UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

Samsung Electronics Co., Ltd., and Samsung Electronics America, Inc. Petitioners

v.

Parthenon Unified Memory Architecture LLC Patent Owner

INTER PARTES REVIEW OF U.S. PATENT NO. 5,812,789 Case IPR No.: *To Be Assigned*

DECLARATION OF HAROLD S. STONE, PH.D., REGARDING U.S. PATENT NO. 5,812,789

TABLE OF CONTENTS

I.	INTRODUCTION1			
	A.	Engagement	1	
	B.	Background and Qualifications	1	
	C.	Compensation and Prior Testimony	3	
	D.	Information Considered	5	
II.	LEGAL STANDARDS FOR PATENTABILITY			
	A.	Anticipation	7	
	B.	Obviousness	8	
III.	TECHNOLOGY BACKGROUND			
	A.	A. Basics of Computer Architecture & Video Encoding/Decoding		
		1. Tom Shanley and Don Anderson, "PCI System		
		Architecture," Third Edition, Addison-Wesley Publishing		
		Company, Feb. 1995 ("Shanley") (Ex. 1019)	12	
		2. International Organization for Standardization, "ISO/IEC		
		11172-2:1993: Information technology—Coding of		
		moving pictures and associated audio for digital storage		
		media at up to about 1,5 Mbit/s—Part 2: Video," 1st ed.,		
		August 1, 1993 ("MPEG Standard") (Ex. 1004)	18	
	B.	The Consolidation of MPEG and Other Multimedia Device's		
		Memory	22	
		1. Intel Corporation "Acceleration Graphics Port Interface		
		Specification," Revision 1.0 ("AGP") (Ex. 1024)	22	
		2. Video Electronics Standards Association published the		
		"VESA Unified Memory Architecture Hardware		
		Specifications Proposal," Version 1.0p ("VUMA") (Ex.		
		1025)	23	
		3. U.S. Patent No. 5,774,676 to Stearns ("Stearns") (Ex.		
		1007)	24	
		4. U.S. Patent No. 5,797,028 to Gulick (" <i>Gulick 028</i> ") (Ex.		
		1023)	26	
IV.	SUMMARY OF THE '789 PATENT		29	
	A.	Effective Filing Date of the '789 Patent	29	
	В.	Overview of the '789 Patent	29	
	C.	The Prosecution History of the '789 Patent	30	
	D.	Claim Construction	31	
V.	LEV	'EL OF ORDINARY SKILL IN THE ART	33	
VI.	CON	MPARISON OF THE PRIOR ART TO THE '789 PATENT	34	

A.	Ground A: Lambrecht anticipates, under 35 U.S.C. § 102,			
	claims 1, 3, 5, 11, and 13	34		
	1. Claim 1	34		
	2. Claim 3	51		
	3. Claim 5	53		
	4. Claim 11	55		
	5. Claim 13	56		
В.	Ground B: Lambrecht in view of Artieri, renders obvious, under			
	35 U.S.C. § 103, claim 4	61		
	1. Claim 4	61		
C.	Ground C: Lambrecht in view of Moore, renders obvious, under			
	35 U.S.C. § 103, claim 6	64		
	1. Claim 6	64		
D.	Ground D: Rathnam in view of Lambrecht, renders obvious,			
	under 35 U.S.C. § 103, claims 1, 3, 4, 5, and 11	66		
	1. Claim 1	66		
	2. Claim 3	83		
	3. Claim 4	85		
	4. Claim 5	86		
	5. Claim 11	89		
E.	Ground E: Rathnam in view of Lambrecht and Moore, renders			
	obvious, under 35 U.S.C. § 103, claim 6	91		
	1. Claim 6	91		
F.	Ground F: Rathnam in view of Lambrecht and Slavenburg,			
	renders obvious, under 35 U.S.C. § 103, claim 13			
	1. Claim 13	94		

I, Harold S. Stone, Ph.D., declare as follows:

I. INTRODUCTION

A. Engagement

1. I have been retained by counsel for the Petitioners to submit this declaration in connection with Petitioners' Petition for *Inter Partes* Review of claims 1, 3-6, 11 and 13 of U.S. Patent No. 5,812,789 ("'789 patent") (Ex. 1001).

B. Background and Qualifications

2. I was awarded a Ph.D. and Master's Degree in Electrical Engineering from the University of California-Berkeley in 1963 and 1961, respectively. I received a Bachelor of Science degree in Electrical Engineering from Princeton University in 1960.

3. After my graduation from Berkeley in 1963, I served as a Research Engineer at Boeing and SRI International. I then held faculty positions at Stanford University and at the University of Massachusetts, where I served as a professor of computer science and electrical engineering.

4. In 1984, I started working for IBM as a Manager of Advanced Architecture Studies. In 1990, I became a Research Staff Member at IBM. During my time at IBM, I managed and conducted research in the area of memory systems and optical interconnections. I worked at IBM until 1994, when I became a Fellow at the NEC Research Institute, the highest technical position in the company. At NEC, I conducted research in image processing. I am an inventor of a patent to

1

Page 4 of 104

NEC regarding a technique for decompressing JPEG images in a novel way that permits images to be searched without fully decompressing them. The decompression technique is based on inverse discrete cosine transforms, which are one of the basic elements of MPEG decompression.

5. I have authored, coauthored, or edited 9 books in various technical areas, the most recent of which appeared in 2011. My textbooks have sold over 100,000 copies. My work on the use of the perfect shuffle interconnections for supercomputers is widely recognized, and many supercomputers based on these interconnections were developed and marketed. For this work and my textbook contributions to the field, I was elected an IEEE Fellow and ACM Fellow, and received the IEEE Piore Field Award, the IEEE Computer Society Taylor Booth Award, and the Charles Babbage Award. I am the principal inventor or co-inventor of 27 patents, including seven in the area of computer architecture - U.S. Patent Nos. 4,989,131, 5,065,310, 5,163,149, 5,611,070, 5,742,785, 5,790,823, and 6,311,260.

6. I have served as a consultant to industry while holding my academic positions and have extensive experience in computer design for embedded computers as a consequence, including low-power computers for use in satellites and ultra-reliable computers for use in nuclear submarine navigation systems. In recent years I have been a member of two Division Review Committees at Los

Alamos National Laboratory in the area of Nuclear Nonproliferation and a consultant to NASA in the area of satellite image processing.

7. My work influenced the industry to develop several different "hypercube" computers in the 1980s, all of which had interconnections based on the perfect shuffle. In the 1990s, near when the '789 patent was filed, Intel, Sun, HP, and MIPS Technologies, Inc., introduced extension instruction sets for multimedia applications, all of which incorporated perfect shuffle data movement operations. The shuffle and its inverse are common operations used by MPEG software algorithms in processors that have multimedia instructions sets.

8. In 1977, together with W. Kahan and J. Coonen, I authored the original proposal ("the KCS proposal") to the working group charged for developing a floating-point standard, which is now known as the IEEE 754 Floating Point Standard. The standard that emerged is that proposal with small changes and additions. It has been implemented in several billion processors.

9. My Curriculum Vitae is submitted herewith as Ex. 1029.

C. Compensation and Prior Testimony

10. I am being compensated at a rate of \$500 per hour for my study and other work in this matter, plus actual expenses. My compensation is not contingent on the outcome of this matter or the specifics of my testimony.

11. I am also acting as an expert in the pending litigation between Patent Owner and Petitioners.

12. I previously prepared declarations in support of *inter partes* review petitions filed by Petitioners and other defendants in the pending litigation, which I understand are now identified as IPR2015-01494, IPR2015-01500, IPR2015-01501, IPR2015-01502, and IPR2015-01503.

13. Previously, I have testified either by deposition or at trial in the following litigation matters. The list below includes all deposition and trial testimony within the last five years:

- Parthenon Unified Memory Architecture LLC v. Samsung Electronics Co., Ltd. et al. (U.S. District Court, Eastern District of Texas), Case No. 2:14-cv-00902-JRG-RSP;
- Advanced Internet Technologies, Inc. v. Dell, Inc. (U.S. District Court, Eastern District of North Carolina), Case No. 5:07-cv-00426-H;
- Microunity Systems Engineering Inc v. Acer Inc et al. (U.S. District Court, Eastern District of Texas), Case No. 2:10-cv-00091-LED-RSP;

- Technology Service Corporation v. Mountcastle et al. (U.S. District Court, Eastern District of Virginia – Alexandria), Case No. 1:10-cv-00901-TSE-TCB;
- BIAX Corporation v. Motorola Solutions, Inc. et al. (U.S. District Court, District of Colorado – Denver), Case No. 1:10-cv-03013-PAB-KLM;
- Certain Computing Devices with Associated Instructions Sets and Software (International Trade Commission), Inv. 337-TA-812;
- Stragent, LLC et al. v. Intel Corporation (U.S. District Court, Eastern District of Texas – Tyler), Case No. 6:11-cv-00421-TBD-JDL; and
- Convolve Inc. et al. v. Compaq Computer Corporation et al., (U.S. District Court, Southern District of New York Foley Square), Case No. 1:00-cv-05141-GBD-JCF.

D. Information Considered

14. My opinions are based on my years of education, research, and experience, as well as my investigation and study of relevant materials. In forming my opinions, I have considered the materials I identify in this declaration and those listed in Appendix A. 15. I may rely upon these materials and/or additional materials to respond to arguments raised by the Patent Owner. I may also consider additional documents and information in forming any necessary opinions — including documents that may not yet have been provided to me.

16. My analysis of the materials produced in this investigation is ongoing and I will continue to review any new material as it is provided. This declaration represents only those opinions I have formed to date. I reserve the right to revise, supplement, and/or amend my opinions stated herein based on new information and on my continuing analysis of the materials already provided.

II. LEGAL STANDARDS FOR PATENTABILITY

17. In expressing my opinions and considering the subject matter of the claims of the '789 patent, I am relying upon certain basic legal principles that have been explained to me.

18. First, I understand that for an invention claimed in a patent to be found patentable, it must be, among other things, new and not obvious from what was known before the invention was made.

19. I understand the information that is used to evaluate whether an invention is new and not obvious is generally referred to as "prior art" and generally includes patents and printed publications (e.g., books, journal publications, articles on websites, product manuals, etc.).

