HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use AUBAGIO® safely and effectively. See full prescribing information for AUBAGIO. AUBAGIO[®] (teriflunomide) tablets, for oral use

Initial U.S. Approval: 2012

WARNING: HEPATOTOXICITY and RISK OF TERATOGENICITY See full prescribing information for complete boxed warning

Hepatotoxicity

Severe liver injury including fatal liver failure has been reported in patients treated with leftunomide, which is indicated for rheumatoid arthritis. A similar risk would be expected for teriflunomide because recommended doses of teriflunomide and leflunomide result in a similar range of plasma concentrations of teriflunomide. Obtain transaminase and bilirubin levels within 6 months before initiation of AUBAGIO and monitor ALT levels at least monthly for six months (5.1). If drug induced liver injury is suspected, discontinue AUBAGIO and start accelerated elimination procedure (5.3).

Risk of Teratogenicity

Based on animal data, AUBAGIO may cause major birth defects if used during pregnancy. AUBAGIO is contraindicated in pregnant women or women of childbearing potential who are not using reliable contraception. Pregnancy must be avoided during AUBAGIO treatment. (4.2, 5.2)

— RECENT MAJOR CHANGES

Warnings and Precautions (5)

10/2014

INDICATIONS AND USAGE

AUBAGIO is a pyrimidine synthesis inhibitor indicated for the treatment of patients with relapsing forms of multiple sclerosis (1)

DOSAGE AND ADMINISTRATION

7 mg or 14 mg orally once daily, with or without food. (2)

FULL PRESCRIBING INFORMATION: CONTENTS*

WARNING: HEPATOTOXICITY and RISK OF TERATOGENICITY

Hepatotoxicity

1

5

- Risk of Teratogenicity
- INDICATIONS AND USAGE
- 2 DOSAGE AND ADMINISTRATION
- 3 DOSAGE FORMS AND STRENGTHS

4 CONTRAINDICATIONS

- 4.1. Severe Hepatic Impairment
- Patients Who are Pregnant or Women of Childbearing Potential Not Using 4.2 Reliable Contraception
- Current treatment with leflunomide 4.3.
- WARNINGS AND PRECAUTIONS
- 5.1 Hepatotoxicity
- 5.2 Use in Women of Childbearing Potential
- 5.3 Procedure for Accelerated Elimination of Teriflunomide
- 5.4 Bone Marrow Effects/Immunosuppression Potential/Infections
- 5.5 Peripheral Neuropathy
- 5.6 Skin Reactions

DOCKE.

- 5.7 Increased Blood Pressure
- 5.8 Respiratory Effects
- 5.9 Concomitant Use with Immunosuppressive or Immunomodulating Therapies

DOSAGE FORMS AND STRENGTHS 7 mg and 14 mg film-coated tablets (3)

- CONTRAINDICATIONS
- Severe hepatic impairment (4.1, 5.1) . Pregnancy (4.2, 5.2, 8.1)
- Current leflunomide treatment (4.3)

WARNINGS AND PRECAUTIONS

- · Elimination of AUBAGIO can be accelerated by administration of cholestyramine
- or activated charcoal for 11 days (5.3) AUBAGIO may decrease WBC. A recent CBC should be available before starting AUBAGIO. Monitor for signs and symptoms of infection. Consider suspending treatment with AUBAGIO in case of serious infection. Do not start AUBAGIO in patients with active infections (5.4)
- If patient develops symptoms consistent with peripheral neuropathy, evaluate
- patient and consider discontinuing AUBAGIO (5.5) Stop AUBAGIO if patient develops Stevens-Johnson syndrome or toxic epidermal necrolysis (5.6)
- · AUBAGIO may increase blood pressure. Measure blood pressure at treatment initiation and monitor blood pressure during treatment (5.7)

ADVERSE REACTIONS

Most common adverse reactions (≥10% and ≥2% greater than placebo): headache, diarrhea, nausea, alopecia, increase in ALT (6)

To report SUSPECTED ADVERSE REACTIONS, contact Genzyme Corporation at 1-800-745-4447 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

DRUG INTERACTIONS

- · Drugs metabolized by CYP2C8 and OAT3 transporters: Monitor patients because teriflunomide may increase exposure of these drugs (7)
- Teriflunomide may increase exposure of ethinylestradiol and levonorgestrel. Choose an appropriate oral contraceptive (7)
- Drugs metabolized by CYP1A2: Monitor patients because teriflunomide may decrease exposure of these drugs (7) .
- Warfarin: Monitor INR as terifluomide may decrease INR (7) Drugs metabolized by BCRP and OATP1B1/B3 transporters: Monitor patients because teriflunomide may increase exposure of these drugs (7)
- Rosuvastatin: The dose of rosuvastatin should not exceed 10 mg once daily in patients taking AUBAGIO (7)

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved Medication Guide

Revised: 10/2014a

- **ADVERSE REACTIONS** 6
 - Clinical Trials Experience 6.1
- 7 DRUG INTERACTIONS
- USE IN SPECIFIC POPULATIONS 8
 - 8.1 Pregnancy
 - 8.3 Nursing Mothers
 - 8.4 Pediatric Use
 - 85 Geriatric Use
 - 8.6 Hepatic Impairment
 - 8.7 Renal Impairment
- OVERDOSAGE 10
- 11 DESCRIPTION
- CLINICAL PHARMACOLOGY 12
 - Mechanism of Action 121
 - 12.2 Pharmacodynamics
 - 12.3 Pharmacokinetics
- 13 NONCLINICAL TOXICOLOGY
 - Carcinogenesis, Mutagenesis, Impairment of Fertility 13.1
- 14 CLINICAL STUDIES
- HOW SUPPLIED/STORAGE AND HANDLING 16
- 17 PATIENT COUNSELING INFORMATION

*Sections or subsections omitted from the full prescribing information are not listed

WARNING: HEPATOTOXICITY and RISK OF TERATOGENICITY

Hepatotoxicity

Severe liver injury including fatal liver failure has been reported in patients treated with leflunomide, which is indicated for rheumatoid arthritis. A similar risk would be expected for teriflunomide because recommended doses of teriflunomide and leflunomide result in a similar range of plasma concentra-tions of teriflunomide. Concomitant use of AUBAGIO with other potentially hepatotoxic drugs may increase the risk of severe liver injury. Obtain transami-nase and bilirubin levels within 6 months before initiation of AUBAGIO therapy. Monitor ALT levels at least monthly for six months after starting AUBAGIO (see Warnings and Precautions (5.1)). If drug induced liver injury is suspected, discontinue AUBAGIO and start an accelerated elimination procedure with cholestyramine or charcoal [see Warnings and Precautions (5.3)]. AUBAGIO is contraindicated in patients with severe hepatic impairment [see Contraindications (4.1)]. Patients with pre-existing liver disease may be at increased risk of developing elevated serum transaminases when taking AUBAGIO.

