United States Patent

Patel et al.

Jayantilal S. Patel, Red Bank; Yaron Silberberg, West Windsor Township, Mercer County, both of N.J.

Assignee: Bell Communications Research, Inc., Livingston, N.J.
[21]
Appl. No.: 125,607
Filed: Sep. 22, 1993

Related U.S. Application Data

[63]
Continuation-in-part of Ser. No. 70,591, Jun. 1, 1993.
Int. Cl. ${ }^{6}$ \qquad G02F 1/137; G02F 1/13; H04J 14/06; H04J 14/02
U.S. Cl. .. 359/39; 354/94; 354/122; 354/128; 354/124; 385/37; 385/20; 385/17; 359/93; 359/245; 359/246
58] Field of Search 359/94, 39, 122, 128, $359 / 124,130,245,246,494,496,615,123,139$, $131,127,97 ; 385 / 17,37,20$

References Cited

U.S. PATENT DOCUMENTS

3,506,834	4/1970	Bushsbaum et al. .
3,536,375	10/1970	Mansell 359/246
4,655,474	4/1989	Heritage et al. 350/
5,002,349	3/1991	Cheung et al. 350
5,005,166	4/1991	Suzuki et al. 359/123
5,111,321	5/1992	Patel 359/92
5,132,824	7/1992	Patel et al. 359/78
5,150,236	9/1992	Patel 359/7
5,319,484		Jacob et al. 359/123

FOREIGN PATENT DOCUMENTS

62-305152 12/1987 Japan

 359/122
OTHER PUBLICATIONS

I. Nishi et al., "Broad-passband-width optical filter for multi/demultiplexer using a diffraction grating and a retroreflector prism," Electronics Letters, 1985, vol. 21, pp. 423-424.
M. Shirasaki et al., "Broadening of bandwidths in grating multiplexer by original dispersion-dividing prism," Electronics Letters, 1986, vol. 22, pp. 764-765.
Shirosaki et al., "Bistable magnetooptic switch for mutwork optical fiber", Applied Optics vol. 21, \#11, Jun. 1, 1982, pp. 1943-1949.

Primary Examiner-William L. Sikes
Assistant Examiner-Kenneth Parker
Attorney, Agent, or Firm-Leonard Charles Suchyta; James W. Falk
[57]

ABSTRACT

A liquid-crystal optical switch capable of switching separate optical signals in a physical input channel to a selected output channel. A diffraction grating spatially divides the input channel into its frequency components, which pass through different segments of a liq-uid-crystal modulator. The liquid-crystal modulator segments are separately controlled to rotate the polarization of the frequency channel passing therethrough or to leave it intact. The channels then pass through a polarization-dispersive element, such as calcite, which spatially separates the beams in the transverse direction according to their polarization. A second diffraction grating recombines the frequency components of the same polarization into multiple output beams.

16 Claims, 9 Drawing Sheets

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

Petitioner Ciena Corp. et al.

FIG. 9

FIG. 10

Petitioner Ciena Corp. et al.

U.S. Patent
 May 9, 1995
 Sheet 7 of 9
 $\mathbf{5 , 4 1 4 , 5 4 0}$

FIG. 11

Petitioner Ciena Corp. et al.

FIG. 12

FIG. 13

FIG. 14

FREQUENCY-SELECTIVE OPTICAL SWITCH EMPLOYING A FREQUENCY DISPERSIVE ELEMENT, POLARIZATION DISPERSIVE ELEMENT AND POLARIZATION MODULATING ELEMENTS

RELATED APPLICATIONS

This application is a continuation-in-part of Ser. No. 08/070,591, filed Jun. 1, 1993.

FIELD OF THE INVENTION

The invention relates generally to liquid-crystal devices. In particular, the invention relates to liquid-crystal and similar devices useful for switching in a multifrequency communication system.

