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Foreword 

Throughout the last five years, two major trends have shaped system 
usage of flash memory. Density has increased at the significant rate 
taken by a mainstream technology, and the cost has dropped below 
various traditional memories. Looking out over the coming years, these 
trends will continue and flash memory will alter the memory system 
architecture defined in the 70's and 80's. 

Production volumes of the first 256-kbit flash memory started shipping 
in 1988. By 1992, multiple companies announced capability of 4 Mbit, 8 
Mbit and even 16 Mbit densities. These densities, in a cost-effective, re
writable, non-volatile memory, provide designers with alternatives for 
sophisticated microprocessor-based designs. Rapid increases in the 
densities of flash memory, combined with the software upgrade 
assumption, have created "flash points" in many general computing 
systems. 

Beyond code storage, designers have adopted flash memory for 
parameter and data storage. The amount of firmware or data storage and 
its usage in various applications has depended on the rapid decline in 
price points of the technology. In 1988, OEMs purchased 1 MByte of 
flash memory for $640. From that starting point, the price per megabyte 
has steadily dropped to $240 in '89, to $90 in '90-91, and to $30 in '92-
93. This drop has enabled different classes of machines within an 
application family to adopt flash memory over time. 

Another market dynamic helped accelerate the pace of "flash points" in 
1993. OEMs who had adopted flash technology between '88 and '90 
helped define the critical elements of the second generation flash 
product features. These products hit the market in 1991 and 1992. The 
features included erase blocking (symmetrical and asymmetrical for 
different applications), lockable "boot blocks," embedded write and 
erase algorithm automation, and ultra-low "power-down" functions. 
From this feature evolution, one can see another round of "flash points" 
in the areas of high volume PC BIOS and portable systems of all types. 
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Designers in 1991 and 1992 opened their imaginations and started 
defining new system features, capabilities and even new classes of 
systems. They broke with the traditional approaches of slicing the 
system memory budgets, as seen in the following examples. A notebook 
PC today may have only $15 of flash memory, relative to $100 of 
DRAM and $250 of hard disk. On the other hand, a Personal Digital 
Assistant may have $30 of resident flash memory, relative to $30 of 
SRAM, $20 multi-purpose PC card slot, and $0 for a hard disk. The PC 
card slot enables system expansion through flash memory and I/O cards. 

Other applications that have started redistribution of the memory budget 
include data and telecommunication systems, printers, workstations, 
diskless terminals and POS terminals. These systems may balance 
kilobytes of fast cache SRAM, with megabytes of DRAM, and 
megabytes of either resident or removable flash memory. The flash 
memory in these applications improve network efficiencies or provide 
reliable local storage. In general, designers have recognized that the 
memory hierarchy established with the technologies available in the 
early 1970s, limits the system architecture in some way, thus creating 
additional "flash points". More will come over the coming years through 
the creativity of system designers allowed to dream. 

Saul Zales 
Components Marketing Manager 
Intel Flash Cards and Components 
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Preface 
Several years ago when the authors first began working at Intel, the 
flash memory industry was still in its infancy. This simple and relatively 
expensive (at that time) memory device was primarily being used as an 
EPROM or EEPROM replacement, but creative-minded people like 
Bruce McCormick (Intel's Director of Marketing for flash memory) and 
Dick Pashley (Intel's Flash Memory Divisional Manager) saw a great 
future for flash memory as a solid-state disk drive media and DRAM 
replacement. The evolving versatility of flash memory has allowed it to 
play a significant (and very interesting) role in optimizing the 
performance of many different applications. 

Many articles, application notes and datasheets have been written to date 
on flash memory. However, this is the first comprehensive book on the 
subject. It combines the best of previously written literature and the 
latest information, along with the detailed, experienced knowledge of 
the authors, all in one binding. 

Keeping up with the rapidly changing flash memory industry was a 
significant challenge. Although basic flash memory concepts often 
remained the same, in the course of the one year it took to write this 
book, many new technologies and devices were introduced and many 
new flash memory manufacturers entered the market. In some cases, it 
was very difficult to separate sensationalism and marketing "hype" from 
reality when deciding what to include and leave out. Given the pace of 
this industry, we'll probably soon begin work on the second edition ........ 

By far the greatest challenge in writing Designing with Flash Memory 
was the sacrifice of (almost) every weekend, weeknight and vacation 
day so that we could provide you with this informative and enjoyable 
reference on flash memory (and return to our normal lives as soon as 
possible). Should you have any inputs on the book, whether positive or 
constructive (negative), feel free to contact the publisher at Annabooks. 
Happy Reading! 

Brian and Markus 
September 9, 1993 
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Chapter One: Introduction 

Flash memory is the subject of this book; what it is, where it can be used 
(and why) and how it is integrated in system designs. At the time of this 
book's publishing, flash memory has been manufactured in volume for 
only five years, but in this short time frame it has achieved tremendous 
industry acceptance and rapid year-to-year volume shipment growth. As 
Figure 1.1 shows, business analysts predict a continuous and unabated 
growth throughout the forseeable future. 

Millions of $ 
3,00 

------2,50 

/ 2,00 

~ .. ~ 1,50 
~~ 

1,00 

~ 500 
~ 0_ 

1990 1991 1992 1993 1994 1995 1996 1997 

Dalaquesl_ 35.0 120.0 249.0 565.0 1,203.0 1,894.0 2,536.0 2,745.0 

In-SIal .. 38.0 132.8 319.3 631.5 988.3 1,289.8 1,611.1 1,980.1 

Figure 1.1: The Exploding Flash Memory Market 

What's driving the interest in, and subsequently the success of, flash 
memory? Certainly its unique characteristics and capabilities, to be 
discussed throughout the book, represent part of the reason. However, 
flash memory is also relatively easy and economical to manufacture, and 
its cell architecture is comparatively simpler than other semiconductor 
memory approaches (see Figure 1.2). 
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2 Chapter One: Introduction 
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Figure 1.2: Flash Memory Cell Simplicity Enables Cost-Effective 
Manufacturing 

Manufacturing ease, in combination with a simple cell architecture, 
contributes to lower cost and ultimately results in lower memory pricing. 
Just as enhanced features enable flash memory usage in more and more 
applications (as detailed in Table 1.1), pricing that crosses certain price 
points impels companies to begin using flash memory instead of the 
technologies they had previously used. Figure 1.3 shows industry 
predictions for flash memory pricing through the next several years. 
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UTHOGRAPHY 

1.2 micron 

1.0 micron 

0.8 micron 

Flash Memory Compared To Other Memories 3 

PACKAGING DENSITY $ PER HOF SPEED APPUCATION 
MByte CYCLES 

DIPIPLCC 64 Kbit- $200 100 200 ns Minimal-update, low-density 
256 Kbit code storage. 

Small lookup tables. 

TSOP 512Kbit- $50- 10,000 120 ns High-density code storage. 
2Mbit 200 Data acquisition 

psoprrsoPI 4Mbit- $30-50 100,000 60ns High performance disk 
Die 8Mbit emulation 

Flash memory cards 
Resident flash arrays 

Table 1,1: Flash Memory Evolution and Innovation 
Broaden the Application Base 

$ 
350 

300 ~ 
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\ 150 
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100 
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50 ...... - - --0 

1989 1990 1991 1992 1993 1994 1995 1996 

$/MByte" 313.00 126.50 83.90 32.00 23.50 15.90 9.75 7.20 

Figure 1.3: Average Selling Price for 1 Mbyte of 
Flash Memory Storage (Dataquest) 

FLASH MEMORY COMPARED TO OTHER 
MEMORIES 
A description of what flash memory is (and isn't), is most easily obtained 
by first defining the more established memory alternatives; ROM, RAM, 
EEPROM, and magnetic mass storage, By outlining flash memory 
characteristics in these terms, both its relative features, capabilities, and 
applications are most apparent. 
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4 Chapter One: Introduction 

ROM (Read-Only-Memory) 

ROM is nonvolatile, but not in-system updateable. This memory family 
has several members (ROM, PROM, and EPROM), with varying 
degrees of flexibility of use differentiating them. ROM memories store 
permanent code and data that is required to initialize and operate a 
system and that must be accessible at relatively high speed 
(differentiating ROMs from magnetic disk drives, for example). Most 
ROM technologies employ a single transistor per cell and are therefore 
capable of high per-device memory densities. 

RAM (Random-Access-Memory) 

RAM is in-system updateable; rewriting of RAM contents is easily and 
quickly done by the system cpu. However, the affordable variety of 
RAM, dynamic RAM (DRAM), is volatile; memory contents do not 
retain their stored values when power is removed. DRAM stores 
temporary data and also shadows the contents of both ROM memory and 
magnetic mass storage during normal system operation for high-speed 
access. Another variety of RAM, battery-backed static RAM (SRAM) , 
integrate a battery to retain stored data when system power is removed. 
These batteries are, of course, ultimately volatile and are also sensitive 
to temperature variations. In addition, SRAM is considerably more 
expensive than DRAM. 

Each DRAM cell consists of a transistor and a capacitor that must be 
refreshed, or re-written occasionally due to leakage, to retain stored 
contents. DRAM today is the "technology driver", or lead product on a 
new manufacturing process, for many semiconductor companies. SRAM 
requires no periodic refresh and has faster access time, but trades off 
density and cost; SRAMs typically use between four and six transistors 
per cell, impacting attainable device densities and significantly 
increasing memory cost at a given density, relative to DRAM. 
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Flash Memory Compared To Other Memories 5 

EEPROM (Electrically-Eraseable-Programmable-Read-Only
Memory) 

EEPROM is a special kind of ROM that bears separate mention. It is in
system writeable on a byte-by-byte basis, like RAM, but it is also 
nonvolatile, like ROM. Writes to an EEPROM cell store or remove 
electron charge from areas of the cell transistor, resulting in a zero or 
one, respectively, when the cell is subsequently read. Per-byte 
alterability means that cell erase is part of rewrite. To speed this process, 
EEPROMs generate high internal voltage potentials (and subsequent 
high electric fields). This has the potentially unhappy consequence of 
impacting cell reliability through time, by causing cell oxide breakdown 
as the transistor is repeatedly re-written. EEPROM vendors often strive 
to extend memory lifetime via on-chip cell redundancy and error 
detection-correction logic. This added cell complexity, along with on
chip high voltage generation and considerable peripheral logic, limits 
per-device EEPROM density and increases cost for a given density, 
compared to other technologies. 

Magnetic Mass Storage 

Reference is made here to the resident hard disk drive and removable
media floppy disk drive. Magnetic mass storage is extremely dense, 
relatively inexpensive on a cost-per-megabyte basis (compared to 
semiconductor memory), and both nonvolatile and in-system updateable. 
However, its slow access time, due to platter seek, rotation delay, and 
inherent serial interface makes direct-read of code and data unrealistic. 
Instead, nonvolatile magnetic mass storage contents transfer to faster 
(but volatile) DRAM for CPU access. The fact that hard or floppy disk 
drives contain moving parts (the motor and heads) also suggests that 
they are potentially less rugged and more power-consuming than solid
state storage alternatives. 

An Emerging Alternative: Flash Memory 

Flash memory is the first significantly new memory technology to 
appear in almost 20 years, and yet in many ways it owes its heritage to 
its predecessors (specifically EPROM and EEPROM). Three distinct 
approaches exist today (which we'll discuss in detail a bit later), but 
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6 Chapter One: Introduction 

regardless of their differences, several similarities emerge. Table 1.2 
compares the fundamental features of flash memory with those of the 
other memory technologies discussed earlier. 

Flash 
Memorv 
SRAM 

DRAM 
EEPROM 

OTPI 
EPROM 

ROM 
Hard Disk 

Drive 

Floppy 
Disk 
Drive 

Nonvolatile High Low One In-System Fully Bit- High 
Density Power Transistor Rewriteable Alterable Performance 

PerCell 
./ ./ ./ ./ ./ 

./ ./ 

./ ./ ./ 

./ ./ ./ ./ 

./ ./ ./ ./ 

t 
./ ./ ./ ./ 

./ ./ ./ ./ 

./ ./ ./ 

Table 1.2: Flash Memory Versatility Answers the Needs of 
Many Applications 

Read 
./ 

./ 

./ 

./ 

./ 

./ 

Flash memory is inherently nonvolatile, with no refresh or battery 
requirements. This makes it a potential fit in applications that in the past 
used ROM, EEPROM, battery-backed RAM or magnetic mass storage. 
In-system updateability allows flash memory to match the requirements 
of designs that might have previously used RAM, EEPROM, or 
magnetic mass storage. Its simpler cell architecture (only one transistor) 
gives it significant density advantages over both EEPROM and SRAM, 
and compares favorably with densities achieved by ROM and DRAM on 
analogous manufacturing processes. 

Finally, the combination of nonvolatility, upgradeability, and high 
density not only enhances designs that used other memory approaches in 
the past but also enables new designs and applications. Figure 1.4 shows 
that whereas more established memory technologies meet one (or 
several) of the ideal memory attributes, flash memory is the only 
approach to satisfy all three characteristics. 
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A Preview Of Chapters To Follow 7 

HIGH 
DENSITY 

Figure 1.4: Flash Memory Satisfies Many Ideal Memory Attributes 

A PREVIEW OF CHAPTERS TO FOLLOW 
The remainder of this book will obviously cover the topic of flash 
memory in much more detail than the short discussion in this chapter! 
Using a modular structure, we have tried to organize the book so that 
you can quickly find the specific information you need. 

Chapters and appendices are arranged as follows: 

• 

• 

Chapter 2: Flash Memory Applications 
This chapter gives insight into compelling uses for flash 
memory today, and a glimpse into future flash memory 
applications. 
Chapter 3: Flash Memory Technologies 
This chapter reviews the distinguishing characteristics 
of, and the technology behind, the dominant alternatives 
in today's flash memory market. 
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8 Chapter One: Introduction 

• 

• 

• 

• 

• 

Chapter 4: Flash Memory Packaging Options 
and Update Alternatives 
This chapter shows the various packaging options 
available for both flash memory components and cards 
(and their relative strengths and shortcomings). It also 
discusses various flash memory update methods and 
their advantages and disadvantages. 
Chapter 5: Hardware Interfacing to Flash Memory 
Components 
This chapter explains the integration of flash memory 
components into system hardware designs (covering 
both fundamentals and advanced techniques). It also 
discusses interpreting flash memory timing parameters. 
Chapter 6: Power Requirements and Design 
Techniques 
This chapter clarifies various current and voltage 
specifications for flash memory, and discusses power 
and energy consumption of the flash memory subsystem 
in its various operating modes. 12V generation for flash 
memory program/erase is also covered here. 
Chapter 7: Software Interfacing to Flash 
Memory 
This chapter covers first-generation manual and second
generation automated flash memory program/erase 
algorithms. It also offers suggestions on update routines 
and boot code kemals, and discusses advanced software 
techniques for multi-component flash memory arrays 
and cards. 
Chapter 8: Special Hardware Interfacing 
Considerations for Memory Cards 
Although flash memory cards have similar properties to 
the devices within them, the hardware interfacing 
requirements are complicated by one significant factor: 
removability. In this chapter, we will discuss the 
PCMCIA signals as well as host implementations, 
including topics such as paging, buffering, and 
PCMCIA interface controller chips. 
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• Chapter 9: Flash Memory File Systems 
The biggest questions associated with solid-state drives 
made out of flash memory are: What is a flash file 
system?, and Which one should I use? The answers to 
these questions, and many more, lie within this chapter. 
It will give you the information needed to make an 
intelligent choice when evaluating the different flash 
file system solutions currently available. 

• Chapter 10: PCMCIA Software 
This chapter delves into the various layers of software 
that connect removable PC cards to the applications that 
use them. Much of this section will discuss Socket 
Services, software that every system with a PCMCIA 
slot should include. We'll also review Card Services and 
flash card drivers. 

• Appendix A: Flash Memory Component Vendors 
• Appendix B: Flash Memory CardIDrive Vendors 
• Appendix C: Flash Memory Card/Component 

Programmers 
• Appendix D: Component/Card Socket and Adapter 

Vendors 
• Appendix E: 12V Converters 
• Appendix F: Flash Memory Card ReaderlWriters 
• Appendix G: Flash File Systems 
• Appendix H: PCMCIA and Software Vendors 
• Appendix I: PCMCIA Compliance Testing Facilities 
• Appendix J: PCMCIA Card Types 
• Appendix K: Interface Controller Chip Register 

Functions and Vendors 
• Appendix L: INT 21H Standard Disk-Related 

Functions 
• Appendix M: Sample Flash File System 

Benchmarking Code 

APPLE INC. 
EXHIBIT 1011 - PAGE 0034



Chapter Two: Flash Memory 
Applications 

In Chapter One we answered a few basic questions about flash memory: 

• What is it? 
• Why use flash memory versus some other 

technology? 

In this chapter, we'll continue this trend and take a stab at a few more 
fundamental questions: 

• Where can flash memory be used (i.e., in what 
applications) ? 

• When do flash memory's features (in comparison to 
other memory alternatives) translate to system 
benefits? 

Jumping ahead for a preview of upcoming topics, the remainder of this 
book will answer, in depth, the final questions of: 

• 
• 

Who is making it and how do the alternatives compare? 
How do I integrate flash memory in my design? 

The potential applications for flash memory are numerous and varied. In 
some cases, flash memory enhances a design that had in the past used 
another type of memory. In other cases, flash memory is an enabling 
technology for designs and applications that, to a greater or lesser 
degree, never would have previously been possible. In either case, we'll 
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12 Chapter Two: Flash Memory Applications 

group the large number of possible applications into a few broad 
categories for purposes of discussion, with specific comments where 
appropriate. Specifically, we'll cover the following areas: 

• Data Accumulation 
• Data/Lookup Table Storage 
• Embedded Code Storage 
• File Storage 

Notice that in the previous paragraph we talked about the potential 
applications for flash memory. In many cases, flash memory is not the 
only memory approach that could be used in the system design. Both 
primary and secondary feature comparisons, as well as relative price 
analysis, will help determine the correct memory for your specific 
application. 

In Chapter 1, we conducted a feature-by-feature comparison between 
flash memory and other solutions (ROM, RAM, EEPROM, magnetic 
media, etc.), while in Chapter 3 we'll compare and contrast the specific 
features of various flash memory approaches relative to each other. In 
this chapter, we'll translate memory features into application benefits. 
Drawing from the authors' personal experiences in dealing with 
customers, we'll give some insight into flash memory's comparative 
strengths and weaknesses as they relate to application needs, and into 
reasons why flash memory is (or isn't) a fit. 

DATA ACCUMULATION 
In this type of application, one or more flash memory components (or a 
flash memory card) are used to store information periodically collected 
from some type of external environment. 

Medical Instrumentation 

One example of data accumulation is medical instrumentation, where a 
variety of information about a patient (heart rate, brain activity, blood 
chemical concentration, etc.) is periodically sampled and stored. At 
some point (usually when the resident memory is full), the data is 
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Data Accumulation 13 

analyzed, often by downloading it to a master computer. The resident 
accumulated data is flushed, and subsequent sampling continues from 
this point. 

Obviously, this type of system places a very high value on the stored 
information! Memory technologies used in the past included EEPROM 
and battery-backed RAM. Neither of these approaches will ever match 
the per-device density of flash memory, where density defines the 
amount of information that can be stored before filling the memory 
array. This type of application usually does not require the bit
alterability that RAM and EEPROM provide; so flash memory's lack of 
bit-eraseability may not be a drawback. Flash memory is inherently 
nonvolatile and does not rely on a limited-lifetime, temperature-sensitive 
battery to retain stored information. A high-density flash memory card 
provides the additional benefit of portability, if the data must be moved 
from the dedicated medical sensor to a computer for analysis. 

Flight Recorders 

Another system example of data accumulation is the "black box" flight 
recorder found on every commercial airplane today. If a plane crashes (a 
morbid scenario, we realize), the cockpit voice transcripts and stored 
accumulation of sensor data are used to reconstruct the events leading up 
to the accident and decipher its cause. Again, the value of the stored data 
is very high in such a system. 

In the past, tape recorders and rotating magnetic storage were used in 
this application, but their poor temperature tolerance (and the fact that 
they have moving parts) were reliability limiters, compared to fully 
solid-state flash memory medial. A large array of EEPROM is cost
prohibitive compared to the flash memory alternative. Battery-backed 
SRAM is similarly density-disadvantaged, and battery reliability is 
questionable at temperature and shock extremes. 

More Data Accumulation Examples 

Additional data accumulation examples include point-of-sale terminals, 
where transaction information can be stored locally and batch-uploaded 

1 As a matter of fact, the FAA now prohibits the use of mechanical media. 
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14 Chapter Two: Flash Memory Applications 

to the server, minimizing network traffic and improving performance. 
Another example is handheld instrumentation, such as bar-code scanners 
or other portable data acquisition devices. A final data accumulation 
application example is remote sensing instrumentation, such as 
geological, geothermal, or weather data collection equipment. 

Why Flash Memory for Data Acquisition? 

Benefits of flash memory in data accumulation applications (compared 
to other memory alternatives) include its high density, inherent media 
ruggedness, reliability, and inherent nonvolatility. Flash memory's low 
power consumption also provides value in battery-operated designs. 

Depending on the data sampling frequency, flash memory programming 
and erase performance may be critical in the design. In this case, 
software interleaving and background erase techniques (see Chapter 7 
for more information), as well as careful selection of flash memories 
(see Chapter 3), will maximize write bandwidth. Carefully analyze the 
application cycling requirements when selecting a flash memory. When 
evaluating flash memory versus alternatives, assess whether RAM-like 
bit-alterability is needed, and whether this requirement can be worked 
around via software and alternate storage techniques. 

DATA/LOOKUP TABLE STORAGE 
In this type of application, the flash memory devices store large amounts 
of infrequently updated system data and/or lookup tables. 

PBX Switcher 

One specific data storage implementation is a telecommunications 
switcher. Your phone company's local exchange PBX switcher, for 
example, stores a large amount of information about each of its 10,000 
(maximum) line subscribers, su~h as: 

• Custom services that are enabled (call waiting, call 
forwarding, etc.) and additional information for these 
services (such as the phone number that incoming calls 
are forwarded to). 
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• The primary long distance service selected by the 
subscriber 

In the past, ROMslEPROMs were one memory technology commonly 
used to store this lookup table data. Every time a user changed his/her 
information profile, the switcher would have to be taken off-line while 
the ROMs were replaced: an expensive proposition that also required 
multiple redundant PBXs to prevent system downtime. Obviously, 
business and personal phone users would not tolerate the inability to 
make and receive calls while the PBX was being updated! 

Another memory subsystem alternative consisted of a large array of 
RAM, backed up by an equivalent amount of magnetic storage (such as a 
hard drive). Besides the obvious cost of redundant memories (RAM and 
magnetic), any system glitch, reset, or power loss resulted in 
unacceptable system downtime as the PBX was re-initialized and data 
was copied from the hard drive back into the RAM array. Flash 
memory's combination of nonvolatility and updateability provides the in
system write capability lacking with EPROM, and eliminates the 
memory redundancy and long system recovery delay of RAM-HDD. 

Laser Printers 

Another example of a data storage application is the laser printer, which 
stores within itself the various fonts that it supports. These fonts have 
been historically placed in ROM or EPROM, where in-system update is 
not possible. You're in a sense stuck with the fonts that ship with your 
printer in a ROM/EPROM-based system. Given the ever-increasing 
explosion of new typefaces being used today, there's a very good chance 
that whenever you deviate from the standard limited set of Postscript or 
peL fonts, those that you select will not be resident within the printer. In 
this case, the font information is downloaded along with the print job 
and temporarily stored in printer RAM, greatly slowing effective print 
performance. 

Flash memory allows users to customize not only the specific fonts 
stored in the printer, but also to download and store custom graphics 
bitmaps (corporate logos), page templates and other information. Flash 
memory-based add-in font cartridges have been available for several 
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years now, and are beginning to find their way directly onto system 
motherboards, especially in high-end network and color printers. The 
ability to easily customize resident fonts is a clear customer benefit and 
a differentiator in the increasingly-crowded laser printer market. 

Why Flash Memory For Data/lookup Table Storage? 

Advantages of flash memory over alternatives in data/lookup table 
applications include its combination of in-system upgradeability and 
nonvolatility. High density is also often required by the system, and 
flash memory supports this need. Fast access time translates to quick 
data lookup and high system performance. Similar to the embedded code 
applications discussed next, you should evaluate not only component 
cost but also system cost through system lifetime (i.e., the likelihood of 
data updates) when choosing between flash memory and an alternative 
memory. 

EMBEDDED CODE STORAGE 
This is the traditional use for flash memory, replacing ROM or EPROM 
in storing the resident code (otherwise known as firmware) that runs a 
system. The vast majority of today's flash memory customers use it in 
this type of application. In fact, the term "flash memory" was coined 
specifically for its quick code update capability relative to EPROM. 

PC BIOS 

One very popular embedded code storage application is that of the 
personal computer basic input/output system (BIOS). The BIOS is the 
lowest level code interfacing the operating system to the specific 
hardware implementation. Acting as the glue that ties the two together 
(see Figure 2.1), it has a major role in the open system architecture of 
today's Intel-based computers. The BIOS allows the same operating 
system and graphical user interface (GUI) (for example MS-DOS'IM and 
Windows'IM) to run on both a low-end i386'IMSX system and the newest 
Pentium'IM microprocessor-based workstations. 
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OPERATING SYSTEM 
(COMMON) 
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COMPUTER HARDWARE 
(SPECIFIC) 

Figure 2.1: BIOS Glues Common Software to Unique Hardware 

In the past, the BIOS was fairly well understood and easy to write, since 
systems themselves were relatively straightforward and standardized. 
However, today's computing world is vastly more complex. Listed below 
are some of the factors that have complicated the PC BIOS: 

• More powerful and upgradeable CPUs 
• Various local bus graphics standards 
• Elaborate power management software 
• PCMCIA expansion slots 

As the creation of BIOS software grows more challenging, competitive 
pressures in parallel force ever-shorter time-to-market for new hardware 
designs. BIOS software creation therefore has become the gating item to 
product introduction, and consequently the probability of shipping 
systems with bugs is increasing. Flash memory (versus ROM or 
EPROM) allows easy, low-cost BIOS upgrade even after a system is in 
the user's hands. This is especially crucial in compact, hard-to
disassemble (and reassemble) computers. Flash memory also enables 
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custom BIOS installation as systems are shipped; just-in-time 
manufacturing allows one hardware design to service multiple markets 
(price points, etc.). Finally, upgrade capability allows systems in the 
marketplace to be updated not only as BIOS bugs are discovered, but 
also as the BIOS is enhanced (power management code improvements 
being one example), strengthening customer loyalty. 

Digital Cellular Phones 

A totally different type of system, but one with very similar issues, is the 
digital cellular phone. Using Europe as just one example, the GSM 
digital cellular phone standard is not yet fixed, and is still being revised 
and enhanced. In the crowded, competitive cellular phone market, no 
manufacturer is willing to wait for full standardization before shipping 
products. Code instability and early obsolescence is therefore a big 
concern for customers. Using flash memory for code storage, versus 
ROM or EPROM, means that the embedded system code can be easily 
updated even after it is in the customer's hands. 

Conceivably, upgrade could be as simple as the phone owner calling a 
toll-free phone number provided by the manufacturer. After a handshake 
is established, new code could be downloaded over the cellular link to 
the phone, whose embedded processor would control the update! 

More Embedded Code Storage Applications 

Other common examples of embedded code storage applications that can 
take advantage of flash memory capabilities include control software in 
laser printers and telecommunications bridgers/routers. Although these 
applications differ significantly, they have the same issues; a fairly 
expensive initial cost where the potential for code instability exists 
and/or where code upgrade is a key customer benefit and differentiator. 

Why Flash Memory for Embedded Code Storage? 

Flash memory's advantages for embedded code storage include its 
combination of nonvolatility and upgradeability. Fast access time 
increases system performance, eliminating the need to shadow code to 
faster RAM in many cases. High density also matches the growing 
software needs of today's complex designs. Low power consumption 
also benefits portable, battery-operated systems. 
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FILE STORAGE 
The mechanical disk drive has traditionally (and economically) been the 
media chosen for mass file storage. HDDs have large capacity, low cost 
per byte, fairly high reliability, and acceptable performance. However, 
portable computing and industrial applications have placed new 
demands on these file' storage devices. Industrial applications (being less 
cost sensitive) were the first to really use solid-state drives, having 
originally used battery-backed SRAM. During its short existence, flash 
memory has proven to be more reliable and certainly lower cost than 
SRAM. Even though this cost has not yet fallen quite low enough to 
ignite mass market acceptance of flash memory replacement of magnetic 
media, reasons for its use are becoming obvious. 

Flash Memory Promotes Longer Battery Life 

Long battery life is generally not possible with rotating motors, spin-up 
surges, and wasteful idle modes. Figure 2.2 depicts the energy 
consumption of various operating modes for file storage devices, 
contrasting the solid-state approach using flash memory and the 
mechanical disk drive. 

Figure 2.2 clearly shows that the greatest amount of energy is wasted 
while the drive idles. To avoid constant spin-down and spin-up, the disk 
drive typically remains in the idle mode for at least 5 minutes after the 
last computer operation. An analogy can be drawn to the car waiting at 
the railroad crossing. How do you determine when to turn off the car's 
engine? For a short train, leave it on; for a long train, turn it off. A solid
state drive, especially one made with flash memory, can enter sleep 
mode almost instantly after the last access. Why? Because spin-up 
concerns do not exist. This yields significant energy improvements. 
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Figure 2.2: Energy Consumed During Various Acitivties 

HOD Densities with FDD Interchange 

Flash memory cards used for solid-state drives provide consumers with a 
removable mass storage device. Companies like Databook and Elan2 

have developed memory card reader/writers that look much like floppy 
drives, only with PCMCIA slots (Figure 2.3). Flash memory card users 
can therefore interchange information on a card between their portable 
computer and desktop workstation. High density flash memory cards 
avoids the cumbersome use of numerous floppy disks when transferring 
large amounts of data back and forth. Yes, it's true that flash memory 
cards are more expensive than floppy disks. But we're talking about 
portable computers that cannot afford the space for a floppy drive, nor 

2Refer to the Appendix for a detailed listing. 
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are they willing to sacrifice the weight gain or the added energy 
consumption. Applications such as these will eventually push flash 
memory to the forefront, and as the PCMCIA slots on the latest 
generations of mobile computers show, this trend has already begun. 

Figure 2.3: Elan Flash Memory Card ReaderIWriter 

SUMMARY 
When evaluating flash memory versus an alternative memory solution, 
look beyond component-level (or card-level) cost and evaluate the total 
cost of the system, throughout its lifetime. Flash memory's strengths, 
exemplified in this chapter's applications, include: 
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• Full nonvolatility 
• In-system program and erase 
• Ruggedness 
• Low power consumption 
• Fast read/write 
• High density 
• Low cost 
• Removability and portability 
• Small form factor 

These features, translated into system benefits like updateability, 
manufacturing ease, durability, light weight, small size, high 
performance, and shock resistance, are some of the reasons why flash 
memory is today often not the other memory evaluated for new designs, 
but the only memory choice! 
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Chapter Three: Flash Memory 
Technologies 

From a very high-level perspective, Chapter 1 answered the question, 
"What is Flash Memory?" As a review, flash memory has the following 
primary characteristics: 

• Nonvolatility (retains data stored to it when 
powered off), and 

• In-System Updateability (stored data can be erased 
and replaced under system processor control) 

As you can see, this is a pretty broad definitionl Various semiconductor 
vendors have chosen unique and quite dissimilar silicon technology 
approaches to answer the above application requirements. Some flash 
memory approaches are evolutionary, based on existing memory types 
that are already nonvolatile and updateable. Other technologies choose a 
more revolutionary path. 

This chapter will discuss in detail three flash memory technologies: 
NOR, EEPROM, and NAND. All three approaches meet the basic 
criteria for flash memory (nonvolatility and updateability). Where they 
differ, however, is in their secondary characteristics, some of which are 
listed below3: 

• 
• 

Read Performance 
Ptogram/Erase Performance 

3Chapter 2 discussed specific flash memory applications and indicated the highest priority features 
in each case. 
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• 

• 
• 
• 

Number of ProgramlErase Cycles Through Device 
Lifetime 
Power Supply Voltage Requirements 
Current Draw in Device Operating Modes 
Erase Block Size 

When evaluating flash memory alternatives, do not overlook the 
manufacturing process complexity, and the size of the flash memory cell 
and periphery logic. Both factors translate into component cost, and 
ultimately to the price you pay for the component or flash-based 
subsystem from the manufacturer or distributor. Keep this in mind as 
you read about the "latest and greatest" flash memory technology 
unveilings. Creating something in the laboratory is one thing; 
consistently recreating it in high volume and with low cost in a 
manufacturing facility is entirely another matter! 

As a framework for the following discussion, Figure 3.1 shows the 1992 
relative market share for several flash memory semiconductor vendors. 
The anticipated demand for flash memory in the very near future is 
evident, and many semiconductor companies are gearing up to supply 
this market. 
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Figure 3.1: Dataquest 1992 Flash Memory Market Share (by company) 
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NOR FLASH MEMORY 
(Examples: Intel Corporation, Advanced Micro Devices, Hitachi, 
Mitsubishi, NEC, SGS.Thompson, Fujitsu, Toshiba Corporation) 
NOR flash memory was introduced by Intel Corporation in 1988, using 
the company's ETOXTM (EPROM Thin Oxide) process technology. 
Since that time, products based on similar technologies have been 
announced by several other semiconductor vendors. Figure 3.2 compares 
the ETOX flash memory cell with an EPROM (Erasable Programmable 
Read-Only Memory) cell. The similarity in this revolutionary approach 
is clear; NOR flash memory derives from an EPROM base. The key 
difference is in the silicon oxide thickness between the floating gate and 
substrate. This thinner oxide is the key to NOR flash memory operation; 
we'll see why in a moment. 

SELECT GATE 
SELECT GATE 

FLOATING GATE 

t 325A 

FLOATING GATE 

t 100A 

SOURCE J l DRAIN I I SOURCE J l DRAIN 

SUBSTRATE SUBSTRATE 

EPROM CELL ETOX FLASH CELL 

Figure 3.2: ETOXTM Flash Memory Cell Similarities Leverage 
EPROM Learning Curve 

When shipped from the vendor, the default state of all cells in a NOR 
flash memory is one, corresponding to an erased condition. Figure 3.3 
shows the voltages present on the cell when read. When erased, the 
floating gate of the flash memory cell does not block the cell from being 
turned on by the applied voltages on the select gate and drain. The 
resulting current is sensed at the transistor source, and translated to a 
one at the memory output pin. 

Figure 3.4 shows a portion of a flash memory array and the 
interconnection of the various transistors. Device addresses enable 
specific wordlines and bitlines; in combination they select one transistor 
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within the array per device output. This organization also explains the 
NOR name for this architecture; any "on" transistor (i.e., a selected, 
erased cell) in the chain results in the earlier-described current draw, 
sensed at the end of the chain and converted to an output one. 

SELECT GATE 

FLOATING GATE 

= 

Figure 3.3: ETOXTM Flash Memory Cell Being Read 

Select Unes (Bit) 

r----------~---------~ I '\ 

'-.... ____ _---______ J --...--
Source Unes (to Sense Amps) 

Figure 3.4: NOR Flash Memory Array Interconnect 
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Program 

Changing a flash memory cell (or bit) to a zero is called programming. 
NOR flash memory employs the same programming mechanism as 
EPROM, namely hot electron injection. Figure 3.5 shows an ETOX 
flash memory cell being programmed. As electrons travel from the 
source to the drain through the substrate, the electric field generated by 
high voltage on the select gate causes some of the highest energy 
electrons to jump the gap and collect on the floating gate. What's the 
result? Referring back to Figure 3.3, we see that the electrons now 
present on the floating gate counteract the voltage on the select gate and 
prevent the flash memory cell from turning on. No current flows from 
drain to source, resulting in a zero on the memory output pin. 

SELECT GATE 

FLOATING GATE 

If SOURCE 

J r6V 

J { • l ____ D_RA_IN_---t1 
SUBSTRATE _ 

(Arrows Show Electron Flow) 

Figure 3.5: ETOxrM Flash Memory Cell Being Programmed 

NOR flash memory cells can be selectively programmed to zero. In other 
words, programming is a bit-level operation. On a byte-wide flash 
memory device, for example, one bit of a selected byte can be 
programmed to zero, leaving the other seven bits at one. Later 
programming of the same byte can change other bits to zero in the same 
way. However, one key point to note about NOR flash memory (and 
about other flash memory approaches, too) is that programming only 
changes ones to zeros. Here lies a fundamental difference between flash 
memory and other rewriteable memory technologies like RAM. To 
change programmed zeros back into ones, we must use a different 
mechanism, called erase. 
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Erase 

EPROMs are erased by ultraviolet light. As shown in Figure 3.6, the 
extra energy generated by UV light enables electrons on the floating gate 
(put there by programming) to overcome the inherent semiconductor 
energy potential and return to the substrate. After erasure, an EPROM 
cell once again reads as a one. To allow UV light to shine on all 
EPROM cells on a device array, the package must include a built-in 
glass window. As manufacturing lithographies become smaller and 
smaller, it becomes harder and harder to ensure that UV light can reach 
all array cells. The window requirement also puts limits on how small 
the device package can become. 

ULTRAVIOLET ULTRAVIOLET 

LIGHT '-L _____ ---'I / LIGHT ~ _ SELECT GATE . 

SOURCE J l ...... _D_RA_I_N_-l 
SUBSTRATE 

Figure 3.6: EPROM Cell Being UV Erased 

SELECT GATE 

DRAIN 

(Arrow Shows Electron Flow) 

Figure 3.7: ETO)(TM Flash Memory Cell Being Erased 

Rather than using UV light, NOR flash memory cell erasure is 
accomplished electrically using a process called Fowler-Nordheim 
tunneling. Figure 3.7 shows the voltages on the flash memory cell during 
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erase. The generated electric field pulls electrons from the floating gate. 
First generation bulk-erasure NOR flash memories erase all cells in the 
array at the same time. Second generation NOR devices erase in smaller 
blocks. Following the same train of thought, this is called block erase. 
Erase block size varies from flash memory vendor to vendor, and from 
device to device, based on the targeted applications. 

Compared to EPROM, the array transistors in a flash memory need not 
be accessible to UV light exposure. This allows flash memory designers 
to run layers of interconnection over the cell versus around it, 
simplifying the design and minimizing the device die size. As an 
analogy, think of a multi-layer versus a single-layer printed circuit 
board. Also, flash memory does not require the window of an EPROM, 
allowing very small footprint (and less expensive) packaging4. 

Negative Gate Erase 

Negative gate erase is similar but not identical to the conventional cell 
erase approach described earlier. Figure 3.8 shows the voltages on the 
flash memory cell during negative gate erase. Comparing this diagram 
with Figure 3.7, we see that although the voltages on the cells are 
different, the resultant voltage potential difference (and electric field) 
between gate and source is similar. Negative gate erase also uses 
Fowler-Nordheim tunneling to remove electrons from the floating gate. 

Overerase 

Removing too many electrons from the floating gate of a flash memory 
cell may theoretically result in an overeased condition (i.e., removing 
more electrons than were put there by a previous cell program). The 
effects of overerase are destructive to the flash memory device. Once 
overerased, a flash memory cell cannot be programmed again (within 
practical limits). Reads of this cell, as well as adjacent cells in the array, 
produce erratic and invalid results. Referring back to Figure 3.4, we see 
that an overerased cell, being "always on" even if not selected, overrides 
any valid data on the array transistor "chain". Oops! 

4We'll see this again in Chapter 4. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0053



30 Chapter Three: Flash Memory Technologies 

SELECT GATE 

DRAIN 

(Arrow Shows Electron Flow) 

Figure 3.8: Negative Gate Erase 

Fortunately, flash memory erase algorithms include built-in procedures 
to eliminate the potential for overerases. First, cell erase (like cell 
programming) uses an iterative algorithm. Shown in simplified form in 
Figure 3.9, the built-in feedback loop ensures that the algorithm 
terminates and does not allow further removal of floating gate electrons 
once sufficient cell erase has been detected. Secondly, since all flash 
memory cells in a given device (or block within an device) are erased in 
parallel (and at approximately the same rate), preprogramming ensures 
that all cells are at a common initial programmed state. Without 
preprogramming, already-erased cells in the device or in a given erase 
block would be overerased while programmed cells were being erased. 

Newer NOR flash memories control the erase algorithm internally, and 
automate both the erase preprogramming and iterative erase/verify steps. 
This dramatically simplifies system software algorithms and eliminates 
any potential for error. For more information, reference Chapter 7. 

NOR Flash Memory Specifications 

Table 3.1 provides a summary of NOR flash memory device 
characteristics, derived from dat~ on Intel Corporation's latest-generation 
products. These specifications are indicative of the relative levels of 
perlormance possible today using NOR flash memory. However, exact 

SIf they are implemented exactly as published; a 'word to the wise' for system software 
programmers! 
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NO 

Figure 3.9: Iterative Basic Flash Memory Erase Algorithm 
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values will vary from device to device, from manufacturing process to 
manufacturing process, and from vendor to vendor6. 

Density 8 Mbit 

Access Time 60 ns 

Data Program Time 61ls (min) 

9 IlS (typ) 

Block Erase Time (64 kbyte block) 0.3 sec (min) 

1.6 sec (typ) 

Table 3.1: NOR Flash Memory Characteristics 

Note the relatively slow erase time compared to read and program. Cell 
erase time is a primary function of two parameters; oxide thickness 
between floating gate and substrate, and internal erase voltage (it is also 
affected by device temperature, and by the number of times the cell has 
been erased previously, or cycled). The cell erase time of the ETOX 
processes is a direct result of the relatively low 12V and low current 
used to pull electrons from the floating gate. However, a low erase 
voltage also translates to excellent cell reliability and extended cycling 
performance. Later chapters will give examples of flash memory 
applications where cell erase time is (and is not) a concern, as well as 
discussing hardware and software techniques to hide the slow erase as a 
background system task. 

FLASH EEPROM 
(Examples: Atmel Corporation, Samsung, SunDisk, Catalyst 
Semiconductor) 
The previous discussion showed how NOR flash memory was derived 
from an existing EPROM base. Similarly, flash EEPROM shares many 
similarities with standard EEPROMs. Figure 3.10 shows a diagram of a 
flash EEPROM memory cell. 

6Consult vendor datasheets, application notes, and engineering reports for information on specific 
devices. Vendor contact information is in Appendix A. 
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Figure 3.10: EEPROM-Based Flash Memory Cell 

A standard EEPROM can be fully altered on a byte-by-byte basis. The 
byte erase operation is integrated in the write function, i.e., the byte is 
first erased and then reprogrammed with the desired data. A flash 
EEPROM, on the other hand, simplifies the silicon design by erasing on 
a block-level basis. When an EEPROM flash memory block is written, it 
is first erased and then programmed with data stored in an on-chip 
buffer. 

Erase 

Flash EEPROMs erase using Fowler-Nordheim tunneling, as do NOR 
flash memories. Most, however, use a separate erase gate per cell to 
collect electrons pulled off the floating gate. Regardless of the specific 
method, flash EEPROMs use much higher internally-generated voltages 
because of their greater oxide thickness compared to NOR flash, and to 
speed erase performance. Remember .... erase is a built-in part of rewrite, 
not a separate operation as in the case of NOR flash. Figure 3.11 shows 
an EEPROM flash memory cell being erased. 
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High Voltage 

Floating Gate 

Control Gate 

(V-Axis View) 

(Arrow shows 
electron flow) 

Figure 3.11: EEPROM-Based Flash Memory Cell Being Erased 

Programming 

Some flash EEPROMs program cells via hot electron injection. Most, 
however, use a reverse form of Fowler-Nordheim tunneling shown in 
Figure 3.12. The combination of voltages on the select gate and drain 
stores electrons on the floating gate, versus removing them, as seen with 
Fowler-Nordheim erasure. Again, high internal voltages are used for 
fastest programming performance. 
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Flash EEPROM 35 

Figure 3.12: EEPROM-Based Flash Memory Cell Being Programmed 

Flash EEPROM Memory Specifications 

Table 3.2 summarizes flash EEPROM memory characteristics7. Since 
erase is a built-in part of the flash EEPROM program algorithm, flash 
EEPROMs speed up the erase process time compared to NOR flash 
memory, primarily via the higher internal voltages on the EEPROM cell. 
However, over time this may potentially have a negative impact on cell 
reliability. As the EEPROM cell undergoes repeated erasure, the high 
electrical field can break down the thin oxide region, causing failure. 
Some EEPROM vendors have implemented redundant cell and internal 
error-correction schemes to combat this "Achilles Heel". 

Density 1 Mbit 

Access Time 90 ns 

Data Program Time 150 I-ls 

Table 3.2: EEPROM Flash Memory Characteristics 

7Taken from Atmel Corporation documentation. 
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NAND FLASH MEMORY 
(Example: Toshiba Corporation) 
NAND flash memory is a relatively new technology approach pioneered 
by Toshiba Corporation. As shown in Figure 3.13, the NAND flash 
memory cell looks very much like a NOR cell! However, the periphery 
logic designed into NAND is very different, and the internal program 
and erase approaches most closely resemble flash EEPROM methods. 

SELECT GATE 

FLOATING GATE I 
(To next ~ I +5V (from previous 
cell In r----r-----r----.......,I cell In serial chain) 

serial chain) ,--_S_OU_R_C_E_..:..J-'-...:~;.,;.:..::,--_D_RAl_N_---,. 
_ SUBSTRATE 

(Arrows Show Electron Flow) 

Figure 3.13: NAND Flash Memory Cell Being Read 

Like Figure 3'.4, Figure 3.14 shows the interconnection of transistors in a 
NAND array. Data sensing along the chain is serial in nature, and the 
architecture reflects its name. 

Program and Erase 

NAND flash memory cells program and erase via reverse and forward 
Fowler-Nordheim tunneling, respectively. Figures 3.15 and 3.16 show 
the internal voltages on the cell in each case. Note that unlike flash 
EEPROM memory tunneling, NAND flash memory applies voltages to 
the substrate itself, in addition to the select gate. 

NAND Flash Memory Specifications 

Table 3.3 shows initial specifications for Toshiba's first NAND flash 
memory-based device. NAND flash memory primarily targets solid state 
disk drive replacement applications, and the feature set reflects this, with 
fine-resolution blocking and fast cell erase. However note the slow 
initial read access time due to serial data read, which may limit broad 
application usage. Some NAND devices include error detection and 
correction (EDAC) cells and associated EDAC logic. 
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Figure 3.14: NAND Flash Memory Array Interconnect 

r=+21V 

SELECT GATE 

FLOATING GATE 
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SUBSTRATE 

(Arrow Shows Electron Flow) 

Figure 3.15: NAND Flash Memory Cell Being Programmed 
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SELECT GATE 

FLOATING GATE 

I 
SOURCE J t l DRAIN 
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I 

+21V 
(Arrow Shows Electron Flow) 

Figure 3.16: NAND Flash Memqry Cell Being Erased 

Density 4 Mbit 

Access Time 15 Ils (initial read) 

80 ns (subsequent serial 
access) 

Data Program Time 4 ms (min) 

Block Erase Time (4 kbyte block) 6ms 

Table 3.3: NAND Flash Memory Characteristics 

WHAT'S ALL THIS CYCLING STUFF, ANYWAY? 
The subject of cycling is quite possibly the most abused (by companies 
supplying flash memory) and most misunderstood (by companies buying 
and using flash memory in their system designs) of any topic you'll find 
discussed in this book! All sorts of outlandish claims have been made, 
are being made, and will probably be made in the future, concerning the 
cycling capabilities of various flash and "flash-like" memory 
technologies. To confuse you even further, concepts such as MTBF 
(mean time before failure) are often used in conjunction with cycling 
specifications. Flash memory vendors often mean well (from a 
marketing perspective) when they include these numbers, but since an 
industry standard for the determination or calculation of MTBF doesn't 
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exist, it is often subject to liberal interpretation and modification. 
Therefore, MTBF numbers for different flash memory devices and 
technologies cannot be directly compared without knowing the recipes 
that were used and the assumptions that were made when the 
measurements were taken. 

We are going to explain cycling in its most fundamental definitions for 
you, and provide guidelines by which you can calculate your own MTBF 
numbers for your specific flash memory design and implementation. Our 
goal here is to cut through all the meaningless marketing hype and 
provide you with valid, useful information. 

What is cycling? A cycling number is: 

a) The minimum number of times a flash memory device (or block 
within a device) can be erased and programmed in a reasonable 
amount of time without loss of device functionality, at 

b) A specified failure rate percentage, or FIT (failure-in-time) 
level. 

Flash memory vendors often ignore the latter part of the above definition 
when publishing their cycling specifications. What good is it to know 
how many times you can erase an array of flash memory cells if you 
have no idea of the probability that some of the cells will fail before 
reaching this cycle count? A parallel can be drawn here with stereo 
equipment, where inflated claims are sometimes made of an amplifier's 
output power capability without mentioning how distorted the output 
signal was when this power was measured. What good is it to hear loud 
music if you can't understand it? (Of course, with some forms of popular 
modern music this could be seen as a positive!) Similarly, what good is 
it to be able to erase flash memory to an extended number of cycles if 
the media is essentially unusable when it reaches this cycle count? 
Clearly both parts of the cycling definition are valuable and useful 
information. 
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Failure Analysis 

Before each flash memory device is shipped to a customer, it undergoes 
extensive testing to screen out known and detectable failure mechanisms 
both in the circuitry itself and in the manufacturing process on which the 
device was made. Even after this testing, it is known and accepted that a 
certain very small (hopefully!) number of devices will eventually fail, 
even when operated at all recommended specifications. Some sources of 
this failure, common to all flash memories as well as other memory 
technologies, are listed below: 

• Package Integrity Failures 
• Random Circuitry Failures 
• Data Reliability Failures (i.e., programmed zeros turning 

back into ones) 
• Program Failures (inability to change a one to a zero), 

and 
• Erase Failures (inability to change a zero back to a one) 

Reputable flash memory vendors spend a great deal of time and effort 
calculating and predicting their failure rates. Published reliability reports 
contain these predicted failure percentages, and are available for your 
inspection. We'll restrict the following discussion to the last two failures 
listed above, program and erase (or cycling) failures. 

How and why does a flash memory cell fail due to cycling? Two 
different mechanisms combine here; one a more "destructive" 
phenomenon (oxide breakdown) and the other "non-destructive" in 
nature (electron trapup). 

Oxide Breakdown 

Notice the thin oxide region between the substrate and floating gate 
regions in Figure 3.10. As a flash memory cell is repeatedly erased and 
reprogrammed, the electrons move back and forth through the oxide 
region under an electric field. This stresses the oxide, and in its most 
severe form can result in oxide breakdown and a short circuit between 
oxide and substrate, rendering the cell non-functional. High quality 
oxide with low probability of defects, as well as a lowered electric field 
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to mmllllize oxide stress, are ways that flash memory vendors can 
minimize the likelihood of oxide breakdown. 

Electron Trapup 

Recall that the earlier definition of cycling included the phrase "erased 
and programmed in a reasonable amount of time". This is key to the 
definition of electron trapup. As a flash memory cell accumulates higher 
and higher cycle counts, electrons become trapped in the oxide region, 
lowering electron mobility through the oxide and resulting in increased 
program and erase times. The program and erase algorithms must apply 
more pulses to program or erase the cell sufficiently to ensure data 
integrity and retention. Since the impact of electron trapup is simply a 
failure to program or erase within an allowed time and not a "hard" 
failure of the cell itself, we call it a "non-destructive" phenomenon. 

Mean Time Before Failure 

With cycling and failure rate data, and with a good understanding of 
how flash memory will be used in your system, you can calculate MTBF 
values for your specific design. As an example, we'll use the Intel 
28F008SA 1 Mbyte FlashFile™ memory in a configuration of 20 chips 
(20 Mbytes total). 

The Intel 28F008SA is rated for 100,000 cycles on each of its sixteen 64 
kbyte blocks (independent of any other block). Data taken through 
10,000 cycles shows no cycling failures, translating to a 0% cycling 
failure rate (pretty impressive!). Therefore, for this example we'll use the 
more stringent device failure rate of .01%, which encompasses all 
device failure mechanisms listed earlier in this chapter. The value 0.01 % 
is the historic worst-case device failure rate seen with production-rated 
Intel flash memories, and the 28F008SA should perform at least this 
well (if not better). 

A 0.01 % failure rate (translating to 100 FITS or failures-in-time) means 
that fewer than 1 in 10,000 devices will fail after 10,000 cycles and 
1,000 hours of operation. The scenario under which we'll calculate 
MTBF assumes that a 10 kbyte file is written to the 20 Mbyte array of 
flash memory every 10 minutes; a pretty rigorous set of assumptions if 
you think about it! 
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A flash-friendly file system could use a linked list structure to write 
multiple copies of a file and fill up clean flash memory, marking old 
versions of the file "dirty" but not erasing them immediately8. This 
significantly minimizes cycling of flash memory media. Therefore, given 
the file and flash memory array sizes, we can make the following 
calculations: 

(20 Mbyte array) / (IOkbyte file) = 2,000 file writes can be done before an array erase is required 

(2000 file writes/erase) x (10,000 cycles per 28F008SA block) = 20 x 106 file writes 

(20 x 106 file writes) x (10 minutes/write) x (I hr/60 minutes) = 3.33 x 106 hours MTBF 

This means that our 20 Mbyte flash memory array has a Mean Time 
Between Failures of over 3 million hours, at a failure rate of 0.01 %. Not 
bad,eh? 

Extended Cycling-The Flash Memory Manufacturer's Options 

Earlier when defining cycling, we inferred that the easiest way some 
flash memory vendors achieve extended cycling was by downplaying the 
negatives and accentuating the positives of their technology approaches. 
This, while true, is not the only means of reaching the extended cycling 
"Holy Grail"! Several other concrete tradeoffs have been made by 
various flash memory suppliers, both in technology and architecture, in 
pursuit of this goal. 

Oxide breakdown can be eliminated by producing very high quality, 
uniform oxide for each flash memory cell. This is much more difficult 
than it might first appear, and in fact is probably the most complex 
problem that semiconductor vendors have struggled with as they attempt 
to ramp up their flash memory manufacturing capabilities. The oxide 
layer, at 100 A thick, is made by laying down several layers of silicon 
atoms, no simple task. Remember, too, that for an 8 Mbit flash memory, 
not one cell but over 8 million must be manufactured correctly to yield a 
functional device, and that potentially several hundred devices can be 
made from each 6" or 8" silicon wafer. 

Another technology tradeoff can be made with respect to the internal 
electric field during program and erase, which is a function of the 

8See Chapter 9 for more information. 
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magnitude of the internal voltages. A lower electric field lowers the 
stress on the oxide (a positive) but also slows program and erase times (a 
negative). Intel Corporation, with its ETOX flash memory approach, has 
made this choice, and has added device functionality to minimize the 
system performance impact of the resultant slow block erase time9. 

Where flash memories use higher internal voltages (flash EEPROM and 
NAND flash memories), added circuitry attempts to circumvent the 
impact of oxide breakdown and resultant cell damage. EEPROMs often 
use redundancy schemes which lower cycling failures at the expense of 
doubling cell size and adding complexity. Toshiba's NAND flash 
memory integrates error detection and correction (EDAC or ECC) 
directly on the silicon to mask the device impact of single cell failures. 
While potentially extending the cycling capability of the device, this 
approach adds complexity and die size to each device, and also impacts 
read performance. 

Extended Cycling-What Can You Do? 

What can you do to match the cycling requirements of your design to an 
appropriate flash memory architecture? First and foremost, fully analyze 
the cycling you truly require, and take all possible steps to minimize this 
cycling. A design that uses flash memory for embedded code storage 
may only be erased and reprogrammed ten times through its lifetime. On 
the other hand, a memory card used for file storage may have blocks of 
flash memory updated thousands or hundreds of thousands of times. 
Specifically with respect to file storage, Chapter 9 will explain how 
software companies have re-architected file storage beyond the hard 
drive paradigm to match the unique characteristics and capabilities of 
flash memory. These concepts, while possibly not directly applicable to 
your specific design, will provide examples of cycle minimization and 
management, linked list structures, and wear leveling. 

In Chapter 7 we'll discuss the system software algorithms that initiate 
and control flash memory erase and program. In cases where erase 
failure has occurred due to non-destructive electron trap up, this chapter 

9Upcoming chapters will discuss flash memory automation, the RY/BY output and erase 
suspend/resume capability. 
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will show you how to extend cycling by supplying the flash memory 
media with additional erase and program pulses. 

Finally, it's your responsibility to understand the conditions under which 
various flash memory vendors have calculated their products' cycling 
capabilities, and to request additional information if needed. By 
correctly interpreting not only minimum cycling information but also the 
failure rates associated with this cycling, you can intelligently compare 
and choose among the many flash memory offerings in today's market, 
as they match the requirements of your design. 

SUMMARY 
The basic concept of the flash memory cell is relatively simple. Again 
referencing Figure 3.3 as an example, storing electrons on the floating 
gate changes the stored cell data from a one to a zero, and removing 
them changes it back to a one. The challenge for flash memory vendors 
has been to make flash memory: 

• Simple, with the smallest possible cell and minimal 
periphery logic, translating to a small die size and 
lowest silicon cost, 

• Manufacturable, with a technology development 
approach that can be easily and cheaply moved to 
the vendor's production line, and 

• Feature-set-rich, with technologies and devices that 
answer the requirements of their target markets. 

The flash memory market is still in its infancy. The system designer has 
a wide range of product offerings from mUltiple flash memory vendors 
to choose from, based on several unique technology approaches. In 
Chapter 2, we've already covered flash memory applications in detail, 
and discussed the features that are of highest importance in each case. In 
combination with the information from this chapter, you'll be able to 
choose the flash memory that makes the most sense for your design! 
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Chapter Four: Packaging Options and 
Update Alternatives 

At first glance, the title of this chapter may appear to combine two 
unrelated topics. However, as is sometimes the case, things are not 
always as they first seem! A wide range of factors influence the choice 
of an appropriate component package, including board space, end 
system form factor, operating temperature range, manufacturing 
tolerances and available assembly techniques. Flash memory's electrical 
update capability has enabled small form factor packaging, originally 
impossible with some other memory technologies. In some applications, 
flash memory packaging is as crucial (or more so) to the design as are 
nonvolatility and updateability (PCMCIA memory cards being one 
example). 

The selection of a package, in many cases, automatically determines 
which flash memory update methods are available during prototyping, 
when manufacturing the system and once it is in the customer's hands. 
Conversely, if a specific update technique must be supported, it can 
factor into the package chosen. Specifically, issues such as the 
requirement and ability to socket and (therefore) remove the flash 
memory can define which package is used in the design. 

In this chapter, we'll cover the following package options: 

• DIP (Dual In-Line Package) 
• LCC (LeadedlLeadless Chip Carrier) 
• SO] (Small Outline J-Lead Package) 
• SOP (Small Outline Package) 
• TSOP (Thin Small Outline Package) 
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• SIMM (Single In-Line Leadless Memory Module) 
• PCMCIA (Personal Computer Memory Card 

International Association) Memory Cards 

......... and, we'll explain the following flash memory update methods: 

• 
• 
• 

Off-Board PROM Programming 
On-Board Update 
In-System Write 

PACKAGING OPTIONS 
Throughout time, component packages have increased in number and 
diversity to match the needs and capabilities of the devices themselves, 
and of the systems that use them. Packaging innovations have solved 
height, footprint, weight, leadcount, thermal, reliability, electrical and 
mechanical constraints, among others. A package does not necessarily 
add to the theoretical perlormance of the device, but an improperly 
designed package, acting as the flash memory's weak link, will severely 
impact this potential. 

DIP (Dual In-Line Package) 

This "grandparent" of device packages (Figure 4.1), has existed in 
essentially the same form factor for over two decades! Today's DIP 
packages are generally made of ceramic or plastic materials. Common 
package widths are 0.6" (frequently used in nonvolatile memories like 
flash memory or ROM) and 0.3" (for devices with smaller die sizes, like 
programmable logic). Package length depends on the number of pins 
used by the device. Pin-to-pin spacing is 0.100", often referred to as 100 
mils. 
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A 4.83 0.190 
A1 0.38 0.015 
A2 3.81 Typical 0.150 Typical 
B 0.41 0.51 0.016 0.020 
B1 1.14 1.40 0.045 0.055 
C 0.20 0.30 0.008 0.012 
0 41.78 42.04 1.645 1.655 
02 38.10 Reference 1.500 Reference 
E 15.24 15.88 0.600 0.625 
E1 13.46 I 13.97 0.530 0.550 
e 2.54 Reference 4 Reference 
eA 15.24 Reference 0.600 Reference 
eB 15.24 I 17.78 0.600 I 0.700 
L 3.18 3.43 0.125 0.135 
N 32 600MIL 32 600MIL 
S 1.78 I 2.03 0.070 I 0.080 
S1 1.14 0.045 
ISSUE IWS 4/19/90 

Figure 4.1: DIP (DualIn-Line) Package Dimensions 

When used for flash memory, backwards compatibility represents one of 
the biggest advantages of the DIP package. Specifically, DIP packaging 
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is also commonly used for EPROM memories, since the wider package 
makes for easy inclusion of the quartz glass window for UV-erasure. 
Many DIP-packaged flash memories are closely (or exactly) pinout
compatible with EPROMs, easing the conversion process for new 
designs. 

Other advantages of DIP packaging include ease of socketing, for 
proto typing on the system board or when flash memories are 
programmed in a PROM programmer. The wide pin spacing and 
through-hole installation make board manufacturing relatively easy. 
Finally, the long pins allow the package to flex in response to changing 
temperature conditions, resulting in very good thermal resistance 
(especially for the ceramic package). 

One obvious disadvantage of the DIP package is its large size, which 
translates to excessive board area consumption and height above the 
board. When building a compact system, smaller packages should be 
considered. Since the electrically eraseable (vs. UV) flash memory does 
not require a window, this removes one key advantage of the DIP 
package. Reference Figure 4.2 for a size comparison between DIP and 
TSOP packaging on Intel's 28FOOIBX Boot Block flash memory. As 
new system designs accelerate the transition from traditional through
hole packaging to more compact surface-mount methods, the 
incremental manufacturing cost for any remaining DIP-like devices 
becomes excessive and, in many cases, unacceptable. 

Figure 4.2: DIP I TSOP Package Comparison (Actual Size) 
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LCC (Leaded/Leadless Chip Carrier) 

LCC was the first surface-mount option available to the market, and is 
today still one of the most popular packages. Although available as 
leadless and leaded versions, the leaded version (Figure 4.3) is most 
common for memories due to socketing and manufacturing simplicity. A 
common characteristic of leaded chip carrier is .050" lead spacing (50 
mils), oriented in a J-Iead configuration so that the ends of the leads curl 
underneath the package. 

ill the past, leaded LCC packages were manufactured either out of 
ceramic materials (so that a window could be added for EPROMs; this is 
also commonly called Cerquad), or various plastics. ill the latter case, 
the package was called PLCC (for Plastic Leaded Chip Carrier), and 
resulted in one-time-programmable EPROMs, or OTP-ROMs. Again, 
since flash memory does not require the EPROM's window for erasure, 
plastic PLCC packaging dominates, except in the most severe 
temperature tolerance designs. 

PLCC's key advantage over DIP is its more compact footprint and 
height, allowing board designers to squeeze more components into a 
given area. PLCC prototyping sockets are easily available from multiple 
vendors lO, and many PROM programmers support the PLCC package in 
addition to DIP. 

lOSee the Appendix for more information 
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0.00 0.10 0.000 
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0.180 
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0.456 
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0.495 
0.456 
0.430 

0.004 
0.004 
0.015 

Figure 4.3: LCC (Leaded Chip Carrier) Package Dimensions 

One of PLCC's key disadvantages, however, is inherent in its lead 
configuration. To manufacture a surface-mount board, the components 
are placed on their sites and the board is exposed to a heat source which 
melts the solder onto the device leads. PLCC's J-Iead configuration 
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means that the portion of the lead attached to the system board is under 
the component package. This makes post-soldering lead inspection 
difficult or, depending on spacing between components, impossible. 
PLee devices in many cases must also be carefully handled, packed in 
silicon gel or other moisture-absorbing material until attached to the 
board. Unless this is done, the plastic package can absorb moisture from 
the atmosphere (humidity-dependent), which turns to steam during the 
solder melt process and can crack the package or die inside. Thinner 
packages like TSOP (to be discussed shortly) do not tend to have this 
problem; their narrower thickness allows the steam to easily exit the 
package without damaging the device. 

PLee also has leads on all four sides, which precludes the system 
designer from running board traces directly under the package. This may 
be a concern in space-critical designs, where the only alternatives 
available are routing traces around the flash memory or using expensive 
multi-layer boards. Figure 4.4 shows trace routing comparisons between 
PLee and PSOP packages. Finally, the square PLee package is often 
unusable for high density flash memories, which tend to have narrow, 
long and rectangular die and therefore do not fit in the package interior. 

PLCC Layout 

PSOP Layout 

Figure 4.4: Trace Layout Comparison: PSOP vs. PLCC 
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SOJ (Small-Outline J-Lead) 
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D2 
E 8.38 8.64 0.330 0.340 

E1 7.49 7.75 0.295 0.305 
a1 1.27 Typical 0.050 Typical 
aA 6.60 6.99 0.260 0.275 
aB 
L 
N 24 24 

Figure 4.5: Small Outline J-Lead (SOJ) Package Dimensions 
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This surface-mount package, shown in Figure 4.5, eliminates some, but 
not all, of the problems associated with the first-generation PLCC. It 
uses the same 0.050" (50 mil) lead spacing and J-lead configuration as 
PLCC, and therefore, inherits PLCC's post-soldering lead inspection 
difficulties. However, the rectangular package aids in trace routing and 
better matches the rectangular silicon die inside. SOJ packages, like 
PLCC, are fairly easy to socket for prototyping. 

