
PALO ALTO NETWORKS Exhibit 1032 Page 1

-- ~--

VIRUS BULLETIN CONFERENCE, SEPTEMBER 1995 • 225

SCANNERS OF THE YEAR 2000: HEURISTICS

Dmitry 0. Gryaznov

S&S International Pic, Alton House, Gatehouse Way, Aylesbury, Bucks, HP19 3XU, UK

Tel +44 1296 318700 ·Fax +44 1296 318777 ·Email grdo@sands.co.uk

ODUCTION

At the beginning of 1994, the number of known MS-DOS viruses was estimated at around 3,000. One year
later, in January 1995, the number of viruses was estimated at about 6,000. By the time this paper was
written (July 1995), the number ofknown viruses exceeded 7,000. Several anti-virus experts expect this
number to reach 10,000 by the end of the year 1995. This large number of viruses, which keeps growing
fast, is known as the glut and it does cause problems to anti-virus software- especially to scanners.

Today, scanners are the most frequently used type of anti-virus software. The fast-growing number of
viruses means that scanners should be updated frequently enough to cover new viruses. Also, as the number
of viruses grows, so does the size of the scanner or its database, and in some implementations the scanning
speed suffers.

It was always very tempting to find a final solution to the problem; to create a generic scanner which can
detect new viruses automatically without the need to update its code and/or database. Unfortunately, as
proven by Fred Cohen, the problem of distinguishing a virus from a non-virus program is algorithmically
unsolvable as a general rule.

Nevertheless, some generic detection is still possible, based on analysing a program for features typical or
not typical of viruses. The set of features, possibly together with a set of rules, is known as heuristics.
Today, more and more anti-virus software developers are looking towards heuristical analysis as at least a
partial solution to the glut problem.

Working at the Virus Lab, S&S International Pic, the author is also canying out a research project on
heuristic analysis. The article explains what heuristics are. Positive and negative heuristics are introduced
and some practical heuristics are represented. Different approaches to a heuristical program analysis are
discussed and the problem of false alarms is explained and discussed. Several well-known scanners
employing heuristics are compared (without naming the scanners) both virus detection and false alarms rate.

1 WHYSC RS?

If you are following computer virus-related publications, such as the proceedings of anti-virus conferences,
magazine reviews, anti-virus software manufacturers' press releases, you read and hear mainly 'scanners,
scanners, scanners'. The average user might even get the impression that there is no anti-virus software
other than scanners. This is not true. There are other methods of fighting computer viruses- but they are not

VIRUS BULLETINCONFERENCE©1995 VU11SBulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written petmission of the publishers.

PALO ALTO NETWORKS Exhibit 1032 Page 2

226 • GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURISTICS

as popular or as well known as scanners; and anti-virus packages based on non-scanner technology do not
sell well. Sometimes people who are trying to promote non-scanner based anti-virus software even come to
the conclusion that there must be some kind of an international plot of popular anti-virus scanner producers.
Why is this? Let us briefly discuss existing types of anti-virus software. Those interested in more detailed
discussion and comparison of different types of anti-virus software can find it in [Bontchev 1], for example.

1.1 SCANNERS

So, what is a scanner? Simply put, a scanner is a program which searches files and disk sectors for byte
sequences specific to this or that known virus. Those byte sequences are often called virus signatures. There
are many different ways to implement a scanning technique; from the so-called 'dumb' or 'grunt' scanning
of the whole file, to sophisticated virus-specific methods of deciding which particular part of the file should
be compared to a virus signature. Nevertheless, one thing is common to all scanners: they detect only known
viruses. That is, viruses which were disassembled or analysed and from which virus signatures unique to a
specific virus were selected. In most cases, a scanner cannot detect a brand new virus until the virus is
passed to the scanner developer, who then extracts an appropriate virus signature and updates the scanner.
This all takes time- and new viruses appear virtually every day. This means that scanners have to be
updated frequently to provide adequate anti-virus protection. A version of a scanner which was very good
six months ago might be no good today if you have been hit by just one of the several thousand new viruses
which have appeared since that version was released.

