
JavaScript 2.0: Evolving a Language for Evolving Systems 1

JavaScript 2.0:
Evolving a Language for Evolving Systems

Waldemar Horwat
waldemar@acm.org

Abstract
JavaScript 2.0 is the next major revision of the JavaScript language. Also known as ECMAScript
Edition 4, it is being standardized by the ECMA organization. This paper summarizes the needs
that drove the revision in the language and then describes some of the major new features of the
language to meet those needs — support for API evolution, classes, packages, object protection,
dynamic types, and scoping. JavaScript is a very widely used language, and evolving it presented
many unique challenges as well as some opportunities. The emphasis is on the rationale, insights,
and constraints that led to the features rather than trying to describe the complete language.

1 Introduction

1.1 Background
JavaScript [6][8] is a web scripting language
invented by Brendan Eich at Netscape. This
language first appeared in 1996 as
JavaScript 1.0 in Navigator 2.0. Since then
the language has undergone numerous addi-
tions and revisions [6], and the most recent
released version is JavaScript 1.5.

JavaScript has been enormously successful
— it is more than an order of magnitude
more widely used than all other web client
languages combined. More than 25% of web
pages use JavaScript.

JavaScript programs are distributed in
source form, often embedded inside web
page elements, thus making it easy to author
them without any tools other than a text
editor. This also makes it easier to learn the
language by examining existing web pages.

There is a plethora of synonymous names
for JavaScript. JavaScript, JScript, and
ECMAScript are all the same language.
JavaScript was originally called LiveScript
but was renamed to JavaScript just before it
was released. JavaScript is not related to
Java, although the two language implemen-
tations can communicate with each other in

Netscape browsers through an interface
called LiveConnect.

JavaScript as a language has computational
facilities only — there are no input/output
primitives defined within the language. In-
stead, each embedding of JavaScript within
a particular environment provides the means
to interact with that environment. Within a
web browser JavaScript is used in conjunc-
tion with a set of common interfaces, in-
cluding the Document Object Model [11],
which allow JavaScript programs to interact
with web pages and the user. These inter-
faces are described by separate standards
and are not part of the JavaScript language
itself. This paper concentrates on the
JavaScript language rather than the inter-
faces.

1.2 Standardization
After Netscape released JavaScript in Navi-
gator 2.0, Microsoft implemented the lan-
guage, calling it JScript, in Internet Ex-
plorer 3.0. Netscape, Microsoft, and a num-
ber of other companies got together and
formed the TC39 committee in the ECMA
standards organization [2] in order to agree
on a common definition of the language.
The first ECMA standard [3], calling the
language ECMAScript, was adopted by the
ECMA general assembly in June 1997 as the
ECMA-262 standard. The second edition of

PALO ALTO NETWORKS Exhibit 1027 Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

JavaScript 2.0: Evolving a Language for Evolving Systems 2

this standard, ECMA-262 Edition 2 [4], con-
sisted mainly of editorial fixes gathered in
the process of making the ECMAScript ISO
standard 16262. The third edition of the
ECMAScript standard [5] was adopted in
December 1999 and added numerous new
features, including regular expressions,
nested functions and closures, array and ob-
ject literals, the switch and do-while
statements, and exceptions. JavaScript 1.5
fully implements ECMAScript Edition 3.

I’ve been involved at Netscape with both the
implementation and standardization of
JavaScript since 1998. I wrote parts of the
ECMAScript Edition 3 standard and am cur-
rently the editor of the draft ECMAScript
Edition 4 standard.

In Editions 1 and 2, the ECMA committee
standardized existing practice, as the lan-
guage had already been implemented by
Netscape, and Microsoft closely mirrored
that implementation. In Edition 3, the role of
the committee shifted to become more active
in the definition of new language features
before they were implemented by the ven-
dors; without this approach, the vendors’
implementations would have quickly di-
verged. This role continues with Edition 4,
and, as a result, the interesting language de-
sign discussions take place mainly within
the ECMA TC39 (now TC39TG1) working
group.

This paper presents the results of a few of
these discussions. Although many of the is-
sues have been settled, Edition 4 has not yet
been approved or even specified in every
detail. It is still likely to change and should
definitely be considered a preliminary draft.

1.3 Outline
Section 2 gives a brief description of the
existing language JavaScript 1.5. Section 3
summarizes the motivation behind Java-
Script 2.0. Individual areas and decisions are
covered in subsequent sections: types (Sec-
tion 4); scoping and syntax issues (Sec-
tion 5); classes (Section 6); namespaces,
versioning, and packages (Section 7); and

attributes and conditional compilation (Sec-
tion 8). Section 9 concludes.