SOP (Small Outline Package) 

SOP has all the advantages of SOJ (compared to PLCC), and in addition 
has a modified gullwing lead configuration (shown in Figure 4.6). 
Compared to SOJ or PLCC, this greatly improves the post-soldering lead 
inspection process, since leads extend beyond the package making them 
clearly visible at all times. 

The main disadvantage of SOP today is restricted availability of sockets 
for prototyping. However, this is quickly changing as the package 
becomes more and more common. See the Appendix for more 
information on SOP prototype socket and socket adapter vendors. 

TSOP (Thin Small Outline Package) 

TSOP (Figure 4.7) represents the state of the act in surface mount 
packaging. TSOP is only slightly larger than the die inside the package, 
and is only 1.2 mm thick. Compared to bare die, TSOP provides full 
device functional and speed testing before the device is shipped from the 
flash memory manufacturer. Packaged nonvolatile memories are also 
easier to handle and more reliable than their bare die equivalents. 
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Figure 4.6: Small Outline Package (SOP) Dimensions 

t 
c~ 

Notes 

APPLE INC. 
EXHIBIT 1011 - PAGE 0078



Packaging Options 55 

DETAILB 

! I<I!I-I~ --D-~ 
~ HD----------~ 

(_.,,~EE DETAIL A 

~ .......... 

DETAIL B DETAIL A 

Familv; Thin Small Outline 
Symbol Millimeters Notes 

Min Max 
A 1.20 
A1 0.05 

A2 0.96 1.06 
B 0.15 0.30 
C 0.10 0.20 
D 18.20 18.60 
E 7.80 8.20 
HD 19.80 20.20 
L1 0.30 0.35 
N 32 
Y 0.00 0.10 
Z 0.20 0.30 
8 0° 5° 
ISSUE 1-1-91 

Figure 4.7: TSOP (Thin Small Outline Package) Dimensions 
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Several flash memory suppliers are offering TSOP-packaged devices in 
both standard and reverse pinout configurations, as demonstrated in 
Figure 4.8 with Intel's 28F008SA. This allows highest density-per-in2 

arrays of multiple flash memories. The resulting component layout and 
trace routing is called "serpentining". Figure 4.9 makes it clear where 
this name came from. Flash memory cards represent one example 
application that uses TSOP devices and the serpentine layout. 
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Figure 4.8: Standard and Reverse TSOP Packages 
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Figure 4.9: TSOP Serpentine Package Layout 

The main hurdle to overcome with TSOP-packaged flash memories is 
the very narrow 0.020" (20 mil) lead spacing. TSOP devices are 
virtually impossible to socket by hand; pick-and-place equipment should 
be used. Fine-pitch automated soldering techniques are essential for 
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high-yield TSOP board manufacturing. As with any new technology, the 
number of TSOP handling solutions today is sparse, but will increase 
with time as not only flash memory but other logic devices become 
available in this ultra-small package. 

SIMM (Single In-line leadless Memory Module) 

SIMMs are one way of combining multiple flash memory components 
on a single board. SIMMs offer the advantage of being an add-in module 
that enables system expandability. In comparison to a fixed array of 
flash memories on the system motherboard, SIMM modules can be 
inserted into any open connector, allowing the density per SIMM 
connector to be varied to match the specific needs of the system. 

The package dimensions are fairly standardized across the industry for 
nonvolatile memories of all types (Figure 4.10). However, be careful! 
The actual SIMM pinout (what signals are on what pins) can vary from 
manufacturer to manufacturer. Not every SIMM will function in every 
SIMM connector, although they may all physically fit. As an example, 
Figure 4.11 shows the pinouts for SCM Microsystems' 1 and 2 Mbyte 
flash memory SIMMs. 
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1 VSS 21 CE3# 41 A11 61 D09 

2 VCC 22 CE2# 42 A10 62 D08 

3 OE# 23 CE1# 43 A9 63 D07 

4 WEH# 24 CEO# 44 A8 64 D06 

5 WEL# 25 VSS 45 A7 65 D05 

6 NC 26 RES 46 A6 66 D04 

7 RES 27 RES 47 A5 67 D03 

8 RES 28 RES 48 A4 68 D02 

9 RES 29 RES 49 A3 69 D01 

10 RES 30 NC 50 A2 70 DOO 

11 RES 31 NC 51 Ai 71 Vpp 

12 RES 32 NC 52 AO 72 VCC 

13 RES 33 NC 53 RES 73 PD1 

14 RES 34 NC 54 VSS 74 PD2 

15 RES 35 A17 55 D015 75 PD3 

16 RES 36 A16 56 D014 76 PD4 

17 NC 37 A15 57 D013 77 PD5 

18 NC 38 A14 58 D012 78 PD6 

19 NC 39 A13 59 DOn 79 PD7 

20 NC 40 A12 60 D010 80 VSS 

Figure 4.11: SCM Microsystems Flash Memory S1MM Pinout 

SIMMs provide relatively easy system upgrade ability, but modules 
cannot be added or removed with the system powered up, and the system 
must usually be partially disassembled to access modules. The PCMCIA 
flash memory card, which we will discuss next, has this hot-socketing 
capability. 
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PCMCIA Flash Memory Cards 

Memory cards of all types (RAMlROMlEEPROMlFlash) have been 
around for many years. In most cases, each card manufacturer had their 
own custom physical connector dimensions and pinouts. This 
incompatibility limited the number of cards available per machine and 
made card interchange between machines very difficult if not 
impossible. 

The original PCMCIA 1.0 specification (established in 1991) eliminated 
both of these problems by standardizing on a common 68-pin, 16-bit 
parallel, memory-only interface for cards with densities as high as 64 
Mbytes. The Japanese equivalent of PCMCIA, JEIDA (Japan 
Electronics Industry Design Association), also standardized on the same 
68-pin configuration, bus timings, interface voltages, etc. In 1992, 
PCMCIA introduced a second version of the specification (i.e., 
PCMCIA 2.0) which added I/O capability (e.g., modem, fax, Ian) to the 
68-pin socket by using reserved pins and multiplexing the functionality 
of some exisiting memory signals. 

The advantages of PCMCIA-compatible flash memory cards include: 

• They can be inserted and removed during host system operation, 
similar to a floppy disk. This is an important attribute when the 
flash memory card is used as the mass storage subsystem. (Hot 
insertion and removal also has the disadvantage of complicating 
the system software, as we'll explain in Chapter 10 on PCMCIA 
software.) 

• Flash memory cards are also very rugged, with the components 
inside the card protected by the tough plastic or metal casing. 
The host system houses the male side of the connector interface, 
eliminating bent pins during card handling. 

• The small size (no bigger than a credit card, and only slightly 
thicker) makes PCMCIA cards extremely portable. 

• The parallel (versus serial) interface does add to the interface 
pincount, but allows not only file system mass storage in the 
card but also direct-execute code capability. 
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Although all PCMCIA cards incorporate the same 68-pin electrical 
interface, the physical dimensions of the package differs. The four types 
are: 

• Type 1 (Figure 4.12) - Measures 3.3 mm thick and 
accommodates memory cards only. 

• Type 2 (Figure 4.13) - Measuring 5nim thick, the thicker Type 2 
card will often be used by some vendors in flash drives, as well 
as most I/O card products. A system's Type 2 slot is backwards 
compatible with Type 1 cards. 

• Type 3 - An even thicker (1O.5mm), Type 3 card form factor, 
primarily designed for removable hard drives. 

• Type 4 - This card type, proposed to be 18mm thick, has not yet 
been ratified by PCMCIA. It will be used for high capacity 
magnetic media hard disk drives. Although Type 4 could be 
packed with flash memory devices to achieve very high 
densities, these densities would carry along with them a very 
high price tag! 

For more information on the PCMCIA hardware, electrical and timing 
standards, reference Chapter 8. 
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Figure 4.12: PCMCIA / fElDA Type 1 PC Card 
Package Dimensions 
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Flash Drives 

Although this category doesn't exactly conform to the typical 
expectations of a package, it nevertheless plays a very significant role in 
flash utilization. A flash memory card requires system software and 
hardware resources to function as a solid-state drive; it interfaces 
directly to the system bus. Conversely, the flash drive plugs into a 
system via an IDE (or PCMCIA-ATA) interface and has all required 
software and hardware contained within. Table 4.1 compares some of 
the features of flash drives and flash memory cards. 

FLASH DRIVE FLASH MEMORY CARD 

Attaches to the system via an IDE or Direct system interface allows faster 
PCMCIA-ATA interface access and execute-in-Qiace (XIPl 

Completely integrated solution eliminates Requires a system-operated flash file 
system overhead, provides O/S and system and system hardware 

hardware independence resources 
Inherently higher cost due to additional Minimal parts count yields low cost 

hardware besides flash memory 
media (CPU, RAM, 12V converter, 

etc.) 

Table 4.1: The Key Differences between a Flash Drive and a PCMCIA 
Flash Memory Card 

From a very simplistic view, Figure 4.14 compares the standard 
mechanical disk drive to a disk emulator or flash drive. Aside from the 
type of media chosen for storage, both drives look about the same in that 
they both have an IDE interface controller and a media controller. 
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~ + 
IDE-ATA Flash Flash 

HOST Interface Media Media 
Controller Controller 

~ r. IDE-ATA Disk 8 HOST Interface Controller 
Controller 

Figure 4.14: Mass Storage Architecture 

Figure 4.15: Flash Drive Architecture 

Flash 
Drive 

Rotating 
HDD 

Figure 4.15 shows a flash drive in more detail. Notice the various 
components contained within: 

• Flash array - Notice how it is isolated from the system. The size 
of the array depends on the overall size and form factor of the 
flash drive, which will typically range from the 2.5" HDD form 
factor to PCMCIA Type II. 
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" Microprocessor - Handles everything from internal data 
movement to management of the flash memory media. 

e Power converter - Some drives contain a built-in DC-DC 
converter so that the system only has to supply 5V. The internal 
generator takes care of providing 12V for the flash memory 
write and erase operations. 

" Flash memory - Stores the code used by the processor for its 
activities. 

" Interface controller - This unit manages the IDE (or PCMCIA
ATA) interface, acting as the go-between the system and the 
flash drive's microprocessor and flash memory. This controller 
will typically be in the form of an ASIC. 

" Miscellaneous - Other pieces that can be found within a flash 
drive include an error detection and correction unit (EDC), 
RAM used as a buffer and scratchpad, and a hardware data 
com pressor/ decompressor. 

UPDATE OPTIONS 
Flash memory's flexibility means that it can be erased and 
reprogrammed in many different ways, and at many different times 
during system lifetime. Three common techniques for updating flash 
memory are PROM programming, on-board update and in-system write. 

Off-Board PROM Programming 

For those of you with an existing hardware/software investment in 
PROM programming equipment for EPROMS or PROMs, you'll be 
happy to know that this very same equipment can also be used to 
program flash memories. What's new, of course, is that instead of 
putting EPROMs under UV light to erase them, you can both program 
and erase flash memories in the PROM programmer! 

This flash memory update method is especially useful for easy-to-socket 
packages like DIP, PLCC and PSOP. If your PROM programmer only 
contains a DIP socket, you can purchase socket adapters for all flash 
memory packages. I I 

11 Information on socket adapters, as well as PROM programmer vendors supporting flash 
memory, can be found in the Appendix. 
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PROM programming equipment for flash memory is most useful during 
system debug and prototyping, to aid in quick code revisions. It's also 
useful when programming the kernel boot code in block-eraseable flash 
memories such as Intel's Boot Block devices. Programming the boot 
block before installing the component on the board means that the 
requirement to ramp 12V on the PWD12 input for Boot Block flash 
memories does not need to be supported in-system. 

On-Board Update 

Contrary to the PROM programming method described earlier, on-board 
update programs or erases flash memories after they are soldered onto 
the system board. Designs that have large arrays of flash memory 
devices use this method to minimize component handling and maximize 
manufacturing efficiency. It's also often the method-of-choice for hard
to-socket component packages such as TSOP. 

In on-board update, an external connection supplies all signals and 
voltages required for programming/erasing the flash memory, with an 
external processor (outside of the system) executing the update 
algorithm. If a board tester is used in production, its bed-of-nails 
component interface can be used to provide these inputs; otherwise a 
dedicated connector on the board is an option. In some cases, an adapter 
originating from a PROM programmer socket can even be used. 

One important design consideration to keep in mind is that during on
board update, all other logic in the system that shares signals with the 
flash memory (common data bus, addresses, control inputs/outputs) 
should also be powered up (and held in reset). If not, this logic must be 
electrically isolated from the flash memory to prevent damage to the 
memory and/or the external device controlling the update. As Figure 
4.16 shows, CMOS devices not powered up through their supply voltage 
inputs will instead attempt to power themselves via their inputs or 
outputs. This will most likely draw excessive current from the flash 
memory and external update control source. 

12pWD is also known as RP in JEDEC notation. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0092



Update Options 69 

~ 
+5V 

I 

Vee vee 
.. Data Bus .. 

... .. 
Chip Enable ... 

'" 
Read ... Flash 

CPU -II"" Memory 

Write .... 
'" 

Address Bus '" 

... 
Vpp 

I 
+12V 

Figure 4.16: Design Considerations During On-Board Update 

On-board programming adds flexibility to board manufacturing. For 
example, as a system moves down an assembly line, you can download 
diagnostic code to the flash memory to fully test system functionality 
under system CPU control. Also, the final software version can be 
downloaded to flash memory immediately before the hardware box 
leaves the warehouse. This enables just-in-time (JIT) manufacturing, and 
also allows one hardware design to service multiple markets and 
functions. For example, one personal computer hardware design can be 
customized for specific customers, specific market price points and/or 
specific areas of the world simply by varying the software programmed 
into its flash memory BIOS before shipping the PC. 

Several companies making PROM programmers also offer board
programming fixtures and systems. These companies consult/advise 
customers interested in programming/erasing flash memory in this 
manner, and are a valuable resource.13 

13See the Appendix for more information. 
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In-System Write 

Like on-board update, flash memories being updated in-system are 
physically attached to the system motherboard. However, in this case, 
the entire system is powered up and operational, and the system CPU is 
executing the update routine. A simplified diagram of this process is 
shown in Figure 4.17. This key capability differentiates flash memory 
from earlier technologies like EPROM. 

New 
Info 

..... 
~ CPU 

iII!III 

...0IIII 
"""'l1lI 

~ 
Flash 

Memory 

.. RAM lI"" 

Figure 4.17: Key Elements of In-System Update 

In Chapter 7 we'll review flash memory software update algorithms in 
great detail; let it suffice for now to say that registers internal to the 
flash memory devices decode the command sequences written to them 
and react accordingly to program or erase the memory. Therefore, 
although programming takes many microseconds or milliseconds to 
complete (erase being similarly slow), commands can be written to the 
flash memory at SRAM-like write speeds. 

Figure 4.17 shows external RAM interfacing to the CPU in addition to 
the flash memory. Today, it is not possible to read data (or execute code) 
from a flash memory while it is being programmed or erased (some 
newer-generation devices allow you to suspend erase to read, however). 
Although the in-system update routines can be stored in the flash 
memory, they must be copied to, and executed from, some external 
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device, such as RAM. After update is complete, the system can jump 
back to, and resume executing out of, the flash memory. 

In-system write is most useful for updating code or data once a system is 
in the customer's hands, eliminating the need for a technician call and 
system disassembly to replace memory components. The new data or 
code to be stored in the flash memory can come from any of numerous 
possible sources; downloaded from a parallel or serial connector, 
supplied via a modem link or floppy or hard disk drive interface, etc. 
Using embedded code in cellular phones as an example, flash memory 
update could be as simple as the user calling the phone manufacturer on 
a special telephone number. After establishing the connection, new code 
could be downloaded to flash memory via the wireless link! The 
possibilities are limited only by your imagination and the unique 
characteristics of your system design and operating environment. 

SUMMARY 
This chapter has discussed the different flash memory packaging options 
available to you, and how these packages match up to the various 
methods that can be employed to update flash memory. In Chapter 2 we 
discussed different system applications that can take advantage of flash 
memory capabilities. These applications have unique needs, which often 
translate into optimum flash memory packaging selections, and 
allow/preclude various possible update methods. 

Other areas of this book to reference for more information include the 
upcoming chapters on hardware interfacing (components and cards), 
power requirements, software algorithms and the PCMCIA memory card 
standard. Finally, the Appendix gives more detailed information on 
various socket, socket adapter and programmer vendors for your 
reference. 
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Chapter Five: Hardware Interfacing To 
Flash Memory Components 

Chapters 1 and 2 explained what flash memory is, and discussed flash 
memory applications, ways that flash memory can make today's systems 
better and enable revolutionary new solutions that exploit its features. In 
Chapter 3, we reviewed several unique semiconductor technology 
approaches to solving the flash memory "puzzle". Now, beginning with 
Chapter 5, we'll show you how to integrate flash memory into your 
upcoming designs. In particular, this chapter outlines techniques for 
hardware interfacing to flash memory components. Interfacing to flash 
memory cards, as well as software interfacing to flash memory, will be 
saved for later. 

HARDWARE INTERFACING FUNDAMENTALS 
As you're already aware, flash memory is nonvolatile like ROM (Read
Only Memory) and equally important, in-system rewrite able like RAM 
(Random-Access Memory). With rare exceptions, most flash memories 
have minor variations on standard SRAM pinout interfaces. We'll review 
the SRAM interface in this section. Specifically, we'll cover the 
following input/output and control pins: 

• Chip Enable (Chip Select) 
• Addresses 
• Data In/Out 
• Output Enable (Read) 
• Write Enable (Write) 
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Figures 5.1 and 5.2 give examples of standard processor/flash memory 
interfaces, while Table 5.1 shows a typical bus interface truth table for 
an "SRAM interface" flash memory. 

Addresses Addresses 

L.[DBOOdBr r-: CE 

PROCESSOR FLASH 
MEMORY 

Data • ~ Data -- --.. OE READ ~ 

-- .. 
WE WRITE ~ 

Figure 5.1: Processor/Flash Memory Inteiface (separate address and 
data buses, distinct read and write, one flash memory) 

Addresses 

~-~: : Data ~ Data 
!Data (High Byte) (Low Byte) 

~~'" }..~ Addresses Addresses 

ADS Decoder~ CE FLASH CE FLASH 
PROCESSOR MEMORY MEMORY (x8) (x8) 

PiN I Logic I OE OE 

DEN WE WE 

Figure 5.2: Processor/Flash Memory Inteiface (multiplexed 
address/data lines, multiplexed read/write, two x8flash memories) 

Mode CE OE WE An DQn_7 

Read VIL 
-
VIL VIH X Dour 

Output Disable VIL VIH VIH X HighZ 

Write VIL VIH VIL X DIN 

Standby VIH X X X HighZ 

Table 5.1: Flash Memory Bus Inteiface 
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Chip Enable 

The system processor often connects to several other components 
through its external bus interface. These include memory (flash, RAM, 
etc.) and peripherals such as AID and D/A converters, external interface 
chips and secondary processors (e.g., keyboard controllers, interrupt 
controllers, and graphics controllers). A specific external component is 
selected via its chip enable input, connected to an appropriate chip select 
signal generated by some type of decoding unit. 

Some processors, such as the Intel 80C186 family, have dedicated chip 
select outputs activated when software accesses a defined address range. 
Chip enable inputs of corresponding external components connect 
directly to these processor chip select signals. Otherwise, external 
address decode logic generates chip enable signals from high order CPU 
addresses and port pins. This address decode logic can be as simple as a 
3:8 demultiplexer, or, alternatively, more flexible programmable logic 
can be used. See Figure 5.1 for an example. 

Addresses 

Each flash memory stores many bits of data (8 million and growing at 
the time this book was published!). Typically, these bits are arranged in 
groups of 8 (byte-wide, or x8) or 16 (word-wide, or x16). To read or 
write a byte or word, the system logic must first select it, by specifying 
its location (or address) within the flash memory. 

Just as the chip enable selects a device, the address inputs select data 
within that device. Think of a home address for an example of how the 
chip enable and address inputs coordinate with each other. 

Brian Dipert 
123 Memory Lane 
Any town, Anystate 45678 

The city, state, and zip code select an area within the United States (the 
chip enable), and the street name and address select an individual house 
(the chip addresses). 
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Addresses originate at the system processor. As Figure 5.1 shows, the 
lowest-level processor address signals are common to all external 
components; the higher order addresses generate chip enables that select 
between them. Some processors minimize pin count by multiplexing 
addresses and data. In these cases, an external address latch (triggered 
by a processor address valid signal) stores these multiplexed addresses 
for use by external devices. See Figure 5.2 for an example of address 
latching in a processor design. 

Data In/Out 

The data bus transfers information between the processor and flash 
memory. Common processor data buses are byte-wide (x8), word-wide 
(x16) and double-word-wide (x32), transferring 8, 16 and 32 bits of data 
at a time, respectively. Depending on the specific processor and flash 
memory selected, multiple memories may be connected in parallel to 
satisfy the data bus bandwidth required by the interface (see Figure 5.2 
for an example). 

In some cases, an additional bus transceiver chip may be added between 
the memory and CPU. Later in this chapter, when discussing bus loading 
specifications, we'll show you if such a transceiver is required, either to 
mimimize processor loading or to eliminate the potential for data bus 
contention. 

Output Enable 

Mter selecting the flash memory and address within it, the processor 
must also communicate whether it wants to perform a read or write at 
that specific location. During a read operation, the processor activates its 
READ output, which connects to the flash memory output enable signal. 
This turns on the flash memory output buffers and drives data onto the 
processor data bus. When reading from a specific flash memory, outputs 
for all other devices on the data bus, including other flash memories, 
must be disabled. Dedicated chip enables ensure this, allowing the 
processor READ to connect to all interface devices. This concept is 
called two-line interface control. See Figure 5.1 for an example. 
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Some processors (notably those from Motorola and second sources) 
don't have a dedicated READ signal, and instead have RIW 
(ReadlWrite) and DEN (Data Enable) outputs. Figure 5.2 shows how 
these combine to form OE to the flash memory. 

Write Enable 

To write to flash memory, an approach similar to the "output enable" 
technique discussed earlier is taken. This is normally accomplished by 
connecting the flash memory write enable input to a WRITE output from 
the processor. Alternatively, RIW and DEN signals are decoded as 
shown in Figure 5.2. Again, two-line control allows common connection 
of one processor WRITE signal to all external devices, with per-device 
selection through individual chip selects. 

Flash memory provides some unique challenges to the system designer 
with respect to its in-system write capabilities. Similar to EEPROM and 
battery-backed SRAM (for example), care must be taken to control the 
chip enable and/or write enable signals to flash memory during system 
power up and power down. Any glitches or active transitions on these 
signals may be misinterpreted by the flash memory as a valid write, with 
unwanted (and permanent) results! 

Contrast this with ROM memories (which are nonvolatile but not in
system writeable and therefore unchanging) and RAM memories (which 
are write able but volatile, guaranteed invalid after system power 
transitions and therefore requiring initialization by the startup software). 
The flash memory interface is complicated further by the fact that, in 
most cases, the chip enable and write enable inputs are "active low" 
signals, enabled at av. av is also the state of these signals when a 
system is first turned on, before the power supply reaches its operating 
voltage! Due to different capacitive loading, some control signals may 
ramp up faster than others, and similarly Vpp (the program/erase 
voltage) may reach high voltage before VCC stabilizes. 

Flash memory vendors provide several mechanisms that assist the 
system designer in eliminating the potential for unwanted data writes. 
Some include on-chip circuitry that monitors the supply voltage and 
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blocks all write attempts below a specified value, called the lockout 
voltage (VLKO)' Others incorporate glitch detect circuitry that ignores 
excessively short active transitions on chip enable and write enable 
inputs. In some cases, lengthy multi-byte software command sequences 
must be used to enable flash memory write and erasure, lowering the 
probability that such sequences will be unintentionally written to the 
device. In other instances, a separate input to the flash memory acts as a 
write protect, such as the PWD14 input of some Intel flash memories. 
Finally, where a separate voltage is required to write or erase flash 
memory (i.e., Vpp) , disabling this voltage when not needed will block 
unintended alteration of flash memory contents. We'll cover this 
additional V pp voltage in the next section. 

WE-Less Flash Memories 

In attempting to minimize pin count for their devices, some flash 
memory manufacturers have removed the WE input, resulting in the bus 
interface truth table shown in Table 5.2. This pinout eliminates separate 
two-line control for both reads and writes. A selected device 
distinguishes between a read or a write by the state of its OE input when 
it is selected (V ill = write, V IL = read). This functionality often 
complicates the system interface to WE-less flash memories for the 
following reasons: 

• OE must transition to its valid state (V ill or V rrJ before CE 
selects the device. This is contrary to the design of most 
microprocessors, which provide addresses (for chip selects) 
before asserting READ or WRITE. In many cases, this 
incompatibility impacts system performance by increasing the 
number of required wait states to read from or write to the 
flash memory. 

• Spurious (involuntary) chip select generation is common in 
systems, as processor addresses transition through intermediate 
states at the beginning of, and between, external bus cycles. 
Interface logic between the processor and flash memory must 

14pWD is also known as RP in JEDEC notation. 
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assure that these invalid chip select signals do not pass through 
to the WE-less flash memory, where, without a clarifying write 
enable, they would cause spurious, unwanted writes. 

Mode 
-
CE DE DQo_7 

Read VIL VIL Dour 

Write VIL VIH DIN 

Standby VIH X HighZ 

Table 5.2: WE-Less Flash Memory Bus Inteiface15 

THE Vpp PROGRAM/ERASE VOLTAGE 
Like all other logic devices in a system, flash memory requires an 
operating voltage (often referred to as V cd to power its circuitry and 
enable access to its contents. Common V cc operating voltages are 5V ± 
10% (4.5V-5.5V) and 3.3V ± O.3V. 

Program or erase of a flash memory ceU16 requires (in addition to V cd a 
high internal voltage to pull electrons onto or remove them from a cell's 
floating gate. This voltage is often referred to as Vpp in flash memory 
specifications. 

Some flash memories generate this high internal voltage themselves 
from the existing V cc input. However, the high Vpp current 
requirements and complex circuitry required can make the design of 
these internal voltage converters difficult. If they take up a relatively 
large percentage of the flash memory die, internal converters adversely 
affect the device's cost and manufacturing yield. Additionally, in a 
system design that uses a large number of flash memory components, it 
is often more economical to generate V pp from an external source rather 
than to include this circuitry on every device in the flash memory array. 

15Notice that, compared to Table 5.1, Table 5.2 has no entry for WE. 
16 As we first discussed in Chapter 2. 
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For these reasons, other flash memory vendors require external V pp 
voltage generation, and provide a dedicated input pin to supply this 
voltage to the internal flash memory cells. As an example, many NOR 
flash memories specify an external Vpp of 12V ± 5% (11.4V - 12.6V). If 
the existing system power supply already generates the appropriate 
voltage, the supply output can be connected directly to the flash 
memory. Be sure that this supply falls within the 5% tolerance range. 
Otherwise, use an external12V regulator to up- or down-convert another 
available voltage to generate the required V pp voltage. In Chapter 6, 
we'll cover flash memory power requirements in more detail, including 
specific examples on generating V pp. 

Switching Vpp 

As mentioned earlier, a switcheable V pp is one means of protecting flash 
memory data from unwanted alteration. Switching on V pp only when 
required for program/erase also minimizes system power consumption. 
In many cases, the power supply or 12V converter circuit integrates a 
TIL-compatible Vpp ENABLE input; otherwise, an external switch can 
perform this function. Figure 5.3 shows an example circuit for switching 
V pp. Note that a PFET is needed for compatibility with the TIL voltage 
driving the transistor gate. 

10K 
Vpp Out 

GP ..... '=-_"'----o; 

10K 

Figure 5.3: Vpp Switch Circuit 

When using an external switch, factor in any voltage drops across the 
switch when matching the power supply to the V pp requirements of the 
flash memory. The example Motorola MDT4P05 (or an equivalent) 
shown in Figure 5.3 makes an ideal Vpp switch. The calculations below 
show that given a power supply with an output voltage of 12V ± 4% and 
current draw of one flash memory being programmed or erased, the 
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supply/MDT4P05 combination still satisfies the 12V ± 5% requirement 
of the flash memory. This calculation can be modified to fit the specifics 
of your design. 

RDS =0.6 Q 

Ipp = 30 rnA (worst case, one component being programmed/erased) 

I:!. V SWITCHDROP = (30 rnA x 0.6 Q) = 0.02 V 

(12V - 4%) - 0.02V = 11.5V > 11.4V (OK!) 

Vpp Feedback 

Mter switching V pp on, the system must wait for the voltage to ramp up 
to the valid operating range before attempting the program/erase of flash 
memory. This delay is a function of the chosen power supply and of the 
amount of capacitance driven by the supply. In some cases, the hardware 
design engineer can characterize the performance of the power supply 
and determine the maximum delay. System software then simply inserts 
a software delay loop of sufficient duration to meet or exceed this 
maximum delay after enabling the power supply. In other cases, such as 
with removable memory cards, the varying number of flash memory 
devices from different densities results in a varying capacitive load. 
Under this circumstance, you should base the delay loop on a theoretical 
worst-case limit. 

To obtain a more precise indication of V pp status, or in applications 
where the system cannot tolerate the unusable delay of this software 
loop (i. e., real-time systems), hardware circuitry can be used to sense 
and report back "V pp Valid" indication to the processor. Figure 5.4 
shows the MAX705, which includes the system RESET, Vee monitoring 
(power-good sensing), and Vpp monitoring in one device. A multi
function device like the MAX705 is ideal in flash memory designs (see 
the next section on PWD usage). Simpler circuits (comparators, for 
example) are also available, if Vpp monitoring and feedback only are 
desired. 
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+12V +5V 

Vee 

PFI RESET RESET 
MAX70S 
SERIES 

EXTERNAL MR PFO Vpp VALID 
RESET 

GND 

Figure 5.4: Maxim MAX705, Usedfor Vee and Vpp Monitoring 

ADVANCED HARDWARE INTERFACING 
Second-generation flash memories have gone beyond the standard 
SRAM interface to provide additional functionality to system designers. 
This section of Chapter 5 discusses two additional pins offered in Intel 
Boot Block and FlashFile™ memories; the PWD input and the RY/BY 
output. RY/BY is also provided in Toshiba's NAND flash memories. 

The PWD Input 

This pin (explained most simply) provides a master ON/OFF switch for 
the flash memory. It has four distinct functions in system designs: 

• Driving the input to a TTL low level (V nJ puts the device in a 
very low power mode (referred to as Deep Powerdown ), even 
with V cc and V pp still powering the device. Driving the pin 
fully to OV (GND) allows the device to achieve the lowest 
power consumption. 

• Acting as an ON/OFF switch, PWD, when at VIL, tenninates 
any internal automation activity inside the flash memory. This 
is especially crucial when the entire system (including the 
processor) is reset, and the CPU attempts to fetch its reboot 
instructions from the flash memory. Toggling PWD low to 
reset the flash memory ensures that it will provide, when read, 
the stored instructions that the CPU anticipates, and not Status 
Register data or other unexpected information. 
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• Again acting as an ON/OFF switch, PWD at V IL causes the 
flash memory to ignore all write attempts. This is ideal for 
protecting the flash memory from unwanted spurious writes 
during system power transitions. 

• Finally, in Boot Block memories, PWD locks and unlocks the 
hardware-protected boot block (see the example memory map 
of Figure 5.5). The boot block is intended to store the kernel 
code to bring up (initialize) the system. Boot block memories 
are designed such that the boot block cannot be altered 
(programmed/erased) with normal TTL levels on PWD. The 
boot block only unlocks by putting 12V on PWD. 

Normally, the boot block is programmed using a PROM 
programmer before installing the flash memory on the system 
board17. If the capability for generating 12V on PWD doesn't 
exist in the system, the boot code becomes completely 
nonvolatile and unalterable; the boot block essentially 
becomes a ROM block. 

IFFFF 

IEOOO 

10FFF 

10000 
10FFF 

10000 
IBFFF 

00000 

4 kbyt9 PARAMETER BLOCK 

4 kbyt9 PARAMETER BLOCK 

112 kbyt9 MAIN BLOCK 

Figure 5.5: Intel 28FOOIBX Boot Block Flash Memory Map 

17 As we first covered in Chapter 4. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0106



84 Chapter Five: Hardware lnteifacing To Flash Memory Components 

Again looking at Figure 5.4, by connecting the MAX705 
POWERGOOD output to the flash memory PWD input, the resultant 
design resets the flash memory in case of a system RESET and protects 
the flash memory from spurious writes on system powerup/down. Power 
management control can be added with a logic AND of the existing 
system RESET and an available JlO line, which is toggled low to put the 
flash memory in deep powerdown mode. The default state of this JlO 
line on reset and system powerup should be high. 

RY/BY Output 

The RYlEY output provides a hardware indication for monitoring the 
status of internal program or erase automation inside the flash memory. 
When the system initiates a program or erase, RYlEY goes low (to 
VoJ. Similarly, when program or erase completes, RYlEY returns to its 
default V OR state. Its function is especially valuable during slow block 
erase. With RYlEY connected to a processor interrupt input or system 
interrupt controller, the system can initiate a block erase and then read 
from, program, or erase other flash memories (or execute any other 
desired system functions) as foreground tasks. The background block 
erase executes in parallel and alerts the system, when it completes, via 
the RYlEY output. 

Keep in mind that flash memory programming may complete faster than 
execution of an interrupt service routine. Therefore, in this case, simple 
polling of the flash memory Status Register may make more sensel8 . 

System software can mask the RYlEY-generated interupt for flash 
memory programming operations and re-enable it for block erase events. 

RYlEY is a full CMOS (not a wired OR) output. To interface to an array 
of flash memory devices, you can run each RYlEY to a separate 
interrupt or can alternatively connect the multiple RYlEY outputs to one 
procesor input through circuitry like that shown in Figure 5.6. 

I8You'1l also see the comparison of Status Register polling vs. RY/BY interrupt, from a software 
standpoint, in Chapter 7. 
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5V 

10K 

INT 
MBD301 I 28F008SA 

~I E~~ 

MBD301 I 28F008SA 

~I E~~ 

MBD301 I 28F008SA 

~I E~~ 

Figure 5.6: Wired-OR RYlEY Implementation 

INTERPRETING DATASHEET AC PARAMETERS 
What's the best way to insure that your flash memory-based system 
design will be "first-run functional"? Follow the datasheet specifications 
(all of them)! This section will help you interpret the abundance of 
information in typical flash memory technical documentation. 
Specifically, we'll cover the timing parameters, both for read and write 
operations. We'll save current and voltage information (the DC 
specifications) for Chapter 6. 

Throughout the following discussion, please reference the following 
tables and figures: 

• Figure 5.7, Flash Memory Read Access Time 
Partitioning 

• Figure 5.8, AC Input/Output Reference Waveform 
• Figure 5.9, AC Testing Load Circuit 
• Figure 5.10, High Speed AC Input/Output Reference 

Waveform 
• Figure 5.11, High Speed AC Testing Load Circuit 
• Table 5.4, AC Characteristics, Read Operations 
• Figure 5.12, AC Waveform for Read Operations 
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• Table 5.5, AC Characteristics, Write Operations 
• Figure 5.13, AC Waveform for Write Operations 
• Table 5.6, Input/Output Capacitance 
• Figure 5.14, Ordering Information 

These specific figures and tables are a subset of characteristics taken 
from Revision 3 of the Intel 28F008SA FlashFile memory datasheet, 
dated September 1992. They are representative of generic flash 
specifications from both Intel and other flash memory manufacturers. 

Addresses ~ 

Control ~ 
Inputs 

Flash Memory 

1 ______________________ _ 

Data Access 
Delay 

r---

I 
1 

1 !!! 

I~ 
-IIoo..lm 

-I 'S 

I~ 
101 

1 I 
1 1 I 1 ___ oJ 

Data Output 
Delay 

Data 
Outputs 

Figure 5.7: Flash Memory Read Access Time Partitioning 

2.4V 

INPUT 
.OV """'-- ~ 

.......- TEST POINTS -..... OUTPUT 
.BV 

O.45V 

AC test Inputs are driven at VOH (2.4V TTL) for a logic 1 and VOL (0.45V TTL) for a 
logic O. Input timing begins at V1H (2.0V TTL) and V1L (0.8V TTL). Output timing ends at 

V1H and V1L. Input rise and fall times (10% to 90%) < 10 ns. 

Figure 5.8: AC Input/Output Reference Waveform 
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1.2V 

IN914 

OUT 

CL = 100 pF 
CL Includes Jig 

Capacitance 
RL= 3.3Kn 

Figure 5.9: AC Testing Load Circuit 

3.0V~--~ ~------------,. 

INPUT 1.5V-+-TEST POINTS --'1.5V OUTPUT 
0.0v----...I '-___________ ....J 

AC test Inputs are driven at 3.0V for a logic 1 and O.OV for a logic O. Input timing begins, 
and output timing ends, at 1.5V. Input rise and fall times (10% to 90%) < 10 ns. 

Figure 5.10: High Speed Input / Output Reference Waveform 

CL = 30pF 
CL Includes Jig 

Capacitance 
RL = 3.3Kn 

1.2V 

OUT 

Figure 5.11: High Speed AC Testing Load Circuit 
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= .... = .... 
:;':;' :;':;' 

I~ 'G' ~ 
Ii I; 

Figure 5.12: AC Waveforms for Read Operations 
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General Observations 

Figure 5.14 and Table 5,4 indicate that the 2SFOOSSA can be ordered in 
either of two flavors, the 28F008SA-85 and 28F008SA-120. Notice that 
the "-S5" version actually has two different sets of specifications. 

1 E 121a IF 10 10 /a Is IA /- lals 1 

~KAGE LACCESS SPEED (ns) 
E = STANDARD 40 LEAD TSOP 85 ns 
F = REVERSE 40 LEAD TSOP 120ns 
FA = 44 LEAD PSOP 

VALID COMBINATIONS 
E28F008SA-85 F28F008SA-85 
E28F008SA-120 F28F008SA-120 

PA28F0085A-85 
PA28F0085A-120 

Figure 5.14: Example Ordering Information Table 

The High Speed specifications for the 2SFOOSSA-S5 are guaranteed 
under the following conditions: 

• 

• 

• 

Vee ± 5% (4.75V to 5.25V) operating range (from 
Tables 5,4 and 5.5) 
30pF (or less) capacitive loading on flash memory 
outputs (from Figure 5.11) 
1.5V testing input/output transition points (from Figure 
5.10). This means that timing tests begin when inputs 
cross 1.5V, and end when outputs again cross 1.5V. 

Conversely, the Standard specifications for the 2SFOOSSA-S5 have the 
following conditions associated with them: 

• Vee ± 10% (4.5V to 5.5V) operating range (from Tables 
5,4 and 5.5) 
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lOOpF or less capacitive loading on flash memory 
outputs (from Figure 5.9) 
Full standard TTL testing input/output transition points 
(from Figure 5.S) 

Since the 2SFOOSSA operating under Standard specs has a wider 
allowable supply voltage range, more heavily loaded outputs, and more 
slew in its input and output testing points, its read specifications are 
slightly slower than those for the High Speed version. We'll discuss this 
in more detail below. 

Naming Conventions 

Most of the read and write specifications in Tables 5.4 and 5.5 have two 
different symbols associated with them. The first symbol for each 
specification reflects the JEDEC naming convention standards. The 
second of the two (i.e., tACO tOE' etc.) represents the common symbol 
which has been in use for many years with many different kinds of 
memories. Table 5.3 summarizes the JEDEC conventions for both flash 
memory signals and possible signal states. 

Signals 

A Address 
E Chip Enable 

G Output Enable 

W Write Enable 
0 Data (Inputs) 
Q Data (Outputs) 

P Powerdown 
R RY/BY 
V Vpp 

Signal States 

H High 

L Low 
V Valid 

X Low Z (Driven Invalid) 

Z High Z (Not Driven) 

P High (12V) 

Table 5.3: JEDEC Signal/State Naming Conventions 
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Capacitive Loading and Effects 

One of the fundamental laws of electronics states the following: 

1= C X dV/dt 

Any semiconductor device (like a flash memory) is capable of driving a 
constant finite amount of current from its outputs to the inputs of other 
devices. These inputs have a certain amount of capacitance associated 
with them, as do the board traces that route signals throughout the 
system. 

Given a fixed current value (I), the above equation shows that an 
increase in the amount of capacitance (C) driven by a flash memory 
output results in a parallel increase in the output transition time (or 
stated in another way, its dV/dt decreases). The tradeoff here is clear; by 
minimizing the number of devices the flash memory's outputs drive, read 
performance will increase proportionally. Examining the 28F008SA-85 
AC read specifications in Table 5.4 validates this. High speed access 
time is 85 ns; standard access time is 90 ns. Similarly, high speed output 
enable time is 40 ns, and standard output enable time is 45 ns. A 
difference of 5 ns may seem at first glance to be trivial, but in a tight 
design may result in one less wait state for processor accesses. Other 
flash memories may have similar or even more significant performance 
improvements at lower capacitive loading conditions. 

The lesson: carefully analyze the amount of capacitance loading your 
flash memory outputs and minimize this loading wherever possible. 
After this analysis, choose the correct specifications for your design. 
Don't load outputs beyond their specified maximum capacitance and 
expect the flash memory to still perform as documented! In a heavily 
loaded design, buffers and/or transceivers can often be used to subdivide 
the number of inputs connected to each flash memory output resulting in 
a reasonable capacitive load that falls within specified limits. 
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Versions Vee:tS% 2BFOOBSA-BS(1) 

Vee:t 100/0 2BFOOBSA-BS(2) 2BFOOBSA-120 

Symbol Parameter Min Max Min Max Min Max Unit 

tAVAV tRC Read Cycle 85 90 120 ns 
Time 

tAVQV tAcc Address to 
Output Delay 

85 90 120 ns 

tELQV tCE CE to Output 85 90 120 ns 
Delay 

tGLQV tOE OE to Output 40 45 50 ns 
Delay 

tELQX tLZ CE to Output 0 0 0 ns 
LowZ 

tEHQZ tHZ CE High to 55 55 55 ns 
Output High Z 

tGLQX tOLZ OE to Output 0 0 0 ns 
LowZ 

tGHQZ tDF OE High to 30 30 30 ns 
Output HiQh Z 

tOH Output Hold 0 0 0 ns 
from Address, 
CE or OE 
Change, 
Whichever is 
First 

Table 5.4: AC Characteristics, Read Operations 
Notes: 
1. See High Speed Input/Output Reference Waveforms and High Speed AC Testing LoadCircuits 
for testing characteristics. 
2. See AC Input/Output Reference Waveforms and AC Testing Load Circuits for testing 

characteristics. 

AC Read Characteristics 

Next, let's define the various read timing specifications for our 
28F008SA example flash memory. 

Read Cycle Time-The shortest possible read cycle that a 
processor can execute when reading from the flash 
memory. It is measured from the active transition of the 
first signal (defining the beginning of the read) until 
data is valid. 
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tELQX (taJ 

tGLQX (tOaJ 

tEHQZ (tHz) 

tGHQZ (tDF) 

Address to Output Delay-The guaranteed longest time 
from when addresses stablize until data outputs become 
valid (assuming active CE and OE signals), during a 
read. 

CE to Output Delay-The guaranteed longest time from 
when chip select is activated until data outputs are valid 
(assuming stable addresses and active OE). 

OE to Output Delay-The guaranteed longest time from 
an active output enable signal until data outputs are 
valid (assuming stable addresses and active CE). 

CE, OE to Output Low Z-The minimum delay from 
activation of CE or OE (respectively) until the data 
outputs begin to drive (not necessarily with valid data). 

CE, OE to Output Low Z-The maximum delay from 
deactivating CE or OE (respectively) until the outputs 
are no longer driven. 

tOH Output Hold from Addresses, CE, or OE Change, 
Whichever is First-The minimum valid data output hold 
time after deactivation of CE or OE, or after addressees) 
change. 

Read Specification Clarifications 

The output delay from OE active (tOLQY) is much shorter than the output 
delay from CE active (tELQy) or addresses valid (tAyQy). As Figure 5.7 
suggests, the time required to r~ad from a flash memory (or any other 
memory, for that matter) consists of two general delays: 

• 

• 

Time to decode addresses and chip enable, select the correct bits 
in the array, and sense their stored data values, and 

Time to drive this information onto the data bus through the 
output buffers. 
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This latter delay is the tOE or tOLQv' tACC and tCE incorporate both 
delays. Data may be read from a flash memory in as short a time as the 
tOE' provided you ensure that valid data is internally sitting at the inputs 
of the output buffers (in other words, the first decode/sense delay has 
already been met). Interleaving is a hardware technique that takes 
advantage of this, and we'll cover it briefly at the conclusion of this 
chapter. 

Specifications tELQX and tOLQX show how quickly the flash memory 
could drive the output bus once enabled. The system designer must 
ensure not to drive other devices on the common bus at this time, to 
prevent bus contention. Similarly, specifications tEHQZ and tOHQZ show 
how long it could take for the flash memory to quit driving the output 
bus once deselected. Other devices should not drive the bus until this 
time has elapsed, again to prevent bus contention. If this is not possible, 
a high-speed external transceiver (which typically has very fast tum-off 
specifications) can be inserted between the flash memory outputs and 
the common bus. 

AC Write Characteristics 

We've looked at the specifications that describe a flash memory's read 
performance. Now, let's examine their counterparts: the flash memory 
write characteristics. 

Write Cycle Time-Refers to the shortest possible write 
cycle that a processor can execute when writing to the 
flash memory. It is measured from the active transition 
of the first signal (defining the beginning of the write) to 
the inactive transition of the last signal (defining the end 
of the write). 

CE Setup to WE Going Low-The minimum setup time 
from when CE is activated until WE is activated. 

WE Pulse Width-The minimum WE active pulse width 
required to successfully write a command to the flash 
memory. 
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tWHDX (tDH) 

tWHAX (tAH) 

tWHEH (tCH) 

v pp Setup to WE Going High-The minimum time that 
V pp must be at its high voltage before a program or 
erase operation initiates. 

Address, Data Setup to WE Going High-The minimum 
address and data tDVWH (tDS) setup time before WE is 
deactivated (a write pulse ends). 

Data, Address and CE Hold from WE High-The 
minimum data, address and CE hold times from when 
WE is deactivated (a write pulse ends). 

WE Pulse Width High-The minimum WE inactive pulse 
width required before the processor writes another 
command to the flash memory. 

Duration of Byte Programming, Block Erase 
Operations-Minimum duration of internally automated 
byte program and byte erase operations. 

Vpp Hold from Valid SRD-Minimum time that Vpp must 
be held at high voltage after the successful completion 
of an internally automated byte program or block erase. 

Write Specification Clarifications 

Examining Table 5.5 and Figure 5.13 closely gives us a great deal of 
useful information about the internal workings of the 28F008SA. First, 
specification tELWL shows that the flash memory must first be selected, 
before writing to it. Many flash memory vendors, including Intel, also 
provide alternate specifications in cases where WE is activated before 
CE; this is called a "CE-controlled write". Consult specific device 
documentation for more information. 
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Versions Vcc:l: S% 28F008SA-8S(1 ) 

VCC :l:10% 28F008SA-8S(2) 28F008SA-120 

Svmbol Parameter Min Max Min Max Min 

tAVAV twc Write Cycle Time 85 90 120 

tELWl tcs CE Setup to WE 10 10 10 
Going low 

tWlWH twp WE Pulse Width 40 40 40 

tVPWH tvps Vpp Setup to WE 100 100 100 
Goina Hiah 

tAVWH tAS Address Setup to 40 40 40 
WE Going High 

tDVWH tDS Data Setup to WE 40 40 40 
Going High 

tWHDX tDH Data Hold from WE 5 5 5 
High 

tWHAX tAH Address Hold from 5 5 5 
WE Hiah 

tWHEH tCH CE hold from WE 10 10 10 
High 

tWHWl tWPH WE Pulse Width 30 30 30 
High 

tWHaV Duration of 
Programming 

Byte 6 6 6 

Operation 

tWHaV Duration of Block 
Erase Operation 

0.3 0.3 0.3 

tavvl tVPH Vpp Hold from 0 0 0 
Valid Status 
Register Data 

Table 5.5: AC Characteristics, Write Operations 
Notes: 
1. See High Speed InputlOutput Reference Waveforms and High Speed AC Testing Load 

Circuits for testing characteristics. 
2. See AC Input/Output Reference Waveforms and AC Testing Load Circuits for testing 

characteristics. 

CAPACITANCE T A = 25°C, f = 1 MHz 

Max 

Symbol Parameter Typ Max Unit Condition 

CIN Input Capacitance 6 8 pF VIN =OV 

COUT Output Capacitance 8 12 pF VOUT = OV 

Table 5.6: Input/Output Capacitance 

Unit 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

IJs 

sec 

ns 
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With the 28F008SA, the rising edge of WE (the conclusion of the active 
write pulse) latches both addresses and data. This simplifies the timing 
interface to the flash memory, as extra wait states can be added if needed 
to match flash memory requirements and processor timings. However, 
some flash memories latch addresses on the falling edge of WE, and 
have a corresponding tAVWL specification. Closely inspect specifications 
for various flash memories to identify if they latch addresses on the 
falling or rising edge of WE. 

PERFORMANCE ENHANCEMENTS 
As raw processor performance continues to improve at a seemingly 
exponential rate, external memory's inability to follow a similar trend19 

has become acutely apparent. In fact, memory (especially nonvolatile 
memory) has become a limiting bottleneck to system performance. How 
have component designers (and how can you) overcome or "work 
around" these bottlenecks? 

Caching 

In one common technique, called caching, a portion of nonvolatile 
memory is replicated in faster SRAM. Accesses to this memory are from 
the SRAM (not nonvolatile memory) and thereby lessen the impact to 
system processor performance. Complex hardware and software 
algorithms have been developed that model memory subsystem 
characteristics and optimize interaction between cache memory and that 
memory which is being cached. Today's elaborate computer systems 
often contain multiple caches: 

• 
• 
• 

External DRAM to cache disk drives 
External SRAM to cache DRAM and nonvolatile memory 
Even a primary internal SRAM cache (in the processor itself!) to 
cache the secondary external SRAM cache. 

Shadowing 

Another similar technique often used is called shadowing. Slower 
nonvolatile memory (such as ROM or flash memory) contents are copied 

19 At least, at a similar price/performance curve. 
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to an equivalent amount of faster DRAM for execution. Notable 
application examples of this technique include personal computers 
(where the BIOS is shadowed to DRAM) and laser printers (where code 
and fonts stored in nonvolatile memory are similarly shadowed to 
DRAM to speed system performance). 

Fortunately, the latest generations of flash memory devices have read 
access speeds approaching or equaling those of DRAMs. Using a fast 
flash memory device in the design eliminates the memory duplication 
required for shadowing, lowering total system cost and improving 
reliability. Earlier in this chapter (capacitive loading and effects), we 
discussed the importance of minimizing capacitive loading on flash 
memory outputs. This loading minimization allows selection of the 
fastest possible flash memory devices, and therefore results in the 
highest system performance. 

Hardware Interleaving 

Hardware interleaving represents one final technique for improving read 
performance. Again referencing Figure 5.7, you'll remember that earlier 
in this chapter we talked about the different internal flash memory 
device delays that combined to form the read access time (tACC)' These 
delays include: 

• Time to decode addresses and chip enable, select the correct bits 
in the array, and sense their stored data values, (tAcc - toI0 and 

• Time to drive this information onto the data bus through the 
output buffers (toI0. 

What would happen if we could access the data of multiple flash 
memory devices (the first delay) at the same time? In this scenario, after 
the initial decode/select/sense delay had passed, these devices would all 
have valid data sitting at the internal sense amplifier outputs, ready to be 
driven through the output buffers onto the system bus. Accesses to these 
components would take not the full tAcc delay, but only the much 
shorter tOE time. This, in a nutshell, is the concept behind hardware 
interleaving. 
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Hardware interleaving takes advantage of a common software concept 
called locality, which says that if a memory location is accessed, the 
next memory address accessed wi11likely be located very close by (often 
the very next address). Most of the time, a system processor executes 
code instructions which are sequential (with the exception of GO SUB 
and GOTO statements). With hardware interleaving, sequential memory 
reads access multiple flash memories (not the same device every time). 
Let's examine a specific example in more detail to make concrete sense 
of this abstract idea. 

CLK 

ALE 

Ax-A.,. FPGA 1 11 1 1 I--- r-. CE r-+ CE r-+ CE f...+ CE 
Add, Add, Add, Add, -

PomPBl1l 
~ 

28FOO8SA 28FOOBSA 28FOOBSA 28FOOBSA 
Page 1#1 1#2 1/3 1#4 

"! CompBl1l Dala .. Data .. Data I .. Dala 
Latch OE WE DE WE OE WE OE WE I---
~~ --.r i i 

Figure 5.15: Hardware Interleaving - Utilizes Common CE, 
Unique DE and WE 

Figure 5.15 gives an example block diagram for a high-density 
interleaving design (possibly a laser printer or bridger/router) using Intel 
28F008SA flash memories. 4-byte flash memory pages are selected by 
common addresses A21-A2; higher order addresses decode the 4 Mbyte 
flash memory array in the system memory map. Addresses Al and Ao' 
along with the READ input, generate OEs for components 0-3. 
Therefore, system addresses are associated with flash memory 
components as follows: 
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System Address Component and 
Component Address 

0 Component 0 address 0 
1 Component 1 address 0 
2 Component 2 address 0 
3 Component 3 address 0 
4 Component 0 address 1 
5 Component 1 address 1 

etc ...... 

The step-by-step description below outlines a series of read accesses 
from this flash memory array: 

1. The processor signals that it wants to read data from system address 
O. This enables components 0-3 and provides them with address O. 
Interface logic decodes system address bits Al and Ao and, seeing 
that they are both zero, enables the OE input for component O. Since 
this is the first access to the four byte page, it takes 85 ns. 

2. The processor, executing sequential code, next reads from system 
address 1. Components 0-3 remain enabled, and address inputs to 
them remain as zeros. Interface logic decodes the "01" on system 
address bits Al and An, and enables the OE line for component 1. 
Component l's data has already been selected and sensed, and 
access time for component 1, therefore, only has a 40 ns tOE delay. 

3. Similar 40 ns accesses follow for system addresses 2 and 3, reading 
from components 2 and 3, respectively. 

4. Now the tricky part...the processor reads from system address 4 on 
its next cycle. This changes system address A2 from a zero to a one, 
thereby incurring another full 85 ns tAcc delay for this access from 
component 0 (we are now accessing a new 4-byte page, and 
therefore new data from each of the flash memories). However, once 
again, accesses to system addresses 5, 6 and 7 only have 40 ns 
durations. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0124



102 Chapter Five: Hardware Inteifacing To Flash Memory Components 

One important (and possibly obvious) point; after the initial, relatively 
long tACC access to a flash memory in a page, all subsequent accesses 
within that page benefit from the shorter tOE delay. These accesses need 
not be incrementally sequential; with a large enough· page, a tight 
software JMP loop can also benefit. 

The clearly apparent tradeoff in interleaving is between added hardware 
complexity and higher performance. First, let's quantify the performance 
gains. Over a four-byte series of sequential accesses, the average read 
delay from flash memory is no longer the 85 ns tACC' but is: 

114 (85 ns + 40 ns + 40 ns + 4p ns) = 51.25 ns 

This performance improvement pertains to a four-byte interleaving page. 
A two-byte page will have average read delay of: 

112 (85 ns + 40 ns) = 62.5 ns 

An eight-byte page, on the other hand, will have an average read delay 
of: 

1/8 (85 ns + 40 ns + 40 ns + 40 ns + 40 ns + 40 ns + 40 ns + 40 ns) = 45.6 ns 

Now for the hardware complexity ... the following functions (summarized 
in the state transition diagram of Figure 5.16), synchronized with the 
clock controlling the system processor, must be implemented in the 
interface logic between processor and memory array: 

1. The logic must decode lower addresses and, correspondingly, 
generate OEs to flash memory devices within an interleaving page. 
The earlier example was of a four-byte page, so addresses Ai and Ao 
must be decoded. For a two-byte page, only address Ao must be 
examined, whereas an eight-byte page uses addresses Az-Ao. 

2. The logic must also examine all upper address bits, determine first if 
the flash memory subsystem is being accessed, and then if access to 
the same page is occurring, and adjust wait states back to the 
processor accordingly (via the READY output). The comparator 
logic block in Figure 5.15 serves this function. 
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Figure 5.16: Hardware Interleaving - State Transition Diagram 

3. Finally, the logic must be able to distinguish between a read or write 
to flash memory, and again adjust wait states accordingly. Note that 
flash memory writes cannot take advantage of interleaving as reads 
can; there are no tOE/tACC equivalents for writes. Write timings are 
unique and must be treated as such when interfacing to flash 
memory. However, software interleaving (especially easy with 
automated flash memories) can be used to maximize program and 
erase performance.20 

So is the performance improvement of an interleaved design worth the 
added hardware complexity? Only you, the system designer, can make 
this decision. Obviously, interleaving is only valid for designs that will 

20See Chapter 7 for more information on software interleaving with both non-automated and 
automated flash memories. 
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use multiple flash memory devices. The techniques described above can 
be used for all flash memories, but even when using 64 kbyte devices, a 
4-byte page arrangement results in 256 kbytes of flash memory storage 
capability. Designs that require higher densities of flash memory storage 
are therefore good prospects for hardware interleaving. 

Interleaving techniques have been used for many years in DRAM 
designs. As flash memory read accesses become faster and faster (and 
direct execution out of flash memory versus shadowing to DRAM 
therefore becomes more common), interleaving flash memory will 
increasingly be used to squeeze maximum performance out of the 
memory subsystem. 

SUMMARY 
In this chapter, we've discussed hardware interfacing to flash memory 
components: 

• The simple "SRAM" pinout, 
• Enhanced inputs and outputs in latest generation flash 

memories, 
• Interpreting datasheet read/write parameters, and 
• Optimizing designs for read performance. 

Looking ahead, Chapter 6 explains how to pick the correct power supply 
for flash memory, and how to calculate the amount of bypass filtering 
for each flash memory device in the system. It also discusses the DC 
characteristic specification "companions" to the AC specifications 
explained in this chapter. Chapter 7 explains the software algorithms 
that control flash memory and its program and erase, as well as 
specialized software techniques to optimize program/erase performance 
and, consequently, flash memory write bandwidth. Beginning with 
Chapter 8, the book makes the transition from topics common to both 
flash memory components and subsystems to those primarily exclusive 
to flash memory cards and drives. 
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Design Techniques 

Flash memory's very low power consumption (compared to alternative 
memory approaches) is one of the more compelling features driving its 
adoption into today's systems. Flash memory is not plagued by the 
refresh of a DRAM, the battery of a "nonvolatile" SRAM, or the motor 
of a magnetic disk drive. When not being accessed, flash memory can be 
placed in one of several very low power states, and conversely it can 
"wake up" quickly when the system accesses it. 

Flash memory does consume some power, however, and as an emerging 
technology its fundamental voltage and current particulars are not 
widely known. More mature memories, like RAM or EPROM have 
simple and well-understood power profiles (in most cases), since they 
have been used in designs for many years. In contrast, flash memory's 
unique power requirements must be comprehended early in the design 
cycle (especially on your first flash-inclusive design!) to ensure proper 
and reliable operation throughout the system's lifetime. 

This, then, is the purpose of Chapter 6; to assist you in creating a flash 
memory power profile for your system application, and thereby help you 
calculate ( and minimize) the demands that flash memory will make of 
your system's power supply. The following topics, developed further in 
the pages that follow, outline the information in this chapter: 

• 
• 
• 
• 

The Vee Operating Voltage 
The V pp ProgramJErase Voltage 
V pp Generation Techniques 
Decoupling and Bypass Capacitive Filtering 
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• 
• 

Mixed Voltage System Design 
Power Management Techniques 

THE Vee OPERATING VOLTAGE 
V cc, the main operating voltage for flash memory, originates in most 
cases from the same supply voltage that powers all other logic circuits in 
the system. Common voltages and tolerances for V cc are SV ± 10% 
(4.SV to S.SV) and 3.3V ± O.3V (3.0V to 3.6V). Many flash memories 
function essentially as read-only devices when powered by V cc alone. 
This means that the data stored in the flash memory can be read but not 
altered (altering the memory requires an additional Vpp voltage, 
discussed later). However, some flash memories are "Vee-only" devices 
that derive a higher internal program/erase voltage from the external 
Vee input(s). We'll cover these as a special case at the conclusion of this 
section. 

Flash memories operate in several different modes, dependent on the 
states of various input pins21 . Predictably, flash memory V cc current 
draw differs in each mode. As a representative example of flash memory 
specifications, we've provided DC characteristics for the Intel 
28F008SA flash memory in Table 6.1, which we'll be referencing 
throughout the chapter. This table specifies maximum values at worst
case voltage and temperature conditions and manufacturing process 
"corners", and typical specifications at room temperature and nominal 
voltages. If the flash memory in question has multiple V cc input pins 
(like the 28F008SA), assume that the various current specifications 
reflect total current drawn by the device. This current is divided (not 
necessarily evenly!) among the flash memory Vee inputs. 

Important note: The following information is representative of flash 
memories based on Intel ETOXTM and ETOX-like NOR technologies 
from other vendors. If the flash memory you are evaluating is based on 
an unrelated technology approach (EEPROM, NAND, etc.), contact your 
vendor for additional information22. 

21 See Tables 5.1 and 5.2 in Chapter 5 for more information. 
22F1ash memory component and subsystem vendor contact information can be found in Appendices 
AandB. 
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Symbol Parameter Min Typ Max Unit Test Condition 

III 

ILO 

Ices 

Ices 

leco 

leeR 

leeR 

leew 

IeeE 

Ipps 

Ipps 

IpPD 

Ippw 

IpPE 

V1l 
V1H 

VOL 

VOH 

VpPl 

VpPH 

VlKO 

Input Load Current ± 1.0 ~A Vee = Vee Max 

V1N = Vee orGND 

Output Leakage Current ± 10 ~A Vee = Vee Max 

Vour= Vee or GND 

Vee Standby Current 1.0 2.0 mA Vee = Vee Max 

CE = PWD = V1H 
Vee Standby Current 30 100 ~A Vee = Vee Max 

CE = PWD = Vee ± 0.2V 

Vee Deep PowerDown Current 0.20 1.2 ~A PWD = GND ± 0.2V 

IOUT=O mA 

Vee Read Current 20 35 mA Vee = Vee Max, CE = GND 

CMOS Inputs f = 8 MHz, lOUT = 0 rnA 

Vee Read Current 25 50 mA Vee = Vee Max, CE = V1l 
TTL Inputs f = 8 MHz, lOUT = 0 mA 

Vee By1e Program Current 10 30 mA By1e Program in Progress 

Vee Block Erase Current 10 30 mA Block Erase In Progress 

Vpp Standby Current ± 1 ±10 ~A Vpp~Vee 

Vpp Standby Current 90 200 ~A Vpp> Vee 

V pp Deep PowerDown Current 0.10 5 ~A PWD = GND ± 0.2V 

Vpp By1e Program Current 10 30 mA Vpp = VpPH 
By1e Program in Progress 

Vpp Block Erase Current 10 30 mA Vpp = VpPH 
Block Erase In Progress 

Input Low Voltage -0.5 0.8 V 

Input High Voltage 2.0 Vee +0.5 

Output Low Voltage 0.45 V Vee = Vee Min 

IOl = 5.8 mA 

Output High Voltage 2.4 Vee = Vee Min 

IOH= -2.5 mA 

Vpp During Normal Operations 0.0 6.5 V 

V pp During Erase and Program 11.4 12.0 12.6 V 

Operations 

Vee Erase/Program Lock Voltage 2.0 V 

Table 6.1: DC Characteristics 

Note: All clIrrents are in RMS lin less othenvise noted. Typical vailles at Vee = 5.0V, V pp = 
12.0V, T = 25° C. 
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Read Mode (ICCR) 

In read mode, the flash memory is selected and its output buffers are 
enabled to drive data onto the output pins. Referencing Table 6.1, we see 
that Intel specifies the 2SFOOSSA for two different maximum read 
currents, 35 rnA and 50 rnA. How do these two measurements differ? 
For the answer we need to look at the test conditions. 

The 2SFOOSSA is manufactured using CMOS logic. CMOS has an 
intrinsic characteristic of drawing very little power when fully on or off, 
but substantially more power when switching, or when not fully on or 
off (with transistors operating in saturation, to put it in more technical 
terms). We'll see this idiosyncrasy and its impact again at the conclusion 
of this chapter, when we talk about power management. 

The lower of the two maximum lec read currents (35 rnA) is specified 
with the device controlled by full CMOS inputs (i.e., CE = GND, 
addresses = GND or V cc). In this case, the transistors inside the 
2SFOOSSA are being driven to the power supply "rails", or fully on and 
off. The higher 50 rnA value is specified at less stringent TIL levels 
(V IL = O.SV and V ill = 2.0V), resulting in partially on/off transistors and, 
consequently, higher power consumption. For optimum power 
management, therefore, the flash memory should be driven with full 
CMOS inputs. 

Notice, too, that lecR is specified with loUT = 0 rnA. Current draw is 
tested with outputs "unloaded". This condition is essentially valid for 
system designs with optimized fanout (i.e., flash memory outputs driving 
only a few inputs) and where flash memory outputs are connected to 
high-impedance CMOS device inputs (therefore resulting in very low 
current draw). However, if your flash memory drives bipolar TTL logic, 
for example, or has excessive fanout, your measured lecR may be higher 
than that specified. 

Figure 6.1 shows an oscilloscope plot of the current profile for a flash 
memory device being read. Address Ao toggles, alternating the eight 
data outputs between 55H and AAH. This plot (taken at room 
temperature with nominal supply voltage) shows lecR at an almost-
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constant 12 rnA, with slight current spikes when output buffers 
transition between 1 and O. 

