
Network and Distributed
System Security

-l='L 01- IIJ- February 16-17, 1995
I

San Dieg0,California

@ lEEE Computer society Press The Institute of Electrical and Electronics Engineers, Inc.

000001

Symantec 1036
IPR2015-01892

Symantec v. Finjanf

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Distributed Audit Trail Analysis

Abdelaziz Mounji Baudouin Le Charlier Denis Zampunidris
Naji Habra,

Institut d'Informatique,
FUNDP,

rue Grangagnage 21,
5000 Namur

E-mail: {amo, ble, dza, nha)@info.fundp.ac.be

Abstract
An implemented system for on-line analysis of mul-

tiple distributed data streams is presented. The system
is conceptually universal since it does not rely on any
particular platform feature and uses format adaptors
to translate data streams into its own standard format.
The system is as powerful as possible (from a theoret-
ical standpoint) but still efficient enough for on-line
analysis thanks to its novel rule-based language (BUS-
SEL) which is specifically designed for efficient pro-
cessing of sequential unstructured data streams.
In this paper, the generic concepts are applied to secu-
rity audit trail analysis. The resulting system provides
powerful network security monitoring and sophisti-
cated tools for intrusion/anomaly detection. The rule-
based and command languages are described as well as
the distributed architecture and the implementation.
Performance measurements are reported, showing the
effectiveness of the approach.
1 Introduction

Auditing distributed environments is useful to un-
derstand the behavior of the software components. For
instance this is useful for testing new applications: one
execution trace can be analyzed to check the correct-
ness wrt the requirements. In the area of real-time
process control, critical hardware or software compo-
nents are supervised by generating log data describing
their behavior. The collection and analysis of these log
files has often to be done real-time, in parallel with
the audited process. This analysis can be conducted
for various purposes such as investigation, recovery
and prevention, production optimization, alarm and
statistics reporting. In addition, correlation of results
obtained at different nodes can be useful to achieve a
more comprehensive view of the whole system.

Computer and network security is currently an ac-
tive research area. The rising complexity of today
networks leads to more elaborate patterns of attacks.
Previous works for stand-alone computer security have
established basic concepts and models 3 ,4 ,5,7,8] and
described a few operational systems I 1, 6, 9, 12, 181.
However, distributed analysis of audit trails for net-
work security is needed because of the two following

facts. First, the correlation of user actions taking place
at different hosts could reveal a malicious behavior
while the same actions may seem legitimate if consid-
ered a t a single host level. Second, the monitoring of
network security can potentially provide a more coher-
ent and flexible enforcement of a given security policy.
For instance, the security officer can set up a common
security policy for all monitored hosts but choose to
tighten the security measures for critical hosts such as
firewalls [2] or for suspicious users.

A software architecture and a rule-based language
for universal audit trail analysis were developed in the
first phase of the ASAX project [lo, 11, 121. The dis-
tributed system presented here uses this rule-based
language to filter audit data at each monitored host
and to analyze filtered data gathered at a central host.
The analysis language is exactly the same at both local
and central levels. This provides a tool for a flexible
and a gradual granularity control at different levels:
users, hosts, subnets, domains, etc.

The rest of this paper is organized as follows. Sec-
tion 2 briefly describes the system for single audit trail
analysis and its rule-based language. Section 3 details
the functionalities offered by the distributed system.
Section 4 presents the distributed architecture. Sec-
tion 5 describes the command interface of the security
officer. In section 6 , the implementation of the main
components is outlined. Performance measurements
are reported in section 7. Finally, section 8 contains
the conclusion and indicates possible improvements of
this work.

2 Single Audit Trail Analysis
In this section, the main features of the stand alone

version of ASAX for single audit trail analysis are ex-
plained. However, we only emphasize interesting func-
tionalities. The reader is referred to [12] for a more de-
tailed description of these functionalities'. A compre-
hensive description of ASAX is presented in [lo, 111.

'Notice however that [12] is a preliminary description of a
The examples in the present system under implementation.

paper have been actually run on the implemented system

102
0-8186-7027-4195 $4.00 0 1995 IEEE

000002 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2.1 A motivating example
The use of the RUSSEL language for single audit

trail analysis is better introduced by a typical exam-
ple: detecting repeated failed login attempts from a
single user during a specified time period. This ex-
ample uses the SunOS 4.1 auditing mechanism. Na-
tive audit trails are translated into a standard format
(called NADF). The translation can be applied on-line
or off-line. Hence, the description below is based on
the NADF format of the audit trail records.