20. I understand that the prior art includes patents and printed publications that existed before the earliest filing date (the "effective filing date") of the claim in the patent. I also understand that a patent will be prior art if it was filed before the effective filing date of the claimed invention, while a printed publication will be prior art if it was publicly available before that date.

21. I understand that there are two ways in which prior art may render a patent claim unpatentable. First, the prior art can be shown to "anticipate" the claim. Second, the prior art can be shown to have made the claim "obvious" to a person having ordinary skill in the art. My understanding of the two legal standards is set forth below.

A. Anticipation

22. I understand that the following standards govern the determination of whether a patent claim is "anticipated" by the prior art.

23. I have applied these standards in my evaluation of whether the claims of the '789 patent would have been anticipated by the prior art.

24. I understand that, for a patent claim to be "anticipated" by the prior art, each and every requirement of the claim must be found, expressly or inherently, in a single prior art reference as recited in the claim. I understand that claim limitations that are not expressly described in a prior art reference may still be there if they are "inherent" to the thing or process being described in the prior

art. For example, an indication in a prior art reference that a particular process complies with a published standard would indicate that the process must inherently perform certain steps or use certain data structures that are necessary to comply with the published standard.

25. I understand that if a reference incorporates other documents by reference, the incorporating reference and the incorporated reference(s) should be treated as a single prior art reference for purposes of analyzing anticipation.

26. I understand that it is acceptable to consider evidence other than the information in a particular prior art document to determine if a feature is necessarily present in or inherently described by that reference.

B. Obviousness

27. I understand that a claimed invention is not patentable if it would have been obvious to a person having ordinary skill in the field of the invention at the time the invention was made.

28. I understand that the obviousness standard is defined in the patent statute (35 U.S.C. § 103(a)) as follows:

A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such

that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

29. I understand that the following standards govern the determination of whether a claim in a patent is obvious. I have applied these standards in my evaluation of whether the asserted claims of the '789 patent would have been considered obvious as of the effective filing date of the claims in the '789 patent.

30. When considering the issue of obviousness, I understand that I am to do the following: (i) determine the scope and content of the prior art; (ii) ascertain the differences between the prior art and the claims at issue; (iii) resolve the level of ordinary skill in the art; and (iv) consider objective evidence of non-obviousness (also known as "secondary considerations" of non-obviousness). Examples of evidence of secondary considerations of non-obviousness include evidence of commercial success, long-felt but unsolved needs, failure of others, and unexpected results. I am not presently aware of any evidence of "objective factors" suggesting any of the challenged claims of the '789 patent are not obvious, and reserve my right to address any such evidence if it is identified in the future.

31. I understand that a person having ordinary skill is also a person of ordinary creativity.

32. My understanding is that not all innovations are patentable. Even if a claimed product or method is not disclosed in its entirety in a single prior art reference, the patent claim is invalid if the invention would have been obvious to a person having ordinary skill in the art at the time of the invention. In particular, I understand that a patent claim is normally invalid as obvious if it would have been a matter of "ordinary innovation" within the relevant field to create the claimed product or method at the time of the invention.

33. I also understand that the following exemplary scenarios would support a conclusion that a claimed product or method would have been obvious:

- Combining prior art elements according to known methods to yield predictable results;
- Simple substitution of one known element for another to obtain predictable results;
- Use of known technique to improve similar devices (methods, or products) in the same way;
- Applying a known technique to a known device (method, or product) ready for improvement to yield predictable results;

- "Obvious to try" choosing from a finite number of identified, predictable solutions, with a reasonable expectation of success;
- Known work in one field of endeavor may prompt variations of it for use in either the same field or a different one based on design incentives or other market forces if the variations are predictable to one of ordinary skill in the art;
- Some teaching, suggestion, or motivation in the prior art that would have led one of ordinary skill to modify the prior art reference or to combine prior art reference teachings to arrive at the claimed invention.

34. I understand that sometimes it will be necessary to look to interrelated teachings of multiple patents; the effects of demands known to the design community or present in the marketplace; and the background knowledge possessed by a person having ordinary skill in the art. I understand that all these issues may be considered to determine whether there was an apparent reason to combine the known elements in the fashion claimed by the patent at issue.

35. I understand that an invention that might be considered an obvious variation or modification of the prior art may be considered non-obvious if one or more prior art references discourages or lead away from the line of inquiry disclosed in the reference(s). A reference does not "teach away" from an invention

simply because the reference suggests that another embodiment of the invention is better or preferred. My understanding of the doctrine of teaching away requires a clear indication that the combination should not be attempted (e.g., because it would not work or explicit statements saying the combination should not be made).

III. TECHNOLOGY BACKGROUND

A. Basics of Computer Architecture & Video Encoding/Decoding

1. Tom Shanley and Don Anderson, "PCI System Architecture," Third Edition, Addison-Wesley Publishing Company, Feb. 1995 ("Shanley") (Ex. 1019)

36. Tom Shanley and Don Anderson, "PCI System Architecture," Third Edition, Addison-Wesley Publishing Company, Feb. 1995 ("*Shanley*") describes PC architectures having a PCI bus. At the time of the alleged invention, the PCI bus, as defined in the PCI Special Interest Group's PCI Local Bus Specification Revision 2.1, was a high performance industry standard bus. *See, e.g.*, Ex. 1019, 58-60.

37. *Shanley* Figures 1-2 and 1-3 depict the application of a three-way realtime video teleconference with four video streams (one local video preview stream, two remote video streams, and a larger graphical stream).

Ex. 1019, 42.

Figure 1-3. The Teleconference Screen Layout

Ex. 1019, 43.

38. The PCI bus enabled such applications. An example of a PC employing the PCI bus is shown below in Figure 2-4.

Figure 2-4. The PCI Bus

Ex. 1019, 57 (Figure 2-4, annotated).

39. As shown in Figure 2-4, the system includes a PCI bus that links a motion video peripheral, audio peripheral, graphics adapter, and other devices. The

motion video peripheral (red) has its own video memory (also red) that is separate from the main memory (blue).

40. Arbitration for access to main memory is largely left up to the designer. Ex. 1019, 92-127. In the PCI specification, each potential bus master's interface has a set of lines to handle arbitration, REQ# and GNT#. Ex. 1019, 69. The REQ# and GNT# are separately routed from each potential bus master to the arbitration mechanism:

Ex. 1019, 93 (Figure 6-1).

41. The arbiter may be a separate component or may be integrated into another device, such as the PCI chip set. *See* Ex. 1019, 92 ("Although the arbiter is shown as a separate component, it usually is integrated into the PCI chip set; specifically, it is typically integrated into the host/PCI or the PCI/expansion bus bridge chip.")

42. *Shanley* describes one particular implementation of a system using the VLSI VL82C59x SuperCore PCI chipset. Ex. 1019, 187-220.

43. In the VL82C59x chipset, the VL82C591 Pentium System Controller in combination with the two VL82C592 Pentium Processor Data Buffers incorporate the "PCI and host bus arbiters" for memory accesses by the peripherals or CPU/processor. Ex. 1019, 189-190.

44. Arbitration must be present in any system that shares access to a resource (e.g., a memory) via a bus to prevent conflicts (i.e., two devices attempting to access a memory over a bus at the same time). Ex. 1020, 4-6. I described this in my book, "Microcomputer Interfacing," first published in 1982 by Addison-Wesley Publishing Company (Ex. 1020): "the role of the arbitration lines is then very clearly defined. They guarantee that, at most, one module at a time transmits on the bus." Ex. 1020, 6.

Page 20 of 104

2. International Organization for Standardization, "ISO/IEC 11172-2:1993: Information technology—Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s—Part 2: Video," 1st ed., August 1, 1993 ("*MPEG Standard*") (Ex. 1004)

45. I understand that the International Organization for Standardization,

"ISO/IEC 11172-2:1993: Information technology-Coding of moving pictures and

associated audio for digital storage media at up to about 1,5 Mbit/s—Part 2:

Video," 1st ed., August 1, 1993 ("MPEG Standard") describes a video

compression standard using two forms of compression: spatial and temporal. Like

JPEG, spatial compression in MPEG involves compressing a single image based

on blocks of pixels within the image in which the pixels have similar

characteristics. Because MPEG deals with video, MPEG further includes temporal

compression to compress an image based on similarities to other frames in the

video sequence. As described by MPEG Standard:

A number of techniques are used to achieve a high compression ratio. The first, which is almost independent from this part of ISO/IEC 11172, is to select an appropriate spatial resolution for the signal. The algorithm then uses block-based motion compensation to reduce the temporal redundancy. Motion compensation is used for causal prediction of the current picture from a previous picture, for non-causal prediction of the current picture from a previous picture. The difference signal, the prediction error, is further compressed using the discrete cosine transform (DCT) to remove spatial correlation before it is quantized in an irreversible process that discards the less important information. Finally, the motion vectors are combined with the DCT information, and coded using variable length codes.

Ex. 1004, 5 (§ 0.2 Overview of the algorithm).

46. The 16-pel by 16-line (16x16 pixel region) referenced above referred to as a macroblock and may vary in data size depending on the color format. Ex. 1004, 17 (2.1.86 macroblock [video]).

47. The compression disclosed in *MPEG Standard* is useful for storage and/or transmission. Videos can be encoded to reduce bandwidth or memory requirements during storage or transmission and subsequently decoded for display.

Ex. 1004, 62 (Figure D.1, annotated).

48. To permit predictive and non-causal interpolative temporal

processing, MPEG Standard defines three picture types:

Because of the conflicting requirements of random access and highly efficient compression, three main picture types are defined. Intra-coded pictures (I-Pictures) are coded without reference to other pictures. They provide access points to the coded sequence where decoding can begin, but are coded with only a moderate compression ratio. Predictive coded pictures (P-Pictures) are coded more efficiently using motion compensated prediction from a past intra or predictive coded pictures (B-Pictures) provide the highest degree of compression but require both past and future reference pictures for motion compensation. Bidirectionally-predictive coded pictures are never used as references for prediction. The organisation of the three picture types in a sequence is very flexible. The choice is left to the encoder and will depend on the requirements of the application. Figure 1 illustrates the relationship between the three different picture types.

Ex. 1004, 5 (§ 0.2.1 Temporal processing).