I 
-----------------------------1-----------------------------

I 

Icc @ 10mAlDiViSioni 

9.02118 

Figure 6.1: Vee Current (Typical) - Read Mode 

Variables that affect read current include the density of the device and 
its output architecture (x8, x16), since output buffer current constitutes a 
significant portion of leCR' Similarly, specialized high speed memories 
often use large output buffers with correspondingly higher current than 
their more mainstream counterparts. Newer flash memories include 
power saving circuitry that drops leCR to negligible levels after a short 
time period, as long as addresses do not toggle. Finally, it's intuitive that 
reading multiple components at the same time (such as when two x16 
flash memories are selected in parallel for a x32 processor bus), causes a 
proportional increase in system current draw. 

Standby Mode (Ices) 

In standby mode, the device is not selected (CE is inactive, regardless of 
the state of OE). Examining Table 6.1, current consumption lowers 
dramatically in standby compared to read mode because much less of the 
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flash memory circuitry consumes power. This has clear implications; the 
more time that the device is in standby mode, the lower the average 
energy drawn from the system power supply. 

Similar to read mode above, Table 6.1 shows two different maximum 
standby current specifications; first with TTL and then CMOS inputs. 
Again, a full-CMOS design is the most power-thrifty. Notice that in 
standby mode, Table 6.1 specifies the states of only two inputs, CE and 
PWD23 , in the test conditions. CE inactive disables input buffers for all 
other pins (save that of PWD). This infers that, for this device24, only 
CE and PWD must be driven to full-CMOS levels for lowest standby 
current consumption; other device inputs can be driven to TTL levels 
(although this will impact current draw in read mode). PWD inactive 
disables the CE input buffer, as well as almost all other circuitry on the 
chip. This latter device mode is called ..... 

Deep Powerdown Mode (leeo) 

This ultra-low power mode, currently available only on Intel Boot Block 
and FlashFile™ memories, provides an almost lOOx improvement over 
the lowest CMOS standby current draw. The devices are put in the deep 
powerdown mode by driving the PWD input to GND. The deep 
powerdown mode disables almost all circuitry in the flash memory; an 
extended wakeup delay (several hundred nanoseconds) must be observed 
after exiting deep powerdown mode before the flash memory can again 
be successfully accessed. 

Typically, systems wiIl put flash memories in deep powerdown mode 
during "suspend" modes to conserve battery power. In this respect, an 
analogy can be made to a hard drive that is parked and spun down. In 
both cases, wakeup incurs a longer-than-normal initial access delay, but 
with flash memory this recovery time is many orders of magnitude less 
than for the HDD counterpart! Where the design includes a large number 
of flash memory components (in a flash memory card, for example), the 

23pWD is also known as RP in JEDEC notation. 
240ther flash memories may operate differently; look closely at device specifications. 
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specific devices being read, programmed, or erased can be kept awake 
while their non-accessed counterparts are asleep25. 

Program Mode (Iccw/1ccp) 

The flash memory draws current through V cc (even while the device is 
deselected) during an internal byte program operation. This current 
includes the flow of electrons from source to drain through cell substrate 
areas (see Figure 2.5), as well as current draw of any automation logic. 
Table 6.1 lists the maximum Iccw value as 30 rnA; however as Figure 
6.2 shows, substantial margin to this specification exists at typical 
conditions. Even the short-duration spikes fall short of exceeding 
maximum values. 

Write Enable I 
I 

Program and DatE! 
Command 

Write Enable 

Program Verify 
Command 

-----------------------------;------------------------------

State Machine 
Responding to 
Command 

Sense Amps 
Turnin Off r Icc @ 5mNDiv 

CMOS Dropping 
Transition OE 

Sense Amps On 
with Verify 

-2.06J1S 1 ~/Div 18.04J1S 

Figure 6.2: Vee Current (Typical) - Program Mode 

25See Chapter 8 for more information. 
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ERASE SETUP 

---------------------+-----------------------------

ERASE 

Icc ZERO Icc @ 10mNDivisi -f 
~~--~--~--~~--~--~--~~--~ 

-1.96ms 2ms/Div 

Figure 6.3: Vee Current (Typical) - Erase Mode 

Erase Mode (IeeE) 

V cc current draw during flash memory erasure is very small, and as 
Figure 6.3 reveals, has substantial margin to maximum specifications at 
typical conditions. However, the short-duration spikes reach a much 
greater magnitude compared to program mode. These spikes do not need 
to be taken into account when calculating energy consumption and 
choosing a power supply (or determining battery life). A correct 
combination of bypass and decoupling capacitors accommodates such 
glitches with minimal or no impact to the system. We'll discuss 
capacitive filtering and capacitor selection in detail later in this chapter. 

Vee·Only Flash Memories 

The specifications and plots described previously were for a device with 
separate V cc and V pp inputs. As mentioned earlier, V cconly flash 
memories generate the Vpp-like voltage internally, from externally
supplied V cc' Therefore, the Icc profiles for V cconly devices will 
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differ radically from those shown in Figures 6.1-6.3. As a rough 
approximation, they may appear to be a combination of Icc and Ipp plots 
for each mode, with added input current for the internal voltage 
conversion (since power in = power out) and more even current to 
incorporate converter losses. The best recommendation is to closely 
analyze flash memory specifications in datasheets and other technical 
literature, and to contact the vendor for any additional information. 

It's clear that the common conception that V cconly flash memories are 
lower power devices is not necessarily true. These are single-external
voltage devices, but they still must generate the higher program/erase 
electric fields inside. Their power profiles (current x voltage) must be 
derived from device specifications and should not automatically be 
assumed lower than their "V ccN pp" flash memory equivalents. 

THE Vpp PROGRAM/ERASE VOLTAGE 
The externally-generated V pp voltage, used when programming/erasing 
the flash memory, generates the electric fields that place charge onto, 
and remove charge from, the cell floating gate (see Chapter 3 for an 
explanation of cell program/erase). Vpp is also commonly tapped 
internally to produce verify voltages that ensure sufficient cell 
program/erase for extended data reliability. 

The most common Vpp specification is 12V ± 5% (11AV to 12.6V). 
This tolerance must be maintained at all times during program and erase. 
V pp out of tolerance can impact device data integrity, and over-voltage 
can additionally damage the device. 

Similar to V cc discussed earlier, current consumption through V pp 
changes dramatically depending on the operating mode of the flash 
memory. Where multiple flash memories exist in the system, their 
respective current draws must be combined to calculate total power 
consumption of the flash memory subsystem. This ,hints at a tradeoff 
between high data update performance (when multiple flash memories 
are programmed/erased at the same time) and low power consumption 
(when only one device is programmed/erased at a time). However, in 
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either case total memory subsystem energy consumption (power X time) 
remains the same! 

Read/Standby Mode (lpPR and Ipps> 

In both read and standby modes, the V cc supply exclusively powers the 
flash memory. The current drawn through Vpp, little more than leakage 
current, is very constant in magnitude and lacks the glitches seen on 
V cc' As Table 6.1 indicates, the read and standby modes draw less 
current when V pp ::;; V co compared to when V pp > V co and no power is 
consumed when V pp = GND. Chapter 5 discusses example circuitry that 
switches V pp on/off for power management and write protection. 

Deep Powerdown Mode (lpPD> 

Current draw in deep powerdown mode (again, currently available only 
on Intel Boot Block and FlashFile memories) is lower than in standby, 
but with a less dramatic difference than that seen with Icc. Realistically, 
if the system designer is concerned with power consumption, you will 
most likely shut off the Vpp supply completely to eliminate wasted 
current due to internal supply inefficiency losses. Deep powerdown 
mode power savings are most notable with respect to Icc> 

Write Enable 
Program and Dat 

Write Enable 
Program Verify 

----RampTrigWordlf e-----------------------
and Bitline 
Decoders 

Ipp@2mNDiv Verify Generator 

Zero Overshoot 

Figure 6.4: V pp Current (Typical) - Program Mode 
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Program Mode (lppwllppp)26 

Figure 6.4 shows Ipp during a one-pulse byte program operation. The 
spike that occurs immediately after writing the program command is 
caused by the voltage ramp on the internal capacitance of the wordlines 
and bitlines (I = C X dV/dt). Programming uses the external 12V 
directly, while program verify applies 6.5V (approximately) to the cell, 
tapped internally off the Vpp supply. Aside from the short-duration 
spike, typical programming current in this case is less than 4 rnA, with 
program verify current of approximately 2 rnA. 

Erase Mode (lPPE) 

In a bulk-erase flash memory, the transistor gates of all array cells are 
grounded, and 12V is applied to the transistor sources (see Figure 2.7). 
The flow of electrons from the floating gate to the source, as they are 
removed from the floating gate by the applied electric field, generates 
current through Vpp. Bulk-erase flash memories erase all cells in the 
array in parallel, whereas in block-erase devices erase occurs on a block
by-block basis. 

Ipp @ 5 mA/Dlv 

ate 

Approx. 85 Pulses 

Figure 6.5: Vpp Current (Typical) - Erase Mode 

26Both Ippw (Ipp Write) and Ippp (Ipp Program) are commonly found in flash memory 
documentation. They mean the same thing! 
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In either case, erase current decreases with increased time and, 
consequently, as more and more floating gate electrons are removed 
throughout the array or block of cells. Figure 6.5 displays this roughly 
logarithmic pattern. In this specific case, a full erase condition was 
achieved after 85 erase pulses. The number of erase pulses required is a 
function of technology, process, erase block size, applied voltage, and 
temperature. By altering these variables, the actual IpPE curve will 
change correspondingly. 

Erase Setup lanp Erase 

Write Enable 

Transistor 
Source 
Charging 

------ -- -------------------~-----------------------------
ISmA - Steady State 

IppS mNDiv 

Zero 

-1.96I1S 2JlS/Div 18.0411S 

Figure 6.6: Vpp Current (Typical) - Beginning of an Erase Pulse 

In Figure 6.6, we've tightened the time scale to show you the current 
spike that is generated immediately after initiating erase. Similar to 
programming described earlier, this spike is caused by the charging of 
capacitive transistor source lines for cells being erased. Bypass and 
decoupling capacitors easily handle this added short-duration current 
draw. 
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Vpp GENERATION TECHNIQUES 
We've spent a lot of time so far in this book talking about the Vpp 
voltage; what it is, why it's needed, how much power it uses, and how to 
control it. What we haven't talked about yet (except in very general 
terms) is where it can come from. That's the purpose of this section. V pp 
can be generated from any of several sources: 

• Directly from a 12V regulated supply 
• Converted from 12V unregulated 
• Converted from a lower voltage 
• Converted from a higher voltage 

Today's state-of-the-art solutions are tomorrow's "yesterday's news", and 
as the flash memory market grows, the number of V pp generation 
options (and the number of vendors providing these options) will 
increase and diversify to meet the needs of various application niches. 
We recommend that you consult the Appendices for the addresses and 
phone numbers of representative vendors and contact them directly for 
the most up-to-date information on their product lines. 

Directly from a 12V Regulated Supply 

If a 12V supply already exists in the system (to power RS-232 circuitry, 
a magnetic disk drive and/or a display, for example), this may be the 
ideal source for the flash memory Vpp voltage. However, the power 
supply must meet the V pp tolerances specified by the flash memory 
vendor (usually 12V ± 5%). Since all internal voltages (program, erase 
and verify) stem from this single V pp input, it directly impacts the 
accuracy of programming and erasing flash memory, and therefore the 
reliability of stored data. An out-of-spec Vpp may, for example, not 
place enough electron charge on the cell floating gate, thereby limiting 
data lifetime. An out-of-spec Vpp may also result in unwanted data 
alteration, caused by a disturbance from adjacent transistor cells. 
Finally, if V pp is above specifications, permanent device damage may 
result. 

When determining whether your existing 12V supply can be used to 
directly provide V pp, make sure you include not only the tolerances of 
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the power supply itself, but also any voltage drop of circuitry between 
the supply output and flash memory input. Examples of this circuitry 
include FET switches for on/off control27 , but excessively long or 
insufficiently thick board traces can also cause voltage droop. 

Converting from 12V Unregulated 

In general, this approach is not recommended, because currently
available solutions to regulate the 12V supply tend to be bulky, 
inefficient and expensive. A better solution will generate the 12V ± 5% 
from either a higher or lower voltage, such as the 5V or 3.3V that exists 
in most system designs (the V cc voltage). 

Converting from a Lower Voltage 

Figures 6.7 and 6.8 show currently-available solutions from Linear 
Technology Corporation and Motorola Inc., respectively, that generate 
12V from a 5V input. The LTlllO (or its lower-cost relative, the 
LTll09A), even with external components, occupies a small footprint 
(0.45 square inch total board area). The MC34063A, on the other hand, 
trades off higher component count for a lower total solution cost 
(approximately $2.25 in high volume quantities). 
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Figure 6.7: Linear Technology LTlllO 5V to 12V Converter 

27 See Chapter 5 for an example calculation. 
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Figure 6.8: Motorola MC34063A 5V to 12V Converter 
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Figure 6.9: Maxim MAX732 3V to 12V Converter 

Figure 6.9 shows the MAX732 from Maxim Integrated Products, a very 
flexible converter that can be configured to produce 12V at up to 60 rnA 
output current, all from an input voltage as low as 1.8V. The MAX732 
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can also generate 12V at up to 120 rnA from a SV input, and has features 
similar to those of the LT11lO. 

Converting from a Higher Voltage 

Both Maxim and Linear Technology also offer converters that generate 
12V from a higher input voltage. Figures 6.10 and 6.11 show the 
MAX667 and LT1111, respectively, both of which output up to 120 rnA. 
The MAX667 accepts input voltages of 12.1 to 16.SV, while the LT1111 
input voltage range is 16-30V. 

~----------------T--------T-----Vpp 

VIN (12.1V - 16.5V) 

1 U1 
DO 

2 OUT 
3 LB1 

GND 
MAX667 

SHUTDOWN -----------' 

R1 
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47.5k,1% 

+ C1 J 47f!F/16V 

Figure 6.10: Maxim MAX667 12V Linear Voltage Regulator 
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Figure 6.11,' Linear Technology LT1111 Voltage Step Down Switcher 
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General Characteristics of Voltage Converters 

When selecting a 12V converter, it's highly recommended that you do 
your homework in first identifying the important attributes of the 
system, and then matching converter features to these characteristics. As 
a general rule, 12V converters have been optimized by their 
manufacturers toward one (or several) of the following primary 
properties: 

• High Current Output: They are capable of delivering high 
amount of current at the rated output voltage. This has 
importance for designs where several flash memories must be 
programmed and/or erased simultaneously. Some 12V 
converters can output currents in excess of 120 rnA. 

• High Efficiency: They transfer power (voltage x current) from 
input to output with very little loss as heat within the regulator. 
This has importance in power-critical designs, such as systems 
powered by batteries. Efficiencies of greater than 90% can be 
achieved with some 12V converters. 

• High Integration: These converters combine all (or most) of 
the required circuitry within the device, including resistors, 
capacitors, inductors, and switching transistors. This simplifies 
system design, aids in manufacturing, and increases reliability. 
Note that the highest integration converter is not necessarily the 
smallest converter. 

• Low Cost: These converters provide a low cost solution, albeit 
by potentially trading off one or several of the above properties. 
When calculating cost of a 12V converter, remember to add not 
only the regulator price but also that of all required external 
components and board assembly costs. 

Secondary properties include input voltage range, output voltage 
tolerance, printed circuit board area, total solution height, rise time from 
enable, decay time from disable, and surface mountability. Some 12V 
converters have integrated shutdown or on/off capability via an input 

APPLE INC. 
EXHIBIT 1011 - PAGE 0144



122 Chapter Six: Power Requirements and Design Techniques 

pin, another advantageous feature. Beyond disabling the 12V output, this 
shutdown feature puts the converter into a very low power consumption 
mode. 

Totally Modular Solutions 

A single-chip, totally integrated converter offers the ultimate in 
simplicity of design and testing. However, there are tradeoffs that must 
be considered. Typically, these products have lower efficiencies than 
their less-integrated counterparts. Also, the quality and reliability of 
discrete devices, being combined within the modular package, is no 
longer under the control of the system board designer. Finally, full 
integration usually comes at a price premium over alternatives. 
However, if the ease-of-design is attractive and your solution cost and 
efficiency needs are not stringent, a totally modular solution may be 
right for you. 

DECOUPLING AND BYPASS CAPACITIVE 
FILTERING 
Both small decoupling capacitors (one or more per device) and larger 
bypass capacitors (one per several devices) should be used in system 
designs for reliable flash memory operation. In general, capacitors 
smooth out the effects of AC transients on the DC supply voltages, by 
supplying excess charge (current) when voltage drops below the DC 
level and shunting off excess voltage spikes. Following the oft
mentioned equation that describes the current/voltage relationship for a 
capacitor, 

1= CxdV/dt, 

we see that a smaller capacitor reacts more quickly to higher frequency 
AC transients. A larger capacitor, while reacting more slowly, responds 
for a longer duration and with much larger current capability. Therefore 
both types of capacitors have importance, and they work together to 
negate the potential impact of voltage spikes. Capacitors are relatively 
cheap (in the grand scheme of things) and take up little system board 
space compared to other devices. For all but the most space- or price
critical designs, therefore, it makes sense to design with plenty of 
margin. 
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For the example that follows, we've used the information in Figures 6.1-
6.6. Different flash memories exhibit different behaviour with respect to 
transient magnitudes and durations. However, although your flash 
memory specifications may be different than those we've chosen, the 
methods used can (and should) be identical. 

Decoupling capacitors in particular should be physically located as close 
to the input pin they filter (Vee or V pp) as possible, and connected 
between the particular supply voltage and GND. The bypass capacitor 
should also be located adjacent to the flash memory subsystem. 

Decoupling Capacitors-Vee 

The largest-magnitude Vee current transients occur when writing the 
erase command sequence to the flash memory (Figure 6.3). The 
decoupling capacitor assumptions and calculations are shown below: 

Decoupling Capacitor Calculation 

ICC (peak) = 60 rnA (I) 
Max. Ripple Voltage = 0.2V peak-peak (0.1V dV) 

Switching Time = 20 ns (dt) 

c = = (I x dt) I dV 
= (60 rnA x 20 ns) I 0.1V 
= 12 nF 
= 0.047 \JF (with approximately 4x margin) 

Some flash memories have more than one Vee input, each of which 
feeds a subset of the device logic. Unless you know the specific current 
draw of each V cc input in all operating modes, it's best to calculate a 
worst-case bypass capacitor value and use it for each device's V cc pin. 

The above calculation assumes that the flash memory drives CMOS 
inputs (with corresponding high impedance and insignificant current 
requirements). If the flash memory outputs drive non-CMOS inputs 
and/or a large number of inputs (resulting in high load capacitance), 
output buffer current drive will be higher, and the transient current 
spikes during output switching will also increase in magnitude. In this 
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case, the calculations for Vee filter capacitance revise accordingly, to 
supply the extra current. 

Bypass Capacitors-Vee 

A general rule of thumb is that one bypass capacitor should be used for 
each fifteen to twenty devices. Determine the value of the bypass 
capacitor by multiplying by ten the sum of the values of all decoupling 
capacitors, as shown below: 

# of Flash Memories = 4 
Decoupling Capacitance 
Bypass Capacitor 

= 0.047 JlF (per device) 
= 10 x (0.047 + 0.047 + 0.047 + 0.047) JlF 
= 1.9 JlF (minimum) 

A lower value for the filter capacitor will give a higher frequency noise 
response, while a higher value enables higher current drive capability. 

Oecoupling Capacitors-V pp 

The largest-magnitude V pp current transients occur when writing the 
erase command sequence to the flash memory (Figure 6.6). The 
decoupling capacitor assumptions and calculations are shown below: 

ICC (peak) == 45 rnA (I) 
Max, Ripple Voltage == 0,2V peak-peak (0.1 V dV) 

Switching Time == 20 ns (dt) 

c == == (I x dt) I dV 
== (45 rnA x 20ns) 10.IV 
==9nF 
== 0,033 f.IF (with approx 4x margin) 

MIXED VOLTAGE SYSTEM DESIGN 
The 1990s have seen the emergence of the new 3,3V standard for system 
supply voltage (Vee). The lower voltage offers potential savings in 
power consumption and enables systems to operate cooler than their 5V 
counterparts. In designs and manufacturing processes optimized for 
3,3V, the lower voltage can result in higher performance components, 
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too. In to day's reality, however28, only a limited number of 
semiconductor devices exist that operate at 3.3V, and in many cases 
these are non-optimized "screened" parts with resultant lower 
performance than their 5V counterparts. In particular, a very small 
number of 3.3V flash memories are currently available, and read 
performance is generally inferior to 5V versions of the devices. This 
tradeoff for lower power consumption mayor may not make sense for 
your specific design. 

In most cases, therefore, system designs of the near future will be of the 
mixed voltage variety, with an intermingling of 5V and 3.3V devices, 
and corresponding multiple-voltage power supplies. Interfacing these 
mixed-voltage devices is often not as simple as it first appears, and 
following a few key guidelines will ensure proper operation and long 
system lifetime. 

3.3 Volt to 5 Volt Interfaces 

This scenario occurs, for example, when a 3.3V processor is driving a 
flash memory's addresses, CE, OE, and WE inputs. At a minimum, 3.3V 
devices must drive 2AV for a logic 1 (TTL V OR) and OAV for a logic 0 
(TIL YoU. As Figure 6.12 shows, these voltages exceed the thresholds 
for 5V devices with TTL-compatible inputs, making direct interfacing 
possible in this case. The only impact here is that the 5V device inputs 
are not driven to the supply voltage rails. As first mentioned earlier in 
this chapter, this may increase the 5V device's current consumption 
slightly. 

28Ropefully, in the next revision of this book, 3.3V logic availability will improve and this section 
won't be necessary! 
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3.3V 

2.4V 

O.4V 
O.OV 

5V Device 
(TTL Inputs) 

Figure 6.12: Inteifacing a 3.3V Device to a 5V Device 
(TTL Inputs) 

5V 

2.0V 

O.SV 

O.OV 

Most logic devices, even if constructed of CMOS transistors, have TIL
compatible input structures (i.e., VIR = 2.0V and V IL = O.SV). However, 
in rare cases, CMOS devices may follow the more stringent CMOS
compatible input voltage specifications (VIR = 0.7 Vee) and (VIL = 0.3 
Vee). As shown in Figure 6.13, direct interface from a 3.3V device to a 
CMOS-compatible 5V device is not possible. In these cases, voltage 
translation logic at the output of-the 3.3V device must be used. Simple 
buffering with 5V-powered CMOS logic that accepts TTL inputs (i.e., 
HCT devices) provides one option, with the impacts being increased 
design complexity and lower performance due to the added logic. 
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Figure 6.13: Inteifacing a 3.3V Device to a 5V Device 
(CMOS Inputs) 
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5V to 3.3V Interfaces 

This interface is unf011unately more complicated than the one just 
described. A possible scenario here is a 5V flash memory RY/BY output 
driving a 3.3V processor interrupt input.29 

Figure 6.14 shows the direct voltage translation from the 5V device to 
the 3.3V device. Although a 5V TTL-compatible device drives its logic 
one outputs to a minimum voltage of 2AV, these outputs will eventually 
transition all the way to nearly the supply voltage rail (5V). As Figure 
6.14 shows, this exceeds the absolute maximum input voltage 
specification for the 3.3V device (typically Vee + O.3V). The impact, 
shown in Figure 6.15, is forward biasing of the ESD protection diodes 

29Note that we haven't talked about the data bus yet; we'll save bidirectional bus interface for the 
next section. 
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within the 3.3V device, and a resultant low impedance connection of the 
5V and 3.3V supplies, with long term reliability impact. 

5.0V 
=.5.0V 
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5VDevice 
(CMOS Outputs) 
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Figure 6.14: Inteifacing a 5V Device to a 3.3V Device 
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Figure 6.15: 5V to 3.3V Direct Inteiface. 
Overbiasing the ESD Input Diode 
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Although a very small number of "SV-safe" 3.3V devices are entering 
the market, most still have the (Vee + O.3V) absolute maximum input 
voltage guideline. This means that the SV output must be first translated 
to a 3.3V compatible level before driving the lower voltage device input. 
Figures 6.16 and 6.17 show two means of accomplishing this. 

Figure 6.16: Inteifacing a 5V Device to a 3.3V Device. 
Series Resistor Voltage Drop 

3.3V 

5V ................ . 

~I ~:---I 
----. 
'=: 

Optional to : 
Convert : 
5V Output to : 
Open Drain : ................. 

Figure 6.17: Inteifacing a 5V Device to a 3.3V Device. 
"Open Drain" Output Conversion 

The first method (Figure 6.16) uses a series resistor at the output of the 
SV device, to drop the voltage to an acceptable level for the 3.3V input. 
Resistor values must be carefully chosen to limit current into the 3.3V 
device input. Differences in ramp rates between the SV and 3.3V 
supplies during system powerup must also be closely analyzed, to 
prevent even temporary forward-biasing of the 3.3V device ESD diode 
(make the worst-case assumption that the SV supply is at S.SV and the 
3.3V supply is at GND, and calculate resistor values accordingly). The 
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major impact in this case is speed; the 5V output now sees tremendously 
increased impedance on its outputs, and the output transition time 
suffers accordingly. 

The other method, shown in Figure 6.17, assumes that the 5V device has 
open-drain outputs. The external resistor, connected to the 3.3V supply, 
automatically translates the output voltage to 3.3V-compatible levels. 
The lower the resistor value, the faster the 5V device outputs switch, and 
the higher the resistor value, the lower the current draw "penalty" 
through the resistor when the 5V device outputs a zero. If open-drain 
outputs are not available, an external MOSFET transistor and resistor 
will duplicate the functionality. An n-transistor will invert the output, 
while a p-transistor will pass the 5V device output with no inversion. 

Bidirectional Bus Interface 

The data lines, connecting a processor and external memory device, 
provide a common example of a bidirectional bus. Where a 3.3V 
processor and 5V flash memory exist, for example, two possible 
scenarios can occur: 

5V outputs driving 3.3V inputs (during flash memory read), and 
3.3V outputs driving 5V inputs (during flash memory writes). 

A combination of the techniques described earlier for 5V-to-3.3V and 
3.3V-to-5V interfacing is possible here, with the added complexity that 
logic outputs must be tri-stateable (since we're talking about the data bus 
in this case). A simpler solution uses one of several available 
bidirectional translation buffers with multiple Vee inputs, one for each 
side of the mixed-voltage bus. The buffer handles all voltage translations 
internally. Integrated Device Technology Corporation (IDT) provides a 
full range of standard logic devices with this capability, and both 
Performance Semiconductor and Texas Instruments have also 
announced their intentions to provide similar products. 
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POWER MANAGEMENT TECHNIQUES 
Throughout this chapter we've mentioned techniques for minimizing 
flash memory power consumption in system designs. In this final 
section, we'll summarize these recommendations. Not all of them may be 
applicable in every design; some applications are less power-sensitive 
than others, and in some cases the tradeoff in system complexity and 
cost does not make sense. However, each contributes incrementally, and 
we have listed them in increasing order of difficulty. 

• The more a flash memory is in its standby mode, the lower its 
average power consumption over time. Make sure that when 
flash devices in the system are not being accessed, they are 
deselected. 

• Interfacing to the flash memory with full-CMOS logic results in 
the lowest memory current draw. As described earlier in this 
chapter, CMOS-based semiconductor devices draw very little 
power when their transistors are driven fully on or off. 

• Given the choice of storing data with flash memory or some 
other memory technology, flash memory usually draws the least 
power from the system (no motors, no batteries, no refresh 
requirements). 

• Intel BootBlock and FlashFile memories provide the very low 
power consumption Deep Powerdown mode, which can be 
utilized keeping in mind the extended wakeup delay when 
exiting the mode. In a large flash memory array, for example, 
the majority of devices can be placed in Deep Powerdown 
mode, leaving only one or a few awake memories being 
accessed. 

• The tradeoff between highest system write performance (where 
multiple flash memories may be programming/erasing at the 
same time) and lowest average power consumption (where flash 
memories are programmed/erased serially) is one you'll have to 
make yourself. Different applications have different needs, and 
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you must choose accordingly. However, remember that given a 
fixed number of bytes (or kbytes or Mbytes) to be written, the 
amount of battery energy consumed (power x time) is equivalent 
whether flash memories are being erased and programmed 
serially (low average power draw) or in parallel (high average 
power draw). 

• When simply reading from flash memories (not updating them), 
Vpp can be turned off for the lowest current draw. Vpp switching 
also inhibits unwanted alteration of flash memory contents. 
However, each time V pp is switched on the system incurs a time 
delay as the voltage ramps to a valid level. An "intelligent" V pp 

algorithm, based on modeling the anticipated frequency of 
program/erase and balancing power consumption with 
complexity and ramp delay tolerance, provides the solution. 
Depending on the power supply and/or voltage converter 
chosen, additional circuitry may be required for this V pp 

switching. 

SUMMARY 
Chapter 6 has given you the tools needed to predict the anticipated 
power consumption model for your flash memory subsystem, and to 
appropriately design not only this subsystem but the power supply itself. 
Flash memory's full nonvolatility, in combination with its relatively fast 
update performance, offer tremendous benefit to designs that understand 
and fully harness its capabilities. As systems become more and more 
power-conscious in the future, flash memory will increasingly be used to 
meet the stringent requirements of these designs. 
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Chapter Seven: Software Interfacing to 
Flash Memory 

An oft-repeated adage states tliat, "A computer's hardware gives it 
potential. Software makes that potential a reality". The latest and 
greatest microprocessor, a super-quick graphics subsystem and a fast, 
dense hard drive combine to make a computer nothing more than an 
expensive paperweight, without the software that harnesses this 
capability to do useful work. 

A similar analogy can be inferred for flash memory. Flash memory 
designers can include all sorts of intricate and elaborate circuitry on 
their devices to enable powerful update flexibility. Yet, without system 
software to control it, flash memory is nothing but an expensive blank 
ROM! Flash memory internal hardware circuitry gives it update 
potential, but system software makes that potential a reality. 

This chapter discusses how to integrate flash memory into your design 
and control it, from a software standpoint. To this end, we'll cover the 
following topics: 

• Basic (First-Generation) Algorithms 
• Fully Automated (Second-Generation) Algorithms 
• Update Routines 
• System Boot Code Contents 
• Software Interface to Flash Memory-Cards, SIMMs and 

Multi-Component Arrays 
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First, though, let's talk briefly about the basic command interface to 
flash memory, what these commands do, and why they simplify the 
update process. 

WHY IS FLASH MEMORY CONTROLLED BY 
SYSTEM SOFTWARE? 
To explain where we are today (and why we're there), it's often easiest to 
start with a description of where we were. Accordingly, Figure 7.1 
shows the programming algorithm for the 27COlO EPROM. The 
EPROM is the technology foundation for NOR flash memory 
architectures30, such as Intel's ETOXTM lapproach. Although EPROMs 
erase via ultraviolet light shining on the array cell floating gates (see 
Figure 3.6), EPROM and NOR flash memory cells both program 
electrically. However, you'll soon realize why EPROMs very rarely are 
programmed in-system. 

EPROM Programming Algorithm 

In explaining the EPROM algorithm below, we'll only highlight the 
steps of most interest in this discussion. 

Step 2 

Programming an EPROM location (byte or word, depending on the 
device) requires that it first be specified via its address, and this address 
must be held throughout the entire program algorithm. This requirement, 
along with having to multiplex pin functionality, is clearly incompatible 
with the normal bus interface of a system processor, and it means that 
the EPROM address must be a latched version of the processor address. 
Latching adds to system hardware complexity, and even slows EPROM 
read access time due to the extra logic propogation delay. 

Step 3 

In this step, Vpp (the program/erase voltage) is switched to 12.7SV in 
preparation for a program attempt. Also, V CC (the device operating 
voltage) is elevated from SV to 6.2SV. This means that V CC to the 
EPROM must be switched, unique and electrically isolated from the 

30 As we discussed in Chapter 3. 
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v CC connected to all other logic in the system (for which 6.25V clearly 
violates specifications). 

Step 5 

To initiate programming, the EPROM CE (chip enable) and PGM 
(program) inputs are enabled and held low for at least lOOlls. Again 
incompatible with the normal bus interface (which toggles signals in 
periods measured in nanoseconds), this means that CE and PGM must 
be driven via separate 110 lines instead of directly from the processor. 
The impact reveals itself in extra hardware and greater complexity, and 
in slowed read accesses due to additional logic on CEo 

Step 8 

The EPROM is verified by reading from it after disabling PGM. This 
program verify, usually slower than a normal access, must be 
comprehended in the system wait state generation logic. The elevated 
V CC, resulting in the EPROM logical one outputs ramping to nearly 
6.25V, causes an even greater impact. Unless converted, this easily 
overdrives inputs of other logic in the system, violating absolute 
maximum specifications and severely impacting system lifetime. Again 
the undesirable solution to this reality is bus isolation logic between the 
EPROM outputs and system processor inputs. 

It should be very clear by now that in-system EPROM update is 
extremely difficult and undesirably affects system complexity. Along 
with the fact that EPROMs must be removed from the system for 
erasure, this intricate interfacing explains why the vast majority of 
EPROMs in use today get updated in a dedicated PROM programmer 
environment. 

Flash Memory Programming 

Many of the same companies offering flash memory products today have 
in the past offered (or still offer) EPROMs. When they set out to define 
their flash memory architectures, these manufacturers were determined 
to improve ease-of-use to take advantage of the potential of these in
system updateability (programmable and eraseable) devices. To a large 
degree, they've succeeded admirably in their task. Figure 7.2 shows the 
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NOTES: 
1. See DC Characteristics for the value of VPPH andVpPL' 
2. Prognun Verily Is only pertonned after byte prognunming. 
A final read/compare may be perfonned (optional) after 
the register is writlen with the Read command. 

Bu. Command 
Operation 

Siandby 

Write Sel-up 
Program 

Write Program 

Standby 

Write Prognun~1 
Verily 

Standby 

Read 

Standby 

Write Read 

Standby 

Comment. 

Wait torVpp Ramp to VpPH {II 

Initialize Pulse·Count 

Dala= 40H 

Valid AddresS/Dala 

Duration of Program 
Operalion (IWHWHt) 

Data = COH; Stops 
Program operation(31 

I WHGL 

Read Byte 10 Verily 
Programming 

Compare Oata OUtput 10 
Data Expected 

Data = OOH, Resets the 
Register for Read Operations 

Wait lor Vpp Ramp 10 
VPPL (lJ 

3, ReIer to principles of operation. 
4. CAtmON: Tha algorithm MUST BE FOLLOWED to 
ensure proper and reliable operation of tha device. 

Figure 7.2: Intel First Generation Flash Memory Non-Automated 
Programming Algorithm 
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flash memory programming algorithm used by Intel Corporation's first
generation bulk-erase devices3!. We'll cover this algorithm in greater 
detail later, but for now let's look at the specific areas where the in
system interface has been improved. 

Step 2 

The flash memory programming algorithm still requires an external Vpp 
program/erase voltage. However, this is a dedicated voltage for the flash 
memory, not common to all logic in the system. The common system 
operating voltage, V CC, remains 5V throughout the algorithm. All 
program/erase/verify voltages are internally tapped (within the flash 
memory) from the external Vpp input. 

Steps 4 and 5 

Unlike the EPROM example earlier, addresses, CE and WE (write 
enable) do not need to be held active throughout the 10 flS program 
interval. Specific data commands, written at normal SRAM-like speeds, 
control the flash memory. Logic internal to the flash memory decodes 
these commands and takes appropriate action, such as the enabling and 
disabling of internal program and erase pulses. 

Step 9 

Finally, referencing the flash memory data outputs to V CC makes them 
compatible with other logic in the system. No voltage conversion is 
required between the flash memory outputs and processor inputs for 
program or erase verify operations. 

Comparing Figures 7.1 and 7.2, we see that some elements of the old 
EPROM algorithm have been retained, like the need for software 
timeouts to terminate the internal program pulse, and the iterative if
then-else data verification and pulse repetition for each byte. Second
generation, fully automated algorithms have further simplified the 
update process; we'll cover these later in the chapter. 

3!Other manufacturers offer compatible devices; refer to the Appendix for vendor contact 
information. 
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One important point to note up front is that with all of today's devices 
(both automated and non-automated), the erase and reprogram code 
cannot be executed from the flash memory while it is being updated. 
Read-while-program/erase is not supported, although some devices 
allow the system to suspend erase to read, if needed. The update code 
can be stored in the flash memory, but it must be copied to external 
memory, such as a small RAM, for execution. 

THE NOR BULK-ERASE FLASH MEMORY 
ALGORITHMS 
As stated earlier, these algorithms were pioneered by Intel Corporation 
but compatible vendors such as Advanced Micro Devices, SGS
Thomson, Catalyst, Hitachi and Mitsubishi also support them. Flash 
memories using these algorithms include the 28F256A, 28F512, 28F010, 
28F020 and Series 1 flash memory cards, and equivalents. 

Bus 
Command Cycles First Bus Cycle Second Bus Cycle 

Req'd 
Operation Address Data Operation Address 

Read Memorv 1 Write X OOH 
Read Intelligent Identifier 3 Write X 90H Read IIA 
Codes 
Erase Setup/Erase 2 Write X 20H Write X 
Erase Verify 2 Write EA AOH Read X 
ProQram Setup/ProQram 2 Write X 40H Write PA 
ProQram Verify 2 Write X COH Read X 
Reset 

Notes: 
1. 

2. 

2 Write X FFH Write X 

IIA = Intelligent Identifier address; OOOOH for mfg. code; OOOlH for device 
code. 
EA = Address of memory location to be read during erase verify. 
PA = Address of memory location to be programmed. 
Addresses are latched on the falling edge of the write enable pulse. 
lID = Data read from location IIA during device identification. 
EVD = Data read from location EA during erase verify. 
PD = Data to be programmed at location P A. Data is latched on the rising edge 
of write enable. 
PVD = Data read from location PA during program verify. Address is latched 
during the Program command. 

Table 7.1: Intel Bulk-Erase Flash Memory Command Definitions 

Dati 

110 

201-
EV[ 
PO 

PVC 
FFI-
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Writing specific data command sequences (and corresponding 
addresses) into the flash memory command register enables device 
operations. Table 7.1 shows the full range of commands supported by 
the Intel-compatible, bulk-erase flash memories. A subset of these 
commands will be explained in greater detail in the following algorithm 
discussions. 

The Program Algorithm 

This algorithm is shown in Figure 7.2. 

Step 1 

This is the entry point for each program operation. 

Step 2 

Ramp Vpp to VpPH (l2V ± 0.6V). When programming a sequence of 
device locations at one time, Vpp does not need to be ramped down and 
then back up between each program operation. For that matter, it may be 
permanently enabled if desired32. 

Step 3 

Initialize the pulse count (usually a system variable in RAM, or a CPU 
register) to value O. 

Step 4 

Write the program setup command (40H) to the device. The address at 
this point is a "don't care", as long as the flash memory is selected via 
CEo 

Step 5 

Write the data to be programmed, along with the address to be 
programmed. Note the absence of a 'program verify' command per se; 
the flash memory at this point assumes that the very next write after 
'program setup' is data to be programmed. 

To abort programming after writing the program setup command, write 
FFH as data to be programmed. Since programming only changes ones 

32See Chapters 5 and 6 for discussions on Vpp generation and control. 
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zeros, writing data FFH (with no zeros in it) will leave the specified 
location unchanged. Writing another FFH resets the device to the read 
array mode. 

Step 6 

This step times the internal pulse, initiated in Step 5, that programs the 
specified location. The delay should be a minimum of 10 fls. Device 
datasheets specify the maximum delays that should be strictly followed 
to ensure reliable device operation. Either a hardware timer or a 
software loop can measure the 10 fls pulse. 

If using a software delay, the designer must ensure the accuracy of the 
measured delay with respect to the system clock and CPUs instruction 
cycles. This is especially important when the same software could be run 
in different systems with different CPUs and clock frequencies (like a 
personal computer). In this case, the clock frequency can be initially 
determined by measuring the number of instructions that execute 
between real-time-clock interrupts, for example. 

Disabling interrupts before step 6 helps to ensure that the maximum 
program pulsewidth is not exceeded. Also make sure that when 
debugging your software you do not single-step and pause within the 
timing loop, again to avoid exceeding the datasheet maximum delay 
timings. 

Step 7 

Writing the program verify command (COH) terminates the internal 
program pulse. It also enables internal circuitry to apply the program 
verify voltages (derived from Vpp) to the array cells. The address 
supplied to the device with the program verify command corresponds to 
the location being programmed. 

Some flash memories include stop timers that automatically terminate 
the internal program pulse after a specified delay, even if a program 
verify command has not been received. Even if these stop timers are 
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available, the system designer should not rely on them, and should 
follow steps 6 and 7 for timing and terminating the program pulse33 . 

Step 8 

The 6 f.ls delay of this step allows time for the program verify voltages to 
stabilize at the array cells being programmed. This is a minimum delay; 
it has no maximum limit. However, to achieve the highest programming 
performance, this time should be adhered to as close as possible. The 
same guidelines explained in step 6 with respect to software delays 
should again be followed. Reading the device before 6 f.lS has elapsed 
may result in the output of inaccurate data. 

Step 9 

Read data from the device. The address being verified should match that 
of the location being programmed. 

Step 10 

Compare the data read from the device to the data being programmed. 
Remember that programming only changes ones to zeros, not zeros to 
ones. If bits within the location being programmed have already been set 
to zero by a prior program operation (and not yet set back to one by an 
erase), they will remain zero even if system software attempts to 
program them back to a one. In such an application, mask and examine 
only those bits you are attempting to program to a zero. 

Steps 11-12 

After a programming operation successfully verifies, subsequent 
locations can then be programmed by returning to the beginning of the 
algorithm as shown. 

Steps 13-15 

After completing device programming, write the "read array" command 
(FFH) to the device and disable high voltage on Vpp if desired. Bear in 
mind that for highest performance, you can leave Vpp on to avoid its 

33Not all bulk-erase flash memories, even if they are otherwise compatible, offer stop timers. Stop 
timers are supported in all Intel products. 
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ramp delay (however, this may result in unnecessary power 
consumption) . 

Step 16 

If the location being programmed does not verify successfully after one 
iteration, increment the pulse count and attempt another program 
sequence at the same location. Although most locations typically only 
require one program pulse, the actual number of pulses depends on the 
ambient temperature at which the device is being operated, the Vee and 
Vpp values at the time of the programming attempt and the number of 
times the device has already been programmed/erased (cycled). A 
maximum of 25 program attempts are specified for each location. 

Steps 17-18 

If, after 25 attempts, the location being programmed still does not verify 
correctly, disable Vpp and return an error indication to the system. 
Inability to program most likely only occurs with an out-of-tolerance 
Vpp power supply, or if the device has been cycled far beyond its 
specifications. At this point, the system has several choices; it may mark 
the location as "bad" and continue, or it may attempt additional program 
pulses beyond the specified 25. This latter approach is a valid method of 
extending flash memory cycling34. 

The Chip Erase Algorithm 

This algorithm is shown in Figure 7.3. 

Step 1 

This is the entry point for the chip erase operation. 

Steps 2 and 3 

The device must be pre-conditioned, or preprogrammed to all Os, before 
erasing to prevent over-erasure of array transistors. To pre-condition, 
repeat the program algorithm of Figure 7.2 for each lO,cation in the array, 
programming to OOH in each case. Notice that we stressed the word each 
here. Every location in the entire device must be accessible for both 

34 See the "Extended Cycling; What Can You Do?" section of Chapter 3). 
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14 
lnerament Address 

NOTES: 
1. See DC Characteristics fortha value of VpPH and Vp 
2. Erase Verify Is perfonned only after chip erasure. A fin&!
read/compare may be perfonned (optlonaQ after the register 
Is writlen wfth Ihe Read command. 

Bu. Command Comment. 
Operation 

Entire Memory Musl = DOH 
Before Erasure 

Use Qulck·Pulse Programming 
Algorithm (Figure 8.2) 

Siandby Waft forVpp Ramp 10 VPPH 111 

Initialize Addresses and 
Pulse-Count 

Write Sel-up Dalo=20H 

I Erase 

Write Erase Dalo= 20H 

Siandby Duration of Erase 
Operalion (IWHWH2) 

Writa Erase l2J Addr = Byte 10 Verify; 
Verity Data = AOH; Slops Erase 

Operaliod31 

Siandby I WHGL 

Read Read Byte 10 Verify Erasure 

Siandby Compere Oulpullo FFH 
Increment Pulse-Count 

Write Read Data = OOH, Resets tha 
Register for Read Operations 

Siandby Waft for VPP Ramp 10 VPPL 

3, Refer to principles of operation. 
4. CAUTION; The algorithm MUST BE FOLLOWED to 
enlure proper and reliable operation of the device. 

111 

Figure 7.3: Intel First Generation Flash Memory Non-Automated 
Erase Algorithm 
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reads and writes, so that it can be preprogrammed. Locations not 
programmed to OOR will eventually overerase (sooner versus later) 
rendering not only those locations but whole sections of the flash 
memory unusable. 

Step 4 

Ramp Vpp to VpPR (12V ± 0.6V) before beginning the chip erase 
algorithm35. 

Step 5 

Initialize the address and pulse count variables to zero. The address 
variable will be used to sequence through the array during erase 
verification, and the pulse count variable, as its name implies, will count 
the number of erase pulses applied to the chip. Both variables should be 
declared large enough to handle their maximum values; i.e., "address" 
will have values between 0 and 262,143 for a 2 Mbit x8 device, and 
depending on the flash memory and manufacturer, "pulse" can range 
from 0 to 3000. 

Steps 6-7 

Write the erase setup (20R) and erase confirm (again, 20R) commands 
to the device to begin the internal erase pulse. The specified address to 
the device is a "don't care" as long as the chip receives a valid WE and 
CE, since the entire chip is being erased. 

Step 8 

Similar to the program algorithm described earlier, the system times the 
internal erase pulse. Erase should be enabled for a minimum of 9.5ms; 
specific device datasheets list the maximum times. Follow the same 
recommendations as first described earlier in step 6 of the Program 
Algorithm for accurately timing the erase pulse. Disabling interrupts 
before this step helps to ensure that the maximum erase pulsewidth is 
not exceeded. 

35Vpp may already be at VpPH from the previous pre-programming steps 2 and 3. 
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Step 9 

Writing the erase verify command (AOH) terminates the internal erase 
pulse. It also enables circuitry that applies the erase verify voltages 
(derived from Vpp) to the array cells. The first device address to be 
verified is location OOOOH, so the system presents this address to the 
device along with the erase verify command. 

It is very important to accurately terminate the erase pulse after 
approximately 9.5 ms has elapsed, to prevent device overerasure. 
Although some flash memories include erase stop timers, these should 
be used as the exception, not the rule. For example, erase stop timers are 
useful during software debug when you single-step through your code. 
Without device hardware stop timers, the erase pulse length would be 
exceeded. In normal operation, though, follow steps 8 and 9 to time and 
terminate the erase pulse via writing the erase verify command36. 

Step 10 

Similar to the program flowchart, the 6 IlS delay of step 10 allows time 
for the erase verify voltages to stabilize at the array cells being verified. 
Reading the device before the 6 IlS has elapsed may result in the output 
of inaccurate data. 

Step 11 

Read the data from the device. The address should match that of the 
location being verified, and therefore be the same address given in step 9 
(at least for the first time through the loop). 

Step 12 

A fully erased location will read back as all ones. For example, a x8 
component location will read back as FFH if erased, a x16 component or 
device pair will read as FFFFH, etc. 

36Not all bulk-erase flash memories, even if they are otherwise compatible, offer stop timers, 
although stop timers are supported in all Intel products. 
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Steps 13 and 14 

Continuing with device address 0001R and to the last location in 
memory (i.e. all ones for address inputs), repeat the sequence of steps 9-
12. 

Steps 15-17 

After completion of device erasure, write the "read array" command 
(FFR) to the device and disable high voltage on Vpp if desired. 

Step 18 

It is very unlikely that the entire array will erase after one 10 ms pulse. 
In fact, as the "typical" erase times in flash memories indicate, erase 
time is often measured in tens of pulses, depending on temperature, 
cycling, device density and V CCNpp values during an erase. It's also 
common for transistors within the array to erase at slightly different 
rates relative to each other. If the time differential between fastest
erasing bits and slowest-erasing bits is extreme, this can be an indication 
of a low-quality flash memory device that is headed for a quick cycling 
death. Assuming high quality flash memories, however, you will still 
commonly see a multiple-pulse difference between the first and last 
locations to erase. 

If the location being verified does not read all ones after one iteration, 
increment the pulse count and begin another erase sequence. 
Verification then continues from where it left off, since previous 
locations were already confirmed as erased. Most devices permit a 
maximum of 1000 erase attempts, although higher density flash 
memories allow up to 3000 erase pulses. 

Steps 17-18 

If, after the maximum number of erase attempts, the device still does not 
verify correctly, disable Vpp and return an error indication to the 
system. Similar to program, the inability to erase will most likely only 
occur with an out-of-tolerance Vpp power supply, or if the device has 
been cycled very far beyond its specifications. At this point, the system 
has several choices; it may mark the non-erasing device locations as 
invalid and continue, or it may attempt additional erase pulses beyond 
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the specified maximum. As discussed earlier in reference to 
programming, this latter method may be validly used to extend flash 
memory cycling. 

Summary of First-Generation Programming/Erase 
Characteristics 

We've shown in our bulk-erase flash memory algorithm discussions that 
first-generation flash memories dramatically improved upon the 
hardware/software interface required to update EPROMs. The following 
characteristics (and their impacts), however, are still evident in the steps 
required to successfully complete a flash memory "manual" program or 
erase attempt: 

• The algorithms are extremely system-intensive, making it 
difficult if not impossible for the processor to service the needs 
of any other devices or functions in the system while performing 
a flash memory update. In fact, we recommended earlier that the 
system turn off interrupts during program and erase to ensure 
the generation of accurate timing delays. It is also very difficult 
to program or erase multiple flash memories at the same time, or 
to program one flash memory as a foreground task while erasing 
another in the background. 

• The highly manual algorithms also require the system to 
maintain and increment pulse counts and address variables, use 
system software to generate timing delays and require the 
system to write mUltiple verify commands and execute location
by-location data authentication. The flash memory must also be 
manually preprogrammed before erasing. None of these issues 
are showstoppers, but they lead to software overhead beyond the 
raw flash memory program and erase times, increase the 
likelihood of software errors during prototyping and result in 
verbose code. 
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THE NOR FULLY-AUTOMATED FLASH MEMORY 
ALGORITHMS 
Second-generation automated algorithms have been developed to further 
enhance the flash memory interface and overcome some of these first
generation manual shortcomings. Using the Intel automated algorithms 
as our first example, we note the following improvements and their 
positive impacts: 

• The algorithms are fully automated, after system software issues 
program or erase command sequences. An internal oscillator 
measures all timing delays, on-chip counters increment through 
addresses and keep track of the erase/program pulses. 
Preprogramming of the selected block is automatically done 
before erasing the block. Flash memory automation allows the 
system to perform other functions during the program/erase 
operations. Automation also greatly simplifies read, program, 
and erase of multiple flash memories in parallel. 

• Interfacing has been enhanced. A Status Register in the device 
informs the system as to the progress and success/failure of the 
internal automation. Integrated circuitry monitors the status of 
the Vpp voltage throughout program or erase, terminates the 
algorithm if Vpp falls out of tolerance and relays this 
information back to the system. 

• Second-generation devices include the ability to suspend erase 
to read from the flash memory, and resume at a later time. This 
prioritizes high speed, high priority reads over slower, lower 
priority erase. In combination with automation and the RY/BY 
output (available on some devices), erase suspend/resume makes 
it possible to make slow erase a full background task. 

We'll spend the majority of this section reviewing the Intel Corporation 
automated algorithms, shown in Figures 7.4-7.7. Intel's Boot Block and 
FlashFile memories and the Series 2 flash memory cards all support 
these algorithms. After this review, we'll follow with an analysis of 
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AMD's automated algorithms, and some general techniques and 
recommendations for automated program/erase. 

Device operations are enabled by writing specific data command 
sequences (and corresponding addresses) into the flash memory 
command register. Table 7.2 shows the full range of commands 
supported by block-erase Intel flash memories. In most cases (erase 
confirm is an exception), these commands are backwards-compatible 
with those seen in Table 7.1 for bulk-erase flash memories. Additional 
commands have been added to comprehend device internal automation 
and Status Register operations. 

Bus 
Command Cycles First Bus Cycle Second Bus Cycle 

Req'd 
Operation Address Data Operation Address 

Read Array/Reset 1 Write X FFH 
Intelliqent Identifier 3 Write X 90H Read IIA 
Read Status Register 2 Write X 70H Read X 
Clear Status Register 1 Write X AOH 
Erase Setup/Erase 2 Write BA 40H Write BA 
Confirm 
Erase Suspend/Resume 2 Write X COH Write X 
Proqram Setup/Program 2 Write PA FFH Write PA 
Alternate Program 2 Write PA FFH Write PA 
Setup/Program 

Notes: 
1. IIA = Intelligent Identifier address; OOOOR for mfg. code; OOOIR for device 

code. 

2. 

BA = Address within the block being erased. 
PA = Address of memory location to be programmed. 
Addresses are latched on the rising edge of the write enable pulse. 
SRD = Data read from Status Register 
PD = Data to be programmed at location PA. Data is latched on the rising edge 
of the write enable pulse. 
lID = Data read from location IIA during device identification. 

Table 7.2: Intel Block-Erase Flash Memory Command Definitions 

Data 

liD 
SRD 

DOH 

DOH 
PD 
PD 
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Intel Automated Program Algorithm 

This algorithm is shown in Figure 7.4. 

Step 1 

Before beginning the automated program algorithm, ramp Vpp to 12V. 
When programming a sequence of data at one time, Vpp does not need 
to be ramped down and then back up between them. 

Step 2 

Write the program setup command (40H or lOR) to the device. The 
address corresponds to the address of the location to be programmed. 

Step 3 

Write the data to be programmed, along with the location to be 
programmed (i.e., the address), to the flash memory. Similar to the first
generation program algorithm described earlier, the flash memory 
assumes that the very next write after "program setup" is data to be 
programmed. 

Note: To abort programming after writing the program setup command, 
write FFH as the data to be programmed. This will activate the 
automation, but since you are attempting to program ones, the internal 
programming will quickly complete. After ensuring that automation has 
finished (see Step 4), again write FFH (the read array command) to 
return the flash memory to its normal output mode. 

Step 4 

After receiving the written program command sequence, internal 
automation (the Write State Machine, or WSM) begins execution. As 
mentioned earlier, this automation controls many of the manual steps of 
the first-generation algorithms, including program pulse timing and 
termination, program verification and iteration of program/verify. 
System software (at its leisure) polls the flash memory Status Register 
(shown in Figure 7.5) to determine when automation has completed. 
Status Register bit 7, duplicating the function of the RYIBY output 
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Bus Command Commants 
Operation 

Write Byte Write Data = 40H (10H) 
Setup Address = Byte to be wrllten 

Write Byte Write Data to be wrlUen 
Address = Byte to be wrlUen 

Standbyl Check RViBY 
Read \bH = Ready, \be = Busy 

or 
Read Status Register 
Check SR.7 
1 = Ready, 0 = Busy 
Toggle OE or CE to update 
Status Register 

Repeat for subsequent bytes 

Full slatus check can be done after each byte or after a 
sequence of bytes 

Write FFH after the last byte write aperaUon to reset the 
device to Ready Array Mode 

Bus Command Comments 
Operation 

OpUonal CPU may already have read 
Read Status Register data In WSM 

Ready polling above 

Standby CheckSR.3 
1 = I\>p Low Detect 

Standby CheckSR.4 
1 =Byte Write Error 

SR.3 MUST be cleared, If set during a byte write aUempt, 
before furlher aHempls are aUowed by the Write State 
Machine. 

SRA Is only cleared by the Clear Status Register Command, 
In cases where mulUple bytes are wrlHen before fuU status Is 
checked. 

If error Is detected, clear the Status Register before 
aHempting retry or other error recovery. 

Figure 7.4: Intel Automated Flash Memory Program Algorithm 
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available on some flash memories, returns to logic one at the conclusion 
of the WSM-controlled programming. 

Note that after writing the program command sequence to the flash 
memory, it automatically switches to a mode where it outputs Status 
Register data when read. 

Step 5 

After the system has determined that automation has completed, it may 
further analyze the Status Register to verify that programming was 
successful (steps 7-12). However, Status Register error bits will retain 
their values until explicitly cleared by the Clear Status Register 
command (SOH). It may therefore be advantageous, when programming 
a large number of data locations at one time, to check these additional 
bits only occasionally or at the conclusion of all programming. For 
example, when programming a 16 byte string, poll only Status Register 
bit 7 (or the RYIBY output) between bytes, and save full analysis for the 
conclusion. Doing so minimizes system overhead and maximizes flash 
memory write performance. 

Step 6 

Programming of the desired flash memory location is complete. Another 
location can now be programmed, if desired, or the flash memory can be 
reset to its normal "array read" mode by writing the Read Array 
command (FFH). 

Step 7 

In step 4 above, we determined that the internal automation completed. 
In the following steps we'll determine whether the automation completed 
with a successful outcome. 

Step 8 

Examine Status Register bit 3 (see Figure 7.5). A one means that internal 
programming terminated unsuccessfully due to Vpp hard failure or 
momentary voltage transition below the valid low end of the Vpp range. 
Internal flash memory circuitry begins monitoring Vpp after the 
program command sequence is written to the device, and continues to 
periodically do so until automation completes. 
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Step 9 

A reported Vpp error compels the system to determine whether this 
reflects a failure of the Vpp supply or a momentary glitch in the supply 
voltage due to excessive current draw by the system. In the former case, 
this reflects a hard system failure that must be repaired before flash 
memory can again be altered, and a message reflecting this supply 
failure should be relayed to the user. In the latter case, however, flash 
memory programming can again be attempted at the location. 
Occasional droop in the Vpp supply is sometimes caused by current 
draw by other logic/circuitry in the system that shares 12V with the flash 
memory, or it can be caused by attempting to program/erase excessive 
numbers of flash components at the same time, exceeding the current 
drive capability of the power supply. Appropriate action should be taken 
(turning off other circuitry, minimizing the number of flash memories 
being programmed/erased in parallel, etc.) before repeating the 
programming attempt. 

Step 10 

Now, check Status Register bit 4. A one means that the WSM has been 
unable to program the flash memory location after giving it the 
maximum possible number of program pulses. Inability to program 
(besides the "Vpp out of tolerance" case handled in steps 8 and 9) will 
most likely only occur if the device has been cycled far beyond its 
specifications. 

Step 11 

The system can mark the location as "bad" and continue (depending on 
the application), or it may issue another program command sequence to 
the flash memory to generate additional program pulses, as a means of 
extending device cycling. 

The internal WSM-controlled verify only detects and reports errors for 
ones that do not successfully write to zeros, reflective of its function as a 
program verify. For example, what would happen if the system attempts 
to, at a location within the flash memory, write ones to bits that had 
previously been programmed to zero? These bits will of course remain at 
zero, but the program status bit of the Status Register will not reflect an 
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ESS 

6 

ES BWS I VPPS I A 

5 4 3 2 

WRITE STATE MACHINE STATUS 
Ready 
Busy 
ERASE SUSPEND STATUS 
Erase Suspended 
Erase in Progress Completed 
ERASE STATUS 
Error in Block Status 
Successful Block Erase 
BYTE WRITE STATUS 
Error in Byte Write 
Successful Byte Write 
Vpp STATUS 
Vpp Low Detect; Operation Abort 
VppOK 

R R 

o 

RESERVED FOR FUTURE ENHANCEMENTS 
These bits are reserved for future use and should be 
masked out when polling the Status Register. 

RY/BY or the Write State Machine Status bit must first be checked to determine byte write 
or block erase completion, before the Byte Write or Erase Status bit are checked for 
success. 

If the Byte Write AND Erase Status bits are set to ones during a block erase attempt, an 
improper command sequence was entered. Attempt the operation again. 

If Vpp low status is detected, the Status Register must be cleared before another byte 
write or block erase operation is attempted. 

The Vpp Status bit, unlike an AID converter, does not provide continuous indication of 
Vpp level. The WSM interrogates the Vpp level only after the byte write or block erase 
command sequences have been entered and informs the system if Vpp has not be 
switched on. The Vpp Status bit is not guaranteed to report accurate feedback between 
VPPL and VPPH. 

Figure 7.5: Intel Automated Flash Memory Status Register 
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error. Remember, erasure (covered next) must be used to change zeros 
back to ones with flash memory. 

Step 12 

After first checking bit 7 of the Status Register to ensure that the internal 
flash memory automation has completed, and then verifying that the 
program attempt was successful via Status Register bits 3 and 4, the 
system can be assured that the specified location contains the desired 
programmed data. Unlike the first-generation program algorithm 
described earlier, actual read of the flash memory location to verify its 
value does not need to occur. 

Intel Automated Block Erase Algorithm 

This algorithm is shown in Figure 7.6. 

Step 1 

Before beginning the automated block erase algorithm, ramp Vpp to 
12V. When erasing a sequence of blocks at one time, Vpp does not need 
to be ramped down and then back up between them. 

Step 2 

Write the erase setup command (20H) to the device. The address 
corresponds to any address within the block to be erased. 

Step 3 

Write the erase command (DOH), along with an address within the block 
to be erased, to the flash memory. Note that with this algorithm, only 
one block within a device can be erased at a time. 

Step 4 

Mter writing the erase command sequence, the WSM begins execution. 
Similar to automated programming, the erase automation controls many 
of the manual steps of the first-generation algorithm, including block 
preprogramming to OOH, erase pulse timing and termination, erase 
verification and iteration of erase/verify. System software (at its leisure) 
can poll the flash memory Status Register to determine when automation 
has completed. After it receives the erase command sequence, the flash 
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Bus Command Comments 
Operation 

Write Erasa Data = 20H 
Setup Address = Within block to be 

erased 

Write Erase Data = DOH 
Address = Within block to ba 
erased 

Standbyl Check RlW 
Read eM = Read)Qlll = Busy 

or 
Read Status Register 
Check SR.7 
1 = Ready, 0 = Busy 
ToggilE orCE to update 
Status Register 

Repaat for subs equant bytes 

Full status check can be dona after aach block or after a 
sequence of blocks 

Write FFH after the last block arase operation to resat the 
davice to Ready Array Moda 

FULL STATUS CHECK PROCEDURE 

Bus Command Comments 
Operation 

Dptk,"el CPU may already have read 
Read Status Register data In WSM 

Raady polling above 

Siandby Check SR.3 
1'j>~ Low Datad 

Siandby Check SR.4,5 
Both 1 = Command Sequance 
Error 

Standby Chack SR.5 
1 = Block Erase Error 

SR.3 MUST be cleared, If set during a block erase attempt, 
before further attampts are allowed by tha Writa State 
Machine. 

SR.5 Is only claared by the Clear status Register Command, 
In cases whare muttlpla bytes are erased before full status Is 
checked. 

If error Is datacted, clear the status Reglstar bafore 
attempting retry or other error recovery 

Figure 7,6: Intel Automated Flash Memory Block Erase 
Algorithm 
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memory automatically switches to a mode where it outputs Status 
Register data when read. 

The RY/BY output can also be used to mask the slow erase time, freeing 
the system to execute other tasks and, therefore, minimizing system 
performance impact. When connected to a processor interrupt input, 
RY/BY's rising edge at the conclusion of erase interrupts the system. In 
most cases, RY/BY's interrupt configuration is best utilized when 
erasing the flash memory, versus during data programming. Due to the 
performance impact of interrupt latency and servicing, the speed of 
shorter programming events is often optimized by simple polling of the 
Status Register. 

Step 5 

After the system has determined that automation has completed, it may 
further analyze the Status Register to verify that block erase was 
successful (steps 8-15). However, Status Register error bits retain their 
values until explicitly cleared by the Clear Status Register command 
(SOH). It may therefore be advantageous, when erasing a large number 
of blocks at a time, to check these additional bits only occasionally or at 
the conclusion of all block erasures. 

Step 6 

Erasure of the desired flash memory block completes. Another block can 
now be erased, if desired, or the flash memory can be returned to its 
normal "array read" mode by writing the Read Array command (FFH). 

Step 7 

If the system determines in step 4 above that the WSM is still operating, 
and it wants to suspend erase to read from the device, it can do so by 
issuing the Erase Suspend command (BaH). We'll cover the erase 
suspend/resume algorithm in -detail after completing our review of 
automated block erasure. 

Step 8 

In step 4 above, we determined that the internal automation completed. 
In the following steps we'll determine whether the automation completed 
with a successful outcome. 
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Step 9 

Examine Status Register bit 3. A logic one means that internal erasure 
terminated unsuccessfully due to Vpp failure or momentary transition 
below the valid low end of the V pp range. Internal flash memory 
circuitry begins monitoring Vpp after the erase command sequence is 
written to the device, and then periodically until automation completes. 

Step 10 

The same guidelines for system response to Vpp error during erasure 
should be followed as those recommended earlier for automated byte 
programming. See step 9 under "The Automated Programming 
Algorithm" for more information. 

Step 11 

If Status Register bits 4 and 5 are both set to logic one, this reflects an 
invalid erase command sequence. The flash memory has correctly 
received the Erase Setup (20R) command, but the next command written 
to the device was something other than the Erase (DOR) command. 

Step 12 

The Erase Command Sequence error may have occurred due to bugs in 
the system software, or due to an unwanted glitch in a data line 
connecting the processor and flash memory. Whatever the reason, it is 
indicative of a critical system problem. This sort of error should be 
restricted to the lab during the debugging of a prototype design, and 
hopefully will not occur when the system gets in the customer's hands! 

Step 13 

Now check Status Register bit 5 alone. A one means that the WSM has 
been unable to erase the flash memory block after giving it the 
maximum possible number of program pulses. Inability to erase (besides 
the "Vpp out of tolerance" case handled in steps 9 and 10) most likely 
occurs only if the device has been cycled far beyond its specifications. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0182



160 Chapter Seven: Software Interfacing to Flash Memory 

Step 14 

The system will in most cases mark the block as "bad" and continue 
(depending on the application). Alternatively, an error message may be 
communicated to the system operator. 