2 JavaScript 1.5
JavaScript 1.5 (ECMAScript Edition 3) is an
object-based scripting language with a syn-
tax similar to C and Java. Statements such as
i f , w h i l e , f o r , s w i t c h , and
throw/try/catch will be familiar to
C/C++ or Java programmers. Functions,
declared using the function keyword, can
nest and form true closures. For example,
given the definitions

function square(x) {
 return x*x;
}

function add(a) {
 return function(b) {
 return a+b;
 }
}

evaluating the expressions below produces
the values listed after the fi symbols:

square(5) fi 25
var f = add(3);
var g = add(6);
f(1) fi 4;
g(5) fi 11;

A function without a return statement
returns the value undefined.

Like Lisp, JavaScript provides an eval
function that takes a string and compiles and
evaluates it as a JavaScript program; this
allows self-constructing and self-modifying
code. For example:

eval("square(8)+3") fi 67

eval("square = f") fi The
source code for function f
square(2) fi 5

2.1 Values and Variables
The basic values of JavaScript 1.5 are num-
bers (double-precision IEEE floating-point
values including +0.0, –0.0, +∞, –∞, and
NaN), booleans (true and false), the

PALO ALTO NETWORKS Exhibit 1027 Page 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

JavaScript 2.0: Evolving a Language for Evolving Systems 3

special values null and undefined, im-
mutable Unicode strings, and general ob-
jects, which include arrays, regular expres-
sions, dates, functions, and user-defined ob-
jects. All values have unlimited lifetime and
are deleted only via garbage collection,
which is transparent to the programmer.

Variables are not statically typed and can
hold any value. Variables are introduced
using var declarations as in:

var x;
var y = z+5;

An uninitialized variable gets the value
undefined . Variable declarations are
lexically scoped, but only at function
boundaries — all declarations directly
within a function apply to the entire func-
tion, even above the point of declaration.
Local blocks do not form scopes. If a func-
tion accesses an undeclared variable, it is
assumed to be a global variable. For exam-
ple, in the definitions

function init(a) {
 b = a;
}

function strange(s, t) {
 a = s;
 if (t) {
 var a;
 a = a+a;
 }
 return a+b;
}

function strange defines a local variable
a. It doesn’t matter that the var statement is
nested within the if statement — the var
statement creates a at the beginning of the
function regardless of the value of t.

At this point evaluating
strange("Apple ", false)

signals an error because the global variable
b is not defined. However, the following
statements evaluate successfully because
init creates the global variable b:

init("Hello") fi undefined

strange("Apple ", false) fi
"Apple Hello"
strange(20, true) fi
"40Hello"

The last example also shows that + is poly-
morphic — it adds numbers, concatenates
strings, and, when given a string and a num-
ber, converts the number to a string and
concatenates it with the other string.

2.2 Objects
JavaScript 1.5 does not have classes; in-
stead, general objects use a prototype
mechanism to mimic inheritance. Every ob-
ject is a collection of name-value pairs
called properties, as well as a few special,
hidden properties. One of the hidden prop-
erties is a prototype link1 which points to
another object or null.

When reading property p of object x using
the expression x.p, the object x is searched
first for a property named p. If there is one,
its value is returned; if not, x’s prototype
(let’s call it y) is searched for a property
named p. If there isn’t one, y’s prototype is
searched next and so on. If no property at all
is found, the result is the value
undefined.

When writing property p of object x using
the expression x.p = v, a property named p
is created in x if it’s not there already and
then assigned the value v. x’s prototype is
not affected by the assignment. The new
property p in x will then shadow any prop-
erty with the same name in x’s prototype and
can only be removed using the expression
delete x.p.

A property can be read or written using an
indirect name with the syntax x[s], where s
is an expression that evaluates to a string (or
a value that can be converted into a string)
representing a property name. If s contains
the string "blue" , then the expression
x[s] is equivalent to x.blue. An array is

1 For historical reasons in Netscape’s JavaScript this hidden
prototype link is accessible as the property named
__proto__, but this is not part of the ECMA standard.

PALO ALTO NETWORKS Exhibit 1027 Page 3f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

JavaScript 2.0: Evolving a Language for Evolving Systems 4

an object with properties named "0", "1",
"2", …, "576", etc.; not all of these need
be present, so arrays are naturally sparse.

An object is created by using the new op-
erator on any function call: new f(args).
An object with no properties is created be-
fore entering the function and is accessible
from inside the function via the this vari-
able.