BACKGROUND ART

Communication networks increasingly rely upon optical fiber for high-speed, low-cost transmission. Optical fibers were originally envisioned as an optical replacement for electronic transmission media, such as high-speed coaxial cable and lower-speed twisted-pair cable. However, even high-speed optical fibers are limited by the electronics at the transmitting and receiving ends, generally rated at a few gigabits per second, although $40 \mathrm{~Gb} / \mathrm{s}$ systems have been prototyped. Such high-speed electronic systems are expensive and still do not fully exploit the inherent bandwidth of fiber-optic systems, measured in many terabits per second.

All-optical transmission systems offer many intrinsic advantages over systems that use electronics within any part of the principal transmission path. Wavelengthdivision multiplexing (WDM) electronically impresses different data signals upon different carrier frequencies, all of which are carried by a single optical fiber. The earliest WDM systems did not provide optical switching but only point-to-point WDM.
Recent research and development have suggested that an all-optical network can be constructed having switching nodes that can switch the separate WDM channels (carrier frequencies) in different directions without the necessity of converting the optical signals to electronic signals. If such optical switching can be accomplished with simple optical components, a sophisticated optical network can be constructed at relatively low cost with the high-speed electronics being confined to end terminals that require speeds of only the individual channels and not of the total throughput of the system.

However, such optical switching needs to effectively separate the switched channels. A cross-talk requirement of 20 dB is a minimum, 35 dB would be a reasonable design requirement, 40 dB would be better. Also, the switching bands should be relatively wide to accommodate significant frequency fluctuations in the optical transmitters, particularly due to frequency chirping in directly modulated laser sources. That is, the switch must have its frequency bands registered with the transmitter even when the transmitting frequency is varying somewhat. The combination of a wide switching band and low cross talk requires a flat-top switch spectrum. Furthermore, a somewhat minimal WDM switch has a size of $2^{4} \times 2^{4}$, that is, two physical input fibers and two output fibers, each bearing four WDM channels freely switched from either input to either output.
Cheung et al. in U.S. Pat. No. 5,002,349 have suggested that an acousto-optical tunable filter (AOTF) be

FIGS. 1, 2, and 3 illustrate respective horizontal vertical, and isometric views of a polarization-sensitive 1×2 switch of the invention.
FIGS. 4, 5, and 6 illustrate respective horizontal, vertical, and isometric views of a polarization-sensitive 2×2 switch of the invention.
FIGS. 7, 8, 9, and 10 are graphs of experimental data of an embodiment of the invention.
FIG. 11 is a vertical view of a polarization-insensitive embodiment of the invention.

FIG. 12 is a vertical view of an alternative polariza-tion-sensitive embodiment of the invention using Wollaston prisms.

FIG. 13 is a vertical view of an extension of the embodiment of FIG. 11 that has been made polarization insensitive.
FIG. 14 is a vertical view of a reflective embodiment of the switch of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention achieves all-optical switching of the frequency-multiplexed multi-channel optical signals by 10 frequency-dividing an optical input signal into spatially separated channels, selectively changing the polarization characteristics of the frequency-separated channels, further spatially dividing the channels according to polarization characteristics, and then recombining the channels of similar polarization characteristics. Preferably, a segmented liquid-crystal modulator selectively changes the polarization of the physically separated channels
A first, polarization-sensitive embodiment is shown in cross-section in FIG. 1 in which a relatively broad-band input beam 10 strikes an entrance frequency-dispersive medium, such as a diffraction grating 12. It is assumed that the input beam 10 is polarized along the x-direction. Other active or passive dispersive media are possible, such as prisms. The frequency-dispersive medium 12 divides the broad-band input beam 10 into multiple frequency-separated input beams 14 and 16 which are spatially separated in the illustrated x-direction. An entrance lens 18 focuses the frequency-divided components upon separate segments 20 and 22 of a segmented liquid-crystal polarization modulator 24. An entrance polarization-dispersive element 26 , such as a birefringent crystal, such as calcite, is disposed on the entrance side to spatially separate the different polarization components of the input beam, but its effects are not evident for the first embodiment from FIG. 1 because the input beam 10 is assumed to be linearly polarized along the x -axis.
The number of frequency-divided input beams 14 and 16 and the number of liquid-crystal segments 20 and 22 depend on the number of WDM components on the optical medium (optical fiber) which require switching. Four frequency sub-bands provide a meaningful telecommunication system. The segments 20 and 22 of the segmented liquid-crystal modulator 24 are separately controllable to change the polarization direction or other polarization characteristic of the physically separated frequency-divided input beams 14 and 16 . In the simplest case, each segment 20 or 22 either linearly rotates the polarization of the properly polarized fre-quency-separated input beam 14 or 16 by 90° or does not rotate the polarization. A twisted nematic liquidcrystal modulator provides such performance.