Risk of Teratogenicity

Based on animal data, AUBAGIO may cause major birth defects if used during pregnancy. Pregnancy must be excluded before starting AUBAGIO. AUBAGIO is contraindicated in pregnant women or women of childbearing potential who are not using reliable contraception. Pregnancy must be avoided during AUBAGIO treatment or prior to the completion of an accelerated elimination procedure after AUBAGIO treatment [see Contraindications (4.2), Warnings and Precautions (5.2), and Use in Specific Populations (8.1)].

INDICATIONS AND USAGE

AUBAGIO® is indicated for the treatment of patients with relapsing forms of multiple sclerosis

DOSAGE AND ADMINISTRATION

The recommended dose of AUBAGIO is 7 mg or 14 mg orally once daily. AUBAGIO can be taken with or without food.

- Monitoring to assess safety
- Obtain transaminase and bilirubin levels within 6 months before initiation of AUBAGIO therapy. Monitor ALT levels at least monthly for six months after starting AUBAGIO [see Warnings and Precautions (5.1)].
- Obtain a complete blood cell count (CBC) within 6 months before the initiation of treatment with AUBAGIO. Further monitoring should be based on signs and symptoms of infection [see Warnings and Precautions (5.4)].
- Prior to initiating AUBAGIO, screen patients for latent tuberculosis infection with a tuberculin skin test or blood test for mycobacterium tuberculosis infection [see Warnings and Precautions (5.4)].
- Check blood pressure before start of AUBAGIO treatment and periodically thereafter [see Warnings and Precautions (5.7)
- DOSAGE FORMS AND STRENGTHS

AUBAGIO is available as 7 mg and 14 mg tablets.

The 14 mg tablet is a pale blue to pastel blue, pentagonal film-coated tablet with the dose strength, "14" imprinted on one side and engraved with the corporate logo on the other side. Each tablet contains 14 mg of teriflunomide.

The 7 mg tablet is a very light greenish-bluish grey to pale greenish-blue, hexagonal film-coated tablet with dose strength "7" imprinted on one side and engraved with the corporate logo on other side. Each tablet contains 7 mg of teriflunomide.

CONTRAINDICATIONS

4.1. Severe Hepatic Impairment

Patients with severe hepatic impairment [see Warnings and Precautions (5.1)]. 4.2 Patients Who are Pregnant or Women of Childbearing Potential Not Using Reliable Contraception

AUBAGIO may cause fetal harm when administered to a pregnant woman.

In animal studies, teriflunomide has been shown to be selectively teratogenic and embryolethal in multiple species when administered during pregnancy at doses less than those used clinically. Nonclinical studies indicate further that the intended pharmacologic action of the drug is involved in the mechanism of developmental toxicity [see Use in Specific Populations (8.1)].

AUBAGIO is contraindicated in women who are pregnant or women of child bearing potential not using reliable contraception. If this drug is used during pregnancy, or if the potential not using reliable contraception. If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential hazard to a fetus. If pregnancy does occur during treatment, the drug should be immediately discontinued and an accelerated elimination procedure should be initiated [see Warnings and Precautions (5.3)]. Under these conditions, the patient should be referred to an obstetrician/gynecologist, preferably experienced in reproductive toxicity, for further evaluation and counseling [see Warnings and Precautions and Use in Specific Deputdement (5.0, 01) Populations (5.2, 8.1)].

4.3. Current treatment with leflunomide

- Co-administration of teriflunomide with leflunomide is contraindicated. 5 WARNINGS AND PRECAUTIONS

5.1 Hepatotoxicity

ΟСΚΕ

Severe liver injury including fatal liver failure and dysfunction has been reported in some patients treated with leflunomide, which is indicated for rheumatoid arthritis. A similar risk would be expected for teriflunomide because recommended doses of teriflunomide and leflunomide result in a similar range of plasma concentrations of teriflunomide. Patients with pre-evisting liver disease may be at increased risk of developing elevated serum upper limit of normal (ULN) before initiating treatment, should not normally be treated with AUBAGIO. AUBAGIO is contraindicated in patients with severe hepatic impairment [see Contraindications (4.1)]

In placebo-controlled trials, ALT greater than three times the ULN occurred in 61/1045 (5.8%) and 62/1002 (6.2%) of patients receiving AUBAGIO 7 mg and 14 mg, respectively, and 38/997 (3.8%) of patients receiving placebo, during the treatment period. These elevations occurred mostly within the first year of treatment. Half of the cases returned to normal without drug discontinuation. In clinical trials, if ALT elevation was greater than three times the ULN on two consecutive tests, AUBAGIO was discontinued and patients underwent an accelerated elimination procedure [see Warnings and Precautions (5.3)]. Of the patients who underwent discontinuation and accelerated elimination in controlled trials, half returned to normal or near normal values within 2 months.

