
PALO ALTO NETWORKS Exhibit 1009 Page 1

111111 111

United States Patent [19J

Ji

[54] COMPUTER NETWORK MALICIOUS CODE
SCANNER

[75] Inventor: Shuang Ji, Santa Clara, Calif.

[73] Assignee: Trend Micro Incorporated, Cupertino,
Calif.

[21] Appl. No.: 08/926,619

[22]

[51]
[52]
[58]

[56]

Filed: Sep. 10, 1997

Int. Cl.6
.. G06F 13/00

U.S. Cl. ... 713/200; 714/38
Field of Search 395/186, 187.01,

395/188.01, 183.14, 183.13, 200.54, 200.55,
200.32; 380/3, 4, 23, 25; 713/200, 201,

202; 714/38, 37

References Cited

U.S. PATENT DOCUMENTS

5,257,381 10/1993 Cook 395/700
5,359,659 10/1994 Rosenthal 380/4

I Prefetcher

JAR

I Verify Signature

I Unpacker

Class files---< D

I Parser

~ ~ ~
I lnstrumenter

Class files--< D!
I

Packer

JAR'

I Signer

JAR"

I Client

US005983348A

[11] Patent Number:

[45] Date of Patent:

5,983,348
Nov. 9,1999

5,390,232
5,623,600
5,805,829

2/1995 Freeman et a!. 379/15
4/1997 Ji et a!. 395/187.01
9/1998 Cohen et a!. 395/200.32

Primary Examiner-Norman Michael Wright
Attorney, Agent, or Firm---Skjerven, Morrill MacPherson,
Franklin & Friel LLP; Norman R. Klivans

[57] ABSTRACT

A network scanner for security checking of application
programs (e.g. Java applets or Active X controls) received
over the Internet or an Intranet has both static (pre-run time)
and dynamic (run time) scanning. Static scanning at the
HTTP proxy server identifies suspicious instructions and
instruments them e.g. a pre-and-post filter instruction
sequence or otherwise. The instrumented applet is then
transferred to the client (web browser) together with security
monitoring code. During run time at the client, the instru­
mented instructions are thereby monitored for security
policy violations, and execution of an instruction is pre­
vented in the event of such a violation.

34 Claims, 2 Drawing Sheets

Applet

38 Securing Policy
Generator

40 5
1
4

Monitoring
Package

42

44

48

50

58
-26

Scanner

14

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1009 Page 2

U.S. Patent Nov. 9,1999 Sheet 1 of 2 5,983,348

20
;

Server Machine
32
; 10

HTTP Proxy Server (

26
;

Scanner
Applet

Internet I

14
;

Client Machine
22
;

Web Browser

30
;

Local Resources

FIG. 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1009 Page 3

U.S. Patent Nov. 9,1999 Sheet 2 of 2 5,983,348

A I t pp e

I Prefetcher 38 Securing Policy

JAR
Generator

I
I

Verify Signature 40 54

Monitoring

I
Package

Unpacker 42

Class files -----<:r-- p

I Parser 44

I lnstrumenter 48

Class files-----<:- [:)

I
Packer 50

JAR'

I Signer 58
JAR" ---26

Scanner

I Client 14

FIG. 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1009 Page 4

5,983,348
1

COMPUTER NETWORK MALICIOUS CODE
SCANNER

FIELD OF THE INVENTION

2
Finjan, and Cage from Digitivity, Inc. SurfinShield is a
client-side (user) solution. A copy of SurfinShield must be
installed on every computer which is running a web browser.
SurfinShield replaces some of the Java library functions

This invention pertains to computer networks and spe­
cifically to detecting and preventing operation of computer
viruses and other types of malicious computer code.

5 included in the browser that may pose security risks with its
own. This way, it can trap all such calls and block them if
necessary.

BACKGROUND SurfinShield provides run-time monitoring. It introduces
almost no performance overhead on applet startup and

10 execution. It is able to trap all security breach attempts, if a
correct set of Java library functions is replaced. However, it
is still difficult to keep track of the states of individual
applets if a series of actions must be performed by the
instances before they can be determined dangerous this way,

With the rapid development of the Internet, Intranet, and
network computing, applications (application programs) are
distributed more and more via such networks, instead of via
physical storage media. Many associated distribution tech­
nologies are available, such as Java and Active X. Therefore
objects with both data and code flow around the network and
have seamless integration with local computer resources.
However, this also poses a great security risk to users. Code
(software) from unknown origin is thereby executed on local
computers and given access to local resources such as the
hard disk drive in a user's computer. In a world wide web

20
browser environment, such code is often automatically
executed and the user might not even have a chance to be
forewarned about any security risks (e.g. presence of com­
puter viruses) he bears. Attempts have been made to reduce
such risks; see Ji et al., U.S. Pat. No. 5,623,600, incorporated

25
by reference in its entirety.

