
Designing with
. FtASH
i ' , ' " , ' , i,

,MEMORY
" ','::,

Bri~n Dipert and Markus Levy

~ ~:, ': ',: i
: i :, \ i

The: defi~itive guide to
deisighlng ~a~h memory

,

hardwar~ and! software
'I - , ,

, '

ior tqnjlponeqts and
PCMCIA cardS. ·

i I
" ,
! ;

APPLE INC.
EXHIBIT 1011 - PAGE 0001

Designing with

Flash Memory

The definitive guide to
designing flash memory
hardware and software

for components and
PCMCIA cards

APPLE INC.
EXHIBIT 1011 - PAGE 0002

APPLE INC.
EXHIBIT 1011 - PAGE 0003

Designing with

Flash Memory
Brian Dipert & Markus Levy

The definitive guide to
designing flash memory
hardware and software

for components and
PCMCIA cards

Annabooks
San Diego

APPLE INC.
EXHIBIT 1011 - PAGE 0004

Designing with Flash Memory
BY

BRIAN DIPERT & MARKUS LEVY

PUBLISHED By

Annabooks
11848 Bernardo Plaza Ct., Suite 110
San Diego, CA 92128
USA

619-673-0870

Copyright © Annabooks 1993, 1994

All rights reserved. No part of the contents of this book may be
reproduced or transmitted in any form or by any means without the prior
written permission of the publisher, except for the inclusion of brief
quotations in a review.

Printed in the United States of America

ISBN 0-929392-17-5
Second Printing April 1994

APPLE INC.
EXHIBIT 1011 - PAGE 0005

Acknowledgements

Both Brian and Markus would like to thank their colleagues at Intel
Corporation. Knowingly (or unknowingly), their knowledge and
expertise was a superb resource base for answers to questions we
uncovered as we wrote. Special recognition goes out to Dave Cobb,
Russ Eslick, Kurt Robinson, John Garney, Clark Thurlo, Peter Torelli,
Steve Wells, Saul Zales, Greg Komoto, Larry Leszczynski, and John
Williams; thanks, guys! Thanks also goes out to Wink Saville at Saville
Associates, David Lawrence at Ventura Micro, and Amir Ban at M
Systems.

Several years of staffmg the customer and sales force support hotline at
Intel have also taught us what not to do when designing with flash
memory (and also given us some great ideas we hadn't considered
ourselves). To the salespersons and design engineers we've worked with;
thanks for an inexhaustible list of topics for this book. We hope we've
included answers for at least most ofthe questions you've asked us!

To our "partner in crime" Mary Ann Hooker (You Know), a big round
of applause for the great graphics work and for putting up with us and
our seemingly endless revisions. If it weren't for you, the figures would
have looked like kindergarden crayon work!

Markus: "Words cannot express the thanks and love that I give to
Danielle for all her support and for all the times she patiently listened to
me say 'It's almost done'. Well it's finally done. Thank you to Jacob
(although you can't read this yet) for being a great kid while your Dad
worked, worked and worked."

Brian: "I give thanks to the Creator God, to my family back in Indiana
(thanks for all your encouragement!) and to Lil, for patiently putting up
with all those nights and weekends I spent looking at a computer
monitor instead of at her. I hereby retire the notebook PC (at least for a
while) and echo Markus' comment.. it's finally done!".

APPLE INC.
EXHIBIT 1011 - PAGE 0006

Information provided in this publication is derived from various sources,
standards, and analyses. Any errors or omissions shall not imply any liability for
direct or indirect consequences arising from the use of this information. The
publisher and authors make no warranty for the correctness or for the use of this
information, and assume no liability for direct or indirect damages of any kind
arising from technical interpretations or technical explanations in this book, for
typographical or printing errors, or for any subsequent changes.

The publisher and authors reserve the right to make changes in this publication
without notice and without incurring any liability.

The publisher and editor would like to extend his thanks to Marco Thompson
and Gary Lorenc of Doctor Design, Inc. and to Ray Weiss of EDN who
reviewed the book on a very tight schedule while it was still in three ring binder
form. Thanks also to Rich Sjoberg who did the artwork for the cover.

Cover design by John P. Choisser, Annabooks.

Cover photo by Peter Menzel, Napa, California (707-255-3528). Peter caught
this lightning bolt along with dozens of others one night in Tucson, Arizona.
For more of Peter's work, see the National Geographic July 1993 issue. Peter
has taken photos all over the world for Geo, Life, Forbes, Stern, Us. News &
World Report, Smithsonian, The New York Times Magazine, and many others.
The glow at the bottom of this bolt is probably not the flash memory at the
University of Arizona being re-programmed all at once. It is more likely the
stadium, which puts out a pretty healthy glow of its own, lighting or no.

The following trademarks mentioned in this book are the property of the
companies listed: ETOX, i386, i486, Pentium, FlashFile, and Boot Block are the
property of Intel Corporation. Microsoft, MS-DOS, MS-FFS, and Windows are
trademarks of Microsoft Corporation. Other trademarks are credited as they
appear.

APPLE INC.
EXHIBIT 1011 - PAGE 0007

Contents

Chapter One: Introduction .. 1
Flash Memory Compared to Other Memories 3

ROM (Read-Only-Memory) ... 4
RAM (Random-Access-Memory) 4
EEPROM (Electrically-Eraseable-Programmable-Read-
Only-Memory) .. 5
Magnetic Mass Storage ... 5
An Emerging Alternative: Flash Memory 5

A Preview of Chapters to Follow ... 7
Chapter Two: Flash Memory Applications ... 11

Data Accumulation .. 12
Medical Instrumentation ... 12
Flight Recorders .. 13
More Data Accumulation Examples 13
Why Flash Memory for Data Acquisition? 14

DataILookup Table Storage ... 14
PBX Switcher .. 14
Laser Printers .. 15
Why Flash Memory For DataILookup Table Storage?16

Embedded Code Storage .. 16
PC BIOS .. 16
Digital Cellular Phones ... 18
More Embedded Code Storage Applications 18
Why Flash Memory for Embedded Code Storage? 18

File Storage .. 19
Flash Memory Promotes Longer Battery Life 19
HDD Densities with FDD Interchange 20

Summary .. 21
Chapter Three: Flash Memory Technologies ... 23

NOR Flash Memory ... 25
Program ... 27
Erase .. 28
Negative Gate Erase .. 29
Overerase ... : 29
NOR Flash Memory Specifications 30

APPLE INC.
EXHIBIT 1011 - PAGE 0008

ii Designing with Flash Memory

Flash EEPROM ... 32
Erase ... 33
Programming .. 34
Flash EEPROM Memory Specifications 35

NAND Flash Memory ... 36
Program and Erase .. 36
NAND Flash Memory Specifications 36

What's All This Cycling Stuff, Anyway? 38
Failure Analysis .. 40
Oxide Breakdown ... 40
Electron Trapup .. 41
Mean Time Before Failure ... 41
Extended Cycling-The Vendor's Options 42
Extended Cycling-What Can You Do? 43

Summary .. 44
Chapter Four: Packaging Options and Update Alternatives 45

Packaging Options ... 46
DIP (Dual In-Line Package) ... 46
LCC (LeadedlLeadless Chip Carrier) 49
SOJ (Small-Outline J-Lead) ... 52
SOP (Small Outline Package) 54
TSOP (Thin Small Outline Package) 54
SIMM (Single In-Line Leadless Memory Module) 59
PCMCIA Flash Memory Cards 62
Flash Drives .. 66

Update Options .. 68
Off-Board PROM Programming 68
On-Board Update .. 69
In-System Write .. 71

Summary .. 72
Chapter Five: Hardware Interfacing to Flash Memory Components 73

Hardware Interfacing Fundamentals ... 73
Chip Enable .. 75
Addresses .. 75
Data In/Out ... 76
Output Enable ... 76
Write Enable ... 77

APPLE INC.
EXHIBIT 1011 - PAGE 0009

Contents iii

WE-Less Flash Memories ... 78
The V pp ProgramJErase Voltage .. 79

Switching Vpp .. 80
V pp Feedback ... 81

Advanced Hardware Interfacing .. 82
The PWD Input ... 82
RYIBY Output .. 84

Interpreting Datasheet AC Parameters 85
General Observations .. 90
Naming Conventions ... 91
Capacitive Loading and Effects 92
AC Read Characteristics ... 93
Read Specification Clarifications 94
AC Write Characteristics .. 95
Write Specification Clarifications 96

Performance Enhancements ... 98
Caching ... 98
Shadowing ... 98
Hardware Interleaving ... 99

Summary .. 104
Chapter Six: Power Requirements and Design Techniques 105

The V cc Operating Voltage ... 106
Read Mode (ICCR) .. 108
Standby Mode (Iccs) ... 109
Deep Powerdown Mode (Icco) 110
Program Mode (IccwlIccp) ... lll
Erase Mode (ICCE) ... 112

The V pp ProgramJErase Voltage .. 113
Read/Standby Mode (IPPR and Ipps) 114
Deep Powerdown Mode (IPPD) 114
Program Mode (IppwlIppp) .. 115
Erase Mode (IpPE) .. 115

V PP Generation Techniques .. 117
Directly from a 12V Regulated Supply 117
Converting from 12V Unregulated 118
Converting from a Lower Voltage 118
Converting from a Higher Voltage 120

APPLE INC.
EXHIBIT 1011 - PAGE 0010

iv Designing with Flash Memory

General Characteristics of Voltage Converters 121
Totally Modular Solutions ... 122

Bypass and Decoupling Capacitive Filtering 122
Decoupling Capacitors-Vee .. 123
Bypass Capacitors-Vee ... 124
Decoupling Capacitors-Vpp .. 124

Mixed-Voltage System Design .. 125
3.3 Volt to 5 Volt Interfaces 125
5V to 3.3V Interfaces ... 127
Bidirectional Bus Interface ... 130

Power Management Techniques .. 130
Summary ~ .. 132

Chapter Seven: Software Interfacing to Flash Memory 133
Why Is Flash Memory Controlled By System Software? 134

EPROM Programming Algorithm 134
Flash Memory Programming 136

The NOR Bulk-Erase Flash Memory Algorithms 139
The Program Algorithm .. 140
The Chip Erase Algorithm .. 143
Summary of First-Generation ProgramminglErase
Characteristics .. 148

The NOR Fully-Automated Flash Memory Algorithms 149
Intel Automated Program Algorithm 151
Intel Automated Block Erase Algorithm 156
Intel Automated Erase Suspend/Resume Algorithm .. 160
Alternative Automated Algorithms 162
General Automated Algorithm Techniques-Multiple
Block Erase ... 168
General Automated Algorithm Techniques-Page
Programming .. 168
General Automated Algorithm Techniques-Aborting
Internal Automation .. 168
General Automated Algorithm Techniques-The
RYlEY Output. ... 169
Software Polling or Hardware Interrupt: Which Should
You Use? .. 169

Update Routines .. 170

APPLE INC.
EXHIBIT 1011 - PAGE 0011

Contents V

Flexible Design Techniques .. 172
System Boot Code Contents .. 173
Software Interface to Flash Cards, SIMMs and Multi-
Component Arrays ... 174

Parallel Program of Non-Automated Flash
Memories .. ,'.176
Parallel Erase of Non-Automated Flash Memories 179
Parallel ProgramJErase of Automated Flash
Memories .. 183

Summary .. 184
Chapter Eight: Hardware Interfacing Considerations for Flash Cards 187

A Flash Memory Array Within a Card 187
PCMCIA Flash Memory Cards .. 188

PCMCIA 1.0 ... 188
PCMCIA 2.0 ... 189
PCMCIA Signal Definitions 193
Host System Implementations 211

Implementing PCMCIA 2.0 Hardware 220
Proprietary or Commercial Interface Controllers 220
Supporting Hardware for PCMCIA-Interface
Controllers ... 220
Accessing Flash Memory Cards with PCMCIA-
Interface Controllers ... 222
More On Buffering ... 222

Summary .. 225
Chapter Nine: Flash Memory File Systems .. 227

Introduction .. 227
Flash Memory Solid-State Drive Form Factors 227
Flash Memory Solid-State Drives Require Special
Drivers ... 228

Disk-Drive Basics .. 229
DOS Data Structures ... 231
Device Drivers .. 233

Flash File System Designs ... 238
Measuring Drive Usage .. 239
The Disk-Drive Emulators .. 239
Flash Optimized File Systems 240

APPLE INC.
EXHIBIT 1011 - PAGE 0012

vi Designing with Flash Memory

The Disk-Drive Emulators ... 241
Primitive Flash File Systems 242
Full-Featured Disk-Drive Emulators 247

Flash Optimized FSSD's .. 252
Accessing the Flash-Optimized FSSD 253
Microsoft's Flash File System Design Criteria 253
Functional Description ... 256

Flash File System Evaluation .. 265
Performance - File Transfer Rate 265
Performance - Clean-Up Efficiency 267
Performance - Hot and Cold File Management.. 268
Reliability - Cycle Leveling 268
Reliability - Failure Recovery Modes 269
System Level Issues - File System Overhead 270
System Level Issues - Ease of Use 270

Summary .. 271
Chapter Ten: PCMCIA Software ... 273

Introduction ... 273
The Areas of Software Compatibility 274
The PCMCIA-ExCA Relationship .. 277
Flash File System Models ... 279

The Original Flash File System Model 279
What's Really Necessary? ... 282

Socket Services .. 282
Defining the Adapter Hardware 283
Accessing Socket Services ... 284
Installing Socket Services ... 286

The Socket Services Functions .. 287
Non-Specific Functions .. 289
Adapter Functions .. 292
Window Functions ... 304
Fields In The I/O Window Characteristics Table 317
Window Size .. 318
Detecting Card Insertion ... 347
Error Detection and Correction Functions 347

Socket Service Design Considerations and Benefits 348
The Card Information Structure .. 349

APPLE INC.
EXHIBIT 1011 - PAGE 0013

Contents vii

Accessing the Card Information Structure 350
The Device Information Tuple 356

Card Services ... 363
What is Card Services? .. 364
Do You Need Card Services? 366

Flash Card Memory Technology Drivers 366
Why Support New Cards? .. 367
Flash Card Driver Functions 367
Interfacing to the Flash Card Driver 368
Installing the Flash Card Drivers 368

Summary ... 371
Appendix A: Flash Memory Component Vendors 373
Appendix B: Flash Memory CardlDrive Vendors 375
Appendix C: Flash Memory Component and Card Programmers 379
Appendix D: Component and Card Socket and Adapter Vendors 383
Appendix E: 12V Converters ... 387
Appendix F: Flash Memory Card Readers and Writers 391
Appendix G: Flash File Systems .. 395
Appendix H: PCMCIA and Software Vendors 397
Appendix I: PCMCIA Compliance Testing Facilities 399
Appendix J: PCMCIA Card Types ... 401
Appendix K: PCMCIA Controller Register Functions and Vendors ... 403
Appendix L: INT 21H Standard Disk-Related Functions 409
Appendix M: Sample Flash File System Benchmarking Code 411

APPLE INC.
EXHIBIT 1011 - PAGE 0014

viii Designing with Flash Memory

Figures

1.1: The Exploding Flash Memory Market ... 1
1.2: Flash Memory Cell Simplicity Enables Cost-Effective

Manufacturing ... 2
1.3: Average Selling Price for 1 Mbyte of Flash Memory Storage 3
1.4: . Flash Memory Satisfies Many Ideal Memory Attributes 7
2.1: BIOS Glues Common Software to Unique Hardware 17
2.2: Energy Consumed During Various Acitivties 20
2.3: Elan Flash Memory Card ReaderIWriter .. 21
3.1: Dataquest 1992 Flash Memory Market Share (by company) 24
3.2: ETOXTM Flash Memory Cell Similarities Leverage EPROM

Learning Curve ... 25
3.3: ETOXTM Flash Memory Cell Being Read 26
3.4: NOR Flash Memory Array Interconnect .. 26
3.5: ETOXTM Flash Memory Cell Being Programmed 27
3.6: EPROM Cell Being UV Erased ... 28
3.7: ETOXTM Flash Memory Cell Being Erased 28
3.8: Negative Gate Erase ... 30
3.9: Iterative Basic Flash Memory Erase Algorithm 31
3.10: EEPROM-Based Flash Memory Cell ... 33
3.11: EEPROM-Based Flash Memory Cell Being Erased 34
3.12: EEPROM-Based Flash Memory Cell Being Programmed 35
3.13: NAND Flash Memory Cell Being Read 36
3.14: NAND Flash Memory Array Interconnect.. 37
3.15: NAND Flash Memory Cell Being Programmed 37
3.16: NAND Flash Memory Cell Being Erased 38
4.1: DIP (Dual In-Line) Package Dimensions 47
4.2: DIP / TSOP Package Comparison (Actual Size) 48
4.3: LCC (Leaded Chip Carrier) Package Dimensions 50
4.4: Trace Layout Comparison: PSOP vs. PLCC 51
4.5: Small Outline J-Lead (SOJ) Package Dimensions 53
4.6: Small Outline Package (SOP) Dimensions 55
4.7: TSOP (Thin Small Outline Package) Dimensions 56
4.8: Standard and Reverse TSOP Packages ... 57
4.9: TSOP Serpentine Package Layout.. .. 58
4.10: SIMM Package Dimensions ... 60

APPLE INC.
EXHIBIT 1011 - PAGE 0015

Contents ix

4.11: SCM Microsystems Flash Memory SIMM Pinout 61
4.12: PCMCIA / JEIDA Type 1 PC Card Package Dimensions 64
4.13: PCMCIA / JEIDA Type 2 PC Card Package Dimensions 64
4.14: Mass Storage Architecture ... 66
4.15: Flash Drive Architecture .. 66
4.16: Design Considerations During On-Board Update 69
4.17: Key Elements ofIn-System Update ... 70
5.1: ProcessorlFlash Memory Interface (separate address and data

buses, distinct read and write, one flash memory) 74
5.2: Processor / Flash Memory Interface (multiplexed address/data

lines, multiplexed read/write, two x8 flash memories) 74
5.3: V pp Switch Circuit .. 80
5.4: Maxim MAX705, Used for Vee and Vpp Monitoring 82
5.5: Intel 28FOOIBX Boot Block Flash Memory Map 83
5.6: Wired-OR RYlEY Implementation ... 85
5.7: Flash Memory Read Access Time Partitioning 86
5.8: AC Input/Output Reference Waveform ... 86
5.9: AC Testing Load Circuit.. .. 87
5.10: High Speed Input / Output Reference Waveform 87
5.11: High Speed AC Testing Load Circuit.. .. 87
5.12: AC Waveforms for Read Operations ... 88
5.13: AC Waveforms for Write Operation .. 89
5.14: Example Ordering Information Table .. 90
5.15: Hardware Interleaving - Utilizes Common CE, Unique OE

and WE ... 100
5.16: Hardware Interleaving - State Transition Diagram 103
6.1 : Vee Current (Typical) - Read Mode .. 109
6.2: Vee Current (Typical) - Program Mode 111
6.3 : Vee Current (Typical) - Erase Mode .. 112
6.4: Vpp Current (Typical) - Program Mode 114
6.5: Vpp Current (Typical) - Erase Mode .. 115
6.6: Vpp Current (Typical) - Beginning of an Erase Pulse 116
6.7: Linear Technology LT1110 5V to 12V Converter 118
6.8: Motorola MC34063A 5V to 12V Converter 119
6.9: Maxim MAX732 3V to 12V Converter 119
6.10: Maxim MAX667 12V Linear Voltage Regulator 120
6.11: Linear Technology LT1111 Voltage Step Down Switcher 120

APPLE INC.
EXHIBIT 1011 - PAGE 0016

x Designing with Flash Memory

6.12: Interfacing a 3.3V Device to a 5V Device (TIL Inputs) 126
6.13: Interfacing a 3.3V Device to a 5V Device (CMOS Inputs) 127
6.14: Interfacing a 5V Device to a 3.3V Device 128
6.15: 5V to 3.3V Direct Interface. Overbiasing the ESD Input Diode 128
6.16: Interfacing a 5V Device to a 3.3V Device - Series Resistor

Voltage Drop .. 129
6.17: Interfacing a 5V Device to a 3.3V Device.- 129
7.1: EPROM Programming Algorithm (Simplified Form) 135
7.2: Intel First Generation Flash Memory Non-Automated Programming

Algorithm .. 137
7.3: Intel First Generation Flash Memory Non-Automated Erase

Algorithm , ~ .. 144
7.4: Intel Automated Flash Memory Program Algorithm 152
7.5: Intel Automated Flash Memory Status Register 155
7.6: Intel Automated Flash Memory Block Erase Algorithm 157
7.7: Intel Automated Erase Suspend / Resume Algorithm 161
7.8: AMD 5V-Only Automated Program Algorithm 165
7.9: AMD 5V-Only Automated Erase Algorithm 166
7.10: AMD 5V-Only Automated Data Polling and Toggle Bit

Algorithm .. 167
7.11: Parallel Programming of Non-Automated Flash Memories 177
7.12: Parallel Erase of Non-Automated Flash Memories 180
7.13: Parallel Program / Erase of Automated Flash Memories 184
8.1: PCMCIA 1.0 Flash Memory Card .. 190
8.2: Intel Series 2 Flash Memory Card .. 191
8.3: PCMCIA Electrical Interface Categories 193
8.4: PCMCIA Read Timing Waveform ... 195
8.5: Aliasing Caused by Inadequate Address Line Decoding 195
8.6: Internal Component Arrangement Dictated by Flash Memory

Architecture .. 197
8.7: Byte-Wide Access Mode Circuitry for 8-Bit Systems 198
8.8: RDYIBSY Background Sequence .. 201
8.9: Use of RDYIBSY in Multiple Device Operations 202
8.10: Standard PCMCIA RDYIBSY Waveform 203
8.11: High-Performance RDYIBSY Waveform for Multiple Device

Operations ... 204

APPLE INC.
EXHIBIT 1011 - PAGE 0017

Contents Xl

8.12: PCMCIA Pin Lengths Allow Proper Sequencing of Card
Signals .. 205

8.13: Example Card Detection Circuitry ... 206
8.14: PCMCIA Controller Chip Controls Voltage Switching 209
8.15: Mapping Memory Through an I/O Port 212
8.16: The Data Bus Generates the Flash Memory Addresses 213
8.17: Counters Enhance I/O-Mapped Read Access 213
8.18: Linearly-Mapped Memory Addressing 215
8.19: DOS Memory Map ... 216
8.20: Memory Paging Circuitry .. 217
8.21: Implementing a PCMCIA 1.0 Interface in an Embedded

Application ... 219
8.22: The Intel 82365SL PCMCIA Interface Controller Requires a

Minimal Amount of Support Circuitry ... 221
9.1: Flash Memory Manager and Operating System Interface 230
9.2: Disk Drive Tracks and Sectors ... 230
9.3: File Directory and FAT Modification .. 232
9.4: New Device Drivers Supersede Default Drivers 234
9.5: Using the Disk Service Interrupts to Access Disk Sectors 236
9.6: Accessing Devices Using File Handles, Not at the Sector Level 238
9.7: Flash Memory Solid-State Drive System Layers 240
9.8: Using an Interrupt Filter ... 242
9.9: Creating a Disk Image in Flash Memory 243
9.10: A Flash Memory Array Pre-Formatted with a Blank FAT and

Root Directory .. 245
9.11: Sector-Level Modification Requires Considerable Overhead ... 246
9.12: One-to-One Correspondence Between FAT Entries and

Sectors .. 248
9.13: Three-Step Cleanup Operation: Copy, Erase, and Block

Renumbering .. 250
9.14: Defragmentation Utility Concatenates 252
9.15: Flash Memory Solid-State Drive Accessing Methods 254
9.16: Microsoft's First FFS Functioned Like a WORM Drive 255
9.17: Files are Always Written to the Next Available Free Space 257
9.18: Linked List Pointers Locate Nest File in the Chain 258
9.19: Each Subdirectory has Its Own Linked List 259
9.20: MS-Flash Performs a Three-Step Clean-up Operation 260

APPLE INC.
EXHIBIT 1011 - PAGE 0018

Designing with Flash Memory

9.21: Worst-Case Foreground .. 263
9.22: File Clean-Up ... 264
10.1: Glue Logic Holds Together the Major System Pieces 274
10.2: Many Types of PCMCIA-Compatible Cards can Operate in the

Same Socket. ... 276
10.3: PCMCIA Provides a General, Three-Dimensional Specification

Covering Processors, System Architectures, and Operating
Systems ... 278

10.4: ExCA Provides a Specific Implementation ofPCMCIA 278
10.5: The Non-Modular Flash File System Lacked Flexibility 280
10.6: Complete and Flexible Implementation of a Flash File System

Consists of Five Modules ... 281
10.7: Use an Index and Data Register Combination to Access the PCIC's

Internal Registers .. 284
10.8: The Functions of Socket Services Act Like a Black-Box Where

Parameters Go In and Out ... 285
10.9: An Application Uses Interrupt 1AH to Access Socket Services or

the PC's Real-Time Clock ... 286
10.10: Multiple Socket Services can be Chained Together and Accessed

Through the Common Entry Point ofINT 1AH 287
10.11: Reading a Signature from the Adapter Board to Identify Its

Presence .. 290
10.12: Socket Services Isolates the Differences between a Removable

Memory Card and Permanently Resident Flash Array 291
10.13: Five Memory-Mapped Windows for Flash Memory Card Access

in an ExCA System ... 293
10.14: InquireAdapter Returns Information Describing the Adapter's

Capabilities, such as the Power Characteristics 296
10.15: The Global Control Register Powers Down the PCIC 299
10.16: Distinguishing Between an Adapter Interrupt and a Socket

Interrupt , .. 300
10.17: Mask Status Change Interrupts at the Socket Level, Enabling

Them at the Adapter Level ... 302
10.18: Writing a One to Bits 0-3 Enables the Corresponding Status

Change to Generate an Interrupt.. ... 303
10.19: Determine the Interface Type from the Identification and

Revision Register in PCIC-Compatible Controllers 306

-

APPLE INC.
EXHIBIT 1011 - PAGE 0019

Contents xiii

10.20: As the Memory Window Chacteristics Table Indicates, the Base
Address and Size may be Programmable 308

10.21: Contrasting Windows Divided into Pages and Multiple
Windows .. 312

10.22: Minimum and Maximum Memory Window Address 313
10.23: Example Showing Potential Base Address for a 4 Kbyte Window

that Must Reside on a Multiple of the Window's Size 315
10.24: Use this Register to Enable and Disable Memory and I/O

Windows .. 320
10.25: These PCIC Registers Control the Access Speed and Determine

the Stop Address of the Corresponding Memory Window 322
10.26: These PCIC Registers Set Up the Base Address of the System

Memory Window .. 324
10.27: These PCIC Registers Set Up the Flash Memory Card's Offset,

Enables Write Protection, and Selects the Memory Plane 327
10.28: Translating System Addresses to Access Various Regions within

the Flash Memory Card ... 329
10.29: This PCIC Register, Power Control and RESETDRV, Controls a

Socket's Voltage Levels .. 335
10.30: The Card Status Change Register Reports on the Source of the

Status Change .. 336
10.31: Use an I/O Port to Control the Socket's Indicators 337
10.32: Read the Interface Status Register with the GetStatus Function to

Determine the Presence of a Card ... 339
10.33: Writing to this PCIC Register Activates the PC Card's Reset

State ... 341
10.34: Flash Memory Card Partitioning Examples 351
10.35: Select between a Flash Memory Card's Common and Attribute

Memory Planes using the REG Signal. ... 351
10.36: A Tuple is the Basic Data Structure in the CIS 353
10.37: Card Services Interfaces between Clients (Applications, Device

Drivers) and PC Cards, Sockets, and System Resources 365
10.38: Installing a New Flash Card Driver .. 370

APPLE INC.
EXHIBIT 1011 - PAGE 0020

xiv Designing with Flash Memory

Tables

1.1: Flash Memory Evolution and Innovation Broaden the Application
Base ... 3

1.2: Flash Memory Versatility Answers the Needs of Many
Applications .. 6

3.1: NOR Flash Memory Characteristics .. 32
3.2: EEPROM Flash Memory Characteristics 35
3.3: NAND Flash Memory Characteristics ... 38
4.1: The Key Differences between a Flash Drive and a PCMCIA Flash

Memory Card .. 66
5.1: Flash Memory Bus Interface .. 74
5.2. WE-Less Flash Memory Bus Interface ... 79
5.3: JEDEC Signal/State Naming Conventions 91
5.4: AC Characteristics, Read Operations ... 93
5.5: AC Characteristics, Write Operations .. 97
5.6: Input/Output Capacitance ... 97
6.1. DC Characteristics .. 107
7.1: Intel Bulk-Erase Flash Memory Command Definitions 139
7.2: Intel Block-Erase Flash Memory Command Definitions 150
7.3: AMD 5V-Only Automated Algorithm Command Definitions 163
8.1: Signal Definition of the PCMCIA Interface 192
8.2: Common Memory Accesses ... 197
8.3: System Power Requirements .. 208
8.4: Voltage Sense Pin Configurations .. 211
8.5: PC Card Interface Conditions During Insertion and Removal.. ... 223
9.1: FAT Values for 12 and 16 Bit Entries .. 231
10.1: PCMCIA and ExCA Relationship .. 279
10.2: Socket Services Functions .. 288
10.3: Adapter Characteristics and Power Management 295
10.4: Example Adapter Characteristics and Power Management 297
10.5: Card Status Change Interrupt Steering 301
10.6: Interface Identification for PCIC-Compatible Controllers 305
10.7: Memory Window Characteristics ... 307
10.8: Example Memory Window Characteristics 316
10.9: I/O Window Characteristics ... 317

APPLE INC.
EXHIBIT 1011 - PAGE 0021

Contents xv

10.10: Controlling Vpp Enable Signals with the PCIC's Power Control
Register. ... 335

10.11: Tuple Format ... 352
10.12: Minimum Tuple Requirements ... 355
1O.l3: Sample Device Information Tuple .. 356
10.14: Sample Device ID Byte ... 357
10.15: Sample Device Size Byte .. 358
10.16: Sample Device Geometry Tuple ... 360
10.17: Sample JEDEC Identifier Table .. 361
10.18: Size ofField Byte .. 361
10.19: Sample Configuration Table .. 362
10.20: Sample End-of-List Tuple ... 363
10.21: System Memory Architectures .. 369

APPLE INC.
EXHIBIT 1011 - PAGE 0022

Foreword

Throughout the last five years, two major trends have shaped system
usage of flash memory. Density has increased at the significant rate
taken by a mainstream technology, and the cost has dropped below
various traditional memories. Looking out over the coming years, these
trends will continue and flash memory will alter the memory system
architecture defined in the 70's and 80's.

Production volumes of the first 256-kbit flash memory started shipping
in 1988. By 1992, multiple companies announced capability of 4 Mbit, 8
Mbit and even 16 Mbit densities. These densities, in a cost-effective, re
writable, non-volatile memory, provide designers with alternatives for
sophisticated microprocessor-based designs. Rapid increases in the
densities of flash memory, combined with the software upgrade
assumption, have created "flash points" in many general computing
systems.

Beyond code storage, designers have adopted flash memory for
parameter and data storage. The amount of firmware or data storage and
its usage in various applications has depended on the rapid decline in
price points of the technology. In 1988, OEMs purchased 1 MByte of
flash memory for $640. From that starting point, the price per megabyte
has steadily dropped to $240 in '89, to $90 in '90-91, and to $30 in '92-
93. This drop has enabled different classes of machines within an
application family to adopt flash memory over time.

Another market dynamic helped accelerate the pace of "flash points" in
1993. OEMs who had adopted flash technology between '88 and '90
helped define the critical elements of the second generation flash
product features. These products hit the market in 1991 and 1992. The
features included erase blocking (symmetrical and asymmetrical for
different applications), lockable "boot blocks," embedded write and
erase algorithm automation, and ultra-low "power-down" functions.
From this feature evolution, one can see another round of "flash points"
in the areas of high volume PC BIOS and portable systems of all types.

APPLE INC.
EXHIBIT 1011 - PAGE 0023

Designers in 1991 and 1992 opened their imaginations and started
defining new system features, capabilities and even new classes of
systems. They broke with the traditional approaches of slicing the
system memory budgets, as seen in the following examples. A notebook
PC today may have only $15 of flash memory, relative to $100 of
DRAM and $250 of hard disk. On the other hand, a Personal Digital
Assistant may have $30 of resident flash memory, relative to $30 of
SRAM, $20 multi-purpose PC card slot, and $0 for a hard disk. The PC
card slot enables system expansion through flash memory and I/O cards.

Other applications that have started redistribution of the memory budget
include data and telecommunication systems, printers, workstations,
diskless terminals and POS terminals. These systems may balance
kilobytes of fast cache SRAM, with megabytes of DRAM, and
megabytes of either resident or removable flash memory. The flash
memory in these applications improve network efficiencies or provide
reliable local storage. In general, designers have recognized that the
memory hierarchy established with the technologies available in the
early 1970s, limits the system architecture in some way, thus creating
additional "flash points". More will come over the coming years through
the creativity of system designers allowed to dream.

Saul Zales
Components Marketing Manager
Intel Flash Cards and Components

APPLE INC.
EXHIBIT 1011 - PAGE 0024

Preface
Several years ago when the authors first began working at Intel, the
flash memory industry was still in its infancy. This simple and relatively
expensive (at that time) memory device was primarily being used as an
EPROM or EEPROM replacement, but creative-minded people like
Bruce McCormick (Intel's Director of Marketing for flash memory) and
Dick Pashley (Intel's Flash Memory Divisional Manager) saw a great
future for flash memory as a solid-state disk drive media and DRAM
replacement. The evolving versatility of flash memory has allowed it to
play a significant (and very interesting) role in optimizing the
performance of many different applications.

Many articles, application notes and datasheets have been written to date
on flash memory. However, this is the first comprehensive book on the
subject. It combines the best of previously written literature and the
latest information, along with the detailed, experienced knowledge of
the authors, all in one binding.

Keeping up with the rapidly changing flash memory industry was a
significant challenge. Although basic flash memory concepts often
remained the same, in the course of the one year it took to write this
book, many new technologies and devices were introduced and many
new flash memory manufacturers entered the market. In some cases, it
was very difficult to separate sensationalism and marketing "hype" from
reality when deciding what to include and leave out. Given the pace of
this industry, we'll probably soon begin work on the second edition

By far the greatest challenge in writing Designing with Flash Memory
was the sacrifice of (almost) every weekend, weeknight and vacation
day so that we could provide you with this informative and enjoyable
reference on flash memory (and return to our normal lives as soon as
possible). Should you have any inputs on the book, whether positive or
constructive (negative), feel free to contact the publisher at Annabooks.
Happy Reading!

Brian and Markus
September 9, 1993

APPLE INC.
EXHIBIT 1011 - PAGE 0025

Chapter One: Introduction

Flash memory is the subject of this book; what it is, where it can be used
(and why) and how it is integrated in system designs. At the time of this
book's publishing, flash memory has been manufactured in volume for
only five years, but in this short time frame it has achieved tremendous
industry acceptance and rapid year-to-year volume shipment growth. As
Figure 1.1 shows, business analysts predict a continuous and unabated
growth throughout the forseeable future.

Millions of $
3,00

------2,50

/ 2,00

~ .. ~ 1,50
~~

1,00

~ 500
~ 0_

1990 1991 1992 1993 1994 1995 1996 1997

Dalaquesl_ 35.0 120.0 249.0 565.0 1,203.0 1,894.0 2,536.0 2,745.0

In-SIal .. 38.0 132.8 319.3 631.5 988.3 1,289.8 1,611.1 1,980.1

Figure 1.1: The Exploding Flash Memory Market

What's driving the interest in, and subsequently the success of, flash
memory? Certainly its unique characteristics and capabilities, to be
discussed throughout the book, represent part of the reason. However,
flash memory is also relatively easy and economical to manufacture, and
its cell architecture is comparatively simpler than other semiconductor
memory approaches (see Figure 1.2).

APPLE INC.
EXHIBIT 1011 - PAGE 0026

2 Chapter One: Introduction

Control Gate

Floating Gate

) source)

[)
t··· .. · Drain)

(Substrate

EPROM CELL

I
p+~

I

p-w., ~--

Poly 1

DRAM CELL

Control Gate

TM
INTEL ETOX FLASH MEMORY CELL

EEPROM CELL

Figure 1.2: Flash Memory Cell Simplicity Enables Cost-Effective
Manufacturing

Manufacturing ease, in combination with a simple cell architecture,
contributes to lower cost and ultimately results in lower memory pricing.
Just as enhanced features enable flash memory usage in more and more
applications (as detailed in Table 1.1), pricing that crosses certain price
points impels companies to begin using flash memory instead of the
technologies they had previously used. Figure 1.3 shows industry
predictions for flash memory pricing through the next several years.

APPLE INC.
EXHIBIT 1011 - PAGE 0027

UTHOGRAPHY

1.2 micron

1.0 micron

0.8 micron

Flash Memory Compared To Other Memories 3

PACKAGING DENSITY $ PER HOF SPEED APPUCATION
MByte CYCLES

DIPIPLCC 64 Kbit- $200 100 200 ns Minimal-update, low-density
256 Kbit code storage.

Small lookup tables.

TSOP 512Kbit- $50- 10,000 120 ns High-density code storage.
2Mbit 200 Data acquisition

psoprrsoPI 4Mbit- $30-50 100,000 60ns High performance disk
Die 8Mbit emulation

Flash memory cards
Resident flash arrays

Table 1,1: Flash Memory Evolution and Innovation
Broaden the Application Base

$
350

300 ~
\

250
\ 200

\ 150
IB-.

100
~

50 - - --0

1989 1990 1991 1992 1993 1994 1995 1996

$/MByte" 313.00 126.50 83.90 32.00 23.50 15.90 9.75 7.20

Figure 1.3: Average Selling Price for 1 Mbyte of
Flash Memory Storage (Dataquest)

FLASH MEMORY COMPARED TO OTHER
MEMORIES
A description of what flash memory is (and isn't), is most easily obtained
by first defining the more established memory alternatives; ROM, RAM,
EEPROM, and magnetic mass storage, By outlining flash memory
characteristics in these terms, both its relative features, capabilities, and
applications are most apparent.

APPLE INC.
EXHIBIT 1011 - PAGE 0028

4 Chapter One: Introduction

ROM (Read-Only-Memory)

ROM is nonvolatile, but not in-system updateable. This memory family
has several members (ROM, PROM, and EPROM), with varying
degrees of flexibility of use differentiating them. ROM memories store
permanent code and data that is required to initialize and operate a
system and that must be accessible at relatively high speed
(differentiating ROMs from magnetic disk drives, for example). Most
ROM technologies employ a single transistor per cell and are therefore
capable of high per-device memory densities.

RAM (Random-Access-Memory)

RAM is in-system updateable; rewriting of RAM contents is easily and
quickly done by the system cpu. However, the affordable variety of
RAM, dynamic RAM (DRAM), is volatile; memory contents do not
retain their stored values when power is removed. DRAM stores
temporary data and also shadows the contents of both ROM memory and
magnetic mass storage during normal system operation for high-speed
access. Another variety of RAM, battery-backed static RAM (SRAM) ,
integrate a battery to retain stored data when system power is removed.
These batteries are, of course, ultimately volatile and are also sensitive
to temperature variations. In addition, SRAM is considerably more
expensive than DRAM.

Each DRAM cell consists of a transistor and a capacitor that must be
refreshed, or re-written occasionally due to leakage, to retain stored
contents. DRAM today is the "technology driver", or lead product on a
new manufacturing process, for many semiconductor companies. SRAM
requires no periodic refresh and has faster access time, but trades off
density and cost; SRAMs typically use between four and six transistors
per cell, impacting attainable device densities and significantly
increasing memory cost at a given density, relative to DRAM.

APPLE INC.
EXHIBIT 1011 - PAGE 0029

Flash Memory Compared To Other Memories 5

EEPROM (Electrically-Eraseable-Programmable-Read-Only
Memory)

EEPROM is a special kind of ROM that bears separate mention. It is in
system writeable on a byte-by-byte basis, like RAM, but it is also
nonvolatile, like ROM. Writes to an EEPROM cell store or remove
electron charge from areas of the cell transistor, resulting in a zero or
one, respectively, when the cell is subsequently read. Per-byte
alterability means that cell erase is part of rewrite. To speed this process,
EEPROMs generate high internal voltage potentials (and subsequent
high electric fields). This has the potentially unhappy consequence of
impacting cell reliability through time, by causing cell oxide breakdown
as the transistor is repeatedly re-written. EEPROM vendors often strive
to extend memory lifetime via on-chip cell redundancy and error
detection-correction logic. This added cell complexity, along with on
chip high voltage generation and considerable peripheral logic, limits
per-device EEPROM density and increases cost for a given density,
compared to other technologies.

Magnetic Mass Storage

Reference is made here to the resident hard disk drive and removable
media floppy disk drive. Magnetic mass storage is extremely dense,
relatively inexpensive on a cost-per-megabyte basis (compared to
semiconductor memory), and both nonvolatile and in-system updateable.
However, its slow access time, due to platter seek, rotation delay, and
inherent serial interface makes direct-read of code and data unrealistic.
Instead, nonvolatile magnetic mass storage contents transfer to faster
(but volatile) DRAM for CPU access. The fact that hard or floppy disk
drives contain moving parts (the motor and heads) also suggests that
they are potentially less rugged and more power-consuming than solid
state storage alternatives.

An Emerging Alternative: Flash Memory

Flash memory is the first significantly new memory technology to
appear in almost 20 years, and yet in many ways it owes its heritage to
its predecessors (specifically EPROM and EEPROM). Three distinct
approaches exist today (which we'll discuss in detail a bit later), but

APPLE INC.
EXHIBIT 1011 - PAGE 0030

6 Chapter One: Introduction

regardless of their differences, several similarities emerge. Table 1.2
compares the fundamental features of flash memory with those of the
other memory technologies discussed earlier.

Flash
Memorv
SRAM

DRAM
EEPROM

OTPI
EPROM

ROM
Hard Disk

Drive

Floppy
Disk
Drive

Nonvolatile High Low One In-System Fully Bit- High
Density Power Transistor Rewriteable Alterable Performance

PerCell
./ ./ ./ ./ ./

./ ./

./ ./ ./

./ ./ ./ ./

./ ./ ./ ./

t
./ ./ ./ ./

./ ./ ./ ./

./ ./ ./

Table 1.2: Flash Memory Versatility Answers the Needs of
Many Applications

Read
./

./

./

./

./

./

Flash memory is inherently nonvolatile, with no refresh or battery
requirements. This makes it a potential fit in applications that in the past
used ROM, EEPROM, battery-backed RAM or magnetic mass storage.
In-system updateability allows flash memory to match the requirements
of designs that might have previously used RAM, EEPROM, or
magnetic mass storage. Its simpler cell architecture (only one transistor)
gives it significant density advantages over both EEPROM and SRAM,
and compares favorably with densities achieved by ROM and DRAM on
analogous manufacturing processes.

Finally, the combination of nonvolatility, upgradeability, and high
density not only enhances designs that used other memory approaches in
the past but also enables new designs and applications. Figure 1.4 shows
that whereas more established memory technologies meet one (or
several) of the ideal memory attributes, flash memory is the only
approach to satisfy all three characteristics.

APPLE INC.
EXHIBIT 1011 - PAGE 0031

NON
VOLATILE

A Preview Of Chapters To Follow 7

HIGH
DENSITY

Figure 1.4: Flash Memory Satisfies Many Ideal Memory Attributes

A PREVIEW OF CHAPTERS TO FOLLOW
The remainder of this book will obviously cover the topic of flash
memory in much more detail than the short discussion in this chapter!
Using a modular structure, we have tried to organize the book so that
you can quickly find the specific information you need.

Chapters and appendices are arranged as follows:

•

•

Chapter 2: Flash Memory Applications
This chapter gives insight into compelling uses for flash
memory today, and a glimpse into future flash memory
applications.
Chapter 3: Flash Memory Technologies
This chapter reviews the distinguishing characteristics
of, and the technology behind, the dominant alternatives
in today's flash memory market.

APPLE INC.
EXHIBIT 1011 - PAGE 0032

8 Chapter One: Introduction

•

•

•

•

•

Chapter 4: Flash Memory Packaging Options
and Update Alternatives
This chapter shows the various packaging options
available for both flash memory components and cards
(and their relative strengths and shortcomings). It also
discusses various flash memory update methods and
their advantages and disadvantages.
Chapter 5: Hardware Interfacing to Flash Memory
Components
This chapter explains the integration of flash memory
components into system hardware designs (covering
both fundamentals and advanced techniques). It also
discusses interpreting flash memory timing parameters.
Chapter 6: Power Requirements and Design
Techniques
This chapter clarifies various current and voltage
specifications for flash memory, and discusses power
and energy consumption of the flash memory subsystem
in its various operating modes. 12V generation for flash
memory program/erase is also covered here.
Chapter 7: Software Interfacing to Flash
Memory
This chapter covers first-generation manual and second
generation automated flash memory program/erase
algorithms. It also offers suggestions on update routines
and boot code kemals, and discusses advanced software
techniques for multi-component flash memory arrays
and cards.
Chapter 8: Special Hardware Interfacing
Considerations for Memory Cards
Although flash memory cards have similar properties to
the devices within them, the hardware interfacing
requirements are complicated by one significant factor:
removability. In this chapter, we will discuss the
PCMCIA signals as well as host implementations,
including topics such as paging, buffering, and
PCMCIA interface controller chips.

APPLE INC.
EXHIBIT 1011 - PAGE 0033

A Preview a/Chapters To Follow 9

• Chapter 9: Flash Memory File Systems
The biggest questions associated with solid-state drives
made out of flash memory are: What is a flash file
system?, and Which one should I use? The answers to
these questions, and many more, lie within this chapter.
It will give you the information needed to make an
intelligent choice when evaluating the different flash
file system solutions currently available.

• Chapter 10: PCMCIA Software
This chapter delves into the various layers of software
that connect removable PC cards to the applications that
use them. Much of this section will discuss Socket
Services, software that every system with a PCMCIA
slot should include. We'll also review Card Services and
flash card drivers.

• Appendix A: Flash Memory Component Vendors
• Appendix B: Flash Memory CardIDrive Vendors
• Appendix C: Flash Memory Card/Component

Programmers
• Appendix D: Component/Card Socket and Adapter

Vendors
• Appendix E: 12V Converters
• Appendix F: Flash Memory Card ReaderlWriters
• Appendix G: Flash File Systems
• Appendix H: PCMCIA and Software Vendors
• Appendix I: PCMCIA Compliance Testing Facilities
• Appendix J: PCMCIA Card Types
• Appendix K: Interface Controller Chip Register

Functions and Vendors
• Appendix L: INT 21H Standard Disk-Related

Functions
• Appendix M: Sample Flash File System

Benchmarking Code

APPLE INC.
EXHIBIT 1011 - PAGE 0034

Chapter Two: Flash Memory
Applications

In Chapter One we answered a few basic questions about flash memory:

• What is it?
• Why use flash memory versus some other

technology?

In this chapter, we'll continue this trend and take a stab at a few more
fundamental questions:

• Where can flash memory be used (i.e., in what
applications) ?

• When do flash memory's features (in comparison to
other memory alternatives) translate to system
benefits?

Jumping ahead for a preview of upcoming topics, the remainder of this
book will answer, in depth, the final questions of:

•
•

Who is making it and how do the alternatives compare?
How do I integrate flash memory in my design?

The potential applications for flash memory are numerous and varied. In
some cases, flash memory enhances a design that had in the past used
another type of memory. In other cases, flash memory is an enabling
technology for designs and applications that, to a greater or lesser
degree, never would have previously been possible. In either case, we'll

APPLE INC.
EXHIBIT 1011 - PAGE 0035

12 Chapter Two: Flash Memory Applications

group the large number of possible applications into a few broad
categories for purposes of discussion, with specific comments where
appropriate. Specifically, we'll cover the following areas:

• Data Accumulation
• Data/Lookup Table Storage
• Embedded Code Storage
• File Storage

Notice that in the previous paragraph we talked about the potential
applications for flash memory. In many cases, flash memory is not the
only memory approach that could be used in the system design. Both
primary and secondary feature comparisons, as well as relative price
analysis, will help determine the correct memory for your specific
application.

In Chapter 1, we conducted a feature-by-feature comparison between
flash memory and other solutions (ROM, RAM, EEPROM, magnetic
media, etc.), while in Chapter 3 we'll compare and contrast the specific
features of various flash memory approaches relative to each other. In
this chapter, we'll translate memory features into application benefits.
Drawing from the authors' personal experiences in dealing with
customers, we'll give some insight into flash memory's comparative
strengths and weaknesses as they relate to application needs, and into
reasons why flash memory is (or isn't) a fit.

DATA ACCUMULATION
In this type of application, one or more flash memory components (or a
flash memory card) are used to store information periodically collected
from some type of external environment.

Medical Instrumentation

One example of data accumulation is medical instrumentation, where a
variety of information about a patient (heart rate, brain activity, blood
chemical concentration, etc.) is periodically sampled and stored. At
some point (usually when the resident memory is full), the data is

APPLE INC.
EXHIBIT 1011 - PAGE 0036

Data Accumulation 13

analyzed, often by downloading it to a master computer. The resident
accumulated data is flushed, and subsequent sampling continues from
this point.

Obviously, this type of system places a very high value on the stored
information! Memory technologies used in the past included EEPROM
and battery-backed RAM. Neither of these approaches will ever match
the per-device density of flash memory, where density defines the
amount of information that can be stored before filling the memory
array. This type of application usually does not require the bit
alterability that RAM and EEPROM provide; so flash memory's lack of
bit-eraseability may not be a drawback. Flash memory is inherently
nonvolatile and does not rely on a limited-lifetime, temperature-sensitive
battery to retain stored information. A high-density flash memory card
provides the additional benefit of portability, if the data must be moved
from the dedicated medical sensor to a computer for analysis.

Flight Recorders

Another system example of data accumulation is the "black box" flight
recorder found on every commercial airplane today. If a plane crashes (a
morbid scenario, we realize), the cockpit voice transcripts and stored
accumulation of sensor data are used to reconstruct the events leading up
to the accident and decipher its cause. Again, the value of the stored data
is very high in such a system.

In the past, tape recorders and rotating magnetic storage were used in
this application, but their poor temperature tolerance (and the fact that
they have moving parts) were reliability limiters, compared to fully
solid-state flash memory medial. A large array of EEPROM is cost
prohibitive compared to the flash memory alternative. Battery-backed
SRAM is similarly density-disadvantaged, and battery reliability is
questionable at temperature and shock extremes.

More Data Accumulation Examples

Additional data accumulation examples include point-of-sale terminals,
where transaction information can be stored locally and batch-uploaded

1 As a matter of fact, the FAA now prohibits the use of mechanical media.

APPLE INC.
EXHIBIT 1011 - PAGE 0037

14 Chapter Two: Flash Memory Applications

to the server, minimizing network traffic and improving performance.
Another example is handheld instrumentation, such as bar-code scanners
or other portable data acquisition devices. A final data accumulation
application example is remote sensing instrumentation, such as
geological, geothermal, or weather data collection equipment.

Why Flash Memory for Data Acquisition?

Benefits of flash memory in data accumulation applications (compared
to other memory alternatives) include its high density, inherent media
ruggedness, reliability, and inherent nonvolatility. Flash memory's low
power consumption also provides value in battery-operated designs.

Depending on the data sampling frequency, flash memory programming
and erase performance may be critical in the design. In this case,
software interleaving and background erase techniques (see Chapter 7
for more information), as well as careful selection of flash memories
(see Chapter 3), will maximize write bandwidth. Carefully analyze the
application cycling requirements when selecting a flash memory. When
evaluating flash memory versus alternatives, assess whether RAM-like
bit-alterability is needed, and whether this requirement can be worked
around via software and alternate storage techniques.

DATA/LOOKUP TABLE STORAGE
In this type of application, the flash memory devices store large amounts
of infrequently updated system data and/or lookup tables.

PBX Switcher

One specific data storage implementation is a telecommunications
switcher. Your phone company's local exchange PBX switcher, for
example, stores a large amount of information about each of its 10,000
(maximum) line subscribers, su~h as:

• Custom services that are enabled (call waiting, call
forwarding, etc.) and additional information for these
services (such as the phone number that incoming calls
are forwarded to).

APPLE INC.
EXHIBIT 1011 - PAGE 0038

Data/Lookup Table Storage 15

• The primary long distance service selected by the
subscriber

In the past, ROMslEPROMs were one memory technology commonly
used to store this lookup table data. Every time a user changed his/her
information profile, the switcher would have to be taken off-line while
the ROMs were replaced: an expensive proposition that also required
multiple redundant PBXs to prevent system downtime. Obviously,
business and personal phone users would not tolerate the inability to
make and receive calls while the PBX was being updated!

Another memory subsystem alternative consisted of a large array of
RAM, backed up by an equivalent amount of magnetic storage (such as a
hard drive). Besides the obvious cost of redundant memories (RAM and
magnetic), any system glitch, reset, or power loss resulted in
unacceptable system downtime as the PBX was re-initialized and data
was copied from the hard drive back into the RAM array. Flash
memory's combination of nonvolatility and updateability provides the in
system write capability lacking with EPROM, and eliminates the
memory redundancy and long system recovery delay of RAM-HDD.

Laser Printers

Another example of a data storage application is the laser printer, which
stores within itself the various fonts that it supports. These fonts have
been historically placed in ROM or EPROM, where in-system update is
not possible. You're in a sense stuck with the fonts that ship with your
printer in a ROM/EPROM-based system. Given the ever-increasing
explosion of new typefaces being used today, there's a very good chance
that whenever you deviate from the standard limited set of Postscript or
peL fonts, those that you select will not be resident within the printer. In
this case, the font information is downloaded along with the print job
and temporarily stored in printer RAM, greatly slowing effective print
performance.

Flash memory allows users to customize not only the specific fonts
stored in the printer, but also to download and store custom graphics
bitmaps (corporate logos), page templates and other information. Flash
memory-based add-in font cartridges have been available for several

APPLE INC.
EXHIBIT 1011 - PAGE 0039

16 Chapter Two: Flash Memory Applications

years now, and are beginning to find their way directly onto system
motherboards, especially in high-end network and color printers. The
ability to easily customize resident fonts is a clear customer benefit and
a differentiator in the increasingly-crowded laser printer market.

Why Flash Memory For Data/lookup Table Storage?

Advantages of flash memory over alternatives in data/lookup table
applications include its combination of in-system upgradeability and
nonvolatility. High density is also often required by the system, and
flash memory supports this need. Fast access time translates to quick
data lookup and high system performance. Similar to the embedded code
applications discussed next, you should evaluate not only component
cost but also system cost through system lifetime (i.e., the likelihood of
data updates) when choosing between flash memory and an alternative
memory.

EMBEDDED CODE STORAGE
This is the traditional use for flash memory, replacing ROM or EPROM
in storing the resident code (otherwise known as firmware) that runs a
system. The vast majority of today's flash memory customers use it in
this type of application. In fact, the term "flash memory" was coined
specifically for its quick code update capability relative to EPROM.

PC BIOS

One very popular embedded code storage application is that of the
personal computer basic input/output system (BIOS). The BIOS is the
lowest level code interfacing the operating system to the specific
hardware implementation. Acting as the glue that ties the two together
(see Figure 2.1), it has a major role in the open system architecture of
today's Intel-based computers. The BIOS allows the same operating
system and graphical user interface (GUI) (for example MS-DOS'IM and
Windows'IM) to run on both a low-end i386'IMSX system and the newest
Pentium'IM microprocessor-based workstations.

APPLE INC.
EXHIBIT 1011 - PAGE 0040

Embedded Code Storage 17

OPERATING SYSTEM
(COMMON)

~ ~

.., ,
BASIC INPUT/OUTPUT SYSTEM

(BIOS)

.4 ~

~
,

COMPUTER HARDWARE
(SPECIFIC)

Figure 2.1: BIOS Glues Common Software to Unique Hardware

In the past, the BIOS was fairly well understood and easy to write, since
systems themselves were relatively straightforward and standardized.
However, today's computing world is vastly more complex. Listed below
are some of the factors that have complicated the PC BIOS:

• More powerful and upgradeable CPUs
• Various local bus graphics standards
• Elaborate power management software
• PCMCIA expansion slots

As the creation of BIOS software grows more challenging, competitive
pressures in parallel force ever-shorter time-to-market for new hardware
designs. BIOS software creation therefore has become the gating item to
product introduction, and consequently the probability of shipping
systems with bugs is increasing. Flash memory (versus ROM or
EPROM) allows easy, low-cost BIOS upgrade even after a system is in
the user's hands. This is especially crucial in compact, hard-to
disassemble (and reassemble) computers. Flash memory also enables

APPLE INC.
EXHIBIT 1011 - PAGE 0041

18 Chapter Two: Flash Memory Applications

custom BIOS installation as systems are shipped; just-in-time
manufacturing allows one hardware design to service multiple markets
(price points, etc.). Finally, upgrade capability allows systems in the
marketplace to be updated not only as BIOS bugs are discovered, but
also as the BIOS is enhanced (power management code improvements
being one example), strengthening customer loyalty.

Digital Cellular Phones

A totally different type of system, but one with very similar issues, is the
digital cellular phone. Using Europe as just one example, the GSM
digital cellular phone standard is not yet fixed, and is still being revised
and enhanced. In the crowded, competitive cellular phone market, no
manufacturer is willing to wait for full standardization before shipping
products. Code instability and early obsolescence is therefore a big
concern for customers. Using flash memory for code storage, versus
ROM or EPROM, means that the embedded system code can be easily
updated even after it is in the customer's hands.

Conceivably, upgrade could be as simple as the phone owner calling a
toll-free phone number provided by the manufacturer. After a handshake
is established, new code could be downloaded over the cellular link to
the phone, whose embedded processor would control the update!

More Embedded Code Storage Applications

Other common examples of embedded code storage applications that can
take advantage of flash memory capabilities include control software in
laser printers and telecommunications bridgers/routers. Although these
applications differ significantly, they have the same issues; a fairly
expensive initial cost where the potential for code instability exists
and/or where code upgrade is a key customer benefit and differentiator.

Why Flash Memory for Embedded Code Storage?

Flash memory's advantages for embedded code storage include its
combination of nonvolatility and upgradeability. Fast access time
increases system performance, eliminating the need to shadow code to
faster RAM in many cases. High density also matches the growing
software needs of today's complex designs. Low power consumption
also benefits portable, battery-operated systems.

APPLE INC.
EXHIBIT 1011 - PAGE 0042

File Storage 19

FILE STORAGE
The mechanical disk drive has traditionally (and economically) been the
media chosen for mass file storage. HDDs have large capacity, low cost
per byte, fairly high reliability, and acceptable performance. However,
portable computing and industrial applications have placed new
demands on these file' storage devices. Industrial applications (being less
cost sensitive) were the first to really use solid-state drives, having
originally used battery-backed SRAM. During its short existence, flash
memory has proven to be more reliable and certainly lower cost than
SRAM. Even though this cost has not yet fallen quite low enough to
ignite mass market acceptance of flash memory replacement of magnetic
media, reasons for its use are becoming obvious.

Flash Memory Promotes Longer Battery Life

Long battery life is generally not possible with rotating motors, spin-up
surges, and wasteful idle modes. Figure 2.2 depicts the energy
consumption of various operating modes for file storage devices,
contrasting the solid-state approach using flash memory and the
mechanical disk drive.

Figure 2.2 clearly shows that the greatest amount of energy is wasted
while the drive idles. To avoid constant spin-down and spin-up, the disk
drive typically remains in the idle mode for at least 5 minutes after the
last computer operation. An analogy can be drawn to the car waiting at
the railroad crossing. How do you determine when to turn off the car's
engine? For a short train, leave it on; for a long train, turn it off. A solid
state drive, especially one made with flash memory, can enter sleep
mode almost instantly after the last access. Why? Because spin-up
concerns do not exist. This yields significant energy improvements.

APPLE INC.
EXHIBIT 1011 - PAGE 0043

20 Chapter Two: Flash Memory Applications

400

350

300
.-..
/J)

~ 250 D Flash Drive

>-
El
Cl)

200 • HDD
c

LU
150

100

50

0
c. 0) 0) c c c C
:::J :2 :2 0 'E 'E 'E c ~ ~ ~ I.{) I.{) 0
'0..

'C .l!l E Cl) >-(/)
ell ell :Q .0 C.
Cl) 'c U 'C Cl)

a: 3: Cl) c Cl)
ell Ci5 a: +-'

(/)

Figure 2.2: Energy Consumed During Various Acitivties

HOD Densities with FDD Interchange

Flash memory cards used for solid-state drives provide consumers with a
removable mass storage device. Companies like Databook and Elan2

have developed memory card reader/writers that look much like floppy
drives, only with PCMCIA slots (Figure 2.3). Flash memory card users
can therefore interchange information on a card between their portable
computer and desktop workstation. High density flash memory cards
avoids the cumbersome use of numerous floppy disks when transferring
large amounts of data back and forth. Yes, it's true that flash memory
cards are more expensive than floppy disks. But we're talking about
portable computers that cannot afford the space for a floppy drive, nor

2Refer to the Appendix for a detailed listing.

APPLE INC.
EXHIBIT 1011 - PAGE 0044

21

are they willing to sacrifice the weight gain or the added energy
consumption. Applications such as these will eventually push flash
memory to the forefront, and as the PCMCIA slots on the latest
generations of mobile computers show, this trend has already begun.

Figure 2.3: Elan Flash Memory Card ReaderIWriter

SUMMARY
When evaluating flash memory versus an alternative memory solution,
look beyond component-level (or card-level) cost and evaluate the total
cost of the system, throughout its lifetime. Flash memory's strengths,
exemplified in this chapter's applications, include:

APPLE INC.
EXHIBIT 1011 - PAGE 0045

22 Chapter Two: Flash Memory Applications

• Full nonvolatility
• In-system program and erase
• Ruggedness
• Low power consumption
• Fast read/write
• High density
• Low cost
• Removability and portability
• Small form factor

These features, translated into system benefits like updateability,
manufacturing ease, durability, light weight, small size, high
performance, and shock resistance, are some of the reasons why flash
memory is today often not the other memory evaluated for new designs,
but the only memory choice!

APPLE INC.
EXHIBIT 1011 - PAGE 0046

Chapter Three: Flash Memory
Technologies

From a very high-level perspective, Chapter 1 answered the question,
"What is Flash Memory?" As a review, flash memory has the following
primary characteristics:

• Nonvolatility (retains data stored to it when
powered off), and

• In-System Updateability (stored data can be erased
and replaced under system processor control)

As you can see, this is a pretty broad definitionl Various semiconductor
vendors have chosen unique and quite dissimilar silicon technology
approaches to answer the above application requirements. Some flash
memory approaches are evolutionary, based on existing memory types
that are already nonvolatile and updateable. Other technologies choose a
more revolutionary path.

This chapter will discuss in detail three flash memory technologies:
NOR, EEPROM, and NAND. All three approaches meet the basic
criteria for flash memory (nonvolatility and updateability). Where they
differ, however, is in their secondary characteristics, some of which are
listed below3:

•
•

Read Performance
Ptogram/Erase Performance

3Chapter 2 discussed specific flash memory applications and indicated the highest priority features
in each case.

APPLE INC.
EXHIBIT 1011 - PAGE 0047

24 Chapter Three: Flash Memory Technologies

•

•
•
•

Number of ProgramlErase Cycles Through Device
Lifetime
Power Supply Voltage Requirements
Current Draw in Device Operating Modes
Erase Block Size

When evaluating flash memory alternatives, do not overlook the
manufacturing process complexity, and the size of the flash memory cell
and periphery logic. Both factors translate into component cost, and
ultimately to the price you pay for the component or flash-based
subsystem from the manufacturer or distributor. Keep this in mind as
you read about the "latest and greatest" flash memory technology
unveilings. Creating something in the laboratory is one thing;
consistently recreating it in high volume and with low cost in a
manufacturing facility is entirely another matter!

As a framework for the following discussion, Figure 3.1 shows the 1992
relative market share for several flash memory semiconductor vendors.
The anticipated demand for flash memory in the very near future is
evident, and many semiconductor companies are gearing up to supply
this market.

80

70

60

SO

'* 40 0>
<0

30 c::
0

~
20

0 c. '* C\I
,...

....
0

10 U
Q)

0 'E

CIS

JIP ~. ~, ~.,
Figure 3.1: Dataquest 1992 Flash Memory Market Share (by company)

APPLE INC.
EXHIBIT 1011 - PAGE 0048

NOR Flash Memory 25

NOR FLASH MEMORY
(Examples: Intel Corporation, Advanced Micro Devices, Hitachi,
Mitsubishi, NEC, SGS.Thompson, Fujitsu, Toshiba Corporation)
NOR flash memory was introduced by Intel Corporation in 1988, using
the company's ETOXTM (EPROM Thin Oxide) process technology.
Since that time, products based on similar technologies have been
announced by several other semiconductor vendors. Figure 3.2 compares
the ETOX flash memory cell with an EPROM (Erasable Programmable
Read-Only Memory) cell. The similarity in this revolutionary approach
is clear; NOR flash memory derives from an EPROM base. The key
difference is in the silicon oxide thickness between the floating gate and
substrate. This thinner oxide is the key to NOR flash memory operation;
we'll see why in a moment.

SELECT GATE
SELECT GATE

FLOATING GATE

t 325A

FLOATING GATE

t 100A

SOURCE J l DRAIN I I SOURCE J l DRAIN

SUBSTRATE SUBSTRATE

EPROM CELL ETOX FLASH CELL

Figure 3.2: ETOXTM Flash Memory Cell Similarities Leverage
EPROM Learning Curve

When shipped from the vendor, the default state of all cells in a NOR
flash memory is one, corresponding to an erased condition. Figure 3.3
shows the voltages present on the cell when read. When erased, the
floating gate of the flash memory cell does not block the cell from being
turned on by the applied voltages on the select gate and drain. The
resulting current is sensed at the transistor source, and translated to a
one at the memory output pin.

Figure 3.4 shows a portion of a flash memory array and the
interconnection of the various transistors. Device addresses enable
specific wordlines and bitlines; in combination they select one transistor

APPLE INC.
EXHIBIT 1011 - PAGE 0049

26 Chapter Three: Flash Memory Technologies

within the array per device output. This organization also explains the
NOR name for this architecture; any "on" transistor (i.e., a selected,
erased cell) in the chain results in the earlier-described current draw,
sensed at the end of the chain and converted to an output one.

SELECT GATE

FLOATING GATE

=

Figure 3.3: ETOXTM Flash Memory Cell Being Read

Select Unes (Bit)

r----------~---------~ I '\

'-.... ____ _---______ J --...--
Source Unes (to Sense Amps)

Figure 3.4: NOR Flash Memory Array Interconnect

APPLE INC.
EXHIBIT 1011 - PAGE 0050

NOR Flash Memory 27

Program

Changing a flash memory cell (or bit) to a zero is called programming.
NOR flash memory employs the same programming mechanism as
EPROM, namely hot electron injection. Figure 3.5 shows an ETOX
flash memory cell being programmed. As electrons travel from the
source to the drain through the substrate, the electric field generated by
high voltage on the select gate causes some of the highest energy
electrons to jump the gap and collect on the floating gate. What's the
result? Referring back to Figure 3.3, we see that the electrons now
present on the floating gate counteract the voltage on the select gate and
prevent the flash memory cell from turning on. No current flows from
drain to source, resulting in a zero on the memory output pin.

SELECT GATE

FLOATING GATE

If SOURCE

J r6V

J { • l ____ D_RA_IN_---t1
SUBSTRATE _

(Arrows Show Electron Flow)

Figure 3.5: ETOxrM Flash Memory Cell Being Programmed

NOR flash memory cells can be selectively programmed to zero. In other
words, programming is a bit-level operation. On a byte-wide flash
memory device, for example, one bit of a selected byte can be
programmed to zero, leaving the other seven bits at one. Later
programming of the same byte can change other bits to zero in the same
way. However, one key point to note about NOR flash memory (and
about other flash memory approaches, too) is that programming only
changes ones to zeros. Here lies a fundamental difference between flash
memory and other rewriteable memory technologies like RAM. To
change programmed zeros back into ones, we must use a different
mechanism, called erase.

APPLE INC.
EXHIBIT 1011 - PAGE 0051

28 Chapter Three: Flash Memory Technologies

Erase

EPROMs are erased by ultraviolet light. As shown in Figure 3.6, the
extra energy generated by UV light enables electrons on the floating gate
(put there by programming) to overcome the inherent semiconductor
energy potential and return to the substrate. After erasure, an EPROM
cell once again reads as a one. To allow UV light to shine on all
EPROM cells on a device array, the package must include a built-in
glass window. As manufacturing lithographies become smaller and
smaller, it becomes harder and harder to ensure that UV light can reach
all array cells. The window requirement also puts limits on how small
the device package can become.

ULTRAVIOLET ULTRAVIOLET

LIGHT '-L _____ ---'I / LIGHT ~ _ SELECT GATE .

SOURCE J l _D_RA_I_N_-l
SUBSTRATE

Figure 3.6: EPROM Cell Being UV Erased

SELECT GATE

DRAIN

(Arrow Shows Electron Flow)

Figure 3.7: ETO)(TM Flash Memory Cell Being Erased

Rather than using UV light, NOR flash memory cell erasure is
accomplished electrically using a process called Fowler-Nordheim
tunneling. Figure 3.7 shows the voltages on the flash memory cell during

APPLE INC.
EXHIBIT 1011 - PAGE 0052

NOR Flash Memory 29

erase. The generated electric field pulls electrons from the floating gate.
First generation bulk-erasure NOR flash memories erase all cells in the
array at the same time. Second generation NOR devices erase in smaller
blocks. Following the same train of thought, this is called block erase.
Erase block size varies from flash memory vendor to vendor, and from
device to device, based on the targeted applications.

Compared to EPROM, the array transistors in a flash memory need not
be accessible to UV light exposure. This allows flash memory designers
to run layers of interconnection over the cell versus around it,
simplifying the design and minimizing the device die size. As an
analogy, think of a multi-layer versus a single-layer printed circuit
board. Also, flash memory does not require the window of an EPROM,
allowing very small footprint (and less expensive) packaging4.

Negative Gate Erase

Negative gate erase is similar but not identical to the conventional cell
erase approach described earlier. Figure 3.8 shows the voltages on the
flash memory cell during negative gate erase. Comparing this diagram
with Figure 3.7, we see that although the voltages on the cells are
different, the resultant voltage potential difference (and electric field)
between gate and source is similar. Negative gate erase also uses
Fowler-Nordheim tunneling to remove electrons from the floating gate.

Overerase

Removing too many electrons from the floating gate of a flash memory
cell may theoretically result in an overeased condition (i.e., removing
more electrons than were put there by a previous cell program). The
effects of overerase are destructive to the flash memory device. Once
overerased, a flash memory cell cannot be programmed again (within
practical limits). Reads of this cell, as well as adjacent cells in the array,
produce erratic and invalid results. Referring back to Figure 3.4, we see
that an overerased cell, being "always on" even if not selected, overrides
any valid data on the array transistor "chain". Oops!

4We'll see this again in Chapter 4.

APPLE INC.
EXHIBIT 1011 - PAGE 0053

30 Chapter Three: Flash Memory Technologies

SELECT GATE

DRAIN

(Arrow Shows Electron Flow)

Figure 3.8: Negative Gate Erase

Fortunately, flash memory erase algorithms include built-in procedures
to eliminate the potential for overerases. First, cell erase (like cell
programming) uses an iterative algorithm. Shown in simplified form in
Figure 3.9, the built-in feedback loop ensures that the algorithm
terminates and does not allow further removal of floating gate electrons
once sufficient cell erase has been detected. Secondly, since all flash
memory cells in a given device (or block within an device) are erased in
parallel (and at approximately the same rate), preprogramming ensures
that all cells are at a common initial programmed state. Without
preprogramming, already-erased cells in the device or in a given erase
block would be overerased while programmed cells were being erased.

Newer NOR flash memories control the erase algorithm internally, and
automate both the erase preprogramming and iterative erase/verify steps.
This dramatically simplifies system software algorithms and eliminates
any potential for error. For more information, reference Chapter 7.

NOR Flash Memory Specifications

Table 3.1 provides a summary of NOR flash memory device
characteristics, derived from dat~ on Intel Corporation's latest-generation
products. These specifications are indicative of the relative levels of
perlormance possible today using NOR flash memory. However, exact

SIf they are implemented exactly as published; a 'word to the wise' for system software
programmers!

APPLE INC.
EXHIBIT 1011 - PAGE 0054

NORFlashMemory 31

NO

Figure 3.9: Iterative Basic Flash Memory Erase Algorithm

APPLE INC.
EXHIBIT 1011 - PAGE 0055

32 Chapter Three: Flash Memory Technologies

values will vary from device to device, from manufacturing process to
manufacturing process, and from vendor to vendor6.

Density 8 Mbit

Access Time 60 ns

Data Program Time 61ls (min)

9 IlS (typ)

Block Erase Time (64 kbyte block) 0.3 sec (min)

1.6 sec (typ)

Table 3.1: NOR Flash Memory Characteristics

Note the relatively slow erase time compared to read and program. Cell
erase time is a primary function of two parameters; oxide thickness
between floating gate and substrate, and internal erase voltage (it is also
affected by device temperature, and by the number of times the cell has
been erased previously, or cycled). The cell erase time of the ETOX
processes is a direct result of the relatively low 12V and low current
used to pull electrons from the floating gate. However, a low erase
voltage also translates to excellent cell reliability and extended cycling
performance. Later chapters will give examples of flash memory
applications where cell erase time is (and is not) a concern, as well as
discussing hardware and software techniques to hide the slow erase as a
background system task.

FLASH EEPROM
(Examples: Atmel Corporation, Samsung, SunDisk, Catalyst
Semiconductor)
The previous discussion showed how NOR flash memory was derived
from an existing EPROM base. Similarly, flash EEPROM shares many
similarities with standard EEPROMs. Figure 3.10 shows a diagram of a
flash EEPROM memory cell.

6Consult vendor datasheets, application notes, and engineering reports for information on specific
devices. Vendor contact information is in Appendix A.

APPLE INC.
EXHIBIT 1011 - PAGE 0056

Flash EEPROM 33

~ I 51 ~ Floating Gate

Control Gate

~)

(X-Axis View) (Y-Axis View)

Figure 3.10: EEPROM-Based Flash Memory Cell

A standard EEPROM can be fully altered on a byte-by-byte basis. The
byte erase operation is integrated in the write function, i.e., the byte is
first erased and then reprogrammed with the desired data. A flash
EEPROM, on the other hand, simplifies the silicon design by erasing on
a block-level basis. When an EEPROM flash memory block is written, it
is first erased and then programmed with data stored in an on-chip
buffer.

Erase

Flash EEPROMs erase using Fowler-Nordheim tunneling, as do NOR
flash memories. Most, however, use a separate erase gate per cell to
collect electrons pulled off the floating gate. Regardless of the specific
method, flash EEPROMs use much higher internally-generated voltages
because of their greater oxide thickness compared to NOR flash, and to
speed erase performance. Remember erase is a built-in part of rewrite,
not a separate operation as in the case of NOR flash. Figure 3.11 shows
an EEPROM flash memory cell being erased.

