or a sugar such as glucose, which agents may
act to stabilize the cells. The carrier may contain anticoagu-
lant agents such as sodium citrate. The carrier may comprise
a plasma expander, well known in the art. In further aspects,
the composition is sterile (bacterial, fungal, mycoplasma),
detectably free of bacteria, endotoxin, mycoplasma, HIV
p24 antigen or replication-competent retrovirus, substan-
tially free of free transducing vector, or any combination of
these. In a further aspect, the composition is substantially
free of added cytokines. The composition is administered to
the subject by parenteral means, preferably by infusion or
injection on one or more occasions.

The invention also provides methods for gene therapy of
hematopoietic cells, particularly hematopoietic progenitor
cells, using the compositions as described herein. The inven-
tion also provides methods of treatment or prevention of
genetic or infectious diseases, for example HIV infection.
The methods may comprise the use of the CH-296 fragment
of human fibronectin (RetroNectinTM) or equivalent, or one
or more debulking steps to remove unwanted cells, or one or
more washing steps.

Gene therapy can be carried out ex vivo or in vivo. The
methods described here preferably apply to the ex vivo
approach but could also be applied to in vivo approaches (for
example, Newbound et al., 2001). The invention can be
performed for subjects already having disease, or prophy-
lactically to reduce the occurrence or prevent disease.

HP cells for use in the methods of the invention can be

obtained from peripheral blood, bone marrow, umbilical
cord blood, or from stem cells that give rise to hematopoietic
cells. They are preferably obtained from peripheral blood
after mobilization. HP cells can be mobilized into the

peripheral blood by administering one or more cytokines,
with or without administration of a chemotherapeutic agent.
The cytokines may be selected from the group consisting of
G-CSF, pegylated G-CSF, conjugated G-CSF, GM-CSF and
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any combination of the above. The cytokines may further
comprise one or more selected from the group consisting of
SCF, FL and IL-3.

The methods of the invention are capable of providing at
least 0.01% of gene-modified hematopoietic cells long term
in a patient in the absence of myeloablation.

The parameters and characteristics of each of the embodi-
ments described above are interchangeable when applicable
to each other, and are therefore not repeated. Thus, for
example, any parameter or characteristic of the first embodi-
ment may be employed in the other embodiments of the
invention.

Definitions

Hematopoietic cells as used herein refer to cells normally
found in the blood as well as cells that give rise to cells
normally found in the blood, such as cells found in the bone
marrow. In this context, “normally” includes the situation
where a person is treated to alter the number or quality of
cells in the blood or bone marrow.

Viral vector is used herein to mean a vector that comprises
all or parts of a viral genome which is capable of being
introduced into cells and expressed. Such viral vectors may
include native, mutant or recombinant viruses. Such viruses
may have an RNA or DNA genome. Examples of suitable
viral vectors include retroviral vectors (including lentiviral
vectors), adenoviral vectors, adeno-associated viral vectors
and hybrid vectors.

A retroviral vector is a viral vector where the virus is from

the family retroviridae.
A “construct” is used to mean recombinant nucleic acid

which may be a recombinant DNA or RNA molecule, that
has been generated for the purpose of the expression of a
specific nucleotide sequence(s), or is to be used in the
construction of other recombinant nucleic acids. In general,
“construct” is used herein to refer to an isolated, recombi-
nant DNA or RNA molecule.

An “anti-HIV agent” as used here refers to any agent that
can be expressed by a mammalian cell and which inhibits the
replication of HIV or the entry of HIV into the mammalian
cell. Such agents may be nucleic acids or polypeptides.

The term “capable of engraftment” is used in here to refer
to the ability of a hematopoietic cell to implant into the bone
marrow for an extended period of time, e.g. at least one year.
Implantation may be detected directly (e.g. by biopsy) or by
the production of progeny cells in the blood.

The terms “mobilize” and “mobilized” are used here to

refer to hematopoietic cells being moved from the tissue
stores in the bone marrow into the peripheral blood.

The term “cytokine” is used to refer to any number of
hormone like, low-molecular weight proteins, whether
secreted by various cell types or recombinant, that regulate
the intensity and duration of cell growth or function, for
example cell-to-cell communication. Cytokines are
involved, for example, in mediating immunity, allergy, and
in regulating maturation and growth of cells.

An “adult” is used here to refer to a fully grown and
physically mature human subject. Generally accepted age of
a human “adult” is 18 years or more.

Transduction is used to refer to the introduction of genetic
material into a cell by using a viral vector.

As used herein a transduced cell results from a transduc-

tion process a11d contains genetic material it did 11ot contain
before the transduction process, whether stably integrated or
not. As used in some prior art, but not as used herein,
“transduced cells” may refer to a population of cells which
has resulted from a transduction process and which popu-
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lation includes cells containing the genetic material and cells
not containing the genetic material, whether stably inte-
grated or not.

Transfection refers to the introduction of genetic material
into a cell without using a viral vector. Examples of trans-
fection include insertion of “naked” DNA or DNA in lipo-
somes, that is without a viral coat or envelope.

Myeloablation refers to treatment, generally chemical or
radiological, which results in the destruction of at least a
significant part of the myeloid compartment (which includes
hematopoietic progenitor cells) in a patient. Myeloablation
does not include conditioning treatments which may cause
only arninor or unsubstantial destruction of cells of the
myeloid compartment.

The phrase “pharmaceutically acceptable carrier” is used
to mean any of the standard pharmaceutically acceptable
carriers. Examples include, but are not limited to, phosphate
buffered saline, physiological saline, and water.

“Recombinant fibronectin fragment” is used to refer to an
agent that functions to colocalize the cells with the vector
during the transduction process and is based on the activity
of fibronectin. For example, RetroNectinTM, TaKaRa Shuzo
Co. Ltd., is a recombinant fibronectin fragment that contains
three domains, a central cell binding domain that binds to
integrin VLA-5, a high afiinity heparin-binding domain that
binds proteoglycans, and a CS-l site within the alternatively
splices IIICS region that binds integrin VLA-4 (Williams
1999). Equivalent retronectins contain three domains that
are functionally equivalent to RetroNectinTM, while colocal-
ization agents that are similar to RetroNectinTM contain at
least two domains that are functionally equivalent.

“Nucleic acid sequence” as used herein refers to an
oligonucleotide, or polynucleotide, and fragments or por-
tions thereof, and to DNA or RNA of genomic or synthetic
origin which may be single- or double-stranded, and repre-
sent the sense or antisense strand. Similarly, “amino acid
sequence” as used herein refers to an oligopeptide, peptide,
polypeptide, or protein sequence, and fragments or portions
thereof, and to naturally occurring or synthetic molecules.

The term “antisense”, as used herein, refers to nucleotide
sequences which are complementary to a specific DNA or
RNA sequence. The term “antisense strand” is used in
reference to a nucleic acid strand that is complementary to
the “sense” strand. Antisense molecules may be produced by
any method, including synthesis by ligating the gene(s) of
interest in a reverse orientation to a promoter which permits
the synthesis of a complementary strand. Once introduced
into a cell, this transcribed strand combines with natural
sequences produced by the cell to form duplexes. These
duplexes then block either the further transcription or trans-
lation. In this manner, mutant phenotypes may be generated.
The designation “negative” is sometimes used in reference
to the antisense strand, and “positive” is sometimes used in
reference to the sense strand.

Throughout this specification the word “comprise”, or
variations such as “comprises” or “comprising”, will be
understood to imply the inclusion of a stated element,
integer or step, or group of elements, integers or steps, but
not the exclusion of any other element, integer or step, or
group of elements, integers or steps.

Model Proving Principle of Invention
The model selected to prove the principles of the inven-

tion is an HIV infected human. An effective, long term and
practical treatment or eradication or prevention of HIV
infection in a human subject has been an elusive goal. Thus,
the advantages of the invention are exemplified in the
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context of a highly complex problem, i.e. therapy against
HIV infection in a human subject.

However, as will be evident from the following descrip-
tion, different diseases can be treated using the compositions
or methods of the invention, including any of the blood or
immune systems. These include hemoglobinopathies,
defects of leukocyte production or function, immune defi-
ciencies, lysosomal storage diseases and stem cell defects
such as Fanconi’s anemia, chronic granulomatous disease,
Gaucher’s disease, G6PD deficiency etc. Many of these
disorders have been successfully treated by allogeneic HP
cell transplants (Parkman 1986). However, the requirement
for immune suppression or the occurrence of immunologic
effects such as graft rejection or graft-versus host disease are
a disadvantage of allogeneic bone marrow transplantation.
The invention provides advantages where autologous HP
cells are used. The invention can also be used to confer

resistance to HP cells or their progeny against myelosup-
pressive effects.

The invention can also be used to treat infectious disease,
such as the exemplified AIDS or other viral infection such as
HTLV-1 (Bunnel and Morgan 1998), or acquired diseases
such as cardiovascular diseases (for example, see Orlic et al
2001) or cancers. With respect to cancers, bone marrow
transplantation techniques have been used for a variety of
cancers including those primarily of the hematopoietic sys-
tem. There is an advantage to providing protection to
hematopoietic cells against anti-cancer agents (Carpinteiro
et al, 2002), to allow more effective treatment (see review by
Brenner 2001). Genes that can be used include the multidrug
resistance (MDR) gene which confers resistance to anthra-
cyclines, Vinca alkaloids, podophyllins and taxol, and
mutant dihydrofolate reductase (mDHFR)genes to confer
resistance to methotrexate or trimetrexate, and genes for
O-alkylguanine-DNA-alkyltransferase for resistance to
alkylating agents. The gene therapy methods of this inven-
tion can be also used in treatment of malignancies by
altering the immune response to the cancerous cells or
simply by marking cells to monitor the efficacy of conven-
tional therapies (Cometta et al 1996). For treatment of
malignancies where gene therapy of hematopoietic cells is
also carried out, partial or complete myeloablation will often
be performed prior to delivery of the modified cells.

Gene Therapy for HIV-1
The Human Immunodeficiency Virus (HIV) group

includes HIV-1 and HIV-2 types. Replication of HIV-1 is
now well understood. The current standard treatment uses a

combination of antiretroviral drugs, often three or more, and
may provide control of HIV replication in the short-term but
is often associated with negative aspects such as drug
toxicity, viral resistance, awkward dosing regimes, and cost
of treatment.

Using hematopoietic progenitor cells as transduction tar-
gets, gene therapy for HIV/AIDS aims to replace a fraction
of the HIV-infected cellular pool with cells engineered to
inhibit virus replication. This strategy can potentially con-
tribute to virus eradication by protecting CD4+ cells and by
allowing the establishment of an antiviral response mediated
by protected immune elements. For these strategies to have
a positive impact on the course of HIV infection, it is
essential that i) a degree of immune reconstitution occur in
the setting of HIV infection, ii) the reconstituted immune
system be protected against HIV-induced depletion,
enabling it to recognize antigen and to protect the host
against pathogens. It is desired that this strategy impact on
viral load. With regard to the potential for immune recon-
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stitution in HIV infection, several reports have addressed the
effects of highly active antiretroviral therapy (HAART) on
the immune system (Ho et al 1995; Zhang et al 1998). In
essence, HAART is associated with increases in CD4+ cell
counts, principally due to the expansion of memory cells
during the first 4 months of HAART. This is followed by an
increase in naive CD4+ cells, associated with a decrease in
CD4 activation markers and an increase in proliferative
responses to recall antigens (Autran et al 1997; Pakker et al
1998).

Although in vitro studies have demonstrated that the adult
uninfected thymus maintains the ability to support T-lym-
phopoiesis (Jamieson et al 1999; Poulin 1999), it has not
previously been proven that hematopoietic progenitor cell
gene therapy can result in the prolonged restoration of the
immune system with cells engineered to inhibit HIV-1
replication. With regard to the absence of gene therapy,
while the emergence of recent thymic emigrants in the
periphery has been described for patients that were previ-
ously HAART naive, it was sustained only as long as
viremia was kept in check (Douek et 1998; Zhang et al
1999). It is not known whether a similar response would
occur in patients with more advanced HIV infection in the
context of drug resistance and uncontrolled viremia. In
addition, the source of progenitors that give rise to these
recent thymic emigrants has not been elucidated; it is not
known whether hematopoietic precursors responsible for the
degree of thymopoiesis observed after HAART in adults
migrate from the bone marrow to the thymus as a response
to T-cell depletion, or whether T-lymphoid development
after HAART derives from T-lymphoid progenitors that
colonized the thymus earlier in life. Indeed, the ability of
peripheral blood progenitor cells to undergo T-lymphocyte
development in the adult thymus has not previously been
elucidated in the setting of active HIV replication, as the
emergence of T-lymphocytes after autologous transplanta-
tion of HIV patients could be ascribed to T-lymphocyte
development arising from endogenous residual T-lympho-
cyte precursors (Gabarre et al 2000). Moreover, uninfected
adult patients receiving allogeneic hematopoietic progenitor
cell transplantation using selected CD34+ cells display
marked delay and suboptimal T-lymphocyte recovery, indi-
cating subnormal thymic activity after intensive bone mar-
row suppression (Behringer et 1999; Martinez et al 1999). It
should also be considered that potential factors inherent to
the methods employed in genetic manipulation of hemato-
poietic progenitors might affect their ability to undergo
T-lymphoid development. These previously identified fac-
tors include the induction of progenitors into cell cycle in
preparation for transduction with murine retroviruses (Roe
et al 1993), which could result in myeloid lineage commit-
ment, and the presence of a constitutively expressed foreign
gene that might interfere with the required processes of
progenitor cell migration, homing and differentiation. There-
fore we sought to determine whether genetically protected
T-lymphocytes, including naive T-lymphocytes, could be
produced in the context of adult HIV infection.

Interference with HIV-1 multiplication can occur at any
stage of its replication cycle. Retroviral infection of a cell is
initiated by the interaction of viral glycoproteins with cel-
lular receptors (A) (see FIG. 1). Following adsorption and
uncoating, the viral RNA enters the target cell and is
converted into cDNA by the action of reverse transcriptase,
an enzyme brought within the virion (B). The cDNA adopts
a circular form (C), is converted to double-stranded cDNA
and then becomes integrated into the host cell’s genomic
DNA by the action of integrase (D). Once integrated,
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proviral cDNA is transcribed from the promoter within the
5' LTR (E). The transcribed RNA including the mRNAs for
gag, pol and env and the regulatory factors tat, rev and vpr
are translated to produce the viral proteins (F) or is left as
nascent viral RNA. This viral RNA contains a Psi packaging
sequence which is essential for its packaging into virions
(G). Once the virion is produced, it is released from the cell
by budding from the plasma membrane (H). In general,
retroviruses do not cause lysis of the host cell; HIV is an
exception to this. The proviral cDNA remains stably inte-
grated in the host genome and is replicated with the host
DNA so that progeny cells also inherit the provirus. Potential
anti-viral agents may be targeted at any of these replicative
control points. For example, down-regulation of the CCR5
receptor can inhibit HIV-1 replication (Bai et al 2000).

Different types of approaches that can be used with this
invention for gene therapy against HIV-1 including intrac-
ellular expression of transdominant proteins (eg. Smythe et
al. 1994), intracellular antibodies (eg. Marasco et al. 1998,
Shaheen et al 1996), antisense ribonucleic acid (RNA) (eg.
Sczakiel and Pawlita 1991), viral decoys (eg. Kohn et al.
1999), catalytic ribozymes (eg. Sarver et al. 1990; Sun et al.
1996) and RNAi (eg. Novina et al 2002).

Transdominant (mutant) proteins, particularly mutant Rev
or Tat proteins, act by binding to HIV RNA or factors
required for HIV replication. They have an altered function
compared to the non-mutant protein such that they interfere
with the function of the non-mutant protein. They may be a
fusion protein, combining two or more activities. In one
particular embodiment, the transdominant protein is the
RevM10 protein (Ranga et al 1998), which has been shown
to inhibit HIV-1 replication in primary T cells. RevM10
transduced CD34+ cells isolated from human umbilical cord

blood or peripheral blood gave rise to mature thymocytes in
a mouse model and protected T cells against HIV-1 (Bony-
hadi et al 1997). Furthermore, retroviral delivery of RevM1 0
to CD4+ cells protected these cells in HIV-infected individu-
als (Ranga et al 1998).

Intracellular antibodies, generally of the single-chain
type, such as that produced from the retroviral construct
pSLXCMV (Shaheen et al 1996), can inhibit the HIV life
cycle by binding or sequestering specific viral proteins. In
one particular embodiment, anti-reverse transcriptase (RT)
antibody fragments inhibited HIV infection in vitro (Macie-
jewski et al 1995).

Antisense RNA may bind to viral RNA, either genomic or
transcription products, and destabilize the RNA or inhibit
processes such as translation or export from the nucleus.
Binding to the nascent viral RNA may also act to inhibit
productive packaging of RNA into virions. As is well
understood in the art, the complementary region for an
antisense molecule can be as short as 15 nucleotides, more
preferably more than 30 nucleotides, and most preferably
between 100 and 500 nucleotides in length. Inhibition of
HIV-1 replication has been demonstrated for antisense
RNAs targeted against several viral regulatory and structural
genes including pol, gag, env, tat, vif, and psi (see Veres et
al 1998). Replication of the related simian immunodefi-
ciency virus (SIV) was limited and disease progression was
reduced in monkeys after treatment with lymphocytes con-
taining an antisense tat/rev gene (Donahue et al 1998)
showing that antisense expression can inhibit lentivirus
replication in vivo. In one particular embodiment, the ret-
roviral vector HGTV43 encodes an antisense molecule

targeting tar and two separate sites of the tat/rev region in the
HIV-1 genome. This molecule has been shown to provide
protection against HIV infection in vitro.
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RNA decoys such as RRE decoys and TAR decoys have
also been used to protect cells against HIV (Lee et al 1994,
Lisziewicz et al 1993) and are preferably used in a polymeric
form to increase the ability to bind HIV-1 related proteins
and sequester them.

Ribozymes may act not only by binding viral RNAs but
also by cleaving and inactivating them and so are attractive
for use with this invention. They consist of one or more
(usually two) regions of complementarity to the target RNA
and a catalytic region that provides enzymatic activity.
Ribozymes, particularly those with longer hybridizing arms,
may also act through mechanisms similar to those used by
antisense molecules. The most widely used ribozyme motifs
are the hammerhead and hairpin types, which are described
in U.S. Pat. No. 6,127,114 and U.S. Pat. No. 6,221,661,
respectively. In one particular embodiment, the retroviral
vector pTCAG encodes a hairpin ribozyme targeting the U5
region (position +111/ 112 from the cap site) of HIV-1 LTR
fused with part of an RRE sequence and a ribozyme target-
ing the rev/env coding region (position 8629-8644 of HXB2
isolate), expressed from a tRNAval promoter (Gervaix et al
1 997).

