
 1

Detours: Binary Interception of Win32 Functions

Galen Hunt and Doug Brubacher
Microsoft Research
One Microsoft Way

Redmond, WA 98052
detours@microsoft.com

http://research.microsoft.com/sn/detours

Abstract
Innovative systems research hinges on the

ability to easily instrument and extend existing
operating system and application functionality.
With access to appropriate source code, it is often
trivial to insert new instrumentation or extensions
by rebuilding the OS or application. However, in
today’s world of commercial software,
researchers seldom have access to all relevant
source code.

We present Detours, a library for
instrumenting arbitrary Win32 functions on x86
machines. Detours intercepts Win32 functions by
re-writing target function images. The Detours
package also contains utilities to attach arbitrary
DLLs and data segments (called payloads) to any
Win32 binary.

While prior researchers have used binary
rewriting to insert debugging and profiling
instrumentation, to our knowledge, Detours is the
first package on any platform to logically
preserve the un-instrumented target function
(callable through a trampoline) as a subroutine
for use by the instrumentation. Our unique
trampoline design is crucial for extending existing
binary software.

We describe our experiences using Detours to
create an automatic distributed partitioning
system, to instrument and analyze the DCOM
protocol stack, and to create a thunking layer for
a COM-based OS API. Micro-benchmarks
demonstrate the efficiency of the Detours library.

1. Introduction

Innovative systems research hinges on the
ability to easily instrument and extend existing
operating system and application functionality
whether in an application, a library, or the
operating system DLLs. Typical reasons to
intercept functions are to add functionality,
modify returned results, or insert instrumentation
for debugging or profiling. With access to
appropriate source code, it is often trivial to insert
new instrumentation or extensions by rebuilding
the OS or application. However, in today’s world
of commercial development and binary-only
releases, researchers seldom have access to all
relevant source code.

Detours is a library for intercepting arbitrary
Win32 binary functions on x86 machines.
Interception code is applied dynamically at
runtime. Detours replaces the first few
instructions of the target function with an
unconditional jump to the user-provided detour
function. Instructions from the target function are
preserved in a trampoline function. The
trampoline function consists of the instructions
removed from the target function and an
unconditional branch to the remainder of the
target function. The detour function can either
replace the target function or extend its semantics
by invoking the target function as a subroutine
through the trampoline.

Detours are inserted at execution time. The
code of the target function is modified in memory,
not on disk, thus facilitating interception of binary
functions at a very fine granularity. For example,
the procedures in a DLL can be detoured in one
execution of an application, while the original
procedures are not detoured in another execution

The original publication of this paper was granted to
USENIX. Copyright to this work is retained by the authors.
Permission is granted for the noncommercial reproduction
of the complete work for educational or research purposes.
Published in Proceedings of the 3rd USENIX Windows NT
Symposium. Seattle, WA, July 1999.

PALO ALTO NETWORKS Exhibit 1012 Page 1f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1012 Page 2

nmning at the same time. Unlike DLL re-linking
or static redirection, the interception techniques
used in the Detours library are guaranteed to work
regardless of the method used by application or
system code to locate the target ftmction.

While others have used binary rewriting for
debugging and to inline instmmenta.tion, Detours
is a general-purpose package. To our knowledge,
Detours is the first package on any platfotm to
logically preserve the tm-instnunented target
function as a subroutine callable through the
trampoline. Prior systems logically prepended the
instmmentation to the target, but did not make the
original target's fimctionality available as a
general subroutine. Our unique trampoline design
is cmcial for extending existing bimuy software.

In addition to basic detour ftmctionality,
Detours also includes ftmctions to edit the DLL
import table of any binary, to attach arbitrary data
segments to existing binaries, and to inject a DLL
into either a new or an existing process. Once
injected into a process, the instrumentation DLL
can detour any Win32 ftmction, whether in the
application or the system libraries.

