# Cyberwar: The What, When, Why, and How

yberwar is insidious, invisible to most, and is fought out of sight. It takes place in cyberspace, a location that cannot be seen, touched, nor felt. Cyberspace has been defined as the fifth domain of war [1]. We can see the physical instruments, such as computers, routers, cables, however these instruments interact in a virtual and unseen realm. This facilitates a reach that can extend from one part of the world to attacks on public or private sector entities in another part of the world, while

perpetrator remains unknown in a legally provable sense. The defining questions for life in the 21st century may be: what is cyberwar? Will we know it when we see it? If so, what do we do in response?

The lack of precision in the terminology helps to cloud the issue. Terms such as cybercrime, cyberespionage and cyberattack are often used interchangeably. We speak of hackers, cybercriminals, and

cyberterrorists as if they were identical. In many cases, they may be, or at least they may be closely related. The term cyberwar has been used in a variety of different contexts. Since war itself is generally considered as a military enterprise, cyberwar has often been linked to a conceptual framework associated with traditional notions of warfare. These notions generally involve force, physical harm, and violence. In this work, we examine the challenges this definition presents in a 21st century cyber-connected and cyber-dependent world, and we propose an expanded conceptual framework for cyberwar.

Underlying factors, such as the level of activity or behavior involved in cyberwar, and how many or what type of cyberattacks it takes for it to be defined as a cyberwar, become important. In recognizing the role that cyberattacks will play in future military conflicts,

Digital Object Identifier 10.1109/MTS.2014.2345196

two threshold requirements have been identified when nation-states assess the consequences and their potential response. First, what is the threshold for considering a cyber-event an act of war or comparable to the use of force? Second (which will not be addressed in this article), what is the threshold between tactical and strategic applications of cyberattacks [2]?

This evolution of war is particularly important when addressing cyberwar, which can include both kinetic and non-kinetic activities. Kinetic activities are associated

> with motion. In the military arena, this typically includes armed attacks, bombs dropping, etc. Non-kinetic cyberwar actions are typically directed towards targeting any aspect of an opponent's cyber systems such as communications, logistics, or intelligence. When used in conjunction with a kinetic battle, non-kinetic cyber activities can include disruption of an opponent's logistical supply chain or

diversion of essential military supplies. Other types of non-kinetic cyber activity can include the destabilization of a government's financial system, interference with a government's computer systems, or infiltrating a computer system for the purposes of espionage. The ongoing debate discusses the extent to which these non-kinetic activities should be considered as cyberwarfare when they are not associated with an actual physical battle.

#### How Can Cyberwar Be Defined?

Efforts have been made to address the definition of cyberwar. The recently completed *Tallinn Manual on International Law Applicable in Cyberwarfare* [3] was developed at the request of the North Atlantic Treaty Organization (NATO) and the Cooperative Cyber Defense Center of Excellence (CCD-COE). The difficulty is that nation-states and non-state actors do not always follow laws when it comes to war. More importantly, increases in asymmetrical warfare, and the expo-

Cyberwar is insidious and is fought out of sight, invisible to most.

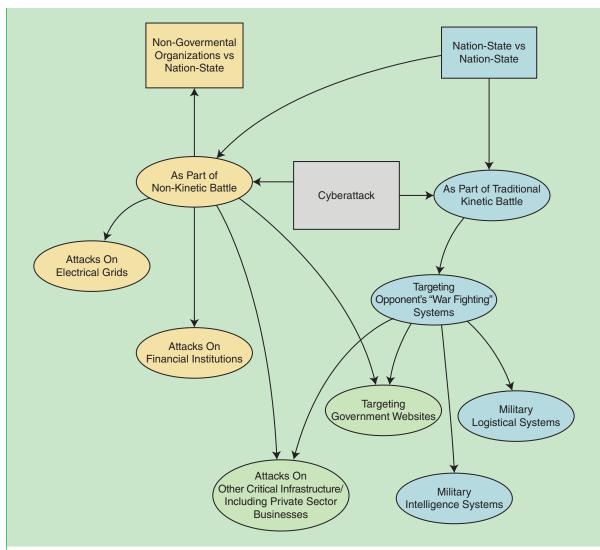



Fig. 1. Cyberattacks and organizational typology.

attacks in cyberspace more prevalent. In this type of environment, the impact of a Law of Cyberwarfare, as a regulatory mechanism, may therefore be limited. The *Tallinn Manual* defines cyberwar as a cyberattack, in either an offensive or defensive cyber operation, that is reasonably expected to cause death to persons, damage, or cause destruction to objects. Excluded from this definition, are psychological cyber-operations or cyberespionage [3]. A major drawback with this definition is its use of the term cyberattack, which is often synonymous with cyberwar and with the accompanying narrow definition of cyberwar. For example, it excludes cyber-operations designed to destabilize a nation-state's financial system, since the attack did not directly result in death or physical destruction.