RNAi molecules are those with double stranded RNA

regions that trigger host cell RNA degradation mechanisms
in a sequence-specific manner. They may therefore be used
to inactivate endogenous RNAs or pathogen RNA such as
HIV-1 RNA. Each double stranded region may be relatively
short, for example 21-25 base pairs in length, preferably less
than about 30 base pairs in length and more preferably with
a double stranded region of 19 to 25 base pairs. It is
preferred that there be not more than one mismatch (mis-
matches are defined as not including G:U pairs) in each
double-stranded region, more preferably no mismatches,
and most preferred that the double stranded region(s) be
perfectly matched. Where the targeted molecule is variable
(eg. HIV-1 RNA), highly conserved regions should be
targeted. A family of variants can be targeted provided they
do not have more than one mismatch with one or other of the

strands of the double-stranded region of the RNAi molecule.
For longer RNAi molecules, several short duplexes may be
joined, allowing targeting of multiple genes, which is pre-
ferred for targets with higher variablity. The RNAi duplexes
may also be produced from longer RNA transcripts by
splicing or self-cleaving means, for example by incorporat-
ing self-cleaving ribozymes between or flanking the duplex
regions. RNAi molecules are easily formed from DNA
molecules having an inverted repeat structure. Alternatively,
RNAi duplexes may be formed from two RNA molecules
with complementary regions. RNAi molecules with double-
stranded regions of greater than 30 base pairs can be used if
they are nuclear localized, eg. if they are made without
signals for cytoplasmic export such as polyadenylated
sequences. Until recently, RNAi had not been shown to work
in human cells. Recently, however, RNAi (also called iRNA,
or short siRNA, or hairpin RNA) has been shown to inhibit
HIV-1 replication in T lymphocytes (Novina et al 2002).
RNAi molecules targeted to the viral LTR, or the accessory
vif and nef genes inhibited early and late steps of HIV
replication in cell lines and primary lymphocytes (Jacque et
al 2002). RNAi has also been successfully targeted to other
viruses (eg. Gitlin et al 2002) and can be targeted against
endogenous genes.

The RNA agents disclosed herein for use in the invention
can be expressed from viral promoters (eg retroviral LTR,
cytomegalovirus) or other promoters utilizing RNA poly-
merase II for high level expression. The RNA agent can be
incorporated into longer transcripts, for example in the 3'

Benitec — Exhibit 1015 — page 39



Benitec - Exhibit 1015 - page 40

US 7,345,025 B2

21

untranslated region of a marker gene. The transcript may be
engineered for self-cleavage for release of the agent. The
RNA agent may also be expressed from RNA polymerase III
promoters using gene constructs derived from tRNA genes,
adenovirus VAl, U1 and U6 or other small nuclear RNA
genes. Furthermore, the RNA agent may be provided with
signals that aid in colocalizing the agent with the target
molecule (for example, see Michienzi et al 2000).

The scientific rationale for the use of a ribozyme or other
genes to treat HIV or other infection is shown schematically
in FIG. 2.

It is an object of this invention to provide therapeutic
benefit by allowing for the long term emergence ofprotected
T-lymphocytes from the thymus, with increased survival of
the CD4+ cells, and the establishment of an increased
immune response by protected immune elements.

Hematopoiesis
Hematopoietic cells include cells normally found in the

blood as well as cells that give rise to cells normally found
in the blood, such as cells found in the bone marrow. In this
context, “normally” includes the situation where a person is
treated to alter the number or quality of cells in the blood or
bone marrow. The process of differentiation of hematopoi-
etic cells is shown schematically in FIG. 3. Hematopoiesis
is the process through which the blood-forming system is
maintained. This process involves a balance between cell
death and regeneration and differentiation of new cells.

Production of mature lymphoid cells requires that precur-
sors leave the bone marrow, pass through the selection
mechanisms within the thymus and be exported as naive
cells into the peripheral blood. The efficiency of this process
is age related as the thymus involutes with age and its rate
of CD4+ T-lymphocyte export decays accordingly. Survival
and expansion of T-lymphocytes to give rise to activated and
memory T-cells is dependent on natural homeostatic mecha-
nisms.

Hematopoiesis is maintained by a pool of pluripotent
hematopoietic stem (HS) cells which have the long term
capacity for self-renewal as well as giving rise to progeny
which proliferate and differentiate into mature elfector blood
cells of both the myeloid and lymphoid groups (Ogawa et al
1993, Orlic and Bodine 1994). The numbers of HS cells are
maintained by cell division so that these cells are effectively
immortal. At least in theory, the whole hematopoietic system
could be regenerated from a single HS cell. Many of the HS
cells are quiescent in the body (Hodgson and Bradley 1979,
Jones et al 1990).

Hematopoietic progenitor (HP) cells are characterized by
the presence of the CD34 cell surface antigen and their
ability to give rise to multilineage progeny of both the
myeloid and lymphoid types. Some CD34+ hematopoietic
progenitor cells have the capacity for self-renewal and can
be considered true stem cells, while other CD34+ hemato-
poietic cells may not have the capacity for self-renewal or
only a limited capacity. The CD34’' antigen is absent on
more mature hematopoietic cells.

The CD34+ cells are themselves heterogenous (Bertolini
et al 1998) and can be fractionated into subpopulations
based on expression of other markers, for example CD38
(Hogan et al 2002). Human CD34+/CD38‘ cells, represent-
ing about 5% of the CD34’' cell population, were shown to
have better long-term reconstituting ability in the SCID
mouse model than the CD3 8* cells (Hogan et al 2002). Thus,
2.5><l04 CD34+/CD38‘ (CD34+/CD38low)cells may be
equivalent to 5x105 CD34+ cells. Other markers that can be
used to enrich the cell population for cells with long-term

10

15

20

25

30

35

40

45

50

55

60

65

22

reconstituting ability include Thy-1+, CDl33+, human

KDR+ (VEGF receptor), human ClQRP+, HLA-DR‘, and
low-level retention of vital dyes such as Rhodamine 123 or
Hoechst 33342.

Recent reports indicate that there may be HS cells lacking
the CD34 antigen for at least some of the time (Halene and
Kohn 2000, Dao and Nolta 2000). Reversible expression of
the CD34 marker on murine HS cells has been shown,
suggesting that CD34 serves as an activation marker (Sato et
al 1999). CD34‘ cells have been shown to be capable of
multilineage engraftment and to give rise to CD34’' cells
(Zanjani et al 1998).

The capacity of the HP cells, which are to be altered by
gene therapy according to this invention, to engraft and give
rise long term to multilineage differentiated progeny is a
critical feature of this invention. This provides for persis-
tence of gene-modified hematopoietic cells in the human
subject. This capacity may be assayed by the ability to
repopulate the hematopoietic systems of myeloablated ani-
mals (Harrison 1980, Harrison 1988) or preferably myeloa-
blated humans, or more preferably non-myeloablated
humans. Even more preferably, this capacity is assayed in
the context of viral infection such as HIV-1 infection.

HP cells and Their Isolation

The isolation and purification of human HP cells has been
reviewed recently (To et al 1997, Huss 2000, Thomas et al
1999, Sadelain et al 2000).

HP cells for use in gene therapy according to the invention
can be isolated from peripheral blood after mobilization,
bone marrow, or umbilical cord blood. HP cells may also be
obtained from stem cells that give rise to hematopoietic
cells.

HP cells are preferably obtained from peripheral blood
after mobilization (Huss 2000). There are some advantages
in isolating HP cells from mobilized peripheral blood. A
higher absolute number of CD34’' cells can be collected
from the peripheral blood after mobilization compared to
bone marrow or umbilical cord blood, due to the relatively
large amount of blood that can be processed. The procedure
does not require a general anaesthetic and is associated with
reduced hospitilization costs. As is well understood in the art
(for example, Fu and Liesveld 2000) that mobilization can
be performed by treatment with one or more cytokines,
optionally adding a short course of chemotherapy with
agents such as cyclophosphamide (Campos et al 1993). HP
cells can be obilized into the peripheral blood using G-CSF
(Ho 1993, Lane et al 1995), pegylated G-CSF, conjugated
G-CSF, GM-CSF (Siena et al 1989), or any combination of
these. Mobilization can be enhanced by combining one or
more of these cytokines with others such as stem cell factor
(SCF), Flt-3 ligand (Ho et al 1996 abbreviated as Flt3), or
interleukin 3 (IL-3; Huhn et al 1996). Mobilization may be
enhanced by counteracting stromal cell-derived factor-l
(SDF-l; Benboubker et al 2001) or other factors that act
negatively to restrict mobilization. Mobilization of periph-
eral blood HP cells using G-CSF in HIV-infected individuals
has been demonstrated by Law et al 1999. Maximal mobi-
lization was achieved after 4 days of G-CSF administration.
HP cells may be obtained by apheresis on days 4, 5, 6 or
later. Levels of CD34’' cells in the blood may be monitored
from about day 3 onward, for example Complete Blood
Counts (CBCs), differential and platelet count may be per-
formed daily during cytokine administration to assess the
extent of the leucocytosis. The CD34+ cell count is prefer-
ably greater than 20 cells/mm3 prior to the start of apheresis.

Benitec — Exhibit 1015 — page 40



Benitec - Exhibit 1015 - page 41

US 7,345,025 B2

23

Apheresis may be carried out with the Cobe Spectra
(Garnbra), Hemonetics (Domediac), Amicus (Baxter) or
equivalent equipment. Apheresis results in a leukocyte
population highly enriched in mononuclear cells and
depleted for granulocytes, which is desired. If insufficient
CD34+ cells are obtained from a first series of mobilization/

apheresis, the procedure can be repeated with the same or
modified mobilization regime. Alternatively, apheresis can
be repeated. CD34+ cells from the first procedure can be
cryopreserved and combined with those from subsequent
procedures.

It has been shown that primitive HP cells are reduced or
lost in patients with HIV infection (Marandin et al 1996);
this makes it more difficult to obtain sufficient numbers of
cells in the context of HIV infection.

HP cells can also be isolated from aspirated bone marrow
by isolating mononuclear cells (MNC) and purifying CD34+
cells. HP cells can also be isolated from umbilical cord blood

(Gluckman 2000). Up to about 200 ml of cord blood can be
obtained at birth. Such cells can be cryopreserved and used
for successful transduction and transplantation later (Huss
2000). There is evidence that HP cells from umbilical cord
blood are more readily transduced and have greater self-
renewal potential than those from peripheral blood (Moore
and MacKenzie 1999).

Devices have been developed that allow enrichment of
CD34’' cells for clinical use, including the Isolex 300i or
equivalent. These are based on the recognition of the CD34’'
cell surface antigen, which is a transmembrane sialomucin
that is expressed on HP cells and on vascular endothelial
cells. The methods include immunoselective methods using
antibodies with specificity for the CD34 antigen, which
antibodies may be tagged with magnetic or fluorescent or
other tags that allow selection. Cells may be expressing the
CD34 protein internally but this would not allow immun-
oselection. Only cells expressing the CD34 antigen on the
cell surface at same time, allowing access to the antibody,
are considered CD34+.

Populations of hematopoietic cells that are highly
enriched for CD34’' cells can also be obtained from the

sources mentioned above by antigen-depletion strategies, for
example to selectively deplete the population of cells
expressing lineage-specific markers such as CD2, CD3,
CD14, CD16, CD19, CD24, CD56, or CD66b glycoprotein
A. This type of strategy allows the isolation of cell popu-
lations enriched for CD34-HS cells as well as CD34+ cells.

The enriched pool of CD34’' or lineage depleted cells
preferably comprises at least 40%, more preferably at least
60% and most preferably at least 80% cells of this type. A
balance must be struck between the purity and recovery of
the desired cells.

The proportion of CD34’' cells in samples can be deter-
mined by flow cytometry methods, for example as done by
Bender et al 1991, or immunologic methods. The absolute
number and proportion of CD34’' cells can be determined by
standardized procedures (Barnett et al 1998, Sandhaus et al.
1998). Absolute nucleated cell counts can be determined by
hematological analyzers, or more preferably in single-plat-
form assays, where absolute CD34 counts are produced
directly from a single flow cytometric analysis. Enumeration
of CD34’' cells and some of the equipment that can be used
has recently been reviewed (Reis 1999).

Once isolated, CD34+ cells can be cultured in any suitable
medium, well known in the art, in vessels such as flasks or
bags, for example the gas-permeable polypropylene bags
(Giarratana et al 1998).
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There is increasing evidence that most CD34+ cells are
involved in short-term but not long term reconstitution, and
that only a small fraction of all CD34+ cells have long term
multilineage engraftment potential (see Bertolini et al 1998).
This raises concern about the enumeration of CD34’' num-

bers in earlier reports and engraftment potential (Ducos et al
2000). We have shown here that the transduced human
CD34’' cells and methods of the invention are capable of
providing for long term multilineage engraftment.

Treatment of HP Cells for Transduction with Murine
Oncoretroviral Vectors.

Efficient transduction of human HP cells with murine

oncoretroviral vectors (for example, those based on MMLV)
and some other retroviral vectors requires induction of cell
cycle, for example with one or more cytokines (growth
factors) (Dao and Nolta 1999) or inhibitors of cell cycle
control. The combination of thrombopoietin (TPO), Flt-3
ligand (FL) and Kit ligand (K L, also known as SCF) has
been used in vitro (Murray et al 1999, Ng et al 2002). The
combination of MGDF, SCF and FL was used in repopula-
tion assays in primates (Wu et al 2000). Amado et al showed
that treatment of cells with MGDF and SCF better supported
the survival of thymocyte precursor cells than other combi-
nations of factors in a mouse model (Amado et al 1998).
IL-3, IL-6, SCF or TPO or combinations thereof have been
shown to have beneficial effects on HP cell transduction

(Nolta et al 1992, Hennemann et al 1999). The combinations
FL/SCF/IL-3/IL-6, SCF/G-CSF, FL/SCF/TPO/IL-6,
FL/SCF/G-CSF, FL/SCF/TPO, and FL/SCF/GM-CSF have
also been used in large animal models (Richter and Karlson
2001). There is evidence, however, that the combination of
IL-3, IL-6 and SCF may impair engraftment (Peters et al
1996). Other approaches to induce cycling of HP cells
include the use of inhibitors (eg antisense molecules or
antibodies) of p27 (kip1) (Dao et al 1998, Cheng et al 2000)
or transforming growth factor beta-1 (Ducos et al 2000,
Imbert et al 1998) to increase cell numbers. However, the
ability of cells stimulated in any of these ways and then
transduced to confer long term engraftment in humans was
unknown prior to this invention.

SCF (c-kit ligand) is a cytokine produced mainly by
marrow stromal cells and has an important role in the
survival and self-renewal of HSC (Lyman and Jacobsen
1998). It also acts as a co-mitogen in the movement of HS
cells out of the stem cell pool into progeny. Flt-3 ligand (FL)
is a cytokine that binds to a class III receptor tyrosine kinase
that is expressed on primitive hematopoietic cells (Lyman
and Jacobsen 1998). FL has a synergistic effect with SCF on
survival and proliferation of HP cells (Dao et al 1997).
Thrombopoietin (TPO) is a ligand for the c-Mpl receptor
and is a growth factor involved in early hematopoiesis as
well as megakaryocyte and platelet formation (Solar et al
1998). MGDF is a pegylated and truncated form of TPO and
acts in a similar fashion to TPO; it may be regarded as
functionally equivalent to TPO. Any of these cytokines may
be modified, formulated differently or conjugated while still
providing an equivalent elfect.

Ribozymes
Ribozymes are enzymatic RNAs that can specifically

cleave RNA (for example, Haselolf and Gerlach, 1988).
Being catalytic, they exhibit turnover and can therefore
cleave multiple target molecules. Ribozymes pair with the
specific target RNA by virtue of complementary sequence
and induce cleavage at specific sites along the phosphodi-
ester backbone of RNA (Haselolf and Gerlach, 1988; Rossi
et al., 1992; Hampel et al 1990; Ojwang et al 1992). The
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hammerhead ribozyme is small, simple and has an ability to
maintain site-specific cleavage when incorporated into a
variety of flanking sequence motifs (Haselolf and Gerlach,
1988; Rossi et al., 1992). The requirements for cleavage by
a ribozyme are an accessible region of RNA and, in the case
of the hammerhead ribozyme; a NUH target motif (where N
is any ribonucleotide and H is A, C or U ribonucleotides).
Cleavage occurs immediately 3' of the NUH target motif.
These features make it particularly well suited for gene
suppression. Other types of ribozymes include the so-called
hairpin ribozyme, hepatitis delta virus ribozyme (HDV),
RNAse P, intervening sequence (IVS) Group I, IVS Group
II, and motifs identified by in vitro selection methods. The
hammerhead and hairpin types are among the smallest and
most widely used.

Description of RZ2
A number of studies have demonstrated ribozyme cleav-

age activity in test tube reactions, and protective effects in
tissue culture systems against laboratory and clinical isolates
of HIV-1 (Sarver et al. 1990; Sun et al. 1995; Wang et al.
1998). A particular hammerhead ribozyme denoted RZ2 is
directed against a highly conserved region of the tat gene
(FIG. 4). The tat gene is essential for HIV-1 replication; it
encodes and produces the Tat protein that is a transcriptional
activator of integrated HIV-1 provirus. Sun et al (1995) used
RZ2 to protect T lymphocytes against HIV-1 in vitro but did
not describe results in patients. They also did not disclose
that a minimum number of transduced HP cells must be used

for prolonged engraftment, or what that number might be.
Amado et al (1999) describe in general terms the protocol
used in a Phase I clinical trial to determine the feasibility and
safety of transduction of CD34’' cells in HIV-1 infected
individuals with an MoMLV-based retroviral vector. They
did not describe results of the trial or that a minimum

number of transduced HP cells should be used for long term
engraftment. Objectives of the trial included determining the
efiiciency of transduction and safety and to test whether the
ribozyme would confer a survival advantage (or disadvan-
tage) to the progeny cells in vivo.

FIG. 4 shows the structure of RZ2 and its target sequence
at position 5833 to 5849 within the HIV-1 strain HXB2
(Genbar1k sequence K03455), where cleavage occurs after
the GUA triplet at position 5842. The target sequences
comprise nucleotides 5833-584 9 (GGAGCCA GUA
GAUCCUA) (SEQ ID NO. : 2) of reference strain HIV-
HXB2 (Genbank accession number K03455) or nucleotides
5865 to 5882 (GGAGCCA GUA GACCUA) (SEQ ID NO.:
2) of HIV IIIB (Genbank accession number X01762) or the
corresponding region from other HIV strains. DNA nucle-
otides with the sequence 5'-TTA GGA TCC TGA TGA GTC
CGT GAG GAC GAA ACT GGC TC-3' (SEQ ID NO.: 3)
corresponding to the RZ2 ribozyme were inserted into the
Sail site in the 3' untranslated region of the neoR gene.
within the plasmid pLNL6, which contains the replication-
incompetent retroviral vector LNL6 (Genbank accession
number M63653) to generate a new virus, RRZ2. The
ribozyme sequence was expressed as a neoR-ribozyme
fusion transcript from the Moidney Murine Leukemia Virus
(MoMLV) Long Terminal Repeat (LTR) in RRZ2.

