
Patent Owner Finjan, Inc. — Ex. 2008, p. lf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Patent Owner Finjan, Inc. — Ex. 2008, p. 2f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Chapter 9

MEMORY

MANAGEMENT

In Chapter 6, we showed how the CPU can be shared by a set of processes. As
a result of CPU sched uling, we can improve both the utilization of the CPU and
the speed of the computer's response to its users. To realize this increase in

performance, however, we must keep several processes in memory; that is, we
must shzzre memory.

In this chapter, we discuss various ways to manage memory. The memory-
management algorithms vary from a primitive bare-machine approach to pag-
ing and segmentation strategies. Each approach has its own advantages and
disadvantages. Selection of a memory—management method for a specific sys-
tem depends on many factors, especially on the hardware design of the system.
As we shall see, many algorithms require hardware support, although recent
designs have closely integrated the hardware and operating system.

9.1 I Background

As we saw in Chapter 1, memory is central to the operation of a modern
computer system. Memory consists of a large array of words or bytes, each

with its own address. The CPU fetches instructions from memory according
to the value of the program counter. These instructions may cause additional
loading from and storing to specific memory addresses.

A typical instruction-execution cycle, for example, first fetches an instruc-

tion from memory. The instruction is then decoded and may cause operands
to be fetched from memory. After the instruction has been executed on the

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

274 Chapter 9 Memory Management

operands, results may be stored back in memory. The memory unit sees only a
stream of memory addresses; it does not know how they are generated (by the
instruction counter, indexing, indirection, literal addresses, and so on) or What

they are for (instructions or data). Accordingly, we can ignore how a memory
address is generated by a program. We are interested in only the sequence of
memory ad dresses generated by the running program.

9.1.1 Address Binding

Usually, a program resides on a disk as a binary executable file. The program
must be brought into memory and placed within a process for it to be executed.
Depending on the memory management in use, the process may be moved
between disk and memory during its execution. The collection of processes
on the disk that is waiting to be brought into memory for execution forms the
input queue.

The normal procedure is to select one of the processes in the input queue
and to load that process into memory. As the process is executed, it accesses
instructions and data from memory. Eventually, the process terminates, and its
memory space is declared available.

Most systems allow a user process to reside in any part of the physical mem-
ory. Thus, although the address space of the computer starts at 00000, the first

address of the user process does not need to be 00000. This arrangement affects
the addresses that the user program can use. In most cases, a user program
will go through several steps—some of which may be optional——before being
executed (Figure 9.1). Addresses may be represented in different ways during
these steps. Addresses in the source program are generally symbolic (such as
Count). A compiler will typically bind these symbolic addresses to relocatable.
addresses (such as “14 bytes from the beginning of this module”). The link-
age editor or loader will in turn bind these relocatable addresses to absolute

addresses (such as 74014). Each binding is a mapping from one address space
to another.

Classically, the binding of instructions and data to memory ad dresses can
be done at any step along the way:

0 Compile time: If you know at compile time where the process will reside

in memory, then absolute code can be generated. For example, if you know
a priori that a user process resides starting at location R, then the generated
compiler code will start at that location and extend up from there. If, at

some later time, the starting location changes, then it will be necessary to
recompile this code. The MS—DOS COM-format programs are absolute code
bound at compile time.

Load time: If it is not known at compile time where the process will reside
in memory, then the compiler must generate relocatable code. in this case,

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ogrann
-cuted.

\ oved
ncesses

nnsthe

queue
cesses

and its

I mem-

l e first
affects

ogram

being
during
uch as

atable ‘
e link-
: solute

. space

ES can

9.1 Background 275

source

program

compiler or
assembler

other

object

 al|y
loaded _
system .

library in-memory
binary

memory
image

execution

p time (run
time)

Figure 9.1 Multistep processing of a user program.

final binding is delayed until load time. If the starting address changes, we
need only to reload the user code to incorporate this changed Value.

Execution time: If the process can be moved during its execution from

one memory segment to another, then binding must be delayed until run
time. Special hardware must be available for this scheme to work, as will

be discussed in Section 9.1.2. Most general-purpose operating systems use
this method.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