The following section describes how Detours
works. Section 0 outlines the usage of the
Detours library. Section 4 describes altemative
fimction-interception techniques and presents a
micro-benchmark evaluation of Detours. Section
5 details the usage of Detours to produce
distributed applications from local applications, to
quantify DCOM overheads, to create a thunking
layer for a new COM-based Win32 API, and to
implement first chance exception handling. We
compare Detours with related work in Section 6
and summarize our contributions in Section 7.

2. Implementation

Detours provides three important sets of
ftmctionality: the ability to intercept arbitrary
Win32 binary fimctions on x86 machines, the
ability to edit the import tables of bina1y files , and
the ability to attach arbitrary data segments to
binary files. We will describe the implementation
of each of these fimctionalities.

2.1. Interception of Binary Functions

The Detours libra1y facilitates the interception
of ftmction calls. Interception code is applied

2

dynamically at mntime. Detours replaces the first
few instructions of the target function with an
unconditional jtunp to the user-provided detour
function . Instructions from the target ftmction are
preserved in a trampoline function. The
trampoline consists of the instmctions removed
from the target function and an unconditional
branch to the remainder of the target ftmction.

When execution reaches the target fimction,
control jumps directly to the user-supplied detour
function. The detour function perfonns whatever
interception preprocessing is appropriate. The
detour function can retum control to the source
function or it can call the trampoline fimction,
which invokes the target function without
interception. When the target ftmction completes,
it returns control to the detour ftmction. The
detour fimction perfonns appropriate
postprocessing and returns control to the source
fimction. Figure 1 shows the logical flow of
control for fimction invocation with and without
interception.

Invocation without interception:

Invocation with interception:

Figure 1.
interception.

Invocation with and without

The Detours libra1y intercepts target fimctions
by rewriting their in-process binaty image. For
each target fimction, Detours actual rewrites two
functions: the target fimction and the matching
trampoline fimction. The trampoline function can
be allocated either dynamically or statically. A
statically allocated trampoline always invokes the
target ftmction witl10ut the detour. Prior to
insertion of a detour, the static trampoline
contains a single jump to the target. After
insertion, the trampoline contains the initial

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1012 Page 3

instmctions ti'om the target ftmction and a jmnp to
the remainder of the target ftmction.

Statically allocated trampolines are extremely
useful for instmmentation programmers. For
example, in Coign [7], invoking the Co i gn _Co ­
Createinstance trampoline is equivalent to
invoking the original CoCreateinstance
ftmction without instmmentation. Coign intemal
ftmctions can call Count CoCreate­
Ins tance at any time to create a new
component instance without concem for whether
or not the original ftmction has been rerouted with
a detom.

; ; Target FUnction ; ; Target FUnction

Target Function: a rgetFunction:
push ebp jmp DetourFunction
mov ebp,esp
push ebx
push esi a rgetFunctio n+5:
push edi push edi

; ; Trampoline ; ; Trampoline

TrampolineFunction: rampolineFunction:
jmp TargetFunct ion push ebp

mov ebp,esp
push ebx
push esi
jmp TargetFunction+5

Figme 2. Trampoline and target ftmctions, before
and after insertion of the detom (left and right).

Figure 2 shows the insertion of a detom. To
detom a target ftmction, Detours first allocates
memory for the dynamic trampoline ftmction (if
no static trampoline is provided) and then enables
write access to both the target and the trampoline.
Statting with the first instmction, Detours copies
instmctions from the target to the trampoline until
at least 5 bytes have been copied (enough for an
unconditional jump instmction). If the target
ftmction is fewer than 5 bytes, Detours aborts and
retmns an error code. To copy instmctions,
Detours uses a simple table-driven disassembler.
Detours adds a jump instmction ti'om the end of
the trampoline to the first non-copied instmction
of the target ftmction. Detours writes an
tmconditional jmnp instruction to the detour
ftmction as the first instmction of the target
function. To finish, Detoms restores the original
page permissions on both the target and

3

trampoline ftmctions and flushes tl1e CPU
instmction cache with a call to Flush­
Instruct ionCache.