So, are there any other ways to detect viruses? Are there any other anti-virus programs which do not depend
so heavily on certain virus signatures and thus might be able to detect even new viruses? The answer is yes,
there are: integrity checkers and behaviour blockers (monitors). These types of anti-virus software are
almost as old as scanners, and have been known to specialists for ages. Why then are they not used as
widely as scanners?

1.2 BEHAVIOURBLOCKERS

A behaviour blocker (or a monitor) is a memory-resident (TSR) program which monitors system activity
and looks for virus-like behaviour. In order to replicate, a virus needs to create a copy of itself. Most often,
viruses modify existing executable files to achieve this. So, in most cases, behaviour blockers try to
intercept system requests which lead to modifying executable files. When such a suspicious request is
intercepted, a behaviour blocker, typically, alerts a user and, based on the user's decision, can prohibit such
a request from being executed. This way, a behaviour blocker does not depend on detailed analysis of a
particular virus. Unlike a scanner, a behaviour blocker does not need to know what a new virus looks like to
catch it

Unfortunately, it is not that easy to block all the virus activity. Some viruses use very effective and
sophisticated techniques, such as tunnelling, to bypass behaviour blockers. Even worse, some legitimate
programs use virus-like methods which could trigger a behaviour blocker. For example, an install or setup
utility is often modifying executable files. So, when a behaviour blocker is triggered by such a utility, it's up
to the user to decide whether it is a virus or not- and this is often a tough choice: you would not assume that
all users are anti-virus experts, would you?

But even an ideal behaviour blocker (there is no such thing in our real world, mind you!), which never
triggers on a legitimate program and never misses a real virus, still has a major flaw. To enable a behaviour
blocker to detect a virus, the virus must be run on a computer. Not to mention the fact that virtually any user
would reject the very idea of running a virus on his/her computer, by the time a behaviour blocker catches
the virus attempting to modify executable files, the virus could have triggered and destroyed some of your
valuable data files, for example.

VIRUSBUUETJNCONFERENCE©l995VirusBuUetinLtd,2l TheQuadrant,Abingdon,Oxfordshire,OX143YS,England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written permission of the publishers.

- -

·-

PALO ALTO NETWORKS Exhibit 1032 Page 3

VIRUS BULLETIN CONFERENCE, SEPTEMBER 1995 • 227

1.3 INTEGRITY CHECKERS

An integrity checker is a program which should be run periodically (say, once a day) to detect all the
changes made to your files and disks. This means that, when an integrity checker is first installed on your
system, you need to run it to create a database of all the files on your system. During subsequent runs, the
integrity checker compares files on your system to the data stored in the database, and detects any changes
made to the files. Since all viruses modify either files or system areas of disks in order to replicate, a good
integrity checker should be able to spot such changes and alert the user. Unlike a behaviour blocker, it is
much more difficult for a virus to bypass an integrity checker, provided you run your integrity checker in a
virus clean environment- e.g. having booted your PC from a known virus-free system diskette.

But again, as in the case ofbehaviour blockers, there are many possible situations when the user's expertise
is necessary to decide whether changes detected are the result of virus activity. Again, if you run an install
or setup utility, this normally results in modifications to your files which can trigger an integrity checker.
That is, every time you install new software on your system, you have to tell your integrity checker to
register these new files in its database.

Also, there is a special type of virus, aimed specifically at integrity checkers -so-called slow infectors. A
slow infector only infects objects which are about to be modified anyway; e.g. as a new file being created by
a compiler. An integrity checker will add this new file to its database to watch its further changes. But in the
case of a slow infector, the file added to the database is infected already!

Even if integrity checkers were free of the above drawbacks, there still would be a major flaw. That is, an
integrity checker can alert you only after a virus has run and modified your files. As in the example given
while discussing behaviour blockers, this might be well too late ...

1.4 THAT'S WHY SCANNERS!

So, the main drawbacks ofboth behaviour blockers and integrity checkers, which prevent them from being
widely used by an average user, are:

1. Both behaviour blockers and integrity checkers, by their very nature, can detect a virus only after you
have run an infected program on your computer, and the virus has started its replication routine. By
this time it might be too late -many viruses can trigger and switch to destructive mode before they
make any attempts to replicate. It's somewhat like deciding to find out whether these beautiful yet
unknown berries are poisonous by eating them and watching the results. Gosh! You would be lucky to
get away with just dyspepsia!