Assuming that login events are pre-selected for au-
diting, every time a user attempts to log in, an audit
record describing this event is written into the audit
trail. Audit record fields (or audit data) found in a
failed login record include the time stamp (au-time),
the user id (au-tezt-3) and a field indicating success
or failure of the attempted login (au-tezt4) . Notice
that audit records representing login events are not
necessarily consecutive since other audit records can
be inserted for other events generated by other users
of the system.

In the example (see Figure l), RUSSEL keywords
are noted in bold face characters, words in italic style
identify fields in the current audit record, while rule
parameters are noted in roman style. Two rules are
needed to detect a sequence of failed logins. The
first one (failed-login) detects the first occurrence of
a login failure. If this record is found, this rule trig-
gers off the rule count-rule which remains active until
it detects countdown failed logins among the subse-
quent records or until its expiration time arrives. The
parameter target-uid of rule count-rule is needed to
count only failed logins that are issued by the same
user (target-uid). If the current audit record does
not correspond to a login attempt from the same
user, count-rule simply retriggers itself for the next
record otherwise. If the user id in the current record
is the same as its argument and the time stamp is
lower than the expiration argument, it retriggers it-
self for the next record after decrementing the count
down argument. If the latter drops to zero, count-rule
writes an alarm message to the screen indicating that
a given user has performed maztimes unsuccessful lo-
gins within the period of time duration seconds. In
addition, count-rule retriggers the failed-login rule in
order to search for other similar patterns in the rest
of the audit trail.

In order to initialize the analysis process, the special
rule initaction makes the failed-login rule active for
the first record and also makes the print-results rule
active at completion of the analysis. The latter rule is
used to print results accumulated during the analysis
such as the total number of detected sequences.
2.2 Salient features of ASAX
2.2.1 Universality

This feature means that ASAX is theoretically able
to analyze arbitrary sequential files. This is achieved
by translating the native file into a format called
NADF Normalized Audit Data Format). According

quence of audit data fields. All data fields are consid-
to this I ormat, a native record is abstracted to a se-

global v: integer;

rule f ailedlogin(max-times, duration: integer) ;

if event = ' log inlogout '
and au-textA = 'incorrect password'
--> trigger off fornext

count rule (audext-3,
strToInt (adime) +durat ion.
max-t imes-1)

fi;

rule count r u l e (target a i d : string ;
expirat ion,
countdown: integer) ;

if auid = suspectauid
and event = ' log inlogout '
and au-text4 = 'incorrect password'
and au-text-b = t a r g e t v i d
and strToInt(ou1ime) < expiration
--> if countdown > 1

--> trigger off fornext
count iule (target a i d ,

expirat ion,
countdown-1) ;

countdown = 1
--> begin

v := v + 1;
print In (get t ime (a d i m e) ,

I . . 3 FAILED LOGINS ON ',
t a r g e t v i d) ;

trigger off fornext
f a i ledlogin(3 ,120>

end
fi;

strToInt (audime) > expiration
--> trigger off fornext f a i ledlogin(3 ,120) ;
true
--> trigger off fornext

count r u l e (target a i d ,
expiration,
countdown)

fi;

rule p r i n t i e s u l t s ;
begin

end ;
println(v. ' sequence(s) of bad logins found')

init action;
begin

v := 0 ;
trigger off fornext f a i l e d l o g i n (3 , 120) ;
trigger off at-completion p r i n t i e s u l t s

end.

Figure 1: RUSSEL module for failed login detection
on SunOS 4.1

103

000003 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

ered as untyped strings of bytes. Therefore, an audit
data in the native record is converted to three fields2:

an identifier (a 2-bytes integer) identifies the data

a length (a 2-bytes integer;)

a value i.e., a string of bytes.