2.2. Payloads and DLL Import Editing

While a nmnber of tools exist for editing binaty
files [10, 12, 13, 17], most systelllS research
doesn't require such heavy-handed access to
binary files. Instead, it is oft.en sufficient to add
an extra DLL or data segment to an application or
system binaty file. In addition to detom
ftmctions, the Detoms library also contains ft1lly
reversible support for attaching arbitraty data
segments, called payloads, to Win32 binaty files
and for editing DLL impmt tables.

Figm·e 3 shows the basic stmctme of a Win32
Portable Executable (PE) binaty file. The PE
fmmat for Win32 binaries is an extension of
COFF (the Common Object File Format). A
Win32 binaty consists of a DOS compatible
header, a PE header, a text section containing
program code, a data section containing initialized
data, an import table listing any imported DLLS
and ftmctions, an export table listing functions
expmt ed by the code, and debug symbols. With
the exception of the two headers, each of the other
sections of the file is optional and may not exist in
a given binaty.

Start of File
DOS Header

PB (w/ COFF) Header

.text Section
Program Code

.data Section
Initialized Data

.idata Section
Import Table

.edata Section
Export Table

Debug Symbols

End of File

Figme 3. Fmmat of a Win32 PE binaty file.

To modify a Win32 binaty, Detours creates a
new . detours section between the export table
and the debug symbols. Note that debug symbols
must always reside last in a Win32 binaty. The
new section contains a detoms header record and

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 4

a copy of the original PE header. If modifying the
import table, Detours creates the new import
table, appends it to the copied PE header, then
modifies the original PE header to point to the
new import table. Finally, Detours writes any
user payloads at the end of the .detours
section and appends the debug symbols to finish
the file. Detours can reverse modifications to the
Win32 binary by restoring the original PE header
from the .detours section and removing the
.detours section. Figure 4 shows the format of
a Detours-modified Win32 binary.

Creating a new import table serves two
purposes. First, it preserves the original import
table in case the programmer needs to reverse all
modifications to the Win32 file. Second, the new
import table can contain renamed import DLLs
and functions or entirely new DLLs and functions.
For example, Coign [7] uses Detours to insert an
initial entry for coignrte.dll into each
instrumented application. As the first entry in the
applications import table, coignrte.dll
always is the first DLL to run in the application’s
address space.

 Start of File

End of File

DOS Header
 PE (w/COFF) Header
 .text Section

Program Code

.data Section
Initialized Data

.idata Section
unused Import Table

.edata Section

Export Table

.detours Section
detour header

original PE header
new import table
user payloads

Debug Symbols

Figure 4. Format of a Detours-modified binary
file.

Detours provides functions for editing import
tables, adding payloads, enumerating payloads,
removing payloads, and rebinding binary files.
Detours also provides routines for enumerating
the binary files mapped into an address space and

locating payloads within those mapped binaries.
Each payload is identified by a 128-bit globally
unique identifier (GUID). Coign uses Detours to
attach per-application configuration data to
application binaries.

In cases where instrumentation need be
inserted into an application without modifying
binary files, Detours provides functions to inject a
DLL into either a new or an existing process. To
inject a DLL, Detours writes a LoadLibrary
call into the target process with the Virtual-
AllocEx and WriteProcessMemory APIs
then invokes the call with the CreateRemote-
Thread API.

3. Using Detours

The code fragment in Figure 5 illustrates the
usage of the Detours library. User code must
include the detours.h header file and link with
the detours.lib library.

#include <windows.h>
#include <detours.h>

VOID (*DynamicTrampoline)(VOID) = NULL;

DETOUR_TRAMPOLINE(
 VOID WINAPI SleepTrampoline(DWORD),
 Sleep
);

VOID WINAPI SleepDetour(DWORD dw)
{
 return SleepTrampoline(dw);
}

VOID DynamicDetour(VOID)
{
 return DynamicTrampoline();
}

void main(void)
{
 VOID (*DynamicTarget)(VOID) = SomeFunction;

 DynamicTrampoline
 =(FUNCPTR)DetourFunction(
 (PBYTE)DynamicTarget,
 (PBYTE)DynamicDetour);

 DetourFunctionWithTrampoline(
 (PBYTE)SleepTrampoline,
 (PBYTE)SleepDetour);

 // Execute the remainder of program.

