
1832 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 6, DECEMBER 2009

Measurement and Modeling of the Origins of
Starvation of Congestion-Controlled Flows in

Wireless Mesh Networks
Omer Gurewitz, Member, IEEE, Vincenzo Mancuso, Member, IEEE, Jingpu Shi, Member, IEEE, and

Edward W. Knightly, Fellow, IEEE

Abstract—Significant progress has been made in understanding
the behavior of TCP and congestion-controlled traffic over CSMA-
based multihop wireless networks. Despite these advances, how-
ever, no prior work identified severe throughput imbalances in the
basic scenario of mesh networks, in which a one-hop flow contends
with a two-hop flow for gateway access. In this paper, we demon-
strate via real network measurements, testbed experiments, and an
analytical model that starvation exists in such a scenario; i.e., the
one-hop flow receives most of the bandwidth, while the two-hop
flow starves. Our analytical model yields a solution consisting of
a simple contention window policy that can be implemented via
standard mechanisms defined in IEEE 802.11e. Despite its sim-
plicity, we demonstrate through analysis, experiments, and simu-
lations that the policy has a powerful effect on network-wide be-
havior, shifting the network’s queuing points, mitigating problem-
atic MAC and transport behavior, and ensuring that TCP flows
obtain a fair share of the gateway bandwidth, irrespective of their
spatial location.

Index Terms—Experimental, fairness, IEEE 802.11, mesh, TCP.

I. INTRODUCTION

M ESH deployments are expected to provide broadband
low-cost mobile access to the Internet. The prevailing

architecture for large-scale deployments is a multitier architec-
ture in which an access tier connects end-user PCs and mobile
devices to mesh nodes and a backhaul tier forwards traffic to and
from a few high-speed gateway nodes. Different from WLANs,
the mesh backhaul tier topology is multihop; i.e., some of the
traffic traverses more than one wireless link before reaching the

Manuscript received March 25, 2008; revised November 06, 2008; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor A. Kumar. First pub-
lished July 14, 2009; current version published December 16, 2009. This re-
search was supported by NSF Grants CNS-0331620 and CNS-0325971 and by
the Cisco Collaborative Research Initiative.

O. Gurewitz is with the Department of Communication Systems Engineering,
Ben Gurion University of the Negev, Beer Sheva 84105, Israel (e-mail: gure-
witz@cse.bgu.ac.il; gurewitz@gmail.com).

V. Mancuso is with the Department of Electrical, Electronic and Telecom-
munication Engineering, Università di Palermo, Palermo 90133, Italy (e-mail:
vincenzo.mancuso@dieet.unipa.it).

J. Shi was with the Department of Electrical and Computer Engineering, Rice
University, Houston, TX 77005 USA. He is now with Quantlab Financial LLC,
Houston, TX 77006 USA (e-mail: jingpushi@yahoo.com).

E. W. Knightly is with the Department of Electrical and Computer Engi-
neering, Rice University, Houston, TX 77005 USA (e-mail: knightly@ece.rice.
edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2009.2019643

wired network. Clearly, for mesh networks to be successful, it is
critical that the available bandwidth be distributed fairly among
users, irrespective of their spatial location and regardless of their
hop distance from the wired gateway.

Significant progress has been made in understanding the be-
havior of TCP and congestion-controlled traffic over wireless
networks. Moreover, previous work showed that severe unfair-
ness and even complete starvation can occur in multihop wire-
less networks using CSMA-based MAC (e.g., IEEE 802.11a/b/g
MAC), and solutions have been proposed correspondingly (see
Section VI for a detailed discussion of related work). However,
despite these advances, no prior work has identified the basic
scenario in which congestion-controlled flows contending for a
shared gateway yields starvation.

In this paper, we analytically and experimentally show that
starvation (i.e., long-term and severe throughput imbalance)
occurs in a scenario in which two-hop flows share the same
gateway with one-hop flows. Interestingly, we also show that
the starvation phenomenon is not significantly affected by the
number of TCP flows involved, either one-hop or two-hop
flows, therefore resulting in a dramatic performance impair-
ment of all two-hop flows as soon as at least one one-hop flow
comes into play. Because the occurrence of such a combination
of flows cannot be avoided in a mesh network, we refer to this
fundamental scenario as the basic scenario. Moreover, this
scenario exists with both single-radio and multiradio architec-
tures (see the discussion in Section III). Note that starvation
of two-hop flows precludes the use of the mesh architecture,
which employs multihop paths by definition. Our contributions
are as follows.