After traversing the liquid-crystal modulator 24, the frequency-separated beams 14 and 16 traverse the exit polarization-dispersive element 28 , which, as additionally illustrated in FIG. 2, further separates the beams 14 and 16 into their respective polarization components 32 , 34 and 36,38 . An exit lens 30 recollimates the beams. An exit frequency-dispersive medium 40, such as another grating, acts reciprocally to the entrance frequen-cy-dispersive medium 123 and recombines frequencyand polarization-separated beams into only polariza-tion-separated beams 42, 44, which, as will be shown 65 later, are spatially separated as well.

Turning more completely now to the perpendicular illustration of FIG. 2, the two frequency beams 14 and
second polarization-dispersive element 28 back toward normal propagation path. The exit lens 30, however, angularly separates the resultant output beam 44 from the output beam 42.

In the parlance of a drop-add circuit, the input beam 10 is the IN channel, the input beam 46 is the ADD channel, the output beam 42 is the OUT channel, and the output beam 44 is the DROP channel.

By the means of the illustrated circuitry, the frequen-cy-dedicated segment 20 or 22 of the liquid-crystal modulator 24 determines whether a pair of channels of the same frequency on the two multi-frequency input fibers are to be switched to different output fibers. Of course, the two segments 20 and 22 can be separately controlled for the two frequency channels.

Although only two frequency channels have been described, it is understood that more frequency channels can be accommodated by a liquid-crystal modulator 20 having additional separately controlled segments along the x -direction.

The above embodiments are sensitive to polarization of their input signals. But, in many cases, the input light polarization cannot be controlled. Merely using an input polarizer is unsatisfactory because possibly all the light may be lost and because the polarization state tends to be randomly vary in time, therefore leading to polarization-caused intensity fluctuations. However, the invention can be made to be polarization insensitive.
As illustrated in FIG. 11, a first polarization-dispersive element 60 , such as a calcite crystal, divides an input beam 62 into two polarization-separated beams 64 and 66 , one the ordinary beam 64 and the other the extraordinary beam 66. One of the beams, in the illustrated case, the extraordinary beam 66, passes through a polarization converter 68, such as a half-wave plate which rotates the polarization by 90°, so that both beams 64 and 66 have the same well-defined polarization characteristic, here a linear polarization along the x-axis. The entrance lens 18 focuses both beams 64 and 66 upon the same segment 20 or 22 of the liquid-crystal modulator 24 , which simultaneously acts on both beams 64 and 66, either leaving their polarization intact or rotating them or producing a combination between beams. The exit polarization-dispersive element 28 then spatially separates them according to polarization; if unrotated, into beams $\mathbf{8 0}$ and 82; if rotated, into beams 84 and 86. Two more polarization rotators 88 and 90 are disposed in two of the beams 82 and 84 . The exit lens 30 recollimates the beams $80-86$, and a second polariza-tion-dispersive element 92 acts conversely to the first one 60 to recombine the beams 80 and 82 into a combined OUT beam 44 and to recombine the beams 84 and 86 into a combined DROP beam 96.

The frequency-dispersed beams are not illustrated but are arranged similarly to those of FIG. 4. The embodiment can be easily extended to a 2×2 drop-add circuit having an additional ADD input beam 98 by including a polarization rotator 100 for the added input on the entrance side.