 DetourRemoveTrampoline(SleepTrampoline);
 DetourRemoveTrampoline(DynamicTrampoline);
}
Figure 5. Sample Instrumentation Program.

PALO ALTO NETWORKS Exhibit 1012 Page 4f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

 5

Trampolines may be created either statically or
dynamically. To intercept a target function with a
static trampoline, the application must create the
trampoline with the DETOUR_TRAMPOLINE
macro. DETOUR_TRAMPOLINE takes two
arguments: the prototype for the static trampoline
and the name of the target function.

Note that for proper interception the prototype,
target, trampoline, and detour functions must all
have exactly the same call signature including
number of arguments and calling convention. It is
the responsibility of the detour function to copy
arguments when invoking the target function
through the trampoline. This is intuitive as the
target function is just a subroutine callable by the
detour function.

Using the same calling convention insures that
registers will be properly preserved and that the
stack will be properly aligned between detour and
target functions.

Interception of the target function is enabled by
invoking the DetourFunctionWith-
Trampoline function with two arguments: the
trampoline and the pointer to the detour function.
The target function is not given as an argument
because it is already encoded in the trampoline.

A dynamic trampoline is created by calling
DetourFunction with two arguments: a
pointer to the target function and a pointer to the
detour function. DetourFunction allocates a
new trampoline and inserts the appropriate
interception code in the target function.

Static trampolines are extremely easy to use
when the target function is available as a link
symbol. When the target function is not available
for linking, a dynamic trampoline can be used.
Often a function pointer to the target function can
be acquired from a second function. For those
times, when a pointer to the target function is not
readily available, DetourFindFunction can
find the pointer to a function when it is either
exported from a known DLL, or if debugging
symbols are available for the target function’s
binary1.
DetourFindFunction accepts two

arguments, the name of the binary and the name

1 Microsoft ships debugging symbols for the entire Windows
NT operation system as part of the retail release. These
symbols can be found in the \support\symbols
directory on the OS distribution media.

of the function. DetourFindFunction returns
either a valid pointer to the function or NULL if
the symbol for the function could not be found.
DetourFindFunction first attempts to locate
the function using the Win32 LoadLibrary and
GetProcAddress APIs. If the function is not
found in the export table of the DLL, Detour-
FindFunction uses the ImageHlp library to
search available debugging symbols. The
function pointer returned by DetourFind-
Function can be given to DetourFunction
to create a dynamic trampoline.

Interception of a target function can be
removed by invoking the DetourRemove-
Trampoline function.

Note that because the functions in the Detours
library modify code in the application address
space, it is the programmer’s responsibility to
ensure that no other threads are executing in the
address space while a detour is inserted or
removed. An easy way to insure single-threaded
execution is to call functions in the Detours
library from a DllMain routine.

4. Evaluation

Several alternative techniques exist for
intercepting function calls. Alternative
interception techniques include:

Call replacement in application source code.
Calls to the target function are replaced with calls
to the detour function by modifying application
source code. The major drawback of this
technique is that it requires access to source code.

Call replacement in application binary code.
Calls to the target function are replaced with calls
to the detour function by modifying application
binaries. While this technique does not require
source code, replacement in the application binary
does require the ability to identify all applicable
call sites. This requires substantial symbolic
information that is not generally available for
binary software.

DLL redirection. If the target function resides
in a DLL, the DLL import entries in the binary
can be modified to point to a detour DLL.
Redirection to the detour DLL can be achieved by
either replacing the name of the original DLL in
the import table before load time or replacing the
function addresses in the indirect import jump

PALO ALTO NETWORKS Exhibit 1012 Page 5f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