15 because the scanner is activated rather passively by the
applets.

Active X technology, like Java, distributes code that can
access local system resources directly. The web browser
cannot monitor or block such accesses. Such an applet
(application) can do virtually anything that a conventional

30
program, for instance, a virus, is capable of doing. Microsoft
Corp. and others have attempted to address this problem by
using digital signature technology, whereby a special algo­
rithm generates a digital profile of the applet. The profile is
attached to the applet. When an applet is downloaded from

35
the Internet, a verification algorithm is run on the applet and
the digital profile to ensure that the applet code has not been
modified after the signing. If an applet is signed by a known
signature, it is considered safe.

However, no analysis of the code is done to check the 40
behavior of the applet. It is not difficult to obtain a signature
from a reputable source, since the signature can be applied
for online. It has occurred that a person has created an Active
X applet that was authenticated by Microsoft but contains
malicious code. (Malicious code refers to viruses and other 45
problematic software. A virus is a program intended to
replicate and damage operation of a computer system with­
out the user's knowledge or permission. In the Internet/Java
environment, the replication aspect may not be present,
hence the term "malicious code" broadly referring to such 50
damaging software even if it does not replicate.)

Since every computer in an organization needs a copy of
the SurfinShield software, it is expensive to deploy. Also,
installing a new release of the product involves updating on
every computer, imposing a significant administrative bur­
den.

Because SurfinShield replaces library functions of
browsers, it is also browser-dependent; a minor browser
upgrade may prevent operation. SufinGate is a server solu­
tion that is installed on an HTTP proxy server. Therefore,
one copy of the software can protect all the computers
proxied by that server. Unlike SufinShield, SurfinGate only
scans the applet code statically. If it detects that one or more
insecure functions might be called during the execution of
the applet, it blocks the applet. Its scanning algorithm is
rather slow. To solve this problem, SurfinGate maintains an
applet profile database. Each applet is given an ID which is
its URL. Once an applet is scanned, an entry is added to the
database with its applet ID and the insecure functions it
might try to access. When this applet is downloaded again,
the security profile is taken from the database to determine
the behavior of the applet. No analysis is redone. This means
that if a previously safe applet is modified and still has the
same URL, SurfinGate will fail to rescan it and let it pass
through. Also, because the size of the database is ever-
growing, its maintenance becomes a problem over time.

Cage is also a server solution that is installed on an HTTP
proxy server, and provides run-time monitoring and yet
avoids client-side installations or changes. It is similar to X
Windows. All workstations protected by the server serve as
X terminals and only provide graphical presentation func­
tionality. When an applet is downloaded to Cage, it stops at
the Cage server and only a GUI (graphical user interface)
agent in the form of an applet is passed back to the browser.
The applet is then run on the Cage server. GUI requests are
passed to the agent on the client, which draws the presen­
tation for the user. Therefore, it appears to users that the
applets are actually running locally.

This approach creates a heavy load on the server, since all
the applets in the protected domain run on the server and all
the potentially powerful computers are used as graphical
terminals only. Also, reasonable requests to access local
resources (as in Intranet applications) are almost impossible
to honor because the server does not have direct access to
resources on individual workstations.

Java being an interpreted language, Java code can be
monitored at run-time. Most web browsers block attempts to
access local resources by Java applets, which protects the
local computer to a certain extent. However, as the popu- 55
larity of Intranets (private Internets) increases, more and
more applets need to have access to local computers. Such
restrictions posed by the web browsers are becoming rather
inconvenient. As a result, web browsers are relaxing their
security policies. Netscape Communicator is a web browser 60
that now gives users the ability to selectively run applets
with known security risks. Again, decisions are made based These products fail to create any balance between static

scanning and run-time monitoring. SurfinShield employs
run-time monitoring, SurfinGate uses static scanning, and

65 Cage utilizes emulated run-time monitoring. Since static
scanning is usually done on the server and run-time moni­
toring on the client, this imbalance also causes an imbalance

on trust, with no code analysis done.
Hence scanning programs with the ability to analyze and

monitor applets are in need to protect users.
At least three Java applet scanners are currently available

commercially: SurfinShield and SurfinGate, both from

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PALO ALTO NETWORKS Exhibit 1009 Page 5

5,983,348
3

between the load of the server and the client. To distribute
the load between the client and the server evenly, the present
inventor has determined that a combination of static scan­
ning and run-time monitoring is needed.

SUMMARY

This disclosure is directed to an applet scanner that runs
e.g. as an HTTP proxy server and does not require any
client-side modification. The scanner combines static scan­
ning and run-time monitoring and does not cause a heavy
load on the server. It also does not introduce significant
performance overhead during the execution of applets. The
scanner provides configurable security policy functionality,
and can be deployed as a client-side solution with appro­
priate modifications.