APPLE INC.
EXHIBIT 1011 - PAGE 0057

34 Chapter Three: Flash Memory Technologies

High Voltage

Floating Gate

Control Gate

(V-Axis View)

(Arrow shows
electron flow)

Figure 3.11: EEPROM-Based Flash Memory Cell Being Erased

Programming

Some flash EEPROMs program cells via hot electron injection. Most,
however, use a reverse form of Fowler-Nordheim tunneling shown in
Figure 3.12. The combination of voltages on the select gate and drain
stores electrons on the floating gate, versus removing them, as seen with
Fowler-Nordheim erasure. Again, high internal voltages are used for
fastest programming performance.

APPLE INC.
EXHIBIT 1011 - PAGE 0058

(Arrow shows
electron flow)

Substrate

(X-Axis View)

Flash EEPROM 35

Figure 3.12: EEPROM-Based Flash Memory Cell Being Programmed

Flash EEPROM Memory Specifications

Table 3.2 summarizes flash EEPROM memory characteristics7. Since
erase is a built-in part of the flash EEPROM program algorithm, flash
EEPROMs speed up the erase process time compared to NOR flash
memory, primarily via the higher internal voltages on the EEPROM cell.
However, over time this may potentially have a negative impact on cell
reliability. As the EEPROM cell undergoes repeated erasure, the high
electrical field can break down the thin oxide region, causing failure.
Some EEPROM vendors have implemented redundant cell and internal
error-correction schemes to combat this "Achilles Heel".

Density 1 Mbit

Access Time 90 ns

Data Program Time 150 I-ls

Table 3.2: EEPROM Flash Memory Characteristics

7Taken from Atmel Corporation documentation.

APPLE INC.
EXHIBIT 1011 - PAGE 0059

36 Chapter Three: Flash Memory Technologies

NAND FLASH MEMORY
(Example: Toshiba Corporation)
NAND flash memory is a relatively new technology approach pioneered
by Toshiba Corporation. As shown in Figure 3.13, the NAND flash
memory cell looks very much like a NOR cell! However, the periphery
logic designed into NAND is very different, and the internal program
and erase approaches most closely resemble flash EEPROM methods.

SELECT GATE

FLOATING GATE I
(To next ~ I +5V (from previous
cell In r----r-----r----.......,I cell In serial chain)

serial chain) ,--_S_OU_R_C_E_..:..J-'-...:~;.,;.:..::,--_D_RAl_N_---,.
_ SUBSTRATE

(Arrows Show Electron Flow)

Figure 3.13: NAND Flash Memory Cell Being Read

Like Figure 3'.4, Figure 3.14 shows the interconnection of transistors in a
NAND array. Data sensing along the chain is serial in nature, and the
architecture reflects its name.

Program and Erase

NAND flash memory cells program and erase via reverse and forward
Fowler-Nordheim tunneling, respectively. Figures 3.15 and 3.16 show
the internal voltages on the cell in each case. Note that unlike flash
EEPROM memory tunneling, NAND flash memory applies voltages to
the substrate itself, in addition to the select gate.

NAND Flash Memory Specifications

Table 3.3 shows initial specifications for Toshiba's first NAND flash
memory-based device. NAND flash memory primarily targets solid state
disk drive replacement applications, and the feature set reflects this, with
fine-resolution blocking and fast cell erase. However note the slow
initial read access time due to serial data read, which may limit broad
application usage. Some NAND devices include error detection and
correction (EDAC) cells and associated EDAC logic.

APPLE INC.
EXHIBIT 1011 - PAGE 0060

NAND Flash Memory 37

Select Lines (Bit)

§
y--r-.---------~~--

~

'E
~--+-------_+~r !

·~----------_+H_r

I I

~
J

i-~+++' F--r--------~--++ll Fr--r-----

Source Lines (to Sense Amps)

Figure 3.14: NAND Flash Memory Array Interconnect

r=+21V

SELECT GATE

FLOATING GATE

SOURCE DRAIN

SUBSTRATE

(Arrow Shows Electron Flow)

Figure 3.15: NAND Flash Memory Cell Being Programmed

APPLE INC.
EXHIBIT 1011 - PAGE 0061

38 Chapter Three: Flash Memory Technologies

SELECT GATE

FLOATING GATE

I
SOURCE J t l DRAIN

SUBSTRATE
I

+21V
(Arrow Shows Electron Flow)

Figure 3.16: NAND Flash Memqry Cell Being Erased

Density 4 Mbit

Access Time 15 Ils (initial read)

80 ns (subsequent serial
access)

Data Program Time 4 ms (min)

Block Erase Time (4 kbyte block) 6ms

Table 3.3: NAND Flash Memory Characteristics

WHAT'S ALL THIS CYCLING STUFF, ANYWAY?
The subject of cycling is quite possibly the most abused (by companies
supplying flash memory) and most misunderstood (by companies buying
and using flash memory in their system designs) of any topic you'll find
discussed in this book! All sorts of outlandish claims have been made,
are being made, and will probably be made in the future, concerning the
cycling capabilities of various flash and "flash-like" memory
technologies. To confuse you even further, concepts such as MTBF
(mean time before failure) are often used in conjunction with cycling
specifications. Flash memory vendors often mean well (from a
marketing perspective) when they include these numbers, but since an
industry standard for the determination or calculation of MTBF doesn't

APPLE INC.
EXHIBIT 1011 - PAGE 0062

What's All This Cycling Stuff, Anyway? 39

exist, it is often subject to liberal interpretation and modification.
Therefore, MTBF numbers for different flash memory devices and
technologies cannot be directly compared without knowing the recipes
that were used and the assumptions that were made when the
measurements were taken.

We are going to explain cycling in its most fundamental definitions for
you, and provide guidelines by which you can calculate your own MTBF
numbers for your specific flash memory design and implementation. Our
goal here is to cut through all the meaningless marketing hype and
provide you with valid, useful information.

What is cycling? A cycling number is:

a) The minimum number of times a flash memory device (or block
within a device) can be erased and programmed in a reasonable
amount of time without loss of device functionality, at

b) A specified failure rate percentage, or FIT (failure-in-time)
level.

Flash memory vendors often ignore the latter part of the above definition
when publishing their cycling specifications. What good is it to know
how many times you can erase an array of flash memory cells if you
have no idea of the probability that some of the cells will fail before
reaching this cycle count? A parallel can be drawn here with stereo
equipment, where inflated claims are sometimes made of an amplifier's
output power capability without mentioning how distorted the output
signal was when this power was measured. What good is it to hear loud
music if you can't understand it? (Of course, with some forms of popular
modern music this could be seen as a positive!) Similarly, what good is
it to be able to erase flash memory to an extended number of cycles if
the media is essentially unusable when it reaches this cycle count?
Clearly both parts of the cycling definition are valuable and useful
information.

APPLE INC.
EXHIBIT 1011 - PAGE 0063

40 Chapter Three: Flash MemOlY Technologies

Failure Analysis

Before each flash memory device is shipped to a customer, it undergoes
extensive testing to screen out known and detectable failure mechanisms
both in the circuitry itself and in the manufacturing process on which the
device was made. Even after this testing, it is known and accepted that a
certain very small (hopefully!) number of devices will eventually fail,
even when operated at all recommended specifications. Some sources of
this failure, common to all flash memories as well as other memory
technologies, are listed below:

• Package Integrity Failures
• Random Circuitry Failures
• Data Reliability Failures (i.e., programmed zeros turning

back into ones)
• Program Failures (inability to change a one to a zero),

and
• Erase Failures (inability to change a zero back to a one)

Reputable flash memory vendors spend a great deal of time and effort
calculating and predicting their failure rates. Published reliability reports
contain these predicted failure percentages, and are available for your
inspection. We'll restrict the following discussion to the last two failures
listed above, program and erase (or cycling) failures.

How and why does a flash memory cell fail due to cycling? Two
different mechanisms combine here; one a more "destructive"
phenomenon (oxide breakdown) and the other "non-destructive" in
nature (electron trapup).

Oxide Breakdown

Notice the thin oxide region between the substrate and floating gate
regions in Figure 3.10. As a flash memory cell is repeatedly erased and
reprogrammed, the electrons move back and forth through the oxide
region under an electric field. This stresses the oxide, and in its most
severe form can result in oxide breakdown and a short circuit between
oxide and substrate, rendering the cell non-functional. High quality
oxide with low probability of defects, as well as a lowered electric field

APPLE INC.
EXHIBIT 1011 - PAGE 0064

What's All This Cycling Stuff, Anyway? 41

to mmllllize oxide stress, are ways that flash memory vendors can
minimize the likelihood of oxide breakdown.

Electron Trapup

Recall that the earlier definition of cycling included the phrase "erased
and programmed in a reasonable amount of time". This is key to the
definition of electron trapup. As a flash memory cell accumulates higher
and higher cycle counts, electrons become trapped in the oxide region,
lowering electron mobility through the oxide and resulting in increased
program and erase times. The program and erase algorithms must apply
more pulses to program or erase the cell sufficiently to ensure data
integrity and retention. Since the impact of electron trapup is simply a
failure to program or erase within an allowed time and not a "hard"
failure of the cell itself, we call it a "non-destructive" phenomenon.

Mean Time Before Failure

With cycling and failure rate data, and with a good understanding of
how flash memory will be used in your system, you can calculate MTBF
values for your specific design. As an example, we'll use the Intel
28F008SA 1 Mbyte FlashFile™ memory in a configuration of 20 chips
(20 Mbytes total).

The Intel 28F008SA is rated for 100,000 cycles on each of its sixteen 64
kbyte blocks (independent of any other block). Data taken through
10,000 cycles shows no cycling failures, translating to a 0% cycling
failure rate (pretty impressive!). Therefore, for this example we'll use the
more stringent device failure rate of .01%, which encompasses all
device failure mechanisms listed earlier in this chapter. The value 0.01 %
is the historic worst-case device failure rate seen with production-rated
Intel flash memories, and the 28F008SA should perform at least this
well (if not better).

A 0.01 % failure rate (translating to 100 FITS or failures-in-time) means
that fewer than 1 in 10,000 devices will fail after 10,000 cycles and
1,000 hours of operation. The scenario under which we'll calculate
MTBF assumes that a 10 kbyte file is written to the 20 Mbyte array of
flash memory every 10 minutes; a pretty rigorous set of assumptions if
you think about it!

APPLE INC.
EXHIBIT 1011 - PAGE 0065

42 Chapter Three: Flash Memory Technologies

A flash-friendly file system could use a linked list structure to write
multiple copies of a file and fill up clean flash memory, marking old
versions of the file "dirty" but not erasing them immediately8. This
significantly minimizes cycling of flash memory media. Therefore, given
the file and flash memory array sizes, we can make the following
calculations:

(20 Mbyte array) / (IOkbyte file) = 2,000 file writes can be done before an array erase is required

(2000 file writes/erase) x (10,000 cycles per 28F008SA block) = 20 x 106 file writes

(20 x 106 file writes) x (10 minutes/write) x (I hr/60 minutes) = 3.33 x 106 hours MTBF

This means that our 20 Mbyte flash memory array has a Mean Time
Between Failures of over 3 million hours, at a failure rate of 0.01 %. Not
bad,eh?

Extended Cycling-The Flash Memory Manufacturer's Options

Earlier when defining cycling, we inferred that the easiest way some
flash memory vendors achieve extended cycling was by downplaying the
negatives and accentuating the positives of their technology approaches.
This, while true, is not the only means of reaching the extended cycling
"Holy Grail"! Several other concrete tradeoffs have been made by
various flash memory suppliers, both in technology and architecture, in
pursuit of this goal.

Oxide breakdown can be eliminated by producing very high quality,
uniform oxide for each flash memory cell. This is much more difficult
than it might first appear, and in fact is probably the most complex
problem that semiconductor vendors have struggled with as they attempt
to ramp up their flash memory manufacturing capabilities. The oxide
layer, at 100 A thick, is made by laying down several layers of silicon
atoms, no simple task. Remember, too, that for an 8 Mbit flash memory,
not one cell but over 8 million must be manufactured correctly to yield a
functional device, and that potentially several hundred devices can be
made from each 6" or 8" silicon wafer.

Another technology tradeoff can be made with respect to the internal
electric field during program and erase, which is a function of the

8See Chapter 9 for more information.

APPLE INC.
EXHIBIT 1011 - PAGE 0066

What's All This Cycling Stuff, Anyway? 43

magnitude of the internal voltages. A lower electric field lowers the
stress on the oxide (a positive) but also slows program and erase times (a
negative). Intel Corporation, with its ETOX flash memory approach, has
made this choice, and has added device functionality to minimize the
system performance impact of the resultant slow block erase time9.

Where flash memories use higher internal voltages (flash EEPROM and
NAND flash memories), added circuitry attempts to circumvent the
impact of oxide breakdown and resultant cell damage. EEPROMs often
use redundancy schemes which lower cycling failures at the expense of
doubling cell size and adding complexity. Toshiba's NAND flash
memory integrates error detection and correction (EDAC or ECC)
directly on the silicon to mask the device impact of single cell failures.
While potentially extending the cycling capability of the device, this
approach adds complexity and die size to each device, and also impacts
read performance.

Extended Cycling-What Can You Do?

What can you do to match the cycling requirements of your design to an
appropriate flash memory architecture? First and foremost, fully analyze
the cycling you truly require, and take all possible steps to minimize this
cycling. A design that uses flash memory for embedded code storage
may only be erased and reprogrammed ten times through its lifetime. On
the other hand, a memory card used for file storage may have blocks of
flash memory updated thousands or hundreds of thousands of times.
Specifically with respect to file storage, Chapter 9 will explain how
software companies have re-architected file storage beyond the hard
drive paradigm to match the unique characteristics and capabilities of
flash memory. These concepts, while possibly not directly applicable to
your specific design, will provide examples of cycle minimization and
management, linked list structures, and wear leveling.

In Chapter 7 we'll discuss the system software algorithms that initiate
and control flash memory erase and program. In cases where erase
failure has occurred due to non-destructive electron trap up, this chapter

9Upcoming chapters will discuss flash memory automation, the RY/BY output and erase
suspend/resume capability.

APPLE INC.
EXHIBIT 1011 - PAGE 0067

44 Chapter Three: Flash Memory Technologies

will show you how to extend cycling by supplying the flash memory
media with additional erase and program pulses.

Finally, it's your responsibility to understand the conditions under which
various flash memory vendors have calculated their products' cycling
capabilities, and to request additional information if needed. By
correctly interpreting not only minimum cycling information but also the
failure rates associated with this cycling, you can intelligently compare
and choose among the many flash memory offerings in today's market,
as they match the requirements of your design.

SUMMARY
The basic concept of the flash memory cell is relatively simple. Again
referencing Figure 3.3 as an example, storing electrons on the floating
gate changes the stored cell data from a one to a zero, and removing
them changes it back to a one. The challenge for flash memory vendors
has been to make flash memory:

• Simple, with the smallest possible cell and minimal
periphery logic, translating to a small die size and
lowest silicon cost,

• Manufacturable, with a technology development
approach that can be easily and cheaply moved to
the vendor's production line, and

• Feature-set-rich, with technologies and devices that
answer the requirements of their target markets.

The flash memory market is still in its infancy. The system designer has
a wide range of product offerings from mUltiple flash memory vendors
to choose from, based on several unique technology approaches. In
Chapter 2, we've already covered flash memory applications in detail,
and discussed the features that are of highest importance in each case. In
combination with the information from this chapter, you'll be able to
choose the flash memory that makes the most sense for your design!

APPLE INC.
EXHIBIT 1011 - PAGE 0068

Chapter Four: Packaging Options and
Update Alternatives

At first glance, the title of this chapter may appear to combine two
unrelated topics. However, as is sometimes the case, things are not
always as they first seem! A wide range of factors influence the choice
of an appropriate component package, including board space, end
system form factor, operating temperature range, manufacturing
tolerances and available assembly techniques. Flash memory's electrical
update capability has enabled small form factor packaging, originally
impossible with some other memory technologies. In some applications,
flash memory packaging is as crucial (or more so) to the design as are
nonvolatility and updateability (PCMCIA memory cards being one
example).

The selection of a package, in many cases, automatically determines
which flash memory update methods are available during prototyping,
when manufacturing the system and once it is in the customer's hands.
Conversely, if a specific update technique must be supported, it can
factor into the package chosen. Specifically, issues such as the
requirement and ability to socket and (therefore) remove the flash
memory can define which package is used in the design.

In this chapter, we'll cover the following package options:

• DIP (Dual In-Line Package)
• LCC (LeadedlLeadless Chip Carrier)
• SO] (Small Outline J-Lead Package)
• SOP (Small Outline Package)
• TSOP (Thin Small Outline Package)

APPLE INC.
EXHIBIT 1011 - PAGE 0069

46 Chapter Four: Packaging Options and Update Alternatives

• SIMM (Single In-Line Leadless Memory Module)
• PCMCIA (Personal Computer Memory Card

International Association) Memory Cards

......... and, we'll explain the following flash memory update methods:

•
•
•

Off-Board PROM Programming
On-Board Update
In-System Write

PACKAGING OPTIONS
Throughout time, component packages have increased in number and
diversity to match the needs and capabilities of the devices themselves,
and of the systems that use them. Packaging innovations have solved
height, footprint, weight, leadcount, thermal, reliability, electrical and
mechanical constraints, among others. A package does not necessarily
add to the theoretical perlormance of the device, but an improperly
designed package, acting as the flash memory's weak link, will severely
impact this potential.

DIP (Dual In-Line Package)

This "grandparent" of device packages (Figure 4.1), has existed in
essentially the same form factor for over two decades! Today's DIP
packages are generally made of ceramic or plastic materials. Common
package widths are 0.6" (frequently used in nonvolatile memories like
flash memory or ROM) and 0.3" (for devices with smaller die sizes, like
programmable logic). Package length depends on the number of pins
used by the device. Pin-to-pin spacing is 0.100", often referred to as 100
mils.

APPLE INC.
EXHIBIT 1011 - PAGE 0070

Packaging Options 47

N

=n
PIN #1 ~l INDICATOR
AREA

0

BASE

~
.; a \

SEATING~
\

PLANE le,
02

Family: Plastic Dual In-Line Package
Symbol Millimeters Inches

Min Max Notes Min Max Notes

IX 00 150 00 150

A 4.83 0.190
A1 0.38 0.015
A2 3.81 Typical 0.150 Typical
B 0.41 0.51 0.016 0.020
B1 1.14 1.40 0.045 0.055
C 0.20 0.30 0.008 0.012
0 41.78 42.04 1.645 1.655
02 38.10 Reference 1.500 Reference
E 15.24 15.88 0.600 0.625
E1 13.46 I 13.97 0.530 0.550
e 2.54 Reference 4 Reference
eA 15.24 Reference 0.600 Reference
eB 15.24 I 17.78 0.600 I 0.700
L 3.18 3.43 0.125 0.135
N 32 600MIL 32 600MIL
S 1.78 I 2.03 0.070 I 0.080
S1 1.14 0.045
ISSUE IWS 4/19/90

Figure 4.1: DIP (DualIn-Line) Package Dimensions

When used for flash memory, backwards compatibility represents one of
the biggest advantages of the DIP package. Specifically, DIP packaging

APPLE INC.
EXHIBIT 1011 - PAGE 0071

48 Chapter Four: Packaging Options and Update Alternatives

is also commonly used for EPROM memories, since the wider package
makes for easy inclusion of the quartz glass window for UV-erasure.
Many DIP-packaged flash memories are closely (or exactly) pinout
compatible with EPROMs, easing the conversion process for new
designs.

Other advantages of DIP packaging include ease of socketing, for
proto typing on the system board or when flash memories are
programmed in a PROM programmer. The wide pin spacing and
through-hole installation make board manufacturing relatively easy.
Finally, the long pins allow the package to flex in response to changing
temperature conditions, resulting in very good thermal resistance
(especially for the ceramic package).

One obvious disadvantage of the DIP package is its large size, which
translates to excessive board area consumption and height above the
board. When building a compact system, smaller packages should be
considered. Since the electrically eraseable (vs. UV) flash memory does
not require a window, this removes one key advantage of the DIP
package. Reference Figure 4.2 for a size comparison between DIP and
TSOP packaging on Intel's 28FOOIBX Boot Block flash memory. As
new system designs accelerate the transition from traditional through
hole packaging to more compact surface-mount methods, the
incremental manufacturing cost for any remaining DIP-like devices
becomes excessive and, in many cases, unacceptable.

Figure 4.2: DIP I TSOP Package Comparison (Actual Size)

APPLE INC.
EXHIBIT 1011 - PAGE 0072

Packaging Options 49

LCC (Leaded/Leadless Chip Carrier)

LCC was the first surface-mount option available to the market, and is
today still one of the most popular packages. Although available as
leadless and leaded versions, the leaded version (Figure 4.3) is most
common for memories due to socketing and manufacturing simplicity. A
common characteristic of leaded chip carrier is .050" lead spacing (50
mils), oriented in a J-Iead configuration so that the ends of the leads curl
underneath the package.

ill the past, leaded LCC packages were manufactured either out of
ceramic materials (so that a window could be added for EPROMs; this is
also commonly called Cerquad), or various plastics. ill the latter case,
the package was called PLCC (for Plastic Leaded Chip Carrier), and
resulted in one-time-programmable EPROMs, or OTP-ROMs. Again,
since flash memory does not require the EPROM's window for erasure,
plastic PLCC packaging dominates, except in the most severe
temperature tolerance designs.

PLCC's key advantage over DIP is its more compact footprint and
height, allowing board designers to squeeze more components into a
given area. PLCC prototyping sockets are easily available from multiple
vendors lO, and many PROM programmers support the PLCC package in
addition to DIP.

lOSee the Appendix for more information

APPLE INC.
EXHIBIT 1011 - PAGE 0073

50 Chapter Four: Packaging Options and Update Alternatives

MM(INCH)

Symbol

A
A1
D
D1
D2
E
E1
E2
N
CP
TCP
LT
ISSUE

1L7ITCP IA
(ALL FOUR SIDES)

El E

Family: Plastic Leaded Chip Carrier-Square
Millimeters Inches

Min Max Min
4.19 4.57 0.165
2.29 3.05 0.090
12.3 12.6 0.485
11.4 11.6 0.450
9.91 10.9 0.390
12.3 12.6 0.485
11.4 11.6 0.450
9.91 10.9 0.390

28 28
0.00 0.10 0.000
0.00 0.10 0.000
0.23 0.38 0.009

IWS 10/12188

SEATING PLANE

Max
0.180
0.120
0.495
0.456
0.430
0.495
0.456
0.430

0.004
0.004
0.015

Figure 4.3: LCC (Leaded Chip Carrier) Package Dimensions

One of PLCC's key disadvantages, however, is inherent in its lead
configuration. To manufacture a surface-mount board, the components
are placed on their sites and the board is exposed to a heat source which
melts the solder onto the device leads. PLCC's J-Iead configuration

APPLE INC.
EXHIBIT 1011 - PAGE 0074

Packaging Options 51

means that the portion of the lead attached to the system board is under
the component package. This makes post-soldering lead inspection
difficult or, depending on spacing between components, impossible.
PLee devices in many cases must also be carefully handled, packed in
silicon gel or other moisture-absorbing material until attached to the
board. Unless this is done, the plastic package can absorb moisture from
the atmosphere (humidity-dependent), which turns to steam during the
solder melt process and can crack the package or die inside. Thinner
packages like TSOP (to be discussed shortly) do not tend to have this
problem; their narrower thickness allows the steam to easily exit the
package without damaging the device.

PLee also has leads on all four sides, which precludes the system
designer from running board traces directly under the package. This may
be a concern in space-critical designs, where the only alternatives
available are routing traces around the flash memory or using expensive
multi-layer boards. Figure 4.4 shows trace routing comparisons between
PLee and PSOP packages. Finally, the square PLee package is often
unusable for high density flash memories, which tend to have narrow,
long and rectangular die and therefore do not fit in the package interior.

PLCC Layout

PSOP Layout

Figure 4.4: Trace Layout Comparison: PSOP vs. PLCC

APPLE INC.
EXHIBIT 1011 - PAGE 0075

52 Chapter Four: Packaging Options and Update Alternatives

SOJ (Small-Outline J-Lead)

D ------I~ ... I

PIN 1 SEATING PLANE '

I~ Jl
B

Family: Small Outline J-Lead Package

Symbol Millimeters Inches
Min Max Notes Min Max Notes

A 3.35 3.61 0.132 0.142
A1
A2 2.74 3.00 0.108 0.118
A3
B 0.38 0.51 0.015 0.020
D 15.75 16.18 0.620 0.637

D2
E 8.38 8.64 0.330 0.340

E1 7.49 7.75 0.295 0.305
a1 1.27 Typical 0.050 Typical
aA 6.60 6.99 0.260 0.275
aB
L
N 24 24

Figure 4.5: Small Outline J-Lead (SOJ) Package Dimensions

APPLE INC.
EXHIBIT 1011 - PAGE 0076

Packaging Options 53

This surface-mount package, shown in Figure 4.5, eliminates some, but
not all, of the problems associated with the first-generation PLCC. It
uses the same 0.050" (50 mil) lead spacing and J-lead configuration as
PLCC, and therefore, inherits PLCC's post-soldering lead inspection
difficulties. However, the rectangular package aids in trace routing and
better matches the rectangular silicon die inside. SOJ packages, like
PLCC, are fairly easy to socket for prototyping.

SOP (Small Outline Package)

SOP has all the advantages of SOJ (compared to PLCC), and in addition
has a modified gullwing lead configuration (shown in Figure 4.6).
Compared to SOJ or PLCC, this greatly improves the post-soldering lead
inspection process, since leads extend beyond the package making them
clearly visible at all times.

The main disadvantage of SOP today is restricted availability of sockets
for prototyping. However, this is quickly changing as the package
becomes more and more common. See the Appendix for more
information on SOP prototype socket and socket adapter vendors.

TSOP (Thin Small Outline Package)

TSOP (Figure 4.7) represents the state of the act in surface mount
packaging. TSOP is only slightly larger than the die inside the package,
and is only 1.2 mm thick. Compared to bare die, TSOP provides full
device functional and speed testing before the device is shipped from the
flash memory manufacturer. Packaged nonvolatile memories are also
easier to handle and more reliable than their bare die equivalents.

APPLE INC.
EXHIBIT 1011 - PAGE 0077

54 Chapter Four: Packaging Options and Update Alternatives

44 23

~~!d.b!.bb!.Y..nl

1.\:o;T;;;0 Fi'i'i"i"FFi'~~ j 1
22

I~ D ~UA

6oooonnnnnnooooooOnnnnr"tI Ai

~~:~-YI ~~B~ u ++

Irn
~[]~

DETAIL A
SEE DETAIL A

Family: Small Out-Line Package

Symbol Millimeters Notes Inches
Min Nom Max Min Nom

A 2.80
Ai 0.13 0.225 0.35 0.005 0.009
A2 2.17 2.3 2.45 0.085 0.091
B 0.35 0.40 0.50 0.014 0.016
C 0.13 0.150 0.20 0.005 0.006
D 28.20 28.70 1.110
E 13.10 13.30 13.50 0.516 0.524
e1 1.27 0.050
He 15.7 16.00 16.30 0.618 0.630
L1 0.75 0.80 0.85 0.029 0.032
N 44 44
Y 0.10
e 8°

ISSUE

Max
0.110
0.013
0.097
0.020
0.008
1.130
0.531

0.642
0.033

0.004
8°

Figure 4.6: Small Outline Package (SOP) Dimensions

t
c~

Notes

APPLE INC.
EXHIBIT 1011 - PAGE 0078

Packaging Options 55

DETAILB

! I<I!I-I~ --D-~
~ HD----------~

(_.,,~EE DETAIL A

~

DETAIL B DETAIL A

Familv; Thin Small Outline
Symbol Millimeters Notes

Min Max
A 1.20
A1 0.05

A2 0.96 1.06
B 0.15 0.30
C 0.10 0.20
D 18.20 18.60
E 7.80 8.20
HD 19.80 20.20
L1 0.30 0.35
N 32
Y 0.00 0.10
Z 0.20 0.30
8 0° 5°
ISSUE 1-1-91

Figure 4.7: TSOP (Thin Small Outline Package) Dimensions

APPLE INC.
EXHIBIT 1011 - PAGE 0079

56 Chapter Four: Packaging Options and Update Alternatives

Several flash memory suppliers are offering TSOP-packaged devices in
both standard and reverse pinout configurations, as demonstrated in
Figure 4.8 with Intel's 28F008SA. This allows highest density-per-in2

arrays of multiple flash memories. The resulting component layout and
trace routing is called "serpentining". Figure 4.9 makes it clear where
this name came from. Flash memory cards represent one example
application that uses TSOP devices and the serpentine layout.

A" 0
40 NC

A,. 39 NC
A" 38 WE
A" 37 DE
A" STANDARD PINOUT 36 RViii'i'
A,. E28F008SA 35 DO,
A" 34 Do"
A" 8 40 LEAD TSOP 33 Do"
i5E 9

10mmx20mm
32 DO.

Vee 10 31 Veo

~ 11 TOP VIEW 30 GND
PWD 12 29 GND
A" 13 28 DO,
A,o 14 27 DO,

"- IS 26 DO,
A, 16 25 DO
A, 17 24 A '
A, 18 23 A'
A, 19 22 A'
A. 20 21 A' ,

NC

0
40 A,.

NC 2 V 39 A ..
WE 3 38 A"
DE 4 37 A,.
RViii'i' 5 REVERSE PINOUT 36 A"

~
8 F28F008SA

35 A,.
7 34 A"

00' 8 40 LEAD TSOP 33 A"
00' 9

10mmx20mm
32 i5E vc; 10 31

Vee GND 11 TOP VIEW 30 ~ GND 12 29 PWD
~, 13 28 A"

14 27 A"
00' 15 26 A,
00' 16 25 A,
A 0 17 24 A, ,
A, 18 23 A,
A, 19 22 A,
A, 20 21 A.

Figure 4.8: Standard and Reverse TSOP Packages

APPLE INC.
EXHIBIT 1011 - PAGE 0080

Packaging Options 57

m « m «
N (JJ N (JJ
0) to 0) to
'TI 0 "T1 0
0 0 0 0
0 LL 0 LL
0) to 0) to
(JJ N (JJ

~ » LL »

'TI « "T1 «
N (JJ N (JJ
0) to 0) to
'TI 0 "T1 0
0 0 0 0
0 LL 0 LL
0) to 0) to
(JJ N (JJ N » w » w

00 00

Figure 4.9: TSOP Serpentine Package Layout

The main hurdle to overcome with TSOP-packaged flash memories is
the very narrow 0.020" (20 mil) lead spacing. TSOP devices are
virtually impossible to socket by hand; pick-and-place equipment should
be used. Fine-pitch automated soldering techniques are essential for

APPLE INC.
EXHIBIT 1011 - PAGE 0081

58 Chapter Four: Packaging Options and Update Alternatives

high-yield TSOP board manufacturing. As with any new technology, the
number of TSOP handling solutions today is sparse, but will increase
with time as not only flash memory but other logic devices become
available in this ultra-small package.

SIMM (Single In-line leadless Memory Module)

SIMMs are one way of combining multiple flash memory components
on a single board. SIMMs offer the advantage of being an add-in module
that enables system expandability. In comparison to a fixed array of
flash memories on the system motherboard, SIMM modules can be
inserted into any open connector, allowing the density per SIMM
connector to be varied to match the specific needs of the system.

The package dimensions are fairly standardized across the industry for
nonvolatile memories of all types (Figure 4.10). However, be careful!
The actual SIMM pinout (what signals are on what pins) can vary from
manufacturer to manufacturer. Not every SIMM will function in every
SIMM connector, although they may all physically fit. As an example,
Figure 4.11 shows the pinouts for SCM Microsystems' 1 and 2 Mbyte
flash memory SIMMs.

APPLE INC.
EXHIBIT 1011 - PAGE 0082

Packaging Options 59

� ... ---------- D ---------~~I

DooDooDooD8 11111111
11111111

80-t-

0.7"

O~
~--------------------------------------~

Symbol

B
C
D
E
e'
N

ISSUE

BACK VIEW

~ E~
1 Mbit

~
32-LEAD
PLCC

(550 x 450 MILS)

0.5" + 0.004/-0.003 ~ 1..-
SIDE VIEW

Family: Single In-Line Leadless Memory Module
Millimeters Inches

Min I Max Notes Min I Max
1.04 Typical 0.041

1.19 I 1.37 0.047 I 0.054
117.98 I 118.24 4.645 I 4.655

8.38 0.33
1.27 Typical 0.050
80 80

IWS 9-19-90

Figure 4.10: SlMM Package Dimensions

Notes
Typical

Typical

APPLE INC.
EXHIBIT 1011 - PAGE 0083

60 Chapter Four: Packaging Options and Update Alternatives

1 VSS 21 CE3# 41 A11 61 D09

2 VCC 22 CE2# 42 A10 62 D08

3 OE# 23 CE1# 43 A9 63 D07

4 WEH# 24 CEO# 44 A8 64 D06

5 WEL# 25 VSS 45 A7 65 D05

6 NC 26 RES 46 A6 66 D04

7 RES 27 RES 47 A5 67 D03

8 RES 28 RES 48 A4 68 D02

9 RES 29 RES 49 A3 69 D01

10 RES 30 NC 50 A2 70 DOO

11 RES 31 NC 51 Ai 71 Vpp

12 RES 32 NC 52 AO 72 VCC

13 RES 33 NC 53 RES 73 PD1

14 RES 34 NC 54 VSS 74 PD2

15 RES 35 A17 55 D015 75 PD3

16 RES 36 A16 56 D014 76 PD4

17 NC 37 A15 57 D013 77 PD5

18 NC 38 A14 58 D012 78 PD6

19 NC 39 A13 59 DOn 79 PD7

20 NC 40 A12 60 D010 80 VSS

Figure 4.11: SCM Microsystems Flash Memory S1MM Pinout

SIMMs provide relatively easy system upgrade ability, but modules
cannot be added or removed with the system powered up, and the system
must usually be partially disassembled to access modules. The PCMCIA
flash memory card, which we will discuss next, has this hot-socketing
capability.

APPLE INC.
EXHIBIT 1011 - PAGE 0084

Packaging Options 61

PCMCIA Flash Memory Cards

Memory cards of all types (RAMlROMlEEPROMlFlash) have been
around for many years. In most cases, each card manufacturer had their
own custom physical connector dimensions and pinouts. This
incompatibility limited the number of cards available per machine and
made card interchange between machines very difficult if not
impossible.

The original PCMCIA 1.0 specification (established in 1991) eliminated
both of these problems by standardizing on a common 68-pin, 16-bit
parallel, memory-only interface for cards with densities as high as 64
Mbytes. The Japanese equivalent of PCMCIA, JEIDA (Japan
Electronics Industry Design Association), also standardized on the same
68-pin configuration, bus timings, interface voltages, etc. In 1992,
PCMCIA introduced a second version of the specification (i.e.,
PCMCIA 2.0) which added I/O capability (e.g., modem, fax, Ian) to the
68-pin socket by using reserved pins and multiplexing the functionality
of some exisiting memory signals.

The advantages of PCMCIA-compatible flash memory cards include:

• They can be inserted and removed during host system operation,
similar to a floppy disk. This is an important attribute when the
flash memory card is used as the mass storage subsystem. (Hot
insertion and removal also has the disadvantage of complicating
the system software, as we'll explain in Chapter 10 on PCMCIA
software.)

• Flash memory cards are also very rugged, with the components
inside the card protected by the tough plastic or metal casing.
The host system houses the male side of the connector interface,
eliminating bent pins during card handling.

• The small size (no bigger than a credit card, and only slightly
thicker) makes PCMCIA cards extremely portable.

• The parallel (versus serial) interface does add to the interface
pincount, but allows not only file system mass storage in the
card but also direct-execute code capability.

APPLE INC.
EXHIBIT 1011 - PAGE 0085

62 Chapter Four: Packaging Options and Update Alternatives

Although all PCMCIA cards incorporate the same 68-pin electrical
interface, the physical dimensions of the package differs. The four types
are:

• Type 1 (Figure 4.12) - Measures 3.3 mm thick and
accommodates memory cards only.

• Type 2 (Figure 4.13) - Measuring 5nim thick, the thicker Type 2
card will often be used by some vendors in flash drives, as well
as most I/O card products. A system's Type 2 slot is backwards
compatible with Type 1 cards.

• Type 3 - An even thicker (1O.5mm), Type 3 card form factor,
primarily designed for removable hard drives.

• Type 4 - This card type, proposed to be 18mm thick, has not yet
been ratified by PCMCIA. It will be used for high capacity
magnetic media hard disk drives. Although Type 4 could be
packed with flash memory devices to achieve very high
densities, these densities would carry along with them a very
high price tag!

For more information on the PCMCIA hardware, electrical and timing
standards, reference Chapter 8.

APPLE INC.
EXHIBIT 1011 - PAGE 0086

Packaging Options 63

3.378 (85.80)
3.362 (85.40)

~ONNECTR ~
- 2.130 (54.10)

2.122 (53.90)

0.041 (1.04) 11. -1 r 0.041 (1.04)
Q~~~ Q~~~

L #34 #1

@ - t---=----=--~ -\L
T #68 #35 T

0.065 (1.65)
0.061 (1.55)

0.041 (1.04)
0.037 (0.94)

2X 0.067 (1.70)
0.063 (1.60)

Figure 4.12: PCMCIA / fElDA Type 1 PC Card
Package Dimensions

APPLE INC.
EXHIBIT 1011 - PAGE 0087

64 Chapter Four: Packaging Options and Update Alternatives

AH311V8 I?

SUST AREA

2.130(54.10) I
2.122 (53.90) ~

3.378 (85.80)
3.362 (85.40)

0.041 (1.04) l r. l r 0.041 (1.04) 0.037 (0.94) 0.037 (0.94)

~ #34 #1

··@······ .. ··~···~····=···:···=···r····· .. ·······I,·L
T #68 #35 T

0.065 (1.65)
0.061 (1.55)

0.041 (1.04)
0.037 (0.94)

Figure 4.13: PCMCIA / JEIDA Type 2 PC Card
Package Dimensions

2X 0.067 (1.70)
0.063 (1.60)

APPLE INC.
EXHIBIT 1011 - PAGE 0088

Packaging Options 65

Flash Drives

Although this category doesn't exactly conform to the typical
expectations of a package, it nevertheless plays a very significant role in
flash utilization. A flash memory card requires system software and
hardware resources to function as a solid-state drive; it interfaces
directly to the system bus. Conversely, the flash drive plugs into a
system via an IDE (or PCMCIA-ATA) interface and has all required
software and hardware contained within. Table 4.1 compares some of
the features of flash drives and flash memory cards.

FLASH DRIVE FLASH MEMORY CARD

Attaches to the system via an IDE or Direct system interface allows faster
PCMCIA-ATA interface access and execute-in-Qiace (XIPl

Completely integrated solution eliminates Requires a system-operated flash file
system overhead, provides O/S and system and system hardware

hardware independence resources
Inherently higher cost due to additional Minimal parts count yields low cost

hardware besides flash memory
media (CPU, RAM, 12V converter,

etc.)

Table 4.1: The Key Differences between a Flash Drive and a PCMCIA
Flash Memory Card

From a very simplistic view, Figure 4.14 compares the standard
mechanical disk drive to a disk emulator or flash drive. Aside from the
type of media chosen for storage, both drives look about the same in that
they both have an IDE interface controller and a media controller.

APPLE INC.
EXHIBIT 1011 - PAGE 0089

66 Chapter Four: Packaging Options and Update Alternatives

~ +
IDE-ATA Flash Flash

HOST Interface Media Media
Controller Controller

~ r. IDE-ATA Disk 8 HOST Interface Controller
Controller

Figure 4.14: Mass Storage Architecture

Figure 4.15: Flash Drive Architecture

Flash
Drive

Rotating
HDD

Figure 4.15 shows a flash drive in more detail. Notice the various
components contained within:

• Flash array - Notice how it is isolated from the system. The size
of the array depends on the overall size and form factor of the
flash drive, which will typically range from the 2.5" HDD form
factor to PCMCIA Type II.

APPLE INC.
EXHIBIT 1011 - PAGE 0090

Update Options 67

" Microprocessor - Handles everything from internal data
movement to management of the flash memory media.

e Power converter - Some drives contain a built-in DC-DC
converter so that the system only has to supply 5V. The internal
generator takes care of providing 12V for the flash memory
write and erase operations.

" Flash memory - Stores the code used by the processor for its
activities.

" Interface controller - This unit manages the IDE (or PCMCIA
ATA) interface, acting as the go-between the system and the
flash drive's microprocessor and flash memory. This controller
will typically be in the form of an ASIC.

" Miscellaneous - Other pieces that can be found within a flash
drive include an error detection and correction unit (EDC),
RAM used as a buffer and scratchpad, and a hardware data
com pressor/ decompressor.

UPDATE OPTIONS
Flash memory's flexibility means that it can be erased and
reprogrammed in many different ways, and at many different times
during system lifetime. Three common techniques for updating flash
memory are PROM programming, on-board update and in-system write.

Off-Board PROM Programming

For those of you with an existing hardware/software investment in
PROM programming equipment for EPROMS or PROMs, you'll be
happy to know that this very same equipment can also be used to
program flash memories. What's new, of course, is that instead of
putting EPROMs under UV light to erase them, you can both program
and erase flash memories in the PROM programmer!

This flash memory update method is especially useful for easy-to-socket
packages like DIP, PLCC and PSOP. If your PROM programmer only
contains a DIP socket, you can purchase socket adapters for all flash
memory packages. I I

11 Information on socket adapters, as well as PROM programmer vendors supporting flash
memory, can be found in the Appendix.

APPLE INC.
EXHIBIT 1011 - PAGE 0091

68 Chapter Four: Packaging Options and Update Alternatives

PROM programming equipment for flash memory is most useful during
system debug and prototyping, to aid in quick code revisions. It's also
useful when programming the kernel boot code in block-eraseable flash
memories such as Intel's Boot Block devices. Programming the boot
block before installing the component on the board means that the
requirement to ramp 12V on the PWD12 input for Boot Block flash
memories does not need to be supported in-system.

On-Board Update

Contrary to the PROM programming method described earlier, on-board
update programs or erases flash memories after they are soldered onto
the system board. Designs that have large arrays of flash memory
devices use this method to minimize component handling and maximize
manufacturing efficiency. It's also often the method-of-choice for hard
to-socket component packages such as TSOP.

In on-board update, an external connection supplies all signals and
voltages required for programming/erasing the flash memory, with an
external processor (outside of the system) executing the update
algorithm. If a board tester is used in production, its bed-of-nails
component interface can be used to provide these inputs; otherwise a
dedicated connector on the board is an option. In some cases, an adapter
originating from a PROM programmer socket can even be used.

One important design consideration to keep in mind is that during on
board update, all other logic in the system that shares signals with the
flash memory (common data bus, addresses, control inputs/outputs)
should also be powered up (and held in reset). If not, this logic must be
electrically isolated from the flash memory to prevent damage to the
memory and/or the external device controlling the update. As Figure
4.16 shows, CMOS devices not powered up through their supply voltage
inputs will instead attempt to power themselves via their inputs or
outputs. This will most likely draw excessive current from the flash
memory and external update control source.

12pWD is also known as RP in JEDEC notation.

APPLE INC.
EXHIBIT 1011 - PAGE 0092

Update Options 69

~
+5V

I

Vee vee
.. Data Bus ..

... ..
Chip Enable ...

'"
Read ... Flash

CPU -II"" Memory

Write
'"

Address Bus '"

...
Vpp

I
+12V

Figure 4.16: Design Considerations During On-Board Update

On-board programming adds flexibility to board manufacturing. For
example, as a system moves down an assembly line, you can download
diagnostic code to the flash memory to fully test system functionality
under system CPU control. Also, the final software version can be
downloaded to flash memory immediately before the hardware box
leaves the warehouse. This enables just-in-time (JIT) manufacturing, and
also allows one hardware design to service multiple markets and
functions. For example, one personal computer hardware design can be
customized for specific customers, specific market price points and/or
specific areas of the world simply by varying the software programmed
into its flash memory BIOS before shipping the PC.

Several companies making PROM programmers also offer board
programming fixtures and systems. These companies consult/advise
customers interested in programming/erasing flash memory in this
manner, and are a valuable resource.13

13See the Appendix for more information.

APPLE INC.
EXHIBIT 1011 - PAGE 0093

70 Chapter Four: Packaging Options and Update Alternatives

In-System Write

Like on-board update, flash memories being updated in-system are
physically attached to the system motherboard. However, in this case,
the entire system is powered up and operational, and the system CPU is
executing the update routine. A simplified diagram of this process is
shown in Figure 4.17. This key capability differentiates flash memory
from earlier technologies like EPROM.

New
Info

.....
~ CPU

iII!III

...0IIII
"""'l1lI

~
Flash

Memory

.. RAM lI""

Figure 4.17: Key Elements of In-System Update

In Chapter 7 we'll review flash memory software update algorithms in
great detail; let it suffice for now to say that registers internal to the
flash memory devices decode the command sequences written to them
and react accordingly to program or erase the memory. Therefore,
although programming takes many microseconds or milliseconds to
complete (erase being similarly slow), commands can be written to the
flash memory at SRAM-like write speeds.

Figure 4.17 shows external RAM interfacing to the CPU in addition to
the flash memory. Today, it is not possible to read data (or execute code)
from a flash memory while it is being programmed or erased (some
newer-generation devices allow you to suspend erase to read, however).
Although the in-system update routines can be stored in the flash
memory, they must be copied to, and executed from, some external

APPLE INC.
EXHIBIT 1011 - PAGE 0094

Summary 71

device, such as RAM. After update is complete, the system can jump
back to, and resume executing out of, the flash memory.

In-system write is most useful for updating code or data once a system is
in the customer's hands, eliminating the need for a technician call and
system disassembly to replace memory components. The new data or
code to be stored in the flash memory can come from any of numerous
possible sources; downloaded from a parallel or serial connector,
supplied via a modem link or floppy or hard disk drive interface, etc.
Using embedded code in cellular phones as an example, flash memory
update could be as simple as the user calling the phone manufacturer on
a special telephone number. After establishing the connection, new code
could be downloaded to flash memory via the wireless link! The
possibilities are limited only by your imagination and the unique
characteristics of your system design and operating environment.

SUMMARY
This chapter has discussed the different flash memory packaging options
available to you, and how these packages match up to the various
methods that can be employed to update flash memory. In Chapter 2 we
discussed different system applications that can take advantage of flash
memory capabilities. These applications have unique needs, which often
translate into optimum flash memory packaging selections, and
allow/preclude various possible update methods.

Other areas of this book to reference for more information include the
upcoming chapters on hardware interfacing (components and cards),
power requirements, software algorithms and the PCMCIA memory card
standard. Finally, the Appendix gives more detailed information on
various socket, socket adapter and programmer vendors for your
reference.

APPLE INC.
EXHIBIT 1011 - PAGE 0095

Chapter Five: Hardware Interfacing To
Flash Memory Components

Chapters 1 and 2 explained what flash memory is, and discussed flash
memory applications, ways that flash memory can make today's systems
better and enable revolutionary new solutions that exploit its features. In
Chapter 3, we reviewed several unique semiconductor technology
approaches to solving the flash memory "puzzle". Now, beginning with
Chapter 5, we'll show you how to integrate flash memory into your
upcoming designs. In particular, this chapter outlines techniques for
hardware interfacing to flash memory components. Interfacing to flash
memory cards, as well as software interfacing to flash memory, will be
saved for later.

HARDWARE INTERFACING FUNDAMENTALS
As you're already aware, flash memory is nonvolatile like ROM (Read
Only Memory) and equally important, in-system rewrite able like RAM
(Random-Access Memory). With rare exceptions, most flash memories
have minor variations on standard SRAM pinout interfaces. We'll review
the SRAM interface in this section. Specifically, we'll cover the
following input/output and control pins:

• Chip Enable (Chip Select)
• Addresses
• Data In/Out
• Output Enable (Read)
• Write Enable (Write)

APPLE INC.
EXHIBIT 1011 - PAGE 0096

74 Chapter Five: Hardware Interfacing To Flash Memory Components

Figures 5.1 and 5.2 give examples of standard processor/flash memory
interfaces, while Table 5.1 shows a typical bus interface truth table for
an "SRAM interface" flash memory.

Addresses Addresses

L.[DBOOdBr r-: CE

PROCESSOR FLASH
MEMORY

Data • ~ Data -- --.. OE READ ~

-- ..
WE WRITE ~

Figure 5.1: Processor/Flash Memory Inteiface (separate address and
data buses, distinct read and write, one flash memory)

Addresses

~-~: : Data ~ Data
!Data (High Byte) (Low Byte)

~~'" }..~ Addresses Addresses

ADS Decoder~ CE FLASH CE FLASH
PROCESSOR MEMORY MEMORY (x8) (x8)

PiN I Logic I OE OE

DEN WE WE

Figure 5.2: Processor/Flash Memory Inteiface (multiplexed
address/data lines, multiplexed read/write, two x8flash memories)

Mode CE OE WE An DQn_7

Read VIL
-
VIL VIH X Dour

Output Disable VIL VIH VIH X HighZ

Write VIL VIH VIL X DIN

Standby VIH X X X HighZ

Table 5.1: Flash Memory Bus Inteiface

APPLE INC.
EXHIBIT 1011 - PAGE 0097

Hardware Inteifacing Fundamentals 75

Chip Enable

The system processor often connects to several other components
through its external bus interface. These include memory (flash, RAM,
etc.) and peripherals such as AID and D/A converters, external interface
chips and secondary processors (e.g., keyboard controllers, interrupt
controllers, and graphics controllers). A specific external component is
selected via its chip enable input, connected to an appropriate chip select
signal generated by some type of decoding unit.

Some processors, such as the Intel 80C186 family, have dedicated chip
select outputs activated when software accesses a defined address range.
Chip enable inputs of corresponding external components connect
directly to these processor chip select signals. Otherwise, external
address decode logic generates chip enable signals from high order CPU
addresses and port pins. This address decode logic can be as simple as a
3:8 demultiplexer, or, alternatively, more flexible programmable logic
can be used. See Figure 5.1 for an example.

Addresses

Each flash memory stores many bits of data (8 million and growing at
the time this book was published!). Typically, these bits are arranged in
groups of 8 (byte-wide, or x8) or 16 (word-wide, or x16). To read or
write a byte or word, the system logic must first select it, by specifying
its location (or address) within the flash memory.

Just as the chip enable selects a device, the address inputs select data
within that device. Think of a home address for an example of how the
chip enable and address inputs coordinate with each other.

Brian Dipert
123 Memory Lane
Any town, Anystate 45678

The city, state, and zip code select an area within the United States (the
chip enable), and the street name and address select an individual house
(the chip addresses).

APPLE INC.
EXHIBIT 1011 - PAGE 0098

76 Chapter Five: Hardware Inteifacing To Flash Memory Components

Addresses originate at the system processor. As Figure 5.1 shows, the
lowest-level processor address signals are common to all external
components; the higher order addresses generate chip enables that select
between them. Some processors minimize pin count by multiplexing
addresses and data. In these cases, an external address latch (triggered
by a processor address valid signal) stores these multiplexed addresses
for use by external devices. See Figure 5.2 for an example of address
latching in a processor design.

Data In/Out

The data bus transfers information between the processor and flash
memory. Common processor data buses are byte-wide (x8), word-wide
(x16) and double-word-wide (x32), transferring 8, 16 and 32 bits of data
at a time, respectively. Depending on the specific processor and flash
memory selected, multiple memories may be connected in parallel to
satisfy the data bus bandwidth required by the interface (see Figure 5.2
for an example).

In some cases, an additional bus transceiver chip may be added between
the memory and CPU. Later in this chapter, when discussing bus loading
specifications, we'll show you if such a transceiver is required, either to
mimimize processor loading or to eliminate the potential for data bus
contention.

Output Enable

Mter selecting the flash memory and address within it, the processor
must also communicate whether it wants to perform a read or write at
that specific location. During a read operation, the processor activates its
READ output, which connects to the flash memory output enable signal.
This turns on the flash memory output buffers and drives data onto the
processor data bus. When reading from a specific flash memory, outputs
for all other devices on the data bus, including other flash memories,
must be disabled. Dedicated chip enables ensure this, allowing the
processor READ to connect to all interface devices. This concept is
called two-line interface control. See Figure 5.1 for an example.

APPLE INC.
EXHIBIT 1011 - PAGE 0099

Hardware Interfacing Fundamentals 77

Some processors (notably those from Motorola and second sources)
don't have a dedicated READ signal, and instead have RIW
(ReadlWrite) and DEN (Data Enable) outputs. Figure 5.2 shows how
these combine to form OE to the flash memory.

Write Enable

To write to flash memory, an approach similar to the "output enable"
technique discussed earlier is taken. This is normally accomplished by
connecting the flash memory write enable input to a WRITE output from
the processor. Alternatively, RIW and DEN signals are decoded as
shown in Figure 5.2. Again, two-line control allows common connection
of one processor WRITE signal to all external devices, with per-device
selection through individual chip selects.

Flash memory provides some unique challenges to the system designer
with respect to its in-system write capabilities. Similar to EEPROM and
battery-backed SRAM (for example), care must be taken to control the
chip enable and/or write enable signals to flash memory during system
power up and power down. Any glitches or active transitions on these
signals may be misinterpreted by the flash memory as a valid write, with
unwanted (and permanent) results!

Contrast this with ROM memories (which are nonvolatile but not in
system writeable and therefore unchanging) and RAM memories (which
are write able but volatile, guaranteed invalid after system power
transitions and therefore requiring initialization by the startup software).
The flash memory interface is complicated further by the fact that, in
most cases, the chip enable and write enable inputs are "active low"
signals, enabled at av. av is also the state of these signals when a
system is first turned on, before the power supply reaches its operating
voltage! Due to different capacitive loading, some control signals may
ramp up faster than others, and similarly Vpp (the program/erase
voltage) may reach high voltage before VCC stabilizes.

Flash memory vendors provide several mechanisms that assist the
system designer in eliminating the potential for unwanted data writes.
Some include on-chip circuitry that monitors the supply voltage and

APPLE INC.
EXHIBIT 1011 - PAGE 0100

78 Chapter Five: Hardware Interfacing To Flash Memory Components

blocks all write attempts below a specified value, called the lockout
voltage (VLKO)' Others incorporate glitch detect circuitry that ignores
excessively short active transitions on chip enable and write enable
inputs. In some cases, lengthy multi-byte software command sequences
must be used to enable flash memory write and erasure, lowering the
probability that such sequences will be unintentionally written to the
device. In other instances, a separate input to the flash memory acts as a
write protect, such as the PWD14 input of some Intel flash memories.
Finally, where a separate voltage is required to write or erase flash
memory (i.e., Vpp) , disabling this voltage when not needed will block
unintended alteration of flash memory contents. We'll cover this
additional V pp voltage in the next section.

WE-Less Flash Memories

In attempting to minimize pin count for their devices, some flash
memory manufacturers have removed the WE input, resulting in the bus
interface truth table shown in Table 5.2. This pinout eliminates separate
two-line control for both reads and writes. A selected device
distinguishes between a read or a write by the state of its OE input when
it is selected (V ill = write, V IL = read). This functionality often
complicates the system interface to WE-less flash memories for the
following reasons:

• OE must transition to its valid state (V ill or V rrJ before CE
selects the device. This is contrary to the design of most
microprocessors, which provide addresses (for chip selects)
before asserting READ or WRITE. In many cases, this
incompatibility impacts system performance by increasing the
number of required wait states to read from or write to the
flash memory.

• Spurious (involuntary) chip select generation is common in
systems, as processor addresses transition through intermediate
states at the beginning of, and between, external bus cycles.
Interface logic between the processor and flash memory must

14pWD is also known as RP in JEDEC notation.

APPLE INC.
EXHIBIT 1011 - PAGE 0101

The Vpp Program/Erase Voltage 79

assure that these invalid chip select signals do not pass through
to the WE-less flash memory, where, without a clarifying write
enable, they would cause spurious, unwanted writes.

Mode
-
CE DE DQo_7

Read VIL VIL Dour

Write VIL VIH DIN

Standby VIH X HighZ

Table 5.2: WE-Less Flash Memory Bus Inteiface15

THE Vpp PROGRAM/ERASE VOLTAGE
Like all other logic devices in a system, flash memory requires an
operating voltage (often referred to as V cd to power its circuitry and
enable access to its contents. Common V cc operating voltages are 5V ±
10% (4.5V-5.5V) and 3.3V ± O.3V.

Program or erase of a flash memory ceU16 requires (in addition to V cd a
high internal voltage to pull electrons onto or remove them from a cell's
floating gate. This voltage is often referred to as Vpp in flash memory
specifications.

Some flash memories generate this high internal voltage themselves
from the existing V cc input. However, the high Vpp current
requirements and complex circuitry required can make the design of
these internal voltage converters difficult. If they take up a relatively
large percentage of the flash memory die, internal converters adversely
affect the device's cost and manufacturing yield. Additionally, in a
system design that uses a large number of flash memory components, it
is often more economical to generate V pp from an external source rather
than to include this circuitry on every device in the flash memory array.

15Notice that, compared to Table 5.1, Table 5.2 has no entry for WE.
16 As we first discussed in Chapter 2.

APPLE INC.
EXHIBIT 1011 - PAGE 0102

80 Chapter Five: Hardware Inteifacing To Flash Memory Components

For these reasons, other flash memory vendors require external V pp
voltage generation, and provide a dedicated input pin to supply this
voltage to the internal flash memory cells. As an example, many NOR
flash memories specify an external Vpp of 12V ± 5% (11.4V - 12.6V). If
the existing system power supply already generates the appropriate
voltage, the supply output can be connected directly to the flash
memory. Be sure that this supply falls within the 5% tolerance range.
Otherwise, use an external12V regulator to up- or down-convert another
available voltage to generate the required V pp voltage. In Chapter 6,
we'll cover flash memory power requirements in more detail, including
specific examples on generating V pp.

Switching Vpp

As mentioned earlier, a switcheable V pp is one means of protecting flash
memory data from unwanted alteration. Switching on V pp only when
required for program/erase also minimizes system power consumption.
In many cases, the power supply or 12V converter circuit integrates a
TIL-compatible Vpp ENABLE input; otherwise, an external switch can
perform this function. Figure 5.3 shows an example circuit for switching
V pp. Note that a PFET is needed for compatibility with the TIL voltage
driving the transistor gate.

10K
Vpp Out

GP '=-_"'----o;

10K

Figure 5.3: Vpp Switch Circuit

When using an external switch, factor in any voltage drops across the
switch when matching the power supply to the V pp requirements of the
flash memory. The example Motorola MDT4P05 (or an equivalent)
shown in Figure 5.3 makes an ideal Vpp switch. The calculations below
show that given a power supply with an output voltage of 12V ± 4% and
current draw of one flash memory being programmed or erased, the

APPLE INC.
EXHIBIT 1011 - PAGE 0103

The Vpp Program/Erase Voltage 81

supply/MDT4P05 combination still satisfies the 12V ± 5% requirement
of the flash memory. This calculation can be modified to fit the specifics
of your design.

RDS =0.6 Q

Ipp = 30 rnA (worst case, one component being programmed/erased)

I:!. V SWITCHDROP = (30 rnA x 0.6 Q) = 0.02 V

(12V - 4%) - 0.02V = 11.5V > 11.4V (OK!)

Vpp Feedback

Mter switching V pp on, the system must wait for the voltage to ramp up
to the valid operating range before attempting the program/erase of flash
memory. This delay is a function of the chosen power supply and of the
amount of capacitance driven by the supply. In some cases, the hardware
design engineer can characterize the performance of the power supply
and determine the maximum delay. System software then simply inserts
a software delay loop of sufficient duration to meet or exceed this
maximum delay after enabling the power supply. In other cases, such as
with removable memory cards, the varying number of flash memory
devices from different densities results in a varying capacitive load.
Under this circumstance, you should base the delay loop on a theoretical
worst-case limit.

To obtain a more precise indication of V pp status, or in applications
where the system cannot tolerate the unusable delay of this software
loop (i. e., real-time systems), hardware circuitry can be used to sense
and report back "V pp Valid" indication to the processor. Figure 5.4
shows the MAX705, which includes the system RESET, Vee monitoring
(power-good sensing), and Vpp monitoring in one device. A multi
function device like the MAX705 is ideal in flash memory designs (see
the next section on PWD usage). Simpler circuits (comparators, for
example) are also available, if Vpp monitoring and feedback only are
desired.

APPLE INC.
EXHIBIT 1011 - PAGE 0104

82 Chapter Five: Hardware Interfacing To Flash Memory Components

+12V +5V

Vee

PFI RESET RESET
MAX70S
SERIES

EXTERNAL MR PFO Vpp VALID
RESET

GND

Figure 5.4: Maxim MAX705, Usedfor Vee and Vpp Monitoring

ADVANCED HARDWARE INTERFACING
Second-generation flash memories have gone beyond the standard
SRAM interface to provide additional functionality to system designers.
This section of Chapter 5 discusses two additional pins offered in Intel
Boot Block and FlashFile™ memories; the PWD input and the RY/BY
output. RY/BY is also provided in Toshiba's NAND flash memories.

The PWD Input

This pin (explained most simply) provides a master ON/OFF switch for
the flash memory. It has four distinct functions in system designs:

• Driving the input to a TTL low level (V nJ puts the device in a
very low power mode (referred to as Deep Powerdown), even
with V cc and V pp still powering the device. Driving the pin
fully to OV (GND) allows the device to achieve the lowest
power consumption.

• Acting as an ON/OFF switch, PWD, when at VIL, tenninates
any internal automation activity inside the flash memory. This
is especially crucial when the entire system (including the
processor) is reset, and the CPU attempts to fetch its reboot
instructions from the flash memory. Toggling PWD low to
reset the flash memory ensures that it will provide, when read,
the stored instructions that the CPU anticipates, and not Status
Register data or other unexpected information.

APPLE INC.
EXHIBIT 1011 - PAGE 0105

Advanced Hardware Inteifacing 83

• Again acting as an ON/OFF switch, PWD at V IL causes the
flash memory to ignore all write attempts. This is ideal for
protecting the flash memory from unwanted spurious writes
during system power transitions.

• Finally, in Boot Block memories, PWD locks and unlocks the
hardware-protected boot block (see the example memory map
of Figure 5.5). The boot block is intended to store the kernel
code to bring up (initialize) the system. Boot block memories
are designed such that the boot block cannot be altered
(programmed/erased) with normal TTL levels on PWD. The
boot block only unlocks by putting 12V on PWD.

Normally, the boot block is programmed using a PROM
programmer before installing the flash memory on the system
board17. If the capability for generating 12V on PWD doesn't
exist in the system, the boot code becomes completely
nonvolatile and unalterable; the boot block essentially
becomes a ROM block.

IFFFF

IEOOO

10FFF

10000
10FFF

10000
IBFFF

00000

4 kbyt9 PARAMETER BLOCK

4 kbyt9 PARAMETER BLOCK

112 kbyt9 MAIN BLOCK

Figure 5.5: Intel 28FOOIBX Boot Block Flash Memory Map

17 As we first covered in Chapter 4.

APPLE INC.
EXHIBIT 1011 - PAGE 0106

84 Chapter Five: Hardware lnteifacing To Flash Memory Components

Again looking at Figure 5.4, by connecting the MAX705
POWERGOOD output to the flash memory PWD input, the resultant
design resets the flash memory in case of a system RESET and protects
the flash memory from spurious writes on system powerup/down. Power
management control can be added with a logic AND of the existing
system RESET and an available JlO line, which is toggled low to put the
flash memory in deep powerdown mode. The default state of this JlO
line on reset and system powerup should be high.

RY/BY Output

The RYlEY output provides a hardware indication for monitoring the
status of internal program or erase automation inside the flash memory.
When the system initiates a program or erase, RYlEY goes low (to
VoJ. Similarly, when program or erase completes, RYlEY returns to its
default V OR state. Its function is especially valuable during slow block
erase. With RYlEY connected to a processor interrupt input or system
interrupt controller, the system can initiate a block erase and then read
from, program, or erase other flash memories (or execute any other
desired system functions) as foreground tasks. The background block
erase executes in parallel and alerts the system, when it completes, via
the RYlEY output.

Keep in mind that flash memory programming may complete faster than
execution of an interrupt service routine. Therefore, in this case, simple
polling of the flash memory Status Register may make more sensel8 .

System software can mask the RYlEY-generated interupt for flash
memory programming operations and re-enable it for block erase events.

RYlEY is a full CMOS (not a wired OR) output. To interface to an array
of flash memory devices, you can run each RYlEY to a separate
interrupt or can alternatively connect the multiple RYlEY outputs to one
procesor input through circuitry like that shown in Figure 5.6.

I8You'1l also see the comparison of Status Register polling vs. RY/BY interrupt, from a software
standpoint, in Chapter 7.

APPLE INC.
EXHIBIT 1011 - PAGE 0107

Interpreting Datasheet AC Parameters 85

5V

10K

INT
MBD301 I 28F008SA

~I E~~

MBD301 I 28F008SA

~I E~~

MBD301 I 28F008SA

~I E~~

Figure 5.6: Wired-OR RYlEY Implementation

INTERPRETING DATASHEET AC PARAMETERS
What's the best way to insure that your flash memory-based system
design will be "first-run functional"? Follow the datasheet specifications
(all of them)! This section will help you interpret the abundance of
information in typical flash memory technical documentation.
Specifically, we'll cover the timing parameters, both for read and write
operations. We'll save current and voltage information (the DC
specifications) for Chapter 6.

Throughout the following discussion, please reference the following
tables and figures:

• Figure 5.7, Flash Memory Read Access Time
Partitioning

• Figure 5.8, AC Input/Output Reference Waveform
• Figure 5.9, AC Testing Load Circuit
• Figure 5.10, High Speed AC Input/Output Reference

Waveform
• Figure 5.11, High Speed AC Testing Load Circuit
• Table 5.4, AC Characteristics, Read Operations
• Figure 5.12, AC Waveform for Read Operations

APPLE INC.
EXHIBIT 1011 - PAGE 0108

86 Chapter Five: Hardware Interfacing To Flash Memory Components

• Table 5.5, AC Characteristics, Write Operations
• Figure 5.13, AC Waveform for Write Operations
• Table 5.6, Input/Output Capacitance
• Figure 5.14, Ordering Information

These specific figures and tables are a subset of characteristics taken
from Revision 3 of the Intel 28F008SA FlashFile memory datasheet,
dated September 1992. They are representative of generic flash
specifications from both Intel and other flash memory manufacturers.

Addresses ~

Control ~
Inputs

Flash Memory

1 ______________________ _

Data Access
Delay

r---

I
1

1 !!!

I~
-IIoo..lm

-I 'S

I~
101

1 I
1 1 I 1 ___ oJ

Data Output
Delay

Data
Outputs

Figure 5.7: Flash Memory Read Access Time Partitioning

2.4V

INPUT
.OV """'-- ~

.......- TEST POINTS -..... OUTPUT
.BV

O.45V

AC test Inputs are driven at VOH (2.4V TTL) for a logic 1 and VOL (0.45V TTL) for a
logic O. Input timing begins at V1H (2.0V TTL) and V1L (0.8V TTL). Output timing ends at

V1H and V1L. Input rise and fall times (10% to 90%) < 10 ns.

Figure 5.8: AC Input/Output Reference Waveform

APPLE INC.
EXHIBIT 1011 - PAGE 0109

Interpreting Datasheet AC Parameters 87

1.2V

IN914

OUT

CL = 100 pF
CL Includes Jig

Capacitance
RL= 3.3Kn

Figure 5.9: AC Testing Load Circuit

3.0V~--~ ~------------,.

INPUT 1.5V-+-TEST POINTS --'1.5V OUTPUT
0.0v----...I '-___________J

AC test Inputs are driven at 3.0V for a logic 1 and O.OV for a logic O. Input timing begins,
and output timing ends, at 1.5V. Input rise and fall times (10% to 90%) < 10 ns.

Figure 5.10: High Speed Input / Output Reference Waveform

CL = 30pF
CL Includes Jig

Capacitance
RL = 3.3Kn

1.2V

OUT

Figure 5.11: High Speed AC Testing Load Circuit

APPLE INC.
EXHIBIT 1011 - PAGE 0110

88 Chapter Five: Hardware Interfacing To Flash Memory Components

= =
:;':;' :;':;'

I~ 'G' ~
Ii I;

Figure 5.12: AC Waveforms for Read Operations

APPLE INC.
EXHIBIT 1011 - PAGE 0111

V
ee

_
' .. _

VIR

":rj -.
ADDRESSES W

Vil
()C)
;.:

VIR ~ CE (E)

~ Vil
.......
~
;:t:.- iii(6)

VIR

("J Vil

~ _ VIR
..: w£(W)

~ Vil
0

~ VIR
"" ~ DATA (D/Q)

.... Vil

~ -. VOR
~ RY/BY (I)

~
VOL

(\:) VIR
~ NO (,)

6". Vil
~

VPPH

Vpp(V) ~
IR

Vil

WIIfI(lYlE WIllE 01.

DAlEIOWCOMMAJiIJ

WIlT(YALID ADDIt£II
'DATA (DrE wmE) 01.

EIIU(aNllN CCIIMUID
AUJ'*AlED &11(

WIllE 01. DAlE DBAY

t
WHGL

II£AD STAtUI
.1iIII1D.D.lTA

t WHOV 1.2:1------~1

WRI'It II£AD
AIIIlAYCOMMAND

>--------~«J VtlWH (
....:::.::;.J

t_ tctVVL

s
~
~
~
~ .
t:I
!:l
is'
~
~
~
~
(J

;;0
~
S!
~
~

~

00
\0

APPLE INC.
EXHIBIT 1011 - PAGE 0112

90 Chapter Five: Hardware Interfacing To Flash Memory Components

General Observations

Figure 5.14 and Table 5,4 indicate that the 2SFOOSSA can be ordered in
either of two flavors, the 28F008SA-85 and 28F008SA-120. Notice that
the "-S5" version actually has two different sets of specifications.

1 E 121a IF 10 10 /a Is IA /- lals 1

~KAGE LACCESS SPEED (ns)
E = STANDARD 40 LEAD TSOP 85 ns
F = REVERSE 40 LEAD TSOP 120ns
FA = 44 LEAD PSOP

VALID COMBINATIONS
E28F008SA-85 F28F008SA-85
E28F008SA-120 F28F008SA-120

PA28F0085A-85
PA28F0085A-120

Figure 5.14: Example Ordering Information Table

The High Speed specifications for the 2SFOOSSA-S5 are guaranteed
under the following conditions:

•

•

•

Vee ± 5% (4.75V to 5.25V) operating range (from
Tables 5,4 and 5.5)
30pF (or less) capacitive loading on flash memory
outputs (from Figure 5.11)
1.5V testing input/output transition points (from Figure
5.10). This means that timing tests begin when inputs
cross 1.5V, and end when outputs again cross 1.5V.

Conversely, the Standard specifications for the 2SFOOSSA-S5 have the
following conditions associated with them:

• Vee ± 10% (4.5V to 5.5V) operating range (from Tables
5,4 and 5.5)

APPLE INC.
EXHIBIT 1011 - PAGE 0113

•

•

Interpreting Datasheet AC Parameters 91

lOOpF or less capacitive loading on flash memory
outputs (from Figure 5.9)
Full standard TTL testing input/output transition points
(from Figure 5.S)

Since the 2SFOOSSA operating under Standard specs has a wider
allowable supply voltage range, more heavily loaded outputs, and more
slew in its input and output testing points, its read specifications are
slightly slower than those for the High Speed version. We'll discuss this
in more detail below.

Naming Conventions

Most of the read and write specifications in Tables 5.4 and 5.5 have two
different symbols associated with them. The first symbol for each
specification reflects the JEDEC naming convention standards. The
second of the two (i.e., tACO tOE' etc.) represents the common symbol
which has been in use for many years with many different kinds of
memories. Table 5.3 summarizes the JEDEC conventions for both flash
memory signals and possible signal states.

Signals

A Address
E Chip Enable

G Output Enable

W Write Enable
0 Data (Inputs)
Q Data (Outputs)

P Powerdown
R RY/BY
V Vpp

Signal States

H High

L Low
V Valid

X Low Z (Driven Invalid)

Z High Z (Not Driven)

P High (12V)

Table 5.3: JEDEC Signal/State Naming Conventions

APPLE INC.
EXHIBIT 1011 - PAGE 0114

92 Chapter Five: Hardware Inteifacing To Flash Memory Components

Capacitive Loading and Effects

One of the fundamental laws of electronics states the following:

1= C X dV/dt

Any semiconductor device (like a flash memory) is capable of driving a
constant finite amount of current from its outputs to the inputs of other
devices. These inputs have a certain amount of capacitance associated
with them, as do the board traces that route signals throughout the
system.

Given a fixed current value (I), the above equation shows that an
increase in the amount of capacitance (C) driven by a flash memory
output results in a parallel increase in the output transition time (or
stated in another way, its dV/dt decreases). The tradeoff here is clear; by
minimizing the number of devices the flash memory's outputs drive, read
performance will increase proportionally. Examining the 28F008SA-85
AC read specifications in Table 5.4 validates this. High speed access
time is 85 ns; standard access time is 90 ns. Similarly, high speed output
enable time is 40 ns, and standard output enable time is 45 ns. A
difference of 5 ns may seem at first glance to be trivial, but in a tight
design may result in one less wait state for processor accesses. Other
flash memories may have similar or even more significant performance
improvements at lower capacitive loading conditions.

The lesson: carefully analyze the amount of capacitance loading your
flash memory outputs and minimize this loading wherever possible.
After this analysis, choose the correct specifications for your design.
Don't load outputs beyond their specified maximum capacitance and
expect the flash memory to still perform as documented! In a heavily
loaded design, buffers and/or transceivers can often be used to subdivide
the number of inputs connected to each flash memory output resulting in
a reasonable capacitive load that falls within specified limits.

APPLE INC.
EXHIBIT 1011 - PAGE 0115

Interpreting Datasheet AC Parameters 93

Versions Vee:tS% 2BFOOBSA-BS(1)

Vee:t 100/0 2BFOOBSA-BS(2) 2BFOOBSA-120

Symbol Parameter Min Max Min Max Min Max Unit

tAVAV tRC Read Cycle 85 90 120 ns
Time

tAVQV tAcc Address to
Output Delay

85 90 120 ns

tELQV tCE CE to Output 85 90 120 ns
Delay

tGLQV tOE OE to Output 40 45 50 ns
Delay

tELQX tLZ CE to Output 0 0 0 ns
LowZ

tEHQZ tHZ CE High to 55 55 55 ns
Output High Z

tGLQX tOLZ OE to Output 0 0 0 ns
LowZ

tGHQZ tDF OE High to 30 30 30 ns
Output HiQh Z

tOH Output Hold 0 0 0 ns
from Address,
CE or OE
Change,
Whichever is
First

Table 5.4: AC Characteristics, Read Operations
Notes:
1. See High Speed Input/Output Reference Waveforms and High Speed AC Testing LoadCircuits
for testing characteristics.
2. See AC Input/Output Reference Waveforms and AC Testing Load Circuits for testing

characteristics.

AC Read Characteristics

Next, let's define the various read timing specifications for our
28F008SA example flash memory.