Step 15 

After first checking bit 7 of the Status Register to ensure that the internal 
flash memory automation has completed, and then verifying that the 
block erase attempt was successful via Status Register bits 3, 4 and 5, 
the system can be assured that the specified block erased to FFH. Unlike 
the first-generation erase algorithm described earlier, actual read of the 
flash memory locations to verify their erasure does not need to occur. 

Intel Automated Erase Suspend/Resume Algorithm 

This algorithm is shown in Figure 7.7. 

Step 1 

Before this point, the system has already read from the flash memory 
Status Register and verified that the WSM is still running (see step 4 
under "The Automated Block Erase Algorithm"). 

Step 2 

System software writes the Erase Suspend command (BOH) to the flash 
memory. Since only one block within a device can be erasing at one 
time, any address within the device can be given. 

Step 3 

Write the Read Status Register command (70H) to the flash memory. 
You might ask why this is needed, since earlier we said that after writing 
the erase command sequence to it, the flash memory automatically 
outputs Status Register data. 

It is possible that in the time between: 

1. When the system has read from the Status Register (to see that 
the WSM is still running), and 
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Bus Command Comments 
Operation 

Write Erase Data = BOH 
Suspend 

Write Read Status Data=70H 
Register 

Standby! Check RY!BY 
Read VOH = Ready, VOL = Busy 

or Read Status Register 

Check SR.7 
1 = Rea2Y, 0 = Busy 
Toggle OE or CE to Update 

Standby Check SR.6 
1 = Suspended 

Write Read Array Data =FFH 

Read Read array data from block other 
than that being erased 

Write Erase Data = DOH 
Resume 

Figure 7.7: The Intel Automated Erase Suspend / Resume Algorithm 

2. When the system writes the Erase Suspend command (to 
suspend the WSM), 

that the WSM may have already completed the erase algorithm and 
returned to "ready". In this case, the Erase Suspend command will be 
meaningless to the device, and will be decoded as invalid and cause the 
flash memory to return to its read array mode. In such a scenario, the 
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system software would be polling what it thought was the Status 
Register, waiting for a suspend indication, when it was actually reading 
array data. An infinite loop would be the probable outcome. 

Writing the Read Status Register command will ensure that, regardless 
of the status of the WSM, the flash memory will correctly output Status 
Register data when subsequently read, as expected. 

Steps 4 and 5 

Poll the Status Register repeatedly until receiving the WSM ready 
indication via bit 7. 

Step 6 

Next, read Status Register bit 6 to determine whether the WSM is ready 
because erase has been suspended (if bit 6 = one) or because erase has 
already completed (bit 6 = zero). If erase has completed, suspend is not 
possible, nor needed. 

Steps 7 and 8 

Write the Read Array command (FFH) to the flash memory, allowing 
code execution or data reads out of the device. Any block within the 
flash memory can be read at this point, but of course the block being 
erased when suspended will contain unknown data. 

Steps 9 and 10 

After the system finishes reading from the flash memory, writing the 
Erase Resume command (DOH) will continue the erase in progress and 
return the WSM to "busy". 

Alternative Automated Algorithms 

The first-generation bulk erase algorithms described early in this chapter 
are standardized and supported in flash memories from several 
manufacturers today. Automated algorithms, on the other hand, are to a 
greater or lesser degree unique to each manufacturer, and are essentially 
software-incompatible with each other. However, although specific 
implementations may differ, the general approaches used in many of 
these algorithms are similar and can be grouped together for review 
purposes. 
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As an example of an alternative automated approach, we'll cover AMD's 
embedded algorithms in the paragraphs that follow, and then discuss 
general techniques that can be applied to automated program/erase 
algorithms from multiple flash memory manufacturers. 

Advanced Micro Devices Embedded Algorithms 

Although AMD's flash memories are built on NOR technologies 
resembling Intel's ETOX approach, the software program and erase 
algorithms of their newest "5V-only" devices are most similar to those 
of flash EEPROM memories. Since these devices do not have the 
program/erase hardware protection of a separate Vpp voltage, they 
compensate by requiring multiple-byte command sequences to specific 
device addresses (software protection), shown in Table 7.3. Their 
methods of communicating internal automation status and 
success/failure, called data polling and toggle polling, are also similar to 
those of EEPROMs and flash EEPROM memories. 

Command Bus Firat Bus Sacond Bus Third Bus Fourth Bus Fifth Bus Sixth Bus 
Sequence Write Write Cycle Write Cycla Write Cycle RaadlWrlte Write Cycle Write Cycle 

Cycles Cycle 
Req'd 

Addr Dala Addr Dala Addr Dala Addr Dala Addr Dala Addr 
Read/Rasel 4 5555 AA 2AAA 55 5555 FO RA RD 
Auloselecl 4 5555 AA 2AAA 55 5555 90 00/01 011 

20 
Byte 4 5555 AA 2AAA 55 5555 AO PA PO 
PrOQram 
Chip Erase 6 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 5555 
Seclor 
Erase 

6 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 SA 

Notes (addresses and data are shown in Hex): 
1. Address bit A 15 = X = Don't Care. Write Sequences may be initiated 

with A 15 in either state. 
2. Address bit A 16 = X = Don't Care for all address commands except for 

Program Address (PA) and Sector Address (SA). 
3. RA = Address of the memory location to be read. 

PA = Address of the memory location to be programmed. Addresses 
are latched on the falling edge of the WE pulse. 
SA = Address of the sector to be erased. The combination of A 16, A 15, 
A 14 will uniquely select any sector. 

4. RD = Data read from location RA during read operation. 
PD = Data to be programmed at location PA. Data is latched on the 
falling edge of WE. 

Table 7.3: AMD "5 V-Only II Automated Algorithm Command Definitions 

Dala 

10 
30 
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AMD's devices do not include a Status Register, but provide similar 
functionality via hardware sequence flags that can be read during 
automated program or erase. The description of the various flag bits 
below will aid in understanding the flowcharts of Figures 7.8-7.10. 

DQ7: Data Polling Bit 
During the execution of a programming operation, DQ7 outputs, 
when read, the complement of the data last written to DQ7' 
When the automated algorithm completes, DQ7 outputs the true 
data last written to it. During automated erase, DQ7 will be zero, 
and it will output a one when erase completes. 

DQ6: Toggle Bit 
During embedded program or erase, successive reads of the 
device result in DQ6 toggling between one and zero. Upon 
algorithm completion, DQ6 will not toggle, and valid data will 
be read. 

DQS: Exceeding Timing Limits 
If DQS outputs a one when read, the built-in timing limits for 
program or erase have been exceeded. This means that the 
program or erase cycle was not successful; it completed with 
error. 

DQ4: Hardware Sequence Flag 
If DQS outputs a one, this bit informs the system whether 
programming (DQ4 = zero) or erase (DQ4 = one) was 
unsuccessful. During an automated erase attempt, this bit also 
reflects whether the timing limits were exceeded during block 
preprogramming or during block erasure. 

DQ3: Sector Erase Timer 
As Figure 7.9 shows, AMD provides the capability to erase 
multiple blocks within the flash memory with one sequence of 
commands. Writing successive 30H commands with 
corresponding block addresses tells the device to perform the 
mUltiple block erasure. The flash memory measures the time 
since the last 30H command was written to the flash memory, 
and if it exceeds a predefined delay, the internal automation sets 
DQ3 to one and begins executing the internal algorithm. 
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Data Poll Device 

Increment Address 

Program Command Sequence (Address/Command): 

5555H/AAH 

Program Address/Program Data 

Figure 7.8: AMD "5V-Only" Automated Program Algorithm 
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Erasure Completed 

Chip Erase Command Sequence 
(Address/Command): 

Individual Sector/Multiple Sector 
Erase Command Sequence 

(Address/Command): 

] 

Additional sector 
r----...z..-----, erase commands 

are optional 

Figure 7.9: AMD 1/5V-Onlyl/ Automated Erase Algorithm 
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DATA POLLING ALGORITHM 

Yes 

No 

Yes 

TOGGLE BIT ALGORITHM 

No 

No 

No 

Note: 
1. 007 is rechecked even if DOs = "1" because 007 may change simultaneously 
with DOs. 

2. 006 is rechecked even if DOs = "1" because 006 may stop toggling 
at the same time as DOs changing to "1." 

Figure 7.10: AMD 1/5V-Only l/ Automated Data Polling and 
Toggle Bit Algorithms 
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General Automated Algorithm Techniques-Multiple Block Erase 

The multi-block erase capability of AMD's flash memories also appears 
in flash memory devices offered by other manufacturers. In some cases 
(Toshiba's NAND, for example), after the multiple commandlblock 
addresses have been written to the flash memory, a specific command 
activates the internal automation. In other cases (AMD, Hitachi, NBC) 
an internal counter, asynchronous to the system clock, measures the time 
since the last commandlblock address was written, and after a specified 
timeout begins the erase algorithm. In the latter approach, system 
interrupts must be disabled while writing block addresses to the device. 
This prevents CPU distraction that may prematurely begin flash memory 
erase before entering all block addresses. 

General Automated Algorithm Techniques-Page Programming 

Toshiba's NAND flash memories program a page at a time (versus a byte 
or a word at a time), because of the requirements of the serial NAND 
architecture. After writing multiple data bytes to a page buffer within the 
device, a command sequence initiates the internal automated page 
programming. The devices also provide separate block and chip erase 
capability. 

Flash EEPROMs (examples include Atmel devices), as you'll remember 
from Chapter 3, essentially function as defeatured EEPROMs that erase 
and rewrite on a page-by-page basis (versus byte-by-byte). On these 
devices, erase is a built-in part of the programming algorithm. Like 
Toshiba NAND flash memories, programming is initiated after writing 
multiple data bytes to a buffer on the flash EEPROM. Some flash 
EEPROMs provide separate block/chip erase capability, while others do 
not. 

General Automated Algorithm Techniques-Aborting Internal 
Automation 

Automated flash memories ipclude internal oscillators to control the 
program/erase state machine logic. Since they don't run off the system 
clock (i.e., no CLK input), they operate asynchronous to the logic in the 
system. Once automation has been initiated, there is no software method 
to terminate the internal algorithms, until they complete by themselves. 
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As mentioned earlier, these devices automatically output status 
information once programming or erase have begun. They must be reset 
via software commands to output array data again, once automation 
completes. What happens, though, if the system is reset by hardware or 
software, including the CPU? If flash memory program/erase is 
occurring at this time, and if the flash memory contains the code that the 
processor boots from, the flash memory must also be reset to ensure that 
array data (not status information) is provided to the CPU. 

Block-eraseable Intel flash memories are currently the only devices that 
provide hardware state machine reset capability, through their PWD37 
inputs. Although the PWD toggle aborts the program or erase in 
progress, it also resets the flash memory to "read array" mode, enabling 
code execution from the boot block (see the section on "System Boot 
Code Requirements" later in this chapter). For all other automated flash 
memories, make sure that the system cannot be reset during the update 
of the flash memory, if using it to store the processor boot code. 

General Automated Algorithm Techniques-The RY/BY Output 

Intel's FlashFile™ memories and Toshiba's newest NAND devices 
include a RY/BY output that reflects the status of internal program/erase 
automation. RY/BY defaults to a high (or TIL-level one) state. During 
operation of the flash memory state machine38, RY/BY is driven low, 
and its rising edge signals the conclusion of the internal algorithm. 
RY/BY reflects the state of the Status Register WSM Status bit (see 
Figure 7.5), and is implemented with the intent of connecting it to a 
system interrupt input or to a separate system register that can be 
software-polled. The primary difference between the Intel and Toshiba 
approaches is that Toshiba's RY/BY is an open-drain output (therefore 
multiple flash memory outputs can be wire-tied together) whereas Intel's 
RY/BY is a full-CMOS output. 

37 PWD is also known as RP in JEDEC notation. 
38i.e. during flash memory program and erase. 
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Software polling or hardware interrupt: Which should you use? 

The functions of RY/BY and its Status Register counterpart are 
interchangeable. Both methods of determining internal automation status 
(software polling and hardware interrupt) have their merits, depending 
on the type of operation(s) being performed. Recall that a NOR flash 
memory location programs in about 9 Ilsec, and a NOR flash memory 
block erases in about 1.6 seconds. Hardware interrupt configuration 
using RY/BY is very useful in hiding the slow erase time as a 
background function. It allows the system to prioritize and process flash 
memory reads/writes and other system functions as foreground tasks. 
For example, assume a real-time system with a flash card to continually 
accumulate data in a first-in-first-out manner. While writing the current 
blocks in the foreground, the system simultaneously starts erasing old 
blocks (background task) to get them ready for future block writes. 
When any of the background erase operations complete, RY/BY makes 
its low-to-high transition, generating the system interrupt that says, 
"Hey, I'm done!". The interrupt service routine now labels that block 
available for more data accumulation. 

Now let's consider the foreground programming operation. What would 
happen if the system took an interrupt from this every 9 Ilsec? For 
performance reasons alone, system requirements usually will not be able 
to afford the time associated with interrupt latency and service routines 
for programming. In some cases, the interrupt latency may even be as 
long as the programming operation itself. Therefore, polling is generally 
suggested for programming, and may be performed by reading the 
RY/BY pin through an I/O port, or by reading the Status Register in the 
flash memory device. Make sure that if you choose software polling for 
an operation, you disable the interrupt that that operation's conclusion 

. could generate. 

UPDATE ROUTINES 
Flash memory's easy in-system update capability makes it very useful for 
storing the embedded code that runs the system. What should such an 
update utility look like, and what will it contain? To some extent, the 
answer to this question will depend on the kind of system we're talking 
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about, what kind of user interface it contains, and where the new code to 
be stored in the flash memory will come from. Following are some 
examples of systems that exist today that take advantage of flash 
memory update: 

• If the flash memory stores the BIOS (Basic Input/Output 
System) in a personal computer, the update utility may be 
resident in the machine (accessed via a special keystroke 
sequence) or run from the HDD or a floppy disk. The new BIOS 
can be shipped on floppy disk from the manufacturer, or the 
customer can download the code from a BBS over a modem 
link. 

• If the flash memory stores the operating software for a laser 
printer, the update utility can again be run from a connected 
computer, with handshaking and new software download over 
the parallel or serial link. 

• If flash memory contains the embedded code of a cellular phone, 
the update utility can be resident in the handset or base unit, 
with communication between the user and phone over the 
keypad and screen. Conceivably, the user could call a computer 
at the phone manufacturer using a dedicated phone number, and 
after entering a unique keypad sequence, new code could be 
relayed over the wireless link to the phone, which would update 
itself automatically. 

Only your imagination and the unique needs and capabilities of your 
application limit the specific update method chosen for your design. In 
general, however, if an end user is going to be doing the update, the 
interface should be as intuitive, simple and informative as possible. 
Think of a time when you've installed or updated an operating system or 
application on your computer. Like the authors, you've probably 
experienced setup routines that were very good, and those that were very 
bad! The end user's expectations, and the capabilities you provide, are 
no different when code resident in flash memory is being updated versus 
when updating software on a HDD. 
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The following pseudo-code routine applies to a BIOS update routine, but 
many of the concepts shown are equally useful for other applications. 
Spare no detail in designing the update utility; provide both keyboard 
and mouse interface if possible, make the display colorful and 
informative (while not distracting or overwhelming!), etc. Time spent 
up-front in making the update process intuitive and user-friendly will 
pay long-term dividends when customers take advantage of the 
capability you've designed into your system! 

• Initialize the system; set up the screen, ensure that the system (if 
portable) has sufficient battery power for the update. 

• Access BIOS update files (from floppy disc, modem link, etc.). 
If files are not present, send an error message ("Insert floppy 
disk, or press ESC to exit", or equivalent). 

• Display BIOS update file information, prompt user for choice 
(have simple choices and perhaps even refer them to user's 
guide), load to memory and validate data via checksum or other 
means. If file is invalid, prompt for file or exit. 

• Inform user that BIOS update is about to begin ("Press ESC to 
exit, or any other key to continue"). If user continues, display a 
message to the effect of "Do not power down or reboot the 
machine during BIOS update". 

• Erase flash memory. 

• Reprogram with new data (a "Percent Complete" indication is 
useful in both this and the previous step). 

• Inform the user when the BIOS update completes. 

• Reboot the machine. 

Flexible Design Techniques 

To ensure multiple flash memory sources, or to leverage one hardware 
design for several different end-system configurations, you may choose 
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to create a flexible design that accepts several different flash memories. 
This flexibility may involve compatible flash memories from different 
manufacturers, different flash memory densities from the same 
manufacturer (i.e., a 1 Mbit or 2 Mbit flash memory in the same socket) 
or even incompatible flash memories (both a non-automated and an 
automated device, for example). In each of these cases, the software 
update algorithms probably differ for each flash memory that can be 
used in the design. 

PCMCIA flash memory cards represent one likely example of this 
situation. Removability makes it very simple to install cards containing 
many types of flash memory devices in the same system. 

Fortunately, most flash memories support software-accessible 
manufacturer and device IDs identifying the device and enabling the 
system to select the correct program/erase algorithms. For example, 
writing the Intelligent Identifier command (70R) to any Intel flash 
memory enables reading of the manufacturer ID (89R) at device address 
OOOOR, and the specific device ID at device address 000lR. Other 
companies have different manufacturer and device IDs, of course, and 
both IDs can be found in device specifications. 

Be careful if you use this procedure in a design that will accept either a 
flash memory or an EPROM. EPROMs do not support software access 
to device IDs. Writing the Intelligent Identifier command to an EPROM 
(thereby toggling its PGM input, usually located at the same pin as flash 
memory's WE) with Vpp at 12V may result in unwanted programming 
of EPROM locations 1 

SYSTEM BOOT CODE CONTENTS 
When bulk-erase flash memories were introduced several years ago, 
there was some reluctance to using them for embedded code storage, 
precisely because erasure removed all data from the device. What might 
happen, for example, if in the middle of a code update (while the flash 
memory was erased and before new code was programmed) the system 
was reset, or it lost power? What would happen if the flash memory was 
unintentionally updated with corrupted code? When the processor 
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attempted to reboot from the flash memory, it would not find the code it 
expected, leading to a brain-dead system. The realistic possibility of 
these scenarios was in most cases very unlikely, but it was a concern in 
some applications. 

To better meet the needs of embedded code applications (and, quite 
frankly, to sell more flash memory I), several companies now offer 
blocked flash memories that allow selective erase of portions of the 
device without altering data stored in other device blocks. These 
products also offer hardware and/or software lockable boot blocks that, 
if desired, can make code or data stored inside unalterable once initially 
programmed by the system manufacturer. Examples include Intel's Boot 
Block flash memory line (see Figure 5.5), and AMD's 5V-only flash 
memories. The intent here is to provide a small kernel of stable, non
updateable code that will always be present, regardless of the state of 
other device blocks. This secure software will minimally bring up the 
system and download code to the other blocks of the device if required. 

The contents of this kernel code vary from system to system and 
application to application, but the guidelines that follow apply in most 
cases. The core boot code should contain some, if not all, of the 
following functions: 

• 

• 

• 

• 

Minimally initialize the system (configure the processor, 
chipset, floppy drive to allow reading in of the update code, etc.) 

Perform a checksum of the remainder of the flash memory data 

If checksum verifies correctly, jump to the main portion of the 
system boot code, probably found in another block of the device. 

If checksum fails (meaning that one or several of the other flash 
memory blocks contain invalid code/data): 
-Alert the user through speaker beep, message on display, LED 
flash, etc. 
-Erase all other blocks of the flash memory~9 

39 This means that the boot block must store the erase/program algorithms for the flash memory. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0197



Software Interface to Flash Cards, SIMMs and Multi-Component Arrays 175 

-Download new data from floppy disk, external connector, etc. 
-Reboot the system 

SOFTWARE INTERFACE TO FLASH CARDS, 
SIMMS AND MULTI-COMPONENT ARRAYS 
This chapter, so far, has covered software interfacing to flash memory 
components in great detail. In its simplest definition, a flash memory 
card or SIMM is a super-component, a large array of flash memory 
devices in one package. Of course, some flash memory cards also 
include enhanced card identifiers and control registers4o. Beyond this 
extra circuitry, system software interacts with the flash memory 
components in the card in the same way as it would interact with the 
flash memory components directly. A similar situation exists if the 
system design includes not just one resident flash memory, but a larger 
array of multiple flash memories on the motherboard, interfacing to the 
processor. To repeat, the same rules and guidelines we've already seen 
for individual flash memories also apply to groups of flash memories on 
the system motherboard, on a separate SIMM board, or in a remov.able· 
card form factor. Each flash memory in the group is manipulated and 
controlled, programmed and erased using the same algorithms we've 
already covered in this chapter. 

Parallel programming or parallel erase of multiple flash memories at 
the same time presents one area where things get a little tricky. Because 
they program or erase at slightly different rates relative to each other41, 

multiple flash memories connected in parallel (to match the system 
buswidth) present a unique challenge. How do we ensure sufficient 
program/erase of the slower flash memories in a parallel configuration, 
while not overprogramminglovererasing faster devices? That's what this 
section will show you! Just as the system interface to individual 
automated flash memory components was much simpler than to their 
non-automated counterparts, automated flash memories make parallel 
program and erase much easier. 

40Refer to Chapters 8 and 10 more for details. 
41This results from process and cycling variations. 
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As a review, look at Figure 5.2, where we have shown two x8 flash 
memories connected in parallel (one to the lower half of the bus and one 
to the upper half) to match the processor x 16 bus width, and sharing a 
common CEo This interface could have just as easily been four x8 or two 
x16 flash memories interfaced to a 32-bit processor. Similarly, Intel's 
Series 1 and Series 2 flash memory cards contain x8 flash memories 
connected in parallel, to match the 16-bit card interface. The 
components inside these memory cards can be accessed individually (via 
the CE1 and CE2 inputs). However, in this section we'll assume a simple 
16-bit interface to the card, in which case both CE1 and CE2 will be 
active each time the card is accessed. Programming/erasing both 
components in parallel also maximizes performance by doing twice as 
much work in the same amount of time, albeit with twice the amount of 
current draw. 

As we cover the parallel program and erase flowcharts in the next 
several sections, refer to the individual device program/erase algorithm 
discussions at the beginning of the chapter for step-by-step details, not 
repeated here for reasons of brevity. 

Parallel Program of Non-Automated Flash Memories 

Figure 7.11 shows a conceptual flow for parallel programming of non
automated flash memories. This procedure bases itself on the fact that 
writing data FFH to the flash memory is decoded as the reset command 
(see Table 7.1), which puts the device in its "read array" mode. 
Therefore, by writing FFH to flash memories that have already verified 
correctly, we avoid excessive programming. The parallel programming 
flow decreases total programming time, eliminates separate tracking of 
high-low byte addresses and per-device program pulses, and maintains a 
consistent interface (word, double-word, etc.) to the flash memories. 

Step 1 

Enable VpPH for all devices to be programmed. 

Step 2 

When first entering this routine, the program setup command variable 
will be initialized so as to write 40H to each flash memory. Similarly, 
the program verify command variable will be initialized to write COH to 
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each flash memory. As an example, if two x8 flash memories are 
connected in parallel, the program setup and program verify command 
variables will initially be 4040H and COCOH. For four flash memories, 
the commands will initially be 40404040H and COCOCOCOH. 

Similarly, the "'program" command variable will initially reflect the data 
to be programmed into each device. For example, for two x8 parallel 
flash memories, A and B, the program command variable will initially 
be AABBH, where AA and BB reflect the data for device A and B, 
respectively. 

The program pulsecount is initially O. 

Step 3 

Write the program setup and program command variables to the parallel 
flash memories. 

Step 4 

Time out at least 10 IlS. 

Step 5 

Write the program verify command variable to the parallel flash 
memones. 

Step 6 

Time out at least 6 Ils. 

Step 7 

Read from the flash memory interface, and compare each device's data 
to the program command variable written in step 3. Do all flash 
memories verify correctly after one program attempt at the location? 

Step 8 

If more data is to be programmed, the algorithm returns to step 2, to 
reset/clear all variables. 
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Figure 7.11: Parallel Programming oiNon-Automated Flash Memories 
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Step 9 

After programming all data, write the read array command (FFH) to all 
flash memories in parallel and disable Vpp if desired. 

Step 10 

What happens if some, but not all, of the parallel-configured flash 
memories verify correctly? Since some devices have not fully 
programmed yet, the algorithm will have to go through another 
program/verify iteration, but we don't need (or want) to do this for flash 
memories that have already passed. For these latter flash memories, 
then, we substitute data FFH for the program setup and program verify 
commands, and for the data to be programmed. 

We also need to increment the pulsecount to make sure we haven't 
exceeded 25 pulses. 

Example: 
Two x8 devices are being programmed with variables initialized as 
follows: 

Program Setup: 
Program: 

Program Verify: 
Pulsecount: 

4040H 
AABBH (A is the high-byte device, B 
is the low-byte) 
COCOH 
o 

After one program/verify iteration, the high-byte device verifies 
correctly (to data 'AAH') , but the low-byte device does not. Therefore, 
we reset the variables as shown: 

Program Setup: FF40H 
Program: FFBBH 
Program Verify: FFCOH 

Increment pulsecount now equals one. Since it is less than 25, we return 
to step 3 and repeat the program/verify sequence. 

Step 11 

If after 25 pulses one of the flash memories still does not verify 
correctly, write the read array command, disable Vpp, and return an 
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error indication to the system. More comprehensive algorithms can 
return not only an error message but also reference to the specific flash 
memory that did not program to the calling routine, if this information is 
useful. 

Parallel Erase of Non-Automated Flash Memories 

Figure 7.12 shows parallel erase of non-automated flash memories. Like 
parallel programming, this algorithm depends on writing data FFH to 
avoid overerase of devices that correctly verify. As we first discussed in 
chapter 3, overerase is a much bigger concern (and much more damaging 
phenomenon) than is overprogram. 

Step 1 

Enable VpPH for all devices to be erased. 

Step 2 

Preprogram all locations within the devices to OOH, by repeatedly 
following the parallel programming algorithm of Figure 7.11'. 

Step 3 

After first entering this routine, the erase sequence command variable 
will be initialized so as to write 20H to each flash memory. Similarly, 
the erase verify command variable will be initialized to write AOH to 
each flash memory. As an example, if two x8 flash memories are 
connected in parallel, the erase sequence and erase verify command 
variables will initially be 2020H and AOAOH. For four flash memories, 
the commands will initially be 20202020H and AOAOAOAOH. 

Initialize the erase pulsecount and address variables to zero. 

Step 4 

Write the erase sequence command variable twice in a row to the 
parallel flash memories, to reflect writing the "erase setup" and "erase" 
commands (same command data). 

Step 5 

Time out 10 ms. 
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Figure 7.12: Parallel Erase of Non-Automated Flash Memories 
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Step 6 

Write the erase verify command variable to the parallel flash memories. 

Step 7 

Time out at least 6 IlS. 

Step 8 

Read from the flash memory interface, and compare each device's data 
to its valid erased value, FFH. Do all flash memories at the location 
verify correctly after one erase attempt (most likely not)? 

Steps 9 and 1 0 

Increment the address, and verify the new flash memory locations. 
Continue until all data in all parallel flash memories has verified as 
erased. 

Step 11 

When all flash memories have been erased, write the read array 
command (FFH) to them in parallel and disable Vpp if desired. 

Step 12 

What happens if some, but not all, of the parallel-configured flash 
memories verify correctly? Since some devices at the current address 
location have not fully erased yet, the algorithm will have to go through 
another full erase/verify iteration, but we don't need (or want) to do this 
for flash memories that have already passed. To do so would increase 
the potential for overerase! For these latter flash memories, then, we 
substitute data FFH for the erase setup, erase and erase verify 
commands. 

We also need to increment the pulsecount to make sure we haven't 
exceeded the maximum allowable count for the flash memory (usually 
1000; check specific device datasheets to be sure). 
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Example: 
Two x8 devices are being erased with variables initialized as follows: 

Erase Sequence: 2020H 
Erase Verify: AOAOH 
Pulsecount: 0 

Mter one erase/verify iteration, the high-byte device verifies correctly as 
erased, (to data FFH), but the low-byte device does not. Therefore, we 
reset the variables as shown: 

Erase Sequence: FF20H 
Erase Verify: FFAOH 

Increment pulsecount now equals one. Since it is less than the 
maximum, we return to step 3 and repeat the erase/verify sequence. 

Step 13 

If, after 1000 pulses, one of the flash memories still does not verify 
correctly, write the read array command to all of them, disable Vpp, and 
return an error indication to the system. More comprehensive algorithms 
can return not only an error message but also reference to the specific 
flash memory that did not fully erase to the calling routine, if this 
information is useful. 

Parallel Program/Erase of Automated Flash Memories 

As explained earlier in the chapter, automated program/erase algorithms 
greatly simplify system interface software, by automatically and 
internally controlling verification, pulse repetition and iteration, and so 
forth. Parallel program/erase, shown in Figure 7.13, is similarly 
simplified. 

Step 1 

Enable V pp before attempting the desired operation. 

Step 2 

Similar to the non-automated algorithms discussed previously, write the 
program or erase command sequence to each flash memory in the 
parallel configuration. Note that since the internal automation controls 
verify, repetition and algorithm termination, no provision needs to be 
made for device-by-device command masking with FFH. 
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Step 3 

The system can poll the device Status Registers, or be alerted via 
RY/BY interrupt, to determine when program/erase completes. A full 
check of all Status Register bits will determine whether the desired 
operation was successful (see automated program/erase algorithm 
sections earlier in this chapter). 

Steps 4 and 5 

System software can loop back to step 2, if more data must be 
programmed or more blocks erased. Otherwise, it writes the Read Array 
command to reset all devices to their normal modes and disables Vpp if 
desired. 

Enable Vpp 
, 

~, 2 

... Write Erase or Program 
~ Command Sequence to all 

Devices in Parallel 
~ 
..... 

." 3 

Read from Flash Memories, No 
Have They all I--

Erased/Programmed? 

Yes 

." 4 
Yes More Blocks to Erase, 

Data to Program? 

No 

." 5 

Write Read Array Command 

-Disable Vpp 

Erase/Program Complete 

Figure 7.13: Parallel Program/ Erase of Automated Flash Memories 
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SUMMARY 
In this chapter we've shown you how to interface to flash memory 
components via software; to a single flash memory (or multiple devices) 
resident on the system board, to flash memories on an add-in board like 
a SIMM and to flash memories in a removable card form factor. The 
command interface and internal logic of flash memory makes in-system 
update a much simpler proposition than it was for earlier-generation 
memories like EPROM. Full automation on newest devices simplifies 
the process even further. 

We've intentionally not covered some aspects of software interfacing in 
this chapter; specifically those that relate to PCMCIA flash memory 
cards and the extra logic and control registers that exist beyond the 
components themselves. The software architecture of flash-friendly file 
systems has similarly not been included in Chapter 7. Fear not, however; 
these topics have not been overlooked, just relegated elsewhere! See 
Chapters 8-10 for more information. 
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Chapter Eight: Hardware Interfacing 
Considerations for Flash 
Cards 

In Chapter 5 we focused on the system hardware requirements for 
interfacing to flash memory components, from single to multiple device 
designs. This chapter runs in a parallel direction; in that it explains the 
hardware interfacing requirements for implementing a flash memory 
array inside a removable package, the memory card. Some of the things 
we'll cover include: 

• The Personal Computer Memory Card International Association 
(PCMCIA) specification 

• Fundamentals of memory card design from a system interface 
perspective 

• Host system interface controllers 
• PC Card insertion and removal 
• Interrupt steering 

A FLASH MEMORY ARRAY WITHIN A CARD 
A flash memory card may consist of nothing more than a packaged array 
of flash memory devices, utilized primarily for easy removal and 
transfer. The simplest example of this is a card containing a single flash 
memory device that essentially plugs directly into the same socket that 
would be provided for a discrete component. Cards like this usually have 
a proprietary interface, typically designed for embedded equipment, or 
potentially even things like video games. The memory card packaging 
merely makes this component easier to handle when performing 
upgrades or removing it from the system for purposes of data security. 
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Taking this single-chip card a step further, some cards contain multiple 
components and incorporate a simple decoder to allow individual 
selection (chip enabling); not really much different than that required for 
an array of unpackaged discrete memories. These commercially 
available cards typically accommodate custom designs and have fine
tuning for a specific application. These "non-mainstream" cards tend to 
be more costly and generally do not allow interchangability from system 
to system. 

PCMCIA FLASH MEMORY CARDS 
PCMCWJEIDA (Personal Computer Memory Card International 
Association and Japan Electronics Industry Design Association) 
developed a detailed specification to standardize on a memory card 
format, including the electrical interface and card dimensions. Since 
PCMCWJEIDA represent the dominant memory card interface for flash 
memory, we will focus on it (and more specifically, only areas relevant 
to flash memory cards). This specification has the fundamental goal of 
allowing any PCMCIA-compatible card (ranging from flash memory 
cards to fax/modem cards) to be plugged into any PCMCIA-compliant 
system. To accommodate the wide variety of cards, the specification was 
defined to provide a generic card interface. For example, although flash 
memory cards do not require some signals (e.g., battery voltage detect, 
WAIT), they must still be supported to maintain a PCMCIA-compatible 
socket.42 

PCMCIA 1.0 

As described in Chapter 10, the PCMCIA specification actually 
represents two major versions, namely releases 1.0 and 2.0. Although 
the second release supersedes the first, there are still many low density, 
flash memory cards being sold, and systems designed, that only comply 
with release 1.0. The first PCMCIA-compatible flash memory card to 
enter the market, Intel's Series 1 Card, is basically an extension of the 
simple cards discussed above. The card contains between 8 and 16 flash 
memory components (Inters 28FOlO and 28F020), and an ASIC which 
supplies buffered signals for the PCMCIA interface and handles 
component-level decoding. Figure 8.1 shows a block diagram of this 

42rhis may not be a concern for proprietary systems only using flash memory cards. 
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memory card. Other manufacturer's cards, such as Fujitsu's 
MB98A881223 (4 Mbyte flash memory card), also incorporate 
EEPROM devices that reside in the Attribute Memory address space. 

PCMCIA2.0 

Along with the second release of the PCMCIA spec came a new 
generation of flash memory cards. In addition to maintaining backwards 
compatibility with the previous generation, Release 2.0 cards support 
new PCMCIA interface signals (occupying previously reserved pins). 
Intel's Series 2 Flash Memory Cards again provide a good example. 
Comparing their block diagram (Figure 8.2) with that shown in Figure 
8.1, one can see a similarity in the basic structures. Closer examination 
reveals that the Series 2 Card not only contains different devices, but 
also supports a Card Information Structure43 (CIS), reset capability, and 
ready/busy for automated write and erase operations (via the REG, RST, 
and RDY IBSY pins, respectively). 

Although the PCMCIA evolution to release 2.0 focused primarily on the 
accommodation of I/O cards (modems, faxes, etc.), memory card 
vendors also took a step to add more complex circuitry, providing 
increased functionality and features. For example, the Card Information 
Structure, a feature originating with release 1.0, does not appear on most 
fIrst-generation cards but is prevalent on cards designed to comply with 
the release 2.0 spec. The appendix lists different flash memory card 
manufacturers supporting the different levels of compatibility (release 
1.0 or 2.0). 

We'll begin our technical discussion of the PCMCIA flash memory card 
interface by defIning the relevant signals (from a flash memory 
standpoint44). This will provide you with a knowledge base to 
understand and develop specifIc implementations. In the last part of the 
chapter we'll go over some general design guidelines such as buffering, 
card removal and insertion, power up and down protection, etc. To 
begin, Table 8.1 lists the 68 pins of the PCMCIA electrical interface and 

43Chapter 11 discusses the Card Information Structure. 
44For more information on the I/O interface, refer to the PCMCIA R2.01 specification. 
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Figure 8.3 displays the general categories. The text that follows defines 
these signals from a functional and electrical standpoint45 • 

PIN SIGNAL VO FUNCTION ACTIVE PIN SIGNAL VO FUNCTION ACTIVE 
1 GND Ground 35 GND Ground 
2 DQ3 I/O Data Bit3 36 CD1 0 Card Detect 1 LOW 

3 DQ4 I/O Data Bit4 37 DQ11 I/O Data Bit 11 
4 DQ5 I/O Data Bit 5 3B DQ12 I/O Data Bit 12 
5 DQ6 I/O Data Bit 6 39 DQ13 I/O Data Bit 13 
6 DQ7 I/O Data Bit7 40 DQ14 I/O Data Bit 14 
7 CE1 I Card Enable 1 LOW 41 DQ15 I/O Data Bit 15 

B A10 I Address Bit 10 42 CE2 I Card Enable 2 LOW 

9 OE I Output Enable LOW 43 VS1 0 Voltage Sense 1 

10 A11 I Address Bit 11 44 RFU Reserved 
11 A9 I Address Bit 9 45 RFU Reserved 
12 AB I Address Bit B 46 A17 I Address Bit 17 
13 A13 I Address Bit 13 47 A1B I Address Bit 1 B 
14 A14 I Address Bit 14 4~ ~19 I Address Bit 19 
15 WE I Write Enable LOW 49 A20 I Address Bit 20 

16 RDY/BSY a Ready/Busy LOW 50 A21 I Address Bit 21 

17 VCC Supply Voltage 51 VCC Supply Voltage 
1B VPP1 Supply Voltage 52 VPP2 Supply Voltage 
19 A16 I Address Bit 16 53 A22 I Address Bit 22 
20 A15 I Address Bit 15 54 A23 I Address Bit 23 
21 A12 I Address Bit 12 55 A24 I Address Bit 24 
22 A7 I Address Bit 7 56 A25 I Address Bit 25 
23 Aa I Address Bit 6 57 VS2 a Volt!lgE! Sense 2 N.C. 
24 A5 I Address Bit 5 5B RST I Reset HIGH 
25 A4. I Address Bit 4 59 WAIT a Extend Bus Cycle LOW 

26 A3 I Address Bit 3 60 RFU Reserved 
27 A2 I Address Bit 2 61 REG I Attribute Memory LOW 

Select 
2B A1 I Address Bit 1 62 BVD2 a Battery Voltage 

Detect 2 
29 Ao I Address Bit 0 63 BVD1 a Battery Voltage 

Detect 1 
30 DQO I/O Data Bit 0 64 DQB I/O Data Bit B 
31 DQ1 I/O Data Bit 1 65 DQ9 I/O Data Bit 9 
32 DQ2 I/O Data Bit2 66 DQ10 I/O Data Bit 10 
33 WP a Write Protect HIGH 67 CD2 a Card Detect 2 LOW 
34 GND Ground 6B GND Ground 

Table 8.1: Signal Definition of the PCMCIA Interface 

45Refer to Chapter 5 for more information on specific flash memory device signals. 
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PCMCIA Signal Definitions 
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a. 

Memory cards supporting this signal contain two separate addressing 
spaces - a Common Memory Plane (CMP) and an Attribute Memory 
Plane (AMP). REG selects between the CMP (REG = V rn) and the AMP 
(REG = VIL). The following briefly describes their functions: 

• The Common Memory Plane contains the flash memory devices, 
as shown in Figure 10.35. 

• The Attribute Memory Plane contains: 
a. The PCMCIA-defined Card Information Structure. 
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b. Memory-mapped registers supporting PCMCIA
recommended functions and special functions designed 
by the card vendor. 

c. Reprogrammable memory for OEM or end-user 
customization, such as card format information. 

Some host systems do not support the AMP because they lack support 
for the REG signal. Therefore, within the card this signal must be pulled 
up to Vee to keep it inactive if it is not connected at the host. This will 
minimally ensure access to the CMP. For cards that do not support the 
AMP, the REG pin going into the card will be a no connect. This forces 
the determination of AMP presence onto the system software. For 
example, after the system asserts REG, the system software attempts to 
read the CIS, and if invalid data appears, this indicates the AMP's 
absence. 

When choosing the value of the pull-up resistor, the card vendor must 
maintain a balance between amount of current drawn and the switching 
speed of the signal. PCMCIA requires R > 10 ill with a load to the host 
of C> 50 pF at a DC current of 700 ).LA (low state) and 150 ).LA (high 
state). The DC current through a 10 ill resistor is 500 ).LA, leaving 200 
).LA available to drive the ASIC in the card. From the system perspective, 
the input capacitance value of this signal determines the amount of 
current that must be supplied to switch it in the desired amount of time. 
Notice from the read timing waveform in Figure 8.4 that the REG signal 
has the same timing requirements as the address signals. 

Address Inputs (Ao - A2s) 

The 26 address bus lines enable direct addressing of 64 Megabytes of 
flash memory in the CMP (REG = VIL) and 64 megabytes in the AMP 
(REG = Vrn). When designing a system, pay attention to the manner in 
which the different cards internally handle lower densities (Le. less than 
64 megabytes46). 

46 At the time this book was published, there was no such thing as a 64 megabyte flash memory 
card. 
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DEVICE AND OUTPUTS DATA 
ADDRESS SELECTION ENABLED VALID 

ADDRESS STABLE 

Vee 
PD'NER

STANDBY DOViN 

~;JIIJJC=t=AVAV-=_~,;w;wmm~ --1ilJ NOTE 

NOTE 

HIGHZ 
VALID OUTPUT 

Note: The hatched area may be either high or low. 

Figure 8.4: PCMCIA Read Timing Waveform 

Some cards may only decode the address lines relevant to their densities. 
For example, if a 1 megabyte card only decodes from AO to A19, any 
access above 1 megabyte will result in a wrap-around, or aliasing, 
because A20 - A25 are no-connects (Figure 8.5). 

1 Megabyte Card 

.. No Connects 
po 

... 1 Megabyte 
Flash 
Array 

Access Above 1 Megabyte 
Yields 'Wrap-Around' To 
Beginning of Array. 

Figure 8.5: Aliasing Caused by Inadequate Address Line Decoding 
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Other cards decode all or most address signals, and will display invalid 
data when the system attempts to access an address above the card's 
known density (this is less dangerous than aliasing because it eliminates 
the possibility of overwriting data)47. In reality, neither'situation should 
pose a problem, because properly designed system software checks with 
the card's CIS (or other means) to determine the card's density. 

NOTE: System designs exist today where some of the address lines to 
the PCMCIA socket were left disconnected, or even where the upper 
unused address lines were tied low. These designs either took advantage 
of the wrap-around scenario or did this just to save on signal routing. 
The surprise comes during the discovery that not all cards are created 
equal (i.e., cards with all signals decoded). Perhaps an addressing 
scheme to standardize on card addressing could be proposed to 
PCMCIA! Until then, writing the software such that it doesn't access 
beyond the card's density provides the simplest and safest technique. 

Data Bus (Do - 015) 

These 16 lines represent the bi-directional data bus. The PCMCIA 
interface supports word-wide or byte-wide operations by decoding 
address line Ao and the two card enables, CEl and CE2 (Table 8.2). 
Decoding performed by the card's ASIC allows the system to access one 
word at a time or one byte at a time, referencing the high or low byte. 

The flash memory architecture dictates how to arrange the components 
within the card (Figure 8.6). Flash memories with 8-bit interfaces must 
be paired to support PCMCIA-compatible word-wide accesses. 16-bit 
devices directly support the interface and provide the additional benefit 
of enabling a single-chip card (assuming the device supports selection at 
the byte-level). From a flash memory standpoint (i.e., erasable at the 
block level), the architecture also dictates the block size. In other words, 
a device pair doubles the effective block size because the odd and even 
bytes alternate between device pairs (provided the 8-bit and 16-bit wide 
devices have the same block size). 

47Por example, Intel's Series 2 Card returns FFH data when reading above the card's actual density. 
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MODE REG CE2 CEl Ao OE WE Vpp2 Vppl D[15:8] 

STANDBY X VIH VIH X X X VPPL VPPL HIGH-Z 

BYTE-READ VIH VIH VIL VIL VIL VIH VPPL VPPL HIGH-Z 

VIH VIH VIL VIH VIL VIH VPPL VPPL HIGH-Z 

WORD-READ VIH VIL VIL X VIL VIH VPPL VPPL ODD 
BYTE 

ODDBYTE - READ VIH VIL VIH X VIL VIH VPPL VPPL ODD 
BYTE 

BYTE WRITE VIH VIH VIL VIL VIH VIL xxx VPPH xxx 

VIH VIH VIL VIH VIH VIL VPPH xxx xxx 

WORD-WRITE VIH VIL VIL X VIH VIL VPPH VPPH ODD 
BYTE 

ODDBYTE • WRITE VIH VIL VIH X VIH VIL VPPH VPPL ODD 
BYTE 

Table 8.2: Common Memory Accesses 

Flash Memory Card Flash Memory Card 

uuu t:vt:r ,UUU~I=N 

" 
0

8
_
15 

" 
0 0-7 , D

O
_
15 

,,, .,,, ~ 

Figure 8.6: Internal Component Arrangement Dictated by Flash 
Memory Architecture 

Special Considerations For 8-Bit Systems 

D[7:0] 

HIGH-
Z 

EVEN 
BYTE 
ODD 
BYTE 
EVEN 
BYTE 
HIGH-

Z 
EVEN 
BYTE 
ODD 
BYTE 
EVEN 
BYTE 
xxx 

The PCMCIA specification states that a card must also provide a byte
wide access mode for 8-bit systems. In other words, the high-byte (D8 -
D 15) access of a memory card plugged into an 8-bit system must be 
multiplexed to the low-byte (DO - D7) on the system side. Figure 8.7 
demonstrates the basic circuit design used for implementing this 
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functionality. Address lines Al8 and Al9 decode the four pairs of 
devices48, and CE1, CE2 and Ao are decoded to select the low and high 
byte of each device pair. In the figure, the highlighted transceiver maps 
the high byte to the lower byte of the data bus. 

/lJ).17 HIGH LOW 

/lJ).17 A()'17 

Addresses ~ 

74HC244 

CSIl --Jl>r----t-----4I~-...r 

~L --JI>~---~~~-+---, 

(Oc1aJbuffer) 

DATA 

CEHO 2BFOXO 28FOXO 

B r---------..... 

Figure 8.7: Byte-Wide Access Mode Circuitry for 8-Bit Systems 

Card Enables (CE1 & CE2) 

These active-low control signals, along with AO, enable low and high 
byte accesses on the card. After inactivating CEI and CE2, the card 
should enter a low power, standby mode, depending on the card's 
capability. As seen from Table 8.2, CEI and CE2, in conjunction with 
Ao, support the 8-bit system's decoding scheme discussed in the previous 
section. The PCMCIA specification states that the AMP only supports 

48More address lines would be decoded for higher density cards. 
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even-byte accesses. Therefore, activating CE2 when accessing the AMP 
(REG = V nJ results in invalid data. As discussed in the CIS section of 
Chapter 10, some OEMs may use the first block of the CMP for 
additional CIS space. This situation allows the use of the even and odd 
bytes for storing the information. 

Internal to the card, the CEl and CE2 signals must be pulled up to Vee 
Gust like REG, OE and WE). The value of this becomes apparent during 
card insertion and removal, to ensure de-selection of the flash memory 
devices within the card. 

Output Enable (OE) 

This active low signal gates AMP and CMP reads from the card. Mter 
the card's decoding circuitry selects the appropriate flash memory 
device, the PCMCIA interface OE signal activates the output buffers in 
the card's ASIC. The PCMCIA specification states that OE must be 
driven to V ill by the host during write operations. This removes the 
possibility of bus contentions. 

Write Enable (WE) 

This active low signal controls writes to the AMP and CMP. Similar to 
the situation for OE, PCMCIA specifies that WE must be driven to V ill 
by the host during reads, preventing unwanted write operations. 

Write Protect (WP) 

This signal reflects the status of the flash memory card's mechanical 
write protect switch. Prior to writing to the card, system software can 
check this signal and decide if it will permit the write. WP can also be 
used as a WE gate (at either the system or card level) to physically block 
write attempts to the flash memory devices or the memory card ASICs. 

PCMCIA-interface controller chips, such as the 82365SL, support an 
interface status register that can be read by software. These controllers 
have WP as an input, and reflect its value within this register. This 
device also provides alternate write protect mechanisms such as that 
activated through Socket Service's SetPage function (Card Memory 
Offset Address High Byte Register). Some flash memory cards, such as 
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Intel's Series 2 Card, also have special control registers that will 
internally block writes to selected regions of the flash memory array. 

Ready/Busy (RDY/BSY) 

When this signal was originally added to the PCMCIA specification, it 
was intended for devices like EEPROMs, to signal that an operation was 
being processed. Although the host's electrical interface supported this 
signal, first-generation flash memory cards (and the components within 
them) did not take advantage of this function, and replaced this signal 
with a no-connect. Some second-generation flash memories, such as 
Intel's 28F008SA, support automated write and erase operations, and 
therefore, provide a RY/BY signal to indicate operation status49 . Using 
RDYIBSY essentially frees the host system to perform additional tasks 
after initiating an operation. In other words, the operation (erase or 
write) can become a background task, with completion signified by the 
host receiving a ready indication (Figure 8.8). In Chapter 9, where we 
discuss flash file systems, you will realize the significance of this 
capability for background cleanup. 

The PCMCIA spec indicates that RDY/BSY (pin 16) supports 
alternative functions, depending on the type of PC card used: 
• For 110 cards, this pin becomes the Interrupt Request (IREQ) 

signal. IREQ asserted low indicates to the host that the 110 card 
requires service. 

• For memory-only cards, this pin becomes an operation status 
signal that may be utilized by polling, or by generating a rising
edge interrupt to the host. Referring to Figure 8.2, witness how 
the Series 2 Card routes the RY/BY signal from each of its 
components into the ASIC, which in tum wire-ORs it onto the 
PCMCIA interface. 

49Note that RY/BY refers to Ready/Busy at the device level; RDY/BSY refers to Ready/Busy at the 
card interface. 
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RDY/BSY 

1. Flash Device Erasing 
System Deselects Card 
And Begins Processing 
Other System Tasks 
(Erase = Background 
Operation) 

2. Erase Operation 
Completes As 
Ready/Busy Goes High 

; 
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Flash Memory Card 

Flash .. Device 

RY/BY 

PCMCIA INTERFACE 

RDY/BSY# 

3. Interrupt Generated, 
System Returns To Continue 
Flash Card Functions 

Figure 8.8: RDYIBSY Background Sequence 

Optimizing RDYIBSY Functionality 
In accordance with the PCMCIA specification, a flash memory card 
supporting this functionality drives the RDYIBSY line low when its 
circuits are busy processing an operation. When a single device within a 
multiple-device memory card processes an erase or write operation, the 
remainder of the card's devices may process subsequent operations if the 
system has the capability to support it. This means that ample current 
must be available to handle concurrent operations. It also adds to the 
complexity of system software. 

For example, what if system software wanted to write data to (or read 
from) one device while another was erasing? Or, what if it was 
necessary to erase several devices simultaneously? How this is handled 
depends on the capabilities of the card: 
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• Cards with manually programming devices require continuous 
attention. Chapter 7 discusses the techniques that must be 
applied here. Fundamentally, these devices do not support the 
RDY IBSY capability so when programming or erasing multiple 
devices, the software must perform all necessary steps. 

• The cards with automated devicesand RDY IBSY capability can 
easily handle multiple commands to different devices (Figure 
8.9). The software must have a method for determining which 
device/operation finished after detecting the busy-to-ready 
transition. 

Flash Memory Card With AutomatedDevices 

DEVICE 0 

RY/BY Contains 
Erasing 
Block 

DEVICE 1 

RY/BY Contains 
RDY/BSY .... Erasing ... 

Block 

DEVICE 2 

RY/BY Contains 
Erasing 
Block 

Any Busy Device Normally Results In The Entire Card Appearing Busy 
Because RY/BY Signals Are Tied Together. 

Figure 8.9: Use of RDYIBSY in Multiple Device Operations 
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The RDY/BSY waveform for the standard PCMCIA implementation 
would appear as shown in Figure 8.10 for the situation where several 
devices were being erased simultaneously. Notice that RDY/BSY stays 
low until all devices in the card have completed their erase operations. 
Depending on the interrupt latency, this could impact the card's 
performance, because the system would not be notified that the first 
device had completed until the last one had completed. From a flash file 
system perspective, consider what happens during cleanup. For example, 
suppose an attempt to write a large file first requires the cleanup and 
erasing of several blocks. After copying the ·valid data, software begins 
the sequential erasure of the blocks in question. To avoid having to wait 
until the last one completed its erase, it would be most efficient to be 
notified instantly after the first block-erase completes. This would allow 
the flash file system software to immediately start writing the new file's 
data. 

DEVICE 0 
RY/BY 

DEVICE 1 
RY/BY 

DEVICE 2 
RY/BY 

PCMCIA 
RDY/BSY 

First Operation Finishes 

Interrupt Latency 

Interrupt Occurs 

Figure 8.10: Standard PCMCIA RDYIBSY Waveform 

How does the RDY/BSY signal indicate the completion of an operation 
with multiple busy devices, as in Figure 8.9? Remember, wire-ORing 
means that any busy device will make the entire card appear busy. Intel's 
Series 2 Card demonstrates one way to overcome this problem. The 
card's ASIC can be set up to detect and reflect the rising edge of RY/BY 
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from any device within the card. This would generate a RDY/BSY 
waveform like that depicted in Figure 8.1150. To determine which device 
actually caused the RDY/BSY transition, software can interrogate each 
device's status register (see Chapter 7). 

DEVICE 0 -------, 

RY/BY 

DEVICE 1 

RY/BY 

RDY/BSY SIGNAL 

2 

Figure 8.11: High-Peiformance RDYIBSY Waveform for Multiple 
Device Operations 

An Alternate RDYIBSY Function 
RDY/BSY may also be used to indicate to the host system when the card 
is ready for access after initial power up, if the card requires more than 
20 milliseconds to initialize. If the card does not meet the 20 millisecond 
limit, the card must set RDYIBSY low within 10 microseconds of reset 
or Vee being applied to the card. 

Extend Bus Cycle (WAIT) 

Somewhat related to RDYIBSY is the WAIT signal. While RDY/BSY 
indicates the status of activity within the card, WAIT acts as a bus cycle 
indicator (and delay mechanism) between the card and the host system. 
It functions similar to the READY signal of a CPU interface used to add 
processor wait state cycles for slow peripherals. In flash memory cards 
this pin will most likely be pulled high to indicate the no-wait condition. 

SOPor more details on how to implement this mode, refer to the data sheet. 
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WAIT is primarily utilized for I/O cards to delay completion of an I/O 
cycle in progress or when different access times are needed for the 
Attribute Memory Plane. 

Card Detect (CD1 and CD2) 

The card detect pins at opposite ends of the connector provide a means 
for the system to determine the presence (and proper insertion) of the 
card. From a top view of the card, notice that the card detect pins are the 
shortest (Figure 8.12). This ensures that they make host contact last 
during card insertion and break host contact first during card removal. 
We'll elaborate on the importance of this in the card buffering section. 

Top View of Card 
with Panel Removed 

t CARC 

\ INSERTION 

Card Detect = 2.6 mm (Shortest Pins Within The PCMCIA Connector.) 
10 Signals = 3.2 mm 
Power = 3.6 mm 

Figure 8.12: PCMCIA Pin Lengths Allow Proper Sequencing of Card 
Signals 

Within the card, these pins connect to ground to allow a system to detect 
a low signal after inserting a card into the host's socket. The host must 
supply a pull-up resistor to Vee (with a value greater than 10 kO) to 
allow card detection to function after powering down the card slot. Most 
PCMCIA interface controller chips have inputs for these signals (refer to 
Socket Services in Chapter 10). Simple circuitry may also be used to tie 
these signals together and route them into the host's interrupt logic 
(Figure 8.13). Either method allows the system to detect a card's removal 
or insertion. Alternatively, the resultant wire-or'd signal may be 
periodically polled through an I/O port. One way of generating a polling 
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time-period in a personal computer is to install an interrupt filter into the 
time-of-day interrupt. Every 55 milliseconds, when the system updates 
its clock, software also checks for card presence. 

D 

Q 

CL 

RESET ----------~ 

CARDCHANGE 

0= NO CHANGE 
1 = CARD CHANGE OR MIS-ALIGNED 

Figure 8.13: Example Card Detection Circuitry 

Card Reset (RESET) 

This signal provides a hard reset capability for all configurable 
PCMCIA-compatible cards. Intel's Series 2 Card (none others to date) 
provides an example of a configurable flash memory card, because its 
ASICs contain various registers (Component Management Registers) 
that must enter a default state on power-up, provided by reset. Within the 
Series 2 Card, the reset state also serves to hold the individual flash 
memory devices in a power down mode, to eliminate the possibility of 
accidental writes during noisy-system power transitions. 

To be back",ards-compatible with PCMCIA rele~se 1.0 (where RESET 
had not yet been defined), a configurable card must internally generate 
its own power-on reset. This can be done with. special Vee-monitoring 
circuitry, which· turns on after Vee reaches a certain voltage during 
power up and forces a card reset. The .PCMCIA specification requires 
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that RESET be held in high impedance during card power up for at least 
1 millisecond after V cc becomes valid. Release 2.0 compatible cards 
must provide reset control by pulling up this signal (to V cc) through a 
resistor greater than 100 kn. This will ensure that the card leaves 
RESET after the completion of the internal power up reset. 

Configurable flash memory cards contain a PCMCIA-defined 
Configuration Option Register. Bit 7 of this register (Soft Reset bit, 
S RESET) , provides the software equivalent of the hardware RESET 
signal. PCMCIA states that once software sets this bit, it must also clear 
it. A software-generated reset leaves the card in the same default state 
that resulted from a power up. 

Program and Peripheral Voltages (VPP1 & VPP2) 

These signals provide the programming voltages for writing and erasing 
the flash memory devices. Within the card, VPPI and VpP2 can be tied 
together, or they can be arranged to separately accommodate even and 
odd byte components, respectively. 

According to the PCMCIA specification: 
• The host must supply the Vee level (at a minimum) on the Vpp 

pins (3.3V or 5V). 
• If a card requires a higher Vpp than the system can supply, that 

system may reject the card. 

This specification results in. a serious limitation. For example, a 
PCMCIA-compatible system designed for 5-volt-only cards (Vee and 
Vpp) , will not accommodate PCMCIA-compatible flash memory cards 
that require 12 volts for program and erase operations (constituting the 
majority of cards). To remove PCMCIA ambiguities such as the one 
described above, Intel developed the Exchangeable Card Architecture 
(ExCA) specification based on a specific implementation of the 
PCMCIA specS3 . ExCA requires that host' systems support a 
programming voltage of 12V ± 5%. Furthermore, the ExCA spec also 
provides a peak and average current supply and duration for Vee and V PP 

S3See the section in Chapter 10 on the PCMCIA-ExCA relationship, 
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(Table 8.3). This ensures successful operation of most flash memory 
cards, and most PC cards in general. 

Signal Voltage Continuous Peak Peak Minimum Average 
Supply Supply Current Average Current 
Current Current Duration Current Duration 

VPP (1 &2 12.0V±5% N/A 60mA 10ms 60mA 1 sec 
combined) 

VCC 5.0V±5% 200mA 300mA 10ms 200mA 1 sec 

Table 8.3: System Power Requirements 

The host design can provide a switchable or fixed V pp supply (i.e., 
hardwired "on"). When using a switchable supply, account for voltage 
ramp time after enabling Vpp (via software delay or special Vpp 
monitoring circuitry) before attempting an erase or write operation. This 
provides time to charge up all the capacitance tied to VPP. Be aware that 
ramp rate will depend on the capacitive loading on Vpp, which in tum 
depends on the number of flash memory devices in the card. The best 
thing to do is to use some type of hardware monitoring circuitry such as 
that built into one of the integrated voltage converter devices. 
Alternatively, design for the worst-case situation assuming 20 devices 
per card. 

Chapter 6 discusses 12V generation for flash memories52. To re
emphasize, some of the key attributes to look for in a DC-DC converter 
include: 
• Input Voltage Range - Depending on the host system, this will 

probably be 3.3V or 5V. 
• Output Voltage Tolerance - As shown in Table 8.3, this value 

has a tolerance of ±5%. 
• Output Current Capability - The value should be a tradeoff of 

performance desired and system power sourcing limits. 
• Conversion Efficiency - This value ranges between 50-90%. 

Although this represents a very wide spread, most higher quality 
converters typically have an efficiency of 85%. 

52The Appendix contains a list of DC-DC converter manufacturers. 
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Control over Vpp switching (and Vee, for that matter) is most 
conveniently performed by a PCMCIA-interface controller chip, such as 
the 82365SL. PCMCIA controllers have several outputs that can be 
decoded to generate the appropriate switch53. Figure 8.14 depicts a 
controller chip interfaced to Maxim's MAX780A. Notice the data inputs 
on the Maxim device for controlling the voltage outputs. Some PCMCIA 
interface designs use discrete logic. In these cases, load switching 
control can be accomplished by using programmable 110 lines. 

I 3.3V AND/OR 5V SUPPLY I 
MAX73B I 

I 12V SUPPLY 

~ MAX734 

,-----

SHDN 12V 3V/5V 
WR VCCDRI ---1~ -

PCMCIA 

~P 
MAX7BDA 

Vee SLOT #1 
c---

8/ 
VPPI Vpp 

Voltage DD-DB Control / 

~N PCMCIA VCCDR2 PCMCIA 

DIGITAL SLOT .2 
PRl Vee + CONTROLLER 
PR2 GND VpP2 Vpp 

i----------< 

POWER·READY 
OK 

~ 

~ 

Figure 8.14: PCMCIA Controller Chip Controls Voltage Switching 

Card Voltage (Vee) 

Without this input to the card, all of the other signals would be 
meaningless. The majority of cards available today operate with Vee = 
5V, which for the most part, represents a pretty straightforward and 
standard requirement. Very soon, however, 3.3V cards and 3.3V systems 
will begin to appear. 

What does this mean from a design standpoint? Two scenarios are 
possible: 

53Refer to the SetSocket function in Chapter 10. 
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A 5V card that doesn't function at 3.3V will not operate 
correctly in a 3.3V-only system. For this situation, consider 
using a DC-DC converter (as described in the Vpp section) that 
can also generate 5V. This may be important to allow the use of 
5V cards. When the card requires 5V in a 3.3V, this converter 
can be switched on to pump the Vee supply. 
A 3.3V only card will probably be permanently damaged if 
operated in a 5V -only system. 

How do you resolve this problem? 
The power description structure in the Card Information Structure's 
Configuration Table may indicate the card's operating voltage54. In the 
former situation, system software should provide a message to the user 
to the effect of: "Improper voltage, card will not operate". In the future, 
cards may be capable of functioning at both voltages by incorporating 
voltage switching capabilities within the card or flash memory devices 
themselves. For example, a card may incorporate a 3.3V to 5V DC-DC 
converter to allow operation in a 3.3V system. This converter must be 
bypassed when placing the card in a 5V system. 

On the other hand, how does a 3.3V card keep from frying in a 5V 
system? PCMCIA has been developing a keying mechanism for the card 
that will physically prevent a user from inserting the card. The keying 
will be flexible enough to allow the combination of dual voltage cards 
and systems. 

Voltage Sense (VS1 and VS2) 

Interface Pins 43 and 57 have been defined as the Voltage Sense output 
pins (43 was REFRESH in the PCMCIA R2.01 specification, 57 was 
reserved for future use). These signals notify the host of the card's Vee 
requirements. The configuration of these pins describes the voltage 
requirements of the card which is also indicated in the card's CIS. Table 
8.4 lists the various configurations. As an example, to comply with the 
PCMCIA pin configuration for a 3.3V/5V compatible card, pin 43 (VS t ) 
is grounded and pin 57 (VS2) is open. 

54Most cards on the market today have not integrated this yet. 
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CARD TYPE VS1 VS2 DESCRIPTION 

5Vonly CIS OPEN OPEN Can be plugged into 3.3V socket without damage but it will not 
5V key function properly. 
3.3V only CIS GND OPEN Will not fit in 5V socket. When plugged into 3.3V socket, 
Low voltaae key sianals and CIS Indicate 3.3V only card. 
3.3V/5V CIS GND OPEN Fits into either socket and functions at 3.3V or 5V. 
5V key 

Table 8.4,' Voltage Sense Pin Configurations 

Battery Voltage Detects (BVD1 & BVD2) 

At this point, we've covered all the PCMCIA card signals' except for 
Battery Voltage Detect (BVD\ and BVD2). For flash memory cards, 
which do not require batteries to maintain information written to them 
and therefore don't use batteries, these signals have no meaning. To 
maintain compatibility, however, flash memory cards must pull the 
battery. voltage detects high to trick the system into thinking the battery 
is good. A host may monitor the BVDl and BVD2 signals to determine 
the completion of the power on reset cycle, because they remain low 
(inactive status) until thattime. 

HOST SYSTEM IMPLEMENTATIONS 

The PCMCIA specification only defines the fundamental characteristics 
of the card interface. The previous discussion mentioned nothing about 
the interface beyond the socket (aside from a few pullup or pulldown 
resistors). How do we map the flash memory from the card into the host 
system's address space? In this section, we'll discuss three categories of 
memory mapping: register-based (or 110), paged (by far, the most 
popular), and linear. Some of you may already be familiar with these 
techniques, as they have not been uniquely implemented for flash 
memory cards. As a matter of fact, they apply to any type of memory 
cards, or even to discrete memory devices. 

Several IC vendors have developed single-chip PCMCIA 2.0-compatible 
card interfaces that support the 110 and paged memory mapping 
implementations. These devices enable simple, minimal .glue-Iogic 
interfacing between the host CPU and a IC card socket, as the following 
discussion will point out.· 
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Register-Based Memory Mapping 

Register-based memory mapping has much similarity to that used for 
disk drives; the system uses a single 110 address (or minimal address 
range) to pass data to and from the drive's controller, which in tum takes 
care of writing to (or reading from) one of many locations on the drive. 
Likewise, for IIO-mapped memory, a single 110 port funnels data 
between the system and the flash memory card (Figure 8.15). The 
advantage of this approach is that it consumes the least amount of the 
host system's memory map resources; however, it incurs a performance 
disadvantage because the processor cannot access the memory directly. 

1/0 PO R"F ..... --.. 1....-:::.:...;.;..:....:......1t... 