First, we describe the protocol origins of starvation as a com-
pounding effect of three factors: 1) the MAC protocol induces
bistability in which pairs of nodes alternate in capturing system
resources; 2) despite the inherent symmetry of MAC bistability,
the transport protocol induces asymmetry in the time spent in
each state and favors the one-hop flow; and 3) most critically,
the multihop flow’s transmitter often incurs a high penalty in
terms of loss, delay, and consequently, throughput, in order to
recapture system resources.

Second, we perform experiments in the technology for all
(TFA) mesh network, an operational network deployed in a
densely populated urban area. We demonstrate the existence
of starvation under saturation conditions and show that only a
one-hop TCP flow in competition with a two-hop TCP flow is
sufficient to induce starvation.

1063-6692/$26.00 © 2009 IEEE

Authorized licensed use limited to: Barbara Lange. Downloaded on December 27, 2009 at 23:02 from IEEE Xplore. Restrictions apply.

IPR2015-01973
SIPCO, LLC
Exhibit 2006

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

GUREWITZ et al.: ORIGINS OF STARVATION OF CONGESTION-CONTROLLED FLOWS 1833

Third, we develop an analytical model both to study starva-
tion and to devise a solution to counter starvation. The model
omits many intricacies of the system (TCP slow start, fading
channels, channel coherence time, etc.) and instead focuses
on the minimal elements needed such that starvation mani-
fests. Namely, the model uses a discrete-time Markov chain
embedded over continuous time to capture a fixed end-to-end
congestion window, a carrier sense protocol with or without
RTS/CTS, and all end-point and intermediate queues.

The model enlights counter-starvation policy, in which only
the gateway’s directly connected neighbors should increase
their minimum contention window to a value significantly
greater than that of other nodes. This policy can be realized via
mechanisms in standard protocols such as IEEE 802.11e [2].
The model also characterizes why the policy is effective in that
it forces all queuing to occur at the gateway’s one-hop neigh-
bors rather than elsewhere. Because these nodes have a perfect
channel view of both the gateway and their neighbors that are
two hops away from the gateway, bistability is eliminated such
that the subsequent penalties are not incurred.

Finally, we experimentally demonstrate that the counter-star-
vation policy completely solves the starvation problem. In
particular, we realize this policy by employing the IEEE
802.11e mechanism that allows policy-driven selection of con-
tention windows. We redeploy a manageable set of MirrorMesh
nodes on site (mirroring a subset of the TFA mesh nodes) and
perform extensive experiments. We extend our investigation to
a broader set of scenarios and show that the counter-starvation
policy enables TCP flows to fairly share the gateway bandwidth
in more general scenarios.

In the remainder, we present an experimental demonstration
of starvation in Section II, an analysis of starvation’s cross-
layer protocol origins in Section III, an analytical model and a
counter-starvation policy in Section IV, the experimental evalu-
ation of such a policy in Section V, related work in Section VI,
and a conclusion in Section VII.

II. STARVATION IN URBAN MESH NETWORKS

In this section, we describe the basic topology for mesh net-
works and experimentally demonstrate the existence of starva-
tion in this basic topology.

A. Basic Topology

The basic topology of any mesh network is shown in Fig. 1,
in which two mesh nodes, and , are located two and one
hops away from the gateway, , respectively. Mesh nodes
and do not sense each other’s transmission— i.e., they are
hidden—and node forwards all the traffic between nodes
and . In particular, we consider the case of upstream TCP
traffic, in which both and transmit a TCP flow to .
Since downstream traffic is expected to be at least as important
as upstream traffic, we will show in Section V-D that similar re-
sults as the ones shown for upstream traffic also apply to down-
stream traffic, i.e., the same basic topology in which the gateway
transmits two TCP flows to A and B.