It is preferred that the nucleotide sequence immediately
around the ribozyme cleavage site(s) is highly conserved in
the viral target RNA. This can readily be determined by
comparison of sequences available in sequence databases, or
tested experimentally by multiple-passage assays (Wang et
al 1998). The RZ2 target/cleavage site in HIV-1 is conserved
in almost all naturally occurring infectious isolates. In a
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Phase I clinical trial, two sequence variants were observed
at positions -4 and -1 relative to the GUA triplet at the
cleavage site. However, these variants may represent less fit
pseudotypes.

Since CD4+ and CD8+ T-lymphocytes, monocytes and
macrophages are the most susceptible to HIV infection,
genetic modification of these cells so that they express RZ2
leads to inhibition of HIV infection. Preferably, the genetic
modification is accomplished during the early stage of
hematopoiesis.

Vectors

Different types of vectors can be used for transduction or
transformation of HP cells. These include plasmid or viral
vectors. Retroviral vectors have been used widely so far in
gene therapy (Chu et al 1998), particularly those based on
Moloney murine leukemia virus (MoMLV), a member of the
murine oncoretroviruses. Other murine retroviral vectors

that can be used include those based on murine embryonic
stem cell virus (MESV) and murine stem cell virus (MSCV).
Vectors based on murine oncoretroviruses can be used for

high efi‘iciency transduction of cells, however, they require
that the cells be active in cell division. Following entry into
the cell cytoplasm and reverse transcription, transport of the
preintegration complex to the nucleus requires the break-
down of the nuclear membrane during mitosis. Transduction
of HP cells with murine retroviral based vectors therefore

requires activation of the cells.
Lentiviral vectors (Amado and Chen 1999), a subclass of

the retroviral vectors, can also be used for high-efficiency
transduction (Haas et al 2000, Miyoshi et al 1999, Case et al
1999) and are able to transduce non-dividing cells (Uchida
et al 1998, Sutton et al 1998). The preintegration complex is
able to enter the nucleus without mitosis, and therefore
lentiviral transduction does not require the induction of HP
cells into cell cycle. This increases the likelihood that the
cells remain pluripotent. The use of lentiviral vectors in gene
therapy against HIV-1 has been reviewed (Mautino and
Morgan 2002).

Other groups of retroviruses such as spumaviruses, for
example the foamy viruses (Vassilopoulos et al 2001) are
also capable of efiiciently transducing non-dividing cells.

Other types of viral vectors that can be used in the
invention include adenoviral vectors (Fan et al 2000, Knaan-
Shanzer et al 2001, Marini et al 2000), adeno-associated
viral (AAV) vectors (Fisher-Adarns et al 1996), SV40 based
vectors (Strayer et al 2000), or forms of hybrid vectors (for
example Feng et al, 1997 or Lieber et al 1999). Adenoviral
vectors can be readily produced at high titers, that can be
easily concentrated (1012 pfu/ml), and can transduce non-
dividing cells. Large DNA inserts can be accommodated
(7-8 kb). Immune reactions against adenovirus in vivo can
be alleviated by removing genes encoding certain proteins.

AAV vectors are non-pathogenic, transduce both prolif-
erating and non-proliferating cells including CD34+ cells,
and integrate stably into the cellular genome (Grimm and
Kleinschmidt 1999). Moreover, they do not induce a host
immune response and can be produced in helper-free sys-
tems to high titers of about 101° cfu per ml. AAV is a
non-enveloped virus with a single-stranded DNA genome.
AAV vectors can readily incorporate up to about 4 kilobases
of new DNA, although recent studies have extended this.
AAV vectors can effectively transduce CD34+ cells in long-
term cultures (Chatterjee et al 1999).

Vectors which result in integration of the introduced gene
into the cell genome are preferred, to obtain a long lasting
effect after return of cells into a patient, for example
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retroviral vectors including lentiviral vectors, and AAV
vectors. Integrating viral vectors are herein defined as those
which result in the integration of all or part of their genetic
material into the cellular genome. They include retroviral
vectors and AAV vectors. They also include hybrid vectors
such as adenoviral/retroviral vectors (for example, Feng et al
1997) and adenoviral/AAV vectors (for example Lieber et al
1999). However, vectors that replicate stably as episomes
can also be used. It is also desired that the vector can be

produced in cell lines to a high titre, in a cost-effective
manner, and have minimal risk for patients, for example not
giving rise to replication competent virus.
Vector Production

Methods for constructing and producing retroviral vectors
are reviewed in Gambotto et al (2000). The vectors are
packaged in packaging cell lines such as the PA317 or
AM-12 cell lines which contain helper vector(s) that is itself
defective in packaging. Several variations in the methods for
producing high-titer retroviral supematants have been
described (Schilz et al 2001), including variations in the
medium, packaging cells, temperature of harvest and con-
centration methods by centrifugation or complexation (Le
Doux et al 2001). Any ofthese methods can be used with this
invention.

Retroviruses packaged in murine amphotropic envelopes
may not transduce primitive HP cells efficiently due to low
levels of the amphotropic receptor (Bodine et al 1998).
However, cell cycle induction has been shown to lead to
increased expression of the amphotropic receptor with a
concordant increase in gene transfer (Orlic et al 1999). An
alternative approach is to pseudotype retroviral vectors with
envelopes such as the envelope from gibbon ape leukemia
virus (GALV) (Kiem et al 1997, Eglitis and Schneiderman
1997, Relander et al 2002), vesicular stomatitis virus (VSV-
G protein) (Naldini et al 1996, von Laer et al 1998) or feline
endogenous virus (Kelly et al 2002). Pseudo-typing vectors
may allow concentration, for example by centrifugation.

AAV vectors may be produced in packaging cell lines or
cells expressing the AAV rep and cap genes either consti-
tutively or transiently. Production of AAV vectors has been
reviewed (Grimm and Kleinschmidt 1999) including the
development of helper-free packaging methods and the
establishment of vector producer lines. Adenoviral vectors
can be produced and purified according to standard methods
(eg. see Fan et al 2000).

The biological titre of viral stocks can be readily deter-
mined (for example Tavoloni et al 1997).

Expression of the Gene in Vectors
The introduced gene is expressed in the transduced human

HP cells of this invention or progeny cells from a promoter.
The promoter may be constitutively expressed or inducible,
for example being expressed preferentially under favorable
conditions or circumstances (for example Chang and Ron-
inson 1996, Saylors et al 1999). Targeted expression to
specific cell types may be preferred with some genetic
disorders such as hemoglobinopathies or thalassemias
(Grande et al 1999). The promoters/enhancers of viral
vectors such as the MoMLV retroviral LTR promoter can be
modified for improved expression (Robbins et al 1998,
Halene et al 1999) or modified by insertion of elements such
as insulators (Rivella et al 2000) or scalfold attachment
regions (SAR) (Murray 2000). Preferred promoters and
additional regulatory elements, such as polyadenylation
signals, are those which should yield maximum expression
in the cell type (eg T-lymphocytes) which the gene therapy
agent is to be expressed in. Thus, for example, HIV-1,
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HIV-2, HTLV-1 and HTLV-2 all infect lymphoid cells, and
in order to efficiently express the gene therapy agent against
these viruses, a transcriptional control unit (promoter and
polyadenylation signal) are selected which provide efficient
expression in hematopoietic, particularly lymphoid cells (or
tissues). Preferred promoters are the cytomegalovirus
(CMV) immediate early promoter, optionally used in con-
junction with the growth hormone polyadenylation signals,
and the promoter of the Moloney-MuLV LTR. A desirable
feature of an LTR promoter is that it has the same tissue
tropism as does the retrovirus of its origin. The CMV
promoter is expressed in lymphocytes. Other promoters
include VA1 and tRNA promoters which are dependent on
RNA polymerase III. The metallothionein promoter has the
advantage of inducability. The SV40 early promoter exhibits
high level expression in vitro in bone marrow cells. Hemato-
poietic cell-specific promoters can be used instead of viral
promoters (for example Malik et al 1995).

Expression of several anti-HIV genes from MoMLV-
based vectors was maintained long term (Austin et al 2000,
Su et al 1997). Vectors based on retroviruses other than
MoMLV have shown prolonged expression, for example for
mouse stem cell virus (MSCV) vectors (Cherry et al 2000)
or FrMLV (Cohen-Haguenauer et al 1998). Expression from
lentiviral vectors also appears to be maintained in trans-
duced cells (Case et al 1999). Loss of gene expression from
retroviral vectors has sometimes been observed after trans-

duction of murine hematopoietic cells (Challita and Kohn
1994, Lange and Blankenstein 1997) but has rarely if ever
been observed in transduced human HP cells in humans.

Transduction Methods
In the case of transduction with some murine retroviral

vectors, the human HP cells may need to be treated with
growth factors to induce cell cycle (see above). This may not
be the case with other retroviral vectors. Following any such
treatment, the cells need to be contacted with the transducing
vector.

In the transduction method of this invention, it is prefer-
able to use the extracellular matrix protein fibronectin (or
chymotryptic fragments of fibronectin) which enhances
colocalization of cells and viral particles and increases
transduction frequencies (Hanenberg et al 1996, Hanenberg
et al 1997, Kramer et al 1999, Williams et al 1999), or more
preferably the recombinant fibronectin fragment CH-296.
Equivalent fragments containing the heparin-binding
domain and the alternatively spliced type 3 connecting
segment region can also be used (Kiem et al 1998). Use of
CH-296 may also aid in the maintenance of the regenerative
potential of the HP cells as shown in a mouse xenograft
model (Dao et al 1998). Use of CH-296 and growth factor
combinations was used in a canine odel (Goemer et al 1999)
but it was not known how this would apply to humans. Other
colocalization agents such as polybrene and protamine sul-
fate can also be used. These agents act by increasing the
apparent titer of viral particles.

Physical colocalization of cells and vector can also be
achieved on membrane filters (Hutchings et al 1998) or by
centrifugation in fibronectin-coated tubes (Sanyal and
Schuening 1999).

Cocultivation of the HP cells on monolayers of the
vector-producing murine fibroblasts leads to efficient gene
transduction but is not clinically useful as it would expose
patients to large numbers of infused murine cells (Halene
and Kohn 2000). In contrast, human mesenchymal stem
cells can provide stromal support for efficient CD34+ trans-
duction (Reese et al 1999).
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Serum-free methods of preparing retroviral vectors for
transduction of human HP cells can be used (for example
Glimm et al 1998, Schilz et al 1998). The transduction
frequency can be increased, particularly for CD34’'
CD38low cells, in the presence of fibronectin fragment by
reducing the concentration of the vector containing medium
or preloading of the vector alone onto the fibronectin frag-
ment (Relander et al 2001). Increased transduction fre-
quency can also be achieved by enriching the virus prepa-
rations, for example with cationic and anionic polymers
(LeDoux etal 2001).

Transfection of cells by non-viral means can be achieved
by the use of cationic liposomes, or DNA-protein complexes
such as poly-lysine-DNA complexes, or other means known
in the art.

Several authors have reviewed conditions for gene trans-
fer into human hematopoietic cells (Moore and MacKenzie
1999, Sadelain et al 2000).

Transduction Frequency
The frequency of transfer of genes into human HP cells

can be determined by standard methods, for example PCR or
fluorescent detection (Gerard et al 1996). Transduction
frequencies of up to 70-100% have been obtained with
retroviral vectors, but this was for relatively small cell
samples (Halene et al 1999). Scaling up to clinically relevant
levels of material generally results in lower transduction
frequencies, particularly for the more primitive HP cells that
are needed for long-term reconstitution (eg in the range
1-5% without colocalization agents)

It has been suggested that greater numbers of transduced
human HP cells could be obtained by expansion in vitro.
However, this can lead to loss of totipotency of the cells and
stem cell damage (Bunting et al 1999, Briones et al 1999,
Takatoku et al 2001). It is preferred that expansion in vitro
be kept to a minimum, although some culture conditions
allow some expansion of the HP cells without loss of
repopulating potential (Kobari et al 2000, Lewis and Ver-
faillie 2000, Rosler et al 2000). For example, the combina-
tion of cytokines Flt3-Ligand, SCF and thrombopoietin
(TPO) can be used (Ng et al 2002). Further addition of IL-3
and IL-6 was not preferred (Herrera et al 2001). Alterna-
tively or additionally, culture of the cells post-transduction
with SCF alone for two days can improve engraftment
potential (Dunbar et al 2001). Treatment to de-activate the
cells post-transduction may improve engraftment potential.

The frequency of transduction of human HP cells isolated
from umbilical cord blood with retroviral vectors was

increased when the cord blood was first cryopreserved (Orlic
et al 1999).

The transduced human HP cells can also be enriched by
introducing marker genes such as ones encoding cell-surface
reporters (for example see Fehse et al 1997), however this
may not be desirable in a clinical setting.

Transduction frequencies can be measured by any of the
methods well known in the art, for example by PCR, growth
of colonies in the presence of selective agents such as G418
when a selectable marker is included in the construct, or
fluorescence-activated sorting. It is preferred that the trans-
duction frequency is measured on a truly representative
sample of cells from the total population, for example by
quantitative PCR methods (eg real-time PCR) on total DNA
from a sample of the cell population. Analysis of transduc-
tion frequencies on individual colonies produced from cells
in the population is not preferred, but not excluded.

We have found in this invention that a minimum number

of transduced human HP cells must be used for prolonged
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engraftment. Moreover, the transduced HP cells must be
capable of undergoing thymopoiesis in order to give rise to
differentiated multi-lineage leukocytes.

Types of Genes Introduced

Any gene can be introduced by transduction into human
HP cells for this invention. The gene may be used to correct
immune deficiencies, including severe combined immuno-
deficiencies. For example, vectors expressing the adenosine
deaminase gene, the RAG1, RAG2 or recombination/DNA
repair process genes that are defective in the Alymphocy-
tosis type of SCID, the CD45 gene, or the yc, Jak3, IL-7 R0.
genes can all be used (Cavazzana-Calvo 2001). Lysosomal
storage diseases such as Gauchers Disease, the most preva-
lent human lysosomal storage disorder, can be treated.
Vectors encoding the glucocerebrosidase (GC) gene such as
the MFG-GC retroviral vector (Takiyama et al 1998) can be
used for the treatment of Gauchers disease (Dunbar et al
1998a, Dunbar et al 1998b). Chronic Granulomatous Dis-
ease (CGD) results from defects in NADPH oxidase, a
multisubunit enzyme with four components, and can be
corrected with the appropriate gene such as the p47phox
gene or the gp91phox gene. Glucose-6-Phosphate dehydro-
genase deficiency, which is relatively prevalent in humans,
can be treated with the G6PD gene (Rovira et al 2000).
Fanconi’s Anemia, which results from defects any one of at
least eight genes, can be corrected with the appropriate gene,
for example by the complementation group C gene (Liu et
al 1999). Hemaglobinopathies can be corrected, as can
Glanzmann thrombasthenia (Wilcox et al 2000), and Fabry
disease (Takenaka et al 2000), each with the appropriate
gene. CD34+ cells can be transduced with myeloprotective
genes such as MDR-1 as part of treatment for hematopoietic
malignancies including leukemias, myelomas and lympho-
mas as well as non-hematopoietic malignancies where che-
motherapeutic regimes would result in myeloablation (for
example, Abonour et al 2000, Michallet et al 2000). Non-
myeloablative conditioning can be used in such cases (Na-
gler et al 2000). If there is the potential for deleterious effects
of expression of the gene on HP cell function where this is
not desired, expression of the gene can be controlled by
regulatable promoters, well understood in the art.

It should be considered that the presence of a constitu-
tively expressed foreign gene in transduced HP cells might
interfere with the processes of stem cell migration, homing
and differentiation. An immune response directed at a pro-
tein ight also lead to elimination of gene-containing cells.
This has been seen after adenovirus-mediated gene delivery
but does not normally occur after retroviral-mediated gene
delivery or introduction of genes into CD34+ cells. Immu-
nologic reactions to the neo gene product are not generally
observed. We have found in this invention that the intro-

duction of a constitutively expressed foreign gene in two
different retroviral vectors did not interfere with the pro-
cesses of stem cell migration, homing and differentiation.
Moreover, the use of human HP cells as the target for
correction of genetic diseases is expected to be advanta-
geous in that development of immunologic tolerance to the
transgene product may be induced in such cells (Halene and
Kohn 2000).

Furthermore, RNA products from the transgene such as
ribozymes are expected to have negligible immunogenicity.
The RevM10 gene encoding an anti-HIV protein did not
inhibit the differentiation of transduced human CD34’' cells

in SCID mice (Su et al 1997, also Yu et al 1995). Proteins
such as INFalpha have been expressed in CD34’' cells
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without affecting engraftment and differentiation in NOD/
SCID mice (Quan et al 1999).

Furthermore, human HP cells can be modified to provide
them with a selective advantage in vivo in certain circum-
stances (for example Kirby et al 2000) or in the presence of 5
selective agents (Omori et al 1999, Ragg et al 2000).

EXAMPLES

Example 1 10

Reagents

All steps were performed aseptically in a Class H Bio-
logical Safety Cabinet.

1.1. DNAse Solution (10 mg/ml).
Stock DNAse solution was used in the preparation of

CD34’' cryopreservation medium. 1.4 ml sterile saline solu-
tion (Sterile saline inhalation solution USP (0.9% NaCl),
Dey Corp. NDC# 49502 830) was added to DNAse (DNAse
I Type IIS, Sigma Cat# D-4513) in a 1.5 ml sterile screw-
capped eppendorf tube (Sarstedt, Cat# 72692005) and dis-
solved by gently agitation. Stored at -20 C. 1 ml stock
DNAse was used for every 50 ml cryopreservation medium.

1.2 PBMC Cryopreservation Medium (90% FBS+10%
DMSO)

PBMC Cryopreservation Medium was used for the cryo-
preservation of PBMC cells for archival and safety testing
purposes. The medium is constituted to provide maximum
viable recovery of PBMC cells upon thaw. It contains 90%
Fetal Bovine Serum (StemCell Technologies, Cat# HCC-
6450) and 10% DMSO (Sigma, Cat# D-2650), filter steril-
ized and stored in 4 ml aliquots. Once opened, an aliquot
was reserved for the exclusive use of one patient.
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1.3 CD34+ Cryopreservation Medium.
This was used for the cryopreservation of CD34’' cells for

archival and safety testing purposes. The medium is consti-
tuted to provide maximum viable recovery of CD34’' cells
upon thawing. This procedure was used for the preparation
of 50 ml cryopreservation medium:

The following were pipetted into a sterile 50 ml tube, in
this order:

31 ml IMDM (lscove’s Modified Dulbecco’s Medium,
Gibco BRL, Cat 12440-046).