Read Cycle Time-The shortest possible read cycle that a
processor can execute when reading from the flash
memory. It is measured from the active transition of the
first signal (defining the beginning of the read) until
data is valid.

APPLE INC.
EXHIBIT 1011 - PAGE 0116

94 Chapter Five: Hardware Interfacing To Flash Memory Components

tELQX (taJ

tGLQX (tOaJ

tEHQZ (tHz)

tGHQZ (tDF)

Address to Output Delay-The guaranteed longest time
from when addresses stablize until data outputs become
valid (assuming active CE and OE signals), during a
read.

CE to Output Delay-The guaranteed longest time from
when chip select is activated until data outputs are valid
(assuming stable addresses and active OE).

OE to Output Delay-The guaranteed longest time from
an active output enable signal until data outputs are
valid (assuming stable addresses and active CE).

CE, OE to Output Low Z-The minimum delay from
activation of CE or OE (respectively) until the data
outputs begin to drive (not necessarily with valid data).

CE, OE to Output Low Z-The maximum delay from
deactivating CE or OE (respectively) until the outputs
are no longer driven.

tOH Output Hold from Addresses, CE, or OE Change,
Whichever is First-The minimum valid data output hold
time after deactivation of CE or OE, or after addressees)
change.

Read Specification Clarifications

The output delay from OE active (tOLQY) is much shorter than the output
delay from CE active (tELQy) or addresses valid (tAyQy). As Figure 5.7
suggests, the time required to r~ad from a flash memory (or any other
memory, for that matter) consists of two general delays:

•

•

Time to decode addresses and chip enable, select the correct bits
in the array, and sense their stored data values, and

Time to drive this information onto the data bus through the
output buffers.

APPLE INC.
EXHIBIT 1011 - PAGE 0117

Interpreting Datasheet AC Parameters 95

This latter delay is the tOE or tOLQv' tACC and tCE incorporate both
delays. Data may be read from a flash memory in as short a time as the
tOE' provided you ensure that valid data is internally sitting at the inputs
of the output buffers (in other words, the first decode/sense delay has
already been met). Interleaving is a hardware technique that takes
advantage of this, and we'll cover it briefly at the conclusion of this
chapter.

Specifications tELQX and tOLQX show how quickly the flash memory
could drive the output bus once enabled. The system designer must
ensure not to drive other devices on the common bus at this time, to
prevent bus contention. Similarly, specifications tEHQZ and tOHQZ show
how long it could take for the flash memory to quit driving the output
bus once deselected. Other devices should not drive the bus until this
time has elapsed, again to prevent bus contention. If this is not possible,
a high-speed external transceiver (which typically has very fast tum-off
specifications) can be inserted between the flash memory outputs and
the common bus.

AC Write Characteristics

We've looked at the specifications that describe a flash memory's read
performance. Now, let's examine their counterparts: the flash memory
write characteristics.

Write Cycle Time-Refers to the shortest possible write
cycle that a processor can execute when writing to the
flash memory. It is measured from the active transition
of the first signal (defining the beginning of the write) to
the inactive transition of the last signal (defining the end
of the write).

CE Setup to WE Going Low-The minimum setup time
from when CE is activated until WE is activated.

WE Pulse Width-The minimum WE active pulse width
required to successfully write a command to the flash
memory.

APPLE INC.
EXHIBIT 1011 - PAGE 0118

96 Chapter Five: Hardware Interfacing To Flash Memory Components

tWHDX (tDH)

tWHAX (tAH)

tWHEH (tCH)

v pp Setup to WE Going High-The minimum time that
V pp must be at its high voltage before a program or
erase operation initiates.

Address, Data Setup to WE Going High-The minimum
address and data tDVWH (tDS) setup time before WE is
deactivated (a write pulse ends).

Data, Address and CE Hold from WE High-The
minimum data, address and CE hold times from when
WE is deactivated (a write pulse ends).

WE Pulse Width High-The minimum WE inactive pulse
width required before the processor writes another
command to the flash memory.

Duration of Byte Programming, Block Erase
Operations-Minimum duration of internally automated
byte program and byte erase operations.

Vpp Hold from Valid SRD-Minimum time that Vpp must
be held at high voltage after the successful completion
of an internally automated byte program or block erase.

Write Specification Clarifications

Examining Table 5.5 and Figure 5.13 closely gives us a great deal of
useful information about the internal workings of the 28F008SA. First,
specification tELWL shows that the flash memory must first be selected,
before writing to it. Many flash memory vendors, including Intel, also
provide alternate specifications in cases where WE is activated before
CE; this is called a "CE-controlled write". Consult specific device
documentation for more information.

APPLE INC.
EXHIBIT 1011 - PAGE 0119

Interpreting Datasheet AC Parameters 97

Versions Vcc:l: S% 28F008SA-8S(1)

VCC :l:10% 28F008SA-8S(2) 28F008SA-120

Svmbol Parameter Min Max Min Max Min

tAVAV twc Write Cycle Time 85 90 120

tELWl tcs CE Setup to WE 10 10 10
Going low

tWlWH twp WE Pulse Width 40 40 40

tVPWH tvps Vpp Setup to WE 100 100 100
Goina Hiah

tAVWH tAS Address Setup to 40 40 40
WE Going High

tDVWH tDS Data Setup to WE 40 40 40
Going High

tWHDX tDH Data Hold from WE 5 5 5
High

tWHAX tAH Address Hold from 5 5 5
WE Hiah

tWHEH tCH CE hold from WE 10 10 10
High

tWHWl tWPH WE Pulse Width 30 30 30
High

tWHaV Duration of
Programming

Byte 6 6 6

Operation

tWHaV Duration of Block
Erase Operation

0.3 0.3 0.3

tavvl tVPH Vpp Hold from 0 0 0
Valid Status
Register Data

Table 5.5: AC Characteristics, Write Operations
Notes:
1. See High Speed InputlOutput Reference Waveforms and High Speed AC Testing Load

Circuits for testing characteristics.
2. See AC Input/Output Reference Waveforms and AC Testing Load Circuits for testing

characteristics.

CAPACITANCE T A = 25°C, f = 1 MHz

Max

Symbol Parameter Typ Max Unit Condition

CIN Input Capacitance 6 8 pF VIN =OV

COUT Output Capacitance 8 12 pF VOUT = OV

Table 5.6: Input/Output Capacitance

Unit

ns

ns

ns

ns

ns

ns

ns

ns

ns

ns

IJs

sec

ns

APPLE INC.
EXHIBIT 1011 - PAGE 0120

98 Chapter Five: Hardware Interfacing To Flash Memory Components

With the 28F008SA, the rising edge of WE (the conclusion of the active
write pulse) latches both addresses and data. This simplifies the timing
interface to the flash memory, as extra wait states can be added if needed
to match flash memory requirements and processor timings. However,
some flash memories latch addresses on the falling edge of WE, and
have a corresponding tAVWL specification. Closely inspect specifications
for various flash memories to identify if they latch addresses on the
falling or rising edge of WE.

PERFORMANCE ENHANCEMENTS
As raw processor performance continues to improve at a seemingly
exponential rate, external memory's inability to follow a similar trend19

has become acutely apparent. In fact, memory (especially nonvolatile
memory) has become a limiting bottleneck to system performance. How
have component designers (and how can you) overcome or "work
around" these bottlenecks?

Caching

In one common technique, called caching, a portion of nonvolatile
memory is replicated in faster SRAM. Accesses to this memory are from
the SRAM (not nonvolatile memory) and thereby lessen the impact to
system processor performance. Complex hardware and software
algorithms have been developed that model memory subsystem
characteristics and optimize interaction between cache memory and that
memory which is being cached. Today's elaborate computer systems
often contain multiple caches:

•
•
•

External DRAM to cache disk drives
External SRAM to cache DRAM and nonvolatile memory
Even a primary internal SRAM cache (in the processor itself!) to
cache the secondary external SRAM cache.

Shadowing

Another similar technique often used is called shadowing. Slower
nonvolatile memory (such as ROM or flash memory) contents are copied

19 At least, at a similar price/performance curve.

APPLE INC.
EXHIBIT 1011 - PAGE 0121

Performance Enhancements 99

to an equivalent amount of faster DRAM for execution. Notable
application examples of this technique include personal computers
(where the BIOS is shadowed to DRAM) and laser printers (where code
and fonts stored in nonvolatile memory are similarly shadowed to
DRAM to speed system performance).

Fortunately, the latest generations of flash memory devices have read
access speeds approaching or equaling those of DRAMs. Using a fast
flash memory device in the design eliminates the memory duplication
required for shadowing, lowering total system cost and improving
reliability. Earlier in this chapter (capacitive loading and effects), we
discussed the importance of minimizing capacitive loading on flash
memory outputs. This loading minimization allows selection of the
fastest possible flash memory devices, and therefore results in the
highest system performance.

Hardware Interleaving

Hardware interleaving represents one final technique for improving read
performance. Again referencing Figure 5.7, you'll remember that earlier
in this chapter we talked about the different internal flash memory
device delays that combined to form the read access time (tACC)' These
delays include:

• Time to decode addresses and chip enable, select the correct bits
in the array, and sense their stored data values, (tAcc - toI0 and

• Time to drive this information onto the data bus through the
output buffers (toI0.

What would happen if we could access the data of multiple flash
memory devices (the first delay) at the same time? In this scenario, after
the initial decode/select/sense delay had passed, these devices would all
have valid data sitting at the internal sense amplifier outputs, ready to be
driven through the output buffers onto the system bus. Accesses to these
components would take not the full tAcc delay, but only the much
shorter tOE time. This, in a nutshell, is the concept behind hardware
interleaving.

APPLE INC.
EXHIBIT 1011 - PAGE 0122

100 Chapter Five: Hardware Interfacing To Flash Memory Components

Hardware interleaving takes advantage of a common software concept
called locality, which says that if a memory location is accessed, the
next memory address accessed wi11likely be located very close by (often
the very next address). Most of the time, a system processor executes
code instructions which are sequential (with the exception of GO SUB
and GOTO statements). With hardware interleaving, sequential memory
reads access multiple flash memories (not the same device every time).
Let's examine a specific example in more detail to make concrete sense
of this abstract idea.

CLK

ALE

Ax-A.,. FPGA 1 11 1 1 I--- r-. CE r-+ CE r-+ CE f...+ CE
Add, Add, Add, Add, -

PomPBl1l
~

28FOO8SA 28FOOBSA 28FOOBSA 28FOOBSA
Page 1#1 1#2 1/3 1#4

"! CompBl1l Dala .. Data .. Data I .. Dala
Latch OE WE DE WE OE WE OE WE I---
~~ --.r i i

Figure 5.15: Hardware Interleaving - Utilizes Common CE,
Unique DE and WE

Figure 5.15 gives an example block diagram for a high-density
interleaving design (possibly a laser printer or bridger/router) using Intel
28F008SA flash memories. 4-byte flash memory pages are selected by
common addresses A21-A2; higher order addresses decode the 4 Mbyte
flash memory array in the system memory map. Addresses Al and Ao'
along with the READ input, generate OEs for components 0-3.
Therefore, system addresses are associated with flash memory
components as follows:

APPLE INC.
EXHIBIT 1011 - PAGE 0123

Performance Enhancements 101

System Address Component and
Component Address

0 Component 0 address 0
1 Component 1 address 0
2 Component 2 address 0
3 Component 3 address 0
4 Component 0 address 1
5 Component 1 address 1

etc

The step-by-step description below outlines a series of read accesses
from this flash memory array:

1. The processor signals that it wants to read data from system address
O. This enables components 0-3 and provides them with address O.
Interface logic decodes system address bits Al and Ao and, seeing
that they are both zero, enables the OE input for component O. Since
this is the first access to the four byte page, it takes 85 ns.

2. The processor, executing sequential code, next reads from system
address 1. Components 0-3 remain enabled, and address inputs to
them remain as zeros. Interface logic decodes the "01" on system
address bits Al and An, and enables the OE line for component 1.
Component l's data has already been selected and sensed, and
access time for component 1, therefore, only has a 40 ns tOE delay.

3. Similar 40 ns accesses follow for system addresses 2 and 3, reading
from components 2 and 3, respectively.

4. Now the tricky part...the processor reads from system address 4 on
its next cycle. This changes system address A2 from a zero to a one,
thereby incurring another full 85 ns tAcc delay for this access from
component 0 (we are now accessing a new 4-byte page, and
therefore new data from each of the flash memories). However, once
again, accesses to system addresses 5, 6 and 7 only have 40 ns
durations.

APPLE INC.
EXHIBIT 1011 - PAGE 0124

102 Chapter Five: Hardware Inteifacing To Flash Memory Components

One important (and possibly obvious) point; after the initial, relatively
long tACC access to a flash memory in a page, all subsequent accesses
within that page benefit from the shorter tOE delay. These accesses need
not be incrementally sequential; with a large enough· page, a tight
software JMP loop can also benefit.

The clearly apparent tradeoff in interleaving is between added hardware
complexity and higher performance. First, let's quantify the performance
gains. Over a four-byte series of sequential accesses, the average read
delay from flash memory is no longer the 85 ns tACC' but is:

114 (85 ns + 40 ns + 40 ns + 4p ns) = 51.25 ns

This performance improvement pertains to a four-byte interleaving page.
A two-byte page will have average read delay of:

112 (85 ns + 40 ns) = 62.5 ns

An eight-byte page, on the other hand, will have an average read delay
of:

1/8 (85 ns + 40 ns + 40 ns + 40 ns + 40 ns + 40 ns + 40 ns + 40 ns) = 45.6 ns

Now for the hardware complexity ... the following functions (summarized
in the state transition diagram of Figure 5.16), synchronized with the
clock controlling the system processor, must be implemented in the
interface logic between processor and memory array:

1. The logic must decode lower addresses and, correspondingly,
generate OEs to flash memory devices within an interleaving page.
The earlier example was of a four-byte page, so addresses Ai and Ao
must be decoded. For a two-byte page, only address Ao must be
examined, whereas an eight-byte page uses addresses Az-Ao.

2. The logic must also examine all upper address bits, determine first if
the flash memory subsystem is being accessed, and then if access to
the same page is occurring, and adjust wait states back to the
processor accordingly (via the READY output). The comparator
logic block in Figure 5.15 serves this function.

APPLE INC.
EXHIBIT 1011 - PAGE 0125

Performance Enhancements 103

Figure 5.16: Hardware Interleaving - State Transition Diagram

3. Finally, the logic must be able to distinguish between a read or write
to flash memory, and again adjust wait states accordingly. Note that
flash memory writes cannot take advantage of interleaving as reads
can; there are no tOE/tACC equivalents for writes. Write timings are
unique and must be treated as such when interfacing to flash
memory. However, software interleaving (especially easy with
automated flash memories) can be used to maximize program and
erase performance.20

So is the performance improvement of an interleaved design worth the
added hardware complexity? Only you, the system designer, can make
this decision. Obviously, interleaving is only valid for designs that will

20See Chapter 7 for more information on software interleaving with both non-automated and
automated flash memories.

APPLE INC.
EXHIBIT 1011 - PAGE 0126

104 Chapter Five: Hardware Interfacing To Flash Memory Components

use multiple flash memory devices. The techniques described above can
be used for all flash memories, but even when using 64 kbyte devices, a
4-byte page arrangement results in 256 kbytes of flash memory storage
capability. Designs that require higher densities of flash memory storage
are therefore good prospects for hardware interleaving.

Interleaving techniques have been used for many years in DRAM
designs. As flash memory read accesses become faster and faster (and
direct execution out of flash memory versus shadowing to DRAM
therefore becomes more common), interleaving flash memory will
increasingly be used to squeeze maximum performance out of the
memory subsystem.

SUMMARY
In this chapter, we've discussed hardware interfacing to flash memory
components:

• The simple "SRAM" pinout,
• Enhanced inputs and outputs in latest generation flash

memories,
• Interpreting datasheet read/write parameters, and
• Optimizing designs for read performance.

Looking ahead, Chapter 6 explains how to pick the correct power supply
for flash memory, and how to calculate the amount of bypass filtering
for each flash memory device in the system. It also discusses the DC
characteristic specification "companions" to the AC specifications
explained in this chapter. Chapter 7 explains the software algorithms
that control flash memory and its program and erase, as well as
specialized software techniques to optimize program/erase performance
and, consequently, flash memory write bandwidth. Beginning with
Chapter 8, the book makes the transition from topics common to both
flash memory components and subsystems to those primarily exclusive
to flash memory cards and drives.

APPLE INC.
EXHIBIT 1011 - PAGE 0127

Chapter Six: Power Requirements and
Design Techniques

Flash memory's very low power consumption (compared to alternative
memory approaches) is one of the more compelling features driving its
adoption into today's systems. Flash memory is not plagued by the
refresh of a DRAM, the battery of a "nonvolatile" SRAM, or the motor
of a magnetic disk drive. When not being accessed, flash memory can be
placed in one of several very low power states, and conversely it can
"wake up" quickly when the system accesses it.

Flash memory does consume some power, however, and as an emerging
technology its fundamental voltage and current particulars are not
widely known. More mature memories, like RAM or EPROM have
simple and well-understood power profiles (in most cases), since they
have been used in designs for many years. In contrast, flash memory's
unique power requirements must be comprehended early in the design
cycle (especially on your first flash-inclusive design!) to ensure proper
and reliable operation throughout the system's lifetime.

This, then, is the purpose of Chapter 6; to assist you in creating a flash
memory power profile for your system application, and thereby help you
calculate (and minimize) the demands that flash memory will make of
your system's power supply. The following topics, developed further in
the pages that follow, outline the information in this chapter:

•
•
•
•

The Vee Operating Voltage
The V pp ProgramJErase Voltage
V pp Generation Techniques
Decoupling and Bypass Capacitive Filtering

APPLE INC.
EXHIBIT 1011 - PAGE 0128

106 Chapter Six: Power Requirements and Design Techniques

•
•

Mixed Voltage System Design
Power Management Techniques

THE Vee OPERATING VOLTAGE
V cc, the main operating voltage for flash memory, originates in most
cases from the same supply voltage that powers all other logic circuits in
the system. Common voltages and tolerances for V cc are SV ± 10%
(4.SV to S.SV) and 3.3V ± O.3V (3.0V to 3.6V). Many flash memories
function essentially as read-only devices when powered by V cc alone.
This means that the data stored in the flash memory can be read but not
altered (altering the memory requires an additional Vpp voltage,
discussed later). However, some flash memories are "Vee-only" devices
that derive a higher internal program/erase voltage from the external
Vee input(s). We'll cover these as a special case at the conclusion of this
section.

Flash memories operate in several different modes, dependent on the
states of various input pins21 . Predictably, flash memory V cc current
draw differs in each mode. As a representative example of flash memory
specifications, we've provided DC characteristics for the Intel
28F008SA flash memory in Table 6.1, which we'll be referencing
throughout the chapter. This table specifies maximum values at worst
case voltage and temperature conditions and manufacturing process
"corners", and typical specifications at room temperature and nominal
voltages. If the flash memory in question has multiple V cc input pins
(like the 28F008SA), assume that the various current specifications
reflect total current drawn by the device. This current is divided (not
necessarily evenly!) among the flash memory Vee inputs.

Important note: The following information is representative of flash
memories based on Intel ETOXTM and ETOX-like NOR technologies
from other vendors. If the flash memory you are evaluating is based on
an unrelated technology approach (EEPROM, NAND, etc.), contact your
vendor for additional information22.

21 See Tables 5.1 and 5.2 in Chapter 5 for more information.
22F1ash memory component and subsystem vendor contact information can be found in Appendices
AandB.

APPLE INC.
EXHIBIT 1011 - PAGE 0129

The Vcc Operating Voltage 107

Symbol Parameter Min Typ Max Unit Test Condition

III

ILO

Ices

Ices

leco

leeR

leeR

leew

IeeE

Ipps

Ipps

IpPD

Ippw

IpPE

V1l
V1H

VOL

VOH

VpPl

VpPH

VlKO

Input Load Current ± 1.0 ~A Vee = Vee Max

V1N = Vee orGND

Output Leakage Current ± 10 ~A Vee = Vee Max

Vour= Vee or GND

Vee Standby Current 1.0 2.0 mA Vee = Vee Max

CE = PWD = V1H
Vee Standby Current 30 100 ~A Vee = Vee Max

CE = PWD = Vee ± 0.2V

Vee Deep PowerDown Current 0.20 1.2 ~A PWD = GND ± 0.2V

IOUT=O mA

Vee Read Current 20 35 mA Vee = Vee Max, CE = GND

CMOS Inputs f = 8 MHz, lOUT = 0 rnA

Vee Read Current 25 50 mA Vee = Vee Max, CE = V1l
TTL Inputs f = 8 MHz, lOUT = 0 mA

Vee By1e Program Current 10 30 mA By1e Program in Progress

Vee Block Erase Current 10 30 mA Block Erase In Progress

Vpp Standby Current ± 1 ±10 ~A Vpp~Vee

Vpp Standby Current 90 200 ~A Vpp> Vee

V pp Deep PowerDown Current 0.10 5 ~A PWD = GND ± 0.2V

Vpp By1e Program Current 10 30 mA Vpp = VpPH
By1e Program in Progress

Vpp Block Erase Current 10 30 mA Vpp = VpPH
Block Erase In Progress

Input Low Voltage -0.5 0.8 V

Input High Voltage 2.0 Vee +0.5

Output Low Voltage 0.45 V Vee = Vee Min

IOl = 5.8 mA

Output High Voltage 2.4 Vee = Vee Min

IOH= -2.5 mA

Vpp During Normal Operations 0.0 6.5 V

V pp During Erase and Program 11.4 12.0 12.6 V

Operations

Vee Erase/Program Lock Voltage 2.0 V

Table 6.1: DC Characteristics

Note: All clIrrents are in RMS lin less othenvise noted. Typical vailles at Vee = 5.0V, V pp =
12.0V, T = 25° C.

APPLE INC.
EXHIBIT 1011 - PAGE 0130

lOS Chapter Six: Power Requirements and Design Techniques

Read Mode (ICCR)

In read mode, the flash memory is selected and its output buffers are
enabled to drive data onto the output pins. Referencing Table 6.1, we see
that Intel specifies the 2SFOOSSA for two different maximum read
currents, 35 rnA and 50 rnA. How do these two measurements differ?
For the answer we need to look at the test conditions.

The 2SFOOSSA is manufactured using CMOS logic. CMOS has an
intrinsic characteristic of drawing very little power when fully on or off,
but substantially more power when switching, or when not fully on or
off (with transistors operating in saturation, to put it in more technical
terms). We'll see this idiosyncrasy and its impact again at the conclusion
of this chapter, when we talk about power management.

The lower of the two maximum lec read currents (35 rnA) is specified
with the device controlled by full CMOS inputs (i.e., CE = GND,
addresses = GND or V cc). In this case, the transistors inside the
2SFOOSSA are being driven to the power supply "rails", or fully on and
off. The higher 50 rnA value is specified at less stringent TIL levels
(V IL = O.SV and V ill = 2.0V), resulting in partially on/off transistors and,
consequently, higher power consumption. For optimum power
management, therefore, the flash memory should be driven with full
CMOS inputs.

Notice, too, that lecR is specified with loUT = 0 rnA. Current draw is
tested with outputs "unloaded". This condition is essentially valid for
system designs with optimized fanout (i.e., flash memory outputs driving
only a few inputs) and where flash memory outputs are connected to
high-impedance CMOS device inputs (therefore resulting in very low
current draw). However, if your flash memory drives bipolar TTL logic,
for example, or has excessive fanout, your measured lecR may be higher
than that specified.

Figure 6.1 shows an oscilloscope plot of the current profile for a flash
memory device being read. Address Ao toggles, alternating the eight
data outputs between 55H and AAH. This plot (taken at room
temperature with nominal supply voltage) shows lecR at an almost-

APPLE INC.
EXHIBIT 1011 - PAGE 0131

The Vee Operating Voltage 109

constant 12 rnA, with slight current spikes when output buffers
transition between 1 and O.

I
-----------------------------1-----------------------------

I

Icc @ 10mAlDiViSioni

9.02118

Figure 6.1: Vee Current (Typical) - Read Mode

Variables that affect read current include the density of the device and
its output architecture (x8, x16), since output buffer current constitutes a
significant portion of leCR' Similarly, specialized high speed memories
often use large output buffers with correspondingly higher current than
their more mainstream counterparts. Newer flash memories include
power saving circuitry that drops leCR to negligible levels after a short
time period, as long as addresses do not toggle. Finally, it's intuitive that
reading multiple components at the same time (such as when two x16
flash memories are selected in parallel for a x32 processor bus), causes a
proportional increase in system current draw.

Standby Mode (Ices)

In standby mode, the device is not selected (CE is inactive, regardless of
the state of OE). Examining Table 6.1, current consumption lowers
dramatically in standby compared to read mode because much less of the

APPLE INC.
EXHIBIT 1011 - PAGE 0132

110 Chapter Six: Power Requirements and Design Techniques

flash memory circuitry consumes power. This has clear implications; the
more time that the device is in standby mode, the lower the average
energy drawn from the system power supply.

Similar to read mode above, Table 6.1 shows two different maximum
standby current specifications; first with TTL and then CMOS inputs.
Again, a full-CMOS design is the most power-thrifty. Notice that in
standby mode, Table 6.1 specifies the states of only two inputs, CE and
PWD23 , in the test conditions. CE inactive disables input buffers for all
other pins (save that of PWD). This infers that, for this device24, only
CE and PWD must be driven to full-CMOS levels for lowest standby
current consumption; other device inputs can be driven to TTL levels
(although this will impact current draw in read mode). PWD inactive
disables the CE input buffer, as well as almost all other circuitry on the
chip. This latter device mode is called

Deep Powerdown Mode (leeo)

This ultra-low power mode, currently available only on Intel Boot Block
and FlashFile™ memories, provides an almost lOOx improvement over
the lowest CMOS standby current draw. The devices are put in the deep
powerdown mode by driving the PWD input to GND. The deep
powerdown mode disables almost all circuitry in the flash memory; an
extended wakeup delay (several hundred nanoseconds) must be observed
after exiting deep powerdown mode before the flash memory can again
be successfully accessed.

Typically, systems wiIl put flash memories in deep powerdown mode
during "suspend" modes to conserve battery power. In this respect, an
analogy can be made to a hard drive that is parked and spun down. In
both cases, wakeup incurs a longer-than-normal initial access delay, but
with flash memory this recovery time is many orders of magnitude less
than for the HDD counterpart! Where the design includes a large number
of flash memory components (in a flash memory card, for example), the

23pWD is also known as RP in JEDEC notation.
240ther flash memories may operate differently; look closely at device specifications.

APPLE INC.
EXHIBIT 1011 - PAGE 0133

The Vee Operating Voltage 111

specific devices being read, programmed, or erased can be kept awake
while their non-accessed counterparts are asleep25.

Program Mode (Iccw/1ccp)

The flash memory draws current through V cc (even while the device is
deselected) during an internal byte program operation. This current
includes the flow of electrons from source to drain through cell substrate
areas (see Figure 2.5), as well as current draw of any automation logic.
Table 6.1 lists the maximum Iccw value as 30 rnA; however as Figure
6.2 shows, substantial margin to this specification exists at typical
conditions. Even the short-duration spikes fall short of exceeding
maximum values.

Write Enable I
I

Program and DatE!
Command

Write Enable

Program Verify
Command

-----------------------------;------------------------------

State Machine
Responding to
Command

Sense Amps
Turnin Off r Icc @ 5mNDiv

CMOS Dropping
Transition OE

Sense Amps On
with Verify

-2.06J1S 1 ~/Div 18.04J1S

Figure 6.2: Vee Current (Typical) - Program Mode

25See Chapter 8 for more information.

APPLE INC.
EXHIBIT 1011 - PAGE 0134

112 Chapter Six: Power Requirements and Design Techniques

ERASE SETUP

---------------------+-----------------------------

ERASE

Icc ZERO Icc @ 10mNDivisi -f
~~--~--~--~~--~--~--~~--~

-1.96ms 2ms/Div

Figure 6.3: Vee Current (Typical) - Erase Mode

Erase Mode (IeeE)

V cc current draw during flash memory erasure is very small, and as
Figure 6.3 reveals, has substantial margin to maximum specifications at
typical conditions. However, the short-duration spikes reach a much
greater magnitude compared to program mode. These spikes do not need
to be taken into account when calculating energy consumption and
choosing a power supply (or determining battery life). A correct
combination of bypass and decoupling capacitors accommodates such
glitches with minimal or no impact to the system. We'll discuss
capacitive filtering and capacitor selection in detail later in this chapter.

Vee·Only Flash Memories

The specifications and plots described previously were for a device with
separate V cc and V pp inputs. As mentioned earlier, V cconly flash
memories generate the Vpp-like voltage internally, from externally
supplied V cc' Therefore, the Icc profiles for V cconly devices will

APPLE INC.
EXHIBIT 1011 - PAGE 0135

The Vpp Program/Erase Voltage 113

differ radically from those shown in Figures 6.1-6.3. As a rough
approximation, they may appear to be a combination of Icc and Ipp plots
for each mode, with added input current for the internal voltage
conversion (since power in = power out) and more even current to
incorporate converter losses. The best recommendation is to closely
analyze flash memory specifications in datasheets and other technical
literature, and to contact the vendor for any additional information.

It's clear that the common conception that V cconly flash memories are
lower power devices is not necessarily true. These are single-external
voltage devices, but they still must generate the higher program/erase
electric fields inside. Their power profiles (current x voltage) must be
derived from device specifications and should not automatically be
assumed lower than their "V ccN pp" flash memory equivalents.

THE Vpp PROGRAM/ERASE VOLTAGE
The externally-generated V pp voltage, used when programming/erasing
the flash memory, generates the electric fields that place charge onto,
and remove charge from, the cell floating gate (see Chapter 3 for an
explanation of cell program/erase). Vpp is also commonly tapped
internally to produce verify voltages that ensure sufficient cell
program/erase for extended data reliability.

The most common Vpp specification is 12V ± 5% (11AV to 12.6V).
This tolerance must be maintained at all times during program and erase.
V pp out of tolerance can impact device data integrity, and over-voltage
can additionally damage the device.

Similar to V cc discussed earlier, current consumption through V pp
changes dramatically depending on the operating mode of the flash
memory. Where multiple flash memories exist in the system, their
respective current draws must be combined to calculate total power
consumption of the flash memory subsystem. This ,hints at a tradeoff
between high data update performance (when multiple flash memories
are programmed/erased at the same time) and low power consumption
(when only one device is programmed/erased at a time). However, in

APPLE INC.
EXHIBIT 1011 - PAGE 0136

114 Chapter Six: Power Requirements and Design Techniques

either case total memory subsystem energy consumption (power X time)
remains the same!

Read/Standby Mode (lpPR and Ipps>

In both read and standby modes, the V cc supply exclusively powers the
flash memory. The current drawn through Vpp, little more than leakage
current, is very constant in magnitude and lacks the glitches seen on
V cc' As Table 6.1 indicates, the read and standby modes draw less
current when V pp ::;; V co compared to when V pp > V co and no power is
consumed when V pp = GND. Chapter 5 discusses example circuitry that
switches V pp on/off for power management and write protection.

Deep Powerdown Mode (lpPD>

Current draw in deep powerdown mode (again, currently available only
on Intel Boot Block and FlashFile memories) is lower than in standby,
but with a less dramatic difference than that seen with Icc. Realistically,
if the system designer is concerned with power consumption, you will
most likely shut off the Vpp supply completely to eliminate wasted
current due to internal supply inefficiency losses. Deep powerdown
mode power savings are most notable with respect to Icc>

Write Enable
Program and Dat

Write Enable
Program Verify

----RampTrigWordlf e-----------------------
and Bitline
Decoders

Ipp@2mNDiv Verify Generator

Zero Overshoot

Figure 6.4: V pp Current (Typical) - Program Mode

APPLE INC.
EXHIBIT 1011 - PAGE 0137

The Vpp Program/Erase Voltage 115

Program Mode (lppwllppp)26

Figure 6.4 shows Ipp during a one-pulse byte program operation. The
spike that occurs immediately after writing the program command is
caused by the voltage ramp on the internal capacitance of the wordlines
and bitlines (I = C X dV/dt). Programming uses the external 12V
directly, while program verify applies 6.5V (approximately) to the cell,
tapped internally off the Vpp supply. Aside from the short-duration
spike, typical programming current in this case is less than 4 rnA, with
program verify current of approximately 2 rnA.

Erase Mode (lPPE)

In a bulk-erase flash memory, the transistor gates of all array cells are
grounded, and 12V is applied to the transistor sources (see Figure 2.7).
The flow of electrons from the floating gate to the source, as they are
removed from the floating gate by the applied electric field, generates
current through Vpp. Bulk-erase flash memories erase all cells in the
array in parallel, whereas in block-erase devices erase occurs on a block
by-block basis.

Ipp @ 5 mA/Dlv

ate

Approx. 85 Pulses

Figure 6.5: Vpp Current (Typical) - Erase Mode

26Both Ippw (Ipp Write) and Ippp (Ipp Program) are commonly found in flash memory
documentation. They mean the same thing!

APPLE INC.
EXHIBIT 1011 - PAGE 0138

116 Chapter Six: Power Requirements and Design Techniques

In either case, erase current decreases with increased time and,
consequently, as more and more floating gate electrons are removed
throughout the array or block of cells. Figure 6.5 displays this roughly
logarithmic pattern. In this specific case, a full erase condition was
achieved after 85 erase pulses. The number of erase pulses required is a
function of technology, process, erase block size, applied voltage, and
temperature. By altering these variables, the actual IpPE curve will
change correspondingly.

Erase Setup lanp Erase

Write Enable

Transistor
Source
Charging

------ -- -------------------~-----------------------------
ISmA - Steady State

IppS mNDiv

Zero

-1.96I1S 2JlS/Div 18.0411S

Figure 6.6: Vpp Current (Typical) - Beginning of an Erase Pulse

In Figure 6.6, we've tightened the time scale to show you the current
spike that is generated immediately after initiating erase. Similar to
programming described earlier, this spike is caused by the charging of
capacitive transistor source lines for cells being erased. Bypass and
decoupling capacitors easily handle this added short-duration current
draw.

APPLE INC.
EXHIBIT 1011 - PAGE 0139

Vpp Generation Techniques 117

Vpp GENERATION TECHNIQUES
We've spent a lot of time so far in this book talking about the Vpp
voltage; what it is, why it's needed, how much power it uses, and how to
control it. What we haven't talked about yet (except in very general
terms) is where it can come from. That's the purpose of this section. V pp
can be generated from any of several sources:

• Directly from a 12V regulated supply
• Converted from 12V unregulated
• Converted from a lower voltage
• Converted from a higher voltage

Today's state-of-the-art solutions are tomorrow's "yesterday's news", and
as the flash memory market grows, the number of V pp generation
options (and the number of vendors providing these options) will
increase and diversify to meet the needs of various application niches.
We recommend that you consult the Appendices for the addresses and
phone numbers of representative vendors and contact them directly for
the most up-to-date information on their product lines.

Directly from a 12V Regulated Supply

If a 12V supply already exists in the system (to power RS-232 circuitry,
a magnetic disk drive and/or a display, for example), this may be the
ideal source for the flash memory Vpp voltage. However, the power
supply must meet the V pp tolerances specified by the flash memory
vendor (usually 12V ± 5%). Since all internal voltages (program, erase
and verify) stem from this single V pp input, it directly impacts the
accuracy of programming and erasing flash memory, and therefore the
reliability of stored data. An out-of-spec Vpp may, for example, not
place enough electron charge on the cell floating gate, thereby limiting
data lifetime. An out-of-spec Vpp may also result in unwanted data
alteration, caused by a disturbance from adjacent transistor cells.
Finally, if V pp is above specifications, permanent device damage may
result.

When determining whether your existing 12V supply can be used to
directly provide V pp, make sure you include not only the tolerances of

APPLE INC.
EXHIBIT 1011 - PAGE 0140

118 Chapter Six: Power Requirements and Design Techniques

the power supply itself, but also any voltage drop of circuitry between
the supply output and flash memory input. Examples of this circuitry
include FET switches for on/off control27 , but excessively long or
insufficiently thick board traces can also cause voltage droop.

Converting from 12V Unregulated

In general, this approach is not recommended, because currently
available solutions to regulate the 12V supply tend to be bulky,
inefficient and expensive. A better solution will generate the 12V ± 5%
from either a higher or lower voltage, such as the 5V or 3.3V that exists
in most system designs (the V cc voltage).

Converting from a Lower Voltage

Figures 6.7 and 6.8 show currently-available solutions from Linear
Technology Corporation and Motorola Inc., respectively, that generate
12V from a 5V input. The LTlllO (or its lower-cost relative, the
LTll09A), even with external components, occupies a small footprint
(0.45 square inch total board area). The MC34063A, on the other hand,
trades off higher component count for a lower total solution cost
(approximately $2.25 in high volume quantities).

SHUTDOWN ----------,

Veo

+

r C1
22flF'/10V

=TANT

L1
471l1i

(SUMIDA CDR1 05-470) FB t's"------1r-..---+O
SET 7
AO 0

O----....-if--Vpp

4 SW2 GND 5

LT1110-12

D1

MBRS120T3

I @1~

I
C2 I 10,5% C3
33J.1 FlO 1 FT

= 10V I OPTIONAL' J.1 ~
TANT LEL~lsB __________ _

Figure 6.7: Linear Technology LTlllO 5V to 12V Converter

27 See Chapter 5 for an example calculation.

APPLE INC.
EXHIBIT 1011 - PAGE 0141

Vpp Generation Techniques 119

SHUTDOWN------------------------------------~

D1-(MBRS120TS)

U1
1 SWC COLE 8

r--________ 2-'-1 SWE IFKS j-!-7 ___

r---------=-i TCAP VOE 1-:6:--____ --1

GND COMP 5

C3 +
3311 F/16V I

TANTALUM

--...... ----j.-Vpp

,5%04

.01I1 FI
OPTIONAL =

.E1UIiEL ______ _

Figure 6.8: Motorola MC34063A 5V to 12V Converter

Vee

U1
1 N/C V+ 1B

SisHffiunT'DDoOiwNNN-----~2 SHDN N/C
.----________ -"-13 v REF V OUT 14

4 NlC LX 13
r--____ --'5~ SS LX ...,1.::.2...,f-t,,*,,_--... __ -+ ..

BCC LX 11 +
C4 C5

10l-lF/10V P 47nF 7 GND NlC 10
B GND GND 9

MAX732CWE
C3

........e---if-Vpp @ BOmA

Figure 6.9: Maxim MAX732 3V to 12V Converter

Figure 6.9 shows the MAX732 from Maxim Integrated Products, a very
flexible converter that can be configured to produce 12V at up to 60 rnA
output current, all from an input voltage as low as 1.8V. The MAX732

APPLE INC.
EXHIBIT 1011 - PAGE 0142

120 Chapter Six: Power Requirements and Design Techniques

can also generate 12V at up to 120 rnA from a SV input, and has features
similar to those of the LT11lO.

Converting from a Higher Voltage

Both Maxim and Linear Technology also offer converters that generate
12V from a higher input voltage. Figures 6.10 and 6.11 show the
MAX667 and LT1111, respectively, both of which output up to 120 rnA.
The MAX667 accepts input voltages of 12.1 to 16.SV, while the LT1111
input voltage range is 16-30V.

~----------------T--------T-----Vpp

VIN (12.1V - 16.5V)

1 U1
DO

2 OUT
3 LB1

GND
MAX667

SHUTDOWN -----------'

R1
402k,1%

R2
47.5k,1%

+ C1 J 47f!F/16V

Figure 6.10: Maxim MAX667 12V Linear Voltage Regulator

VIN (16V-30V)

R1
1500

U1

1 I UM FB t-=S'---.--.---vpp
.-_2=-j \'IN SET 7
L--........;3~ SW1 AD 6

4 SW2 GND 5

LT1111-12

D1
MBRS140T3

SUMIDA
CDR105-470

D2
MBRS140T3

C2
4711F/16V

Figure 6.11,' Linear Technology LT1111 Voltage Step Down Switcher

APPLE INC.
EXHIBIT 1011 - PAGE 0143

Vpp Generation Techniques 121

General Characteristics of Voltage Converters

When selecting a 12V converter, it's highly recommended that you do
your homework in first identifying the important attributes of the
system, and then matching converter features to these characteristics. As
a general rule, 12V converters have been optimized by their
manufacturers toward one (or several) of the following primary
properties:

• High Current Output: They are capable of delivering high
amount of current at the rated output voltage. This has
importance for designs where several flash memories must be
programmed and/or erased simultaneously. Some 12V
converters can output currents in excess of 120 rnA.

• High Efficiency: They transfer power (voltage x current) from
input to output with very little loss as heat within the regulator.
This has importance in power-critical designs, such as systems
powered by batteries. Efficiencies of greater than 90% can be
achieved with some 12V converters.

• High Integration: These converters combine all (or most) of
the required circuitry within the device, including resistors,
capacitors, inductors, and switching transistors. This simplifies
system design, aids in manufacturing, and increases reliability.
Note that the highest integration converter is not necessarily the
smallest converter.

• Low Cost: These converters provide a low cost solution, albeit
by potentially trading off one or several of the above properties.
When calculating cost of a 12V converter, remember to add not
only the regulator price but also that of all required external
components and board assembly costs.

Secondary properties include input voltage range, output voltage
tolerance, printed circuit board area, total solution height, rise time from
enable, decay time from disable, and surface mountability. Some 12V
converters have integrated shutdown or on/off capability via an input

APPLE INC.
EXHIBIT 1011 - PAGE 0144

122 Chapter Six: Power Requirements and Design Techniques

pin, another advantageous feature. Beyond disabling the 12V output, this
shutdown feature puts the converter into a very low power consumption
mode.

Totally Modular Solutions

A single-chip, totally integrated converter offers the ultimate in
simplicity of design and testing. However, there are tradeoffs that must
be considered. Typically, these products have lower efficiencies than
their less-integrated counterparts. Also, the quality and reliability of
discrete devices, being combined within the modular package, is no
longer under the control of the system board designer. Finally, full
integration usually comes at a price premium over alternatives.
However, if the ease-of-design is attractive and your solution cost and
efficiency needs are not stringent, a totally modular solution may be
right for you.

DECOUPLING AND BYPASS CAPACITIVE
FILTERING
Both small decoupling capacitors (one or more per device) and larger
bypass capacitors (one per several devices) should be used in system
designs for reliable flash memory operation. In general, capacitors
smooth out the effects of AC transients on the DC supply voltages, by
supplying excess charge (current) when voltage drops below the DC
level and shunting off excess voltage spikes. Following the oft
mentioned equation that describes the current/voltage relationship for a
capacitor,

1= CxdV/dt,

we see that a smaller capacitor reacts more quickly to higher frequency
AC transients. A larger capacitor, while reacting more slowly, responds
for a longer duration and with much larger current capability. Therefore
both types of capacitors have importance, and they work together to
negate the potential impact of voltage spikes. Capacitors are relatively
cheap (in the grand scheme of things) and take up little system board
space compared to other devices. For all but the most space- or price
critical designs, therefore, it makes sense to design with plenty of
margin.

APPLE INC.
EXHIBIT 1011 - PAGE 0145

Decoupling and Bypass Capacitive Filtering 123

For the example that follows, we've used the information in Figures 6.1-
6.6. Different flash memories exhibit different behaviour with respect to
transient magnitudes and durations. However, although your flash
memory specifications may be different than those we've chosen, the
methods used can (and should) be identical.

Decoupling capacitors in particular should be physically located as close
to the input pin they filter (Vee or V pp) as possible, and connected
between the particular supply voltage and GND. The bypass capacitor
should also be located adjacent to the flash memory subsystem.

Decoupling Capacitors-Vee

The largest-magnitude Vee current transients occur when writing the
erase command sequence to the flash memory (Figure 6.3). The
decoupling capacitor assumptions and calculations are shown below:

Decoupling Capacitor Calculation

ICC (peak) = 60 rnA (I)
Max. Ripple Voltage = 0.2V peak-peak (0.1V dV)

Switching Time = 20 ns (dt)

c = = (I x dt) I dV
= (60 rnA x 20 ns) I 0.1V
= 12 nF
= 0.047 \JF (with approximately 4x margin)

Some flash memories have more than one Vee input, each of which
feeds a subset of the device logic. Unless you know the specific current
draw of each V cc input in all operating modes, it's best to calculate a
worst-case bypass capacitor value and use it for each device's V cc pin.

The above calculation assumes that the flash memory drives CMOS
inputs (with corresponding high impedance and insignificant current
requirements). If the flash memory outputs drive non-CMOS inputs
and/or a large number of inputs (resulting in high load capacitance),
output buffer current drive will be higher, and the transient current
spikes during output switching will also increase in magnitude. In this

APPLE INC.
EXHIBIT 1011 - PAGE 0146

124 Chapter Six: Power Requirements and Design Techniques

case, the calculations for Vee filter capacitance revise accordingly, to
supply the extra current.

Bypass Capacitors-Vee

A general rule of thumb is that one bypass capacitor should be used for
each fifteen to twenty devices. Determine the value of the bypass
capacitor by multiplying by ten the sum of the values of all decoupling
capacitors, as shown below:

of Flash Memories = 4
Decoupling Capacitance
Bypass Capacitor

= 0.047 JlF (per device)
= 10 x (0.047 + 0.047 + 0.047 + 0.047) JlF
= 1.9 JlF (minimum)

A lower value for the filter capacitor will give a higher frequency noise
response, while a higher value enables higher current drive capability.

Oecoupling Capacitors-V pp

The largest-magnitude V pp current transients occur when writing the
erase command sequence to the flash memory (Figure 6.6). The
decoupling capacitor assumptions and calculations are shown below:

ICC (peak) == 45 rnA (I)
Max, Ripple Voltage == 0,2V peak-peak (0.1 V dV)

Switching Time == 20 ns (dt)

c == == (I x dt) I dV
== (45 rnA x 20ns) 10.IV
==9nF
== 0,033 f.IF (with approx 4x margin)

MIXED VOLTAGE SYSTEM DESIGN
The 1990s have seen the emergence of the new 3,3V standard for system
supply voltage (Vee). The lower voltage offers potential savings in
power consumption and enables systems to operate cooler than their 5V
counterparts. In designs and manufacturing processes optimized for
3,3V, the lower voltage can result in higher performance components,

APPLE INC.
EXHIBIT 1011 - PAGE 0147

Mixed Voltage System Design 125

too. In to day's reality, however28, only a limited number of
semiconductor devices exist that operate at 3.3V, and in many cases
these are non-optimized "screened" parts with resultant lower
performance than their 5V counterparts. In particular, a very small
number of 3.3V flash memories are currently available, and read
performance is generally inferior to 5V versions of the devices. This
tradeoff for lower power consumption mayor may not make sense for
your specific design.

In most cases, therefore, system designs of the near future will be of the
mixed voltage variety, with an intermingling of 5V and 3.3V devices,
and corresponding multiple-voltage power supplies. Interfacing these
mixed-voltage devices is often not as simple as it first appears, and
following a few key guidelines will ensure proper operation and long
system lifetime.

3.3 Volt to 5 Volt Interfaces

This scenario occurs, for example, when a 3.3V processor is driving a
flash memory's addresses, CE, OE, and WE inputs. At a minimum, 3.3V
devices must drive 2AV for a logic 1 (TTL V OR) and OAV for a logic 0
(TIL YoU. As Figure 6.12 shows, these voltages exceed the thresholds
for 5V devices with TTL-compatible inputs, making direct interfacing
possible in this case. The only impact here is that the 5V device inputs
are not driven to the supply voltage rails. As first mentioned earlier in
this chapter, this may increase the 5V device's current consumption
slightly.

28Ropefully, in the next revision of this book, 3.3V logic availability will improve and this section
won't be necessary!

APPLE INC.
EXHIBIT 1011 - PAGE 0148

126 Chapter Six: Power Requirements and Design Techniques

3.3V

2.4V

O.4V
O.OV

5V Device
(TTL Inputs)

Figure 6.12: Inteifacing a 3.3V Device to a 5V Device
(TTL Inputs)

5V

2.0V

O.SV

O.OV

Most logic devices, even if constructed of CMOS transistors, have TIL
compatible input structures (i.e., VIR = 2.0V and V IL = O.SV). However,
in rare cases, CMOS devices may follow the more stringent CMOS
compatible input voltage specifications (VIR = 0.7 Vee) and (VIL = 0.3
Vee). As shown in Figure 6.13, direct interface from a 3.3V device to a
CMOS-compatible 5V device is not possible. In these cases, voltage
translation logic at the output of-the 3.3V device must be used. Simple
buffering with 5V-powered CMOS logic that accepts TTL inputs (i.e.,
HCT devices) provides one option, with the impacts being increased
design complexity and lower performance due to the added logic.

APPLE INC.
EXHIBIT 1011 - PAGE 0149

3.3V

2.4V

O.4V
O.OV

Mixed Voltage System Design 127

5V Device
(CMOS Inputs)

Figure 6.13: Inteifacing a 3.3V Device to a 5V Device
(CMOS Inputs)

5.0V

3.5V

O.BV

O.OV

5V to 3.3V Interfaces

This interface is unf011unately more complicated than the one just
described. A possible scenario here is a 5V flash memory RY/BY output
driving a 3.3V processor interrupt input.29

Figure 6.14 shows the direct voltage translation from the 5V device to
the 3.3V device. Although a 5V TTL-compatible device drives its logic
one outputs to a minimum voltage of 2AV, these outputs will eventually
transition all the way to nearly the supply voltage rail (5V). As Figure
6.14 shows, this exceeds the absolute maximum input voltage
specification for the 3.3V device (typically Vee + O.3V). The impact,
shown in Figure 6.15, is forward biasing of the ESD protection diodes

29Note that we haven't talked about the data bus yet; we'll save bidirectional bus interface for the
next section.

APPLE INC.
EXHIBIT 1011 - PAGE 0150

r

128 Chapter Six: Power Requirements and Design Techniques

within the 3.3V device, and a resultant low impedance connection of the
5V and 3.3V supplies, with long term reliability impact.

5.0V
=.5.0V

OAV

5VDevice
(CMOS Outputs)

O.OV l.22:L±L±1illD.JJ.t.L.t

Figure 6.14: Inteifacing a 5V Device to a 3.3V Device

......-___ ... +3.3V

(arrow shows forward
bias current flow) _

Figure 6.15: 5V to 3.3V Direct Inteiface.
Overbiasing the ESD Input Diode

3.3V

2.0V

O.BV

O.OV

APPLE INC.
EXHIBIT 1011 - PAGE 0151

Mixed Voltage System Design 129

Although a very small number of "SV-safe" 3.3V devices are entering
the market, most still have the (Vee + O.3V) absolute maximum input
voltage guideline. This means that the SV output must be first translated
to a 3.3V compatible level before driving the lower voltage device input.
Figures 6.16 and 6.17 show two means of accomplishing this.

Figure 6.16: Inteifacing a 5V Device to a 3.3V Device.
Series Resistor Voltage Drop

3.3V

5V

~I ~:---I
----.
'=:

Optional to :
Convert :
5V Output to :
Open Drain :

Figure 6.17: Inteifacing a 5V Device to a 3.3V Device.
"Open Drain" Output Conversion

The first method (Figure 6.16) uses a series resistor at the output of the
SV device, to drop the voltage to an acceptable level for the 3.3V input.
Resistor values must be carefully chosen to limit current into the 3.3V
device input. Differences in ramp rates between the SV and 3.3V
supplies during system powerup must also be closely analyzed, to
prevent even temporary forward-biasing of the 3.3V device ESD diode
(make the worst-case assumption that the SV supply is at S.SV and the
3.3V supply is at GND, and calculate resistor values accordingly). The

APPLE INC.
EXHIBIT 1011 - PAGE 0152

130 Chapter Six: Power Requirements and Design Techniques

major impact in this case is speed; the 5V output now sees tremendously
increased impedance on its outputs, and the output transition time
suffers accordingly.

The other method, shown in Figure 6.17, assumes that the 5V device has
open-drain outputs. The external resistor, connected to the 3.3V supply,
automatically translates the output voltage to 3.3V-compatible levels.
The lower the resistor value, the faster the 5V device outputs switch, and
the higher the resistor value, the lower the current draw "penalty"
through the resistor when the 5V device outputs a zero. If open-drain
outputs are not available, an external MOSFET transistor and resistor
will duplicate the functionality. An n-transistor will invert the output,
while a p-transistor will pass the 5V device output with no inversion.

Bidirectional Bus Interface

The data lines, connecting a processor and external memory device,
provide a common example of a bidirectional bus. Where a 3.3V
processor and 5V flash memory exist, for example, two possible
scenarios can occur:

5V outputs driving 3.3V inputs (during flash memory read), and
3.3V outputs driving 5V inputs (during flash memory writes).

A combination of the techniques described earlier for 5V-to-3.3V and
3.3V-to-5V interfacing is possible here, with the added complexity that
logic outputs must be tri-stateable (since we're talking about the data bus
in this case). A simpler solution uses one of several available
bidirectional translation buffers with multiple Vee inputs, one for each
side of the mixed-voltage bus. The buffer handles all voltage translations
internally. Integrated Device Technology Corporation (IDT) provides a
full range of standard logic devices with this capability, and both
Performance Semiconductor and Texas Instruments have also
announced their intentions to provide similar products.

APPLE INC.
EXHIBIT 1011 - PAGE 0153

Power Management Techniques 131

POWER MANAGEMENT TECHNIQUES
Throughout this chapter we've mentioned techniques for minimizing
flash memory power consumption in system designs. In this final
section, we'll summarize these recommendations. Not all of them may be
applicable in every design; some applications are less power-sensitive
than others, and in some cases the tradeoff in system complexity and
cost does not make sense. However, each contributes incrementally, and
we have listed them in increasing order of difficulty.

• The more a flash memory is in its standby mode, the lower its
average power consumption over time. Make sure that when
flash devices in the system are not being accessed, they are
deselected.

• Interfacing to the flash memory with full-CMOS logic results in
the lowest memory current draw. As described earlier in this
chapter, CMOS-based semiconductor devices draw very little
power when their transistors are driven fully on or off.

• Given the choice of storing data with flash memory or some
other memory technology, flash memory usually draws the least
power from the system (no motors, no batteries, no refresh
requirements).

• Intel BootBlock and FlashFile memories provide the very low
power consumption Deep Powerdown mode, which can be
utilized keeping in mind the extended wakeup delay when
exiting the mode. In a large flash memory array, for example,
the majority of devices can be placed in Deep Powerdown
mode, leaving only one or a few awake memories being
accessed.

• The tradeoff between highest system write performance (where
multiple flash memories may be programming/erasing at the
same time) and lowest average power consumption (where flash
memories are programmed/erased serially) is one you'll have to
make yourself. Different applications have different needs, and

APPLE INC.
EXHIBIT 1011 - PAGE 0154

132 Chapter Six: Power Requirements and Design Techniques

you must choose accordingly. However, remember that given a
fixed number of bytes (or kbytes or Mbytes) to be written, the
amount of battery energy consumed (power x time) is equivalent
whether flash memories are being erased and programmed
serially (low average power draw) or in parallel (high average
power draw).

• When simply reading from flash memories (not updating them),
Vpp can be turned off for the lowest current draw. Vpp switching
also inhibits unwanted alteration of flash memory contents.
However, each time V pp is switched on the system incurs a time
delay as the voltage ramps to a valid level. An "intelligent" V pp

algorithm, based on modeling the anticipated frequency of
program/erase and balancing power consumption with
complexity and ramp delay tolerance, provides the solution.
Depending on the power supply and/or voltage converter
chosen, additional circuitry may be required for this V pp

switching.

SUMMARY
Chapter 6 has given you the tools needed to predict the anticipated
power consumption model for your flash memory subsystem, and to
appropriately design not only this subsystem but the power supply itself.
Flash memory's full nonvolatility, in combination with its relatively fast
update performance, offer tremendous benefit to designs that understand
and fully harness its capabilities. As systems become more and more
power-conscious in the future, flash memory will increasingly be used to
meet the stringent requirements of these designs.

APPLE INC.
EXHIBIT 1011 - PAGE 0155

Chapter Seven: Software Interfacing to
Flash Memory

An oft-repeated adage states tliat, "A computer's hardware gives it
potential. Software makes that potential a reality". The latest and
greatest microprocessor, a super-quick graphics subsystem and a fast,
dense hard drive combine to make a computer nothing more than an
expensive paperweight, without the software that harnesses this
capability to do useful work.

A similar analogy can be inferred for flash memory. Flash memory
designers can include all sorts of intricate and elaborate circuitry on
their devices to enable powerful update flexibility. Yet, without system
software to control it, flash memory is nothing but an expensive blank
ROM! Flash memory internal hardware circuitry gives it update
potential, but system software makes that potential a reality.

This chapter discusses how to integrate flash memory into your design
and control it, from a software standpoint. To this end, we'll cover the
following topics:

• Basic (First-Generation) Algorithms
• Fully Automated (Second-Generation) Algorithms
• Update Routines
• System Boot Code Contents
• Software Interface to Flash Memory-Cards, SIMMs and

Multi-Component Arrays

APPLE INC.
EXHIBIT 1011 - PAGE 0156

134 Chapter Seven: Software Inteifacing to Flash Memory

First, though, let's talk briefly about the basic command interface to
flash memory, what these commands do, and why they simplify the
update process.

WHY IS FLASH MEMORY CONTROLLED BY
SYSTEM SOFTWARE?
To explain where we are today (and why we're there), it's often easiest to
start with a description of where we were. Accordingly, Figure 7.1
shows the programming algorithm for the 27COlO EPROM. The
EPROM is the technology foundation for NOR flash memory
architectures30, such as Intel's ETOXTM lapproach. Although EPROMs
erase via ultraviolet light shining on the array cell floating gates (see
Figure 3.6), EPROM and NOR flash memory cells both program
electrically. However, you'll soon realize why EPROMs very rarely are
programmed in-system.

EPROM Programming Algorithm

In explaining the EPROM algorithm below, we'll only highlight the
steps of most interest in this discussion.

Step 2

Programming an EPROM location (byte or word, depending on the
device) requires that it first be specified via its address, and this address
must be held throughout the entire program algorithm. This requirement,
along with having to multiplex pin functionality, is clearly incompatible
with the normal bus interface of a system processor, and it means that
the EPROM address must be a latched version of the processor address.
Latching adds to system hardware complexity, and even slows EPROM
read access time due to the extra logic propogation delay.

Step 3

In this step, Vpp (the program/erase voltage) is switched to 12.7SV in
preparation for a program attempt. Also, V CC (the device operating
voltage) is elevated from SV to 6.2SV. This means that V CC to the
EPROM must be switched, unique and electrically isolated from the

30 As we discussed in Chapter 3.

APPLE INC.
EXHIBIT 1011 - PAGE 0157

Figure 7.1:

Why Is Flash Memory Controlled By System Software? 135

INCREMENT
ADDRESS

EPROM Programming Algorithm (Simplified Form)

APPLE INC.
EXHIBIT 1011 - PAGE 0158

136 Chapter Seven: Software Interfacing to Flash Memory

v CC connected to all other logic in the system (for which 6.25V clearly
violates specifications).

Step 5

To initiate programming, the EPROM CE (chip enable) and PGM
(program) inputs are enabled and held low for at least lOOlls. Again
incompatible with the normal bus interface (which toggles signals in
periods measured in nanoseconds), this means that CE and PGM must
be driven via separate 110 lines instead of directly from the processor.
The impact reveals itself in extra hardware and greater complexity, and
in slowed read accesses due to additional logic on CEo

Step 8

The EPROM is verified by reading from it after disabling PGM. This
program verify, usually slower than a normal access, must be
comprehended in the system wait state generation logic. The elevated
V CC, resulting in the EPROM logical one outputs ramping to nearly
6.25V, causes an even greater impact. Unless converted, this easily
overdrives inputs of other logic in the system, violating absolute
maximum specifications and severely impacting system lifetime. Again
the undesirable solution to this reality is bus isolation logic between the
EPROM outputs and system processor inputs.

It should be very clear by now that in-system EPROM update is
extremely difficult and undesirably affects system complexity. Along
with the fact that EPROMs must be removed from the system for
erasure, this intricate interfacing explains why the vast majority of
EPROMs in use today get updated in a dedicated PROM programmer
environment.

Flash Memory Programming

Many of the same companies offering flash memory products today have
in the past offered (or still offer) EPROMs. When they set out to define
their flash memory architectures, these manufacturers were determined
to improve ease-of-use to take advantage of the potential of these in
system updateability (programmable and eraseable) devices. To a large
degree, they've succeeded admirably in their task. Figure 7.2 shows the

APPLE INC.
EXHIBIT 1011 - PAGE 0159

Why Is Flash Memory Controlled By System Software? 137

NOTES:
1. See DC Characteristics for the value of VPPH andVpPL'
2. Prognun Verily Is only pertonned after byte prognunming.
A final read/compare may be perfonned (optional) after
the register is writlen with the Read command.

Bu. Command
Operation

Siandby

Write Sel-up
Program

Write Program

Standby

Write Prognun~1
Verily

Standby

Read

Standby

Write Read

Standby

Comment.

Wait torVpp Ramp to VpPH {II

Initialize Pulse·Count

Dala= 40H

Valid AddresS/Dala

Duration of Program
Operalion (IWHWHt)

Data = COH; Stops
Program operation(31

I WHGL

Read Byte 10 Verily
Programming

Compare Oata OUtput 10
Data Expected

Data = OOH, Resets the
Register for Read Operations

Wait lor Vpp Ramp 10
VPPL (lJ

3, ReIer to principles of operation.
4. CAtmON: Tha algorithm MUST BE FOLLOWED to
ensure proper and reliable operation of tha device.

Figure 7.2: Intel First Generation Flash Memory Non-Automated
Programming Algorithm

APPLE INC.
EXHIBIT 1011 - PAGE 0160

138 Chapter Seven: Software Interfacing to Flash Memory

flash memory programming algorithm used by Intel Corporation's first
generation bulk-erase devices3!. We'll cover this algorithm in greater
detail later, but for now let's look at the specific areas where the in
system interface has been improved.

Step 2

The flash memory programming algorithm still requires an external Vpp
program/erase voltage. However, this is a dedicated voltage for the flash
memory, not common to all logic in the system. The common system
operating voltage, V CC, remains 5V throughout the algorithm. All
program/erase/verify voltages are internally tapped (within the flash
memory) from the external Vpp input.

Steps 4 and 5

Unlike the EPROM example earlier, addresses, CE and WE (write
enable) do not need to be held active throughout the 10 flS program
interval. Specific data commands, written at normal SRAM-like speeds,
control the flash memory. Logic internal to the flash memory decodes
these commands and takes appropriate action, such as the enabling and
disabling of internal program and erase pulses.

Step 9

Finally, referencing the flash memory data outputs to V CC makes them
compatible with other logic in the system. No voltage conversion is
required between the flash memory outputs and processor inputs for
program or erase verify operations.

Comparing Figures 7.1 and 7.2, we see that some elements of the old
EPROM algorithm have been retained, like the need for software
timeouts to terminate the internal program pulse, and the iterative if
then-else data verification and pulse repetition for each byte. Second
generation, fully automated algorithms have further simplified the
update process; we'll cover these later in the chapter.

3!Other manufacturers offer compatible devices; refer to the Appendix for vendor contact
information.

APPLE INC.
EXHIBIT 1011 - PAGE 0161

The NOR Bulk-Erase Flash Memory Algorithms 139

One important point to note up front is that with all of today's devices
(both automated and non-automated), the erase and reprogram code
cannot be executed from the flash memory while it is being updated.
Read-while-program/erase is not supported, although some devices
allow the system to suspend erase to read, if needed. The update code
can be stored in the flash memory, but it must be copied to external
memory, such as a small RAM, for execution.

THE NOR BULK-ERASE FLASH MEMORY
ALGORITHMS
As stated earlier, these algorithms were pioneered by Intel Corporation
but compatible vendors such as Advanced Micro Devices, SGS
Thomson, Catalyst, Hitachi and Mitsubishi also support them. Flash
memories using these algorithms include the 28F256A, 28F512, 28F010,
28F020 and Series 1 flash memory cards, and equivalents.

Bus
Command Cycles First Bus Cycle Second Bus Cycle

Req'd
Operation Address Data Operation Address

Read Memorv 1 Write X OOH
Read Intelligent Identifier 3 Write X 90H Read IIA
Codes
Erase Setup/Erase 2 Write X 20H Write X
Erase Verify 2 Write EA AOH Read X
ProQram Setup/ProQram 2 Write X 40H Write PA
ProQram Verify 2 Write X COH Read X
Reset

Notes:
1.

2.

2 Write X FFH Write X

IIA = Intelligent Identifier address; OOOOH for mfg. code; OOOlH for device
code.
EA = Address of memory location to be read during erase verify.
PA = Address of memory location to be programmed.
Addresses are latched on the falling edge of the write enable pulse.
lID = Data read from location IIA during device identification.
EVD = Data read from location EA during erase verify.
PD = Data to be programmed at location P A. Data is latched on the rising edge
of write enable.
PVD = Data read from location PA during program verify. Address is latched
during the Program command.

Table 7.1: Intel Bulk-Erase Flash Memory Command Definitions

Dati

110

201-
EV[
PO

PVC
FFI-

APPLE INC.
EXHIBIT 1011 - PAGE 0162

140 Chapter Seven: Software Inteifacing to Flash Memory

Writing specific data command sequences (and corresponding
addresses) into the flash memory command register enables device
operations. Table 7.1 shows the full range of commands supported by
the Intel-compatible, bulk-erase flash memories. A subset of these
commands will be explained in greater detail in the following algorithm
discussions.

The Program Algorithm

This algorithm is shown in Figure 7.2.

Step 1

This is the entry point for each program operation.

Step 2

Ramp Vpp to VpPH (l2V ± 0.6V). When programming a sequence of
device locations at one time, Vpp does not need to be ramped down and
then back up between each program operation. For that matter, it may be
permanently enabled if desired32.

Step 3

Initialize the pulse count (usually a system variable in RAM, or a CPU
register) to value O.

Step 4

Write the program setup command (40H) to the device. The address at
this point is a "don't care", as long as the flash memory is selected via
CEo

Step 5

Write the data to be programmed, along with the address to be
programmed. Note the absence of a 'program verify' command per se;
the flash memory at this point assumes that the very next write after
'program setup' is data to be programmed.

To abort programming after writing the program setup command, write
FFH as data to be programmed. Since programming only changes ones

32See Chapters 5 and 6 for discussions on Vpp generation and control.

APPLE INC.
EXHIBIT 1011 - PAGE 0163

The NOR Bulk-Erase Flash Memory Algorithms 141

zeros, writing data FFH (with no zeros in it) will leave the specified
location unchanged. Writing another FFH resets the device to the read
array mode.

Step 6

This step times the internal pulse, initiated in Step 5, that programs the
specified location. The delay should be a minimum of 10 fls. Device
datasheets specify the maximum delays that should be strictly followed
to ensure reliable device operation. Either a hardware timer or a
software loop can measure the 10 fls pulse.

If using a software delay, the designer must ensure the accuracy of the
measured delay with respect to the system clock and CPUs instruction
cycles. This is especially important when the same software could be run
in different systems with different CPUs and clock frequencies (like a
personal computer). In this case, the clock frequency can be initially
determined by measuring the number of instructions that execute
between real-time-clock interrupts, for example.

Disabling interrupts before step 6 helps to ensure that the maximum
program pulsewidth is not exceeded. Also make sure that when
debugging your software you do not single-step and pause within the
timing loop, again to avoid exceeding the datasheet maximum delay
timings.

Step 7

Writing the program verify command (COH) terminates the internal
program pulse. It also enables internal circuitry to apply the program
verify voltages (derived from Vpp) to the array cells. The address
supplied to the device with the program verify command corresponds to
the location being programmed.

Some flash memories include stop timers that automatically terminate
the internal program pulse after a specified delay, even if a program
verify command has not been received. Even if these stop timers are

APPLE INC.
EXHIBIT 1011 - PAGE 0164

142 Chapter Seven: Software Intetfacing to Flash Memory

available, the system designer should not rely on them, and should
follow steps 6 and 7 for timing and terminating the program pulse33 .

Step 8

The 6 f.ls delay of this step allows time for the program verify voltages to
stabilize at the array cells being programmed. This is a minimum delay;
it has no maximum limit. However, to achieve the highest programming
performance, this time should be adhered to as close as possible. The
same guidelines explained in step 6 with respect to software delays
should again be followed. Reading the device before 6 f.lS has elapsed
may result in the output of inaccurate data.

Step 9

Read data from the device. The address being verified should match that
of the location being programmed.

Step 10

Compare the data read from the device to the data being programmed.
Remember that programming only changes ones to zeros, not zeros to
ones. If bits within the location being programmed have already been set
to zero by a prior program operation (and not yet set back to one by an
erase), they will remain zero even if system software attempts to
program them back to a one. In such an application, mask and examine
only those bits you are attempting to program to a zero.

Steps 11-12

After a programming operation successfully verifies, subsequent
locations can then be programmed by returning to the beginning of the
algorithm as shown.

Steps 13-15

After completing device programming, write the "read array" command
(FFH) to the device and disable high voltage on Vpp if desired. Bear in
mind that for highest performance, you can leave Vpp on to avoid its

33Not all bulk-erase flash memories, even if they are otherwise compatible, offer stop timers. Stop
timers are supported in all Intel products.

APPLE INC.
EXHIBIT 1011 - PAGE 0165

The NOR Bulk-Erase Flash Memory Algorithms 143

ramp delay (however, this may result in unnecessary power
consumption) .

Step 16

If the location being programmed does not verify successfully after one
iteration, increment the pulse count and attempt another program
sequence at the same location. Although most locations typically only
require one program pulse, the actual number of pulses depends on the
ambient temperature at which the device is being operated, the Vee and
Vpp values at the time of the programming attempt and the number of
times the device has already been programmed/erased (cycled). A
maximum of 25 program attempts are specified for each location.

Steps 17-18

If, after 25 attempts, the location being programmed still does not verify
correctly, disable Vpp and return an error indication to the system.
Inability to program most likely only occurs with an out-of-tolerance
Vpp power supply, or if the device has been cycled far beyond its
specifications. At this point, the system has several choices; it may mark
the location as "bad" and continue, or it may attempt additional program
pulses beyond the specified 25. This latter approach is a valid method of
extending flash memory cycling34.

The Chip Erase Algorithm

This algorithm is shown in Figure 7.3.

Step 1

This is the entry point for the chip erase operation.

Steps 2 and 3

The device must be pre-conditioned, or preprogrammed to all Os, before
erasing to prevent over-erasure of array transistors. To pre-condition,
repeat the program algorithm of Figure 7.2 for each lO,cation in the array,
programming to OOH in each case. Notice that we stressed the word each
here. Every location in the entire device must be accessible for both

34 See the "Extended Cycling; What Can You Do?" section of Chapter 3).

APPLE INC.
EXHIBIT 1011 - PAGE 0166

144 Chapter Seven: Software Inteifacing to Flash Memory

14
lnerament Address

NOTES:
1. See DC Characteristics fortha value of VpPH and Vp
2. Erase Verify Is perfonned only after chip erasure. A fin&!
read/compare may be perfonned (optlonaQ after the register
Is writlen wfth Ihe Read command.

Bu. Command Comment.
Operation

Entire Memory Musl = DOH
Before Erasure

Use Qulck·Pulse Programming
Algorithm (Figure 8.2)

Siandby Waft forVpp Ramp 10 VPPH 111

Initialize Addresses and
Pulse-Count

Write Sel-up Dalo=20H

I Erase

Write Erase Dalo= 20H

Siandby Duration of Erase
Operalion (IWHWH2)

Writa Erase l2J Addr = Byte 10 Verify;
Verity Data = AOH; Slops Erase

Operaliod31

Siandby I WHGL

Read Read Byte 10 Verify Erasure

Siandby Compere Oulpullo FFH
Increment Pulse-Count

Write Read Data = OOH, Resets tha
Register for Read Operations

Siandby Waft for VPP Ramp 10 VPPL

3, Refer to principles of operation.
4. CAUTION; The algorithm MUST BE FOLLOWED to
enlure proper and reliable operation of the device.

111

Figure 7.3: Intel First Generation Flash Memory Non-Automated
Erase Algorithm

APPLE INC.
EXHIBIT 1011 - PAGE 0167

The NOR Bulk-Erase Flash Memory Algorithms 145

reads and writes, so that it can be preprogrammed. Locations not
programmed to OOR will eventually overerase (sooner versus later)
rendering not only those locations but whole sections of the flash
memory unusable.

Step 4

Ramp Vpp to VpPR (12V ± 0.6V) before beginning the chip erase
algorithm35.

Step 5

Initialize the address and pulse count variables to zero. The address
variable will be used to sequence through the array during erase
verification, and the pulse count variable, as its name implies, will count
the number of erase pulses applied to the chip. Both variables should be
declared large enough to handle their maximum values; i.e., "address"
will have values between 0 and 262,143 for a 2 Mbit x8 device, and
depending on the flash memory and manufacturer, "pulse" can range
from 0 to 3000.

Steps 6-7

Write the erase setup (20R) and erase confirm (again, 20R) commands
to the device to begin the internal erase pulse. The specified address to
the device is a "don't care" as long as the chip receives a valid WE and
CE, since the entire chip is being erased.

Step 8

Similar to the program algorithm described earlier, the system times the
internal erase pulse. Erase should be enabled for a minimum of 9.5ms;
specific device datasheets list the maximum times. Follow the same
recommendations as first described earlier in step 6 of the Program
Algorithm for accurately timing the erase pulse. Disabling interrupts
before this step helps to ensure that the maximum erase pulsewidth is
not exceeded.

35Vpp may already be at VpPH from the previous pre-programming steps 2 and 3.

APPLE INC.
EXHIBIT 1011 - PAGE 0168

146 Chapter Seven: Software Interfacing to Flash Memory

Step 9

Writing the erase verify command (AOH) terminates the internal erase
pulse. It also enables circuitry that applies the erase verify voltages
(derived from Vpp) to the array cells. The first device address to be
verified is location OOOOH, so the system presents this address to the
device along with the erase verify command.

It is very important to accurately terminate the erase pulse after
approximately 9.5 ms has elapsed, to prevent device overerasure.
Although some flash memories include erase stop timers, these should
be used as the exception, not the rule. For example, erase stop timers are
useful during software debug when you single-step through your code.
Without device hardware stop timers, the erase pulse length would be
exceeded. In normal operation, though, follow steps 8 and 9 to time and
terminate the erase pulse via writing the erase verify command36.

Step 10

Similar to the program flowchart, the 6 IlS delay of step 10 allows time
for the erase verify voltages to stabilize at the array cells being verified.
Reading the device before the 6 IlS has elapsed may result in the output
of inaccurate data.

Step 11

Read the data from the device. The address should match that of the
location being verified, and therefore be the same address given in step 9
(at least for the first time through the loop).

Step 12

A fully erased location will read back as all ones. For example, a x8
component location will read back as FFH if erased, a x16 component or
device pair will read as FFFFH, etc.

36Not all bulk-erase flash memories, even if they are otherwise compatible, offer stop timers,
although stop timers are supported in all Intel products.

APPLE INC.
EXHIBIT 1011 - PAGE 0169

The NOR Bulk-Erase Flash Memory Algorithms 147

Steps 13 and 14

Continuing with device address 0001R and to the last location in
memory (i.e. all ones for address inputs), repeat the sequence of steps 9-
12.