2. Often enough, the burden to decide whether it is a virus or not is transferred to the user. It's as if
your doctor leaves you to decide whether your dyspepsia is simply because the berries were not ripe
enough, or it is the frrst sign of deadly poisoning, and you'll be dead in few hours if you don't take
an antidote innnediately. Tough choice!

On the contrary, a scanner can and should be used to detect viruses before an infected program has a chance
to be executed. That is, by scanning the incoming software prior to installing it on your system, a scanner
tells you whether it is safe to proceed with the installation. Continuing our berries analogy, it's like having a
portable automated poisonous plants detector, which quickly checks the berries against its database of known
plants, and tells you whether or not it is safe to eat the berries.

But what if the berries are not in the database of your portable detector? What if it is a brand new species?
What if a software package you are about to install is infected with a new, very dangerous virus unknown to
your scanner? Relying on your scanner only, you might fmd yourself in big trouble. This is where behaviour
blockers and integrity checkers might be helpful. It's still better to detect the virus while it's trying to infect

VIRUS BULLETINCONFERENCE©1995 V1111sBulletinLtd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fotm
without the prior written pennission of the publishers.

PALO ALTO NETWORKS Exhibit 1032 Page 4

228 • GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURISTICS

your system, or even after it has infected but before it destroys your valuable data. So, the best anti-virus -
strategy would include all three types of anti-virus software:

• a scanner to ensure the new software is free of at least known viruses before you run the soft\¥are

• a behaviour blocker to catch the virus while it is trying to infect your system

• an integrity checker to detect infected files after the virus has propagated to your system but not yet
triggered.

As you can see, the scanners are the first and the most simply implemented line of anti-virus defence.
Moreover, most people have scanners as the only line of defence.

2 WHY HEURISTICS?

2.1 GLUTPROBLEM

As mentioned above, the main drawback of scanners is that they can detect only known computer viruses.
Six or seven years ago, this was not a big deal. New viruses appeared rarely. Anti-virus researchers were
literally hunting for new viruses, spending weeks and months tracking down rumours and random reports
about a new virus to include its detection in their scanners. It was probably during these times that a most
nasty computer virus-related myth was born that anti-virus people develop viruses themselves to force users
to buy their products and profit this way. Some people believe this myth even today. Whenever I hear it, I
can't help laughing hysterically. Nowadays with two to three hundred new viruses arriving monthly, it
would be total waste of time and money for anti-virus manufacturers to develop viruses. Why should they
bother if new viruses arrive in dozens virtually daily, completely free of charge? There were about 3,000
known DOS viruses at the beginning of 1994. A year later, in January 1995, the number of viruses was
estimated at least 5,000. Another six months later, in July 1995, the number exceeded 7,000. Many anti
virus experts expect the number of known DOS viruses to reach the 10,000 mark by the end of 1995. With
this tremendous and still fast-growing number of viruses to fight, traditional virus signature scanning
software is pushed to its limits [Skulason, Bontchev2]. While several years ago a scanner was often
developed, updated and supported by a single person, today a team of a dozen skilled employers is only
barely sufficient. With the increasing number of viruses, R&D and Quality Control time and resource
requirements grow. Even monthly scanner updates are often late, by one month at least! Many formerly
successful anti-virus vendors are giving up and leaving the anti-virus battleground and market. The fast
growing number of viruses heavily affects scanners themselves. They become bigger, and sometimes
slower. Just few years ago a 360Kb floppy diskette would be enough to hold half a dozen popular scanners,
leaving plenty of room for system files to make the diskette boatable. Today, an average good signature
based scanner alone would occupy at least a 720Kb floppy, leaving virtually no room for anything else.

So, are we losing the war? I would say: not yet- but if we get stuck with just virus signature scanning, we
•

will lose it sooner or later. Having realised this some time ago, anti-virus researchers started to look for
more generic scanning techniques, known as heuristics.