A native record is encoded in NADF format as the
sequence of encodings of each data field with a leading
4-bytes integer representing the length of the whole
NADF record. Note that the NADF format is similar
to the TLV (Tag, Length, Value) encoding used for the
BER (Basic Encoding Rules) which is used as part of
the Abstract Syntaz Notation ASN.l [14]. However,
the TLV encoding is more complex since it supports
typed primitive data values such as boolean, real, etc
as well as constructor data types. Nevertheless, any
data value can be represented as a string of bytes in
principle. As a result, the flexibility of the NADF
format allows a straightforward translation of native
files and a fast processing of NADF records by the
universal evaluator.
2.2.2 The RUSSEL language

RUSSEL (Rule-based Sequence Evaluation Lan-
guage) is a novel language specifically tailored to the
problem of searching arbitrary patterns of records in
sequential files. The built-in mechanism of rule trig-
gering allows a single pass analysis of the sequential
file from left to right.

The language provides common control structures
such as conditional, repetitive, and compound actions.
Primitive actions include assignment, external routine
call and rule triggering. A RUSSEL program simply
consists of a set of rule declarations which are made
of a rule name, a list of formal parameters and lo-
cal variables and an action part. RUSSEL also sup-
ports modules sharing global variables and exported
rule declarations.
The operational semantics of RUSSEL can be sketched
as follows:

field among all possible data fields;

records are analyzed sequentially. The analysis of
the current record consists in executing all active
rules. The execution of an active rule may trigger
off new rules, raise alarms, write report messages
or alter global variables, etc;

rule triggering is a special mechanism by which a
rule is made active either for the current or the
next record. In general, a rule is active for the
current record because a prefix of a particular se-
quence of audit records has been detected. (The
rest of this sequence has still to be possibly found
in the rest of the file.) Actual parameters in the
set of active rules represent knowledge about the
already found subsequence and is useful for se-
lecting further records in the sequence;

21n fact, native files can be translated t o NADF format in
many Merent ways depending on the problem at hand. The
standard method proposed here was however sufficient for the
applications we have encountered so far.

0 when all the rules active for the current record
have been executed, the next record is read and
the rules triggered for it in the previous step are
executed in turn;

0 to initialize the process, a set of so-called init rules
are made active for the first record.

User-defined and built-in C-routines can be called
from a rule body. A simple and clearly specified in-
terface with C allows to extend the RUSSEL language
with any desirable feature. This includes simulation
of complex data structures, sending an alarm message
to the security officer, locking an account in case of
outright security violation, etc.

2.2.3 Efficiency
Is a critical requirement for the analysis of large

sequential files, especially when on-line monitoring is
involved. RUSSEL is efficient thanks to its opera-
tional semantics which exhibits a bottom-up approach
in constructing the searched record patterns. Fur-
thermore, optimization issues are carefully addressed
in the implementation of RUSSEL: for instance, the
internal code generated by the compiler ensures a
fast evaluation of boolean expressions and the cur-
rent record is pre-processed before evaluation by all
the current rules, in order to provide a direct access
to its fields.

3 Administrator Minded

3.1 Introduction
The previous sections showed that ASAX is a uni-

versal, powerful and efficient tool for analyzing sequen-
tial files, in general, and audit trails, in particular.
In this section, the functionalities of a distributed ver-
sion of ASAX are presented in the context of dis-
tributed security monitoring of networked computers.
The implemented system applies to a network of SUN
workstations using the C2 security feature and uses
PVM (Parallel Virtual Muchine) [15] as message pass-
ing system. However, the architecture design makes
no assumption about the communication protocol, the
auditing mechanism or the operating system of the in-
volved hosts.

3.2 Single point administration
In a network of computers and in the context of se-

curity auditing, it is desirable that the security officer
has control of the whole system from a single machine.
The distributed on-line system must be manageable
from a central point where a global knowledge about
the status of the monitoring system can be maintained
and administered in a flexible fashion. Management of
the monitoring system involves various tasks such as
activation of distributed evaluators and auditing gran-
ularity control. Therefore, monitored nodes are, in a
sense, considered as local objects on which adminis-
tration tasks can be applied in a transparent way as
if they were local to the central machine.

Funct ionalit ies

104

000004 f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3.3 The local and global analyses -
Local analysis requirement corresponds to the abil-

ity of analyzing any audit trail associated to a moni-
tored host. This is achieved by applying an appropri-
ate RUSSEL module to a given audit trail of a given
host. The analysis is considered local in the sense that
analyzed audit data represents events taking place at
the involved host. No assumption is otherwise made
about which host is actually performing the analy-
sis. Local analysis is also called filtering since at the
network level, it serves as a pre-selection of relevant
events. In fact, pre-selected events may correspond to
any complex patterns of subject behaviors.