Steps 15-17

After completion of device erasure, write the "read array" command
(FFR) to the device and disable high voltage on Vpp if desired.

Step 18

It is very unlikely that the entire array will erase after one 10 ms pulse.
In fact, as the "typical" erase times in flash memories indicate, erase
time is often measured in tens of pulses, depending on temperature,
cycling, device density and V CCNpp values during an erase. It's also
common for transistors within the array to erase at slightly different
rates relative to each other. If the time differential between fastest
erasing bits and slowest-erasing bits is extreme, this can be an indication
of a low-quality flash memory device that is headed for a quick cycling
death. Assuming high quality flash memories, however, you will still
commonly see a multiple-pulse difference between the first and last
locations to erase.

If the location being verified does not read all ones after one iteration,
increment the pulse count and begin another erase sequence.
Verification then continues from where it left off, since previous
locations were already confirmed as erased. Most devices permit a
maximum of 1000 erase attempts, although higher density flash
memories allow up to 3000 erase pulses.

Steps 17-18

If, after the maximum number of erase attempts, the device still does not
verify correctly, disable Vpp and return an error indication to the
system. Similar to program, the inability to erase will most likely only
occur with an out-of-tolerance Vpp power supply, or if the device has
been cycled very far beyond its specifications. At this point, the system
has several choices; it may mark the non-erasing device locations as
invalid and continue, or it may attempt additional erase pulses beyond

APPLE INC.
EXHIBIT 1011 - PAGE 0170

148 Chapter Seven: Software Inteifacing to Flash Memory

the specified maximum. As discussed earlier in reference to
programming, this latter method may be validly used to extend flash
memory cycling.

Summary of First-Generation Programming/Erase
Characteristics

We've shown in our bulk-erase flash memory algorithm discussions that
first-generation flash memories dramatically improved upon the
hardware/software interface required to update EPROMs. The following
characteristics (and their impacts), however, are still evident in the steps
required to successfully complete a flash memory "manual" program or
erase attempt:

• The algorithms are extremely system-intensive, making it
difficult if not impossible for the processor to service the needs
of any other devices or functions in the system while performing
a flash memory update. In fact, we recommended earlier that the
system turn off interrupts during program and erase to ensure
the generation of accurate timing delays. It is also very difficult
to program or erase multiple flash memories at the same time, or
to program one flash memory as a foreground task while erasing
another in the background.

• The highly manual algorithms also require the system to
maintain and increment pulse counts and address variables, use
system software to generate timing delays and require the
system to write mUltiple verify commands and execute location
by-location data authentication. The flash memory must also be
manually preprogrammed before erasing. None of these issues
are showstoppers, but they lead to software overhead beyond the
raw flash memory program and erase times, increase the
likelihood of software errors during prototyping and result in
verbose code.

APPLE INC.
EXHIBIT 1011 - PAGE 0171

The NOR Fully-Automated Flash Memory Algorithms 149

THE NOR FULLY-AUTOMATED FLASH MEMORY
ALGORITHMS
Second-generation automated algorithms have been developed to further
enhance the flash memory interface and overcome some of these first
generation manual shortcomings. Using the Intel automated algorithms
as our first example, we note the following improvements and their
positive impacts:

• The algorithms are fully automated, after system software issues
program or erase command sequences. An internal oscillator
measures all timing delays, on-chip counters increment through
addresses and keep track of the erase/program pulses.
Preprogramming of the selected block is automatically done
before erasing the block. Flash memory automation allows the
system to perform other functions during the program/erase
operations. Automation also greatly simplifies read, program,
and erase of multiple flash memories in parallel.

• Interfacing has been enhanced. A Status Register in the device
informs the system as to the progress and success/failure of the
internal automation. Integrated circuitry monitors the status of
the Vpp voltage throughout program or erase, terminates the
algorithm if Vpp falls out of tolerance and relays this
information back to the system.

• Second-generation devices include the ability to suspend erase
to read from the flash memory, and resume at a later time. This
prioritizes high speed, high priority reads over slower, lower
priority erase. In combination with automation and the RY/BY
output (available on some devices), erase suspend/resume makes
it possible to make slow erase a full background task.

We'll spend the majority of this section reviewing the Intel Corporation
automated algorithms, shown in Figures 7.4-7.7. Intel's Boot Block and
FlashFile memories and the Series 2 flash memory cards all support
these algorithms. After this review, we'll follow with an analysis of

APPLE INC.
EXHIBIT 1011 - PAGE 0172

150 Chapter Seven: Software Inteifacing to Flash Memory

AMD's automated algorithms, and some general techniques and
recommendations for automated program/erase.

Device operations are enabled by writing specific data command
sequences (and corresponding addresses) into the flash memory
command register. Table 7.2 shows the full range of commands
supported by block-erase Intel flash memories. In most cases (erase
confirm is an exception), these commands are backwards-compatible
with those seen in Table 7.1 for bulk-erase flash memories. Additional
commands have been added to comprehend device internal automation
and Status Register operations.

Bus
Command Cycles First Bus Cycle Second Bus Cycle

Req'd
Operation Address Data Operation Address

Read Array/Reset 1 Write X FFH
Intelliqent Identifier 3 Write X 90H Read IIA
Read Status Register 2 Write X 70H Read X
Clear Status Register 1 Write X AOH
Erase Setup/Erase 2 Write BA 40H Write BA
Confirm
Erase Suspend/Resume 2 Write X COH Write X
Proqram Setup/Program 2 Write PA FFH Write PA
Alternate Program 2 Write PA FFH Write PA
Setup/Program

Notes:
1. IIA = Intelligent Identifier address; OOOOR for mfg. code; OOOIR for device

code.

2.

BA = Address within the block being erased.
PA = Address of memory location to be programmed.
Addresses are latched on the rising edge of the write enable pulse.
SRD = Data read from Status Register
PD = Data to be programmed at location PA. Data is latched on the rising edge
of the write enable pulse.
lID = Data read from location IIA during device identification.

Table 7.2: Intel Block-Erase Flash Memory Command Definitions

Data

liD
SRD

DOH

DOH
PD
PD

APPLE INC.
EXHIBIT 1011 - PAGE 0173

The NOR Fully-Automated Flash Memory Algorithms 151

Intel Automated Program Algorithm

This algorithm is shown in Figure 7.4.

Step 1

Before beginning the automated program algorithm, ramp Vpp to 12V.
When programming a sequence of data at one time, Vpp does not need
to be ramped down and then back up between them.

Step 2

Write the program setup command (40H or lOR) to the device. The
address corresponds to the address of the location to be programmed.

Step 3

Write the data to be programmed, along with the location to be
programmed (i.e., the address), to the flash memory. Similar to the first
generation program algorithm described earlier, the flash memory
assumes that the very next write after "program setup" is data to be
programmed.

Note: To abort programming after writing the program setup command,
write FFH as the data to be programmed. This will activate the
automation, but since you are attempting to program ones, the internal
programming will quickly complete. After ensuring that automation has
finished (see Step 4), again write FFH (the read array command) to
return the flash memory to its normal output mode.

Step 4

After receiving the written program command sequence, internal
automation (the Write State Machine, or WSM) begins execution. As
mentioned earlier, this automation controls many of the manual steps of
the first-generation algorithms, including program pulse timing and
termination, program verification and iteration of program/verify.
System software (at its leisure) polls the flash memory Status Register
(shown in Figure 7.5) to determine when automation has completed.
Status Register bit 7, duplicating the function of the RYIBY output

APPLE INC.
EXHIBIT 1011 - PAGE 0174

152 Chapter Seven: Software Inteifacing to Flash Memory

Bus Command Commants
Operation

Write Byte Write Data = 40H (10H)
Setup Address = Byte to be wrllten

Write Byte Write Data to be wrlUen
Address = Byte to be wrlUen

Standbyl Check RViBY
Read \bH = Ready, \be = Busy

or
Read Status Register
Check SR.7
1 = Ready, 0 = Busy
Toggle OE or CE to update
Status Register

Repeat for subsequent bytes

Full slatus check can be done after each byte or after a
sequence of bytes

Write FFH after the last byte write aperaUon to reset the
device to Ready Array Mode

Bus Command Comments
Operation

OpUonal CPU may already have read
Read Status Register data In WSM

Ready polling above

Standby CheckSR.3
1 = I\>p Low Detect

Standby CheckSR.4
1 =Byte Write Error

SR.3 MUST be cleared, If set during a byte write aUempt,
before furlher aHempls are aUowed by the Write State
Machine.

SRA Is only cleared by the Clear Status Register Command,
In cases where mulUple bytes are wrlHen before fuU status Is
checked.

If error Is detected, clear the Status Register before
aHempting retry or other error recovery.

Figure 7.4: Intel Automated Flash Memory Program Algorithm

APPLE INC.
EXHIBIT 1011 - PAGE 0175

The NOR Fully-Automated Flash Memory Algorithms 153

available on some flash memories, returns to logic one at the conclusion
of the WSM-controlled programming.

Note that after writing the program command sequence to the flash
memory, it automatically switches to a mode where it outputs Status
Register data when read.

Step 5

After the system has determined that automation has completed, it may
further analyze the Status Register to verify that programming was
successful (steps 7-12). However, Status Register error bits will retain
their values until explicitly cleared by the Clear Status Register
command (SOH). It may therefore be advantageous, when programming
a large number of data locations at one time, to check these additional
bits only occasionally or at the conclusion of all programming. For
example, when programming a 16 byte string, poll only Status Register
bit 7 (or the RYIBY output) between bytes, and save full analysis for the
conclusion. Doing so minimizes system overhead and maximizes flash
memory write performance.

Step 6

Programming of the desired flash memory location is complete. Another
location can now be programmed, if desired, or the flash memory can be
reset to its normal "array read" mode by writing the Read Array
command (FFH).

Step 7

In step 4 above, we determined that the internal automation completed.
In the following steps we'll determine whether the automation completed
with a successful outcome.

Step 8

Examine Status Register bit 3 (see Figure 7.5). A one means that internal
programming terminated unsuccessfully due to Vpp hard failure or
momentary voltage transition below the valid low end of the Vpp range.
Internal flash memory circuitry begins monitoring Vpp after the
program command sequence is written to the device, and continues to
periodically do so until automation completes.

APPLE INC.
EXHIBIT 1011 - PAGE 0176

154 Chapter Seven: Software Interfacing to Flash Memory

Step 9

A reported Vpp error compels the system to determine whether this
reflects a failure of the Vpp supply or a momentary glitch in the supply
voltage due to excessive current draw by the system. In the former case,
this reflects a hard system failure that must be repaired before flash
memory can again be altered, and a message reflecting this supply
failure should be relayed to the user. In the latter case, however, flash
memory programming can again be attempted at the location.
Occasional droop in the Vpp supply is sometimes caused by current
draw by other logic/circuitry in the system that shares 12V with the flash
memory, or it can be caused by attempting to program/erase excessive
numbers of flash components at the same time, exceeding the current
drive capability of the power supply. Appropriate action should be taken
(turning off other circuitry, minimizing the number of flash memories
being programmed/erased in parallel, etc.) before repeating the
programming attempt.

Step 10

Now, check Status Register bit 4. A one means that the WSM has been
unable to program the flash memory location after giving it the
maximum possible number of program pulses. Inability to program
(besides the "Vpp out of tolerance" case handled in steps 8 and 9) will
most likely only occur if the device has been cycled far beyond its
specifications.

Step 11

The system can mark the location as "bad" and continue (depending on
the application), or it may issue another program command sequence to
the flash memory to generate additional program pulses, as a means of
extending device cycling.

The internal WSM-controlled verify only detects and reports errors for
ones that do not successfully write to zeros, reflective of its function as a
program verify. For example, what would happen if the system attempts
to, at a location within the flash memory, write ones to bits that had
previously been programmed to zero? These bits will of course remain at
zero, but the program status bit of the Status Register will not reflect an

APPLE INC.
EXHIBIT 1011 - PAGE 0177

WSMS

7

SR.7 =
1
o

SR.6
1
o

SR.5
1
o

SR.4
1
o

SR.3
1
o

SR.2-0

NOTES:

The NOR Fully-Automated Flash Memory Algorithms 155

ESS

6

ES BWS I VPPS I A

5 4 3 2

WRITE STATE MACHINE STATUS
Ready
Busy
ERASE SUSPEND STATUS
Erase Suspended
Erase in Progress Completed
ERASE STATUS
Error in Block Status
Successful Block Erase
BYTE WRITE STATUS
Error in Byte Write
Successful Byte Write
Vpp STATUS
Vpp Low Detect; Operation Abort
VppOK

R R

o

RESERVED FOR FUTURE ENHANCEMENTS
These bits are reserved for future use and should be
masked out when polling the Status Register.

RY/BY or the Write State Machine Status bit must first be checked to determine byte write
or block erase completion, before the Byte Write or Erase Status bit are checked for
success.

If the Byte Write AND Erase Status bits are set to ones during a block erase attempt, an
improper command sequence was entered. Attempt the operation again.

If Vpp low status is detected, the Status Register must be cleared before another byte
write or block erase operation is attempted.

The Vpp Status bit, unlike an AID converter, does not provide continuous indication of
Vpp level. The WSM interrogates the Vpp level only after the byte write or block erase
command sequences have been entered and informs the system if Vpp has not be
switched on. The Vpp Status bit is not guaranteed to report accurate feedback between
VPPL and VPPH.

Figure 7.5: Intel Automated Flash Memory Status Register

APPLE INC.
EXHIBIT 1011 - PAGE 0178

156 Chapter Seven: Software Interfacing to Flash Memory

error. Remember, erasure (covered next) must be used to change zeros
back to ones with flash memory.

Step 12

After first checking bit 7 of the Status Register to ensure that the internal
flash memory automation has completed, and then verifying that the
program attempt was successful via Status Register bits 3 and 4, the
system can be assured that the specified location contains the desired
programmed data. Unlike the first-generation program algorithm
described earlier, actual read of the flash memory location to verify its
value does not need to occur.

Intel Automated Block Erase Algorithm

This algorithm is shown in Figure 7.6.

Step 1

Before beginning the automated block erase algorithm, ramp Vpp to
12V. When erasing a sequence of blocks at one time, Vpp does not need
to be ramped down and then back up between them.

Step 2

Write the erase setup command (20H) to the device. The address
corresponds to any address within the block to be erased.

Step 3

Write the erase command (DOH), along with an address within the block
to be erased, to the flash memory. Note that with this algorithm, only
one block within a device can be erased at a time.

Step 4

Mter writing the erase command sequence, the WSM begins execution.
Similar to automated programming, the erase automation controls many
of the manual steps of the first-generation algorithm, including block
preprogramming to OOH, erase pulse timing and termination, erase
verification and iteration of erase/verify. System software (at its leisure)
can poll the flash memory Status Register to determine when automation
has completed. After it receives the erase command sequence, the flash

APPLE INC.
EXHIBIT 1011 - PAGE 0179

The NOR Fully-Automated Flash Memory Algorithms 157

Bus Command Comments
Operation

Write Erasa Data = 20H
Setup Address = Within block to be

erased

Write Erase Data = DOH
Address = Within block to ba
erased

Standbyl Check RlW
Read eM = Read)Qlll = Busy

or
Read Status Register
Check SR.7
1 = Ready, 0 = Busy
ToggilE orCE to update
Status Register

Repaat for subs equant bytes

Full status check can be dona after aach block or after a
sequence of blocks

Write FFH after the last block arase operation to resat the
davice to Ready Array Moda

FULL STATUS CHECK PROCEDURE

Bus Command Comments
Operation

Dptk,"el CPU may already have read
Read Status Register data In WSM

Raady polling above

Siandby Check SR.3
1'j>~ Low Datad

Siandby Check SR.4,5
Both 1 = Command Sequance
Error

Standby Chack SR.5
1 = Block Erase Error

SR.3 MUST be cleared, If set during a block erase attempt,
before further attampts are allowed by tha Writa State
Machine.

SR.5 Is only claared by the Clear status Register Command,
In cases whare muttlpla bytes are erased before full status Is
checked.

If error Is datacted, clear the status Reglstar bafore
attempting retry or other error recovery

Figure 7,6: Intel Automated Flash Memory Block Erase
Algorithm

APPLE INC.
EXHIBIT 1011 - PAGE 0180

158 Chapter Seven: Software Inteifacing to Flash Memory

memory automatically switches to a mode where it outputs Status
Register data when read.

The RY/BY output can also be used to mask the slow erase time, freeing
the system to execute other tasks and, therefore, minimizing system
performance impact. When connected to a processor interrupt input,
RY/BY's rising edge at the conclusion of erase interrupts the system. In
most cases, RY/BY's interrupt configuration is best utilized when
erasing the flash memory, versus during data programming. Due to the
performance impact of interrupt latency and servicing, the speed of
shorter programming events is often optimized by simple polling of the
Status Register.

Step 5

After the system has determined that automation has completed, it may
further analyze the Status Register to verify that block erase was
successful (steps 8-15). However, Status Register error bits retain their
values until explicitly cleared by the Clear Status Register command
(SOH). It may therefore be advantageous, when erasing a large number
of blocks at a time, to check these additional bits only occasionally or at
the conclusion of all block erasures.

Step 6

Erasure of the desired flash memory block completes. Another block can
now be erased, if desired, or the flash memory can be returned to its
normal "array read" mode by writing the Read Array command (FFH).

Step 7

If the system determines in step 4 above that the WSM is still operating,
and it wants to suspend erase to read from the device, it can do so by
issuing the Erase Suspend command (BaH). We'll cover the erase
suspend/resume algorithm in -detail after completing our review of
automated block erasure.

Step 8

In step 4 above, we determined that the internal automation completed.
In the following steps we'll determine whether the automation completed
with a successful outcome.

APPLE INC.
EXHIBIT 1011 - PAGE 0181

The NOR Fully-Automated Flash Memory Algorithms 159

Step 9

Examine Status Register bit 3. A logic one means that internal erasure
terminated unsuccessfully due to Vpp failure or momentary transition
below the valid low end of the V pp range. Internal flash memory
circuitry begins monitoring Vpp after the erase command sequence is
written to the device, and then periodically until automation completes.

Step 10

The same guidelines for system response to Vpp error during erasure
should be followed as those recommended earlier for automated byte
programming. See step 9 under "The Automated Programming
Algorithm" for more information.

Step 11

If Status Register bits 4 and 5 are both set to logic one, this reflects an
invalid erase command sequence. The flash memory has correctly
received the Erase Setup (20R) command, but the next command written
to the device was something other than the Erase (DOR) command.

Step 12

The Erase Command Sequence error may have occurred due to bugs in
the system software, or due to an unwanted glitch in a data line
connecting the processor and flash memory. Whatever the reason, it is
indicative of a critical system problem. This sort of error should be
restricted to the lab during the debugging of a prototype design, and
hopefully will not occur when the system gets in the customer's hands!

Step 13

Now check Status Register bit 5 alone. A one means that the WSM has
been unable to erase the flash memory block after giving it the
maximum possible number of program pulses. Inability to erase (besides
the "Vpp out of tolerance" case handled in steps 9 and 10) most likely
occurs only if the device has been cycled far beyond its specifications.

APPLE INC.
EXHIBIT 1011 - PAGE 0182

160 Chapter Seven: Software Interfacing to Flash Memory

Step 14

The system will in most cases mark the block as "bad" and continue
(depending on the application). Alternatively, an error message may be
communicated to the system operator.

Step 15

After first checking bit 7 of the Status Register to ensure that the internal
flash memory automation has completed, and then verifying that the
block erase attempt was successful via Status Register bits 3, 4 and 5,
the system can be assured that the specified block erased to FFH. Unlike
the first-generation erase algorithm described earlier, actual read of the
flash memory locations to verify their erasure does not need to occur.

Intel Automated Erase Suspend/Resume Algorithm

This algorithm is shown in Figure 7.7.

Step 1

Before this point, the system has already read from the flash memory
Status Register and verified that the WSM is still running (see step 4
under "The Automated Block Erase Algorithm").

Step 2

System software writes the Erase Suspend command (BOH) to the flash
memory. Since only one block within a device can be erasing at one
time, any address within the device can be given.

Step 3

Write the Read Status Register command (70H) to the flash memory.
You might ask why this is needed, since earlier we said that after writing
the erase command sequence to it, the flash memory automatically
outputs Status Register data.

It is possible that in the time between:

1. When the system has read from the Status Register (to see that
the WSM is still running), and

APPLE INC.
EXHIBIT 1011 - PAGE 0183

The NOR Fully-Automated Flash Memory Algorithms 161

Bus Command Comments
Operation

Write Erase Data = BOH
Suspend

Write Read Status Data=70H
Register

Standby! Check RY!BY
Read VOH = Ready, VOL = Busy

or Read Status Register

Check SR.7
1 = Rea2Y, 0 = Busy
Toggle OE or CE to Update

Standby Check SR.6
1 = Suspended

Write Read Array Data =FFH

Read Read array data from block other
than that being erased

Write Erase Data = DOH
Resume

Figure 7.7: The Intel Automated Erase Suspend / Resume Algorithm

2. When the system writes the Erase Suspend command (to
suspend the WSM),

that the WSM may have already completed the erase algorithm and
returned to "ready". In this case, the Erase Suspend command will be
meaningless to the device, and will be decoded as invalid and cause the
flash memory to return to its read array mode. In such a scenario, the

APPLE INC.
EXHIBIT 1011 - PAGE 0184

162 Chapter Seven: Software Interfacing to Flash Memory

system software would be polling what it thought was the Status
Register, waiting for a suspend indication, when it was actually reading
array data. An infinite loop would be the probable outcome.

Writing the Read Status Register command will ensure that, regardless
of the status of the WSM, the flash memory will correctly output Status
Register data when subsequently read, as expected.

Steps 4 and 5

Poll the Status Register repeatedly until receiving the WSM ready
indication via bit 7.

Step 6

Next, read Status Register bit 6 to determine whether the WSM is ready
because erase has been suspended (if bit 6 = one) or because erase has
already completed (bit 6 = zero). If erase has completed, suspend is not
possible, nor needed.

Steps 7 and 8

Write the Read Array command (FFH) to the flash memory, allowing
code execution or data reads out of the device. Any block within the
flash memory can be read at this point, but of course the block being
erased when suspended will contain unknown data.

Steps 9 and 10

After the system finishes reading from the flash memory, writing the
Erase Resume command (DOH) will continue the erase in progress and
return the WSM to "busy".

Alternative Automated Algorithms

The first-generation bulk erase algorithms described early in this chapter
are standardized and supported in flash memories from several
manufacturers today. Automated algorithms, on the other hand, are to a
greater or lesser degree unique to each manufacturer, and are essentially
software-incompatible with each other. However, although specific
implementations may differ, the general approaches used in many of
these algorithms are similar and can be grouped together for review
purposes.

APPLE INC.
EXHIBIT 1011 - PAGE 0185

The NOR Fully-Automated Flash Memory Algorithms 163

As an example of an alternative automated approach, we'll cover AMD's
embedded algorithms in the paragraphs that follow, and then discuss
general techniques that can be applied to automated program/erase
algorithms from multiple flash memory manufacturers.

Advanced Micro Devices Embedded Algorithms

Although AMD's flash memories are built on NOR technologies
resembling Intel's ETOX approach, the software program and erase
algorithms of their newest "5V-only" devices are most similar to those
of flash EEPROM memories. Since these devices do not have the
program/erase hardware protection of a separate Vpp voltage, they
compensate by requiring multiple-byte command sequences to specific
device addresses (software protection), shown in Table 7.3. Their
methods of communicating internal automation status and
success/failure, called data polling and toggle polling, are also similar to
those of EEPROMs and flash EEPROM memories.

Command Bus Firat Bus Sacond Bus Third Bus Fourth Bus Fifth Bus Sixth Bus
Sequence Write Write Cycle Write Cycla Write Cycle RaadlWrlte Write Cycle Write Cycle

Cycles Cycle
Req'd

Addr Dala Addr Dala Addr Dala Addr Dala Addr Dala Addr
Read/Rasel 4 5555 AA 2AAA 55 5555 FO RA RD
Auloselecl 4 5555 AA 2AAA 55 5555 90 00/01 011

20
Byte 4 5555 AA 2AAA 55 5555 AO PA PO
PrOQram
Chip Erase 6 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 5555
Seclor
Erase

6 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 SA

Notes (addresses and data are shown in Hex):
1. Address bit A 15 = X = Don't Care. Write Sequences may be initiated

with A 15 in either state.
2. Address bit A 16 = X = Don't Care for all address commands except for

Program Address (PA) and Sector Address (SA).
3. RA = Address of the memory location to be read.

PA = Address of the memory location to be programmed. Addresses
are latched on the falling edge of the WE pulse.
SA = Address of the sector to be erased. The combination of A 16, A 15,
A 14 will uniquely select any sector.

4. RD = Data read from location RA during read operation.
PD = Data to be programmed at location PA. Data is latched on the
falling edge of WE.

Table 7.3: AMD "5 V-Only II Automated Algorithm Command Definitions

Dala

10
30

APPLE INC.
EXHIBIT 1011 - PAGE 0186

164 Chapter Seven: Software Interfacing to Flash Memory

AMD's devices do not include a Status Register, but provide similar
functionality via hardware sequence flags that can be read during
automated program or erase. The description of the various flag bits
below will aid in understanding the flowcharts of Figures 7.8-7.10.

DQ7: Data Polling Bit
During the execution of a programming operation, DQ7 outputs,
when read, the complement of the data last written to DQ7'
When the automated algorithm completes, DQ7 outputs the true
data last written to it. During automated erase, DQ7 will be zero,
and it will output a one when erase completes.

DQ6: Toggle Bit
During embedded program or erase, successive reads of the
device result in DQ6 toggling between one and zero. Upon
algorithm completion, DQ6 will not toggle, and valid data will
be read.

DQS: Exceeding Timing Limits
If DQS outputs a one when read, the built-in timing limits for
program or erase have been exceeded. This means that the
program or erase cycle was not successful; it completed with
error.

DQ4: Hardware Sequence Flag
If DQS outputs a one, this bit informs the system whether
programming (DQ4 = zero) or erase (DQ4 = one) was
unsuccessful. During an automated erase attempt, this bit also
reflects whether the timing limits were exceeded during block
preprogramming or during block erasure.

DQ3: Sector Erase Timer
As Figure 7.9 shows, AMD provides the capability to erase
multiple blocks within the flash memory with one sequence of
commands. Writing successive 30H commands with
corresponding block addresses tells the device to perform the
mUltiple block erasure. The flash memory measures the time
since the last 30H command was written to the flash memory,
and if it exceeds a predefined delay, the internal automation sets
DQ3 to one and begins executing the internal algorithm.

APPLE INC.
EXHIBIT 1011 - PAGE 0187

The NOR Fully-Automated Flash Memory Algorithms 165

Data Poll Device

Increment Address

Program Command Sequence (Address/Command):

5555H/AAH

Program Address/Program Data

Figure 7.8: AMD "5V-Only" Automated Program Algorithm

APPLE INC.
EXHIBIT 1011 - PAGE 0188

166 Chapter Seven: Software Inteifacing to Flash Memory

Erasure Completed

Chip Erase Command Sequence
(Address/Command):

Individual Sector/Multiple Sector
Erase Command Sequence

(Address/Command):

]

Additional sector
r----...z..-----, erase commands

are optional

Figure 7.9: AMD 1/5V-Onlyl/ Automated Erase Algorithm

APPLE INC.
EXHIBIT 1011 - PAGE 0189

The NOR Fully-Automated Flash Memory Algorithms 167

DATA POLLING ALGORITHM

Yes

No

Yes

TOGGLE BIT ALGORITHM

No

No

No

Note:
1. 007 is rechecked even if DOs = "1" because 007 may change simultaneously
with DOs.

2. 006 is rechecked even if DOs = "1" because 006 may stop toggling
at the same time as DOs changing to "1."

Figure 7.10: AMD 1/5V-Only l/ Automated Data Polling and
Toggle Bit Algorithms

APPLE INC.
EXHIBIT 1011 - PAGE 0190

168 Chapter Seven: Software Inteifacing to Flash Memory

General Automated Algorithm Techniques-Multiple Block Erase

The multi-block erase capability of AMD's flash memories also appears
in flash memory devices offered by other manufacturers. In some cases
(Toshiba's NAND, for example), after the multiple commandlblock
addresses have been written to the flash memory, a specific command
activates the internal automation. In other cases (AMD, Hitachi, NBC)
an internal counter, asynchronous to the system clock, measures the time
since the last commandlblock address was written, and after a specified
timeout begins the erase algorithm. In the latter approach, system
interrupts must be disabled while writing block addresses to the device.
This prevents CPU distraction that may prematurely begin flash memory
erase before entering all block addresses.

General Automated Algorithm Techniques-Page Programming

Toshiba's NAND flash memories program a page at a time (versus a byte
or a word at a time), because of the requirements of the serial NAND
architecture. After writing multiple data bytes to a page buffer within the
device, a command sequence initiates the internal automated page
programming. The devices also provide separate block and chip erase
capability.

Flash EEPROMs (examples include Atmel devices), as you'll remember
from Chapter 3, essentially function as defeatured EEPROMs that erase
and rewrite on a page-by-page basis (versus byte-by-byte). On these
devices, erase is a built-in part of the programming algorithm. Like
Toshiba NAND flash memories, programming is initiated after writing
multiple data bytes to a buffer on the flash EEPROM. Some flash
EEPROMs provide separate block/chip erase capability, while others do
not.

General Automated Algorithm Techniques-Aborting Internal
Automation

Automated flash memories ipclude internal oscillators to control the
program/erase state machine logic. Since they don't run off the system
clock (i.e., no CLK input), they operate asynchronous to the logic in the
system. Once automation has been initiated, there is no software method
to terminate the internal algorithms, until they complete by themselves.

APPLE INC.
EXHIBIT 1011 - PAGE 0191

The NOR Fully-Automated Flash Memory Algorithms 169

As mentioned earlier, these devices automatically output status
information once programming or erase have begun. They must be reset
via software commands to output array data again, once automation
completes. What happens, though, if the system is reset by hardware or
software, including the CPU? If flash memory program/erase is
occurring at this time, and if the flash memory contains the code that the
processor boots from, the flash memory must also be reset to ensure that
array data (not status information) is provided to the CPU.

Block-eraseable Intel flash memories are currently the only devices that
provide hardware state machine reset capability, through their PWD37
inputs. Although the PWD toggle aborts the program or erase in
progress, it also resets the flash memory to "read array" mode, enabling
code execution from the boot block (see the section on "System Boot
Code Requirements" later in this chapter). For all other automated flash
memories, make sure that the system cannot be reset during the update
of the flash memory, if using it to store the processor boot code.

General Automated Algorithm Techniques-The RY/BY Output

Intel's FlashFile™ memories and Toshiba's newest NAND devices
include a RY/BY output that reflects the status of internal program/erase
automation. RY/BY defaults to a high (or TIL-level one) state. During
operation of the flash memory state machine38, RY/BY is driven low,
and its rising edge signals the conclusion of the internal algorithm.
RY/BY reflects the state of the Status Register WSM Status bit (see
Figure 7.5), and is implemented with the intent of connecting it to a
system interrupt input or to a separate system register that can be
software-polled. The primary difference between the Intel and Toshiba
approaches is that Toshiba's RY/BY is an open-drain output (therefore
multiple flash memory outputs can be wire-tied together) whereas Intel's
RY/BY is a full-CMOS output.

37 PWD is also known as RP in JEDEC notation.
38i.e. during flash memory program and erase.

APPLE INC.
EXHIBIT 1011 - PAGE 0192

170 Chapter Seven: Software Interfacing to Flash Memory

Software polling or hardware interrupt: Which should you use?

The functions of RY/BY and its Status Register counterpart are
interchangeable. Both methods of determining internal automation status
(software polling and hardware interrupt) have their merits, depending
on the type of operation(s) being performed. Recall that a NOR flash
memory location programs in about 9 Ilsec, and a NOR flash memory
block erases in about 1.6 seconds. Hardware interrupt configuration
using RY/BY is very useful in hiding the slow erase time as a
background function. It allows the system to prioritize and process flash
memory reads/writes and other system functions as foreground tasks.
For example, assume a real-time system with a flash card to continually
accumulate data in a first-in-first-out manner. While writing the current
blocks in the foreground, the system simultaneously starts erasing old
blocks (background task) to get them ready for future block writes.
When any of the background erase operations complete, RY/BY makes
its low-to-high transition, generating the system interrupt that says,
"Hey, I'm done!". The interrupt service routine now labels that block
available for more data accumulation.

Now let's consider the foreground programming operation. What would
happen if the system took an interrupt from this every 9 Ilsec? For
performance reasons alone, system requirements usually will not be able
to afford the time associated with interrupt latency and service routines
for programming. In some cases, the interrupt latency may even be as
long as the programming operation itself. Therefore, polling is generally
suggested for programming, and may be performed by reading the
RY/BY pin through an I/O port, or by reading the Status Register in the
flash memory device. Make sure that if you choose software polling for
an operation, you disable the interrupt that that operation's conclusion

. could generate.

UPDATE ROUTINES
Flash memory's easy in-system update capability makes it very useful for
storing the embedded code that runs the system. What should such an
update utility look like, and what will it contain? To some extent, the
answer to this question will depend on the kind of system we're talking

APPLE INC.
EXHIBIT 1011 - PAGE 0193

Update Routines 171

about, what kind of user interface it contains, and where the new code to
be stored in the flash memory will come from. Following are some
examples of systems that exist today that take advantage of flash
memory update:

• If the flash memory stores the BIOS (Basic Input/Output
System) in a personal computer, the update utility may be
resident in the machine (accessed via a special keystroke
sequence) or run from the HDD or a floppy disk. The new BIOS
can be shipped on floppy disk from the manufacturer, or the
customer can download the code from a BBS over a modem
link.

• If the flash memory stores the operating software for a laser
printer, the update utility can again be run from a connected
computer, with handshaking and new software download over
the parallel or serial link.

• If flash memory contains the embedded code of a cellular phone,
the update utility can be resident in the handset or base unit,
with communication between the user and phone over the
keypad and screen. Conceivably, the user could call a computer
at the phone manufacturer using a dedicated phone number, and
after entering a unique keypad sequence, new code could be
relayed over the wireless link to the phone, which would update
itself automatically.

Only your imagination and the unique needs and capabilities of your
application limit the specific update method chosen for your design. In
general, however, if an end user is going to be doing the update, the
interface should be as intuitive, simple and informative as possible.
Think of a time when you've installed or updated an operating system or
application on your computer. Like the authors, you've probably
experienced setup routines that were very good, and those that were very
bad! The end user's expectations, and the capabilities you provide, are
no different when code resident in flash memory is being updated versus
when updating software on a HDD.

APPLE INC.
EXHIBIT 1011 - PAGE 0194

172 Chapter Seven: Software Inteifacing to Flash Memory

The following pseudo-code routine applies to a BIOS update routine, but
many of the concepts shown are equally useful for other applications.
Spare no detail in designing the update utility; provide both keyboard
and mouse interface if possible, make the display colorful and
informative (while not distracting or overwhelming!), etc. Time spent
up-front in making the update process intuitive and user-friendly will
pay long-term dividends when customers take advantage of the
capability you've designed into your system!

• Initialize the system; set up the screen, ensure that the system (if
portable) has sufficient battery power for the update.

• Access BIOS update files (from floppy disc, modem link, etc.).
If files are not present, send an error message ("Insert floppy
disk, or press ESC to exit", or equivalent).

• Display BIOS update file information, prompt user for choice
(have simple choices and perhaps even refer them to user's
guide), load to memory and validate data via checksum or other
means. If file is invalid, prompt for file or exit.

• Inform user that BIOS update is about to begin ("Press ESC to
exit, or any other key to continue"). If user continues, display a
message to the effect of "Do not power down or reboot the
machine during BIOS update".

• Erase flash memory.

• Reprogram with new data (a "Percent Complete" indication is
useful in both this and the previous step).

• Inform the user when the BIOS update completes.

• Reboot the machine.

Flexible Design Techniques

To ensure multiple flash memory sources, or to leverage one hardware
design for several different end-system configurations, you may choose

APPLE INC.
EXHIBIT 1011 - PAGE 0195

System Boot Code Contents 173

to create a flexible design that accepts several different flash memories.
This flexibility may involve compatible flash memories from different
manufacturers, different flash memory densities from the same
manufacturer (i.e., a 1 Mbit or 2 Mbit flash memory in the same socket)
or even incompatible flash memories (both a non-automated and an
automated device, for example). In each of these cases, the software
update algorithms probably differ for each flash memory that can be
used in the design.

PCMCIA flash memory cards represent one likely example of this
situation. Removability makes it very simple to install cards containing
many types of flash memory devices in the same system.

Fortunately, most flash memories support software-accessible
manufacturer and device IDs identifying the device and enabling the
system to select the correct program/erase algorithms. For example,
writing the Intelligent Identifier command (70R) to any Intel flash
memory enables reading of the manufacturer ID (89R) at device address
OOOOR, and the specific device ID at device address 000lR. Other
companies have different manufacturer and device IDs, of course, and
both IDs can be found in device specifications.

Be careful if you use this procedure in a design that will accept either a
flash memory or an EPROM. EPROMs do not support software access
to device IDs. Writing the Intelligent Identifier command to an EPROM
(thereby toggling its PGM input, usually located at the same pin as flash
memory's WE) with Vpp at 12V may result in unwanted programming
of EPROM locations 1

SYSTEM BOOT CODE CONTENTS
When bulk-erase flash memories were introduced several years ago,
there was some reluctance to using them for embedded code storage,
precisely because erasure removed all data from the device. What might
happen, for example, if in the middle of a code update (while the flash
memory was erased and before new code was programmed) the system
was reset, or it lost power? What would happen if the flash memory was
unintentionally updated with corrupted code? When the processor

APPLE INC.
EXHIBIT 1011 - PAGE 0196

174 Chapter Seven: Software Interfacing to Flash Memory

attempted to reboot from the flash memory, it would not find the code it
expected, leading to a brain-dead system. The realistic possibility of
these scenarios was in most cases very unlikely, but it was a concern in
some applications.

To better meet the needs of embedded code applications (and, quite
frankly, to sell more flash memory I), several companies now offer
blocked flash memories that allow selective erase of portions of the
device without altering data stored in other device blocks. These
products also offer hardware and/or software lockable boot blocks that,
if desired, can make code or data stored inside unalterable once initially
programmed by the system manufacturer. Examples include Intel's Boot
Block flash memory line (see Figure 5.5), and AMD's 5V-only flash
memories. The intent here is to provide a small kernel of stable, non
updateable code that will always be present, regardless of the state of
other device blocks. This secure software will minimally bring up the
system and download code to the other blocks of the device if required.

The contents of this kernel code vary from system to system and
application to application, but the guidelines that follow apply in most
cases. The core boot code should contain some, if not all, of the
following functions:

•

•

•

•

Minimally initialize the system (configure the processor,
chipset, floppy drive to allow reading in of the update code, etc.)

Perform a checksum of the remainder of the flash memory data

If checksum verifies correctly, jump to the main portion of the
system boot code, probably found in another block of the device.

If checksum fails (meaning that one or several of the other flash
memory blocks contain invalid code/data):
-Alert the user through speaker beep, message on display, LED
flash, etc.
-Erase all other blocks of the flash memory~9

39 This means that the boot block must store the erase/program algorithms for the flash memory.

APPLE INC.
EXHIBIT 1011 - PAGE 0197

Software Interface to Flash Cards, SIMMs and Multi-Component Arrays 175

-Download new data from floppy disk, external connector, etc.
-Reboot the system

SOFTWARE INTERFACE TO FLASH CARDS,
SIMMS AND MULTI-COMPONENT ARRAYS
This chapter, so far, has covered software interfacing to flash memory
components in great detail. In its simplest definition, a flash memory
card or SIMM is a super-component, a large array of flash memory
devices in one package. Of course, some flash memory cards also
include enhanced card identifiers and control registers4o. Beyond this
extra circuitry, system software interacts with the flash memory
components in the card in the same way as it would interact with the
flash memory components directly. A similar situation exists if the
system design includes not just one resident flash memory, but a larger
array of multiple flash memories on the motherboard, interfacing to the
processor. To repeat, the same rules and guidelines we've already seen
for individual flash memories also apply to groups of flash memories on
the system motherboard, on a separate SIMM board, or in a remov.able·
card form factor. Each flash memory in the group is manipulated and
controlled, programmed and erased using the same algorithms we've
already covered in this chapter.

Parallel programming or parallel erase of multiple flash memories at
the same time presents one area where things get a little tricky. Because
they program or erase at slightly different rates relative to each other41,

multiple flash memories connected in parallel (to match the system
buswidth) present a unique challenge. How do we ensure sufficient
program/erase of the slower flash memories in a parallel configuration,
while not overprogramminglovererasing faster devices? That's what this
section will show you! Just as the system interface to individual
automated flash memory components was much simpler than to their
non-automated counterparts, automated flash memories make parallel
program and erase much easier.

40Refer to Chapters 8 and 10 more for details.
41This results from process and cycling variations.

APPLE INC.
EXHIBIT 1011 - PAGE 0198

176 Chapter Seven: Software Inteifacing to Flash Memory

As a review, look at Figure 5.2, where we have shown two x8 flash
memories connected in parallel (one to the lower half of the bus and one
to the upper half) to match the processor x 16 bus width, and sharing a
common CEo This interface could have just as easily been four x8 or two
x16 flash memories interfaced to a 32-bit processor. Similarly, Intel's
Series 1 and Series 2 flash memory cards contain x8 flash memories
connected in parallel, to match the 16-bit card interface. The
components inside these memory cards can be accessed individually (via
the CE1 and CE2 inputs). However, in this section we'll assume a simple
16-bit interface to the card, in which case both CE1 and CE2 will be
active each time the card is accessed. Programming/erasing both
components in parallel also maximizes performance by doing twice as
much work in the same amount of time, albeit with twice the amount of
current draw.

As we cover the parallel program and erase flowcharts in the next
several sections, refer to the individual device program/erase algorithm
discussions at the beginning of the chapter for step-by-step details, not
repeated here for reasons of brevity.

Parallel Program of Non-Automated Flash Memories

Figure 7.11 shows a conceptual flow for parallel programming of non
automated flash memories. This procedure bases itself on the fact that
writing data FFH to the flash memory is decoded as the reset command
(see Table 7.1), which puts the device in its "read array" mode.
Therefore, by writing FFH to flash memories that have already verified
correctly, we avoid excessive programming. The parallel programming
flow decreases total programming time, eliminates separate tracking of
high-low byte addresses and per-device program pulses, and maintains a
consistent interface (word, double-word, etc.) to the flash memories.

Step 1

Enable VpPH for all devices to be programmed.

Step 2

When first entering this routine, the program setup command variable
will be initialized so as to write 40H to each flash memory. Similarly,
the program verify command variable will be initialized to write COH to

APPLE INC.
EXHIBIT 1011 - PAGE 0199

Software Interface to Flash Cards, SIMMs and MUlti-Component Arrays 177

each flash memory. As an example, if two x8 flash memories are
connected in parallel, the program setup and program verify command
variables will initially be 4040H and COCOH. For four flash memories,
the commands will initially be 40404040H and COCOCOCOH.

Similarly, the "'program" command variable will initially reflect the data
to be programmed into each device. For example, for two x8 parallel
flash memories, A and B, the program command variable will initially
be AABBH, where AA and BB reflect the data for device A and B,
respectively.

The program pulsecount is initially O.

Step 3

Write the program setup and program command variables to the parallel
flash memories.

Step 4

Time out at least 10 IlS.

Step 5

Write the program verify command variable to the parallel flash
memones.

Step 6

Time out at least 6 Ils.

Step 7

Read from the flash memory interface, and compare each device's data
to the program command variable written in step 3. Do all flash
memories verify correctly after one program attempt at the location?

Step 8

If more data is to be programmed, the algorithm returns to step 2, to
reset/clear all variables.

APPLE INC.
EXHIBIT 1011 - PAGE 0200

178 Chapter Seven: Software Interfacing to Flash Memory

Enable Vpp

~ 2

~
Reset Program Sequence,
Program Verify Variables.
Clear Pulsecount Variable

... ~

Write Program Sequence ...
Variables to all Flash
Memories in Parallel

... 4

Time out 10 ~s

... 5

Write Program Verify
Variable to all Flash
Memories in Parallel

+ 6

Time out 6 ~s
NO 10

+ 7
Mask Flash Memories That

Have Programmed

Read from Flash Memories. ~ Increment Pulsecount Have they all Programmed?

~ES Last Pulse?

8

~ More Data to Program?
YES

.NO
9 " 11

Write Read Array Command Write Read Array Command

Disable Vpp Disable Vpp

Programming Complete Programming Error

Figure 7.11: Parallel Programming oiNon-Automated Flash Memories

APPLE INC.
EXHIBIT 1011 - PAGE 0201

Software Interface to Flash Cards, SIMMs and Multi-Component Arrays 179

Step 9

After programming all data, write the read array command (FFH) to all
flash memories in parallel and disable Vpp if desired.

Step 10

What happens if some, but not all, of the parallel-configured flash
memories verify correctly? Since some devices have not fully
programmed yet, the algorithm will have to go through another
program/verify iteration, but we don't need (or want) to do this for flash
memories that have already passed. For these latter flash memories,
then, we substitute data FFH for the program setup and program verify
commands, and for the data to be programmed.

We also need to increment the pulsecount to make sure we haven't
exceeded 25 pulses.

Example:
Two x8 devices are being programmed with variables initialized as
follows:

Program Setup:
Program:

Program Verify:
Pulsecount:

4040H
AABBH (A is the high-byte device, B
is the low-byte)
COCOH
o

After one program/verify iteration, the high-byte device verifies
correctly (to data 'AAH') , but the low-byte device does not. Therefore,
we reset the variables as shown:

Program Setup: FF40H
Program: FFBBH
Program Verify: FFCOH

Increment pulsecount now equals one. Since it is less than 25, we return
to step 3 and repeat the program/verify sequence.

Step 11

If after 25 pulses one of the flash memories still does not verify
correctly, write the read array command, disable Vpp, and return an

APPLE INC.
EXHIBIT 1011 - PAGE 0202

180 Chapter Seven: Software Interfacing to Flash Memory

error indication to the system. More comprehensive algorithms can
return not only an error message but also reference to the specific flash
memory that did not program to the calling routine, if this information is
useful.

Parallel Erase of Non-Automated Flash Memories

Figure 7.12 shows parallel erase of non-automated flash memories. Like
parallel programming, this algorithm depends on writing data FFH to
avoid overerase of devices that correctly verify. As we first discussed in
chapter 3, overerase is a much bigger concern (and much more damaging
phenomenon) than is overprogram.

Step 1

Enable VpPH for all devices to be erased.

Step 2

Preprogram all locations within the devices to OOH, by repeatedly
following the parallel programming algorithm of Figure 7.11'.

Step 3

After first entering this routine, the erase sequence command variable
will be initialized so as to write 20H to each flash memory. Similarly,
the erase verify command variable will be initialized to write AOH to
each flash memory. As an example, if two x8 flash memories are
connected in parallel, the erase sequence and erase verify command
variables will initially be 2020H and AOAOH. For four flash memories,
the commands will initially be 20202020H and AOAOAOAOH.

Initialize the erase pulsecount and address variables to zero.

Step 4

Write the erase sequence command variable twice in a row to the
parallel flash memories, to reflect writing the "erase setup" and "erase"
commands (same command data).

Step 5

Time out 10 ms.

APPLE INC.
EXHIBIT 1011 - PAGE 0203

Software Interface to Flash Cards, SIMMs and Multi-Component Arrays 181

Enable Vpp • 2

Program all Devices to OOH • 3

Reset Erase Sequence,
EraseNerlfy Variables.

Clear Pulsecount
Variable, Address Variable • 4

Write Erase Sequence
~

Variables to all Flash
Memories In Parallel

• 5

Time out 10 ms • 6

... Write Erase Verify ... Variable to all Flash
Memories in Parallel

• 7

Time out 6 ~s
NO 12 • B Mask Flash Memories

Read from Flash Memories. ~ That Have Erased

Have They all Erased? Increment Pulsecount

10 .YES Last Pulse? NO 9
Increment Address. .-r Reset Erase Sequence, Last Address?

..,YES Erase Verify Variables .YES 13
11

Write Read Array Command Write Read Array Command

Disable Vpp Disable '{>p

Erase Complete Erase Error

Figure 7.12: Parallel Erase of Non-Automated Flash Memories

APPLE INC.
EXHIBIT 1011 - PAGE 0204

182 Chapter Seven: Software Inteifacing to Flash Memory

Step 6

Write the erase verify command variable to the parallel flash memories.

Step 7

Time out at least 6 IlS.

Step 8

Read from the flash memory interface, and compare each device's data
to its valid erased value, FFH. Do all flash memories at the location
verify correctly after one erase attempt (most likely not)?

Steps 9 and 1 0

Increment the address, and verify the new flash memory locations.
Continue until all data in all parallel flash memories has verified as
erased.

Step 11

When all flash memories have been erased, write the read array
command (FFH) to them in parallel and disable Vpp if desired.

Step 12

What happens if some, but not all, of the parallel-configured flash
memories verify correctly? Since some devices at the current address
location have not fully erased yet, the algorithm will have to go through
another full erase/verify iteration, but we don't need (or want) to do this
for flash memories that have already passed. To do so would increase
the potential for overerase! For these latter flash memories, then, we
substitute data FFH for the erase setup, erase and erase verify
commands.

We also need to increment the pulsecount to make sure we haven't
exceeded the maximum allowable count for the flash memory (usually
1000; check specific device datasheets to be sure).

APPLE INC.
EXHIBIT 1011 - PAGE 0205

Software Interface to Flash Cards, SIMMs and Multi-Component Arrays ,183

Example:
Two x8 devices are being erased with variables initialized as follows:

Erase Sequence: 2020H
Erase Verify: AOAOH
Pulsecount: 0

Mter one erase/verify iteration, the high-byte device verifies correctly as
erased, (to data FFH), but the low-byte device does not. Therefore, we
reset the variables as shown:

Erase Sequence: FF20H
Erase Verify: FFAOH

Increment pulsecount now equals one. Since it is less than the
maximum, we return to step 3 and repeat the erase/verify sequence.

Step 13

If, after 1000 pulses, one of the flash memories still does not verify
correctly, write the read array command to all of them, disable Vpp, and
return an error indication to the system. More comprehensive algorithms
can return not only an error message but also reference to the specific
flash memory that did not fully erase to the calling routine, if this
information is useful.

Parallel Program/Erase of Automated Flash Memories

As explained earlier in the chapter, automated program/erase algorithms
greatly simplify system interface software, by automatically and
internally controlling verification, pulse repetition and iteration, and so
forth. Parallel program/erase, shown in Figure 7.13, is similarly
simplified.

Step 1

Enable V pp before attempting the desired operation.

Step 2

Similar to the non-automated algorithms discussed previously, write the
program or erase command sequence to each flash memory in the
parallel configuration. Note that since the internal automation controls
verify, repetition and algorithm termination, no provision needs to be
made for device-by-device command masking with FFH.

APPLE INC.
EXHIBIT 1011 - PAGE 0206

184 Chapter Seven: Software Interfacing to Flash Memory

Step 3

The system can poll the device Status Registers, or be alerted via
RY/BY interrupt, to determine when program/erase completes. A full
check of all Status Register bits will determine whether the desired
operation was successful (see automated program/erase algorithm
sections earlier in this chapter).

Steps 4 and 5

System software can loop back to step 2, if more data must be
programmed or more blocks erased. Otherwise, it writes the Read Array
command to reset all devices to their normal modes and disables Vpp if
desired.

Enable Vpp
,

~, 2

... Write Erase or Program
~ Command Sequence to all

Devices in Parallel
~
.....

." 3

Read from Flash Memories, No
Have They all I--

Erased/Programmed?

Yes

." 4
Yes More Blocks to Erase,

Data to Program?

No

." 5

Write Read Array Command

-Disable Vpp

Erase/Program Complete

Figure 7.13: Parallel Program/ Erase of Automated Flash Memories

APPLE INC.
EXHIBIT 1011 - PAGE 0207

185

SUMMARY
In this chapter we've shown you how to interface to flash memory
components via software; to a single flash memory (or multiple devices)
resident on the system board, to flash memories on an add-in board like
a SIMM and to flash memories in a removable card form factor. The
command interface and internal logic of flash memory makes in-system
update a much simpler proposition than it was for earlier-generation
memories like EPROM. Full automation on newest devices simplifies
the process even further.

We've intentionally not covered some aspects of software interfacing in
this chapter; specifically those that relate to PCMCIA flash memory
cards and the extra logic and control registers that exist beyond the
components themselves. The software architecture of flash-friendly file
systems has similarly not been included in Chapter 7. Fear not, however;
these topics have not been overlooked, just relegated elsewhere! See
Chapters 8-10 for more information.

APPLE INC.
EXHIBIT 1011 - PAGE 0208

Chapter Eight: Hardware Interfacing
Considerations for Flash
Cards

In Chapter 5 we focused on the system hardware requirements for
interfacing to flash memory components, from single to multiple device
designs. This chapter runs in a parallel direction; in that it explains the
hardware interfacing requirements for implementing a flash memory
array inside a removable package, the memory card. Some of the things
we'll cover include:

• The Personal Computer Memory Card International Association
(PCMCIA) specification

• Fundamentals of memory card design from a system interface
perspective

• Host system interface controllers
• PC Card insertion and removal
• Interrupt steering

A FLASH MEMORY ARRAY WITHIN A CARD
A flash memory card may consist of nothing more than a packaged array
of flash memory devices, utilized primarily for easy removal and
transfer. The simplest example of this is a card containing a single flash
memory device that essentially plugs directly into the same socket that
would be provided for a discrete component. Cards like this usually have
a proprietary interface, typically designed for embedded equipment, or
potentially even things like video games. The memory card packaging
merely makes this component easier to handle when performing
upgrades or removing it from the system for purposes of data security.

APPLE INC.
EXHIBIT 1011 - PAGE 0209

188 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

Taking this single-chip card a step further, some cards contain multiple
components and incorporate a simple decoder to allow individual
selection (chip enabling); not really much different than that required for
an array of unpackaged discrete memories. These commercially
available cards typically accommodate custom designs and have fine
tuning for a specific application. These "non-mainstream" cards tend to
be more costly and generally do not allow interchangability from system
to system.

PCMCIA FLASH MEMORY CARDS
PCMCWJEIDA (Personal Computer Memory Card International
Association and Japan Electronics Industry Design Association)
developed a detailed specification to standardize on a memory card
format, including the electrical interface and card dimensions. Since
PCMCWJEIDA represent the dominant memory card interface for flash
memory, we will focus on it (and more specifically, only areas relevant
to flash memory cards). This specification has the fundamental goal of
allowing any PCMCIA-compatible card (ranging from flash memory
cards to fax/modem cards) to be plugged into any PCMCIA-compliant
system. To accommodate the wide variety of cards, the specification was
defined to provide a generic card interface. For example, although flash
memory cards do not require some signals (e.g., battery voltage detect,
WAIT), they must still be supported to maintain a PCMCIA-compatible
socket.42

PCMCIA 1.0

As described in Chapter 10, the PCMCIA specification actually
represents two major versions, namely releases 1.0 and 2.0. Although
the second release supersedes the first, there are still many low density,
flash memory cards being sold, and systems designed, that only comply
with release 1.0. The first PCMCIA-compatible flash memory card to
enter the market, Intel's Series 1 Card, is basically an extension of the
simple cards discussed above. The card contains between 8 and 16 flash
memory components (Inters 28FOlO and 28F020), and an ASIC which
supplies buffered signals for the PCMCIA interface and handles
component-level decoding. Figure 8.1 shows a block diagram of this

42rhis may not be a concern for proprietary systems only using flash memory cards.

APPLE INC.
EXHIBIT 1011 - PAGE 0210

PCMCIA Flash Memory Cards 189

memory card. Other manufacturer's cards, such as Fujitsu's
MB98A881223 (4 Mbyte flash memory card), also incorporate
EEPROM devices that reside in the Attribute Memory address space.

PCMCIA2.0

Along with the second release of the PCMCIA spec came a new
generation of flash memory cards. In addition to maintaining backwards
compatibility with the previous generation, Release 2.0 cards support
new PCMCIA interface signals (occupying previously reserved pins).
Intel's Series 2 Flash Memory Cards again provide a good example.
Comparing their block diagram (Figure 8.2) with that shown in Figure
8.1, one can see a similarity in the basic structures. Closer examination
reveals that the Series 2 Card not only contains different devices, but
also supports a Card Information Structure43 (CIS), reset capability, and
ready/busy for automated write and erase operations (via the REG, RST,
and RDY IBSY pins, respectively).

Although the PCMCIA evolution to release 2.0 focused primarily on the
accommodation of I/O cards (modems, faxes, etc.), memory card
vendors also took a step to add more complex circuitry, providing
increased functionality and features. For example, the Card Information
Structure, a feature originating with release 1.0, does not appear on most
fIrst-generation cards but is prevalent on cards designed to comply with
the release 2.0 spec. The appendix lists different flash memory card
manufacturers supporting the different levels of compatibility (release
1.0 or 2.0).

We'll begin our technical discussion of the PCMCIA flash memory card
interface by defIning the relevant signals (from a flash memory
standpoint44). This will provide you with a knowledge base to
understand and develop specifIc implementations. In the last part of the
chapter we'll go over some general design guidelines such as buffering,
card removal and insertion, power up and down protection, etc. To
begin, Table 8.1 lists the 68 pins of the PCMCIA electrical interface and

43Chapter 11 discusses the Card Information Structure.
44For more information on the I/O interface, refer to the PCMCIA R2.01 specification.

APPLE INC.
EXHIBIT 1011 - PAGE 0211

190 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

~ D OJ a- s

Do-o,

~
I/OXVERS WE

AND

~
BUFFERS OE

:!:!!...-

'Or~
"~'~WRITE PROTECT

Ao - SWITCH

Al-Ao!l ADDRESS

CE
2

BUFFERS
AND

CE
l

DECODERS

REG

q
-

CARD DETECT

BDV
l

BDV2 ,
BATIERY VOLTAGE

DETECT

N

Vee

VpPl

Ao-A17

CEHo-CEH 3

CElo-CEl 3

....
l-

I-

I-

~

I-

I-

I-

2BFOXO 2BFOXO

Ao-A17 Do-o, Ao-A17 Da-Ojs

CE l- CE

WE I- WE

OE I- OE
Vss Vcc VpPl Vss Vcc Vpp,

1 1 1 I I I
Ao-A17 Do-o, I- ~ Ao-A17 Da-Ojs

CE l- CE

WE I- WE

OE l- DE
Vss Vce VPPl Vss Vce Vpp,

I I I I I I
• • • • • •

CE CE

WE WE

OE OE
Vss Vee VpPl Vss Vee Vpp

Figure 8.1: PCMCIA 1.0 Flash Memory Card

I-

l-

APPLE INC.
EXHIBIT 1011 - PAGE 0212

~ 00<15:8>

~ 00<7:0>

~ WE

~ OE
RESET - CONTROL

RY/BY<19:0>
~ ASIC WITH RP<9:0>

~
XCVRS

AND

~ BUFFERS

~
~

BDV
1

BDV2 1-
A<19:0>

~ CE<19:0>

WP

~ Vee r-
~ r-

r-- WRITE PROTECT - SWITCH r-

~~"' r-
DETECT I-

I-

r-

GND

Vee
VpP1

PCMCIA Flash Memory Cards 191

2BFOOBSA

Aj9"Ao 07-00
CE

RYifN
WE
OE DEVICE 0

RP
GND Vee VpP1

I I I
A19-AO DrDo
CE

RY/BY
-
WE
OE DEVICE2

RP
GND Vee VpP1

I

WE

I
• • •

I

OE DEVICE 18

RP
GND Vee VpP1

• • •

I>--

.--

2BFOOBSA

A19-AO 07-00
CE

RYifN
WE

OE
DEVICE 1

RP
GND Vee VpP2

I I I
A19-AO DrDo
CE

RY/BY
WE

DEVICE 3
OE

RP
GND

I
Vee

I
• • •

VpP2

I

4---1 WE
OE DEVICE 19

I--
-----t

~~

"-'

I-...... ------!RP
GND Vee VpP2

Figure 8.2: Intel Series 2 Flash Memory Card

APPLE INC.
EXHIBIT 1011 - PAGE 0213

192 Chapter Eight: Hardware Interfacing Considerations/or Flash Cards

Figure 8.3 displays the general categories. The text that follows defines
these signals from a functional and electrical standpoint45 •

PIN SIGNAL VO FUNCTION ACTIVE PIN SIGNAL VO FUNCTION ACTIVE
1 GND Ground 35 GND Ground
2 DQ3 I/O Data Bit3 36 CD1 0 Card Detect 1 LOW

3 DQ4 I/O Data Bit4 37 DQ11 I/O Data Bit 11
4 DQ5 I/O Data Bit 5 3B DQ12 I/O Data Bit 12
5 DQ6 I/O Data Bit 6 39 DQ13 I/O Data Bit 13
6 DQ7 I/O Data Bit7 40 DQ14 I/O Data Bit 14
7 CE1 I Card Enable 1 LOW 41 DQ15 I/O Data Bit 15

B A10 I Address Bit 10 42 CE2 I Card Enable 2 LOW

9 OE I Output Enable LOW 43 VS1 0 Voltage Sense 1

10 A11 I Address Bit 11 44 RFU Reserved
11 A9 I Address Bit 9 45 RFU Reserved
12 AB I Address Bit B 46 A17 I Address Bit 17
13 A13 I Address Bit 13 47 A1B I Address Bit 1 B
14 A14 I Address Bit 14 4~ ~19 I Address Bit 19
15 WE I Write Enable LOW 49 A20 I Address Bit 20

16 RDY/BSY a Ready/Busy LOW 50 A21 I Address Bit 21

17 VCC Supply Voltage 51 VCC Supply Voltage
1B VPP1 Supply Voltage 52 VPP2 Supply Voltage
19 A16 I Address Bit 16 53 A22 I Address Bit 22
20 A15 I Address Bit 15 54 A23 I Address Bit 23
21 A12 I Address Bit 12 55 A24 I Address Bit 24
22 A7 I Address Bit 7 56 A25 I Address Bit 25
23 Aa I Address Bit 6 57 VS2 a Volt!lgE! Sense 2 N.C.
24 A5 I Address Bit 5 5B RST I Reset HIGH
25 A4. I Address Bit 4 59 WAIT a Extend Bus Cycle LOW

26 A3 I Address Bit 3 60 RFU Reserved
27 A2 I Address Bit 2 61 REG I Attribute Memory LOW

Select
2B A1 I Address Bit 1 62 BVD2 a Battery Voltage

Detect 2
29 Ao I Address Bit 0 63 BVD1 a Battery Voltage

Detect 1
30 DQO I/O Data Bit 0 64 DQB I/O Data Bit B
31 DQ1 I/O Data Bit 1 65 DQ9 I/O Data Bit 9
32 DQ2 I/O Data Bit2 66 DQ10 I/O Data Bit 10
33 WP a Write Protect HIGH 67 CD2 a Card Detect 2 LOW
34 GND Ground 6B GND Ground

Table 8.1: Signal Definition of the PCMCIA Interface

45Refer to Chapter 5 for more information on specific flash memory device signals.

APPLE INC.
EXHIBIT 1011 - PAGE 0214

PCMCIA Flash Memory Cards 193

ADDRESS

DATA

CYCLE CONTROL

CARD CONTROL

CARD DETECT

MEMORY
STATUS

1/0 STATUS

POWER

25:0

.... 15:0 ..
~ ...

OE, WE, lOR, lOW, WAIT
...

CE1,CE2,RESET,REG
...

... CD1, CO2

... BV01, BVD2, WP, RDY/BSY

... IREO, SPKR, STSCHG, 101S16, INPACK

Vee, VPP1 , VPP2, GND

Figure 8.3: PCMCIA Electrical InteifaceCategories

PCMCIA Signal Definitions

Attribute Memory Select (REG)

0
a: «
()

()

a.

Memory cards supporting this signal contain two separate addressing
spaces - a Common Memory Plane (CMP) and an Attribute Memory
Plane (AMP). REG selects between the CMP (REG = V rn) and the AMP
(REG = VIL). The following briefly describes their functions:

• The Common Memory Plane contains the flash memory devices,
as shown in Figure 10.35.

• The Attribute Memory Plane contains:
a. The PCMCIA-defined Card Information Structure.

APPLE INC.
EXHIBIT 1011 - PAGE 0215

194 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

b. Memory-mapped registers supporting PCMCIA
recommended functions and special functions designed
by the card vendor.

c. Reprogrammable memory for OEM or end-user
customization, such as card format information.

Some host systems do not support the AMP because they lack support
for the REG signal. Therefore, within the card this signal must be pulled
up to Vee to keep it inactive if it is not connected at the host. This will
minimally ensure access to the CMP. For cards that do not support the
AMP, the REG pin going into the card will be a no connect. This forces
the determination of AMP presence onto the system software. For
example, after the system asserts REG, the system software attempts to
read the CIS, and if invalid data appears, this indicates the AMP's
absence.

When choosing the value of the pull-up resistor, the card vendor must
maintain a balance between amount of current drawn and the switching
speed of the signal. PCMCIA requires R > 10 ill with a load to the host
of C> 50 pF at a DC current of 700).LA (low state) and 150).LA (high
state). The DC current through a 10 ill resistor is 500).LA, leaving 200
).LA available to drive the ASIC in the card. From the system perspective,
the input capacitance value of this signal determines the amount of
current that must be supplied to switch it in the desired amount of time.
Notice from the read timing waveform in Figure 8.4 that the REG signal
has the same timing requirements as the address signals.

Address Inputs (Ao - A2s)

The 26 address bus lines enable direct addressing of 64 Megabytes of
flash memory in the CMP (REG = VIL) and 64 megabytes in the AMP
(REG = Vrn). When designing a system, pay attention to the manner in
which the different cards internally handle lower densities (Le. less than
64 megabytes46).

46 At the time this book was published, there was no such thing as a 64 megabyte flash memory
card.

APPLE INC.
EXHIBIT 1011 - PAGE 0216

ADDRESSES! REG

V'L V,H

CE

V'L V,H

OE

V'L
V,H

WE

V'L VOH DATA
VOL

STANDBY

PCMCIA Flash Memory Cards 195

DEVICE AND OUTPUTS DATA
ADDRESS SELECTION ENABLED VALID

ADDRESS STABLE

Vee
PD'NER

STANDBY DOViN

~;JIIJJC=t=AVAV-=_~,;w;wmm~ --1ilJ NOTE

NOTE

HIGHZ
VALID OUTPUT

Note: The hatched area may be either high or low.

Figure 8.4: PCMCIA Read Timing Waveform

Some cards may only decode the address lines relevant to their densities.
For example, if a 1 megabyte card only decodes from AO to A19, any
access above 1 megabyte will result in a wrap-around, or aliasing,
because A20 - A25 are no-connects (Figure 8.5).

1 Megabyte Card

.. No Connects
po

... 1 Megabyte
Flash
Array

Access Above 1 Megabyte
Yields 'Wrap-Around' To
Beginning of Array.

Figure 8.5: Aliasing Caused by Inadequate Address Line Decoding

APPLE INC.
EXHIBIT 1011 - PAGE 0217

196 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

Other cards decode all or most address signals, and will display invalid
data when the system attempts to access an address above the card's
known density (this is less dangerous than aliasing because it eliminates
the possibility of overwriting data)47. In reality, neither'situation should
pose a problem, because properly designed system software checks with
the card's CIS (or other means) to determine the card's density.

NOTE: System designs exist today where some of the address lines to
the PCMCIA socket were left disconnected, or even where the upper
unused address lines were tied low. These designs either took advantage
of the wrap-around scenario or did this just to save on signal routing.
The surprise comes during the discovery that not all cards are created
equal (i.e., cards with all signals decoded). Perhaps an addressing
scheme to standardize on card addressing could be proposed to
PCMCIA! Until then, writing the software such that it doesn't access
beyond the card's density provides the simplest and safest technique.

Data Bus (Do - 015)

These 16 lines represent the bi-directional data bus. The PCMCIA
interface supports word-wide or byte-wide operations by decoding
address line Ao and the two card enables, CEl and CE2 (Table 8.2).
Decoding performed by the card's ASIC allows the system to access one
word at a time or one byte at a time, referencing the high or low byte.

The flash memory architecture dictates how to arrange the components
within the card (Figure 8.6). Flash memories with 8-bit interfaces must
be paired to support PCMCIA-compatible word-wide accesses. 16-bit
devices directly support the interface and provide the additional benefit
of enabling a single-chip card (assuming the device supports selection at
the byte-level). From a flash memory standpoint (i.e., erasable at the
block level), the architecture also dictates the block size. In other words,
a device pair doubles the effective block size because the odd and even
bytes alternate between device pairs (provided the 8-bit and 16-bit wide
devices have the same block size).

47Por example, Intel's Series 2 Card returns FFH data when reading above the card's actual density.

APPLE INC.
EXHIBIT 1011 - PAGE 0218

PCMCIA Flash Memory Cards 197

MODE REG CE2 CEl Ao OE WE Vpp2 Vppl D[15:8]

STANDBY X VIH VIH X X X VPPL VPPL HIGH-Z

BYTE-READ VIH VIH VIL VIL VIL VIH VPPL VPPL HIGH-Z

VIH VIH VIL VIH VIL VIH VPPL VPPL HIGH-Z

WORD-READ VIH VIL VIL X VIL VIH VPPL VPPL ODD
BYTE

ODDBYTE - READ VIH VIL VIH X VIL VIH VPPL VPPL ODD
BYTE

BYTE WRITE VIH VIH VIL VIL VIH VIL xxx VPPH xxx

VIH VIH VIL VIH VIH VIL VPPH xxx xxx

WORD-WRITE VIH VIL VIL X VIH VIL VPPH VPPH ODD
BYTE

ODDBYTE • WRITE VIH VIL VIH X VIH VIL VPPH VPPL ODD
BYTE

Table 8.2: Common Memory Accesses

Flash Memory Card Flash Memory Card

uuu t:vt:r ,UUU~I=N

"
0

8
_
15

"
0 0-7 , D

O
_
15

,,, .,,, ~

Figure 8.6: Internal Component Arrangement Dictated by Flash
Memory Architecture

Special Considerations For 8-Bit Systems

D[7:0]

HIGH-
Z

EVEN
BYTE
ODD
BYTE
EVEN
BYTE
HIGH-

Z
EVEN
BYTE
ODD
BYTE
EVEN
BYTE
xxx

The PCMCIA specification states that a card must also provide a byte
wide access mode for 8-bit systems. In other words, the high-byte (D8 -
D 15) access of a memory card plugged into an 8-bit system must be
multiplexed to the low-byte (DO - D7) on the system side. Figure 8.7
demonstrates the basic circuit design used for implementing this

APPLE INC.
EXHIBIT 1011 - PAGE 0219

198 Chapter Eight: Hardware Inteifacing Considerations/or Flash Cards

functionality. Address lines Al8 and Al9 decode the four pairs of
devices48, and CE1, CE2 and Ao are decoded to select the low and high
byte of each device pair. In the figure, the highlighted transceiver maps
the high byte to the lower byte of the data bus.

/lJ).17 HIGH LOW

/lJ).17 A()'17

Addresses ~

74HC244

CSIl --Jl>r----t-----4I~-...r

~L --JI>~---~~~-+---,

(Oc1aJbuffer)

DATA

CEHO 2BFOXO 28FOXO

B r---------.....

Figure 8.7: Byte-Wide Access Mode Circuitry for 8-Bit Systems

Card Enables (CE1 & CE2)

These active-low control signals, along with AO, enable low and high
byte accesses on the card. After inactivating CEI and CE2, the card
should enter a low power, standby mode, depending on the card's
capability. As seen from Table 8.2, CEI and CE2, in conjunction with
Ao, support the 8-bit system's decoding scheme discussed in the previous
section. The PCMCIA specification states that the AMP only supports

48More address lines would be decoded for higher density cards.

APPLE INC.
EXHIBIT 1011 - PAGE 0220

PCMCIA Flash Memory Cards 199

even-byte accesses. Therefore, activating CE2 when accessing the AMP
(REG = V nJ results in invalid data. As discussed in the CIS section of
Chapter 10, some OEMs may use the first block of the CMP for
additional CIS space. This situation allows the use of the even and odd
bytes for storing the information.

Internal to the card, the CEl and CE2 signals must be pulled up to Vee
Gust like REG, OE and WE). The value of this becomes apparent during
card insertion and removal, to ensure de-selection of the flash memory
devices within the card.

Output Enable (OE)

This active low signal gates AMP and CMP reads from the card. Mter
the card's decoding circuitry selects the appropriate flash memory
device, the PCMCIA interface OE signal activates the output buffers in
the card's ASIC. The PCMCIA specification states that OE must be
driven to V ill by the host during write operations. This removes the
possibility of bus contentions.

Write Enable (WE)

This active low signal controls writes to the AMP and CMP. Similar to
the situation for OE, PCMCIA specifies that WE must be driven to V ill
by the host during reads, preventing unwanted write operations.

Write Protect (WP)

This signal reflects the status of the flash memory card's mechanical
write protect switch. Prior to writing to the card, system software can
check this signal and decide if it will permit the write. WP can also be
used as a WE gate (at either the system or card level) to physically block
write attempts to the flash memory devices or the memory card ASICs.

PCMCIA-interface controller chips, such as the 82365SL, support an
interface status register that can be read by software. These controllers
have WP as an input, and reflect its value within this register. This
device also provides alternate write protect mechanisms such as that
activated through Socket Service's SetPage function (Card Memory
Offset Address High Byte Register). Some flash memory cards, such as

APPLE INC.
EXHIBIT 1011 - PAGE 0221

200 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

Intel's Series 2 Card, also have special control registers that will
internally block writes to selected regions of the flash memory array.

Ready/Busy (RDY/BSY)

When this signal was originally added to the PCMCIA specification, it
was intended for devices like EEPROMs, to signal that an operation was
being processed. Although the host's electrical interface supported this
signal, first-generation flash memory cards (and the components within
them) did not take advantage of this function, and replaced this signal
with a no-connect. Some second-generation flash memories, such as
Intel's 28F008SA, support automated write and erase operations, and
therefore, provide a RY/BY signal to indicate operation status49 . Using
RDYIBSY essentially frees the host system to perform additional tasks
after initiating an operation. In other words, the operation (erase or
write) can become a background task, with completion signified by the
host receiving a ready indication (Figure 8.8). In Chapter 9, where we
discuss flash file systems, you will realize the significance of this
capability for background cleanup.

The PCMCIA spec indicates that RDY/BSY (pin 16) supports
alternative functions, depending on the type of PC card used:
• For 110 cards, this pin becomes the Interrupt Request (IREQ)

signal. IREQ asserted low indicates to the host that the 110 card
requires service.

• For memory-only cards, this pin becomes an operation status
signal that may be utilized by polling, or by generating a rising
edge interrupt to the host. Referring to Figure 8.2, witness how
the Series 2 Card routes the RY/BY signal from each of its
components into the ASIC, which in tum wire-ORs it onto the
PCMCIA interface.