2.1 WHAT ARE HEURISTICS?

In the anti-virus area, heuristics are a set of rules which should be applied to a program to decide whether
the program is likely to contain a virus or not. From the very beginning of the history of computer
viruses different people started looking for an ultimate generic solution to the problem. Really, how does
an anti-virus expert know that a program is a virus? It usually involves some kind of reverse engineering
(most often disassembly) and reconstructing and understanding the virus' algorithm: what it does and how it
does it. Having analysed hundreds and hundreds of computer viruses, it takes just few seconds for an
experienced anti-virus researcher to recognise a virus, even it is a new one, and never seen before. It is

VIRUS BULLETINCONFERENCE©l995 V1111sBuUetinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written pennission of the publishers.

PALO ALTO NETWORKS Exhibit 1032 Page 5

-

VIRUS BULLETIN CONFERENCE, SEPTEMBER 1995 • 229

almost a subconscious, automated process. Automated? Wait a minute! If it is an automated process, let's
make a program to do it!

Unfortunately (or rather, fortunately) the analytic capabilities of the human brain are far beyond those of a
computer. As was proven by Fred Cohen [Cohen], it is impossible to construct an algorithm (e.g. a
program) to distinguish a virus from a non-virus with 100 per cent reliability. Fortunately, this does not
rule out a possibility of90 or even 99 per cent reliability. The remaining one per cent, we hope to be able to
solve using our traditional virus signatures scanning technique. Anyway, it's worth tiying.

2.2 SIMPLE HEURISTICS

So, how do they do it? How does an anti-virus expert recognise a virus? Let us consider the simplest case: a
parasitic non-resident appending COM file infector. Something like Vienna, but even more primitive. Such a
virus appends its code to the end of an infected program, stores a few (usually just three) first bytes of the
victim file in the virus body and replaces those bytes with a code to pass control to the virus code. When the
infected program is executed, the virus takes control. First, it restores the original victim's bytes in its
memory image. It then starts looking for other COM files. When found, the file is opened in
Read_and_ Write mode; then the virus reads the frrst few bytes of the file and writes itself to the end of the
file. So, a primitive set ofheuristical rules for a virus of this kind would be:

I. The program immediately passes control close to the end of itself

2. It modifies some bytes at the beginning of its copy in memory

3. Then it starts looking for executable files on a disk

4. When found, a file is opened

5. Some data is read from the file

6. Some data is written to the end of the file.

Each of the above rules has a corresponding sequence in binary machine code or assembler language. In
general, if you look at such a virus under DEBUG, the favourite tool of anti-virus researchers, it is usually
represented in a code similar to this:

START:

VIRUS:

SAVED:

MASK:

VIRUS CODE:

JMP VIRUSCODE

<victim's code>

DB \ * . cOM 1
I 0

MOV DI,OFFSET START
MOV SI,OFFSET SAVED
MOVSW
MOVSB

MOV DX,OFFSET MASK

; Start of the infected program
; Rule 1: the control is passed
; to the virus body
• ,

; Virus body starts here

; Saved original bytes of the
victim's code

; Search mask

; Start of the virus code
; Rule 2: the virus restores
; victim's code

• ; ~n memory
• ,

; Rule 3: the virus

VJRUSBULLETINCONFERENCE©l995VirusBulletinLtd,2l TheQuadrant,Abingdon,Oxfordshire,OX143YS,England.
TeL +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fo1m
without the prior written permission of the publishers.

PALO ALTO NETWORKS Exhibit 1032 Page 6

230 • GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURISTICS

MOV AH,4EH
INT 21H

MOV AX.,3D02H
INT 21H ;

MOV DX,OFFSET SAVED
MOV AH,3FH
INT 21H

; looks for other
; programs to infect

; Rule 4: the virus opens a file

; Rule 5: first bytes of a file
; are read to the virus
; body

MOV DX,OFFSET VIRUS ; Rule 6: the virus writes itself
MOV AH,40H
INT 21H

; to the file
•
I

Figure 1. A sample virus code

When an anti-virus expert sees such code, it is immediately obvious that this is a virus. So, our heuristical
program should be able to disassemble a binary machine-language code in a similar manner to DEBUG, and
to analyse it, looking for particular code patterns in a similar manner to an anti-virus expert. In the simplest
cases, such as the one above, a set of simple wildcard signature string matching would do for the analysis.
In this case, the analysis itself is simply checking whether the program in question satisfies rules 1 through
6; in other words, whether the program contains pieces of code corresponding to each of the rules.