Flash Memory Card 

Data Is Accessed 
One Byte (Or Word) 

At A Time 

Figure 8.15: Mapping Memory Through an 110 Port 

Standard liD Access 
The simplest 110 implementation can be designed with a latch(es) and a 
data transceiver(s). As shown in Figure 8.16, the system performs an 110 
write (and latch) of the memory address on the data bus. With the 
memory address selected, use another 110 port to read or write through 
the transceiver. The latched data must be updated for each new flash 
memory address. 
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Figure 8.16: The Data Bus Generates the Flash Memory Addresses 

High-Speed I/O Reads 
By replacing the latches with counters, read performance can be 
considerably enhanced (Figure 8.17): 
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Figure 8.17: Counters Enhance I/O-Mapped Read Access 
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1. A '138 decoder selects four sequential 110 addresses that service 
four different functions in this design. 

2. When the system generates an 110 address that matches with the 
setting on the dip switch, the '521 comparator provides one of 
the three enables for the decoder. Notice that the comparator 
uses SA3 - SAw as inputs to place the 110 port base on an 8-byte 
boundary. 

3. An 110 write to the first and second ports generates parallel load 
signals, with PLo and PLI latching the flash memory address into 
the 4-bit counters. 

4. The third 110 port provides the enable for the card enable 
circuitry (CEI and CE2) to allow regular single byte or word 
reads and writes. 

5. Reading from the fourth 110 port address generates the clock 
signal for the counters. This causes them to automatically 
increment, providing the next flash memory address. By the time 
the address increment has occurred, the 110 cycle has completed 
and the data has been read from the 110 port. This fast read 
method works great for string reads (i.e., from sequential 
addresses). However, the counters must be reloaded for any out
of-sequence read. 

Linear Mapped Memory 

The linear-mapped, or direct-mapped, memory design delivers the 
highest performance memory-mapping technique - where the processor 
has direct access to the entire memory array. Unless you only use a very 
low density flash memory card, however, the processor had better have 
more than 20 address lines. In other words, if a processor has a 1 
megabyte adc:;Iress space (as is the case with many embedded CPUs or 
even less with some microcontrollers), the memory map would be 
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completely overtaken by a 1 megabyte flash memory card. From a 
hardware design perspective though, linearly mapped memory 
addressing is very simple (Figure 8.18). The number of address lines 
decoded depends on the maximum density of the flash card to be used. 

74X244 

WRH 

High And Low Byte Selection A22 And A 23 Are 
WRL System Address Inputs. 

DIRECTION 
SELECT 

ENABLE 

SWITCH .:' 
INPUTS .:' 

~ .................................. ,/ 

TO 16 - 28F020s 
A YOo-CEO 
B Y1 o-CEl 
C Y2 o-CE2 

Y3o-CE3 
Y4 o-CE4 
Y5 o-CE5 

~1 Y6 o-CE6 
~---.q (1~~ Y7 o-CE7 

74X138 

GND 
...... _____ A1 -A18 

TO 28F020s 

Figure 8.18: Linearly-Mapped Memory Addressing 

From a software standpoint, linear-mapped memory designs have the 
most practicality in conjunction with system architectures with 
unrestricted operating system boundaries. These would include most 32-
bit operating systems or proprietary embedded computers. But in a DOS
based machine (running in real mode), linear mapping requires 
continuous switching to protected mode to gain access to the large 
memory array, due to the 1 Mbyte memory restrictions. 

Although, the majority of PCMCIA-interface controller chips for PCs 
utilize the page-mapped approach (described next), they can be 
configured with window sizes up to 16 megabytes (in a PC). This could 
essentially pass for a linear-mapped implementation. 
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Paged Memory Mapping 

A page-mapped design accesses the flash memory in a LIM-EMS 
(Lotus-Intel-Microsoft) fashion where portions of the memory array get 
swapped in using special software and hardware55. This approach allows 
only limited regions of the array to be addressed at anyone time 
(Chapter 10 discusses the concept of a memory window which is 
analogous to the page). The size of the mappable region depends on how 
much available space the system has. For example, a look at the DOS 
map, limited to 1 Megabyte, reveals only 128 kbytes of potentially 
available memory space in the 1/0 adapter ROM area (Figure 8.19). 
Depending on the other peripherals installed in the system, this memory 
space mayor may not be available. 
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Figure 8.19: DOS Memory Map 

55Most technical textbooks on developing with DOS cover this subject in detail. 
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Figure 8.20 demonstrates the basic circuitry involved III the memory 
paging scheme: 
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Figure 8.20: Memory Paging Circuitry 

• The latched buffer provides the high order address signals (or 
page numbers) to the memory card. Notice that these address 
signals originated from the CPU's data bus. 

• The system selects an address within the memory card by first 
writing and latching the page number, which then allows access 
to an address within that particular 64 kbyte region. 

• This particular arrangement allows a fixed page size of 64 
kbytes. The page size can be controlled by varying the number 
of address signals that come directly from the CPU versus those 
generated from latched data. 
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Variations on the theme described above can be implemented by 
replacing the discrete buffers, transceivers, and decoding circuitry with a 
single ASIC. An 8255 (parallel port device) can also be used to translate 
page numbers, as well as handle many of the control signals coming 
from the PCMCIA interface (e.g., card write protect, ready/busy, card 
detect, etc.). Figure 8.21 demonstrates the applicability of this concept, 
using a 80x186 microcontroller and a few other basic system 
components: 

• The 80x186 only has a 1 Megabyte address space, but with 
paging can access the full 64 Mbytes defined by PCMCIA. 

• The flash boot code allows easy updates to the controller's 
firmware to vary system functionality. 

• The system's RAM services temporary data storage and holds 
flash memory update algorithms during their execution. 

• Any number of I/O devices can be added to this flexible system 
to perform a variety of applications (by updating the firmware 
accordingly) which use the flash memory cards for data 
accumulation, such as remote weather stations or patient 
monitoring instruments. 
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Figure 8.21: Implementing a PCMCIA 1.0 Inteiface in an 
Embedded Application 
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The implementations described above have one major limitation - they 
only service PCMCIA 1.0 memory cards. A PCMCIA 2.0 
implementation requires more complex circuitry, because several of the 
interface pins must be multiplexed to handle different functions (e.g., 
RDY/BSY f".-7IREQ). Also, socket hardware must be capable of 
mapping into the host I/O and memory space. The section on Socket 
Services in Chapter 10 will provide the hardware designer with good 
insight into the variety of functionality that can be implemented in the 
design of a socket adapter. 

Proprietary or Commercial Interface Controllers 

In a PC platform, the large number of PCMCIA-interface controllers 
available today greatly simplify the hardware design of a PCMCIA 2.0 
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implementation56 . The most difficult step often lies in choosing which 
controller chip to use (refer to the appendix), but many of these chips are 
modeled after Intel's 82365SL (PC Card Interface Controller, PCIC) and 
have been designed to be ExCA-compliant (as described in Chapter 10). 
In non-PC platforms, these commercially-available controller chips can 
also be used, but more than likely, additional logic will be required to 
connect the controller ISA bus interface to whatever bus the specific 
platform supports. For the most part, non-ISA implementations may 
design proprietary ASICs that tightly couple PCMCIA to their desired 
interface. 

Supporting Hardware for PCMCIA-Interface Controllers 

Although the PCMCIA interface can be built out of custom ASICs, 
PLDs, or discrete logic, commercially available controllers offer the 
most convenient solution, even if you have no need for all the capability 
they deliver. Viewed from a price standpoint, commercial controllers 
eliminate non-recurring engineering design costs. From a software 
standpoint, these controllers have a variety of support available from 
most BIOS vendors in the form of Socket Services57 . 

For the most part, the majority of PCMCIA controllers can be integrated 
into a system design with minimal effort. As Figure 8.22 demonstrates 
for a dual-socket design, the 82365SL requires a minimal amount of glue 
logic; voltage control and generation circuitry, data transceivers and 
address buffers placed between each socket and the system bus to allow 
card insertion and removal (more on this later). As another example, 
Databook's TCIC-21N (DB86082) controller has built in transceivers 
which can drive up to 3.2 rnA. In a very controlled system with a limited 
number of peripherals, 3.2 rnA may be sufficient to drive the ISA bus 
without any buffers. Typically, systems will have multiple peripherals 
and may require additional buffering. On the card side, 3.2 rnA may be a 
limiting factor if both sockets have cards in them. Depending on your 
design requirements, it may be desirable to use external transceivers and 
buffers anyway to boost up the current drive. 

56Socket Services provides the software that controls the hardware. 
57Refer to the Appendix for a list of BIOS vendors. 
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Figure 8.22: The Intel 82365SL PCMCIA Interface Controller 
Requires a Minimal Amount of Support Circuitry 

Accessing Flash Memory Cards with PCMCIA-Interface 
Controllers 

SLOT 
A 

SLOT 
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The majority of controllers implement a memory paging mechanism 
using variable-sized windows to access a PC card's memory. This is 
similar to the page-mapped memory mechanism described earlier, except 
that the controller chips perform the address translations under software 
control. Furthermore, system software controls all hardware 
functionality of the socket and adapter (Chapter 10). 

Software such as Socket Services configures the desired memory 
window and card offset via appropriate controller registers. Any access 
to the corresponding window in the system's memory map will generate 
the necessary address and control signals (including REG used to select 
between Common and Attribute Memory) to the card and its socket. In 
other words, the interface controller even handles all the decoding logic. 
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More On Buffering 

In a PCMCIA socket design, buffering has several very important roles: 

• It increases the current drive to the system bus and PCMCIA 
interface, as discussed above. 

• It latches address and data to prevent the unwanted toggling of 
the PC card's CMOS inputs that leads to significant power 
waste. CMOS devices consume the highest power when they 
switch. Even when not accessing the card, the card will see 
every transition on the system bus unless the interface has 
latched buffers and transceivers. 

• It isolates the system bus, so that the insertion and removal of 
PC cards will not disturb system operation. Satisfying this 
design goal inherently takes care of the previous two roles, so 
we will focus this discussion on this concept. 

Isolating the System Bus 

PC card insertion and removal can certainly wreak havoc on a system's 
integrity, if not handled properly. Consider the effects on a memory 
card's data integrity. For example, think about the potential noise 
generated on the PCMCIA interface during PC card removal. Table 8.5 
defines the different card interface conditions that can exist. 

Condition Vee Card Enables & Address Bus Drivers Data Bus Drivers 
Cold Off Hiah-Z Hiah-Z 

Warm On Disabled Hiah-Z 
Hot On Enabled Enabled 

Table 8.5: PC Card Inteiface Conditions During Insertion and Removal 

The cold and warm conditions allow the safest removal and insertion of 
cards. The hot condition can also be handled by sequencing the 
PCMCIA interface signals to a warm or cold condition and ensuring that 
the card incorporates proper buffering and filtering capacitors to absorb 
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voltage spikes on Vpp and Vcc58. The mechanical definition (i.e., length) 
of the PCMCIA pins, shown in Figure 8.12, allows the proper 
sequencing of card signals: 

1. During the removal of a card, the card detect pins (CD! and 
CD2) , break connection with the socket first, since they're the 
shortest. Wiring these signals to hardware circuitry that controls 
power to the socket almost instantaneously turns off the socket's 
power. For example, the pcrc can be configured to perform 
automatic socket power switching based on the card detect 
signals59 . The change in the card detect status also can be used 
for interrupt generation that notifies the application (analogous 
to the removal of a floppy disk). 

DON'T TRY THIS AT HOME 
Just for fun, assume 1 microsecond elapses from the beginning of card 
removal (when the card detect pins first break connect) until the pcrc 
automatically disconnects power to the socket. The difference in length 
between the card detect pins and the I/O signals is 0.6 mm. To travel the 
0.6 mm distance in 1 microsecond means that the card would have to 
removed at a rate of 1,342 miles per hour! Now that's a "flash"! 

2. By the time most pins start disconnecting from the socket, the 
power has already been switched off. However, due to 
capacitance, the voltages will probably not have ramped down 
yet. With power still present to the PC card, the various control 
signals will be pulled high, de-selecting the devices within the 
card. However, any data and address present on the bus at this 
time may be latched on the rising edge of write enable. 
However, the card enables will also be going high at this time 

. and the devices will be deselected. 

3. Finally, the power pins, the longest pins on the host connector, 
break contact. Their presence, until this point, have kept the 

58The system's power supply must also be responsible for keeping voltages within the maximum 
o~erating conditions of the card. 
5 Using the 'Auto Power Switch Enable' bit of the 'Power and ResetDrv Control' Register. 
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Buffering 

other signals fairly stable. The system should now make sure 
that all power to the socket stays off until the next card insertion 
event. 

From a buffering point of view, the techniques for handling insertion 
and removal will vary, depending on the PCMCIA-interface controller 
used. For example, as shown in Figure 8.22, Intel's PCIC requires the 
use of external buffers to isolate the system's address and data bus from 
the socket. This particular design could be simplified by eliminating one 
set of buffers and transceivers and connecting the address and data lines 
from the two sockets together. However, this situation could create a 
problem with data integrity if one card was removed while a card in the 
other socket was being accessed. 

Databook's TCIC-21N uses internal buffers that force both sockets to 
share address and data inputs. This places the responsibility for card 
integrity on the user. To prevent card removal or insertion during a 
critical period, a BUSY LED (light emitting diode), in the system and 
visible to the operator, is recommended. 

From a functional standpoint, Cirrus Logic probably provides the best 
solution with the CL-PD6720. This chip also has internal buffers for 
each socket, along with independent address and data pins60. 

The issue of card removal can also be resolved by using a socket-eject 
mechanism that physically prevents card removal during any card 
operations61 . As the saying goes, "Prevention is the Best Medicine". 

Interrupt Levels 

A PC card and its socket have the capability of generating several types 
of interrupts. For example, a card status change interrupt can be 
generated from a change on the card detect pins, ready/busy, or battery 
warning (although not with a flash memory card). A system with 
multiple sockets, and therefore multiple cards, can experience conflicts 

60 A 208-pin package may be the drawback to this approach. 
61The Appendix contains a list of socket vendors. 
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if they all try to utilize the same interrupt. In a closed system, the 
interrupt levels can be hardwired and never worried about again. 

In an open system, a more flexible setup should be considered where 
interrupt steering can be configured depending on the resources needed 
at any given time. PCMCIA-interface controllers such as the 82365SL 
have the capability of directing a socket adapter's interrupt lines to any 
one of 10 interrupt levels (otherwise known as interrupt steering). Again, 
these chips are conveniently configured by software, as described by 
Socket Service's SetAdapter and SetSocket functions. 

SUMMARY 
In this chapter, we presented an overview of the PCMCIA interface. The 
most important lesson to learn is that for PCs, commercially available 
PCMCIA-interface controllers greatly simplify the socket adapter 
design. Before making a decision on what controller to use, study them 
carefully and don't be mislead by features that sound good on the surface 
(such as write FIFOs and on-chip timing generators). The Appendix lists 
the registers that control those features and the contacts for each of the 
vendors from whom to obtain more information. 

For proprietary systems (i.e., non-ISA bus), you will more than likely 
have to design the logic from scratch. However, understanding the 
concepts developed within the ISA interface devices, will help to ensure 
that your design incorporates the necessary features. 
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Chapter Nine: Flash Memory File 
Systems 

INTRODUCTION 
Throughout this book, we have seen that flash memory can be designed 
into a large number of applications, with examples ranging from laser 
printers and cellular phones to medical instruments and portable PCs. 
The very nature of flash memory makes it a natural fit for code and data 
storage and data accumulation. A flash memory solid-state drive (which 
we've abbreviated FSSD), on the other hand, presents a new challenge to 
the designer. This chapter will not explicitly show you how to design a 
flash file system (this would take a whole book in itselt), but points out 
key concepts and technical advantages and disadvantages of the various 
approaches. Although two basic categories of flash file systems exist, it 
seems like every month another company introduces a new flash file 
system, albeit incompatible with existing solutions. The issue of 
standardization amongst flash file systems must be resolved soon to 
eliminate confusion and incompatibilities in the industry. 

Flash Memory Solid-State Drive Form Factors 

• The direct flash memory interface (memory cards or resident 
flash array, for example), requires the host CPU to handle the 
flash file system software. This requires the file system to be 
compatible with both the host system's operating system and 
software applications run on it. For implementing this type of 
flash file system, you can select one of the ready-made solutions 
and take advantage of the many person-years of work that went 
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into devising and developing it62. Alternatively, you may choose 
a proprietary approach (which may be very appropriate for a 
dedicated application), first taking into consideration the 
possibility that your choice could be incompatible with the 
existing solutions on the market. 

• An integrated drive has the controlling software embedded 
within the drive itself (refer to Figure 4.15). The drive's internal 
processor takes care of making the flash memory interface 
transparent to the host system. This type of FSSD uses a 
standardized system interface (IDE or PCMCIA-ATA, for 
example) with a proprietary internal flash file system. Although 
distinct differences exist between this and the former approach, 
you will notice that while we focus on the direct interface 
approach, many of the file system concepts can be 
interchangeable. 

Flash Memory Solid-State Drives Require Special Drivers 

From the system perspective, the ideal FSSD should have comparable 
functionality to the mechanical disk drive. Naturally, there will be read 
performance, power, reliability, and space saving benefits associated 
with the FSSD, but to the end-user, all familiar functions should be 
available. In the future, as flash memory technology improves, the FSSD 
will also be used for execute-in-place (XIP) and other functions 
unforeseen today. 

Besides flash memory, solid-state disk drives can be developed using 
several other types of memory technologies, such as RAM. Whatever the 
technology, special software drivers must be written to handle these non
magnetic disk mediums. For instance, the RAM-based solid-state drive 
can support the same functionality as the mechanical disk drive (using 
battery backup for data retention). Nevertheless, it still requires a special 
driver to translate the standard file operations from sector accesses into 
physical memory addresses. Many of you should be familiar with these 
drivers, as they include readily available programs such as VDISK and 
RAMDRIVE. 

62Refer to the Appendix for a listing of available flash file systems. 
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The relatively new flash qlemory technology also requires special 
drivers to manage it. Flash file system developers are taking divergent 
approaches in dealing with the media. However, in working to drive a 
standard, companies, like Microsoft, will publicize their file structures. 
By following these formats, other developers (perhaps even running 
different operating systems) will be ensured of compatibility. 

At the writing of this book, DOS was (and probably still is) the primary 
operating system using the FSSD tQ emulate disk drives63 . Therefore, 
the remainder of this chapter, devoted to understanding the various flash 
file system designs, will evolve around this most widespread OS. 
However, bear in mind that a genuine flash file system can be divided 
into two portions (Figure 9.1). One portion concentrates only on 
managing the flash memory itself. The second portion provides the 
interface to the operating system of the host. By modifying or rewriting 
this second portion, the file system can theoretically be separated from 
DOS and ported to any other operating system, whether it be UNIX or 
proprietary dedicated control code. 

DISK-DRIVE BASICS 
To answer the question "What is a Flash File System?" and understand 
the need for such software, we will first review the basic functionality of 
the traditional mechanical disk drive. Although an FSSD services the 
same functions as the mechanical disk drive (storing application 
programs and data files), the two devices have entirely different 
structures. From a mechanical perspective, a disk drive looks like a 
compact disc (CD), containing a large number of concentric rings called 
tracks (See Figure 9.2). Instead of being divided up into songs, the disk 
drive is divided into sectors, typically representing 512 bytes of data 
storage capacity. A magnetic media coats the disk drive, microscopically 
subdivided into millions of individual magnetic fields (referred to as 
domains), one for each bit of data. An individual data bit is either a one 
or zero, based upon the polarity of its minute magnetic element. 

63personal Digital Assitants (PDA) and pen-based systems have created a growing market of non
DOS machines. 
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Figure 9.1: Flash Memory Manager and Operating System 1nteiface 

Figure 9.2: Disk Drive Tracks and Sectors 
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The data bits in a disk drive can be rewritten simply by changing the 
polarity of the magnetic elements. For practical reasons (such as the 
logistics of media management), the operating system controlling the 
disk drive manipulates the data in terms of one or more consecutive 
sectors. Many hard disks arrange these consecutive sectors into groups 
of four (referred to as a cluster) to make them even more manageable. 
Clustering also allows faster file access, because it ensures the grouping 
of at least four of a file's sectors. This implies that if the system user 
running a word processing application, for example, only modifies a 
single letter of a document, the entire portion of that document located 
within its particular cluster gets rewritten. 

DOS Data Structures 

DOS maintains two types of data structures on the disk drive; a File 
Allocation Table (henceforth referred to as the FAT) and a directory. 
Each of these data structures occupies its own cluster(s). The directory 
contains vital statistics of the files stored on the disk, including the file 
name, extension, time and date of creation, size, and the first cluster 
number of that file. The FAT serves two functions: 

• 

• 

Tracking available, allocated and bad clusters, and the last 
cluster in a chain (Table 9.1). It is interesting to point out that a 
free cluster is indicated as OOOOR. For flash memory, this is a 
programmed state, and therefore not a free cluster. 

Maintains a chain for locating the clusters of a file (Figure 9.3) . 
Each cluster has its own FAT entry. 

12-bit entry 16-bit entry Cluster description 
OOOH OOOOH Free 

OOlH-FEFH OOOlH-FFEFH In-use 
FFOH-FF6H FFFOH-FFF6H Reserved 

FF7H FFF7H Bad 
FF8H-FFFH FFF8H-FFFFH End of cluster chain 

Table 9.1: FAT Values for 12 and 16 Bit Entries 

APPLE INC. 
EXHIBIT 1011 - PAGE 0252



232 Chapter Nine: Flash Mem01Y File Systems 

DIRECTORY (BEFORE) 

YOURFILE.DOC 

11-4-92 

7921 Bytes 

First Cluster # 
Example = 5 

Cluster # 
FAT 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

x 
X 

X 

X 

0007H 

X 

OOOAH 

X 

X 

OOOBH 

FFFFH 

X 

X 

X 

OOOOH (Available) 

X 

X 

1 
~ 

After Addition ~ 

to File 

2 

3 

4 

5 

6 

7 

8 
After Addition 

~ 9 
to File 

10 

11 

12 

13 

14 

15 

16 

17 

DIRECTORY (AFTER) 

YOURFILE.DOC 

12-6-92 

9812 Bytes 

First Cluster # 
Example =5 

FAT 

X 

X 

X 

X 

0007H 

X 

OOOFH 

X 

X 

OOOBH 

FFFFH 

X 

. X 

X 

OOOAH 

X 

X 

I~ 
~I\ 

0 
\ 

New piece added 
to middle of file 

Unlike Disk Drives, a FFSD{)annot rewrite the directory and FAT after file modification. 

Figure 9.3: File Directory and FAT Modification 

The clusters containing these data structures, as well as the remaining 
disk clusters, undergo constant modification as files are added, deleted 
and modified. Flash memory can only be rewritten to zeros after erasing 
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the block or entire device to ones. This flash memory characteristic 
alone provides the key differentiator between the mechanical disk drive 
and flash memory. It also points out the need for implementing special 
file systems designed to handle the larger "cluster" size (typically 
128Kbytes) and one-way writ ability of flash memory. 

Device Drivers 

Before leaving this discussion on disk drives, let's look at the methods in 
which application software accesses them. Whether interfacing to MS
DOS or any other operating system, the well-known device drivers 
represent special programs that provide the low-level interface between 
the operating system (called on by the application software) and the disk 
drive and all other peripheral devices within a system. Many books have 
been written on device drivers, so we will not reiterate the details that 
have long been standardized64. 

Device Driver Chaining 

In the MS-DOS world, IO.SYS provides device drivers integral to the 
system's BIOS. The system uses these device drivers, sometimes referred 
to as default or built-in drivers, to communicate with the disk drive and 
other devices. During a computer's initialization, the system reads 
IO.SYS from the disk and MS-DOS loads each device driver into system 
memory using a standardized chaining method. 

Installable and Built-In Device Drivers 

New device drivers, commonly referred to as installable device drivers, 
may be added via CONFIG.SYS (with the DEVICE= command) to 
support additional peripheral devices. Each new driver gets installed at 
the front of the chain. Because the search always begins at the NULL 
driver (Figure 9.4), this guarantees that new drivers will be found before 
the built-in ones. Therefore, new drivers supersede the default drivers. 

64For example, Writing MS-DOS Device Drivers, Second Edition, Robert S. Lai, The WAITE 
GROUP, Addison-Wesley Publishing Company, Copyright 1992. 
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Figure 9.4: New Device Drivers Supersede Default Drivers 

Like the mechanical disk drive, an FSSD requires a device driver so that 
application programs can access files stored in the flash memory array. 
As a matter of fact, a flash file system is itself a special device driver. 
When designing a system with an FSSD, you must consider the manner 
in which the flash file system software hooks into the device driver 
chain. For after-market add-ins (i.e., MS-Flash) of an FSSD, the 
software loads during system initialization (through CONFIG.SYS) as 
an installable device driver. The cleaner route, not requiring end-user 
intervention with CONFIG.SYS (thereby eliminating the possibility of 
improper installation), calls for building the flash file system directly 
into the system BIOS. This allows the FSSD's device driver to be loaded 
along with the other built-in drivers. 
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The latter approach has the most usefulness when developing a bootable 
FSSD. This means that the FSSD has the bootstrap capability for loading 
MS-DOS and contains all the system files (i.e., IO.SYS, MS-DOS.SYS 
and COMMAND.COM). If the device driver must be installed to access 
the FSSD, but that device driver is located on the FSSD, how does it get 
installed? Chapter 10 discusses these concepts. 

Character and Block Device Drivers 

At the functional level, MS-DOS categorizes two types of device 
drivers, character and block. A character device performs input and 
output operations one byte at a time, such as a printer. A block device 
transfers data in blocks. Disk drives and FSSDs represent perfect 
examples of block devices. After a block device has successfully 
initialized, DOS checks the number of units (drives) installed by its 
device driver's initialization code. It uses this unit count to assign the 
next drive letter in sequence. For example, if you add an FSSD to your 
system that already supports a hard drive, the drive letter given to the 
FSSD will be D:. On the other hand, if the FSSD is the system's only 
drive, it will probably be assigned as drive C:. 

Accessing the Disk Using Interrupt Services 

We've said that the device driver provides the lowest-level interface to 
the device it controls. Disk device drivers can be accessed through 
several mechanisms. At one level above the device driver, the BIOS 
provides support using disk-drive service routines accessed through 
software Interrupt 13H (Figure 9.5). Its list of capabilities can be found 
in most MS-DOS programmer reference manuals. 
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As an example, let's examine the !NT l3R setup required to read a 
sector: 

Interrupt 13H 
Function 02H 
Read Sector 

Register Setup 
AH =02H 
~ = Number of sectors to read. This value depends on the 

available memory buffer space. 
CH = Cylinder 
CL = Beginning sector number 
DH = Head 
DL = Drive number (O-7FH for floppy disks, 80H-FFH for fixed disk) 
ES:BX = SegmentOffset of buffer to read into 

APPLICATION 

+- Pass Appropriate Reglst er Setup 

INTERFACE TO 
DISK SERVICE INTERRUPTS 

13H, 25H, 26H 

+- Sector Requests To Dev Ice Driver 

DEVICE DRIVER 

_* Command Passed To 
Controller 

Disk Drive 

DISK DRIVE 

Figure 9.5: Using the Disk Service Interrupts to Access Disk Sectors 
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Generally, special utilities (such as CHKDSK) and games that go 
directly to the disk (i.e., bypassing DOS) use the INT 13H routines. The 
services of INT 25H and 26H (the Absolute Disk Read and Absolute 
Disk Write interrupts, respectively) provide a more popular solution 
because of ease of use. As a comparison, let's look at the setup required 
to read a sector using INT 25H: 

Interrupt 25H 
Absolute Disk Read 

Reeister Setup 
AL = Drive number (O~ 7FH for floppy disks, 80H-FFH for fixed disk) 
ex = Number of sectors to read - This value depends on the 

available memory buffer space. 
DX = Beginning logical sector number. 
DS:BX = Segment Offset of buffer to read into 

Accessing the Disk at the File Level 

Using INT 25H, the programmer does not get involved with head and 
cylinder determination, since requests are for logical sector numbers 
versus physical numbers. MS-DOS makes it even easier to deal with the 
details of the device driver interface by providing a group of file services 
through the functions of INT 21H65. These functions, used by the 
majority of application programs, allow disk accesses to be made at the 
file level. 

Early versions of MS-DOS used file control blocks (FCBs) for file 
management, however more recent programs should be using file handle 
functions that take advantage of the increased capabilities and simplified 
programming interface66. With handle functions, an ASCIIZ string (an 
ASCII character string terminated by a null, or zero, byte) that can 
contain a drive letter, directory path, filename and extension designate 
the location of a file. For an application program to open or create a file, 

65The disk related (FSSD included) functions of Interrupt 21H are listed in the Appendix. 
66FCBs only support the current directory and do not offer support for the hierarchical file 
structure, for example. 
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it must pass the address of the ASCIIZ string specifying the file to MS
DOS. MS-DOS assigns a unique handle to that file and passes it back to 
the program. The program can then use the handle to access the file until 
the program closes the file. If the request is to a standard disk drive, the 
!NT 21H takes this file handle and does all the work of translating the 
file request into the form supported by the BIOS (Figure 9.6). Otherwise 
!NT 21H passes this request on to a flash file system, a network or tape 
drive, or any other type of non-standard drive. 

DISK DRIVE 
NON-STANDARD DEVICES 

(FSSD. TAPE DRIVE. 
NETWORK DRIVE) 

Figure 9.6: Accessing Devices Using File Handles, 
Not at the Sector Level 

FLASH FILE SYSTEM DESIGNS 
Flash file system software for an FSSD may be designed in several 
ways. The chosen solution depends on the application's requirements 
and the desired complexity. As you will notice, each design has merits 
that relate to performance, functionality, design simplicity, degrees of 
disk-drive compatibility and even reliability. You will also notice that a 
programmer must undertake an exponential increase in flash file system 
development complexity to achieve a higher degree of functionality; the 
higher the degree of functionality, the closer the FSSD comes to 
appearing like a disk drive to the end-user. To achieve the ultimate goal, 
the. FSSD must be completely self-contained and capable of managing 
all file and subdirectory manipulations without user intervention. 
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Measuring Drive Usage 

When deciding the level of functionality to implement in an FSSD, 
consider the 80/20 model of operation: In typical disk-drive applications, 
reads constitute 80% of the accesses, and writes, the remaining 20%. 
This general rule serves only as a starting point, the exact usage model 
that fits your application may vary. So, at one extreme, your application 
may only use the FSSD for holding the applications and permanent data 
files which get downloaded into system memory for execution (i.e., a 
read-only FSSD). This minimal functionality FSSD is relatively simple 
to implement. On the other hand, your FSSD may need to handle 
frequently updated database records or interface to write-intensive 
operating systems, like UNIX. This latter scenario puts heavy demands 
on the FSSD write capability and requires much more sophisticated 
software algorithms to manage the flash memory media. The 
implications will become more apparent as you read through the 
remainder of this chapter. 

In practice, flash file systems may be broken into two distinct categories: 

The Disk-Drive Emulators 

• Allow the FSSD to resemble the mechanical disk drive by 
possessing the standard disk file structures, such as a FAT, 
Directories, and sectors. 

• Take advantage of all levels of disk-drive services (INTs 13H, 
2IH, 25H and 26H). This property allows the FSSD to run all 
software programs and potentially even serve as the boot drive. 

• Function best using flash memory technologies, such as 
Toshiba's NAND, to take advantage of the smaller "sector" sizes 
(erase blocks). 

• Function more as a device driver than a file system. As shown in 
Figure 9.7, the disk-emulator resides in the layer below the file 
system layer, serving as the device driver for the FAT file 
system. 
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APPLICATION LAYER 
------------

OS LAYER 

FILE SYSTEM LAYER 

DEVICE DRIVER LAYER 

Figure 9.7: Flash Memory Solid-State Drive System Layers 

• Have operating system independence from a functional 
standpoint. However, files stored on one media, such as a flash 
memory card, cannot be transferred (via the card) between 
systems with different operating systems. For example, the file 
structures wrapped around files stored on an Apple computer 
lack compatibility with the DOS data structures used in a PC. 

• The positive traits of disk-drive compatibility tend to sub
optimize the flash memory benefits and add inefficiencies to the 
design. An example is the maintenance of sectors on a non
sectored media. 

Flash Optimized File Systems 

• Reside at the file system layer to allow direct management of the 
flash memory. Being true file systems, they may be ported to 
other platforms (Le., they are operating system independent). OS 
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independence has the most importance for FSSDs based on 
removable memory cards. The card may be transferred from 
system to system and still work even though the OS is different 
(by using OS data structure conversion). 

• Have special properties (unlike mechanical disk drives) that 
optimize flash memory's functionality. This is exemplified in 
dealing with the block erases of flash memory, an operation 
completely foreign to the disk drive. 

• Function best with the larger block sizes of ETOX flash because 
these file systems do not utilize small sector file structures. 

• Only need to support the most common disk-drives features, 
thereby satisfying the typical end-user's expectations. 

• Do not partition the flash memory media into sectors, and for 
this reason, only support the MS-DOS !NT 21H functions (i.e., 
not !NT 13H, 25H, and 26H). 

THE DISK-DRIVE EMULATORS 
Let's look more closely at the various types of flash file systems in 
existence today. Starting with the disk-drive emulators, we'll go from 
simple, limited-functionality implementations to complex and full 
featured designs. 

When developing a device driver for a disk-drive emulator (DDE), first 
consider how it should interface to the operating system. In essence, the 
driver that controls a DDE consists of two portions. One portion 
represents the flash driver that manages the media and translates 
operating system calls into "flashable" operations. The other portion 
provides the standardized interface to the operating system. In DDEs, 
the flash driver will be minimal, compared to flash optimized file 
systems. This is because, as its name implies, to emulate a disk drive, it 
only performs the operations requested by the FAT file system (or 
equivalent). In this regard, it primarily manages the flash memory by 
hiding the large sector size of flash memory from the system. 
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The portion of the DDE that interfaces to the operating system will 
either hook into the existing disk-drive interrupt service routines or 
actually replace those routines. In other words, if you have the 
opportunity to write your system's BIOS from scratch, the interrupt 
service routines could contain direct support for interrupts l3H, 25H and 
26H. But, for after-market add-ins (where you can't rewrite the BIOS), 
the developer must install filters in each of the disk interrupts to allow 
the requests to be intercepted (Figure 9.8). Using this filtering method, 
any requests to a non-FSSD drive in the system would simply be passed 
on to the original interrupt. 

APPLICATION 

Call To Disk Service Interrupt 

Request To 
Disk Drive 

ORIGINAL 
DISK DRIVE 
INTERRUPT 
ROUTING 

INTERRUPT FILTER 

Request To 
Disk Drive Emulator 

'NEW' INTERRUPT 
ROUTINE 

Figure 9.8: Using an Interrupt Filter 

Primitiv,e Flash File Systems 

The first flash device drivers were designed to make the flash memory 
look exactly like the mechanical drive in terms of media organization, 
but definitely not in performance and functionality. These elementary 
device drivers employ most of the file structures (directory, FAT, and 
clusters, for example) known to the mechanical disk. Not much different 
than a ROM drive in some cases, they provide the simplest approach to 
FSSD development. Although it may seem that these drives have 
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minimal functionality, they still offer solid-state reliability, high read 
performance, and low power consumption. 

STEP 1 

Copy 
To 
Disk 

STEP 2 

. System 
RAM 

STEP 3 

Use Flash Memory 
Programming to 
Copy RAM Contents -To Flash 
Memory 

Figure 9.9: Creating a Disk Image in Flash Memory 

Disk Imaging (the "Reusable ROM Drive") 

Flash 
Memory 

Create this very primitive FSSD by superimposing a disk image (floppy 
or hard disk) directly onto the flash memory media. This type of FSSD 
can be likened to a glorified ROM drive, utilized in many embedded (or 
dedicated) applications even to this day. By using flash memory instead 
of ROM, the application benefits by having occasional rewrite 
capability. Implementing this FSSD requires a three-step sequence (See 
Figure 9.9): 

1) Load a floppy or hard disk with the application software and 
data that will be accessed on the FSSD. This part of the 
sequence requires nothing more than using a few DOS 
commands, such as COpy or XCOPY. 

2) Use a special disk transfer utility, written by the developer (or 
you), to transfer the disk image into a system buffer. The BIOS 
(INT 13R, Function 02H), providing the lowest-level services, 
can be called on by the utility to read the desired sectors from 
the mechanical disk into the host system buffer. Most 
developers will probably utilize the Absolute· Disk Read 
Interrupt (INT 25H) available through MS-DOS. !NT 25R 
allows the disk transfer utility to read and copy whole sectors on 
the disk to a program-specified buffer and only requires a 
limited number of parameters. 
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3) After performing the disk read interrupt service, the utility 
copies the system's buffer contents into flash memory. The 
details of this operation can be found in Chapter 7, which 
discusses programming algorithms for flash memory. Loop back 
to step 2 and execute !NT 25H until all disk sectors have been 
read and copied. 

Getting the disk image into the FSSD's memory array only represents 
part of the design. For the end-user to access the files, a custom device 
driver (the actual flash device driver) must be used to translate the 
operating system's standard sector requests into flash memory addresses. 
This device driver resembles a RAM-disk device driver, with the 
exception that it is limited to performing read-only functions. With this 
type of design, the end-user changes the FSSD contents by erasing the 
entire flash memory array and running through the three steps listed 
above. 

Disk-Drive Template 

An approach that increases the functionality somewhat can be 
implemented by formatting the FSSD with a boot record67, a blank root 
directory, and a FAT template, which gets filled in during the addition 
and deletion of files (Figure 9.10). Remember that with flash memory, 
these changes can only occur in a one-way direction (ones to zeros). 
Therefore, the flash device driver controlling these operations must 
prevent attempts to overwrite deleted sectors and find the first available, 
unused space. Once the flash memory array fills up (with a mixture of 
deleted and valid files), it must be erased and reformatted to allow the 
user to reclaim the deleted space and write additional files. Before doing 
this, copy the remaining valid contents to an alternate drive (using 
standard DOS copy commands) for temporary storage. 

In maintaining the FAT, pay particular attention to the differences of 
standard FAT values used versus what flash memory accepts. For 
instance, a FAT entry on a disk drive ordinarily indicates a free sector 
(or cluster) with the value of OOOOH (Table 9.1). This would force the 

67The number of logical sectors specified in the boot record will be based on the size of the flash 
memory array. 
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FSSD's device driver to flip the bits to a non-zero value when using that 
entry. We all know by this time that flash memory doesn't allow this 
without first erasing the entire block. So the formatting on the FSSD 
must be reversed from the disk drive (a free sector would be represented 
as OFFFFH in a flash memory FAT). The flash device driver must 
handle this reversal when processing standard requests from MS-DOS. 

FORMATTED FLASH MEMORY ARRAY ~ 

The number of sectors 
allotted for the FAT and 
Root Directory will vary 
based on the media's 
size. 

BOOT RECORD 

FAT 

FAT 

ROOT DIRECTORY 

ROOT DIRECTORY 

USER SPACE 

1 

~ Near JMP to Boot Code 

Formatting Information 

BIOS Parameter Block 

~ Bootstrap 

Figure 9.10: A Flash Memory Array Pre-Formatted with a Blank FAT 
and Root Directory 
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Sector-Level Modification Method 

To achieve an even higher degree of functionality, a slightly more 
advanced flash device driver that performs sector-level modification 
maybe employed. Every time the user modifies a file, the flash memory 
devices containing the FAT, directory, and associated file sectors get 
copied into system RAM. In RAM, the file system modifies the contents, 
updating the FAT and directory and inserting the user's changes into the 
file. (This method would not have to perform the FAT bit-flipping used 
in the previous example, because the FAT is completely rewritten with 
every change). Mterwards, the file system's software erases the 
corresponding flash memory devices and writes the modified file 
structures and file contents back into flash memory. Figure 9.11 shows 
this sequence for a simple single-device FSSD. 

STEP 1 

(Power Loss= 
Catastrophic 
Data Loss) 

STEP2 

STEP3 

FLASH MEMORY ARRAY 

FLASH MEMORY DEVICE 

FAT 

Directory 

User Data 

FLASH MEMORY DEVICE 

c:J 
FLASH MEMORY DEVICE 

Modified FAT 

Modified Directory 

User Data 

SYSTEM RAM 

FAT 

Copied ~ Directory 
Device 0 
to RAM User Data 

Modified FAT 

Modified Directo ry 

User Data 

Figure 9.11: Sector-Level Modification Requires Considerable 
Overhead 
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If you're thinking, "Geez, this must be a long, slow process" ..... YOU'RE 
RIGHT! Remember that flash memory devices typically require one 
second to erase. A modification could constitute more than just a few 
erases for a file fragmented among many flash memory devices. Coming 
from a perspective that disk drives do not need to perform erases, these 
multiple one second erases become very visible in performance to the 
end user. Next you should ask, "What if power goes down during the 
erase process?". All the data temporarily stored in RAM goes away 
forever! However, analogous to the disk-image approach, if the user 
only requires occasional application changes, this flash file system may 
be adequate. Also realize that when performing excessive modifications, 
the flash memory devices in the FSSD experience an unequal amount of 
cycling, especially those containing the FAT and directory structures. 

This type of flash device driver may function best using some of the 
smaller-sectored flash memory devices, such as Toshiba's NAND 
devices. 

Full-Featured Disk-Drive Emulators 

The example FSSDs we have seen up to this point have had very 
minimal functionality. Some of the noteworthy enhancements exhibited 
by real disk-drive emulators include: 

• Virtually unlimited read and write capability 
• Reclamation of memory space containing deleted files 
• Compatible with all disk-related system commands 

Today, several full-featured DDEs can be obtained from companies like 
M-Systems (True Flash File System, TFFS) and SCM. The file systems 
(e.g., FAT file system) supporting these drives access the DDE using all 
the standard mechanisms (disk interrupts and DOS function calls). When 
these file systems initialize, they install the disk interrupt filters we've 
discussed (just like the primitive flash file systems had to). Although 
these DDEs utilize a DOS FAT format and manage the media in terms of 
sectors, they differ considerably from the methods described earlier 
because they incorporate a logical (rather than physical) sector 
addressing scheme. This eliminates the dependency on any type of 
"fixed-in-flash" disk-drive data structures and allows the FAT and 
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directories to move around. This means that the FAT, directory and user 
files can be modified simply by relocating them to free flash memory. 

BLOCK 0 FILE ALLOCATION TABLE 

Sector 1 XXX 

Sector 2 XXX 

Sector 3 XXX 

.. Sector 4 ~ DEL 

.. . Sector5 ~ DEL 

Sector 6 XXX 

Sector 7 ~ DEL 

XXX 

DEL 

Sectorn ~~--------~ 
~--S~e-ct~or~n~+-1-··--·~ I~ ____ ~x~x~x~ ___ ~ 

Sector n+2 . XXX 

Sector n+3 

BLOCK 1 

Sector n+4 

Sector n+5 

Sector n+6 

Sector n+7 

Sector m-1 

Sector m 

o Each block is an erasable flash unit. 

XXX Indicates Valid File 
DEL Indicates Deleted File 

2 

3 

4 

5 

6 

7 

8 

9 

m-1 

m 

o Fat entries point to physical location of a sector within a specific flash memory block. 
o Full-featured DDEs can remove 'dirty' space occupied by deleted files. 

Figure 9.12: One-to-One Correspondence Between FAT Entries and 
Sectors 
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Virtual Addressing 

Let's look at what virtual addressing does for file management. First, 
think about the following important points with respect to the earlier 
disk-drive emulators (Figure 9.12); 

a. Each formatted sector on the flash media maps with a physical 
address (or absolute index) to its associated FAT entry; and 

b. The one-way write limitation of flash memory results in the 
development of "dirty" sectors (and ultimately dirty blocks) 
when deleting files. 

The most notable enhancement of a full-featured DDE lies in its ability 
to remove the dirty sectors (containing deleted files) and therefore, 
reclaim the previously unusable memory space. To do this without user 
intervention or infringing on system memory, the file system 
manipulates the sectors completely within the drive. As an example of 
this capability, assume the flash memory media is originally depicted as 
shown in Figure 9.12. Basically, this represents the erasable blocks of 
flash memory in a DDE containing a mixture of valid and deleted 
sectors. Without knowing any better, one could say that this scenario 
doesn't look any different than the other designs we've discussed so far. 
But we said that these flash file systems perform dirty space 
reclamation, and that changes the story. Can you guess how it might 
work? 

Spare Blocks 

To proceed, we must introduce the concept of a spare block(s). As seen 
from Figure 9.13, we've added an extra block to the flash memory array 
of Figure 9.12. This block of free flash memory will be used for the 
transfer of the valid file data still remaining in the dirty blocks. This so
called spare block eliminates the need for using system RAM during the 
removal of dirty sectors (a process referred to as clean-up). 

Clean-Up 

Clean-up is fundamentally very simple. When the user writes a file to 
the DDE, DOS requests sectors to accommodate the file. Continuing on 
with the example above (Figure 9.13), also assume that the file to be 
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Figure 9.13: Three-Step Cleanup Operation: Copy, Erase, 
and Block Renumbering 
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written ultimately occupies two sectors. However, assume that there are 
not enough clean sectors available. Also notice the assignment of a 
logical sequence number to each block. The flash file system executes 
the following steps to free up the necessary sectors: 

1. Copy the valid data contents (and sometimes the garbage 
sectors) of all the sectors to the corresponding sector spaces 
within the spare block. Any deleted sectors had been previously 
marked as dirty so they may not be copied (this depends on the 
capability of the DDE). 

2. Erase the dirty block. It becomes the new spare block. 
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3. Renumber the previously spare block so that it reflects the 
number of the ex-dirty block. 

Some disk emulators may do exactly what the operating system tells it to 
do. For example, if DOS only requested the use of five sectors, the 
remaining dirty sectors may have gone along for the ride. In other words, 
DOS does not know that the dirty sectors not needed for the file transfer 
even exist. These are dealt with at the device driver level. Remember, 
DOS normally deals with a disk drive; on disk drives, the concept of a 
dirty sector doesn't exist. 

Clean-Up Efficiency 

With respect to the clean-up operation, we should now discuss the 
subject of clean-up efficiency. From an efficiency standpoint, it is a 
waste of write operations to copy dirty sectors to a clean block. 
Ultimately, this also causes an increase in the number of erases that 
occur. On a drive that contains a high percentage of dirty sectors (i.e., 
not many valid files), this results in an inefficient use of battery energy 
and an unnecessary degradation in performance. 

On the other hand, a drive with a high percentage of valid files may still 
have to move around lots of sectors, but these moves can be minimized 
by reducing the fragmentation of the valid files. This can be 
accomplished on a freshly formatted drive by storing all permanent files 
(rarely-updated application software, for example) first. Then most of 
the sector manipulation will occur within a few blocks, as opposed to 
scattered amongst many. To explain the latter condition, refer back to 
Figure 9.12. The sector holes, unless eventually filled up with permanent 
data, will always require the unnecessary movement of valid sectors. 
Besides using the method of "premeditated" permanent file storage, a 
type of defragmenting utility may be written (Figure 9.14). This utility 
can be periodically run to condense the valid sectors into fewer blocks. 
(Clean-up efficiency will be discussed in more detail later). 

Modify the FAT and Root Directory 

Before leaving this discussion on full-featured DDEs, it is also worth 
elaborating on the process of FAT and root directory modification. It's 
actually quite simple. Since the FAT and directory occupy their own 
sectors on the drive, they get moved around during clean-up, just like 

APPLE INC. 
EXHIBIT 1011 - PAGE 0272



252 Chapter Nine: Flash Memory File Systems 

any other data sector. As a matter of fact, these their associated sectors 
get rewritten with every file addition, modification, or deletion. Because 
DOS requires that they be located within the first few sectors on a drive, 
they will always reside in logical block number 1. So after cleaning up 
block 1, the old spare block becomes logical block number 1. 
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, Dirty Sector' Permanent Data 
, Dirty Sector Permanent Data 

Permanent Data Cleanup 'Frees' Up Space Permanent Data After Using OefragmentaUon Permanent Data 
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Permanent Data 

Permanent Data Permanent Data Permanent Data 

Permanent Data Permanent Data Permanent Data 

Permanent Data Permanent Data 

Dirty Sector 

Dirty Sector 

Dirty Sector 

Dirty Sector 

Permanent Data Permanent Data 

Permanent Data Permanent Data 

Permanent Data Permanent Data 

Figure 9.14: Defragmentation Utility Concatenates "Permanent Data" 

FLASH OPTIMIZED FSSD'S 
Only Microsoft had a commercially available product for DOS (namely, 
MS-Flash) that can be placed in the "flash optimized" category of file 
systems at the time this chapter was written70. Working closely with 
Intel Corporation, Microsoft developed a unique approach to dealing 
with the large sector size of flash memory. Although MS Flash File 
System allows the FSSD to be compatible with the majority of MS-DOS 
and Windows software applications, its data structures differ 
considerably from those of the traditional mechanical disk drive. 
Furthermore, because it functions as an installable (or alternative) file 
system, MS-Flash has complete capability to actively manage the flash 
memory media. 

70However, other companies are developing flash optimized file systems for alternative operating 
systems. 
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Accessing the Flash-Optimized FSSD 

We discussed earlier how application programs access the FSSD drivers 
for the Disk-Drive Emulators. Contrary to this approach, the alternative 
file system does not utilize a BIOS Parameter Block (BPB), a FAT or 
other disk-drive compatible structures and the typical block device 
driver cannot be used. It could have been possible to develop a driver 
that hooked into INT 21H. Using this approach, every function call 
coming in would have to be watched (and potentially intercepted), 
requiring a considerable amount of overhead. To access MS-Flash, 
Microsoft chose instead to implement a redirector interface. In short, 
redirector interfaces allow alternative file systems to be transparently 
accessible by DOS and Windows programs. MS-Flash can receive calls 
from DOS by using INT 2FH (the Multiplex Interrupt) which provides 
the redirector interface (Figure 9.15). 

During system initialization, the redirector interface "manufactures" a 
DOS drive(s) for the FSSD and provides fictional drive mappings (to 
generate drive letters in lieu of the standard block device method). The 
redirector interface unifies the two file access methods (FCB and file 
handles), so that the file system does not need to know by what method a 
file is being accessed. The work of resolving the drive and directory has 
already been done by the DOS kernel. The redirector operates at a level 
below INT 21H, and the code for !NT 21H takes care of calling INT 
2FH when appropriate. This access method independence saves a lot of 
code and further confirms the desirability of the redirector interface over 
the !NT 21H hook as the means of implementing alternative file 
systems. 

Microsoft's Flash File System Design Criteria 

Microsoft initially entered the flash file system world with a design that 
more closely resembled a WORM (Write-Once-Read-Many) drive than a 
disk drive. Although this non-sectored file system (referred to as FFS1) 
found some usefulness in certain embedded applications, it mostly 
served as a flash memory test vehicle. Despite the fact that it had more 
functionality than any of the early disk-drive emulators (because it 
allowed files and directories to be added and deleted), it did not 
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incorporate a method for reclaiming the dirty space created by the 
deleted files (as you have seen with the full-featured DDEs, this 
capability is needed to recreate the functionality of a disk drive). When 
the media became full using FFS1, the user had to XCOPY the non
deleted files to a backup drive, reformat the WORM, then XCOPY the 
files back (Figure 9.16). 

APPLICATION 

~ 
DOS ChoosesThe Correct Path ~ ,,. Based On Drive Leiter Registration 

File Accesses 

Sector-Level Accesses 
Through Int 21 H 

Functions 
Through Int13H. 
Int 25H Or Int 26H 

I .. 
I Int 2FH. Mulliplex Interrupt I 

~ 
Disk Drive Or 

Disk Drive Emulator ..... 
Device Driver Flash File 

System 
Redirector 

~ 
I Flash File System I 

Figure 9.15: Flash Memory Solid-State Drive Accessing Methods 
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Figure 9.16: Microsoft's First FFS Functioned Like a WORM Drive 

To explain the functionality of MS-Flash, we'll begin by elaborating on 
the design criteria of what a flash-optimized file system needs to be and 
do: 

1. The flash file system must adapt to the erase block size of the 
flash memory devices that the FSSD uses. Erase block sizes 
range from 4 kbytes to 64 kbytes for symmetrically blocked 
devices (such as Intel's 28F008SA) and 32 kbytes to 512 kbytes 
(or the entire component size) for the bulk-erase devices (such 
as Intel's 28F020). Block size independence represents one key 
feature that makes this flash file system different from the 
mechanical disk, which usually deals with 512 byte sectors 
(disk-drive sector size can vary). Later, we'll look at the effects 
of block size on clean-up efficiency. 

2. The flash file system must minimize the need to rewrite any 
fixed areas in the media. After programming a flash memory bit 
to a zero, that bit only becomes a one after erasing the entire 
block (or device). Basically, this functionality provides the 
biggest challenge to designing any type of flash file system. 

3. The flash file system must first erase a block before it can 
reclaim deallocated space (created by deleting a file or 
subdirectory) within a block. Analogous to criteria number 2, a 
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programmed flash memory bit can only be rewritten after 
erasing the entire block. 

4. The flash file system must evenly distribute the erasure of 
blocks within the media. This ensures that the entire media 
cycles at an equal rate. The importance of this topic is discussed 
in the reliability section. 

5. The flash file system must evenly distribute directory and file 
control structures and data in the media. Remember that the 
mechanical disk drive has a centralized FAT and directory 
structure. Without even distriHution, every file or subdirectory 
modification would require an erase and rewrite of the FAT and 
directory blocks69. Not only would this cause unnecessary 
cycling, but it also results in a performance degradation. 

6. The directory and file control structures must not rely on the 
absolute location of related control structures or data within the 
media. This capability allows relocation of the control structures 
( i.e., the boot record) during the cycle-leveling process70• 

Functional Description 

To accommodate design criteria #2, MS-Flash stores all new files and 
directories in a stack-like manner, to sequentially free locations (Figure 
9.17) in the flash memory array. The stack-like file storage serves two 
purposes: 

1. It overcomes flash memory's inability to tum zeros into ones 
without erasing the entire block. This satisfies a functional 
characteristic of flash memory and enables a performance 
increase by not requiring real time flash memory block erasure. 

69Note that the DD& had to rewrite the FAT and directory sectors with every file operation. 
70Earlier we saw this could be done with the full-featured DD&. When they moved the FAT and 
directory sectors, the new block that contained them was always assigned the number 1. 
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2. It partially ensures that the entire media gets used equally, 
because writes are always made to unused sequential locations. 
We'll talk more about cycle-leveling concepts later. 

FREE SPACE 

'NEW' MARKUS.PCX 

DANIELLE.DOC 

JACOB.TXT 

o Modified File Saved To First Free Space. 
'Old' File Marked As Deleted Until Cleanup. 

o Files Are Stored In A 'Stack-Like' Manner, 
Always To Next Available Free Space. This 
Avoids Rewriting Flash Memory Until Cleanup. 

Figure 9.17: Files are Always Written to the Next Available Free Space 

As demonstrated in Figure 9.17, a file modification (by a word 
processor, for example), results in the deletion of the old version after 
writing the new version to the first unused memory address (with the 
save command of the word processor, for example). The mechanical 
disk drive could simply overwrite the original file. In actuality, with an 
FSSD, the so-called deleted file remains intact until the cleaning of the 
block that contains it. 
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Figure 9.18: Linked List Pointers Locate Next File in the Chain 

Linked Lists 

Looking in a little more depth (Figure 9.18), notice that the file system 
stores files with their directory information functionally attached to the 
file itself. This eliminates the dependency on a fixed-location FAT and 
directory which would require modification with every file operation, In 
addition to the basic information that represents a file (Name, Extension, 
Time, Date, and Attributes), the file's attached directory contains, among 
other things, a set of pointers and a status word, The pointers, integral to 
a linked-list scheme, locate the files in lieu of a FAT and centralized 
directory structure. The status word indicates whether the file or 
subdirectory is valid or deleted. In many ways, the linked-list structure 
resembles the FAT of a mechanical drive. However, instead of linking 
the various clusters of a particular file together, the linked lists chain 
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together all the files and subdirectories on the FSSD. The actual 
structure consists of many linked lists, essentially one for every 
subdirectory (Figure 9.19). The pointers within a file's directory point to 
the next file in the link. 

File 2 

File 4 Subdirectory C 

Figure 9.19: Each Subdirectory has Its Own Linked List 

Besides eliminating a fixed FAT and directory, the pointers involved in 
the linked-list scheme also remove the dependency on fixed cluster 
sizes. The pointer values represent physical flash memory addresses, not 
fixed indices as with a FAT. This allows files to be stored more 
efficiently. For example, a ten byte file stored on a mechanical disk (or 
DDE) consumes a whole cluster, whereas that same file only consumes 
ten bytes on this type of FSSD (plus the overhead bytes). 

Clean-Up 

So far, we've described how the file system manages the storage of files 
and directories. However, dealing with deleted files represents the most 
important and complicated aspect of the file system - the part known as 
clean-up. We saw that some primitive file systems performed a type of 
clean-up operation, but at tremendous expense of the host CPU's 
bandwidth and user's time. The ideal file system should be able to 
remove deleted files without any noticeable impact on system 
performance (but, this isn't an ideal world, is it?). Before we get into the 
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implications of that last statement, let's look at how to petform a clean
up operation. 
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Figure 9.20: MS-Flash Peiforms a Three-Step Clean-up Operation 

Figure 9.20 shows a simplified example of an FSSD with a minimal 
number of blocks. These blocks contain a mixture of valid and deleted 
files. Notice that one of the blocks, labeled the spare, is empty. MS
Flash petforms a clean-up operation following these three steps: 

1. Identify the dirtiest block by referring to the records that the file 
system keeps on all allocated and deleted space on the FSSD. 
After removing the deleted files, this once-dirtiest block will 
contain the most free space for accommodating new files. This 
has significant impact on step two of the clean-up operation. 
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2. Copy valid files to the spare block. This step consists of a 
. varying number of byte transfers from one flash memory block 
to another. Obviously, the dirtier the block, the less valid files to 
copy and the more efficient and timely the operation will be. 
The spare block, a required overhead of the file system, 
eliminates the use of system RAM. 

3. Erase the dirty block. Immediately after copying all valid files to 
the spare block, two copies of the same files resides within the 
FSSD. Without going into details, this plays a significant role in 
data integrity if the power should go down in the middle of a 
clean-up operation. At this point, the file system orders the dirty 
block to be erased. Mter the erase completes, this block 
becomes the new spare block ready for its role in the next clean
up operation. Mter erasing the dirty block, the file system 
increments the erase count and stores it in that block for cycle
leveling information. 

Background Clean-up 

Although the clean-up operation seems like a busy activity, the trick is to 
get all this to happen in the background, transparent to the user73 . In 
other words, the user would still perceive full use of the CPU's 
bandwidth; once the background operation was initiated, control would 
return to the application running. The file system has built-in checks to 
periodically search the blocks and look for a certain percentage of 
dirtiness that will trigger a clean-up operation. Obviously, this searching 
function cannot occur continuously because it would result in a 
degradation of system performance. Usually the search occurs after a 
certain number of FSSD accesses. 

The background clean-up mechanism can be implemented in several 
ways. Let's look at the following steps to see the a~ditional functionality 
required beyond the three simple clean-up steps outlined previously: 

73Except for the integrated drive, only MS-Flash can implement background cleanup because it has 
'complete knowledge' of the flash memory array that it manages; it doesn't require the operating 
system to tell it what to do, 
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1. Identify the dirtiest block. 

2. Copy valid files to the spare block. The actual programming 
method employed for this step depends on the specific type of 
flash memory used (the various programming methods were 
discussed in Chapter 7). Regardless of the device used, or 
whether the operation is automated or not, the bytes (or words) 
of data can only be written on~ at a time. Without going into the 
specifics of the write algorithms, individual write operations 
occur in a relatively short time (approximately 10-20 
microseconds). Assuming that even if a write operation were 
automated, it occurs in too shbrt a time period to practically 
return control to the system after the initiation of each operation. 
Therefore, the host CPU must monitor the completion of the 
operation. This means that this step cannot really be a 
background task and again stresses the importance of identifying 
the dirtiest block to obtain the highest clean-up efficiency. 

3. Erase the dirty block. The flash memory devices employing 
automated erase (for example, Intel's 28F008SA) have been 
optimized for this step of the background clean-up. The erase 
operation, once initiated, occurs in approximately one to two 
seconds. During this time, the host CPU does not need to 
monitor the erase progress for automated flash memories; it can 
temporarily return control to the user's application (and wait for 
a transition on the ReadylBusy signal). 

Foreground Clean-Up 

Another circumstance can occur, which we call "on-demand" clean-up, 
where a file write request forces minimally dirty blocks to be cleaned to 
accommodate this file. Typically this would only happen on a relatively 
full FSSD, where all reclaimable space is crucial. Figure 9.21 shows a 
worst-case situation where the FSSD has a few reclaimable bytes 
scattered throughout the array. For this example, every block requires 
cleaning to accommodate the file write request. Obviously, this could 
severely impact system performance. In practice, the situation does not 
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seem to get this bad. Nevertheless, it can be minimized by techniques 
described below in the section on hot and cold file management. 

3KFILES DIRTY 5DK FILES 

DIRTY DIRTY 
8DK FILES 99K FILES 

Before Foreground Cleanup 
75K FILES 

123K FILES DIRTY DIRTY 

45K FILES 28K FILES DIRTY 

" 
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After Foreground Cleanup 

126K FILES 126K FILES 126K FILES 126K FILES 

-Flash Memory Block Size Is 128 KBytes 
-Atlempt to Write 9 KByte File Results In 4 Block Cleanup. 
-Cleanup Concatenates Valid Flies Within Each Block. 

Figure 9.21: Worst-Case Foreground "On Demand" Cleanup 

Implementing Cycle Leveling 

Back in Chapter 3, we discussed the cycling characteristics of flash 
memory devices. However, intelligent media management with MS
Flash allows it to deliver very low failure rates. To achieve the highest 
possible performance and longest flash media life, the file system must 
cycle all erase blocks at an equal rate (also known as "wear-leveling"). 

From the example that follows, it should be very easy to see that without 
an intelligent cycle-leveling mechanism, serious hot spots would 
develop in the media: 

A. Assume files stored as depicted in Figure 9.22. 
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B. The first two blocks contain non-changing files (perhaps 
applications). The dirty detect algorithm will always find these 
two blocks very clean and stable. 

C. Block 3 contains a splattering of stable files and a few deleted 
files. Sequence 2 in Figure 9.22 shows what happens after clean
up. 

D. In sequence 3, the user had previously stored and then deleted a 
file within the available free space. What happens on the next 
clean-up? 
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It looks like blocks 3 and 4 are playing a game of ping-pong. But, the 
cycle leveling algorithm, who has been watching this game, finally says, 
"All right, this has been going on long enough!". "Long enough" in this 
case refers to a large enough cycling delta between the four blocks in the 
picture; pick 1,000 as a nice round number. Sequence 5 shows what 
happens next. Block 1 becomes the new spare block. It undergoes 
cycling until the next time the appropriate cycling delta between the 
blocks is reached. 

FLASH FILE SYSTEM EVALUATION 
Developing a sufficient evaluation of a flash file system requires careful 
scrutiny. Although you must work out your own personalized test details 
and file system requirements, we have provided a basic list of things to 
consider. The tests are divided into categories consisting of 
performance, power consumption, reliability, and system-level issues. 

Performance - File Transfer Rate 

The end-user inevitably asks the fundamental question: "How fast is it?" 
Publicly-available benchmark programs, designed to test mechanical 
disk-drive performance, can be used for various types of read and write 
tests. Because these benchmark programs specifically target disk drives, 
most have been designed to function at the sector level and only operate 
on the DDEs. These benchmark programs will not be compatible with 
the file level functionality of Interrupt 21H used by MS-Flash. 
Furthermore, they're unaware of (and therefore, do not stress) the unique 
characteristics of any flash file system, such as the need to perform 
clean-up operations. 

Benchmarking at the File Level 

Benchmark programs can be written which use the INT 21H functions, 
thereby working with all types of FSSDs, including those with a 
redirector interface. The Appendix lists code providing a rudimentary 
example in which a specified file(s) is copied from a source (be it a hard 
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disk, RAM drive, or even another FSSD) to the FSSD being 
benchmarked. A simple timer routine calculates the time for the 
operation. Beware that this does not eliminate any system overhead or 
timer inaccuracies. 

From a read standpoint, most FSSDs perform at RAM-disk speeds. 
Therefore, most benchmarking efforts should be focused on write 
performance (except for the minimally functional FSSDs we discussed 
earlier). Referring back to the 80/20 model of disk-drive accessing, you 
may want to consider averaging out the read and write times to provide 
an overall performance indicator. 

The file write transfer rate for a given FSSD will be condition 
dependent: 

• A clean FSSD (no files) yields the fastest file write transfer rate. 
Under these conditions, the FSSD theoretically delivers file 
write rates equivalent to a disk drive. Most people find this 
surprising because flash memory actually has a much slower 
write transfer rate than the disk drive. However, rotational 
latency, seek time and system overhead limit the disk drive 
except when these factors average out with files exceeding 
approximately 100 kbytes. 

• A dirty FSSD results in a noticeable decrease in performance 
due to the necessity to do clean-up in order to accommodate 
additional files. We referred to this earlier as "on-demand" 
clean-up. 

Before running a benchmark program, precondition the FSSD so that 
these various situations can be properly studied. Obviously, it's up to 
you to determine the exact level of dirtiness an FSSD should be to 
provide a generalized evaluation. A good technique is to fill the entire 
FSSD with randomly sized files (ranging from 5 kbytes to 200 kbytes). 
Now delete files here and there so your FSSD's file arrangement looks 
like that depicted in Figure 9.21 and you've regained approximately 15% 
of the capacity. Remember, deleting files does not cause a clean-up, so 
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the FSSD will contain a bunch of dirty blocks. The next file copy 
requires a clean-up before it can be written. You can repeat this 
procedure using various file sizes, causing more or less blocks to be 
cleaned. Again, consider an overall performance indicator because in 
reality, file copies will not always require a clean-up operation to 
accommodate a file. 