49. As stated above, I-pictures are coded without reference to other pictures, P-pictures are coded with reference to past pictures, and B-pictures are coded with reference to past and future pictures and are never used as references for prediction.

50. The following figure illustrates the relationship between the three picture types:

Figure 1 -- Example of temporal picture structure

Ex. 1004, 5 (Figure 1).

51. Note that in decoding, if a B-picture was encoded with reference to a previous P-picture and a subsequent P-picture (in sequence), the two P-pictures are decoded in time (but not displayed in time) prior to the decoding of the B-picture:

At the encoder output, in the stored bitstream, and at the decoder input, 6 10 8 B I B 9 B 1 4 I P 7 5 В Р в В At the decoder output, 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 3 4 5 6 7 8 9 1 2

Ex. 1004, 24-25.

52. *MPEG Standard* depicts a simplified decoder implementation:

Figure D.7 -- Simplified decoder block diagram

Ex. 1004, 66 (Figure D.7).

53. As shown above, the decoder receives an encoded or compressed bitstream from a source (e.g., a memory). The VLC decoder, inverse zig-zag and quantizer, and inverse DCT blocks decode the bitstream, and then the various motion compensation blocks act (for the various picture types). Two frame stores are present, one for past and one for future frames to facilitate decoding of Bpictures. Once a frame is no longer needed, it may be output to a display buffer for display. Note that the MPEG Standard does not restrict the location of the picture stores. In the absence of such a constraint conforming implementations could use shared memory or a combination of shared and dedicated memory.

B. The Consolidation of MPEG and Other Multimedia Device's Memory

54. One widely recognized goal in computing was reducing cost. As detailed below, one well known technique to reduce cost was to eliminate dedicated memory associated with an MPEG or other media device.

1. Intel Corporation "Acceleration Graphics Port Interface Specification," Revision 1.0 ("*AGP*") (Ex. 1024)

55. The stated purpose of Intel Corporation "Acceleration Graphics Port Interface Specification," Revision 1.0 ("*AGP*") was to control costs by sharing memory:

> In general, 3D rendering has a voracious appetite for memory bandwidth, and continues to put upward pressure on memory footprint as well. As 3D hardware and software become more pervasive, these two trends are likely to accelerate, requiring high speed access to ever larger amounts of memory, thus raising the bill of

material costs for 3D enabled platforms. Containing these costs while enabling performance improvements is the primary motivation for the A.G.P.. *By providing up to an order of magnitude bandwidth improvement between the graphics accelerator and system memory, some of the 3D rendering data structures may be effectively shifted into main memory, relieving the pressure to increase the cost of the local graphics memory.*

Ex. 1024, 11 (Motivation) (emphasis added).

2. Video Electronics Standards Association published the "VESA Unified Memory Architecture Hardware Specifications Proposal," Version 1.0p ("VUMA") (Ex. 1025)

56. Video Electronics Standards Association published the "VESA Unified Memory Architecture Hardware Specifications Proposal," Version 1.0p ("*VUMA*") stated purpose was to eliminate the need for a component to incorporate a dedicated memory by instead using a shared system memory to serve as the component's memory:

The concept of VESA Unified Memory Architecture

(VUMA) is to share physical system memory (DRAM)

between system and an external device, a VUMA device;

as shown in Figure 1-1. A VUMA device could be any

type of controller which needs to share physical system memory (DRAM) with system and directly access it. One example of a VUMA device is graphics controller. In a VUMA system, graphics controller will incorporate graphics frame buffer in physical system memory (DRAM) or in other words VUMA device will use a part of physical system memory as its frame buffer, thus, sharing it with system and directly accessing it. *This will eliminate the need for separate graphics memory, resulting in cost savings.*

Ex. 1025, 6 (Introduction) (emphasis added).

3. U.S. Patent No. 5,774,676 to Stearns ("Stearns") (Ex. 1007)

57. *Stearns* issued June 30, 1998 based on an application filed on October 3, 1995. *See* Ex. 1007.

58. *Stearns* described the MPEG accelerator circuit in Figure 2 below as
"a dedicated digital signal processor for video decompression." *See* Ex. 1007,
6:56-57.

59. In contrasting Figures 2 and 3, below, *Stearns* discloses eliminating MPEG accelerator 46's private memory 44 (red) and satisfying the memory

requirements by sharing either frame buffer 38 or system memory 36 (blue). See

Ex. 1007, 5:63-6:7.

Ex. 1007, Figure 2 (annotated).

FIG. 3

Ex. 1007, Figure 3 (annotated).

60. *Stearns* describes the core logic chip set (above, green) as follows: "The core logic chip set of a computer interfaces the microprocessor to the peripherals, manages the memory subsystem, arbitrates usage and maintains coherency." Ex. 1007, 3:53-55.

4. U.S. Patent No. 5,797,028 to Gulick ("Gulick 028") (Ex. 1023)

61. *Gulick 028* issued based on an application filed on September 11,1995. *See* Ex. 1023.

62. *Gulick 028* Figure 2, below, depicts a digital system chip 112 (red) having a general purpose DSP 206 (blue).

Ex. 1023, Figure 2 (annotated).

63. *Gulick 028* explains that "[t]he digital system chip 112 also preferably includes a general purpose DSP engine 206 which is programmable to perform various functions, such as MPEG decoding" Ex. 1023, 6:20-24.

64. *Gulick 028* Figure 1, below, places the digital system chip 112 (red) in context in the larger system.

Ex. 1023, Figure 1 (annotated).

65. *Gulick 028* discloses:

In one embodiment, the digital system chip 112 does not include multimedia memory, but rather video data and audio data are stored in the system memory 110 according to a unified memory architecture. In this embodiment, the digital system chip 112 preferably includes a memory buffer 234 and a direct memory access (DMA) engine 236 for transferring data from the main memory 110 to the memory buffer 234 in the

digital system chip 112.

Ex. 1023, 6:48-55.

66. That is, *Gulick 028's* MPEG decoder operates out of main or system memory 110 depicted above in Figure 1 (green).

IV. SUMMARY OF THE '789 PATENT

A. Effective Filing Date of the '789 patent

67. The '789 patent issued from U.S. Application No. 702,911 filed August 26, 1996. Ex. 1001 at Face. I therefore understand that the effective filing date of the claims of the '789 patent is no earlier than August 26, 1996.

B. Overview of the '789 patent

68. I have reviewed the '789 patent to identify its novel aspects as one skilled in the art would view them. My high-level summary is that the alleged novelty is how to use shared memory within a video system to reduce cost without compromising the ability to meet video processing performance requirements. For example, under the "Summary of the Invention," the '789 patent specification states:

Both the first device and the video and/or audio decompression and/or compression device require access to a memory. The video and/or audio decompression and/or compression device *shares the memory with the first device*.

Ex. 1001, 3:65-4:2 (emphasis added).

69. The '789 patent concerns the arbitration for access to a memory shared between a video decoder and another device, such as a central processing unit (CPU). The inventors conceded that video coding and decoding techniques such as MPEG, H.261, and H.263 were "well accepted standards" at the time. But, the inventors alleged, a video decoder conventionally would be given its own dedicated memory, to allow it to operate in "real time."¹ The dedicated memory would remain unused most of the time and significantly increase costs. To address these alleged problems, the inventors proposed having the video decoder share memory with other devices. The '789 patent accomplishes this using an arbiter, which arbitrates between the video decoder and the device when either one requests access to the memory.

C. The Prosecution History of the '789 patent

70. The original application for the '789 patent contained 49 claims.These claims were rejected as being anticipated by Lin et al., On the BusArbitration for MPEG 2 Video Decoder, and obvious in view of U.S. Patent No.

¹ The '789 patent never defines "real time."

5,557,538 (Retter et al.) and U.S. Patent No. 5,522,080 (Harney). Ex. 1002, 93, 94. In response, most notably with respect to the claims challenged here, the Applicant amended what later issued as claims 1 and 13. *Id.*, 105-108. For example, independent claim 1 was amended to additionally recite "and a shared bus coupled to the memory, the first device, and the decoder, the bus having a sufficient bandwidth to enable the decoder to access the memory and operate in real time when the first device simultaneously accesses the bus." *Id.* This claim and its dependent claims were subsequently allowed.

D. Claim Construction

71. I understand that a claim subject to *inter partes* review receives the broadest reasonable interpretation in light of the specification and file history of the patent in which it appears. I also understand that any term that is not construed should be given its plain and ordinary meaning under the broadest reasonable interpretation. I have followed these principles in my analysis. I discuss certain claim terms below and what I understand to be Petitioners' construction of these terms, which I apply in my analysis. The remaining claim terms in the '789 patent are given their plain and ordinary meaning under the broadest reasonable interpretation, which I also apply in my analysis.

72. I understand that Petitioners have proposed that the broadest reasonable interpretation of the claimed term "video decoder" is "hardware and/or

software that translates data streams into video information." I agree with this construction based on the claims and specification of the '789 patent. For example, the '789 patent generally refers to a decoder as a "video and/or audio decompression device." Ex. 1001, 1:46-51. According to the specification, "[a]ny conventional decoder including a decoder complying to the MPEG-1, MPEG-2, H.261, or H.261 standards, or any combination of them, or any other conventional standard can be used as the decoder/encoder." Id., 12:23-27 (emphasis added). A conventional decoder around the time of the alleged invention of the '789 patent was understood to include "any hardware or software system that translates data streams into video or audio information." Ex. 1014 at 3. Consistent with this understanding of a decoder, the '789 patent acknowledges that a decoder can be implemented as hardware or software. See, e.g., Ex. 1001, 5:43-45. In one example, the specification explains that video decoding can be performed by hardware and audio decoding can be performed by software. Id., 5:50-56.

73. I have been asked to assume that the broadest reasonable interpretation of the claimed term "real time" is "fast enough to keep up with an input data stream." I have applied this understanding in my analysis.

Page 35 of 104

V. LEVEL OF ORDINARY SKILL IN THE ART

74. I understand that the claims of a patent are reviewed from the point of view of a hypothetical person having ordinary skill in the art as of the effective filing date of the '789 patent.

75. Based on my review of the '789 patent specification, claims, and file history, in my opinion, a person having ordinary skill in the art as of the effective filing date of the '789 patent would have held an accredited Bachelor's degree in Electrical Engineering and/or Computer Science and/or Computer Engineering and had three years' experience in the fields of data compression and overall computer system architecture.