One patient in the controlled trials developed ALT 32 times the ULN and jaundice 5 months after initiation of AUBAGIO 14 mg treatment. The patient was hospitalized for 5 weeks and AUBAGIO therapy. Monitor ALT levels at least monthly for six months after starting

AUBAGIO. Consider additional monitoring when AUBAGIO is given with other potentially hepatotoxic drugs. Consider discontinuing AUBAGIO if serum transaminase increase (greater than three times the ULN) is confirmed. Monitor serum transaminase and bilirubin on AUBAGIO therapy, particularly in patients who develop symptoms suggestive of hepatic dysfunction, such as unexplained nausea, vomiting, abdominal pain, fatigue, anorexia, or jaundice and/or dark urine. If liver injury is suspected to be AUBAGIO-induced, discontinue AUBAGIO and start an accelerated elimination procedure [see Warnings and Precautions (5.3)] and monitor liver tests weekly until normalized. If AUBAGIO-induced liver injury is unlikely because some other probable cause has been found, resumption of AUBAGIO therapy may be considered. 5.2 Use in Women of Childbearing Potential

There are no adequate and well-controlled studies evaluating AUBAGIO in pregnant women. However, based on animal studies, teriflunomide may increase the risk of teratogenic effects or fetal death when administered to a pregnant woman [see Contraindications (4.2)]

Women of childbearing potential must not be started on AUBAGIO until pregnancy is excluded and it has been confirmed that they are using reliable contraception. Before starting treatment with AUBAGIO, patients must be fully counseled on the potential for serious risk to the fetus. The patient must be advised that if there is any delay in onset of menses or any other reason to suspect pregnancy, they must notify the physician immediately for pregnancy testing and, if positive, the physician and patient must discuss the risk to the fetus. It is possible that rapidly lowering the plasma concentration of teriflunomide by instituting an accelerated elimination procedure may decrease the risk to the fetus from AUBAGIO [see Warnings and Precautions (5.3)]. Upon discontinuing AUBAGIO, it is recommended that all women of childbearing potential

undergo an accelerated elimination procedure. Women receiving AUBAGIO treatment who wish to become pregnant must discontinue AUBAGIO and undergo an accelerated elimination procedure, which includes verification of teriflunomide plasma concentrations less than 0.02 mg/L (0.02 mcg/mL). Human plasma concentrations of teriflunomide less than 0.02 mg/L (0.02 mcg/mL) are expected to have minimal risk [see Contraindications (4.2), Warnings and Precautions (5.3) and Use in Specific Populations (8.1)]. 5.3 Procedure for Accelerated Elimination of Teriflunomide

Teriflunomide is eliminated slowly from the plasma. Without an accelerated elimination procedure, it takes on average 8 months to reach plasma concentrations less than 0.02 mg/L, although because of individual variations in drug clearance it may take as long as 2 years. An accelerated elimination procedure could be used at any time after discontinuation of AUBAGIO. Elimination can be accelerated by either of the following procedures

Administration of cholestyramine 8 g every 8 hours for 11 days. If cholestyramine 8 g three times a day is not well tolerated, cholestyramine 4 g three times a day can be used,

 Administration of 50 g oral activated charcoal powder every 12 hours for 11 days. If either elimination procedure is poorly tolerated, treatment days do not need to be consecutive unless there is a need to lower teriflunomide plasma concentration rapidly. At the end of 11 days, both regimens successfully accelerated teriflunomide elimination, leading to more than 98% decrease in teriflunomide plasma concentrations.

Use of the accelerated elimination procedure may potentially result in return of disease activity if the patient had been responding to AUBAGIO treatment. 5.4 Bone Marrow Effects/Immunosuppression Potential/Infections

White Blood Cell (WBC) count decrease

A mean decrease in white blood cell (WBC) count of approximately 15% (mainly neutrophils and lymphocytes) and in platelet count of approximately 10% was observed in placebo-controlled trials with 7 mg and 14 mg of AUBAGIO compared to baseline. The decrease in mean WBC count occurred during the first 6 weeks and WBC count remained low during treatment. In placebo-controlled studies, neutrophil count < 1.5×10⁹/L was observed in 12% and 16% of patients receiving AUBAGIO 7 mg and 14 mg, respectively, compared with 7% of patients receiving placebo; lymphocyte count <0.8×10⁹/L was observed in 10% and 12% of patients receiving AUBAGIO 7 mg and 14 mg, respectively, compared with 6% of patients receiving placebo. No cases of serious pancytopenia were reported in premarketing clinical trials of AUBAGIO but rare cases of pancytopenia, agranulocytosis, and thrombocytopenia have been reported in the postmarketing setting with leflunomide. A similar risk would be expected for AUBAGIO [see Clinical Pharmacology (12.3)]. Obtain a complete blood cell count (CBC) within 6 months before the initiation of treatment with AUBAGIO. Further monitoring should be based on signs and symptoms suggestive of bone marrow suppression.

Risk of Infection / Tuberculosis Screening

Patients with active acute or chronic infections should not start treatment until the Infection(s) is resolved. If a patient develops a serious infection consider suspending treatment with ALIRAGIO and using an accelerated elimination procedure. Reassess the

AUBAGIO is not recommended for patients with severe immunodeficiency, bone marrow disease, or severe, uncontrolled infections. Medications like AUBAGIO that have immunosuppression potential may cause patients to be more susceptible to infections, including opportunistic infections.

In placebo-controlled studies of AUBAGIO, no overall increase in the risk of serious infections was observed with AUBAGIO 7 mg (2.2%) or 14 mg (2.7%) compared to placebo (2.2%). However, one fatal case of klebsiella pneumonia sepsis occurred in a patient taking AUBAGIO 14 mg for 1.7 years. Fatal infections have been reported in the post-marketing setting in patients receiving leflunomide, especially Pneumocystis jiroveci pneumonia and aspergillosis. Most of the reports were confounded by concomitant immunosuppressant therapy and/or comorbid illness which, in addition to rheumatoid disease, may predispose patients to infection. In clinical studies with AUBAGIO, cytomegalovirus hepatitis reactivation has been observed.

