[54] INTERPHENYLENE CARBACYCLIN DERIVATIVES
[75] Inventor: Paul A. Aristoff, Portage, Mich.
[73] Assignee: The Upjohn Company, Kalamazoo, Mich.
[21] Appl. No.: 690,803
[22] Filed: Jan. 11, 1985
[51] Int. Cl. ${ }^{4}$ \qquad C07C 177/00
[52] U.S. Cl. \qquad 560/51; 544/155;
544/380; 546/203; 546/204; 546/283; 546/284; 546/285; 548/540; 549/66; 549/78; 549/79; 549/305; 549/465; 549/496; 549/499; 549/501; 549/502; 549/65; 560/45; 560/56; 562/444; 562/466; 562/499; 562/453; 564/80; 564/88; 564/89; 564/90; 564/92; 564/93; 564/95; 564/97; 564/98; 564/99; 564/152; 564/158; 564/171; 564/174; 564/374; 564/384; 564/427; 564/453; 564/454; 568/633; 568/808; 568/817
[58] Field of Search \qquad 560/51, 45, 56; 562/444, 466, 499, 453; 542/429; 544/155, 380; $564 / 80,88,89,90,92,93,95,97,98,99,171$, $174,152,158,374,384,427,453$

References Cited

U.S. PATENT DOCUMENTS

4,180,657	12/1979	Sih 542/426
4,192,891	3/1980	Haslanger 424/305
4,225,508	9/1980	Sih 260/346.22
4,238,414	12/1980	Morton 564/4
4,306,075	12/1981	Aristoff 560/56
4,306,076	12/1981	Nelson 560/5
4,349,689	9/1982	Aristoff 560/117

FOREIGN PATENT DOCUMENTS

0024943	$11 / 1981$	European Pat. Off. .
0087237	$8 / 1983$	European Pat. Off. .
2900352	$7 / 1979$	Fed. Rep. of Germany
4063059	$5 / 1979$	Japan .
4063060	$5 / 1979$	Japan .
4024865	$5 / 1979$	Japan .
2012265	$7 / 1979$	United Kingdom.
2013661	$8 / 1979$	United Kingdom .
2017699	$10 / 1979$	United Kingdom .
2070596	$9 / 1981$	United Kingdom .

OTHER PUBLICATIONS

Aristoff, P. A., et al., Advances in Prostaglandin, Thromboxane, and Leukotriene Research, 11, 1983, pp. 267-274, "Synthesis and Structure-Activity Relationship of Novel Stable Prostacyclin Analogs".
Aristoff, P. A. and Harrison, A. W., Tetrahedron Letters, 23 (No. 20), 1982; pp. 2067-2070, "Synthesis of Benzindene Prostaglandins: A Novel Potent Class of Stable Prostacyclin Analogs".
Aristoff, P. A., J. Org. Chem., 46 (No. 9), 1981, pp.

1954-1957, "Practical Synthesis of 6a-Carbaprostaglan$\operatorname{din} I_{2}{ }^{\prime}$.
Barco, A., et al., J. Org. Chem., 45 (No. 32), 1980, pp. 4776-4778, "A New Elegant Route to a Key Intermediate for the Synthesis of $9(\mathrm{O})$-Methanoprostacyclin".
Konishi, Y., et al., Chem. Lett., 1979, pp. 1437-1440, "A Synthesis of 9(O)-Methanoprostacyclin".
Kojima, K. and Sakai, K., Tetrahedron Letters, 39, 1978, pp. 3743-3746, "Total Synthesis of 9(O)-Methanoprostacyclin and Its Isomers".
Morton, D. R., Jr. and Brokaw, F. C., J. Org. Chem., 44 (No. 16), 1979, pp. 2880-2887, "Total Synthesis of 6a-Carbaprostaglandin I_{2} and Related Isomers".
Nicolaou, K. C., et al., J.C.S. Chem. Comm., 1978, pp. 1067-1068, "Total Synthesis of Carboprostacyclin, A Stable and Biologically Active Analogue of Prostacy$\operatorname{clin}\left(\mathrm{PGI}_{2}\right)$ ".
Shibasaki, M., et al., Chem. Lett., 1979, pp. 1299-1300, "A Stereo and Regiospecific Route to the Synthetic Intermediate for the Synthesis of 9(O)-Methanoprostacyclin".
Shibasaki, M., et al., Tetrahedron Letters, 5, 1979, pp. 433-436, "New Synthetic Routes to 9(O)-Methanoprostacyclin, A Highly Stable and Biologically Potent Analog of Prostacyclin".
Skuballa, V. W. and Vorgruggen, H., Agnew. Chem., 93, (No. 12), 1981, pp. 1080-1081, "Ein Neuer Weg Zu 6a-Carbacyclinen-Synthese Eines Stabilen, Biologischpotenten Prostacyclin-Analogons".
Sugie, A., et al., Tetrahedron Letters, 28, 1979, pp. 2607-2610, "Stereocontrolled Approaches to 9(O)-Methanoprostacyclin".
Yamazaki, M., et al., Chem. Lett., 1981, pp. 1245-1248, "1,2-Carbonyl Transposition of cis-Bicyclo[3.3.0]oc-tan-2-one to its 3-One Skeleton: Appl. to Syntheses of d_{1}-Hirsutic Acid and $\mathrm{d}_{1}-9(\mathrm{O})$-Methanoprostacyclin".
Primary Examiner-Paul J. Killos
Attorney, Agent, or Firm-L. Ruth Hattan