Note that this topology is necessarily embedded in any larger
mesh network topology given that mesh networks are defined
as multihop wireless networks with gateways. In general, nodes

Fig. 1. The traffic matrix in the basic topology. Mesh nodes� and�� do not
sense each other’s transmission. Packet exchanges between mesh nodes � and
�� are forwarded by mesh node �.

within a two-hop distance according to the adopted routing pro-
tocol, e.g., and in Fig. 1, can be either in transmission
range or not. In this paper, we consider the relevant case in
which those nodes cannot coordinate their transmissions; i.e.,
neither nor defers its transmission when the other is
transmitting. Throughout this paper whenever conducting mea-
surements on the basic topology (TFA network and MirrorMesh
network), we verified that nodes and are indeed hidden.
The set of experiments that we performed included the scan of
wireless signals detected by both node and node to verify
that neither one of them could see the other. We also verified be-
fore and after setting each experiment that nodes and can
transmit to two different receivers simultaneously and achieve
about the same throughput that can be achieved by each flow
while transmitting alone; therefore, and do not interfere
with each other—i.e., they are hidden nodes.

B. Measurements in TFA

Here, we experimentally demonstrate the potential for starva-
tion in the TFA network. TFA network is an operational mesh
network that provides Internet access in a densely populated
urban neighborhood in Houston, TX [1]. For each scenario ex-
perimentally examined in TFA network, we selected relevant
nodes that complied with the topology studied, artificially gen-
erated the required traffic (TCP or UDP) using Iperf v.1.7.0,
and measured the achieved throughput on each of the observed
nodes. Since all experiments on TFA took place in the presence
of the network’s normal user traffic, and in order to minimize
the interference with TFA users, we performed the experiments
during off-peak hours (3:00–6:00 a.m), when TFA user traffic
was negligible. Moreover, before and after each experiment, we
ensured that the links under investigation were fully operational
and that full throughput could be achieved when each link was
used alone; e.g., we generated traffic only from one node and
measured the end-to-end throughput achieved (achievable TCP
throughput). Throughout this paper, we only show experimental
results in which all participating links can reach about the same
TCP (UDP) throughput when isolated. In order to further under-
stand the channel activity throughout each experiment, we used
tcpdump v.3.4 and Kismet v.2006.04.R1 to collect MAC-level
traces at selected network nodes.

In the set of results presented in this section, the measurement
intervals used are 120 s, the maximum PHY rate is 11 Mbps, and
the radio band is channel 6 of the 2.4-GHz ISM band. Informa-
tion regarding TFA network, including the connectivity map,
and the specific nodes used for each experiment can be found in
[19].

In the basic set of experiments, we chose two TFA nodes
, which in addition to the gateway (), complied with

the basic topology as described in Section II-A. As explained in

Authorized licensed use limited to: Barbara Lange. Downloaded on December 27, 2009 at 23:02 from IEEE Xplore. Restrictions apply.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1834 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 6, DECEMBER 2009

Fig. 2. TCP behavior in the basic topology, with (a) RTS/CTS disabled and
with (b) RTS/CTS enabled. Each pair of bars represents the achievable TCP
throughput and the TCP throughput resulting from flow contention for the
one-hop flow �� � �� � and the two-hop flow ��� �� �, respectively.

Section II-A, we experimentally verified that nodes and
were hidden from one another. Furthermore, by observing the
routing table throughout the experiments, we verified that all of

’s packets to and from the gateway were forwarded by node ,
and no other node was involved in the data forwarding. We si-
multaneously generated a TCP flow from the two-hop node
and a TCP flow from the one-hop node to the gateway ,
and measured the TCP throughput attained by each flow.

Fig. 2 depicts the throughput of the two flows with and
without contention. As can be seen in the figure, the achievable
throughputs on links and are about the
same; hence, the two-hop flow’s achievable TCP throughput
is about half of the one-hop flow’s one. Nonetheless, although
the two-hop flow can receive considerable throughput when
singly active, severe starvation occurs when the RTS/CTS
mechanism is off [Fig. 2(a)] as well as when the RTS/CTS is
enabled [Fig. 2(b)]. In particular, the one-hop TCP flow from
node dominates, whereas the two-hop TCP flow from node
receives nearly zero throughput in all experiments. Since we
verify that other network activities during our experiment are
negligible—i.e., we measured only a few kbps of control and
data traffic—the starvation observed in Fig. 2 can be only due
to the activity of nodes , , and , i.e., due to the high
collision probability experienced by ’s TCP DATA and ’s
TCP ACKs (or by their RTS frames).