In clinical studies with AUBAGIO, cases of tuberculosis have been observed. Prior to initiating AUBAGIO, screen patients for latent tuberculosis infection with a tuberculin skin test or with a blood test for mycobacterium tuberculosis infection. AUBAGIO has not been studied in patients with a positive tuberculosis screen, and the safety of AUBAGIO in individuals with latent tuberculosis infection is unknown. For patients testing positive in tuberculosis screening, treat by standard medical practice prior to therapy with AUBAGIO. Vaccination

No clinical data are available on the efficacy and safety of live vaccinations in patients taking AUBAGIO. Vaccination with live vaccines is not recommended. The long half-life of AUBAGIO should be considered when contemplating administration of a live vaccine after stopping AUBAGIO.

Malignancy

The risk of malignancy, particularly lymphoproliferative disorders, is increased with the use of some immunosuppressive medications. There is a potential for immunosuppression with AUBAGIO. No apparent increase in the incidence of malignancies and lymphoproliferative disorders was reported in the AUBAGIO clinical trials, but larger and longer-term studies would be needed to determine whether there is an increased risk of malignancy or lymphoproliferative disorders with AUBAGIO.

5.5 Peripheral Neuropathy

In placebo-controlled studies, peripheral neuropathy, including both polyneuropathy and mononeuropathy (e.g., carpal tunnel syndrome), occurred more frequently in patients taking AUBAGIO than in patients taking placebo. The incidence of peripheral neuropathy confirmed by nerve conduction studies was 1.4% (13 patients) and 1.9% (17 patients) of patients receiving 7 mg and 14 mg of AUBAGIO, respectively, compared with 0.4% receiving placebo (4 patients). Treatment was discontinued in 0.7% (8 patients) with confirmed peripheral neuropathy (3 patients receiving AUBAGIO 7 mg and 5 patients receiving AUBAGIO 14 mg). Five of them recovered following treatment discontinuation. Not all cases of peripheral neuropathy resolved with continued treatment. Peripheral neuropathy also occurred in patients receiving leflunomide.

Age older than 60 years, concomitant neurotoxic medications, and diabetes may increase the risk for peripheral neuropathy. If a patient taking AUBAGIO develops symptoms consistent with peripheral neuropathy, such as bilateral numbness or tingling of hands or feet, consider discontinuing AUBAGIO therapy and performing an accelerated elimination procedure [see Warnings and Precautions (5.3)].

5.6 Skin Reactions

Rare cases of Stevens-Johnson syndrome and toxic epidermal necrolysis have been reported in patients with rheumatoid arthritis receiving leflunomide. A similar risk would be expected for AUBAGIO [see Clinical Pharmacology (12.3)]. If a patient taking AUBAGIO develops any of these conditions, stop AUBAGIO therapy and perform an accelerated elimination procedure [see Warnings and Precautions (5.3)].

5.7 Increased Blood Pressure

RM

Δ

In placebo-controlled studies, the mean change from baseline to the end of study in systolic blood pressure was +2.3 mmHg and +2.7 mmHg for AUBAGIO 7 mg and 14 mg, respectively, and -0.6 mmHg for placebo. The change from baseline in diastolic blood pressure was +1.4 mmHg and +1.9 mmHg for AUBAGIO 7 mg and 14 mg, respectively, and -0.3 mmHg for placebo. Hypertension was an adverse reaction in 3.1% and 4.3% of patients treated with 7 mg or 14 mg of AUBAGIO compared with 1.8% for placebo. Check blood pressure before start of AUBAGIO treatment and periodically thereafter. Elevated blood pressure should be appropriately managed during treatment with AUBAGIO. 5.8 Respiratory Effects

Interstitial lung disease and worsening of pre-existing interstitial lung disease have been reported during treatment with leflunomide. A similar risk would be expected for AUBAGIO [see Clinical Pharmacology (12.3)]. Interstitial lung disease may be fatal. Interstitial lung disease may occur acutely at any time during therapy and has a variable clinical presentation. New onset or worsening pulmonary symptoms, such as cough and dyspnea, with or without associated fever, may be a reason for discontinuation of the therapy and for further investigation as appropriate. If discontinuation of the drug is necessary, consider initiation of an accelerated elimination procedure [see Warnings and Precautions (5.3)]. 5.9 Concomitant Use with Immunosuppressive or Immunomodulating Therapies Co-administration with antineoplastic, or immunosuppressive therapies used for treatment of multiple sclerosis has not been evaluated. Safety studies in which AUBAGIO was

concomitantly administered with other immune modulating therapies for up to one year (interferon beta, glatiramer acetate) did not reveal any specific safety concerns. The long term safety of these combinations in the treatment of multiple sclerosis has not been established.

In any situation in which the decision is made to switch from AUBAGIO to another agent with a known potential for hematologic suppression, it would be prudent to monitor for hematologic toxicity, because there will be overlap of systemic exposure to both compounds. Use of an accelerated elimination procedure may decrease this risk, but may

ADVERSE REACTIONS

The following serious adverse reactions are described elsewhere in the prescribing information:

- Hepatotoxicity [see Contraindications (4.1) and Warnings and Precautions (5.1)] · Bone Marrow Effects/Immunosuppression Potential/Infections [see Warnings and
- Precautions (5.4)]
- Peripheral Neuropathy [see Warnings and Precautions (5.5)]
- Skin Reactions [see Warnings and Precautions (5.6)]
- Increased Blood Pressure [see Warnings and Precautions (5.7)]
 Respiratory Effects [see Warnings and Precautions (5.8)]
- Clinical Trials Experience 6.1

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in clinical practice. A total of 2047 patients receiving AUBAGIO (7 mg or 14 mg once daily) constituted the safety population in the pooled analysis of placebo controlled studies in patients with relapsing forms of multiple sclerosis; of these, 71% were female. The average age was 37 years.

Table 1 lists adverse reactions in placebo-controlled trials with rates that were at least 2% for AUBAGIO patients and also at least 2% above the rate in placebo patients. The most common were headache, an increase in ALT, diarrhea, alopecia, and nausea. The adverse reaction most commonly associated with discontinuation was an increase in ALT (3.3%, 2.6%, and 2.3% of all patients in the AUBAGIO 7 mg, AUBAGIO 14 mg, and placebo treatment arms, respectively).