[57]

ABSTRACT

A compound of the formula

and intermediates useful in preparing same.

11 Claims, No Drawings

INTERPHENYLENE CARBACYCLIN DERIVATIVES

FIELD OF THE INVENTION

The present invention relates to novel pharmaceutically useful compounds which are carbacyclin analogs having a tricyclic nucleus.

PRIOR ART

Related interphenylene carbacyclins are described and claimed in U.S. Pat. No. 4,306,075, U.S. Pat. No 4,306,076, and EP No. 87237 (Derwent No. 754477). Compounds having a 5 -membered oxa ring are described in European Pat. No. 24-943 (Derwent No. 19801D).
Carbacyclin and closely related compounds are known in the art. See Japanese Kokai Nos. 63,059 and 63,060 , also abstracted respectively as Derwent Farmdoc CPI Numbers 48154B/26 and 48155B/26. See also British published specifications No. 2,012,265 and German Offenlungsschrift No. 2,900,352, abstracted as Derwent Farmdoc CPI Number 54825B/30. See also British published applications Nos. 2,017,699 and 2,013,661 and U.S. Pat. No. 4,238,414.
The synthesis of carbacyclin and related compounds is also reported in the chemical literature, as follows: Morton, D. R., et al, J. Org. Chem., 44:2880-2887 (1979); Shibasaki, M., et al, Tetrahedron Lett., 433-436 (1979); Kojima, K., et al, Tetrahedron Lett., 3743-3746 (1978); Nicolaou, K. C., et al, J. Chem. Soc., Chemical Communications, 1067-1068 (1978); Sugie, A., et al, Tetrahedron Lett., 2607-2610 (1979); Shibasaki, M., Chem. Lett., 1299-1300 (1979), and Hayashi, M., Chem. Lett., 1437-40 (1979); Aristoff, P. A., J. Org. Chem. 46, 1954-1957 (1981); Yamazaki, M., et al, Chem. Lett., 1245-1248 (1981); and Barco, A., et al, J. Org. Chem. 45, 4776-4778 (1980); and Skuballa, W., et al, Angew. Chem. 93, 1080-1081 (1981). The utility and synthesis of compounds closely related to those claimed herein is described in Aristoff, P. A., and Harrison, A. W., Tetrahedron Lett. 23, 2067-2070 (1982) and in Advances in Prostaglandin, Thromboxane, and Leukotriene Research, Vol. 11, 267 (1983).
7-Oxo and 7-hydroxy-CBA 2 compounds are apparently disclosed in U.S. Pat. No. 4,192,891. 19-HydroxyCBA_{2} compounds are disclosed in U.S. Pat. No. $4,225,508 . \mathrm{CBA}_{2}$ aromatic esters are disclosed in U.S. Pat. No. 4,180,657. 11-Deoxy- Δ^{10} - or Δ^{11}-CBA $_{2}$ compounds are described in Japanese Kokai No. 77/24,865, published Feb. 24, 1979.