10 ml DMSO (Dimethyl Sulphoxide; Sigma, Cat#
D-2650)

8 ml Albuminarc25TM (25% Human Serum Albumin
(HSA); American Red Cross, Cat# 451-0513)

15 pl Heparin solution (Heparin 10,000U/ml; Elkins-Sinn
Inc.)

1 ml DNAse stock solution (10 mg/ml), see 1. above The
components were mixed thoroughly by swirling. To
filter sterilize, the mixture was filtered through a Com-
ing 150 ml filter system (Corning Cat#25932-200).
Aliquots of 4 ml in 5 ml sterile Nunc tubes were stored
at —20° C.

One tube (4 ml) per patient was used for archival samples
and co-cultivation samples. The cryopreservation medium
was thawed and kept at 4° C. until ready for use. (DMSO is
toxic to cells at higher temperatures).

1.4 MGDF (100 pg/ml Recombinant Human Pegylated
Megakaryocyte Growth and Development Factor)

The recombinant human pegylated Megakaryocyte
Growth and Development Factor was used for stem cell
culture to promote cell growth and retroviral transduction. It
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was prepared and aliquotted as a 100 mg/ml working stock
solution and added to the stem cell culture medium at a final

concentration of 100 ng/ml.
The contents of a MGDF vial (Amgen lnc., 500 mg/ml

recombinant human pegylated MGDF in 1 ml 10 mM
sodium acetate containing 5% sorbitol, pH 5) and some
IMDM culture medium (lscove’s Modified Dulbecco’s
Medium; Gibco BRL Cat# 12440-046) were warmed to
room temperature. Using aseptic technique, 1 ml of MGDF
solution was withdrawn from the vial and transferred to a

sterile 15 ml tube (polypropylene conical tube; Coming Cat#
25319-15 or Falcon Cat# 352097). The MGDF was diluted
to 5 ml final volume with 4 ml of IMDM to create a 100

mg/ml working stock solution. Aliquots (1 ml) of working
stock solution were transferred to sterile screw cap micro-
centrifuge tubes (Sarstedt Cat# 72692005).

Once prepared, the MGDF working stock solution has a
limited shelf life of 3 days. Prepared MGDF aliquots were
stored at 4°-8° C. for up to three days without freezing. A
batch of MGDF was prepared fresh for each patient on the
day of CD34’' cell preparation (day 0 of culture). For each
patient, working stock aliquots of MGDF were prepared
from a separate vial of material that was discarded after use.
Sufi‘icient aliquots are prepared for at least five individual
cell culture medium preparations.

1.5 Stem Cell Factor (50 ug/ml Recombinant Methionyl
Human Stem Cell Factor).

The recombinant methionyl human Stem Cell Factor was
used in stem cell culture medium to promote cell growth and
retroviral transduction. It was prepared as a 50 mg/ml stock
solution and used at a final concentration of 50 ng/ml.

Vial of SCF vial (Amgen lnc., 1875 mg lyophilized
recombinant human methionyl SCF) and IMDM culture
medium (lscove’s Modified Dulbecco’s Medium; Gibco
BRL Cat# 12440-046) were warmed to room temperature.
Using aseptic technique, 1.25 ml of sterile water was drawn
up through a needle into a syringe and injected into the SCF
vial. The SCF was reconstituted by swirling without shak-
ing. Using a fresh needle and syringe, 0.2 ml of the SCF
solution was withdrawn and added to a 15 ml sterile conical

tube containing 5.8 ml of IMDM. This made 6 ml of a 50
mg/ml working stock solution. Using a sterile 5 ml pipette,
1 ml aliquots of SCF working stock solution were trans-
ferred to sterile microcentrifuge tubes.

Prepared SCF aliquots were stored at 4°-8° C. for up to
three days without freezing. The 50 mg/ml stock was
prepared fresh for each patient on the day of CD34’' cell
preparation (day 0 of culture). A separate vial of material
was used for each patient. Each aliquot was single-use only
for daily cell culture medium preparation.

1.6 Nevirapine (5 mg/ml Nevirapine-VirimmuneTM, 18.7
mM)

Nevirapine (VirimmuneTM) was used to inhibit the repli-
cation of HIV in the CD34 stem cell cultures during the
period of cell culture and retroviral transduction. Nevirapine
was prepared and aliquotted as a 5 mg/ml (18.7 mM) stock
solution and added to the cell culture medium at a final

concentration of 500 nM. A single batch of nevirapine
working stock was prepared for the entire clinical trial. This
stock was aliquoted to provide three vials per patient for
each day of culture medium preparation. Approximately 100
mg of Nevirapine anhydrous powder (Boehringer lngel-
heim. Mfr# 43074) was weighed into a 50 ml tube (Blue-
maxTM 50 ml sterile polypropylene centrifuge tube; Falcon
Cat# 2098). Ethanol (200 Proof Dehydrated Alcohol USP,
Punctilious; Quantum Chemical Corp) was added to the tube
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to make a 5 mg/ml solution. 0.5 ml aliquots of 5 mg/ml
working stock solution were transferred to 1.5 ml sterile
screw-capped microcentrifuge tubes (Sarstedt Cat#
72692005) and stored at —20° C.

The Nevirapine stock solution was thawed at room tem-
perature before use. Each aliquot was single-use for daily
cell culture medium preparation.

1.7 Fetal Bovine Serum.
Fetal bovine serum was a constituent of the CD34’' culture

medium and was used at a concentration of 20%. The viral

supematants used for transduction contained 10% FBS and
therefore were supplemented with 10% FBS before use in
transduction of the CD34 cells.

FBS, supplied in 500 ml bottles, was aliquoted into 50 ml
volumes to minimize wastage. The serum (Fetal bovine
serum, 500 ml; Stem Cell Technologies HCC-6450) was
thawed in a 37° C. water bath, mixed by swirling without
shaking until visibly homogeneous and aliquoted aseptically
into 50 ml volumes in 50 ml centrifuge tubes (BluemaxTM 50
ml sterile polypropylene centrifuge tube; Falcon Cat# 2098).
The aliquots were stored frozen. Each aliquot was single use
for daily medium preparation.

1.8 Preparation of CD34’' Culture Medium.
Isolated CD34+ cells were grown in this culture medium

for at least one day before transduction. The medium was
designed to maintain high viability of progenitor cells. This
procedure is for the preparation of 500 ml of medium: The
following were pipetted into a filter funnel (0.45 pm filter
flask with 500 ml receiver; Nalgene cat# SFCA 162-0045) in
this order:

400 ml IMDM (lscove’s Modified Dulbecco’s Medium;
Gibco BRL, Cat #12440-046).

100 ml FBS (Fetal bovine serum 2><50 ml aliquoted accord-
ing to 1.2 above)

500 ml SCF (see 1.5 above)
500 ml MGDF (see 1.4 above)
13.3 ml nevirapine (see 1.6 above)

Vacuum was applied until half had passed through, then
the contents swirled gently to mix. Filtration was completed
and the contents swirled again.

The CD34+ culture medium was prepared fresh when
required. It was stored at room temperature in a light
protected environment until approximately 30 minutes
before use, then warmed to 37° C. in a water bath. Medium
in excess of immediate requirements was labeled with the
patient CRF ID# and stored at 4° C. It was not used for any
other patient and discarded when the patient cell culture/
transduction/harvest procedure was completed.

1.9 Protamine Sulphate.
Protamine facilitates binding of the vector in viral con-

ditioned medium to target CD34+ cells.
Protamine Sulfate from ampoules (Elkin-Sinn, 5 ml, 10

mg/ml) was aliquoted to minimise wastage. Each CD34+
transduction used 2 aliquots per patient so approximate 0.5
ml aliquots were dispensed into 10><1.5 ml sterile screw-
capped microfuge tubes. These were stored at 4° C. without
freezing. One vial was used on each day of transduction (day
1 and day 2) for preparing the VCM transduction mix.
Aliquots were single use and discarded after VCM prepa-
ration on each day.
1.10 VCM Transduction Mixes with Protamine Sulfate.

Cultured CD34+ cells were transduced with Virus Con-

ditioned Medium (VCM) made by Magenta Corporation
(blOrELlANCE Corp.) under GMP conditions. There were
two VCM preparations corresponding to the ribozyme and
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control vectors. The PA317/RRz2 VCM was of a lower titer

than the PA317/LNL6 VCM, therefore 300 ml RRz2 or 200
ml LNL6 was used per transduction to equalise the numbers
of infectious viral particles in each transduction.

Transduction proceeded over two consecutive days. To
make VCM transduction mixes, each VCM was supple-
mented with growth factors and serum to match the culture
medium of the first day 15 as follows:

On Day 1, one 200 ml bottle of PA317/LNL6 VCM, two
200 ml bottles of PA317/RRz2 VCM and 2><30 ml aliquots
of Fetal Bovine Serum were completely thawed at 37° C. in
a waterbath.

An aliquot of Nevirapine was thawed at room temperature
and other reagents warmed to room temperature: 1 aliquot
Protamine Sulfate, 1 aliquot SCF, 1 aliquot MGDF.

Preparation of the LNL6 mix was completed before
starting the RRz2 mix. To prepare the LNL6 VCM, the
following were pipetted into a filter furmel (Nalgene 0.45
mm filter flask with 500 ml receiver, Nalge SFCA 162-0045)
in this order:

20 ml FBS (see above)
88 ml protamine sulfate (see below)
220 ml SCF (see above)
220 ml MGDF (see above)
6 ml nevirapine (see above)
200 ml PA317/LNL6 (PA317/LNL6-3; Magenta Corpora-

tion, titre 1.4><107 ivp/ml).
The funnel was swirled gently to mix and vacuum applied

to filter the mixture.

The RRz2 VCM was prepared in the same fashion except
that the following volumes were used:
30 ml FBS

132 ml protamine sulfate
330 ml SCF
330 ml MGDF

9 ml nevirapine
300 ml PA317/RRz2 (PA317/RRz2-17R‘; Magenta Corpo-

ration, titre 0.8><107 ivp/ml)
The remaining 100 ml RRz2 VCM was labeled with the

CRF# and immediately re-frozen at -80 C. This was used on
the second day of transduction.

The same procedure was followed on Day 2 for prepara-
tion of the second LNL6 and RRz2 VCM transduction mixes

except that one 200 ml bottle of the PA317/RRz2 and the
remaining 100 ml from Day 1 were used for the RRz2 mix.

Each VCM transduction mix was prepared fresh on each
day of transduction and stored in the biological safety
cabinet until the CD34’' cells were ready for transduction.

1.11 Preparation of Retronectin® (25 mg/ml Retronectin in
PBS).

Retronectin® (human fibronectin fragment CH-296) solu-
tion was used to coat tissue culture vessels to facilitate
retroviral transduction of CD34’' cells.

1 vial containing 2500 mg lyophilized Retronectin® from
Takara Shuzo Co. Ltd., code #T100B, ordered from Bio-
Whittaker, was warmed to room temperature. 2.5 ml of
sterile water was added, the material dissolved by gentle
swirling, and removed with a syringe with needle. The
mixture was filtered through a Millex filter (Millipore, cat #
SLGV 0130S) into a 50 ml tube (50 ml sterile tissue culture
tube; Falcon Cat # 2098) and diluted with 4 ml of PBS split
into two 50 ml tubes and made up to 100 ml total volume.
200 ml was removed for endotoxin testing at the same time
as the final product, the rest was stored at 4° C. Generally,
the reagent was coated onto vessels immediately.
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1.12 Preparation of 2% HSA (Human Serum Albumin in
PBS).

2% HSA was used to block the tissue culture vessels after

they were coated with Retronectin. It was prepared by
aseptically mixing 8 ml of 25% HSA solution (Albu-
marc25TM) with 92 ml PBS (calcium & magnesium free, 1><;
Virus Core Lab or JRH Biosciences Cat #59321-78P). The
reagent was generally used immediately.

1.13 Retronectin-Coated Vessels.
Flasks coated with Retronectin were used for some

patients to transduce CD34+ cells with retroviral vectors.
25 ml of the Retronectin solution (see above) was pipetted

into 4><175 ml flasks (Bacterial plastic flasks 175 cm2, with
0.2 pm vented closures, Sarstedt 83.1812.502) and let stand
for 2 hours at room temperature. The solution was removed
from the flasks and 25 ml of the 2% HSA added. After a

further 30 min at room temperature, the solution was
removed and the flasks washed with 25 ml of IMDM

(lscove’s Modified Dulbecco’s Medium; GIBCO BRL, Cat
#12440-046). The flasks were sealed in plastic bags and
stored at 4° C. before use within 2-3 days.

1.14 VCM Transduction Mixes (Used with Retronectin).
When retronectin-coated flasks were used for the trans-

ductions, protamine sulphate was omitted from the VCM
Transduction Mixes. These were prepared in a similar fash-
ion to those described in 1.10. above except that the fol-
lowing volumes were used:

For the first transduction in the morning of day 2, 200 ml
aliquots of the virus preparations were thawed in a 37° C.
waterbath, as was an aliquot of the FBS. The LNL6 or RRZ2
VCM Transduction Mixes (with Retronectin) were prepared
by adding into a filter funnel (Nalgene 0.45 nm filter flask
with 250 ml receiver, Nalge SFCA 162-0045) in this order:
10 ml FBS (see above)
110 ml SCF (see above)
110 ml MGDF (see above)
3 ml nevirapine (see above)
100 ml PA317/LNL6 or 100 ml PA317/RRZ2 (see above)

The components were mixed by gentle swirling and
sterilized by filtration. Preparation of the LNL6 mix was
completed before starting the RRZ2 mix.

For a second transduction in the evening, the remaining
100 ml of PA317/LNL6 and 100 ml of PA317/RRZ2 were

used in the same way to prepare VCM Transduction Mixes.
These were stored at room temperature until used.

1.15 VCM transduction mixes used with Retronectin

(patients 8-10). VCM transduction mixes for patients #8-10
were prepared and used in the same way except that the
volumes used in the preparation were doubled. Three rounds
of transduction were preformed over 2 days, namely on the
evening of day 1, and morning and afternoon of day 2.

1.16 CD34+ Cell Wash Buffer (PBS with Ca2+& Mg2++1%
HSA)

CD34+ wash bulfer containing 1% (final concentration)
HSA was used for washing of the cells prior to infusion of
the transduced CD34+ cells. 1L wash bulfer was used per
patient and was prepared fresh or several days in advance.

From a new 1 L bottle ofPBS, 40 ml of PBS was removed
with a sterile 25 ml pipette so that approx 960 ml remained.
40 ml of 25% HSA solution (25% HSA Solution,
Albumarc25T) was aseptically transferred to the PBS bottle
using a 50 ml syringe with 18 gauge needle attached, and
mixed well by swirling, without shaking. The Wash Buffer
was stored at 4° C. and warmed to 37° C. before use. A 1L
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batch was for the exclusive use of one patient and was
single-use only, any remainder was discarded.

1.17 CD34+ Infusion Buffer (RPMI, Phenol Red Free, +5%
Human Serum Albumin).

CD34+ Infusion bulfer is designed to maintain viability of
the transduced CD34+ cell harvest until transfused. The

RPMI was free of phenol red as it was used for direct
infusion into the patient. It contained human serum albumin
at 5% final concentration.

100 ml was used for suspension of each batch ofharvested
cells after washing. This bulfer can be made fresh on the day
of harvest/infusion or can be prepared several days in
advance.

Using a 25 ml sterile pipette, 80 ml phenol red-free RPMI
(Phenol Red free, Gibco-BRL, Cat 118-030) was transferred
to a 250 ml conical centrifuge tube. 20 ml 25% HSA solution
(Albumarc25TM), American Red Cross, was added asepti-
cally using a 25 cc syringe with 21 gauge needle attached.
The mixture was swirled gently. If the reagent was prepared
in advance, it was stored at 4° C., but if prepared fresh on
the day of harvest, it was stored at room temperature until
use. The mixture was prewarmed to 37° C. before use. A 100
ml batch was for the exclusive use of one patient and was
single-use only.

1.18 Preparation of FACS PBS (PBS, Ca2+& Mg“ Free,
+2% Fetal Bovine Serum+0.1% NaN3).

FACS PBS is a wash bulfer that was used to wash the cells

during the FACS staining procedure. Additionally, if FACS
analysis was performed immediately after staining (ie within
the next 4-6 hours) it was used to resuspend the stained cells.

An Azide stock solution (10%) was prepared by dissolv-
ing 4 g of sodium azide in a 50-ml tube in distilled water.
The FACS PBS solution was prepared by adding to 48.5 ml
of PBS, in a 50 ml tube, 1 ml fetal bovine serum and 0.5 ml
of the sodium azide solution. The solutions were stored at 4°

C. The azide stock solution has an unlimited shelf life, the
FACS PBS has a shelf life of 1 year. The FACS PBS was
used chilled.

1.19 Preparation of FACS Blocker (5% Human AB Serum in
PBS, Ca2+ and Mg“ Free).

This was used in the FACS antibody staining reaction to
reduce non-specific background staining of the cells. It
contained 5% human AB serum (Sigma cat #H-4522, stored
at —20° C., thawed in a 37° C. waterbath) diluted in sterile
PBS (calcium & magnesium free, lx; Virus Core Lab or JRH
Biosciences cat #59321-78P). It was filter sterilized through
an Acrodisc 0.45 pm filter (Gelman #4184) and stored as 1
ml aliquots at —20° C.

1.20 Preparation of FACS Paraformaldehyde Fixative (PBS,
Ca & Mg Free, 2% Paraformaldehyde).

The FACS Paraformaldehyde is a fixative solution that
preserves cells after antibody staining for FACS anaysis.
Used at 1% concentration to resuspend cells after FACS
staining, the antibody staining will remain stable for up to at
least 3 days. After this time, the background signal from the
fluorescent antibodies may increase. It contained 10 ml of
10% paraformaldehyde (Polysciences #04018) mixed with
40 ml of PBS and was stored at 4 C. Cells were suspended
in 200 pl of PBS and then fixed with 200 pl of this buffer to
create a working concentration of 1%.

1.21 Urea Lysis Bulfer
Urea lysis bulfer was used to prepare cell lysates for

phenol extraction of DNA. It contains 84 g urea (Boe-
hringer-Mannheim 1685 899), 4 g SDS (USB 21651), 1 ml
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0.2M EDTA, 1 ml 1M Tris base, 1 ml 1M Tris HCl, 14 ml
5M NaCl in a final volume of 200 ml in water. This solution

was filtered through a 0.451; filter and stored at room
temperature.