A comprehensive measurement study was conducted in TFA
including diverse combinations of user activity and protocol
set. Due to space limitations, those experiments are omitted
from this manuscript and are fully reported in [19]. Nonethe-
less, the outcome of this set of experiments verifies that the basic
topology starvation is neither solely due to topology and MAC
behavior (hidden terminal problem), nor a straightforward con-
sequence of the traffic matrix, but rather the compounding effect
of topology, medium access mechanisms, and the behavior of a
connection-oriented transport protocol, that are required to in-
duce starvation.

III. STARVATION’S PROTOCOL ORIGINS

Here, we describe how the protocol mechanisms of medium
access and congestion control mechanisms interact to cause star-
vation in the basic scenario shown in Fig. 1. We analytically
model this scenario in Section IV.

Fig. 3. TCP DATA and TCP ACK contending for channel access. Nodes� and
�� cannot sense one another. Hence, collisions are possible at node�, either
involving the MAC frames carrying TCP packets or the respective RTS frames,
if the RTS/CTS handshake is enabled.

A. Protocol Origins

Medium Access and Bistability: The collision avoidance
mechanism in CSMA/CA causes bistability, in which node
pairs and alternate in transmission of multiple
packet bursts. In particular, the system alternates between a
state in which and jointly capture the system resources for
multiple transmissions while is idle, and a state in which

and transmit while is idle.
In order to understand the bistability, we first examine the be-

havior of two flows in the scenario shown in Fig. 3, where the
gateway node and two-hop node contend for transmit-
ting TCP ACK and TCP DATA, respectively.

Assume the transmission queues of and are back-
logged at a given time, and both nodes are in the minimum con-
tention stage. Since the two senders, namely and , are
hidden from each other, a transmission from one sender suc-
ceeds only when it fits within the other sender’s backoff interval.
Note that when the packet size of one sender is comparable to
or larger than the contention window of the other sender, the
probability of collision between the two senders is very high.
For example, in IEEE 802.11b with default parameters, the col-
lision probability between two RTS transmissions from the two
senders is 0.7, assuming that both transmitters are in the first
backoff stage. The collision probability for data packets with
RTS/CTS off is even higher (e.g., nearly 1 for packets larger
than 750 bytes in 802.11b). Thus, when both nodes are in an
early backoff stage, the system is likely to experience collisions.
After a series of collisions, the backoff window of both nodes
will become sufficiently large such that one of the nodes will
successfully transmit a packet, as shown in Fig. 4(a).

Assume, without loss of generality, that node finally suc-
ceeds in transmitting a packet. After this successful transmis-
sion, node resets its contention window back to its min-
imum size, while node keeps a high contention window. In
order for node to succeed in its next transmission attempt,
it must fit its packet in a small backoff interval of node ,
which is an unlikely event. After a resulting collision, the prob-
ability to succeed for each node is asymmetric because the con-
tention window of is much smaller than that of . This
process can recur many times such that only node man-
ages to transmit packets, while node keeps increasing its con-
tention window. When the contention window of is high,
can transmit multiple packets between two consecutive trans-
mission attempts by , as depicted in Fig. 4(b).

To summarize, when mesh node wins the channel,
it enters a success state in which it transmits a burst of packets,
while enters a fail state in which it does not succeed
in transmitting any packets. The success state can terminate for

Authorized licensed use limited to: Barbara Lange. Downloaded on December 27, 2009 at 23:02 from IEEE Xplore. Restrictions apply.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

GUREWITZ et al.: ORIGINS OF STARVATION OF CONGESTION-CONTROLLED FLOWS 1835

Fig. 4. Illustration of the multipacket capture of the channel by either node �
or�� . (a) Small contention window results in collision with high probability.
(b) Node �� succeeds to transmit a packet and resets its contention window.
It may transmit multiple packets due to the high contention window of node �.
(c) When node � reaches its maximum retry limit, it still collides with high
probability due to the minimum contention window of node �� ; hence, it
drops the packet and resets its contention window. Note that �� increases its
contention window due to the collision, which leaves high probability to node�
to succeed in its next transmission.