SUMMARY OF THE INVENTION

The present invention provides compounds of For- 55 mula I wherein:
X_{1} is
(1) $-\mathrm{COOR}_{1}$, wherein R_{1} is
(a) hydrogen;
(b) $\left(\mathrm{C}_{1}-\mathrm{C}_{12}\right)$ alkyl;
(c) $\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)$ cycloalkyl;
(d) ($\mathrm{C}_{7}-\mathrm{C}_{12}$) aralkyl;
(e) phenyl, optionally substituted with one, 2 or 3 chloro or ($\mathrm{C}_{1}-\mathrm{C}_{3}$) alkyl;
(f) phenyl substituted in the para position by
(i) $-\mathrm{NHCOR}_{25}$,
(ii) $-\mathrm{COR}_{26}$,
(iii)

taken together is

wherein M_{1} is $\alpha-\mathrm{H}: \beta-\mathrm{H} ;=\mathrm{O} ; \alpha-\mathrm{OH}: \beta-\mathrm{R}_{5}$; or $\alpha-\mathrm{R}_{5}: \beta-\mathrm{OH}$; wherein R_{5} is hydrogen or methyl; wherein L_{1} is
(1) $\alpha-\mathrm{R}_{3}: \beta-\mathrm{R}_{4}, \alpha-\mathrm{R}_{4}: \beta-\mathrm{R}_{3}$, or mixtures thereof 1 wherein R_{3} and R_{4} are hydrogen, methyl, or fluoro, being the same or different, with the proviso that one of R_{3} and R_{4} is fluoro only when the other is hydrogen or fluoro;
(2) or when M_{1} is $\alpha-\mathrm{H}: \beta-\mathrm{H}, \mathrm{L}_{1}$ is $\alpha-\mathrm{OH}: \beta-\mathrm{R}_{3}$, 2 $\alpha-\mathrm{R}_{3}: \beta-\mathrm{OH}$; or a mixture of $\alpha-\mathrm{OH}: \beta-\mathrm{R}_{3}$ and $\alpha-\mathrm{R}_{3}: \beta-\mathrm{OH}$ wherein R_{3} is hydrogen, methyl, vinyl, or ethynyl;
wherein R_{7} is
(1) $-\mathrm{C}_{m} \mathrm{H}_{2 m} \mathrm{CH}_{3}$, wherein m is an integer from one 2 to 8 , inclusive;
(2) phenoxy optionally substituted by one, 2 or 3 chloro, fluoro, trifluoromethyl, ($\mathrm{C}_{1}-\mathrm{C}_{3}$) alkyl, or ($\mathrm{C}_{1}-\mathrm{C}_{3}$) alkoxy, with the proviso that not more than two substituents are other than alkyl with the proviso that R_{7} is phenoxy or substituted phenoxy, only when R_{3} and R_{4} are hydrogen or methyl, being the same or different;
(3) phenyl, benzyl, phenylethyl, or phenylpropyl optionally substituted on the aromatic ring by one, 2 or 3 chloro, fluoro, trifluoromethyl, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, or $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkoxy, with the proviso that not more than two substituents are other than alkyl;
(4) cis- $\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}$;
(5) $-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$;
(6) $-\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}$;
(7) $-\mathrm{C}_{p} \mathrm{H}_{2 p} \mathrm{CH}=\mathrm{CH}_{2}$ wherein p is an integer from 2 to 6 , inclusive;
wherein

taken together is
(1) ($\mathrm{C}_{4}-\mathrm{C}_{7}$) cycloalkyl optionally substituted by one to $3\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right)$ alkyl, or $\left(\mathrm{C}_{1}-\mathrm{C}_{5}\right)$ alkenyl;
(2) 2 -(2-furyl) ethyl;
(3) 2-(3-thienyl) ethoxy;
(4) 3-thienyloxymethyl; or
(5)