In a more general case, there are many different ways to represent one and the same algorithm in machine
code. Polymotphic viruses, for example, do this all the time. So, a heuristic scanner must use many clever
methods, rather than simple pattern-matching techniques. Those methods may involve statistical code
analysis, partial code intetpretation, and even CPU emulation, especially to decrypt self-encrypted viruses:
but you would be surprised to know how many real life viruses would be detected by the above six simple
heuristics alone! Unfortunately, some non-virus programs would be 'detected' too.

2.3 FALSE ALARMS PROBLEM

Strictly speaking, heuristics do not detect viruses. As behaviour blockers, heuristics are looking for virus
like behaviour. Moreover, unlike the behaviour blockers, heuristics can detect not the behaviour itself, but
just potential ability to perform this or that action. Indeed, the fact that a program contains a certain piece of
code does not necessarily mean that this piece of code is ever executed. The problem of discovering whether
this or that code in a program ever gets control is known in the theory of algorithms as the Halting Problem,
and is in general unsolvable. This issue was the basis of Fred Cohen's proof of the impossibility of writing
a perfect virus detector. For example, some scanners contain pieces of virus code as the signatures for which
to scan. Those pieces might correspond to each and evety one of the above six rules. But they are never
executed- the scanner uses them just as its static data. Since, in general, there is no way for heuristics to
decide whether these code pieces are ever executed or not, this can (and sometimes does) cause false alarms.

A false alarm is when an anti-virus product reports a virus in a program, which in fact does not contain any
viruses at all. Different types of false alanns, as well as most widespread causes of false alarms, are
described in [Solomon] for example. A false alarm might be even more costly than an actual virus infection.
We all keep saying to users: 'The main thing to remember when you think you've got a virus- do not
panic!~ Unfortunately, this does not work well. The average user will panic. And the user panics even more
if the anti-virus software is unsure itself whether it is a virus or not. In the case, say, where a scanner
definitely detects a virus, the scanner is usually able to detect all infected programs, and to remove the virus.
At this point, the panic is usually over; but if it is a false alarm, the scanner will not be able to remove the
virus, and most likely will report something like: 'This file seems to have a virus', naming just a single file
as infected. This is when the user really starts to panic. 'It must be a new virus!' -the user thinks. 'What do

VIRUS BULLETIN CONFERENCE©t995 Virus BulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
TeL +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written pennission of the publishers.

·~·

PALO ALTO NETWORKS Exhibit 1032 Page 7

VIRUS BUUETI N CONFERENC£7 SEPTEMBER 199 5 • 23 I

- I do?!' As a result, the user well might format his/her hard disk, causing himself a far worse disaster than a
virus could. Formatting the hard disk is an unnecessary and un-justified act, by the way; even more so as
there are many viruses which would survive this act, unlike legitimate software and data stored on the disk.

-

-

Another problem a false alann can (and did) cause is negative impact on a software manufacturing company.
If an anti-virus software falsely detects a virus in a new software package, the users will stop buying the
package and the software developer will suffer not only profit losses, but also a loss of reputation. Even if it
was later made known that it was a false alarn1, too many people would think: 'There is no smoke without
fire', and would treat the software with suspicion. This affects the anti-virus vendor as well. There has
already been a case where an anti-virus vendor was sued by a software company whose anti-virus protection
mistakenly reported a virus.

In a corporate environment, when a virus is reported by anti-virus software, whether it is a false alarm or
not, the normal flow of operation is interrupted. It takes at best several hours to contact the anti-virus
technical support and to ensure it was a false alann before norrnal operation is resumed -and, as we all
know, time is money. In the case of a big company, time is big money.