Example 2

Phase I Clinical Trial

We performed a phase I gene therapy clinical study to
investigate whether i) the introduction of an anti-HIV-1
ribozyme into circulating hematopoietic progenitor cells
could result in the emergence of thymic emigrants bearing
vector sequences, ii) normal T-lymphocyte maturation could
take place in genetically modified cells, iii) vector presence
and expression could persist long-terrn and iv) the ribozyme
could confer a survival advantage to HIV-1 vulnerable cells
(Amado et al. 1999).

For transduction of cells with a ribozyme gene, RRZ2 was
used. RRZ2 encodes the hammerhead ribozyme RZ2, which
is directed against a highly conserved region of the tat gene
of HIV-1. The DNA sequence encoding RZ2 was sub-cloned
into a Sal-I site within the untranslated region of the neo-
mycin phosphotransferase (neoR) gene in pLNL6 (Bender et
al 1987) to make RRZ2. The ribozyme is expressed as a
neo-ribozyme transcript from the MoMLV LTR in RRZ2. To
control for the potential ribozyme-specific effects on pro-
genitor cell engraftment and T-lymphoid development, and
to study potential effects on T-lymphocyte survival con-
ferred by RZ2, progenitor cells were also transduced with the
control retroviral vector LNL6.

In this study, HIV-1 infected patients with viremia less
than 10,000 copies/ml and CD4 counts between 300 and 700
cells/mm3 underwent mobilization of peripheral blood pro-
genitor cells (PBPC) with the cytokine granulocyte colony
stimulating factor (G-CSF) for 6 days. Patients received
granulocyte colony stimulating factor (G-CSF) subcutane-
ously at a dose of 10 ug/kg daily for 6 days. PBPC
procurement was carried out by performing one blood
volume of apheresis on days 5 and 6 of G-CSF treatment
using the COBE® SpectraTM Apheresis System (Gambro
BCT, Lakewood, Colo.). CD34+ cell selection was per-
formed using the CEPRATE® SC Stem Cell Concentration
System (CellPro Inc. Bothell, Wash.) (patients 1 to 7) and
Isolex 300i cell selection system (Nexell Therapeutics, Irv-
ine, Calif.) (patients 8 to 10). After purification of PBPC for
CD34 surface marker expression, cells were cultured for
only one day in CD34 Culture Medium for induction into
cycle using the cytokine combination of megakaryocyte
growth and development factor (MGDF) and stem cell
factor (SCF) (Amado et al 1998). MGDF and SCF were
supplied by Amgen Inc. (Thousand Oaks, Calif.) and used at
a concentration of 100 ng/ml and 50 ng/ml respectively.

Approximately, equal numbers of CD34’' cells were trans-
duced independently with the RRZ2 and LNL6 vectors. The
LNL6 and RRZ2 producer cell lines were prepared in a two
stage process by transfecting the cDNA constructs, pLNL6
or pRRz2, into the psi2 packaging cell line to produce two
populations of ecotropic replication-incompetent virus.
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These two populations were then used to infect the PA317
amphotropic packaging cell line (Miller and Buttimore
1986). Clonal producer cell lines derived following selection
in G418, were checked for integrity of the constructs and
sent to BioReliance Corporation (Rockville, Md.) for manu-
facture of a Master Cell Bar1k and subsequent manufacture
of GMP virus with safety testing. All batches of retroviral
supernatant (LNL6 and RRZ2) were tested for sterility,
replication-competent retrovirus and general safety by
BioReliance Corporation. Viral titers were confirmed by
infecting the NIH 3T3 cell line using serial dilutions and
scoring G418 resistance. LNL6 and RRZ2 titers were 1.4><

107 and 0.8><107 infectious viral particles/ml respectively.
Retroviral supernatant (VCM Transduction Mix) was added
once daily for two days for patients 1 to 3, twice in one day
for patients 4-7, and 3 times over 2 days for patients 8 to 10.
For patients 4 to 10, transductions were performed in flasks
coated with the CH296 fragment of human fibronectin
(RetroNectinTM, Takara Shuzo, obtained from BioWhittaker,
Inc. Walkersville, Md.). To inhibit potential HIV replication
in vitro, CD34+ cell cultures and transductions were carried

out in the presence of Nevirapine at a concentration of 500
nM (Boehringer Ingelheim, Ridgefield, Conn.). Absence of
HIV replication was verified by measuring p24 antigen by
ELISA in the final infusate (all 10 samples had undetectable
p24 levels). Fungal, bacterial and mycoplasma cultures, as
well as endotoxin assays were negative in the final cell
product for all 10 patients.

Following transduction, cells were pooled, tested for
sterility, cell count, viability, CD34/CD38 phenotype, p24,
and endotoxin, and then washed and infused into autologous
recipient patients without myelosuppression. This treatment
schema is illustrated in FIG. 5. Samples were kept aside for
later testing in CFC assays, RCR analysis and PCR analysis
for transduction efficiency.

Ten patients were enrolled on this study (Table 1). The
median age was 42 years (range 32 to 59). The median
number of antiretroviral regimens used was 3 (range 1 to 6).
The total number of CD34’' cells infused ranged from 1.3 to

10.1><106 cells per kilogram of body weight (kg) (median
3.2+/-1 .1><10 cells/kg). Transduction efiiciency for the first
3 patients, carried out in the presence of protarnine sulphate,
was low (range <1% to 4%), accounting for a number of
transduced CD34+ cells infused ranging from 0.01 to 0.08><
106 cells/kg (Table 1). Cells carrying the transgene were
detected up to 6 months in patient 1 (ribozyme in bone
marrow and peripheral blood mononuclear cells (PBMC),
LNL6 in granulocytes), up to 9 months in patient 2 (RRZ2
in PBMC) and 12 months in patient 3 (LNL6 in PBMC and
RRZ2 in monocytes).

Table 1. Characteristics of the patients and of the CD34’'
cell infusion product. The Table shows patient’s age, gender,
number of prior antiretroviral regimens (ART), use of ret-
ronectin to support transduction, CD34+ purity, number of
infused CD34+ cells, percentage of transduction, and num-
ber of transduced CD34+ cells infused.

TABLE 1

CD34+ Trans- Transduced
Retro- Purity Infused CD34+ duction CD34+

Gender ART nectin (%) cells (x 105/kg) (%) cells (x 105/kg)
M 1 No 65 3.38 0.4 0.01
M 4 No 80 2.08 4 0.08
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TABLE 1-continued

CD34+ Trans-
Retro- Purity Infused CD34+ duction

Patient Age Gender ART nectin (%) cells (x 105/kg) (%)
03 40 M 4 No 66 2.98 2
04 44 M 6 Yes 67 1.29 10
05 37 M 6 Yes 94 10.01 7
06 32 M 3 Yes 90 1.63 32
07 41 M 3 Yes 96 8.45 48
08 46 M 2 Yes 98 9.37 57
09 48 M 3 Yes 93 1.64 36
10 38 F 1 Yes 95 5.07 28

To improve transduction efiiciency, 7 subsequent patients
received autologous CD34+ cells transduced in the presence
of the CH296 fragment of human fibronectin (Hanenberg et
1997; Hanenberg et al 1996). In these patients, transduction
efiiciency increased to a median level of 32%+/-6.9 (range
7% to 57%) (FIG. 6). Calculation of transduction efficien-
cies was carried out by performing competitive PCR in
transduced CD34+ cells (Knop et al 1999). Efiiciencies were
also determined by performing PCR for vector sequences in
single colonies grown from the final transduced CD34+ cell
product.

On average, transduction efiiciency for LNL6 was 1.6
times higher than that obtained with RRz2, probably reflect-
ing differences in vector titers. After a median follow up of
30 months (range 12 to 36 months), transgenes were
detected in all patients at multiple time points and in
multiple hematopoietic lineages. On average, gene presence
was found in 0.1 to 0.01% of PBMC analyzed.

FIG. 7 shows long-term multilineage gene presence in a
representative patient. FIG. 7a shows LNL6 and RRz2
vector sequences in peripheral blood mononuclear cells
(PBMC), bone marrow mononuclear cells (BMMC), T-lym-
phocytes and monocytes in patient 5 two years after infusion
of transduced CD34+ cells. T-lymphocytes and monocytes
were selected from PBMC to a purity >90%, as confirmed
by flow cytometry. For each cell type, 4 replicates of a pool
of samples are shown.

We also analyzed expression of the gene constructs in
PBMC using RT-PCR. RNA was prepared from PBMC
selected by Ficoll-Hypaque centrifugation of blood samples,
using the Qiagen RNeasy kit (Valencia, Calif.), following
the manufacturer’s instructions. Residual DNA was

removed by DNase digestion. RNA was reverse-transcribed
using Gibco Superscript Reverse Transcriptase (Carlsbad,
Calif.) with 7 replicates of each sample. Samples were then
pooled, and cDNA amplification was performed on 10
replicates. Round 1 hot start PCR was performed using
Promega Taq bead (Madison, Wis.). Round 2 was performed
using Perkin Elmer Ampliwax gem (Boston, Mass.). FIG. 7b
shows short- and long-term vector expression of both LNL6
and RRz2 in PBMC up to 2 years post-infusion in 3
representative patients using a radiolabelled primer. For
each sample, a reaction that did not contain reverse-tran-
scriptase (—RT) was included.

To determine whether transduced CD34+ cells could

undergo T-lymphocyte development in HIV-infected
patients we selected peripheral blood CD4+ and CD8+ cells
for CD45RA and CD62L surface marker expression, which
characterize naive T-lymphocytes (Sanders et al 1988; Ted-
der et 1985; Kansas 1996; Picker et al 1993), and we
analyzed these T-lymphocyte subpopulations for the pres-
ence of LNL6 and RRz2.
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Transduced
CD34+

cells (x 105/kg)
0.06
0.13
0.70
0.52
4.06
5.34
0.59
1.42

Semi-quantitative PCR analysis was performed in leuko-

cyte subsets using primers directed against, the neoR gene
that overlap the Rz2 sequence in the RRz2 vector. For PCR
detection, DNA was extracted from cell populations using
the Acest Polymer extraction method (Ward et al 1998). A
DNA ratio control was constructed by diluting DNA from
CEM T4 cells transduced with LNL6 & RRz2 at a ratio of

1:5 (where LNL6:1) in a background of PBL (negative)
DNA to a concentration of 0.005% marked cells. Nested (hot
start) PCR was then performed in a 50 ul PCR reaction
mixture. Primers used were 5L1A: CAC TCA TGA GAT

GCC TGC AAG (SEQ ID. NO. :4); 3L2A: GAG TTC TAC
CGG CAG TGC AAA (SEQ ID. NO.:5); 5Nes1: GAT CCC
CTC GCG AGT TGG TTC A (SEQ ID. NO. :6) (Primers
Round #1: 5Nes1 & 3L2A, Round #2: 3L2A and labeled:
5L1A) Ten replicates per sample were included, in a Round
1 PCR, of 17 cycles armealing at 68 C. and denaturation at
94 C. The replicate samples were then pooled and used as
template for the Round 2 PCR of 35 cycles with armealing
temperature at 68 C. and denaturation temperature at 94 C.
Quadruple product samples were resolved on a 5% dena-
turing PAGE gel, and quantitated using Molecular Dynamics
and 216 base pairs respectively, and include a stretch of the
untranslated terminus of the neoR gene. Results were
included if the ratio control was within the acceptable limits
(for a ratioof 1:3.5 LNL6:RRz2 in a 0.005% vector contain-
ing sample, accepted range was 1:1.1 to 1:6.9).

FIG. 7c shows detection of vector sequences in naive
T-lymphocytes. The gel shows PCR analysis for LNL6 and
RRz2 vector sequences in CD4+ and CD8+ T-lymphocytes,
and in naive T-lymphocytes subsets selected from peripheral
blood in patient 7 two years after infusion of transduced
CD34+ cells. Naive T-lymphocyte populations were selected
to purity >90% from CD4 and CD8 selected populations.
T-lymphocytes and monocytes were selected from PBMC
using CD3 and CD14 MACS MicroBeads (Miltenyi Biotec
Inc., Auburn, Calif.). Naive T-lymphocytes were selected by
staining with a FITC-conjugated monoclonal IgG1 anti-
CD45RA antibody (Becton Dickinson, Franklin Lakes, N.J.)
followed by selection using an anti-FITC Multisort kit
(Miltenyi Biotec Inc., Auburn, Calif.). Subsequently, CD62L
selection was performed using a murine IgG2a anti-CD62L
antibody (Becton Dickinson, Franklin Lakes, N.J.), followed
by selection with rat anti-mouse IgGa+b Microbeads (Milte-
nyi Biotec Inc., Auburn, Calif.).

FIG. 7(D) shows vector sequences detected in naive T-cell
subsets in patient 5 at 2.5 years.

FIG. 7(E) shows vector sequences detected in naive T-cell
subsets in patient 7 at 2 years.

FIG. 7(F) shows vector sequences detected in naive T-cell
subsets in patient 8 at 4 weeks post-infusion.
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FIG. 8 shows a summary of detection of both ribozyme
and control vector transgene by semi-quantitative PCR in
bone marrow mononuclear cells (BMMC), PBMC, granu-
locytes, T-lymphocytes and monocytes in all 10 patients up
to 3 years post-infusion.

In all 10 patients, biological assays for replication com-
petent retrovirus (RCR) at the end oftransduction using both
viral supernatant and cultured CD34+ enriched cells were
negative. RCR testing of the final cell infusate was per-
formed on 5% of the culture supernatant at the end of
transduction as well as on 1% of the transduced CD34+ cells

by cocultivation, using a 2 passage amplification step in the
Mus dunni cell line. The resulting Mus dunni cell culture
supematants were then tested for infectious retrovirus using
the PG4 S+L—focus assay. Patient PBMC samples analyzed
by PCR for RCR 6 months and 1 year following CD34+ cell
infusion revealed no evidence of RCR. For RCR detection

in patient cells, DNA extracted from PBMC 6 months and 1
year after transduced-CD34+ cell infusion was analyzed for
the presence of amphotropic envelope sequences using the
following primers: 5'-CTA TGT GAT CTG GTC GGA
GA-3' (SEQ ID NO. :7) and 5'-CCA CAG GCA ACT TTA
GAG CA-3' (SEQ ID NO.:8). The assay allows the detection
of replication competent retrovirus by amplifying, a highly
conserved region that encodes part of the host-determining
region of the envelope gene, which is required for infection
of cells through the amphotropic receptor. The amplified
region is 289 base pair-long. The sensitivity of the assay is
1 positive cell in a background of 105 negative cells. As a
positive control, the PA3l7-packaging cell line was run in
each assay. PCR products were resolved on a 2.5% NuSieve
gel.)

For both vectors, we found a strong linear correlation
between the number of transduced CD34+ cells infused and

the persistence of gene detection at 2 years post-infusion in
both PBMC (LNL6 p:0.02l; RRz2 p:0.034) and T-lym-
phocytes (p<0.000l for both LNL6 and RRz2). Spearman
rar1k correlation was used to quantify the relationship
between the number of transduced cells reintroduced and

subsequent marking of progeny PBMC and T lymphocytes.
Analyses are based on values given in cells/kg for each
patient. In these analyses, LNL6 marking is correlated with
the quantity of LNL6-transduced cells reintroduced, and
RRz2 marking is correlated with the quantity of RRz2-
transduced cells reintroduced. The minimum number of

transduced CD34+ cells that resulted in marking longer than
one year was 0.5><l06 cells/kg.

Vector sequences were detected in naive cells up to 2.5
years post-infusion (the last time point evaluated). For
example, FIG. 7c shows presence of vector sequences in
highly enriched naive cells in a representative patient.

Vector sequences were detected in naive cells up to 3
years post-infusion (the last time point evaluated). FIGS.
7D-F show vector sequences in highly enriched naive and
memory cells from 4 to 130 weeks post-infusion in 3
patients. The average age and viral load of patients whose
naive T-lymphocytes had detectable vector sequences were
41 years (range 32 to 48 years) and 3,680 copies/ml (range:
undetectable to 22,628 copies/ml) respectively. A summary
of vector detection is naive T-lymphocytes and viral load at
the time of detection is shown in Table 2. We also analyzed
fine needle aspirates of lymph nodes from 4 patients for the
presence of vector sequences. Both LNL6 and RRz2 were
detected in 2 of the 4 patients (patient 7 at 2.5 years
post-infusion and patient 10, 1 year post-infusion).
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Table 2—Naive T-Cell Vector Detection Summary.
Circulating naive T-lymphocyte populations were

selected to purity >85% from CD4 and CD8 selected popu-
lations. Cells were analyzed by PCR. Viral load at the time
point of vector analysis is shown under each symbol, ND:
not determined. Two values indicate that two determinations

are available from a time interval. NT: not tested; (+): LNL6,
RRz2 or both detected in CD4+CD45+CD62L+ or CD8+

CD45+CD62L+ (naive) Tlymphocytes; (—): Neither vector
detected in CD4 or CD8 naive T-cells.

PATIENT <3 3 T0 6 6-12 12-24 >24
NUMBER MONTHS MONTHS MONTHS MONTHS MONTHS

1 NT N" + NT N"
660

2 NT N" + NT N
12,893

3 NT N" — — N"
782 ND

4 + N" + NT N
590 22,628

5 NT N" + + ++
3,183 3,899 130/15,800

6 NT ++ — — N"
3 68/606 2,905

7 + N" + + +
4,509 ND 12,496 ND

8 + N" NT NT N"
ND

9 + N" + + N"
ND ND ND

10 NT + + + N"
925 1,384 4,5 62

To determine whether the presence of the anti-HIV-l
ribozyme in CD4+ cells conferred protection against HIV
infection, we measured LNL6 and RRz2 vector copy num-
bers by PCR in different cell types over time. Intra-construct
comparisons of marking decay rate are implemented as
mixed effect linear regression (Miller, 1986). Marking inten-
sity is regressed on (a) (log) time since infusion, (b) an
indicator of cell type, and (c) a time x cell type interaction
term (multiplicative product). Mixed linear models analysis
could be performed for these data because estimation algo-
rithms consistently converged (models fit in SAS PROC
MIXED). Intra-subject correlation of marking intensities
was modeled using a “repeated measures” blocking structure
for the data. Throughout these analyses, we fit models using
either an unstructured variance-covariance matrix for

residuals, or assuming a compound symmetric matrix. Sub-
stantively identical parameter estimates and significance
tests emerged from each type of analysis.