49Note that RY/BY refers to Ready/Busy at the device level; RDY/BSY refers to Ready/Busy at the
card interface.

APPLE INC.
EXHIBIT 1011 - PAGE 0222

RDY/BSY

1. Flash Device Erasing
System Deselects Card
And Begins Processing
Other System Tasks
(Erase = Background
Operation)

2. Erase Operation
Completes As
Ready/Busy Goes High

;

PCMCIA Flash Memory Cards 201

Flash Memory Card

Flash .. Device

RY/BY

PCMCIA INTERFACE

RDY/BSY#

3. Interrupt Generated,
System Returns To Continue
Flash Card Functions

Figure 8.8: RDYIBSY Background Sequence

Optimizing RDYIBSY Functionality
In accordance with the PCMCIA specification, a flash memory card
supporting this functionality drives the RDYIBSY line low when its
circuits are busy processing an operation. When a single device within a
multiple-device memory card processes an erase or write operation, the
remainder of the card's devices may process subsequent operations if the
system has the capability to support it. This means that ample current
must be available to handle concurrent operations. It also adds to the
complexity of system software.

For example, what if system software wanted to write data to (or read
from) one device while another was erasing? Or, what if it was
necessary to erase several devices simultaneously? How this is handled
depends on the capabilities of the card:

APPLE INC.
EXHIBIT 1011 - PAGE 0223

202 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

• Cards with manually programming devices require continuous
attention. Chapter 7 discusses the techniques that must be
applied here. Fundamentally, these devices do not support the
RDY IBSY capability so when programming or erasing multiple
devices, the software must perform all necessary steps.

• The cards with automated devicesand RDY IBSY capability can
easily handle multiple commands to different devices (Figure
8.9). The software must have a method for determining which
device/operation finished after detecting the busy-to-ready
transition.

Flash Memory Card With AutomatedDevices

DEVICE 0

RY/BY Contains
Erasing
Block

DEVICE 1

RY/BY Contains
RDY/BSY Erasing ...

Block

DEVICE 2

RY/BY Contains
Erasing
Block

Any Busy Device Normally Results In The Entire Card Appearing Busy
Because RY/BY Signals Are Tied Together.

Figure 8.9: Use of RDYIBSY in Multiple Device Operations

APPLE INC.
EXHIBIT 1011 - PAGE 0224

PCMCIA Flash Memory Cards 203

The RDY/BSY waveform for the standard PCMCIA implementation
would appear as shown in Figure 8.10 for the situation where several
devices were being erased simultaneously. Notice that RDY/BSY stays
low until all devices in the card have completed their erase operations.
Depending on the interrupt latency, this could impact the card's
performance, because the system would not be notified that the first
device had completed until the last one had completed. From a flash file
system perspective, consider what happens during cleanup. For example,
suppose an attempt to write a large file first requires the cleanup and
erasing of several blocks. After copying the ·valid data, software begins
the sequential erasure of the blocks in question. To avoid having to wait
until the last one completed its erase, it would be most efficient to be
notified instantly after the first block-erase completes. This would allow
the flash file system software to immediately start writing the new file's
data.

DEVICE 0
RY/BY

DEVICE 1
RY/BY

DEVICE 2
RY/BY

PCMCIA
RDY/BSY

First Operation Finishes

Interrupt Latency

Interrupt Occurs

Figure 8.10: Standard PCMCIA RDYIBSY Waveform

How does the RDY/BSY signal indicate the completion of an operation
with multiple busy devices, as in Figure 8.9? Remember, wire-ORing
means that any busy device will make the entire card appear busy. Intel's
Series 2 Card demonstrates one way to overcome this problem. The
card's ASIC can be set up to detect and reflect the rising edge of RY/BY

APPLE INC.
EXHIBIT 1011 - PAGE 0225

204 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

from any device within the card. This would generate a RDY/BSY
waveform like that depicted in Figure 8.1150. To determine which device
actually caused the RDY/BSY transition, software can interrogate each
device's status register (see Chapter 7).

DEVICE 0 -------,

RY/BY

DEVICE 1

RY/BY

RDY/BSY SIGNAL

2

Figure 8.11: High-Peiformance RDYIBSY Waveform for Multiple
Device Operations

An Alternate RDYIBSY Function
RDY/BSY may also be used to indicate to the host system when the card
is ready for access after initial power up, if the card requires more than
20 milliseconds to initialize. If the card does not meet the 20 millisecond
limit, the card must set RDYIBSY low within 10 microseconds of reset
or Vee being applied to the card.

Extend Bus Cycle (WAIT)

Somewhat related to RDYIBSY is the WAIT signal. While RDY/BSY
indicates the status of activity within the card, WAIT acts as a bus cycle
indicator (and delay mechanism) between the card and the host system.
It functions similar to the READY signal of a CPU interface used to add
processor wait state cycles for slow peripherals. In flash memory cards
this pin will most likely be pulled high to indicate the no-wait condition.

SOPor more details on how to implement this mode, refer to the data sheet.

APPLE INC.
EXHIBIT 1011 - PAGE 0226

PCMCIA Flash Memory Cards 205

WAIT is primarily utilized for I/O cards to delay completion of an I/O
cycle in progress or when different access times are needed for the
Attribute Memory Plane.

Card Detect (CD1 and CD2)

The card detect pins at opposite ends of the connector provide a means
for the system to determine the presence (and proper insertion) of the
card. From a top view of the card, notice that the card detect pins are the
shortest (Figure 8.12). This ensures that they make host contact last
during card insertion and break host contact first during card removal.
We'll elaborate on the importance of this in the card buffering section.

Top View of Card
with Panel Removed

t CARC

\ INSERTION

Card Detect = 2.6 mm (Shortest Pins Within The PCMCIA Connector.)
10 Signals = 3.2 mm
Power = 3.6 mm

Figure 8.12: PCMCIA Pin Lengths Allow Proper Sequencing of Card
Signals

Within the card, these pins connect to ground to allow a system to detect
a low signal after inserting a card into the host's socket. The host must
supply a pull-up resistor to Vee (with a value greater than 10 kO) to
allow card detection to function after powering down the card slot. Most
PCMCIA interface controller chips have inputs for these signals (refer to
Socket Services in Chapter 10). Simple circuitry may also be used to tie
these signals together and route them into the host's interrupt logic
(Figure 8.13). Either method allows the system to detect a card's removal
or insertion. Alternatively, the resultant wire-or'd signal may be
periodically polled through an I/O port. One way of generating a polling

APPLE INC.
EXHIBIT 1011 - PAGE 0227

206 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

time-period in a personal computer is to install an interrupt filter into the
time-of-day interrupt. Every 55 milliseconds, when the system updates
its clock, software also checks for card presence.

D

Q

CL

RESET ----------~

CARDCHANGE

0= NO CHANGE
1 = CARD CHANGE OR MIS-ALIGNED

Figure 8.13: Example Card Detection Circuitry

Card Reset (RESET)

This signal provides a hard reset capability for all configurable
PCMCIA-compatible cards. Intel's Series 2 Card (none others to date)
provides an example of a configurable flash memory card, because its
ASICs contain various registers (Component Management Registers)
that must enter a default state on power-up, provided by reset. Within the
Series 2 Card, the reset state also serves to hold the individual flash
memory devices in a power down mode, to eliminate the possibility of
accidental writes during noisy-system power transitions.

To be back",ards-compatible with PCMCIA rele~se 1.0 (where RESET
had not yet been defined), a configurable card must internally generate
its own power-on reset. This can be done with. special Vee-monitoring
circuitry, which· turns on after Vee reaches a certain voltage during
power up and forces a card reset. The .PCMCIA specification requires

APPLE INC.
EXHIBIT 1011 - PAGE 0228

PCMCIA Flash Memory Cards 207

that RESET be held in high impedance during card power up for at least
1 millisecond after V cc becomes valid. Release 2.0 compatible cards
must provide reset control by pulling up this signal (to V cc) through a
resistor greater than 100 kn. This will ensure that the card leaves
RESET after the completion of the internal power up reset.

Configurable flash memory cards contain a PCMCIA-defined
Configuration Option Register. Bit 7 of this register (Soft Reset bit,
S RESET) , provides the software equivalent of the hardware RESET
signal. PCMCIA states that once software sets this bit, it must also clear
it. A software-generated reset leaves the card in the same default state
that resulted from a power up.

Program and Peripheral Voltages (VPP1 & VPP2)

These signals provide the programming voltages for writing and erasing
the flash memory devices. Within the card, VPPI and VpP2 can be tied
together, or they can be arranged to separately accommodate even and
odd byte components, respectively.

According to the PCMCIA specification:
• The host must supply the Vee level (at a minimum) on the Vpp

pins (3.3V or 5V).
• If a card requires a higher Vpp than the system can supply, that

system may reject the card.

This specification results in. a serious limitation. For example, a
PCMCIA-compatible system designed for 5-volt-only cards (Vee and
Vpp) , will not accommodate PCMCIA-compatible flash memory cards
that require 12 volts for program and erase operations (constituting the
majority of cards). To remove PCMCIA ambiguities such as the one
described above, Intel developed the Exchangeable Card Architecture
(ExCA) specification based on a specific implementation of the
PCMCIA specS3 . ExCA requires that host' systems support a
programming voltage of 12V ± 5%. Furthermore, the ExCA spec also
provides a peak and average current supply and duration for Vee and V PP

S3See the section in Chapter 10 on the PCMCIA-ExCA relationship,

APPLE INC.
EXHIBIT 1011 - PAGE 0229

208 Chapter Eight: Hardware Inter/acing Considerations/or Flash Cards

(Table 8.3). This ensures successful operation of most flash memory
cards, and most PC cards in general.

Signal Voltage Continuous Peak Peak Minimum Average
Supply Supply Current Average Current
Current Current Duration Current Duration

VPP (1 &2 12.0V±5% N/A 60mA 10ms 60mA 1 sec
combined)

VCC 5.0V±5% 200mA 300mA 10ms 200mA 1 sec

Table 8.3: System Power Requirements

The host design can provide a switchable or fixed V pp supply (i.e.,
hardwired "on"). When using a switchable supply, account for voltage
ramp time after enabling Vpp (via software delay or special Vpp
monitoring circuitry) before attempting an erase or write operation. This
provides time to charge up all the capacitance tied to VPP. Be aware that
ramp rate will depend on the capacitive loading on Vpp, which in tum
depends on the number of flash memory devices in the card. The best
thing to do is to use some type of hardware monitoring circuitry such as
that built into one of the integrated voltage converter devices.
Alternatively, design for the worst-case situation assuming 20 devices
per card.

Chapter 6 discusses 12V generation for flash memories52. To re
emphasize, some of the key attributes to look for in a DC-DC converter
include:
• Input Voltage Range - Depending on the host system, this will

probably be 3.3V or 5V.
• Output Voltage Tolerance - As shown in Table 8.3, this value

has a tolerance of ±5%.
• Output Current Capability - The value should be a tradeoff of

performance desired and system power sourcing limits.
• Conversion Efficiency - This value ranges between 50-90%.

Although this represents a very wide spread, most higher quality
converters typically have an efficiency of 85%.

52The Appendix contains a list of DC-DC converter manufacturers.

APPLE INC.
EXHIBIT 1011 - PAGE 0230

PCMCIA Flash Memory Cards 209

Control over Vpp switching (and Vee, for that matter) is most
conveniently performed by a PCMCIA-interface controller chip, such as
the 82365SL. PCMCIA controllers have several outputs that can be
decoded to generate the appropriate switch53. Figure 8.14 depicts a
controller chip interfaced to Maxim's MAX780A. Notice the data inputs
on the Maxim device for controlling the voltage outputs. Some PCMCIA
interface designs use discrete logic. In these cases, load switching
control can be accomplished by using programmable 110 lines.

I 3.3V AND/OR 5V SUPPLY I
MAX73B I

I 12V SUPPLY

~ MAX734

,-----

SHDN 12V 3V/5V
WR VCCDRI ---1~ -

PCMCIA

~P
MAX7BDA

Vee SLOT #1
c---

8/
VPPI Vpp

Voltage DD-DB Control /

~N PCMCIA VCCDR2 PCMCIA

DIGITAL SLOT .2
PRl Vee + CONTROLLER
PR2 GND VpP2 Vpp

i----------<

POWER·READY
OK

~

~

Figure 8.14: PCMCIA Controller Chip Controls Voltage Switching

Card Voltage (Vee)

Without this input to the card, all of the other signals would be
meaningless. The majority of cards available today operate with Vee =
5V, which for the most part, represents a pretty straightforward and
standard requirement. Very soon, however, 3.3V cards and 3.3V systems
will begin to appear.

What does this mean from a design standpoint? Two scenarios are
possible:

53Refer to the SetSocket function in Chapter 10.

APPLE INC.
EXHIBIT 1011 - PAGE 0231

210

•

•

Chapter Eight: Hardware Interfacing Considerations for Flash Cards

A 5V card that doesn't function at 3.3V will not operate
correctly in a 3.3V-only system. For this situation, consider
using a DC-DC converter (as described in the Vpp section) that
can also generate 5V. This may be important to allow the use of
5V cards. When the card requires 5V in a 3.3V, this converter
can be switched on to pump the Vee supply.
A 3.3V only card will probably be permanently damaged if
operated in a 5V -only system.

How do you resolve this problem?
The power description structure in the Card Information Structure's
Configuration Table may indicate the card's operating voltage54. In the
former situation, system software should provide a message to the user
to the effect of: "Improper voltage, card will not operate". In the future,
cards may be capable of functioning at both voltages by incorporating
voltage switching capabilities within the card or flash memory devices
themselves. For example, a card may incorporate a 3.3V to 5V DC-DC
converter to allow operation in a 3.3V system. This converter must be
bypassed when placing the card in a 5V system.

On the other hand, how does a 3.3V card keep from frying in a 5V
system? PCMCIA has been developing a keying mechanism for the card
that will physically prevent a user from inserting the card. The keying
will be flexible enough to allow the combination of dual voltage cards
and systems.

Voltage Sense (VS1 and VS2)

Interface Pins 43 and 57 have been defined as the Voltage Sense output
pins (43 was REFRESH in the PCMCIA R2.01 specification, 57 was
reserved for future use). These signals notify the host of the card's Vee
requirements. The configuration of these pins describes the voltage
requirements of the card which is also indicated in the card's CIS. Table
8.4 lists the various configurations. As an example, to comply with the
PCMCIA pin configuration for a 3.3V/5V compatible card, pin 43 (VS t)
is grounded and pin 57 (VS2) is open.

54Most cards on the market today have not integrated this yet.

APPLE INC.
EXHIBIT 1011 - PAGE 0232

PCMCIA Flash Memory Cards 211

CARD TYPE VS1 VS2 DESCRIPTION

5Vonly CIS OPEN OPEN Can be plugged into 3.3V socket without damage but it will not
5V key function properly.
3.3V only CIS GND OPEN Will not fit in 5V socket. When plugged into 3.3V socket,
Low voltaae key sianals and CIS Indicate 3.3V only card.
3.3V/5V CIS GND OPEN Fits into either socket and functions at 3.3V or 5V.
5V key

Table 8.4,' Voltage Sense Pin Configurations

Battery Voltage Detects (BVD1 & BVD2)

At this point, we've covered all the PCMCIA card signals' except for
Battery Voltage Detect (BVD\ and BVD2). For flash memory cards,
which do not require batteries to maintain information written to them
and therefore don't use batteries, these signals have no meaning. To
maintain compatibility, however, flash memory cards must pull the
battery. voltage detects high to trick the system into thinking the battery
is good. A host may monitor the BVDl and BVD2 signals to determine
the completion of the power on reset cycle, because they remain low
(inactive status) until thattime.

HOST SYSTEM IMPLEMENTATIONS

The PCMCIA specification only defines the fundamental characteristics
of the card interface. The previous discussion mentioned nothing about
the interface beyond the socket (aside from a few pullup or pulldown
resistors). How do we map the flash memory from the card into the host
system's address space? In this section, we'll discuss three categories of
memory mapping: register-based (or 110), paged (by far, the most
popular), and linear. Some of you may already be familiar with these
techniques, as they have not been uniquely implemented for flash
memory cards. As a matter of fact, they apply to any type of memory
cards, or even to discrete memory devices.

Several IC vendors have developed single-chip PCMCIA 2.0-compatible
card interfaces that support the 110 and paged memory mapping
implementations. These devices enable simple, minimal .glue-Iogic
interfacing between the host CPU and a IC card socket, as the following
discussion will point out.·

APPLE INC.
EXHIBIT 1011 - PAGE 0233

212 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

Register-Based Memory Mapping

Register-based memory mapping has much similarity to that used for
disk drives; the system uses a single 110 address (or minimal address
range) to pass data to and from the drive's controller, which in tum takes
care of writing to (or reading from) one of many locations on the drive.
Likewise, for IIO-mapped memory, a single 110 port funnels data
between the system and the flash memory card (Figure 8.15). The
advantage of this approach is that it consumes the least amount of the
host system's memory map resources; however, it incurs a performance
disadvantage because the processor cannot access the memory directly.

1/0 PO R"F --.. 1....-:::.:...;.;..:....:......1t...

Flash Memory Card

Data Is Accessed
One Byte (Or Word)

At A Time

Figure 8.15: Mapping Memory Through an 110 Port

Standard liD Access
The simplest 110 implementation can be designed with a latch(es) and a
data transceiver(s). As shown in Figure 8.16, the system performs an 110
write (and latch) of the memory address on the data bus. With the
memory address selected, use another 110 port to read or write through
the transceiver. The latched data must be updated for each new flash
memory address.

APPLE INC.
EXHIBIT 1011 - PAGE 0234

S
Y
S
T
E
M

B
U
S

Data Bus

PCMCIA Flash Memory Cards 213

FLASH
MEMORY
ARRAY

AND
DECODING

Figure 8.16: The Data Bus Generates the Flash Memory Addresses

High-Speed I/O Reads
By replacing the latches with counters, read performance can be
considerably enhanced (Figure 8.17):

SAO
SAl
SA2

Vee

RESET
10 ENABLE

74X13B

A YO

8 Yt~~~~~~~~) C ~I:=
Y4

Gt ~~
G2A Yl
G28

To ENABLE The
Transceivers And
Devlea Decoder

CLOCICPULSE

TRANSCEIVER
BUFFERED
DATA BUS

Figure 8.17: Counters Enhance I/O-Mapped Read Access

APPLE INC.
EXHIBIT 1011 - PAGE 0235

214 Chapter Eight: Hardware Interfacing COllsiderationsfor Flash Cards

1. A '138 decoder selects four sequential 110 addresses that service
four different functions in this design.

2. When the system generates an 110 address that matches with the
setting on the dip switch, the '521 comparator provides one of
the three enables for the decoder. Notice that the comparator
uses SA3 - SAw as inputs to place the 110 port base on an 8-byte
boundary.

3. An 110 write to the first and second ports generates parallel load
signals, with PLo and PLI latching the flash memory address into
the 4-bit counters.

4. The third 110 port provides the enable for the card enable
circuitry (CEI and CE2) to allow regular single byte or word
reads and writes.

5. Reading from the fourth 110 port address generates the clock
signal for the counters. This causes them to automatically
increment, providing the next flash memory address. By the time
the address increment has occurred, the 110 cycle has completed
and the data has been read from the 110 port. This fast read
method works great for string reads (i.e., from sequential
addresses). However, the counters must be reloaded for any out
of-sequence read.

Linear Mapped Memory

The linear-mapped, or direct-mapped, memory design delivers the
highest performance memory-mapping technique - where the processor
has direct access to the entire memory array. Unless you only use a very
low density flash memory card, however, the processor had better have
more than 20 address lines. In other words, if a processor has a 1
megabyte adc:;Iress space (as is the case with many embedded CPUs or
even less with some microcontrollers), the memory map would be

APPLE INC.
EXHIBIT 1011 - PAGE 0236

PCMCIA Flash Memory Cards 215

completely overtaken by a 1 megabyte flash memory card. From a
hardware design perspective though, linearly mapped memory
addressing is very simple (Figure 8.18). The number of address lines
decoded depends on the maximum density of the flash card to be used.

74X244

WRH

High And Low Byte Selection A22 And A 23 Are
WRL System Address Inputs.

DIRECTION
SELECT

ENABLE

SWITCH .:'
INPUTS .:'

~ ,/

TO 16 - 28F020s
A YOo-CEO
B Y1 o-CEl
C Y2 o-CE2

Y3o-CE3
Y4 o-CE4
Y5 o-CE5

~1 Y6 o-CE6
~---.q (1~~ Y7 o-CE7

74X138

GND
...... _____ A1 -A18

TO 28F020s

Figure 8.18: Linearly-Mapped Memory Addressing

From a software standpoint, linear-mapped memory designs have the
most practicality in conjunction with system architectures with
unrestricted operating system boundaries. These would include most 32-
bit operating systems or proprietary embedded computers. But in a DOS
based machine (running in real mode), linear mapping requires
continuous switching to protected mode to gain access to the large
memory array, due to the 1 Mbyte memory restrictions.

Although, the majority of PCMCIA-interface controller chips for PCs
utilize the page-mapped approach (described next), they can be
configured with window sizes up to 16 megabytes (in a PC). This could
essentially pass for a linear-mapped implementation.

APPLE INC.
EXHIBIT 1011 - PAGE 0237

216 Chapter Eight: Hardware Intelfacing Considerations for Flash Cards

Paged Memory Mapping

A page-mapped design accesses the flash memory in a LIM-EMS
(Lotus-Intel-Microsoft) fashion where portions of the memory array get
swapped in using special software and hardware55. This approach allows
only limited regions of the array to be addressed at anyone time
(Chapter 10 discusses the concept of a memory window which is
analogous to the page). The size of the mappable region depends on how
much available space the system has. For example, a look at the DOS
map, limited to 1 Megabyte, reveals only 128 kbytes of potentially
available memory space in the 1/0 adapter ROM area (Figure 8.19).
Depending on the other peripherals installed in the system, this memory
space mayor may not be available.

Page Memory Board
Can Be Installed With
This 128 KByte Area

/'
in

~

EXTENDED
MEMORY

PC/XT/AT PS/2
ROM-BIOS

PC/AT PS/2
ROM-BIOS

OPTIONAL I/O
ADAPTER ROM

DISPLAY
BUFFERS

APPLICATIONS

DEVICE DRIVERS

DOS

1000000H (16 MBytes)

100000H (1 MByte)

FOOOOH (960K)

EOOOOH (896K)

COOOOH (7681<)

AOOOOH (640K)

OOOOOH

Figure 8.19: DOS Memory Map

55Most technical textbooks on developing with DOS cover this subject in detail.

APPLE INC.
EXHIBIT 1011 - PAGE 0238

PCMCIA Flash Memory Cards 217

Figure 8.20 demonstrates the basic circuitry involved III the memory
paging scheme:

Latched .. Xceivers ...
16

/ .. D15-0 I ...
16

.... / ...

10
A25-15 ~ jO Latched I ... 7 1 I ... Buffers

w

0 0
CPU

Contro~ Chip ~ Lt
a::

Signal;-
Select w
Logic I-

~
<

I 16 (3 ... Latched / A15-0 ... :E A15-0 ... Buffers / po 0 ... CI..

CD
Control Signals

Figure 8.20: Memory Paging Circuitry

• The latched buffer provides the high order address signals (or
page numbers) to the memory card. Notice that these address
signals originated from the CPU's data bus.

• The system selects an address within the memory card by first
writing and latching the page number, which then allows access
to an address within that particular 64 kbyte region.

• This particular arrangement allows a fixed page size of 64
kbytes. The page size can be controlled by varying the number
of address signals that come directly from the CPU versus those
generated from latched data.

APPLE INC.
EXHIBIT 1011 - PAGE 0239

218 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

Variations on the theme described above can be implemented by
replacing the discrete buffers, transceivers, and decoding circuitry with a
single ASIC. An 8255 (parallel port device) can also be used to translate
page numbers, as well as handle many of the control signals coming
from the PCMCIA interface (e.g., card write protect, ready/busy, card
detect, etc.). Figure 8.21 demonstrates the applicability of this concept,
using a 80x186 microcontroller and a few other basic system
components:

• The 80x186 only has a 1 Megabyte address space, but with
paging can access the full 64 Mbytes defined by PCMCIA.

• The flash boot code allows easy updates to the controller's
firmware to vary system functionality.

• The system's RAM services temporary data storage and holds
flash memory update algorithms during their execution.

• Any number of I/O devices can be added to this flexible system
to perform a variety of applications (by updating the firmware
accordingly) which use the flash memory cards for data
accumulation, such as remote weather stations or patient
monitoring instruments.

APPLE INC.
EXHIBIT 1011 - PAGE 0240

Implementing PCMCIA 2.0 Hardware 219

""L" FLASH RAM BOOT
A

A15-0 CODE MEMORY
T

0 ~

H

80C186 t t + AD 15-0 .. :~D15-0 A25

c
M

A15-0
c ...
I

B2C55A
A 6

A

s
0

C

K

E DE
v;

T VI

WI' CD1 D2
D BSY

Figure 8.21: Implementing a PCMCIA 1.0 Inteiface in an
Embedded Application

IMPLEMENTING PCMCIA 2.0 HARDWARE

~~
B
U
F
F
E
R

'--

The implementations described above have one major limitation - they
only service PCMCIA 1.0 memory cards. A PCMCIA 2.0
implementation requires more complex circuitry, because several of the
interface pins must be multiplexed to handle different functions (e.g.,
RDY/BSY f".-7IREQ). Also, socket hardware must be capable of
mapping into the host I/O and memory space. The section on Socket
Services in Chapter 10 will provide the hardware designer with good
insight into the variety of functionality that can be implemented in the
design of a socket adapter.

Proprietary or Commercial Interface Controllers

In a PC platform, the large number of PCMCIA-interface controllers
available today greatly simplify the hardware design of a PCMCIA 2.0

APPLE INC.
EXHIBIT 1011 - PAGE 0241

220 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

implementation56 . The most difficult step often lies in choosing which
controller chip to use (refer to the appendix), but many of these chips are
modeled after Intel's 82365SL (PC Card Interface Controller, PCIC) and
have been designed to be ExCA-compliant (as described in Chapter 10).
In non-PC platforms, these commercially-available controller chips can
also be used, but more than likely, additional logic will be required to
connect the controller ISA bus interface to whatever bus the specific
platform supports. For the most part, non-ISA implementations may
design proprietary ASICs that tightly couple PCMCIA to their desired
interface.

Supporting Hardware for PCMCIA-Interface Controllers

Although the PCMCIA interface can be built out of custom ASICs,
PLDs, or discrete logic, commercially available controllers offer the
most convenient solution, even if you have no need for all the capability
they deliver. Viewed from a price standpoint, commercial controllers
eliminate non-recurring engineering design costs. From a software
standpoint, these controllers have a variety of support available from
most BIOS vendors in the form of Socket Services57 .

For the most part, the majority of PCMCIA controllers can be integrated
into a system design with minimal effort. As Figure 8.22 demonstrates
for a dual-socket design, the 82365SL requires a minimal amount of glue
logic; voltage control and generation circuitry, data transceivers and
address buffers placed between each socket and the system bus to allow
card insertion and removal (more on this later). As another example,
Databook's TCIC-21N (DB86082) controller has built in transceivers
which can drive up to 3.2 rnA. In a very controlled system with a limited
number of peripherals, 3.2 rnA may be sufficient to drive the ISA bus
without any buffers. Typically, systems will have multiple peripherals
and may require additional buffering. On the card side, 3.2 rnA may be a
limiting factor if both sockets have cards in them. Depending on your
design requirements, it may be desirable to use external transceivers and
buffers anyway to boost up the current drive.

56Socket Services provides the software that controls the hardware.
57Refer to the Appendix for a list of BIOS vendors.

APPLE INC.
EXHIBIT 1011 - PAGE 0242

Implementing PCMCIA 2.0 Hardware 221

SD[0:15]

SA[O:ll]

SA[1:9]

SO[0:16]

lJIlI7.23]

ISACTRL 365SL
IR0\2:5.9:12.14.15]

SYSCTRL

PORT

SA[O:II]

SO[0:15]

Figure 8.22: The Intel 82365SL PCMCIA Interface Controller
Requires a Minimal Amount of Support Circuitry

Accessing Flash Memory Cards with PCMCIA-Interface
Controllers

SLOT
A

SLOT
B

The majority of controllers implement a memory paging mechanism
using variable-sized windows to access a PC card's memory. This is
similar to the page-mapped memory mechanism described earlier, except
that the controller chips perform the address translations under software
control. Furthermore, system software controls all hardware
functionality of the socket and adapter (Chapter 10).

Software such as Socket Services configures the desired memory
window and card offset via appropriate controller registers. Any access
to the corresponding window in the system's memory map will generate
the necessary address and control signals (including REG used to select
between Common and Attribute Memory) to the card and its socket. In
other words, the interface controller even handles all the decoding logic.

APPLE INC.
EXHIBIT 1011 - PAGE 0243

222 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

More On Buffering

In a PCMCIA socket design, buffering has several very important roles:

• It increases the current drive to the system bus and PCMCIA
interface, as discussed above.

• It latches address and data to prevent the unwanted toggling of
the PC card's CMOS inputs that leads to significant power
waste. CMOS devices consume the highest power when they
switch. Even when not accessing the card, the card will see
every transition on the system bus unless the interface has
latched buffers and transceivers.

• It isolates the system bus, so that the insertion and removal of
PC cards will not disturb system operation. Satisfying this
design goal inherently takes care of the previous two roles, so
we will focus this discussion on this concept.

Isolating the System Bus

PC card insertion and removal can certainly wreak havoc on a system's
integrity, if not handled properly. Consider the effects on a memory
card's data integrity. For example, think about the potential noise
generated on the PCMCIA interface during PC card removal. Table 8.5
defines the different card interface conditions that can exist.

Condition Vee Card Enables & Address Bus Drivers Data Bus Drivers
Cold Off Hiah-Z Hiah-Z

Warm On Disabled Hiah-Z
Hot On Enabled Enabled

Table 8.5: PC Card Inteiface Conditions During Insertion and Removal

The cold and warm conditions allow the safest removal and insertion of
cards. The hot condition can also be handled by sequencing the
PCMCIA interface signals to a warm or cold condition and ensuring that
the card incorporates proper buffering and filtering capacitors to absorb

APPLE INC.
EXHIBIT 1011 - PAGE 0244

Implementing PCMCIA 2.0 Hardware 223

voltage spikes on Vpp and Vcc58. The mechanical definition (i.e., length)
of the PCMCIA pins, shown in Figure 8.12, allows the proper
sequencing of card signals:

1. During the removal of a card, the card detect pins (CD! and
CD2) , break connection with the socket first, since they're the
shortest. Wiring these signals to hardware circuitry that controls
power to the socket almost instantaneously turns off the socket's
power. For example, the pcrc can be configured to perform
automatic socket power switching based on the card detect
signals59 . The change in the card detect status also can be used
for interrupt generation that notifies the application (analogous
to the removal of a floppy disk).

DON'T TRY THIS AT HOME
Just for fun, assume 1 microsecond elapses from the beginning of card
removal (when the card detect pins first break connect) until the pcrc
automatically disconnects power to the socket. The difference in length
between the card detect pins and the I/O signals is 0.6 mm. To travel the
0.6 mm distance in 1 microsecond means that the card would have to
removed at a rate of 1,342 miles per hour! Now that's a "flash"!

2. By the time most pins start disconnecting from the socket, the
power has already been switched off. However, due to
capacitance, the voltages will probably not have ramped down
yet. With power still present to the PC card, the various control
signals will be pulled high, de-selecting the devices within the
card. However, any data and address present on the bus at this
time may be latched on the rising edge of write enable.
However, the card enables will also be going high at this time

. and the devices will be deselected.

3. Finally, the power pins, the longest pins on the host connector,
break contact. Their presence, until this point, have kept the

58The system's power supply must also be responsible for keeping voltages within the maximum
o~erating conditions of the card.
5 Using the 'Auto Power Switch Enable' bit of the 'Power and ResetDrv Control' Register.

APPLE INC.
EXHIBIT 1011 - PAGE 0245

224 Chapter Eight: Hardware Interfacing Considerations for Flash Cards

Buffering

other signals fairly stable. The system should now make sure
that all power to the socket stays off until the next card insertion
event.

From a buffering point of view, the techniques for handling insertion
and removal will vary, depending on the PCMCIA-interface controller
used. For example, as shown in Figure 8.22, Intel's PCIC requires the
use of external buffers to isolate the system's address and data bus from
the socket. This particular design could be simplified by eliminating one
set of buffers and transceivers and connecting the address and data lines
from the two sockets together. However, this situation could create a
problem with data integrity if one card was removed while a card in the
other socket was being accessed.

Databook's TCIC-21N uses internal buffers that force both sockets to
share address and data inputs. This places the responsibility for card
integrity on the user. To prevent card removal or insertion during a
critical period, a BUSY LED (light emitting diode), in the system and
visible to the operator, is recommended.

From a functional standpoint, Cirrus Logic probably provides the best
solution with the CL-PD6720. This chip also has internal buffers for
each socket, along with independent address and data pins60.

The issue of card removal can also be resolved by using a socket-eject
mechanism that physically prevents card removal during any card
operations61 . As the saying goes, "Prevention is the Best Medicine".

Interrupt Levels

A PC card and its socket have the capability of generating several types
of interrupts. For example, a card status change interrupt can be
generated from a change on the card detect pins, ready/busy, or battery
warning (although not with a flash memory card). A system with
multiple sockets, and therefore multiple cards, can experience conflicts

60 A 208-pin package may be the drawback to this approach.
61The Appendix contains a list of socket vendors.

APPLE INC.
EXHIBIT 1011 - PAGE 0246

Summary 225

if they all try to utilize the same interrupt. In a closed system, the
interrupt levels can be hardwired and never worried about again.

In an open system, a more flexible setup should be considered where
interrupt steering can be configured depending on the resources needed
at any given time. PCMCIA-interface controllers such as the 82365SL
have the capability of directing a socket adapter's interrupt lines to any
one of 10 interrupt levels (otherwise known as interrupt steering). Again,
these chips are conveniently configured by software, as described by
Socket Service's SetAdapter and SetSocket functions.

SUMMARY
In this chapter, we presented an overview of the PCMCIA interface. The
most important lesson to learn is that for PCs, commercially available
PCMCIA-interface controllers greatly simplify the socket adapter
design. Before making a decision on what controller to use, study them
carefully and don't be mislead by features that sound good on the surface
(such as write FIFOs and on-chip timing generators). The Appendix lists
the registers that control those features and the contacts for each of the
vendors from whom to obtain more information.

For proprietary systems (i.e., non-ISA bus), you will more than likely
have to design the logic from scratch. However, understanding the
concepts developed within the ISA interface devices, will help to ensure
that your design incorporates the necessary features.

APPLE INC.
EXHIBIT 1011 - PAGE 0247

Chapter Nine: Flash Memory File
Systems

INTRODUCTION
Throughout this book, we have seen that flash memory can be designed
into a large number of applications, with examples ranging from laser
printers and cellular phones to medical instruments and portable PCs.
The very nature of flash memory makes it a natural fit for code and data
storage and data accumulation. A flash memory solid-state drive (which
we've abbreviated FSSD), on the other hand, presents a new challenge to
the designer. This chapter will not explicitly show you how to design a
flash file system (this would take a whole book in itselt), but points out
key concepts and technical advantages and disadvantages of the various
approaches. Although two basic categories of flash file systems exist, it
seems like every month another company introduces a new flash file
system, albeit incompatible with existing solutions. The issue of
standardization amongst flash file systems must be resolved soon to
eliminate confusion and incompatibilities in the industry.

Flash Memory Solid-State Drive Form Factors

• The direct flash memory interface (memory cards or resident
flash array, for example), requires the host CPU to handle the
flash file system software. This requires the file system to be
compatible with both the host system's operating system and
software applications run on it. For implementing this type of
flash file system, you can select one of the ready-made solutions
and take advantage of the many person-years of work that went

APPLE INC.
EXHIBIT 1011 - PAGE 0248

228 Chapter Nine: Flash Memory File Systems

into devising and developing it62. Alternatively, you may choose
a proprietary approach (which may be very appropriate for a
dedicated application), first taking into consideration the
possibility that your choice could be incompatible with the
existing solutions on the market.

• An integrated drive has the controlling software embedded
within the drive itself (refer to Figure 4.15). The drive's internal
processor takes care of making the flash memory interface
transparent to the host system. This type of FSSD uses a
standardized system interface (IDE or PCMCIA-ATA, for
example) with a proprietary internal flash file system. Although
distinct differences exist between this and the former approach,
you will notice that while we focus on the direct interface
approach, many of the file system concepts can be
interchangeable.

Flash Memory Solid-State Drives Require Special Drivers

From the system perspective, the ideal FSSD should have comparable
functionality to the mechanical disk drive. Naturally, there will be read
performance, power, reliability, and space saving benefits associated
with the FSSD, but to the end-user, all familiar functions should be
available. In the future, as flash memory technology improves, the FSSD
will also be used for execute-in-place (XIP) and other functions
unforeseen today.

Besides flash memory, solid-state disk drives can be developed using
several other types of memory technologies, such as RAM. Whatever the
technology, special software drivers must be written to handle these non
magnetic disk mediums. For instance, the RAM-based solid-state drive
can support the same functionality as the mechanical disk drive (using
battery backup for data retention). Nevertheless, it still requires a special
driver to translate the standard file operations from sector accesses into
physical memory addresses. Many of you should be familiar with these
drivers, as they include readily available programs such as VDISK and
RAMDRIVE.

62Refer to the Appendix for a listing of available flash file systems.

APPLE INC.
EXHIBIT 1011 - PAGE 0249

Disk-Drive Basics 229

The relatively new flash qlemory technology also requires special
drivers to manage it. Flash file system developers are taking divergent
approaches in dealing with the media. However, in working to drive a
standard, companies, like Microsoft, will publicize their file structures.
By following these formats, other developers (perhaps even running
different operating systems) will be ensured of compatibility.

At the writing of this book, DOS was (and probably still is) the primary
operating system using the FSSD tQ emulate disk drives63 . Therefore,
the remainder of this chapter, devoted to understanding the various flash
file system designs, will evolve around this most widespread OS.
However, bear in mind that a genuine flash file system can be divided
into two portions (Figure 9.1). One portion concentrates only on
managing the flash memory itself. The second portion provides the
interface to the operating system of the host. By modifying or rewriting
this second portion, the file system can theoretically be separated from
DOS and ported to any other operating system, whether it be UNIX or
proprietary dedicated control code.

DISK-DRIVE BASICS
To answer the question "What is a Flash File System?" and understand
the need for such software, we will first review the basic functionality of
the traditional mechanical disk drive. Although an FSSD services the
same functions as the mechanical disk drive (storing application
programs and data files), the two devices have entirely different
structures. From a mechanical perspective, a disk drive looks like a
compact disc (CD), containing a large number of concentric rings called
tracks (See Figure 9.2). Instead of being divided up into songs, the disk
drive is divided into sectors, typically representing 512 bytes of data
storage capacity. A magnetic media coats the disk drive, microscopically
subdivided into millions of individual magnetic fields (referred to as
domains), one for each bit of data. An individual data bit is either a one
or zero, based upon the polarity of its minute magnetic element.

63personal Digital Assitants (PDA) and pen-based systems have created a growing market of non
DOS machines.

APPLE INC.
EXHIBIT 1011 - PAGE 0250

230 Chapter Nine: Flash Memory File Systems

Application

Operating System

Operating
System
Interface

Flash File System

Flash
Memory
Manager

Flash Memory Array

Figure 9.1: Flash Memory Manager and Operating System 1nteiface

Figure 9.2: Disk Drive Tracks and Sectors

APPLE INC.
EXHIBIT 1011 - PAGE 0251

Disk-Drive Basics 231

The data bits in a disk drive can be rewritten simply by changing the
polarity of the magnetic elements. For practical reasons (such as the
logistics of media management), the operating system controlling the
disk drive manipulates the data in terms of one or more consecutive
sectors. Many hard disks arrange these consecutive sectors into groups
of four (referred to as a cluster) to make them even more manageable.
Clustering also allows faster file access, because it ensures the grouping
of at least four of a file's sectors. This implies that if the system user
running a word processing application, for example, only modifies a
single letter of a document, the entire portion of that document located
within its particular cluster gets rewritten.

DOS Data Structures

DOS maintains two types of data structures on the disk drive; a File
Allocation Table (henceforth referred to as the FAT) and a directory.
Each of these data structures occupies its own cluster(s). The directory
contains vital statistics of the files stored on the disk, including the file
name, extension, time and date of creation, size, and the first cluster
number of that file. The FAT serves two functions:

•

•

Tracking available, allocated and bad clusters, and the last
cluster in a chain (Table 9.1). It is interesting to point out that a
free cluster is indicated as OOOOR. For flash memory, this is a
programmed state, and therefore not a free cluster.

Maintains a chain for locating the clusters of a file (Figure 9.3) .
Each cluster has its own FAT entry.

12-bit entry 16-bit entry Cluster description
OOOH OOOOH Free

OOlH-FEFH OOOlH-FFEFH In-use
FFOH-FF6H FFFOH-FFF6H Reserved

FF7H FFF7H Bad
FF8H-FFFH FFF8H-FFFFH End of cluster chain

Table 9.1: FAT Values for 12 and 16 Bit Entries

APPLE INC.
EXHIBIT 1011 - PAGE 0252

232 Chapter Nine: Flash Mem01Y File Systems

DIRECTORY (BEFORE)

YOURFILE.DOC

11-4-92

7921 Bytes

First Cluster #
Example = 5

Cluster #
FAT

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

x
X

X

X

0007H

X

OOOAH

X

X

OOOBH

FFFFH

X

X

X

OOOOH (Available)

X

X

1
~

After Addition ~

to File

2

3

4

5

6

7

8
After Addition

~ 9
to File

10

11

12

13

14

15

16

17

DIRECTORY (AFTER)

YOURFILE.DOC

12-6-92

9812 Bytes

First Cluster #
Example =5

FAT

X

X

X

X

0007H

X

OOOFH

X

X

OOOBH

FFFFH

X

. X

X

OOOAH

X

X

I~
~I\

0
\

New piece added
to middle of file

Unlike Disk Drives, a FFSD{)annot rewrite the directory and FAT after file modification.

Figure 9.3: File Directory and FAT Modification

The clusters containing these data structures, as well as the remaining
disk clusters, undergo constant modification as files are added, deleted
and modified. Flash memory can only be rewritten to zeros after erasing

APPLE INC.
EXHIBIT 1011 - PAGE 0253

Disk-Drive Basics 233

the block or entire device to ones. This flash memory characteristic
alone provides the key differentiator between the mechanical disk drive
and flash memory. It also points out the need for implementing special
file systems designed to handle the larger "cluster" size (typically
128Kbytes) and one-way writ ability of flash memory.

Device Drivers

Before leaving this discussion on disk drives, let's look at the methods in
which application software accesses them. Whether interfacing to MS
DOS or any other operating system, the well-known device drivers
represent special programs that provide the low-level interface between
the operating system (called on by the application software) and the disk
drive and all other peripheral devices within a system. Many books have
been written on device drivers, so we will not reiterate the details that
have long been standardized64.

Device Driver Chaining

In the MS-DOS world, IO.SYS provides device drivers integral to the
system's BIOS. The system uses these device drivers, sometimes referred
to as default or built-in drivers, to communicate with the disk drive and
other devices. During a computer's initialization, the system reads
IO.SYS from the disk and MS-DOS loads each device driver into system
memory using a standardized chaining method.

Installable and Built-In Device Drivers

New device drivers, commonly referred to as installable device drivers,
may be added via CONFIG.SYS (with the DEVICE= command) to
support additional peripheral devices. Each new driver gets installed at
the front of the chain. Because the search always begins at the NULL
driver (Figure 9.4), this guarantees that new drivers will be found before
the built-in ones. Therefore, new drivers supersede the default drivers.

64For example, Writing MS-DOS Device Drivers, Second Edition, Robert S. Lai, The WAITE
GROUP, Addison-Wesley Publishing Company, Copyright 1992.

APPLE INC.
EXHIBIT 1011 - PAGE 0254

234 Chapter Nine: Flash Memory File Systems

Head of Device
Driver Chain

NULL

Device Driver 2

Device Driver 1

1\
)

)

After

Installing New
Device Driver

)
~)

NULL

Your Device Driver

Device Driver 2

Device Driver 1

)

Linked-List Used to Locate Drivers.

Figure 9.4: New Device Drivers Supersede Default Drivers

Like the mechanical disk drive, an FSSD requires a device driver so that
application programs can access files stored in the flash memory array.
As a matter of fact, a flash file system is itself a special device driver.
When designing a system with an FSSD, you must consider the manner
in which the flash file system software hooks into the device driver
chain. For after-market add-ins (i.e., MS-Flash) of an FSSD, the
software loads during system initialization (through CONFIG.SYS) as
an installable device driver. The cleaner route, not requiring end-user
intervention with CONFIG.SYS (thereby eliminating the possibility of
improper installation), calls for building the flash file system directly
into the system BIOS. This allows the FSSD's device driver to be loaded
along with the other built-in drivers.

APPLE INC.
EXHIBIT 1011 - PAGE 0255

Disk-Drive Basics 235

The latter approach has the most usefulness when developing a bootable
FSSD. This means that the FSSD has the bootstrap capability for loading
MS-DOS and contains all the system files (i.e., IO.SYS, MS-DOS.SYS
and COMMAND.COM). If the device driver must be installed to access
the FSSD, but that device driver is located on the FSSD, how does it get
installed? Chapter 10 discusses these concepts.

Character and Block Device Drivers

At the functional level, MS-DOS categorizes two types of device
drivers, character and block. A character device performs input and
output operations one byte at a time, such as a printer. A block device
transfers data in blocks. Disk drives and FSSDs represent perfect
examples of block devices. After a block device has successfully
initialized, DOS checks the number of units (drives) installed by its
device driver's initialization code. It uses this unit count to assign the
next drive letter in sequence. For example, if you add an FSSD to your
system that already supports a hard drive, the drive letter given to the
FSSD will be D:. On the other hand, if the FSSD is the system's only
drive, it will probably be assigned as drive C:.

Accessing the Disk Using Interrupt Services

We've said that the device driver provides the lowest-level interface to
the device it controls. Disk device drivers can be accessed through
several mechanisms. At one level above the device driver, the BIOS
provides support using disk-drive service routines accessed through
software Interrupt 13H (Figure 9.5). Its list of capabilities can be found
in most MS-DOS programmer reference manuals.

APPLE INC.
EXHIBIT 1011 - PAGE 0256

236 Chapter Nine: Flash Memory File Systems

As an example, let's examine the !NT l3R setup required to read a
sector:

Interrupt 13H
Function 02H
Read Sector

Register Setup
AH =02H
~ = Number of sectors to read. This value depends on the

available memory buffer space.
CH = Cylinder
CL = Beginning sector number
DH = Head
DL = Drive number (O-7FH for floppy disks, 80H-FFH for fixed disk)
ES:BX = SegmentOffset of buffer to read into

APPLICATION

+- Pass Appropriate Reglst er Setup

INTERFACE TO
DISK SERVICE INTERRUPTS

13H, 25H, 26H

+- Sector Requests To Dev Ice Driver

DEVICE DRIVER

_* Command Passed To
Controller

Disk Drive

DISK DRIVE

Figure 9.5: Using the Disk Service Interrupts to Access Disk Sectors

APPLE INC.
EXHIBIT 1011 - PAGE 0257

Disk-Drive Basics 237

Generally, special utilities (such as CHKDSK) and games that go
directly to the disk (i.e., bypassing DOS) use the INT 13H routines. The
services of INT 25H and 26H (the Absolute Disk Read and Absolute
Disk Write interrupts, respectively) provide a more popular solution
because of ease of use. As a comparison, let's look at the setup required
to read a sector using INT 25H:

Interrupt 25H
Absolute Disk Read

Reeister Setup
AL = Drive number (O~ 7FH for floppy disks, 80H-FFH for fixed disk)
ex = Number of sectors to read - This value depends on the

available memory buffer space.
DX = Beginning logical sector number.
DS:BX = Segment Offset of buffer to read into

Accessing the Disk at the File Level

Using INT 25H, the programmer does not get involved with head and
cylinder determination, since requests are for logical sector numbers
versus physical numbers. MS-DOS makes it even easier to deal with the
details of the device driver interface by providing a group of file services
through the functions of INT 21H65. These functions, used by the
majority of application programs, allow disk accesses to be made at the
file level.

Early versions of MS-DOS used file control blocks (FCBs) for file
management, however more recent programs should be using file handle
functions that take advantage of the increased capabilities and simplified
programming interface66. With handle functions, an ASCIIZ string (an
ASCII character string terminated by a null, or zero, byte) that can
contain a drive letter, directory path, filename and extension designate
the location of a file. For an application program to open or create a file,

65The disk related (FSSD included) functions of Interrupt 21H are listed in the Appendix.
66FCBs only support the current directory and do not offer support for the hierarchical file
structure, for example.

APPLE INC.
EXHIBIT 1011 - PAGE 0258

238 Chapter Nine: Flash Memory File Systems

it must pass the address of the ASCIIZ string specifying the file to MS
DOS. MS-DOS assigns a unique handle to that file and passes it back to
the program. The program can then use the handle to access the file until
the program closes the file. If the request is to a standard disk drive, the
!NT 21H takes this file handle and does all the work of translating the
file request into the form supported by the BIOS (Figure 9.6). Otherwise
!NT 21H passes this request on to a flash file system, a network or tape
drive, or any other type of non-standard drive.

DISK DRIVE
NON-STANDARD DEVICES

(FSSD. TAPE DRIVE.
NETWORK DRIVE)

Figure 9.6: Accessing Devices Using File Handles,
Not at the Sector Level

FLASH FILE SYSTEM DESIGNS
Flash file system software for an FSSD may be designed in several
ways. The chosen solution depends on the application's requirements
and the desired complexity. As you will notice, each design has merits
that relate to performance, functionality, design simplicity, degrees of
disk-drive compatibility and even reliability. You will also notice that a
programmer must undertake an exponential increase in flash file system
development complexity to achieve a higher degree of functionality; the
higher the degree of functionality, the closer the FSSD comes to
appearing like a disk drive to the end-user. To achieve the ultimate goal,
the. FSSD must be completely self-contained and capable of managing
all file and subdirectory manipulations without user intervention.

APPLE INC.
EXHIBIT 1011 - PAGE 0259

Flash File System Designs 239

Measuring Drive Usage

When deciding the level of functionality to implement in an FSSD,
consider the 80/20 model of operation: In typical disk-drive applications,
reads constitute 80% of the accesses, and writes, the remaining 20%.
This general rule serves only as a starting point, the exact usage model
that fits your application may vary. So, at one extreme, your application
may only use the FSSD for holding the applications and permanent data
files which get downloaded into system memory for execution (i.e., a
read-only FSSD). This minimal functionality FSSD is relatively simple
to implement. On the other hand, your FSSD may need to handle
frequently updated database records or interface to write-intensive
operating systems, like UNIX. This latter scenario puts heavy demands
on the FSSD write capability and requires much more sophisticated
software algorithms to manage the flash memory media. The
implications will become more apparent as you read through the
remainder of this chapter.

In practice, flash file systems may be broken into two distinct categories:

The Disk-Drive Emulators

• Allow the FSSD to resemble the mechanical disk drive by
possessing the standard disk file structures, such as a FAT,
Directories, and sectors.

• Take advantage of all levels of disk-drive services (INTs 13H,
2IH, 25H and 26H). This property allows the FSSD to run all
software programs and potentially even serve as the boot drive.

• Function best using flash memory technologies, such as
Toshiba's NAND, to take advantage of the smaller "sector" sizes
(erase blocks).

• Function more as a device driver than a file system. As shown in
Figure 9.7, the disk-emulator resides in the layer below the file
system layer, serving as the device driver for the FAT file
system.

APPLE INC.
EXHIBIT 1011 - PAGE 0260

240 Chapter Nine: Flash Memory File Systems

APPLICATION LAYER

OS LAYER

FILE SYSTEM LAYER

DEVICE DRIVER LAYER

Figure 9.7: Flash Memory Solid-State Drive System Layers

• Have operating system independence from a functional
standpoint. However, files stored on one media, such as a flash
memory card, cannot be transferred (via the card) between
systems with different operating systems. For example, the file
structures wrapped around files stored on an Apple computer
lack compatibility with the DOS data structures used in a PC.

• The positive traits of disk-drive compatibility tend to sub
optimize the flash memory benefits and add inefficiencies to the
design. An example is the maintenance of sectors on a non
sectored media.

Flash Optimized File Systems

• Reside at the file system layer to allow direct management of the
flash memory. Being true file systems, they may be ported to
other platforms (Le., they are operating system independent). OS

APPLE INC.
EXHIBIT 1011 - PAGE 0261

The Disk-Drive Emulators 241

independence has the most importance for FSSDs based on
removable memory cards. The card may be transferred from
system to system and still work even though the OS is different
(by using OS data structure conversion).

• Have special properties (unlike mechanical disk drives) that
optimize flash memory's functionality. This is exemplified in
dealing with the block erases of flash memory, an operation
completely foreign to the disk drive.

• Function best with the larger block sizes of ETOX flash because
these file systems do not utilize small sector file structures.

• Only need to support the most common disk-drives features,
thereby satisfying the typical end-user's expectations.

• Do not partition the flash memory media into sectors, and for
this reason, only support the MS-DOS !NT 21H functions (i.e.,
not !NT 13H, 25H, and 26H).

THE DISK-DRIVE EMULATORS
Let's look more closely at the various types of flash file systems in
existence today. Starting with the disk-drive emulators, we'll go from
simple, limited-functionality implementations to complex and full
featured designs.

When developing a device driver for a disk-drive emulator (DDE), first
consider how it should interface to the operating system. In essence, the
driver that controls a DDE consists of two portions. One portion
represents the flash driver that manages the media and translates
operating system calls into "flashable" operations. The other portion
provides the standardized interface to the operating system. In DDEs,
the flash driver will be minimal, compared to flash optimized file
systems. This is because, as its name implies, to emulate a disk drive, it
only performs the operations requested by the FAT file system (or
equivalent). In this regard, it primarily manages the flash memory by
hiding the large sector size of flash memory from the system.

APPLE INC.
EXHIBIT 1011 - PAGE 0262

242 Chapter Nine: Flash Memory File Systems

The portion of the DDE that interfaces to the operating system will
either hook into the existing disk-drive interrupt service routines or
actually replace those routines. In other words, if you have the
opportunity to write your system's BIOS from scratch, the interrupt
service routines could contain direct support for interrupts l3H, 25H and
26H. But, for after-market add-ins (where you can't rewrite the BIOS),
the developer must install filters in each of the disk interrupts to allow
the requests to be intercepted (Figure 9.8). Using this filtering method,
any requests to a non-FSSD drive in the system would simply be passed
on to the original interrupt.

APPLICATION

Call To Disk Service Interrupt

Request To
Disk Drive

ORIGINAL
DISK DRIVE
INTERRUPT
ROUTING

INTERRUPT FILTER

Request To
Disk Drive Emulator

'NEW' INTERRUPT
ROUTINE

Figure 9.8: Using an Interrupt Filter

Primitiv,e Flash File Systems

The first flash device drivers were designed to make the flash memory
look exactly like the mechanical drive in terms of media organization,
but definitely not in performance and functionality. These elementary
device drivers employ most of the file structures (directory, FAT, and
clusters, for example) known to the mechanical disk. Not much different
than a ROM drive in some cases, they provide the simplest approach to
FSSD development. Although it may seem that these drives have

APPLE INC.
EXHIBIT 1011 - PAGE 0263

The Disk-Drive Emulators 243

minimal functionality, they still offer solid-state reliability, high read
performance, and low power consumption.

STEP 1

Copy
To
Disk

STEP 2

. System
RAM

STEP 3

Use Flash Memory
Programming to
Copy RAM Contents -To Flash
Memory

Figure 9.9: Creating a Disk Image in Flash Memory

Disk Imaging (the "Reusable ROM Drive")

Flash
Memory

Create this very primitive FSSD by superimposing a disk image (floppy
or hard disk) directly onto the flash memory media. This type of FSSD
can be likened to a glorified ROM drive, utilized in many embedded (or
dedicated) applications even to this day. By using flash memory instead
of ROM, the application benefits by having occasional rewrite
capability. Implementing this FSSD requires a three-step sequence (See
Figure 9.9):

1) Load a floppy or hard disk with the application software and
data that will be accessed on the FSSD. This part of the
sequence requires nothing more than using a few DOS
commands, such as COpy or XCOPY.

2) Use a special disk transfer utility, written by the developer (or
you), to transfer the disk image into a system buffer. The BIOS
(INT 13R, Function 02H), providing the lowest-level services,
can be called on by the utility to read the desired sectors from
the mechanical disk into the host system buffer. Most
developers will probably utilize the Absolute· Disk Read
Interrupt (INT 25H) available through MS-DOS. !NT 25R
allows the disk transfer utility to read and copy whole sectors on
the disk to a program-specified buffer and only requires a
limited number of parameters.

APPLE INC.
EXHIBIT 1011 - PAGE 0264

244 Chapter Nine: Flash Memory File Systems

3) After performing the disk read interrupt service, the utility
copies the system's buffer contents into flash memory. The
details of this operation can be found in Chapter 7, which
discusses programming algorithms for flash memory. Loop back
to step 2 and execute !NT 25H until all disk sectors have been
read and copied.

Getting the disk image into the FSSD's memory array only represents
part of the design. For the end-user to access the files, a custom device
driver (the actual flash device driver) must be used to translate the
operating system's standard sector requests into flash memory addresses.
This device driver resembles a RAM-disk device driver, with the
exception that it is limited to performing read-only functions. With this
type of design, the end-user changes the FSSD contents by erasing the
entire flash memory array and running through the three steps listed
above.

Disk-Drive Template

An approach that increases the functionality somewhat can be
implemented by formatting the FSSD with a boot record67, a blank root
directory, and a FAT template, which gets filled in during the addition
and deletion of files (Figure 9.10). Remember that with flash memory,
these changes can only occur in a one-way direction (ones to zeros).
Therefore, the flash device driver controlling these operations must
prevent attempts to overwrite deleted sectors and find the first available,
unused space. Once the flash memory array fills up (with a mixture of
deleted and valid files), it must be erased and reformatted to allow the
user to reclaim the deleted space and write additional files. Before doing
this, copy the remaining valid contents to an alternate drive (using
standard DOS copy commands) for temporary storage.

In maintaining the FAT, pay particular attention to the differences of
standard FAT values used versus what flash memory accepts. For
instance, a FAT entry on a disk drive ordinarily indicates a free sector
(or cluster) with the value of OOOOH (Table 9.1). This would force the

67The number of logical sectors specified in the boot record will be based on the size of the flash
memory array.

APPLE INC.
EXHIBIT 1011 - PAGE 0265

The Disk-Drive Emulators 245

FSSD's device driver to flip the bits to a non-zero value when using that
entry. We all know by this time that flash memory doesn't allow this
without first erasing the entire block. So the formatting on the FSSD
must be reversed from the disk drive (a free sector would be represented
as OFFFFH in a flash memory FAT). The flash device driver must
handle this reversal when processing standard requests from MS-DOS.

FORMATTED FLASH MEMORY ARRAY ~

The number of sectors
allotted for the FAT and
Root Directory will vary
based on the media's
size.

BOOT RECORD

FAT

FAT

ROOT DIRECTORY

ROOT DIRECTORY

USER SPACE

1

~ Near JMP to Boot Code

Formatting Information

BIOS Parameter Block

~ Bootstrap

Figure 9.10: A Flash Memory Array Pre-Formatted with a Blank FAT
and Root Directory

APPLE INC.
EXHIBIT 1011 - PAGE 0266

246 Chapter Nine: Flash Memory File Systems

Sector-Level Modification Method

To achieve an even higher degree of functionality, a slightly more
advanced flash device driver that performs sector-level modification
maybe employed. Every time the user modifies a file, the flash memory
devices containing the FAT, directory, and associated file sectors get
copied into system RAM. In RAM, the file system modifies the contents,
updating the FAT and directory and inserting the user's changes into the
file. (This method would not have to perform the FAT bit-flipping used
in the previous example, because the FAT is completely rewritten with
every change). Mterwards, the file system's software erases the
corresponding flash memory devices and writes the modified file
structures and file contents back into flash memory. Figure 9.11 shows
this sequence for a simple single-device FSSD.

STEP 1

(Power Loss=
Catastrophic
Data Loss)

STEP2

STEP3

FLASH MEMORY ARRAY

FLASH MEMORY DEVICE

FAT

Directory

User Data

FLASH MEMORY DEVICE

c:J
FLASH MEMORY DEVICE

Modified FAT

Modified Directory

User Data

SYSTEM RAM

FAT

Copied ~ Directory
Device 0
to RAM User Data

Modified FAT

Modified Directo ry

User Data

Figure 9.11: Sector-Level Modification Requires Considerable
Overhead

APPLE INC.
EXHIBIT 1011 - PAGE 0267

The Disk-Drive Emulators 247

If you're thinking, "Geez, this must be a long, slow process" YOU'RE
RIGHT! Remember that flash memory devices typically require one
second to erase. A modification could constitute more than just a few
erases for a file fragmented among many flash memory devices. Coming
from a perspective that disk drives do not need to perform erases, these
multiple one second erases become very visible in performance to the
end user. Next you should ask, "What if power goes down during the
erase process?". All the data temporarily stored in RAM goes away
forever! However, analogous to the disk-image approach, if the user
only requires occasional application changes, this flash file system may
be adequate. Also realize that when performing excessive modifications,
the flash memory devices in the FSSD experience an unequal amount of
cycling, especially those containing the FAT and directory structures.

This type of flash device driver may function best using some of the
smaller-sectored flash memory devices, such as Toshiba's NAND
devices.

Full-Featured Disk-Drive Emulators

The example FSSDs we have seen up to this point have had very
minimal functionality. Some of the noteworthy enhancements exhibited
by real disk-drive emulators include:

• Virtually unlimited read and write capability
• Reclamation of memory space containing deleted files
• Compatible with all disk-related system commands

Today, several full-featured DDEs can be obtained from companies like
M-Systems (True Flash File System, TFFS) and SCM. The file systems
(e.g., FAT file system) supporting these drives access the DDE using all
the standard mechanisms (disk interrupts and DOS function calls). When
these file systems initialize, they install the disk interrupt filters we've
discussed (just like the primitive flash file systems had to). Although
these DDEs utilize a DOS FAT format and manage the media in terms of
sectors, they differ considerably from the methods described earlier
because they incorporate a logical (rather than physical) sector
addressing scheme. This eliminates the dependency on any type of
"fixed-in-flash" disk-drive data structures and allows the FAT and

APPLE INC.
EXHIBIT 1011 - PAGE 0268

248 Chapter Nine: Flash Memory File Systems

directories to move around. This means that the FAT, directory and user
files can be modified simply by relocating them to free flash memory.

BLOCK 0 FILE ALLOCATION TABLE

Sector 1 XXX

Sector 2 XXX

Sector 3 XXX

.. Sector 4 ~ DEL

.. . Sector5 ~ DEL

Sector 6 XXX

Sector 7 ~ DEL

XXX

DEL

Sectorn ~~--------~
~--S~e-ct~or~n~+-1-··--·~ I~ ____ ~x~x~x~ ___ ~

Sector n+2 . XXX

Sector n+3

BLOCK 1

Sector n+4

Sector n+5

Sector n+6

Sector n+7

Sector m-1

Sector m

o Each block is an erasable flash unit.

XXX Indicates Valid File
DEL Indicates Deleted File

2

3

4

5

6

7

8

9

m-1

m

o Fat entries point to physical location of a sector within a specific flash memory block.
o Full-featured DDEs can remove 'dirty' space occupied by deleted files.

Figure 9.12: One-to-One Correspondence Between FAT Entries and
Sectors

APPLE INC.
EXHIBIT 1011 - PAGE 0269

The Disk-Drive Emulators 249

Virtual Addressing

Let's look at what virtual addressing does for file management. First,
think about the following important points with respect to the earlier
disk-drive emulators (Figure 9.12);

a. Each formatted sector on the flash media maps with a physical
address (or absolute index) to its associated FAT entry; and

b. The one-way write limitation of flash memory results in the
development of "dirty" sectors (and ultimately dirty blocks)
when deleting files.

The most notable enhancement of a full-featured DDE lies in its ability
to remove the dirty sectors (containing deleted files) and therefore,
reclaim the previously unusable memory space. To do this without user
intervention or infringing on system memory, the file system
manipulates the sectors completely within the drive. As an example of
this capability, assume the flash memory media is originally depicted as
shown in Figure 9.12. Basically, this represents the erasable blocks of
flash memory in a DDE containing a mixture of valid and deleted
sectors. Without knowing any better, one could say that this scenario
doesn't look any different than the other designs we've discussed so far.
But we said that these flash file systems perform dirty space
reclamation, and that changes the story. Can you guess how it might
work?

Spare Blocks

To proceed, we must introduce the concept of a spare block(s). As seen
from Figure 9.13, we've added an extra block to the flash memory array
of Figure 9.12. This block of free flash memory will be used for the
transfer of the valid file data still remaining in the dirty blocks. This so
called spare block eliminates the need for using system RAM during the
removal of dirty sectors (a process referred to as clean-up).

Clean-Up

Clean-up is fundamentally very simple. When the user writes a file to
the DDE, DOS requests sectors to accommodate the file. Continuing on
with the example above (Figure 9.13), also assume that the file to be

APPLE INC.
EXHIBIT 1011 - PAGE 0270

250 Chapter Nine: Flash Memory File Systems

BLOCK °
lOgICal Block 0

BLOCK 1
,glCal Block 1
Va''''LJala
V8110Data

valla Data
va,,, iJBla

BLOCK2
S are

BLOCK °
leal Bkx:k 0

valla uaa
~alkiOata

~alldDala
C 'J sector 4 ,,1!!!
/'y sector S"""

valla Data
/,:~c~ Sector 1ffi;4!f,

V91t(]Uata

IJ n+

,

Valid I aa
valldOala

BLOCK 1
leal BlOCK 1

valla I aa
vallOOala

ValldOala
Valid I ata

BLOCK 2
are B
aua ua a
alldData

ValldOala
Sector 4
Sector 5
alia Data

,~18

a,,, uata
orllt,

alld lata
alklData

BLOCK 0

o o
BLOCK 1

al';] usa
Valld~1a
Valid I ala
Va'IdDala

w
~

Figure 9.13: Three-Step Cleanup Operation: Copy, Erase,
and Block Renumbering

BLOCK2
"-oylca,-"",,,,<-O

vallOua a
va",Dala

yaldDaIa
Sector 4
SectorS

va,,,,,"la
I~,Set;lo(~

va'" uata
'*)i!iS1!<;l.~""_

Val"" ala
Va,,,,Oala

written ultimately occupies two sectors. However, assume that there are
not enough clean sectors available. Also notice the assignment of a
logical sequence number to each block. The flash file system executes
the following steps to free up the necessary sectors:

1. Copy the valid data contents (and sometimes the garbage
sectors) of all the sectors to the corresponding sector spaces
within the spare block. Any deleted sectors had been previously
marked as dirty so they may not be copied (this depends on the
capability of the DDE).

2. Erase the dirty block. It becomes the new spare block.

APPLE INC.
EXHIBIT 1011 - PAGE 0271

The Disk-Drive Emulators 251

3. Renumber the previously spare block so that it reflects the
number of the ex-dirty block.

Some disk emulators may do exactly what the operating system tells it to
do. For example, if DOS only requested the use of five sectors, the
remaining dirty sectors may have gone along for the ride. In other words,
DOS does not know that the dirty sectors not needed for the file transfer
even exist. These are dealt with at the device driver level. Remember,
DOS normally deals with a disk drive; on disk drives, the concept of a
dirty sector doesn't exist.

Clean-Up Efficiency

With respect to the clean-up operation, we should now discuss the
subject of clean-up efficiency. From an efficiency standpoint, it is a
waste of write operations to copy dirty sectors to a clean block.
Ultimately, this also causes an increase in the number of erases that
occur. On a drive that contains a high percentage of dirty sectors (i.e.,
not many valid files), this results in an inefficient use of battery energy
and an unnecessary degradation in performance.

On the other hand, a drive with a high percentage of valid files may still
have to move around lots of sectors, but these moves can be minimized
by reducing the fragmentation of the valid files. This can be
accomplished on a freshly formatted drive by storing all permanent files
(rarely-updated application software, for example) first. Then most of
the sector manipulation will occur within a few blocks, as opposed to
scattered amongst many. To explain the latter condition, refer back to
Figure 9.12. The sector holes, unless eventually filled up with permanent
data, will always require the unnecessary movement of valid sectors.
Besides using the method of "premeditated" permanent file storage, a
type of defragmenting utility may be written (Figure 9.14). This utility
can be periodically run to condense the valid sectors into fewer blocks.
(Clean-up efficiency will be discussed in more detail later).

Modify the FAT and Root Directory

Before leaving this discussion on full-featured DDEs, it is also worth
elaborating on the process of FAT and root directory modification. It's
actually quite simple. Since the FAT and directory occupy their own
sectors on the drive, they get moved around during clean-up, just like

APPLE INC.
EXHIBIT 1011 - PAGE 0272

252 Chapter Nine: Flash Memory File Systems

any other data sector. As a matter of fact, these their associated sectors
get rewritten with every file addition, modification, or deletion. Because
DOS requires that they be located within the first few sectors on a drive,
they will always reside in logical block number 1. So after cleaning up
block 1, the old spare block becomes logical block number 1.

Permanent Data Permanent Data Permanent Data

Permanent Data Permanent Data Permanent Data

Dirty Sector Permanent Data

, Dirty Sector' Permanent Data
, Dirty Sector Permanent Data

Permanent Data Cleanup 'Frees' Up Space Permanent Data After Using OefragmentaUon Permanent Data

Dirty Sector ~
UUllty

Permanent Data

Permanent Data Permanent Data Permanent Data

Permanent Data Permanent Data Permanent Data

Permanent Data Permanent Data

Dirty Sector

Dirty Sector

Dirty Sector

Dirty Sector

Permanent Data Permanent Data

Permanent Data Permanent Data

Permanent Data Permanent Data

Figure 9.14: Defragmentation Utility Concatenates "Permanent Data"

FLASH OPTIMIZED FSSD'S
Only Microsoft had a commercially available product for DOS (namely,
MS-Flash) that can be placed in the "flash optimized" category of file
systems at the time this chapter was written70. Working closely with
Intel Corporation, Microsoft developed a unique approach to dealing
with the large sector size of flash memory. Although MS Flash File
System allows the FSSD to be compatible with the majority of MS-DOS
and Windows software applications, its data structures differ
considerably from those of the traditional mechanical disk drive.
Furthermore, because it functions as an installable (or alternative) file
system, MS-Flash has complete capability to actively manage the flash
memory media.

70However, other companies are developing flash optimized file systems for alternative operating
systems.

APPLE INC.
EXHIBIT 1011 - PAGE 0273

Flash Optimized FSSD's 253

Accessing the Flash-Optimized FSSD

We discussed earlier how application programs access the FSSD drivers
for the Disk-Drive Emulators. Contrary to this approach, the alternative
file system does not utilize a BIOS Parameter Block (BPB), a FAT or
other disk-drive compatible structures and the typical block device
driver cannot be used. It could have been possible to develop a driver
that hooked into INT 21H. Using this approach, every function call
coming in would have to be watched (and potentially intercepted),
requiring a considerable amount of overhead. To access MS-Flash,
Microsoft chose instead to implement a redirector interface. In short,
redirector interfaces allow alternative file systems to be transparently
accessible by DOS and Windows programs. MS-Flash can receive calls
from DOS by using INT 2FH (the Multiplex Interrupt) which provides
the redirector interface (Figure 9.15).

During system initialization, the redirector interface "manufactures" a
DOS drive(s) for the FSSD and provides fictional drive mappings (to
generate drive letters in lieu of the standard block device method). The
redirector interface unifies the two file access methods (FCB and file
handles), so that the file system does not need to know by what method a
file is being accessed. The work of resolving the drive and directory has
already been done by the DOS kernel. The redirector operates at a level
below INT 21H, and the code for !NT 21H takes care of calling INT
2FH when appropriate. This access method independence saves a lot of
code and further confirms the desirability of the redirector interface over
the !NT 21H hook as the means of implementing alternative file
systems.

Microsoft's Flash File System Design Criteria

Microsoft initially entered the flash file system world with a design that
more closely resembled a WORM (Write-Once-Read-Many) drive than a
disk drive. Although this non-sectored file system (referred to as FFS1)
found some usefulness in certain embedded applications, it mostly
served as a flash memory test vehicle. Despite the fact that it had more
functionality than any of the early disk-drive emulators (because it
allowed files and directories to be added and deleted), it did not

APPLE INC.
EXHIBIT 1011 - PAGE 0274

254 Chapter Nine: Flash Memory File Systems

incorporate a method for reclaiming the dirty space created by the
deleted files (as you have seen with the full-featured DDEs, this
capability is needed to recreate the functionality of a disk drive). When
the media became full using FFS1, the user had to XCOPY the non
deleted files to a backup drive, reformat the WORM, then XCOPY the
files back (Figure 9.16).

APPLICATION

~
DOS ChoosesThe Correct Path ~ ,,. Based On Drive Leiter Registration

File Accesses

Sector-Level Accesses
Through Int 21 H

Functions
Through Int13H.
Int 25H Or Int 26H

I ..
I Int 2FH. Mulliplex Interrupt I

~
Disk Drive Or

Disk Drive Emulator
Device Driver Flash File

System
Redirector

~
I Flash File System I

Figure 9.15: Flash Memory Solid-State Drive Accessing Methods

APPLE INC.
EXHIBIT 1011 - PAGE 0275

Flash Optimized FSSD's 255

Deleted File Q

Deleted File F can Use DOS 'XC Erase Flash Memory Array,
Command To Tr
ValkJ Files To

Then 'XCOPY' Files Back.
Free Space This Leaves Free Space For

AHamate Dtsk The Ackfrtlon Of Naw Aes.

FHe E ~

FlieD

Oeleled File C File E

Deleted File B
Fila 0

File A File A

Figure 9.16: Microsoft's First FFS Functioned Like a WORM Drive

To explain the functionality of MS-Flash, we'll begin by elaborating on
the design criteria of what a flash-optimized file system needs to be and
do:

1. The flash file system must adapt to the erase block size of the
flash memory devices that the FSSD uses. Erase block sizes
range from 4 kbytes to 64 kbytes for symmetrically blocked
devices (such as Intel's 28F008SA) and 32 kbytes to 512 kbytes
(or the entire component size) for the bulk-erase devices (such
as Intel's 28F020). Block size independence represents one key
feature that makes this flash file system different from the
mechanical disk, which usually deals with 512 byte sectors
(disk-drive sector size can vary). Later, we'll look at the effects
of block size on clean-up efficiency.

2. The flash file system must minimize the need to rewrite any
fixed areas in the media. After programming a flash memory bit
to a zero, that bit only becomes a one after erasing the entire
block (or device). Basically, this functionality provides the
biggest challenge to designing any type of flash file system.

3. The flash file system must first erase a block before it can
reclaim deallocated space (created by deleting a file or
subdirectory) within a block. Analogous to criteria number 2, a

APPLE INC.
EXHIBIT 1011 - PAGE 0276

256 Chapter Nine: Flash Memory File Systems

programmed flash memory bit can only be rewritten after
erasing the entire block.