and the individual optical enantiomers thereof with the proviso that each compound is other than one formed when the substituents $\mathrm{X}_{1}, \mathrm{Z}_{4}, \mathrm{~L}_{20}, \mathrm{Y}_{1}, \mathrm{M}_{1}, \mathrm{~L}_{1}, 65$ and R_{7} have the following meanings:
X_{1} is as defined above;
Z_{4} is $-\mathrm{CH}_{2}-,-\mathrm{CF}_{2}-$, or $-\mathrm{CH}_{2} \mathrm{CF}_{2}-$;
L_{20} is $\alpha-\mathrm{OH}, \beta-\mathrm{H} ; \alpha-\mathrm{H}, \beta-\mathrm{OH} ; \mathrm{H}, \mathrm{H} ; \alpha-\mathrm{CH}-$ ${ }_{2} \mathrm{OH}, \beta-\mathrm{H}$;
Y_{1} is $-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{C} \equiv \mathrm{C}-$, trans- $\mathrm{CH}=\mathrm{CH}-$, or cis- $-\mathrm{CH}=\mathrm{CH}-$;
(iv) $-\mathrm{CH}=\mathrm{N}-\mathrm{NHCONH}_{2}$ wherein \mathbf{R}_{25} is methyl, phenyl, acetamidophenyl, benzamidophenyl, or $-\mathrm{NH}_{2} ; \mathrm{R}_{26}$ is methyl, phenyl, $-\mathrm{NH}_{2}$, or methoxy; \mathbf{R}_{54} is phenyl or acetamidophenyl; inclusive; or
(g) a pharmacologically acceptable cation;
(2) $-\mathrm{CH}_{2} \mathrm{OH}$;
(3) $-\mathrm{COL}_{4}$, wherein L_{4} is
(a) amino of the formula $-\mathrm{NR}_{51} \mathrm{R}_{52}$ wherein R_{51} and R_{52}
(i) hydrogen,
(ii) $\left(\mathrm{C}_{1}-\mathrm{C}_{12}\right)$ alkyl,
(iii) $\left(\mathrm{C}_{3}-\mathrm{C}_{10}\right)$ cycloalkyl,
(iv) $\left(\mathrm{C}_{7}-\mathrm{C}_{12}\right)$ aralkyl,
(v) phenyl, optionally substituted with one 2 or 3 chloro, ($\mathrm{C}_{1}-\mathrm{C}_{3}$) alkyl, hydroxy, carboxy, ($\mathrm{C}_{2}-\mathrm{C}_{5}$) alkoxycarbonyl, or nitro,
(vi) $\left(\mathrm{C}_{2}-\mathrm{C}_{5}\right)$ cyanoalkyl,
(vii) $\left(\mathrm{C}_{2}-\mathrm{C}_{5}\right)$ carboxyalkyl,
(viii) $\left(\mathrm{C}_{2}-\mathrm{C}_{5}\right)$ carbamoylalkyl,
(ix) $\left(\mathrm{C}_{3}-\mathrm{C}_{6}\right)$ acetylalkyl,
(x) $\left(\mathrm{C}_{7}-\mathrm{C}_{11}\right)$ benzoalkyl, optionally substituted by one, 2 or 3 chloro, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, hydroxy, ($\mathrm{C}_{1}-\mathrm{C}_{3}$) alkoxy, carboxy, $\left(\mathrm{C}_{2}-\mathrm{C}_{5}\right)$ alkoxy carbonyl, or nitro,
(xi) pyridyl, optionally substituted by one, 2 or 3 chloro, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, or $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkoxy,
(xii) $\left(\mathrm{C}_{6}-\mathrm{C}_{9}\right)$ pyridylalkyl optionally substituted by one, 2 or 3 chloro, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, hydroxy, or ($\mathrm{C}_{1}-\mathrm{C}_{3}$) alkoxy,
(xiii) $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ hydroxyalkyl,
(xiv) $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ dihydroxyalkyl,
(xv) ($\mathrm{C}_{1}-\mathrm{C}_{4}$) trihydroxyalkyl, with the proviso that not more than one of R_{51} and R_{52} is other than hydrogen or alkyl;
(b) cycloamino selected from the group consisting of pyrrolidino, piperidino, morpholino, piperazino, hexamethylenimino, pyrrolino, or 3,4didehydropiperidinyl optionally substituted by one or $2\left(\mathrm{C}_{1}-\mathrm{C}_{12}\right)$ alkyl of one to 12 carbon atoms, inclusive;
(c) carbonylamino of the formula $-\mathrm{NR}_{53} \mathrm{COR}_{51}$ wherein R_{53} is hydrogen or ($\mathrm{C}_{1}-\mathrm{C}_{4}$) alkyl and R_{51} is other than hydrogen, but otherwise defined as above;
(d) sulfonylamino of the formula $-\mathrm{NR}_{53} \mathrm{SO}_{2} \mathrm{R}_{51}$, wherein R_{51} and R_{53} are defined in (c);
(4) $-\mathrm{CH}_{2} \mathrm{NL}_{2} \mathrm{~L}_{3}$ wherein L_{2} and L_{3} are hydrogen or $\left(\mathrm{C}_{1}-\mathrm{C}_{4}\right)$ alkyl, being the same or different, or the pharmacologically acceptable acid addition salts thereof when X_{1} is $-\mathrm{CH}_{2} \mathrm{NL}_{2} \mathrm{~L}_{3}$;
(5) -CN ;
wherein Z_{4} is $-\mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{CF}_{2}-$ or
$-\mathrm{CH}_{2} \mathrm{CF}_{2}$;
wherein L_{20} is $\alpha-\mathrm{OH}, \beta-\mathrm{H} ; \alpha-\mathrm{H}, \beta-\mathrm{OH} ; \mathrm{H}, \mathrm{H} ;$ $\alpha-\mathrm{CH}_{3}, \beta-\mathrm{H} ; \alpha-\mathrm{CH}_{2} \mathrm{OH}, \beta-\mathrm{H} ;=\mathrm{O}$; or $=\mathrm{CH}_{2}$;
wherein L_{60} is hydrogen or L_{20} and L_{60} taken to-
gether form a double bond between positions 10 and 11;
wherein Y_{1} is $-\mathrm{CH}_{2} \mathrm{CH}_{2}-,-\mathrm{SCH}_{2}-,-\mathrm{C} \equiv \mathrm{C}-$,