Traditionally, violence has been viewed as a necessary correlate of a cyberattack, placing cyberwar within the context of an armed conflict. The focus was the equivalence of the effects of a cyberattack to the effects of an armed etteole using physical means [2]. This approach to cyberwar has been adapted by those who view cyberattacks in military campaigns as a motive to target an opponent's communications, intelligence, as well as other Internet or networkbased logistic operations [4]. The linkage of cyberwar with the use of force and armed conflict may be the current prevailing position in some international sectors. However, it fails to take into account the extent of non-physical damage that can be inflicted through cyberspace in a world that is becoming increasingly networked, up to and including nuclear facilities.

The Geneva Center for the Democratic Control of Armed Forces (DCAF) adopted a more inclusive definition of cyberattacks in its *DCAF Horizons* 2015 Working Paper. This definition distinguishes between state-sponsored and non-state-sponsored cyberattacks, and also includes cybervandalism, cybercrime, and cyberespionage within its definition of cyberattacks [1]. The DCAF defines cyber-

Find authenticated court documents without watermarks at docketalarm.com.

using information, communications technology, and networks, with the intention of disruption or destruction of the enemy's information and communications

systems. It is targeted at influencing the decision-making capacity of an opponent's political leadership and armed forces [1]. It is, therefore, distinguished in two key areas. First, it recognizes that there is a non-physical impact to cyberwar, and second, it recognizes the significance of political leaders in making this determination.

A pure military-target definition of cyberwar is no longer realistic in the context of modern geo-political instabilities and a global environment of asymmetrical warfare. When a smaller force is in conflict with a larger entity, an armed conflict will most likely not be successful for the smaller force. In addition, the reality of the conflict proves that the determinations of when a nation-state declares war, and the precursor interpretation of events leading up to that determination, are decisions made by its political leadership. As a result, the terms cyberattack and cyberwar must be decoupled so that cyberattacks are not defined exclusively in terms of the use or effect of physical force causing death, damage, or destruction. Or, if the terms cyberattack and cyberwar are going to continue to be synonymous, then it's important to acknowledge that cyberattacks, and hence cyberwar, can include non-kinetic cyber activity without a co-requirement of kinetic military action.

Table I

DOCKET

| Тор | 15 | Source | Countries | for Cy | berattacks i | n |
|-----|----|--------|-----------|--------|--------------|---|
| May | 20 | 13 [5] |           |        |              |   |

| Source of Attack                     | Number of Attacks |
|--------------------------------------|-------------------|
| Russian Federation                   | 1 153 032         |
| United States                        | 867 933           |
| Germany                              | 831 218           |
| Taiwan                               | 764 141           |
| Bulgaria                             | 358 505           |
| Hungary                              | 271 949           |
| Poland                               | 269 626           |
| China, The Peoples'<br>Republic of   | 254 221           |
| Italy                                | 205 196           |
| Argentina                            | 167 379           |
| Romania                              | 153 894           |
| Venezuela, Bolivarian<br>Republic of | 140 559           |
| Brazil                               | 140 281           |
| Colombia                             | 124 851           |
| Australia                            | 120 157           |

#### When Does Cyberwar Occur?

It is virtually impossible to identify every cyberattack that occurs. Some can operate undetected for

It is virtually impossible to identify every cyberattack that occurs. years. Others are brief, but still leave no detectable trace. This section describes a European-based effort aimed at measuring the frequency and source of attempted infiltrations over a onemonth period. It also describes a few selected global examples of cyberattacks. Growing concerns with the security of Supervisory Control and Data

Acquisition (SCADA) systems are discussed later in this article.

#### **Frequency of Cyberattacks**

Deutsche Telekom AG (DTAG), a German Telecommunications company, established a network of 97 sensors to serve as an early warning system to provide a real-time picture of ongoing cyberattacks. Although the majority of the sensors are located in Germany, DTAG also locates honeypots and sensors in other non-European countries. The top fifteen countries recorded as the source of cyberattacks by the DTAG sensors are listed in Table I. Approximately, 20% of the cyberattacks listed originated in the Russian Federation. The first four countries listed, including the U.S., Germany, and Taiwan, accounted for 62% of the cyberattacks represented. These instances provide a snapshot in time of attacks primarily targeted towards a particular geographic area, in this instance, Europe.