Table	1.	Adverse	Reactions	in	Pooled	Plac	ebo-Co	ntrolled	Studies	in Patients
with Relapsing Forms of Multiple Sclerosis										

Adverse Reaction	AUBAGIO 7 mg (N-1045)	AUBAGIO 14 mg (N-1002)	Placebo
Headacha	10%	169/	15%
Headache	18%	10%	15%
Increase in Alanine			
aminotransferase	13%	15%	9%
Diarrhea	13%	14%	8%
Alopecia	10%	13%	5%
Nausea	8%	11%	7%
Paresthesia	8%	9%	7%
Arthralgia	8%	6%	5%
Neutropenia	4%	6%	2%
Hypertension	3%	4%	2%

Cardiovascular deaths

Four cardiovascular deaths, including three sudden deaths, and one myocardial infarction in a patient with a history of hyperlipidemia and hypertension were reported among approximately 2600 patients exposed to AUBAGIO in the premarketing database. These cardiovascular deaths occurred during uncontrolled extension studies, one to nine years after initiation of treatment. A relationship between AUBAGIO and cardiovascular death has not been established.

Acute Renal Failure

In placebo-controlled studies, creatinine values increased more than 100% over baseline in 8/1045 (0.8%) patients in the 7 mg AUBAGIO group and 6/1002 (0.6%) patients in the 14 mg AUBAGIO group versus 4/997 (0.4%) patients in the placebo group. These elevations were transient. Some elevations were accompanied by hyperkalemia. AUBAGIO may cause acute uric acid nephropathy with transient acute renal failure because AUBAGIO increases renal uric acid clearance.

Hypophosphatemia

In clinical trials, 18% of AUBAGIO-treated patients had hypophosphatemia with serum phosphorus levels of at least 0.6 mmol/L, compared to 7% of placebo-treated patients; 4% of AUBAGIO-treated patients had hypophosphatemia with serum phosphorus levels at least 0.3 mmol/L but less than 0.6 mmol/L, compared to 0.8% of placebo-treated patients. No patient in any treatment group had a serum phosphorus below 0.3 mmol/L 7 DRUG INTERACTIONS

Effect of AUBAGIO on CYP2C8 substrates

Teriflunomide is an inhibitor of CYP2C8 in vivo. In patients taking AUBAGIO, exposure of drugs metabolized by CYP2C8 (e.g., pacifixel, pioglitazone, repaglinide, rosiglitazone) may be increased. Monitor these patients and adjust the dose of the concomitant drug(s) metabolized by CYP2C8 as required [see Clinical Pharmacology (12.3)].

Effect of AUBAGIO on warfarin

Coadministration of AUBAGIO with warfarin requires close monitoring of the international normalized ratio (INR) because AUBAGIO may decrease peak INR by approximately 25%. Effect of AUBAGIO on oral contraceptives

AUBAGIO may increase the systemic exposures of ethinylestradiol and levonorgestrel. Consideration should be given to the type or dose of contraceptives used in combination with AUBAGIO [see Clinical Pharmacology (12.3)].

Effect of AUBAGIO on CYP1A2 substrates

Teriflunomide may be a weak inducer of CYP1A2 in vivo. In patients taking AUBAGIO, exposure of drugs metabolized by CYP1A2 (e.g., alosetron, duloxetine, theophylline, tizanidine) may be reduced. Monitor these patients and adjust the dose of the concomitant drug(s) metabolized by CYP1A2 as required [see Clinical Pharmacology (12.3)].

Effect of AUBAGIO on organic anion transporter 3 (OAT3) substrates

Teriflunomide inhibits the activity of OAT3 in vivo. In patients taking AUBAGIO, exposure of drugs which are OAT3 substrates (e.g., cefaclor, cimetidine, ciprofloxacin, penicillin G, ketoprofen, furosemide, methotrevate, zidovudine), may be increased. Monitor, these Effect of AUBAGIO on BCRP and organic anion transporting polypeptide B1 and B3 (OATP1B1/1B3) substrates

Teriflunomide inhibits the activity of BCRP and OATP1B1/1B3 in vivo. For a patient taking AUBAGIO, the dose of rosuvastatin should not exceed 10 mg once daily. For other substrates of BCRP (e.g., mitoxantrone) and drugs in the OATP family (e.g., methotrexate, rifampin), especially HMG-Co reductase inhibitors (e.g., atorvastatin, nateglinide, pravas-tatin, repaglinide, and simvastatin), consider reducing the dose of these drugs and monitor patients closely for signs and symptoms of increased exposures to the drugs while patients are taking AUBAGIO [see Clinical Pharmacology (12.3)].

USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category X [see Contraindications (4.2) and Warnings and Precautions (5.2)] When teriflunomide (oral doses of 1, 3, or 10 mg/kg/day) was administered to pregnant rats throughout the period of organogenesis, high incidences of fetal malformation (primarily craniofacial, and axial and appendicular skeletal defects) and embryofetal death (primarily craniofacial, and axial and appendicular skeletal defects) and embryofetal death were observed at doses not associated with maternal toxicity. Adverse effects on embryofetal development were observed following dosing at various stages throughout organogenesis. Maternal plasma exposure at the no-effect level (1.0 mg/kg/day) for embryofetal developmental toxicity in rats was less than that in humans at the maximum recommended human dose (MRHD, 14 mg/day). Administration of teriflunomide (oral doses of 1, 3.5, or 12 mg/kg/day) to pregnant rabbits throughout organogenesis resulted in high incidences of fetal malformation (primarily craniofacial, and axial and appendicular skeletal defects) and embryofetal death at doses associated with minimal maternal toxicity. Maternal plasma exposure at the no-effect dose (1.0 mg/kg/day) for embryofetal developmental toxicity in rabbits was less than that in humans at the MRHD.

humans at the MRHD.