The function f itself is an object with several
properties. In particular, f.prototype
points to the prototype that will be used for
objects created via new f(args).2 An ex-
ample illustrates these concepts:

function Point(px, py) {
 this.x = px;
 this.y = py;
}

a = new Point(3,4);
origin = new Point(0,0);

a.x fi 3
a["y"] fi 4

The prototype can be altered dynamically:
Point.prototype.color =
"red";

a.color fi "red"
origin.color fi "red"

The object a can shadow its prototype as
well as acquire extra properties:

a.color = "blue";
a.weight = "heavy";

a.color fi "blue"
a.weight fi "heavy"
origin.color fi "red"
origin.weight fi undefined

Methods can be attached to objects or their
prototypes. A method is any function. The

2 Using the notation from the previous footnote, after
o = new f(args), o.__proto__ == f.prototype.
f.prototype is not to be confused with function f’s own
prototype f.__proto__, which points to the global proto-
type of functions Function.prototype.

method can refer to the object on which it
was invoked using the this variable:

function Radius() {
 return Math.sqrt(
 this.x*this.x +
 this.y*this.y);
}

The following statement attaches Radius
as a property named radius visible from
any Point object via its prototype:

Point.prototype.radius =
Radius;

a.radius() fi 5

The situation becomes much more compli-
cated when trying to define a prototype-
based hierarchy more than one level deep.
There are many subtle issues [9], and it is
easy to define one with either too much or
too little sharing.

2.3 Permissiveness
JavaScript 1.5 is very permissive — strings,
numbers, and other values are freely coerced
into one another; functions can be called
with the wrong number of arguments; global
variable declarations can be omitted; and
semicolons separating statements on differ-
ent lines may be omitted in unambiguous
situations. This permissiveness is a mixed
blessing — in some situations it makes it
easier to write programs, but in others it
makes it easier to suffer from hidden and
confusing errors.

For example, nothing in JavaScript distin-
guishes among regular functions (square
in the examples above), functions intended
as constructors (Point), and functions in-
tended as methods (Radius). JavaScript
lets one call Point defined above as a
function (without new and without attaching
it to an object),

p = Point(3)

which creates global variables x and y if
they didn’t already exist (or overwrites them
if they did) and then writes 3 to x and

PALO ALTO NETWORKS Exhibit 1027 Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

JavaScript 2.0: Evolving a Language for Evolving Systems 5

undefined to y. The variable p gets the
value undefined. Obvious, right? (If this
is obvious, then you’ve been spending far
too much time reading language standards.)3

2.4 Exploring Further
This is only a brief overview of JavaScript
1.5. See a good reference [6] for the details.
To get an interactive JavaScript shell, type
javascript: as the URL in a Netscape
browser or download and compile the source
code for a simple stand-alone JavaScript
shell from [8].

3 JavaScript 2.0 Motivation
JavaScript 2.0 is Netscape’s implementation
of the ECMAScript Edition 4 standard cur-
rently under development. The proposed
standard is motivated by the need to achieve
better support for programming in the large
as well as fix some of the existing problems
in JavaScript (section 5).

3.1 Programming in the Large
As used here, programming in the large does
not mean writing large programs. Rather, it
refers to:

• Programs written by more than one per-
son

• Programs assembled from components
(packages)

• Programs that live in heterogeneous en-
vironments

• Programs that use or expose evolving
interfaces

• Long-lived programs that evolve over
time

Many applications on the web fall into one
or more of these categories.

3 The reason that global variables x and y got created is that
when one doesn’t specify a this value when calling a func-
tion such as Point, then this refers to the global scope
object; thus this.x = px creates the global variable x.

3.2 Mechanisms
A package facility (separable libraries that
export top-level definitions — see section 7)
helps with some of the above requirements
but, by itself, is not sufficient. Unlike exist-
ing JavaScript programs which tend to be
monolithic, packages and their clients are
typically written by different people at dif-
ferent times. This presents the problem of
the author or maintainer of a package not
having access to all of its clients to test the
package, or, conversely, the author of a cli-
ent not having access to all versions of the
package to test against — even if the author
of a client could test his client against all ex-
isting versions of a package, he is not able to
test against future versions. Merely adding
packages to a language without solving
these problems would not achieve robust-
ness; instead, additional facilities for defin-
ing stronger boundaries between packages
and clients are needed.

One approach that helps is to make the lan-
guage more disciplined by adding optional
types and type-checking (section 4). Another
is a coherent and disciplined syntax for de-
fining classes (section 6) together with a ro-
bust means for versioning of classes. Unlike
JavaScript 1.5, the author of a class can
guarantee invariants concerning its instances
and can control access to its instances,
making the package author’s job tractable.
Versioning (section 7) and enforceable in-
variants simplify the package author’s job of
evolving an already-published package, per-
haps expanding its exposed interface, with-
out breaking existing clients. Conditional
compilation (section 8) allows the author of
a client to craft a program that works in a
variety of environments, taking advantage of
optional packages if they are provided and
using workarounds if not.

To work in multi-language environments,
JavaScript 2.0 provides better mappings for
data types and interfaces commonly exposed
by other languages. It includes support for
classes as well as previously missing basic
types such as long.

PALO ALTO NETWORKS Exhibit 1027 Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