Fig. 5. Illustration of bistability with alternation of ����� and ����� �
transmissions. Whenever � ��� � enters in the success state, a burst of
packets is transmitted by � ��� � and �. The length of the burst depends
on the value of the MAC maximum retry limit and on the backlog of the
transmission queue on � ��� �.

three reasons: 1) the probability of the node with higher con-
tention window to win is low but not zero; 2) the losing node
drops the packet and resets its contention window after it reaches
its maximum retry limit, as illustrated in Fig. 4(c); 3) the trans-
mission queue of the winning node is emptied.

Note that since node is in sensing range of both and ,
it contends fairly with the node that is in the success state and
interleaves its packets with the burst generated from this node.
This bistability is depicted in Fig. 5.

Asymmetry Induced by Sliding Window: TCP causes the
system to spend dramatically different times in the two stable
states. Specifically, TCP’s sliding window mechanism creates a
closed-loop system between each sender–receiver pair in which
the transmission of new packets is triggered by the reception
of acknowledgments. The basic scenario contains two nested
transport loops, one for each flow. We term the one-hop and the
two-hop loops as the inner loop and outer loop, respectively,
as depicted in Fig. 6(a). When in the stable state reported in
Fig. 6(b), in which bursts and is in the fail state,
both the outer and inner loops are broken, and hence, ’s
burst length is upper-bounded by ’s TCP congestion window.
Conversely, when bursts, as in Fig. 6(c), only the
outer loop is broken, and the inner loop is self-sustaining due
to the loop’s own ACK generation. Consequently, the duration
for and to jointly capture the channel is not bounded.
As a result, the system spends much more time in the state in

Fig. 6. Illustration of multiple control loops and a shared medium. (a) Two
overlapping TCP congestion control loops are formed by TCP flows generated
by � (outer loop), and � (inner loop). (b) When � enters the success state,
mesh nodes � and � can transmit TCP DATA, but they cannot receive TCP
ACKs from the destination�� . Hence, both control loops are open. (c) When
� enters the success state, only the outer loop is open, and the inner loop is
self-sustaining thanks to the TCP ACKs transmitted by node �� .

which captures the channel than in the state in which
captures the channel.

In order to demonstrate the asymmetry between the two
states, we positioned two sniffers next to nodes and . We
used Kismet to capture all transmission attempts by the two
nodes. We distinguish between transmissions initiated by trans-
port-layer (TCP) and link-layer transmissions originated by
the MAC. Accordingly, TCP transmissions include all new as
well as retransmitted segments due to TCP timeout expiration,
which are passed from the TCP layer to the MAC for trans-
mission. MAC transmissions include all transmission attempts
(successful and unsuccessful) by the MAC. In the following
figures, each TCP segment transmission will be represented by
the first MAC attempt to transmit that segment.

Fig. 7(a) shows the progress of TCP segment transmission
(new and retransmitted segments) from nodes and , over
a 120-s experiment. The -axis depicts the segment sequence
number, and the -axis describes the corresponding time each
segment was transmitted. It can be seen in the figure that new
segments from flow are continuously transmitted over time,
while segments from flow are intermittently transmitted, in-
cluding few long idle intervals. Fig. 7(b) depicts solely TCP re-
transmissions from the two nodes. As can be seen in the figure,
flow suffers from frequent TCP retransmissions, while flow
experiences only three TCP retransmissions within the 2-min
experiment. Note that since node is within transmission range
of both nodes and , all three retransmissions are due to
TCP ACK-drop at ’s MAC. The asymmetry between the
two flows in terms of both successful as well as unsuccessful
segment transmissions is clearly depicted by the two figures.

Severe Transition Penalties: Due to asymmetric bistable
states, nodes and experience different fail-state duration,
leading to a severe penalty only for the TCP flow originating
from node . We described the three possible ways a node can
exit its fail state. However, when is in the fail state, node

’s limited burst is not likely to drive to drop a packet.
Hence, will most likely exit its fail state by case 3); i.e.,
the transmission queue of is emptied. The penalty that node

Authorized licensed use limited to: Barbara Lange. Downloaded on December 27, 2009 at 23:02 from IEEE Xplore. Restrictions apply.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

1836 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 6, DECEMBER 2009

Fig. 7. TCP segment transmissions (new segment transmissions plus TCP re-
transmissions due to TCP timeout expiration) as captured by the sniffers next
to nodes� and�. MAC retransmissions (due to MAC timeouts expiration) are
not reported in the figures. (a) All TCP segment transmissions and retransmis-
sions. (b) Only TCP retransmissions.