On a broader international and historical scale, the *DCAF Horizons 2015 Working Paper* describes historical instances of what they identify as cyber conflict and which clearly should be considered as cyberattacks. The attacks have been summarized in Table II. It should be noted that, for many of the cyberattacks described, the perpetrator is indicated as "alleged." This reflects the difficulty in ascertaining responsibility.

Of the fourteen cyberattacks described in Table II, five occurred within the context of an actual kinetic or "hot" war, one occurred within the context of a "cold" war, and the remainder occurred within the context of ongoing tensions between nation-states, or between a nation-state and non-state actors that may or may not have been supported by another nation-state. The temporal trend in these identified conflicts is the utilization of cyberattacks in the absence of a kinetic battle. When considered with the subsequent cyber occurrences described in Table III, the trend is towards attacks against a nation-state's critical infrastructure [24].

#### Why Does Cyberwar Occur?

For smaller nations, or terrorist organizations, the use of DDoS attacks are much cheaper to launch than con-

| Year                 | Perpetrator                                                     | Target                       | Incident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------|-----------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1982                 | United States                                                   | (then) Soviet<br>Union       | Embedded logic bombs caused malfunctions in<br>pump speeds and valve settings in oil pipelines<br>[note: The CIA "permitted" the software to be<br>stolen by the Soviets in Canada].                                                                                                                                                                                                                                                                                                                                           |
| 1991                 | United States                                                   | Iraq (first Iraq<br>War)     | Airstrikes against Iraq's command and control<br>systems, telecommunications systems, and<br>portions of its national infrastructure; supported<br>by communication and satellite systems.                                                                                                                                                                                                                                                                                                                                     |
| 1994                 | Pro-Chechen separatist movement and pro-<br>Russian forces      |                              | Both sides engaged in a virtual Internet war simultaneously with a kinetic ground war.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1997 – 2001          | (breakaway region of) Chechnya and the<br>Russian Federation    |                              | Simultaneous with a kinetic war – use of<br>Internet for propaganda by both sides.<br>Russia also accused of hacking into Chechen<br>websites.                                                                                                                                                                                                                                                                                                                                                                                 |
| 2002                 | Russian Federation<br>(alleged)                                 | Chechnya                     | The Russian Federal Security System allegedly<br>knocked out two Chechen websites hosted in the<br>U.S. immediately prior to the Russian Spetsnaz<br>Special Forces storming a Moscow theater that<br>was under siege by Chechen terrorists.                                                                                                                                                                                                                                                                                   |
| 1999 – 2002          | Israeli and Palestinian cyb                                     | erconflict                   | Israeli teen hackers launching a sustained<br>Distributed Denial of Service (DDoS) attack<br>that successfully jammed six websites operated<br>by the Hezbollah and Hamas organizations in<br>Lebanon and the Palestinian National Authority<br>In response, hackers attacked sites belonging to the<br>Israeli Parliament, the Ministry of Foreign Affairs,<br>and the Israeli Defense Force information site; later<br>striking the Israeli Prime Minister's Office, the Bank<br>of Israel, and the Tel Aviv Stock Exchange. |
| April – May,<br>2007 | Russian Federation<br>(alleged)                                 | Estonia                      | Series of DDoS attacks first against Estonian<br>government agencies, and then private sites an<br>servers. Some attacks lasted weeks. The botnet<br>utilized in the DDoS attacks employed up to<br>100 000 zombie PCs.                                                                                                                                                                                                                                                                                                        |
| August 2007          | The People's Republic of<br>China (alleged)                     | England<br>France<br>Germany | Intrusions into government networks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| September 6,<br>2007 | Israel                                                          | Syria                        | Israeli airstrike destroyed a nuclear reactor<br>under construction to process plutonium. It<br>is alleged that prior to the airstrike Syria's air<br>defense network was deactivated by Israel<br>activating a secret built-in switch.                                                                                                                                                                                                                                                                                        |
| June – July,<br>2008 | Russian nationalist<br>hackers                                  | Lithuania                    | Hacking of hundreds of Lithuanian government<br>and corporate websites some of which were<br>covered in digital Soviet-era graffiti.                                                                                                                                                                                                                                                                                                                                                                                           |
| August 2008          | Russian Federation<br>(attacks also launched<br>from Lithuania) | Georgia                      | Cyberattack directly coordinated with a kinetic<br>land, sea and air attack.<br>Main attack vectors: Botnets attacked Georgian<br>media, DDoS attacks targeted command and<br>control systems. DDoS, Structured Query<br>Language (SQL) injection, and cross-site<br>scripting (XSS).<br>Main targets: Government websites, financial<br>and educational institutions, business<br>associations, news media websites (including<br>the BBC and CNN).                                                                           |
| January 2009         | Russian Federation<br>(alleged)                                 | Kyrgyzstan                   | DDoS attacks focused on three of the four<br>Internet Service Providers (ISP) in Kyrgyzstan<br>disrupting all internet traffic. Russia was the<br>source of most of the DDoS attacks.                                                                                                                                                                                                                                                                                                                                          |