So, it is not at all surprising that, when asked what level of false alarms is acceptable (1 0 per cent? 1 per
cent? 0.1 per cent?), corporate customers answer: 'Zero per cent! We do not want any false alarms!'

As previously explained, by its very nature heuristic analysis is more prone to false alarms than traditional
scanning methods. Indeed, not only viruses but many scanners as well would satisfy the six rules we used as
an example: a scanner does look for executable files, opens them, reads some data and even writes
something back when removing a virus from a file. Can anything be done to avoid triggering a false positive
on a scanner? Let's again tum to the experience of a human anti-virus expert. How does one know that this
is a scanner, and not a virus? Well, this is more complicated than the above example of a primitive virus.
Still, there are some general rules too. For example, if a program relies heavily on its parameters or involves
an extensive dialogue with a user, it is highly unlikely that the program is a virus. This leads us to the idea
of negative heuristics; that is, a set of rules which are true for a non-virus program. Then, while analysing a
program, our heuristics should estimate the probability of the program to be a virus using both positive
heuristics, such as the above six rules, and negative heuristics, typical for non-virus programs and rarely
used by real viruses. If a program satisfies all our six positive rules, but also expects some command-line
parameters and uses an extensive user dialogue as well, we would not call it a virus.

So far so good. Looks like we found a solution to the virus glut problem, right? Not really! Unfortunately,
not all virus writers are stupid. Some are also well aware of heuristic analysis, and some of their viruses are
written in a way which avoids the most obvious positive heuristics. On the other hand, these viruses include
otherwise useless pieces of code, the only aim of which is to trigger the most obvious negative heuristics, so
that such a virus does not draw the attention of a heuristical analyser.

2.4 VIRUS DETECTION VS. FALSE A STRADE-OFF

Each heuristic scanner developer sooner or later comes to the point when it is necessary to make a decision:
'Do I detect more viruses, or do I cause less false alarms?' The best way to decide would be to ask users
what do they prefer. Unfortunately, the users' answer is: 'I want it all! 100 per cent detection rate and no
false alarms!' As mentioned above, this cannot be achieved. So, a virus detection versus false alarms trade
off problem must be decided by the developer. It is very tempting to build the heuristic analyser to detect
almost all viruses, despite false alarms. After all, reviewers and evaluators who publish their tests results in
magazines read by thousands of users world-wide, are testing just the detection rate. It is much more
difficult to run a good false alam1s test: there are gigabytes and gigabytes of non-virus software in the
world, far more than there are viruses; and it is more difficult to get hold of all this software and to keep it
for your tests. 'Not enough disk space' is only one of the prob I ems. So, let's forget false alarms and
negative heuristics and call a virus each and every program which happens to satisfy just some of our

VIRUS BUUETINCONFERENCE©1995 VIrUSBulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior written pennission of the publishers.

PALO ALTO NETWORKS Exhibit 1032 Page 8

232 • GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURISTICS

positive heuristics. This way we shall score top most points in the reviews. But what about the users? They
normally run scanners not on a virus collection but on a clean disks. Thus, they won't notice our almost
perfect detection rate, but are very likely to notice our not-that-perfect false alarms rate. Tough choice.
That's why some developers have at least tw'o modes of operation for their heuristical scanners. The default
is the so-called 'normal' or 'low sensitivity' mode, when both positive and negative heuristics are used and
a program needs to trigger enough positive heuristics to be reported as a virus. In this mode, a scanner is
less prone to false alarms, but its detection rate might be far below what is claimed in its documentation or
advertisement. The often-used (in advertising) figures of 'more than 90 per cent' virus detection rate by
heuristic analyser refer to the second mode of operation, which is often called 'high sensitivity' or
'paranoid' mode. It is really a paranoid mode: in this mode, negative heuristics are usually discarded, and
the scanner reports as a possible virus any program which happens to trigger just one or two positive
heuristics. In this mode, a scanner can indeed detect 90 per cent of viruses, but it also produces hundreds
and hundreds of false alarms, making the 'paranoid' mode useless and even harmful for real-life everyday
use, but still very helpful when it comes to a comparative virus detection test. Some scanners have a special
command-line option to switch the paranoid mode on; some others switch to it automatically whenever they
detect a virus in the normal low sensitivity mode. Although the latter approach seems to be a smart one, it
takes just a single false alarm out of many thousands of programs on a network file server to produce an
avalanche of false virus reports.