Fig. 8. A sample of node�’s TCP (re)transmissions as captured by the sniffer
next to node �. The severe penalty incurred by node �, due to MAC packet
drop, can be seen in long idle periods due to long TCP timeouts for every TCP
retransmission. Note that this idle period is exponentially increased for multiple
drops of the same TCP segment because TCP timeouts are doubled after each
drop.

incurs is small due to short duration of its fail state. Fur-
thermore, this penalty is shared by both TCP flow and TCP
flow . On the other hand, when node is in the fail state, the
inner loop is self-sustaining; hence, the gateway queue is rarely
empty. Consequently, node most likely exits its fail state by
case 2), i.e, by dropping the packet. The penalty node incurs
is high, including both the long duration of its fail state (MAC
penalty) and TCP timeout, a duration that grows exponentially
with multiple drops of the same TCP segment. This penalty is
only paid by TCP flow .

Fig. 8 presents a sample of the TCP segment transmissions
and retransmissions (excluding retransmissions initiated by
MAC layer due to MAC timeouts). The severe penalty incurred
by node due to MAC packet drop can be observed in the
figure. For example, segment 318048 was retransmitted by the
transport layer four times, which induced long TCP timeouts
that resulted in long idle periods (in the order of seconds) due
to small TCP congestion window.

B. Broader Topology

A variation of the basic topology is shown in Fig. 9(a), where
and transmit a two-hop TCP flow and a one-hop TCP flow

to the gateway node , respectively. In this case, although
node does not forward traffic for node , the same reasoning
of starvation origins applies. The gateway and are out of

Fig. 9. Two-branch scenario and experimental TCP throughput with con-
tending flows. (a) The scenario is composed of two branches:�� � � ��

and includes a two-hop loop, and � � �� , characterized by a one-hop
control loop. (b) Despite the RTS/CTS handshake mechanism, a severe TCP
throughput imbalance occurs between a two-hop flow on the two-hop branch
and the one-hop flow on the other branch.

carrier sense range, yielding bistable behavior. When and
obtain the channel, the one-hop loop is self-sustaining. When
and obtain the channel, is in fail state, and both loops

are broken. Consequently, the burst size of is limited by its
congestion window.

To verify starvation in the scenario shown in Fig. 9(a), in TFA,
we select another one-hop node besides nodes , , and
[19]. As depicted in Fig. 9(a), two TCP flows are active on the
two branches, and . Fig. 9(b) de-
picts the result of the experiment and shows that starvation does
persist in this two-branch topology. As expected, the behavior
of the TCP flow pair and is strictly
analogous to the behavior of the pair and

discussed above.

C. Discussion

In mesh networks, the basic topology shown in Fig. 1 or its
variation shown in Fig. 9(a) is necessarily embedded in larger
scenarios such as long-chain and broad-tree topologies. In these
larger scenarios, although there are other factors that affect the
behavior of the contending flows, since all flows finally con-
verge to the gateway, the embedded basic scenario plays an im-
portant role in determining the throughput of each flow. Indeed,
as shown later in Section V, our extensive experiments demon-
strate it in a large set of scenarios, where one-hop flows starve
multihop flows.

Finally, we comment on the number of radios used in each
mesh node. In our work, we consider one backhaul radio with
or without a second access radio, thereby covering commercial
architectures of Tropos, Cisco, Nortel, and others. Neverthe-
less, with multiple radios, if the number of radios is not suffi-
cient to allocate orthogonal channels to every interfering wire-
less link, the results of this work are still pertinent. In fact, based
on the previous subsection, whenever a two-hop transmitter is
assigned the same channel with a one-hop transmitter, starva-
tion can occur.

IV. ANALYTICAL MODEL AND STARVATION SOLUTION

Our proof of starvation in the basic topology is tiered. In
Section II, we experimentally demonstrated the existence of
TCP starvation in the basic topology. A more thorough measure-
ment study of the starvation occurrence can be found in [19],
where we experimentally isolate the originating starvation fac-
tors by eliminating alternate explanations such as background

Authorized licensed use limited to: Barbara Lange. Downloaded on December 27, 2009 at 23:02 from IEEE Xplore. Restrictions apply.

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