A more sustained level of RRz2 marking in HIV vulner-
able cell types than in cell types not subject to HIV-induced
depletion is consistent with Rz2-induced protection provid-
ing a selective survival advantage for RRz2-transduced
cells. As shown in FIG. 9a, RRz2 marking decayed at
approximately one eighth the rate in peripheral blood T-lym-
phocytes than in BMMC (-0.081 cells per log-week for
T-lymphocytes vs. -0.643 cells for BMMC per log-week,
difference p:0.0095). Unlike the decay rate of RRz2-con-
taining BMMC, the rate of decay of RRz2-containing
T-lymphocytes was not significantly different from zero, and
the difference between both rates was significant (p<0.000l
for BMMC, p:0.55 for T-lymphocytes, p:0.009 for the
statistical test comparing decay rates of RRz2-contaimng
cells between both cell types). To exclude the possibility that
these results are due to intrinsic decay rate differences
between the cell types, LNL6 marking is shown in FIG. 9b.
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This analysis showed a decay rate of LNL6 copies of -0.716
for T-lymphocytes and -0.725 for BMMC. Both curves were
significantly different from a zero decay rate curve (p values
0.0019 and 0.004 for T-lymphocytes and bone marrow
respectively). The p value for the statistical test comparing
the decay rates of RRZ2 between both cell types was 0.97
reflecting near identical decay kinetics for the LNL6 vector.
These comparisons were implemented as mixed effect
regression models (Miller 1986). Consistent with the lack of
protective activity against HIV conferred by LNL6, no
differential decay was observed for LNL6 marking between
these two cell types (p:0.978l), (FIG. 9b). These results
show that statistically significant differences in marking
decay rates between the two vectors were observed in favor
of RRZ2 in PBMC and T-lymphocytes, but equal decay rates
were observed between vectors in the case of BMMC and

granulocytes. Moreover, RRZ2 containing naive T-lympho-
cytes increased over time, whereas LNL6 containing ones
declined (+0.l45 vs. -0.240 per log week for RRZ2 and
LNL6 respectively, difference p:0.033). These results indi-
cate that RRZ2 confers a selective survival advantage to
HIV-vulnerable cells, including recent thymic emigrants, in
patients with HIV-1 infection.

We next sought to determine whether the magnitude of
differential decay between T-lymphocytes containing LNL6
and RRZ2 was correlated with the number of RRz2-trans-

duced CD34+cells that each patient received. To this end,
the difference between decay slopes between both vectors
for each patient was correlated with the number of RRz2-
transduced CD34+ cells that were infused. Patient-specific
decay slopes for LNL6 and RRZ2 marking were calculated
by linear regression, and the difference in slopes (RRz2—
LNL6) was taken as an indicator of RRZ2-mediated protec-
tion. Spearman rank correlation was used to examine rela-
tionships between differential decay rates and the numbers
of transduced CD34+ cells infused.).

Plots depicting this relationship for T-lymphocyte and
PBMC decay slopes are shown in FIG. 9c&d respectively.
These analyses demonstrate a strong linear relationship
between the number of transduced CD34+ cells that were

infused and the magnitude of differential decay of LNL6 vs.
RRZ2 in both PBMC and T-lymphocytes. When reinfused
RRZ2-transduced CD34+ cell numbers are taken as a con-

tinuous variable predicting the differential decay of marking
over time in a regression analysis, results are statistically
significant with p<0.000l (Regression coefiicient t statistics
for the interaction term in a regression of differential mark-
ing (RRZ2-LNL6) on (log) time, infused cell number, and
their product-term interaction). These data indicate that
there is an unexpected dose dependent effect on differential
survival between protected and unprotected HIV-l-vulner-
able cells, and that clinical benefit using hematopoietic
progenitor cell gene therapy strategies will be dependent on
the dose of transduced progenitors administered to patients.

All patients in this phase I study have been receiving
antiretroviral therapy and to date, none of the patients have
developed opportunistic infections. The kinetics of CD4+
cell count and viral load are illustrated in FIG. 10. An initial

increase in viral load was observed at day l post-infusion in
some patients who discontinued antiretroviral therapy dur-
ing the period of mobilization. Drug discontinuation or
substitution of nucleoside reverse transcriptase inhibitors for
non-nucleoside reverse transcriptase inhibitor or protease
inhibitor was included in the protocol to prevent potential
inhibition of MMLV reverse transcriptase during transduc-
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tion (H. Bazin, et al., 1989). Occasional rises in viremia
responded to modifications of antiretroviral therapy.

The average change in CD4+ T-lymphocyte count from
entry to year 3 was an increase of 10 cells per mm3 (range
-40 to +80). Viral load decreased by an average of 2.25 logs
in 6 patients (range 0.35 to 3.9), remained undetectable in 3
patients, and increased by 1 log in one patient. These
changes did not correlate with the degree or persistence of
vector detection or vector expression in any cell type, and
are thought to be influenced by individual viral susceptibility
to antiretroviral therapy.

Viral genotyping demonstrated multiple drug resistance
mutations in all patients (data not shown). We also per-
formed genotypic analysis of the RZ2 binding/cleavage
region of HIV in all patients at study entry and at 12, 24, 52
and 104 weeks post treatment Ribozyme cleavage site
analysis was done as previously described (Wang et al.
1998) with minor modifications. Briefly, viral RNA was
extracted and reverse transcribed with the Access RT-PCR

kit (Promega, Madison, Wis.) using Primer l (TGGCAAT-
GAAAGCAACACT) (SEQ ID NO.:9) for 45 minutes at 48°
C. The resulting cDNA was PCR amplified by addition of
Primer 2 (TTTAGAGGAGCTTAAGAATGA) (SEQ ID
NO.:l0) for 2.5 cycles (94° C. for 20 sec., 55° C. for 30 sec.,
and 68° C. for 30 sec.). Singlestranded DNA for cycle
sequencing was produced by a second PCR step using
AmpliTaq (Perkin-Elmer) and Primer 3 (AGTTTTAGGCT-
GACTTCCTGG) (SEQ ID NO.:ll) for 25 cycles at 94° C.
for 20 sec., 55° C. for 30 sec., and 68° C. for 30 sec.
Sequencing was performed on purified PCR products with
the ABI PRISM Dye termination cycle sequencing Ready
Reaction kit with AmpliTaq DNA polymerase (Perki-
nElmer) on an automated DNA sequencer (ABI Model 377,
Applied Biosystems, Foster City, Calif.) using Primer 4
(TGGAAGCCATAATAAGAAT) (SEQ ID NO.:l2).
Sequence alignment was performed with Sequence Naviga-
tor software (Perkin-Elmer) and manually proofread and
edited. The resulting sequence was compared to the HXB2
dade B HIV-l reference strain.

Six of the 10 patients had viral loads that permitted
sequence determination. Patients 1, 2, 5 and 6 had wild-type
sequences. Patient 4 had an A to C transition at position -1
from the GUA target triplet. Patient 7 had a G to T transition
at position -4 from the GUA target triplet. Evidence indi-
cates that the mutant RNAs are clearable by the ribozyme.
The mutations detected in both these patients were present
before treatment; hence they did not arise as a result of
efficacy-induced resistance to the construct.

The studies described here were conducted in the absence

of myelosuppression, therefore the engineered CD34+ cells
contributed to form a chimeric hematopoietic system. Trans-
duced CD34+ cells must compete with endogenous stem
cells for hematopoietic reconstitution. Indeed our results
indicate a correlation between cell dose and the length of
engraftment with transduced cells. Because no survival
advantage is expected to occur at the level of the transduced
CD34+ cells, and given the established correlation of sur-
vival to numbers of infused CD34+ cells, future studies will
aim to increase the number of gene modified cells admin-
istered. Recently, it was reported that genetic correction of
the yc cytokine receptor deficiency that characterizes human
severe combined immunodeficiency (SCID)-X1 disease
leads to the development of a functional immune system
(Cavazzana-Calvo et al. 2000). With regards to the applica-
tion of gene correction strategies, the HIV-infection model is
different from the SCID-X1 model. Unlike in the setting of
HIV/AIDS, where both transduced and non-transduced
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CD34+ cells can contribute to thymopoiesis, in the SCID-X1
case, where the resulting functional receptor mediates sur-
vival signals, thymopoiesis results only from CD34+ cells
that contain the exogenous gene. Thus, in HIV infection, a
survival advantage at the level of the CD4+ T-lymphocyte
resulting in an expansion of these ribozyme-carrying cells
would presumably take place in the presence of HIV repli-
cation. In this case the virus provides the selective survival
pressure, as unprotected cells would remain vulnerable. This
hypothesis was not tested in our study, as our patients have
remained on antiretroviral therapy. It is possible that a
greater degree of preferential survival may occur in the
presence of uncontrolled viral replication.

These studies have shown that gene constructs can be
retrovirally introduced into CD34+ hematopoietic progenitor
cells, and that these cells will contribute long-term to
multilineage hematopoiesis in HIV-infected patients. Our
study represents the second report of a stem cell gene
therapy trial in HIV infection. A previous trial employing a
retroviral vector containing a rev-responsive element decoy
gene in pediatric patients resulted in detection of the anti-
HIV gene in 2 of the 4 patients only on one occasion at day
1 following cell infusion. Control vector was detected at low
levels in all 4 patients at 30 days, in 3 patients at 90 days and
in 1 patient 250 and 330 days post-infusion (Kohn et al.
1999). These results contrast with our long-term reconsti-
tution results. Based on our results, the short-term marking
observed in the previous report seems to be due at least in
part to low doses of transduced CD34 cells administered.
Whereas previous HIV gene therapy studies using trans-
duced T-lymphocytes have shown longer persistence of a
therapeutic vector as compared to a control vector up to a
year after infusion (Ranga et al. 1998), ours is the first report
to indicate that T-lymphocyte development ensues long-term
from genetically modified hematopoietic progenitors in the
context of HIV infection, and to show evidence of cell
protection of naive and memory T-lymphocytes against
HIV-induced depletion. The finding that sustained produc-
tion of transgene-containing naive T-lymphocytes occurs
even in patients with detectable viremia is significant, given
that naive thymocytes are known to be infected by HIV
(Ostrowski et al. 1999), and that the thymus can act as a
source of HIV-1 latency during T-lymphocyte differentiation
(Brooks et al. 2001). As thymopoiesis continues in the adult
patient, replacement of this naive T-lymphocyte-based latent
pool with cells that are engineered to effectively inhibit virus
replication should result in restoration of protected immune
cells and in inhibition of viral rebound following withdrawal
from antiretroviral therapy, or after the development of drug
resistance. The presence of ribozyme sequences in other
viral reservoirs such as monocytes could also contribute to
control of virus replication in these settings. Such results
justify further exploration of anti-HIV stem cell gene trans-
fer as a form of anti-HIV therapy.

Example 3

Specific Methods Used

3 .1 Mycoplasma Assay

Following culture and transduction, the harvested cell
cultures were tested for mycoplasma. The procedure used
was based on the amplification of a mycoplasma-specific
DNA sequence by PCR and subsequent detection of the
amplicon by ELISA. The procedure used the Mycoplasma
PCR ELISA test kit (Boehringer Mannheim, Cat #1 663

10

15

20

25

30

35

40

45

50

55

60

65

46

925). Test samples (1 sample per donor) and a negative
control sample (1 ml aliquot of fresh RPMI culture media
containing 5% human serum albumin) were centrifuged in
microcentrifuge tubes at maximum speed for 10 minutes at
4° C. to sediment any mycoplasma. To solubilize the pellet,
10 pl of sterile water and 10 pl Lysis Reagent (solution 1 of
the kit) was added. Further processing was carried out
according to the kit instructions. Cross-contamination of
samples and reagents in the PCR procedure was avoided by
using fresh aerosol tips for all pipetting steps. Each experi-
ment included two negative controls and a positive assay
control. The PCR amplification used 1 cycle of 5 min at 95°
C., 39 cycles of 30 secs at 94° C.; 30 secs at 62° C.; 1 min
at 72° C., ending with 10 min at 72° C. After the ELISA step
according to the manufacturers instructions, negative con-
trols were accepted if they were lower than 0.25 A450-A695
units, if not the assay was repeated. Positive assay controls
were accepted if they were higher than 1.2 A450-A690-units,
if lower the assay was repeated. Samples were regarded as
positive for mycoplasma contamination if the absorbance
was more than 0.2 A450-A690-units higher than the negative
controls.

3 .2 Endotoxin Assay.

The presence of endotoxin was determined in the cell
cultures following culture and transduction for two reasons:
the presence of low level endotoxin in the cultures would be
an indication of a possible previous contamination by Gram
negative micro-organisms, and secondly, high levels of
endotoxin are toxic to cells in culture. This assay was carried
out on the day ofharvest after transduction, prior to infusion.
The assay was carried out using the QCL-1000 Limulus
Amebocyte Lysate kit (BioWhittaker # 50-647U) according
to the manufacturers instructions. A stop solution consiting
of 25% glacial acetic acid was prepared as it was not
provided with the BioWhittaker kit. One kit was sufficient
for 5 patient cultures. Results were analyzed with Softmax
software. If the results of the diluted infusion sample or
diluted VCM sample were greater than 5 EU/ml, the infu-
sion would not have been proceeded with. If the results of
the undiluted infusion sample or undiluted VCM sample
were greater than 0.3 EU/ml, the Gram stain results were
referred to for confirmation of a possible contamination by
bacteria in the infusion bag. Otherwise the infusion was
proceeded with.

3 .3 Gram Stain.

Gram staining was used to test for Gram positive and
Gram negative bacteria in cell cultures before infusion.
Quality controlled slides, which have positive and negative
controls incorporated (Fisherbrand Grarnv QC slides cat
#08-80) and the Fisher diagnostics Gram Stain Set (Cat #SG
100D) were used according to the manufacturers instruc-
tions. A 5 pl sample of each infusion mixture was smeared
evenly on the slides. After staining, slides were examined
under a 100>< objective with immersion oil. Control squares
in the first colunm marked with “+”, containing Gram
positive Staph. aureus appeared as dark purple round dots.
Control squares in the first column marked with “—” con-
taining Grarn negative E. coli appeared as red-pink rods. If
the controls did not look like this, the staining was repeated.
If the infusion samples had contained any objects looking
like the controls, infusion would not have proceeded. Cul-
tured cells showed up as relatively large objects and cell
membranes as pale wispy shreds.
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3.4 Preparation of Co-Cultivation and Amplification
Samples for RCR Testing.

The patient retrovirus-transduced cells and the transduced
cell culture supernatant were tested for replication compe-
tent retrovirus (RCR). Per U.S. Food & Drug Administration
(FDA) requirements, 1% or 108 of the total transduced
patient cells (whichever was less) for each patient was tested
in a Mus dunni co-cultivation assay and 5% of the trans-
duced cell culture supernatant was tested in the Mus dunni
amplification assay. These assays were performed at BioRe-
liance Corp., (formerly MA BioServices in Rockville, Md.,
USA). Samples for these assays were taken at the time of
cell harvesting and preparation for infusion and stored until
all patient tranduction/harvest procedures were completed
and then shipped for testing.

Amplification RCR Samples were prepared for storage as
follows. Supernatant samples from the final harvested
CD34+cells were prepared in triplicate and consisted of
alignots of clarified supernatant (5% total volume per tube).
They were stored at —80° C. until the final transduced patient
amplification sample had been collected. Duplicate RCR
Co-cultivation Samples were prepared for storage, using 2%
of each CD34+ cell batch per sample, and resuspended in
cryopreservation media. Samples were then stored in liquid
nitrogen until time of shipment. Enough cells were included
to assure that the correct number of viable cells (1%) would
be achieved upon thawing of the sample at BioReliance
Corp. laboratories.

3.5 Plasma/PBMC/Bone Marrow Isolation.

Blood samples and bone marrow samples were collected
from patients at screening prior to infusion and at various
time points up to at least 3 years after infusion. The blood
was collected into 10 ml ACD tubes, the volume collected
depending on the tests required. From these blood samples,
plasma was collected and PBMC prepared as cell pellets or
cryopreserved samples. BMMC were prepared from bone
marrow and used fresh for CFC assay and the remainder
cryopreserved. The procedures used were as follows.

Collection of plasma: Blood tubes (10 ml, ACD-A vacu-
tainers) were centrifuged for 10 minutes at 2000 rpm. The
plasma fraction from each tube was carefully collected and
pooled into a 50 ml sterile tube. 2 ml volumes of plasma
were aliquoted and stored at —80° C.

Preparation of PBMC: Using the erythrocyte/leukocyte
cell pellet after collection of the plasma, the cells were
diluted to 3 times the initial starting volume with Wash
Buffer and distributed in 30 ml lots in 50 ml centrifuge tubes.
Each dilute cell suspension was underlaid with 10 ml
Ficoll-Paque (Pharmacia Cat#17-0849-03) and centrifuged
at 2000 rpm for 20 min at 20° C. in a swinging bucket rotor.
The upper layer was aspirated, leaving the mononuclear cell
layer undisturbed at the interphase. The interphase cells
were transferred to a new 50 ml tube, pooled if appropriate,
washed with Wash Buffer, centrifuged at 1500 rpm for 15
min, and the pellet resuspended in 5-10 ml Wash Buffer. A
viable cell count was carried out on 50 pl cell mixture using
a hemacytometer and Trypan Blue (1 :25 dilution). The cells
were aliquoted at 1-2><106 cells per tube and stored frozen if
required, and lysed with 140 pl Urea Lysis Bulfer. For
cryopreservation, cells were resuspended at 1-5><106 cells
per ml in PBMC Cryopreservative Medium and cooled
gradually in liquid nitrogen for storage.

Preparation of Bone Marrow Mononuclear Cells
(BMMC): Bone Marrow was diluted 1:1 with Wash Buffer,
and 30 ml samples underlaid with Ficoll-Paque and treated
as above for PBMC. Viable Cell counts were carried out on
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(2.5-3><10 cells) put aside for the assay. All remaining
BMMC was cryopreserved at 1><107 cells per ml of CD34’'
Cryopreservation Medium.

3.6 Screening Sample Bone Marrow CFU Assay
CFU assays were performed on bone marrow from

patients prior to infusion, thereby providing a baseline or
control for all other colony assays performed after infusion.
As the cells had not been exposed to a gene therapeutic or
control, they were not selected on G418. All procedures
were performed in a biocontainment hood and aseptic tech-
nique was applied at all times.

BMMC prepared as described above were aliquoted into
three 1.5 ml sterile microfuge tubes at 1.5><106 cells, 7.5><105
cells, and 3><105 cells per tube. The samples were centri-
fuged at 2500 rpm for 2 min, the medium aspirated and the
cell pellets resuspended thoroughly in 300 pl of RPMI
(Gibco BRL, Cat # 118-030)+1% FBS (Stem Cell technolo-
gies, Cat# HCC-6450). The cell mixtures were pipetted into
tubes (6 ml polystyrene Falcon, Cat#2058) each containing
3 ml of Methocult GFH4434 (Stem Cell Technologies, Cat#
HCC-4434). The contents were vortexed thoroughly for at
least 15 seconds, let sit until bubbles settled, and 1.1 ml
aliquots layered carefully onto grid dishes (Nunc Cat#
174926) arranged in a petri dish. The petri dishes had an
additional grid dish containing sterile water, opened to
maintain humidity during culture. The petri dishes with the
grid dishes were incubated at 37° C. in a humidified incu-
bator and colonies observed after 10-14 days.