Thereby in accordance with the invention a scanner (for
a virus or other malicious code) provides both static and
dynamic scanning for application programs, e.g. Java
applets or ActiveX controls. The applets or controls
(hereinafter collectively referred to as applets) are conven­
tionally received from e.g. the Internet or an Intranet at a
conventional server. At this point the applets are statically
scanned at the server by the scanner looking for particular
instructions which may be problematic in a security context.
The identified problematic instructions are then each
instrumented, e.g. special code is inserted before and after
each problematic instruction, where the special code calls
respectively a prefilter and a post filter. Alternatively, the
instrumentation involves replacing the problematic instruc­
tion with another instruction which calls a supplied function.

The instrumented applet is then downloaded from the
server to the client (local computer), at which time the applet
code is conventionally interpreted by the client web browser
and it begins to be executed. As the applet code is executed,
each instrumented instruction is monitored by the web
browser using a monitor package which is part of the
scanner and delivered to the client side. Upon execution,
each instrumented instruction is subject to a security check.
If the security policy (which has been pre-established) is
violated, that particular instruction which violates the secu­
rity policy is not executed, and instead a report is made and
execution continues, if appropriate, with the next instruc­
tion.

More broadly, the present invention is directed to deliv­
ering what is referred to as a "live agent" (e.g., a security
monitoring package) along with e.g. an applet that contains
suspicious instructions during a network transfer (e.g. down­
loading to a client), the monitoring package being intended

4
Only the application modules are distributed, and all the
standard library functions are provided by the interpreter, for
instance a web browser. Because Java byte code is platform­
independent, applets have to use some of the standard library

5 functions to access operating system resources.

This creates two opportunities in accordance with the
invention to detect attempts to use operating system
resources. First, one can "trick" applets into calling particu­
lar functions supplied by the scanner during the dynamic

10 linking stage. This is done by replacing the browser Java
library routines with the scanner's monitoring routines of the
same name. Second, since invocations of such functions
have to be resolved at run-time, symbolic names of these
functions are kept in the Java applet module. The scanner

15 can detect possible use of these functions by looking at the
static code itself. The first opportunity provides run-time
monitoring. It is the most definitive method to determine the
security risks posed by an applet.

The second opportunity enables statically scanning an
20 applet, without running it, to detect possible security risks.

If a set of insecure functions is properly defined and an
applet never calls any function in the set, the applet can be
assumed to be safe. However, this static scanning method is
not definitive, since an applet might show different behavior

25 . g1ven different user input. Under certain conditions, the

30

instruction in the applet that makes the function call may
never be executed. If static scanning is used without run­
time monitoring, many such "false alarms" of security risks
are produced undesirably.

After the code of an applet is downloaded, e.g. via the
Internet to a client platform (local computer), an instance of
the applet is created in the conventional Java "virtual
machine" in the web browser (client) running on that local

35
computer. Different instances of the same applet might
produce different results given different inputs. A running
instance of an applet is conventionally called a session;
sessions are strictly run-time entities. Static scanning cannot
analyze sessions because static scanning does not let the

40
applet run. Sessions are important because an instance of an
applet will often perform a series of suspicious tasks before
it can be determined dangerous (i.e., in violation of the
security policy). Such state information needs to be associ­
ated with the sessions. The present applet scanner thereby

45
stops sessions instead of blocking execution of the entire
applet.

to prevent execution of the suspicious instructions. The 50

suspicious instructions each may (or may not) be instru­
mented as described above; the instrumentation involves
altering suspicious instructions such as by adding code (such

A security policy defines what functions an applet needs
to perform to be considered a security risk. Examples of
security policies include preventing(!) applets from any file
access, or (2) file access in a certain directory, or (3) creating
certain Java objects. An applet scanner in accordance with
the invention may allow different security policies for dif-
ferent clients, for different users, and for applets from
different origins. as the pre-and post-filter calls) or altering the suspicious

instructions by replacing any suspicious instructions with 55

other instructions.

FIG. 1 is a high level block diagram illustrating the
present scanner in the context of conventional elements. The
Internet (or an Intranet) is shown generally at 10. The client
machine or platform (computer) 14, which is typically a
personal computer, is connected to the Internet 10 via a

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows diagramatically use of a scanner in accor­
dance with this invention.

FIG. 2 shows detail of the FIG. 1 scanner.

DETAILED DESCRIPTION

Several characteristics of the well known Java language
and applets are pertinent to the present scanning method and
apparatus. Java is an interpreted, dynamic-linking language.

60 conventional proxy server machine (computer) 20. Client
machine 14 also includes local resources 30, e.g. files stored
on a disk drive. A conventional web browser 22 is software
that is installed on the client machine 14. It is to be
understood that each of these elements is complex, but

65 except for the presently disclosed features is conventional.
Upon receipt of a particular Java applet, the HTTP proxy

server 32, which is software running on server machine 20

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