4. The flash file system must evenly distribute the erasure of
blocks within the media. This ensures that the entire media
cycles at an equal rate. The importance of this topic is discussed
in the reliability section.

5. The flash file system must evenly distribute directory and file
control structures and data in the media. Remember that the
mechanical disk drive has a centralized FAT and directory
structure. Without even distriHution, every file or subdirectory
modification would require an erase and rewrite of the FAT and
directory blocks69. Not only would this cause unnecessary
cycling, but it also results in a performance degradation.

6. The directory and file control structures must not rely on the
absolute location of related control structures or data within the
media. This capability allows relocation of the control structures
(i.e., the boot record) during the cycle-leveling process70•

Functional Description

To accommodate design criteria #2, MS-Flash stores all new files and
directories in a stack-like manner, to sequentially free locations (Figure
9.17) in the flash memory array. The stack-like file storage serves two
purposes:

1. It overcomes flash memory's inability to tum zeros into ones
without erasing the entire block. This satisfies a functional
characteristic of flash memory and enables a performance
increase by not requiring real time flash memory block erasure.

69Note that the DD& had to rewrite the FAT and directory sectors with every file operation.
70Earlier we saw this could be done with the full-featured DD&. When they moved the FAT and
directory sectors, the new block that contained them was always assigned the number 1.

APPLE INC.
EXHIBIT 1011 - PAGE 0277

Flash Optimized FSSD's 257

2. It partially ensures that the entire media gets used equally,
because writes are always made to unused sequential locations.
We'll talk more about cycle-leveling concepts later.

FREE SPACE

'NEW' MARKUS.PCX

DANIELLE.DOC

JACOB.TXT

o Modified File Saved To First Free Space.
'Old' File Marked As Deleted Until Cleanup.

o Files Are Stored In A 'Stack-Like' Manner,
Always To Next Available Free Space. This
Avoids Rewriting Flash Memory Until Cleanup.

Figure 9.17: Files are Always Written to the Next Available Free Space

As demonstrated in Figure 9.17, a file modification (by a word
processor, for example), results in the deletion of the old version after
writing the new version to the first unused memory address (with the
save command of the word processor, for example). The mechanical
disk drive could simply overwrite the original file. In actuality, with an
FSSD, the so-called deleted file remains intact until the cleaning of the
block that contains it.

APPLE INC.
EXHIBIT 1011 - PAGE 0278

258 Chapter Nine: Flash Memory File Systems

en a:
w
I
Z
is
a.
Ien
:J o
w
~
Z
:J

(

(

(

~

FREE SPACE

'NEW' MARKUS.PCX

DANIELLE.DOC

BRIAN.EXE

......

I 'OLD' MARKUS.PCX L
...

JACOB.TXT

FILE DATA

DANIELLE

DOC

4:50

12106/93

~ POINTER TO 'NEW' MARKUS.PCX

STATUS

o No Centralized Directory And FAT Means
Infonnalion Attached Directly To File IIsel f.

Figure 9.18: Linked List Pointers Locate Next File in the Chain

Linked Lists

Looking in a little more depth (Figure 9.18), notice that the file system
stores files with their directory information functionally attached to the
file itself. This eliminates the dependency on a fixed-location FAT and
directory which would require modification with every file operation, In
addition to the basic information that represents a file (Name, Extension,
Time, Date, and Attributes), the file's attached directory contains, among
other things, a set of pointers and a status word, The pointers, integral to
a linked-list scheme, locate the files in lieu of a FAT and centralized
directory structure. The status word indicates whether the file or
subdirectory is valid or deleted. In many ways, the linked-list structure
resembles the FAT of a mechanical drive. However, instead of linking
the various clusters of a particular file together, the linked lists chain

APPLE INC.
EXHIBIT 1011 - PAGE 0279

Flash Optimized FSSD's 259

together all the files and subdirectories on the FSSD. The actual
structure consists of many linked lists, essentially one for every
subdirectory (Figure 9.19). The pointers within a file's directory point to
the next file in the link.

File 2

File 4 Subdirectory C

Figure 9.19: Each Subdirectory has Its Own Linked List

Besides eliminating a fixed FAT and directory, the pointers involved in
the linked-list scheme also remove the dependency on fixed cluster
sizes. The pointer values represent physical flash memory addresses, not
fixed indices as with a FAT. This allows files to be stored more
efficiently. For example, a ten byte file stored on a mechanical disk (or
DDE) consumes a whole cluster, whereas that same file only consumes
ten bytes on this type of FSSD (plus the overhead bytes).

Clean-Up

So far, we've described how the file system manages the storage of files
and directories. However, dealing with deleted files represents the most
important and complicated aspect of the file system - the part known as
clean-up. We saw that some primitive file systems performed a type of
clean-up operation, but at tremendous expense of the host CPU's
bandwidth and user's time. The ideal file system should be able to
remove deleted files without any noticeable impact on system
performance (but, this isn't an ideal world, is it?). Before we get into the

APPLE INC.
EXHIBIT 1011 - PAGE 0280

260 Chapter Nine: Flash Memory File Systems

implications of that last statement, let's look at how to petform a clean
up operation.

DIRTY
DIRTY

123K FILES 45K FILES

@ ®

~r "
DIRTY

DIRTY

123K FILES 45K FILES

@ ®

DIRTY

28K FILES

0 '\
Valid Files
Copied to

~, ~"'7
SPARE
BLOCK

~

Dirty Block Becomes
New Spare Block

SPARE
BLOCK

"
FREE

SPACE

28K FILES

0

Figure 9.20: MS-Flash Peiforms a Three-Step Clean-up Operation

Figure 9.20 shows a simplified example of an FSSD with a minimal
number of blocks. These blocks contain a mixture of valid and deleted
files. Notice that one of the blocks, labeled the spare, is empty. MS
Flash petforms a clean-up operation following these three steps:

1. Identify the dirtiest block by referring to the records that the file
system keeps on all allocated and deleted space on the FSSD.
After removing the deleted files, this once-dirtiest block will
contain the most free space for accommodating new files. This
has significant impact on step two of the clean-up operation.

APPLE INC.
EXHIBIT 1011 - PAGE 0281

Flash Optimized FSSD's 261

2. Copy valid files to the spare block. This step consists of a
. varying number of byte transfers from one flash memory block
to another. Obviously, the dirtier the block, the less valid files to
copy and the more efficient and timely the operation will be.
The spare block, a required overhead of the file system,
eliminates the use of system RAM.

3. Erase the dirty block. Immediately after copying all valid files to
the spare block, two copies of the same files resides within the
FSSD. Without going into details, this plays a significant role in
data integrity if the power should go down in the middle of a
clean-up operation. At this point, the file system orders the dirty
block to be erased. Mter the erase completes, this block
becomes the new spare block ready for its role in the next clean
up operation. Mter erasing the dirty block, the file system
increments the erase count and stores it in that block for cycle
leveling information.

Background Clean-up

Although the clean-up operation seems like a busy activity, the trick is to
get all this to happen in the background, transparent to the user73 . In
other words, the user would still perceive full use of the CPU's
bandwidth; once the background operation was initiated, control would
return to the application running. The file system has built-in checks to
periodically search the blocks and look for a certain percentage of
dirtiness that will trigger a clean-up operation. Obviously, this searching
function cannot occur continuously because it would result in a
degradation of system performance. Usually the search occurs after a
certain number of FSSD accesses.

The background clean-up mechanism can be implemented in several
ways. Let's look at the following steps to see the a~ditional functionality
required beyond the three simple clean-up steps outlined previously:

73Except for the integrated drive, only MS-Flash can implement background cleanup because it has
'complete knowledge' of the flash memory array that it manages; it doesn't require the operating
system to tell it what to do,

APPLE INC.
EXHIBIT 1011 - PAGE 0282

262 Chapter Nine: Flash Memory File Systems

1. Identify the dirtiest block.

2. Copy valid files to the spare block. The actual programming
method employed for this step depends on the specific type of
flash memory used (the various programming methods were
discussed in Chapter 7). Regardless of the device used, or
whether the operation is automated or not, the bytes (or words)
of data can only be written on~ at a time. Without going into the
specifics of the write algorithms, individual write operations
occur in a relatively short time (approximately 10-20
microseconds). Assuming that even if a write operation were
automated, it occurs in too shbrt a time period to practically
return control to the system after the initiation of each operation.
Therefore, the host CPU must monitor the completion of the
operation. This means that this step cannot really be a
background task and again stresses the importance of identifying
the dirtiest block to obtain the highest clean-up efficiency.

3. Erase the dirty block. The flash memory devices employing
automated erase (for example, Intel's 28F008SA) have been
optimized for this step of the background clean-up. The erase
operation, once initiated, occurs in approximately one to two
seconds. During this time, the host CPU does not need to
monitor the erase progress for automated flash memories; it can
temporarily return control to the user's application (and wait for
a transition on the ReadylBusy signal).

Foreground Clean-Up

Another circumstance can occur, which we call "on-demand" clean-up,
where a file write request forces minimally dirty blocks to be cleaned to
accommodate this file. Typically this would only happen on a relatively
full FSSD, where all reclaimable space is crucial. Figure 9.21 shows a
worst-case situation where the FSSD has a few reclaimable bytes
scattered throughout the array. For this example, every block requires
cleaning to accommodate the file write request. Obviously, this could
severely impact system performance. In practice, the situation does not

APPLE INC.
EXHIBIT 1011 - PAGE 0283

Flash Optimized FSSD's 263

seem to get this bad. Nevertheless, it can be minimized by techniques
described below in the section on hot and cold file management.

3KFILES DIRTY 5DK FILES

DIRTY DIRTY
8DK FILES 99K FILES

Before Foreground Cleanup
75K FILES

123K FILES DIRTY DIRTY

45K FILES 28K FILES DIRTY

"
FREE FREE FREE FREE

After Foreground Cleanup

126K FILES 126K FILES 126K FILES 126K FILES

-Flash Memory Block Size Is 128 KBytes
-Atlempt to Write 9 KByte File Results In 4 Block Cleanup.
-Cleanup Concatenates Valid Flies Within Each Block.

Figure 9.21: Worst-Case Foreground "On Demand" Cleanup

Implementing Cycle Leveling

Back in Chapter 3, we discussed the cycling characteristics of flash
memory devices. However, intelligent media management with MS
Flash allows it to deliver very low failure rates. To achieve the highest
possible performance and longest flash media life, the file system must
cycle all erase blocks at an equal rate (also known as "wear-leveling").

From the example that follows, it should be very easy to see that without
an intelligent cycle-leveling mechanism, serious hot spots would
develop in the media:

A. Assume files stored as depicted in Figure 9.22.

APPLE INC.
EXHIBIT 1011 - PAGE 0284

264 Chapter Nine: Flash Memory File Systems

B. The first two blocks contain non-changing files (perhaps
applications). The dirty detect algorithm will always find these
two blocks very clean and stable.

C. Block 3 contains a splattering of stable files and a few deleted
files. Sequence 2 in Figure 9.22 shows what happens after clean
up.

D. In sequence 3, the user had previously stored and then deleted a
file within the available free space. What happens on the next
clean-up?

1 Cycle

Permanent
Sequence 1 Application

Flies

1 Cycle

Permanent

Sequence 2
Application

Flies

1 Cycle

Permanent
Sequence 3 Appllcalion

Flies

1 Cycle

Permanent

Sequence 4
Appllcalion

Flies

2 Cycles

Sequence 5
Spare
Block

12 Cycles 99S Cycles 36 Cycles

Permanent
Application

Flies

Dirty
Spare
Block

SOK Files

12 Cycles 999 Cycles 36 Cycles

Permanent
Appllcalion

Flies

Clean/Dirty
Spare '"'4 Block

SOK Flies

12 Cycles 999 Cycles 37 Cycles

Permanent
Application

Flies

Clean/Dirty

,JI' Spare
Block

SOK Flies

12 Cycles 1000 Cycles 37 Cycles

Permanent
Application

Flies

Clean/Dirty
Spare '"'4 Block

SOK Flies

12 Cycles 1 00 cles 37 Cycles

Permanent Permanent
Clean/Dirty

Application Appllcalion
Flies Flies SOK Files

Figure 9.22: File Clean-Up

Aller Cleanup. The Free Space Is Used
And Evenlually Becomes Dirty Again.
Causing Anolher Cleanup.

APPLE INC.
EXHIBIT 1011 - PAGE 0285

Flash File System Evaluation 265

It looks like blocks 3 and 4 are playing a game of ping-pong. But, the
cycle leveling algorithm, who has been watching this game, finally says,
"All right, this has been going on long enough!". "Long enough" in this
case refers to a large enough cycling delta between the four blocks in the
picture; pick 1,000 as a nice round number. Sequence 5 shows what
happens next. Block 1 becomes the new spare block. It undergoes
cycling until the next time the appropriate cycling delta between the
blocks is reached.

FLASH FILE SYSTEM EVALUATION
Developing a sufficient evaluation of a flash file system requires careful
scrutiny. Although you must work out your own personalized test details
and file system requirements, we have provided a basic list of things to
consider. The tests are divided into categories consisting of
performance, power consumption, reliability, and system-level issues.

Performance - File Transfer Rate

The end-user inevitably asks the fundamental question: "How fast is it?"
Publicly-available benchmark programs, designed to test mechanical
disk-drive performance, can be used for various types of read and write
tests. Because these benchmark programs specifically target disk drives,
most have been designed to function at the sector level and only operate
on the DDEs. These benchmark programs will not be compatible with
the file level functionality of Interrupt 21H used by MS-Flash.
Furthermore, they're unaware of (and therefore, do not stress) the unique
characteristics of any flash file system, such as the need to perform
clean-up operations.

Benchmarking at the File Level

Benchmark programs can be written which use the INT 21H functions,
thereby working with all types of FSSDs, including those with a
redirector interface. The Appendix lists code providing a rudimentary
example in which a specified file(s) is copied from a source (be it a hard

APPLE INC.
EXHIBIT 1011 - PAGE 0286

266 Chapter Nine: Flash Memory File Systems

disk, RAM drive, or even another FSSD) to the FSSD being
benchmarked. A simple timer routine calculates the time for the
operation. Beware that this does not eliminate any system overhead or
timer inaccuracies.

From a read standpoint, most FSSDs perform at RAM-disk speeds.
Therefore, most benchmarking efforts should be focused on write
performance (except for the minimally functional FSSDs we discussed
earlier). Referring back to the 80/20 model of disk-drive accessing, you
may want to consider averaging out the read and write times to provide
an overall performance indicator.

The file write transfer rate for a given FSSD will be condition
dependent:

• A clean FSSD (no files) yields the fastest file write transfer rate.
Under these conditions, the FSSD theoretically delivers file
write rates equivalent to a disk drive. Most people find this
surprising because flash memory actually has a much slower
write transfer rate than the disk drive. However, rotational
latency, seek time and system overhead limit the disk drive
except when these factors average out with files exceeding
approximately 100 kbytes.

• A dirty FSSD results in a noticeable decrease in performance
due to the necessity to do clean-up in order to accommodate
additional files. We referred to this earlier as "on-demand"
clean-up.

Before running a benchmark program, precondition the FSSD so that
these various situations can be properly studied. Obviously, it's up to
you to determine the exact level of dirtiness an FSSD should be to
provide a generalized evaluation. A good technique is to fill the entire
FSSD with randomly sized files (ranging from 5 kbytes to 200 kbytes).
Now delete files here and there so your FSSD's file arrangement looks
like that depicted in Figure 9.21 and you've regained approximately 15%
of the capacity. Remember, deleting files does not cause a clean-up, so

APPLE INC.
EXHIBIT 1011 - PAGE 0287

Flash File System Evaluation 267

the FSSD will contain a bunch of dirty blocks. The next file copy
requires a clean-up before it can be written. You can repeat this
procedure using various file sizes, causing more or less blocks to be
cleaned. Again, consider an overall performance indicator because in
reality, file copies will not always require a clean-up operation to
accommodate a file.

Performance - Clean-Up Efficiency

Clean-up efficiency affects performance, power consumption, and
cycling of the FSSD. Let's reiterate what clean-up efficiency means. To
explain this, first recall the clean-up steps:

1. Copy valid file data (and potentially some dirty data, in the case
of the DDEs) from the dirty block to the spare block.

2. Erase the dirty block.

Step number 1 implies that the fewer valid bytes (i.e., the dirtier the
block) to copy, the faster this operation occurs. This also translates to a
secondary (but important) benefit - power savings. An FSSD performing
on-demand clean-up has no control over clean-up efficiency because the
algorithm simply looks for the dirtiest block to clean-up. On an FSSD
that is relatively full of valid data, the dirty space may be just a few
bytes. Clean-up efficiency becomes important during background clean
up operations, where the algorithm decides how dirty a block should be
before it kicks off a clean-up. If the dirtiness is too low, decreased
performance, increased power consumption and increased cycling will
result. In this situation, the background clean-up operation can
noticeably steal CPU bandwidth away from the user's application.
However, a very high dirtiness requires more on-demand clean-ups. In
writing or evaluating a flash file system that can perform background
clean-up, you must really have an appreciation and understanding of this
fine balance.

You can work through the math to determine the "visible" time spent
during the background clean-up steps. Depending on many factors,
including the number of bytes to copy, the type of flash memory devices
and the CPU speed, this time can range from a few microseconds to

APPLE INC.
EXHIBIT 1011 - PAGE 0288

268 Chapter Nine: Flash Memory File Systems

several seconds. Flash memory erase block size plays an important role
in determining overall cycling efficiency. The smaller the block size, the
more blocks that must be erased to reclaim an adequate amount of free
space. The larger the block size, the more valid file data that potentially
has to be copied to the spare block during the clean-up.

Performance - Hot and Cold File Management

The user will probably store both permanent (cold) application programs
and temporary (hot) data files on the FSSD. Executable files or
application programs fall into the category of permanent files, as they
rarely change. User files created with the application programs may be
frequently updated, classifying them as temporary. These files will
probably be randomly arranged throughout the FSSD. Now, assume that
some of the data files are deleted creating dirty holes amidst the
application programs. A clean-up operation transfers the application
programs to the spare block, but eventually that block contains dirty
holes too. The non-changing application programs are getting bounced
around needlessly. This wastes block-erase cycles and decreases
efficiency. In an ideal situation, the algorithm will eventually sort out
the hot and cold files. You could also consider writing a utility to allow
the end-user to perform this sorting task periodically. The hottest files
would then be located within the dirtiest blocks. Since the hot file
activity would then be happening within the most efficient blocks (i.e.,
the dirtiest), the overall cycling efficiency will be highest. The algorithm
that separates the hot and cold files could be designed to look at file
creation dates to determine its relative warmth. Therefore the files could
be stored in approximate order of age.

Reliability - Cycle Leveling

You may recall the ping-pong game that occurred during the clean-up
operations. If it weren't for cycle-leveling stepping in, those blocks
would have aged much quicker than the remaining blocks in the FSSD.
Without further discussion, we must conclude that for the typical FSSD
application replacing the mechanical disk drive, cycle leveling should be
considered a very important feature. The lack of cycle leveling will
dramatically affect the mean-time-to-failure (MTTF) of the FSSD.

APPLE INC.
EXHIBIT 1011 - PAGE 0289

Flash File System Evaluation 269

It can be shown that based on cycling performance alone, the MTTF of
an FSSD running an intelligent algorithm (includes cycle-leveling) such
as Microsoft's Flash File System, will exceed one million hours. To
demonstrate this assume the following simplified situation74:

• A clean 20 Megabyte FSSD uses ten pairs of Intel's 28F008SA
devices.

• Each erase block equals 128 kbytes and can be cycled 100,000
times.

• A 20 kbyte file is copied to FSSD every five minutes, 24 hours a
day. This equates to writing about 5.7 megabytes every day.

• Each block gets cycled once for every 1000 file copies (20
Meg/20K = 1000).

(1000 files/cycle) (5 minutes/file) (1 hourl60 minutes) (100,000
cycles) = 8 million hours75 .

Believable? Plug in your own numbers!

In reality, other factors will reduce the MTTF. For starters, this example
showed a perfect situation for cycling efficiency; in reality, the
efficiency will range from about 50-95%. This means that more cycles
will occur to accommodate the same amount of files from the example
above. Other non-cycling related components will also reduce the
MTTF. These include things like failures of other devices within the
FSSD.

Reliability - Failure Recovery Modes

1. How does the file system respond to unsuccessful byte writes, or
worse yet, to an entire block of flash memory going bad? Keep
in mind that as reliable as the flash memory media may be, the
possibility exists that a write or erase operation will fail for one
reason or another. The file system should be capable of handling
these types of failures without a catastrophe. For example, it

74Chapter 3 contains a similar evaluation.
75Notice that this greatly exceeds the average user's life expectancy.

APPLE INC.
EXHIBIT 1011 - PAGE 0290

270 Chapter Nine: Flash Memory File Systems

may use the spare block to replace the bad block. Although this
may render the FSSD incapable of performing subsequent clean
ups, at least the data can still be read and recovered. Most of the
full-featured DDEs and MS-Flash possess varying degrees of
failure recovery capabilities.

2. Since flash memory does not make audible noise like the
mechanical disk, it could be difficult for the user to detect an
operation in progress. The user may turn off power or remove
the memory card during a critical event, such as clean-up or
storing a file. You should understand the flash file system and
confirm that the algorithms handle all possible events.

System Level Issues - File System Overhead

Whatever the type of flash file system, there will be varying amounts of
data structures stored on the flash memory in addition to the user's data.
This should not be a big concern, but the amount should not be
excessive; typical numbers range between 2 kbytes and 200 kbytes,
depending on the density of the FSSD (these numbers exclude spare
blocks).

A file system, being a device driver, also uses some of the system's
RAM. The amount of RAM required may not be important (again, as
long as it's not excessive) if the device driver can be loaded high or if it
runs in a protected mode environment.

System Level Issues - Ease of Use

How easily does it install? We've already discussed this subject in
regards to built-in or installable device drivers. Almost all prominent
BIOS vendors have been working on the solutions that will allow simple
installation of the flash file systems74. Specifications like ExCA strive to
turn all file systems into "plug-n-play" device drivers. In the next
chapter, we'll take a look at how flash file systems fit into the overall
PCMCIA and ExCA software solution. The key result to look for is
simplicity - for a system integrator and for the end-user.

74Refer to the Appendix for a list of BIOS vendors developing PCMCIA software.

APPLE INC.
EXHIBIT 1011 - PAGE 0291

Summary 271

SUMMARY
A Flash Memory Solid State Drive provides the highest level of
integration for flash memory devices. Although the hardware itself can
be quite simple, the software required to deliver the functionality of the
mechanical disk drive provides a challenge. even to the most experienced
software designer. This chapter was written to allow you to become
familiar with the possible implementations of flash file systems and
perhaps even tempt you to write your own.

Ultimately, whatever approach you select, you must ask some final
questions:

./ Does this product provide complete Windows and DOS
compatibility (or compatibility with whatever operating system you are
using)? Is this needed?

./ Does the flash file system meet or exceed the requirements of
your application?

./ What are the end-user's perceptions?

APPLE INC.
EXHIBIT 1011 - PAGE 0292

Chapter Ten: PCMCIA Software

INTRODUCTION
In this chapter we'll be discussing the various pieces of software
associated with integrating a flash file system into a host computer
system. Chances are, when you hear the term "glue-logic" you think of
hardware. The hardware glue-logic connects the major pieces of a
system together (Figure 10.1). In Chapter 8 we saw that a few buffers
and transceivers provided the glue-logic between the PCMCIA
compatible flash memory card and the card's interface controller (Intel's
82365SL, for example). Similarly, in the software environment of a flash
file system, glue-logic connects the file system to the operating system
on one end, and the flash memory card and socket adapter hardware on
the other. Glue-logic software isolates a generic file system from a
computer system's specific implementation.

Implementing the software glue-logic is not as simple as it may seem
from this high-level view. In an ideal situation, a single file system can
be used interchangeably in a variety of different machines. To do this,
the file system must use standardized interfaces (i.e., glue-logic). When
you buy a DOS-compatible (or Windows) application, you probably

. don't question whether it works on a i386 or i486 system or, for that
matter, a Dell™, CompaqTM or NCRTM machine. Thanks to MS-DOS and
the PC-AT specification that exists to ensure this level of
standardization, common software runs on widely divergent hardware
without (or with little) problems.

APPLE INC.
EXHIBIT 1011 - PAGE 0293

274 Chapter Ten: PCMCIA Software

HARDWARE

'GLUE LOGIC' : ~

8r-==-.......,1
t i

SOFTWARE

Flash
Memory
Card

'GLUE LOGIC' 'GLUE LOGIC'

Operating
System

r···············:
! OS !

~! Interface :

L"."l
Flash
File

System

i"'·~I~~~ ·]
i Memory ~
i Interface i
: :
i J

Flash
Memory

and
Socket

Hardware

Figure 10.1: Glue Logic Holds Together the Major System Pieces

A similar situation exists within the realm of flash file systems.
Specifically, the glue-logic that links the flash file system to the other
system elements must adhere to some type of specification in order to
achieve independence and compatibility.

THE AREAS OF SOFTWARE COMPATIBILITY
Three major software components must be comprehended for
implementing a flash file system design. Later, it will become obvious
how the glue-logic ties them together:

1. Flash File System - As discussed in Chapter 9, flash file systems
come as two basic implementations: as a disk drive emulator or
as a redirected file system. A flash memory card formatted for a
particular file system will not be recognized in a system running
an alternative file system, even if they belong to the disk
emulator variety, for example. This fundamental issue can only
be resolved by defining a media format specification that the

APPLE INC.
EXHIBIT 1011 - PAGE 0294

The Areas of Software Compatibility 275

entire industry willingly (or unwillingly) adopts. Such
specifications are currently being discussed in PCMCIA, and
sooner or later standardization will be a reality. Microsoft has
been contributing to this standardization by publicizing their
flash file system's data structures for adoption by other flash file
systems, or even by other OIS implementations of the Microsoft
Flash File System. A common file structure format will
eventually allow multi-platform and multi-OS inter-operability.

2. Host System Hardware - Chapter 8 described multiple ways of
designing the system hardware to accommodate IC cards for
PCMCIA compatibility. At the system level, these cards may be
accessed through memory windows or through any number of
I/O ports. Each of these access methods has unlimited ways of
designing the interface to the socket. Your system may be using
one of the PCMCIA-controller chips or even custom discrete
logic for the interface circuitry on its socket adapter.

In some situations, an OEM may even have several different
computer products, each with different socket adapter hardware.
Without a standardized software interface, the overabundance of
possibilities makes it impossible to write just one flash file
system. The ideal situation would be to take the exact same flash
file system software and have it operate across the entire product
line. This chapter discusses Socket Services, an integral part of a
system's BIOS, that makes this possible. In other words, it
provides the interface between the common flash file system and
the specifics of a host adapter's implementation. Socket Services
manages everything from voltage control for Vpp to selecting
the memory offset within the flash memory array.

Card Services, on the other hand, resides on the other side of the
interface. It dynamically allocates host system resources for the
installed PC card. For example, before installing a flash memory
card, the system does not need to keep its memory space
available for the socket adapter. Upon detecting a flash memory
card installation, the flash file system asks Card Services for

APPLE INC.
EXHIBIT 1011 - PAGE 0295

276 Chapter Ten: PCMCIA Software

allocation of a percentage of the host's memory map. If
available, Card Services uses Socket Services to enable a
window at the designated address.

HOST SYSTEM
and

PCMCIA
Compatible

Socket
Adapter

Figure 10.2: Many Types of PCMC/A-Compatible Cards can
Operate in the Same Socket

3. Flash Memory Cards - For the moment, assume that we could
have one flash file system format and a standard host system
interface. This would take care of the software glue-logic issues
discussed in the two preceding paragraphs. But, how would we
handle different flash memory cards? Cards from Intel, AMD,
Toshiba, Mitsubishi, and Epson (to name but a few) all have
slightly different internal register structures, and even entirely
different flash memory components within them (Figure 10.2)

APPLE INC.
EXHIBIT 1011 - PAGE 0296

The PCMCIA-ExCA Relationship 277

with different command interfaces, software algorithms, etc.
What about the RAM cards, ROM cards, fax cards and modem
cards that all fit into the same socket? A specification must be in
place that allows recognition of the plethora of different cards.
This chapter discusses the PCMCIA Card Information Structure
(CIS) that provides this capability. After determining the flash
memory card type, the correct flash memory algorithms must be
employed. We will also describe the Memory Technology
Driver (MTD), or flash card drivers, that serve this purpose.

THE PCMCIA-EXCA RELATIONSHIP
PCMCIA is represented by a consortium of companies that include
computer OEMs, PC Card vendors, BIOS vendors and socket
manufacturers. Originally, PCMCIA had several basic goals:

• Define the mechanical dimensions of the PC Card77

• Define the characteristics of the 68-pin electrical interface
• Define the elements of the Card Information Structure

A need soon became apparent for some sort of software interface for PC
Card sockets. This led to the development and inclusion of Socket
Services. It also became evident that the PCMCIA specification did not
provide any system-level implementation details. So, a PCMCIA
compatible computer today guarantees only that a PCMCIA-compatible
card can mechanically fit in the socket. Figure 10.3 represents PCMCIA
as a general, three-dimensional specification covering processors,
system architectures, and operating systems. This situation may not
represent a problem for computer systems based on proprietary or closed
architectures. But in the widespread PC market, standardization is
critical. The 'Exchangeable Card Architecture' (ExCA) specification
resolves these issues by providing implementation details of PCMCIA
2.0 for PC platforms78. ExCA was originated by Intel, but several groups
have been pushing to incorporate it directly into PCMCIA79. In brief,

77The Appendix contains the measurements of Type I, Type II and Type III.
78To date, there have not been any analogous standards in place for other architectures.
79It will probably even have a different name.

APPLE INC.
EXHIBIT 1011 - PAGE 0297

278 Chapter Ten: PCMCIA Software

ExCA compliance guarantees a minimum set of host system hardware
and software interfaces that card, system, and software designers can
rely on for basic compatibility (Figure lOA and Table 10.1).

THE PCMCIA BOX

6BK rL-----------,-'

ARM

Hobbtt

XBB

V20

Proprietary l,--,-----.--r---r----,l/

Notebook Industrial

OS2

Unix
system 7

DOSN/Indows
PenWi"lows

Penpoint

Figure 10.3: PCMCIA Provides a General, Three-Dimensional
Specification Covering Processors, System Architectures, and Operating

Systems

PCMCIA

SOCKET ADAPTER

o Some PCMCIA-Delined Pieces Have ExCA'M -Specilled Interlaces

Figure 10.4: ExCA Provides a Specific Implementation of PCMCIA

APPLE INC.
EXHIBIT 1011 - PAGE 0298

Flash File System Models 279

PCMCIA ExCA
* Card and Socket Mechanical Form * Socket Hardware Specific to the PC

Factors Architecture (IROs, Memory Windows, I/O
* Card and Socket Electrical Signals Ports)
* Card Metaformat (Le. CIS) * Socket Services Specific to the PC BIOS

* Generic Card and Socket Services * Card Services Specific to DOSlWindows

Table 10.1: PCMCIA and ExCA Relationship

FLASH FILE SYSTEM MODELS

The Original Flash File System Model

The simplest but least flexible system model to accommodate is the
"one-computer, one flash memory card type" design. In this model, the
monolithic file system contains all essential pieces. In another approach,
depicted in Figure 10.5, this single piece could be split into two pieces:
the core file system and a low-level driver that interfaces to the
hardware8o• Regardless, running either of these in a different computer
system or even using a different type of flash memory card requires
modifications to the file system software. This model best fits in an
embedded application where the manufacturer has complete control of
the operating environment - the flash memory cards and the system don't
change.

Modularizing the Flash File System Model

At the other extreme (of the Monolithic Flash File System Model), a
flash file system can be split into several functional pieces. Using
Microsoft's Flash File System as an example, you can see that a
complete implementation actually consists of five modules (Figure
10.6).

1. MS-FLASH.SYS - The installable file system and redirector. As
described in Chapter 9, this piece manages the media and
translates commands between the operating system and the file
system.

80This was the original model of Microsoft's Flash File System.

APPLE INC.
EXHIBIT 1011 - PAGE 0299

280 Chapter Ten: PCMCIA Software

OPERATING SYSTEM

t
as Inlerface

as To File Syslem
Command Translalor

Flash File Syslem Core

~
Hosl Sockel Adapter Conlrol

Memory Card Intepreter

Memory Card Algorilhm

i
Socket And Adapler

U •
Flash Memory Card

MS-Flash
vided By
05011

Pro
Micr

CA RDDRV.EXE
len Or Modified

OEM
Wril
By

L
Figure 10.5: The Non-Modular Flash File System Lacked Flexibility

2. CARDDRV.EXE - A memory card client device driver that
interfaces to the flash file system. Originally, this piece had to
be written by the OEM81. However, if your design implements
the complete PCMCIA software model, CARDDRV.EXE can
be obtained, along with Socket Services and Card Services from
most major BIOS vendors (see Appendix for a list).

3. Card Services - Provides five functional categories: Client
Services, Resource Management, Client Utilities, Bulk Memory
Services, and Advanced Client Services. It allows a system to
maintain a virtual socket that can be dynamically reconfigured
to work with memory cards and I/O cards.

81sample CARDDRV.EXE source code is included in Microsoft's Flash File System OEM
Adaptation Kit.

APPLE INC.
EXHIBIT 1011 - PAGE 0300

Socket Adapter

Flash File System Models 281

Memory
Technology

Driver

Figure 10.6: Complete and Flexible 1mplementation of a Flash File
System Consists of Five Modules

4. Memory Technology Driver (MTD) - Handles all flash memory
program/erase algorithms and specific functions associated with
each flash memory card.

5. Socket Services - Provides a standardized interface to the socket
hardware. The following sections on Socket Services aim to
accommodate the writer as well as the user.

Although we've painted a rather "flash memory-centric" (and Intel
microprocessor architecture-centric) picture, some of these modules can
be expanded to include support for the other types of IC cards
(collectively referred to as PC Cards). In particular, Socket Services
(unofficially abbreviated S2) and Card Services are integral to the

APPLE INC.
EXHIBIT 1011 - PAGE 0301

282 Chapter Ten: PCMCIA Software

PCMCIA 2.01 specification that supports memory and I/O cards. So
from this point on, we'll expand this discussion, whenever appropriate,
to include PCMCIA-compatible cards in general.

What's Really Necessary?

The exact nature of the software pieces described earlier mayor may not
coincide with the software model required for your hardware or
operating system environment. Other flash file systems may take a
simpler approach from a construction standpoint (although all have
begun adapting to the PCMCIA model), but they lack the flexibility of
the totally modularized model. The pieces of the software hierarchy that
you decide to implement depend on the degree of flexibility required in
your design. At the very least, Socket Services should be implemented to
isolate the flash file system from the system's hardware. Additionally,
you should consider some form of distinct upgradeable memory card
driver to be able to handle future generations of flash memory cards.

SOCKET SERVICES
The concept of a S2 first appeared within the PCMCIA specification
with version 1.0 (August, 1991) and was intended for Real Mode
applications only. During the development of Card Services, it became
obvious that S2 must have its applications program interface (API)
modified to accommodate protected mode applications as well, leading
to the next release, Version 2.0 (November, 1992). Some of the other
differences between the two versions include:

• The socket base changed from 1 to O.

• In version 1.0, a client's request for a buffer (e.g,. Window
Characteristics Table) was handled by S2 passing back a pointer
to a location within itself. To accommodate the protected mode,
an S2 implementation now passes back the buffer contents in a
client supplied buffer.

The status change interrupt used to go to S2, which then had to
perform a callback to the appropriate client. This approach
doesn't work in protected mode, so now the status change

APPLE INC.
EXHIBIT 1011 - PAGE 0302

Socket Services 283

interrupt goes directly to the client of S2 (e.g., Card Services)
This allows the client to take the interrupt in either real or
protected mode without having to shift back and forth.

Defining the Adapter Hardware

Before beginning a software-oriented discussion on the hardware
dependent S2 software, it may be helpful for you to review some of the
basic hardware design concepts from Chapter 8. While reviewing, think
about how to use software to manipulate the hardware that controls and
monitors a socket adapter's functions. In particular, the examples in the
following discussion on S2 will be based on Intel's 82365SL (PC Card
Interface Controller, PCIC) because, at this time, it represents the most
popular type of PC Card interface controller82 and provides the
compatibility reference for most other controllers now available. Even
more important is this device's capability to handle most of the functions
that you'll probably ever need for interfacing to a PC Card. From the
concepts presented here, you should be able to extract enough
understanding to write a S2 for any socket adapter implementation in any
operating system environment.

The PCIC's control and status functions are software-accessible using an
indirect indexing scheme through two built-in 110 addresses. These 110
addresses allow read/write access to the PCIC's index and data registers.
By default, the index and data registers are accessed at 110 addresses
3EOH and 3E1H. In order to read or write to the registers within the
PCIC, the index register must first be written with a valid index (Figure
10.7). This is analogous to picking the right key for unlocking a door.
This indexing method makes it possible to use only two system 110
addresses to access up to 64 individual data registers per socket, within
the PCIC. While going through the following discussion, refer to the
complete list of registers in the Appendix. Let's take a quick look at an
example of reading the PCIC's Interface Status Register (located at index
OH and 40H for socket A and B, respectively).

82Vadem's VG-465, Cirrus Logic's CL-PD6710, and Databook's DB86082 have similar
functionality. See the Appendix for more details.

APPLE INC.
EXHIBIT 1011 - PAGE 0303

284 Chapter Ten: PCMCIA Software

~
w
In
Ci
W
II:
o
(3
Il.

~

...-

Data

3E1H

VO Addresses

l
,

I
,

Index I
3EOH

Figure 10.7: Use an Index and Data Register Combination to Access
the PCIC's Internal Registers

Reading Socket A's (or B's) Interface Status Register

MOV AL, INTERFACE_STATUS
MOV OX, INDEX_REG
ADD AL, Base
OUT DX,AL
MOV OX, DATA_REG
IN AL, OX

Accessing Socket Services

; The'lnterface Status Register has an offset of 1.
; The Index Register Is I/O port 3EOH.
; The base of socket A is 0; for B it is 40H.
; Sets up the access.
; The Data Register is I/O port 3E1 H.
; Read from Interface Status Register.

The S2 specification embodied in PCMCIA provides a list of hardware
dependent functions that control the various pieces of a host system's
socket and associated adapter. The specification views each of its
functions as a black box. It gives explicit details of the parameters that
go in and out of the functions, but what actually happens within the
function itself depends entirely on the socket and adapter hardware
implementation (Figure 10.8). This approach is analogous to the
relationship between device drivers in the BIOS and the applications that
use them. For example, to utilize the disk drive functions provided by
the BIOS's Interrupt 13R, one only needs to know the specified registers

APPLE INC.
EXHIBIT 1011 - PAGE 0304

Socket Services 285

and parameters that must be passed within them. An application that
takes advantage of any of these low-level functions (BIOS and S2
alike)83 can be assured of software and hardware compatibility,
minimizing or eliminating the possibility of violating system integrity.
Using any of these hardware-dependent functions also eliminates the
need for the same code to be separately incorporated within each
application that uses the socket adapter.

PARAMETERS

IN

SOCKET SERVICES FUNCTIONS

Non-Specific Function

Adapter Functions

Socket Functions

Window Functions

Error Detection And
Correction Functions

FUNCTIONS AND

~
RETURN CODES OUT

a The User Of Socket Service Only Needs To Know
What Goes In And What Comes Out.

Figure 10.8: The Functions of Socket Services Act Like a Black-Box
Where Parameters Go In and Out

As defined by PCMCIA, S2 functions can be written for any processor or
operating system environment. From a generic standpoint, use a format
that resembles a C language function call to request the functions:

status = Function (argI, arg2 ...)

The ExCA version (or PC implementation) of S2 applies specifically to
the Intel microprocessor platform. To be explicit, a real mode client will
access the S2 functions through INT lAH, shared by the PC's Time-of
Day services (Figure 10.9)84. Standard access methods do not exist for
other types of platforms and operating systems. The OEM must invent
an interface that seems appropriate for a specific platform. This should

83 Actually, most Socket Services will eventually be integrated into the system's BIOS.
84The GetfSetSSAddr function sets up protected mode access to S2.

APPLE INC.
EXHIBIT 1011 - PAGE 0305

286 Chapter Ten: PCMCIA Software

not be an issue in proprietary systems because compatibility will
probably not be a concern and the OEM can essentially use any
convenient method.

Register AH = 0-7. AH. BH

+
Real
Time
Clock

INTERRUPT 1AH

+
AH = Function Requested

Register Contents Will Vary
By Function.

, , Register AH = 80H-BFH

Socket
Service

Functions

Figure 10.9: An Application Uses Interrupt lAH to Access Socket
Services or the PC's Real-Time Clock

Installing Socket Services

In a PC, S2 may be loaded as an installable device driver or from the
system's BIOS. If installing through CONFIG.SYS, it chains into the
INT lAR requests ahead of the Time-of-Day Clock, as shown in Figure
10.10 (refer to GetISetPriorHandler). Loading S2 in this manner allows
some of the otherwise hard-coded values (such as the number of sockets
supported and a window's base address) to be varied by using command
line parameters (i.e., Device-= /parameter). This especially has value
during code development for testing the same S2 in different systems to
debug any machine-specific idiosyncrasies. Incorporating S2 directly
into the BIOS, or installing it during ROM scan, allows its functions to
be used during system initialization. This is particularly important if the
socket adapter must be initialized in order to access a PC card containing
boot information.

APPLE INC.
EXHIBIT 1011 - PAGE 0306

The Socket Services Functions 287

INT1AH

c
0 0 1a a.
i ~

E Q
0 ~

0
Q; ro

(J)

"Ie (J)

0

Figure 10.10: Multiple Socket Services can be Chained Together and
Accessed Through the Common Entry Point of INT lAH

THE SOCKET SERVICES FUNCTIONS
The original S2 specification contained within PCMCIA supported eight
functional categories. As mentioned earlier, the ExCA version of S2 is
almost identical to that found in the PCMCIA specification. The most
notable exception is that ExCA removed the functional group for error
detection and correction because it was felt that this capability would be
most suitably performed within the PC Card, transparent to the system
interface. Table 10.2 lists all the functions supported by PCMCIA and
ExCA 85. The table lists the functions required by the ExCA
specification with the corresponding hex values that get placed into the
[AH] register when calling a particular S2 function86• For a PC
implementation, all parameters and error codes get passed to and from
the functions using Intel processor registers to avoid using system
memory. Alternatively, for a generic implementation (e.g. using a non
Intel processor), memory variables (or CPU registers) could serve the
same purpose.

85 Functions not required by ExCA may optionally be supported to obtain the additional
c~abilities.
8 Note that specific function values cannot be given for a PCMCIA implementation (non-ExCA)
because the specification only defines a generic calling convention.

APPLE INC.
EXHIBIT 1011 - PAGE 0307

288 Chapter Ten: PCMCIA Software

FUNCTION QUICK DESCRIPTION ExCA
VALUE

GetAdapterCount Returns number 01 adapters 80H

Non-Specific Reserved 81H

Functions Reserved 82H

GetSSlnlo Returns compliance lor S2 implementation supporting 83H
specllied adapter

InquireAdapter Returns adapter-specilic inlormation 84H

Adapter GetAdapter Returns adapter's conliguration 8SH

Functions SetAdapter Sets adapter's current conliguration 86H

InquireWindow Returns Inlormation lor window on adapter 87H

GetWindow Returns window's conliguration 88H

Window SetWindow Sets wind~w's conliguration 89H

Functions GetPage Returns page's conliguration within a memory window 8AH

SetPage Sets a page's conliguration within a memory window 8BH

Inquire Socket Returns inlormation about socket, such as status 8CH
chanae Interrunt maskinG

Socket Functions GetSocket Returns socket's conliguration 8DH

SetSocket Sets socket's conliguration 8EH

GetStatus Returns status 01 PC Card and socket 8FH

Card Functions ResetSocket Resets PC Card 90H

Reserved by PCMCIA 91H-9CH

Vendor Specific GetVendorlnlo Returns S2 vendor's inlormation 9DH

Functions VendorSpecific For proprietary functions AEH

GeVSetPriorHandler Replaces or obtains real-mode entry point for prior INT 9FH
lAh handler

Protect-Mode GeVSetSSAddr Returns entry point to S2 and number of additional AOH
data seaments required for specified mode

and Low-Level GetAccessOffsets Returns array of offsets for low-level, adapter-specific, A1H
ontimized PC Card access routines

Access Acknowledgelnterrupt Acknowledge status change interrupt and Identify 9EH
socket causino Interrunt

GetEDC Returns conliguration of EDC generator NA

InquireEDC Returns capabilities of EDC generator NA

Error Detection PauseEDC Pauses EDC generation NA

and Correction ReadEDC Reads EDC value computed by EDC generator NA

Functions ResumeEDC Resumes EDC generation on a paused EDC generator NA

SetEDC Sets conliguration of EDC generator NA

StartEDC Starts previously conligured EDC generator NA

StopE DC Stops EDC generation on a configured and computing NA
EDC oenerator

Table 10.2: Socket Services Functions

APPLE INC.
EXHIBIT 1011 - PAGE 0308

The Socket Services Functions 289

Non-Specific Functions

GetAdapterCount

During the installation of a client (e.g., flash file system), that client
must determine the number of adapters and sockets available to it. A
system may have multiple adapters, each with multiple sockets. To
obtain this information, a client makes a call to GetAdapterCount. If
successful, this function returns the total number of socket adapters
within the system and verifies the existence of a functional S2. ROM
BIOS INT lAR handlers normally return with [CF] = 1 if S2 is absent87 .

In many cases, the adapter count will be a fixed number for a specific
system implementation. This allows the adapter count to be a hard coded
number within the S2 function. Sometimes, however, an adapter may be
installed as an after-market add-in to an ISA slot. This special case can
be handled in one of two ways:

1. With S2 built into the BIOS, GetAdapterCount must perform an
I/O port scan in search of a signature on the add-in adapter
board. Obviously, this implies that the adapter has to support
this special I/O port feature. For example, a ROM, PLD, or PAL
can be integrated into a board such that reading from a few
consecutive I/O port addresses will retrieve a sequence of values
representing the signature88 . The adapter board designer must
also ensure that the signature matches the value encoded into the
S2 function's search (Figure 10.11).

2. More flexibility can also be obtained by adding in the S2 as an
after-market product and installing it as a device driver via
CONFlG.SYS (as opposed to being built into the BIOS). This
allows the use of a command-line parameter that can be
configured according to the number of adapters installed. .

87This was one of the reasons INT lAR was chosen.
88 A PLD or PAL can also be used for the board's logic.

APPLE INC.
EXHIBIT 1011 - PAGE 0309

290 Chapter Ten: PCMCIA Software

Correct I/O
Port Addressing
Allows Retrieval
Of Signature

Figure 10.11: Reading a Signature from the Adapter Board to Identify
Its Presence

GetAdapterCount

Entry setup for the PC version of the GetAdapterCount function:

[AH] = GELADAPTER_COUNT (ExCA calling value = BOH)
[CX] = 0, ensures CX doesn't contain 'SS' before making the call

After exiting from GetAdapterCount:

If [CF] = 1, function was unsuccessful
Else if
[CX] = 'SS', load ASCII 'SS' (5353h) to indicate the presence of a valid S2
Then
[AL] = Number of Adapters Supported (0-255)

Refer to GetSSlnfo for determining the adapter count where multiple
socket services supporting multiple adapters exist within a system.

APPLE INC.
EXHIBIT 1011 - PAGE 0310

The Socket Services Functions 291

GetSSlnfo

The S2 specification states that a particular system may support multiple
S2 implementations. Actually, this situation has a high likelihood in a
system with multiple adapters, each with differing hardware
characteristics. An example of this would be found in a system that
contains both a resident flash array (or RFA) and flash memory cards.
Removability dipicts the most obvious difference between a memory
card and an RFA. This difference, among others (including how it
interfaces into the system memory map), requires different adapter
support and, therefore, a different S2 to support it. Hiding behind the
guise of S2, a flash file system doesn't really care whether it's accessing
flash memory in the form of an RF A or a flash memory card (Figure
10.12).

SOCKET
SERVICES B

[J
RFA

1
000
DDD

SOCKET SERVICES A

Socket
HW

I PCMCIA
Socket

I PCMCIA
Socket

Geiss Info Sequence

1) Entry:
[AH) = 83h
[AL) =0

Exll:
[AL)=O
[BX)= 200H
[CH)-l
[CL)=O

2) Entry:
[AH) =B3h
[AL) = 1

ExIt:
[ALl =0
[BX] =200H
[CHl= 1
[CLl- 1

Figure 10.12: Socket Services Isolates the Differences betwel;n a
Removable Memory Card and Permanently Resident Flash Array

The GetSSInfo function allows the client to match an adapter with a
valid S2. Each GetSSInfo call returns the base adapter number and the
number of adapters supported by the implementation. The next S2
implementation starts with the next adapter number (not supported by

APPLE INC.
EXHIBIT 1011 - PAGE 0311

292 Chapter Ten: PCMCIA Software

the previous implementation). Using Figure 10.12 as an example, the
GetAdapterCount function indicates the presence of two adapters89. A
client in this system would have to call the GetSSlnfo function two
times, once for each adapter. Just by knowing the adapter count, how
would you know the. number of S2 implementations? The parameters for
this function provide the number of adapters supported by a particular S2
implementation and the first adapter it supports. This information allows
the determination of the first and last adapter supported by a particular
implementation. As in the example, if the two adapters were distinctly
different, two S2 implementations may be required.

GelSSlnfo

Entry setup for the PC version of the GetSSlnfo function:
[AH] = GET _SS_INFO (ExCA calling value = a3H)
[Al] = Adapter number

After exiting from GetSSlnfo:
If [CF] = 1, then [AH] = BAD_ADAPTER
Else

[Al] = 0, to insure backwards compatibility with Release 1.0
[BX] = 200H, binary coded value (BCD) for Release 2.00
[CH] = Number of adapters supported b~ this S2
[Cl] = First adapter supported by this S implementation in base 0 format

Adapter Functions

InquireAdapter

Once a client verifies the presence of S2 and supported adapters (using
GetAdapterCount and GetSSlnfo), that client must determine the number
of sockets and windows associated with a particular adapter by using the
InquireAdapter function. In practice, after the client asks the
InquireAdapter function for the total number of sockets, it passes the
returned information back to MS-Flash, which in turn passes this
information back to DOS. When a flash file system installs (or any block
device driver, for that matter), it asks DOS to reserve drive letters for it.
In this case, each socket represents one or more potential drives

89 After initializing all S2 implementations, the adapter count reflects the total number of adapters
in the system.

APPLE INC.
EXHIBIT 1011 - PAGE 0312

The Socket Services Functions 293

requiring a drive letter (refer to card partitioning with the PCMCIA Data
Organization Layer in the CIS section).

SYSTEM MEMORY
FLASH MEMORY CARD

Common Memory Plane

1.--------f-

Memory Window 0

Memory Window 1 ~

~

Memory Window 2

~
, ,
, ,

Memory Window 3 , ,
, ,

r---.

Memory Window 4

i'--

Attribute Memory Plane

'"

Figure 10.13: Five Memory-Mapped Windows/or Flash Memory Card
Access in an ExCA System

InquireAdapter also returns the number of system windows available to
map these sockets. An ExCA-compliant system must support seven
windows for each socket - five for memory mapping and two for I/O
mapping. The five memory-mapped windows allow for support of a
memory card's Attribute Memory Plane (one window) and a paging
structure (four windows) similar to that required by the LIM-EMS
specification (Figure 10.13). The two I/O windows allow one to be used
for an address register and the other for the data register (much the same
as the interface to the PCIC).

APPLE INC.
EXHIBIT 1011 - PAGE 0313

294 Chapter Ten: PCMCIA Software

InquireAdapter returns information, in tabular form, that describes
certain adapter characteristics (such as interrupt handling capabilities for
status changes) and socket power characteristics (such as V CC and VPP
voltage levels). The Adapter Characteristics and Power Management
Table contains this information. A specific Adapter Characteristics and
Power Management Table exists for each adapter in the system. Table
10.3 shows the format and Figure 10.14 provides an example. Notice
that the InquireAdapter function only returns the adapter's capabilities -
it has nothing to do with determining an adapter's current configuration
(refer to the GetAdapter and GetSocket functions).

InquireAdapter

Entry setup for the PC version of the InquireAdapter function:
[AH] = INQUIRE_ADAPTER (ExCA calling value = 84H)
[AL] = Adapter number
[ES]:[(E)DI] = Pointer to client supplied buffer for storing the Adapter

Characteristics and Power Management Tables.

After exiting from InquireAdapter:
If [CF] = 1, then [AH] = BAD_ADAPTER
Else

[BH] = Number of windows possibly decoded into the system memory map.
NOTE: Must be 5 times the number of sockets for ExCA·compliance.

[BL] = Number of sockets (0·255)
[CX] = Number of error detection and correction generators available on the

adapter. These are not required for ExCA compliance and can be set
to zero.

[ES]:[DI] = Unchanged pointer. Buffer now contains table listed below.

APPLE INC.
EXHIBIT 1011 - PAGE 0314

The Socket Services Functions 295

Offset DESCRIPTION

OOH Length of client supplied buffer in bytes, excluding first two words.

02H Length of data filled by S2, excludinq first two words. If the data length supplied by S2 exceeds
the client-provided space, the S supplied data will be truncated. While the Adapter
Characteristics Table has a fixed length, the Power Management Table length can vary.

ADAPTER CHARACTERISTICS

OOH Adapter capabilities. Flags indicating whether certain characteristics are controlled at the
adapter or socket level (zero indicates control at the socket level).

Bit 0: Indicators (e.g., LEDs) for write-protect, card lock, battery status, busy status,
and XIP status
Bit 1: Power-level control for Vee and VPP. If power control is available only at the
adapter level, the client does not have control at the socket level, even through the
use of SetSocket. For example, enabling Vpp at one socket will simultaneously
enable Vpp at other sockets on the same adapter.
Bit 2: Determines if data bus width can be set separately for each window. A 1
indicates that all windows on the adapter must have the same width.

Note: For ExCA-compliance, these bits must be zero (i.e., functioning at the socket level).

02H Steerable IRO levels for Status Change Interrupt. Each bit corresponds to an IRO level from 0-
15 (where Bit 0 = IROn, Bit 1 = IRO j , and so on).
NOTE: For ExCA compliance, at least one interrupt level must be specified. See discussion in
Chapter 8 for more details on Interrupt Steering.

04H Additional steerable IRO levels for status change interrupt for NMI (Bit 0), 1/0 Check (Bit 1),
and Bus Error (Bit 2).

OSH IRO levels inverting status change where each bit corresponds to an IRO level from 0-15
(where Bit 0 = IROo' Bit 1 = IR01, and so on).

08H AdditionallRO levels inverting status change for NMI (Bit 0), 1/0 Check (Bit 1), and Bus Error
(Bit 2).

OAH IRO levels not inverting status change where each bit corresponds to an IRO level from 0-15
(where Bit 0 = IROo' Bit 1 = IR01, and so on).

OCH Additional IRO levels not Inverting status change for NMI (Bit 0), 1/0 Check (Bit 1), and Bus
Error (Bit 2).

POWER MANAGEMENT

OOH Number of power entries to follow, where n = number of entries.

02H Power entry:
Bits 0-7 = Binary value representing a DC voltage level in tenth of a volt Increments to a
maximum of 25.5 volts. A power level of zero indicates a no connect or grounded. For
example, 5.0 Volts = (50 x 0.1 Volts) corresponds to a value of 32H.
Bits 8-12 = Reserved and equal to zero.
Bit 13-15 = Vpp2' Vpp1 and Vcc indicators, respectively, where set = available.

(2n)H Additional supply & voltage entries (as indicated by number of power entries).

Table 10.3: Adapter Characteristics and Power Management

APPLE INC.
EXHIBIT 1011 - PAGE 0315

296 Chapter Ten: PCMCIA Software

SOCKET ADAPTER

&I:ic.I.mI AolIIlli
lnquireAdapter----. aVails Vee VpP1VpP2 -----JI- SatSocir:ot

5 Volls Vee VpP1 VpP2

12 Volts VpP1 VpP2

FIgura 10.14.

Figure 10.14: InquireAdapter Returns Information Describing the
Adapter's Capabilities, such as the Power Characteristics

By convention, all sockets on an adapter have the same power level
capabilities. A power entry in the Power Management Table only
indicates the possible voltage settings on a socket's power pins - it does
not imply the validity of these voltage combinations. For example, V CC
may be set to zero and VPP to 12 volts, but this is probably not a valid
combination. The S2 client has the responsibility of ensuring the validity
of a particular combination of power levels for the PC card when using
the SetSocket function.

Take a look at a specific example of an Adapter Characteristics and
Power Management Table (Table 10.4) to use for reference and help
clarify the definitions.

SetAdapter

The SetAdapter function handles an adapter's power management and
controls the status change interrupt routing (i.e., card detect and
ready/busy). Many systems being built with PCMCIA sockets have
implemented some form of power management scheme. At the hardware
level, the system's adapter cap-abilities determine the varying degrees of
possible power management. This does not reflect power management
capabilities of the PC card itself. Some socket interface controllers
provide automatic power savings mechanisms. For example, the PCIC
automatically enters into a low power state after disabling memory and
I/O windows, and when sockets become empty. Likewise, Cirrus Logic's
CL-PD6720, automatically enters a low power mode during periods of
inactivity. Additionally, PCMCIA socket interface controllers have

APPLE INC.
EXHIBIT 1011 - PAGE 0316

The Socket Services Functions 297

software programmable modes of power conservation, such as suspend
mode.

Offset Value Description

OOH 0016H Client supplies 22-byte buffer.

02H 0016H S2 filled buffer with 22 data bytes.

OOH OOOOH Indicates adapter capability control at the socket level. By restricting the use of
capabilities to be at either the adapter or the socket level, a client does not have to
provide two types of controlling routines.

02H E053H Status changes may be routed to IRQ levels 0, 1,4,6, 13, 14, and 15 as an active
high signal. This provides a high degree of flexibility in selecting an interrupt level.

04H OOOOH No additional IRQ levels

06H OOOOH Status changes are not available on any level as an active low signal

oaH OOOOH No additional IRQ levels

OAH ooooH No additional IRQ levels

OCH OOOOH No additional IRQ levels

OOH 0003H Number of power entries = 3

02H EOOOH VCC' VpP1 and VpP2 available as 'No-Connects'

04H E032H VCC' VpP1 and VpP2 available at 5.0 Volts

06H 607aH VpP1 and VpP2 available at 12.0 Volts

Table 10.4: Example Adapter Characteristics and Power Management

SetAdapter

Entry setup for the PC version of the SetAdapter function:
[AH) = SELADAPTER (ExCA calling value = 86H)
[AL) = Adaptecnumber
[DH) = Adapter Control

Bit 0 = Reduce Adapter Power Consumption ('1' = true)
Bit 1 = Preserve Adapter State ('1' = true)
Other bits are reserved and must equal O.

[01) = Status Change Interrupt
Bits 0-4 = IRQ level, (0 - 15 = IRQ 0-15,16 = NMI, 17 = 1/0 Chk, 18 =

Bus Error)
Bit 6 = Enable Inverter (0 = disable, 1 = enable)
Bit 7 = Enable Status Change Interrupts
Other bits are reserved and must be O.

After exiting from SetAdapter:
If [CF) = 1, then [AH) = BAD_ADAPTER, BAD_ATTRIBUTE,

BAD_IRQ

APPLE INC.
EXHIBIT 1011 - PAGE 0317

298 Chapter Ten: PCMCIA Software

Two control bits have been defined to handle the power conservation
capability:

1. REDUCE ADAPTER POWER CONSUMPTION

(Adapter _State_Powerdown) - Setting this bit indicates that the
adapter should attempt to enter a power conservation mode.
Again, this depends on the adapter's capabilities. If the adapter
lacks this capability, the function can either ignore the request or
return a BAD_ATTRIBUTE error. When resetting the adapter
hardware, or before using the adapter, reset this bit to restore
full power.

In addition to being able to control power to the socket, the
PCIC itself can be powered down using its Global Control
Register (Figure 10.15). After setting the Power-Down bit and
disabling all memory windows (see SetWindow) with an inactive
chip select signal, this device enters its lowest power mode.

NOTE: ExCA does not require this and the next field (Preserve
Adapter State).

2. PRESERVE ADAPTER STATE (Adapter _State_Maintain) - Setting
this bit indicates that, before the adapter enters its power
conservation mode, the adapter hardware should maintain all
adapter and socket configuration information. Devices such as
the PCIC provide this capability. Clearing this bit indicates that
the client will handle configuration information. This
functionality may support different levels of power
conservation. For example, the adapter hardware may be able to
enter the lowest power state if it does not have to maintain the
configuration information (i.e., this requires keeping some
circuitry powered-up). On the other hand, an adapter rnay be
unable to support the maintenance of the configuration
information. In this case, a request to enter the power
conservation mode, in conjunction with a request for the adapter
to maintain configuration information, will probably be ignored
(or reported back as a bad attribute) by the S2 function.

APPLE INC.
EXHIBIT 1011 - PAGE 0318

The Socket Services Functions 299

Alternatively, the S2 function, if requested to maintain
configuration information, may store it in a RAM data area. This
should be avoided, if possible, to minimize the system RAM
usage.

NOTE: AdaptecState_Powerdown must be set for this control
bit to be valid.

82365SL GLOBAL CONTROL REGISTER

Power Down

L--___ Level Mode Interrupt Enable

'------- Explicit Write Back CSC Interrupt

L---------IRQ14 Pulse Mode Enable

'----------- Reserved

L--__________ Reserved

'------------- Reserved

'---------------- Reserved

Figure 10.15: The Global Control Register Powers Down the PCIC

SetAdapter also sets up the status change interrupt routing. PCMCIA
does not require a system to implement a status change interrupt (but
ExCA does), so in some cases, it may not do any good to try and
configure this interrupt. Your application will determine the adapter
hardware's capability to support the status change interrupt by using the
InquireAdapter function (Figure 10.16 points out the difference between
an adapter interrupt and a socket interrupt). After determining that a
system doesn't support status change interrupts, the S2 could simply
ignore any such requests and report back with a success status. On the
other hand, reporting back as a failure will keep the client from waiting
for an event that will never happen due to the lack of an interrupt signal
(i.e., card detect change).

APPLE INC.
EXHIBIT 1011 - PAGE 0319

300 Chapter Ten: PCMCIA Software

...
Set Adapter

Interrupt
From Adapter

Interrupt
From Socket

Set Socket
.& ,

ISA Card Detect ----............
IRQ-Level Ready/Busy
Router

..

, : Socket Characteristics
Inquire Socket : •• :: Table In Socket Services

ttt •••• ttt.ttt •••••••••••••••••••••••••••••••

Figure 10.16: Distinguishing Between an Adapter Interrupt and a
Socket Interrupt

Using the example Adapter Characteristics Table (Table lOA), we see
that for the imaginary system this table pertains to, it supports status
change interrupts that may be routed to IRQ 0, 1, 4, 6, 13, 14, and 15.
On adapters that dJ not have programmable status change level logic,

APPLE INC.
EXHIBIT 1011 - PAGE 0320

The Socket Services Functions 301

the desired interrupt setup must match the actual hardware or S2 will fail
the request. A request will also fail if your application tries to set up a
specific IRQ level not supported by the adapter.

Three fields have been defined in the SetAdapter function to support the
programmable status change interrupt:
1. IRQ_LEVEL - Use the five bits in this field to represent, as a

binary value, the routing of the status change interrupt.
2. ENABLEjNVERTER - The status change interrupt is active high

after setting this bit (referred to as IRQ_mGR by PCMCIA).
Clearing the bit inverts the interrupt.

3. ENABLE_SCjNTERRUPTS - After setting this bit, an unmasked
status change event causes the adapter to generate a hardware
interrupt at the level specified by IRQLevel. Perform the
masking at the socket level using the SetSocket function (Figure
10.17).

The PCIC and compatible devices control the IRQ level and enabling of
status change interrupts using the Card Status Change Interrupt
Configuration Register (Figure 10.18). Table 10.5 shows how to set the
appropriate bits in this register according to the desired interrupt routing
(not including reserved bit combinations). The Level Mode Interrupt
Enable bit in the Global Control Register configures the active state of
the interrupt (Figure 10.15).

IRQ BIT IRQ BIT IRQ BIT IRQ BIT INTERRUPT REQUEST
3 2 1 a LEVEL

a a a a No Interrupts
a a 1 1 IRQ3 Selected
a 1 a a IRQ4 Selected
a 1 a 1 IRQ5 Selected
a 1 1 1 IRQ? Selected
1 a a 1 IRQ9 Selected
1 a 1 a IRQ1a Selected
1 a 1 1 IRQ11 Selected
1 1 a a IRQ12 Selected
1 1 1 a IRQ14 Selected
1 1 1 1 IRQ15 Selected

Table 10.5: Card Status Change Interrupt Steering

I'

APPLE INC.
EXHIBIT 1011 - PAGE 0321

302 Chapter Ten: PCMCIA Software

Status Change
Interrupt To System

Controlled By
SetAdapter

Controlleq By SetSocket

Mask~
Control

Mask
Control

Flash
Memory

Card

Flash
Memory

Card

Figure 10.17: Mask Status Change Interrupts at the Socket Level,
Enabling Them at the Adapter Level

NOTE: Before using the SetAdapter function, use GetAdapter to
determine previous configurations. This allows the client to perform a
read-modify-write when changing the adapter's configurations.

GetAdapter

For system integrity, an application should determine the adapter's
current configuration before making any alterations. Unlike

APPLE INC.
EXHIBIT 1011 - PAGE 0322

The Socket Services Functions 303

InquireAdapter (returning the adapter's capabilities) GetAdapter returns
the adapter's current configuration. This function's parameters mirror
those of the SetAdapter function.

82365SL CARD STATUS CHANGE INTERRUPT CONFIGURATION REGISTER (READIWRITE)

Battery Dead Enable/sTSCHG

~---- Battery Warning Ena~le

~------ Ready Enable

L-________ Card Detect Enable

'---------------IRQ Bit 0

'--------------- IRQ Bit 1

L---------------IRQ Bit 2

'-------------------- IRQ Bit 3

Figure 10.18: Writing a One to Bits 0-3 Enables the Corresponding
Status Change to Generate an Interrupt

GetAdapter

Entry setup for the PC version of the GetAdapter function:
[AH) = GET_ADAPTER (ExCA calling value = 85H)
[AL) = Adapter number

After exiting from GetAdapter:
If [CF) = 1, then [AH) = BAD_ADAPTER
Else

[DH) = Adapter State (Same bit map as SetAdapter)
[01) = Status Change Interrupt Routing (Same bit map as SetAdapter)

APPLE INC.
EXHIBIT 1011 - PAGE 0323

304 Chapter Ten: PCMCIA Software

Window Functions

InquireWindow

Any access to a PC Card must be through some window into the host
system memory or 110 space. Windows allow direct access to Attribute
Memory, Common Memory, or 110 ports. For example, an eXecute-In
Place (XIP) application requires the flash memory card's Common
Memory to be mapped directly into the system memory space (see
Figure 10.35). These windows have some generic features, such as size,
location and their associated sockets:

• The window's size typically ranges from a single address for an
110 port to 64 Kbytes of memory space.

• The location of the window can be anywhere within the access
space of the host system.

• Each window may be shared amongst multiple sockets.

To narrow down the possible variations, the InquireWindow function has
been designed to return information about the capabilities of a specified
window on an adapter.

InquireWindow

Entry setup for the PC version of the ExCA InqulreWindow function:
[AH] = INQUIRE_WINDOW (ExCA calling value = 87H)
[AL] = Adapter number
[BH] = Window number (use InquireAdapter to obtain the total number of
windows)
[ES]:[(E)DI] = Pointer to client-supplied buffer for storing Window Characteristics
Table.

After'exitlng from InquireWindow:
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_WINDOW
Else
[BL] = Window Capabilities (1 = true)

Bit 0 = Common memory plane may be mapped into host system
memory space
Bit 1 = Attribute memory plane may be mapped into host system
memory space
Bit 2 = I/O ports on card may be mapped Into host system I/O space
Bit 7 = Window uses PC Card's WAIT signal to generate additional
wait states

[CX] = Assignable Socket Bit Map
[ES]:[(E)DI] = Pointer to buffer containing the Window Characteristics Table

APPLE INC.
EXHIBIT 1011 - PAGE 0324

The Socket Services Functions 305

Windows support memory and/or 110. After determining a window's
capabilities (Common Memory, Attribute Memory, or 110), the S2 client
can determine all the mapping characteristics of that window by
interpreting the appropriate Window Characteristics Table returned in
the buffer. To this effect, the Window Characteristics Table may be for
memory or 110. The tables are similar, with the exception that 110
windows omit the memory-specific parameters. When a window
supports both memory and 110, the 110 Characteristics Table will always
immediately follow the Memory Characteristics Table within the buffer.

When using PCIC-compatible controllers, a window's capability can be
determined within this function by using the interface type bits (Table
10.6) from the Identification and Revision Register (Figure 10.19). Since
the PCIC supports both memory and 110, these bits will read back as
"10". Although all PCIC-compatible controllers support both memory
and 110, this register was incorporated into the device to provide a
defacto standard for PCMCIA controllers.

Bit Values (bits 6 and 7) Interface T~e
00 liD only
01 Memory only
10 Memory and liD
11 Reserved

Table 10.6: lnteiface identification for PC1C-Compatible Controllers

• The "assignable socket bit map" means that each bit corresponds
to a socket number on the adapter that can be mapped into the
specified window. For example, Bit ° corresponds to Socket 0,
Bit 1 corresponds to Socket 1, etc. To simplify matters, the bit
map can be FFFFH for a window that supports all sockets on an
adapter.

• Depending on the adapter's design, a window may be assignable
to more than one socket or dedicated to a particular socket.

• The window can only be assigned to one socket at a time (i.e.,
multiple sockets must time-share).

• The size of the assignable socket bit map field limits the number
of sockets that a window may support. In the parameter settings

APPLE INC.
EXHIBIT 1011 - PAGE 0325

306 Chapter Ten: PCMCIA Software

shown above, the [eX] register limits the number of sockets to
16.

82365SL IDENTIFICATION AND REVISION REGISTER (READ ONLY)

PCIC Revision Bit 0

L--___ PCIC Revision Bit 1

~----- PCIC Revision Bit 2

~------- PCIC Revision Bit 3

~--------- Reserv!:.d

~----------- Reserved

"--------------- PCIC Interface ID Bit 0

~--------------- PCIC Interface ID Bit 1

Figure 10.19: Determine the Interface Type from the Identification and
Revision Register in PCIC-Compatible Controllers

Definitions of a Window

You may be wondering how a specific system window can support both memory and 110
capabilities. This is a good time to look more closely at the definition of a window. Actually,
the concept of a window has two meanings:

1. A window provides a method for connecting an area of a host system's memory or 110
port space to a PC Card's memory or 110 space. When the system sends out an
address that corresponds to the area designated for the window, the decoding
hardware selects the PC Card, which then becomes accessible to the system. Aside
from ~equlring different CPU instructions, the 110 and memory read/write signals
represent a significant difference between the two types of windows.

2. A window also defines a label used by S2 for configuring the socket adapter's
hardware. S2 views a window as an object that it can control. Therefore, a client can
request S2 to configure a window for memory or 110.

The definitions above may lead you to believe that S2 can reconfigure a
window for memory or I/O. However, an adapter will probably not be
built to change its decoding signals to switch between memory and I/O

APPLE INC.
EXHIBIT 1011 - PAGE 0326

The Socket Services Functions 307

accesses to the PC Card; this would require complex decoding circuitry.
For this reason, you will very rarely find a Memory and 110 Window
Characteristics Table associated with the same window.

Offset DESCRIPTION

OOH Length of client supplied buffer in bytes, excluding first two words.

02H Length of data filled by S2, excluding first two words. If the data length supplied by S2 exceeds
the space provided by client, the S2 supplied data will be truncated.

MEMORY WINDOW CHARACTERISTICS

OOH Memory Window Capabilities (1 = true)

Bit 0 Programmable Base Address (NOTE: Must be true for ExC,t. compliance)

Bit 1 Programmable Window Size (NOTE: Must be true for ExCA compliance)

Bit 2 Window Disable/Enable Supported (NOTE: Must be true for ExCA compliance)

Bit 3 Eight-Bit Data Bus Supported

Bit4 Sixteen-Bit Data Bus Supported

Bit 5 Base Address Alignment On Size Boundary

Bit6 Power of Two Size Granularity

Bit7 Card Offset Alignment on Size Boundary

Bit 8 Paging Hardware Available

Bit 9 Paging Hardware Shared

Bit 10 Page Disable/Enable Supported

Bit11 Software Write-Protect Available

Other· bits are reserved and equal to zero

02H Minimum Address/First Byte (4Kbyte blocks)

04H Maximum Address/Last Byte (4Kbyte blocks)

06H Minimum Window Size (4Kbyte blocks)

08H Maximum Window Size (4Kbyte blocks)

OAH Required Window Size Granularity (4Kbyte blocks)

OCH Required Base Address Alignment (4Kbyte blocks)

OEH Required Card Offset Alignment (4Kbyte blocks)

10H Slowest Access Speed Supported

11H Fastest Access Speed Supported

Table 10.7: Memory Window Characteristics

APPLE INC.
EXHIBIT 1011 - PAGE 0327

308 Chapter Ten: PCMCIA Software

Memory Window Capabilities (Figure 10.20)

Programmable Base Address (We_BASE, Bit 0)
When this bit equals one, it indicates that the window's base address is
programmable within the range specified by the minimum and maximum
address fields (see offsets 02H and 04H in the Memory Window
Characteristics Table). The flexibility of a programmable base address
comes in handy when the computer user attempts to use add-in boards
that require access to the host's memory.

A zero in this bit indicates a fixed window base address in the system's
memory space at the address specified by the minimum address field
(invalidating the maximum address field). Many closed systems
hardwire their windows at a specific address because the need for
flexibility does not exist. For example, an embedded system with all of
its functionality built-in at assembly time will not need to accommodate
future add-in modifications. A system like this can tolerate a non
changing window base address. This also simplifies the client software.

Programmable
Window Base

16MB

,

SYSTEM MEMORY

I~-·· Window
Size

i/ Window
Mapping
Hardware

/

FLASH MEMORY CARD

!
,
!

/ Flash MemOlY
Region Selected
As An Offsel From
The Card's Base

/

I I

Figure 10.20: As the Memory Window Chacteristics Table Indicates,
the Base Address and Size may be Programmable

APPLE INC.
EXHIBIT 1011 - PAGE 0328

The Socket Services Functions 309

Programmable Window Size (WC_SIZE, Bit 1)
Similar to the programmable base address, a one in this bit indicates a
programmable window size within the range specified by the minimum
and maximum window size fields (see offsets 06H and 08H in the
Memory Window Characteristics Table). This flexibility can be
important in certain situations, depending on the amount of system
memory available. In other words, different run-time applications
consume varying amounts of system memory. When running an
application that consumes a small amount of system memory, the system
can afford to provide a larger window size, or vice versa.