2.5 HOW IT ALL WORKS IN PRACTICE: DIFFERENT SCANNERS COMPARED

Being myself an anti-virus researcher and working for a leading anti-virus manufacturer, I have developed a
heuristic analyser of my own. And of course, I could not resist comparing it to other existing heuristic
scanners. We believe the results will be interesting to other people. They underscore what was said about
both virus detection and false alarms rates. As the products tested are our competitors, we decided not to
publish their names in the test results. So, only FindVirus of Dr Solomon's AntiVirns Toolkit is called by its
real name. All the other scanners are referred to with letters: Scanner_A, Scanner_B, Scanner_ C and
Scanner_D. The latest versions of the scanners available at the time of the test were used. For FindVirus, it
was version 7.50- the first version to employ a heuristic analyser.

Each scanner tested was run in heuristics-only mode, with normal virus signature scanning disabled. This
was achieved by either using a special command-line option, where available, or using a special empty virus
signature database in other cases.

The test consisted of two parts: virus detection rate and false alarms rate. For the virus detection rate S&S
International Pic ONE OF EACH virus collection was used, containing more than 7,000 samples of about
6,500 different known DOS viruses. For the false alarms test the shareware and freeware software collection
ofSIMTEL20 CD-ROM (fully unpacked), all utilities from different versions ofMS-DOS, IBM DOS,
PC-DOS and other known files were used (current basic S&S false alarms test set).

When measuring false alarms and virus detection rate, all files reported were counted; reported either as
'Infected' or 'Suspicious'. Separate figures for the two categories are given where applicable.

In both parts of the test, the products were run in two heuristic sensitivity modes, where applicable: normal
or low sensitivity mode, and paranoid or high sensitivity mode. The automatic heuristic sensitivity
adjustment was prohibited, where applicable.

The results of the tests are as follows:

VIRUSBULLETJNCONFERENCE~1995VirusBulletinLtd,21 TheQuadrant,Abingdon,Oxfordshire,OX143YS,England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior 'Mitten petmission of the publishers.

- -

·-

·-

- ·

PALO ALTO NETWORKS Exhibit 1032 Page 9

--

-

Virus Detection Test

Files
scanned

FindVirus 7375
Scanner D 7375 -
Scanner C 7375 -
Scanner A 7375 -
Scanner B 7392(*) -

VIRUS BULLETIN CONFERENCE, SEPTEMBER 1995 • 233

Files triggered (infected+ suspicious)
Nonnal Paranoid

5902 (N/A) 80.02% NIA
5743 (0+5743) 77.87% 6182(0+6182) 83.54%
5692 (0+5692) 77.18% N/A
4250 (N/A) 57.63% 6491 (N/A) 87.74%
3863 (2995+868) 52.38% 6124 (2992+3132) 82.68%

(*) Scanner_B was tested couple of days later, when 17 more infected files were added to the collection.

False alarms test

FindVirus
Scanner A -
Scanner B -
Scanner D -
Scanner C -

Files
scanned(*)

13603
13428
13471
13840
13603

Table 1. Vints detection test results.

Files triggered (infected+ suspicious)
Nonnal Paranoid

0 (N/A) 0.000% N/A
11 (N/A) 0.082% 371 (N/A) 2.746%
17 (0+ 17) 0.126% 382 (0+382) 2.836%
24 (0+24) 0.173% 254(0+254) 1.824%
28 (0+28) 0.206% N/A

(*)Different number of files reported as scanned is due to the fact different products treat somewhat different sets of file extensions
as executables.

Table 2. False alarms test results

3 WHY 'OF THE YEAR 2000'?

Well, first of all simply because I could not resist the temptation of splitting the name of the paper into three
questions and using them as the titles of the main sections ofhis presentation. I thought it was funny.
Maybe I have a weird sense of humour. Who knows ...