76. The reason that I have chosen that definition of a person having ordinary skill in the art for the '789 patent is because that person would have been exposed to compression techniques described in the '789 patent. That person would also be familiar with the basic computer components recited in the claims and would understand how to use those components to build a multimedia processing system using shared resources like a memory.

77. As described in more detail above, I was a person with at least ordinary skill in the art as of the effective filing date of the '789 patent.

Page 36 of 104
VI. COMPARISON OF THE PRIOR ART TO THE '789 PATENT

A. Ground A: *Lambrecht* anticipates, under 35 U.S.C. § 102, claims 1, 3, 5, 11, and 13

1. Claim 1

78. In my opinion, *Lambrecht* discloses every feature of claim 1.

Claim Language	Lambrecht
[1.0] An electronic	Lambrecht discloses an electronic system coupled to a
system coupled to a	memory. See, e.g., Ex. 1032, Lambrecht at Fig. 21 (annotated
memory,	below); see also id. at 27:4-9, 26:51-56 ("The computer
comprising:	system of FIG. 21 is similar to the computer system of FIG.
	1. However, the mode logic in the computer system of FIG.
	21 is operable to place the PCI bus 120 in either a normal
	PCI mode or in a real-time/multimedia mode optimized for
	multimedia transfers of periodic data.").

Claim Language	Lambrecht
	memory, as desired. The chipset logic 106 preferably
	includes a memory controller for interfacing to the main
	memory 110."), Fig. 21; see also analysis and citations below
	for other claim elements.
[1.1] a first device	Lambrecht discloses a first device (light blue) that requires
that requires access	access to the memory (red). See, e.g., Ex. 1032 at Fig. 21;
to the memory;	27:4-9.
	In particular, Lambrecht discloses a first device that requires
	access to the memory. See, e.g., Ex. 1032, Fig. 21 (annotated
	below), 27:32-34 ("One or more multimedia devices or
	multimedia devices 142D, 144D, and 146D are coupled to
	each of the PCI bus 120 and the multimedia bus 130.")
	(emphasis added).

Claim Language	Lambrecht
	comprise video accelerator or graphics
	accelerator cards, video playback cards,
	MPEG decoder cards, sound cards, network
	interface cards, SCSI adapters for
	interfacing to various input/output devices,
	such as CD-ROMS and tape drives, or other
	devices as desired.
	See id. at 27:43-56 (emphasis added).
	The first device disclosed in Lawbuckt requires eccess to
	The first device disclosed in <i>Lambrecht</i> requires access to
	memory. See id.at 27:57-59 ("Thus, the multimedia devices
	142D-146D communicate with each other and with the CPU
	102 and main memory 110 via the PCI bus 12 as is well
	known in the art.").
[1.2] a decoder that	Lambrecht discloses a decoder that requires access to the
requires access to	memory sufficient to maintain real time operation. See, e.g.,
the memory	Ex. 1032 at Fig. 21 (annotated below), 27:32-34 ("One or
sufficient to	more multimedia devices or multimedia devices 142D, 144D,
maintain real time	and 146D are coupled to each of the PCI bus 120 and the
operation; and	multimedia bus 130.") (emphasis added).

Claim Language	Lambrecht
	the multimedia devices 142D-146D may
	comprise video accelerator or graphics
	accelerator cards, video playback cards,
	MPEG decoder cards, sound cards, network
	interface cards, SCSI adapters for
	interfacing to various input/output devices,
	such as CD-ROMS and tape drives, or other
	devices as desired.
	See id. at 27:43-56 (emphasis added). In other words,
	Lambrecht discloses an arrangement in which multimedia
	device 144D is a decoder (i.e., an MPEG decoder card).
	The decoder disclosed in <i>Lambrecht</i> requires access to
	memory. See id. at 27:57-59 ("Thus, the multimedia devices
	142D-146D communicate with each other and with the CPU
	102 and main memory 110 via the PCI bus 120, as is well
	known in the art.").
	The memory access is sufficient to operate in real time. See
	id. at 27:66-28:2 ("In the preferred embodiment of the
	invention of FIG. 21, the multimedia mode comprises

Claim Language	Lambrecht
	placing the system bus or PCI bus 120 in a special mode
	optimized for real-time data transfers."); see also:
	• "Referring now to FIG. 21, a computer system is shown
	which includes an expansion bus, preferably a PCI bus
	120, and which includes mode logic which selects
	between different modes of the PCI bus 120. The
	computer system of FIG. 21 is similar to the computer
	system of FIG. 1. However, the mode logic in the
	computer system of FIG. 21 is operable to place the PCI
	bus 120 in either a normal PCI mode or in a real-
	time/multimedia mode optimized for multimedia transfers
	of periodic data. As described below, multimedia devices
	use the PCI bus 120 for normal PCI transfers and also use
	the PCI bus fines in the multimedia mode for high speed
	data multimedia transfers, preferably transfers of periodic
	multimedia data. In the following description, elements
	which are preferably identical to elements previously
	described include the same reference numerals for
	convenience." Id. at 26:48-63 (emphasis added).

Claim Language	Lambrecht
	• "In one embodiment, the system bus (preferably PCI)
	implements a new mode of operation specifically for real-
	time transfers. A signal (or signals) is used to indicate that
	the system bus should be placed in a special real time
	mode. When not in special real time mode, the system bus
	operates as usual. The <i>real time mode</i> is optimized for the
	transfer of high bandwidth real-time information.
	Therefore, the present invention comprises a novel
	computer system architecture and method which provides
	one or more real-time or multimedia buses, optionally
	with a local expansion bus, to increase the performance of
	real-time peripherals and applications. The multimedia
	bus of the present invention provides improved data
	transfers performance and throughput for real-time
	devices. The various embodiments discussed above may
	be combined in various ways for optimum real-time
	and/or multimedia performance." Id. at 5:33-48 (emphasis
	added).

Claim Language	Lambrecht
bandwidth to	chipset 106 includes various bridge logic
enable the decoder	and includes arbitration logic 107. The
	chipset 106 is preferably similar to the
to access the	Triton chipset available from Intel
memory and	Corporation, including certain arbiter
operate in real time	modifications to accommodate the real-time
	bus of the present invention. A second level
when the first	or L2 cache memory (not shown) may be
device	coupled to a cache controller in the chipset
simultaneously	106, as desired. The bridge or chipset 106
simulationally	couples through a memory bus 108 to main
accesses the bus.	memory 110. The main memory 110 is
	preferably DRAM (dynamic random access
	memory) or EDO (extended data out)
	memory, or other types of memory, as
	desired. The chipset logic 106 preferably
	includes a memory controller for interfacing
	to the main memory 110 and also includes
	the arbitration logic 107.
	See id. at 7:30-47 (emphasis added); see also id. at 26:66-
	27:9, Fig. 21 (annotated above).
	The memory interface (i.e. the chipset) includes an arbiter

Claim Language	Lambrecht
	that "selectively provid[es] access for the first device and the
	decoder to the memory and a shared bus coupled to the
	memory the first device, and the decoder," as claimed. See,
	e.g., Ex. 1032 at 26:66-27:2 ("The chipset logic 106
	preferably includes a memory controller for interfacing to the
	main memory 110 and also includes the arbitration logic
	107."); see also Fig. 21 (annotated above).
	Furthermore, Lambrecht's bus is of "sufficient bandwidth to
	enable the decoder to access the memory and operate in real
	time when the first device simultaneously accesses the bus,"
	as claimed. Lambrecht teaches a design that allows real-time
	operation of a bus while simultaneously allowing access to
	two different devices. See, e.g., Ex. 1032 at 5:33-48; 27:66-
	28:11. Lambrecht discloses a "byte sliced mode" that divides
	the bus into different byte lanes, which allows for two
	different simultaneous data transfers. See Ex. 1032 at 27:66-
	28:11. Lambrecht adds:
	In one embodiment, the centralized

Claim Language	Lambrecht
	multimedia I/O processor byte slices the
	multimedia bus to allow different data
	streams to use different byte channels
	simultaneously. Thus the byte sliced
	multimedia bus allows different peripherals
	to share the bus simultaneously. The
	centralized multimedia I/O processor thus
	may assign one data stream to a subset of the
	total byte lanes on the multimedia bus, and
	fill the unused byte lanes with another data
	stream. For example, with a 32-bit
	multimedia bus, if an audio data stream is
	only 16 bits wide and thus only uses half of
	the multimedia data bus, the multimedia bus
	intelligently allows data stream transfers on
	the unused bits of the bus. In this
	embodiment, the centralized multimedia I/O
	processor includes knowledge of the
	destinations and allows transfers to occur
	without addressing information.
	Lambrecht at 5:17-33 (emphasis added).
	Byte slice mode allows for simultaneous, real-time video
	Byte shee mode anows for simultaneous, real-time video
	and audio transfers over the same PCI bus:

Claim Language	Lambrecht
	In the preferred embodiment of the
	invention of FIG. 21, the multimedia mode
	comprises placing the system bus or PCI bus
	120 in a special mode optimized for real-
	time data transfers. In one embodiment of
	FIG. 21, the special mode comprises a byte
	sliced mode which uses different byte lanes
	or channels of the PCI data lines for
	different types of multimedia transfers as
	described above. Thus, 16 bits of the PCI
	bus may be used for video transfers while
	the remaining 16 bits may be used for audio
	transfers simultaneously. Alternatively, the
	special mode comprises placing the PCI bus
	120 in a time sliced or time slotted mode as
	described above with reference to FIGS. 11
	and 12. In another embodiment, the special
	or real time mode comprises placing the PCI
	bus 120 in mode for performing periodic
	multimedia data transfers as described
	above. Other types of multimedia modes
	may be used as desired.
	See id. at 27:66-28:11 (emphasis added).