Performance - Clean-Up Efficiency 

Clean-up efficiency affects performance, power consumption, and 
cycling of the FSSD. Let's reiterate what clean-up efficiency means. To 
explain this, first recall the clean-up steps: 

1. Copy valid file data (and potentially some dirty data, in the case 
of the DDEs) from the dirty block to the spare block. 

2. Erase the dirty block. 

Step number 1 implies that the fewer valid bytes (i.e., the dirtier the 
block) to copy, the faster this operation occurs. This also translates to a 
secondary (but important) benefit - power savings. An FSSD performing 
on-demand clean-up has no control over clean-up efficiency because the 
algorithm simply looks for the dirtiest block to clean-up. On an FSSD 
that is relatively full of valid data, the dirty space may be just a few 
bytes. Clean-up efficiency becomes important during background clean
up operations, where the algorithm decides how dirty a block should be 
before it kicks off a clean-up. If the dirtiness is too low, decreased 
performance, increased power consumption and increased cycling will 
result. In this situation, the background clean-up operation can 
noticeably steal CPU bandwidth away from the user's application. 
However, a very high dirtiness requires more on-demand clean-ups. In 
writing or evaluating a flash file system that can perform background 
clean-up, you must really have an appreciation and understanding of this 
fine balance. 

You can work through the math to determine the "visible" time spent 
during the background clean-up steps. Depending on many factors, 
including the number of bytes to copy, the type of flash memory devices 
and the CPU speed, this time can range from a few microseconds to 
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several seconds. Flash memory erase block size plays an important role 
in determining overall cycling efficiency. The smaller the block size, the 
more blocks that must be erased to reclaim an adequate amount of free 
space. The larger the block size, the more valid file data that potentially 
has to be copied to the spare block during the clean-up. 

Performance - Hot and Cold File Management 

The user will probably store both permanent (cold) application programs 
and temporary (hot) data files on the FSSD. Executable files or 
application programs fall into the category of permanent files, as they 
rarely change. User files created with the application programs may be 
frequently updated, classifying them as temporary. These files will 
probably be randomly arranged throughout the FSSD. Now, assume that 
some of the data files are deleted creating dirty holes amidst the 
application programs. A clean-up operation transfers the application 
programs to the spare block, but eventually that block contains dirty 
holes too. The non-changing application programs are getting bounced 
around needlessly. This wastes block-erase cycles and decreases 
efficiency. In an ideal situation, the algorithm will eventually sort out 
the hot and cold files. You could also consider writing a utility to allow 
the end-user to perform this sorting task periodically. The hottest files 
would then be located within the dirtiest blocks. Since the hot file 
activity would then be happening within the most efficient blocks (i.e., 
the dirtiest), the overall cycling efficiency will be highest. The algorithm 
that separates the hot and cold files could be designed to look at file 
creation dates to determine its relative warmth. Therefore the files could 
be stored in approximate order of age. 

Reliability - Cycle Leveling 

You may recall the ping-pong game that occurred during the clean-up 
operations. If it weren't for cycle-leveling stepping in, those blocks 
would have aged much quicker than the remaining blocks in the FSSD. 
Without further discussion, we must conclude that for the typical FSSD 
application replacing the mechanical disk drive, cycle leveling should be 
considered a very important feature. The lack of cycle leveling will 
dramatically affect the mean-time-to-failure (MTTF) of the FSSD. 
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It can be shown that based on cycling performance alone, the MTTF of 
an FSSD running an intelligent algorithm (includes cycle-leveling) such 
as Microsoft's Flash File System, will exceed one million hours. To 
demonstrate this assume the following simplified situation74: 

• A clean 20 Megabyte FSSD uses ten pairs of Intel's 28F008SA 
devices. 

• Each erase block equals 128 kbytes and can be cycled 100,000 
times. 

• A 20 kbyte file is copied to FSSD every five minutes, 24 hours a 
day. This equates to writing about 5.7 megabytes every day. 

• Each block gets cycled once for every 1000 file copies (20 
Meg/20K = 1000). 

(1000 files/cycle) (5 minutes/file) (1 hourl60 minutes) (100,000 
cycles) = 8 million hours75 . 

Believable? Plug in your own numbers! 

In reality, other factors will reduce the MTTF. For starters, this example 
showed a perfect situation for cycling efficiency; in reality, the 
efficiency will range from about 50-95%. This means that more cycles 
will occur to accommodate the same amount of files from the example 
above. Other non-cycling related components will also reduce the 
MTTF. These include things like failures of other devices within the 
FSSD. 

Reliability - Failure Recovery Modes 

1. How does the file system respond to unsuccessful byte writes, or 
worse yet, to an entire block of flash memory going bad? Keep 
in mind that as reliable as the flash memory media may be, the 
possibility exists that a write or erase operation will fail for one 
reason or another. The file system should be capable of handling 
these types of failures without a catastrophe. For example, it 

74Chapter 3 contains a similar evaluation. 
75Notice that this greatly exceeds the average user's life expectancy. 
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may use the spare block to replace the bad block. Although this 
may render the FSSD incapable of performing subsequent clean
ups, at least the data can still be read and recovered. Most of the 
full-featured DDEs and MS-Flash possess varying degrees of 
failure recovery capabilities. 

2. Since flash memory does not make audible noise like the 
mechanical disk, it could be difficult for the user to detect an 
operation in progress. The user may turn off power or remove 
the memory card during a critical event, such as clean-up or 
storing a file. You should understand the flash file system and 
confirm that the algorithms handle all possible events. 

System Level Issues - File System Overhead 

Whatever the type of flash file system, there will be varying amounts of 
data structures stored on the flash memory in addition to the user's data. 
This should not be a big concern, but the amount should not be 
excessive; typical numbers range between 2 kbytes and 200 kbytes, 
depending on the density of the FSSD (these numbers exclude spare 
blocks). 

A file system, being a device driver, also uses some of the system's 
RAM. The amount of RAM required may not be important (again, as 
long as it's not excessive) if the device driver can be loaded high or if it 
runs in a protected mode environment. 

System Level Issues - Ease of Use 

How easily does it install? We've already discussed this subject in 
regards to built-in or installable device drivers. Almost all prominent 
BIOS vendors have been working on the solutions that will allow simple 
installation of the flash file systems74. Specifications like ExCA strive to 
turn all file systems into "plug-n-play" device drivers. In the next 
chapter, we'll take a look at how flash file systems fit into the overall 
PCMCIA and ExCA software solution. The key result to look for is 
simplicity - for a system integrator and for the end-user. 

74Refer to the Appendix for a list of BIOS vendors developing PCMCIA software. 
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SUMMARY 
A Flash Memory Solid State Drive provides the highest level of 
integration for flash memory devices. Although the hardware itself can 
be quite simple, the software required to deliver the functionality of the 
mechanical disk drive provides a challenge. even to the most experienced 
software designer. This chapter was written to allow you to become 
familiar with the possible implementations of flash file systems and 
perhaps even tempt you to write your own. 

Ultimately, whatever approach you select, you must ask some final 
questions: 

./ Does this product provide complete Windows and DOS 
compatibility (or compatibility with whatever operating system you are 
using)? Is this needed? 

./ Does the flash file system meet or exceed the requirements of 
your application? 

./ What are the end-user's perceptions? 
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INTRODUCTION 
In this chapter we'll be discussing the various pieces of software 
associated with integrating a flash file system into a host computer 
system. Chances are, when you hear the term "glue-logic" you think of 
hardware. The hardware glue-logic connects the major pieces of a 
system together (Figure 10.1). In Chapter 8 we saw that a few buffers 
and transceivers provided the glue-logic between the PCMCIA
compatible flash memory card and the card's interface controller (Intel's 
82365SL, for example). Similarly, in the software environment of a flash 
file system, glue-logic connects the file system to the operating system 
on one end, and the flash memory card and socket adapter hardware on 
the other. Glue-logic software isolates a generic file system from a 
computer system's specific implementation. 

Implementing the software glue-logic is not as simple as it may seem 
from this high-level view. In an ideal situation, a single file system can 
be used interchangeably in a variety of different machines. To do this, 
the file system must use standardized interfaces (i.e., glue-logic). When 
you buy a DOS-compatible (or Windows) application, you probably 

. don't question whether it works on a i386 or i486 system or, for that 
matter, a Dell™, CompaqTM or NCRTM machine. Thanks to MS-DOS and 
the PC-AT specification that exists to ensure this level of 
standardization, common software runs on widely divergent hardware 
without (or with little) problems. 
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Figure 10.1: Glue Logic Holds Together the Major System Pieces 

A similar situation exists within the realm of flash file systems. 
Specifically, the glue-logic that links the flash file system to the other 
system elements must adhere to some type of specification in order to 
achieve independence and compatibility. 

THE AREAS OF SOFTWARE COMPATIBILITY 
Three major software components must be comprehended for 
implementing a flash file system design. Later, it will become obvious 
how the glue-logic ties them together: 

1. Flash File System - As discussed in Chapter 9, flash file systems 
come as two basic implementations: as a disk drive emulator or 
as a redirected file system. A flash memory card formatted for a 
particular file system will not be recognized in a system running 
an alternative file system, even if they belong to the disk
emulator variety, for example. This fundamental issue can only 
be resolved by defining a media format specification that the 
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entire industry willingly (or unwillingly) adopts. Such 
specifications are currently being discussed in PCMCIA, and 
sooner or later standardization will be a reality. Microsoft has 
been contributing to this standardization by publicizing their 
flash file system's data structures for adoption by other flash file 
systems, or even by other OIS implementations of the Microsoft 
Flash File System. A common file structure format will 
eventually allow multi-platform and multi-OS inter-operability. 

2. Host System Hardware - Chapter 8 described multiple ways of 
designing the system hardware to accommodate IC cards for 
PCMCIA compatibility. At the system level, these cards may be 
accessed through memory windows or through any number of 
I/O ports. Each of these access methods has unlimited ways of 
designing the interface to the socket. Your system may be using 
one of the PCMCIA-controller chips or even custom discrete 
logic for the interface circuitry on its socket adapter. 

In some situations, an OEM may even have several different 
computer products, each with different socket adapter hardware. 
Without a standardized software interface, the overabundance of 
possibilities makes it impossible to write just one flash file 
system. The ideal situation would be to take the exact same flash 
file system software and have it operate across the entire product 
line. This chapter discusses Socket Services, an integral part of a 
system's BIOS, that makes this possible. In other words, it 
provides the interface between the common flash file system and 
the specifics of a host adapter's implementation. Socket Services 
manages everything from voltage control for Vpp to selecting 
the memory offset within the flash memory array. 

Card Services, on the other hand, resides on the other side of the 
interface. It dynamically allocates host system resources for the 
installed PC card. For example, before installing a flash memory 
card, the system does not need to keep its memory space 
available for the socket adapter. Upon detecting a flash memory 
card installation, the flash file system asks Card Services for 
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allocation of a percentage of the host's memory map. If 
available, Card Services uses Socket Services to enable a 
window at the designated address. 

HOST SYSTEM 
and 

PCMCIA 
Compatible 

Socket 
Adapter 

Figure 10.2: Many Types of PCMC/A-Compatible Cards can 
Operate in the Same Socket 

3. Flash Memory Cards - For the moment, assume that we could 
have one flash file system format and a standard host system 
interface. This would take care of the software glue-logic issues 
discussed in the two preceding paragraphs. But, how would we 
handle different flash memory cards? Cards from Intel, AMD, 
Toshiba, Mitsubishi, and Epson (to name but a few) all have 
slightly different internal register structures, and even entirely 
different flash memory components within them (Figure 10.2) 
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with different command interfaces, software algorithms, etc. 
What about the RAM cards, ROM cards, fax cards and modem 
cards that all fit into the same socket? A specification must be in 
place that allows recognition of the plethora of different cards. 
This chapter discusses the PCMCIA Card Information Structure 
(CIS) that provides this capability. After determining the flash 
memory card type, the correct flash memory algorithms must be 
employed. We will also describe the Memory Technology 
Driver (MTD), or flash card drivers, that serve this purpose. 

THE PCMCIA-EXCA RELATIONSHIP 
PCMCIA is represented by a consortium of companies that include 
computer OEMs, PC Card vendors, BIOS vendors and socket 
manufacturers. Originally, PCMCIA had several basic goals: 

• Define the mechanical dimensions of the PC Card77 

• Define the characteristics of the 68-pin electrical interface 
• Define the elements of the Card Information Structure 

A need soon became apparent for some sort of software interface for PC 
Card sockets. This led to the development and inclusion of Socket 
Services. It also became evident that the PCMCIA specification did not 
provide any system-level implementation details. So, a PCMCIA
compatible computer today guarantees only that a PCMCIA-compatible 
card can mechanically fit in the socket. Figure 10.3 represents PCMCIA 
as a general, three-dimensional specification covering processors, 
system architectures, and operating systems. This situation may not 
represent a problem for computer systems based on proprietary or closed 
architectures. But in the widespread PC market, standardization is 
critical. The 'Exchangeable Card Architecture' (ExCA) specification 
resolves these issues by providing implementation details of PCMCIA 
2.0 for PC platforms78. ExCA was originated by Intel, but several groups 
have been pushing to incorporate it directly into PCMCIA79. In brief, 

77The Appendix contains the measurements of Type I, Type II and Type III. 
78To date, there have not been any analogous standards in place for other architectures. 
79It will probably even have a different name. 
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ExCA compliance guarantees a minimum set of host system hardware 
and software interfaces that card, system, and software designers can 
rely on for basic compatibility (Figure lOA and Table 10.1). 
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Figure 10.3: PCMCIA Provides a General, Three-Dimensional 
Specification Covering Processors, System Architectures, and Operating 
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Figure 10.4: ExCA Provides a Specific Implementation of PCMCIA 
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PCMCIA ExCA 
* Card and Socket Mechanical Form * Socket Hardware Specific to the PC 

Factors Architecture (IROs, Memory Windows, I/O 
* Card and Socket Electrical Signals Ports) 
* Card Metaformat (Le. CIS) * Socket Services Specific to the PC BIOS 

* Generic Card and Socket Services * Card Services Specific to DOSlWindows 

Table 10.1: PCMCIA and ExCA Relationship 

FLASH FILE SYSTEM MODELS 

The Original Flash File System Model 

The simplest but least flexible system model to accommodate is the 
"one-computer, one flash memory card type" design. In this model, the 
monolithic file system contains all essential pieces. In another approach, 
depicted in Figure 10.5, this single piece could be split into two pieces: 
the core file system and a low-level driver that interfaces to the 
hardware8o• Regardless, running either of these in a different computer 
system or even using a different type of flash memory card requires 
modifications to the file system software. This model best fits in an 
embedded application where the manufacturer has complete control of 
the operating environment - the flash memory cards and the system don't 
change. 

Modularizing the Flash File System Model 

At the other extreme (of the Monolithic Flash File System Model), a 
flash file system can be split into several functional pieces. Using 
Microsoft's Flash File System as an example, you can see that a 
complete implementation actually consists of five modules (Figure 
10.6). 

1. MS-FLASH.SYS - The installable file system and redirector. As 
described in Chapter 9, this piece manages the media and 
translates commands between the operating system and the file 
system. 

80This was the original model of Microsoft's Flash File System. 
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Figure 10.5: The Non-Modular Flash File System Lacked Flexibility 

2. CARDDRV.EXE - A memory card client device driver that 
interfaces to the flash file system. Originally, this piece had to 
be written by the OEM81. However, if your design implements 
the complete PCMCIA software model, CARDDRV.EXE can 
be obtained, along with Socket Services and Card Services from 
most major BIOS vendors (see Appendix for a list). 

3. Card Services - Provides five functional categories: Client 
Services, Resource Management, Client Utilities, Bulk Memory 
Services, and Advanced Client Services. It allows a system to 
maintain a virtual socket that can be dynamically reconfigured 
to work with memory cards and I/O cards. 

81sample CARDDRV.EXE source code is included in Microsoft's Flash File System OEM 
Adaptation Kit. 
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Figure 10.6: Complete and Flexible 1mplementation of a Flash File 
System Consists of Five Modules 

4. Memory Technology Driver (MTD) - Handles all flash memory 
program/erase algorithms and specific functions associated with 
each flash memory card. 

5. Socket Services - Provides a standardized interface to the socket 
hardware. The following sections on Socket Services aim to 
accommodate the writer as well as the user. 

Although we've painted a rather "flash memory-centric" (and Intel 
microprocessor architecture-centric) picture, some of these modules can 
be expanded to include support for the other types of IC cards 
(collectively referred to as PC Cards). In particular, Socket Services 
(unofficially abbreviated S2) and Card Services are integral to the 
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PCMCIA 2.01 specification that supports memory and I/O cards. So 
from this point on, we'll expand this discussion, whenever appropriate, 
to include PCMCIA-compatible cards in general. 

What's Really Necessary? 

The exact nature of the software pieces described earlier mayor may not 
coincide with the software model required for your hardware or 
operating system environment. Other flash file systems may take a 
simpler approach from a construction standpoint (although all have 
begun adapting to the PCMCIA model), but they lack the flexibility of 
the totally modularized model. The pieces of the software hierarchy that 
you decide to implement depend on the degree of flexibility required in 
your design. At the very least, Socket Services should be implemented to 
isolate the flash file system from the system's hardware. Additionally, 
you should consider some form of distinct upgradeable memory card 
driver to be able to handle future generations of flash memory cards. 

SOCKET SERVICES 
The concept of a S2 first appeared within the PCMCIA specification 
with version 1.0 (August, 1991) and was intended for Real Mode 
applications only. During the development of Card Services, it became 
obvious that S2 must have its applications program interface (API) 
modified to accommodate protected mode applications as well, leading 
to the next release, Version 2.0 (November, 1992). Some of the other 
differences between the two versions include: 

• The socket base changed from 1 to O. 

• In version 1.0, a client's request for a buffer (e.g,. Window 
Characteristics Table) was handled by S2 passing back a pointer 
to a location within itself. To accommodate the protected mode, 
an S2 implementation now passes back the buffer contents in a 
client supplied buffer. 

The status change interrupt used to go to S2, which then had to 
perform a callback to the appropriate client. This approach 
doesn't work in protected mode, so now the status change 
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interrupt goes directly to the client of S2 (e.g., Card Services) 
This allows the client to take the interrupt in either real or 
protected mode without having to shift back and forth. 

Defining the Adapter Hardware 

Before beginning a software-oriented discussion on the hardware
dependent S2 software, it may be helpful for you to review some of the 
basic hardware design concepts from Chapter 8. While reviewing, think 
about how to use software to manipulate the hardware that controls and 
monitors a socket adapter's functions. In particular, the examples in the 
following discussion on S2 will be based on Intel's 82365SL (PC Card 
Interface Controller, PCIC) because, at this time, it represents the most 
popular type of PC Card interface controller82 and provides the 
compatibility reference for most other controllers now available. Even 
more important is this device's capability to handle most of the functions 
that you'll probably ever need for interfacing to a PC Card. From the 
concepts presented here, you should be able to extract enough 
understanding to write a S2 for any socket adapter implementation in any 
operating system environment. 

The PCIC's control and status functions are software-accessible using an 
indirect indexing scheme through two built-in 110 addresses. These 110 
addresses allow read/write access to the PCIC's index and data registers. 
By default, the index and data registers are accessed at 110 addresses 
3EOH and 3E1H. In order to read or write to the registers within the 
PCIC, the index register must first be written with a valid index (Figure 
10.7). This is analogous to picking the right key for unlocking a door. 
This indexing method makes it possible to use only two system 110 
addresses to access up to 64 individual data registers per socket, within 
the PCIC. While going through the following discussion, refer to the 
complete list of registers in the Appendix. Let's take a quick look at an 
example of reading the PCIC's Interface Status Register (located at index 
OH and 40H for socket A and B, respectively). 

82Vadem's VG-465, Cirrus Logic's CL-PD6710, and Databook's DB86082 have similar 
functionality. See the Appendix for more details. 
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Figure 10.7: Use an Index and Data Register Combination to Access 
the PCIC's Internal Registers 

Reading Socket A's (or B's) Interface Status Register 

MOV AL, INTERFACE_STATUS 
MOV OX, INDEX_REG 
ADD AL, Base 
OUT DX,AL 
MOV OX, DATA_REG 
IN AL, OX 

Accessing Socket Services 

; The'lnterface Status Register has an offset of 1. 
; The Index Register Is I/O port 3EOH. 
; The base of socket A is 0; for B it is 40H. 
; Sets up the access. 
; The Data Register is I/O port 3E1 H. 
; Read from Interface Status Register. 

The S2 specification embodied in PCMCIA provides a list of hardware
dependent functions that control the various pieces of a host system's 
socket and associated adapter. The specification views each of its 
functions as a black box. It gives explicit details of the parameters that 
go in and out of the functions, but what actually happens within the 
function itself depends entirely on the socket and adapter hardware 
implementation (Figure 10.8). This approach is analogous to the 
relationship between device drivers in the BIOS and the applications that 
use them. For example, to utilize the disk drive functions provided by 
the BIOS's Interrupt 13R, one only needs to know the specified registers 
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and parameters that must be passed within them. An application that 
takes advantage of any of these low-level functions (BIOS and S2 
alike)83 can be assured of software and hardware compatibility, 
minimizing or eliminating the possibility of violating system integrity. 
Using any of these hardware-dependent functions also eliminates the 
need for the same code to be separately incorporated within each 
application that uses the socket adapter. 

PARAMETERS 

IN 

SOCKET SERVICES FUNCTIONS 

Non-Specific Function 

Adapter Functions 

Socket Functions 

Window Functions 

Error Detection And 
Correction Functions 

FUNCTIONS AND 

~ 
RETURN CODES OUT 

a The User Of Socket Service Only Needs To Know 
What Goes In And What Comes Out. 

Figure 10.8: The Functions of Socket Services Act Like a Black-Box 
Where Parameters Go In and Out 

As defined by PCMCIA, S2 functions can be written for any processor or 
operating system environment. From a generic standpoint, use a format 
that resembles a C language function call to request the functions: 

status = Function (argI, arg2 ... ) 

The ExCA version (or PC implementation) of S2 applies specifically to 
the Intel microprocessor platform. To be explicit, a real mode client will 
access the S2 functions through INT lAH, shared by the PC's Time-of
Day services (Figure 10.9)84. Standard access methods do not exist for 
other types of platforms and operating systems. The OEM must invent 
an interface that seems appropriate for a specific platform. This should 

83 Actually, most Socket Services will eventually be integrated into the system's BIOS. 
84The GetfSetSSAddr function sets up protected mode access to S2. 
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not be an issue in proprietary systems because compatibility will 
probably not be a concern and the OEM can essentially use any 
convenient method. 
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Figure 10.9: An Application Uses Interrupt lAH to Access Socket 
Services or the PC's Real-Time Clock 

Installing Socket Services 

In a PC, S2 may be loaded as an installable device driver or from the 
system's BIOS. If installing through CONFIG.SYS, it chains into the 
INT lAR requests ahead of the Time-of-Day Clock, as shown in Figure 
10.10 (refer to GetISetPriorHandler). Loading S2 in this manner allows 
some of the otherwise hard-coded values (such as the number of sockets 
supported and a window's base address) to be varied by using command 
line parameters (i.e., Device-= /parameter). This especially has value 
during code development for testing the same S2 in different systems to 
debug any machine-specific idiosyncrasies. Incorporating S2 directly 
into the BIOS, or installing it during ROM scan, allows its functions to 
be used during system initialization. This is particularly important if the 
socket adapter must be initialized in order to access a PC card containing 
boot information. 
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Figure 10.10: Multiple Socket Services can be Chained Together and 
Accessed Through the Common Entry Point of INT lAH 

THE SOCKET SERVICES FUNCTIONS 
The original S2 specification contained within PCMCIA supported eight 
functional categories. As mentioned earlier, the ExCA version of S2 is 
almost identical to that found in the PCMCIA specification. The most 
notable exception is that ExCA removed the functional group for error 
detection and correction because it was felt that this capability would be 
most suitably performed within the PC Card, transparent to the system 
interface. Table 10.2 lists all the functions supported by PCMCIA and 
ExCA 85. The table lists the functions required by the ExCA 
specification with the corresponding hex values that get placed into the 
[AH] register when calling a particular S2 function86• For a PC 
implementation, all parameters and error codes get passed to and from 
the functions using Intel processor registers to avoid using system 
memory. Alternatively, for a generic implementation (e.g. using a non
Intel processor), memory variables (or CPU registers) could serve the 
same purpose. 

85 Functions not required by ExCA may optionally be supported to obtain the additional 
c~abilities. 
8 Note that specific function values cannot be given for a PCMCIA implementation (non-ExCA) 
because the specification only defines a generic calling convention. 
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FUNCTION QUICK DESCRIPTION ExCA 
VALUE 

GetAdapterCount Returns number 01 adapters 80H 

Non-Specific Reserved 81H 

Functions Reserved 82H 

GetSSlnlo Returns compliance lor S2 implementation supporting 83H 
specllied adapter 

InquireAdapter Returns adapter-specilic inlormation 84H 

Adapter GetAdapter Returns adapter's conliguration 8SH 

Functions SetAdapter Sets adapter's current conliguration 86H 

InquireWindow Returns Inlormation lor window on adapter 87H 

GetWindow Returns window's conliguration 88H 

Window SetWindow Sets wind~w's conliguration 89H 

Functions GetPage Returns page's conliguration within a memory window 8AH 

SetPage Sets a page's conliguration within a memory window 8BH 

Inquire Socket Returns inlormation about socket, such as status 8CH 
chanae Interrunt maskinG 

Socket Functions GetSocket Returns socket's conliguration 8DH 

SetSocket Sets socket's conliguration 8EH 

GetStatus Returns status 01 PC Card and socket 8FH 

Card Functions ResetSocket Resets PC Card 90H 

Reserved by PCMCIA 91H-9CH 

Vendor Specific GetVendorlnlo Returns S2 vendor's inlormation 9DH 

Functions VendorSpecific For proprietary functions AEH 

GeVSetPriorHandler Replaces or obtains real-mode entry point for prior INT 9FH 
lAh handler 

Protect-Mode GeVSetSSAddr Returns entry point to S2 and number of additional AOH 
data seaments required for specified mode 

and Low-Level GetAccessOffsets Returns array of offsets for low-level, adapter-specific, A1H 
ontimized PC Card access routines 

Access Acknowledgelnterrupt Acknowledge status change interrupt and Identify 9EH 
socket causino Interrunt 

GetEDC Returns conliguration of EDC generator NA 

InquireEDC Returns capabilities of EDC generator NA 

Error Detection PauseEDC Pauses EDC generation NA 

and Correction ReadEDC Reads EDC value computed by EDC generator NA 

Functions ResumeEDC Resumes EDC generation on a paused EDC generator NA 

SetEDC Sets conliguration of EDC generator NA 

StartEDC Starts previously conligured EDC generator NA 

StopE DC Stops EDC generation on a configured and computing NA 
EDC oenerator 

Table 10.2: Socket Services Functions 
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Non-Specific Functions 

GetAdapterCount 

During the installation of a client (e.g., flash file system), that client 
must determine the number of adapters and sockets available to it. A 
system may have multiple adapters, each with multiple sockets. To 
obtain this information, a client makes a call to GetAdapterCount. If 
successful, this function returns the total number of socket adapters 
within the system and verifies the existence of a functional S2. ROM 
BIOS INT lAR handlers normally return with [CF] = 1 if S2 is absent87 . 

In many cases, the adapter count will be a fixed number for a specific 
system implementation. This allows the adapter count to be a hard coded 
number within the S2 function. Sometimes, however, an adapter may be 
installed as an after-market add-in to an ISA slot. This special case can 
be handled in one of two ways: 

1. With S2 built into the BIOS, GetAdapterCount must perform an 
I/O port scan in search of a signature on the add-in adapter 
board. Obviously, this implies that the adapter has to support 
this special I/O port feature. For example, a ROM, PLD, or PAL 
can be integrated into a board such that reading from a few 
consecutive I/O port addresses will retrieve a sequence of values 
representing the signature88 . The adapter board designer must 
also ensure that the signature matches the value encoded into the 
S2 function's search (Figure 10.11). 

2. More flexibility can also be obtained by adding in the S2 as an 
after-market product and installing it as a device driver via 
CONFlG.SYS (as opposed to being built into the BIOS). This 
allows the use of a command-line parameter that can be 
configured according to the number of adapters installed. . 

87This was one of the reasons INT lAR was chosen. 
88 A PLD or PAL can also be used for the board's logic. 
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Correct I/O 
Port Addressing 
Allows Retrieval 
Of Signature 

Figure 10.11: Reading a Signature from the Adapter Board to Identify 
Its Presence 

GetAdapterCount 

Entry setup for the PC version of the GetAdapterCount function: 

[AH] = GELADAPTER_COUNT (ExCA calling value = BOH) 
[CX] = 0, ensures CX doesn't contain 'SS' before making the call 

After exiting from GetAdapterCount: 

If [CF] = 1, function was unsuccessful 
Else if 
[CX] = 'SS', load ASCII 'SS' (5353h) to indicate the presence of a valid S2 
Then 
[AL] = Number of Adapters Supported (0-255) 

Refer to GetSSlnfo for determining the adapter count where multiple 
socket services supporting multiple adapters exist within a system. 
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GetSSlnfo 

The S2 specification states that a particular system may support multiple 
S2 implementations. Actually, this situation has a high likelihood in a 
system with multiple adapters, each with differing hardware 
characteristics. An example of this would be found in a system that 
contains both a resident flash array (or RFA) and flash memory cards. 
Removability dipicts the most obvious difference between a memory 
card and an RFA. This difference, among others (including how it 
interfaces into the system memory map), requires different adapter 
support and, therefore, a different S2 to support it. Hiding behind the 
guise of S2, a flash file system doesn't really care whether it's accessing 
flash memory in the form of an RF A or a flash memory card (Figure 
10.12). 

SOCKET 
SERVICES B 

[J 
RFA 

1
000 
DDD 

SOCKET SERVICES A 

Socket 
HW 

I PCMCIA 
Socket 

I PCMCIA 
Socket 

Geiss Info Sequence 

1) Entry: 
[AH) = 83h 
[AL) =0 

Exll: 
[AL)=O 
[BX)= 200H 
[CH)-l 
[CL)=O 

2) Entry: 
[AH) =B3h 
[AL) = 1 

ExIt: 
[ALl =0 
[BX] =200H 
[CHl= 1 
[CLl- 1 

Figure 10.12: Socket Services Isolates the Differences betwel;n a 
Removable Memory Card and Permanently Resident Flash Array 

The GetSSInfo function allows the client to match an adapter with a 
valid S2. Each GetSSInfo call returns the base adapter number and the 
number of adapters supported by the implementation. The next S2 
implementation starts with the next adapter number (not supported by 
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the previous implementation). Using Figure 10.12 as an example, the 
GetAdapterCount function indicates the presence of two adapters89. A 
client in this system would have to call the GetSSlnfo function two 
times, once for each adapter. Just by knowing the adapter count, how 
would you know the. number of S2 implementations? The parameters for 
this function provide the number of adapters supported by a particular S2 
implementation and the first adapter it supports. This information allows 
the determination of the first and last adapter supported by a particular 
implementation. As in the example, if the two adapters were distinctly 
different, two S2 implementations may be required. 

GelSSlnfo 

Entry setup for the PC version of the GetSSlnfo function: 
[AH] = GET _SS_INFO (ExCA calling value = a3H) 
[Al] = Adapter number 

After exiting from GetSSlnfo: 
If [CF] = 1, then [AH] = BAD_ADAPTER 
Else 

[Al] = 0, to insure backwards compatibility with Release 1.0 
[BX] = 200H, binary coded value (BCD) for Release 2.00 
[CH] = Number of adapters supported b~ this S2 
[Cl] = First adapter supported by this S implementation in base 0 format 

Adapter Functions 

InquireAdapter 

Once a client verifies the presence of S2 and supported adapters (using 
GetAdapterCount and GetSSlnfo), that client must determine the number 
of sockets and windows associated with a particular adapter by using the 
InquireAdapter function. In practice, after the client asks the 
InquireAdapter function for the total number of sockets, it passes the 
returned information back to MS-Flash, which in turn passes this 
information back to DOS. When a flash file system installs (or any block 
device driver, for that matter), it asks DOS to reserve drive letters for it. 
In this case, each socket represents one or more potential drives 

89 After initializing all S2 implementations, the adapter count reflects the total number of adapters 
in the system. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0312



The Socket Services Functions 293 

requiring a drive letter (refer to card partitioning with the PCMCIA Data 
Organization Layer in the CIS section). 

SYSTEM MEMORY 
FLASH MEMORY CARD 

Common Memory Plane 

1.--------f-

Memory Window 0 

Memory Window 1 ~ 

~ 

Memory Window 2 

~ 
, , 
, , 

Memory Window 3 , , 
, , 

r---. 

Memory Window 4 

i'--

Attribute Memory Plane 

'" 

Figure 10.13: Five Memory-Mapped Windows/or Flash Memory Card 
Access in an ExCA System 

InquireAdapter also returns the number of system windows available to 
map these sockets. An ExCA-compliant system must support seven 
windows for each socket - five for memory mapping and two for I/O 
mapping. The five memory-mapped windows allow for support of a 
memory card's Attribute Memory Plane (one window) and a paging 
structure (four windows) similar to that required by the LIM-EMS 
specification (Figure 10.13). The two I/O windows allow one to be used 
for an address register and the other for the data register (much the same 
as the interface to the PCIC). 
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InquireAdapter returns information, in tabular form, that describes 
certain adapter characteristics (such as interrupt handling capabilities for 
status changes) and socket power characteristics (such as V CC and VPP 
voltage levels). The Adapter Characteristics and Power Management 
Table contains this information. A specific Adapter Characteristics and 
Power Management Table exists for each adapter in the system. Table 
10.3 shows the format and Figure 10.14 provides an example. Notice 
that the InquireAdapter function only returns the adapter's capabilities -
it has nothing to do with determining an adapter's current configuration 
(refer to the GetAdapter and GetSocket functions). 

InquireAdapter 

Entry setup for the PC version of the InquireAdapter function: 
[AH] = INQUIRE_ADAPTER (ExCA calling value = 84H) 
[AL] = Adapter number 
[ES]:[(E)DI] = Pointer to client supplied buffer for storing the Adapter 

Characteristics and Power Management Tables. 

After exiting from InquireAdapter: 
If [CF] = 1, then [AH] = BAD_ADAPTER 
Else 

[BH] = Number of windows possibly decoded into the system memory map. 
NOTE: Must be 5 times the number of sockets for ExCA·compliance. 

[BL] = Number of sockets (0·255) 
[CX] = Number of error detection and correction generators available on the 

adapter. These are not required for ExCA compliance and can be set 
to zero. 

[ES]:[DI] = Unchanged pointer. Buffer now contains table listed below. 
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Offset DESCRIPTION 

OOH Length of client supplied buffer in bytes, excluding first two words. 

02H Length of data filled by S2, excludinq first two words. If the data length supplied by S2 exceeds 
the client-provided space, the S supplied data will be truncated. While the Adapter 
Characteristics Table has a fixed length, the Power Management Table length can vary. 

ADAPTER CHARACTERISTICS 

OOH Adapter capabilities. Flags indicating whether certain characteristics are controlled at the 
adapter or socket level (zero indicates control at the socket level). 

Bit 0: Indicators (e.g., LEDs) for write-protect, card lock, battery status, busy status, 
and XIP status 
Bit 1: Power-level control for Vee and VPP. If power control is available only at the 
adapter level, the client does not have control at the socket level, even through the 
use of SetSocket. For example, enabling Vpp at one socket will simultaneously 
enable Vpp at other sockets on the same adapter. 
Bit 2: Determines if data bus width can be set separately for each window. A 1 
indicates that all windows on the adapter must have the same width. 

Note: For ExCA-compliance, these bits must be zero (i.e., functioning at the socket level). 

02H Steerable IRO levels for Status Change Interrupt. Each bit corresponds to an IRO level from 0-
15 (where Bit 0 = IROn, Bit 1 = IRO j , and so on). 
NOTE: For ExCA compliance, at least one interrupt level must be specified. See discussion in 
Chapter 8 for more details on Interrupt Steering. 

04H Additional steerable IRO levels for status change interrupt for NMI (Bit 0), 1/0 Check (Bit 1), 
and Bus Error (Bit 2). 

OSH IRO levels inverting status change where each bit corresponds to an IRO level from 0-15 
(where Bit 0 = IROo' Bit 1 = IR01, and so on). 

08H AdditionallRO levels inverting status change for NMI (Bit 0), 1/0 Check (Bit 1), and Bus Error 
(Bit 2). 

OAH IRO levels not inverting status change where each bit corresponds to an IRO level from 0-15 
(where Bit 0 = IROo' Bit 1 = IR01, and so on). 

OCH Additional IRO levels not Inverting status change for NMI (Bit 0), 1/0 Check (Bit 1), and Bus 
Error (Bit 2). 

POWER MANAGEMENT 

OOH Number of power entries to follow, where n = number of entries. 

02H Power entry: 
Bits 0-7 = Binary value representing a DC voltage level in tenth of a volt Increments to a 
maximum of 25.5 volts. A power level of zero indicates a no connect or grounded. For 
example, 5.0 Volts = (50 x 0.1 Volts) corresponds to a value of 32H. 
Bits 8-12 = Reserved and equal to zero. 
Bit 13-15 = Vpp2' Vpp1 and Vcc indicators, respectively, where set = available. 

(2n)H Additional supply & voltage entries (as indicated by number of power entries). 

Table 10.3: Adapter Characteristics and Power Management 
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SOCKET ADAPTER 

&I:ic.I.mI AolIIlli 
lnquireAdapter----. aVails Vee VpP1VpP2 -----JI- SatSocir:ot 

5 Volls Vee VpP1 VpP2 

12 Volts VpP1 VpP2 

FIgura 10.14. 

Figure 10.14: InquireAdapter Returns Information Describing the 
Adapter's Capabilities, such as the Power Characteristics 

By convention, all sockets on an adapter have the same power level 
capabilities. A power entry in the Power Management Table only 
indicates the possible voltage settings on a socket's power pins - it does 
not imply the validity of these voltage combinations. For example, V CC 
may be set to zero and VPP to 12 volts, but this is probably not a valid 
combination. The S2 client has the responsibility of ensuring the validity 
of a particular combination of power levels for the PC card when using 
the SetSocket function. 

Take a look at a specific example of an Adapter Characteristics and 
Power Management Table (Table 10.4) to use for reference and help 
clarify the definitions. 

SetAdapter 

The SetAdapter function handles an adapter's power management and 
controls the status change interrupt routing (i.e., card detect and 
ready/busy). Many systems being built with PCMCIA sockets have 
implemented some form of power management scheme. At the hardware 
level, the system's adapter cap-abilities determine the varying degrees of 
possible power management. This does not reflect power management 
capabilities of the PC card itself. Some socket interface controllers 
provide automatic power savings mechanisms. For example, the PCIC 
automatically enters into a low power state after disabling memory and 
I/O windows, and when sockets become empty. Likewise, Cirrus Logic's 
CL-PD6720, automatically enters a low power mode during periods of 
inactivity. Additionally, PCMCIA socket interface controllers have 
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software programmable modes of power conservation, such as suspend 
mode. 

Offset Value Description 

OOH 0016H Client supplies 22-byte buffer. 

02H 0016H S2 filled buffer with 22 data bytes. 

OOH OOOOH Indicates adapter capability control at the socket level. By restricting the use of 
capabilities to be at either the adapter or the socket level, a client does not have to 
provide two types of controlling routines. 

02H E053H Status changes may be routed to IRQ levels 0, 1,4,6, 13, 14, and 15 as an active 
high signal. This provides a high degree of flexibility in selecting an interrupt level. 

04H OOOOH No additional IRQ levels 

06H OOOOH Status changes are not available on any level as an active low signal 

oaH OOOOH No additional IRQ levels 

OAH ooooH No additional IRQ levels 

OCH OOOOH No additional IRQ levels 

OOH 0003H Number of power entries = 3 

02H EOOOH VCC' VpP1 and VpP2 available as 'No-Connects' 

04H E032H VCC' VpP1 and VpP2 available at 5.0 Volts 

06H 607aH VpP1 and VpP2 available at 12.0 Volts 

Table 10.4: Example Adapter Characteristics and Power Management 

SetAdapter 

Entry setup for the PC version of the SetAdapter function: 
[AH) = SELADAPTER (ExCA calling value = 86H) 
[AL) = Adaptecnumber 
[DH) = Adapter Control 

Bit 0 = Reduce Adapter Power Consumption ('1' = true) 
Bit 1 = Preserve Adapter State ('1' = true) 
Other bits are reserved and must equal O. 

[01) = Status Change Interrupt 
Bits 0-4 = IRQ level, (0 - 15 = IRQ 0-15,16 = NMI, 17 = 1/0 Chk, 18 = 

Bus Error) 
Bit 6 = Enable Inverter (0 = disable, 1 = enable) 
Bit 7 = Enable Status Change Interrupts 
Other bits are reserved and must be O. 

After exiting from SetAdapter: 
If [CF) = 1, then [AH) = BAD_ADAPTER, BAD_ATTRIBUTE, 

BAD_IRQ 
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Two control bits have been defined to handle the power conservation 
capability: 

1. REDUCE ADAPTER POWER CONSUMPTION 

(Adapter _State_Powerdown) - Setting this bit indicates that the 
adapter should attempt to enter a power conservation mode. 
Again, this depends on the adapter's capabilities. If the adapter 
lacks this capability, the function can either ignore the request or 
return a BAD_ATTRIBUTE error. When resetting the adapter 
hardware, or before using the adapter, reset this bit to restore 
full power. 

In addition to being able to control power to the socket, the 
PCIC itself can be powered down using its Global Control 
Register (Figure 10.15). After setting the Power-Down bit and 
disabling all memory windows (see SetWindow) with an inactive 
chip select signal, this device enters its lowest power mode. 

NOTE: ExCA does not require this and the next field (Preserve 
Adapter State). 

2. PRESERVE ADAPTER STATE (Adapter _State_Maintain) - Setting 
this bit indicates that, before the adapter enters its power 
conservation mode, the adapter hardware should maintain all 
adapter and socket configuration information. Devices such as 
the PCIC provide this capability. Clearing this bit indicates that 
the client will handle configuration information. This 
functionality may support different levels of power 
conservation. For example, the adapter hardware may be able to 
enter the lowest power state if it does not have to maintain the 
configuration information (i.e., this requires keeping some 
circuitry powered-up). On the other hand, an adapter rnay be 
unable to support the maintenance of the configuration 
information. In this case, a request to enter the power 
conservation mode, in conjunction with a request for the adapter 
to maintain configuration information, will probably be ignored 
(or reported back as a bad attribute) by the S2 function. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0318



The Socket Services Functions 299 

Alternatively, the S2 function, if requested to maintain 
configuration information, may store it in a RAM data area. This 
should be avoided, if possible, to minimize the system RAM 
usage. 

NOTE: AdaptecState_Powerdown must be set for this control 
bit to be valid. 

82365SL GLOBAL CONTROL REGISTER 

Power Down 

L--___ Level Mode Interrupt Enable 

'------- Explicit Write Back CSC Interrupt 

L---------IRQ14 Pulse Mode Enable 

'----------- Reserved 

L--__________ Reserved 

'------------- Reserved 

'---------------- Reserved 

Figure 10.15: The Global Control Register Powers Down the PCIC 

SetAdapter also sets up the status change interrupt routing. PCMCIA 
does not require a system to implement a status change interrupt (but 
ExCA does), so in some cases, it may not do any good to try and 
configure this interrupt. Your application will determine the adapter 
hardware's capability to support the status change interrupt by using the 
InquireAdapter function (Figure 10.16 points out the difference between 
an adapter interrupt and a socket interrupt). After determining that a 
system doesn't support status change interrupts, the S2 could simply 
ignore any such requests and report back with a success status. On the 
other hand, reporting back as a failure will keep the client from waiting 
for an event that will never happen due to the lack of an interrupt signal 
(i.e., card detect change). 
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Set Adapter 

Interrupt 
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From Socket 

Set Socket 
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Figure 10.16: Distinguishing Between an Adapter Interrupt and a 
Socket Interrupt 

Using the example Adapter Characteristics Table (Table lOA), we see 
that for the imaginary system this table pertains to, it supports status 
change interrupts that may be routed to IRQ 0, 1, 4, 6, 13, 14, and 15. 
On adapters that dJ not have programmable status change level logic, 
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the desired interrupt setup must match the actual hardware or S2 will fail 
the request. A request will also fail if your application tries to set up a 
specific IRQ level not supported by the adapter. 

Three fields have been defined in the SetAdapter function to support the 
programmable status change interrupt: 
1. IRQ_LEVEL - Use the five bits in this field to represent, as a 

binary value, the routing of the status change interrupt. 
2. ENABLEjNVERTER - The status change interrupt is active high 

after setting this bit (referred to as IRQ_mGR by PCMCIA). 
Clearing the bit inverts the interrupt. 

3. ENABLE_SCjNTERRUPTS - After setting this bit, an unmasked 
status change event causes the adapter to generate a hardware 
interrupt at the level specified by IRQLevel. Perform the 
masking at the socket level using the SetSocket function (Figure 
10.17). 

The PCIC and compatible devices control the IRQ level and enabling of 
status change interrupts using the Card Status Change Interrupt 
Configuration Register (Figure 10.18). Table 10.5 shows how to set the 
appropriate bits in this register according to the desired interrupt routing 
(not including reserved bit combinations). The Level Mode Interrupt 
Enable bit in the Global Control Register configures the active state of 
the interrupt (Figure 10.15). 

IRQ BIT IRQ BIT IRQ BIT IRQ BIT INTERRUPT REQUEST 
3 2 1 a LEVEL 

a a a a No Interrupts 
a a 1 1 IRQ3 Selected 
a 1 a a IRQ4 Selected 
a 1 a 1 IRQ5 Selected 
a 1 1 1 IRQ? Selected 
1 a a 1 IRQ9 Selected 
1 a 1 a IRQ1a Selected 
1 a 1 1 IRQ11 Selected 
1 1 a a IRQ12 Selected 
1 1 1 a IRQ14 Selected 
1 1 1 1 IRQ15 Selected 

Table 10.5: Card Status Change Interrupt Steering 

I' 
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Status Change 
Interrupt To System 

Controlled By 
SetAdapter 

Controlleq By SetSocket 

Mask~ 
Control 

Mask 
Control 

Flash 
Memory 

Card 

Flash 
Memory 

Card 

Figure 10.17: Mask Status Change Interrupts at the Socket Level, 
Enabling Them at the Adapter Level 

NOTE: Before using the SetAdapter function, use GetAdapter to 
determine previous configurations. This allows the client to perform a 
read-modify-write when changing the adapter's configurations. 

GetAdapter 

For system integrity, an application should determine the adapter's 
current configuration before making any alterations. Unlike 
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InquireAdapter (returning the adapter's capabilities) GetAdapter returns 
the adapter's current configuration. This function's parameters mirror 
those of the SetAdapter function. 

82365SL CARD STATUS CHANGE INTERRUPT CONFIGURATION REGISTER (READIWRITE) 

Battery Dead Enable/sTSCHG 

~---- Battery Warning Ena~le 

~------ Ready Enable 

L-________ Card Detect Enable 

'---------------IRQ Bit 0 

'--------------- IRQ Bit 1 

L---------------IRQ Bit 2 

'-------------------- IRQ Bit 3 

Figure 10.18: Writing a One to Bits 0-3 Enables the Corresponding 
Status Change to Generate an Interrupt 

GetAdapter 

Entry setup for the PC version of the GetAdapter function: 
[AH) = GET_ADAPTER (ExCA calling value = 85H) 
[AL) = Adapter number 

After exiting from GetAdapter: 
If [CF) = 1, then [AH) = BAD_ADAPTER 
Else 

[DH) = Adapter State (Same bit map as SetAdapter) 
[01) = Status Change Interrupt Routing (Same bit map as SetAdapter) 
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Window Functions 

InquireWindow 

Any access to a PC Card must be through some window into the host 
system memory or 110 space. Windows allow direct access to Attribute 
Memory, Common Memory, or 110 ports. For example, an eXecute-In
Place (XIP) application requires the flash memory card's Common 
Memory to be mapped directly into the system memory space (see 
Figure 10.35). These windows have some generic features, such as size, 
location and their associated sockets: 

• The window's size typically ranges from a single address for an 
110 port to 64 Kbytes of memory space. 

• The location of the window can be anywhere within the access 
space of the host system. 

• Each window may be shared amongst multiple sockets. 

To narrow down the possible variations, the InquireWindow function has 
been designed to return information about the capabilities of a specified 
window on an adapter. 

InquireWindow 

Entry setup for the PC version of the ExCA InqulreWindow function: 
[AH] = INQUIRE_WINDOW (ExCA calling value = 87H) 
[AL] = Adapter number 
[BH] = Window number (use InquireAdapter to obtain the total number of 
windows) 
[ES]:[(E)DI] = Pointer to client-supplied buffer for storing Window Characteristics 
Table. 

After'exitlng from InquireWindow: 
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_WINDOW 
Else 
[BL] = Window Capabilities (1 = true) 

Bit 0 = Common memory plane may be mapped into host system 
memory space 
Bit 1 = Attribute memory plane may be mapped into host system 
memory space 
Bit 2 = I/O ports on card may be mapped Into host system I/O space 
Bit 7 = Window uses PC Card's WAIT signal to generate additional 
wait states 

[CX] = Assignable Socket Bit Map 
[ES]:[(E)DI] = Pointer to buffer containing the Window Characteristics Table 
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Windows support memory and/or 110. After determining a window's 
capabilities (Common Memory, Attribute Memory, or 110), the S2 client 
can determine all the mapping characteristics of that window by 
interpreting the appropriate Window Characteristics Table returned in 
the buffer. To this effect, the Window Characteristics Table may be for 
memory or 110. The tables are similar, with the exception that 110 
windows omit the memory-specific parameters. When a window 
supports both memory and 110, the 110 Characteristics Table will always 
immediately follow the Memory Characteristics Table within the buffer. 

When using PCIC-compatible controllers, a window's capability can be 
determined within this function by using the interface type bits (Table 
10.6) from the Identification and Revision Register (Figure 10.19). Since 
the PCIC supports both memory and 110, these bits will read back as 
"10". Although all PCIC-compatible controllers support both memory 
and 110, this register was incorporated into the device to provide a 
defacto standard for PCMCIA controllers. 

Bit Values (bits 6 and 7) Interface T~e 
00 liD only 
01 Memory only 
10 Memory and liD 
11 Reserved 

Table 10.6: lnteiface identification for PC1C-Compatible Controllers 

• The "assignable socket bit map" means that each bit corresponds 
to a socket number on the adapter that can be mapped into the 
specified window. For example, Bit ° corresponds to Socket 0, 
Bit 1 corresponds to Socket 1, etc. To simplify matters, the bit 
map can be FFFFH for a window that supports all sockets on an 
adapter. 

• Depending on the adapter's design, a window may be assignable 
to more than one socket or dedicated to a particular socket. 

• The window can only be assigned to one socket at a time (i.e., 
multiple sockets must time-share). 

• The size of the assignable socket bit map field limits the number 
of sockets that a window may support. In the parameter settings 
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shown above, the [eX] register limits the number of sockets to 
16. 

82365SL IDENTIFICATION AND REVISION REGISTER (READ ONLY) 

PCIC Revision Bit 0 

L--___ PCIC Revision Bit 1 

~----- PCIC Revision Bit 2 

~------- PCIC Revision Bit 3 

~--------- Reserv!:.d 

~----------- Reserved 

"--------------- PCIC Interface ID Bit 0 

~--------------- PCIC Interface ID Bit 1 

Figure 10.19: Determine the Interface Type from the Identification and 
Revision Register in PCIC-Compatible Controllers 

Definitions of a Window 

You may be wondering how a specific system window can support both memory and 110 
capabilities. This is a good time to look more closely at the definition of a window. Actually, 
the concept of a window has two meanings: 

1. A window provides a method for connecting an area of a host system's memory or 110 
port space to a PC Card's memory or 110 space. When the system sends out an 
address that corresponds to the area designated for the window, the decoding 
hardware selects the PC Card, which then becomes accessible to the system. Aside 
from ~equlring different CPU instructions, the 110 and memory read/write signals 
represent a significant difference between the two types of windows. 

2. A window also defines a label used by S2 for configuring the socket adapter's 
hardware. S2 views a window as an object that it can control. Therefore, a client can 
request S2 to configure a window for memory or 110. 

The definitions above may lead you to believe that S2 can reconfigure a 
window for memory or I/O. However, an adapter will probably not be 
built to change its decoding signals to switch between memory and I/O 
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accesses to the PC Card; this would require complex decoding circuitry. 
For this reason, you will very rarely find a Memory and 110 Window 
Characteristics Table associated with the same window. 

Offset DESCRIPTION 

OOH Length of client supplied buffer in bytes, excluding first two words. 

02H Length of data filled by S2, excluding first two words. If the data length supplied by S2 exceeds 
the space provided by client, the S2 supplied data will be truncated. 

MEMORY WINDOW CHARACTERISTICS 

OOH Memory Window Capabilities (1 = true) 

Bit 0 Programmable Base Address (NOTE: Must be true for ExC,t. compliance) 

Bit 1 Programmable Window Size (NOTE: Must be true for ExCA compliance) 

Bit 2 Window Disable/Enable Supported (NOTE: Must be true for ExCA compliance) 

Bit 3 Eight-Bit Data Bus Supported 

Bit4 Sixteen-Bit Data Bus Supported 

Bit 5 Base Address Alignment On Size Boundary 

Bit6 Power of Two Size Granularity 

Bit7 Card Offset Alignment on Size Boundary 

Bit 8 Paging Hardware Available 

Bit 9 Paging Hardware Shared 

Bit 10 Page Disable/Enable Supported 

Bit11 Software Write-Protect Available 

Other· bits are reserved and equal to zero 

02H Minimum Address/First Byte (4Kbyte blocks) 

04H Maximum Address/Last Byte (4Kbyte blocks) 

06H Minimum Window Size (4Kbyte blocks) 

08H Maximum Window Size (4Kbyte blocks) 

OAH Required Window Size Granularity (4Kbyte blocks) 

OCH Required Base Address Alignment (4Kbyte blocks) 

OEH Required Card Offset Alignment (4Kbyte blocks) 

10H Slowest Access Speed Supported 

11H Fastest Access Speed Supported 

Table 10.7: Memory Window Characteristics 
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Memory Window Capabilities (Figure 10.20) 

Programmable Base Address (We_BASE, Bit 0) 
When this bit equals one, it indicates that the window's base address is 
programmable within the range specified by the minimum and maximum 
address fields (see offsets 02H and 04H in the Memory Window 
Characteristics Table). The flexibility of a programmable base address 
comes in handy when the computer user attempts to use add-in boards 
that require access to the host's memory. 

A zero in this bit indicates a fixed window base address in the system's 
memory space at the address specified by the minimum address field 
(invalidating the maximum address field). Many closed systems 
hardwire their windows at a specific address because the need for 
flexibility does not exist. For example, an embedded system with all of 
its functionality built-in at assembly time will not need to accommodate 
future add-in modifications. A system like this can tolerate a non
changing window base address. This also simplifies the client software. 

Programmable 
Window Base 

16MB 

, 

SYSTEM MEMORY 

I~-·· Window 
Size 

i/ Window 
Mapping 
Hardware 

/ 

FLASH MEMORY CARD 

! 
, 
! 

/ Flash MemOlY 
Region Selected 
As An Offsel From 
The Card's Base 

/ 

I I 

Figure 10.20: As the Memory Window Chacteristics Table Indicates, 
the Base Address and Size may be Programmable 
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Programmable Window Size (WC_SIZE, Bit 1) 
Similar to the programmable base address, a one in this bit indicates a 
programmable window size within the range specified by the minimum 
and maximum window size fields (see offsets 06H and 08H in the 
Memory Window Characteristics Table). This flexibility can be 
important in certain situations, depending on the amount of system 
memory available. In other words, different run-time applications 
consume varying amounts of system memory. When running an 
application that consumes a small amount of system memory, the system 
can afford to provide a larger window size, or vice versa. 

When this bit equals zero, the window has a fixed size. This may be 
desirable in some systems, as it simplifies the client software that 
manipulates memory card offsets. 

Window Disable/Enable Supported (WC_WENABLE, Bit 2) 
When this bit equals one, the window may be disabled and enabled 
without having to reprogram its characteristics. Interface controller chips 
such as the PCIC support this capability by maintaining register 
contents. Specifically, disabling and enabling the windows has no affect 
on the corresponding memory and I/O registers in the PCIC. Power 
management software may take advantage of this capability, using the 
SetAdapter function. 

When this bit equals zero, the adapter does not automatically maintain 
the window characteristics. This responsibility passes to the client 
requesting the window disabling. To do this, the client uses the 
GetWindow function to retrieve the current configuration, that can be 
restored after re-enabling the window. 

Eight and Sixteen Bit Data Bus Supported (WC_8BIT and WC_16BIT, Bits 3 
and 4) 

When either or both of these bits equal one, this-window supports the 
corresponding data bus size(s). PCMCIA defines the data-bus size on a 
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PC Card to be 8 or 16 bits to accomodate either type of system. This 
flexibility has the most usefulness in a system where the system 
incorporates the socket adapter as an add-in board. This allows the same 
board to be used in an 8 or 16-bit slot. Otherwise, if the socket adapter is 
fixed on the system's mother board, the bus size can also be fixed in 
accordance with the bus size of the CPU. 

The Adapter Characteristics Table obtained using the InquireAdapter 
function contains information that indicates whether the adapter can set 
the data bus width separately for each window. The S2 client must 
interpret this information before trying to adjust a window's data bus 
size. 

Base Address Alignment on Size Boundary (WC_BAUGN, Bit 5) 
When this bit equals one, the window's base address must be 
programmed to some multiple of the window's size within the specified 
valid range. This helps simplify the adapter's decoding circuitry, because 
it minimizes the number of address lines that must be decoded. ExCA 
requires the system base address boundary alignment to be at any 
4Kbyte segment. 

When this bit equals zero, the window's base address may be 
programmed at any address (meeting the constraints imposed by the 
Required Base Address Alignment field) within the specified valid 
range. Although this provides higher flexibility, it complicates the 
decoding circuitry. , 

Power of Two Size Granularity (WC_POW2, Bit 6) 
When this bit equals one (and the window size is programmable), 
window size must be a power of two of the required window size 
granularity. For example, a required window size granularity of 4 kbytes 
has possible window sizes (between a 4 kbyte minimum and 64 kbyte 
maximum size) of 4, 8, 16, 32 and 64 kbytes. Similar to the description 
earlier (Base Address Alignment on Size Boundary), the lower the 
flexibility, the simpler will be the decoding circuitry. 

When this bit equals zero (and the window size is programmable), 
window size can be any multiple of the required window size 
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granularity. For example, with a required window size granularity of 4 
kbytes and a specified window size range from 4 kbytes to 64 kbytes, the 
window sizes can be any of the sixteen multiples of 4 kbytes contained 
within that range. 

Card Offset Alignment on Size Boundary (WC_CALlGN, Bit 7) 
When this bit equals one, the PC Card offsets must be specified to the 
SetPage function in increments of the window's size. For example, a 4 
kbyte window size requires the PC Card offsets to be on 4 kbyte 
boundaries. For hardware decoding, as well as from a software 
perspective, this makes the most sense. When this bit equals zero, PC 
Card offsets can be specified without relation to the window's size. 

Paging Hardware Available (WC_PAVAIL, Bit 8) 
When this bit equals one, the windowing hardware can divide the 
window into multiple pages, for memory space only. A zero indicates 
that the window must be treated as a single page. According to the 
PCMCIA specification, a window can only be sub-divided into 16 kbyte 
pages (Figure 10.21). If the software implemented (i.e., flash file 
system) requires mUltiple pages, it is generally easier to use mUltiple 
windows because of decoding hardware simplification and the flexibility 
of a window's size and location (within the bounds of the Memory 
Window Characteristics Table). Typically, system designers have 
implemented windows without pages. 

Paging Hardware Shared (WC_PSHARED, Bit 9) 
Windows may share paging hardware when this bit equals one. Pay 
attention when attempting to use the paging hardware for a window 
because it may already be in use by another window. A client can 
determine the availability of the paging hardware via the SetWindow 
function, checking for a successful return status. Trying to use already
busy paging hardware should return an error. This bit will be zero in a 
system with dedicated window paging hardware. 

Page Disable/Enable Supported (WC_PENABLE, Bit 10) 
When this bit equals one, the page may be disabled and enabled without 
having to reprogram its characteristics. When WC_PENABLE equals 
zero, the adapter hardware does not automatically maintain page 
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characteristics and this responsibility passes to the client requesting the 
page disabling. To do this, the client uses the GetPage function to 
retrieve the current configuration, which can be restored after re
enabling the page. 

SYSTEM MEMORY SYSTEM MEMORY 

Memory Window 

Memory Window 

16 KByte Page 

16 KByte Page 

16 KByte Page 

16 KByte Page 
Memory Window 

Memory Window 

o Flexible Window Location o Flexible Window Sizes 
o Set Window Size o Flexible Window Locations 

Figure 10.21: Contrasting Windows Divided into Pages and Multiple 
- Windows 

Software Write-Protect Available (WC_WP, Bit 11) 
When this bit equals one, the window has software-controlled write 
protect capability; preventing writes to the PC Card. The hardware that 
controls this can do so by blocking the WE signal whenever it detects a 
system write to the address range corresponding to the window. Use 
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SetPage to invoke this capability, available with the PCIC and 
compatible devices (Card Memory Offset Address High Byte Register, 
Figure 10.27). 

When this bit equals zero, the window may not be software write
protected. Alternatively, you can enable write protection by using a PC 
Card's write protect switch. Intel's Series 2 Flash Memory Cards also 
provide a Write Protection Register that allows write protection of 
certain areas ofthe flash memory array. 

Minimum and Maximum Address (FirstByte and LastByte) 

These fields represent the first and last addressable bytes (respectively) 
for this window in the system memory space. Values depend on the 
adapter's decoding capabilities and components occupying other parts of 
the memory space. These fields can be defined in terms of 4 kbyte units. 
This allows a word to accommodate up to 256 Mbytes. Some non-ExCA 
systems have windows with non-programmable base addresses (refer to 
Programmable Base Address bit). Therefore, the minimum address value 
added to the maximum window size also determines the maximum 
address, or LastByte (Figure 10.22). 

SYSTEM MEMORY 

MEMORY 
WINDOW ]

~~m:~tddress 

MaXim~m Window Size 

Base Address 
I--------~. (Minimum Address) 

Figure 10.22: Minimum and Maximum Memory Window Address 
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The last byte of the window (base address + window size - one) may not 
exceed the value in the maximum address field. Some non-ExCA 
systems have windows with non-programmable base addresses (i.e., 
fixed). This situation invalidates the "Maximum addresslLast byte" 
field. 

Minimum and Maximum Window Size (MinSize and MaxSize) 

These fields represent the range of sizes allowable for a window within 
the system memory map. They can be defined in terms of 4 kbyte units. 
This allows a word to accommodate up to 256 Mbytes. Expressing the 
maximum window size as zero indicates the largest window size value 
that may be represented by the "SIZE data type plus one". For example, 
a 16-bit SIZE data type supports a maximum of 65535 (OFFFFH). 
Adding 1 to this generates a zero, defined as 65536 (64 kbytes). The size 
programmed with the SetWindow function must also meet the 
requirements described by the following fields: 

• Power-of-two size granularity 
• The minimum address plus the window size, minus one, must 

not exceed the maximum address 

These two fields will be equal with a fixed window size (i.e., WC_SIZE 
= 0) 

Required Window Size Granularity (ReqGran) 

This field gives the minimum units for expressing window size due to 
hardware constraints, and can be expressed as 4 kbyte units. For 
example, a one indicates that the window size can be expressed in 
multiples of 4 kbytes. With a fixed window size (WC_SIZE = 0), this 
field will be the same as the MinSize and MaxSize fields. Systems 
designed with special paging hardware will have window size 
restrictions based on the number of address lines generated by the 
paging hardware. 

Required Sase Address Alignment (ReqSase) 

When the Base Address Alignment on Size Boundary (WC_BALIGN) 
bit equals zero, this field describes any alignment boundary requirement 
for programming the window's base address with SetWindow. Expressed 
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in 4 kbyte units, a value of one indicates that the window's base address 
can be placed on any 4 kbyte boundary. 

If WC_BALIGN equals one, the base address is some mUltiple of the 
window's size specified within the valid range (see WC_BALIGN 
above). In this situation, the ReqBase field is undefined. Figure 10.23 
exemplifies this situation. 

SYSTEM MEMORY 

20K 1--------1 

16K 

4KB WINDOW SIZE 

12K 1--_____ -1 

8K 1--------1 

4K \--------f 

0'-------..& 

Figure 10.23: Example Showing Potential Base Address for a 4 Kbyte 
Window that Must Reside on a Multiple of the Window's Size 

Required Card Offset Alignment (ReqOffset) 

When the WC_CALIGN bit equals zero, this field describes any 
alignment boundary requirement for programming the PC Card offset 
address with SetPage. For example, in an implementation using units of 
4 kbyte blocks, a one in this field indicates the card offset could be 
placed on any 4 kbyte boundary. 
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If WC_CALIGN equals one, PC Card offsets must be specified in 
increments of the window's size (see WC_CALIGN above). In this 
situation, the ReqOffset field is undefined. 

Fastest and Slowest Access Speed Supported 

Flash cards (and memory cards, in general) exist in a variety of 
configurations and access speeds. Some socket hardware adapters may 
be reconfigured to accomodate different timing requirements. These 
fields in the Memory Window Characteristics Table express the range of 
access speeds (slowest to fastest) that the socket hardware can 
accomodate. These fields match the Device Speed Code and Extended 
Device Speed Codes of the Device Information Tuple defined in the 
PCMCIA PC Card Standard Release 2.0 (Section 5.2.7.1.3). The bit
mapped fields are expressed as follows: 

OFFSET 

OOH 

02H 

OOH 

02H 

04H 

06H 

08H 

OAH 

OCH 

OEH 

10H 

11H 

Bits 0-2 

Bits 3-6 
Bit 7 

VALUE 

12H 

12H 

089FH 

OOCOH 

OODFH 

0001H 

0010H 

0001H 

0001H 

0001H 

01H 

04H 

= Device speed code, if mantissa is zero 
= Speed exponent, if speed mantissa is non-zero 
= Speed mantissa 
= Reserved and equal to zero 

DESCRIPTION 

Client-supplies 18-byte buffer 

Length of data filled by S2 is 18 bytes. 