The above embodiments have been described in somewhat theoretical terms. The following discussion involves some of the design considerations. Let frepresent the focal lengths of the two lenses 18 and $30 ; \mathrm{d}_{1}$, the lateral shift of the inner polarization-dispersive elements 26 and $28 ; \mathrm{d}_{2}$, the lateral shift of the outer polarization- 65 dispersive elements 60 and 92 ; and L the distance between the input polarization-dispersive element 60 and its associated lens 18. The switched (extraordinary
beams) have a virtual focus shifted by d_{1} from the ordinary focus. The extraordinary and ordinary beams therefore form an angle of d_{1} / f with respect to the input and output ordinary beams. If $f=100 \mathrm{~mm}$ and $\mathrm{d}=100$ 5 mm , the angle is 0.02 rad or about 1°. The main ordinary input beam is assumed to define $x=0$ for each frequency. The ordinary beam is then at $x=-d_{2}$. The ordinary and extraordinary beams of the ADD (or DROP) channel at the lens 18 or 30 are located at $10 x=d_{1}$ and $x=d_{2}-d_{1}$, respectively. At the external crystals, these beams are at $x=1 d_{1} / f-d_{1}$ and $\mathrm{x}=1 \mathrm{~d}_{1} / \mathrm{f}-\mathrm{d}_{\mathrm{l}}-\mathrm{s}$.

For the beams to overlie at that point, it is required that $L=f$.
The preceding embodiments have used a calcite crystal or similar uniaxial medium for the polarization-dispersive element. Wollaston prisms offer an advantageous alternative design. Such prisms have two prisms of calcite, for example, separated by a thin layer of 20 material having a refractive index intermediate between the refractive indices of the ordinary and extraordinary refractive indices of the calcite. The two component prisms are oriented such that one of the rays is totally internally reflected by the intermediate thin layer. The 25 result is that the ordinary and extraordinary rays are angularly separated.
A polarization-sensitive embodiment utilizing Wollaston prisms is illustrated in FIG. 12. The perpendicular construction is very similar to that of FIG. 4. The 30 entrance and exit calcite crystals 26 and 28 of FIGS. 1, 2 , and 3 are replaced by entrance and exit Wollaston prisms 110 and 112. Their birefringent thicknesses and the focal lengths of the two lenses 18 and 30 are arranged such that the two optical input beams 14 and 16, the IN and ADD beams, are focused to the interface of the entrance Wollaston prism 110 having such a length that both beams 14 and 16 (of differing polarizations) then are congruent as they pass the liquid-crystal modulator 24. Preferably, the input beams 14 and 16 can be made parallel. Similar design factors on the output side allow the two output beams 42 and 44 , the OUT and DROP beams, to be parallel.

EXAMPLE 1

We have constructed and tested a switch according to the above embodiment. It was designed to switch one or more of six channels having 4 nm spacing between the channels and to have a wavelength resolution of 2 nm . The liquid-crystal modulator was filled with commercially available E7 nematic liquid crystal and was twisted by 90°. The polarization-dispersive element was a Wollaston prism. Many of the details of fabrication are found in the parent patent application and the various cited patents to Patel. The design of the switch was optimized for $1.5 \mu \mathrm{~m}$. In an experimental prototype, we have shown an extinction ratio of at least 35 dB between the switched and unswitched states of the polarizers. In FIGS. 7 and 8 are shown the optical power spectra on the unswitched output channel and the switched output 0 channel respectively when no switching is performed. That is, FIG. 8 shows the residual power in the four unswitched channels. The power levels indicated on the vertical scale are somewhat arbitrary and reflect an 8 dB system loss. In FIGS. 9 and 10 are shown the optical 5 spectra of the unswitched and switched outputs respectively when the first and third channels are switched. It is thus seen that the inventive system effectively switches the WDM channels.

The embodiment of Wollaston prisms can be made insensitive to polarization, as illustrated in FIG. 13, by including the first and second polarization-dispersive elements 60 and 92 , preferably calcite crystals or similar material, on the input and output ends. Half-wave plates 120, 122, and 124 are placed in the path of the laterally displaced beams and in the path of both of the input ADD beams. The wide half-wave plate 124 causes the IN and ADD beams to have differing polarizations as they congruently pass through a segment of the liquidcrystal modulator 24. Similarly, half-wave plates 126, 128, and 130 are placed in the to-be-displaced output beams and both of the DROP beams.