On the other hand, the year 2000 is very attractive by itself. Most people consider it a distinctive milestone
in all aspects of human civilisation. This usually happens to the years ending with double zero; still more to
the end of a millennium, with its triple zero at the end. The anti-virus arena is not an exclusion. For
example, during the EICAR'94 conference there were two panel sessions discussing 'Viruses of the year
2000' and 'Scanners of the year 2000' respectively. The general conclusion made by a panel of well-known
anti-virus researchers was that, at the current pace of new virus creation by the year 2000, we well might
face dozens (if not hundreds of thousands) of known DOS viruses. As I tried to explain in the second
section of this paper (and other authors explained elsewhere [Skulason, Bontchev2]), this might be far too
much for a current standard scanners' technique, based on known virus signature scanning. More generic
anti-virus tools, such as behaviour blockers and integrity checkers, while being less vulnerable to the
growing number of viruses and the rate at which the new viruses appear, can detect a virus only when it is
already running on a computer or even only after the virus has run and infected other programs. In many
cases, the risk of allowing a virus to run on your computer is just not affordable. Using a heuristic scanner,
on the other hand, allows detection of most of new viruses with a regular scanner safe manner: before an
infected program is copied to your system and executed. And vecy much like behaviour blockers and
integrity checkers, a heuristic scanner is much more generic than a signature scanner, requires much rare
updates, and provides an instant response to a new virus. Those 15-20 per cent of viruses which a heuristic

VIRUS BULLETINCONFERENC£©1995 VirusBulletinLtd,21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any fonn
without the prior Mitten per mission of the publishers.

PALO ALTO NETWORKS Exhibit 1032 Page 10

234 • GRYAZNOV: SCANNERS OF THE YEAR 2000: HEURISTICS

scanner cannot detect could be dealt with using current well-developed signature scanning techniques. This
will effectively decrease the virus glut problem five fold, at least.

Yet another reason for choosing the year 2000 and not, say, 2005 is that I have strong doubts whether the
current computer virus situation will survive the year 2000 by more than a couple of years. With new
operating systems and environments appearing (Windows NT, Windows'95, etc.) I believe DOS is doomed.
So are DOS viruses. So is the modem anti-virus industry. This does not mean viruses are not possible for
new operating systems and platforms- they are possible in virtually any operating environment. We are
aware of viruses for Windows, OS/2, Apple DOS and even UNIX. But to create viruses for these operating
systems, as well as for Windows NT and Windows '95, it requires much more skill, knowledge, effort and
time than for the virus-friendly DOS. Moreover, it will be much more difficult for a virus to replicate under
these operating systems. They are far more secure than DOS, if it is possible to talk about DOS security at
all. Thus, there will be far fewer virus writers and they will be capable of writing far fewer viruses. The
viruses will not propagate fast and far enough to represent a major problem. Subsequently, there will be no
virus glut problem. Regrettably, there will be a much smaller anti-virus market, and most oftoday's anti
virus experts will have to find another occupation ...

But until then, DOS lives, and anti-virus developers still have a lot of work to do!

REFERENCES

[Bontchev 1]

[Skulason]

[Bontchev2]

[Cohen]

[Solomon]

V esse lin Bontchev, 'Possible Virus Attacks Against Integrity Programs And How To
Prevent Them', Proc. 2nd Int. Virus Bulletin Conf., September 1992, pp. 131-141.

Fridrik Skulason, 'The Virus Glut. The Impact of the Virus Flood', Proc. 4th
EICAR Conf, November 1994, pp. 143-147.

Vesselin Bontchev, 'Future Trends in Virus Writing', Proc. 4th Int. Virus Bulletin
Conf., September 1994, pp. 65-81.

Fred Cohen, 'Computer Viruses- Theory and Experiments', Computer Security: A
Global Challenge, Elsevier Science Publishers B. V. (North Holland), 1984,
pp. 143-158.

Alan Solomon, 'False Alarms', Virus News International, February 1993, pp. 50-52.

VIRUS B UUETIN CONFERENCE©1995 Virus Bulletin Ltd, 21 The Quadrant, Abingdon, Oxfordshire, OX143YS, England.
Tel. +44 (0)1235 555139. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
without the prior written petmission of the publishers.