Audit records filtered at various nodes are com-
municated to a central host where a global (network
level) analysis takes place. In its most interesting use,
global analysis aims at detecting patterns related to
global network security status rather than host secu-
rity status. In this regard, global analysis encompasses
a higher level and a more elaborate notion of security
event.

Concerted local and global analysis approach lends
itself naturally to a hierarchical model of security
events in which components of a pattern are detected
at a lower level and a more aggregate pattern is de-
rived a t the second higher level and so on. Note that
an aggregate pattern could exhibit a malicious secu-
rity event while corresponding sub-patterns do not at
all. For instance, a login failure by a user is not an
outright security violation but the fact that this same
user is trying to connect to an abnormally high num-
ber of hosts may indicate that a network attack is
under course. Organizations often use networks of in-
terconnected Lans corresponding to departments. The
hierarchical model can be mapped on the organization
hierarchy by applying a distributed analysis on each of
the Lans and an organization-wide analysis carried out
on audit data filtered at each Lan. Thus, concerted
filtering and global analysis can lead to the detection
of very complex patterns.

In the following, the node performing the global
analysis is called the central or master machine while
filtering takes place at slave machines. Correspond-
ingly, we will also refer to master and slave evaluators.
A distributed evaluator is a master evaluator together
with its associated slave evaluators.

3.4 Availability
This requirement means that a distributed evalua-

tor must survive any of its slave evaluators failure and
must easily be recovered in case of a failure of the mas-
ter evaluator. The availability of a distributed evalu-
ator ensures that if for some reasons a given slave is
lost (broken connection, fatal error in the slave code
itself, node crash, etc), the distributed analysis can
still be carried on the rest of monitored hosts. On
the other hand, if the master evaluator fails, the dis-
tributed analysis can be resumed from an other avail-
able host. In all cases, and especially for on-line anal-
ysis, all generated audit records must remain available
for analysis (no records are lost). Distributed analy-
sis recovery must also be done in a flexible way and
require a minimum effort.

3.5 Logging control
This functionality involves control of the granular-

ity of security events a t the network, host and user
levels. Typically, the security officer must be able to
set up a standard granularity for most audited hosts
and to require a finer granularity for a particular user
or all users of a particular host. According to the sin-
gle point administration requirement, this also means
that logging control is carried out from the central
machine without need for multiple logging to remote
hosts.
4 Architecture

The architecture of the distributed system is ad-
dressed at two different levels. At the host level, a
number of processes cooperate to achieve logging con-
trol and filtering. The global architecture supports the
network level analysis. This section aims at giving an
intuitive view of the overall distributed system.
4.1 Host level

Processes in the local architecture are involved in
the generation of audit data, control of its granularity
level, conversion of audit data to NADF format, anal-
ysis of audit records and finally transmission of filtered
sequences to the central evaluator. At the master host,
a network level analysis subsequently takes place on
the stream of records resulting from merging records
incoming from slave machines. Both global and local
analyses are performed by a slightly modified version
of the analysis tool outlined in the previous section.
4.1.1 Audit trail generation

This mechanism is operating system dependent. It
generates audit records representing events such as op-
erations on files, administrative actions, etc. It is as-
sumed that all monitored hosts provide auditing ca-
pabilities and mechanism for controlling granularity
level. The process generating audit records is called
the audit daemon (auditd for short).
4.1.2 Login controller

This process communicates with auditd in order to
alter the granularity. It is able to change the set of pre-
selected events. This can be done on a user, host and
network basis. Furthermore, we distinguish between
a temporary change which applies to the current lo-
gin session and a permanent change affecting also all
subsequent sessions.
4.1.3 Format adaptor

This process translates audit trails generated by au-
ditd to the NADF format. Native files can be erased
after being converted since they are semantically re-
dundant with NADF files. Keeping converted files in-
stead of native files has several advantages: the files
are converted only once and can be reanalyzed several
times without requiring a new conversion. Moreover,
in the context of an heterogeneous network, they pro-
vide a standard and unique format.
4.1.4 Local evaluator

It analyzes the NADF files generated by the format
adaptor. Note that several instances of the evaluator
can be active at the same time to perform analyses on
different NADF files or possibly on the same file. Off-
line and on-line analyses are implemented in the same

105

000005 f

Find authenticated court documents without watermarks at docketalarm.com.

jwd
Highlight

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