3.7 Post-Infusion CFC Assay.
The post infusion Colony Forming Cell (CFC) assay

included cultures with and without G418. This was used to

assess transduced progenitor cell development following
infusion. Two cell numbers/dish are used to ensure that

colonies are at an optimum density when picked.
BMMC were prepared as described above and aliquoted

at 6><105 or 1.5><106 cells to sterile microfuge tubes. The cells
were pelleted at ~2500 rpm for 2 min. The medium was
aspirated and the cell pellets resuspended thoroughly in 600
pl of RPMl+1% FBS. 300 pl of each cell mixture was added
to tubes containing 3 ml of Methocult GFH4434 (StemCell
Technologies, Cat# HCC-4434), one +G418 at 0.9 mg/ml
(G418, crystalline geneticin, Gibco-BRL Cat # 11811-031)
and the other without -G418. The samples were then vor-
texed and further treated as described above for the Screen-

ing Sample Bone Marrow CFU Assay.

3.8 T-Cell, Monocyte and Granulocyte Preparation from
Blood.

Leucocytes were isolated from patient’s blood at several
time points after infusion. These cells were fractionated into
3 types (the T-cell, macrophage and granulocyte lineages) to
follow RRZ2 or LNL6 presence and HIV levels. The blood
was first separated on 1-Step Polymorphs into erythrocytes,
granulocytes, and peripheral blood mononuclear cells (PB-
MCs). The PBMCs are further fractionated on two colunms:
A CD3 column to yield lymphocytes and a CD14 column to
yield monocytes. The granulocyte fraction was assessed for
purity by Giemsa stain and the Lymphocyte and monocyte
fractions were FACS stained to assess purity. All fractions
were treated to prepare cell lysates for later DNA extraction
and PCR analysis.

All procedures were performed in a Class H Biological
Containment cabinet. 5 ml of fresh, ACD anticoagulated,
human blood in 10 ml tubes, collected less than 2 hours
previously and kept at room temperature, was overlaid on
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3.5 ml of 1-Step Polymorphs (Accurate Chemical & Scien-
tific Corporation, Cat# N221710, store at room temperature
and protect from light).

The tubes were centrifuged at 1650 rpm for 30 minutes at
room temp in a swinging-bucket rotor. After centrifugation,
two leukocyte bands were visible. The top band at the
plasma/1-Step interface consisted of mononuclear cells and
the lower and of PMN cells (Granulocytes). The erythro-
cytes are pelleted. All but about 1 ml ofplasma was aspirated
and transferred to a “Plasma” tube, leaving the mononuclear
cell layer undisturbed at the interface. All plasma collections
were pooled for each patient, aliquoted in 2 ml lots and kept
for later preparation of the granulocyte stain. The PBMC
interface cells were carefully transferred to a “PBMC” tube,
being careful not to pick up the lower band. All PBMC
collections were pooled for each patient. The lower band
was transferred to a “Granulocyte” tube and pooled. An
equal volume of hypotonic PBS was added to the granulo-
cyte tube. Both the “PBMC” and “Granulocyte” tubes were
filled with wash buffer up to 50 ml, mixed and centrifuged
at 1500 rpm for 15 minutes at room temperature. The
supernatant was aspirated and the cells washed once with 50
ml of Wash Buffer. After pelleting, the cells were resus-
pended in 10 ml of PBS. A cell count was performed (1:20
dilution with PBMC cell suspension and a 1:5 with the
Granulocyte suspension).

Granulocyte cell pellet/lysate preparation and phenotyp-
ing: The original suspension or cell pellet was resuspended
to a final concentration of 1x107 cells/ml, if necessary
repelleting the cells first. 100 pl was transferred to a
microfuge tube for phenotype staining. These cells were
pelleted in a microfuge at ~3000 rpm for 1 minute, sus-
pended in 10 pl of plasma fraction, and 5 pl of this
concentrated suspension smeared onto each of two micro-
scope slides. The slides were air dried, stained with Giemsa
stain for 30 min, rinsed with distilled water and let air dry.
They were examined under a 20x objective and the fraction
of granulocytes counted. The remainder of the Granulocyte
cells were pelleted in a microfuge at ~3000 rpm for 2
minutes for late DNA exraction.

3.9 DNA Preparation from Cells (Vacutainer-Phenoling
DNA).

Vacutainers (Hemogard, SerumSep, 6 ml. Cat# 369789)
were used for some DNA extractions. This was a rapid way
to extract genomic DNA from CD34 selected cells, meth-
ylcellulose colonies, and patient PBMCs. 1 or 2 million cells
in a 1.5 ml microfuge tube were pelleted at 3000 RPM for
3 minutes in the microcentrifuge, washed once with 1 ml of
PBS and then dispersed in 70 ul of water. 140 pl of Urea
Lysis Buffer was added to each tube, and the phases mixed
throughly by vortexing the tubes five to eight times. These
tubes can be kept frozen at -70 C indefinitely. For each
sample, 0.5 ml phenol solution (Tris equilibrated United
States Biochemical #20083, with 0.4 g of hydroxyquinoline
hemisulfate added per 400 ml) was added, and the mixture
pumped 2 or 3 times using a 1 ml syringe with a 23 or 25
G needle, then squirted into a vacutainer containing 210 pl
of water. 15 pl of chloroform was then added to each
vacutainer. They were capped, centrifuged at 2400 rpm for
5 min, then 0.5 ml of phenol/chloroform added. They were
shaken for 30 seconds and recentrifuged at 2000 rpm for 3
min. The phenol/chloroform extraction was repeated, fol-
lowed by two extractions with chloroforn1/isoamyl alcohol.
400 pl of the extract above the plug was transferred to a
microfuge tube with an aerosol-resistant tip, and the DNA
precipitated with 25 pl 5 M NaCl and 850 pl absolute ethanol
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at —20° C. The DNA was recovered by centrifugation,
washed once with 70% ethanol, air dried, and resuspended
in 50 ul water or 5 mM Tris pH 9. For PBMC fractions or
bone marrow samples, 20 pl was used for each 106 cells.
DNA preparations were stored at —70° C. For samples from
colonies, the 210 pl water in the vacutainers contained 10 ug
tRNA (Sigma R 9001) as carrier.

DNA was also prepared from cells using the “Acest
Protocol” and used in competitive PCR and PCR-RCR
assays. Cell pellets of approximately 5><106 cells in a
microfuge tube were resuspended in 300 pl lysis buffer (10
mM Tris-HCl, 50 mM KCl, 3 mM CaCl2, 0.4% Triton><100,
pH 8.0, filter sterilized), 3 pl of PreTaq (Boehringer Man-
nheim Cat #1696491) added, the sample boiled for 5 min
and centrifuged at 13000 rpm for 2 min. The supernatant was
transferred to a clean screw-capped 1.5 ml tube, 100 pl
ACES Buffer (2.28 Aces (Sigma Cat. No. A-7949), 12.5 ml
05M NaOH, 12.5 ml Tween-20, pH 6.8, in total volume 50
ml, filter sterilized) and 25 pl Polymer (Ward et al 1998)
added, the sample mixed by vortexing briefly and then
centrifuged for 2 min at 13000 rpm. The pellet was resus-
pended in 50 pl of 20 mM NaOH and left at room tempera-
ture until thoroughly dissolved. The sample was boiled for
5 min and the DNA concentration determined by measuring
the optical density at 260 nm. Extractions from post-infusion
cells were carried out under PC3 containment due to HIV

presence.

3.10 PCR

For detection of LNL6 or RRz2 sequences in cells or cell
colonies, PCR analysis of cellular DNA was carried out.
PCR primers were labelled with P32 to enable quantitative
detection of the PCR product. Labelling was carried out with
y32P-ATP (ICN # 3502005) and T4 Polynucleotide kinase
(GIBCO-BRL Cat# 18004-010) by the recommended pro-
cedure. Excess unincorporated label was removed using
G25 Sephadex spin columns. 10>< buffer was used for PCRs,
containing 250 mM Tris, 50 mM MgCl2, 500 mM NaCl, 2.5
mM each of dATP, dCTP, dGTP, TTP (Gibco BRL 10297-
018), 1.0 mg/ml BSA (Sigma A-4378, made up as 100
mg/ml), pH 8.0.

Standards of pLNL6 and pRRz2 DNA were diluted in 5
mM Tris, pH 9 to give 1,000 and 100,000 copies per p.l using
human liver DNA as carrier and subsequently diluted to give
a range of 5-5000 copies per 5 pl sample. For human beta
globin analysis, human DNA standards were made from a 1
mg/ml stock to make dilutions at 10,000, 3000, 1000, 300
and 100 gene copies per

LNL6/RRz2 “High copies”: Method used for quantitating
relatively high levels of LNL6 and RRz in preparations of
DNA. Such DNA was derived from CD34 cells and hemato-

poietic colonies. In this protocol the PCR reactions were of
25 pl with no more than 104 copies of the human genome.
Oligonucleotide primers were 5L1A, 3L1D, Taq polymerase
from Fisher. Amplification was carried out at 94° C. for 3
min, 68° C. for 1 min, followed by 27 cycles of 94° C. for
1 min and 68° C. for 1 min using an MJ Research Program-
mable Thermal Controller. Ten standard (control) samples
were also treated, containing 5000, 1000, 500, 100, 50, 10,
5, 0, 0, and 0 copies of RRz2 and 0, 0, 0, 5, 10, 50, 100, 500,
1000, and 5000 copies of LNL6, respectively, all in the
presence of 5000 copies of the human genome.

LNL6/RRz2 “Low copies”: Method used for quantitating
relatively low levels of LNL6 and RRz in preparations of
DNA. Such DNA was derived from peripheral blood cells
(lymphocytes, macrophages, and granulocytes). In this pro-
tocol the reaction was run on 50 ul samples with approxi-
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mately 106 copies of the human genome. 20 ul of DNA
samples were mixed with 30 pl containing primers 5L1A
and 3L1D (one labeled), bulfer and polymerase, and treated
as for the “High copies” except that the 94° C. steps were for

906 seconds. The standard samples were in the presence of
10 copies of the human genome.

Amplified samples were analyzed on 5% or 6% polyacry-
lamide gels by electrophoresis using Tris-Borate-EDTA
bulfer (10><TBE, 0.89M Tris borate pH 8.3+20 mM EDTA)
and radioactivity in bands quantitated using anAMBIS 4000
Radioimager.

As an additional standard, beta globin DNA was quanti-
tated in preparations of DNA where the number of copies of
the human genome was :10000. Such DNA was derived
from CD34+ cells and hematopoietic colonies, and patient
PBMCs, T-cells, and bone marrow. Amplification was car-
ried out using oligonucleotide primers LX1 and LA2, and 25
cycles of 94° C. for 1 min, 65° C. for 2 min.

A nested radioactive PCR method was also used to

calculate the ratio of LNL6:RRz2 marking where less than
approximately 0.01% of cells contain either construct. The
two rounds of PCR provided increased sensitivity and the
incorporation of radioactive label readily allowed quantita-
tion using Imagequant software. Meticulous laboratory tech-
nique was used to avoid cross-contarnination and appropri-
ate controls carried out. The first round of PCR used 1 pg of
template DNA, primers 5Nes1 and 3L2A, Bulfer II (Perkin
Elmer Cat #N808-0010) with 2 mM MgCl2, dNTPs and Taq
DNA Polymerase (Perkin Elmer Cat #N801-0060) in 50 pl
volumes with taqbeads (Perkin Elmer Cat #N808-0100).
Amplification was carried out for ten replicates of each
sample in Thermofast 96 PCR plates (Advanced Biotech-
nologies, Cat #AB0600) using 1 cycle at 94° C., 17 cycles
of 30 sec/68° C. and 30 sec/94° C., and cooling to 4° C.
Products from the ten replicates were pooled and 5 pl pooled
sample used for each second round amplification reaction.
The second round PCR used labelled primer 5L1A and
primer 3L2A under the same conditions as the first round
except that 35 cycles of amplification were carried out.
Products were analysed on polyacrylamide gels. The 216 bp
product corresponded to RRz2, the 174 bp product to LNL6.

3.11 RCR-PCR.

The RCR-PCR assay allowed the detection of replication
competent retrovirus by amplifying a highly conserved
region of the env gene. The amplified sequence encodes part
of the host-determining region of the envelope protein which
is required for infection of cells through the amphotropic
receptor. The amplified region was 289 bp long. The sensi-
tivity of the assay was one positive cell in a background of
one million negative cells (10‘°).

The PCR reaction used 7 pl DNA sample and the primers
5RCR6:5'-CTA TGT GAT CTG GTC GGA GA-3' (SEQ ID
NO.:13) and 3RCR6:5'-CCA CAG GCA ACT TTA GAG
CA-3' (SEQ ID NO.:14) with Bulfer II (Perkin Elmer, Cat #
N808-0010) and Mg“ (Perkin Elmer, Cat# N808-0010),
0.25 mM dNTPs (Gibco BRL 10297-018), and Taq poly-
merase (TaqbeadrTM DNA Polymerase, Promega, Cat #
M5661) Amplification was carried out with 3 mm at 94° C.,
followed by 45 cycles of 94° C. for 30 secs, 63° C. for 30
secs and 72° C for 30 secs. Amplified samples were analyzed
on 2.5% NuSieve gels. Presence of the 289 bp band indi-
cated the presence of RCR.

A “no DN ” control containing water instead of sample
DNA was run in each PCR experiment to verify that there
was no contamination of any reagent. A negative control
(CEMT4 DNA) was also run to ensure the specificity of the
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amplicons generated. A positive control (10‘5 PA317) was
run in each PCR to verify that the sensitivity of the PCR was
at least 1 positive in 100,000 negative cells. “PA317 spiked”
samples, referring to the addition of 10 ul of 10‘3 PA317
‘spiking’ DNA at 20 ng/ml, was also included in each
experiment to all test samples in replicate PCR tubes. The
addition of this positive, 10‘3 PA317 DNA verified that a
negative PCR result was a true negative for RCR, not a false
negative result due to unamplifiable DNA. All manipula-
tions involved meticulous laboratory technique to avoid
cross-contarnination, for example cleaning benches and
pipettes with 0.1 M sodium hydroxide, frequent changing of
gloves and use of aerosol barrier tips.

3.12 Colony Isolation in CFC Assay
The CFC assay was performed on patient bone marrow

cells, CD34+ enriched cells from apheresis, and the final
transduced product. Colonies from the assay were analyzed
by PCR for the LNL6 and RRz2 genes as described above.
Cells from colonies after 14 days growth in methocellulose
medium were isolated and lysed as follows. Under micro-
scope, individual colonies were aspirated with P200 aerosol-
resistant tips and flushed into microfuge tubes. Tips were
rinsed with PBS to remove all methocellulose. The samples
were vortexed at medium speed for 15 seconds to dissolve
the methocellulose without shearing cells. DNA was isolated
from the cells after lysis as described above.

3.13 RNA Extraction and RT-PCR Analysis
RNA was extracted from patient samples using the

QIAmp RNA Blood Mini Kit (Qiagen Cat No 52304) by
following the manufacturers instructions. RNA was
extracted from 1-5><10° cells and resuspended in 50 pl
RNase-free water. After DNase treatment of the RNA prepa-
rations using RQ-1 DNase (Promega, Cat No. M6101),
synthesis of cDNA was carried out by using approximately
700-1000 ng RNA per reaction, primer 3L2A, and enzyme
Superscript RNase H minus RT (Gibco Cat No. 18053-017)
at 37C for 45 min. Seven replicates were performed for each
RNA sample and the products pooled before use as template
in the nested PCR method described above.

Example 4:

The HP cells are harvested, transduced and re-infused as
follows. The method comprises the following steps:
HP Cell Mobilization from the human subject’s bone mar-

row into the peripheral blood;
Apheresis of the peripheral blood of the individual to obtain

the mobilized HP cells;

Washing Step #1; washing of the unpurified peripheral blood
mononuclear cells by using a cell washer in preparation
for de-bulking;

De-bulking Step; to remove excess red cells, granulocytes,
platelets, and T-lymphocytes;

Washing Step #2; of the enriched HP cells using a cell
washer;

CD34+ Cell Selection or depletion of antigen positive cells
from the HP cell population;

Washing Stop #3, washing of the purified HP cells using a
cell washer;

Cell Culture by placing the purified HP cells into culture
with cytokines/growth factors;

Transduction Procedure of the HP cells by using a retroviral
vector containing the gene construct in the presence of a
transduction-facilitating agent, preferably introducing the
viral vector introduced using a cell washer;
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Harvest Cell Product and wash the HP cells, including the
transduced HP cells using a cell washer;

Preparation of Infusion Product, placing the HP cells into an
infusion bag and perform product safety release testing;
and

Infusion of Patient, delivering the cells back into the same
subject.

These steps are described in more detail with examples
and other modifications as follows:

Step 1—HP Cell Mobilization.

The first step of this procedure uses an agent to mobilize
HP cells from the bone marrow into the peripheral blood. An
example here is the use of Granulocyte Colony Stimulating
Factor (G-CSF, NeupogenTM) which is administered to the
patient subcutaneously, at least at 10 pg/kg/day and prefer-
ably at 30 p.g/kg/day, once daily, for up to five consecutive
days. Complete Blood Counts (CBCs), differential and
platelet count are performed daily during G-CSF adminis-
tration to assess the extent of the leucocytosis. A blood
sample for CD34’' cell count is drawn on day 3 of G-CSF
administration to ensure that the peripheral blood CD34+
count is greater than 20 cells/mm3 prior to the start of
apheresis. Failure to attain this CD34+ cell number does not
however prevent apheresis on days 4, 5 and 6 of G-CSF
administration.

Step 2—Apheresis.

Apheresis is a method of “blood filtration” to obtain the
mononuclear cell fraction of the peripheral blood. It is
conducted with a Cobe Spectra (Gambra), Hemonetics (Do-
medica) or Amicus (Baxter) machines on at least two
separate occasions, (preferably on days 4, 5 or 6 following
mobilization, where day 1 is the first day of induced mobi-
lization), though in other examples this can be done on
earlier or later days by determining the day at which the
peripheral blood CD34+ count is greater than 5 cells/mm3 or
more preferably 10 cells/mm3 and most preferably 20 cells/
mm3. In a preferred embodiment, this apheresis yields
cellular product from about 5 Liters (L) of blood flow
through, preferably this will be 5-10 L, but more preferably
10-20 L, and more preferably still 20L or greater. Product
from each apheresis is either treated separately or, in a
preferred embodiment, pooled after the second apheresis.
Total cell counts, and absolute CD34+ cell numbers are
recorded. Use of Steps 1 & 2 will produce up to greater than
5><106, preferably greater than 2><107, more preferably
greater than 4><107 HP (as measured by CD34 positivity)
cells/kg

Step 3—Washing Step #1 (Preferably on Days of Apher-
esis).