Claim Language	Lambrecht
	By using byte slice mode over the PCI bus disclosed in
	Lambrecht (see Fig. 21 (annotated above)), the bus has
	sufficient bandwidth to allow real-time access to memory to
	both the first device (for example, an audio circuit) and the
	decoder. See also:
	• "In one embodiment, the centralized multimedia I/O
	processor byte slices the multimedia bus to allow
	different data streams to use different byte channels
	simultaneously. Thus the byte sliced multimedia bus
	allows different peripherals to share the bus
	simultaneously. The centralized multimedia I/O processor
	thus may assign one data stream to a subset of the total
	byte lanes on the multimedia bus, and fill the unused byte
	lanes with another data stream. For example, with a 32-
	bit multimedia bus, if an audio data stream is only 16 bits
	wide and thus only uses half of the multimedia data bus,
	the multimedia bus intelligently allows data stream
	transfers on the unused bits of the bus. In this
	embodiment, the centralized multimedia I/O processor

I

Claim Language	Lambrecht
	includes knowledge of the destinations and allows
	transfers to occur without addressing information." Id. at
	19:39-54 (emphasis added).
	See also:
	• "Referring now to FIG. 21, a computer system is shown
	which includes an expansion bus, preferably a PCI bus
	120, and which includes mode logic which selects
	between different modes of the PCI bus 120. The
	computer system of FIG. 21 is similar to the computer
	system of FIG. 1. However, the mode logic in the
	computer system of FIG. 21 is operable to place the PCI
	bus 120 in either a normal PCI mode or in a real-
	time/multimedia mode optimized for multimedia transfers
	of periodic data. As described below, multimedia devices
	use the PCI bus 120 for normal PCI transfers and also use
	the PCI bus fines in the multimedia mode for high speed
	data multimedia transfers, preferably transfers of periodic
	multimedia data. In the following description, elements

Claim Language	Lambrecht
	which are preferably identical to elements previously
	described include the same reference numerals for
	convenience." Id. at 26:48-63 (emphasis added).
	• "In one embodiment, the system bus (preferably PCI)
	implements a new mode of operation specifically for
	real-time transfers. A signal (or signals) is used to
	indicate that the system bus should be placed in a special
	real time mode. When not in special real time mode, the
	system bus operates as usual. The real time mode is
	optimized for the transfer of high bandwidth real-time
	information. Therefore, the present invention comprises a
	novel computer system architecture and method which
	provides one or more real-time or multimedia buses,
	optionally with a local expansion bus, to increase the
	performance of real-time peripherals and applications.
	The multimedia bus of the present invention provides
	improved data transfers performance and throughput for
	real-time devices. The various embodiments discussed
	above may be combined in various ways for optimum

Claim Language	LAMBRECHT
	real-time and/or multimedia performance." Id. at 5:33-48
	(emphasis added).

79. In my opinion, *Lambrecht* discloses every feature of claim 3.

Claim Language	LAMBRECHT
[3.1] The electronic	As discussed above, Lambrecht discloses all elements of
system of claim 1,	claim 1. Further, Lambrecht teaches that the decoder is a
wherein the	video decoder. See, e.g., Ex. 1032 at 27:51-53; see also id. at
decoder comprises	27:43-56 ("The multimedia devices 142D-146D may be any
a video decoder.	of various types of input/output devices, including
	multimedia devices and communication devices, as described
	above. The multimedia devices 142D-146D are preferably
	similar to the multimedia devices 142-146 described above,
	except that the interface logic 962 in the multimedia devices
	142D-146D each include the interface logic for interfacing to
	the PCI bus 120 in multiple modes. As described above, the
	multimedia devices 142D-146D may comprise video
	accelerator or graphics accelerator cards, video playback

Claim Language	LAMBRECHT
	cards, MPEG decoder cards, sound cards, network interface
	cards, SCSI adapters for interfacing to various input/output
	devices, such as CD-ROMS and tape drives, or other devices
	as desired."), Fig. 21 (annotated below).
	Image: state stat

Claim Language	LAMBRECHT
[5.1] The electronic	As discussed above, Lambrecht discloses all elements of
system of claim 1,	claim 1. Further, Lambrecht teaches the inclusion of an
further comprising	encoder coupled to the memory interface. See, e.g., Ex. 1032
an encoder coupled	at 2:66-3:7 ("In the preferred embodiment, the computer
to the memory	system comprises a CPU coupled through chip set or bridge
interface.	logic to main memory. The bridge logic couples to a local
	bus such as the PCI bus. The computer system also includes
	a real-time expansion bus or multimedia bus for transferring
	real-time or multimedia data. A plurality of multimedia
	devices, such video devices, audio devices, MPEG encoders
	and/or decoders, and/or communications devices, are coupled
	to each of the PCI bus and the multimedia bus.") (emphasis
	added); id. at 8:13-17 ("For example, the multimedia devices
	142-146 may comprise video accelerator or graphics
	accelerator devices, video playback devices, MPEG encoder
	or decoder devices") (emphasis added); id. at Fig. 21
	(annotated below).

80. In my opinion, *Lambrecht* discloses every feature of claim 5.

Claim Language	LAMBRECHT
[11.1] The	As discussed above, Lambrecht discloses all elements of claim
electronic	1. Lambrecht also teaches that the first device can be a graphics
system of claim	accelerator. See, e.g., Ex. 1032, 27:43-56 ("The multimedia
1, wherein the	<i>devices 142D-146D</i> may be any of various types of input/output
first device is a	devices, including multimedia devices and communication
graphics	devices, as described above. The multimedia devices 142D-
accelerator.	146D are preferably similar to the multimedia devices 142-146
	described above, except that the interface logic 962 in the
	multimedia devices 142D-146D each include the interface logic
	for interfacing to the PCI bus 120 in multiple modes. As
	described above, the multimedia devices 142D-146D may
	comprise video accelerator or graphics accelerator cards, video
	playback cards, MPEG decoder cards, sound cards, network
	interface cards, SCSI adapters for interfacing to various
	input/output devices, such as CD-ROMS and tape drives, or
	other devices as desired.") (emphasis added).; see also id. at Fig.

81. In my opinion, *Lambrecht* discloses every feature of claim 11.

Claim Language	LAMBRECHT
	21.

82. In my opinion, *Lambrecht* discloses every feature of claim 13.

Claim Language	LAMBRECHT
[13.1] The	As discussed above, Lambrecht discloses all elements of claim
electronic	1. Furthermore, Lambrecht teaches that the bus has a bandwidth
system of claim	of at least twice the bandwidth required for the decoder to
1, wherein the	operate in real time.
bus has a	
bandwidth of at	Lambrecht discloses that its bus, which is preferably a PCI bus,
least twice the	can service real time operation. See, e.g.,
bandwidth	• Ex. 1032 at 27:66-28:2 ("In the preferred embodiment of
required for the	the invention of FIG. 21, the multimedia mode comprises
decoder to	placing the system bus or PCI bus 120 in a special mode
operate in real	optimized for real-time data transfers.") (emphasis
time.	added).
	• Ex. 1032 at 26:48-63 ("Referring now to FIG. 21, a

Claim Language	Lambrecht
	computer system is shown which includes an expansion
	bus, preferably a PCI bus 120, and which includes mode
	logic which selects between different modes of the PCI
	bus 120. The computer system of FIG. 21 is similar to the
	computer system of FIG. 1. However, the mode logic in
	the computer system of FIG. 21 is operable to place the
	PCI bus 120 in either a normal PCI mode or in a real-
	time/multimedia mode optimized for multimedia transfers
	of periodic data. As described below, multimedia devices
	use the PCI bus 120 for normal PCI transfers and also use
	the PCI bus fines in the multimedia mode for high speed
	data multimedia transfers, preferably transfers of periodic
	multimedia data. In the following description, elements
	which are preferably identical to elements previously
	described include the same reference numerals for
	convenience.") (emphasis added).

Claim Language	Lambrecht
	Lambrecht adds:
	"In one embodiment, the system bus
	(preferably PCI) implements a new mode of
	operation specifically for real-time transfers.
	A signal (or signals) is used to indicate that
	the system bus should be placed in a special
	real time mode. When not in special real time
	mode, the system bus operates as usual. The
	real time mode is optimized for the transfer
	of high bandwidth real-time information.
	Therefore, the present invention comprises a
	novel computer system architecture and
	method which provides one or more real-
	time or multimedia buses, optionally with a
	local expansion bus, to increase the
	performance of real-time peripherals and
	applications. The multimedia bus of the
	present invention provides improved data
	transfers performance and throughput for
	real-time devices. The various embodiments
	discussed above may be combined in various
	ways for optimum real-time and/or
	multimedia performance."
	Id. at 5:42-59 (emphasis added).

Claim Language	Lambrecht
	Lambrecht discloses using a PCI bus as a real time bus in a
	"special mode optimized for real-time data transfers." See, e.g.,
	Ex. 1032 at 28:1-2. Lambrecht discloses that the PCI bus used is
	a 32 bit PCI bus and further discloses that only 16 bits of this
	PCI bus are needed to transfer video in real time. See, e.g., Ex.
	1032 at 27:66-28:8 ("In the preferred embodiment of the
	invention of FIG. 21, the multimedia mode comprises placing
	the system bus or PCI bus 120 in a special mode optimized for
	real-time data transfers. In one embodiment of FIG. 21, the
	special mode comprises a byte sliced mode which uses different
	byte lanes or channels of the PCI data lines for different types of
	multimedia transfers as described above. Thus, 16 bits of the
	PCI bus may be used for video transfers while the remaining 16
	bits may be used for audio transfers simultaneously."). Thus, by
	indicating that only 16 bits of the 32 bit PCI bus are needed to
	transfer data in real time, Lambrecht discloses a bus having a
	bandwidth of at least twice the bandwidth required for the

Claim Language	Lambrecht
	decoder to operate in real time.

B. Ground B: *Lambrecht* in view of *Artieri*, renders obvious, under 35 U.S.C. § 103, claim 4

1. Claim 4

83. In my opinion, Lambrecht and Artieri discloses every feature of claim

4.