The number of pans can be significantly reduced by using a reflector and operating in the retro-reflector mode. As illustrated in FIG. 14, the input beam 14, after diffracting from the grating (not shown), strikes the lens 18 off-center and is refracted obliquely to the principal optical axis. Because it is polarized along the x-direction, it passes undetected through the polarization-dispersive element 26 , which may be calcite or a Wollaston prism. It then passes through one segment of the segmented liquid-crystal polarization modulator system 140, which differs from the previously described liquidcrystal polarization modulators in that it selectively rotates the light polarization by 90° only after a double, back-and-forth pass. The light is then reflected from a mirror 142 and again traverses the polarization modulator 140. The polarization of light traversing actively biased segments of the modulator 140 is not rotated while that of light traversing inactively biased segments is rotated by a total of 90°. The light with rotated polarization is displaced by the polarization-dispersive element 26 and, after diffraction, is output as a first output beam 144 while the light with unrotated polarization is output as a second output beam 146. The two output beams 144 and 146 are angularly displaced so as to be easily separated physically.

The second input beam 46, assumed to be polarized along the y -direction strikes the lens 18 obliquely with respect to the first input beam 14 but in the same general off-axis location. Because of their assumed different polarizations, the polarization-dispersive element 26 affects them conversely, but the segmented polarization modulator 140 simultaneously rotates (or does not rotate) both of their polarization states. In the backward propagation, the diffraction grating recombines the optical frequency carriers into the desired ADD and DROP channels, as determined by the segmented polarization modulator 140.

The optical switch of FIG. 14 can be made frequency insensitive using techniques described for the other embodiments.
The frequency dispersion at the liquid-crystal modulator of the invention allows the modulator to simultaneously change the phase and/or amplitude of the different frequency components of the signals. Such adjustment is particularly advantageous to additionally compensate for the frequency dispersion of the optical fiber or to equalize amplitudes between different channels.

Although the described embodiments have placed the frequency-dispersive elements on the outside of the polarization-dispersive elements, it is recognized that the two dispersions can be performed in the opposite order and even simultaneously.

The invention can thus be used in a number of related configurations, all of which are useful for providing an
6. An optical switch in accordance with claim 2 wherein said first and second polarization-dispersive elements arc Wollaston prisms, the focal length of said focusing lens being at the interface of said first polariza-tion-dispersive Wollaston prism.
7. An optical switch in accordance with claim 6 further comprising a third polarization-dispersive element in front of said entrance frequency dispersive element
and a fourth polarization-dispersive element behind said exit frequency dispersive element, the input to said third polarization-dispersive element being said first and second input signals and the output from said third polari-zation-dispersive element being a pair of beams for each 5 of said first and second input signals, one beam of each pair being laterally displaced dependent on polarization, and a half-wave plate positioned in the path of only one of each pair of beams.
8. An optical switch in accordance with claim 7 wherein said third and fourth polarization-dispersive elements are birefringent crystals.
9. An optical switch in accordance with claim 7 wherein said half-wave plates are positioned in the path of each of said laterally displaced beams only.
10. An optical switch in accordance with claim 7 further comprising a further half-wave plate adjacent the side of said focusing lens receiving said dispersed optical beams but in the path of only one of said pair of beams.
11. An optical switch in accordance with claim 10 further comprising a half-wave plate adjacent the input side of said fourth polarization dispersive element in the path of each of said laterally displaced beams only.
12. An optical switch comprising in sequence
a frequency dispersive element for receiving an input optical signal and dispersing it into a dispersed optical beam according to the frequencies thereof,
a focusing lens receiving said dispersed optical beam, a polarization-dispersive element,
a segmented polarization modulator having multiple individually controlled segments and positioned

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : $5,414,540$
DATED : May 9, 1995
INVENTOR(S) : Jayantilal S. PATEL et al.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby corrected as shown below:

Column 8, line 63, change "arc" to --are--.
Column 10, line 1 , change "local" to --focal--

Signed and Sealed this
Twenty-ninth Day of June, 1999

Q. TODD DICKINSON