wherein

taken together is

wherein M_{1} is $\alpha-\mathrm{H}: \beta-\mathrm{H} ;=\mathrm{O} ; \alpha-\mathrm{OH}: \beta-\mathrm{R}_{5}$; or $\alpha-\mathrm{R}_{5}: \beta-\mathrm{OH}$; wherein R_{5} is hydrogen or methyl; wherein L_{1} is
(1) $\alpha-\mathrm{R}_{3}: \beta-\mathrm{R}_{4}, \alpha-\mathrm{R}_{4}: \beta-\mathrm{R}_{3}$, or mixtures thereof wherein R_{3} and R_{4} are hydrogen, methyl, or fluoro, being the same or different, with the proviso that one of R_{3} and R_{4} is fluoro only when the other is hydrogen or fluoro;
(2) or when M_{1} is $\alpha-\mathrm{H}: \beta-\mathrm{H}, \mathrm{L}_{1}$ is $\alpha-\mathrm{OH}: \beta-\mathrm{R}_{3}$, $\alpha^{\prime} \mathrm{R}_{3}: \beta-\mathrm{OH}$; or a mixture of $\alpha-\mathrm{OH}: \beta-\mathrm{R}_{3}$ and $\alpha-\mathrm{R}_{3}: \beta-\mathrm{OH}$ wherein R_{3} is hydrogen, methyl, vinyl, or ethynyl;
wherein R_{7} is
(1) $-\mathrm{C}_{m} \mathrm{H}_{2 m} \mathrm{CH}_{3}$, wherein m is an integer from one to 8 , inclusive;
(2) phenoxy optionally substituted by one, 2 or 3 chloro, fluoro, trifluoromethyl, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, or $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkoxy, with the proviso that not more than two substituents are other than alkyl with the proviso that R_{7} is phenoxy or substituted phenoxy, only when R_{3} and R_{4} are hydrogen or methyl, being the same or different;
(3) phenyl, benzyl, phenylethyl, or phenylpropyl optionally substituted on the aromatic ring by one, 2 or 3 chloro, fluoro, trifluoromethyl, $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkyl, or $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ alkoxy, with the proviso that not more than two substituents are other than alkyl; same as L_{1} in Formula I only any hydrous group is protected with an Rx group as defined below; Y_{2} is $-\mathrm{SCH}_{2}$ - or $-\mathrm{CH}_{2} \mathrm{CH}_{2}-, \mathrm{M}_{2}$ is $\alpha-\mathrm{H}, \beta$-ORx, $\alpha-$ ORx, $\beta-\mathrm{H}$ or H, H wherein Rx is a protecting group as 0 defined below, and R_{7} has the meaning defined in Formula $I(a)$. In Formula $I(d) Q_{2}$ is

as defined above or CO_{2} alkyl wherein alkyl has from 1 to 4 carbon atoms. The intermediates of Formulas $I(a)$, $\mathrm{I}(\mathrm{b}), \mathrm{I}(\mathrm{c}), \mathrm{I}(\mathrm{d})$ and II are useful in the preparation of the 60 compounds of Formuls I and I(a).

The compounds of Formula I and $\mathrm{I}(\mathrm{a})$ have useful pharmacological properties as defined below.

DETAILED DESCRIPTION OF INVENTION

In the compounds of the present invention, and as used herein, ("') denotes the α-configuration, () denotes the β-configuration, (\sim) denotes α - and/or β-configuration or the E and/or Z isomer.