Claim Language	Lambrecht
[4.1] The	As discussed above, Lambrecht discloses all elements of claim
electronic	1. Lambrecht also teaches that the decoder is an MPEG decoder.
system of claim	See, e.g., Ex. 1032 at 27:51-53 ("the multimedia devices 142D-
1, wherein the	146D may comprise MPEG decoder cards").
decoder is	
capable of	Lambrecht does not explicitly disclose that its MPEG decoder is
decoding a	capable of decoding a bitstream formatted to comply with the
bitstream	"MPEG-2" standard. However, it would have been obvious to
formatted to	one of ordinary skill in the art at the time of the alleged
comply with the	invention to modify the decoder of Lambrecht to include the
MPEG-2	capability of decoding a bitstream formatted to comply with the
standard.	MPEG-2 standard, in view of Artieri.
	Artieri discloses that its "invention relates to picture processing

Claim Language	Lambrecht
	systems and more particularly to a system for decoding pictures
	encoded in accordance with an MPEG standard." Ex. 1036, 1:6-
	9. Artieri explains that "[a]ll MPEG decoders, especially for the
	MPEG-2 standard, generally include a variable length decoder
	(VLD) 10, a run-level decoder (RLD) 11, an inverse quantizer
	circuit (Q-1) 12, an inverse discrete cosine transform circuit
	(DCT-1) 13, a half-pixel filter 14, and a memory 15. The
	encoded data are provided to the decoder via a bus CDin and the
	decoded data are output via a bus VIDout." Id. at 1:12-18.
	It would have been obvious to one of ordinary skill in the art at
	the time of the alleged invention of the '789 patent to modify
	the MPEG decoder of Lambrecht to specifically decode a
	bitstream formatted to comply with the "MPEG-2" standard,
	like the decoder described in Artieri. Indeed, the '789 patent
	itself admits that at the time of the alleged invention of the '789
	patent, the MPEG-2 standard was in use and well accepted. Ex.
	1001 at 1:33-67. With the MPEG-2 standard already in use at
	the time of the alleged invention, its characteristics would have

Claim Language	Lambrecht
	been understood and predictable to those of ordinary skill. As
	alleged by the '789 patent, the MPEG-2 standard is a
	"decompression protocol[] that describe[s] how an encoded
	bitstream is to be decoded." Ex. 1001 at 41-45. Thus, modifying
	Lambrecht's decoder to perform MPEG-2 video decoding, as
	disclosed in Artieri, would constitute a combination of familiar
	elements according to known methods to yield predictable
	results.

C. Ground C: *Lambrecht* in view of *Moore*, renders obvious, under 35 U.S.C. § 103, claim 6

1. Claim 6

84. In my opinion, Lambrecht and Moore discloses every feature of claim

6.

Claim Language	Lambrecht
[6.1] The	As discussed above, Lambrecht discloses all of the elements of
electronic	claim 5. Lambrecht does not explicitly disclose that the decoder,
system of claim	the encoder and the memory interface are monolithically
5, wherein the	integrated into the first device. However, it would have been
decoder, the	obvious to a person of ordinary skill in the art at the time of the
encoder and the	alleged invention to monolithically integrate these components
memory	into a first device, in view of Moore (Ex. 1035).
interface are	
monolithically	Moore discloses that even as far back as the 1960s, "[i]ntegrated
integrated into	electronics [was] established." Ex. 1035 at 2. Moore teaches the
the first device.	advantages of integration, namely "reduced cost" and that "the
	cost advantage continues to increase as the technology evolves
	toward the production of larger and larger circuit functions on a
	single semiconductor substrate." Ex. 1035 at 2. Indeed, by the

Lambrecht
mid-1990s, the concept of integrating components on a single
chip had been widely adopted and applied in the arena of
multimedia processing chips, leading to faster multimedia
processing chips. See, e.g., Ex. 1006 (discussing the MVP, a
video chip from Texas Instruments).
Accordingly, a person of ordinary skill in the art at the time of
the alleged invention would have been motivated to apply
Moore's teachings regarding integration to the system described
in Lambrecht. Because chip integration was a well-known
technique, its use with Lambrecht would have led to predictable
results. Therefore, monolithically integrating the decoder, the
encoder and the memory interface into the first device in
Lambrecht, similar to the manner described in Moore, would
have been nothing more than a combination of familiar elements
that would have yielded predictable results.

D. Ground D: Rathnam in view of *Lambrecht*, renders obvious, under 35 U.S.C. § 103, claims 1, 3, 4, 5, and 11

1. Claim 1

85. In my opinion, Rathnam and Lambrecht discloses every feature of

claim 1.

Claim Language	RATHNAM
[1.0] An	Rathnam discloses an electronic system coupled to a memory.
electronic	See, e.g., Ex. 1005, 12-14. For example, Rathnam describes the
system coupled	TM-1 which "is the first in a family of programmable
to a memory,	multimedia processor from the Trimedia product group of
comprising:	Philips Semiconductors." Id., 12. Rathnam explains that "the
	TM-1 microprocessor is a fluid computer system controlled by a
	small real-time OS kernel that runs on the VLIW processor core.
	TM-1 contains a CPU, a high bandwidth internal bus, and
	internal bus-mastering DMA peripherals." Id., 12-13 (emphasis
	added).
	Moreover, Rathnam teaches a memory coupled to the electronic
	system. See, e.g., Ex. 1005 at 13 ("Figure 1 shows a block
	diagram of the TM-1 chip. The bulk of a TM-1 system includes

Claim Language	RATHNAM
	Rathnam also discusses a Video-out unit that "essentially
	performs the inverse function of the video-in unit. Video-out
	generates an eight-bit, multiplexed YUV data stream by
	gathering bits from the separate Y, U, and V data structures in
	SDRAM." See, e.g., Ex. 1005, 15 (emphasis added). Similarly,
	Rathnam also discloses Audio-In and Audio-Out units that
	require memory access. See, e.g., Ex. 1005, 17 ("As with the
	video units, the audio-in and audio-out units buffer incoming
	and outgoing audio data in SDRAM.") (emphasis added); id. at
	15 ("The audio-in and audio-out units are similar to the video
	units. They connect to most serial ADC and DAC chips, and are
	programmable enough to handle most reasonable protocols.
	These units can transfer MSB or LSB first and left or right
	channel first.").
	Rathnam discloses another example of a device that requires
	access to the memory, in particular, the TM-1's Image
	Coprocessor. See, e.g., Ex. 1005, 15-16. One of the Image

Claim Language	RATHNAM
	Coprocessor's purposes is "copying an image from SDRAM to
	the host's video frame buffer." Id. at 15. Rathnam adds that the
	Image Coprocessor "can operate as either a memory-to-memory
	or a memory-to-PCI coprocessor device." Id. at 16. Moreover,
	Rathnam teaches that the Image Coprocessor can maintain
	pointers in the memory. See id. ("When the ICP is displaying an
	image (i.e., copying it from SDRAM to a frame buffer), it
	maintains four pointers to the data structures in SDRAM."); see
	also Figure 4 of Rathnam (annotated below) is a visual
	representation of the Image Coprocessor's ability to access
	memory.
	PC Screen
	Figure 4. ICP operation. Windows on the PC screen and data structures in SDRAM for two live video windows.
	Rathnam at Fig. 4 (annotations added).

Claim Language	RATHNAM
[1.2] a decoder	Rathnam teaches this element. See, e.g., Ex. 1005, 14-15, Fig. 1
that requires	(annotated below). For example, Rathnam discloses a decoder
access to the	comprised of the VLD coprocessor and the VLIW CPU, which
memory	can decode video data. Rathnam's video decoding functionality
sufficient to	whereby it receives encoded (i.e., compressed) images and
maintain real	decodes (<i>i.e.</i> , decompresses) them is described:
time operation;	The variable-length decoder (VLD) is
and	included to relieve the TM-1 CPU of
and	the task of decoding Huffman-encoded
	video data streams. It can be used to
	help decode MPEG-1 and MPEG-2
	video streams. The VLD is a memory-
	to-memory coprocessor. The TM-1
	CPU hands the VLD a pointer to a
	Huffman-encoded bit stream, and the
	VLD produces a tokenized bit stream
	that is very convenient for the TM-1
	image decompression software to use.
	See Ex. 1005, 17 (emphasis added).
	Ine IM-I CPU letches data from the
	compressed video stream via the PCI

Claim Language	RATHNAM
	bus, decompresses frames from the
	video stream, and places them into
	local SDRAM. Decompression may
	be aided by the VLD (variable-length
	decoder) unit, which implements
	Huffman decoding and is controlled
	by the TM-1 CPU.
	Id., 14 (emphasis added).
	See also
	The CPU switches from one task to
	the next; first it decompresses a
	video frame, then it <i>decompresses</i> a
	slice of the audio stream, then back
	to video, etc.
	Id. at 14 (emphasis added).
	The TM-1 operation set includes all
	traditional microprocessor
	operations. In addition, multimedia-
	specific operations are included that
	dramatically accelerate standard

Claim Language	RATHNAM
	video compression and
	decompression algorithms.
	Id. at 15 (emphasis added).
	Rathnam's decoder, which comprises the VLD coprocessor and
	VLIW CPU working in tandem, is coupled to memory, as
	shown below in Figure 1. See also id., 15 ("The internal data bus
	connects all internal blocks together and provides access to
	internal control registers (in each on-chip peripheral units),
	external SDRAM, and the external PCI bus.").
	SDRAM Memory Millin Mamory WIV 422 VUV 422 VUV 422 WIV 422
	Figure 1. TM-1 block diagram. Rathnam at Fig. 1 (annotations added).

Claim Language	RATHNAM
	Rathnam discloses that its system is a real time system. See, e.g.,
	Ex. 1005, 15 ("The bus allocation mechanism is one of the
	features of TM-1 that makes it a true <i>real-time system</i> instead of
	just a highly integrated microprocessor with unusual
	peripherals.") (emphasis added); id., 13 ("TM-1 enhances a PC
	system to provide real-time multimedia, and it does so with the
	advantages of a special purpose, embedded solution-low cost
	and chip count - and the advantages of a general-purpose
	processor-reprogrammability.").
[1.3] a memory	Rathnam in view of Lambrecht discloses this limitation. For
interface for	example, Rathnam discloses "a memory interface for coupling
coupling to the	to the memory." See, e.g., Ex. 1005, 15 ("TM-1 has a glueless
memory, and	interface with synchronous DRAM (SDRAM).") (emphasis
coupled to the	added); Fig. 1 (annotated below).
first device and	
to the decoder,	
the memory	
interface having	

Rathnam at 319 (annotations added). Furthermore, the memory interface is coupled to both the first device and the decoder via an internal bus. See, e.g., Fig. 1 (annotated above). Rathnam explains that the "internal data bus connects all *internal blocks* together and provides access to internal control registers (in each on-chip peripheral units), *external SDRAM*, and the external PCI bus." Ex. 1005 at 15 (emphasis added). Therefore, the memory interface in *Rathnam* includes a "shared bus coupled to the memory the first device, and the decoder," as claimed.