In studies in which teriflunomide (oral doses of 0.05, 0.1, 0.3, 0.6, or 1.0 mg/kg/day) was administered to rats during gestation and lactation, decreased growth, eye and skin abnormalities, and high incidences of malformation (limb defects) and postnatal death were observed in the offspring at doses not associated with maternal toxicity. Maternal the maternal toxicity is a second to the second plasma exposure at the no-effect dose for pre- and postnatal developmental toxicity in rats (0.10 mg/kg/day) was less than that in humans at the MRHD.

In animal reproduction studies of leflunomide, embryolethality and teratogenic effects were observed in pregnant rat and rabbit at or below clinically relevant plasma teriflunomide exposures (AUC). In published reproduction studies in pregnant mice, leflunomide was embryolethal and increased the incidence of malformations (craniofacial, axial skeletal, heart and great vessel). Supplementation with exogenous uridine reduced the teratogenic effects in pregnant mice, suggesting that the mode of action (inhibition of mitochondrial enzyme dihydroorotate dehydrogenase) is the same for therapeutic efficacy and developmental toxicity. At recommended doses in humans, teriflunomide and leflunomide result in a similar range of plasma concentrations of teriflunomide.

Use in Males

AUBAGIO is detected in human semen. Animal studies to specifically evaluate the risk of male-mediated fetal toxicity have not been conducted. To minimize any possible risk, men not wishing to father a child and their female partners should use reliable contraception. Men wishing to father a child should discontinue use of AUBAGIO and undergo an accelerated elimination procedure to decrease the plasma concentration of teriflunomide to less than 0.02 mg/L (0.02 mcg/mL) [see Warnings and Precautions (5.3)].

Pregnancy Registry Although AUBAGIO is contraindicated in pregnancy, a pregnancy registry has been established to monitor fetal outcomes of pregnant women exposed to AUBAGIO. physicians are encouraged to enroll pregnant women in the AUBAGIO pregnancy registry, or pregnant women may enroll themselves, by calling 1-800-745-4447, option 2.

8.3 Nursing Mothers

Teriflunomide was detected in rat milk following a single oral dose of teriflunomide. It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from AUBAGIO a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother. 8.4 Pediatric Use

Safety and effectiveness in pediatric patients have not been established. 8.5 Geriatric Use

Clinical studies of AUBAGIO did not include patients over 65 years old.

8.6 Hepatic Impairment

No dosage adjustment is necessary for patients with mild and moderate hepatic impairment. The pharmacokinetics of teriflunomide in severe hepatic impairment have not been evaluated. AUBAGIO is contraindicated in patients with severe hepatic impairment [see Contraindications (4.1) Warnings and Precautions (5.1), and Clinical Pharmacology (12.3)].

8.7 Renal Impairment

No dosage adjustment is necessary for patients with mild, moderate, and severe renal impairment [see Clinical Pharmacology (12.3)].

10 OVERDOSAGE

DOCKE.

There is no experience regarding teriflunomide overdose or intoxication in humans. Teriflunomide 70 mg daily up to 14 days was well tolerated by healthy subjects.

In the event of clinically significant overdose or toxicity, cholestyramine or activated charcoal is recommended to accelerate elimination [see Warnings and Precautions (5.3)]. 11 DESCRIPTION

AUBAGIO (teriflunomide) is an oral de novo pyrimidine synthesis inhibitor of the DHO-DH enzyme, with the chemical name (Z)-2-Cyano-3-hydroxy-but-2-enoic acid-(4-trifluorom-ethylphenyl)-amide. Its molecular weight is 270.21, and the empirical formula is $C_{12}H_9F_3N_2O_2$ with the following chemical structure:

Teriflunomide is a white to almost white powder that is sparingly soluble in acetone, slightly soluble in polyethylene glycol and ethanol, very slightly soluble in isopropanol and practically insoluble in water.

Teriflunomide is formulated as film-coated tablets for oral administration. AUBAGIO tablets contain 7 mg or 14 mg of teriflunomide and the following inactive ingredients: lactose monohydrate, corn starch, hydroxypropylcellulose, microcrystalline cellulose, sodium starch glycolate, and magnesium stearate. The film coating for the 14 mg tablet is made of hypromellose, titanium dioxide, talc, polyethylene glycol and indigo carmine aluminum lake. In addition to these, the 7 mg tablet film coating includes iron oxide yellow. 12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Teriflunomide, an immunomodulatory agent with anti-inflammatory properties, inhibits dihydroorotate dehydrogenase, a mitochondrial enzyme involved in de novo pyrimidine synthesis. The exact mechanism by which teriflunomide exerts its therapeutic effect in multiple sclerosis is unknown but may involve a reduction in the number of activated lymphocytes in CNS.

12.2 Pharmacodynamics Potential to prolong the QT interval In a placebo controlled thorough QT study performed in healthy subjects, there was no evidence that teriflunomide caused QT interval prolongation of clinical significance (i.e., the upper bound of the 90% confidence interval for the largest placebo-adjusted, baselinecorrected QTc was below 10 ms).

12.3 Pharmacokinetics

12.3 Pharmacokinetics Teriflunomide is the principal active metabolite of leflunomide and is responsible for leflunomide's activity *in vivo*. At recommended doses, teriflunomide and leflunomide result in a similar range of plasma concentrations of teriflunomide. Based on a population analysis of teriflunomide in healthy volunteers and MS patients, median t1/2 was approximately 18 and 19 days after repeated doses of 7 mg and 14 mg respectively. It takes approximately 3 months respectively to reach steady-state concen-trations. The estimated AUC accumulation ratio is approximately 30 after repeated doses of 7 or 14 mg. of 7 or 14 ma.

Absorption

Median time to reach maximum plasma concentrations is between 1 to 4 hours post-dose following oral administration of teriflunomide.

Food does not have a clinically relevant effect on teriflunomide pharmacokinetics.

Distribution

Metabolism

Teriflunomide is the major circulating moiety detected in plasma. The primary biotransformation pathway to minor metabolites of teriflunomide is hydrolysis, with oxidation being a minor pathway. Secondary pathways involve oxidation, N-acetylation and sulfate conjugation.