With regard to the divalent groups described above, i.e., L_{20}, M_{1} and L_{1} said divalent groups are defined in terms of an α-substituent and a β-substituent which means that the α-substituent of the divalent group is in the alpha configuration with respect to the plane of the $\mathrm{C}-8$ to C_{12} cyclopentane ring and the β-substituent is in the beta configuration with respect to said cyclopentane ring.

The carbon atom content of various hydrocarbon containing groups is indicated by a prefix designating the minimum and maximum number of carbon atoms in the moiety. For example, in defining the moiety L_{4} in the - COL_{4} substituent group the definition $\left(\mathrm{C}_{1}-\mathrm{C}_{12}\right)$ al kyl means that L_{4} can be an alkyl group having from one to 12 carbon atoms. Additionally, any moiety so defined includes straight chain or branched chain groups. Thus ($\mathrm{C}_{1}-\mathrm{C}_{12}$) alkyl as set forth above includes straight or branched chain alkyl groups having from 1 to 12 carbon atoms and as additional illustration, when L_{4} represents, for example, $\left(\mathrm{C}_{2}-\mathrm{C}_{5}\right)$ carboxyalkyl, the alkyl moiety thereof contains from 1 to 4 carbon atoms and is a straight chain or a branched chain alkyl group. Similarly a $\mathrm{C}_{3}-\mathrm{C}_{5}$ alkenyl group as may be present on the cycloalkyl group represented by $-\mathrm{C}\left(\mathrm{L}_{1}\right) \mathrm{R}_{7}$ contains from 3 to 5 carbon atoms and one double bond in the chain.
In Formula I when the hydrogen at position 9 is beta the compounds are named as 9 -deoxy- $2^{\prime}, 9 \alpha$-methano-3-oxa-4,5,6-trinor-3,7-($1^{\prime}, 3^{\prime}$-interphenylene) PGF $_{1}$ compounds, and when it is alpha the compounds are named as 9 -deoxy-2',9 β-methano-3-oxa-4,5,6-trinor-3,7-($1^{\prime}, 3^{\prime}$ interphenylene) PGF_{1} compounds.
When Z_{4} is - CF_{2} - the compounds of Formula I are also characterized as 2,2-difluoro and when Z_{4} is $-\mathrm{CH}_{2} \mathrm{CF}_{2}$ - the compounds are characterized as 2α -homo-2,2-difluoro.
When R_{5} is methyl, the carbacyclin analogs are all named as " 15 -methyl-" compounds. Further, except for compounds wherein Y_{1} is cis- $\mathrm{CH}=\mathrm{CH}_{-}$, compounds wherein the M_{1} moiety contains an hydroxyl in the beta configuration are additionally named as " 15 -epi-" compounds.
For the compounds wherein Y_{1} is cis- $\mathrm{CH}=\mathrm{CH}-$, then compounds wherein the M_{1} moiety contains an hydroxyl in the alpha configuration are named as " 15 -epi-CBA" compounds. For a description of this convention of nomenclature for identifying C-15 epimers, see U.S. Pat. No. 4,016, 184, issued Apr. 5, 1977, particularly columns 24-27 thereof.
The compounds of the present invention which contain - $\left(\mathrm{CH}_{2}\right)_{2}-$, cis- $\mathrm{CH}=\mathrm{CH}-$, trans $-\mathrm{CH}=\mathrm{CH}-$ or - $\mathrm{C} \equiv \mathrm{C}$ - as the Y_{1} moiety, are accordingly referred to as "13,14-dihydro", "cis-13", "trans-13", or -13,14didehydro" compounds, respectively. Compounds wherein Y_{1} is $-\mathrm{SCH}_{2}$ - are named as " 13 -thio" compounds.

Compounds wherein M_{1} is H, H are named as " 15 deoxy" compounds. Compounds wherein M_{1} is $=\mathrm{O}$ are named as "15-oxo" compounds.

Compounds wherein

taken together is

include the following

(1) Amides within the scope of alkylamino groups of the formula $\mathrm{NR}_{9} \mathrm{R}_{10}$ are methylamide, ethylamide, n propylamide, isopropylamide, n-butylamide, n-pentyla-
65 mide, tert-butylamide, neopentylamide, n-hexylamide, n-heptylamide, n-octylamide, n-nonylamide, n-decylamide, n-undecylamide, and n-dodecylamide, and isomeric forms thereof. Further examples are dimethyla-

DOCKET
 A LARM

Explore Litigation

 InsightsDocket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with real-time alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