Claim Language	RATHNAM
operate in real	Rathnam discloses an arbiter, explaining that:
time when the	Access to the internal bus is controlled by a
first device	central arbiter, which has a request line
	from each potential bus master. The arbiter
simultaneously	is configurable in a number of different
accesses the	modes so that the arbitration algorithm can
bus	be tailored for different applications.
	Peripheral units make requests to the arbiter
	for access, and depending on the arbitration
	mode, bus bandwidth is allocated to the
	units in different amounts. Each mode
	allocates bandwidth differently, but each
	mode guarantees each unit a minimum
	bandwidth and maximum service latency.
	All unused bandwidth is allocated to the
	TM-1 CPU.
	Ex. 1005 at 15 (emphasis added).
	Rathnam also suggests that the bus has "sufficient bandwidth to
	enable the decoder to access the memory and operate in real
	time." See, e.g., Ex. 1005, Rathnam at 15 ("The bus allocation
	mechanism is one of the features of TM-1 that makes it a true
	real-time system instead of just a highly integrated

Claim Language	RATHNAM
	microprocessor with unusual peripherals.") (emphasis added).
	Rathnam is capable of decoding multimedia in real-time. See,
	e.g., id. at 13 ("TM-1 enhances a PC system to provide real-time
	multimedia."). Thus, the TM-1 must have sufficient bandwidth
	to operate in real time.
	Rathnam discloses concurrent execution of multiple functions or
	operations as follows:
	• "TM-1 is designed to concurrently process video, audio,
	graphics, and communication data." Ex. 1005 at 12
	(emphasis added).
	• "The VLIW-CPU core is capable of executing a maximum
	of twenty seven operations per cycle, and the sustained
	execution rate is about five operations per cycle for the
	tuned applications." Ex. 1005 at 12 (emphasis added).
	• "Further, users demand that their systems provide <i>live video</i>
	and audio without sacrificing the responsiveness of the
	system." Ex. 1005 at 13 (emphasis added).
	• "TM-1 is a low-cost, programmable processor for the

Claim Language	RATHNAM
	consumer multimedia market. This product provides the
	additional processing power required for a true-to-life
	computer based experience. The Trimedia processor
	concurrently processes multiple data types including audio,
	video, graphics and communications." Ex. 1005 at 19
	(emphasis added).
	Moreover, Rathnam is capable of delivering high bandwidth
	access to the memory. See, e.g., Ex. 1005 at 15 ("TM-1's
	memory hierarchy satisfies the low cost and high bandwidth
	requirement of multimedia markets. Since multimedia video
	streams can require relatively large temporary storage, a
	significant amount of DRAM is required.").
	To the extent that Rathnam does not explicitly disclose "the
	memory interface having an arbiter for selectively providing
	access for the first device and the decoder to the memory" or
	"the bus having a sufficient bandwidth to enable the decoder to
	access the memory and operate in real time when the first device

Claim Language	RATHNAM
	simultaneously accesses the bus," these elements would have
	been obvious to a person of ordinary skill in the art at the time
	of the alleged invention in view of Lambrecht.
	As discussed above, Lambrecht discloses a "computer system
	for real-time applications." See Ex. 1032, Abstract. In particular,
	as discussed in more detail above, Lambrecht discloses a
	memory interface that has an arbiter. See, e.g., Ex. 1032 at 7:45-
	47 ("The chipset logic 106 preferably includes a memory
	controller for interfacing to the main memory 110 and also
	includes the arbitration logic 107."); see also id., 7:30-44, 26:66-
	27:2 ("The chipset 106 [in Fig. 21] includes various bridge
	logic, peripheral logic and arbitration logic 107, as described
	above with reference to FIG. 1.").
	Furthermore, Lambrecht teaches a design that allows real-time
	operation of a bus while also simultaneously allowing access to
	two different devices. See, e.g., Ex. 1032 at 5:18-48; 27:66-
	28:11. Lambrecht discloses a "byte sliced mode" that divides the

Claim Language	RATHNAM
	bus into different byte lanes, which allows for two different
	simultaneous data transfers. See Ex. 1032 at 27:66-28:11; see
	also id. at 5:18-48. Byte slice mode allows for simultaneous,
	real-time video and audio transfers over the same PCI bus. See
	id. at 27:66-28:11. By using byte slice mode over the PCI bus
	disclosed in Lambrecht, the bus has sufficient bandwidth to
	allow real-time access to memory to both a first device (for
	example, an audio circuit) and the decoder.
	It would have been obvious to one of ordinary skill in the art at
	the time of the alleged invention to modify the TM-1 chip
	disclosed in Rathnam such that "the memory interface [has] an
	arbiter for selectively providing access for the first device and
	the decoder to the memory" and a "bus having a sufficient
	bandwidth to enable the decoder to access the memory and
	operate in real time when the first device simultaneously
	accesses the bus ," similar to the manner disclosed in
	Lambrecht. Rathnam itself suggests both features, as discussed
	above, disclosing that its chip includes an arbiter and real-time
	operation. See, e.g., Ex. 1005, 15.

L

Claim Language	RATHNAM
	One of ordinary skill would have been motivated to modify the
	TM-1 chip in this way (to the extent it does not already perform
	these features) because doing so would enable improved
	operation, allowing, e.g., two different simultaneous data
	transfers. See Ex. 1032 at 27:66-28:11; see also id. at 5:18-48.
	Moreover, one of ordinary skill would have recognized that the
	combination would have involved nothing more than a
	combination of familiar elements that would have yielded
	predictable results.

86. In my opinion, *Rathnam* and *Lambrecht* discloses every feature of claim 3.

Claim Language	RATHNAM
[3.1] The	As discussed above, Rathnam in combination with Lambrecht
electronic	discloses all elements of claim 1. Further, Rathnam discloses
system of claim	"the decoder comprises a video decoder." Ex. 1005, 14-15; 17.
1, wherein the	Rathnam's video decoding functionality whereby it receives
decoder	encoded (i.e., compressed) images and decodes (i.e.,
comprises a	decompresses) them is described:
video decoder.	The variable-length decoder (VLD) is
	included to relieve the TM-1 CPU of
	the task of decoding Huffman-encoded
	video data streams. It can be used to
	help decode MPEG-1 and MPEG-2
	video streams. The VLD is a memory-
	to-memory coprocessor. The TM-1
	CPU hands the VLD a pointer to a
	Huffman-encoded bit stream, and the
	VLD produces a tokenized bit stream
	that is very convenient for the TM-1
	image decompression software to use.

See Ex. 1005, 17 (emphasis added).

	The TM-1 CPU fetches data from the
	compressed video stream via the PCI
	bus, decompresses frames from the
	video stream, and places them into
	local SDRAM. Decompression may
	be aided by the VLD (variable-length
	decoder) unit, which implements
	Huffman decoding and is controlled
	by the TM-1 CPU.
<i>Id.</i> at 14 (er	nphasis added).
See also	
	The CPU switches from one task to
	the next; first it decompresses a
	video frame, then it decompresses a
	slice of the audio stream, then back
	to video, etc.
<i>Id.</i> at 14 (er	nphasis added).
	The TM-1 operation set includes all
	traditional microprocessor
	operations. In addition,

	multimedia-specific operations are
	included that dramatically
	accelerate standard video
	compression and decompression
	algorithms.
	Id. at 15 (emphasis added).
1	

87. In my opinion, *Rathnam* and *Lambrecht* discloses every feature of claim 4.

Claim Language	RATHNAM
[4.1] The	As discussed above, Rathnam in combination with Lambrecht
electronic	discloses all elements of claim 1. Further, Rathnam's decoder is
system of claim	capable of decoding a bitstream formatted to comply with the
1, wherein the	MPEG-2 standard:
decoder is	The variable-length decoder (VLD) is
capable of decoding a	included to relieve the TM-1 CPU of the
	task of decoding Huffman-encoded video
	data streams. It can be used to help decode
bitstream	MPEG-1 and MPEG-2 video streams. The
	VLD is a memory-to-memory coprocessor.

Claim Language	RATHNAM
formatted to	The TM-1 CPU hands the VLD a pointer to
comply with the MPEG-2	a Huffman-encoded bit stream, and the VLD
	produces a tokenized bit stream that is very
	convenient for the TM-1 image
standard.	decompression software to use.
	See, e.g., Ex. 1005, 17 (emphasis added). "TM-1 easily
	implements popular multimedia standards such as MPEG-1 and
	MPEG-2." See, e.g., Ex. 1005, 12 (emphasis added).

88. In my opinion, *Rathnam* and *Lambrecht* discloses every feature of

claim 5.

Claim Language	RATHNAM
[5.1] The	As discussed above, Rathnam in combination with Lambrecht
electronic	discloses all elements of claim 1. Rathnam discloses that the TM-
system of claim	1 also includes an encoder coupled to the memory interface. See,
1, further	e.g., Ex. 1005, Rathnam, 14-15; id. at 15 ("The TM-1 operation
comprising an	set includes all traditional microprocessor operations. In addition,

encoder	multimedia-specific operations are included that dramatically
coupled to the	accelerate standard video compression and decompression
memory	algorithms.") (emphasis added); Fig. 1 (annotated below).
interface.	
	A device that decompresses data is a decoder while a device that
	compresses data is an encoder. See, e.g., Ex. 1001 at 1:46-51
	("Video and/or audio compression devices (hereinafter encoders)
	are used to encode the video and/or audio sequence before it is
	transmitted or stored. The resulting bitstream is decoded by a
	video and/or audio decompression device (hereinafter decoder)
	before the video and/or audio sequence is displayed.") (emphasis
	added).
	<i>Rathnam</i> teaches that the VLW CPU in the TM-1 is an encoder.
	See, e.g., Ex. 1005, Rathnam, 14 ("When a complete video frame
	has been read from the camera chip by the video-in unit, it
	interrupts the TM-1 CPU. The CPU compresses the video data in
	software (using a set of powerful data-parallel operations) and
	writes the compressed data to a separate area of SDRAM")
	(emphasis added). The CPU writes the encoded data into the

89. In my opinion, *Rathnam* and *Lambrecht* discloses every feature of claim 11.

Claim Language	RATHNAM
[11.1] The	As discussed above, <i>Rathnam</i> in combination with <i>Lambrecht</i>
electronic	discloses all elements of claim 1. Furthermore, Rathnam teaches
system of claim	that the first device can be a graphics accelerator. See, e.g., Ex.
1, wherein the	1005, 15 ("The TM-1 operation set includes all traditional
first device is a	microprocessor operations. In addition, multimedia-specific
graphics	operations are included that dramatically accelerate standard
accelerator.	video compression and decompression algorithms.") (emphasis
	added).
	As another example, Rathnam discloses an image coprocessor
	for enhancing the TM-1's graphical performance. See id. ("The
	image coprocessor (ICP) is used for several purposes to off-load
	tasks from the TM-1 CPU, such as copying an image from
	SDRAM to the host's video frame buffer. Although these tasks
	can be easily performed by the CPU, they are a poor use of the

Claim Language	RATHNAM
	relatively expensive CPU resource. When performed in parallel
	by the ICP, these tasks are <i>performed efficiently</i> by simple
	hardware, which allows the CPU to continue with more
	complex tasks.") (emphasis added).
	Moreover, Rathnam discloses that the image coprocessor can
	perform "horizontal resizing," "color-space conversion,"
	accommodation of overlapping windows on a PC screen,
	generation of pixels, "modification of occulusion bitmaps," and
	"scaling." See e.g., Ex. 1005 at 15-17, Fig. 4.