Elimination

Teriflunomide is eliminated mainly through direct biliary excretion of unchanged drug as well as renal excretion of metabolites. Over 21 days, 60.1% of the administered dose is excreted via feces (37.5%) and urine (22.6%). After an accelerated elimination procedure with cholestyramine, an additional 23.1% was recovered (mostly in feces). After a single IV administration, the total body clearance of teriflunomide is 30.5 mL/h.

Drug Interaction Studies

Teriflunomide is not metabolized by Cytochrome P450 or flavin monoamine oxidase enzymes.

The Potential Effect of AUBAGIO on Other Drugs

- CYP2C8 Substrates
 - There was an increase in mean repaglinide C_{max} and AUC (1.7- and 2.4-fold, respectively), following repeated doses of teriflunomide and a single dose of 0.25 mg repaglinide, suggesting that teriflunomide is an inhibitor of CYP2C8 *in vivo*. The magnitude of interaction could be higher at the recommended repaglinide dose [see Drug Interactions (7)].
- CYP1A2 Substrates

Repeated doses of teriflunomide decreased mean C_{max} and AUC of caffeine by 18% and 55%, respectively, suggesting that teriflunomide may be a weak inducer of CYP1A2 in vivo.

- OAT3 Substrates
- There was an increase in mean cefaclor C_{max} and AUC (1.43- and 1.54-fold, respectively), following repeated doses of teriflunomide, suggesting that teriflunomide is an inhibitor of organic anion transporter 3 (OAT3) in vivo [see Drug Interactions (7)].
- BCRP and OATP1B1/1B3 Substrates There was an increase in mean rosuvastatin C_{max} and AUC (2.65- and 2.51-fold, respectively), following repeated doses of teriflunomide , suggesting that teriflunomide is an inhibitor of BCRP transporter and organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/1B3) [see Drug Interactions (7)].
- Oral Contraceptives
- There was an increase in mean ethinylestradiol C_{max} and AUC_{0-24} (1.58- and 1.54-fold, respectively) and levonorgestrel C_{max} and AUC_{0-24} (1.33- and 1.41-fold, respectively) following repeated doses of teriflunomide [see Drug Interactions (7)].
- Teriflunomide did not affect the pharmacokinetics of bupropion (a CYP2B6 substrate), midazolam (a CYP3A4 substrate), S-warfarin (a CYP2C9 substrate), omeprazole (a CYP2C19 substrate), and metoprolol (a CYP2D6 substrate).
- The Potential Effect of Other Drugs on AUBAGIO
- Potent CYP and transporter inducers: Rifampin did not affect the pharmacokinetics of teriflunomide.

Specific populations

- Hepatic Impairment
- Mild and moderate hepatic impairment had no impact on the pharmacokinetics of omida. The nharmacokinatics of tariflunomida in severe henatic impairn

Renal Impairment

Severe renal impairment had no impact on the pharmacokinetics of teriflunomide [see Use in Specific Populations (8.7)].

- Gender
- In a population analysis, the clearance rate for teriflunomide is 23% less in females than in males.
- Race

Effect of race on the pharmacokinetics of teriflunomide cannot be adequately assessed due to a low number of non-white patients in the clinical trials. **NONCLINICAL TOXICOLOGY**

13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

No evidence of carcinogenicity was observed in lifetime carcinogenicity bioassays in mouse and rat. In mouse, teriflunomide was administered orally at doses up to 12 mg/kg/day for up to 95–104 weeks; plasma teriflunomide exposures (AUC) at the highest dose tested are approximately 3 times that in humans at the maximum recommended human dose (MRHD, 14 mg /day). In rat, teriflunomide was administered orally at doses up to 4 mg/kg/day for up to 97–104 weeks; plasma teriflunomide AUCs at the highest doses tested are less than that in humans at the MRHD.

Mutagenesis

Teriflunomide was negative in the *in vitro* bacterial reverse mutation (Ames) assay, the *in vitro* HPRT assay, and in *in vivo* micronucleus and chromosomal aberration assays. Teriflunomide was positive in an *in vitro* chromosomal aberration assays. Teriflunomide was positive in an *in vitro* chromosomal aberration assay in human lymphocytes, with and without metabolic activation. Addition of uridine (to supplement the pyrimidine pool) reduced the magnitude of the clastogenic effect; however, teriflunomide was positive in the *in vitro* chromosomal aberration assay, even in the presence of uridine. 4-Trifluoromethylaniline (4-TFMA), a minor metabolite of teriflunomide, was positive in the *in vitro* chromosomal aberration assay, and the *in vitro* chromosomal aberration assay and the *in vitro* chromosomal aberration assay in mammalian cells. 4-TFMA was negative in *in vivo* micronucleus and chromosomal aberration assay.

Impairment of fertility

Oral administration of teriflunomide (0, 1, 3, 10 mg/kg/day) to male rats prior to and during mating (to untreated females) resulted in no adverse effects on fertility; however, reduced epididymal sperm count was observed at the mid and high doses tested. The no-effect dose for reproductive toxicity in male rats (1 mg/kg) is less than the MRHD on a mg/m² basis.

Oral administration of teriflunomide (0, 0.84, 2.6, 8.6 mg/kg/day) to female rats, prior to and during mating (to untreated males) and continuing to gestation day 6, resulted in embryolethality, reduced fetal body weight, and/or malformations at all doses tested. Due to marked embryolethality at the highest dose tested, no fetuses were available for evaluation. The lowest dose tested is less than the MRHD on a mg/m² basis.

14 CLINICAL STUDIES

DOCKF

Four randomized, controlled, double-blind clinical trials established the efficacy of AUBAGIO in patients with relapsing forms of multiple sclerosis.