Table II History of Cybe

**DOCKET** A L A R M Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

| Year                | Perpetrator                                                                                                                                                                                                                 | Target                         | Incident                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| July 4 – 8,<br>2009 | Unknown – North Korea<br>has been suggested<br>since the attacks begin<br>on the date of a North<br>Korean missile test<br>launch and concluded<br>on the 15th anniversary<br>of the death of North<br>Korea's Kim II Sung. | South Korea &<br>United States | Coordinated attacks against South Korean<br>and U.S. government and business websites,<br>including the public websites for the U.S. stock<br>exchanges: New York Stock Exchange (NYSE)<br>and NASDAQ.<br>A botnet built using the early 2004 MyDoom<br>worm, and rudimentary DDoS attacks were<br>used. The attacks originated from 86 IP<br>addresses in 16 countries. |
| 2009 – 2010         | Unknown                                                                                                                                                                                                                     | Iran                           | Stuxnet, a cyber worm, caused damage to<br>centrifuges of Iran's nuclear reactors. Stuxnet<br>attacked and disabled Siemens type Supervisory<br>Control and Data Acquisition (SCADA) systems<br>in a manner that disguises the damage from the<br>operators until it is too late to correct.                                                                             |

greater resources in terms of weapons, money, and troops. Imagine a drone, not only intercepted, but also then re-routed back towards its originator. Fewer resources are required, but yet, on the other hand, increased specialized training is required. Cyberattack for hire is a lucrative business for those who have

DOCKET

Δ

been previously overlooked as merely cybercriminals. As noted by many, including Richard Clarke, former National Coordinator for Security, Infrastructure Protection, and Counterterrorism for the United States, cybercriminals can become rental cyberwarriors [8]. This easy transition from cybercriminality

| Year                          | Perpetrator                                                      | Target                                     | Cyberattack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------|------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2010<br>[first<br>discovered] | Unknown                                                          | Iran and other parts<br>of the Middle East | Flame has been described as a backdoor<br>with Trojan and worm-like characteristics<br>Its purpose was to gather information<br>from infected PCs. After gathering the<br>information it uploads it to command<br>and control computers. It is more<br>complex and is believed to be much<br>more dangerous than the Stuxnet virus.<br>Flame can attack critical infrastructure<br>and the United Nations International<br>Telecommunications Union has warned<br>other nations to be on/ the alert for its<br>appearance [19]. |
| 2012                          | Originated in the<br>Middle East                                 | United States                              | For a one week period in September 2012<br>five major U.S. banks were subjected<br>to ongoing Distributed Denials of<br>Service (DDoS) attacks which prohibited<br>customers from accessing their bank's<br>website. These attacks were believed to b<br>part of an ongoing and continuing attack<br>on the financial sector of the US [20].                                                                                                                                                                                    |
| 2012                          | "The Cutting<br>Sword of<br>Justice" (claimed<br>responsibility) | Saudi Arabia's state oil<br>company ARAMCO | The Sharmoon virus infected 30 000<br>ARAMCO computers is a form of malwar<br>that overwrites the Master Boot Record<br>(MBO) placing the data with a jpg file,<br>in this instance, a picture of a burning<br>American flag [21]–[22].                                                                                                                                                                                                                                                                                         |
| 2012                          | Unknown                                                          | Qatar state owned oil<br>company RasGas    | Sharmoon virus [22].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Find authenticated court documents without watermarks at docketalarm.com.

## DOCKET A L A R M



# Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

## **Real-Time Litigation Alerts**



Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

## **Advanced Docket Research**



With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

## **Analytics At Your Fingertips**



Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

## API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

## LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

## FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

## E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.