Programmable base address and window size 
Window disable/enable supported 
Eight and sixteen-bit data bus supported 
Base add ress alignment on size boundary 
Power of two size granularity 
Card offset alignment on size boundary 
No paging hardware capability 
Software write-protect available 

Minimum base address equals COOOOH 

Maximum base address DFOOOh (4Kbytes less than EOOOOH) 

Minimum window size equals 4Kbytes 

Maximum window size equals 64Kbytes 

Required window size granularity expressed in 4Kbyte units 

Window can be aligned on any 4Kbyte boundary 

Card Offset Alignment on any 4Kbyte boundary 

Slowest access speed equals 250 nanoseconds 

Fastest access speed equals 100 nanoseconds 

Table 10.8: Example Memory Window Characteristics 
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Offset DESCRIPTION 

OOH I/O window capabilities (1 = true) 
Bit 0: Programmable base address 
Bit 1: Programmable window size 
Bit 2: Window disable/enable supported 
Bit 3: Eight-bit data bus supported 
Bit 4: Sixteen-bit data bus supported 
Bit 5: Requires base address alignment on size boundary 
Bit 6: Power of 2 size granularity 
Bit 7: INPACK supported 
Other bits are reserved and equal to zero 

02H Minimum base address/First byte (Bytes) 

04H Maximum base address/Last byte (Bytes) 

06H Minimum window size (Bytes) 

08H Maximum window size (Bytes) 

OAH Required window size granularity (Bytes) 

OCH Number of address lines decoded by the socket hardware 

Table 10.9: 110 Window Characteristics 

Fields In The I/O Window Characteristics Table 

As mentioned earlier, most fields in the I/O and Memory Window 
Characteristics Tables are the same, with a few exceptions: 

• The I/O fields associated with addresses are expressed in bytes 
rather than 4 kbyte blocks. 

• Addresses reference the I/O space rather than memory space. 

1/0 Window Capabilities 

The descriptions in the Memory Window Characteristics Table apply for 
all I/O windows characteristics, with the following exceptions: 

INPACK (WC_INP ACK) 
EISA-LIKE I/O MAPPING (WC_EISA) 
EISA ADDRESS ENABLES (WC_CENABLE) 

Number of Address Lines Decoded by Socket Hardware (AddrLines) 

Despite the fact that systems containing processors like an Intel CPU 
have the potential to access up to 64 kbyte I/O addresses, many systems 
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do not decode all address lines. For example, an ISA platform only 
decodes 10 address lines allowing accesses up to 1 kbyte, and any access 
above 1 kbyte will be aliased to an address within the first 1 kbyte. 

SetWindow 
When using the SetWindow function to change a window's 
configuration, be sure to match the desired configuration with the 
allowable configuration obtained from the appropriate window 
characteristics table supplied by Inquire Window. Viewed another way, 
the client should use the InquireWindow function to determine if the 
window had characteristics suitable for its application. 

SetWindow 

Entry setup for the PC version of the SetWindow function: 
[AH] = SET_WINDOW (ExCA calling value = B9H) 
[Al] = Adapter number 
[BH] = Window number 
[Bl] = Socket number 
[CX] = Window Size (Bytes for 110 windows, 4Kbyte units for memory windows) 
[DH] = Window state 

Bit 0 Window type (WS_IO), 1 = 110 window, 0 = memory window 
Bit 1 Enable Window (WS_ENABlED), 1 = enable, 0 = disable 
Bit 2 Data path width (WS_16BIT), 1 = 16-bit, 0 = B-bit 
Bit 3 Paged (WS_PAGED), 1 = divide into 16 Kbyte pages, 0 = 

single page or 110 mapping type (WS_EISA), 1 = EISA 110 
mapping, 0 = ISA 110 mapping 

Bit 5 1 = EISA common 110 areas configured to generate card 
enables, 0 = ignore accesses to 110 ports in EISAcommon 
110 areas 

Other bits are reserved and equal to zero 
[Dl] = Requested access speed (refer to InquireWindow function) 
[01] = Window base address (bytes for 110, 4 Kbyte units for memory) 

After exiting from SetWindow: 
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_ATTRIBUTE, BAD_SIZE, 

BAD_SPEED, BAD_WAIT, BAD_BASE, BAD_PAGE, BAD_SOCKET, 
BAD_TYPE, BAD_WINDOW 

Window Size 

The SetWindow function allows a client to set up the specified window's 
size wi.thin the system's memory or I/O space. An application should 
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typically request as large a window as possible to achieve the highest 
performance. For example, a flash file system will generally request a 
window size up to 64 kbytes. This will save having to frequently update 
the flash card's offset. 

If the SetWindow function returns with a BAD_SIZE error, you should 
first check the Programmable Window Size field in the corresponding 
window characteristics table. You may be trying to program a fixed size 
window. However, if your system has a programmable window size, 
check the legality of the desired value. Determine the legal values from a 
combination of the Power of Two Size Granularity, the Minimum and 
Maximum Window Size, and the Required Window Size Granularity 
fields. 

Refer to the Window Base Address field for specific details on using the 
PCIC to set up Window Size. 

WINDOW STATE 

Window Type 
From the InquireWindow function, a client can determine whether a 
window supports memory (Common or Attribute), 110 or both. Since 
this book specifically discusses flash memory, assume that all windows 
discussed here support memory. When programming devices like the 
PCIC, selecting a memory window type allows the SetWindow function 
to configure the memory window registers (as opposed to the 110 
window registers). 

Enable Window 
Before enabling the window, set up the proper configuration, including 
the window's start and stop addresses and the card's offset. Assuming 
that the client has done this, enabling the window from a hardware 
standpoint consists of turning on the appropriate decoder signal(s). This 
allows matching addresses to generate the card se~ect signals. The PCIC 
makes this operation simple with the Address Window Enable Register 
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(Figure 10.24). This register contains five memory window enable bits -
one for each window. 

82365SL ADDRESS WINDOW ENABLE REGISTER (READiWRITE) 

Memory Window 0 Enable 

L--___ Memory Window 1 Enable 

'------- Memory Window 2 Enable 

'-______ Memory Window 3 Enable 

'-----____ Memory Window 4 Enable 

'------------ MEMCS16 Decode A23-A12 

'----__________ I/O Window 0 Enable 

'-_____________ I/O Window 1 Enable 

Figure 10.24: Use this Register to Enable and Disable Memory and I/O 
Windows 

Data Path Size 
What are the advantages of a flexible data bus size? For a socket adapter 
built into a system's motherboard, you would assume that the bus size 
could be fixed according to the data path of the processor. However, the 
ability to control the data path size plays a significant role in four 
situations: 

1. The first and probably most important situation pertains to the 
use ofI/O cards. In particular, modem and fax cards that transfer 
data in bytes (rather than words) require an 8-bit data path. 
Memory cards have a 16-bit interface, and although data could 
be transferred in bytes, the transfer should be done in words, if 
possible, for highest data bandwidth. 

2. The second situation pertains to a PC Card's Attribute memory 
plane, which PCMCIA defines to be valid only at even-byte 
locations. So, although you can access the Attribute memory 
plane in words, the odd byte will return invalid data in this case. 
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3. The third and least apparent situation has to do with after-market 
socket adapters add-ins. To add flexibility to the adapter, it can 
be designed to plug into an 8 or 16-bit system ISA slot. 

4. When using the ISA-bus to interface between the CPU and a 
flash memory card, beware that the socket adapter cannot use 
the memory COMMAND signal lines (i.e., MEMR and 
MEMW) to qualify a 16-bit access. It blindly decodes the 
LA17-23 signal lines and activates MEMCS16 if required. As a 
result, the entire 128 kbyte block selected by LA 17 -23 must be 
the same data width. Therefore, the flexible data bus size allows 
more convenient memory mapping. 

I/O Mapping Type 
This value only has validity for I/O windows. It has applicability for 
ATA flash drives. 

REQUESTED ACCESS SPEED 

The format of this parameter corresponds to the Fastest and Slowest 
Access Speed Supported fields obtained through the Inquire Window 
function. A system may not support every possible speed requested, 
even if it falls within the legal limits. If a client requests an unsupported 
speed, S2 defaults to using the next slower supported speed. For 
example, a client may request an access time of 130 nanoseconds. If the 
hardware only supports 120 and 150 nanoseconds, 150 ns will be 
selected. 

The PCIC controls this function using the Wait-State select bits of a 
System Memory Address Mapping Stop High Byte Register (Figure 
10.25). These bits control the number of additional wait states for a 16-
bit access to the system memory window. When the client reads the 
Card Information Structure (CIS), it can determine the speed of the flash 
memory card and, therefore, the number of wait states needed. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0341



322 Chapter Ten: PCMCIA Software 

SYSTEM MEMORY ADDRESS 0 MAPPING STOP LOW BYTE REGISTER (READIWRITE) 

Address 12 

L-___ Address 13 

'-----_____ Address 14 

'-----_______ Address 15 

L-________ Address 16 

L-__________ Address 17 

'-----____________ Address18 

'-----______________ Address19 

SYSTEM MEMORY ADDRESS 0 MAPPING STOP HIGH BYTE REGISTER (READIWRITE) 

Address 20 

L-___ Address 21 

L-_____ Address 22 

'--_______ Address 23 

Reserved 

L-__________ Reserved 

'--____________ Walt State Bit 0 

L-______________ Walt State Bit 1 

Figure 10.25: These PCIC Registers Control the Access Speed and 
Determine the Stop Address of the Corresponding Memory Window 

WINDOW BASE ADDRESS 

When setting the window base address, the client must consider the 
window's maximum address and size. Referring to the InquireWindow 
function, the last byte of the window (base address + window size - 1) 
may not exceed the value in the maximum address field. 
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Using the PCIC or compatible devices, a client sets up a system's 
memory window address with four registers (there are actually five sets 
of these four registers, one for each window): 

1. System Memory Address Mapping Start Low and High Byte 
Registers (Figure 10.26)- These registers set up the base address 
of the window. The address bits in the low register start at 12, 
automatically placing the window's base address on 4 kbyte 
boundaries. Loading these registers within the SetWindow 
function is simplified because the base address (and all other 
memory-related addresses) get passed to the function in 4 kbyte 
units already. This means that the S2 function can load the value 
as it appears in the input parameters. Therefore, the calling 
client must manipulate the start address. For example, a desired 
base address of DOOOOH would be changed to DOH by the client. 
It would then use DOH as the value to pass in with the [DI] 
register. 

2. System Memory Address Mapping Stop Low and High Byte 
Registers (Figure 10.25) - These registers indirectly specify the 
window's size. Since the address bits begin at 12, the smallest 
window size will be 4 kbytes. The process for loading these 
registers follows the same protocol as the System Memory 
Address Mapping Start Low and High Byte Registers. 

NOTE: Before using the SetWindow function to change the current 
window configuration, it may be useful to first call upon the GetWindow 
function to ensure that you don't overwrite an existing setup. The 
GetWindow and Set Window functions assist this comparison by having 
directly-mapped input and output parameters. 

GetWindow 
In general, good coding practice warrants the use of the GetWindow 
function to check a window's current configuration before attempting to 
make any changes. The only time when this should not be necessary is 
during system initialization. In this case, the initializing code can 
proceed directly to the Set Window function. Regardless of which 
function you use first, these two functions have directly mapped 
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parameters. Therefore, for full parameter details, refer to the SetWindow 
function. 

SYSTEM MEMORY ADDRESS 0 MAPPING START LOW BYTE REGISTER (READIWRITE) 

Address 12 

'--___ Address 13 

'---____ Address 14 

'----_____ Address 15 

'-----_________ Address 16 

L-___________ Address 17 

'--_____________ Address 18 

Address 19 

SYSTEM MEMORY ADDRESS 0 MAPPING START HIGH BYTE REGISTER (READIWRITE) 

Address 20 

Address 21 

'--_____ Address 22 

'------______ Address 23 

'----------_ Scratch Bit 

L-___________ Scratch Bit 

L-_____________ Zero Walt State 

'--_______________ Data Size 

Figure 10.26: These PCIC Registers Set Up the Base Address of the 
System Memory Window 
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GetWindow 

Entry setup for the PC version of the GetWindow function: 
[AH] = GELWINDOW (ExCA calling value = aaH) 
[Al] = Adapter number 
[BH] = Window number 

After exiting from GetWindow: 
If [CF] = 1, then [AH] = error code (BAD_ADAPTER, BAD_WINDOW) 
Else 
[Bl] = Socket number assigned to this window 
[CX] = Window size (bytes for 1/0 windows, 4 Kbyte units for memory windows) 
[DH] = Window state 

Same bit map as SetWindow 
[Dl] = Access speed (refer to InquireWlndow function) 
[01] = Window base address (bytes for 1/0, 4 Kbyte units for memory) 

Besides determining a window's configuration, a client may also use this 
function to determine if a window has been previously assigned to a 
socket. One by one, the client may call the GetWindow function with a 
different window number until locating an available window (obtain the 
total number of windows using InquireAdapter). A socket number of 
zero in the [BL] register indicates that the window has not been assigned 
to a socket. Mter locating an unused window, the client can now 
proceed to the SetWindow function and configure that window for its 
own use. 

SetPage 
This function, only applicable to memory windows, configures the 
specified page, or offset, in the flash memory card according to the input 
parameters. As discussed in the InquireWindow function, a window can 
consist of one or more pages (but it usually doesn't). Typically, once a 
client requests S2 to set up a window, that window stays fixed (for 
example, from DOOOOR to DFFFFH). On the other hand, a page within 
the flash memory card (not to be confused with a page in system 
memory) must have its offset continuously updated in order to access 
different regions (Figure 10.20). 
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SetPage 

Entry setup for the PC version of the SetPage function: 
[AH] = SET_PAGE (ExCA calling value = aBH) 
[AL] = Adapter number 
[BH] = Window number 
[BL] = Page number 
[OX] = Page control 

Bit 0 Memory Plane Select (PS_ATTRIBUTE), 1 = Attribute, 0 = 
Common 

Bit 1 Enable Page (PS_ENABLED) 
Bit 2 Write protect page (PS_WP), 1 = write protect, 0 = no write 

protect 
[01] = Memory card offset (4 Kbyte units) 

After exiting from SetPage: 
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_ATTRIBUTES, BAD_OFFSET, 

BAD_PAGE, BAD_WINDOW) 

Memory Plane Select 
This bit controls the manipulation of the REG pin (Register select of the 
PC Card's interface) that selects between the Attribute or Common 
memory planes. The window capabilities of the InquireWindow function 
indicates whether this capability exists. 

The PCIC and compatible devices handle this function with the Card 
Memory Offset Address High Byte Register (Figure 10.27). 

Enable Page 
For a window with a single page, this function performs the same 
function as the Enable Window of the Set Window function. However, if 
a window consists of several pages, this function must be able to 
selectively control the enabling and disabling of individual pages. 

Write Protect Page 
Write protecting a page can be a matter of blocking the write enable 
signal whenever the system generates an address within that page. If a 
window contains multiple pages, each page must have this capability 
independent of the others. When a client attempts to use this software 
write protection mechanism but the capability doesn't exist, a 
BAD_ATTRIBUTES error will be reported upon returning from this 
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function. To avoid this error, analyze the appropriate Memory Window 
Characteristics (returned by Inquire Window) first. 

CARD MEMORY OFFSET ADDRESS 0 LOW BYTE REGISTER (READIWRITE) 

Address 12 

~ ____ Address 13 

~ ______ Address 14 

~ _______ Address 15 

'--_________ Address 16 

'---___________ Address 17 

Address 18 

~ _______________ Address 19 

CARD MEMORY OFFSET ADDRESS 0 HIGH BYTE REGISTER (READIWRITE) 

Address 20 

~ ____ Address 21 

Address 22 

'--_______ Address 23 

Address 24 

Address 25 

'-----_____________ Reg Active 

'--________________ Write Protect 

Figure 10.27: These PCIC Registers Set Up the Flash Memory Card's 
Offset, Enables Write Protection, and Selects the Memory Plane 
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The PCIC and compatible devices handle this function with the Card 
Memory Offset Address High Byte Register (Figure 10.27). 

Memory Card Offset 
First, and foremost, note that the memory card offset is typically 
expressed in 4 kbyte units. Second, a client should check the Card Offset 
Alignment on Size Boundary bit of the appropriate Memory Window 
Characteristics Table. If set, the offset must be specified as a multiple of 
the size of the associated host's window. For example, a 64 kbyte 
window size would allow memory card offsets of 0, 64 kbytes, 128 
kbytes, etc. 

In a simple hardware design that uses a paging mechanism to access the 
flash memory card, setting up the card offset could simply consist of 
programming a latch. The value loaded into the latch represents a region 
within the flash memory card's array. 

The PCIC uses two registers to set up the flash memory card's offset (it 
actually has five sets of these two registers per socket, one for each of 
the five windows) - The Card Memory Offset Address Low and High 
Byte Registers (Figure 10.27). The address bits, starting at 12, allow 
offsets to be on any 4 kbyte boundary within the card. These registers 
contain the value to be added to the host's memory address for 
determining which part of the card will be accessible. 

As shown in Figure 10.28, when the host system generates an address 
within its window, that address must be translated to allow access to the 
various regions within the flash memory card. As an example, assume a 
64 kbyte system memory window located at DOOOOH. The client wants 
to access the second 64 kbytes of flash memory on the card. The host 
outputs the address DOOOOH, but the card requires an address of 
10000H. Subtract DOOOOH from 10000H to obtain the value (F40000H) 
that must be plugged into the PCIC's Card Memory Offset Address Low 
and High Byte Registers. This value can also be expressed as the 2's
complement of the difference between the system memory start address 
and the start address on the flash memory card. 
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FLASH MEMORY ARRAY 

SYSTEM MEMORY MAP n 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

DFFFFH I I 

64 KByte Window PCIC Address 

~ 
10000H 

- DOOOOH --
F40000H 

~ 
64 Kbyte Window 

Translation 10000H 

DOOOOH 1FFFFH 

Figure 10.28: Translating System Addresses to Access Various Regions 
within the Flash Memory Card 

GetPage 

This function returns a specific page's current configuration within a 
specific memory window. Refer to the SetPage function for parameter 
explanations. 

GetPage 

Entry setup for the PC version of the GetPage function: 
[AH] = GET_PAGE (ExCA calling value = BAH) 
[AL] = Adapter number 
[BH] = Window number 
[BL] = Page number 

After exiting from GetPage: 
If [CF] = 1, then [AH] = error code (BAD_ADAPTER, BAD_PAGE, 

BAD_WINDOW) 
Else 
[OX] = Page state (Same bit map as SetPage) 
[01] = Memory card offset (4Kbyte units) 
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Socket Functions 

InquireSocket 
The characteristics obtained by the InquireAdapter function primarily 
describe the available power levels and the adapter's physical connection 
to the ISA bus' ten interrupt request lines. A separate socket 
characteristics table describes a PC card's physical connection 
capabilities (through the IREQ signa190) to one of these interrupt request 
lines. 

InqulreSocket 
Entry setup for the PC version of the InquireSocket function: 

[AH) = INQUIRE_SOCKET (ExCA calling value = 8CH) 
[Al) = Adapter number 
[Bl) = Socket number, this function must be called once for each socket that the 

application plans on using 
[ES):[(E)DI) = Pointer to client supplied buffer for storing the socket 

characteristics table. 

After exiting from InquireSocket: 
If [CF) = 1, then [AH) = BAD_ADAPTER, BAD_SOCKET 
Else 
[BH) = Bit map of status change interrupt capabilities (SC_INLCAPS, set to 1 = 

true) 
Bit 0 Write Protect Change 
Bit 1 Card lock Change 
Bit 2 Ejection Request 
Bit 3 Insertion Request 
Bit 4 Battery Dead Change 
Bit 5 Battery Warning Change 
Bit 6 Ready Change 
Bit 7 Card Detect Change 

[DH) = Bit map of status change reporting capabilities (SC_RPLCAPS, set to 1 
= true) 

Same as status change interrupt capabilities 
[Dl) = Bit map of control and indicator capabilities (CTL_IND_CAPS, set to 1 = 

true) 
Bit 0 Write Protect Status (Indicator) 
Bit 1 Card lock Status (Indicator) 
Bit 2 Motorized Card Ejection (Control) 
Bit 3 Motorized Card Insertion (Control) 
Bit 4 Card lock (Control) 
Bit 5 Battery Status (Indicator) 
Bit 6 Busy Status (Indicator) 
Bit 7 Execute-in-Place (XIP) Status (Indicator) 

[ES):[(E)DI) = Unchanged buffer pointer. 

90This pin functions as a Ready/Busy signal for memory cards and as IREQ for 110 cards. 
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Figure 10.16 pictorially describes the difference between the two types 
of interrupt connections. Before the client begins to initialize the adapter 
and socket hardware, the InquireSocket function must be called to obtain 
the Socket Characteristic Table. Similar to the InquireAdapter function, 
InquireSocket only returns the capabilities of the sockets. It has nothing 
to do with determining a socket's current configuration (refer to the 
GetSocket function). 

• STATUS CHANGE INTERRUPT CAPABILITIES - Identifies items that 
can cause a status change interrupt (bit set). To trigger a status 
change interrupt on a socket, the corresponding value in the 
status change interrupt mask of SetSocket must be set, and status 
change interrupts must be enabled. 

• STATUS CHANGE REPORTING CAPABILITIES - Identifies items that 
the installed socket hardware can report. These may not 
necessarily have an interrupt generating capability, but their 
status may be obtained through the GetSocket and GetStatus 
functions. Some clients (and some systems) do not utilize 
interrupts for status change notification. Instead, the client 
software performs periodic polling to check status. For example, 
the system's time-of-day clock, updated every 55 milliseconds, 
can be used to provide the time period. 

• CONTROL AND INDICATOR CAPABILITIES - Identifies items which 
can be controlled or represented by indicators on the hardware. 
For example, an LED may be used to indicate the setting of the 
write protect switch or a flash memory card's readylbusy status. 
An indicator for readylbusy status is highly recommended. This 
will notify the system user when the flash memory card is busy 
and minimize the chance of inadvertant card removal during an 
operation. 
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The Socket Characteristics Table and Adapter Characteristics Table are 
identical with two exceptions: 

1. Sockets use the PC card's lREQ line versus the adapter's status 
change interrupt. 

2. A field describing the interface type supported (e.g., memory 
only or I/O and memory) replaces the adapter capabilities field. 

SOCKET CHARACTERISTICS T ABLE91 

OOH Socket interface type supported where: 
Bit 0 = Memory only 
Bit 1 = lID and memory 

Note: A system can be PCMCIA compatible but not support an lID interface. This 
means that a person purchasing a PCMCIA-compatible system has no guarantee of 
its capabilities. On the other hand, an ExCA-compliant system must support both 
interfaces. 

02H Steerable IRO levels where each bit corresponds to an IRO level from 0 to 15 
(where Bit 0 = IROo, Bit 1 = IR01, and so on). See discussion in Chapter 8 for more 
details on Interrupt Steering. 

04H Additional steerable IRO levels for NMI (Bit 0), lID Check (Bit 1), and Bus Error (Bit 
2). 

06H IRO levels inverting IREO line, where each bit corresponds to an IRO level from 0 
to 15 (where Bit 0 = IROo, Bit 1 = IR01, and so on). 

08H AdditionallRO levels inverting IREO line for NMI (Bit 0), lID Check (Bit 1), and Bus 
Error (Bit 2). 

OAH IRO levels not inverting IREO line, where each bit corresponds to an IRO level from 
o to 15 (where Bit 0 = IROo, Bit 1 = IR01, and so on). 

OCH AdditionallRO levels not inverting IREO line for NMI (Bit 0), lID Check (Bit 1), and 
Bus Error (Bit 2). 

SetSocket 
The SetSocket function controls a range of operations, from status 
change interrupt masking to setting V CC and Vpp voltage levels. 

91 Although not shown here, the first two words of this table provide the size of the client-provided 
buffer and the length of the data that Socket Services returns. 
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SetSocket 

Entry setup for the PC version of the SetSocket function: 
[AH] = SET_SOCKET (8EH) 
[Al] = Adapter number 
[Bl] = Socket number 
[BH] = Status Change Interrupt Enable Mask (0 = mask, 1 = enable; same bit 

map as InquireSocket) 
[CH] = VCC level (lower nibble) 
[Cl] = VpP1 level (upper nibble), VpP2 level (lower nibble) 
[DH] = Socket State Control (1 = reset state; same bit map as InquireSocket) 
[Dl] = Controls and Indicators (1 = on; same bit map as Inquire Socket) 
[01] = IRO Steering and Interface Type Control 

Bits 0-4: Values 0-15 = IRO 0-15,16 = NMI, 17 = 1/0 Check, 18 = Bus 
Error 

Bit 5: Enable IREO inverter (1 = enabled) 
Bit 7: Enable IREO steering (1 = enabled) 
Bit 8: Memory only interface (This interface invalidates IREO-related 

bits) 
Bit 9: I/O and Memory interface 

After exiting from SetSocket: 
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_ATTRIBUTE, BAD_INDICATOR, 

BAD_IRO, BAD_SOCKET, BAD_VCC, BAD_VPP 

• STATUS CHANGE INTERRUPT MASK ENABLE - This mask 
determines which status change can cause an interrupt. It only 
has effect if the specific interrupt is supported, as indicated by 
the status change interrupt capabilities (obtained from the 
InquireSocket function), and if status change interrupts have 
been enabled by SetAdapter. Although interrupts get generated 
at the adapter level (which explains why the SetAdapter function 
enables the status change interrupts), this mask provides the 
capability to mask interrupts at the socket level (Figure 10.17). 

Bits in the Card Status Change Interrupt Configuration Register 
of the PCIC, defined as interrupt enabling bits, provide the 
masking for the SetSocket function (Figure 10.18). For example, 
bit 2, the Ready Enable bit, controls the appropriate mask by 
enabling or disabling the specific interrupt. 

• V CC AND Vpp LEVELS - This field specifies an index into the 
array of power entries in the Power Management Table returned 
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by InquireAdapter. Individual values are specified for V CC, 
VpP1 and VpP2' The SetSocket function takes the input 
parameters, looks into the table and sets the sockets accordingly 
(Figure 10.14). This function must ensure that the specified 
voltages make sense. For example, setting V CC to OV and Vpp 
to 12V should be defined as an invalid combination. 

To demonstrate setting VCC to 5 volts and VpPl/VPP2 to 12 
volts, refer to the example Power Management Table (Table 
lOA) and the entry setup for SetSocket listed above. From the 
table, "2" indexes VCC at 5 volts and "3" indexes Vpp at 12 
volts. Therefore, the [CH] and [CL] registers would be loaded 
with 02H and 33H, respectively, before calling SetSocket. 

Use a Vpp power switch (discussed in Chapters 6 and 8) to 
accommodate the voltage capabilities depicted in the Power 
Management Table (Table 10.3). The switch must decode the 
inputs to activate the desired voltage level. The PCIC provides 
each socket with 5 power control pins for controlling V CC, 
VpP2 and VpP1' The Power Control and RESETDRV Register 
shown in Figure 10.29 controls these pins. PC Card Power 
Enable (Bit 4) acts as a global socket power control. Clearing 
this bit disables all power to the socket, including V CC, VPP2 
and VpP1. Setting this bit puts 5 volts on V CC and enables 
VpP1 and VpP2 according to bits 0 through 3. Table 10.10 
describes the relationship between the register's bit settings and 
the state of the VpP1 control pins. A similar relationship exists 
for VpP2' You can decide, for your specifications, how to 
decode these output signals to the voltage switch. 

APPLE INC. 
EXHIBIT 1011 - PAGE 0354



Bit 4 

1 

1 

1 

1 

0 

The Socket Services Functions 335 

POWER AND RESETDRV CONTROL REGISTER (READIWRITE) 

v pp 1 Control Bit 0 

Vpp 1 Control Bit 1 

Vpp 2 Control Bit 0 

Vpp 2 Control Bit 1 

PC Card Power Enable 

Auto Pwr Switch Enable 

Disable RESETDRV 

Output Enable 

Figure 10.29: This PCIC Register, Power Control and 
RESETDRV, Controls a Socket's Voltage Levels 

Bit 1 Bit 0 VpP1_EN1 VpP1_ENO 

0 0 0 0 

0 1 0 1 

1 0 1 0 

1 1 0 0 

x x 0 0 

Table 10.10: Controlling Vpp Enable Signals with the PCIC's Power 
Control Register 

• SOCKET STATE CONTROL - This field resets latched values 
representing state changes (after setting the corresponding bit) 
experienced by the socket hardware. It must allow selective state 
changes, and requires a one to have an effect. In other words, 
writing a zero to any bit must have no etfect. This field only 
supports the capabilities obtained from InquireSocket. 

In the pcrc, the Card Status Change Register contains the status 
of the sources for the card status change interrupts (Figure 
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10.30). Clearing select status bits in the PCIC requires a two 
step process: 

1. Set the "Explicit Write Back Card Status Change Acknowledge" 
bit in the Global Control Register (Figure 10.15). This bit 
unlocks access to the individual bits of the Card Status Change 
Register. 

2. Write a 1 to the appropriate bit in the Card Status Change 
Register. This performs the same function as acknowledging a 
specific interrupt. Once acknowledged, the corresponding bit in 
the CSCR reads back as zero. 

CARD STATUS CHANGE REGISTER (READ ONLy) 

Battery Dead (STSCHG) 

'----- BatteryWarnlng 

L--_____ Ready Charge 

'-------- Card Detect Enable 

L--________ Reserved 

L-_________ Reserved 

'------------- Reserved 

'--------------- Reserved 

Figure 10.30: The Card Status Change Register Reports on the Source 
of the Status Change 

• CONTROL AND INDICATORS - This field turns indicators and other 
mechanisms on or off, if supported (one = on, zero = off). The 
InquireSocket function identifies the supported capabilities. 
Ignore requests to control unsupported capabilities. Switches 
supporting control capabilities can be built into the system as an 
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110 port (Figure 10.31), or the indicators can be taken directly 
from the PC Card's interface92. 

I/O PORT LATCH 

WRITE PROTECT 

CARD LOCK 
DATA 

7 
t. • BATTERY 

BUSY 

XIP 

... ,. 

... ... 

.. ... 

... ,. 

... ,.. 

TO LED 

TO LED 

TO LED 

TO LED 

TO LED 

Figure 10.31: Use an liD Port to Control the Socket's Indicators 

• 1REQ_LEVEL - This field controls the steering of the interrupt 
request level for the PC Card, only valid for 110 cards. 

• ENABLEjNVERTER (referred to as IRQ_HIGH by PCMCIA) - Set 
this flag to have an active high signal on the PC Card's IREQ 
signal. Reset this flag to invert the interrupt. It is only valid for 
110 cards. 

• ENABLE_STATUS_CHANGEjNTERRUPTS - After setting this flag, 
an unmasked IREQ event will cause the socket to generate a 
hardware interrupt at the level specified by IRQ_Level. 

GetSocket 
For system integrity, an application should use GetSocket to determine a 
socket's current configuration (unlike 1nquireSocket, which returns the 
socket's capabilities) before making alterations with SetSocket. The 
parameters of this function directly map into the SetSocket function. 

92Use something like a latched buffer or an 8255. 
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GetSocket 

Entry setup for the PC version of the GetSocket function: 
[AH) = GET_SOCKET (ExCA calling value = 8DH) 
[Al) = Adapter number 
[Bl) = Socket number 

After exiting from GetSocket: 
If [CF) = 1, then [A H) = BAD_ADAPTER, BAD_SOCKET 
Else 
[BH) = Status Change Interrupt Enable Mask (0 = masked, 1 = enabled; same 

bit map as SetSocket) 
[CH) = VCC level (lower nibble) 
[Cl) = VpP1 level (upper nibble), VpP2 1evei (lower nibble) 
[DH) = Socket State (1 = state change experienced; same bit map as SetSocket) 
[Dl) = Control and Indicator State (1 = on; same bit map as SetSocket) 
[01) = IRQ Steering and Interface Type State (same bit map as SetSocket) 

Card Functions 

GetStatus 
Q: What's the first thing you need to do before using a flash memory 
card? 
A: Determine if it's in the socket. 

Card presence represents one of the most important responsibilities of 
the GetStatus function. During system power up, the socket hardware 
should be initialized. The events that occur during socket and adapter 
initialization vary from system to system. From a hardware perspective, 
initialization means anything from turning on the socket's power to 
setting up interrupts to enabling address windows. The degree of 
initialization depends on whether or not a socket contains a PC card 
when the system initializes. 

On the other hand, when removing or inserting a card, the interrupt 
handler should call the GetStatus function and verify the cause of the 
status change interrupt. Earlier when we explained the indexing 
mechanism of the pcrc, the example code demonstrated access to the 
Interface Status Register (Figure 10.32). As shown below for a PC 
implementation, the GetStatus function returns the information obtained 
from the Interface Status Register in the [BH] register. 
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82365SL INTERFACE STATUS REGISTER 

Battery Voltage Detect l/STSCHG 

L-___ Battery Vollage Detect 2/SPKR 

'-------- Card Detect 1 

'------------ Card Detect 2 

L-_________ Memory Write Protect 

L-__________ Ready/Busy 

'----------------- PC Card Power Active 

'-----______________ General Purpose Input 

Figure 10.32: Read the 1nterface Status Register with the GetStatus 
Function to Determine the Presence of a Card 

GetStatus 

Entry setup for the PC version of the GetStatus function: 
[AH] = GET_STATUS (ExCA calling value = 8FH) 
[AL] = Adapter number 
[BL] = Socket number, this function must be called once for each socket in 

system. 

After exiting from GetStatus: 
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_SOCKET 
Else 
[BH] = Current card state (1 = true) 

Bit 0: Write Protected, reflects the card's write protect switch via the 
WP output 

Bit 1: Card Locked into socket 
Bit 2: Ejection Request, this monitors a socket's eject button 
Bit 3: Insertion Request 
Bit 4: Reflects the output of BVD1 and BVD2 (1 = buy new batteries, 

but not if the card is flash memoryl) 
Bit 5: Battery Low 
Bit 6: Card Ready, reflects the output of the Ready/Busy pin (1 = card 

ready) 
Bit 7: Card Detected, reflects the AND-ed value of the CD1 and CD2 

pins 
[DH] = Socket state (Same function as GetSocket) 
[DL] = Control and indicator state (Same function as GetSocket) 
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ResetSocket 
In general, the reset function enables the user to place a card into a 
power-on default state (or more appropriately, return from an unknown 
state). ResetSocket, as well as GetStatus, can be called after card 
detection as the first step in card installation. Many PC cards, especially 
110 cards, have registers that occasionally need to be reset. For example, 
Intel's Series 2 Flash Memory Cards contain several registers (known as 
Component Management Registers) that can be reset. 

PCMCIA defines two ways of resetting a PC card: 

1. SOFT RESET - Toggle the Reset bit in the PCMCIA-defined 
Configuration Option Register. A client using the card handles 
this operation, not S2. 

2. HARDWARE RESET - Use ResetSocket to invoke a hardware reset 
through the PC card's RESET pin. ResetSocket must complete an 
entire RESET pulse, from reset state and back to the non-reset 
state, ensuring the observance of the minimum reset pulse width. 
In a PCIC implementation, ResetSocket controls the PC Card's 
Reset pin using the PC Card RESET bit (bit 6) of the Interrupt 
and General Control Register (Figure 10.33). Clearing this bit 
activates the RESET signal to the PC card. This signal remains 
active until setting this bit. After returning from ResetSocket, 
some cards may require an additional time delay after reset 
before being accessed. The client must account for this. For 
example, the resetting of Intel's Series 2 Flash Memory Card 
temporarily forces all the devices into a deep sleep mode. After 
being woken up (coming out of reset), a 600 nanosecond delay 
must be met before accessing a flash memory component within 
the card. 
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INTERRUPT AND GENERAL CONTROL REGISTER (READIWRITE) 

IRQ Bita 

IRQ Bit 1 

IRQBit2 

IRQ Bit3 

'------------- INTR Enable 

PC Card Type 

PC Card RESET 

Ring Indicate Enable 

Figure 10.33: Writing to this PC1C Register Activates the PC Card's 
Reset State 

ResetSocket 

Entry setup for the PC version of the ResetSocket function: 
[AH] = RESET_SOCKET (ExCA calling value = 90h) 
[AL] = Adapter number 
[BL] = Socket number 

After exiting from ResetSocket: 
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_SOCKET, NO_CARD 

Vendor Specific Functions 

GetVendorlnfo 
This function returns ASCIIZ information about the vendor 
implementing S2 for the specified adapter. During initialization, this 
information could be displayed on the screen. 
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GetVendorlnfo 

Entry setup for the PC version of the GetVendorlnfo function: 
[AH] = GELVENDOR_INFO (ExCA calling value = 9DH) 
[Al] = Adapter number 
[Bl] = Type (0 = ASCIIZ string describing implementor, other values not defined 

yet) 
[ES]:[(E}DI] = Pointer to client supplied buffer for ASCIIZ string 

After exiting from GetVendorlnfo: 
If [CF] = 1 then [AH] = BAD_ADAPTER, BAD_FUNCTION 
Else 
[DX] = Vendor's Release Number (BCD-encoded) 
[ES]:[(E}DI] = Unchanged pointer, buffer now contains ASCIIZ string. 

Vendor's Release Number 

A few simple rules about this field: 

1. The vendor must update this value with each new release. 
2. The initial release, represented as Release 1.0, uses the value 

0100H (returned in [DX]). 
3. Subsequent releases should update this value according to the 

vendor's customary procedures. 
4. The vendor should reset this value to 0100H when releasing a 

new version that maintains compliance with a new PCMCIA S2 
specification. 

5. The combination of the compliance level returned by the 
GetSSlnfo function and the vendor's release number of each S2 
must be unique. 

For general implementations, the information provided by the ASCIIZ 
string can be anything you want, as long as it fits in the buffer. When the 
client passes the buffer to S2, the first word indicates the buffer size. 
When S2 returns the buffer, the second word tells the client how many 
bytes were passed back in the buffer. An ExCA-compliant S2 must have 
"ExCA Vx.xx" at the beginning of the ASCIIZ string93 . 

93The x.xx refers to the ExCA-compliance level associated with this version of 82 
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VendorSpecific 
With this free-for-all you can do with it what you like. Add custom 
extensions. Hide secret test code. From the client perspective, check the 
GetVendorlnfo function first to confirm the implementor and validate 
the availability of this function. On the other hand, if this function has 
no support, it should return an UNSUPPORTED_FUNCTION error 
code. 

VendorSpeciflc 

Entry setup for the PC version of the 'What_Ever_You_Want_To_CaIUt' function: 
[AH] = VENDOR_SPECIFIC (ExCA calling value = AEH) 
[AL] = Adapter number 
All other registers are vendor specific. 

After exiting from 'WhaLEvecYou_Want_To_CaIUt': 
If [CF] = 1 then [AH] = BAD_ADAPTER, UNSUPPORTEDJUNCTION, or 

anything you want 
Else 
The rest is left for you. 

Protected Mode and Low-Level Access Functions 

GetlSetPriorHandler 
Some systems, as exemplified in the discussion on GetSSlnfo, require 
more than one S2 implementation. The access points to each S2 
implementation must be chained together using the GetlSetPriorHandler 
(GSPHandler) function to locate the links. 

GetlSetPrlorHandler 

Entry setup for the PC version of the GetlSetPriorHandler function: 
[AH] = GET_PRIOR_HANDLER (ExCA calling value = 9FH) 
[AL] = Adapter number 
[BL] = Mode (0 = Get, 1 = Set) 
If [BL] = 1 
[CX]:[DX] = Pointer to handler 

After exiting from GetlSetPriorHandler: 
If [CF] = 1 then [AH] = BAD_ADAPTER, UNSUPPORTEDJUNCTION 
Else 
[CX]:[DX] = Pointer to handler 
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The GSPHandler has several purposes: 

1. Adding a new implementation (as in the case of an add-in socket 
adapter) to a system that already has one installed. When adding 
a new one, use the Get mode to get the prior handler's address 
for the new one to use. When using the INT lAH calling 
method, the adapter number specified in the call determines the 
S2 implementation that handles the call. Each implementation 
passes the call down to the next S2 implementation in the chain, 
until the call reaches the implementation that handles the 
specified adapter. 

2. Hooking a new implementation ahead of, or superceding, a prior 
one. This requires both a Get and Set mode. 

Regardless of the purpose, the GSPHandler function only needs to be 
called once for each S2 implementation. The GetSSlnfo function returns 
information that ties a specific implementation to the adapter(s) it 
supports. As an example, assume that one S2 implementation supports 
adapter numbers 0-3 and another S2 implementation supports adapter 
number 4. So the GSPHandler can be called twice, first with a zero and 
second with a four. 

GetiSetSSAddr 
This pair of functions primarily sets up protected mode access into 
Socket Services. It also sets up the addresses for any data areas used by 
S2. To avoid redundancy, the details of this function can be obtained in 
the PCMCIA specification. 

GetAccessOffsets 
Certain adapters, such as that used in some of Databook's card 
reader/writers94, require a register-based approach and a basic command 
set to access a flash memory card (refer to Chapter 8). The 
GetAccessOffsets function allows the client using this type· of adapter to 
obtain the code location for each of these basic commands, which for 
each S2 will be specific for the associated adapter. 

94See the appendix for a list of card reader/writers. 
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GetAccessOffsets 

Entry setup for the PC version of the GetAccessOffsets function: 
[AH] = GELACCESS_OFFSETS (A1H) 
[AL] = Adapter number 
[BH] = Processor Mode Offset 
[CX] = Number of offsets that fit in buffer 
[ES]:[(E)DI] = Pointer to the buffer for storing the offsets 

After exiting from GetAccessOffsets: 
If [CF] = 1, then [AH] = BAD_ADAPTER, BADJUNCTION, BAD_MODE 
Else 
[DX] = Number of Offsets supported by this S2 
[ES]:[(E)DI] = Pointer to the buffer of offsets 

Acknow/edge/nterrupt 
When a PC Card's status changes (card removal/insertion and ready/busy 
changes, for example), the client utilizing S2 may require notification. 
During the initialization of a flash file system, it can install a status 
change interrupt handler that can be accessed through the host's interrupt 
mechanism. The status change associated with removing the flash 
memory card results in the generation of a system interrupt. This, in 
tum, invokes the flash file system's status change interrupt handler, 
which then figures out what caused the interrupt (GetStatus function). In 
this case, a card removal caused the interrupt. So ultimately, the card 
removal event results in telling the flash file system that it no longer has 
a drive to support, at least until the next card status change event - card 
insertion. But that's another story. 

In a simple, single-socket, single-adapter system, it's fairly easy to 
deduce where the card status change interrupt came from. In systems 
housing multiple sockets and multiple adapters, locating the cause of the 
interrupt may not be so obvious. Let's look at the following steps used to 
analyze how to process a card status change interrupt: 

1. Card status change generates interrupt through pre-configured 
interrupt level (refer to SetAdapter and Adapter Characteristics 
Table for capabilities) 

2. Client's interrupt handler calls Acknowledgelnterrupt function to 
find the interrupt-causing socket. As shown below, 

APPLE INC. 
EXHIBIT 1011 - PAGE 0365



346 Chapter Ten: PCMCIA Software 

AcknowledgeInterrupt returns a bit map representing the sockets 
that have experienced a status change. 

3. Within the AcknowedgeInterrupt function, the software resets 
the adapter hardware to allow it to generate another interrupt, 
should another status change occur. This may be as simple as 
clearing a latch. Acknowledgelnterrupt should also preserve the 
information related to the cause of the interrupt if the adapter 
hardware itself does not support this. 

4. Client prepares the host system's interrupt hardware for another 
interrupt. This may include sending End of Interrupt (EOI) 
commands to the Programmable Interrupt Controller (PIC) or re
enabling the PIC's interrupt mask register. 

5. Once the interrupt-generating socket has been detected, the 
client calls the GetStatus function to determine exactly what 
caused the interrupt. This information could have been stored by 
AcknowledgeInterrupt in a variable that GetStatus uses. In an 
adapter using the PCIC, this information can be found by 
reading the Interface Status Register (see the example in the 
"Defining the Adapter Hardware" section and Figure 10.32). 
How the client processes this information depends on what 
caused the status change in the first place, and the client's 
implementation. 

Acknowledgelnterrupt 

Entry setup for the PC version of the Acknowledgelnterrupt function: 
[AH) = ACKNOWLEDGE_INTERUPT (ExCA calling value = 9EH) 
[AL) = Adapter number 

After exiting from Acknowledgelnterrupt: 
If [CF) = 1, then [AH) = BAD_ADAPTER 
Else , 
[CX) = Socket Bit Map (Bit ° = Socket 0, Bit 1 = Socket 1, etc.) 

Some additional points need to be made when processing interrupts: 
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1. S2 should minimize the amount of time interrupts are disabled. 
However, never enable interrupts during the 
Acknowledgelnterrupt function. This will avoid confusion 
during interrupt processing. 

2. Within some systems, adapters may share a status change 
interrupt. Acknowledgelnterrupt may be called for an adapter 
even if a status change has not occurred on the adapter specified 
in the input parameter. In this case, the bit map returns with all 
bits equal to zero. 

Detecting Card Insertion 

Let's add a little excitement and say that we've determined that a PC card 
is not present. How should we prepare for the big event - card insertion? 
A moment that every socket lives for! A system may use several 
methods for detecting card insertion: 

• Link into the system timer interrupt (this gets a call every 55 
milliseconds in the PC) and periodically call the GetStatus function. 
This method eliminates the need to invoke hardware interrupts, which in 
turn reduces the complexity of the software and adapter hardware. 
Continuous polling consumes CPU bandwidth; the downside to this 
method. Also, other subsystems may be sharing the system timer 
interrupt, resulting in increased delays. 

• Enable the status change interrupt. This hardware dependent 
operation will be relying on, and simplified by, the use of S2. In 
particular, the SetSocket and SetAdapter functions will be used. 

Error Detection and Correction Functions 

The functions within this category support error detection and correction 
(EDC) mechanisms on the socket adapter. Since the majority of EDC 
mechanisms are implemented within the flash memory card itself (such 
as a flash memory drive interfaced to the system using the PCMCIA
ATA specification), consider these functions to be optional and not a 
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requirement of ExCA compliance. A discussion of the individual EDC 
functions can be found in the PCMCIA specification. 

SOCKET SERVICE DESIGN CONSIDERATIONS 
AND BENEFITS 
The original flash file systems can be viewed as a big "module", as they 
were written basically as one piece of code containing all functional 
categories. By including S2 as part of your system's software solution, it 
removes the flash file system's (or client's) dependency on a hardware 
specific implementation. 

S2 can be obtained in two ways: 

1. Write your own - Use this approach for after-market 
installations of S2 where it can be loaded as a TSR or through 
CONFIG.SYS. Also, if you write the BIOS for your systems, 
you have the ability to incorporate S2 (which you can also write 
yourself) directly into the BIOS. 

2. The BIOS vendor - Alternatively, if you employ the services of a 
BIOS vendor, for an additional fee, S2 (as well as the other 
PCMCIA-defined pieces of software) can be included with your 
system's BIOS95. 

The latter method of obtaining S2 leads us to an important consideration 
- Would you like to use a customized or off-the-shelf version? The PC 
BIOS vendors listed in the Appendix current provide different versions 
of S2 for a variety of hardware interfaces. 

Whether you write your own S2 or purchase it through third party 
vendors, ensure that the implementation uses minimal system RAM, 
especially when built into the BIOS. The S2 specification has been 
written under this consideration and many of the PCMCIA interface 
controllers have been designed to accommodate this. These devices 

95Card Services can be obtained in the same way. 
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accomplish this by using read/write registers that not only perform 
specific functions but also provide status information. In developing S2 
(it should also go without saying), code should also be compact and have 
optimized performance. 

Testing Your Socket Services Implementation 

When testing your S2 implementation, you should check for the 
following characteristics96 : 

• The function calls do not fail unexpectedly. 
• All register contents must be preserved, except [AH] and other 

registers used to pass back parameters from the function. 
• Invalid requests must be handled properly. 
• Functions must execute quickly and minimize the time interrupts 

are disabled. 

THE CARD INFORMATION STRUCTURE 
As quoted in the PCMCIA PC Card Standard Specification Release 2.0, 
"The PC Memory Card International Association was formed with the 
goal of promoting interchangeability of Integrated Circuit Cards among 
a variety of computer and other electronic products". The specification 
established by PCMCIA defined three sections: 

1. The Card Physical, for the mechanical dimensions and 
tolerances for cards and connectors. This standard allows 
different package form factors,97 

2. The Card Interface, for the electrical interface of the card, 
including signal and pinout definitions for both memory and I/O 
cards, and 

3. The Card Software, addressing the organization of data on the 
card (unrelated to the file storage format). The card software 
Metaformat is divided into 5 levels: 

96Calling each function with all possible valid input parameters and the worst-case values for 
invalid parameters. 
97The Appendix contains the measurements for Type I, Type II and Type III cards. 
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1. Physical Layer 
2. Basic Compatibility Layer 
3. Data Recording Format Layer 
4. Data Organization Layer, and 
5. System-Specific Layer. 

These layers pertain to levels of compliance. The Card Information 
Structure (CIS) accommodates a requirement of the Basic Compatibility 
Layer. The CIS provides card-specific information to the host system 
such as the card size, types of components, speed, system resource 
requirements, etc. The open nature of the PCMCIA standard allows a 
card to comply at the Basic Compatibility Layer without being required 
to comply at any higher level. This allows a card to be used in a wide 
range of environments and, therefore, places a great deal of significance 
on the CIS98. 

Although it won't be discussed in detail here (because it currently lacks 
widespread usage), the ultimate goal of the Data Organization Layer 
makes it worth briefly mentioning. This standard allows a special card 
formatting utility to divide the flash memory card array into multiple 
functions, such as a boot record or XIP area (Figure 10.34 provides two 
examples of this partitioning capability). 

Accessing the Card Information Structure 

The memory card's address space is divided into an Attribute and 
Common Memory Plane selected via the REG pin. Common Memory 
handles direct-memory access read and write operations maintained in 
the array of flash memory components. The Attribute Memory Plane 
contains the CIS and PCMCIA-defined card configuration registers. It is 
generally contained within separate devices in the card (e.g., ASICs), but 
is only required to occupy a logically distinct address plane from 
Common Memory. The Register Select pin (REG, pin 61) selects 
between the Common Memory Plane (REG = one) and the Attribute 
Memory Plane (REG = zero). Refer to Figure 10.35. 

98It also means that cards may be formatted with different file data structures; this leads to 
incompatibilities when transferring these cards between systems. 
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Figure 10.34: Flash Memory Card Partitioning Examples 
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Figure 10.35: Select between a Flash Memory Card's Common and 
Attribute Memory Planes using the REG Signal 
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The CIS may be stored m flash memory cards using three basic 
alternatives: 

1. No CIS. This card does not truly comply with PCMCIA 2.0 
compatibility. 

2. A separate EEPROM device within the card, requires the card's 
user to program the correct and necessary tuples. This provides 
flexibility but requires more work on behalf of the developer 
building the card format utility. 

3. Hardwired by the card vendpr into the card's ASICs. This 
approach removes the responsibility from the card's format 
utility. On the other hand, this approach has an element of risk 
involved due to potential errors and changing specifications. It 
also means that the format utility must use a portion of the 
Common Memory CIS if additional CIS information is desired. 

PCMCIA requires the CIS in the Attribute Memory Plane to be located 
at even addresses; invalid data will be obtained when reading from an 
odd-byte location. A CIS jump to Common Memory may be provided, 
where additional CIS information can be stored in both even and odd 
bytes. 

Tuples - The Basic CIS Elements 

The CIS, a variable length chain (or linked-list), consists of data blocks 
called tuples, starting at address zero of the Attribute Memory Plane. 
Table 10.11 displays the basic format of the PCMCIA-defined tuple. 

BYTES 

0 TPL CODE 

1 TPL LINK 

n Bytes specific 
to this tuple 

Table 10.11: Tuple Format 
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• Byte 0 of the tuple contains the tuple code (TPL_CODE), a 
tuple's unique identifier. 

• Byte 1 (actually address 2) of each tuple contains a tuple link 
(TPL_LINK) to the next tuple in the tuple list. The TPL_LINK 
byte equals the number of bytes remaining in the tuple after the 
TPL_LINK (Figure 10.36). For example, if a tuple consists of a 
total of five bytes, byte 1 (TPL_LINK) would contain the value 
03H; the total number of tuples (5) minus the first two bytes 
dedicated to the tuple code and tuple link. 

Tuples Connected 
Using:Link-List' 

CARD INFORMATION STRUCTURE 

Tuple Information 

Link 

[ 
Tuple 10 

Tuple Information 

Link 

--. Tuple 10 

Tuple Information 

'--- Link 

~ Tuple 10 

Tuple Information 

'--- Link 

Tuple 10 

Figure 10.36: A Tuple is the Basic Data Structure in the CIS 
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Some basic rules of tuple design: 

• In general, each byte in a tuple represents another piece of 
information. Different tuples, characterized by different tuple 
codes, may have different lengths. 

• Each tuple has a maximum length of 256 bytes (limited by the 
size of the link field data size). 

• The tuple code of OFFH, anywhere within the tuple, marks the 
tuple's end. For example, if byte 5 has the value OFFH, that byte 
is the last byte in the tuple. 

• Some tuples have an end-of-tuple byte, and others do not. 
Typically, the variable length tuples will use an end-of-tuple 
byte. Therefore, CIS-parsing software must be able to handle 
tuples with and without end-of-tuple bytes. 

• Tuple bytes may be further sub-divided into tuple byte fields or 
just fields. PCMCIA defines specific fields (a range of bits 
within a byte) for certain tuple bytes. For example, byte 0 of the 
Device ill tuple has three fields; Device Speed in bits 0 through 
3, write protect switch (WPS) in bit 5, and Device Type Code in 
bits 4 through 7. 

Note that the PCMCIA PC Card Standard 2.0 document uses the terms 
tuple, tuple byte, tuple list and field rather loosely. For example, tuple 
may refer to a single tuple, to the linked-list of tuples or to one of the 
bytes within a tuple. Tuple chain is synonymous with tuple list. 
Likewise, field may refer to one or more bits in a tuple byte, or it may 
refer to one of the bytes within a tuple. Because of these inconsistencies, 
pay attention to the context in which these terms are used. 

Tuple Processing 

PCMCIA makes several recommendations for software designers who 
write code that parses the CIS. (From the Microsoft Flash File System 
standpoint, the CARDDRV.EXE piece contains this code.) These 
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recommendations must be used to prevent incompatibilities between 
systems: 

. • The first tuple starts at address 0 of the Attribute Memory Plane. 
This tuple must be the Device Information Tuple, Null Control 
Tuple, or End of List Tuple. 

• PCMCIA recommends that an unknown tuple code be ignored. 
The first two bytes which include the tuple code and tuple link 
may be read. No other bytes should be read, since they may 
contain active registers that could be altered by reading them. 

Tuple Descriptions 

The PCMCIA specification has defined tuples that describe many 
different aspects of a PC card. Staying on track with the subject of this 
book, we will focus on the tuples that relate directly to flash memory 
cards. Table 10.12 lists the tuples that should be implemented in a flash 
memory card, as a bare minimum99: 

TUPLE TUPLE CODE TUPLEID 

Device Information CISTPL_DEVICE 01H 

CISTPL_DEVICE_A 17H 

Levell Version/Product CISTPL_ VERS_l 15H 
Information 

Configuration CISTPL_CONF lAH 

Configuration Table Entry CISTPL_CE lBH 

JEDEC Device ID CISTPL_JEDEC_C 18H 

CISTPL_JEDEC_A 19H 

Device Geometry Info CISTPL_DEVICEGEO lEH 

CISTPL_DEVICEGEO_A lFH 

Table 10.12: Minimum Tuple Requirements 

99 A minimum requirement of ExCA. 
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THE DEVICE INFORMATION TUPLE 

A tuple code of 01H indicates that this tuple describes the components 
of the Common Memory address space. Most flash memory cards 
contain only one type of memory technology in Common Memory, and 
therefore only contain one Device Information Field. Some cards 
contain mixtures of memory technologies (e.g., RAM, ROM, FLASH). 
A PCMCIA card containing a mixture of memory technologies, such as 
RAM and FLASH, requires an equivalent number of Device Information 
Fields. 

A tuple code of 17H pertains to Attribute Memory. Typically, flash 
memory card vendors use ROM or EEPROM to store the card's CIS in 
Attribute Memory. Cards that use EEPROMs have a bit more flexibility 
but usually ship blank. The OEM or card user then has the responsibility 
of programming the correct information into the CIS. However, it also 
means that the EEPROM can be used for something other than a CIS (as 
in the case of a proprietary application). 

OFFSET DESCRIPTION VALUE 

OOH TUPLE CODE = CISTPL_DEV 01H 

02H TPL_LlNK 03H 

04H DEVICE 10 = FLASH,150ns 53H 

DEVICE 10 = FLASH,200ns 52H 

06H DEVICE SIZE = 4M OEH 

DEVICE SIZE = 10M 26H 

DEVICE SIZE = 20M 4EH 

08H END OF DEVICE TUPLE FFH 

Table 10.13: Sample Device Information Tuple 

Device /D (Table 10.14) 
PCMCIA defines the device ID as the device type (Flash EPROM, UV 
EPROM, DRAM, etc.) and access time. According to Table 5-14 of the 
PCMCIA 2.01 specification, Flash EPROM has a device type of "5". 
The Device Speed Field depicts the device access time and the codes can 
be found in PCMCIA's Table 5-12. The specification also has provisions 
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for an extended speed byte, usually equal to zero, indicating that it can 
be ignored. The extended speed field handles speed granularities (e.g., 
135ns, 90ns, etc.) not explicitly listed in PCMCIA's Table 5-12. 

The WPS bit within the Device ID byte indicates whether the card's 
mechanical write protect switch has an effect on the devices in the card. 
A zero value means that the write protect switch and WP signal indicate 
the 'writability' of the flash devices in the card. A value of one in this 
field indicates always-writable flash devices. In this case, a system can 
use the write protect capability (if available), determined by the Window 
Characteristics Table (InquireWindow of Socket Services). 

Bit7 I Bit6 I Bit5 I Bit4 Bit3 Bit2 I Bit1 I BitO 

Device Type Code WPS Device Speed 

Flash EPROM = 5 0= DSPEED_200ns = 2H 
Writable DSPEED_150ns = 3H 

Table 10.14: Sample Device ID Byte 

Device Size (Table 10. 15) 
The Device Size byte (PCMCIA Table 5.15), consisting of an 
addressable unit field and a size code field, provides information to 
determine the card's size, or density. The size code merely provides a 
value that gets multiplied by the addressable unit. The address unit field, 
more appropriately named a "size-code multiplier", bears no relationship 
to the devices in the flash memory card. As an example, assume a size 
unit of 2MB (code value of 6). For a 20 Mbyte card, this unit would 
require an addressable unit, or multiplier of 10. The 5 bits corresponding 
to the "# of ADDRESS UNITS - I" allow for a maximum card density of 
64 Mbytes (2Mbytes X 32). 
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Bit? I Bit6 I Bit5 I Bit4 I Bit3 Bit2 I Bit1 I BitO 

# of ADDRESS UNITS - 1 SIZE CODE 

4 Megabyte Card = (2-1) = 1 Code = 6 Indicates Unit Size 

10 Megabyte Card = (5-1) = 4 
Ranges From 2M to 64 Mbytes 

20 Megabyte Card = (10-1) = 9 

Table 10.15: Sample Device Size Byte 

THE DEVICE GEOMETRY TUPLE 

The Device Geometry Tuple (Table a0.16) provides information for 
flash file systems regarding the flash memory card's internal low-level 
formatting structure. Although this tuple can be implemented for 
randomly rewritable SRAM or EEPROM, the flash memory technology 
with its large-block erase functionality introduces additional needs for 
device information with respect to erase blocking and partitioning 
boundaries. 

The DGTPL_BUS field indicates the system bus width, where the value 
(n) equals 2(n-l) bytes. N = 2 for the standard PCMCIA-defined, 16-bit 
bus. This entry accommodates the possibility of wider-width cards in the 
future and/or allows file systems to use this tuple structure in non
PCMCIA memory card environments (e.g., resident flash memory 
arrays). 

The DGTPL_EBS field indicates the erase block size, where the value 
of 2(n-l) equals the address increments of DGTPL_BUS-wide accesses. 
For example, a value of llH (2(16)) represents a 64KWord address 
increment for the 16-bit wide card. This corresponds to the 64 kbyte 
erase blocks of Intel's 28F008SA devices within the Series 2 Card, 
paired to provide 64KWord erase blocks. 

The DGTPL RBS and DGTPL WBS field indicate the read block size 
and write blo~k size, respectively. The value of 2(n-l) equals the address 
increments of DGTPL_BUS-wide accesses. For example, a value of 01H 
(2(0)) represents 1 block address increment. In other words, any address 
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within the entire card's memory array can be read or written without 
using special read or write modes such as paging. This is the typical 
situation (refer to Chapter 7 for more information on writing to devices 
and cards). 

DGTPL_PART is a special partitioning information field based on 
physically distinct segments of the memory array(s), such that its 
contents cannot be affected by read/write/erase operations in adjacent 
partitions. This field indicates the number of electrically-isolated 
partitions within a device. As an example, a tuple value of 03H (2(p-1) 
or 4) yields the number of completely electrically isolated blocks. 

In practice, apply this information when storing "permanent" code or 
data, such as that used for XIP software, boot code or special card 
formatting data (Figure 10.34). With some flash memory devices, 
repeated writes and erases of adjacent blocks may eventually disturb the 
"permanent" contents, unless fully electrically isolated from one another. 

DGTPL_HWIL (FL_DEVICE_INTERLEAVE) is used where card 
architectures employ a multiple of 2(q-1) times interleaving of the entire 
memory arrays or subsystems with the above characteristics. Non
interleaved cards have values of q = 1. The value q = OOH is not 
allowed. 

The DGTPL_EBS, DGTPL_RBS, and DGTPL_ WBS (address 
increment- or bus operation-based values) are multiplicative of the 
DGTPL_BUS entry (denoting bus width) to define the non-interleaved 
physical memory erase-, read-, and write-block sizes in bytes, 
respectively. The DGTPL_HWIL value for cards employing hardware
interleaved (i.e., banks of) memory arrays or subsystems (where 
DGTPL_HWlL _ 2) is mUltiplicative of the resulting non-interleaved 
erase-, read-, and write geometries. The product of these three geometry 
information layers yields the resulting card-level minimum physical 
block geometries. 
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OFFSET DESCRIPTION VALUE 

OOH TUPLE CODE = CISTPL_DEVICEGEO lEH 

02H TPL_LlNK 06H 

04H DGTPL_BUS 02H 

06H DGTPL_EBS llH 

OSH DGTPL_RBS 01H 

OAH DGTPL_WBS 01H 

OCH DGTPL_PART 03H 

OEH FL_DEVICE_INTERLEAVE 01H 

Table 10.16: Sample Device Geometry Tuple100 

THE JEDEC IDENTIFIER TUPLE 

Use the Jedec Identifier Tuple to determine the device type (JEDEC 
component ID and manufacturer ID) in the memory card. The devices 
within many flash memory cards also support an identifier read mode 
used to obtain the same information without using a CIS. However, if 
possible, use the CIS because it provides a more standardized method 
for determining device types in PCMCIA cards. 

The JEDEC ID tuple is the only data CIS parsing software can use to 
determine the size of the flash memory devices within a card. This may 
present a problem, because cards containing unknown devices (i.e., 
present or future) will not be able to match-up with a value contained in 
the CIS parser's lookup table. Although this shouldn't be a problem in a 
read-only situation, it can be a problem with bulk and block erase flash 
when the physical device boundaries must be known for writes and 
erases. (Oops!) The flash card driver, described later in this chapter, 
represents one solution to this issue. 

lOaThe sample CIS uses the format for Intel's Series 2 Flash Memory Card 
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OFFSET DESCRIPTION VALUE 

1AH CISTPL_JEDEC 18H 

1CH TPL_LlNK 02H 

1EH INTEL JEDEC ID 89H 

20H 28F008SA JEDEC ID A2H 

Table 10.17: Sample JEDEC Identifier Table 

THE CONFIGURATION TUPLE 

The fields in this tuple describe the interfaces supported by the card and 
configurable registers within the card (Table 10.18). Most flash memory 
cards do not support this tuple because they generally consist of nothing 
more than an interface ASIC and a memory arraylOl. The flash memory 
cards that do support this tuple include Intel's Series 2 cards and some 
flash memory cards using a PCMCIA-ATA interface. 

The TPCC _ SZ byte, referred to as the Size of Field Byte, consists of 
several bit fields, as shown below: 

7 I 6 5 I 4 I 3 I 2 1 I 0 

TPCC_RFSZ- TPCC_RMSZ - Value indicates number of TPCC_RASZ-
Reserved for future byte addresses used by TPCC_RMSK Value indicates 
use, must equal O. minus 1. Flash cards that support this number of byte 

function typically have a 0 in this field addresses used by 
indicating only 1 byte is required by the TPCC_RADR 

presence mask. minus 1. 

Table 10.18: Size of Field Byte 

The TPCC _LAST byte contains the Configuration Index Number of the 
last configuration described in the Card Configuration Table. For 
example, a value of zero indicates the absence of a Card Configuration 
Table. 

lOlIlO Cards are the predominant users of this field. 
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The Configuration Registers Base Address in REG Space 
(TPCC_RADR) field contains the base address of the card's PCMCIA
defined configuration registers. The length of this field can be from one 
to four bytes long and is determined from the two bits of the 
TPCC_RASZ field of the TPCC_SZ byte. The address is displayed from 
low order bits to high. As an example, a base address of 4000H would 
be displayed in the first and second bytes of TPCC_RADR as OOH and 
40H, respectively. 