E. Ground E: *Rathnam* in view of *Lambrecht* and *Moore*, renders obvious, under 35 U.S.C. § 103, claim 6

1. Claim 6

90. In my opinion, Rathnam and Lambrecht and Moore discloses every

feature of claim 6.

Claim Language	RATHNAM
[6.1] The	As discussed above, <i>Rathnam</i> in combination with <i>Lambrecht</i>
electronic	discloses all elements of claim 5. Rathnam further discloses that
system of claim	the decoder, the encoder and the memory interface are
5, wherein the	monolithically integrated into the TM-1 chip. See, e.g., Ex. 1005
decoder, the	at 19 ("TM-1 is a single chip video teleconferencing solution
encoder and the	that runs all current video codecs across all common transport
memory	mechanisms.") (emphasis added).
interface are	
monolithically	To the extent Rathnam may not explicitly disclose integration of
integrated into	the encoder, decoder, and memory interface "into" the first
the first device.	device, it would have been obvious to a person of ordinary skill
	in the art at the time of the alleged invention to monolithically
	integrate these components into a first device, in view of Moore
	(Ex. 1035).

	ann	
Lang	gua	ge

RATHNAM

Moore discloses that even as far back as the 1960s, "[i]ntegrated electronics [was] established." Ex. 1035 at 2. *Moore* teaches the advantages of integration, namely "reduced cost" and that "the cost advantage continues to increase as the technology evolves toward the production of larger and larger circuit functions on a single semiconductor substrate." Ex. 1035 at 2. Indeed, by the mid-1990s, the concept of integrating components on a single chip had been widely adopted and applied in the arena of multimedia processing chips, leading to faster multimedia processing chips. *See, e.g.*, Ex. 1006 (discussing the MVP, a video chip from Texas Instruments).

Accordingly, a person of ordinary skill in the art at the time of the alleged invention would have been motivated to apply *Moore*'s teachings regarding single-chip integration to the system described in *Lambrecht*. Because chip integration was a well-known technique, its use with *Lambrecht* would have led

Claim Language	RATHNAM
	to predictable results. Therefore, monolithically integrating the
	decoder, the encoder and the memory interface into the first
	device in Lambrecht, similar to the manner described in Moore,
	would have been nothing more than a combination of familiar
	elements that would have yielded predictable results.

F. Ground F: *Rathnam* in view of *Lambrecht* and *Slavenburg*, renders obvious, under 35 U.S.C. § 103, claim 13

1. Claim 13

91. In my opinion, Rathnam in view of Lambrecht and Slavenburg

discloses every feature of claim 13.

Claim Language	RATHNAM
[13.1] The	As discussed above, Rathnam in combination with Lambrecht
electronic	discloses all elements of claim 1. Further, Rathnam discloses
system of claim	that the TM-1 is capable of delivering high bandwidth access to
1, wherein the	the memory. See, e.g., Ex. 1005, Rathnam at 15 ("TM-1's
bus has a	memory hierarchy satisfies the low cost and high bandwidth
bandwidth of at	requirement of multimedia markets. Since multimedia video
least twice the	streams can require relatively large temporary storage, a
bandwidth	significant amount of DRAM is required."). Furthermore, the
required for the	bus in Rathnam operates in real-time. See, e.g., id. ("The bus
decoder to	allocation mechanism is one of the features of TM-1 that makes
operate in real	it a true real-time system instead of just a highly integrated
time.	microprocessor with unusual peripherals.").
	The Slavenburg publication, authored by one of the co-authors

of <i>Rathnam</i> discloses that the TM-1 memory bus is capable of
having a bandwidth at least two times greater than the amount of
data carried to the decoder when the decoder decodes in real
time. For example, Slavenburg discloses that the TM-1 has
400Mbyte/Sec bandwidth. See id. More particularly, Slavenburg
discloses that the TM-1 was capable of accessing the SDRAM at
100 MHz. See, e.g., Ex. 1034 at 12-9 ("100 MHz SDRAM
interface, under worst-case conditions"). Moreover, Slavenburg
discloses that the TM-1 accesses the SDRAM via the internal
bus. See, e.g., id. at 12-2.
TM-1 : inside

Claim Language	RATHNAM
	Status Status Select one of two operands depending on a third (implemented as branch-free three-operations sequence) Status Status Select one of two operands depending on a third (implemented as branch-free three-operation sequence) Status Status Status Select one of two operands depending on a third (implemented as branch-free three-operation sequence) Status Status Status Status Status Select one of two operands depending on a third (implemented as branch-free three-operation sequence) Status Status
	The combination of a 32 bit bus operating at over 100MHz creates a bus with a bandwidth of over 400 Mbytes/Sec. This follows from the fact that 32 bits correspond to 4 Bytes because 1 Byte consists of 8 bits. And 4 Bytes multiplied times 100 MHz corresponds to 400 Mbytes/sec.
	The TM-1 decodes MPEG 2 at 15Mbit/sec, which is well below half of 400 Mbytes/sec. <i>See Slavenburg</i> at 12-8 ("application performance: MPEG-2 main level, main profile, 15Mbit/sec")

Claim Language	RATHNAM
	400 Mbytes/sec is well over twice the bandwidth required to
	operate the TM-1 in real time. The '789 patent itself admits that
	400 Mbytes/Sec is "at least twice the bandwidth required for an
	optimized decoder/encoder 45, allowing the decoder/encoder 45
	to operate in real time." See Ex. 1001 at 8:56-62 ("In current
	technology the memory bus 167, which corresponds to the fast
	bus 70, for coupling a core logic chipset to a memory, is capable
	of having a bandwidth of approximately 400 Mbytes/s. This
	bandwidth is at least twice the bandwidth required for an
	optimized decoder/encoder 45, allowing the decoder/encoder 45
	to operate in real time."). Thus, the TM-1's bus can operate
	with at least twice the bandwidth required to operate in real
	time.
	It would have been obvious to one of ordinary skill in the art at
	the time of the alleged invention of the '789 patent to modify the
	TM-1 chip disclosed in Rathnam to include the features
	disclosed regarding the TM-1 chip in Slavenburg. One of

Claim Language	RATHNAM
	ordinary skill would have recognized that, since both
	publications discuss the same chip, any modification of the TM-
	1 chip described in Rathnam would have yielded predictable
	results. Moreover, one of ordinary skill would have been
	motivated to apply the teachings of Slavenburg to the TM-1 chip
	described in Rathnam because both publications describe the
	same chip. Therefore, modifying the bus described in Rathnam
	to include a bandwidth of at least twice the bandwidth required
	for the decoder to operate in real time would have been nothing
	more than a predictable and common sense implementation
	based on the disclosures of Rathnam and Slavenburg.

* * *

I, Harold S. Stone, do hereby declare and state, that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, under Section 1001 of Title 18 of the United States Code.

Executed on: September 21, 2015

Harolds Stone

Harold S. Stone

VII. APPENDIX A

Exhibit	Title
1001	U.S. Patent No. 5,812,789
1002	File History for U.S. Patent No. 5,812,789
1004	ISO/IEC 11172-2:1993: Information technology—Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s—Part 2: Video," (1 st ed. August 1, 1993) (" <i>MPEG Standard</i> ")
1005	S. Rathnam et al., "An Architectural Overview of the Programmable Multimedia Processor, TM-1," IEEE Proceedings of COMPCON '96, pp. 319-326 (1996) (" <i>Rathnam</i> ")
1006	R.J. Gove, "The MVP: A Highly-Integrated Video Compression Chip," Proceedings of the IEEE Data Compression Conference (DCC '94), pp. 215-224 (March 29- 31, 1994) (" <i>Gove</i> ")
1007	U.S. Patent No. 5,774,676 ("Stearns")
1014	Brad Hansen, The Dictionary of Multimedia, 1997
1019	Shanley, et al., "PCI System Architecture," Addison-Wesley Publishing Company, 1995 (3rd ed.) ("Shanley")
1020	Stone, H., "Microcomputer Interfacing," Addison-Wesley Publishing Company, 1982
1023	U.S. Patent No. 5,797,028 ("Gulick 028")
1024	"Accelerated Graphics Port Interface Specification," Intel Corporation, July 31, 1996 (Revision 1.0) (" <i>AGP</i> ")
1025	VESA Unified Memory Architecture Hardware Specifications Proposal," Version 1.0p ("VUMA")
1032	U.S. Patent No. 5,682,484 ("Lambrecht")
1034	Slavenburg, G., "The TriMedia VLIW-Based PCI Multimedia Processor," Microprocessor Forum 1995, Oct. 10-11, 1995 (" <i>Slavenburg</i> ")
1035	G. Moore, "Cramming more components onto integrated circuits," Electronics, Vol. 38, No. 8, Apr. 19, 1965 (" <i>Moore</i> ")
1036	U.S. Patent No. 5,579,052 ("Artieri")