The pooled cells are washed. This is done by cell cen-
trifugation or more preferably using an automated cell
washer, in one example this cell washing is done by using a
Nexell CytoMate washer.

Step 4—De-Bulking Step (Preferably on Days of Apher-
esis).

In one embodiment, the cells from the apheresis proce-
dure(s) are “de-bulked” using a system like a Charter
Medical DACS-SCTM system. In the embodiment where
product is stored overnight from the first day for pooling
with second day product, the two apheresis products are
de-bulked on the day of collection and the first product
stored until the second product has been de-bulked.
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Step 5—Washing Step #2 (preferably Day 6).
The cells are taken, pooled (in the embodiment where

there are two products) and washed by centrifugation or by
using a Nexell CytoMate device or similar. (If there are more
than two products all will be pooled at the latest time point).

Step 6—CD34+ Cell Selection (Preferably Day 6).
CD34’' cells are selected from the post-washing product

by using the Isolex 300i, Miltenyi or a lineage depletion
strategy of cells expressing markers (e.g. CD2, CD3, CD14,
CD16, CD19, CD24, CD56, CD66b glycoprotein A, Stem-
Sep). The enriched pool of CD34’' or lineage depleted cells
preferably comprises at least 40%, more preferably at least
60% and most preferably at least 80% cells of this type.

Step 7—Washing Step #3 (Preferably Day 6).
The cells are washed by centrifugation or by using the

Nexell CytoMate or similar equipment.

Step 8—Cell Culture (Preferably Days 6-9).

The cells are counted and placed at preferably 1><10 to
5x10 cells/ml into cell culture flasks, cell culture bags or in
a preferred embodiment into 1,000 ml (390 cm2) Nexell
Lifecell X-Fold Culture Bag or similar with Iscove’s Modi-
fied Dulbecco’s Medium plus 10% Fetal Bovine Serum
(FBS) containing cytokines/growth factors. In a preferred
embodiment this cytokine/growth factor mixture consists of
Stem Cell Factor (50 ng/ml) and Megakaryocyte Growth
and Development Factor (100 ng/ml). Steps 3-9 will result
in up to 12><107 HP cells or ore (as assessed by CD34
positivity) per kg.

Step 9—Transduction Procedure (Preferably Day 8).
The cells are harvested from the first flask, tissue culture

bag, including a preferred embodiment of a Lifecell Culture
Bag or similar and using the Cytomate device or similar,
resuspended in retroviral supernatant (an example of this is
a 200 ml aliquot) and transferred into a second tissue culture
container, one type of which is the Lifecell X-Fold Culture
Bag which have a retrovirus transduction facilitating agent.
Such agents include polybrene, protamine sulphate, cationic
lipids or in a preferred embodiment, in a tissue culture
container that has been pre-coated with RetroNectin at 1-4
mcg/cm2. After 4-10 hours or up to 24 hours, the transfer
procedure will be repeated using the CytoMate or similar;
for this second transduction cells are either transferred to a

new tissue culture container (polybrene, protamine sulphate)
or returned to the same or similar RetroNectin-coated con-

tainer from which they came. In a preferred embodiment,
this is done in a fresh aliquot of retroviral supernatant and
cultured overnight. In other embodiments this is either not
done or repeated several times for similar periods of time.
An aliquot of the retroviral supernatant(s) is collected for
sterility testing. This will result in up to 6x107 gene-con-
taining HP cells or more (as assessed by CD34 positivity)
per kg. This number is determined by a quantitative assay.
The transduction efficiency will be at least 20%, and pref-
erably in the range from 30-50%, and more preferably
greater than 50%.

Step 10—Harvest Cell Product (Preferably on Day 9).
On the morning of day 9, cells are harvested and washed

using standard cell centrifuge or automated systems such as
the Cytomate samples of cell culture. This will yield up to
5.7><107 gene-containing HP cells or more (as assessed by
CD34 positivity) per kg.

Step 11—Infusion Product (preferably Day 9).
Cells are resuspended in a physiologic infusion bulfer

containing 5% human serum albumin or similar as carrier.
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Aliquot samples are removed for sterility (aerobic, anaero-
bic, fungal, mycoplasma). Infusion product is not released
until the results of endotoxin (LAL) and Gram stain testing
are available.

Step 12—Infusion of Patient (Preferably Day 9).

The CD34+ cell preparation is administered to the patient
pre-medicated as appropriate. In a preferred embodiment,
the patient receives a single infusion of 0.5-6><107 trans-
duced CD34+ cells per kilogram of body weight (cells/kg) in
the physiologic infusion buffer containing 5% human serum
albumin or similar as carrier. The dose of transduced CD34+

cells per patient will depend on the efficiency of each step of
the mobilization, apheresis, isolation, culture and transduc-
tion procedures. The total number of CD34’' cells (trans-
duced and non-transduced) is determined by cell counting
and flow cytometry. The introduced gene-containing HP
cells give rise to a chimeric hematopoietic system in which
there is a percentage of gene-containing HP cells in the bone
marrow. In a preferred embodiment, the one for the treat-
ment of HIV/AIDS, this percentage of gene-containing HP
cells is at least 5%, preferably greater than 10% and more
preferably than 20%.

Example 5

Use of PNAi with multiple-targeting ability to
inhibit HIV-1 replication

An RNAi construct with multiple-targeting ability against
HIV-1 is designed as follows. A cassette is made comprising
three RNAi units each having 19-25 nucleotide segments
corresponding to HIV-1 in sense orientation (1A, 2A, 3A)
and antisense orientation (1B, 2B, 3B) see FIG. 14, such that
1B, 2B and 3B are complementary in sequence to 1A, 2A
and 3A, respectively. The sequences 1A, 2A and 3A are
selected as being highly conserved in most HIV-1 strains, for
example sequence position 5831-5849 (atggagccagtagatc-
cta), sequence position 5852-5870 (ctagagccctggaagcatc),
and sequence position 5971-5989 (tggcaggaagaagcggaga) in
strain HXB2 or corresponding regions in other strains. The
sequences were calculated using the service of HIV
Sequence Database, HXB2 Numbering Engine operated by
the University of California for the U.S. Department of
Energy, retrieved from the Internet: <URL: http://hiv-we-
b.lanl.gov/content/hiv-db/NUM-HXB2/HXB2.Nuc.html>.
The sequences 1A, 2A and 3A preferably differ by not more
than 1 nucleotide compared to the corresponding sequences
in most HIV-1 strains. Each of the above nineteen nucleotide

sequences are reasonably conserved within the tat gene over
many HIV subtypes and very well conserved in Subtype B.
Each of these nineteen nucleotide sequences have no more
than one base pair deviation from the consensus sequence
within Subtype B. The first sequence includes the target for
RZ2. Differences close to the ends of the sequences may be
better tolerated. The RNAi units are separated by spacers
which may be 3-7 nucleotides in length. Spacers may be
longer, for example comprising intron sequences to aid in
cytoplasmic localization of the RNAi units. The cassette is
flanked by selfcleaving ribozyme sequences to allow release
of the multiple RNAi molecule. For example, the 5' end may
be processed by a hammerhead ribozyme where the catalytic
domain is designed according to U.S. Pat. No. 6,127,114,
and the 3' end by an autocatalytic hairpin ribozyme designed
according to U.S. Pat. No. 5,856,188. Such a configuration
allows basepaired (blunt) ends to the RNAi molecule with-
out extra nucleotides, although these can be tolerated. Auto-
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catalytic cleavage occurs at the arrowed positions (FIG. 14)
to release the 3 RNAi containing molecule. Spacers 1/2 and
2/3 may comprise cleavable sequences, for example
sequences cleavable by the hammerhead or hairpin
ribozymes or additional ribozyme units, to allow separation
of the RNAi units. Clearly, single RNAi units can be used or
multimers of up to six or even ten units.

The cassette is assembled as a DNA molecule from

overlapping annealed oligonucleotides and inserted into a
plasmid vector under the control of a T7 promoter. A
recombination-deficient E. coli strain that allows the stable

replication of plasmids with inverted repeat sequences, well
understood in the art, is used as a cloning host. Longer
spacers (eg introns) also assist in this regard. The nucleotide
sequence of the DNA insert is confirmed by DNA sequenc-
ing. T7 RNA polymerase is used to transcribe the DNA in
vitro in the presence of radiolabelled UTP and the self-
cleavage ability of the ribozyme units is assayed by elec-
trophoresis of the transcription products on polyacrylarnide
gels and autoradiography. Self-cleavage occurs at greater
than 90% efficiency during transcription at 37° C. for 1 hour.
The length and/or sequence of stems and loops in the
ribozyme domains can be adjusted if cleavage is less effi-
cient than desired.

The cassette is inserted into the plasmid form of a
retroviral vector such as pLNL6 under the control of an RNA
polymerase II-dependent promoter. Alternatively, an RNA
polymerase III-dependent promoter can be used. The cas-
sette is inserted into a restriction site in the vector in the

appropriate orientation. The resultant plasmid is introduced
into packaging cell lines such as the AM-12 line and stably
transfected cells used to produce retroviral vector. The
CemT4 cell line or PBLs are transduced with the retroviral

vector and the expression of the RNAi construct determined
by RNAse protection assays or reverse transcription-PCR,
well understood in the art. Significant protection of the
transduced cells is observed after infection with any of
several HIV-1 strains. A reduction ofp24 production ofmore
than 90% compared to the control (vector without RNAi
cassette) is observed, indicating reduced HIV-1 replication.

CD34+ cells are obtained from patients, transduced with
the retroviral vector in the presence of RetroNectin by

methods as described earlier in this application. At least
0.5><10 transduced CD34+ cells per kg (of weight of the
patient) in a total cell population of more than 1.63><106
CD34+ such cells per kg are administered to the patients by
infusion. Preferably, more than 5><106 transduced CD34+
cells per kg are administered. These cells engraft the
patients’ bone marrow and produce protected T-lympho-
cytes and macrophages/monocytes for more than three years
post-infusion. These cells are relatively protected against
HIV-1 infection and contribute to improved immune func-
tion.

CONCLUDING DISCUSSION

In the clinical trial described herein, the introduction of a
gene for expression of an anti-HIV agent into CD34+ cells
ex vivo and infusion of these cells into autologous patients
was shown to be technically feasible and safe. The presence
and expression of the ribozyme construct in peripheral blood
lymphoid and myeloid cells was found for at least three
years. The degree of cell marking varied in the ten patients
treated in this study, and this allowed the following conclu-
sions.—The relevant parameters to the degree of cell mark-
ing were found to be—the percentage of CD34’' cell trans-
duction, the number of transduced CD34+ cells infused, and
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the total number of CD34’' cells infused. The actual number

of transduced cells was found to be important. The non-
transduced cells could play a role in enhancing the survival
of the transduced cells in the peripheral blood and organs
such as the liver as they are homing to the bone marrow
compartment. Prolonged engraftment of transduced CD34+
hematopoietic cells required a minimum dose of 0.52><106
transduced cells in a total CD34+ cell population of at least
1.63><106 cells, in the context of the absence of myeloabla-
tive pre-conditioning. There was preferential survival of
ribozyme-containing lymphocytes over control lympho-
cytes, even under relatively low levels of selection. The
degree of preferential survival was CD34+ cell dose-depen-
dent, i.e. correlated positively with the number of infused
transduced cells, which was unexpected. It is reasonable to
expect an even greater degree of preferential survival of
ribozyme-protected lymphocytes at higher levels of selec-
tion, and greater therapeutic benefit at higher cell doses.

This provides a basis for effective gene therapy of
hematopoietic cells for treatment ofAIDS/HIV infection and
any other diseases. It provides important knowledge for
effective quality assurance and evaluation of the procedure
in a clinical setting.
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SEQUENCE LISTING

<l60> NUMBER OF SEQ ID NOS: l8

<2lO> SEQ ID NO 1
<2ll> LENGTH: 39
<2l2> TYPE: RNA

<2 13> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: l

uuaggauccu gaugaguccg ugaggacgaa acuggcucc 39
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<2l0> SEQ ID NO 2
<2ll> LENGTH: 17
<2l2> TYPE: RNA
<2l3> ORGANISM: HIV-1

<400> SEQUENCE: 2

ggagccagua gauccua

<2l0> SEQ ID NO 3
<2ll> LENGTH: 38
<2l2> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 3

ttaggatcct gatgagtccg tgaggacgaa actggctc

<2l0> SEQ ID NO 4
<2ll> LENGTH: 21
<2l2> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 4

cactcatgag atgcctgcaa g

<2l0> SEQ ID NO 5
<2ll> LENGTH: 21
<2l2> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 5

gagttctacc ggcagtgcaa a

<2l0> SEQ ID NO 6
<2ll> LENGTH: 22
<2l2> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 6

gatcccctcg cgagttggtt ca

<2l0> SEQ ID NO 7
<2ll> LENGTH: 20
<2l2> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 7

ctatgtgatc tggtcggaga

<2l0> SEQ ID NO 8
<2ll> LENGTH: 20
<2l2> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

US 7,345,025 B2

—cont inued

17

38

21

21

22

20

62

Benitec — Exhibit 1015 — page 60



Benitec - Exhibit 1015 - page 61

63

<400> SEQUENCE: 8

ccacaggcaa ctttagagca

<210> SEQ ID NO 9
<211> LENGTH: 19
<212> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 9

tggcaatgaa agcaacact

<210> SEQ ID NO 10
<211> LENGTH: 21
<212> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 10

tttagaggag cttaagaatg a

<210> SEQ ID NO 11
<211> LENGTH: 21
<212> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 11

agttttaggc tgacttcctg g

<210> SEQ ID NO 12
<211> LENGTH: 19
<212> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 12

tggaagccat aataagaat

<210> SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 13

ctatgtgatc tggtcggaga

<210> SEQ ID NO 14
<211> LENGTH: 20
<212> TYPE: DNA

<2l3> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: ribozyme

<400> SEQUENCE: 14

ccacaggcaa ctttagagca

<210> SEQ ID NO 15
<211> LENGTH: 19
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<212> TYPE: DNA
<213> ORGANISM: HIV-1

<400> SEQUENCE: 15

atggagccag tagatccta

<2lO>
<2ll>
<2l2>
<2l3>

SEQ ID NO 16
LENGTH: 19
TYPE: DNA
ORGANISM: HIV-1

<400> SEQUENCE: 16

ctagagccct ggaagcatc

<2lO>
<2ll>
<2l2>
<2l3>

SEQ ID NO 17
LENGTH: 19
TYPE: DNA
ORGANISM: HIV-1

<400> SEQUENCE: 17

tggcaggaag aagcggaga

<2lO>
<2ll>
<2l2>
<2l3>
<220>
<223>

SEQ ID NO 18
LENGTH: 18
TYPE: RNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: ribozyme

<400> SEQUENCE: 18

ggagccagua gauccuaa

35

What is claimed is:

1. A composition for engraftment of transduced autolo-
gous CD34+ hematopoietic progenitor cells in a human
subject which comprises a pharmaceutically acceptable car-
rier and a minimum dose of 0.52><l06 transduced CD34+

hematopoietic progenitor cells per kg body weight of the
subject in a total CD34+ cell population of at least l.63><l06
CD34+ hematopoietic progenitor cells per kg body weight of
the subject, the transduced cells comprising a RRZ2 vector
encoding a ribozyme and the number of transduced cells
being determinable by performing competitive PCR on such
transduced CD34+ hematopoietic cells, wherein the
ribozyme is encoded by DNA nucleotides having the
sequence 5'-TTA GGA TCC TGA TGA GTC CGT GAG
GAC GAA ACT GGC TC-3' (SEQ ID NO: 3).

2. The composition of claim 1, comprising a minimum
dose of 5x106 transduced CD34+ hematopoietic progenitor
cells per kg body weight of the subject in a total CD34+ cell
population comprising 9.37><l06 CD34+ hematopoietic pro-
genitor cells per kg body weight of the subject.

3. The composition of claim 1, wherein the CD34’'
hematopoietic progenitor cells are from mobilized periph-
eral blood of the subject.

4. The composition of claim 1, wherein the cells are
transduced in the presence of an agent that enhances co-
localization of the cells with a viral construct.

5. The composition of claim 4, wherein the agent is a
recombinant fragment of fibronectin.

6. The composition of claim 5, wherein the recombinant
fragment of fibronectin is the CH296 fragment of human
fibronectin.
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7. The composition of claim 2, wherein the CD34’'
hematopoietic progenitor cells are from mobilized periph-
eral blood of the subject.

8. The composition of claim 2, wherein the cells are
transduced in the presence of a CH296 fragment of human
fibronectin.

9. The composition of claim 3, wherein the cells are
transduced in the presence of a CH296 fragment of human
fibronectin.

10. The composition of claim 7, wherein the cells are
transduced in the presence of a CH296 fragment of human
fibronectin.

11. The composition of claim 1, wherein the composition
is substantially free of cytokines.

12. The composition of claim 1, wherein the composition
is substantially free of virus.

13. The composition of claim 1, wherein in the subject the
transduced CD34+ hematopoietic progenitor cells give rise
to progeny cells for at least 12 months.

14. A composition for engraftment of transduced autolo-
gous CD34+ hematopoietic progenitor cells in a human
subject which comprises a pharmaceutically acceptable car-
rier and a minimum dose of 0.5><l06 transduced CD34+

hematopoietic progenitor cells per kg body weight of the
subject in a total CD34+ cell population of at least l.7><l06
CD34+ hematopoietic progenitor cells per kg body weight of
the subject, the transduced cells comprising a RRZ2 vector
encoding a ribozyme and the number of transduced cells
being determinable by performing competitive PCR on such
transduced CD34+ hematopoietic cells, wherein the
ribozyme is encoded by DNA nucleotides having the
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sequence 5'-TTA GGA TCC TGA TGA GTC CGT GAG
GAC GAA ACT GGC TC-3' (SEQ ID NO: 3).

15. The composition of claim 14, comprising a minimum
dose of 5x106 transduced CD34+ hematopoietic progenitor
cells per kg body weight of the subject.

16. The composition of claim 14, wherein the CD34’'
hematopoietic progenitor cells are from mobilized periph-
eral blood of the subject.

5
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17. The composition of claim 14, wherein the cells are

transduced in the presence of an agent that enhances co-
localization of the cells with a retroViral construct.

18. The composition of claim 17, wherein the agent is a
CH296 fragment of human fibronectin.
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