The Configuration Register Presence Mask (TPCC_RMSK) tuple field 
contains a bit map corresponding to the presence (one) or absence (zero) 
of the Configuration Registers described in Section 4-15 of the PCMCIA 
2.01 specification. As an example, a value of 3 (i.e., bits 0 and 1) 
indicates the presence of two registers, the Configuration Option 
Register and the Configuration and Status Register. 

OFFSET DESCRIPTION VALUE 

C6H CISTPL_CONF 1AH 

C8H TPL_LlNK 06H 

CAH TPCC_SZ 01H 

CCH TPCC_LAST OOH 

CEH TPCC_RADR OOH 

DOH TPCC_RADR 40H 

D2H TPCC_RMSK 03H 

D4H CISTPL_END FFH 

Table 10.19: Sample Configuration Table 

THE CONFIGURATION-TABLE ENTRY TUPLE 

This tuple supports miscellaneous (and sometimes unusual) card 
functions such as special timing and power requirements, system I/O and 
memory requirements and an interrupt structure. Currently, this field is 
not implemented in any flash memory cards but in the future it will 
support things such as dual voltage operation (3.3V and 5.OV) and 
special power requirements. 
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THE END-OF-LiST TUPLE 

Simply stated, this tuple marks the end of a tuple chain and causes the 
most confusion because when system software encounters it, several 
actions can be taken: 

• If a long-link tuple was encountered previously in the chain, 
continue processing at the location specified in the long-link 
tuple. 

• If processing the CIS and neither a long-link nor a no-link tuple 
were seen in this chain, then continue processing as if a long
link tuple to address 0 of Common Memory space were 
encountered. This approach allows the interpretation of custom 
card information that may have been formatted into the card's 
Common Memory Plane (e.g., file system formatting, boot 
partition, etc.). For validation of the implied long-link tuple to 
Common Memory, the tuple chain in Common Memory must 
begin with a valid Link Target tuple. Encountering an invalid 
Link Target tuple signifies the assumed end of the CIS. 

OFFSET DESCRIPTION VALUE 

OOH FFH 

Table 10.20: Sample End-oj-List Tuple 

CARD SERVICES 
The subject of Card Services, like Socket Services, could actually 
encompass a whole book in and of itself. As a matter of fact, Card 
Services takes up almost 150 pages in the PCMCIA specification. The 
task of developing a complete Card Services implementation consumes 
more time and effort than is available for all but the largest 
manufacturers. Therefore, we recommend that if you plan on using Card 
Services, contact your favorite BIOS vendor and buy it102. However, for 
non-PC implementations, only proprietary Card Services solutions exist 

102 A list of BIOS vendors supporting Card Services can be found in the Appendix. 
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today and you must therefore write Card Services yourself (or hire a 
consultant). 

What is Card Services? 

Fundamentally, Card Services monitors the way in which PC cards and 
their applications utilize, and interface to, the host system. It primarily 
benefits systems where a variety of PC cards will continuously be 
swapped in and out of the same socket. The following example best 
portrays this situation: 

A socket contains a flash memory card. The system has installed flash 
file system software. Furthermore, the flash memory card maps into a 64 
kbyte window in the host's memory map. Now, remove the flash memory 
card and insert a fax card. The need for the 64 kbyte window goes away, 
but now the fax card requires some I/O ports. Simultaneously, the flash 
file system must be notified that it doesn't have a card anymore. 
However, the user loads up fax software that must be hooked up with the 
fax card. Card Services keeps track of all this activity and negotiates the 
available system resources to service them. 

As shown in Figure 10.37, Card Services acts as the interface between 
clients (applications, device drivers) and PC Cards, sockets and system 
resources. PCMCIA describes this interface as a client/server model; 
Card Services is the server and the application programs, device drivers 
and utility programs represent the clients. 

Card Services consists of five functional categories: 

1. Client Services provides support for client callback registration 
with Card Services to allow event notification, such as card 
removal or insertion. 

2. Resource Management maintains constant knowledge of the 
available system resources to allocate for the use of PC Cards. 
These resources include memory and I/O address space and 
interrupts. 
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I Client I I Bulk Memory Client I 

• -I Client Services I Client Utilities I 
Resource 

Management 

.1 Resource Management ~ Table 

1-.---
J Memory I I Advanced I Bulk Memory Services L Technology 

Client Services I -I Driver 

Card Services 

1 ~ 
Sockel Services I 

i L 

Adapter 

L-.-J 

PC PC 
Card Card 

Figure 10.37: Card Services Interfaces between Clients (Applications, 
Device Drivers) and PC Cards, Sockets, and System Resources 

3. Client Utilities primarily provide a common access to the Card 
Information Structure of PC cards. In other words, the Client 
Utilities contain code that a client may use to read tuples from a 
card. This eliminates redundant code within each of the clients. 

4. Bulk Memory Services provides basic read/write/copy/erase 
functionality for RAM cards; it does not accommodate flash 
memory algorithms. It calls upon a special memory technology 
driver to handle flash memory cards. 
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5. Advanced Client Services provides a miscellaneous set of 
functions for clients with special needs. An example is a special 
utility that uses this service to obtain direct access to socket 
services. 

Do You Need Card Services? 

Card Services, like all the other PCMCIA software components, 
promotes an open system. It adds flexibility while, at the same time, acts 
as a watchdog to ensure that PCMCIA-aware applications do not violate 
system resource integrity. In a controlled environment (i.e., embedded 
applications), flexibility may not be necessary and simplifies the 
restriction of what software and/or PC cards get plugged into a socket. 
These systems may not need Card Services and can avoid development 
costs and system resources used to load it. 

FLASH CARD MEMORY TECHNOLOGY DRIVERS 
From a read standpoint, most flash memory cards appear to function 
about the same as ROM cards! In other words, they don't require any 
special algorithms to read from them. But the fact is, all flash memory 
cards are not created equal, especially from a program and erase 
standpoint. Flash memory programming and erase algorithms can differ 
significantly, depending on the card manufacturer and the type of flash 
memory devices in the card (refer to Chapter 3). 

At the beginning of this chapter, we described the first-generation 
monolithic flash file system model (Figure 10.5). In such a system, the 
low-level driver, (CARDDRV.EXE), contained all the code to interface 
the flash file system and the hardware (socket adapter, system memory 
and flash memory card). It even included the program and erase 
algorithms for the flash memory cards. After writing this monolithic 
piece of software and installing it in the computer system, the algorithms 
it contained dictated the specific flash memory cards it supported. An 
unsupported flash memory card could probably be read, but any attempts 
to program or erase it would probably end up failing, for one reason or 
another (due to differences in algorithms). 
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To include support for additional cards obviously required a code 
modification to incorporate the required software algorithms. This was 
never simple, except if the system hadn't shipped yet. But if the system 
containing this flash file system software was already in the field, how 
easy would it be to upgrade it to include the additional card support? 
This was one of the biggest limitations of the monolithic file system. 

What if there was a way to hook the new flash memory card algorithms 
to the main body of code without any modifications? What if installing 
new flash card algorithms was as simple as inserting the new card into 
the socket? The flash card driver must take this approach to allow 
systems to function with new cards. 

Why Support New Cards? 

Face it, building in the ability to support additional flash memory cards 
requires a nontrivial amount of effort. What is the motivation? Some 
OEMs will build a computer and ship it with a certain level of flash 
memory card support (i.e., drivers that only support a limited number of 
vendor's cards). These same OEMs do not care about supporting other 
cards. However, new memory cards can provide higher performance, 
higher densities and increased functionality. This lack of obsolescence, 
in turn, may make a computer system more desirable to end users, which 
ultimately provides a competitive advantage. On the other hand, being 
able to support new cards, gives the OEM an opportunity to make more 
money by selling these cards on the after-market. 

Flash Card Driver Functions 

A flash card driver only contains code that deals specifically with the 
card's functionality. It has complete knowledge of the card's program 
and erase algorithms and any special control registers the card may 
contain. This driver knows what it takes to optimize, or fine-tune, any 
operations within the card. Fundamentally, a flash card driver manages 
four types of operations in association with a flash file system: 

• Read - transfers specified bytes from the flash memory card to a 
system buffer 

• Write - transfers specified bytes from a system buffer to the 
flash memory card 
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• Copy - transfers specified bytes from one location to another 
within the same flash memory card, as seen when doing block
to-block transfer during flash file system cleanup 

• Erase - restores a block or chip to an erased state (i.e., all ones) 

Interfacing to the Flash Card Driver 

In a PCMCIA-compatible software implementation (Figure 10.6), Card 
Services provides the interface between the flash file system and the 
flash card driver (referred to as the Memory Technology Driver, or 
MTD). Any time the file system needs to perform one of the operations 
listed above, it makes its request to Card Services, which in turn calls 
the MTD. To fit this role of interfacin1g to Card Services, all MTDs must 
implement a standardized interface, as described in the PCMCIA 
specification. 

A system using proprietary software may still utilize similar concepts for 
linking a flash card driver to the flash file system. This MID can be 
written as a separate device driver that the flash file system software can 
call into for the basic read/write/copy/erase functions. Perhaps the new 
driver can be written in such a way as to overlay on top of the original 
driver it replaces (i.e., as a set of subroutines) during run time. A 
proprietary solution has the advantage of allowing the flash card driver 
interface to be tailored explicitly for the system. Whatever the interface, 
it should be clear that the flash card driver has to be a unique piece of 
code for each type of flash memory card. 

Installing the Flash Card Drivers 

The biggest challenge in MTD integration lies in determining how the 
new flash card driver gets loaded or installed into the system. 
Fundamentally, when a different flash memory card is distributed or sold 
by the computer OEM, the supporting driver must come along with it, 
somehow. How that driver gets loaded into the system and/or where it 
resides depends on the system's memory architecture, as depicted in 
Table 10.18. 
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Case Hard Drive Floppy Drive Flash Disk ROM Disk 

1 No No No Yes 

2 No No Yes No 

3 Yes External Don't Care Don't Care 

4 Yes Yes Don't Care Don't Care 

Table 10.21: System Memory Architectures 

Installing the new driver into the system can be accomplished in several 
ways, depending on the system's capabilities: 

• Modem the new driver from a bulletin board - If the system 
doesn't have a built-in modem, the user has to buy a modem just 
to use a flash memory card. No way! 

• Use a serial port and a link to a host computer (i.e., LapLink) -
Again, not always the most convenient solution. 

• Floppy disk - OEM must distribute this with each card, and the 
system must support floppy disks. 

• Flash memory card - Except for the Case 4 system architecture 
(with a built-in floppy drive) the flash card driver on the card 
provides the most general solution. It can deliver the most 
convenient approach, especially when it has the ability to be 
automatically pulled off the card without user intervention. The 
mechanism to accomplish this could proceed as follows (Figure 
10.37): 

1. User inserts a new card which generates a card insertion event. 

2. Software interprets the CIS to identify the card. Two possibilities 
exist: 
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SOCKET ADAPTER 

1) Card Inserted 
r-........ ......=.-................. 

2) Interrupt To 
Host Signifies ...... -+---------t 
Card Insertion 
Event: 

3) Interpret CIS: 
a) Use Existing 

Card Support 
b) Unsupported 

Card 

4) Read Driver Fro 
Card: 
a) Load Into System RAM 
b) Install On Internal Hard 

Drive Or In Resident 
Flash Memory. 

C Flash 
I Card 
S Driver 

Figure 10.38: Installing a New Flash Card Driver 

a. The software already in the system supports the card. 
Remember, there can be some flash memory card support 
integrated into the flash file system software. 
b. An unrecognized card needs a new driver. 

3. A special loader utility reads the flash card driver from the flash 
memory card. Two possibilities exist: 
a. A Case 1 system has no way to permanently store the new 
driver (i.e., ROM-based, no hard drive, etc.). The flash card 
driver must be pulled from the card and loaded into system 
RAM for execution each time it is inserted (a temporary 
installation) . 
b. System Cases 2-4 have more flexibility. The flash disk or 
hard disk in these systems can "permanently" store the flash card 
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driver after pulling it off the card. A Case 4 system provides the 
easiest solution for installing the flash card driver. A floppy disk 
containing the driver can be shipped along with the new flash 
card. Install the floppy disk, copy the file to the hard drive and 
load it at run time along with the rest of the flash file system 
software. However, it may be just as convenient to leave the 
driver on the card and automatically pull it off each time. 

SUMMARY 
This chapter was written to provide you with insight and an appreciation 
for the software components that can be used in a system incorporating a 
PCMCIA socket. Actually, much of the PCMCIA software can even be 
used in a system that has resident, non-removable flash memory. 
Regardless, the components and their most important functions include: 

• Socket Services - Software specific to the host adapter hardware, 
much like system BIOS. 

• Card Services - Manages system resources, such as memory 
windows and 110 ports 

• Memory Technology Drivers - Device drivers containing the 
flash memory program and erase algorithms, either resident in 
the system or on the card itself. They optimize the performance 
of the flash memory card. 

• Card Information Structure - Data structures "permanently" 
stored in the flash memory card (and PC cards in general) that 
describe the features of the card. 

At this point, you may also be making the decision whether to buy or 
build. The Appendix lists some of the sources for purchasing the 
software. If you decide to write your own, you must first decide what is 
needed. Don't limit yourself, decide this with a forward-looking attitude. 
Enjoy the challenge! 
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Vendors 

The following list is a representative summary of flash memory 
component manufacturers. Due to the rapid change in product line items, 
it is best to contact these companies directly for product-specific 
information. 

Advanced Micro Devices Inc. 
Box 3453 
Sunnyvale, CA 94088 
(800) 222-9323 
(408) 749-5703 

Atmel Corp. 
2125 O'Neil Dr. 
San Jose, CA 95131 
(408) 441-0311 

Catalyst Semiconductors, Inc. 
2231 Calle de Luna 
Santa Clara, CA 95054 
Tel: (408) 748-7700 
Fax: (408) 980-8209 

Fujitsu Microelectronics Inc. 
IC Division 
3545 N. First St. 
San Jose, CA 95134 
(800) 642-7616 
(408) 954-0616 

Hitachi America Ltd. 
Semiconductor and IC Division 
2000 Sierra Point Parkway 
Brisbane, CA 94005 
(800) 448-2244 
(415) 589-8300 

Intel Corp. 
Literature Center 
Box 7641 
Mt. Prospect, IL 60056 
(800) 548-4725 

Mitsubishi Electronics of 
America 
1050 E. Arques Ave. 
Sunnyvale, CA 94086 
(408) 730-5900 

NEC Electronics Inc. 
Box 7241 
Mountain View, CA 94039 
(415) 960-6000 
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Oki Semiconductor 
785 N. Mary Ave. 
Sunnyvale, CA 94086 
(408) 720-1900 

Samsung Semiconductor 
3725 N. First Street 
San Jose, CA 95134 
(408) 954-7274 

SGS-Thomson 
1000 E. Bell Road 
Phoenix, AZ 85022 
(602) 867-6100 

Texas Instruments Inc. 
Box 172228 
Denver, CO 80217 
(800) 477-8924 

Toshiba America Electronic 
Components Inc. 
9775 Toledo Way 
Irvine, CA 92718 
(800) 879-4963 
(714) 455-2000 
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Vendors 

The following list is a representative summary of flash memory card and 
drive manufacturers. Due to the rapid change in product line items, it is 
best to contact these companies directly for product-specific 
information. 

Advanced Micro Devices, Inc 
P.O. Box 3453 
Sunnyvale, CA 94088-3453 
Tel: (408) 749-5981 
Fax: (408)749-3240 

AMI ASIS Division 
200 South Main St. 
Pocatello, Idaho 83204 
Tel: (208) 234-6661 
Fax: (208) 234-6695 

Atmel Corporation 
2125 O'Nel Drive 
San Jose, CA 95131 
Tel: (408) 441-0311 
Fax: (408) 436-4300 

Catalyst Semiconductors, Inc. 
2231 Calle de Luna 
Santa Clara, CA 95054 
Tel: (408)748-7700 
Fax: (408) 980-8209 

Centennial 
37 Manning Road 
Billerica, MA 01821 
Tel: (508) 670-0646 
Fax: (508) 670-9025 

Computer Modules, Inc. 
2350 A W alsh Ave, 
Santa Clara, CA 95051 
Tel: (408) 496-1881 
Fax: (408)496-1886 
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Enhance Memory Products, Inc. 
18720 Oxnard St. #102 
Tarzana, CA 91356 
Tel: (818) 343-3066 
Fax: (818) 343-1436 

Epson America, Inc. 
20770 Madrona Ave. 
Torrance, CA 90503 
Tel: (310) 782-5341 
Fax: (310) 782-5320 

Epson Semiconductor GMBH 
Riesstr. 15 
W-80oo Munich 50, Germany 
Tel: 49(89) 149703 
Fax: 49(89) 149703-10 

EXP Computer, Inc. 
223 Michael Drive 
Syosset, NY 11791 
Tel: (516) 496-3703 
Fax: (516) 496-2914 

FDK America, Inc. 
3099 N. First St. 
San Jose, CA 95134 
Tel: (408) 432-8331 
Fax: (408) 435-7478 

Fujitsu Microelectronics Inc. 
IC Division 
3545 N. First St. 
San Jose, CA 95134 
(800) 642-7616 

Intel Corp. 
Literature Center 
Box 7641 
Mt. Prospect, IL 60056 
(800) 548-4725 

MagicRAM, Inc. 
1850 Beverly Blvd. 
Los Angeles, CA 90057 
Tel: (213) 413-9999 
Fax: (213) 413-0828 

Maxell Corp. of America 
22-08 Route 208 
Fair Lawn, NJ 07410 
Tel: (201) 794-8382 
Fax: (201) 794-3274 

Mitsubishi Electronics America, 
Inc. 
1050 East Arques Ave. 
Sunnyvale, CA 94086 
Tel: (408) 730-5900 
Fax: (408)732-9382 

New Media Corp. 
15375 Barranca B 101 
Irvine, CA 92718 
Tel: (714) 453-0550 
Fax: (714) 453-0114 

Panasonic 
P.O. Box 1511 
Secaucus, NJ 07096 
Tel: (201) 348-5266 
Fax: (201) 392-4782 
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Pretec Electronics Corp. 
39899 Balentine Dr. Suite 305 
Newark, CA 94560 
Tel: (510) 440-0535 
Fax: (510) 440-0534 

PsionPLC 
Alexander House, 85 Frampton St. 
London, NW8 8NQ England 
Tel: 44(71) 262-5580 
Fax: 44(71) 258-7340 

Rohm Corp. 
3034 Owen Dr. 
Antioch, TN 37013 
Tel: (615) 641-2020 
Fax: (615) 641-2022 

Silicon Storage Technology, Inc. 
1208 Apollo Way 
Suite 502 
Sunnyvale, CA 94086 
Tel: (408) 735-9110 
Fax: (408) 735-9036 

Smart Modular Technologies 
45531 Northport Loop West 
Fremont, CA 94538 
Tel: (510) 623-1231 
Fax: (510) 623-1434 

Sundisk Corp. 
3270 Jay Street 
Santa Clara, CA 95054 
Tel: (408) 562-0500 
Fax: (408)980-8607 

Telecomputer, Inc. 
15026 Moran Street 
Westminster, CA 92683 
Tel: (714) 894-8954 
Fax: (714) 891-8364 

Toshiba America Electronic 
Cmpts, Inc. 
9775 Toledo Way 
Irvine, CA 92718 
Tel: (714) 455-2292 
Fax: (714) 859-3963 
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and Card Programmers 

The following list is a representative summary of flash memory 
component and card programmer manufacturers. Contact them directly 
for information on their products. 

Advantest Corp. 
2880 San Tomas Expy. #105 
Santa Clara, CA 95051 
(408) 970-9922 

Advin Systems Inc. 
1050-L E. Duane Avenue 
Sunnyvale, CA 94086 
(408) 243-7000 
(800) 627-2456 
(Components) 

A val Data Corp. 
Information System Division 
Shinyuri-21 Bldg. 
1-2-2 Mampukuji, Asao-ku 
Kawasaki-City, Kanagawa 215 
Japan 
011-81-44-952-1322 

B&C Microsystems, Inc. 
750 North Pastoria Ave. 
Sunnyvale, CA 94086 
Tel: (408) 730-5511 
Fax: (408) 730-5521 
(Cards) 

BP Microsystems, Inc. 
10681 Haddington #190 
Houston, TX 77043 
(713) 461-9430 
(800) 225-2102 
(Components) 

Bytek Corp. 
543 NW 77th Street 
Boca Raton, FL 33487 
(407) 994-3520 
(800) 523-1565 
(Components) 
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Data 110 Corporation 
10525 Willows Road NE 
Redmond, W A 98073 
(206) 881-6444 
(800) 247-5700 
(Components and cards) 

Elan Systems, Inc. 
365-700 Woodview Ave. 
Morgan Hill, CA 95037 
Tel: (800) 541-ELAN 
Fax: (408) 778-2597 
(Components and cards) 

Logical Devices, Inc. 
692 S. Military Trail 
Deerfield Beach, FL 33442 
(305) 428-6868 
(800) 331-7766 
(Components) 

Minato Electronics Inc. 
4105, Minami Yamada-cho 
Kohoku-ku, Yokohama 
Kanagawa 223 
Japan 
011-81-45-591-5611 

Minato Electronics Inc. 
3628 Madison Ave. #5 
North Highlands, CA 95660 
(916) 348-6066 

Needham's Electronics 
4539 Orange Grove Ave. 
Sacramento, CA 95841 
(916) 924-8037 
(Components and cards) 

SMS Mikrocomputer Systeme 
GmbH 
1m Grund 15 
D-7988 Wangen 
Germany 
011-49-7-522-5018 
(Components and cards) 

SMS North America, Inc. 
16522 NE 135th PI. 
Redmond, W A 98052 
(800) 722-4122 
(Components and cards) 

Sunrise Electronics, Inc. 
524 South Vermont A venue 
Glendora, CA 91740 
(818) 914-1926 
(Components) 

Stag Microsystems, Inc. 
1600 Wyatt Drive, Suite 3 
Santa Clara, CA 94054 
(408) 988-1118 
(800) 227-8836 
(Components and cards) 

System General Corp. 
3F, #1 Alley 8, Lane 45 
Bao Shing Rd., Shin Dian 
Taipei, Taiwan 
Republic of China 
011-886-2-917-3005 
(Components and cards) 

System General Corp. 
510 S. Park Victoria Drive 
Milpitas, CA 95035 
(408) 263-6667 
(800) 967-4776 
(Components and cards) 
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Tribal Microsystems Inc. 
44388 S. Grimmer Blvd. 
Fremont, CA 94538 
(510) 623-8859 
(Components) 

Xeltek 
757 N. PastoriaAve. 
Sunnyvale, CA 94086 
(408) 524-1929 
(Components) 
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Socket and Adapter Vendors 

The following list is a representative summary of flash memory 
component socket, component socket adapter and card connector 
manufacturers. Contact them directly for information on their products. 

Component Socket Vendors 

AMP, Inc. 
P.O. Box 3608 
Harrisburg, PA 17105-3608 
Tel: (800) 526-5105 
Fax: (717) 986-7605 

AngatInc. 
P.O. Box 2510 
Attleboro Falls, MA 02763 
Tel: (508) 699-7646 
Fax: (508) 699-0678 

Bnrndy Corp. 
51 Richards Avenue 
Norwalk, CT 06856 
Tel: (203) 838-4444 
Fax: (203)852-8629 

Methode Electronics, Inc. 
7444 W. Wilson Ave. 
Chicago, IL 60656 
Tel: (708) 867-9600 
Fax: (708) 867-9130 

SamtecInc. 
810 Progress Boulevard 
P.O. Box 1147 
New Albany, IN 47151-1147 
Tel: (812) 944-6733 
Fax (812) 948-5047 

Texas Instrnments Corp. 
34 Forest Street, Mail Station 14-
01 
Attleboro, Mass 02073 
Tel: (508) 699-5216 

Yamaichi Electronics 
1420 Koll Circle, Suite B 
San Jose, CA 95112 
Tel: (408) 452-0797 
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Component Socket Adapter 
Vendors 

Emulation Technology, Inc. 
2344 Walsh Avenue, Building F 
Santa Clara, CA 95051 
Tel: (408) 982-0660 

California Integration 
Coordinators, Inc. 
656 Main Street 
Placerville, CA 95667 
Tel: (916) 626-6168 

Card Connector Vendors 

AMP, Inc. 
P.O. Box 3608 
Harrisburg, PA 17105-3608 
Tel: (800) 526-5105 
Fax: (717) 986-7605 

Amphenol 
22952 Alcalde Drive 
Suite 110 
Laguna Hills, Ca. 92653 
Tel: (714) 855-4454 
Fax: (714) 855-9115 

Berg Electronics 
825 Old Trail Road 
Etters, PA 17319-1769 
Tel: (800) 237-2374 

DDK 
47873 Freemont Boulevard 
Freemont, Ca. 94538 
Tel: (415) 226-0400 
Fax: (415) 226-0494 

ELCOUSA 
Huntingdon Industrial Park 
Huntingdon, PA 16652 
Tel: (814) 643-0700 
Fax: (814) 643-0426 

Foxconn International 
930 West Maude Avenue 
Sunnyvale, Ca. 94086 
Tel: (408) 749-1228 
Fax: (408)749-1266 
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Fujitsu Microelectronics, Inc. 
3545 N. 1st St. 
San Jose, CA 95134-1804 
Tel: (800) 642-7616 
Fax: (408) 428-0640 

ITT Cannon 
1851 E. Deere Ave. 
Santa Ana, CA 92705 
Tel: (714) 757-8337 
Fax: (714) 757-8470 

JAE Electronics 
142 Technology Drive 
Suite 100 
Irvine, Ca. 9271 
Tel: (800) 523-7278 
Fax: (714)753-2699 

Maxell Corp. of America 
22-08 Route 208 
Fair Lawn, NJ 07410 
Tel: (201) 794-8382 
Fax: (201) 794-3274 

Methode Electronics, Inc. 
7444 W. Wilson Ave. 
Chicago, IL 60656 
Tel: (708) 867-9600 
Fax: (708) 867-9130 

MolexInc. 
2222 Wellington Court 
Lisle, IL 60532 
Tel: (708) 527-4522 
Fax: (708) 969-1352 

Pan International Inc. 
9477 Archibald Ave. 
Rancho Cucamonga, CA 91730 
Tel: (909) 945-1365 
Fax: (909)989-9935 

Stocko Connectors 
P.O. Box 187 
Carlstadt, New Jersey 07072 
Tel: (201) 933-4452 
Fax: (201)933-4522 

TelTec, Inc. 
7890 12th Avenue South 
Minneapolis, MN 55425 
Tel: (612) 854-9177 
Fax: (612) 854-8601 
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Appendix E: 12V Converters 

The following list is a representative summary of flash memory 12V 
program/erase voltage converter manufacturers. Contact them directly 
for information on their products. 

Linear Technology Corporation 
1630 McCarthy Blvd. 
Milpitas, CA 95035-7487 
Tel: (408) 432-1900 
Fax: (408) 432-0507 

In Europe (U.K.): 
111 Windmill Road 
Sunbury 
Middlesex TW16 7EF 
U.K. 
Tel: 
Fax: 

(44)(932) 765688 
(44)(932) 781936 

In Asia (Japan): 
4F Ichihashi Bldg 
1-8-4 Kudankita Chiyoda-ku 
Tokyo 102 Japan 
Tel: (81)(03) 32377891 
Fax: (81)(03) 32378010 

Maxim Integrated Products 
120 San Gabriel Drive 
Sunnyvale, CA 94086 
Tel: (408)737-7600 
Fax: (408) 737-7194 

In Europe (U.K.): 
Maxim Integrated Products (UK), 
Ltd. 
Tel: (44)(734) 845255 

btAsia (Japan): 
Maxim Japan Co., Ltd. 
Tel: 81(03) 32326141 

MicroLinear Corp. 
2092 Concourse Drive 
San Jose, CA 95131 
Tel: (408) 433-5200 
Fax: (408) 432-0295 
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Motorola Semiconductor Inc. 
616 West 24th Street 
Tempe, AZ 85282 
Tel: (800) 521-6274 

In Europe (U.K): 
Tel: (44)(296) 395252 

In Asia (Japan): 
Tel: (81)(3) 4403311 

National Semiconductor Inc. 
2900 Semiconductor Drive 
P.O. Box 58090 
Santa Clara, CA 95052 
Tel: (408) 721-5000 

In Europe: 
National Semiconductor (UK) Ltd. 
The Maple, Kembrey Park 
Swindon, Wiltshire SN26UT 
U.K. 
Tel: (07-93) 614141 
Fax: (07-93) 697522 

In Asia: 
National Semiconductor Japan Ltd 
Sanseido Bldg. 5F 
4-15 Nishi Shinjuku 
Shinjuku-ku 
Tokyo 160 Japan 
Tel: (81)(3) 2997001 
Fax: (81)(3) 2997000 

Newport Components/Intl Power 
International Power Sources 
200 Butterfield Drive 
Ashland, MA 01721 
Tel: (508) 8817434 
Fax: (508)8798669 

In Europe: 
Newport Components 
4 Tanners Drive 
Blakelands North 
Milton Keynes MK14 5NA 
Tel: (0908) 615232 
Fax: (0908)617545 

Power Trends, Inc. 
1101 N. Raddant Road 
Batavia,IL 60510 
Tel: (708) 406-0900 
Fax: (708) 406-0901 

Shindengen Electric Co. LTD. 
2649 Townsgate Road #200 
Westlake Village, CA 91361 
Tel: (800) 634-3654 
Fax: (805) 373-3710 

In Europe: 
Shindengen Magnaquest U.K. Ltd. 
Unit 13, River Road, 
Barking Business Park, 
33 River Road, Barking, 
Essex 1G11 ODA 
Tel: (44)(81) 5918703 
Fax: (44)(81) 5918792 

In Asia: 
2-1,2-Chome Ohtemachi 
Chiyoda-ku 
Tokyo 100 
Japan 
Tel: 
Fax: 

(81)(3) 2794431 
(81)(3) 2796478 
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Valor Electronics, Inc. 
9715 Business Park Avenue 
San Diego, CA 92131-1642 
Tel: (619) 537-2500 
Fax: (619)537-2525 

XentekInc. 
760 Shadowridge Drive 
Vista, CA 92083 
Tel: (619) 727-0940 
Fax: (619) 727-8926 

In Europe (Germany): 
Xentek, Inc. 
C/O Taiyo Yuden GMBH. 
Obermaierstrasse 10, 
D-8500 Nurnberg 10 
Federal Republic of Germany 
Tel: (49)(911) 3508400 
Fax: (49)(911) 3508460 

In Asia (Japan): 
Xentek, Inc, 
C/O Taiyo Yuden., Ltd. 
6-16-20, Ueno, Taito-ku 
Tokyo 110 
Japan 
Tel: 
Fax: 

(81)(3) 38376547 
(81)(3) 38354752 
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Appendix F: Flash Memory Card 
Readers and Writers 

The following is a representative list of flash memory card 
reader/writers and vendors. The table is the result of a survey and should 
serve mainly as a guide for product features and capabilities. Contact the 
vendors directly for up to date information on their products. 

Adtron Corp. 
3050 South Country Club Dr. 
Suite 24 
Mesa, AZ 85210 
Tel: (602) 926-9324 
Fax: (602) 926-9359 

Altec Computer Systeme GMBH 
Vahrenwalder Str 20517 
3000 Hannover, Germany 
Tel: 49(577) 63088-36 
Fax: 49(577) 63088-49 

Computer Modules, Inc. 
2350 A Walsh Ave, 
Santa Clara, CA 95051 
Tel: (408) 496-1881 
Fax: (408) 496-1886 

Data 110 Corp 
10525 Willows Rd. NE. 
Redmond, W A 98052 
Tel: (206) 867-6886 
Fax: (206) 881-6856 

Databook Inc. 
Tower Bldg. Terrace Hill 
Ithaca, NY 14850 
Tel: (607) 277-4817 
Fax: (607) 273-8803 

DIP Systems Ltd. 
32 Frederick Sanger Rd. 
Surrey Research Park 
Guildford 
Surrey GU2 5XN, UK 
Tel: 44(0) 483-301555 
Fax: 44(0) 483-301434 
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Elan Systems, Inc. 
365-700 Woodview Ave. 
Morgan Hill, CA 95037 
Tel: (408) 778-7267 
Fax: (408) 778-2597 

FDK America, Inc. 
3099 N. First St. 
San Jose, CA 95134 
Tel: (408) 456-7975 

Greystone Peripherals, Inc. 
130-A Knowles Dr. 
Los Gatos, CA 95030 
Tel: (408) 866-4739 
Fax: (408) 866-8328 

MSD3 
365 Woodview Ave, #700 
Morgan Hill, CA 95037 
Tel: (408) 778-7267 

Rhombus Technology, LTD. 
The Common, Cranleigh 
Surrey, GU6 8LU, UK 
Tel: 44(483) 277916 

SCM Microsystems 
Fraunhoferstr. 11A 
D-8033, Martinsried, Germany 
Tel: 49(89) 8598702 
Fax: 49(89)8595806 

Stag Microsystems, Inc. 
1600 Wyatt Dr. 
Santa Clara, CA 95054 
Tel: (408) 988-1118 
Fax: (408) 988-1232 
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Appendix G: Flash File Systems 

The following list is a representative summary of flash memory 
file system vendors. Contact them directly for information on their 
products. 

Datalight 
307 N. Olympic 
Suite 201 
Arlington, W A 98223 
Tel: (800) 221-6630 
(Disk Emulator) 

M-Systems 
200 Broadhollow Rd., Suite 207 
Melville, NY 11747 
Tel: (516) 424-5100 
(Disk Emulator) 

Microsoft Corp. 
One Microsoft Way 
Redmond, W A 98052-6399 
Tel: 206-936-3109 
(Flash Optimized File System) 

Saville Associates 
4425 Esta Lane 
Soquel, CA 95073 
Tel: (408) 479-7199 
(Flash Optimized File System) 

SCM Microsystem 
Fraunhoferstr. 11A 
82 152 Martinsried, Germany 
Tel: 49-89-859-8702 
Fax: 49-89-859-5806 
(Disk Emulator) 

APPLE INC. 
EXHIBIT 1011 - PAGE 0410



Appendix H: PCMCIA and Software 
Vendors 

The following list is a representative summary of PCMCIA software 
vendors. Contact them directly for information on their products. 

Award Software Inc. 
130 Knowles Drive 
Los Gatos, CA 95030 
Tel: (408) 370-7979 
Fax: Tel: (408) 370-3399 

DIP Research Ltd. 
2 Frederick Sanger Rd. 
Surrey Research Park 
Guildford, Surrey, Gu2 5XN, 
England UK 
Tel: 44-04-8330-1555 
Fax 44-04-8330-1434 

PCMCIA 
10309 E. Duane Ave. 
Sunnyvale, CA 94086 
Tel: (408) 720-0107 

Phoenix Technologies Ltd. 
40 Airport Pkwy. 
San Jose, CA 95110 
Tel: (408) 452-6833 
Fax: (408) 452-1985 

SystemSoft Corp. 
313 Speen Street 
Natick, MA 01760 
Tel: (508) 651-0088 
Fax: (508) 651-8188 

Vadem 
1885 Lundy Avenue, #201 
San Jose, CA 95131 
Tel: (408) 943-9301 
Fax: (408) 943-9735 

Ventura Micro, Inc. 
200 South A Street 
Suite 208 
Oxnard, CA 93030-5717 
Tel: (408) 476-1910 
Fax: (408) 476-4563 
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Appendix I: PCMCIA Compliance 
Testing Facilities 

Ingram 
1600 E. St. Andrew Place 
Santa Ana, CA 92799 
Tel: (714) 566-1000 

Synova Systems 
1977 Otoble Ave., Suite B-207 
San Jose, CA 95131 
Tel: (408) 428-0310 
Fax: (408) 436-0379 
(This company develops tools for 
PCMCIA products) 

Veritest Inc. 
3420 Ocean Park Blvd. 
Suite 2030 
Santa Monica, CA 90405 
Tel: (310) 450-0062 
Fax: (310) 399-1760 
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Appendix J: PCMCIA Card Types 

(With approximate card dimensions) 

LENGTH WIDTH (mm) HEIGHT 
(mm) (mm) 

TYPE 1 85.6 54.0 3.3 

TYPE 2 85.6 54.0 5.0 

TYPE3 85.6 54.0 10.5 
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Appendix K: PCMCIA Controller 
Register Functions and 
Vendors 

The following tables demonstrate the compatibility between three 
leading PCMCIA-Interface controller chips and provide a summarized 
format that will help in your programming efforts. Consult the 
corresponding data sheets for more information. 

Registers Supported by Intel's 82365SL, Cirrus Logic's CL-PD67XX and Vadem's 
VG-465 

REGISTER FUNCTION SOCKET 
NAME and OFFSET 

CATEGORY (AlB) 

GENERAL SETUP REGISTERS 

Identification and Determines type of PC cards supported and identifies OOH/40H 
Revision PCIC version. 

Interface Status Provides current status of PC card interface signals 01H141H 

Power and Controls the PC card power and resetting of the PCIC 02H142H 
Resetdrv Control registers 

Card Status Contains the status of the sources for the card status 04H/44H 
Change change interrupts 

Address Window Controls enabling of memory and I/O mapping 06H146H 
Enable windows to PC card memory or 1/0 space 

INTERRUPT REGISTERS 

Interrupt and Controls the interrupt steering for the PC card 1/0 03H/43H 
General Control interrupt as well as general control of the PCIC 

Card Slatus Controls interrupt steering of the card status change 05H145H 
Change Interrupt interrupt and card status change interrupt enables 
Configuration 
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VO REGISTERS 

I/O Control Contains the I/O configuration for I/O windows 0 and 1 07H/47H 
based upon information read from the card's CIS 

1/0 Addr. 0 Start Low order address bits indicating start address of I/O 08H/48H 
Low Byte address window 0 

I/O Addr. 0 Start High order address bits indicating start address of I/O 09H/49H 
High Byte address window 0 

I/O Addr. 0 Stop Low order address bits indicating stop address of I/O OAH/4AH 
Low Byte address window 0 

I/O Addr. 0 Stop High order address bits indicating stop address of I/O OBH/4BH 
High Byte address window 0 

I/O Addr. 1 Start Low order address bits indicating start address of I/O OCHl4CH 
Low Byte address window 1 

I/O Addr. 1 Start High order address bits indicating start address of I/O ODH/4DH 
High Byte address window 1 

I/O Addr. 1 Stop Low order address bits indicating stop address of I/O OEH/4EH 
Low Byte address window 1 

I/O Addr. 1 Stop High order address bits Indicating stop address of I/O OFHl4FH 
High Byte address window 1 

MEMORY REGISTERS 
System Memory Low order address bits indicating start address of 10H/50H 
Addr. 0 Mapping corresponding system memory address mapping 
Start Low Bvte window 

System Memory High order address bits indicating start address 11H/51H 
Addr. 0 Mapping of corresponding system memory address 
Start Hiah Bvte maDDina window 
System Memory Low order address bits indicating stop address 12H/52H 
Addr. 0 Mapping of corresponding system memory address 
StoD Low BYte maDPino window 
System Memory High order address bits indicating stop address 13H/53H 
Addr. 0 Mapping of corresponding system memory address 
StoD Hioh Bvte mappino window 
Card Memory Low order address bits added to system 14H/54H 
Offset Addr. 0 address bits A 19-A 12 to generate memory 
Low Bvte address for PC card 
Card Memory High order address bits added to system 15H/55H 
Offset Addr. 0 address bits A23-A20 to generate memory 
Hiah Bvte address for PC card 
System Memory Low order address bits indicating start address 18H/58H 
Addr. 1 Mapping of corresponding system memory address 
Start Low Bvte maDDino window 
System Memory High order address bits indicating start address 19H/59H 
Addr. 1 Mapping 9f corresponding system memory address 
Start Hiah Bvte maDDina window 
System Memory Low order address bits indicating stop address 1AH/5AH 
Addr. 1 Mapping of corresponding system memory address 
StoD Low BYte mappino window 
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System Memory High order address bits indicating stop address 1BH/5BH 
Addr. 1 Mapping of corresponding system memory address 
Sto~ HIgh Byte mapping window 
Card Memory Low order address bits added to system 1CH/5CH 
Offset Addr. 1 address bits A 19-A 12 to generate memory 
Low Byte address for PC card 
Card Memory High order address bits added to system 1DH/5DH 
Offset Addr. 1 address bits A23-A20 to generate memory 
High ~te address for PC card 
System Memory Low order address bits indicating start address 20H/60H 
Addr. 2 Mapping of corresponding system memory address 
Start Low Byte mapping window 
System Memory High order address bits indicating start address 21 H/61 H 
Addr. 2 Mapping of corresponding system memory address 
Start High Byte mapping window 
System Memory Low order address bits indicating stop address 22H/62H 
Addr. 2 Mapping of corresponding system memory address 
Stop Low Byte mapping window 
System Memory High order address bits indicating stop address 23H/63H 
Addr. 2 Mapping of corresponding system memory address 
Stop High Byte mapping window 
Card Memory Low order address bits added to system 24H/64H 
Offset Addr. 2 address bits A19-A12 to generate memory 
Low Byte address for PC card 
Card Memory High order address bits added to system 25H/65H 
Offset Addr. 2 address bits A23-A20 to generate memory 
High B~te address for PC card 
System Memory Low order address bits indicating start address 28H/68H 
Addr. 3 Mapping of corresponding system memory address 
Start Low Byte mapping window 
System Memory High order address bits indicating start address 29H/69H 
Addr. 3 Mapping of corresponding system memory address 
Start High Byte mapping window 
System Memory Low order address bits indicating stop address 2AH/6AH 
Addr. 3 Mapping of corresponding system memory address 
Sto~ Low Byte mapping window 
System Memory High order address bits indicating stop address 2BH/6BH 
Addr. 3 Mapping of corresponding system memory address 
Stop High Byte mapping window 
Card Memory Low order address bits added to system 2CH/6CH 
Offset Addr. 3 address bits A19-A12 to generate memory 
Low Byte address for PC card 
Card Memory High order address bits added to system 2DH/6DH 
Offset Addr. 3 address bits A23-A20 to generate memory 
High Byte address for PC card 
System Memory Low order address bits indicating start address 30H170H 
Addr. 4 Mapping of corresponding system memory address 
Start Low Byte mapping window 
System Memory High order address bits indicating start address 31HI71H 
Addr. 4 Mapping of corresponding system memory address 
Start High Byte mapping window 
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System Memory Low order address bits indicating stop address 32H172H 
Addr. 4 Mapping of corresponding system memory address 
Stop Low Byte mapping window 
System Memory High order address bits indicating stop address 33H173H 
Addr. 4 Mapping of corresponding system memory address 
Stop High Byte mapping window 
Card Memory Low order address bits added to system 34H174H 
Offset Addr. 4 address bits A19-A12 to generate memory 
Low Byte address for PC card 
Card Memory High order address bits added to system 35H175H 
Offset Addr. 4 address bits A23-A20 to generate memory 
Hiqh Byte address for PC card 

Additional Registers Supported by ~Irrus Logic's CL-PD67XX 

REGISTER FUNCTION SOCKET 
NAME and OFFSET 

CATEGORY 

EXTENSION REGISTERS 

Misc Control 1 VCC control and status, IRQ function, speaker enable 16H 

FIFO Control Controls FIFO operation and reports FIFO status 17H 

Misc Control 2 Controls clock freq, controls LED, IRQ15 control 1EH 

Chip Information Identifies controller revision and identification 1FH 

ATA Control ATA mode select, speaker or LED input select 26H 

TIMING REGISTERS 

Setup Timing 0 Controls setup timing for addresses and control signals 3AH 
before asserting read or write signals 

Command Timing 0 Indicates length of read or write control signals 3BH 

Recovery Timing 0 Indicates amount of hold time given to card for 3CH 
addresses and control before deasserting read or write 
signals 

Setup Timing 1 Controls setup timing for addresses and control signals 3DH 
before asserting read or write signals 

Command Timing 1 Indicates length of read or write control signals 3EH 

Recovery Timing 1 Indicates amount of hold time given to card for 3FH 
addresses and control before deasserting read or write 
signals 
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Appendix K: PCMCIA Controller Register Functions and Vendors 407 

Additional Registers Supported by Vadem's VG·465 

REGISTER FUNCTION SOCKET 
NAME and OFFSET 

CATEGORY 

Control Controls compatibility, enables INPACK, selects IREO 38H 
level, enables PCMCIA interface, controls memory 
timing 

Timer Controls activity timer 39H 

Mouse Enables mouse interface, mouse 1/0 ports and 3AH 
interrupt levels 

GPIO Configuration Controls 3 GPIO lines 3BH 

Programmable Selects base address for programmable chip select 3CHl3DH 
Chip Select output. 

Programmable Controls the programmable chip select functions 3EH 
Chip Select 
Configuration 

ATA Sets up configuration for ATA drive. 3FH 

The following list is a representative summary of the manufacturers of 
PCMCIA-interface controller chips. Due to the rapid change in product 
line items, it is best to contact these companies directly for product
specific information. 

Cirrus Logic, Inc. 
3100 W. Warren Ave, 
Fremont, CA 94538 
Tel: (510) 623-8300 

Databook Inc. 
Tower Bldg. Terrace Hill 
Ithaca, NY 14850 
Tel: (607) 277-4817 
Fax: (607) 273-8803 

Intel Corp. 
Literature Center 
Box 7641 
Mt. Prospect, IL 60056 
(800) 548-4725 

Texas Instruments Inc. 
Box 172228 
Denver, CO 80217 
(800) 477-8924 

Vadem 
1885 Lundy AVe., #210 
San Jose, CA 95131 
Tel: (408) 943-9301 
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Appendix L: INT 21 H Standard Disk
Related Functions 

The functions listed below are mainly for pointing out the flexibility of a 
flash file system using the redirector interface that operates through the 
INT2IR functions. 

Function Function Name Usage 
Number 

3CH Create Handle Creates file for subsequent I/O; erases existing file, if any 

3DH Open Handle Readies file for I/O; assigns handle number 

3EH Close Handle Closes handle; frees handle pointer 

3FH Read Handle Reads from file at current pointer location 

40H Write Handle Writes to file at current pointer location 

41H Delete Handle Deletes file 

42H Move File Pointer Moves location of pointer in file 

43H Get/Set File Attributes Changes or retrieves attribute byte for file 

45H Duplicate File Handle Assigns additional handle number to existing handle 

46H Force Duplicate File Handle Forces existing handle to refer to file that has a different handle 

56H Rename File Renames file 

57H Get/Set File Dateffime Changes or retrieves last update time and date associated with file 

5AH Create Temporary File Creates file with unique name for subsequent I/O 

5BH Create New File Creates file for subsequent I/O only if it does not already exist 

67H Set Handle Count Allows the specification of more than 20 handles 

68H Commit File Insures file is written to disk 
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Appendix M: Sample. Flash File System 
Benchmarking Code 

/********************************************************** 
Program: Snip 

**********************************************************/ 
#include <stdio.h> 
#include <alloc.h> 
#include <stdlib.h> 

long 
long 

timcstart=O; 
timcfinish=O; 

long far *the_time; 
long 
long 
float long 

FILE 

void main(void) 

Lctr; 
repeat; 
total_time; 

*log; 

void starUime(void); 
void stop_time(void); 

II logfile structure 

char *c_buff; II temporary input buffer 

= (char *)malloc(15);11 and allocate memory 

(long far *)Ox046C; II read BIOS timer chip 

system("cls"); 
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412 Appendix M: Sample Flash File System Benchmarking Code 

printf("\nThis program copies files from one drive to another. Timing is 
kept in c:log.out."); 

printf("\nThis may take some time ... "); 
printf("\nJust hit ctrl-C to stop me anytime.\n"); 
printf("\nHow many times to go through the run?\n"); 
gets(c_buff); 

repeat=atol(c_buff); II convert input string to 
II a number 

if ((log=fopen(lc:\\log.Out"," a+"»==NULL) II open log file and 

{ 
printf("\nBad log file"); 
exit(O); 
} 

fprintf(log,"\n\n*** Recorded Times ***"); 

for (Lctr=O; Lctr < repeat; i_ctr++) 
{ 
starUimeO; 
system("copy fileO.dat e:"); 
system("copy file1.dat e:"); 
system(lcopye:\\fileO.dat"); 
system(lcopye:\\fileO.dat"); 
system(lcopye:\\fileO.dat"); 
system(lcopye:\\fileO.dat"); 
system("copy file2.dat e:"); 
system("copy file3.dat e:"); 
stop_timeO; 
} 
fclose(log); 

void starUime(void) 
{ 
time_start=*the_time; 
} 

II exit on errors 

IIOr use 
Ilany system 
Ilcommands 
Ilyou want 
lIto plug 
Ilin here. 

II close file on exit 
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Appendix M: Sample Flash File System Benchmarking Code 413 

void stop_time(void) 
{ 
time _ fmish=*the _time; 
if ((time _finish-time _start»O) 

{ 

} 

total_time = float( (time Jmish-time _ start)/18 .2); 
fprintf(log,"\n%ld)Time = %.4lfseconds.", i_ctr, total_time); 
printf("\n%ld)Total Time = %.4lf seconds.\n", i_ctr, 
total_time); 
} 
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Index 

27COIO, 134 
28FOOIBX, 48 
28F008SA, 41 
28FOIO, 139 
28F020, 139 
28F256A, 139 
28F512, 139 

3.3V, 125 

82365SL, 220, 283 

abort programming, 151 
aborting internal automation, 168 
access time, 4, 92 
adapter characteristics, 294, 332 
adapter characteristics table, 310 
address decode, 75, 99, 317 
address inputs, 194 
address latch, 76 
address space, 350 
advanced client services, 280 
Advanced Micro Devices, 25, 163 
algorithm, 30 
aliasing, 195 
alterability, 5 
applications, 2, II 
architecture, 2 
ASCIIZ, 237, 341 
Atmel, 32, 168 
attribute memory, 193,350,356 
automated algorithms, 149, 162 
automated block erase, 156 
automated program/erase, 183 

background erase, 14 
bar-code scanner, 14 
basic compatibility layer, 350 

battery, 6 
battery life, 19 
battery voltage detect, 211 
benchmark, 265 
bidirectional bus interface, 130 
BIOS, 16, 70, 99, 171,237,275,286, 348, 
363 
bipolar, 108 
bit-alterability, 13 
bitlines, 25, 115 
block, 24, 33, 36, 83 
block erase, 29,69,84,96,115,150,168 
block erase algorithm, 156 
block size, 29 
Boot Block, 69, 82, 110,131 
boot drive, 239 
bootstrap, 235 
buffer, 92, 130, 221 
buffering, 126, 222, 224 
bulk memory services, 280 
bulk-erase, 29, 115, 140, 150, 173 
bus contention, 95 
bus interface, 75 
bus transceiver, 76, 95 
bus width, 358 
busy, 84 
bypass capacitor, 112, 122, 124 
byte erase, 33, 96 
byte program, 96 

caching, 98 
capacitive loading, 90, 92, 99 
capacitors, 122 
card configuration, 361 
card detect pins, 205 
card enable, 198 
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416 Index 

card information structure, 193, 210, 321, 
350 
card insertion, 338, 347 
card insertion/removal, 222 
card interface, 349 
card offset, 315 
card physical, 349 
card removal, 338 
card reset, 206 
card services, 275, 280, 363, 368 
card status, 336, 346 
card voltage, 209 
CARDRV.EXE, 280 
Catalyst Semiconductor, 32 
CE,78 
cell,4 
cell architecture, 1, 6 
cell density, 6 
cell erase, 5 
cell failure, 43 
cell redundancy, 5 
cell reliability, 5 
cell size, 24 
cell transistor, 4, 5 
cellular phone, 18 
Cerquad package, 49 
chaining, 233 
character device, 235 
chip enable, 75, 94, 99, 136 
chip erase algorithm, 143 
chip select, 75, 78, 94 
CIS, 321, 350 
CL-PD6720, 224 
clean-up, 249, 259 
clean-up efficiency, 267 
client services, 280 
client utilities, 280, 365 
cluster size, 233 
C~OS, 108, 123, 126, 131 
command interface, 134 
common memory, 193,350,356 
comparator, 102 
component cost, 24 
component management registers, 206 
CONFIG.SYS, 286 
configuration information, 298 
configuration option register, 207, 340 
configuration tuple, 361 
cost, 2,4 
CPU, 4 
current draw, 24 

current limiting, 129 
current specifications, 106 
current spike, 116, 123 
cycle, 24, 32, 41 
cycle leveling, 263, 268 
cycle management, 43 
cycle minimization, 43 
cycling, 38, 40, 42, 43, 143 
cycling delta, 265 

data accumulation, 12, 14 
data bus, 76, 94, 99, 196 
data bus bandwidth, 76 
data enable, 77 
tdata latching, 212 
data organization layer, 350 
data path size, 320 
data polling, 167 
data verification, 138 
data/lookup tables, 14 
Databook, 224, 344 
DB86082, 221 
DC-DC converter, 208 
DDE, 241, 247 
debugging, 141 
decoupling capacitor, 112, 122 
deep powerdown, 82, 131 
deep powerdown mode, 110, 114 
defragmenting, 251 
DEN,77 
device addresses, 25 
device delays, 99 
device density, 5 
device driver, 233 
device geometry, 358 
device ill, 356 
device information tuple, 316 
device package, 28 
device speed code, 316 
device temperature, 32 
die size, 43 
digital cellular phone, 18 
DIP package, 46 
direct-read, 5 
directory, 231, 239 
dirty sectors, 249 
disk drive, 5, 229 
disk drive emulator, 66, 239 
disk drive template, 244 
disk imaging, 243 
domains, 229 
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double-word,76 
drain, 25 
DRAM, 2, 4, 5, 98 
driver installation, 369 

EDAC,36 
EEPROM, 3, 5, 13,23,32,43, 106, 163 
electric field,S, 27, 29, 40, 42, 113 
electron charge,S 
electron mobility, 41 
electron trapup, 41, 43 
embedded algorithms, 163 
embedded code, 16 
energy consumption, 114, 131 
EPROM, 2, 5,16,25,48,49,71 
EPROM programming, 134 
erase, 27, 30, 36, 39,41,42,43 
erase block size, 116,358 
erase confirm, 145 
erase current, 116 
erase mode, 112, 115 
erase performance, 33 
erase pulse, 116 
erase setup, 145 
erase suspend, 71 
erase suspend/resume, 160 
erase time, 32, 170 
erase verify, 30, 146,181 
erase voltage, 32, 79, 113 
erased condition, 25 
error detection, 214 
error detection and correction,S, 36, 43, 
347 
ESD protection, 127 
ETOX, 2, 25, 32, 43, 106 
ExCA,207, 220,277,285,287,298,348 
Exchangeable Card Architecture, 207 
execute-in-place, 228, 304 
extended cycling, 43 

failure mechanisms, 40,41 
failure rate, 39, 40, 41, 42 
failure recovery, 269 
fanout, 108 
FAT,231,239,244,258 
FCB,237 
FDD,20 
feature comparison, 12 
field size, 361 
file allocation table, 231 
file control blocks, 237 

file storage, 43 
file system, 42 
file usage, 239 
firmware, 16 
FIT, 39,41 
flash card driver, 277, 367 
flash drive, 66 

Index 417 

flash file system, 227, 274, 279, 368 
flash memory card, 13, 20, 57, 62 
flash memory sources, 172 
flash optimized file system, 240 
flash specifications, 86 
FlashFile, 82, 11 0, 131 
flight recorders, 13 
floating gate, 25, 29, 32,40,79, 113, 115 
foreground clean-up, 262 
forward-biasing, 129 
Fowler-Nordheim tunneling, 28, 33, 36 
FSSD,227 
Fujitsu, 25, 214 
full erase, 116 

garbage, 250 
GetAdapter, 302 
GetAdapterCount, 289 
GetPage, 312 
GetSocket, 331 
GetSSInfo, 290, 342, 344 
GetStatus, 340, 345, 346 
GetVendorInfo, 343 
GetWindow, 309 
glitch detect, 78 
glue-logic, 273 

handheld instrumentation, 14 
hardware interfacing, 73, 187 
hardware interleaving, 99 
hardware interrupt, 170 
HCT,126 
HDD,15 
high-speed specifications, 90 
Hitachi, 25, 168 
hold time, 96 
hot electron injection, 27, 34 
hot insertion, 62 

I/O access, 212 
I/O mapping, 214, 293 
I/O space, 304 
IDE,66,228 
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identification and revision register, 305 
IDT,130 
in-system write, 71 
indirect indexing, 283 
input voltage specifications, 126 
InquireAdapter, 292, 299, 303, 310, 325, 
330,334 
InquireSocket, 333, 335, 336 
InquireWindow, 304, 318, 319, 321, 322, 
325,326,357 
installable device driver, 233 
INT 13H, 235, 243 
INT 1AH, 285 
INT 21H, 237, 253, 265 
INT 25H, 236, 243 
INT2FH,253 
integrated converter, 122 
Integrated Device Technology Corporation, 
130 
integrated drive, 228 
integration, 133 
Intel, 25, 149, 189 
interface controller, 220, 283 
interface logic, 102 
interface status register, 283 
interleaving, 14,95,99, 103,359 
internal automation, 82, lSI, 163 
internal voltage,S, 43 
internal voltage conversion, 113 
interrupt filter, 206, 242 
interrupt latency, 203 
interrupt request, 200 
interrupts, 141,225,299,333,345 
IO.SYS, 233 
ISA,330 

J-Lead,49 
JEDEC, 69, 91 
JEDEC identifier, 360 
JElDA, 62,188 
JIT,70 
just-in-time, 70 

laser printer, 15 
LCC package, 49 
leakage current, 114 
lifetime, 24 
linear mapped memory, 214 
Linear Technology Corporation, 118 
linked list, 258 
linked list structures, 43 

lithographies, 28 
locality, 100 
lockou t voltage, 78 

M-Systems,247 
magnetic mass storage, 3, 5, 6, 19 
manufacturability, 2 
manufacturing, 24, 42 
market share, 24 
mass file storage, 19 
MAX705,81 
Maxim Integrated Products, 119 
MDT4P05,80 
medical instrumentation, 12 
memory banks, 359 
memory card, 62, 187 
memory card offset, 328 
memory characterisitcs table, 305 
memory comparison, 6 
memory density, 13 
memory lifetime,S 
memory mapping, 212, 214 
memory output, 25 
memory space, 304 
memory technology driver, 277, 281 
metaforruat, 349 
microcontroller, 219 
Microsoft, 252, 253 
Mitsubishi, 25 
mixed-voltage bus, 130 
mixed-voltage design, 125 
modular solutions, 122 
monolithic file system, 279 
MOSFET,130 
Motorola, 77,80,118 
MS Flash File System, 252 
MS-FLASH.SYS, 279 
MTBF, 38, 41, 42 
MTD,277 
multiple block erase, 168 
multiplex interrupt, 253 
multiplexing, 76 

NAND, 23, 36, 43,106,168 
NEC, 25,168 
negative gate erase, 29 
non-destructive failure, 41 
nonvolatile, 4, 6 
nonvolatility, 16,23 
NOR, 23, 26, 30, 80, 106 
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OE, 77, 78 
on-board update, 69 
on-chip buffer, 33 
open-drain output, 130 
operating range, 90 
operating voltage, 106 
OTP-ROM,49 
output buffer, 99, 109 
output bus, 95 
output drive, 92 
output enable, 76, 199 
output enable time, 92 
output loading, 99 
overerase, 29 
oxide, 25, 32 
oxide breakdown, 5, 40 
oxide thickness, 33, 35' 

packaging, 45 
page, 102 
page enable, 326 
page programming, 168 
paged memory mapping, 217 
paging, 222 
parallel erase, 175, 179 
parallel programming, 175, 176 
PBX switcher, 14 
PC card interface controller, 220 
PCIC,283,298,305,323 
PCMCIA, 20, 62, 187, 210, 211, 219, 220, 
223,277,285,287,305,348,349,354,363 
PCMCIA card types, 63 
PCMCIA-ATA, 66, 228 
performance, 14, 102,265 

program/erase, 23 
read,23 

Performance Semiconductor, 130 
periphery logic, 24, 36 
PGM,136 
pinout, 73 
platter seek, 5 
PLCC,49 
point of sale terminals, 13 
portability, 13 
portable computer, 20 
power, 5, 14 
power consumption, 80, 82, 105, 113, 130, 
132 
power management, 108,294,296 
power management table, 334 
power management techniques, 130 

power profile, 113 
power transitions, 83 
powerdown, 82, 110 
powerdown mode, 114 
POWER GOOD, 84 
pre-condition, 143 
preprogramming, 30, 143 
pricing, 2 
processor loading, 76 
production volume, 1 
program, 41, 42, 43, 96 
program mode, 111, 115 
program setup, 140 
program verification, 151 

Index 419 

program verify, 115, 140, 141, 142 
program voltage, 79, 112, 113 
program/erase performance, 23 
program/erase voltage, 138 
programming, 27 
programming algorithm, 138 
programming current, 115 
programming voltage, 207 
PROM,4 
PROM programmer, 70 
PROM programming, 68 
protected mode, 344 
PSOP,51 
pulse count, 140 
PWD,69 

RAM, 3,77 
RAM interface, 71 
RAMDRIVE, 228 
ramp delay, 132 
READ,78 
read, 76, 103, 114 
read access, 99, 101 
read access time, 36, 99 
read array mode, 161 
read block size, 358 
read current, 108 
read current profile, 108 
read cycle time, 93 
read delay, 94, 102 
read mode, 108 
read performance, 23, 43, 92 
read status register, 160 
read timing, 93 
read/write, 77 
readylbusy, 84, 200 
real-time clock, 141 
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reclamation, 247 
redirector, 253 
redundancy,5,43 
refresh,6 
REG,193 
register-based memory mapping, 212 
reliability, 32, 35, 40, 99, 113, 117, 122, 
128,268 
remote sensing, 14 
removability,291 
RESET, 81, 206 
reset, 82, 169, 173, 340 
resource management, 280, 364 
reverse pinout, 57 
rewrite,S, 33 
ROM, 3, 16,77 
ROM drive, 243 
ROM scan, 286 
root directory, 244 
rotation delay,S 
RP,69 
RY/BY, 82 

Samsung,32 
saturation, 108 
SCM,247 
sector, 229, 239, 246 
select gate, 25, 36 
sensing instrumentation, 14 
Series 1 Card, 139, 188 
Series 2 Card, 200, 203, 206 
serpentining, 57 
SetAdapter, 296, 303, 309, 333, 345, 347 
SetPage, 313,315,329 
SetSocket, 301, 337, 347 
setup command, 151 
setup time, 95 
SetWindow, 298, 314, 323, 326 
SGS-Thompson,25 
shadowing, 98 
shock tolerance, 13 
signal states, 91 
silicon, 42 
silicon oxide, 25 
SIMM package, 59 
socket characteristics, 332 
socket configuration, 337 
socket services, 220, 222, 281, 284, 348 
socket windows, 293 
software algorithms, 43 
software delay, 141 

software delay loop, 81 
software interface, 174 
software metaformat, 349 
software polling, 170 
SOJ package, 54 
solid-state drive, 227 
SOP package, 54 
source, 25, 29 
spare block, 249 
specifications, 90, 106 
SRAM, 4,5,13, 19,98 
standby, 114, 131 
standby mode, 109 
state machine, 151, 161 
status change interrupt, 282 
status register, 84, 151, 153, 158, 160, 169 
stop timers, 141, 146 
substrate, 25, 40 
SunDisk,32 
supply voltage, 106 
suspend/resume, 160 
switching, 108 
system cost, 99 
system performance, 98 
system reset, 82 

TCIC-2IN, 221, 224 
temperature tolerance, 13 
test conditions, 108 
testing, 349 
Texas Instruments, 130 
timing parameters, 85 
toggle bit, 167 
Toshiba,25,36,168 
transceiver, 76, 92, 95 
transistor, 4 
transistor gate, 115 
transistor source, 25, 115 
transition points, 90 
tri-state, 130 
TSOP package, 48, 54, 69 
TTL, 108, 125 
tunneling, 28 
tuple, 316, 352, 361 
tuple byte, 354 
tuple chain, 354 
tuple code, 353 
tuple field, 354 
tuple link, 353 
tuple list, 353, 354 
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ultraviolet light, 28 
update, 68, 170 
update methods, 45 
update performance, 113 
updateability, 6, 23 
UV,28 

Vee-only, 106 
VDlSK,228 
vendor release, 342 
verify, 143, 178 
verify voltage, 113 
virtual addressing, 249 
voltage conversion, 113, 118 
voltage converter, 79 
voltage converter features, 121 
voltage droop, 118 
voltage monitoring, 81 
voltage ramp, 81, 115 
voltage ramp rates, 129 
voltage requirements, 24 
voltage sense, 210 
voltage spikes, 122 
voltage switching, 80, 208 
vo ltage tolerance, 117 
voltage translation, 126, 130 
volume growth, 1 
Vpp feedback, 81 

WAIT,204 
wait states, 102, 321 
wakeup, 110, 131 
WE-less memory, 78 
wear leveling, 43 
window, 304, 306 
window base address, 308, 310, 322 
window enable, 319 
window number, 325 
window page, 311, 325 
window size, 309, 314, 318 
window state, 319 
wire or, 203 
word,76 
wordlines, 25, 115 
WORM,253 
wrap-around, 195 
WRITE,78 
write, 33, 103 
write cycle time, 95 
write enable, 77, 199 
write performance, 131 

Index 421 

write protect, 78,199,312,326,357 
write state machine, 151 

XIP, 228, 304 
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You are welcome to send us comments or questions concerning this or 
other Annabooks products, or to request a catalog of our 

products and seminars. 

Annabooks 
11848 Bernardo Center Drive, Suite 110 

San Diego, CA 92128 

616-673-0870 

1-800-462-1042 

616-673-1432 FAX 
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