When this bit equals zero, the window has a fixed size. This may be
desirable in some systems, as it simplifies the client software that
manipulates memory card offsets.

Window Disable/Enable Supported (WC_WENABLE, Bit 2)
When this bit equals one, the window may be disabled and enabled
without having to reprogram its characteristics. Interface controller chips
such as the PCIC support this capability by maintaining register
contents. Specifically, disabling and enabling the windows has no affect
on the corresponding memory and I/O registers in the PCIC. Power
management software may take advantage of this capability, using the
SetAdapter function.

When this bit equals zero, the adapter does not automatically maintain
the window characteristics. This responsibility passes to the client
requesting the window disabling. To do this, the client uses the
GetWindow function to retrieve the current configuration, that can be
restored after re-enabling the window.

Eight and Sixteen Bit Data Bus Supported (WC_8BIT and WC_16BIT, Bits 3
and 4)

When either or both of these bits equal one, this-window supports the
corresponding data bus size(s). PCMCIA defines the data-bus size on a

APPLE INC.
EXHIBIT 1011 - PAGE 0329

310 Chapter Ten: PCMCIA Software

PC Card to be 8 or 16 bits to accomodate either type of system. This
flexibility has the most usefulness in a system where the system
incorporates the socket adapter as an add-in board. This allows the same
board to be used in an 8 or 16-bit slot. Otherwise, if the socket adapter is
fixed on the system's mother board, the bus size can also be fixed in
accordance with the bus size of the CPU.

The Adapter Characteristics Table obtained using the InquireAdapter
function contains information that indicates whether the adapter can set
the data bus width separately for each window. The S2 client must
interpret this information before trying to adjust a window's data bus
size.

Base Address Alignment on Size Boundary (WC_BAUGN, Bit 5)
When this bit equals one, the window's base address must be
programmed to some multiple of the window's size within the specified
valid range. This helps simplify the adapter's decoding circuitry, because
it minimizes the number of address lines that must be decoded. ExCA
requires the system base address boundary alignment to be at any
4Kbyte segment.

When this bit equals zero, the window's base address may be
programmed at any address (meeting the constraints imposed by the
Required Base Address Alignment field) within the specified valid
range. Although this provides higher flexibility, it complicates the
decoding circuitry. ,

Power of Two Size Granularity (WC_POW2, Bit 6)
When this bit equals one (and the window size is programmable),
window size must be a power of two of the required window size
granularity. For example, a required window size granularity of 4 kbytes
has possible window sizes (between a 4 kbyte minimum and 64 kbyte
maximum size) of 4, 8, 16, 32 and 64 kbytes. Similar to the description
earlier (Base Address Alignment on Size Boundary), the lower the
flexibility, the simpler will be the decoding circuitry.

When this bit equals zero (and the window size is programmable),
window size can be any multiple of the required window size

APPLE INC.
EXHIBIT 1011 - PAGE 0330

The Socket Services Functions 311

granularity. For example, with a required window size granularity of 4
kbytes and a specified window size range from 4 kbytes to 64 kbytes, the
window sizes can be any of the sixteen multiples of 4 kbytes contained
within that range.

Card Offset Alignment on Size Boundary (WC_CALlGN, Bit 7)
When this bit equals one, the PC Card offsets must be specified to the
SetPage function in increments of the window's size. For example, a 4
kbyte window size requires the PC Card offsets to be on 4 kbyte
boundaries. For hardware decoding, as well as from a software
perspective, this makes the most sense. When this bit equals zero, PC
Card offsets can be specified without relation to the window's size.

Paging Hardware Available (WC_PAVAIL, Bit 8)
When this bit equals one, the windowing hardware can divide the
window into multiple pages, for memory space only. A zero indicates
that the window must be treated as a single page. According to the
PCMCIA specification, a window can only be sub-divided into 16 kbyte
pages (Figure 10.21). If the software implemented (i.e., flash file
system) requires mUltiple pages, it is generally easier to use mUltiple
windows because of decoding hardware simplification and the flexibility
of a window's size and location (within the bounds of the Memory
Window Characteristics Table). Typically, system designers have
implemented windows without pages.

Paging Hardware Shared (WC_PSHARED, Bit 9)
Windows may share paging hardware when this bit equals one. Pay
attention when attempting to use the paging hardware for a window
because it may already be in use by another window. A client can
determine the availability of the paging hardware via the SetWindow
function, checking for a successful return status. Trying to use already
busy paging hardware should return an error. This bit will be zero in a
system with dedicated window paging hardware.

Page Disable/Enable Supported (WC_PENABLE, Bit 10)
When this bit equals one, the page may be disabled and enabled without
having to reprogram its characteristics. When WC_PENABLE equals
zero, the adapter hardware does not automatically maintain page

APPLE INC.
EXHIBIT 1011 - PAGE 0331

312 Chapter Ten: PCMCIA Software

characteristics and this responsibility passes to the client requesting the
page disabling. To do this, the client uses the GetPage function to
retrieve the current configuration, which can be restored after re
enabling the page.

SYSTEM MEMORY SYSTEM MEMORY

Memory Window

Memory Window

16 KByte Page

16 KByte Page

16 KByte Page

16 KByte Page
Memory Window

Memory Window

o Flexible Window Location o Flexible Window Sizes
o Set Window Size o Flexible Window Locations

Figure 10.21: Contrasting Windows Divided into Pages and Multiple
- Windows

Software Write-Protect Available (WC_WP, Bit 11)
When this bit equals one, the window has software-controlled write
protect capability; preventing writes to the PC Card. The hardware that
controls this can do so by blocking the WE signal whenever it detects a
system write to the address range corresponding to the window. Use

APPLE INC.
EXHIBIT 1011 - PAGE 0332

The Socket Services Functions 313

SetPage to invoke this capability, available with the PCIC and
compatible devices (Card Memory Offset Address High Byte Register,
Figure 10.27).

When this bit equals zero, the window may not be software write
protected. Alternatively, you can enable write protection by using a PC
Card's write protect switch. Intel's Series 2 Flash Memory Cards also
provide a Write Protection Register that allows write protection of
certain areas ofthe flash memory array.

Minimum and Maximum Address (FirstByte and LastByte)

These fields represent the first and last addressable bytes (respectively)
for this window in the system memory space. Values depend on the
adapter's decoding capabilities and components occupying other parts of
the memory space. These fields can be defined in terms of 4 kbyte units.
This allows a word to accommodate up to 256 Mbytes. Some non-ExCA
systems have windows with non-programmable base addresses (refer to
Programmable Base Address bit). Therefore, the minimum address value
added to the maximum window size also determines the maximum
address, or LastByte (Figure 10.22).

SYSTEM MEMORY

MEMORY
WINDOW]

~~m:~tddress

MaXim~m Window Size

Base Address
I--------~. (Minimum Address)

Figure 10.22: Minimum and Maximum Memory Window Address

APPLE INC.
EXHIBIT 1011 - PAGE 0333

314 Chapter Ten: PCMCIA Software

The last byte of the window (base address + window size - one) may not
exceed the value in the maximum address field. Some non-ExCA
systems have windows with non-programmable base addresses (i.e.,
fixed). This situation invalidates the "Maximum addresslLast byte"
field.

Minimum and Maximum Window Size (MinSize and MaxSize)

These fields represent the range of sizes allowable for a window within
the system memory map. They can be defined in terms of 4 kbyte units.
This allows a word to accommodate up to 256 Mbytes. Expressing the
maximum window size as zero indicates the largest window size value
that may be represented by the "SIZE data type plus one". For example,
a 16-bit SIZE data type supports a maximum of 65535 (OFFFFH).
Adding 1 to this generates a zero, defined as 65536 (64 kbytes). The size
programmed with the SetWindow function must also meet the
requirements described by the following fields:

• Power-of-two size granularity
• The minimum address plus the window size, minus one, must

not exceed the maximum address

These two fields will be equal with a fixed window size (i.e., WC_SIZE
= 0)

Required Window Size Granularity (ReqGran)

This field gives the minimum units for expressing window size due to
hardware constraints, and can be expressed as 4 kbyte units. For
example, a one indicates that the window size can be expressed in
multiples of 4 kbytes. With a fixed window size (WC_SIZE = 0), this
field will be the same as the MinSize and MaxSize fields. Systems
designed with special paging hardware will have window size
restrictions based on the number of address lines generated by the
paging hardware.

Required Sase Address Alignment (ReqSase)

When the Base Address Alignment on Size Boundary (WC_BALIGN)
bit equals zero, this field describes any alignment boundary requirement
for programming the window's base address with SetWindow. Expressed

APPLE INC.
EXHIBIT 1011 - PAGE 0334

The Socket Services Functions 315

in 4 kbyte units, a value of one indicates that the window's base address
can be placed on any 4 kbyte boundary.

If WC_BALIGN equals one, the base address is some mUltiple of the
window's size specified within the valid range (see WC_BALIGN
above). In this situation, the ReqBase field is undefined. Figure 10.23
exemplifies this situation.

SYSTEM MEMORY

20K 1--------1

16K

4KB WINDOW SIZE

12K 1--_____ -1

8K 1--------1

4K \--------f

0'-------..&

Figure 10.23: Example Showing Potential Base Address for a 4 Kbyte
Window that Must Reside on a Multiple of the Window's Size

Required Card Offset Alignment (ReqOffset)

When the WC_CALIGN bit equals zero, this field describes any
alignment boundary requirement for programming the PC Card offset
address with SetPage. For example, in an implementation using units of
4 kbyte blocks, a one in this field indicates the card offset could be
placed on any 4 kbyte boundary.

APPLE INC.
EXHIBIT 1011 - PAGE 0335

316 Chapter Ten: PCMCIA Software

If WC_CALIGN equals one, PC Card offsets must be specified in
increments of the window's size (see WC_CALIGN above). In this
situation, the ReqOffset field is undefined.

Fastest and Slowest Access Speed Supported

Flash cards (and memory cards, in general) exist in a variety of
configurations and access speeds. Some socket hardware adapters may
be reconfigured to accomodate different timing requirements. These
fields in the Memory Window Characteristics Table express the range of
access speeds (slowest to fastest) that the socket hardware can
accomodate. These fields match the Device Speed Code and Extended
Device Speed Codes of the Device Information Tuple defined in the
PCMCIA PC Card Standard Release 2.0 (Section 5.2.7.1.3). The bit
mapped fields are expressed as follows:

OFFSET

OOH

02H

OOH

02H

04H

06H

08H

OAH

OCH

OEH

10H

11H

Bits 0-2

Bits 3-6
Bit 7

VALUE

12H

12H

089FH

OOCOH

OODFH

0001H

0010H

0001H

0001H

0001H

01H

04H

= Device speed code, if mantissa is zero
= Speed exponent, if speed mantissa is non-zero
= Speed mantissa
= Reserved and equal to zero

DESCRIPTION

Client-supplies 18-byte buffer

Length of data filled by S2 is 18 bytes.

Programmable base address and window size
Window disable/enable supported
Eight and sixteen-bit data bus supported
Base add ress alignment on size boundary
Power of two size granularity
Card offset alignment on size boundary
No paging hardware capability
Software write-protect available

Minimum base address equals COOOOH

Maximum base address DFOOOh (4Kbytes less than EOOOOH)

Minimum window size equals 4Kbytes

Maximum window size equals 64Kbytes

Required window size granularity expressed in 4Kbyte units

Window can be aligned on any 4Kbyte boundary

Card Offset Alignment on any 4Kbyte boundary

Slowest access speed equals 250 nanoseconds

Fastest access speed equals 100 nanoseconds

Table 10.8: Example Memory Window Characteristics

APPLE INC.
EXHIBIT 1011 - PAGE 0336

The Socket Services Functions 317

Offset DESCRIPTION

OOH I/O window capabilities (1 = true)
Bit 0: Programmable base address
Bit 1: Programmable window size
Bit 2: Window disable/enable supported
Bit 3: Eight-bit data bus supported
Bit 4: Sixteen-bit data bus supported
Bit 5: Requires base address alignment on size boundary
Bit 6: Power of 2 size granularity
Bit 7: INPACK supported
Other bits are reserved and equal to zero

02H Minimum base address/First byte (Bytes)

04H Maximum base address/Last byte (Bytes)

06H Minimum window size (Bytes)

08H Maximum window size (Bytes)

OAH Required window size granularity (Bytes)

OCH Number of address lines decoded by the socket hardware

Table 10.9: 110 Window Characteristics

Fields In The I/O Window Characteristics Table

As mentioned earlier, most fields in the I/O and Memory Window
Characteristics Tables are the same, with a few exceptions:

• The I/O fields associated with addresses are expressed in bytes
rather than 4 kbyte blocks.

• Addresses reference the I/O space rather than memory space.

1/0 Window Capabilities

The descriptions in the Memory Window Characteristics Table apply for
all I/O windows characteristics, with the following exceptions:

INPACK (WC_INP ACK)
EISA-LIKE I/O MAPPING (WC_EISA)
EISA ADDRESS ENABLES (WC_CENABLE)

Number of Address Lines Decoded by Socket Hardware (AddrLines)

Despite the fact that systems containing processors like an Intel CPU
have the potential to access up to 64 kbyte I/O addresses, many systems

APPLE INC.
EXHIBIT 1011 - PAGE 0337

318 Chapter Ten: PCMCIA Software

do not decode all address lines. For example, an ISA platform only
decodes 10 address lines allowing accesses up to 1 kbyte, and any access
above 1 kbyte will be aliased to an address within the first 1 kbyte.

SetWindow
When using the SetWindow function to change a window's
configuration, be sure to match the desired configuration with the
allowable configuration obtained from the appropriate window
characteristics table supplied by Inquire Window. Viewed another way,
the client should use the InquireWindow function to determine if the
window had characteristics suitable for its application.

SetWindow

Entry setup for the PC version of the SetWindow function:
[AH] = SET_WINDOW (ExCA calling value = B9H)
[Al] = Adapter number
[BH] = Window number
[Bl] = Socket number
[CX] = Window Size (Bytes for 110 windows, 4Kbyte units for memory windows)
[DH] = Window state

Bit 0 Window type (WS_IO), 1 = 110 window, 0 = memory window
Bit 1 Enable Window (WS_ENABlED), 1 = enable, 0 = disable
Bit 2 Data path width (WS_16BIT), 1 = 16-bit, 0 = B-bit
Bit 3 Paged (WS_PAGED), 1 = divide into 16 Kbyte pages, 0 =

single page or 110 mapping type (WS_EISA), 1 = EISA 110
mapping, 0 = ISA 110 mapping

Bit 5 1 = EISA common 110 areas configured to generate card
enables, 0 = ignore accesses to 110 ports in EISAcommon
110 areas

Other bits are reserved and equal to zero
[Dl] = Requested access speed (refer to InquireWindow function)
[01] = Window base address (bytes for 110, 4 Kbyte units for memory)

After exiting from SetWindow:
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_ATTRIBUTE, BAD_SIZE,

BAD_SPEED, BAD_WAIT, BAD_BASE, BAD_PAGE, BAD_SOCKET,
BAD_TYPE, BAD_WINDOW

Window Size

The SetWindow function allows a client to set up the specified window's
size wi.thin the system's memory or I/O space. An application should

APPLE INC.
EXHIBIT 1011 - PAGE 0338

The Socket Services Functions 319

typically request as large a window as possible to achieve the highest
performance. For example, a flash file system will generally request a
window size up to 64 kbytes. This will save having to frequently update
the flash card's offset.

If the SetWindow function returns with a BAD_SIZE error, you should
first check the Programmable Window Size field in the corresponding
window characteristics table. You may be trying to program a fixed size
window. However, if your system has a programmable window size,
check the legality of the desired value. Determine the legal values from a
combination of the Power of Two Size Granularity, the Minimum and
Maximum Window Size, and the Required Window Size Granularity
fields.

Refer to the Window Base Address field for specific details on using the
PCIC to set up Window Size.

WINDOW STATE

Window Type
From the InquireWindow function, a client can determine whether a
window supports memory (Common or Attribute), 110 or both. Since
this book specifically discusses flash memory, assume that all windows
discussed here support memory. When programming devices like the
PCIC, selecting a memory window type allows the SetWindow function
to configure the memory window registers (as opposed to the 110
window registers).

Enable Window
Before enabling the window, set up the proper configuration, including
the window's start and stop addresses and the card's offset. Assuming
that the client has done this, enabling the window from a hardware
standpoint consists of turning on the appropriate decoder signal(s). This
allows matching addresses to generate the card se~ect signals. The PCIC
makes this operation simple with the Address Window Enable Register

APPLE INC.
EXHIBIT 1011 - PAGE 0339

320 Chapter Ten: PCMCIA Software

(Figure 10.24). This register contains five memory window enable bits -
one for each window.

82365SL ADDRESS WINDOW ENABLE REGISTER (READiWRITE)

Memory Window 0 Enable

L--___ Memory Window 1 Enable

'------- Memory Window 2 Enable

'-______ Memory Window 3 Enable

'-----____ Memory Window 4 Enable

'------------ MEMCS16 Decode A23-A12

'----__________ I/O Window 0 Enable

'-_____________ I/O Window 1 Enable

Figure 10.24: Use this Register to Enable and Disable Memory and I/O
Windows

Data Path Size
What are the advantages of a flexible data bus size? For a socket adapter
built into a system's motherboard, you would assume that the bus size
could be fixed according to the data path of the processor. However, the
ability to control the data path size plays a significant role in four
situations:

1. The first and probably most important situation pertains to the
use ofI/O cards. In particular, modem and fax cards that transfer
data in bytes (rather than words) require an 8-bit data path.
Memory cards have a 16-bit interface, and although data could
be transferred in bytes, the transfer should be done in words, if
possible, for highest data bandwidth.

2. The second situation pertains to a PC Card's Attribute memory
plane, which PCMCIA defines to be valid only at even-byte
locations. So, although you can access the Attribute memory
plane in words, the odd byte will return invalid data in this case.

APPLE INC.
EXHIBIT 1011 - PAGE 0340

The Socket Services Functions 321

3. The third and least apparent situation has to do with after-market
socket adapters add-ins. To add flexibility to the adapter, it can
be designed to plug into an 8 or 16-bit system ISA slot.

4. When using the ISA-bus to interface between the CPU and a
flash memory card, beware that the socket adapter cannot use
the memory COMMAND signal lines (i.e., MEMR and
MEMW) to qualify a 16-bit access. It blindly decodes the
LA17-23 signal lines and activates MEMCS16 if required. As a
result, the entire 128 kbyte block selected by LA 17 -23 must be
the same data width. Therefore, the flexible data bus size allows
more convenient memory mapping.

I/O Mapping Type
This value only has validity for I/O windows. It has applicability for
ATA flash drives.

REQUESTED ACCESS SPEED

The format of this parameter corresponds to the Fastest and Slowest
Access Speed Supported fields obtained through the Inquire Window
function. A system may not support every possible speed requested,
even if it falls within the legal limits. If a client requests an unsupported
speed, S2 defaults to using the next slower supported speed. For
example, a client may request an access time of 130 nanoseconds. If the
hardware only supports 120 and 150 nanoseconds, 150 ns will be
selected.

The PCIC controls this function using the Wait-State select bits of a
System Memory Address Mapping Stop High Byte Register (Figure
10.25). These bits control the number of additional wait states for a 16-
bit access to the system memory window. When the client reads the
Card Information Structure (CIS), it can determine the speed of the flash
memory card and, therefore, the number of wait states needed.

APPLE INC.
EXHIBIT 1011 - PAGE 0341

322 Chapter Ten: PCMCIA Software

SYSTEM MEMORY ADDRESS 0 MAPPING STOP LOW BYTE REGISTER (READIWRITE)

Address 12

L-___ Address 13

'-----_____ Address 14

'-----_______ Address 15

L-________ Address 16

L-__________ Address 17

'-----____________ Address18

'-----______________ Address19

SYSTEM MEMORY ADDRESS 0 MAPPING STOP HIGH BYTE REGISTER (READIWRITE)

Address 20

L-___ Address 21

L-_____ Address 22

'--_______ Address 23

Reserved

L-__________ Reserved

'--____________ Walt State Bit 0

L-______________ Walt State Bit 1

Figure 10.25: These PCIC Registers Control the Access Speed and
Determine the Stop Address of the Corresponding Memory Window

WINDOW BASE ADDRESS

When setting the window base address, the client must consider the
window's maximum address and size. Referring to the InquireWindow
function, the last byte of the window (base address + window size - 1)
may not exceed the value in the maximum address field.

APPLE INC.
EXHIBIT 1011 - PAGE 0342

The Socket Services Functions 323

Using the PCIC or compatible devices, a client sets up a system's
memory window address with four registers (there are actually five sets
of these four registers, one for each window):

1. System Memory Address Mapping Start Low and High Byte
Registers (Figure 10.26)- These registers set up the base address
of the window. The address bits in the low register start at 12,
automatically placing the window's base address on 4 kbyte
boundaries. Loading these registers within the SetWindow
function is simplified because the base address (and all other
memory-related addresses) get passed to the function in 4 kbyte
units already. This means that the S2 function can load the value
as it appears in the input parameters. Therefore, the calling
client must manipulate the start address. For example, a desired
base address of DOOOOH would be changed to DOH by the client.
It would then use DOH as the value to pass in with the [DI]
register.

2. System Memory Address Mapping Stop Low and High Byte
Registers (Figure 10.25) - These registers indirectly specify the
window's size. Since the address bits begin at 12, the smallest
window size will be 4 kbytes. The process for loading these
registers follows the same protocol as the System Memory
Address Mapping Start Low and High Byte Registers.

NOTE: Before using the SetWindow function to change the current
window configuration, it may be useful to first call upon the GetWindow
function to ensure that you don't overwrite an existing setup. The
GetWindow and Set Window functions assist this comparison by having
directly-mapped input and output parameters.

GetWindow
In general, good coding practice warrants the use of the GetWindow
function to check a window's current configuration before attempting to
make any changes. The only time when this should not be necessary is
during system initialization. In this case, the initializing code can
proceed directly to the Set Window function. Regardless of which
function you use first, these two functions have directly mapped

APPLE INC.
EXHIBIT 1011 - PAGE 0343

324 Chapter Ten: PCMCIA Software

parameters. Therefore, for full parameter details, refer to the SetWindow
function.

SYSTEM MEMORY ADDRESS 0 MAPPING START LOW BYTE REGISTER (READIWRITE)

Address 12

'--___ Address 13

'---____ Address 14

'----_____ Address 15

'-----_________ Address 16

L-___________ Address 17

'--_____________ Address 18

Address 19

SYSTEM MEMORY ADDRESS 0 MAPPING START HIGH BYTE REGISTER (READIWRITE)

Address 20

Address 21

'--_____ Address 22

'------______ Address 23

'----------_ Scratch Bit

L-___________ Scratch Bit

L-_____________ Zero Walt State

'--_______________ Data Size

Figure 10.26: These PCIC Registers Set Up the Base Address of the
System Memory Window

APPLE INC.
EXHIBIT 1011 - PAGE 0344

The Socket Services Functions 325

GetWindow

Entry setup for the PC version of the GetWindow function:
[AH] = GELWINDOW (ExCA calling value = aaH)
[Al] = Adapter number
[BH] = Window number

After exiting from GetWindow:
If [CF] = 1, then [AH] = error code (BAD_ADAPTER, BAD_WINDOW)
Else
[Bl] = Socket number assigned to this window
[CX] = Window size (bytes for 1/0 windows, 4 Kbyte units for memory windows)
[DH] = Window state

Same bit map as SetWindow
[Dl] = Access speed (refer to InquireWlndow function)
[01] = Window base address (bytes for 1/0, 4 Kbyte units for memory)

Besides determining a window's configuration, a client may also use this
function to determine if a window has been previously assigned to a
socket. One by one, the client may call the GetWindow function with a
different window number until locating an available window (obtain the
total number of windows using InquireAdapter). A socket number of
zero in the [BL] register indicates that the window has not been assigned
to a socket. Mter locating an unused window, the client can now
proceed to the SetWindow function and configure that window for its
own use.

SetPage
This function, only applicable to memory windows, configures the
specified page, or offset, in the flash memory card according to the input
parameters. As discussed in the InquireWindow function, a window can
consist of one or more pages (but it usually doesn't). Typically, once a
client requests S2 to set up a window, that window stays fixed (for
example, from DOOOOR to DFFFFH). On the other hand, a page within
the flash memory card (not to be confused with a page in system
memory) must have its offset continuously updated in order to access
different regions (Figure 10.20).

APPLE INC.
EXHIBIT 1011 - PAGE 0345

326 Chapter Ten: PCMCIA Software

SetPage

Entry setup for the PC version of the SetPage function:
[AH] = SET_PAGE (ExCA calling value = aBH)
[AL] = Adapter number
[BH] = Window number
[BL] = Page number
[OX] = Page control

Bit 0 Memory Plane Select (PS_ATTRIBUTE), 1 = Attribute, 0 =
Common

Bit 1 Enable Page (PS_ENABLED)
Bit 2 Write protect page (PS_WP), 1 = write protect, 0 = no write

protect
[01] = Memory card offset (4 Kbyte units)

After exiting from SetPage:
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_ATTRIBUTES, BAD_OFFSET,

BAD_PAGE, BAD_WINDOW)

Memory Plane Select
This bit controls the manipulation of the REG pin (Register select of the
PC Card's interface) that selects between the Attribute or Common
memory planes. The window capabilities of the InquireWindow function
indicates whether this capability exists.

The PCIC and compatible devices handle this function with the Card
Memory Offset Address High Byte Register (Figure 10.27).

Enable Page
For a window with a single page, this function performs the same
function as the Enable Window of the Set Window function. However, if
a window consists of several pages, this function must be able to
selectively control the enabling and disabling of individual pages.

Write Protect Page
Write protecting a page can be a matter of blocking the write enable
signal whenever the system generates an address within that page. If a
window contains multiple pages, each page must have this capability
independent of the others. When a client attempts to use this software
write protection mechanism but the capability doesn't exist, a
BAD_ATTRIBUTES error will be reported upon returning from this

APPLE INC.
EXHIBIT 1011 - PAGE 0346

The Socket Services Functions 327

function. To avoid this error, analyze the appropriate Memory Window
Characteristics (returned by Inquire Window) first.

CARD MEMORY OFFSET ADDRESS 0 LOW BYTE REGISTER (READIWRITE)

Address 12

~ ____ Address 13

~ ______ Address 14

~ _______ Address 15

'--_________ Address 16

'---___________ Address 17

Address 18

~ _______________ Address 19

CARD MEMORY OFFSET ADDRESS 0 HIGH BYTE REGISTER (READIWRITE)

Address 20

~ ____ Address 21

Address 22

'--_______ Address 23

Address 24

Address 25

'-----_____________ Reg Active

'--________________ Write Protect

Figure 10.27: These PCIC Registers Set Up the Flash Memory Card's
Offset, Enables Write Protection, and Selects the Memory Plane

APPLE INC.
EXHIBIT 1011 - PAGE 0347

328 Chapter Ten: PCMCIA Software

The PCIC and compatible devices handle this function with the Card
Memory Offset Address High Byte Register (Figure 10.27).

Memory Card Offset
First, and foremost, note that the memory card offset is typically
expressed in 4 kbyte units. Second, a client should check the Card Offset
Alignment on Size Boundary bit of the appropriate Memory Window
Characteristics Table. If set, the offset must be specified as a multiple of
the size of the associated host's window. For example, a 64 kbyte
window size would allow memory card offsets of 0, 64 kbytes, 128
kbytes, etc.

In a simple hardware design that uses a paging mechanism to access the
flash memory card, setting up the card offset could simply consist of
programming a latch. The value loaded into the latch represents a region
within the flash memory card's array.

The PCIC uses two registers to set up the flash memory card's offset (it
actually has five sets of these two registers per socket, one for each of
the five windows) - The Card Memory Offset Address Low and High
Byte Registers (Figure 10.27). The address bits, starting at 12, allow
offsets to be on any 4 kbyte boundary within the card. These registers
contain the value to be added to the host's memory address for
determining which part of the card will be accessible.

As shown in Figure 10.28, when the host system generates an address
within its window, that address must be translated to allow access to the
various regions within the flash memory card. As an example, assume a
64 kbyte system memory window located at DOOOOH. The client wants
to access the second 64 kbytes of flash memory on the card. The host
outputs the address DOOOOH, but the card requires an address of
10000H. Subtract DOOOOH from 10000H to obtain the value (F40000H)
that must be plugged into the PCIC's Card Memory Offset Address Low
and High Byte Registers. This value can also be expressed as the 2's
complement of the difference between the system memory start address
and the start address on the flash memory card.

APPLE INC.
EXHIBIT 1011 - PAGE 0348

The Socket Services Functions 329

FLASH MEMORY ARRAY

SYSTEM MEMORY MAP n
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

DFFFFH I I

64 KByte Window PCIC Address

~
10000H

- DOOOOH --
F40000H

~
64 Kbyte Window

Translation 10000H

DOOOOH 1FFFFH

Figure 10.28: Translating System Addresses to Access Various Regions
within the Flash Memory Card

GetPage

This function returns a specific page's current configuration within a
specific memory window. Refer to the SetPage function for parameter
explanations.

GetPage

Entry setup for the PC version of the GetPage function:
[AH] = GET_PAGE (ExCA calling value = BAH)
[AL] = Adapter number
[BH] = Window number
[BL] = Page number

After exiting from GetPage:
If [CF] = 1, then [AH] = error code (BAD_ADAPTER, BAD_PAGE,

BAD_WINDOW)
Else
[OX] = Page state (Same bit map as SetPage)
[01] = Memory card offset (4Kbyte units)

APPLE INC.
EXHIBIT 1011 - PAGE 0349

330 Chapter Ten: PCMCIA Software

Socket Functions

InquireSocket
The characteristics obtained by the InquireAdapter function primarily
describe the available power levels and the adapter's physical connection
to the ISA bus' ten interrupt request lines. A separate socket
characteristics table describes a PC card's physical connection
capabilities (through the IREQ signa190) to one of these interrupt request
lines.

InqulreSocket
Entry setup for the PC version of the InquireSocket function:

[AH) = INQUIRE_SOCKET (ExCA calling value = 8CH)
[Al) = Adapter number
[Bl) = Socket number, this function must be called once for each socket that the

application plans on using
[ES):[(E)DI) = Pointer to client supplied buffer for storing the socket

characteristics table.

After exiting from InquireSocket:
If [CF) = 1, then [AH) = BAD_ADAPTER, BAD_SOCKET
Else
[BH) = Bit map of status change interrupt capabilities (SC_INLCAPS, set to 1 =

true)
Bit 0 Write Protect Change
Bit 1 Card lock Change
Bit 2 Ejection Request
Bit 3 Insertion Request
Bit 4 Battery Dead Change
Bit 5 Battery Warning Change
Bit 6 Ready Change
Bit 7 Card Detect Change

[DH) = Bit map of status change reporting capabilities (SC_RPLCAPS, set to 1
= true)

Same as status change interrupt capabilities
[Dl) = Bit map of control and indicator capabilities (CTL_IND_CAPS, set to 1 =

true)
Bit 0 Write Protect Status (Indicator)
Bit 1 Card lock Status (Indicator)
Bit 2 Motorized Card Ejection (Control)
Bit 3 Motorized Card Insertion (Control)
Bit 4 Card lock (Control)
Bit 5 Battery Status (Indicator)
Bit 6 Busy Status (Indicator)
Bit 7 Execute-in-Place (XIP) Status (Indicator)

[ES):[(E)DI) = Unchanged buffer pointer.

90This pin functions as a Ready/Busy signal for memory cards and as IREQ for 110 cards.

APPLE INC.
EXHIBIT 1011 - PAGE 0350

The Socket Services Functions 331

Figure 10.16 pictorially describes the difference between the two types
of interrupt connections. Before the client begins to initialize the adapter
and socket hardware, the InquireSocket function must be called to obtain
the Socket Characteristic Table. Similar to the InquireAdapter function,
InquireSocket only returns the capabilities of the sockets. It has nothing
to do with determining a socket's current configuration (refer to the
GetSocket function).

• STATUS CHANGE INTERRUPT CAPABILITIES - Identifies items that
can cause a status change interrupt (bit set). To trigger a status
change interrupt on a socket, the corresponding value in the
status change interrupt mask of SetSocket must be set, and status
change interrupts must be enabled.

• STATUS CHANGE REPORTING CAPABILITIES - Identifies items that
the installed socket hardware can report. These may not
necessarily have an interrupt generating capability, but their
status may be obtained through the GetSocket and GetStatus
functions. Some clients (and some systems) do not utilize
interrupts for status change notification. Instead, the client
software performs periodic polling to check status. For example,
the system's time-of-day clock, updated every 55 milliseconds,
can be used to provide the time period.

• CONTROL AND INDICATOR CAPABILITIES - Identifies items which
can be controlled or represented by indicators on the hardware.
For example, an LED may be used to indicate the setting of the
write protect switch or a flash memory card's readylbusy status.
An indicator for readylbusy status is highly recommended. This
will notify the system user when the flash memory card is busy
and minimize the chance of inadvertant card removal during an
operation.

APPLE INC.
EXHIBIT 1011 - PAGE 0351

332 Chapter Ten: PCMCIA Software

The Socket Characteristics Table and Adapter Characteristics Table are
identical with two exceptions:

1. Sockets use the PC card's lREQ line versus the adapter's status
change interrupt.

2. A field describing the interface type supported (e.g., memory
only or I/O and memory) replaces the adapter capabilities field.

SOCKET CHARACTERISTICS T ABLE91

OOH Socket interface type supported where:
Bit 0 = Memory only
Bit 1 = lID and memory

Note: A system can be PCMCIA compatible but not support an lID interface. This
means that a person purchasing a PCMCIA-compatible system has no guarantee of
its capabilities. On the other hand, an ExCA-compliant system must support both
interfaces.

02H Steerable IRO levels where each bit corresponds to an IRO level from 0 to 15
(where Bit 0 = IROo, Bit 1 = IR01, and so on). See discussion in Chapter 8 for more
details on Interrupt Steering.

04H Additional steerable IRO levels for NMI (Bit 0), lID Check (Bit 1), and Bus Error (Bit
2).

06H IRO levels inverting IREO line, where each bit corresponds to an IRO level from 0
to 15 (where Bit 0 = IROo, Bit 1 = IR01, and so on).

08H AdditionallRO levels inverting IREO line for NMI (Bit 0), lID Check (Bit 1), and Bus
Error (Bit 2).

OAH IRO levels not inverting IREO line, where each bit corresponds to an IRO level from
o to 15 (where Bit 0 = IROo, Bit 1 = IR01, and so on).

OCH AdditionallRO levels not inverting IREO line for NMI (Bit 0), lID Check (Bit 1), and
Bus Error (Bit 2).

SetSocket
The SetSocket function controls a range of operations, from status
change interrupt masking to setting V CC and Vpp voltage levels.

91 Although not shown here, the first two words of this table provide the size of the client-provided
buffer and the length of the data that Socket Services returns.

APPLE INC.
EXHIBIT 1011 - PAGE 0352

The Socket Services Functions 333

SetSocket

Entry setup for the PC version of the SetSocket function:
[AH] = SET_SOCKET (8EH)
[Al] = Adapter number
[Bl] = Socket number
[BH] = Status Change Interrupt Enable Mask (0 = mask, 1 = enable; same bit

map as InquireSocket)
[CH] = VCC level (lower nibble)
[Cl] = VpP1 level (upper nibble), VpP2 level (lower nibble)
[DH] = Socket State Control (1 = reset state; same bit map as InquireSocket)
[Dl] = Controls and Indicators (1 = on; same bit map as Inquire Socket)
[01] = IRO Steering and Interface Type Control

Bits 0-4: Values 0-15 = IRO 0-15,16 = NMI, 17 = 1/0 Check, 18 = Bus
Error

Bit 5: Enable IREO inverter (1 = enabled)
Bit 7: Enable IREO steering (1 = enabled)
Bit 8: Memory only interface (This interface invalidates IREO-related

bits)
Bit 9: I/O and Memory interface

After exiting from SetSocket:
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_ATTRIBUTE, BAD_INDICATOR,

BAD_IRO, BAD_SOCKET, BAD_VCC, BAD_VPP

• STATUS CHANGE INTERRUPT MASK ENABLE - This mask
determines which status change can cause an interrupt. It only
has effect if the specific interrupt is supported, as indicated by
the status change interrupt capabilities (obtained from the
InquireSocket function), and if status change interrupts have
been enabled by SetAdapter. Although interrupts get generated
at the adapter level (which explains why the SetAdapter function
enables the status change interrupts), this mask provides the
capability to mask interrupts at the socket level (Figure 10.17).

Bits in the Card Status Change Interrupt Configuration Register
of the PCIC, defined as interrupt enabling bits, provide the
masking for the SetSocket function (Figure 10.18). For example,
bit 2, the Ready Enable bit, controls the appropriate mask by
enabling or disabling the specific interrupt.

• V CC AND Vpp LEVELS - This field specifies an index into the
array of power entries in the Power Management Table returned

APPLE INC.
EXHIBIT 1011 - PAGE 0353

334 Chapter Ten: PCMCIA Software

by InquireAdapter. Individual values are specified for V CC,
VpP1 and VpP2' The SetSocket function takes the input
parameters, looks into the table and sets the sockets accordingly
(Figure 10.14). This function must ensure that the specified
voltages make sense. For example, setting V CC to OV and Vpp
to 12V should be defined as an invalid combination.

To demonstrate setting VCC to 5 volts and VpPl/VPP2 to 12
volts, refer to the example Power Management Table (Table
lOA) and the entry setup for SetSocket listed above. From the
table, "2" indexes VCC at 5 volts and "3" indexes Vpp at 12
volts. Therefore, the [CH] and [CL] registers would be loaded
with 02H and 33H, respectively, before calling SetSocket.

Use a Vpp power switch (discussed in Chapters 6 and 8) to
accommodate the voltage capabilities depicted in the Power
Management Table (Table 10.3). The switch must decode the
inputs to activate the desired voltage level. The PCIC provides
each socket with 5 power control pins for controlling V CC,
VpP2 and VpP1' The Power Control and RESETDRV Register
shown in Figure 10.29 controls these pins. PC Card Power
Enable (Bit 4) acts as a global socket power control. Clearing
this bit disables all power to the socket, including V CC, VPP2
and VpP1. Setting this bit puts 5 volts on V CC and enables
VpP1 and VpP2 according to bits 0 through 3. Table 10.10
describes the relationship between the register's bit settings and
the state of the VpP1 control pins. A similar relationship exists
for VpP2' You can decide, for your specifications, how to
decode these output signals to the voltage switch.

APPLE INC.
EXHIBIT 1011 - PAGE 0354

Bit 4

1

1

1

1

0

The Socket Services Functions 335

POWER AND RESETDRV CONTROL REGISTER (READIWRITE)

v pp 1 Control Bit 0

Vpp 1 Control Bit 1

Vpp 2 Control Bit 0

Vpp 2 Control Bit 1

PC Card Power Enable

Auto Pwr Switch Enable

Disable RESETDRV

Output Enable

Figure 10.29: This PCIC Register, Power Control and
RESETDRV, Controls a Socket's Voltage Levels

Bit 1 Bit 0 VpP1_EN1 VpP1_ENO

0 0 0 0

0 1 0 1

1 0 1 0

1 1 0 0

x x 0 0

Table 10.10: Controlling Vpp Enable Signals with the PCIC's Power
Control Register

• SOCKET STATE CONTROL - This field resets latched values
representing state changes (after setting the corresponding bit)
experienced by the socket hardware. It must allow selective state
changes, and requires a one to have an effect. In other words,
writing a zero to any bit must have no etfect. This field only
supports the capabilities obtained from InquireSocket.

In the pcrc, the Card Status Change Register contains the status
of the sources for the card status change interrupts (Figure

APPLE INC.
EXHIBIT 1011 - PAGE 0355

336 Chapter Ten: PCMCIA Software

10.30). Clearing select status bits in the PCIC requires a two
step process:

1. Set the "Explicit Write Back Card Status Change Acknowledge"
bit in the Global Control Register (Figure 10.15). This bit
unlocks access to the individual bits of the Card Status Change
Register.

2. Write a 1 to the appropriate bit in the Card Status Change
Register. This performs the same function as acknowledging a
specific interrupt. Once acknowledged, the corresponding bit in
the CSCR reads back as zero.

CARD STATUS CHANGE REGISTER (READ ONLy)

Battery Dead (STSCHG)

'----- BatteryWarnlng

L--_____ Ready Charge

'-------- Card Detect Enable

L--________ Reserved

L-_________ Reserved

'------------- Reserved

'--------------- Reserved

Figure 10.30: The Card Status Change Register Reports on the Source
of the Status Change

• CONTROL AND INDICATORS - This field turns indicators and other
mechanisms on or off, if supported (one = on, zero = off). The
InquireSocket function identifies the supported capabilities.
Ignore requests to control unsupported capabilities. Switches
supporting control capabilities can be built into the system as an

APPLE INC.
EXHIBIT 1011 - PAGE 0356

The Socket Services Functions 337

110 port (Figure 10.31), or the indicators can be taken directly
from the PC Card's interface92.

I/O PORT LATCH

WRITE PROTECT

CARD LOCK
DATA

7
t. • BATTERY

BUSY

XIP

... ,.

... ...

.. ...

... ,.

... ,..

TO LED

TO LED

TO LED

TO LED

TO LED

Figure 10.31: Use an liD Port to Control the Socket's Indicators

• 1REQ_LEVEL - This field controls the steering of the interrupt
request level for the PC Card, only valid for 110 cards.

• ENABLEjNVERTER (referred to as IRQ_HIGH by PCMCIA) - Set
this flag to have an active high signal on the PC Card's IREQ
signal. Reset this flag to invert the interrupt. It is only valid for
110 cards.

• ENABLE_STATUS_CHANGEjNTERRUPTS - After setting this flag,
an unmasked IREQ event will cause the socket to generate a
hardware interrupt at the level specified by IRQ_Level.

GetSocket
For system integrity, an application should use GetSocket to determine a
socket's current configuration (unlike 1nquireSocket, which returns the
socket's capabilities) before making alterations with SetSocket. The
parameters of this function directly map into the SetSocket function.

92Use something like a latched buffer or an 8255.

APPLE INC.
EXHIBIT 1011 - PAGE 0357

338 Chapter Ten: PCMCIA Software

GetSocket

Entry setup for the PC version of the GetSocket function:
[AH) = GET_SOCKET (ExCA calling value = 8DH)
[Al) = Adapter number
[Bl) = Socket number

After exiting from GetSocket:
If [CF) = 1, then [A H) = BAD_ADAPTER, BAD_SOCKET
Else
[BH) = Status Change Interrupt Enable Mask (0 = masked, 1 = enabled; same

bit map as SetSocket)
[CH) = VCC level (lower nibble)
[Cl) = VpP1 level (upper nibble), VpP2 1evei (lower nibble)
[DH) = Socket State (1 = state change experienced; same bit map as SetSocket)
[Dl) = Control and Indicator State (1 = on; same bit map as SetSocket)
[01) = IRQ Steering and Interface Type State (same bit map as SetSocket)

Card Functions

GetStatus
Q: What's the first thing you need to do before using a flash memory
card?
A: Determine if it's in the socket.

Card presence represents one of the most important responsibilities of
the GetStatus function. During system power up, the socket hardware
should be initialized. The events that occur during socket and adapter
initialization vary from system to system. From a hardware perspective,
initialization means anything from turning on the socket's power to
setting up interrupts to enabling address windows. The degree of
initialization depends on whether or not a socket contains a PC card
when the system initializes.

On the other hand, when removing or inserting a card, the interrupt
handler should call the GetStatus function and verify the cause of the
status change interrupt. Earlier when we explained the indexing
mechanism of the pcrc, the example code demonstrated access to the
Interface Status Register (Figure 10.32). As shown below for a PC
implementation, the GetStatus function returns the information obtained
from the Interface Status Register in the [BH] register.

APPLE INC.
EXHIBIT 1011 - PAGE 0358

The Socket Services Functions 339

82365SL INTERFACE STATUS REGISTER

Battery Voltage Detect l/STSCHG

L-___ Battery Vollage Detect 2/SPKR

'-------- Card Detect 1

'------------ Card Detect 2

L-_________ Memory Write Protect

L-__________ Ready/Busy

'----------------- PC Card Power Active

'-----______________ General Purpose Input

Figure 10.32: Read the 1nterface Status Register with the GetStatus
Function to Determine the Presence of a Card

GetStatus

Entry setup for the PC version of the GetStatus function:
[AH] = GET_STATUS (ExCA calling value = 8FH)
[AL] = Adapter number
[BL] = Socket number, this function must be called once for each socket in

system.

After exiting from GetStatus:
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_SOCKET
Else
[BH] = Current card state (1 = true)

Bit 0: Write Protected, reflects the card's write protect switch via the
WP output

Bit 1: Card Locked into socket
Bit 2: Ejection Request, this monitors a socket's eject button
Bit 3: Insertion Request
Bit 4: Reflects the output of BVD1 and BVD2 (1 = buy new batteries,

but not if the card is flash memoryl)
Bit 5: Battery Low
Bit 6: Card Ready, reflects the output of the Ready/Busy pin (1 = card

ready)
Bit 7: Card Detected, reflects the AND-ed value of the CD1 and CD2

pins
[DH] = Socket state (Same function as GetSocket)
[DL] = Control and indicator state (Same function as GetSocket)

APPLE INC.
EXHIBIT 1011 - PAGE 0359

340 Chapter Ten: PCMCIA Software

ResetSocket
In general, the reset function enables the user to place a card into a
power-on default state (or more appropriately, return from an unknown
state). ResetSocket, as well as GetStatus, can be called after card
detection as the first step in card installation. Many PC cards, especially
110 cards, have registers that occasionally need to be reset. For example,
Intel's Series 2 Flash Memory Cards contain several registers (known as
Component Management Registers) that can be reset.

PCMCIA defines two ways of resetting a PC card:

1. SOFT RESET - Toggle the Reset bit in the PCMCIA-defined
Configuration Option Register. A client using the card handles
this operation, not S2.

2. HARDWARE RESET - Use ResetSocket to invoke a hardware reset
through the PC card's RESET pin. ResetSocket must complete an
entire RESET pulse, from reset state and back to the non-reset
state, ensuring the observance of the minimum reset pulse width.
In a PCIC implementation, ResetSocket controls the PC Card's
Reset pin using the PC Card RESET bit (bit 6) of the Interrupt
and General Control Register (Figure 10.33). Clearing this bit
activates the RESET signal to the PC card. This signal remains
active until setting this bit. After returning from ResetSocket,
some cards may require an additional time delay after reset
before being accessed. The client must account for this. For
example, the resetting of Intel's Series 2 Flash Memory Card
temporarily forces all the devices into a deep sleep mode. After
being woken up (coming out of reset), a 600 nanosecond delay
must be met before accessing a flash memory component within
the card.

APPLE INC.
EXHIBIT 1011 - PAGE 0360

The Socket Services Functions 341

INTERRUPT AND GENERAL CONTROL REGISTER (READIWRITE)

IRQ Bita

IRQ Bit 1

IRQBit2

IRQ Bit3

'------------- INTR Enable

PC Card Type

PC Card RESET

Ring Indicate Enable

Figure 10.33: Writing to this PC1C Register Activates the PC Card's
Reset State

ResetSocket

Entry setup for the PC version of the ResetSocket function:
[AH] = RESET_SOCKET (ExCA calling value = 90h)
[AL] = Adapter number
[BL] = Socket number

After exiting from ResetSocket:
If [CF] = 1, then [AH] = BAD_ADAPTER, BAD_SOCKET, NO_CARD

Vendor Specific Functions

GetVendorlnfo
This function returns ASCIIZ information about the vendor
implementing S2 for the specified adapter. During initialization, this
information could be displayed on the screen.

APPLE INC.
EXHIBIT 1011 - PAGE 0361

342 Chapter Ten: PCMCIA Software

GetVendorlnfo

Entry setup for the PC version of the GetVendorlnfo function:
[AH] = GELVENDOR_INFO (ExCA calling value = 9DH)
[Al] = Adapter number
[Bl] = Type (0 = ASCIIZ string describing implementor, other values not defined

yet)
[ES]:[(E}DI] = Pointer to client supplied buffer for ASCIIZ string

After exiting from GetVendorlnfo:
If [CF] = 1 then [AH] = BAD_ADAPTER, BAD_FUNCTION
Else
[DX] = Vendor's Release Number (BCD-encoded)
[ES]:[(E}DI] = Unchanged pointer, buffer now contains ASCIIZ string.

Vendor's Release Number

A few simple rules about this field:

1. The vendor must update this value with each new release.
2. The initial release, represented as Release 1.0, uses the value

0100H (returned in [DX]).
3. Subsequent releases should update this value according to the

vendor's customary procedures.
4. The vendor should reset this value to 0100H when releasing a

new version that maintains compliance with a new PCMCIA S2
specification.

5. The combination of the compliance level returned by the
GetSSlnfo function and the vendor's release number of each S2
must be unique.

For general implementations, the information provided by the ASCIIZ
string can be anything you want, as long as it fits in the buffer. When the
client passes the buffer to S2, the first word indicates the buffer size.
When S2 returns the buffer, the second word tells the client how many
bytes were passed back in the buffer. An ExCA-compliant S2 must have
"ExCA Vx.xx" at the beginning of the ASCIIZ string93 .

93The x.xx refers to the ExCA-compliance level associated with this version of 82

APPLE INC.
EXHIBIT 1011 - PAGE 0362

The Socket Services Functions 343

VendorSpecific
With this free-for-all you can do with it what you like. Add custom
extensions. Hide secret test code. From the client perspective, check the
GetVendorlnfo function first to confirm the implementor and validate
the availability of this function. On the other hand, if this function has
no support, it should return an UNSUPPORTED_FUNCTION error
code.

VendorSpeciflc

Entry setup for the PC version of the 'What_Ever_You_Want_To_CaIUt' function:
[AH] = VENDOR_SPECIFIC (ExCA calling value = AEH)
[AL] = Adapter number
All other registers are vendor specific.

After exiting from 'WhaLEvecYou_Want_To_CaIUt':
If [CF] = 1 then [AH] = BAD_ADAPTER, UNSUPPORTEDJUNCTION, or

anything you want
Else
The rest is left for you.

Protected Mode and Low-Level Access Functions

GetlSetPriorHandler
Some systems, as exemplified in the discussion on GetSSlnfo, require
more than one S2 implementation. The access points to each S2
implementation must be chained together using the GetlSetPriorHandler
(GSPHandler) function to locate the links.

GetlSetPrlorHandler

Entry setup for the PC version of the GetlSetPriorHandler function:
[AH] = GET_PRIOR_HANDLER (ExCA calling value = 9FH)
[AL] = Adapter number
[BL] = Mode (0 = Get, 1 = Set)
If [BL] = 1
[CX]:[DX] = Pointer to handler

After exiting from GetlSetPriorHandler:
If [CF] = 1 then [AH] = BAD_ADAPTER, UNSUPPORTEDJUNCTION
Else
[CX]:[DX] = Pointer to handler

APPLE INC.
EXHIBIT 1011 - PAGE 0363

344 Chapter Ten: PCMCIA Software

The GSPHandler has several purposes:

1. Adding a new implementation (as in the case of an add-in socket
adapter) to a system that already has one installed. When adding
a new one, use the Get mode to get the prior handler's address
for the new one to use. When using the INT lAH calling
method, the adapter number specified in the call determines the
S2 implementation that handles the call. Each implementation
passes the call down to the next S2 implementation in the chain,
until the call reaches the implementation that handles the
specified adapter.

2. Hooking a new implementation ahead of, or superceding, a prior
one. This requires both a Get and Set mode.

Regardless of the purpose, the GSPHandler function only needs to be
called once for each S2 implementation. The GetSSlnfo function returns
information that ties a specific implementation to the adapter(s) it
supports. As an example, assume that one S2 implementation supports
adapter numbers 0-3 and another S2 implementation supports adapter
number 4. So the GSPHandler can be called twice, first with a zero and
second with a four.

GetiSetSSAddr
This pair of functions primarily sets up protected mode access into
Socket Services. It also sets up the addresses for any data areas used by
S2. To avoid redundancy, the details of this function can be obtained in
the PCMCIA specification.

GetAccessOffsets
Certain adapters, such as that used in some of Databook's card
reader/writers94, require a register-based approach and a basic command
set to access a flash memory card (refer to Chapter 8). The
GetAccessOffsets function allows the client using this type· of adapter to
obtain the code location for each of these basic commands, which for
each S2 will be specific for the associated adapter.

94See the appendix for a list of card reader/writers.

APPLE INC.
EXHIBIT 1011 - PAGE 0364

The Socket Services Functions 345

GetAccessOffsets

Entry setup for the PC version of the GetAccessOffsets function:
[AH] = GELACCESS_OFFSETS (A1H)
[AL] = Adapter number
[BH] = Processor Mode Offset
[CX] = Number of offsets that fit in buffer
[ES]:[(E)DI] = Pointer to the buffer for storing the offsets

After exiting from GetAccessOffsets:
If [CF] = 1, then [AH] = BAD_ADAPTER, BADJUNCTION, BAD_MODE
Else
[DX] = Number of Offsets supported by this S2
[ES]:[(E)DI] = Pointer to the buffer of offsets

Acknow/edge/nterrupt
When a PC Card's status changes (card removal/insertion and ready/busy
changes, for example), the client utilizing S2 may require notification.
During the initialization of a flash file system, it can install a status
change interrupt handler that can be accessed through the host's interrupt
mechanism. The status change associated with removing the flash
memory card results in the generation of a system interrupt. This, in
tum, invokes the flash file system's status change interrupt handler,
which then figures out what caused the interrupt (GetStatus function). In
this case, a card removal caused the interrupt. So ultimately, the card
removal event results in telling the flash file system that it no longer has
a drive to support, at least until the next card status change event - card
insertion. But that's another story.

In a simple, single-socket, single-adapter system, it's fairly easy to
deduce where the card status change interrupt came from. In systems
housing multiple sockets and multiple adapters, locating the cause of the
interrupt may not be so obvious. Let's look at the following steps used to
analyze how to process a card status change interrupt:

1. Card status change generates interrupt through pre-configured
interrupt level (refer to SetAdapter and Adapter Characteristics
Table for capabilities)

2. Client's interrupt handler calls Acknowledgelnterrupt function to
find the interrupt-causing socket. As shown below,

APPLE INC.
EXHIBIT 1011 - PAGE 0365

346 Chapter Ten: PCMCIA Software

AcknowledgeInterrupt returns a bit map representing the sockets
that have experienced a status change.

3. Within the AcknowedgeInterrupt function, the software resets
the adapter hardware to allow it to generate another interrupt,
should another status change occur. This may be as simple as
clearing a latch. Acknowledgelnterrupt should also preserve the
information related to the cause of the interrupt if the adapter
hardware itself does not support this.

4. Client prepares the host system's interrupt hardware for another
interrupt. This may include sending End of Interrupt (EOI)
commands to the Programmable Interrupt Controller (PIC) or re
enabling the PIC's interrupt mask register.

5. Once the interrupt-generating socket has been detected, the
client calls the GetStatus function to determine exactly what
caused the interrupt. This information could have been stored by
AcknowledgeInterrupt in a variable that GetStatus uses. In an
adapter using the PCIC, this information can be found by
reading the Interface Status Register (see the example in the
"Defining the Adapter Hardware" section and Figure 10.32).
How the client processes this information depends on what
caused the status change in the first place, and the client's
implementation.

Acknowledgelnterrupt

Entry setup for the PC version of the Acknowledgelnterrupt function:
[AH) = ACKNOWLEDGE_INTERUPT (ExCA calling value = 9EH)
[AL) = Adapter number

After exiting from Acknowledgelnterrupt:
If [CF) = 1, then [AH) = BAD_ADAPTER
Else ,
[CX) = Socket Bit Map (Bit ° = Socket 0, Bit 1 = Socket 1, etc.)

Some additional points need to be made when processing interrupts:

APPLE INC.
EXHIBIT 1011 - PAGE 0366

The Socket Services Functions 347

1. S2 should minimize the amount of time interrupts are disabled.
However, never enable interrupts during the
Acknowledgelnterrupt function. This will avoid confusion
during interrupt processing.

2. Within some systems, adapters may share a status change
interrupt. Acknowledgelnterrupt may be called for an adapter
even if a status change has not occurred on the adapter specified
in the input parameter. In this case, the bit map returns with all
bits equal to zero.

Detecting Card Insertion

Let's add a little excitement and say that we've determined that a PC card
is not present. How should we prepare for the big event - card insertion?
A moment that every socket lives for! A system may use several
methods for detecting card insertion:

• Link into the system timer interrupt (this gets a call every 55
milliseconds in the PC) and periodically call the GetStatus function.
This method eliminates the need to invoke hardware interrupts, which in
turn reduces the complexity of the software and adapter hardware.
Continuous polling consumes CPU bandwidth; the downside to this
method. Also, other subsystems may be sharing the system timer
interrupt, resulting in increased delays.

• Enable the status change interrupt. This hardware dependent
operation will be relying on, and simplified by, the use of S2. In
particular, the SetSocket and SetAdapter functions will be used.

Error Detection and Correction Functions

The functions within this category support error detection and correction
(EDC) mechanisms on the socket adapter. Since the majority of EDC
mechanisms are implemented within the flash memory card itself (such
as a flash memory drive interfaced to the system using the PCMCIA
ATA specification), consider these functions to be optional and not a

APPLE INC.
EXHIBIT 1011 - PAGE 0367

348 Chapter Ten: PCMCIA Software

requirement of ExCA compliance. A discussion of the individual EDC
functions can be found in the PCMCIA specification.

SOCKET SERVICE DESIGN CONSIDERATIONS
AND BENEFITS
The original flash file systems can be viewed as a big "module", as they
were written basically as one piece of code containing all functional
categories. By including S2 as part of your system's software solution, it
removes the flash file system's (or client's) dependency on a hardware
specific implementation.

S2 can be obtained in two ways:

1. Write your own - Use this approach for after-market
installations of S2 where it can be loaded as a TSR or through
CONFIG.SYS. Also, if you write the BIOS for your systems,
you have the ability to incorporate S2 (which you can also write
yourself) directly into the BIOS.

2. The BIOS vendor - Alternatively, if you employ the services of a
BIOS vendor, for an additional fee, S2 (as well as the other
PCMCIA-defined pieces of software) can be included with your
system's BIOS95.

The latter method of obtaining S2 leads us to an important consideration
- Would you like to use a customized or off-the-shelf version? The PC
BIOS vendors listed in the Appendix current provide different versions
of S2 for a variety of hardware interfaces.

Whether you write your own S2 or purchase it through third party
vendors, ensure that the implementation uses minimal system RAM,
especially when built into the BIOS. The S2 specification has been
written under this consideration and many of the PCMCIA interface
controllers have been designed to accommodate this. These devices

95Card Services can be obtained in the same way.

APPLE INC.
EXHIBIT 1011 - PAGE 0368

The Card Information Structure 349

accomplish this by using read/write registers that not only perform
specific functions but also provide status information. In developing S2
(it should also go without saying), code should also be compact and have
optimized performance.

Testing Your Socket Services Implementation

When testing your S2 implementation, you should check for the
following characteristics96 :

• The function calls do not fail unexpectedly.
• All register contents must be preserved, except [AH] and other

registers used to pass back parameters from the function.
• Invalid requests must be handled properly.
• Functions must execute quickly and minimize the time interrupts

are disabled.

THE CARD INFORMATION STRUCTURE
As quoted in the PCMCIA PC Card Standard Specification Release 2.0,
"The PC Memory Card International Association was formed with the
goal of promoting interchangeability of Integrated Circuit Cards among
a variety of computer and other electronic products". The specification
established by PCMCIA defined three sections:

1. The Card Physical, for the mechanical dimensions and
tolerances for cards and connectors. This standard allows
different package form factors,97

2. The Card Interface, for the electrical interface of the card,
including signal and pinout definitions for both memory and I/O
cards, and

3. The Card Software, addressing the organization of data on the
card (unrelated to the file storage format). The card software
Metaformat is divided into 5 levels:

96Calling each function with all possible valid input parameters and the worst-case values for
invalid parameters.
97The Appendix contains the measurements for Type I, Type II and Type III cards.

APPLE INC.
EXHIBIT 1011 - PAGE 0369

350 Chapter Ten: PCMCIA Software

1. Physical Layer
2. Basic Compatibility Layer
3. Data Recording Format Layer
4. Data Organization Layer, and
5. System-Specific Layer.

These layers pertain to levels of compliance. The Card Information
Structure (CIS) accommodates a requirement of the Basic Compatibility
Layer. The CIS provides card-specific information to the host system
such as the card size, types of components, speed, system resource
requirements, etc. The open nature of the PCMCIA standard allows a
card to comply at the Basic Compatibility Layer without being required
to comply at any higher level. This allows a card to be used in a wide
range of environments and, therefore, places a great deal of significance
on the CIS98.

Although it won't be discussed in detail here (because it currently lacks
widespread usage), the ultimate goal of the Data Organization Layer
makes it worth briefly mentioning. This standard allows a special card
formatting utility to divide the flash memory card array into multiple
functions, such as a boot record or XIP area (Figure 10.34 provides two
examples of this partitioning capability).

Accessing the Card Information Structure

The memory card's address space is divided into an Attribute and
Common Memory Plane selected via the REG pin. Common Memory
handles direct-memory access read and write operations maintained in
the array of flash memory components. The Attribute Memory Plane
contains the CIS and PCMCIA-defined card configuration registers. It is
generally contained within separate devices in the card (e.g., ASICs), but
is only required to occupy a logically distinct address plane from
Common Memory. The Register Select pin (REG, pin 61) selects
between the Common Memory Plane (REG = one) and the Attribute
Memory Plane (REG = zero). Refer to Figure 10.35.

98It also means that cards may be formatted with different file data structures; this leads to
incompatibilities when transferring these cards between systems.

APPLE INC.
EXHIBIT 1011 - PAGE 0370

Drive 1

Drive 0

The Card Information Structure 351

Partitioned Into Two Drives
Partitioned Into One Drive

And A Direct Execute Section ,-

Flash File System
Data Area Execute-In Place

(XIP)
Area

Flash File System Boot Record
I-
I-

Flash File System Flash File System
Data Area Data Area

Flash File System Boot Record Flash File System Boot Record

1-

Data Organization Tuples Data Organization Tuples
(PCMCIA Specification, Sec 5.4)

Figure 10.34: Flash Memory Card Partitioning Examples

FLASH MEMORY CARD PLANES

I ASICS
,

ATTRIBUTE MEMORY PLANE

REG\ ---I- r1>r-
- -

HARDWIRED CARD CONFIGURATION ,
INFORMATION REGISTERS

I STRUCTURE

,

I FLASH DEVICES
, COMMON MEMORY PLANE - - -- - - ------------- - - -

I EJEJEJEJEJ ,

I
, EJEJEJEJEJ CB'ICE CB'ICE CB'ICE CB'ICE CB'ICE

I

f--

f--

Direct
Execute
Code

Drive 0

Figure 10.35: Select between a Flash Memory Card's Common and
Attribute Memory Planes using the REG Signal

APPLE INC.
EXHIBIT 1011 - PAGE 0371

352 Chapter Ten: PCMCIA Software

The CIS may be stored m flash memory cards using three basic
alternatives:

1. No CIS. This card does not truly comply with PCMCIA 2.0
compatibility.

2. A separate EEPROM device within the card, requires the card's
user to program the correct and necessary tuples. This provides
flexibility but requires more work on behalf of the developer
building the card format utility.

3. Hardwired by the card vendpr into the card's ASICs. This
approach removes the responsibility from the card's format
utility. On the other hand, this approach has an element of risk
involved due to potential errors and changing specifications. It
also means that the format utility must use a portion of the
Common Memory CIS if additional CIS information is desired.

PCMCIA requires the CIS in the Attribute Memory Plane to be located
at even addresses; invalid data will be obtained when reading from an
odd-byte location. A CIS jump to Common Memory may be provided,
where additional CIS information can be stored in both even and odd
bytes.

Tuples - The Basic CIS Elements

The CIS, a variable length chain (or linked-list), consists of data blocks
called tuples, starting at address zero of the Attribute Memory Plane.
Table 10.11 displays the basic format of the PCMCIA-defined tuple.

BYTES

0 TPL CODE

1 TPL LINK

n Bytes specific
to this tuple

Table 10.11: Tuple Format

APPLE INC.
EXHIBIT 1011 - PAGE 0372

The Card Information Structure 353

• Byte 0 of the tuple contains the tuple code (TPL_CODE), a
tuple's unique identifier.

• Byte 1 (actually address 2) of each tuple contains a tuple link
(TPL_LINK) to the next tuple in the tuple list. The TPL_LINK
byte equals the number of bytes remaining in the tuple after the
TPL_LINK (Figure 10.36). For example, if a tuple consists of a
total of five bytes, byte 1 (TPL_LINK) would contain the value
03H; the total number of tuples (5) minus the first two bytes
dedicated to the tuple code and tuple link.

Tuples Connected
Using:Link-List'

CARD INFORMATION STRUCTURE

Tuple Information

Link

[
Tuple 10

Tuple Information

Link

--. Tuple 10

Tuple Information

'--- Link

~ Tuple 10

Tuple Information

'--- Link

Tuple 10

Figure 10.36: A Tuple is the Basic Data Structure in the CIS

APPLE INC.
EXHIBIT 1011 - PAGE 0373

354 Chapter Ten: PCMCIA Software

Some basic rules of tuple design:

• In general, each byte in a tuple represents another piece of
information. Different tuples, characterized by different tuple
codes, may have different lengths.

• Each tuple has a maximum length of 256 bytes (limited by the
size of the link field data size).

• The tuple code of OFFH, anywhere within the tuple, marks the
tuple's end. For example, if byte 5 has the value OFFH, that byte
is the last byte in the tuple.

• Some tuples have an end-of-tuple byte, and others do not.
Typically, the variable length tuples will use an end-of-tuple
byte. Therefore, CIS-parsing software must be able to handle
tuples with and without end-of-tuple bytes.

• Tuple bytes may be further sub-divided into tuple byte fields or
just fields. PCMCIA defines specific fields (a range of bits
within a byte) for certain tuple bytes. For example, byte 0 of the
Device ill tuple has three fields; Device Speed in bits 0 through
3, write protect switch (WPS) in bit 5, and Device Type Code in
bits 4 through 7.

Note that the PCMCIA PC Card Standard 2.0 document uses the terms
tuple, tuple byte, tuple list and field rather loosely. For example, tuple
may refer to a single tuple, to the linked-list of tuples or to one of the
bytes within a tuple. Tuple chain is synonymous with tuple list.
Likewise, field may refer to one or more bits in a tuple byte, or it may
refer to one of the bytes within a tuple. Because of these inconsistencies,
pay attention to the context in which these terms are used.

Tuple Processing

PCMCIA makes several recommendations for software designers who
write code that parses the CIS. (From the Microsoft Flash File System
standpoint, the CARDDRV.EXE piece contains this code.) These

APPLE INC.
EXHIBIT 1011 - PAGE 0374

The Card Information Structure 355

recommendations must be used to prevent incompatibilities between
systems:

. • The first tuple starts at address 0 of the Attribute Memory Plane.
This tuple must be the Device Information Tuple, Null Control
Tuple, or End of List Tuple.

• PCMCIA recommends that an unknown tuple code be ignored.
The first two bytes which include the tuple code and tuple link
may be read. No other bytes should be read, since they may
contain active registers that could be altered by reading them.

Tuple Descriptions

The PCMCIA specification has defined tuples that describe many
different aspects of a PC card. Staying on track with the subject of this
book, we will focus on the tuples that relate directly to flash memory
cards. Table 10.12 lists the tuples that should be implemented in a flash
memory card, as a bare minimum99:

TUPLE TUPLE CODE TUPLEID

Device Information CISTPL_DEVICE 01H

CISTPL_DEVICE_A 17H

Levell Version/Product CISTPL_ VERS_l 15H
Information

Configuration CISTPL_CONF lAH

Configuration Table Entry CISTPL_CE lBH

JEDEC Device ID CISTPL_JEDEC_C 18H

CISTPL_JEDEC_A 19H

Device Geometry Info CISTPL_DEVICEGEO lEH

CISTPL_DEVICEGEO_A lFH

Table 10.12: Minimum Tuple Requirements

99 A minimum requirement of ExCA.

APPLE INC.
EXHIBIT 1011 - PAGE 0375

356 Chapter Ten: PCMCIA Software

THE DEVICE INFORMATION TUPLE

A tuple code of 01H indicates that this tuple describes the components
of the Common Memory address space. Most flash memory cards
contain only one type of memory technology in Common Memory, and
therefore only contain one Device Information Field. Some cards
contain mixtures of memory technologies (e.g., RAM, ROM, FLASH).
A PCMCIA card containing a mixture of memory technologies, such as
RAM and FLASH, requires an equivalent number of Device Information
Fields.

A tuple code of 17H pertains to Attribute Memory. Typically, flash
memory card vendors use ROM or EEPROM to store the card's CIS in
Attribute Memory. Cards that use EEPROMs have a bit more flexibility
but usually ship blank. The OEM or card user then has the responsibility
of programming the correct information into the CIS. However, it also
means that the EEPROM can be used for something other than a CIS (as
in the case of a proprietary application).

OFFSET DESCRIPTION VALUE

OOH TUPLE CODE = CISTPL_DEV 01H

02H TPL_LlNK 03H

04H DEVICE 10 = FLASH,150ns 53H

DEVICE 10 = FLASH,200ns 52H

06H DEVICE SIZE = 4M OEH

DEVICE SIZE = 10M 26H

DEVICE SIZE = 20M 4EH

08H END OF DEVICE TUPLE FFH

Table 10.13: Sample Device Information Tuple

Device /D (Table 10.14)
PCMCIA defines the device ID as the device type (Flash EPROM, UV
EPROM, DRAM, etc.) and access time. According to Table 5-14 of the
PCMCIA 2.01 specification, Flash EPROM has a device type of "5".
The Device Speed Field depicts the device access time and the codes can
be found in PCMCIA's Table 5-12. The specification also has provisions

APPLE INC.
EXHIBIT 1011 - PAGE 0376

The Card Information Structure 357

for an extended speed byte, usually equal to zero, indicating that it can
be ignored. The extended speed field handles speed granularities (e.g.,
135ns, 90ns, etc.) not explicitly listed in PCMCIA's Table 5-12.

The WPS bit within the Device ID byte indicates whether the card's
mechanical write protect switch has an effect on the devices in the card.
A zero value means that the write protect switch and WP signal indicate
the 'writability' of the flash devices in the card. A value of one in this
field indicates always-writable flash devices. In this case, a system can
use the write protect capability (if available), determined by the Window
Characteristics Table (InquireWindow of Socket Services).

Bit7 I Bit6 I Bit5 I Bit4 Bit3 Bit2 I Bit1 I BitO

Device Type Code WPS Device Speed

Flash EPROM = 5 0= DSPEED_200ns = 2H
Writable DSPEED_150ns = 3H

Table 10.14: Sample Device ID Byte

Device Size (Table 10. 15)
The Device Size byte (PCMCIA Table 5.15), consisting of an
addressable unit field and a size code field, provides information to
determine the card's size, or density. The size code merely provides a
value that gets multiplied by the addressable unit. The address unit field,
more appropriately named a "size-code multiplier", bears no relationship
to the devices in the flash memory card. As an example, assume a size
unit of 2MB (code value of 6). For a 20 Mbyte card, this unit would
require an addressable unit, or multiplier of 10. The 5 bits corresponding
to the "# of ADDRESS UNITS - I" allow for a maximum card density of
64 Mbytes (2Mbytes X 32).

APPLE INC.
EXHIBIT 1011 - PAGE 0377

358 Chapter Ten: PCMCIA Software

Bit? I Bit6 I Bit5 I Bit4 I Bit3 Bit2 I Bit1 I BitO

of ADDRESS UNITS - 1 SIZE CODE

4 Megabyte Card = (2-1) = 1 Code = 6 Indicates Unit Size

10 Megabyte Card = (5-1) = 4
Ranges From 2M to 64 Mbytes

20 Megabyte Card = (10-1) = 9

Table 10.15: Sample Device Size Byte

THE DEVICE GEOMETRY TUPLE

The Device Geometry Tuple (Table a0.16) provides information for
flash file systems regarding the flash memory card's internal low-level
formatting structure. Although this tuple can be implemented for
randomly rewritable SRAM or EEPROM, the flash memory technology
with its large-block erase functionality introduces additional needs for
device information with respect to erase blocking and partitioning
boundaries.

The DGTPL_BUS field indicates the system bus width, where the value
(n) equals 2(n-l) bytes. N = 2 for the standard PCMCIA-defined, 16-bit
bus. This entry accommodates the possibility of wider-width cards in the
future and/or allows file systems to use this tuple structure in non
PCMCIA memory card environments (e.g., resident flash memory
arrays).

The DGTPL_EBS field indicates the erase block size, where the value
of 2(n-l) equals the address increments of DGTPL_BUS-wide accesses.
For example, a value of llH (2(16)) represents a 64KWord address
increment for the 16-bit wide card. This corresponds to the 64 kbyte
erase blocks of Intel's 28F008SA devices within the Series 2 Card,
paired to provide 64KWord erase blocks.

The DGTPL RBS and DGTPL WBS field indicate the read block size
and write blo~k size, respectively. The value of 2(n-l) equals the address
increments of DGTPL_BUS-wide accesses. For example, a value of 01H
(2(0)) represents 1 block address increment. In other words, any address

APPLE INC.
EXHIBIT 1011 - PAGE 0378

The Card Information Structure 359

within the entire card's memory array can be read or written without
using special read or write modes such as paging. This is the typical
situation (refer to Chapter 7 for more information on writing to devices
and cards).

DGTPL_PART is a special partitioning information field based on
physically distinct segments of the memory array(s), such that its
contents cannot be affected by read/write/erase operations in adjacent
partitions. This field indicates the number of electrically-isolated
partitions within a device. As an example, a tuple value of 03H (2(p-1)
or 4) yields the number of completely electrically isolated blocks.

In practice, apply this information when storing "permanent" code or
data, such as that used for XIP software, boot code or special card
formatting data (Figure 10.34). With some flash memory devices,
repeated writes and erases of adjacent blocks may eventually disturb the
"permanent" contents, unless fully electrically isolated from one another.

DGTPL_HWIL (FL_DEVICE_INTERLEAVE) is used where card
architectures employ a multiple of 2(q-1) times interleaving of the entire
memory arrays or subsystems with the above characteristics. Non
interleaved cards have values of q = 1. The value q = OOH is not
allowed.

The DGTPL_EBS, DGTPL_RBS, and DGTPL_ WBS (address
increment- or bus operation-based values) are multiplicative of the
DGTPL_BUS entry (denoting bus width) to define the non-interleaved
physical memory erase-, read-, and write-block sizes in bytes,
respectively. The DGTPL_HWIL value for cards employing hardware
interleaved (i.e., banks of) memory arrays or subsystems (where
DGTPL_HWlL _ 2) is mUltiplicative of the resulting non-interleaved
erase-, read-, and write geometries. The product of these three geometry
information layers yields the resulting card-level minimum physical
block geometries.