Study 1 was a double-blind, placebo-controlled clinical trial that evaluated once daily doses of AUBAGIO 7 mg and AUBAGIO 14 mg for up to 26 months in patients with relapsing forms of multiple sclerosis. Patients were required to have a diagnosis of multiple sclerosis exhibiting a relapsing clinical course, with or without progression, and to have experienced at least one relapse over the year preceding the trial or at least two relapses over the two years preceding the trial. Patients were required not to have received interferon-beta for at least four months, or any other multiple sclerosis medications permitted during the study. Neurological evaluations were to be performed at screening, every 12 weeks until week 108, and after suspected relapses. MRI was to be performed at screening, and at Week 24, 48, 72, and 108. The primary endpoint was the annualized relapse rate (ARR).

In Study 1, 1088 patients were randomized to receive AUBAGIO 7 mg (n=366), AUBAGIO 14 mg (n=359), or placebo (n=363). At entry, patients had an Expanded Disability Status Scale (EDSS) score \leq 5.5. Patients had a mean age of 38 years, mean disease duration of 5 years, and mean EDSS at baseline of 2.7. A total of 91% of patients had relapsing remitting multiple sclerosis, and 9% had a progressive form of multiple sclerosis with relapses. The mean duration of treatment was 635, 627, and 631 days for AUBAGIO 7 mg, AUBAGIO 14 mg, and placebo, respectively. The percentage of patients who completed the study treatment period was 75%, 73%, and 71% for AUBAGIO 7 mg, AUBAGIO 14 mg, and placebo, respectively.

There was a statistically significant reduction in ARR for patients who received AUBAGIO 7 mg or AUBAGIO 14 mg, compared to patients who received placebo (see Table 2). There was a consistent reduction of the ARR noted in subgroups defined by sex, age group, prior multiple sclerosis therapy, and baseline disease activity.

There was a statistically significant reduction in the relative risk of disability progression at week 108 sustained for 12 weeks (as measured by at least a 1-point increase from baseline EDSS \leq 5.5 or a 0.5 point increase for those with a baseline EDSS > 5.5) in the AUBAGIO 14 mg group compared to placebo (see Table 2 and Figure 1).

The effect of AUBAGIO on several magnetic resonance imaging (MRI) variables including the total lesion volume of T2 and hypointense T1 lesions, was assessed in Study 1. The change in total lesion volume from baseline was significantly lower in the AUBAGIO 7 mg and AUBAGIO 14 mg groups than in the placebo group. Patients in both AUBAGIO groups had significantly fewer gadolinium-enhancing lesions per T1-weighted scan than those in the placebo group (see Table 2).

Table 2. Clinical and MRI Results of Study 1					
	AUBAGIO 7 mg N=365	AUBAGIO 14 mg N=358	Placebo N=363		
Clinical Endpoints					
Annualized relapse rate	0.370	0.369	0.539		

Table 2. Clinical and	MRI Results of	Study 1 (continu	ied)
	AUBAGIO 7 mg N=365	AUBAGIO 14 mg N=358	Placebo N=363
Percent of patients remaining relapse-free at week 108	53.7%	56.5%	45.6%
Percent disability progression at week 108 Hazard ratio	21.7% (p = 0.084) 0.76	20.2% (p = 0.028) 0.70	27.3%
WRI Endpoints Median change from baseline in Total lesion volume [*] (mL) at	0.755 (p= 0.0317) [†]	0.345 (p = 0.0003) [†]	1.127
week 108 Mean number of Gd-enhancing [1-lesions per scan	0.570 (p < 0.0001)	0.261 (p < 0.0001)	1.331

*Total lesion volume: sum of T2 and hypointense T1 lesion volume in mL +p-values based on cubic root transformed data for total lesion volume

Figure 1. Kaplan-Meier plot of time to disability progression sustained for 12 weeks (Study 1)

Study 2 was a double-blind, placebo-controlled clinical trial that evaluated once daily doses of AUBAGIO 7 mg and AUBAGIO 14 mg for up to 40 months in patients with relapsing forms of multiple sclerosis. Patients were required to have a diagnosis of multiple sclerosis exhibiting a relapsing clinical course and to have experienced at least one relapse over the year preceding the trial, or at least two relapses over the two years preceding the trial. Patients were required not to have received any multiple sclerosis medication for at least three months before entering the trial, nor were these medications permitted during the trial. Neurological evaluations were to be performed at screening, every 12 weeks until completion, and after every suspected relapse. The primary end point was the ARR.

A total of 1165 patients received AUBAGIO 7 mg (n=407), AUBAGIO 14 mg (n=370), or placebo (n=388). Patients had a mean age of 38 years, a mean disease duration of 5 years, and a mean EDSS at baseline of 2.7. A total of 98% of patients had relapsing remitting multiple sclerosis, and 2% had a progressive form of multiple sclerosis with relapses. The mean duration of treatment was 552, 567, and 571 days for AUBAGIO 7 mg, AUBAGIO 14 mg, and placebo, respectively. The percentage of patients who completed the study treatment period was 67%, 66%, and 68% for AUBAGIO 7 mg, AUBAGIO 14 mg, and placebo, respectively.

There was a statistically significant reduction in the ARR for patients who received AUBAGIO 7 mg or AUBAGIO 14 mg compared to patients who received placebo (see Table 3). There was a consistent reduction of the ARR noted in subgroups defined by sex, age group, prior multiple sclerosis therapy, and baseline disease activity.

There was a statistically significant reduction in the relative risk of disability progression at week 108 sustained for 12 weeks (as measured by at least a 1-point increase from baseline EDSS ≤ 5.5 or a 0.5 point increase for those with a baseline EDSS > 5.5) in the AUBAGIO 14 mg group compared to placebo (See Table 3 and Figure 2).

Table 3. Clinical Results of Study 2					
	AUBAGIO 7 mg N=407	AUBAGIO 14 mg N=370	Placebo N=388		
Clinical Endpoints					
Annualized relapse rate	0.389 (p = 0.0183)	0.319 (p = 0.0001)	0.501		
Relative risk reduction	22%	36%			
Percent of patients remaining relapse-free at week 108	58.2%	57.1%	46.8%		
Percent disability progression at week 108	21.1% (p = 0.762)	15.8% (p = 0.044)	19.7%		

Find authenticated court documents without watermarks at docketalarm.com.

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