APPLE INC.
EXHIBIT 1011 - PAGE 0379

360 Chapter Ten: PCMCIA Software

OFFSET DESCRIPTION VALUE

OOH TUPLE CODE = CISTPL_DEVICEGEO lEH

02H TPL_LlNK 06H

04H DGTPL_BUS 02H

06H DGTPL_EBS llH

OSH DGTPL_RBS 01H

OAH DGTPL_WBS 01H

OCH DGTPL_PART 03H

OEH FL_DEVICE_INTERLEAVE 01H

Table 10.16: Sample Device Geometry Tuple100

THE JEDEC IDENTIFIER TUPLE

Use the Jedec Identifier Tuple to determine the device type (JEDEC
component ID and manufacturer ID) in the memory card. The devices
within many flash memory cards also support an identifier read mode
used to obtain the same information without using a CIS. However, if
possible, use the CIS because it provides a more standardized method
for determining device types in PCMCIA cards.

The JEDEC ID tuple is the only data CIS parsing software can use to
determine the size of the flash memory devices within a card. This may
present a problem, because cards containing unknown devices (i.e.,
present or future) will not be able to match-up with a value contained in
the CIS parser's lookup table. Although this shouldn't be a problem in a
read-only situation, it can be a problem with bulk and block erase flash
when the physical device boundaries must be known for writes and
erases. (Oops!) The flash card driver, described later in this chapter,
represents one solution to this issue.

lOaThe sample CIS uses the format for Intel's Series 2 Flash Memory Card

APPLE INC.
EXHIBIT 1011 - PAGE 0380

The Card Information Structure 361

OFFSET DESCRIPTION VALUE

1AH CISTPL_JEDEC 18H

1CH TPL_LlNK 02H

1EH INTEL JEDEC ID 89H

20H 28F008SA JEDEC ID A2H

Table 10.17: Sample JEDEC Identifier Table

THE CONFIGURATION TUPLE

The fields in this tuple describe the interfaces supported by the card and
configurable registers within the card (Table 10.18). Most flash memory
cards do not support this tuple because they generally consist of nothing
more than an interface ASIC and a memory arraylOl. The flash memory
cards that do support this tuple include Intel's Series 2 cards and some
flash memory cards using a PCMCIA-ATA interface.

The TPCC _ SZ byte, referred to as the Size of Field Byte, consists of
several bit fields, as shown below:

7 I 6 5 I 4 I 3 I 2 1 I 0

TPCC_RFSZ- TPCC_RMSZ - Value indicates number of TPCC_RASZ-
Reserved for future byte addresses used by TPCC_RMSK Value indicates
use, must equal O. minus 1. Flash cards that support this number of byte

function typically have a 0 in this field addresses used by
indicating only 1 byte is required by the TPCC_RADR

presence mask. minus 1.

Table 10.18: Size of Field Byte

The TPCC _LAST byte contains the Configuration Index Number of the
last configuration described in the Card Configuration Table. For
example, a value of zero indicates the absence of a Card Configuration
Table.

lOlIlO Cards are the predominant users of this field.

APPLE INC.
EXHIBIT 1011 - PAGE 0381

362 Chapter Ten: PCMCIA Software

The Configuration Registers Base Address in REG Space
(TPCC_RADR) field contains the base address of the card's PCMCIA
defined configuration registers. The length of this field can be from one
to four bytes long and is determined from the two bits of the
TPCC_RASZ field of the TPCC_SZ byte. The address is displayed from
low order bits to high. As an example, a base address of 4000H would
be displayed in the first and second bytes of TPCC_RADR as OOH and
40H, respectively.

The Configuration Register Presence Mask (TPCC_RMSK) tuple field
contains a bit map corresponding to the presence (one) or absence (zero)
of the Configuration Registers described in Section 4-15 of the PCMCIA
2.01 specification. As an example, a value of 3 (i.e., bits 0 and 1)
indicates the presence of two registers, the Configuration Option
Register and the Configuration and Status Register.

OFFSET DESCRIPTION VALUE

C6H CISTPL_CONF 1AH

C8H TPL_LlNK 06H

CAH TPCC_SZ 01H

CCH TPCC_LAST OOH

CEH TPCC_RADR OOH

DOH TPCC_RADR 40H

D2H TPCC_RMSK 03H

D4H CISTPL_END FFH

Table 10.19: Sample Configuration Table

THE CONFIGURATION-TABLE ENTRY TUPLE

This tuple supports miscellaneous (and sometimes unusual) card
functions such as special timing and power requirements, system I/O and
memory requirements and an interrupt structure. Currently, this field is
not implemented in any flash memory cards but in the future it will
support things such as dual voltage operation (3.3V and 5.OV) and
special power requirements.

APPLE INC.
EXHIBIT 1011 - PAGE 0382

Card Services 363

THE END-OF-LiST TUPLE

Simply stated, this tuple marks the end of a tuple chain and causes the
most confusion because when system software encounters it, several
actions can be taken:

• If a long-link tuple was encountered previously in the chain,
continue processing at the location specified in the long-link
tuple.

• If processing the CIS and neither a long-link nor a no-link tuple
were seen in this chain, then continue processing as if a long
link tuple to address 0 of Common Memory space were
encountered. This approach allows the interpretation of custom
card information that may have been formatted into the card's
Common Memory Plane (e.g., file system formatting, boot
partition, etc.). For validation of the implied long-link tuple to
Common Memory, the tuple chain in Common Memory must
begin with a valid Link Target tuple. Encountering an invalid
Link Target tuple signifies the assumed end of the CIS.

OFFSET DESCRIPTION VALUE

OOH FFH

Table 10.20: Sample End-oj-List Tuple

CARD SERVICES
The subject of Card Services, like Socket Services, could actually
encompass a whole book in and of itself. As a matter of fact, Card
Services takes up almost 150 pages in the PCMCIA specification. The
task of developing a complete Card Services implementation consumes
more time and effort than is available for all but the largest
manufacturers. Therefore, we recommend that if you plan on using Card
Services, contact your favorite BIOS vendor and buy it102. However, for
non-PC implementations, only proprietary Card Services solutions exist

102 A list of BIOS vendors supporting Card Services can be found in the Appendix.

APPLE INC.
EXHIBIT 1011 - PAGE 0383

364 Chapter Ten: PCMCIA Software

today and you must therefore write Card Services yourself (or hire a
consultant).

What is Card Services?

Fundamentally, Card Services monitors the way in which PC cards and
their applications utilize, and interface to, the host system. It primarily
benefits systems where a variety of PC cards will continuously be
swapped in and out of the same socket. The following example best
portrays this situation:

A socket contains a flash memory card. The system has installed flash
file system software. Furthermore, the flash memory card maps into a 64
kbyte window in the host's memory map. Now, remove the flash memory
card and insert a fax card. The need for the 64 kbyte window goes away,
but now the fax card requires some I/O ports. Simultaneously, the flash
file system must be notified that it doesn't have a card anymore.
However, the user loads up fax software that must be hooked up with the
fax card. Card Services keeps track of all this activity and negotiates the
available system resources to service them.

As shown in Figure 10.37, Card Services acts as the interface between
clients (applications, device drivers) and PC Cards, sockets and system
resources. PCMCIA describes this interface as a client/server model;
Card Services is the server and the application programs, device drivers
and utility programs represent the clients.

Card Services consists of five functional categories:

1. Client Services provides support for client callback registration
with Card Services to allow event notification, such as card
removal or insertion.

2. Resource Management maintains constant knowledge of the
available system resources to allocate for the use of PC Cards.
These resources include memory and I/O address space and
interrupts.

APPLE INC.
EXHIBIT 1011 - PAGE 0384

Card Services 365

I Client I I Bulk Memory Client I

• -I Client Services I Client Utilities I
Resource

Management

.1 Resource Management ~ Table

1-.---
J Memory I I Advanced I Bulk Memory Services L Technology

Client Services I -I Driver

Card Services

1 ~
Sockel Services I

i L

Adapter

L-.-J

PC PC
Card Card

Figure 10.37: Card Services Interfaces between Clients (Applications,
Device Drivers) and PC Cards, Sockets, and System Resources

3. Client Utilities primarily provide a common access to the Card
Information Structure of PC cards. In other words, the Client
Utilities contain code that a client may use to read tuples from a
card. This eliminates redundant code within each of the clients.

4. Bulk Memory Services provides basic read/write/copy/erase
functionality for RAM cards; it does not accommodate flash
memory algorithms. It calls upon a special memory technology
driver to handle flash memory cards.

APPLE INC.
EXHIBIT 1011 - PAGE 0385

366 Chapter Ten: PCMCIA Software

5. Advanced Client Services provides a miscellaneous set of
functions for clients with special needs. An example is a special
utility that uses this service to obtain direct access to socket
services.

Do You Need Card Services?

Card Services, like all the other PCMCIA software components,
promotes an open system. It adds flexibility while, at the same time, acts
as a watchdog to ensure that PCMCIA-aware applications do not violate
system resource integrity. In a controlled environment (i.e., embedded
applications), flexibility may not be necessary and simplifies the
restriction of what software and/or PC cards get plugged into a socket.
These systems may not need Card Services and can avoid development
costs and system resources used to load it.

FLASH CARD MEMORY TECHNOLOGY DRIVERS
From a read standpoint, most flash memory cards appear to function
about the same as ROM cards! In other words, they don't require any
special algorithms to read from them. But the fact is, all flash memory
cards are not created equal, especially from a program and erase
standpoint. Flash memory programming and erase algorithms can differ
significantly, depending on the card manufacturer and the type of flash
memory devices in the card (refer to Chapter 3).

At the beginning of this chapter, we described the first-generation
monolithic flash file system model (Figure 10.5). In such a system, the
low-level driver, (CARDDRV.EXE), contained all the code to interface
the flash file system and the hardware (socket adapter, system memory
and flash memory card). It even included the program and erase
algorithms for the flash memory cards. After writing this monolithic
piece of software and installing it in the computer system, the algorithms
it contained dictated the specific flash memory cards it supported. An
unsupported flash memory card could probably be read, but any attempts
to program or erase it would probably end up failing, for one reason or
another (due to differences in algorithms).

APPLE INC.
EXHIBIT 1011 - PAGE 0386

Flash Card Memory Technology Drivers 367

To include support for additional cards obviously required a code
modification to incorporate the required software algorithms. This was
never simple, except if the system hadn't shipped yet. But if the system
containing this flash file system software was already in the field, how
easy would it be to upgrade it to include the additional card support?
This was one of the biggest limitations of the monolithic file system.

What if there was a way to hook the new flash memory card algorithms
to the main body of code without any modifications? What if installing
new flash card algorithms was as simple as inserting the new card into
the socket? The flash card driver must take this approach to allow
systems to function with new cards.

Why Support New Cards?

Face it, building in the ability to support additional flash memory cards
requires a nontrivial amount of effort. What is the motivation? Some
OEMs will build a computer and ship it with a certain level of flash
memory card support (i.e., drivers that only support a limited number of
vendor's cards). These same OEMs do not care about supporting other
cards. However, new memory cards can provide higher performance,
higher densities and increased functionality. This lack of obsolescence,
in turn, may make a computer system more desirable to end users, which
ultimately provides a competitive advantage. On the other hand, being
able to support new cards, gives the OEM an opportunity to make more
money by selling these cards on the after-market.

Flash Card Driver Functions

A flash card driver only contains code that deals specifically with the
card's functionality. It has complete knowledge of the card's program
and erase algorithms and any special control registers the card may
contain. This driver knows what it takes to optimize, or fine-tune, any
operations within the card. Fundamentally, a flash card driver manages
four types of operations in association with a flash file system:

• Read - transfers specified bytes from the flash memory card to a
system buffer

• Write - transfers specified bytes from a system buffer to the
flash memory card

APPLE INC.
EXHIBIT 1011 - PAGE 0387

368 Chapter Ten: PCMCIA Software

• Copy - transfers specified bytes from one location to another
within the same flash memory card, as seen when doing block
to-block transfer during flash file system cleanup

• Erase - restores a block or chip to an erased state (i.e., all ones)

Interfacing to the Flash Card Driver

In a PCMCIA-compatible software implementation (Figure 10.6), Card
Services provides the interface between the flash file system and the
flash card driver (referred to as the Memory Technology Driver, or
MTD). Any time the file system needs to perform one of the operations
listed above, it makes its request to Card Services, which in turn calls
the MTD. To fit this role of interfacin1g to Card Services, all MTDs must
implement a standardized interface, as described in the PCMCIA
specification.

A system using proprietary software may still utilize similar concepts for
linking a flash card driver to the flash file system. This MID can be
written as a separate device driver that the flash file system software can
call into for the basic read/write/copy/erase functions. Perhaps the new
driver can be written in such a way as to overlay on top of the original
driver it replaces (i.e., as a set of subroutines) during run time. A
proprietary solution has the advantage of allowing the flash card driver
interface to be tailored explicitly for the system. Whatever the interface,
it should be clear that the flash card driver has to be a unique piece of
code for each type of flash memory card.

Installing the Flash Card Drivers

The biggest challenge in MTD integration lies in determining how the
new flash card driver gets loaded or installed into the system.
Fundamentally, when a different flash memory card is distributed or sold
by the computer OEM, the supporting driver must come along with it,
somehow. How that driver gets loaded into the system and/or where it
resides depends on the system's memory architecture, as depicted in
Table 10.18.

APPLE INC.
EXHIBIT 1011 - PAGE 0388

Flash Card Memory Technology Drivers 369

Case Hard Drive Floppy Drive Flash Disk ROM Disk

1 No No No Yes

2 No No Yes No

3 Yes External Don't Care Don't Care

4 Yes Yes Don't Care Don't Care

Table 10.21: System Memory Architectures

Installing the new driver into the system can be accomplished in several
ways, depending on the system's capabilities:

• Modem the new driver from a bulletin board - If the system
doesn't have a built-in modem, the user has to buy a modem just
to use a flash memory card. No way!

• Use a serial port and a link to a host computer (i.e., LapLink) -
Again, not always the most convenient solution.

• Floppy disk - OEM must distribute this with each card, and the
system must support floppy disks.

• Flash memory card - Except for the Case 4 system architecture
(with a built-in floppy drive) the flash card driver on the card
provides the most general solution. It can deliver the most
convenient approach, especially when it has the ability to be
automatically pulled off the card without user intervention. The
mechanism to accomplish this could proceed as follows (Figure
10.37):

1. User inserts a new card which generates a card insertion event.

2. Software interprets the CIS to identify the card. Two possibilities
exist:

APPLE INC.
EXHIBIT 1011 - PAGE 0389

370 Chapter Ten: PCMCIA Software

SOCKET ADAPTER

1) Card Inserted
r-........=.-.................

2) Interrupt To
Host Signifies -+---------t
Card Insertion
Event:

3) Interpret CIS:
a) Use Existing

Card Support
b) Unsupported

Card

4) Read Driver Fro
Card:
a) Load Into System RAM
b) Install On Internal Hard

Drive Or In Resident
Flash Memory.

C Flash
I Card
S Driver

Figure 10.38: Installing a New Flash Card Driver

a. The software already in the system supports the card.
Remember, there can be some flash memory card support
integrated into the flash file system software.
b. An unrecognized card needs a new driver.

3. A special loader utility reads the flash card driver from the flash
memory card. Two possibilities exist:
a. A Case 1 system has no way to permanently store the new
driver (i.e., ROM-based, no hard drive, etc.). The flash card
driver must be pulled from the card and loaded into system
RAM for execution each time it is inserted (a temporary
installation) .
b. System Cases 2-4 have more flexibility. The flash disk or
hard disk in these systems can "permanently" store the flash card

APPLE INC.
EXHIBIT 1011 - PAGE 0390

Summary 371

driver after pulling it off the card. A Case 4 system provides the
easiest solution for installing the flash card driver. A floppy disk
containing the driver can be shipped along with the new flash
card. Install the floppy disk, copy the file to the hard drive and
load it at run time along with the rest of the flash file system
software. However, it may be just as convenient to leave the
driver on the card and automatically pull it off each time.

SUMMARY
This chapter was written to provide you with insight and an appreciation
for the software components that can be used in a system incorporating a
PCMCIA socket. Actually, much of the PCMCIA software can even be
used in a system that has resident, non-removable flash memory.
Regardless, the components and their most important functions include:

• Socket Services - Software specific to the host adapter hardware,
much like system BIOS.

• Card Services - Manages system resources, such as memory
windows and 110 ports

• Memory Technology Drivers - Device drivers containing the
flash memory program and erase algorithms, either resident in
the system or on the card itself. They optimize the performance
of the flash memory card.

• Card Information Structure - Data structures "permanently"
stored in the flash memory card (and PC cards in general) that
describe the features of the card.

At this point, you may also be making the decision whether to buy or
build. The Appendix lists some of the sources for purchasing the
software. If you decide to write your own, you must first decide what is
needed. Don't limit yourself, decide this with a forward-looking attitude.
Enjoy the challenge!

APPLE INC.
EXHIBIT 1011 - PAGE 0391

Appendix A: Flash Memory Component
Vendors

The following list is a representative summary of flash memory
component manufacturers. Due to the rapid change in product line items,
it is best to contact these companies directly for product-specific
information.

Advanced Micro Devices Inc.
Box 3453
Sunnyvale, CA 94088
(800) 222-9323
(408) 749-5703

Atmel Corp.
2125 O'Neil Dr.
San Jose, CA 95131
(408) 441-0311

Catalyst Semiconductors, Inc.
2231 Calle de Luna
Santa Clara, CA 95054
Tel: (408) 748-7700
Fax: (408) 980-8209

Fujitsu Microelectronics Inc.
IC Division
3545 N. First St.
San Jose, CA 95134
(800) 642-7616
(408) 954-0616

Hitachi America Ltd.
Semiconductor and IC Division
2000 Sierra Point Parkway
Brisbane, CA 94005
(800) 448-2244
(415) 589-8300

Intel Corp.
Literature Center
Box 7641
Mt. Prospect, IL 60056
(800) 548-4725

Mitsubishi Electronics of
America
1050 E. Arques Ave.
Sunnyvale, CA 94086
(408) 730-5900

NEC Electronics Inc.
Box 7241
Mountain View, CA 94039
(415) 960-6000

APPLE INC.
EXHIBIT 1011 - PAGE 0392

374 Appendix A: Flash Memory Component Vendors

Oki Semiconductor
785 N. Mary Ave.
Sunnyvale, CA 94086
(408) 720-1900

Samsung Semiconductor
3725 N. First Street
San Jose, CA 95134
(408) 954-7274

SGS-Thomson
1000 E. Bell Road
Phoenix, AZ 85022
(602) 867-6100

Texas Instruments Inc.
Box 172228
Denver, CO 80217
(800) 477-8924

Toshiba America Electronic
Components Inc.
9775 Toledo Way
Irvine, CA 92718
(800) 879-4963
(714) 455-2000

APPLE INC.
EXHIBIT 1011 - PAGE 0393

Appendix B: Flash Memory Card/Drive
Vendors

The following list is a representative summary of flash memory card and
drive manufacturers. Due to the rapid change in product line items, it is
best to contact these companies directly for product-specific
information.

Advanced Micro Devices, Inc
P.O. Box 3453
Sunnyvale, CA 94088-3453
Tel: (408) 749-5981
Fax: (408)749-3240

AMI ASIS Division
200 South Main St.
Pocatello, Idaho 83204
Tel: (208) 234-6661
Fax: (208) 234-6695

Atmel Corporation
2125 O'Nel Drive
San Jose, CA 95131
Tel: (408) 441-0311
Fax: (408) 436-4300

Catalyst Semiconductors, Inc.
2231 Calle de Luna
Santa Clara, CA 95054
Tel: (408)748-7700
Fax: (408) 980-8209

Centennial
37 Manning Road
Billerica, MA 01821
Tel: (508) 670-0646
Fax: (508) 670-9025

Computer Modules, Inc.
2350 A W alsh Ave,
Santa Clara, CA 95051
Tel: (408) 496-1881
Fax: (408)496-1886

APPLE INC.
EXHIBIT 1011 - PAGE 0394

376 Appendix B: Flash Memory Card/Drive Vendors

Enhance Memory Products, Inc.
18720 Oxnard St. #102
Tarzana, CA 91356
Tel: (818) 343-3066
Fax: (818) 343-1436

Epson America, Inc.
20770 Madrona Ave.
Torrance, CA 90503
Tel: (310) 782-5341
Fax: (310) 782-5320

Epson Semiconductor GMBH
Riesstr. 15
W-80oo Munich 50, Germany
Tel: 49(89) 149703
Fax: 49(89) 149703-10

EXP Computer, Inc.
223 Michael Drive
Syosset, NY 11791
Tel: (516) 496-3703
Fax: (516) 496-2914

FDK America, Inc.
3099 N. First St.
San Jose, CA 95134
Tel: (408) 432-8331
Fax: (408) 435-7478

Fujitsu Microelectronics Inc.
IC Division
3545 N. First St.
San Jose, CA 95134
(800) 642-7616

Intel Corp.
Literature Center
Box 7641
Mt. Prospect, IL 60056
(800) 548-4725

MagicRAM, Inc.
1850 Beverly Blvd.
Los Angeles, CA 90057
Tel: (213) 413-9999
Fax: (213) 413-0828

Maxell Corp. of America
22-08 Route 208
Fair Lawn, NJ 07410
Tel: (201) 794-8382
Fax: (201) 794-3274

Mitsubishi Electronics America,
Inc.
1050 East Arques Ave.
Sunnyvale, CA 94086
Tel: (408) 730-5900
Fax: (408)732-9382

New Media Corp.
15375 Barranca B 101
Irvine, CA 92718
Tel: (714) 453-0550
Fax: (714) 453-0114

Panasonic
P.O. Box 1511
Secaucus, NJ 07096
Tel: (201) 348-5266
Fax: (201) 392-4782

APPLE INC.
EXHIBIT 1011 - PAGE 0395

Appendix B: Flash Memory Card/Drive Vendors 377

Pretec Electronics Corp.
39899 Balentine Dr. Suite 305
Newark, CA 94560
Tel: (510) 440-0535
Fax: (510) 440-0534

PsionPLC
Alexander House, 85 Frampton St.
London, NW8 8NQ England
Tel: 44(71) 262-5580
Fax: 44(71) 258-7340

Rohm Corp.
3034 Owen Dr.
Antioch, TN 37013
Tel: (615) 641-2020
Fax: (615) 641-2022

Silicon Storage Technology, Inc.
1208 Apollo Way
Suite 502
Sunnyvale, CA 94086
Tel: (408) 735-9110
Fax: (408) 735-9036

Smart Modular Technologies
45531 Northport Loop West
Fremont, CA 94538
Tel: (510) 623-1231
Fax: (510) 623-1434

Sundisk Corp.
3270 Jay Street
Santa Clara, CA 95054
Tel: (408) 562-0500
Fax: (408)980-8607

Telecomputer, Inc.
15026 Moran Street
Westminster, CA 92683
Tel: (714) 894-8954
Fax: (714) 891-8364

Toshiba America Electronic
Cmpts, Inc.
9775 Toledo Way
Irvine, CA 92718
Tel: (714) 455-2292
Fax: (714) 859-3963

APPLE INC.
EXHIBIT 1011 - PAGE 0396

Appendix C: Flash Memory Component
and Card Programmers

The following list is a representative summary of flash memory
component and card programmer manufacturers. Contact them directly
for information on their products.

Advantest Corp.
2880 San Tomas Expy. #105
Santa Clara, CA 95051
(408) 970-9922

Advin Systems Inc.
1050-L E. Duane Avenue
Sunnyvale, CA 94086
(408) 243-7000
(800) 627-2456
(Components)

A val Data Corp.
Information System Division
Shinyuri-21 Bldg.
1-2-2 Mampukuji, Asao-ku
Kawasaki-City, Kanagawa 215
Japan
011-81-44-952-1322

B&C Microsystems, Inc.
750 North Pastoria Ave.
Sunnyvale, CA 94086
Tel: (408) 730-5511
Fax: (408) 730-5521
(Cards)

BP Microsystems, Inc.
10681 Haddington #190
Houston, TX 77043
(713) 461-9430
(800) 225-2102
(Components)

Bytek Corp.
543 NW 77th Street
Boca Raton, FL 33487
(407) 994-3520
(800) 523-1565
(Components)

APPLE INC.
EXHIBIT 1011 - PAGE 0397

380 Appendix C: Flash Memory Component and Card Programmers

Data 110 Corporation
10525 Willows Road NE
Redmond, W A 98073
(206) 881-6444
(800) 247-5700
(Components and cards)

Elan Systems, Inc.
365-700 Woodview Ave.
Morgan Hill, CA 95037
Tel: (800) 541-ELAN
Fax: (408) 778-2597
(Components and cards)

Logical Devices, Inc.
692 S. Military Trail
Deerfield Beach, FL 33442
(305) 428-6868
(800) 331-7766
(Components)

Minato Electronics Inc.
4105, Minami Yamada-cho
Kohoku-ku, Yokohama
Kanagawa 223
Japan
011-81-45-591-5611

Minato Electronics Inc.
3628 Madison Ave. #5
North Highlands, CA 95660
(916) 348-6066

Needham's Electronics
4539 Orange Grove Ave.
Sacramento, CA 95841
(916) 924-8037
(Components and cards)

SMS Mikrocomputer Systeme
GmbH
1m Grund 15
D-7988 Wangen
Germany
011-49-7-522-5018
(Components and cards)

SMS North America, Inc.
16522 NE 135th PI.
Redmond, W A 98052
(800) 722-4122
(Components and cards)

Sunrise Electronics, Inc.
524 South Vermont A venue
Glendora, CA 91740
(818) 914-1926
(Components)

Stag Microsystems, Inc.
1600 Wyatt Drive, Suite 3
Santa Clara, CA 94054
(408) 988-1118
(800) 227-8836
(Components and cards)

System General Corp.
3F, #1 Alley 8, Lane 45
Bao Shing Rd., Shin Dian
Taipei, Taiwan
Republic of China
011-886-2-917-3005
(Components and cards)

System General Corp.
510 S. Park Victoria Drive
Milpitas, CA 95035
(408) 263-6667
(800) 967-4776
(Components and cards)

APPLE INC.
EXHIBIT 1011 - PAGE 0398

Appendix C: Flash Memory Component and Card Programmers 381

Tribal Microsystems Inc.
44388 S. Grimmer Blvd.
Fremont, CA 94538
(510) 623-8859
(Components)

Xeltek
757 N. PastoriaAve.
Sunnyvale, CA 94086
(408) 524-1929
(Components)

APPLE INC.
EXHIBIT 1011 - PAGE 0399

Appendix D: Component and Card
Socket and Adapter Vendors

The following list is a representative summary of flash memory
component socket, component socket adapter and card connector
manufacturers. Contact them directly for information on their products.

Component Socket Vendors

AMP, Inc.
P.O. Box 3608
Harrisburg, PA 17105-3608
Tel: (800) 526-5105
Fax: (717) 986-7605

AngatInc.
P.O. Box 2510
Attleboro Falls, MA 02763
Tel: (508) 699-7646
Fax: (508) 699-0678

Bnrndy Corp.
51 Richards Avenue
Norwalk, CT 06856
Tel: (203) 838-4444
Fax: (203)852-8629

Methode Electronics, Inc.
7444 W. Wilson Ave.
Chicago, IL 60656
Tel: (708) 867-9600
Fax: (708) 867-9130

SamtecInc.
810 Progress Boulevard
P.O. Box 1147
New Albany, IN 47151-1147
Tel: (812) 944-6733
Fax (812) 948-5047

Texas Instrnments Corp.
34 Forest Street, Mail Station 14-
01
Attleboro, Mass 02073
Tel: (508) 699-5216

Yamaichi Electronics
1420 Koll Circle, Suite B
San Jose, CA 95112
Tel: (408) 452-0797

APPLE INC.
EXHIBIT 1011 - PAGE 0400

384 Appendix D: Component and Card Socket and Adapter Vendors

Component Socket Adapter
Vendors

Emulation Technology, Inc.
2344 Walsh Avenue, Building F
Santa Clara, CA 95051
Tel: (408) 982-0660

California Integration
Coordinators, Inc.
656 Main Street
Placerville, CA 95667
Tel: (916) 626-6168

Card Connector Vendors

AMP, Inc.
P.O. Box 3608
Harrisburg, PA 17105-3608
Tel: (800) 526-5105
Fax: (717) 986-7605

Amphenol
22952 Alcalde Drive
Suite 110
Laguna Hills, Ca. 92653
Tel: (714) 855-4454
Fax: (714) 855-9115

Berg Electronics
825 Old Trail Road
Etters, PA 17319-1769
Tel: (800) 237-2374

DDK
47873 Freemont Boulevard
Freemont, Ca. 94538
Tel: (415) 226-0400
Fax: (415) 226-0494

ELCOUSA
Huntingdon Industrial Park
Huntingdon, PA 16652
Tel: (814) 643-0700
Fax: (814) 643-0426

Foxconn International
930 West Maude Avenue
Sunnyvale, Ca. 94086
Tel: (408) 749-1228
Fax: (408)749-1266

APPLE INC.
EXHIBIT 1011 - PAGE 0401

Appendix D: Component and Card Socket and Adapter Vendors 385

Fujitsu Microelectronics, Inc.
3545 N. 1st St.
San Jose, CA 95134-1804
Tel: (800) 642-7616
Fax: (408) 428-0640

ITT Cannon
1851 E. Deere Ave.
Santa Ana, CA 92705
Tel: (714) 757-8337
Fax: (714) 757-8470

JAE Electronics
142 Technology Drive
Suite 100
Irvine, Ca. 9271
Tel: (800) 523-7278
Fax: (714)753-2699

Maxell Corp. of America
22-08 Route 208
Fair Lawn, NJ 07410
Tel: (201) 794-8382
Fax: (201) 794-3274

Methode Electronics, Inc.
7444 W. Wilson Ave.
Chicago, IL 60656
Tel: (708) 867-9600
Fax: (708) 867-9130

MolexInc.
2222 Wellington Court
Lisle, IL 60532
Tel: (708) 527-4522
Fax: (708) 969-1352

Pan International Inc.
9477 Archibald Ave.
Rancho Cucamonga, CA 91730
Tel: (909) 945-1365
Fax: (909)989-9935

Stocko Connectors
P.O. Box 187
Carlstadt, New Jersey 07072
Tel: (201) 933-4452
Fax: (201)933-4522

TelTec, Inc.
7890 12th Avenue South
Minneapolis, MN 55425
Tel: (612) 854-9177
Fax: (612) 854-8601

APPLE INC.
EXHIBIT 1011 - PAGE 0402

Appendix E: 12V Converters

The following list is a representative summary of flash memory 12V
program/erase voltage converter manufacturers. Contact them directly
for information on their products.

Linear Technology Corporation
1630 McCarthy Blvd.
Milpitas, CA 95035-7487
Tel: (408) 432-1900
Fax: (408) 432-0507

In Europe (U.K.):
111 Windmill Road
Sunbury
Middlesex TW16 7EF
U.K.
Tel:
Fax:

(44)(932) 765688
(44)(932) 781936

In Asia (Japan):
4F Ichihashi Bldg
1-8-4 Kudankita Chiyoda-ku
Tokyo 102 Japan
Tel: (81)(03) 32377891
Fax: (81)(03) 32378010

Maxim Integrated Products
120 San Gabriel Drive
Sunnyvale, CA 94086
Tel: (408)737-7600
Fax: (408) 737-7194

In Europe (U.K.):
Maxim Integrated Products (UK),
Ltd.
Tel: (44)(734) 845255

btAsia (Japan):
Maxim Japan Co., Ltd.
Tel: 81(03) 32326141

MicroLinear Corp.
2092 Concourse Drive
San Jose, CA 95131
Tel: (408) 433-5200
Fax: (408) 432-0295

APPLE INC.
EXHIBIT 1011 - PAGE 0403

388 Appendix E: 12V Converters

Motorola Semiconductor Inc.
616 West 24th Street
Tempe, AZ 85282
Tel: (800) 521-6274

In Europe (U.K):
Tel: (44)(296) 395252

In Asia (Japan):
Tel: (81)(3) 4403311

National Semiconductor Inc.
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052
Tel: (408) 721-5000

In Europe:
National Semiconductor (UK) Ltd.
The Maple, Kembrey Park
Swindon, Wiltshire SN26UT
U.K.
Tel: (07-93) 614141
Fax: (07-93) 697522

In Asia:
National Semiconductor Japan Ltd
Sanseido Bldg. 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel: (81)(3) 2997001
Fax: (81)(3) 2997000

Newport Components/Intl Power
International Power Sources
200 Butterfield Drive
Ashland, MA 01721
Tel: (508) 8817434
Fax: (508)8798669

In Europe:
Newport Components
4 Tanners Drive
Blakelands North
Milton Keynes MK14 5NA
Tel: (0908) 615232
Fax: (0908)617545

Power Trends, Inc.
1101 N. Raddant Road
Batavia,IL 60510
Tel: (708) 406-0900
Fax: (708) 406-0901

Shindengen Electric Co. LTD.
2649 Townsgate Road #200
Westlake Village, CA 91361
Tel: (800) 634-3654
Fax: (805) 373-3710

In Europe:
Shindengen Magnaquest U.K. Ltd.
Unit 13, River Road,
Barking Business Park,
33 River Road, Barking,
Essex 1G11 ODA
Tel: (44)(81) 5918703
Fax: (44)(81) 5918792

In Asia:
2-1,2-Chome Ohtemachi
Chiyoda-ku
Tokyo 100
Japan
Tel:
Fax:

(81)(3) 2794431
(81)(3) 2796478

APPLE INC.
EXHIBIT 1011 - PAGE 0404

Valor Electronics, Inc.
9715 Business Park Avenue
San Diego, CA 92131-1642
Tel: (619) 537-2500
Fax: (619)537-2525

XentekInc.
760 Shadowridge Drive
Vista, CA 92083
Tel: (619) 727-0940
Fax: (619) 727-8926

In Europe (Germany):
Xentek, Inc.
C/O Taiyo Yuden GMBH.
Obermaierstrasse 10,
D-8500 Nurnberg 10
Federal Republic of Germany
Tel: (49)(911) 3508400
Fax: (49)(911) 3508460

In Asia (Japan):
Xentek, Inc,
C/O Taiyo Yuden., Ltd.
6-16-20, Ueno, Taito-ku
Tokyo 110
Japan
Tel:
Fax:

(81)(3) 38376547
(81)(3) 38354752

Appendix E: 12V Converters 389

APPLE INC.
EXHIBIT 1011 - PAGE 0405

Appendix F: Flash Memory Card
Readers and Writers

The following is a representative list of flash memory card
reader/writers and vendors. The table is the result of a survey and should
serve mainly as a guide for product features and capabilities. Contact the
vendors directly for up to date information on their products.

Adtron Corp.
3050 South Country Club Dr.
Suite 24
Mesa, AZ 85210
Tel: (602) 926-9324
Fax: (602) 926-9359

Altec Computer Systeme GMBH
Vahrenwalder Str 20517
3000 Hannover, Germany
Tel: 49(577) 63088-36
Fax: 49(577) 63088-49

Computer Modules, Inc.
2350 A Walsh Ave,
Santa Clara, CA 95051
Tel: (408) 496-1881
Fax: (408) 496-1886

Data 110 Corp
10525 Willows Rd. NE.
Redmond, W A 98052
Tel: (206) 867-6886
Fax: (206) 881-6856

Databook Inc.
Tower Bldg. Terrace Hill
Ithaca, NY 14850
Tel: (607) 277-4817
Fax: (607) 273-8803

DIP Systems Ltd.
32 Frederick Sanger Rd.
Surrey Research Park
Guildford
Surrey GU2 5XN, UK
Tel: 44(0) 483-301555
Fax: 44(0) 483-301434

APPLE INC.
EXHIBIT 1011 - PAGE 0406

392 Appendix F: Flash Memory Card Readers and Writers

Elan Systems, Inc.
365-700 Woodview Ave.
Morgan Hill, CA 95037
Tel: (408) 778-7267
Fax: (408) 778-2597

FDK America, Inc.
3099 N. First St.
San Jose, CA 95134
Tel: (408) 456-7975

Greystone Peripherals, Inc.
130-A Knowles Dr.
Los Gatos, CA 95030
Tel: (408) 866-4739
Fax: (408) 866-8328

MSD3
365 Woodview Ave, #700
Morgan Hill, CA 95037
Tel: (408) 778-7267

Rhombus Technology, LTD.
The Common, Cranleigh
Surrey, GU6 8LU, UK
Tel: 44(483) 277916

SCM Microsystems
Fraunhoferstr. 11A
D-8033, Martinsried, Germany
Tel: 49(89) 8598702
Fax: 49(89)8595806

Stag Microsystems, Inc.
1600 Wyatt Dr.
Santa Clara, CA 95054
Tel: (408) 988-1118
Fax: (408) 988-1232

APPLE INC.
EXHIBIT 1011 - PAGE 0407

Appendix F: Flash Memory Card Readers and Writers 393

Rle spemawrt l-M'lray At:gamirg

PCMC ExCA Type of Inter Flash Disk Binary Binary Data PCMC
1Antr!M:d3

Relea Compati Chip Optimiz Emulat
Image Image Edito Tuple

Generat Copyin Edito

/llJlFOIJSDRR:C 20 I'D ~Ii~ I'D Yes Yes Yes Yes I'D
/llJlFOIJ SDl:R:C 20 I'D ~Ii~ I'D Yes Yes Yes Yes I'D
/llJlFOIJ9DBR:C 20 I'D ~Ii~ I'D Yes Yes Yes Yes I'D
/llJlFOIJ SDP-R:C 20 Yes Om.sl..q:jc31a: I'D Yes Yes Yes Yes I'D
/llJlFOIJ9DCR:C 20 Yes Om.sl..q:jc31a: I'D Yes Yes Yes Yes I'D

PIta: MD3-ICE to I'D Irts RD!C18J I'D Yes Yes Yes Yes Yes
Plta:MD3-P to I'D Irts RD!C18J I'D Yes Yes Yes Yes Yes
PIta:: MIl>S to I'D 1rt8 RD!C18J I'D Yes Yes Yes Yes Yes
QtaVOQrQ:ro 20 I'D ~Ii~ Yes Yes Yes Yes I'D I'D

DtbxklM3-anm 20 I'D Rqll..q:jc Yes Yes Yes Yes I'D I'D
DtbxklM).ffiJ 20 I'D MHro1 Yes Yes Yes Yes I'D I'D
DtbxklM-1«l 20 N::ie1 rn:m:e Yes Yes Yes Yes I'D I'D

BalJ101 20'201 Yes i!ID:DS.. I'D Yes Yes Yes Yes Yes
BalJ102 20'201 Yes i!ID:DS.. I'D Yes Yes Yes Yes Yes
t-.m3KXP 20'201 Yes rn:m:e I'D Yes Yes Yes Yes Yes
t-.m3ICFV 20'201 Yes rn:m:e I'D Yes Yes Yes Yes Yes
t-.m39:S 20'201 I'D F\qJiffiIY I'D Yes Yes Yes Yes Yes
s:::MM:J:E to I'D F\qJiEtay I'D Yes Yes Yes Yes I'D
s:::MMInB to I'D BgliEtay I'D Yes Yes Yes Yes I'D
s:::MMrn6'D to I'D F\qJiffiIY I'D Yes Yes Yes Yes I'D
s:::MMI£.ICE to I'D F\qJiffiIY I'D Yes Yes Yes Yes I'D
s:::MEMDP to I'D F\qJiffiIY I'D Yes Yes Yes Yes I'D
s:::M EMDffi to I'D F\qJiEtay I'D Yes Yes Yes Yes I'D
s:::MMvtDF 20 Yes i!ID:DS.. I'D Yes Yes Yes Yes I'D
s:::M MvtDFD 20 Yes I!ID:DS.. I'D Yes Yes Yes Yes I'D
s:::MMvtDS 20 Yes !ImD9... I'D Yes Yes Yes Yes I'D

s:::MMvtDID 20 Yes i!ID:DS.. I'D Yes Yes Yes Yes I'D
s:::MMvtDV 20 Yes Va:Bn\Gffi I'D Yes Yes Yes Yes I'D

APPLE INC.
EXHIBIT 1011 - PAGE 0408

394 Appendix F: Flash Memory Card Readers and Writers

Lear hucalm 9f.;tEJll ~edicr

Numbe
Extern Internal Error Detection! Write Card Card Card

Hot
Boot

VEn::h1Mxi:l of Interfa Interface Correellon Metho Prote Busy Detee Chang
Inserllo

Capabillt Socket Remov

I>DJRlII ElDR-PCC 1 Saia 16-8t a=cTra-SEJ Yes Yes Yes Yes Yes wf!>j,aa:
I>DJRlII SDL-R::C 1 ParalEl 16-8t a=cTra-SEJ Yes Yes Yes Yes Yes wf!>j,aa:
I>DJRlII SDB-R::C 1 &l:it 1&<\ 16-8t a=cTra-SEJ Yes Yes Yes Yes Yes wf!>j,aa:
I>DJRlII gn.p.R::C 1 fD.104 16-8t a=cTra-SEJ Yes Yes Yes Yes Yes wf!>j,aa:
I>DJRlII EI:OC-R::C 2 1&1:it 1&<\ 16-8t a=cTra-SEJ Yes Yes Yes Yes Yes Wf!>j,aa:
... tec MIl3-ICE 1 ICE "'Ise's A'e-lrTI'Ql f'/W Yes Yes Yes Yes No
... tecMIl3-P 1 ParaIEl ... Ise's A'e-111l@ f'/W Yes Yes Yes Yes No
... tecMIl3-S 1 Saia ... Ise's A'e-lrTI'Ql f'/W Yes Yes Yes Yes No
Ilia va Qr1:bu 1 ParElIEl N::re No Yes Yes Yes Yes No

1liEb:x:klM3-= 1 &l:it 1&<\ SN a=c& Chd<am Yes Yes Yes Yes YeS No
1liEb:x:k lM).SOO 1 ParElIEl HN a=c& Chd<am Yes Yes Yes Yes Yes No
lliEb:x:klM-140 2 1&1:itl&<\ HN a=c& Chd<am Yes Yes Yes Yes Yes Yes
8alJ101 1 8'1&1:itl&<\ Sitvaea=c No Yes Yes Yes Yes No
8alJ1a! 1 8'1&1:itl&<\ Sitvaea=c No Yes Yes Yes Yes No

MSIllICXF 2 1&1:itl&<\ HWa=c& Chd<am Yes Yes Yes Yes Yes No

MSIllKW 2 1&1:it 1&<\ HWa=c& Chd<am Yes Yes Yes Yes Yes No
MSIll3:S 2 8'1&1:itl&<\ HWa=c Yes Yes Yes Yes Yes Yes
SCMMll'! 1 8'1&1:it 1&<\ ria Yes Yes No No No No
SCMMll'!-B 1 8'1&1:i11&<\ ria Yes Yes No No No Yes
SCMMI2-BFD 2 8'1 &I:i I 1&<\ ria Yes Yes No No No Yes
SCM M:.tl!-ICE 1 8'1&1:it 1&<\ ria Yes Yes No No No No

SCMEMDP 1 ParElIEl ria Yes Yes No No No No
SCMEMDffi 1 SaiEi ria Yes Yes No No No No
SCMM-.O}F 2 1&1:it 1&<\ ria Yes Yes Yes Yes Yes No
SCMM-.O}FD 2 1&1:itl&<\ ria Yes Yes Yes Yes Yes Yes
SCMM-.O}S 3 1&1:it 1&<\ ria Yes Yes Yes Yes Yes No
SCMM-.O}SD 3 1&1:itl&<\ ria Yes Yes Yes Yes Yes Yes
SCMM-.O}V 1 1&1:it 1&<\ ria Yes Yes Yes Yes Yes Yes

APPLE INC.
EXHIBIT 1011 - PAGE 0409

Appendix G: Flash File Systems

The following list is a representative summary of flash memory
file system vendors. Contact them directly for information on their
products.

Datalight
307 N. Olympic
Suite 201
Arlington, W A 98223
Tel: (800) 221-6630
(Disk Emulator)

M-Systems
200 Broadhollow Rd., Suite 207
Melville, NY 11747
Tel: (516) 424-5100
(Disk Emulator)

Microsoft Corp.
One Microsoft Way
Redmond, W A 98052-6399
Tel: 206-936-3109
(Flash Optimized File System)

Saville Associates
4425 Esta Lane
Soquel, CA 95073
Tel: (408) 479-7199
(Flash Optimized File System)

SCM Microsystem
Fraunhoferstr. 11A
82 152 Martinsried, Germany
Tel: 49-89-859-8702
Fax: 49-89-859-5806
(Disk Emulator)

APPLE INC.
EXHIBIT 1011 - PAGE 0410

Appendix H: PCMCIA and Software
Vendors

The following list is a representative summary of PCMCIA software
vendors. Contact them directly for information on their products.

Award Software Inc.
130 Knowles Drive
Los Gatos, CA 95030
Tel: (408) 370-7979
Fax: Tel: (408) 370-3399

DIP Research Ltd.
2 Frederick Sanger Rd.
Surrey Research Park
Guildford, Surrey, Gu2 5XN,
England UK
Tel: 44-04-8330-1555
Fax 44-04-8330-1434

PCMCIA
10309 E. Duane Ave.
Sunnyvale, CA 94086
Tel: (408) 720-0107

Phoenix Technologies Ltd.
40 Airport Pkwy.
San Jose, CA 95110
Tel: (408) 452-6833
Fax: (408) 452-1985

SystemSoft Corp.
313 Speen Street
Natick, MA 01760
Tel: (508) 651-0088
Fax: (508) 651-8188

Vadem
1885 Lundy Avenue, #201
San Jose, CA 95131
Tel: (408) 943-9301
Fax: (408) 943-9735

Ventura Micro, Inc.
200 South A Street
Suite 208
Oxnard, CA 93030-5717
Tel: (408) 476-1910
Fax: (408) 476-4563

APPLE INC.
EXHIBIT 1011 - PAGE 0411

Appendix I: PCMCIA Compliance
Testing Facilities

Ingram
1600 E. St. Andrew Place
Santa Ana, CA 92799
Tel: (714) 566-1000

Synova Systems
1977 Otoble Ave., Suite B-207
San Jose, CA 95131
Tel: (408) 428-0310
Fax: (408) 436-0379
(This company develops tools for
PCMCIA products)

Veritest Inc.
3420 Ocean Park Blvd.
Suite 2030
Santa Monica, CA 90405
Tel: (310) 450-0062
Fax: (310) 399-1760

APPLE INC.
EXHIBIT 1011 - PAGE 0412

Appendix J: PCMCIA Card Types

(With approximate card dimensions)

LENGTH WIDTH (mm) HEIGHT
(mm) (mm)

TYPE 1 85.6 54.0 3.3

TYPE 2 85.6 54.0 5.0

TYPE3 85.6 54.0 10.5

APPLE INC.
EXHIBIT 1011 - PAGE 0413

Appendix K: PCMCIA Controller
Register Functions and
Vendors

The following tables demonstrate the compatibility between three
leading PCMCIA-Interface controller chips and provide a summarized
format that will help in your programming efforts. Consult the
corresponding data sheets for more information.

Registers Supported by Intel's 82365SL, Cirrus Logic's CL-PD67XX and Vadem's
VG-465

REGISTER FUNCTION SOCKET
NAME and OFFSET

CATEGORY (AlB)

GENERAL SETUP REGISTERS

Identification and Determines type of PC cards supported and identifies OOH/40H
Revision PCIC version.

Interface Status Provides current status of PC card interface signals 01H141H

Power and Controls the PC card power and resetting of the PCIC 02H142H
Resetdrv Control registers

Card Status Contains the status of the sources for the card status 04H/44H
Change change interrupts

Address Window Controls enabling of memory and I/O mapping 06H146H
Enable windows to PC card memory or 1/0 space

INTERRUPT REGISTERS

Interrupt and Controls the interrupt steering for the PC card 1/0 03H/43H
General Control interrupt as well as general control of the PCIC

Card Slatus Controls interrupt steering of the card status change 05H145H
Change Interrupt interrupt and card status change interrupt enables
Configuration

APPLE INC.
EXHIBIT 1011 - PAGE 0414

404 Appendix K: PCMCIA Controller Register Functions and Vendors

VO REGISTERS

I/O Control Contains the I/O configuration for I/O windows 0 and 1 07H/47H
based upon information read from the card's CIS

1/0 Addr. 0 Start Low order address bits indicating start address of I/O 08H/48H
Low Byte address window 0

I/O Addr. 0 Start High order address bits indicating start address of I/O 09H/49H
High Byte address window 0

I/O Addr. 0 Stop Low order address bits indicating stop address of I/O OAH/4AH
Low Byte address window 0

I/O Addr. 0 Stop High order address bits indicating stop address of I/O OBH/4BH
High Byte address window 0

I/O Addr. 1 Start Low order address bits indicating start address of I/O OCHl4CH
Low Byte address window 1

I/O Addr. 1 Start High order address bits indicating start address of I/O ODH/4DH
High Byte address window 1

I/O Addr. 1 Stop Low order address bits indicating stop address of I/O OEH/4EH
Low Byte address window 1

I/O Addr. 1 Stop High order address bits Indicating stop address of I/O OFHl4FH
High Byte address window 1

MEMORY REGISTERS
System Memory Low order address bits indicating start address of 10H/50H
Addr. 0 Mapping corresponding system memory address mapping
Start Low Bvte window

System Memory High order address bits indicating start address 11H/51H
Addr. 0 Mapping of corresponding system memory address
Start Hiah Bvte maDDina window
System Memory Low order address bits indicating stop address 12H/52H
Addr. 0 Mapping of corresponding system memory address
StoD Low BYte maDPino window
System Memory High order address bits indicating stop address 13H/53H
Addr. 0 Mapping of corresponding system memory address
StoD Hioh Bvte mappino window
Card Memory Low order address bits added to system 14H/54H
Offset Addr. 0 address bits A 19-A 12 to generate memory
Low Bvte address for PC card
Card Memory High order address bits added to system 15H/55H
Offset Addr. 0 address bits A23-A20 to generate memory
Hiah Bvte address for PC card
System Memory Low order address bits indicating start address 18H/58H
Addr. 1 Mapping of corresponding system memory address
Start Low Bvte maDDino window
System Memory High order address bits indicating start address 19H/59H
Addr. 1 Mapping 9f corresponding system memory address
Start Hiah Bvte maDDina window
System Memory Low order address bits indicating stop address 1AH/5AH
Addr. 1 Mapping of corresponding system memory address
StoD Low BYte mappino window

APPLE INC.
EXHIBIT 1011 - PAGE 0415

Appendix K: PCMCIA Controller Register Functions and Vendors 405

System Memory High order address bits indicating stop address 1BH/5BH
Addr. 1 Mapping of corresponding system memory address
Sto~ HIgh Byte mapping window
Card Memory Low order address bits added to system 1CH/5CH
Offset Addr. 1 address bits A 19-A 12 to generate memory
Low Byte address for PC card
Card Memory High order address bits added to system 1DH/5DH
Offset Addr. 1 address bits A23-A20 to generate memory
High ~te address for PC card
System Memory Low order address bits indicating start address 20H/60H
Addr. 2 Mapping of corresponding system memory address
Start Low Byte mapping window
System Memory High order address bits indicating start address 21 H/61 H
Addr. 2 Mapping of corresponding system memory address
Start High Byte mapping window
System Memory Low order address bits indicating stop address 22H/62H
Addr. 2 Mapping of corresponding system memory address
Stop Low Byte mapping window
System Memory High order address bits indicating stop address 23H/63H
Addr. 2 Mapping of corresponding system memory address
Stop High Byte mapping window
Card Memory Low order address bits added to system 24H/64H
Offset Addr. 2 address bits A19-A12 to generate memory
Low Byte address for PC card
Card Memory High order address bits added to system 25H/65H
Offset Addr. 2 address bits A23-A20 to generate memory
High B~te address for PC card
System Memory Low order address bits indicating start address 28H/68H
Addr. 3 Mapping of corresponding system memory address
Start Low Byte mapping window
System Memory High order address bits indicating start address 29H/69H
Addr. 3 Mapping of corresponding system memory address
Start High Byte mapping window
System Memory Low order address bits indicating stop address 2AH/6AH
Addr. 3 Mapping of corresponding system memory address
Sto~ Low Byte mapping window
System Memory High order address bits indicating stop address 2BH/6BH
Addr. 3 Mapping of corresponding system memory address
Stop High Byte mapping window
Card Memory Low order address bits added to system 2CH/6CH
Offset Addr. 3 address bits A19-A12 to generate memory
Low Byte address for PC card
Card Memory High order address bits added to system 2DH/6DH
Offset Addr. 3 address bits A23-A20 to generate memory
High Byte address for PC card
System Memory Low order address bits indicating start address 30H170H
Addr. 4 Mapping of corresponding system memory address
Start Low Byte mapping window
System Memory High order address bits indicating start address 31HI71H
Addr. 4 Mapping of corresponding system memory address
Start High Byte mapping window

APPLE INC.
EXHIBIT 1011 - PAGE 0416

406 Appendix K: PCMCIA Controller Register Functions and Vendors

System Memory Low order address bits indicating stop address 32H172H
Addr. 4 Mapping of corresponding system memory address
Stop Low Byte mapping window
System Memory High order address bits indicating stop address 33H173H
Addr. 4 Mapping of corresponding system memory address
Stop High Byte mapping window
Card Memory Low order address bits added to system 34H174H
Offset Addr. 4 address bits A19-A12 to generate memory
Low Byte address for PC card
Card Memory High order address bits added to system 35H175H
Offset Addr. 4 address bits A23-A20 to generate memory
Hiqh Byte address for PC card

Additional Registers Supported by ~Irrus Logic's CL-PD67XX

REGISTER FUNCTION SOCKET
NAME and OFFSET

CATEGORY

EXTENSION REGISTERS

Misc Control 1 VCC control and status, IRQ function, speaker enable 16H

FIFO Control Controls FIFO operation and reports FIFO status 17H

Misc Control 2 Controls clock freq, controls LED, IRQ15 control 1EH

Chip Information Identifies controller revision and identification 1FH

ATA Control ATA mode select, speaker or LED input select 26H

TIMING REGISTERS

Setup Timing 0 Controls setup timing for addresses and control signals 3AH
before asserting read or write signals

Command Timing 0 Indicates length of read or write control signals 3BH

Recovery Timing 0 Indicates amount of hold time given to card for 3CH
addresses and control before deasserting read or write
signals

Setup Timing 1 Controls setup timing for addresses and control signals 3DH
before asserting read or write signals

Command Timing 1 Indicates length of read or write control signals 3EH

Recovery Timing 1 Indicates amount of hold time given to card for 3FH
addresses and control before deasserting read or write
signals

APPLE INC.
EXHIBIT 1011 - PAGE 0417

Appendix K: PCMCIA Controller Register Functions and Vendors 407

Additional Registers Supported by Vadem's VG·465

REGISTER FUNCTION SOCKET
NAME and OFFSET

CATEGORY

Control Controls compatibility, enables INPACK, selects IREO 38H
level, enables PCMCIA interface, controls memory
timing

Timer Controls activity timer 39H

Mouse Enables mouse interface, mouse 1/0 ports and 3AH
interrupt levels

GPIO Configuration Controls 3 GPIO lines 3BH

Programmable Selects base address for programmable chip select 3CHl3DH
Chip Select output.

Programmable Controls the programmable chip select functions 3EH
Chip Select
Configuration

ATA Sets up configuration for ATA drive. 3FH

The following list is a representative summary of the manufacturers of
PCMCIA-interface controller chips. Due to the rapid change in product
line items, it is best to contact these companies directly for product
specific information.

Cirrus Logic, Inc.
3100 W. Warren Ave,
Fremont, CA 94538
Tel: (510) 623-8300

Databook Inc.
Tower Bldg. Terrace Hill
Ithaca, NY 14850
Tel: (607) 277-4817
Fax: (607) 273-8803

Intel Corp.
Literature Center
Box 7641
Mt. Prospect, IL 60056
(800) 548-4725

Texas Instruments Inc.
Box 172228
Denver, CO 80217
(800) 477-8924

Vadem
1885 Lundy AVe., #210
San Jose, CA 95131
Tel: (408) 943-9301

APPLE INC.
EXHIBIT 1011 - PAGE 0418

Appendix L: INT 21 H Standard Disk
Related Functions

The functions listed below are mainly for pointing out the flexibility of a
flash file system using the redirector interface that operates through the
INT2IR functions.

Function Function Name Usage
Number

3CH Create Handle Creates file for subsequent I/O; erases existing file, if any

3DH Open Handle Readies file for I/O; assigns handle number

3EH Close Handle Closes handle; frees handle pointer

3FH Read Handle Reads from file at current pointer location

40H Write Handle Writes to file at current pointer location

41H Delete Handle Deletes file

42H Move File Pointer Moves location of pointer in file

43H Get/Set File Attributes Changes or retrieves attribute byte for file

45H Duplicate File Handle Assigns additional handle number to existing handle

46H Force Duplicate File Handle Forces existing handle to refer to file that has a different handle

56H Rename File Renames file

57H Get/Set File Dateffime Changes or retrieves last update time and date associated with file

5AH Create Temporary File Creates file with unique name for subsequent I/O

5BH Create New File Creates file for subsequent I/O only if it does not already exist

67H Set Handle Count Allows the specification of more than 20 handles

68H Commit File Insures file is written to disk

APPLE INC.
EXHIBIT 1011 - PAGE 0419

Appendix M: Sample. Flash File System
Benchmarking Code

/**
Program: Snip

**/
#include <stdio.h>
#include <alloc.h>
#include <stdlib.h>

long
long

timcstart=O;
timcfinish=O;

long far *the_time;
long
long
float long

FILE

void main(void)

Lctr;
repeat;
total_time;

*log;

void starUime(void);
void stop_time(void);

II logfile structure

char *c_buff; II temporary input buffer

= (char *)malloc(15);11 and allocate memory

(long far *)Ox046C; II read BIOS timer chip

system("cls");

APPLE INC.
EXHIBIT 1011 - PAGE 0420

412 Appendix M: Sample Flash File System Benchmarking Code

printf("\nThis program copies files from one drive to another. Timing is
kept in c:log.out.");

printf("\nThis may take some time ... ");
printf("\nJust hit ctrl-C to stop me anytime.\n");
printf("\nHow many times to go through the run?\n");
gets(c_buff);

repeat=atol(c_buff); II convert input string to
II a number

if ((log=fopen(lc:\\log.Out"," a+"»==NULL) II open log file and

{
printf("\nBad log file");
exit(O);
}

fprintf(log,"\n\n*** Recorded Times ***");

for (Lctr=O; Lctr < repeat; i_ctr++)
{
starUimeO;
system("copy fileO.dat e:");
system("copy file1.dat e:");
system(lcopye:\\fileO.dat");
system(lcopye:\\fileO.dat");
system(lcopye:\\fileO.dat");
system(lcopye:\\fileO.dat");
system("copy file2.dat e:");
system("copy file3.dat e:");
stop_timeO;
}
fclose(log);

void starUime(void)
{
time_start=*the_time;
}

II exit on errors

IIOr use
Ilany system
Ilcommands
Ilyou want
lIto plug
Ilin here.

II close file on exit

APPLE INC.
EXHIBIT 1011 - PAGE 0421

Appendix M: Sample Flash File System Benchmarking Code 413

void stop_time(void)
{
time _ fmish=*the _time;
if ((time _finish-time _start»O)

{

}

total_time = float((time Jmish-time _ start)/18 .2);
fprintf(log,"\n%ld)Time = %.4lfseconds.", i_ctr, total_time);
printf("\n%ld)Total Time = %.4lf seconds.\n", i_ctr,
total_time);
}

APPLE INC.
EXHIBIT 1011 - PAGE 0422

Index

27COIO, 134
28FOOIBX, 48
28F008SA, 41
28FOIO, 139
28F020, 139
28F256A, 139
28F512, 139

3.3V, 125

82365SL, 220, 283

abort programming, 151
aborting internal automation, 168
access time, 4, 92
adapter characteristics, 294, 332
adapter characteristics table, 310
address decode, 75, 99, 317
address inputs, 194
address latch, 76
address space, 350
advanced client services, 280
Advanced Micro Devices, 25, 163
algorithm, 30
aliasing, 195
alterability, 5
applications, 2, II
architecture, 2
ASCIIZ, 237, 341
Atmel, 32, 168
attribute memory, 193,350,356
automated algorithms, 149, 162
automated block erase, 156
automated program/erase, 183

background erase, 14
bar-code scanner, 14
basic compatibility layer, 350

battery, 6
battery life, 19
battery voltage detect, 211
benchmark, 265
bidirectional bus interface, 130
BIOS, 16, 70, 99, 171,237,275,286, 348,
363
bipolar, 108
bit-alterability, 13
bitlines, 25, 115
block, 24, 33, 36, 83
block erase, 29,69,84,96,115,150,168
block erase algorithm, 156
block size, 29
Boot Block, 69, 82, 110,131
boot drive, 239
bootstrap, 235
buffer, 92, 130, 221
buffering, 126, 222, 224
bulk memory services, 280
bulk-erase, 29, 115, 140, 150, 173
bus contention, 95
bus interface, 75
bus transceiver, 76, 95
bus width, 358
busy, 84
bypass capacitor, 112, 122, 124
byte erase, 33, 96
byte program, 96

caching, 98
capacitive loading, 90, 92, 99
capacitors, 122
card configuration, 361
card detect pins, 205
card enable, 198

APPLE INC.
EXHIBIT 1011 - PAGE 0423

416 Index

card information structure, 193, 210, 321,
350
card insertion, 338, 347
card insertion/removal, 222
card interface, 349
card offset, 315
card physical, 349
card removal, 338
card reset, 206
card services, 275, 280, 363, 368
card status, 336, 346
card voltage, 209
CARDRV.EXE, 280
Catalyst Semiconductor, 32
CE,78
cell,4
cell architecture, 1, 6
cell density, 6
cell erase, 5
cell failure, 43
cell redundancy, 5
cell reliability, 5
cell size, 24
cell transistor, 4, 5
cellular phone, 18
Cerquad package, 49
chaining, 233
character device, 235
chip enable, 75, 94, 99, 136
chip erase algorithm, 143
chip select, 75, 78, 94
CIS, 321, 350
CL-PD6720, 224
clean-up, 249, 259
clean-up efficiency, 267
client services, 280
client utilities, 280, 365
cluster size, 233
C~OS, 108, 123, 126, 131
command interface, 134
common memory, 193,350,356
comparator, 102
component cost, 24
component management registers, 206
CONFIG.SYS, 286
configuration information, 298
configuration option register, 207, 340
configuration tuple, 361
cost, 2,4
CPU, 4
current draw, 24

current limiting, 129
current specifications, 106
current spike, 116, 123
cycle, 24, 32, 41
cycle leveling, 263, 268
cycle management, 43
cycle minimization, 43
cycling, 38, 40, 42, 43, 143
cycling delta, 265

data accumulation, 12, 14
data bus, 76, 94, 99, 196
data bus bandwidth, 76
data enable, 77
tdata latching, 212
data organization layer, 350
data path size, 320
data polling, 167
data verification, 138
data/lookup tables, 14
Databook, 224, 344
DB86082, 221
DC-DC converter, 208
DDE, 241, 247
debugging, 141
decoupling capacitor, 112, 122
deep powerdown, 82, 131
deep powerdown mode, 110, 114
defragmenting, 251
DEN,77
device addresses, 25
device delays, 99
device density, 5
device driver, 233
device geometry, 358
device ill, 356
device information tuple, 316
device package, 28
device speed code, 316
device temperature, 32
die size, 43
digital cellular phone, 18
DIP package, 46
direct-read, 5
directory, 231, 239
dirty sectors, 249
disk drive, 5, 229
disk drive emulator, 66, 239
disk drive template, 244
disk imaging, 243
domains, 229

APPLE INC.
EXHIBIT 1011 - PAGE 0424

double-word,76
drain, 25
DRAM, 2, 4, 5, 98
driver installation, 369

EDAC,36
EEPROM, 3, 5, 13,23,32,43, 106, 163
electric field,S, 27, 29, 40, 42, 113
electron charge,S
electron mobility, 41
electron trapup, 41, 43
embedded algorithms, 163
embedded code, 16
energy consumption, 114, 131
EPROM, 2, 5,16,25,48,49,71
EPROM programming, 134
erase, 27, 30, 36, 39,41,42,43
erase block size, 116,358
erase confirm, 145
erase current, 116
erase mode, 112, 115
erase performance, 33
erase pulse, 116
erase setup, 145
erase suspend, 71
erase suspend/resume, 160
erase time, 32, 170
erase verify, 30, 146,181
erase voltage, 32, 79, 113
erased condition, 25
error detection, 214
error detection and correction,S, 36, 43,
347
ESD protection, 127
ETOX, 2, 25, 32, 43, 106
ExCA,207, 220,277,285,287,298,348
Exchangeable Card Architecture, 207
execute-in-place, 228, 304
extended cycling, 43

failure mechanisms, 40,41
failure rate, 39, 40, 41, 42
failure recovery, 269
fanout, 108
FAT,231,239,244,258
FCB,237
FDD,20
feature comparison, 12
field size, 361
file allocation table, 231
file control blocks, 237

file storage, 43
file system, 42
file usage, 239
firmware, 16
FIT, 39,41
flash card driver, 277, 367
flash drive, 66

Index 417

flash file system, 227, 274, 279, 368
flash memory card, 13, 20, 57, 62
flash memory sources, 172
flash optimized file system, 240
flash specifications, 86
FlashFile, 82, 11 0, 131
flight recorders, 13
floating gate, 25, 29, 32,40,79, 113, 115
foreground clean-up, 262
forward-biasing, 129
Fowler-Nordheim tunneling, 28, 33, 36
FSSD,227
Fujitsu, 25, 214
full erase, 116

garbage, 250
GetAdapter, 302
GetAdapterCount, 289
GetPage, 312
GetSocket, 331
GetSSInfo, 290, 342, 344
GetStatus, 340, 345, 346
GetVendorInfo, 343
GetWindow, 309
glitch detect, 78
glue-logic, 273

handheld instrumentation, 14
hardware interfacing, 73, 187
hardware interleaving, 99
hardware interrupt, 170
HCT,126
HDD,15
high-speed specifications, 90
Hitachi, 25, 168
hold time, 96
hot electron injection, 27, 34
hot insertion, 62

I/O access, 212
I/O mapping, 214, 293
I/O space, 304
IDE,66,228

APPLE INC.
EXHIBIT 1011 - PAGE 0425

418 Index

identification and revision register, 305
IDT,130
in-system write, 71
indirect indexing, 283
input voltage specifications, 126
InquireAdapter, 292, 299, 303, 310, 325,
330,334
InquireSocket, 333, 335, 336
InquireWindow, 304, 318, 319, 321, 322,
325,326,357
installable device driver, 233
INT 13H, 235, 243
INT 1AH, 285
INT 21H, 237, 253, 265
INT 25H, 236, 243
INT2FH,253
integrated converter, 122
Integrated Device Technology Corporation,
130
integrated drive, 228
integration, 133
Intel, 25, 149, 189
interface controller, 220, 283
interface logic, 102
interface status register, 283
interleaving, 14,95,99, 103,359
internal automation, 82, lSI, 163
internal voltage,S, 43
internal voltage conversion, 113
interrupt filter, 206, 242
interrupt latency, 203
interrupt request, 200
interrupts, 141,225,299,333,345
IO.SYS, 233
ISA,330

J-Lead,49
JEDEC, 69, 91
JEDEC identifier, 360
JElDA, 62,188
JIT,70
just-in-time, 70

laser printer, 15
LCC package, 49
leakage current, 114
lifetime, 24
linear mapped memory, 214
Linear Technology Corporation, 118
linked list, 258
linked list structures, 43

lithographies, 28
locality, 100
lockou t voltage, 78

M-Systems,247
magnetic mass storage, 3, 5, 6, 19
manufacturability, 2
manufacturing, 24, 42
market share, 24
mass file storage, 19
MAX705,81
Maxim Integrated Products, 119
MDT4P05,80
medical instrumentation, 12
memory banks, 359
memory card, 62, 187
memory card offset, 328
memory characterisitcs table, 305
memory comparison, 6
memory density, 13
memory lifetime,S
memory mapping, 212, 214
memory output, 25
memory space, 304
memory technology driver, 277, 281
metaforruat, 349
microcontroller, 219
Microsoft, 252, 253
Mitsubishi, 25
mixed-voltage bus, 130
mixed-voltage design, 125
modular solutions, 122
monolithic file system, 279
MOSFET,130
Motorola, 77,80,118
MS Flash File System, 252
MS-FLASH.SYS, 279
MTBF, 38, 41, 42
MTD,277
multiple block erase, 168
multiplex interrupt, 253
multiplexing, 76

NAND, 23, 36, 43,106,168
NEC, 25,168
negative gate erase, 29
non-destructive failure, 41
nonvolatile, 4, 6
nonvolatility, 16,23
NOR, 23, 26, 30, 80, 106

APPLE INC.
EXHIBIT 1011 - PAGE 0426

OE, 77, 78
on-board update, 69
on-chip buffer, 33
open-drain output, 130
operating range, 90
operating voltage, 106
OTP-ROM,49
output buffer, 99, 109
output bus, 95
output drive, 92
output enable, 76, 199
output enable time, 92
output loading, 99
overerase, 29
oxide, 25, 32
oxide breakdown, 5, 40
oxide thickness, 33, 35'

packaging, 45
page, 102
page enable, 326
page programming, 168
paged memory mapping, 217
paging, 222
parallel erase, 175, 179
parallel programming, 175, 176
PBX switcher, 14
PC card interface controller, 220
PCIC,283,298,305,323
PCMCIA, 20, 62, 187, 210, 211, 219, 220,
223,277,285,287,305,348,349,354,363
PCMCIA card types, 63
PCMCIA-ATA, 66, 228
performance, 14, 102,265

program/erase, 23
read,23

Performance Semiconductor, 130
periphery logic, 24, 36
PGM,136
pinout, 73
platter seek, 5
PLCC,49
point of sale terminals, 13
portability, 13
portable computer, 20
power, 5, 14
power consumption, 80, 82, 105, 113, 130,
132
power management, 108,294,296
power management table, 334
power management techniques, 130

power profile, 113
power transitions, 83
powerdown, 82, 110
powerdown mode, 114
POWER GOOD, 84
pre-condition, 143
preprogramming, 30, 143
pricing, 2
processor loading, 76
production volume, 1
program, 41, 42, 43, 96
program mode, 111, 115
program setup, 140
program verification, 151

Index 419

program verify, 115, 140, 141, 142
program voltage, 79, 112, 113
program/erase performance, 23
program/erase voltage, 138
programming, 27
programming algorithm, 138
programming current, 115
programming voltage, 207
PROM,4
PROM programmer, 70
PROM programming, 68
protected mode, 344
PSOP,51
pulse count, 140
PWD,69

RAM, 3,77
RAM interface, 71
RAMDRIVE, 228
ramp delay, 132
READ,78
read, 76, 103, 114
read access, 99, 101
read access time, 36, 99
read array mode, 161
read block size, 358
read current, 108
read current profile, 108
read cycle time, 93
read delay, 94, 102
read mode, 108
read performance, 23, 43, 92
read status register, 160
read timing, 93
read/write, 77
readylbusy, 84, 200
real-time clock, 141

APPLE INC.
EXHIBIT 1011 - PAGE 0427

420 Index

reclamation, 247
redirector, 253
redundancy,5,43
refresh,6
REG,193
register-based memory mapping, 212
reliability, 32, 35, 40, 99, 113, 117, 122,
128,268
remote sensing, 14
removability,291
RESET, 81, 206
reset, 82, 169, 173, 340
resource management, 280, 364
reverse pinout, 57
rewrite,S, 33
ROM, 3, 16,77
ROM drive, 243
ROM scan, 286
root directory, 244
rotation delay,S
RP,69
RY/BY, 82

Samsung,32
saturation, 108
SCM,247
sector, 229, 239, 246
select gate, 25, 36
sensing instrumentation, 14
Series 1 Card, 139, 188
Series 2 Card, 200, 203, 206
serpentining, 57
SetAdapter, 296, 303, 309, 333, 345, 347
SetPage, 313,315,329
SetSocket, 301, 337, 347
setup command, 151
setup time, 95
SetWindow, 298, 314, 323, 326
SGS-Thompson,25
shadowing, 98
shock tolerance, 13
signal states, 91
silicon, 42
silicon oxide, 25
SIMM package, 59
socket characteristics, 332
socket configuration, 337
socket services, 220, 222, 281, 284, 348
socket windows, 293
software algorithms, 43
software delay, 141

software delay loop, 81
software interface, 174
software metaformat, 349
software polling, 170
SOJ package, 54
solid-state drive, 227
SOP package, 54
source, 25, 29
spare block, 249
specifications, 90, 106
SRAM, 4,5,13, 19,98
standby, 114, 131
standby mode, 109
state machine, 151, 161
status change interrupt, 282
status register, 84, 151, 153, 158, 160, 169
stop timers, 141, 146
substrate, 25, 40
SunDisk,32
supply voltage, 106
suspend/resume, 160
switching, 108
system cost, 99
system performance, 98
system reset, 82

TCIC-2IN, 221, 224
temperature tolerance, 13
test conditions, 108
testing, 349
Texas Instruments, 130
timing parameters, 85
toggle bit, 167
Toshiba,25,36,168
transceiver, 76, 92, 95
transistor, 4
transistor gate, 115
transistor source, 25, 115
transition points, 90
tri-state, 130
TSOP package, 48, 54, 69
TTL, 108, 125
tunneling, 28
tuple, 316, 352, 361
tuple byte, 354
tuple chain, 354
tuple code, 353
tuple field, 354
tuple link, 353
tuple list, 353, 354

APPLE INC.
EXHIBIT 1011 - PAGE 0428

ultraviolet light, 28
update, 68, 170
update methods, 45
update performance, 113
updateability, 6, 23
UV,28

Vee-only, 106
VDlSK,228
vendor release, 342
verify, 143, 178
verify voltage, 113
virtual addressing, 249
voltage conversion, 113, 118
voltage converter, 79
voltage converter features, 121
voltage droop, 118
voltage monitoring, 81
voltage ramp, 81, 115
voltage ramp rates, 129
voltage requirements, 24
voltage sense, 210
voltage spikes, 122
voltage switching, 80, 208
vo ltage tolerance, 117
voltage translation, 126, 130
volume growth, 1
Vpp feedback, 81

WAIT,204
wait states, 102, 321
wakeup, 110, 131
WE-less memory, 78
wear leveling, 43
window, 304, 306
window base address, 308, 310, 322
window enable, 319
window number, 325
window page, 311, 325
window size, 309, 314, 318
window state, 319
wire or, 203
word,76
wordlines, 25, 115
WORM,253
wrap-around, 195
WRITE,78
write, 33, 103
write cycle time, 95
write enable, 77, 199
write performance, 131

Index 421

write protect, 78,199,312,326,357
write state machine, 151

XIP, 228, 304

APPLE INC.
EXHIBIT 1011 - PAGE 0429

You are welcome to send us comments or questions concerning this or
other Annabooks products, or to request a catalog of our

products and seminars.

Annabooks
11848 Bernardo Center Drive, Suite 110

San Diego, CA 92128

616-673-0870

1-800-462-1042

616-673-1432 FAX

APPLE INC.
EXHIBIT 1011 - PAGE 0430

